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Sommario 

I sistemi di inseguimento dello sguardo (eye-gaze tracking) stimano il punto osservato 

da un utilizzatore su di una superficie (es. il monitor collegato ad un personal computer). 

Sono utilizzati in ambito diagnostico, per studiare le caratteristiche e le anormalità del 

sistema oculomotorio (es. in oftalmologia, neurologia, psicologia), e in applicazioni 

interattive dove il sistema costituisce il dispositivo periferico d’ingresso di un’interfaccia 

uomo-computer (es. per muovere il cursore sullo schermo quando il controllo attraverso il 

mouse non è possibile, come accade nel caso di sistemi di ausilio per pazienti gravemente 

disabili). 

Se la testa dell’utilizzatore rimane ferma e la sua cornea è assunta sferica e rotante 

intorno al suo centro fisso, nelle immagini catturate da una o più telecamere, la pupilla segue 

l’occhio durante i suoi movimenti, mentre le riflessioni generate da una o più sorgenti di luce 

infrarossa sulla superficie esterna della cornea (i cosiddetti glint) possono essere assunte come 

punti fissi di riferimento. 

La tecnologia più diffusa per i sistemi di eye-gaze tracking è la pupil center corneal 

reflection, che consiste nell’estrazione delle coordinate del centro della pupilla e dei glint 

dalle immagini dell’occhio, e nella successiva trasformazione (o mapping) di tali coordinate 

in quelle del punto osservato (Hutchinson et al., 1989). 

Una delle caratteristiche peculiari di un sistema di eye-gaze tracking, quindi, è la c.d. 

funzione di mapping che effettua tale trasformazione. 

∗                    ∗                    ∗ 
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Riguardo a tutte le possibili configurazioni di un sistema basato sulla pupil center 

corneal reflection, in termini di numero e posizione delle telecamere e delle sorgenti di luce 

all’infrarosso, alcuni importanti risultati teorici, di seguito brevemente riportati, hanno 

costituito la prima fonte d’ispirazione di questo lavoro di tesi (Guestrin and Eizenman, 2006; 

Villanueva and Cabeza, 2008): 

- 1 telecamera, 1 sorgente IR: con tale configurazione il punto osservato non 

può essere stimato se la posizione della testa dell’utilizzatore non rimane 

stazionaria o non viene stimata in altro modo, 

- 1 telecamera, 2 sorgenti IR: è la configurazione più semplice che consente la 

stima del punto osservato lasciando l’osservatore libero di muovere la testa; 

tale configurazione, inoltre, consente di ottenere un’accuratezza della stima del 

punto osservato di circa 1° in termini d’angolo visuale (è l’accuratezza 

generalmente accettata per i sistemi interattivi impiegati nelle interfacce 

uomo-computer); 

- l’accuratezza può essere migliorata impiegando un numero maggiore di 

sorgenti IR, 

- qualsiasi sia il numero delle telecamere e delle sorgenti IR utilizzate, è 

necessario effettuare una calibrazione del sistema. 

Ciò considerato, in questa tesi si propone di utilizzare una sola telecamera e di 

incrementare il numero di sorgenti IR da due a tre così che la stima del punto osservato possa 

essere (teoricamente) effettuata anche con la testa in movimento, ottenendo, potenzialmente, 

un’accuratezza migliore di 1°. 

Si è, pertanto, realizzato un sistema d’illuminazione in grado di provocare una 

particolare configurazione triangolare di tre glint proiettati sull’occhio dell’utilizzatore. 

L’informazione contenuta in tale configurazione, quindi, è stata opportunamente utilizzata per 

rivelare in maniera robusta le caratteristiche dell’occhio (es. consentendo di scartare artefatti 

nell’immagine), ed ha consentito, al contempo, di utilizzare dei sistemi d’illuminazione e di 

ripresa di complessità inferiore a quella dei sistemi di eye-gaze tracking studiati o 

commercializzati (evitando, in particolare, la necessità di sincronizzare i segnali di attivazione 

delle sorgenti di luce con quello di acquisizione dalla telecamera). 

∗                    ∗                    ∗ 
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Lo studio della funzione di mapping da utilizzare per il sistema di eye-gaze tracking 

che utilizzi il sistema di illuminazione proposto ha fornito l’altro principio di base per questo 

lavoro di tesi. 

La determinazione della funzione di mapping di un sistema di eye-gaze tracking può 

avvenire secondo due possibili approcci: quello basato sull’adozione di un modello del 

sistema e dell’occhio dell’utilizzatore (model-based), e l’approccio indipendente da modelli 

espliciti e basato sulla regressione (regression-based o, semplicemente, model-independent) 

(Hansen and Ji, 2010). 

L’approccio model-based compie una stima diretta del punto osservato attraverso la 

derivazione in forma esplicita della funzione di mapping a partire da modelli geometrici 

(approssimati) relativi alla geometria dell’allestimento del sistema, ai componenti del sistema 

e all’occhio del particolare utilizzatore, caratterizzati, rispettivamente, da parametri fisici (es. 

lunghezza focale e posizione della telecamera) e fisiologici (es. il raggio della cornea 

approssimata come una sfera). 

I sistemi di eye-gaze tracking di tipo model-based, quindi, soffrono degli svantaggi 

causati dall’adozione di un particolare modello esplicito, rigido e, inevitabilmente, 

approssimato, tra i quali: 

- la scarsa flessibilità del sistema al variare dei parametri che descrivono: le 

caratteristiche fisiologiche degli occhi dei diversi utilizzatori, i particolari 

componenti utilizzati e il loro allestimento e assemblaggio, 

- la limitazione dell’accuratezza ottenuta nella stima del punto osservato. 

L’approccio model-independent, al contrario, stima la funzione di mapping 

impiegando tecniche di regressione, senza il bisogno, quindi, di assumere alcun particolare 

modello approssimato né per la fisiologia dell’occhio, né per l’allestimento del sistema, 

consentendo, potenzialmente, maggiore flessibilità e accuratezza. 

Una delle tecniche di regressione più utilizzate è quella basata sulle reti di neuroni 

artificiali, più note come reti neurali, le quali, come ampiamente dimostrato, costituiscono dei 

regressori universali in grado di approssimare ogni funzione misurabile con qualsiasi 

desiderato livello di accuratezza (Cybenko, 1989; Hornik et al., 1989). 

In questa tesi, pertanto, alla stregua di autori come (Baluja & Pomerleau, 1994; Piratla 

& Jayasumana, 2002; Zhu & Ji, 2004), adottando l’approccio model-independent, si è 

proposto di impiegare le reti neurali per apprendere la funzione di mapping del sistema di 
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eye-gaze tracking proposto, basato sulla tecnologia pupil center corneal reflection, 

equipaggiato con il descritto sistema d’illuminazione a tre sorgenti IR. 

Sebbene l’impiego di una funzione di mapping neurale possa ovviare, in teoria, agli 

svantaggi inerenti all’utilizzo di un sistema di eye-gaze tracking basato su modelli espliciti, 

alcuni pregiudizi accompagnano, storicamente, le applicazioni pratiche delle reti neurali 

tradizionali. 

Oltre alle difficoltà correlate alla ricerca della migliore architettura dei collegamenti, 

altri inconvenienti dipendono dall’estensione illimitata del dominio delle funzioni sigmoidali 

che, tradizionalmente, realizzano le funzioni d’attivazione dei neuroni artificiali: la lentezza 

dell’apprendimento (Cybenko, 1989; Hornik, Stinchcombe, & White, 1989), la mancanza di 

significato fisico della rappresentazione realizzata dalla rete neurale durante l’addestramento, 

l’aggiornamento dei pesi delle connessioni (Rumelhart, Hinton, & Williams, 1986), 

l’interferenza negativa (Schaal & Atkeson, 1998) e la non realizzabilità del parallelismo 

nell’implementazione. 

Questi aspetti negativi, ancora in gran parte irrisolti, possono pregiudicare l’esito 

dell’applicazione delle reti neurali per apprendere la funzione di mapping causando, in 

particolare, delle fasi di calibrazione eccessivamente durature (è durante tale fase iniziale, 

nella quale, generalmente, l’utilizzatore osserva dei punti di posizione nota proposti dal 

sistema, che avviene l’addestramento della rete). 

Obiettivo di questa tesi, quindi, è stato lo studio e la ricerca di nuove architetture e 

schemi di addestramento in grado di superare i problemi correlati all’impiego di reti neurali 

per la stima della funzione di mapping di un sistema di eye-gaze tracking. 

∗                    ∗                    ∗ 

Allo scopo di superare gli svantaggi principali che, allo stato, affliggono ogni sistema 

di eye-gaze tracking studiato o posto in commercio, evitando l’assunzione di modelli espliciti, 

semplificando l’architettura e la complessità del sistema, aumentandone, al contempo, la 

robustezza e l’accuratezza, questa tesi ha approfondito, specificamente, i seguenti argomenti: 

1. la realizzazione di un nuovo sistema di eye-gaze tracking indipendente da modelli e 

basato su reti neurali, equipaggiato con un sistema di illuminazione innovativo, con una 

struttura semplificata e capace di proiettare una opportuna configurazione di riflessioni 

sull’occhio dell’utilizzatore, 
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2. la predizione di serie temporali in tempo reale basata su reti neurali, con lo scopo di 

realizzare funzioni di mapping capaci di superare i problemi correlati ai falsi negativi 

nella rivelazione delle caratteristiche dell’occhio e al movimento della testa 

dell’utilizzatore del sistema, 

3. l’introduzione di reti neurali basate sull’interconnessione di nuovi campi ricettivi 

localizzati costituiti da funzioni di attivazione di forma ellittica, allo scopo di ottenere, 

una funzione di mapping in grado di realizzare una rappresentazione fisicamente 

significativa del problema, con capacità di approssimazione simile a quella delle reti 

neurali tradizionali e velocità di apprendimento superiore, 

4. un sistema di controllo di una sedia a rotelle elettrica che integra il sistema di eye-gaze 

tracking proposto e una interfaccia di tipo brain-computer tradizionale, capace di 

selezionare il comando di movimento desiderato attraverso lo sguardo dell’utilizzatore 

e di attivare, tale comando, attraverso il segnale elettroencefalografico. 

 

Nel Capitolo 1 della tesi è descritto il contesto di riferimento, riassumendo lo stato 

dell’arte e le generalità sui sistemi di eye-gaze tracking e sulle reti neurali. 

  

Riguardo al primo argomento, è stato realizzato il prototipo di un sistema di eye-gaze 

tracking basato su reti neurali ed equipaggiato con un nuovo sistema d’illuminazione 

costituito da tre sorgenti di luce in grado di generare una configurazione triangolare di tre 

glint sull’occhio dell’utilizzatore: tale informazione è sfruttata consentendo una maggiore 

robustezza della rivelazione delle caratteristiche dell’occhio (pupilla e glint) e di evitare, al 

contempo, la necessità di un circuito di sincronizzazione tra i sistemi d’illuminazione e di 

ripresa. L’impiego di reti neurali consente, inoltre, di stimare direttamente la funzione di 

mapping del sistema e di evitare l’assunzione di modelli espliciti, realizzando un sistema a 

geometria variabile, grazie al quale l’utilizzatore e i componenti del sistema possono essere 

liberamente sostituiti e assemblati. La fattibilità del sistema proposto è stata provata nel 

Capitolo 2, dove sono stati riportati i risultati relativi ai test effettuati durante più sessioni di 

funzionamento in tempo reale. 

La robustezza del sistema proposto è stata anche provata in maniera dettagliata nel 

Capitolo 3 dove è stata effettuata la valutazione dell’accuratezza raggiunta impiegando dati 

provenienti da sessioni reali di funzionamento realizzate da:  i) diversi utilizzatori;  ii) diversi 

allestimenti in termine di posizione della telecamera e del sistema d’illuminazione;  iii) diversi 
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protocolli di test basati sull’osservazione sia dei punti su di una griglia rettangolare di 

calibrazione, sia dei punti di una griglia di test, intermedi ai precedenti. L’accuratezza 

ottenuta è stata non superiore a 0.49°, 0.41° e 0.62° per gli errori di stima del punto osservato, 

rispettivamente alla direzione orizzontale, verticale e radiale. Il sistema proposto, pertanto, ha 

dimostrato di poter raggiungere prestazioni migliori dei sistemi di eye-gaze tracking progettati 

per l’interazione uomo-computer i quali, sebbene equipaggiati con hardware superiore, 

raggiungono accuratezze aventi valori tipici compresi tra 0.6° e 1°. 

 

Con riferimento al secondo argomento, allo scopo di superare i problemi correlati ai 

falsi negativi nella rivelazione delle caratteristiche dell’occhio e al movimento della testa 

dell’utilizzatore di un sistema di eye-gaze tracking, nel Capitolo 4 sono stati proposti degli 

schemi di predizione di serie temporali basati sulle reti neurali utilizzate per il calcolo delle 

funzioni di mapping del sistema di eye-gaze tracking descritto nel Capitolo 2 e nel Capitolo 3. 

Tali schemi di predizione sono stati applicati con successo al riconoscimento di gesti 

dell’arto superiore, considerando le serie temporali ottenute dalle uscite di due accelerometri 

posizionati sul braccio e sull’avambraccio.  Gli errori di predizione sono stati utilizzati sia per 

l’addestramento delle reti neurali di predizione, sia per la stima di una misura della 

verosimiglianza dell’occorrenza di ogni specifico gesto.  

In modo conforme all’approccio indipendente da modelli adottato, non sono state fatte 

assunzioni a priori né elaborazioni preliminari delle serie temporali oggetto di predizione. Sui 

quattro gesti considerati, il metodo proposto ha raggiunto una percentuale di riconoscimenti 

corretti superiore all’83%. Ciò ha incoraggiato l’integrazione dello schema di predizione 

proposto nella funzione di mapping del sistema di eye-gaze tracking descritto nel Capitolo 2 e 

nel Capitolo 3.  

 

Il supporto illimitato delle funzioni di attivazione sigmoidali utilizzate nelle reti 

neurali multistrato tradizionali provoca lentezza nell’apprendimento, assenza di significato 

fisico della rappresentazione costituita dalla rete addestrata, interferenza negativa tra i neuroni 

per le diverse configurazioni degli ingressi della rete. Ciò può pregiudicare l’impiego di reti 

neurali nei sistemi di eye-gaze tracking causando, in particolare, calibrazioni eccessivamente 

onerose. 

I campi ricettivi localizzati costituiscono funzioni di attivazione aventi un supporto 

limitato. Le reti che interconnettono tali “neuroni”, offrono, potenzialmente, potere di 
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approssimazione analogo a quello esibito dalle reti neurali multistrato convenzionali, con 

maggior velocità nell’apprendimento e fisica significatività delle rappresentazioni ottenute 

(Powell, 1987; Park & Sandberg, 1991; Park & Sandberg, 1993).  Tali reti, tuttavia, hanno 

spesso dimensioni eccessive, e/o prestazioni peggiori delle reti neurali convenzionali a causa 

della determinazione non supervisionata della posizione e del fattore di forma dei campi 

ricettivi, che non impiega, quindi, tutta l’informazione disponibile, e dell’impiego di campi 

ricettivi simmetrici, tutti di forma simmetrica prefissata e identici tra loro (l’addestramento di 

tali reti, quindi, determina le sole altezze di ciascun campo ricettivo). 

Con riferimento al terzo argomento, quindi, nel Capitolo 5 sono stati introdotte delle 

reti di nuovi campi ricettivi localizzati, chiamati quadratic exponential elliptical neurons 

(QuEEN), che possono essere ricondotte a opportune reti neurali multistrato consentendo di 

l’applicazione dell’algoritmo standard di retro propagazione dell’errore (backpropagation). 

Ogni campo QuEEN, quindi, può essere posizionato e sagomato contestualmente, durante un 

addestramento supervisionato. Le simulazioni numeriche effettuate, infatti, hanno dimostrato 

che le reti di QuEEN sono in grado di esibire un potere di approssimazione simile a quello 

delle reti neurali multistrato convenzionali, con un tempo di addestramento inferiore. 

 

Con riferimento all’ultimo argomento, grazie all’indipendenza da modelli e alla 

possibilità di posizionare liberamente l’utilizzatore e i componenti impiegati, nel Capitolo 6 è 

stata analizzata l’applicazione del sistema di eye-gaze tracking proposto al controllo di sedie a 

rotelle elettriche. 

Tutti gli analoghi sistemi di controllo richiedono un’interfaccia grafica che 

l’utilizzatore deve osservare per selezionare e confermare il comando di movimento della 

sedia a rotelle. Tale modalità di controllo, tuttavia, consente una guida piuttosto innaturale, 

causa una parziale ostruzione della vista, e rende necessario l’impiego di segnali di controllo 

indipendenti dallo sguardo. 

Grazie alla flessibilità del sistema di eye-gaze tracking proposto, è stato proposto di 

integrare il controllo attraverso lo sguardo con una brain-computer interface tradizionale. 

L’utilizzatore, quindi, potrà selezionare il movimento desiderato con gli occhi e confermare 

l’attivazione del movimento attraverso il segnale elettroencefalografico. Il sistema integrato 

proposto, quindi, consente di realizzare un controllo sicuro della sedia a rotelle, non 

ostacolando la vista con monitor e/o display 

∗                    ∗                    ∗ 
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Alcuni importanti problemi ancora affliggono ogni sistema di eye-gaze tracking 

studiato o commercializzato e molto deve ancora essere fatto per superarli: i risultati ottenuti 

in questa tesi potrebbero offrire, auspicabilmente, utili spunti e suggerimenti per ridurre gli 

svantaggi correlati alla scarsità della robustezza e dell’accuratezza, principalmente dovuti 

all’approssimazione implicitamente contenuta nei modelli espliciti adottati. 

Verso tali obiettivi, a partire dai risultati ottenuti, merita ulteriore approfondimento 

l’applicazione ai sistemi di eye-gaze tracking sia degli schemi di apprendimento, sia delle 

architetture neurali proposte in questa tesi. 
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ABSTRACT 

Eye-gaze tracking systems estimate the point of gaze of an user. 

According to the consolidated pupil center corneal reflection technique, the 

coordinates of the pupil and outer corneal reflections of the user’s eye images are mapped 

onto the coordinates of her/his gaze on the observed surface (e.g. a computer display). 

Contrarily to the model-based approach, model-independent method estimates the 

mapping function by means of regression techniques with no need of any specific model 

assumption and approximation either for the user’s eye physiology or the system initial setup. 

This thesis describes novel architectures and learning schemas of artificial neural 

networks conceived to regress the mapping function of eye-gaze tracking systems. 

A new neural eye-gaze tracking system admitting a free geometry positioning for the 

user and the system components is conceived and built. 

The accuracy and the robustness of the proposed system are tested and proved. 

In order to overcome the problems due to failures in eye features detection and head 

motion, a time series prediction neural scheme is also proposed and verified on real data. 

With the objective of reduce the duration of the system calibration, a new artificial 

neuron implementing elliptical localized receptive fields is proposed and tested, obtaining 

comparable regression power and faster learning than conventional multilayer neural 

networks. 



 xvi

TABLE OF CONTENTS 

SOMMARIO ............................................................................................................................. III 

RINGRAZIAMENTI .................................................................................................................... XI 

KEYWORDS ........................................................................................................................... XIV 

ABSTRACT ............................................................................................................................ XV 

INTRODUCTION ..........................................................................................................................2 

THESIS OVERVIEW..................................................................................................................5 

CHAPTER 1 BACKGROUND AND RATIONALES .........................................................................6 

1.1. BASICS ON EYE GAZE TRACKING SYSTEMS.....................................................................7 

1.2. CORNEAL REFLECTION TECHNOLOGY............................................................................8 

1.3. MODEL-BASED METHODS ...........................................................................................10 

1.4. NEURAL MODEL INDEPENDENT METHODS....................................................................11 

1.5. ARTIFICIAL NEURAL NETWORKS.................................................................................14 

CHAPTER 2 FEASIBILITY OF A NEW GEOMETRY-FREE EYE TRACKING ................................18 

2.1. INTRODUCTION............................................................................................................19 

2.2. MATERIALS AND METHODS.........................................................................................19 

2.3. RESULTS AND DISCUSSION ..........................................................................................22 

2.4. CONCLUSIONS .............................................................................................................22 

CHAPTER 3 MODEL INDEPENDENT AND FREE GEOMETRY EYE TRACKING ..........................23 

3.1. INTRODUCTION............................................................................................................24 

3.2. MATERIALS AND METHODS.........................................................................................24 
3.2.1. The proposed system basics and components.................................................................. 24 
3.2.2. The experimental setup and protocol .............................................................................. 28 
3.2.3. Performance measurements and evaluation criteria....................................................... 31 
3.2.4. Other known systems....................................................................................................... 33 

3.3. RESULTS AND DISCUSSION ..........................................................................................35 

3.4. CONCLUSIONS .............................................................................................................42 

CHAPTER 4 REAL-TIME ADAPTIVE NEURAL PREDICTORS.....................................................43 

4.1. INTRODUCTION............................................................................................................44 

4.2. MATERIALS AND METHODS.........................................................................................45 
4.2.1. The proposed real-time neural predictor ........................................................................ 45 



 xvii

4.2.2. Performance measurements ............................................................................................ 46 
4.2.3. Application: the accelerometers signals.......................................................................... 47 
4.2.4. Application: experimental setup and protocol ................................................................ 48 
4.2.5. The proposed real-time gesture recognition system........................................................ 48 

4.3. RESULTS AND DISCUSSION ..........................................................................................50 

4.4. CONCLUSIONS .............................................................................................................52 

CHAPTER 5 NEW SELF-ORGANIZING MEANINGFUL ARTIFICIAL NEURAL NETWORKS .........54 

5.1. INTRODUCTION............................................................................................................55 

5.2. BACKGROUND .............................................................................................................57 
5.2.1. Multilayer neural networks and backpropagation .......................................................... 57 
5.2.2. Localized receptive fields ................................................................................................ 59 
5.2.3. Radial basis function networks........................................................................................ 61 

5.3. QUADRATIC EXPONENTIAL ELLIPTICAL NEURONS NETWORKS...................................67 
5.3.1. Physical meaning of the QuEEN networks weights......................................................... 71 
5.3.2. A complexity measure for neural networks ..................................................................... 73 

5.4. TEST PROTOCOL AND EXPERIMENTATION DATA ..........................................................74 
5.4.1. Regression of one Gaussian function .............................................................................. 75 
5.4.2. Regression of two Gaussian functions............................................................................. 79 
5.4.3. Regression of bump functions.......................................................................................... 82 
5.4.4. Regression of a well-known benchmarking function ....................................................... 89 

5.5. CONCLUSIONS .............................................................................................................92 

CHAPTER 6 TOWARDS EYE-CONTROLLED WHEELCHAIRS....................................................97 

6.1. INTRODUCTION............................................................................................................98 

6.2. MATERIALS AND METHODS.........................................................................................99 

6.3. RESULTS AND DISCUSSION ........................................................................................100 

6.4. CONCLUSIONS ...........................................................................................................100 

GENERAL CONCLUSIONS .......................................................................................................101 

LIST OF ACRONYMS ...............................................................................................................105 

REFERENCES ..........................................................................................................................107 



 2

Introduction 

“[…eye tracking output] is estimation of the projected Point Of Regard* (POR) of the 

viewer, i.e., the (x,y) coordinates of the user’s gaze on the computer display. […] why is eye 

tracking important? Simply put, we move our eyes to bring a particular portion of the visible 

field of view into high resolution […] most often we also divert our attention to that point so 

that we can focus our concentration […] on the object or region of interest. Thus, we may 

presume that if we can track someone’s eye movements, we can follow along the path of 

attention deployed by the observer. This may give us some insight into what the observer 

found interesting […]” (Duchowsky, 2007). 

Eye-Gaze Tracking Systems (EGTSs) are also used in diagnostic applications to study 

oculomotor characteristics and abnormalities (e.g. in ophthalmology, neurology, psychology), 

whereas in interactive applications EGTSs are proposed as input devices for human computer 

interfaces (HCI), e.g. to move a cursor on the screen when mouse control is not possible, such 

as in the case of assistive devices for people suffering from locked-in syndrome. 

How the most diffused EGTSs work? If the user’s head remains still and the cornea 

rotates around its fixed centre, the pupil follows the eye in the images captured from one or 

more cameras, whereas the outer corneal reflections generated by one or more infrared (IR) 

light sources, i.e. glints, can be assumed as fixed reference points. According to the well 

known pupil centre corneal reflection method (PCCR), the system mapping function maps 

glints and pupil centers in the eye image onto the POG coordinates (Hutchinson et al., 1989). 

                                                 

* Point Of Regard (POR) or Point Of Gaze (POG). 
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Some important results were found about PCCR-based EGTSs covering all the 

possible system configurations in terms of number and positioning of IR light sources and 

cameras (Guestrin and Eizenman, 2006; Villanueva and Cabeza, 2008): 

- 1 camera, 1 IR source: the POG cannot be estimated unless the head is 

stationary or the head position is estimated by some other means, 

- 1 camera, 2 IR sources: is the simplest configuration that allows estimating the 

POG letting the head free, 

- regardless of how many cameras or IR sources are used, system calibration is 

necessary, 

- 1 camera, 2 IR sources: is sufficient (about 1° of accuracy), whereas the use of 

more IR sources and calibration points increase the accuracy. 

Considered the above results, we firstly propose to use one camera and increase the 

number of IR lights from two to three so that: the theoretical POG estimation may be 

performed even when the head moves, the potential system accuracy is lower than 1°, and the 

triangular pattern of glints projected on the user’s eye can be exploited to allow convenient 

and robust eye feature detection, whereas the illuminating system complexity is kept low. 

The main approaches for implementing EGTSs are the model-based and the 

regression-based – which we prefer to refer to as the model-independent – methods (Hansen 

and Ji, 2010). 

The model-based approach directly estimates the POG by using an explicit 

implementation of the mapping function derived from approximated geometric models 

characterized by physiological and physical parameters respectively related to the user’s eye 

(e.g. radius of the cornea approximated as a sphere), and to the geometry of the system. 

The alternative model-independent approach estimates the mapping function by means 

of regression techniques with no need of any specific model assumption and approximation 

either for the user’s eye physiology or the system initial setup admitting a free geometry 

positioning for the user and the system components. 

As artificial neural networks (ANNs) are shown to be universally able to approximate 

any measurable function to any desired degree of accuracy (Cybenko, 1989; Hornik et al., 

1989), we propose to use ANNs to learn the mapping function of a new model-independent 

EGTS based on PCCR and equipped with an innovative and simplified illuminating system, 
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as other authors did (e.g. Baluja & Pomerleau, 1994; Piratla & Jayasumana, 2002; Zhu & Ji, 

2004). 

“Although there exist many different approaches […] for finding the optimal 

architecture of an artificial neural network, these methods are usually quite complex in 

nature and are difficult to implement. […] hence the design of an ANN is more of an art than 

a science.” (Zhang & Patuwo, 1998). 

If a neural mapping function would theoretically overcome problems and constraints 

related to model-based EGTSs, some age-old drawbacks have raised some skepticisms on 

practical application of traditional ANNs. In addition to the difficulties in finding the optimal 

architecture of ANNs, we highlight those due to the infinite support of sigmoidal activations: 

the slow learning rate (Cybenko, 1989; Hornik, Stinchcombe, & White, 1989), the lack of 

physical meaning of the representation built during the training (Rumelhart, Hinton, & 

Williams, 1986), the negative interference, and the unfeasibility of parallel implementation. 

Those open issues may prevent the useful application of ANN on EGTS giving, in 

particular, slow calibrations. 

Therefore, the aim of this thesis is to devise innovative neural architectures to 

overcome the drawbacks of traditional ANNs in order to implement the mapping function of 

the mentioned new PCCR-based EGTS that use a convenient illuminating system and keeps 

the advantages of model-independent approach. 

Namely, the main contribution of this thesis regards the following open issues related 

to EGTSs and traditional ANNs: 

- proposing novel ANN architectures to implement a model-independent 

mapping function, 

- keeping the same (or better) regression power of traditional ANNs, 

overcoming the drawbacks related to infinite support of sigmoidal activations 

(slow convergence rate, lack of physical meaning, etc.) 

- avoiding any specific model assumption and approximation either for the 

user’s eye physiology or the EGTS initial setup, 

- admitting a free geometry positioning for the user and the system components, 

- keeping low the complexity of the EGTS illuminating system, 

- allowing a theoretical accuracy better than 1°. 
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Thesis Overview 

Chapter 1 gathers some information on both ANNs and POG estimation and 

summarizes the state of the art in these fields highlighting, in particular, the main drawbacks 

still plaguing practically each EGTS studied or sold. The rationales and the guidelines of the 

research, aimed to give contribution on those open issues are then briefly introduced. 

Chapter 2 presents a first study about the proposed PCCR-based EGTS which 

mapping function is given by the most known ANNs, the Multilayer Neural Networks 

(MNN). A prototype of the EGTS is built and successfully tested during several sessions of 

real operation, so proving the feasibility of the proposed approach. 

The issue of avoiding any specific model assumption and approximation either for the 

user’s eye physiology or the system initial setup is extensively analyzed in Chapter 3. The 

free geometry positioning for the user and the system components is tested and the robustness 

of the proposed EGTS is proven. 

Given the feasibility of EGTS with neural based mapping function, the research on 

new ANN architectures and learning schemes aimed to estimate the POG was then 

encouraged. 

In order to overcome the problems due to failures in eye features detection and head 

motion, Chapter 4 specifically deals with real-time time series prediction based on ANNs. 

Traditional multilayer neural networks (MNNs) may exhibit slow learning rate, lack of 

physical meaning, and negative interference. This may prevent the useful application of ANN 

on EGTS giving, in particular, slow calibrations. In Chapter 5 are then presented networks of 

new artificial neurons showing comparable regression power and faster learning than MNNs.  

Those properties allow to investigate new fields of applications of EGTSs such as the 

control of electric-powered wheelchair. 

In Chapter 6 is presented a high level scheme of a system integrating the proposed 

EGTS with a brain-computer interface so to obtain a safer obstruction-free eye- and brain 

guided electric-powered wheelchair. 

The last chapter draws the general conclusions of the thesis work. 
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Chapter 1  

Background and Rationales 

ABSTRACT 

Eye gaze tracking systems estimate the point of gaze (POG) of an user. The 

coordinates of the pupil and outer corneal reflection generate by IR light sources in the eye 

image captured from one or cameras are generally mapped onto the POG coordinates. 

Model-based approaches explicitly derive the mapping function from approximated 

geometric models characterized by parameters related to the user’s eye and to the geometry 

of the system setup. The alternative model-independent approaches estimate the mapping 

function by means of regression techniques with no need of any specific model assumption 

and approximation, thus admitting a free geometry positioning for the user and the system 

components. 

Although Artificial Neural Networks (ANNs) have been used to estimate mapping 

function in model-independent EGTSs, some age-old open issues may prevent this kind of 

application. In particular the slow convergence may give slow calibrations. Localized 

receptive field (LRF) networks have promised similar regression power and faster learning 

than conventional multilayer neural networks (MNNs). 

EGTSs, MNN, and LRF networks are then briefly reviewed. 
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1.1. Basics on eye gaze tracking systems 

Eye-gaze tracking systems (EGTSs) estimate the Point Of Gaze (POG) of an user. 

Applications of EGTSs can be classified as diagnostic, where the user’s visual and 

attentional processes are quantified, or interactive where the user inter-acts with the EGTS 

(Duchowski, 2002): in the first case, the obtained data are used to study oculomotor 

characteristics and abnormalities (e.g. in ophthalmology, neurology, psychology); in the 

second scenario, EGTSs are proposed as input devices for human computer interfaces (HCIs), 

e.g. to move a cursor on the screen when mouse control is not possible, such as in the case of 

assistive devices for people suffering from locked-in syndrome. 

Sought-after requirements in EGTSs include minimal intrusiveness and obstruction, 

reduced calibration phase, allowing for free head movements, keeping high the accuracy and 

the setup flexibility, and maintaining low the cost. 

Many traditional solutions for EGTSs are intrusive, as they require a physical contact 

with the user (e.g. contact lenses, reflective dots placed directly onto the eye, electrodes fixed 

around the eye, bitten and/or head mounted devices). 

The EGTSs based on video-oculograpy (VOG) (i.e. video-based EGTSs), non-

intrusively estimate the POG from the information given by the eye images captured from one 

or more cameras (Morimoto & Mimica, 2005; Hansen & Ji, 2010). Because of its minimal 

obtrusiveness, relatively easy set-up and dependence on optical and electronic imaging 

devices, VOG has become the most popular eye-tracking technique. VOG systems based on 

visible light are called passive light (Torricelli et al., 2008), whereas the ones using infrared 

(IR) are called active light. Nowadays, the latter are the most used thanks to numerous 

advantages: very little subject awareness (users are neither distracted nor disturbed by IR); 

strong iris reflectance in the near-IR, which grants well-contrasted images irrespectively of 

iris color, thus easing the pupil detection; low cost, since IR light can be provided by cheap IR 

light-emitting diodes (ILEDs) and captured by commercial charge-coupled device (CCDs) 

cameras. 
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1.2. Corneal reflection technology 

The pupil centre corneal reflection (PCCR) is the active light eye-gaze tracking 

method par excellence (Hutchinson et al., 1989). If the user’s head remains still and the 

cornea rotates around its fixed centre, the pupil follows the eye in the captured images, 

whereas the outer corneal reflection generated by an IR light source, i.e. glint, can be assumed 

as a fixed reference point (Figure 1.1, left). The POG can be thus estimated from the pupil-

glint vector. 

Both the glint and pupil centre locations can be easily extracted from the images 

captured by a camera under IR light. The glint appears in the IR band as a small intense spot 

whereas the pupil can be captured thanks to two distinct effects generated by IR: the bright 

eye (Figure 1.1 right) if the IR light source is close to the optical axis (on axis), and the dark 

pupil (Figure 1.1, left) if the IR light source is placed away from the camera (off axis) 

(Ebisawa, 1998;  Morimoto et al., 2000; Zhu & Ji, 2004). 

 

FIGURE 1.1 Dark pupil and glint (left), bright eye (right) 

In a generic PCCR-based EGTS (Figure 1.2) the mapping function maps glints and 

pupil centers in the image onto the POG coordinates. The mapping function is the main 

typifying characteristic of an EGTS, and is determined through a  calibration phase during 

which the user is asked to gaze at a proper  set of known points on the observed surface. 
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FIGURE 1.2 Generic scheme of an EGTS based on pupil centre corneal reflection 

The most popular approach for implementing EGTSs is the so called feature-based 

method relating the POG to local eye features such as the pupil and glints for PCCR, the 

parameters of the system components setup, and the parameters of the eye physiology. 

Feature-based methods include the model-based and the regression-based – which we prefer 

to refer to as the model-independent – approaches (Hansen & Ji, 2010). 

The former approach directly estimates the POG by using an explicit implementation 

of the mapping function derived from geometric models. These models are characterized by 

physiological and physical parameters related respectively to the user’s eye (e.g. radius of the 

cornea approximated as a sphere), and to the geometry of the system setup (basically the 

camera features and the positions of the light sources, monitor, and user’s eye corneal centre). 

The model-independent approach estimates the mapping function by means of 

regression techniques, using either parametric (e.g. polynomial) or non-parametric forms (e.g. 

neural networks), whose coefficients have no physiological or physical meaning. 

Both model-based and model-independent methods need a calibration phase to 

determine the model parameters and the regression coefficients respectively, when the user is 

asked to gaze at a set of predefined known points on the screen. The analogy between the two 

approaches is obviously maintained when the conditions move away from the calibration 

situations and the accuracy quickly decays if the user POG is far from the calibration points. 

Model-based methods may simplify – but not avoid at all – the calibration to evaluate 

the parameters of the model (Guestrin & Eizenman, 2006; Villanueva & Cabeza, 2008). 
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1.3. Model-based Methods 

We now proceed to argue about the main characteristics and drawbacks of model-

based EGTSs. 

While the camera and the geometric parameters may be directly measured or estimated 

once and for all during the first system setup, the physiological parameters of the eye are 

difficult to measure and are affected by large inter-subjects variability. This makes a 

calibration phase unavoidable. It was indeed shown that even for an EGTS where the 

simplified corneal spherical model is adopted and both the camera parameters and the system 

geometry are perfectly known, the POG determination still needs several physiological 

parameters, including: the ray of the corneal curvature, the distance between the pupil and the 

corneal centre, the combined index of refraction of the aqueous humor and cornea, and the 

angular offset between the optical and visual axes (Guestrin & Eizenman, 2006; Villanueva & 

Cabeza, 2008).∗ 

Moreover, it has to be outlined that the increase of the measurements during the setup 

(needed for the parameters estimation), decreases the complexity of the calibration procedure, 

but at the same time it decreases also the flexibility of the system. 

The values of the parameters provided by the estimation procedure are valid if the 

EGTS components are left in the same configuration used for the estimation. Any change in 

the configuration will affect the mapping function and cause an incorrect POG estimation. 

The approximation process, that is typical of any model-based method, often makes 

the model even oversimplified. This is what happens with the ubiquitous corneal spherical 

model: it is particularly unsuitable for the outer regions of the cornea, where the corneal 

surface bends towards the sclera (Droege et al., 2007), leading to high inaccuracy when the 

user moves the eye to the extremities of the screen and the glint falls onto a non spherical 

surface. The oversimplification of the model has been reported as one of the main sources of 

the POG estimation errors. 

To sum up, the adoption of whatever model-based approach involves the following 

main drawbacks: 

                                                 

∗ The optical axis, i.e. the eye symmetrical axis, is the line joining the pupil and cornea centre; the 

visual axis, i.e. the gaze direction, is the line joining the POG and the fovea, the highest acuity area of the retina, 

slightly displaced from the back pole of the eyeball. 
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1. the accuracy is limited  by the approximation inherent in each model, 

2. the initial setup of the system is relatively complex (the model parameters have to be 

accurately measured), 

3. the system is rigidly bound to the initial setup (once measured, the model parameters 

must be kept fixed). 

Moreover, regardless of the model complexity, the calibration can be only simplified 

but not avoided at all. 

1.4. Neural model independent methods 

The main difficulty with POG estimation is due to the inherent high complexity and 

nonlinearity of the mapping function, that is particularly severe with large pupil-glint vectors. 

That difficulty was already faced by model-independent methods by using classical 

polynomial regression (Morimoto et al., 2000) but, as with model-based approaches, the 

performance quickly decays when POG falls far from the calibration points. 

As artificial neural networks (ANNs) – and particularly standard Multilayer Neural 

Networks (MNNs) – are shown to be universally able to approximate any measurable function 

to any desired degree of accuracy (Cybenko, 1989; Hornik et al., 1989; Scarselli & Tsoi, 

1998), we propose to use MNNs as a multivariate non-linear mapping (Bishop, 1994) to learn 

the mapping function of a new PCCR-based EGTS. 

ANNs are a biologically inspired computational paradigm using many simple 

elaboration units (neurons) highly interconnected. A set of significant inputs and 

corresponding desired output couples (training set) is used to train the ANNs connections 

strengths (weights) minimizing the error between the desired and actual outputs. 

The generalization power of ANNs is related with the ability to correctly predict the 

output value for inputs not contained in the training set. The level of generalization reached at 

the end of the training is related to both the content of the training set and the complexity of 

the ANN in terms of the number of neurons and their interconnections: 

- regarding the training set, the better the (input, output) domains are sampled, 

the higher is the generalization ability of an ANN, 

- as regards the ANNs complexity, oversimplified ANNs can be unable to 

identify complicated behaviors (underfitting), whereas too complex ANNs may 

learn the noise affecting the training set data (overfitting), becoming unable to 
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correctly behave in conditions far from the contents of the training set. 

We speculate in the following about how the appropriate use of MNNs allows 

overcoming both the drawbacks of the model-based EGTSs and the potential reasons of those 

failures that sometimes gave ANNs an undeserved not so good reputation. 

The approximation inherent in whatever adopted model may be avoided as ANNs may 

in principle approximate with the desired degree of accuracy whatever complex EGTS 

mapping function. Moreover, thanks to their learn-by-examples ability, ANNs may learn any 

mapping function whatever is the configuration given to the system during the first setup. 

Therefore, the direct measurement or estimation of the model parameters during the system 

setup may be also bypassed and implicitly included in the learning of the function mapping, 

simplifying the setup process itself. 

In addition, granted an opportune training set and the right complexity of the ANN, the 

generalization power of ANNs allows overcoming the problem generally afflicting both 

model-based and model-independent EGTSs, regarding the accuracy decay when the user’s 

POG falls on points far from the calibration ones. Uniform accuracy all over the screen may 

be thus assured. 

Above considerations stand if the theoretical behavior of ANNs is hypothesized. 

Although ANNs have been already used as EGTSs mapping functions (a brief review about 

(Baluja & Pomerleau, 1994), (Piratla & Jayasumana, 2002), and (Zhu & Ji, 2004) will be 

given in Section 3.2.4) with large training sets of eye images, the achieved POG estimation 

accuracy was not as good as for other techniques. Proven that MNNs are universal and 

arbitrarily accurate approximating tools, any failure in their application may arise from one or 

more of the following reasons (Hornik et al., 1989): 

1. lack of deterministic input-output mapping, 

2. unmet learning and/or training, 

3. improper complexity of the ANN with respect to the problem. 

The above three adverse situations can be avoided if MNNs are appropriately 

exploited as mapping functions of a PCCR-based EGTS. 

The first topic can be excluded, as the real problem related to the mapping function of 

a PCCR-based EGTS is not to prove its existence but rather its inherent complexity. 

As regards the inadequacy of learning and training, we believe that the EGTS 

calibration phase is a very good source of data to build an ideal training set. When the user is 
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asked to gaze at a known point, the point coordinates provide the desired outputs, whereas the 

correspondingly captured eye features provide the related inputs. The training set is so built in 

correspondence of all the points on the calibration grid, and the codomain of the mapping 

function corresponds to all the coordinates of the monitor pixels. 

This output space shows the following interesting properties: 

- it is finite dimensional (2-D), 

- it is bounded with exactly fixed boundaries (the monitor frame), and it has 

finite cardinality. 

The codomain of an EGTS mapping function can be thus easily sampled giving a 

training set that can be arbitrarily made large and uniformly representative of the mapping 

itself. This is a crucial topic as it is well recognized that overfitting is very dangerous and the 

best way to overcome it is to build large training sets (Zhang, 1998; Crone, 2005). 

The last topic, regarding the complexity of MNNs, implies the selection of the best 

architecture in terms of number of hidden layers, size of each layer, and interconnections. It is 

well recognized that this problem is so task-dependent that none of the known methods can be 

assumed as superior to the others (Crone, 2005). Though a heuristic trial-and-error approach 

is often used, especially about the hidden layers, some general rules may be given about the 

number of input and output neurons. As one of the golden rules of thumb is that the 

parsimonious architectures have the best performance and the highest generalization 

capability (Zhang, 1998), we believe that the ANNs so far used for POG estimation are too 

expensive in terms of both complexity and computational cost. An appropriate preliminary 

phase of eye features extraction on the images should be performed to maximize the 

compression of the information and minimize its loss, so that the number of ANN inputs is 

minimized too. This is the approach that has been sought in the EGTS here proposed. 

Since ANNs are shown able to learn and approximate mappings from examples to any 

desired degree of accuracy and we believe that the POG determination is a well posed task for 

ANNs, we propose to adopt a model-independent approach based on ANNs to overcome the 

drawbacks of the model-based methods. 

While a 1° accuracy is an agreed bound for the specifications of EGTSs designed as 

input devices for HCIs, we aim at a lower bound of 0.6° accuracy, coming from the 

physiological evidence that in the fovea, the highest acuity retinal area ranges from 0.6° to 1° 

(Guestrin & Eizenman, 2006). 
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1.5. Artificial Neural Networks 

Artificial neural networks (ANNs) belong to a neurologically inspired computational 

paradigm that uses many simple elaboration units (neurons) highly interconnected. 

When in a supervised scenario, a set of significant inputs and corresponding target 

output pairs (training set) is used to train the ANNs connections strengths (weights) 

minimizing the distance between the target and the actual outputs. According to the 

neurological long-term potentiation principle – the efficacy of synapses change as a result of 

experience providing both memory and learning to the brain – the training reinforces or 

depresses the connections giving the ANN the capability to learn the knowledge and behavior 

contained in the training set. 

The generalization power of ANNs is related with the ability to correctly predict the 

output values for inputs not contained in the training set. Learning and generalization are 

among the most useful attributes of ANNs (Widrow & Lehr, 1990). 

When ANNs are applied to a regression task, learning corresponds to finding a surface 

on the input space that gives the best fit to the training data following some optimum 

criterion, whereas generalization means interpolation between (and possibly extrapolation 

outside the range of)the sample data points along the regressing surface built during the 

training. 

Multilayer neural networks (MNNs) are ANNs whose units are disposed in fully 

connected layers: each unit of each layer receives as inputs the outputs of every unit of the 

preceding layer. MNNs belong to the larger class of feedforward neural networks (FNNs), 

where the data processing flows from the input nodes towards the output, and the related 

graphs have no cycles. 

Each unit of a MNN mimics the all-or-none behavior of biological neurons, which 

give a complete (and limited) response if stimulated above a certain activation threshold or, 

otherwise, give no response at all. This behavior is traditionally modeled by squashing 

sigmoidal functions quickly saturating as input move away from a threshold towards negative 

and positive values (the logistic monotonically grows assuming values in [0,1], whereas the 

hyperbolic tangent similarly ranges in [-1,+1]). 

Since the single-hidden layer MNN class – the simplest nontrivial class of FNNs – 

with sigmoidal hidden units gives universal arbitrarily good approximators (Cybenko, 1989; 

Hornik et al., 1989), in this work we only consider one-hidden layer one-output MNNs (the 

extension to multidimensional output is obvious) whose graph is depicted in Figure 1.3, 
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where each arch is a trainable weight and the sigmoidal unit thresholds are given by the 

weights of a trivial bias unit b having output fixed to 1. We refer to this class of ANNs as 

conventional MNNs. 

…
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FIGURE 1.3 A conventional multilayer neural network (MNN) 

During the ANN training, the network weights are modified to minimize a measure of 

the output error. If the considered output error measure is the mean square error (MSE) 

averaged over all the output units and the training set patterns, and the ANN is a FNN whose 

units have continuous and differentiable activation functions, the efficient and recursive error 

backpropagation (EB) training algorithm is applicable (Widrow & Lehr, 1990; Rumelhart et 

al., 1986). 

Therefore, conventional MNNs have been traditionally trained using the standard EB, 

which implements the steepest descent rule to minimize the MSE surface in the weight space 

by iterative scanning each pattern of the training set. The training is generally arrested after a 

prefixed number of complete scanning of the training set (epoch), or when the output MSE 

goes below a prefixed threshold. The available input-output pairs may be also divided 

between a training set and a test set against which the MSE is periodically measured: in this 

case, the training will generally stop as soon as the MSE on the test set stops to decrease. 

Notwithstanding their impressive diffusion, the following age-old claimed EB 

drawbacks have raised some skepticisms on the application of MNNs: 
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- the slow learning rate (Cybenko, 1989; Hornik et al., 1989), and 

- the lack of physical meaning of the representation of the modeled system built 

during the training (Rumelhart et al., 1986). 

Despite its numerical efficiency due to recursion, EB is a first order steepest descent 

which suffers from slow convergence due to its potential to zigzagging about the actual 

direction to a local minimum. More sophisticated second order variants may generally 

improve convergence rates (e.g. quasi-Newton algorithm) (Broohmhead & Lowe, 1988), 

whereas some known factors and corrections may be applied to the weights update equation 

to modulate the learning factor and/or introduce a memory of the past weight updates via the 

so called momentum (Rumelhart et al., 1986; Widrow & Lehr, 1990). 

Notwithstanding that, the EB learning rate may be so slow to only allow the 

application of MNNs to “off-line” static tasks where training is performed once and for all, 

whereas the application to real-time adaptive systems, where repeated training may be 

required with strict time constraints, may be precluded (Moody & Darken, 1988). 

Regarding the lack of physical meaning of the MNNs, during the learning an internal 

representation of the desired mapping regression task is built by the training of the network 

weights. The difficulty related to the physical meaning of this representation is due to its 

distributed nature, as it is the whole pattern of activity over all the hidden units, and not the 

meaning of any particular hidden unit, that is relevant. This is directly related to the non-

limitation of the support of the sigmoidal activation functions (Rumelhart et al., 1986). 

Among other secondary but not negligible drawbacks of MNNs, we also highlight:  

- as each MNN unit needs the incoming outputs from all the preceding units to 

evaluate its activation, a total parallelism is not realizable in MNN 

implementations, 

- the so called negative interference effect (Schaal & Atkeson, 1998). 

As any weight update during learning only greedily reduces the error related to the 

current training data, MNNs usually show excellent interpolation power but poor 

generalization capability outside of the range of training data. Due to the non-local nature of 

sigmoidal basis function, any change to the MNN weights has non-local effect that may lead 

to the effect known as negative interference when the input-output relationship is not 

stationary. If a new training phase is required, the MNN updates its weights to fit the new 

data, but it may catastrophically lose accuracy in the previous range of data. 
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As in this work we propose to use ANNs to perform eye tracking, we investigate in the 

following new neural architectures and models to overcome the mentioned drawbacks of 

conventional MNNs. 

In particular, we highlight that, as the other described drawbacks, also the slow 

learning rate of MNNs is due to the infinite support of the sigmoidal activations. 

We thus focus the attention and the investigation on ANNs with compactly supported 

kernels that are thus potentially able to overcome all the mentioned drawbacks of MNNs. 
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Chapter 2  

Feasibility of a new geometry-free eye tracking 

ABSTRACT 

Existing eye gaze tracking systems strongly depend on the system setup geometry 

included in the explicit model of the mapping from the eye features to the point of gaze, so 

that rigid positioning constraints for the user and the system components should be respected. 

The most used pupil centre corneal reflection technique requires very complex 

illuminating and image capturing systems that generally need to be synchronized each other. 

A new simple illuminating system generating only a triangular pattern of three glints 

avoids the synchronization with the image capturing system, whereas the use of artificial 

neural networks to directly evaluate the mapping function allows to not assume any explicit 

model, so giving a geometry-free system. 

Following these rationales, a prototype of an eye gaze tracking system is built and 

successfully tested during several sessions of real operation, so proving the feasibility of the proposed 

approach∗. 

                                                 

∗ Results described in this Chapter were published in Proceedings of the National Congress of 

Bioengineering, pp. 657-658, 2010. 
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2.1. Introduction 

The pupil-centre corneal reflection (PCCR) is the well known and commonly used 

non-intrusive technique for EGTSs: the POG is evaluated from the output of a video camera 

catching the user’s eye illuminated by infrared light. The aim, in this Chapter, is to prove the 

feasibility of a new EGTS based on PCCR. 

Existing EGTSs strongly depend on the system setup geometry included in the explicit 

model of the mapping from the eye features to the point of gaze. Therefore, very strict and 

rigid constraints for the positioning of user and the system components should be respected. 

The PCCR technique requires very complex illuminating and image capturing systems 

that generally need to be synchronized each other. 

A new simple illuminating system generating only a triangular pattern of three glints 

avoids the synchronization with the image capturing system. 

Furthermore, the integration of that illuminating system with a mapping function 

based on artificial neural networks (ANN) allows the system to be geometry free, not 

assuming any model either for the eye geometry, or positioning constraints for the user and 

the system components, as other solutions do (Yoo & Chung, 2005; Zhu & Ji, 2007). 

The Root Mean Square Error (RMSE) of the POG position has been evaluated on real 

data showing an accuracy of the same order of magnitude of other commercial EGTS, thus 

proving the feasibility of the proposed system. 

2.2. Materials and Methods 

According to the PCCR technique, the user’s face is illuminated with harmless near 

Infrared Light Emitting Diodes (ILED) and the POG is evaluated from two important image 

features captured by a video-camera catching one of the user’s eyes: – the glint, a fraction of 

the IR light reflected off the corneal surface, appearing in the camera as a small intense area, – 

and the bright eye, the reflection of the retina appearing in the camera as an area larger and 

less intense than the glint, but easily detected from the dark infrared image of the surrounding 

iris (similar to the reflection of visible light giving the red eye effect in photography). As long 

as the user’s head remains stationary relative to the camera, the glint position remains fixed in 

the image field, whilst the bright eye follows the eye motion. The POG can be determined 

from the relative position of the bright eye and glint (Hutchinson et al., 1989). 
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This proposal is inspired by the PCCR technique: 3 sources of IR light, each formed 

by 3 ILED (Figure 2.1), project a triangular pattern of 3 glints on one of the user’s eyes 

(Figure 2.2). 

 

FIGURE 2.1 The system typical setting 

 

FIGURE 2.2 The triangular pattern reflected by the eye 

As the 3 glints are the brighter points in the images, they can be easily detected by 

suitable thresholding. The pupil is also detected as a circular shape by means of the Hough 
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transform (HT) as traditionally introduced in computer vision (Duda & Hart, 1972), with no 

need to provoke the above described bright eye effect. 

The use of ANNs to map the eye features coordinates into the POG is not new (Baluja 

& Pomerleau, 1994; Piratla & Jayasumana, 2002). In this proposal the coordinates of the 3 

glints and the pupil centre feed two multilayer ANNs, one for each of the POG coordinates 

(Figure 2.3). Regardless of particular positioning of the user and the system components, the 

ANNs can be trained to evaluate the POG allowing the system to be geometry free. 
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FIGURE 2.3 The processing chain of the proposed system 

The used CMOS camera is adapted to capture IR light by replacing the original IR-

Block filter with a black photographic negative film having IR-Pass and Visible-Block 

behavior. The camera is also provided of a 22x Zoom lens. 

With reference to Figure 2.1, the test is conducted with the user positioned in front of a 

23” 2048x1152 resolution LCD monitor (W=52 cm, H=28 cm, L=60 cm, h=36cm), whereas 

the camera is placed under the monitor (d=28cm), and the 3 light sources are freely placed 

pointing the user’s eye and forming approximately an equilateral triangle. The camera 

captured 30 fps with 640x480 spatial resolution. 

The neural mapping function is trained with data acquired during an initial calibration 

phase, when the user stares at a sequence of known points in a 5x5 grid on a conventional 

monitor. The performance of the system is evaluated in terms of the RMSE of the positions – 

for the two different POG coordinates – when the user stares at 9 points located at 

intermediate positions respect to the calibration training grid. Two sessions, one for each of 

two different users, were performed. 
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2.3. Results and Discussion 

As the scope of this preliminary work was only to prove the feasibility of the proposed 

system, a research neither on the best positioning of user and system components, nor on the 

ANN architecture and parameters optimization was performed during the test. 

In the previously described test setting, the obtained RMSE is about 1.4° (Table 2.1). 

The results show an interesting substantial coincidence of the RMSE for the two components 

of the POG. 

 

X Component RMSE Y Component RMSE 
cm (inch) deg (rad) cm (inch) deg (rad) 

1.46 (0.58) 1.40 (0.02) 1.46 (0.57) 1.40 (0.02) 

TABLE 2.1 Root Mean Square Errors for the proposed eye gaze tracking system 

2.4. Conclusions 

A preliminary prototype of EGTS inspired to PCCR technique was built following the 

main two guidelines given in Chapter 1 and regarding the use of a new IR illuminating system 

and a mapping function based on ANN. 

The proposed EGTS is tested on users performing real sessions of operation and, even 

if neither the position of user and system components, nor the ANN architecture and 

parameters optimization was performed, an encouraging RMSE of about 1.4° was reached for 

both the coordinates of the POG. 

These results not only proof the system feasibility, but also approaches the 

performance stated by commercial systems using more onerous hardware and superior data 

rate (i.e. LC Technologies Inc., Eyegaze Systems. [Online] reports an accuracy of 0.45° with 

L=51 cm, 60 fps with no expressly specified spatial resolution). 
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Chapter 3  

Model independent and free geometry 

eye tracking 

ABSTRACT 

A new model-independent eye-gaze tracking system based on the pupil centre corneal 

reflection is proposed. The neural mapping function allows to avoid any specific model 

assumption and approximation either for the user’s eye physiology or the system initial setup 

admitting a free geometry positioning for the user and the system components. The robustness 

of the proposed system is proven by assessing its accuracy when tested on real data coming 

from: i) different users; ii) different geometric settings of the camera and the light sources; 

iii) different protocols based on the observation of points on a calibration grid and halfway 

points of a test grid. 

The achieved accuracy is not greater than 0.49°, 0.41°, and 0.62° for respectively the 

horizontal, vertical and radial error of the point of gaze. Then, the actual system performs 

better than eye-gaze tracking systems designed for human computer interaction which, even if 

equipped with superior hardware, show accuracy values in the range 0.6°-1°∗. 

                                                 

∗ Results described in this Chapter have been submitted for Publication in Journal of NeuroEngineering 

and Rehabilitation. 
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3.1. Introduction 

While a 1° accuracy is an agreed bound for the specifications of EGTSs designed as 

input devices for HCIs. Therefore, we test and tune the EGTS described in Chapter 2 aiming 

to reach the lower bound of 0.6° accuracy, coming from the physiological evidence that in the 

fovea, the highest acuity retinal area ranges from 0.6° to 1° (Guestrin & Eizenman, 2006). 

The structure of the present Chapter is reported in the following: Section 3.2 describes 

the theoretical basics of the proposed EGTS, detailing information on each component in 

subsection 3.2.1, showing the setup and the experimental protocol in subsection 3.2.2. In 

particular, the robustness of the proposed EGTS is proven measuring its accuracy on real data 

captured from healthy subjects for different geometric settings of the system setup, 

considering not only the known points used during the calibration, but also halfway test 

points the user did not cross during the calibration. In subsection 3.2.3, details are provided 

regarding the performance evaluation metrics used: the proposed EGTS was compared in 

terms of performance with several model-independent (Baluja & Pomerleau, 1994; Piratla & 

Jayasumana, 2002; Zhu & Ji, 2004) and model-based (Guestrin & Eizenman, 2006; 

Villanueva & Cabeza, 2008) methods described in literature, which are briefly reviewed in 

subsection 3.2.4, together with two commercial EGTSs (LC Technologies Inc., Eyegaze 

Systems. [Online], Tobii Technology. [Online]). 

In Section 3.3, results in terms of achieved accuracy are reported and discussed. The 

proposed EGTS performance met the requirement of 0.6° accuracy and was practically 

independent on both the system setup and the user. No noticeable training effect in using the 

system resulted. 

As summarized in the concluding Section 3.4, the proposed EGTS generally bettered 

other above referenced model-independent and model-based methods in literature, 

approaching the performance of the mentioned commercial EGTSs equipped with superior 

hardware. 

3.2. Materials and Methods 

3.2.1. The proposed system basics and components 

Reference (Guestrin & Eizenman, 2006) presented a general study for PCCR covering 

all the possible system configurations in terms of number and positioning of IR light sources 

and cameras. Although under general simplifications (corneal spherical approximation, light 
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sources assumed as point sources, cameras assumed as pinhole cameras), some important 

results were found: 

- 1 camera, 1 IR source: the POG cannot be estimated unless the head is 

stationary or the head position is estimated by some other means, 

- 1 camera, 2 IR sources: is the simplest configuration that allows estimating the 

POG letting the head free. 

Under similar assumptions, in (Villanueva & Cabeza, 2008) it is also showed that: 

- regardless of how many cameras or IR sources are used, calibration is 

necessary, 

- 1 camera, 2 IR sources: is sufficient (about 1° of accuracy), whereas the use of 

more IR sources and calibration points increase the accuracy. 

Considered the above results and the need to minimize the number of the inputs, we 

propose to use one camera and to increase the number of IR lights from two to three so that an 

opportune triangular pattern of glints is projected on the user’s eye (Figure 3.1) allowing the 

POG estimation even when the head moves. It will be shown in the following that the 

triangular pattern of glints in Figure 3.1 allows convenient and robust eye feature detection. 

 

FIGURE 3.1 The triangular pattern of the three glints reflected by the eye 

As depicted in Figure 3.2, the processing chain of the proposed EGTS starts with two 

separate blocks extracting the locations of the pupil centre and the three glints that feed two 

MNNs, one for each of the POG coordinates. The MNNs can be trained for whatever 

positioning of the user and the system components, allowing neglecting any system or 

subject-specific eye parameters measure/estimation (free geometry setup). The initial system 
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setup is thus extremely simplified and the following measurements and procedures can be 

avoided: 

- camera calibration (the determination of intrinsic camera parameters): any 

kind of camera can be used, 

- system geometry determination: IR lights, user, monitor and camera can be 

freely positioned,  

- monitor measurement: any kind of monitor can be used, regardless of the 

resolution and dimension, 

- user’s eye physiology determination: once the initial setup has been done, the 

system can be used by different users. 

Moreover, whatever change should occur for the system configuration in terms of 

substitution or positioning of the components, no additional measurements or software 

modifications are needed. Any constraint to rigidly keep the system invariant after the initial 

setup may be thus relaxed. 

 

FIGURE 3.2 The processing chain of the proposed system 

Experimental and simulation results in (Guestrin & Eizenman, 2006) suggested that 

even relatively small errors in the estimation of the pupil centre and glints can result in 

relatively large POG estimation errors. We thus provide in the following some details about 

the methods used to perform the features extraction. 

Two pupil effects are mainly used to detect pupils: the so called dark pupil and the 

bright-eye, which have been briefly described in Section 1.2. Some solutions use both the 
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mentioned effects requiring two or more on and off-axis light sources be multiplexed in time 

as well as in the wavelength and/or in the polarization (Ebisawa, 1998;  Morimoto et al., 

2000; Zhu & Ji, 2004). Time multiplexing requires synchronization between the camera frame 

rate and the light sources activation cycles and causes the POG estimate to be provided at 

half-rate of the camera frame rate. 

In addition to the circuital complication due to the time multiplexing, other important 

limitations of the bright-eye effect are: its large variability among subjects; the evidence that 

from 5 to 10% of people have not sufficiently intense bright-eyes to allow reliable POG 

estimation (Hutchinson et al., 1989); the need to place light sources near the camera axis; and 

an uncontrolled variability of its effect led by even minor head rotations (Zhu & Ji, 2004; 

Hansen & Ji, 2010). 

As other authors did (Droege et al., 2007), we opted to use only off-axis lighting and 

dark pupil to estimate the pupil centre, so to avoid the limitations of the bright-eye, reduce the 

circuital complexity, let free the positioning of the IR light sources and camera, let the head 

free to move, and ease future work including the use of two eyes (the two bright effects will 

be hardly the same). 

As the proposed three ILEDs approach provides a sufficiently large contrast eye 

image, (the pupil is darker than its surroundings), a simple binary threshold can be 

successfully applied for the pupil detection. As we considered an indoor environment, the 

threshold value has to be initially set for each session and does not need to be adjusted during 

the same session. After the image thresholding, since we are interested in the centre of the 

pupil and not in the real pupil shape, the Hough transform for circle finding (Duda & Hart, 

1972) is satisfactorily used as other authors did (Droege et al., 2007). To decrease the 

computational burden associated with the Hough transform, the preliminary binary 

thresholding speeds up the calculation and improves the precision of the pupil centre 

detection. When no pupil centre comes from the preceding frame, the whole actual frame is 

processed to find out possible circles. Frames for which the previous pupil centre is available, 

are processed only in a rectangular region of interest, reducing the computational load. 

Reference (Villanueva & Cabeza, 2008) reported that the noise in glint position 

estimation is due to the glint reduced size, and this brought to the use of two of them. 

Moreover, the glint detection can be detrimentally affected by artifacts due to the glint rolling 

off the cornea onto the irregular sclera during large eye rotation (Torricelli et al., 2008), 

daylight, spurious reflections, and non-spherical curvature at the edges of the cornea. We thus 

propose to use a three glints pattern, which not only improves the POG accuracy (Morimoto, 



 28

2000; Villanueva & Cabeza, 2008), but also adds information by projecting onto the user’s 

eye a known pattern (Figure 3.1) that can be used to detect and discard glint artifacts. 

The glint detection is solved by a three-stage algorithm: first, the three glints-

associated blobs are detected using a binary threshold; second, the centre of mass of each blob 

is calculated with subpixel accuracy, giving the glint candidates; third, some geometric 

relationships and heuristics related to the triangular reflected pattern are applied to discover 

and exclude possible artifacts: 

- the direction of the three lines joining the three couples of glints candidates 

must be 0°, 60° and 120° ± some tolerance, otherwise the frame is discarded, 

- each side length of the triangle formed by the glint candidates must fall within 

a specific range of values, otherwise the frame is discarded. 

Despite their simplicity, the verification of the above conditions has been shown very 

powerful in identifying and discarding spurious glint artifacts. 

The subpixel accuracy provided by the coordinates of the three glints and pupil centre 

detection stages is then profitably used in the overall training and neural mapping function. 

The pupil centre and glints are indeed used to feed the ANNs in such a way to 

minimize the number of input neurons. Moreover, in order to minimize the number of output 

neurons, we propose the use of two separate MNNs, each one having the same eye features as 

inputs, with one single output neuron directly estimating one of the X and Y coordinates of 

the POG. The POG discrete coordinates given by the pixels of the screen will be thus given 

by the quantization of each of the two MNNs output. Regarding the training of the two 

MNNs, we propose a rectangular, uniform calibration grid to build an opportune training set, 

as previously described. 

One hidden layer and the standard EB training algorithm is used, whereas the transfer 

function for the hidden layer and the output units are the hyperbolic tangent (tanh) and the 

linear function, respectively. The best parsimonious architecture using 10 hidden neurons was 

heuristically found as the best performing for both the MNNs. 

3.2.2. The experimental setup and protocol 

Some EGTSs aim at using low-quality (web) cameras to minimize costs. Low cost 

solutions with a standard lens may require the camera to be too close to the eye. We thus 

opted for an analogue B/W video-surveillance camera (FC II Computar, CS mount, Senview 

varifocal 6-60mm lens with AutoIris). The camera is connected to a frame grabber 
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(EASYCAP DC60, 25 fps) through its composite video output. The OpenCV software 

framework used to perform the image processing phase samples each frame giving 480×640 

pixels. In front of the camera, a Perspex IR-pass/visible-block filter (wavelengths under 

780nm are blocked) was placed. The overall cost of the described optical system was under 

200 € so giving a low cost solution. The triangular off-axis illuminating system was obtained 

using a three-arm flexible support built with simple twisted wire supporting three groups of 

four USB-powered ILEDs. 

 

FIGURE 3.3 The three different geometric settings for the system setup 

The tests were conducted by positioning the user in front of a 17” monitor (1024×768 

spatial resolution and 4:3 aspect ratio) 70 cm far from the user’s eye. In order to assess the 

independence of the proposed EGTS from the geometry, the accuracy of the POG estimation 

was evaluated for three different geometric settings depicted in Figure 3.3. The camera was 

never calibrated and always placed under the monitor. 

In the first setting, the triangular lighting system was placed around the camera (see 1 

in Figure 3.3). In the second setting, the camera was placed at an angular distance of 15° to 

the left of the monitor (see 2’ in Figure 3.3) and the lighting system was placed 15° to the 

right (see 2’’ in Figure 3.3) so that the overall angular displacement between the camera and 

IR lights centre was 30°. The third setting was similar to the second one but the overall 

angular displacement between the camera and IR lights was 60° (see 3’ and 3’’ in Figure 3.3). 
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A 4×5 calibration grid of uniformly spaced points was chosen as it uniformly samples 

the 4:3 aspect ratio screen (Figure 3.4, left). The 3×4 test grid is given by the halfway points 

of the calibration grid (Figure 3.4, right): it is here outlined that the user’s gaze never crosses 

the points on the test grid during the calibration. Accuracy was evaluated during both the 

calibration and the test phases. 

 

FIGURE 3.4 The 4×5 calibration grid (left) and the 3×4 test grid (right) 

Two consecutive test sessions were performed for each of six healthy volunteers, 

participating to all of the three mentioned geometric setting sessions, proposed in random 

order. Each session directly started asking the user to fix her/his gaze to each calibration point 

for a fixed period of 1200 ms, corresponding to 30 frames at a capturing rate of 25 fps. During 

the calibration, the MNN training set was built collecting only the input given by the 

estimated centers of the glints and pupil without collecting any image frame. The 

corresponding desired outputs are given by the coordinates of the known calibration points. 

The MNNs training started after the calibration and lasted 1000 epochs. The user was then 

asked to fix her/his gaze upon each point of a pseudo-random sequence of points on the test 

grid. Each test point was showed five times, each time for a fixed period of 600 ms 

(corresponding to 15 frames). The protocol was described to each user letting her/him alone 

and unassisted during the fully automatic overall calibration and test procedure. Each user 

freely chose the used eye. 

Even if the use of ANNs-based mapping functions was showed able to incorporate 

head movements into the mapping as in (Baluja & Pomerleau, 1994; Piratla & Jayasumana, 

2002; Zhu & Ji, 2004), in this preliminary analysis we opted to defer to future work the tuning 
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and tweaking of the calibration phase to evaluate the performance of the proposed EGTS 

when users are let free to naturally move their heads. The users were thus asked to keep the 

head still by means of a head/chin-rest. This also avoided the users to get out from field of 

view and/or out of focus of the camera 

3.2.3. Performance measurements and evaluation criteria 

Human vision and EGTS accuracy is usually expressed in terms of the angular error in 

visual degrees (smaller angle means higher accuracy) in order to be independent from the 

screen resolution and distance from the user. Given the angular accuracy, the error projection 

can be easily derived for each distance between the user and the POG surface using obvious 

trigonometry (Figure 3.5). 

 

FIGURE 3.5 Visual angle trigonometry 

Although the human eye is commonly considered a highly accurate sensor, if used as 

an input device the exact POG location is inherently not as precise as with a mouse 

(Duchowski, 2002). 

As a matter of fact, when the user is gazing at a particular point, her/his eyes are 

oriented in such a way that the POG projects itself on the fovea (the highest acuity region of 

the retina). Even if during the visual fixation on a still object, the POG is perceived as fixed, it 

is not. This is done to prevent the complete fading of vision, giving blindness during visual 

fixation (Martinez-Conde et al., 2004). 

Moreover, the fovea small retinal area is projected onto a finite visual angle (from 0.6° 

to 1°, (Guestrin & Eizenman, 2006)), and when we move the eye in order to place the fovea 

on the area that we want to see with fine details, we do not need to place it exactly centered 



 32

and on top of the fovea as its projected area becomes larger and hence, covers more the 

further away an object is (Tobii Technology. [Online]). 

Given the above considerations, it follows that a visual fixation can thus be defined as 

a stable position of the POG that presents visual angle dispersion below 1° (foveal area upper 

limit). POG estimation errors below 1° are thus pursued by most EGTS designers (Villanueva 

& Cabeza, 2008). 

We may instead add that if the EGTS is designed for HCI it is worthwhile to achieve 

accuracy under the usually accepted 1° requirement, trying to approach the mentioned lower 

value of 0.6° for the fovea visual angle. The accuracy showed by the proposed EGTS will be 

thus analyzed in next Section 3.3 considering the lower limit values of 0.6°. 

For the generic nth frame during which the user is gazing at one of the known points of 

either the calibration or test phases, the quadratic error e2[n] between the known point 

position and the POG estimation was evaluated and accumulated for both the X and Y 

coordinates. The mean squared error (MSE) and the root mean square error (RMSE) in 

equations 5.1 were thus evaluated averaging the error along the N frames of each phase. 

MSEx = (∑n ex
2[n])/N, 

MSEy = (∑n ey
2[n])/N (5.1) 

RMSEx = (MSEx)1/2, 

RMSEy = (MSEy)1/2 

As observed in (Villanueva & Cabeza, 2008), the results given in terms of the RMSE 

for X and Y coordinates do not properly measure the POG estimation error. Rather, these 

errors highlight differences in horizontal and vertical coordinates. The Euclidean distance in 

equations 5.2 between the real and estimated POGs should be considered as the most 

representative error value. 

MSEρ = (∑n(ex
2[n]+ ey

2[n]))/N = MSEx + MSEy (5.2) 

RMSEρ = (MSEρ)1/2 

The errors in equations 5.1 were evaluated in terms of pixel difference and then 

converted into degrees  by using the visual angle trigonometry in Figure 3.5. The Euclidean 

RMSEρ was evaluated as in equations 5.2. 
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3.2.4. Other known systems 

For the sake of comparison, in this section we briefly consider several relevant EGTSs 

against which the proposed EGTS was tested. Firstly, we report a few details about some 

model-independent EGTSs based on ANNs. Then we describe some model-based methods. 

Lastly, we shortly review two commercial systems currently giving the de facto accuracy 

lower bounds for EGTSs used as HCI. For simple reference and comparison, the important 

topics are summarized in Table 3.1. 

 

Cameras Lights Calibration 
Approach 
(mapping 
function) 

Accuracy Reference Comments/Notes 

1 
20 fps, 

640×480 

1 (+1) screen 
divided in  
2×4 zones 

MI 
(2 GRNNs) 

5°H 
8°V 

(Zhu & Ji, 2004) abc Two concentric IR light rings are 
alternately turned on and off. Only 

one glint is used.  

1 
30 fps, 

640×480 

1 (0) 12×16 grid MI 
(1 MNN) 

2.4°H 
2.4°V 

(Piratla & Jayasumana, 
2002) bc 

Special spectacles frame is needed; 
both the eyes are used. Accuracy is 

measured on testing points. 

1 
low 

resution 

1 cursor 
moves 

MI 
(2 MNNs) 

1.5° (Baluja & Pomerleau, 
1994) abc 

Accuracy is measured on testing 
points.  

1 
30 fps, 

640×480 

2 3×3 grid MB 0.9° (Guestrin & Eizenman, 
2006) ac 

  

2 2  MB 0.68° (Guestrin & Eizenman, 
2006) ac 

Preliminary simulations 

1 
60 fps, 

640×480 

2-4 1 point MB ≈ 0.7°H 
≈ 0.7°V 
≈ 1°iiiiii 

(Villanueva & Cabeza, 
2008) ac 

Each calibration point produces a 
gaze estimation model. 17 one-point 

calibrations were performed. 

1 
60/120 fps, 
640×480 

4 (+1) 5 points MB 0.5° (Tobii Technology) ad Tracks both eyes simultaneously. 
Camera and the IR sources are built 

in the monitor. 

1 
60/120 fps 

1 (+1) 9 points MB 0.45°-0.70° (LC Technologies) ad Typical and worst accuracy is 
reported. The POG estimation may 

require a dedicated computer. 
1 

25 fps, 
640×480 

3 4×5 grid MI ≤ 0.41° H     
≤ 0.49° V 
≤ 0.62° E 

(Proposed 
EGTS) abc 

Worst accuracy bounds measured 
on halfway 3×4 testing grid for 3 

different geometric settings. 

The “cameras” column shows the number of cameras used by the method and the cameras characteristics (frames 
per second and spatial resolution expressed in terms of the width × height number of pixels). The “lights” column 
shows the number of light sources necessary for the methods. An additional “+1” means that an extra alternately 
switched on-axis light sources is used to generate bright eye and not to generate glints. An additional “0” means 
the light source is optional. The “approach” column corresponds to the approach adopted by the EGTS: model-
based (MB) or model-independent (MI) method category. The “accuracy” column indicates the achieved POG 
estimation error. If available, the angular error is reported and expressed in degrees. When applicable the 
component of the error is indicated as horizontal component (H), vertical component (V), Euclidean distance (E). 
aBased on Pupil Corneal Reflection. bMapping function based on artificial neural networks. cSystem  proposed in 
scientific literature. dCommercial system. 

TABLE 3.1 Time series forecasting: generally used training set 

In (Baluja & Pomerleau, 1994), low resolution images were used and all of the 600 

(15×40) pixels of a rectangular window surrounding the user’s eye are used as input of two 
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MNNs. The outputs of each MNN are respectively provided by 50 units for the X coordinate, 

and other 50 units for the Y coordinate (the highest output unit represents the estimated 

coordinate). During the calibration, the user visually tracks a cursor moved in a pre-defined 

zigzag horizontal path on the screen, and each of the images of the eye is paired with the 

coordinates of the cursor giving 2000 image/position pairs gathered for training. Other 2000 

image/position pairs were also gathered for testing. The best angular accuracy the system 

achieved on the 2000 testing points was 1.5°. 

In (Piratla & Jayasumana, 2002), the user is requested to wear a particular spectacles 

frame to provide a reference fixed with the head. The EGTS is not PCCR-based and the used 

lamp is not essential. The coordinates of two points on the spectacle frame, two eyeballs 

centers and upper and lower eyelids provide the 12 inputs of the used MNN, whereas the X 

and Y POG coordinates are its 2 outputs. A 12×16 calibration grid is used and the estimated 

POG falls almost accurately in a 2×2 square inches window on the screen at distance between 

30 and 60 cm (the visual angle trigonometry in Figure 3.5 gives a best accuracy of about 2.4° 

in both the directions). 

In (Zhu & Ji, 2004), two identical generalized regression neural networks (GRNNs) – 

each with a single output unit – estimate the X and Y POG coordinates respectively. The two 

components of the pupil-glint vector, two coordinates of the single glint, the ratio of the major 

to minor axes and the orientation of the pupil ellipse provide the 6 inputs of the two GRNNs. 

During the calibration the user's gaze was quantized into 8 regions on the screen (2×4 grid) 

and the same gaze classification was performed by the two GRNNs outputs. The method 

achieved accuracies around 5° and 8° in the horizontal and vertical direction, respectively. 

Some model-dependent EGTSs are now briefly described. 

Reference (Guestrin & Eizenman, 2006) presented a general theory for PCCR-based 

EGTSs covering whatever cameras and IR light sources number and positioning, under the 

approximations adopted by most part of the model-dependent EGTSs (IR lights assumed as 

point sources, video cameras assumed as pinhole cameras, and cornea assumed as a spherical 

mirror). Test results were reported using a 9 point 3×3 uniform calibration grid for two system 

configurations, the first using one camera and two lighting sources, the second using an 

additional camera. Accuracies of 0.9° and 0.68° was respectively achieved. 

Under similar assumptions, in (Villanueva & Cabeza, 2008) a geometric model based 

on glint positions and pupil ellipse was used to show the minimal required number of 
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cameras, light sources, and user calibration points (user calibration was also showed 

unavoidable). 

We now report some details about the two commercial EGTSs presented in (LC 

Technologies Inc., Eyegaze Systems. [Online], Tobii Technology. [Online]). Both the systems 

adopt a PCCR model-based method, use ILEDs, remote cameras, implement in software the 

overall processing, and require a user calibration to learn the radius of curvature of the cornea 

and the angular offset between the visual and optical axes of the user. 

The EGTS in (Tobii Technology. [Online]) uses a built-in 640×480 resolution camera 

capturing two images of the eyes simultaneously at 60 fps or 120 fps producing the respective 

pupil and glints so providing the EGTS with two different sources of information. Three off-

axis light sources are built in the monitor upper frame, whereas a fourth off-axis light source 

and an extra on-axis light source given by 2 concentric rings of ILEDs are placed around the 

camera. The EGTS requires a 5 points calibration during which both the bright and dark pupil 

effects are tested and the best method is chosen. The typical achieved accuracy is 0.5°. 

In (LC Technologies Inc., Eyegaze Systems. [Online]) a 60 or 120 fps camera (no 

retrievable resolution) is located below the monitor and an ILED at the center of the camera 

lens generates the glint and the bright pupil. Reported typical and maximum average accuracy 

is 0.45° and 0.70°, respectively. 

The hardware equipment related to both the two commercial EGTSs (LC 

Technologies Inc., Eyegaze Systems. [Online], Tobii Technology. [Online]) appears quite 

sophisticated and seems to be one of the reasons of their relatively high cost.  

For the sake of completeness, the last row of Table 3.1 anticipates the performance 

achieved by the proposed EGTS that will be analyzed in the following section. 

3.3. Results and Discussion 

The RMSE for the Euclidean, horizontal and vertical coordinates for the three 

considered system settings are respectively reported in Table 3.2, Table 3.3, and Table 3.4. 

The analysis of the results may start from the mean Euclidean RMSEρ: the overall 

mean RMSEρ averaged along the users and the sessions for the three system settings (third-to-

last rows of Table 3.2, Table 3.3, and Table 3.4) is not only better than the generally accepted 

accuracy requirement of 1°, but it is also practically always under the limit of the 0.6° lower 

bound given by the human fovea, as previously discussed. The only exception is the 0.622° 
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RMSEρ (third-to-last row, last column of Table 3.3) related to the test grid of the first system 

setting, that is just slightly above the 0.6° threshold. 

That proofs the validity of the proposed model-independent approach, in particular if 

we compare the performance of the proposed EGTS with the accuracy of systems summarized 

in Table 3.1. Only the two commercial EGTSs (LC Technologies Inc., Eyegaze Systems. 

[Online], Tobii Technology. [Online]) using superior hardware and rigidly assembled 

equipment declare a typical accuracy slightly better than the proposed EGTS. 

Among the model-based EGTSs, the second system proposed in (Guestrin & 

Eizenman, 2006) achieved an accuracy of 0.68°, slightly worse than the proposed EGTS, but 

two cameras are required. All the other EGTSs reported in Table 3.1 performed worse than 

the proposed EGTS. 

The substantial equivalent accuracy showed for all the three system settings also 

proofs the robustness of the proposed EGTS with respect to the geometry of the system setup. 

A quite small inter-user Relative Standard Deviation (RSD) of the RMSEρ is showed 

for all the three system settings, ranging from the 8.5% of the test grid of the first setting (last 

row, last column of Table 3.2), to the 15.7% of the calibration grid of the third setting (last 

row, fourth column of Table 3.4). This demonstrates the robustness of the proposed EGTS 

with respect to different users. 

The analysis of the results may follow with the examination of the error statistics 

related to each session: subjects no. 2 and no. 3 were practiced with the proposed EGTS, 

while the remaining subjects had no experience with it. Subjects no. 3 and no. 4 were 

shortsighted and even if the used eyes required almost 2 diopters of correction, no spectacles 

were worn during the tests. The performance of each user showed substantial coherence both 

for the three geometric settings and for the two consecutive sessions (e.g. users no. 1 and no. 

2 were generally the best performers, whereas users no. 5 and no. 6 were generally the worst 

performers).  

The overall mean accuracy and the accuracy achieved by single users for the two 

consecutive sessions are consistent, thus proving the absence of a noticeable learning effect, 

so that no particular training is required to effectively use the proposed EGTS. 

Although the accuracy evaluated on the calibration grid is often slightly better than the 

accuracy on the test grid, their values may be practically considered equivalent. 
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That proofs that the proposed EGTS performs uniformly all over the screen and that 

the training of the ANNs giving the mapping is optimal. 

The former point is also well shown in Figure 3.6 and Figure 3.7, respectively 

depicting the POG estimation clouds around each correct point on both the calibration and the 

test grid for the first session of the user no. 2. (please remember each point on the test grid is 

randomly shown 5 times, whereas each point on the calibration grid is shown just once). This 

interesting property grants that the proposed EGTS performs uniformly over the whole screen 

and does not suffer the quick fall off of the accuracy when the POG moves away from the 

calibration points as other EGTS generally do. 

The point regarding the optimal neural learning grants that the ANNs realized the best 

approximation of the ideal mapping function. We used one hidden layer MNN and a trial and 

error approach selects the parsimonious architecture using 10 hidden units. This architecture 

showed the results reported in Table 3.2, Table 3.3, and Table 3.4, and required a training 

time compatible with a real-time operation. Other non reported results regarding using bigger 

ANNs models (up to 100 hidden units) gave unacceptable training time with no substantial 

gain in term of accuracy. 

This latter point showed that the performance of the proposed EGTS is predominantly 

driven by the noise affecting the estimations of the PCCR eye features, confirming the 

conclusion other authors found performing error analysis (Guestrin & Eizenman, 2006). 

Better accuracy can thus be obtained by means of superior hardware, and/or more 

sophisticated procedures to extract eye features. 

Good correspondence was showed by the mean RMSE values achieved for the 

horizontal and vertical errors. 
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FIGURE 3.6 Error distribution on the calibration grid (subject no. 2, 1st session) 

 

FIGURE 3.7 Error distribution on the test grid (subject no. 2, 1st session) 
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SYSTEM ACCURACY - 0° BETWEEN IR LIGHTS AND CAMERA 

Session 1 Calibration grid Test grid 
User RMSEx RMSEy RMSEρ RMSEx RMSEy RMSEρ

1 0.378° 0.303° 0.485° 0.298° 0.526° 0.605°
2 0.336° 0.299° 0.449° 0.308° 0.414° 0.516°
3 0.361° 0.458° 0.583° 0.359° 0.498° 0.614°
4 0.415° 0.434° 0.601° 0.284° 0.612° 0.675°
5 0.414° 0.392° 0.570° 0.330° 0.466° 0.571°
6 0.444° 0.428° 0.617° 0.487° 0.480° 0.684°

mean 0.391° 0.386° 0.551° 0.344° 0.499° 0.611°
SD ±0.037° ±0.063° ±0.062° ±0.068° ±0.061° ±0.058°

RSD% ±9.4% ±16.3% ±11.2% ±19.8% ±12.2% ±9.5%

Session 2 Calibration grid Test grid 
User RMSEx RMSEy RMSEρ RMSEx RMSEy RMSEρ

1 0.305° 0.512° 0.596° 0.443° 0.516° 0.680°
2 0.387° 0.460° 0.601° 0.421° 0.420° 0.595°
3 0.365° 0.494° 0.615° 0.336° 0.462° 0.571°
4 0.409° 0.351° 0.539° 0.426° 0.436° 0.610°
5 0.425° 0.429° 0.604° 0.482° 0.486° 0.685°
6 0.372° 0.470° 0.600° 0.389° 0.536° 0.662°

mean 0.377° 0.453° 0.592° 0.416° 0.476° 0.634°
SD ±0.038° ±0.053° ±0.025° ±0.046° ±0.041° ±0.044°

RSD% ±10.1% ±11.6% ±4.2% ±10.9% ±8.7% ±6.9%

mean 0.384° 0.419° 0.572° 0.380° 0.488° 0.622°
SD ±0.038° ±0.067° ±0.051° ±0.068° ±0.053° ±0.053°

RSD% ±9.9% ±16.0% ±9.0% ±18.0% ±10.9% ±8.5%

 

TABLE 3.2 System accuracy of the proposed eye-gaze tracking system, 1st configuration: 

0° between IR lights and camera 
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TABLE 3.3 System accuracy of the proposed eye-gaze tracking system, 2nd configuration: 

30° between IR lights and camera 

 

SYSTEM ACCURACY - 30° BETWEEN IR LIGHTS AND CAMERA 

Session 1 Calibration grid Test grid 
User RMSEx RMSEy RMSEρ RMSEx RMSEy RMSEρ

1 0.308° 0.322° 0.446° 0.333° 0.407° 0.526°
2 0.262° 0.329° 0.421° 0.355° 0.316° 0.475°
3 0.366° 0.424° 0.561° 0.359° 0.480° 0.600°
4 0.317° 0.432° 0.536° 0.355° 0.454° 0.576°
5 0.469° 0.424° 0.632° 0.409° 0.553° 0.687°
6 0.449° 0.395° 0.598° 0.521° 0.468° 0.701°

mean 0.362° 0.388° 0.532° 0.389° 0.446° 0.594°
SD ±0.075° ±0.046° ±0.076° ±0.064° ±0.073° ±0.081°

RSD% ±20.7% ±11.8% ±14.4% ±16.3% ±16.3% ±13.6%

Session 2 Calibration grid Test grid 
User RMSEx RMSEy RMSEρ RMSEx RMSEy RMSEρ

1 0.249° 0.383° 0.457° 0.381° 0.362° 0.526°
2 0.328° 0.357° 0.485° 0.419° 0.369° 0.558°
3 0.383° 0.450° 0.591° 0.361° 0.436° 0.566°
4 0.306° 0.313° 0.438° 0.526° 0.361° 0.638°
5 0.383° 0.450° 0.591° 0.361° 0.436° 0.566°
6 0.462° 0.371° 0.592° 0.517° 0.419° 0.666°

mean 0.352° 0.387° 0.526° 0.427° 0.397° 0.586°
SD ±0.067° ±0.049° ±0.067° ±0.069° ±0.034° ±0.049°

RSD% ±19.2% ±12.7% ±12.8% ±16.2% ±8.4% ±8.3%

mean 0.357° 0.388° 0.529° 0.408° 0.422° 0.590°
SD ±0.071° ±0.048° ±0.072° ±0.069° ±0.062° ±0.067°

RSD% ±20.0% ±12.3% ±13.6% ±17.0% ±14.6% ±11.3%
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TABLE 3.4 System accuracy of the proposed eye-gaze tracking system, 3rd configuration: 

60° between IR lights and camera 

 

SYSTEM ACCURACY - 60° BETWEEN IR LIGHTS AND CAMERA 

Session 1 Calibration grid Test grid 
User RMSEx RMSEy RMSEρ RMSEx RMSEy RMSEρ

1 0.305° 0.328° 0.448° 0.433° 0.259° 0.505°
2 0.426° 0.382° 0.573° 0.513° 0.495° 0.713°
3 0.279° 0.367° 0.461° 0.347° 0.350° 0.493°
4 0.386° 0.479° 0.615° 0.281° 0.511° 0.583°
5 0.546° 0.352° 0.649° 0.487° 0.429° 0.649°
6 0.537° 0.440° 0.694° 0.488° 0.506° 0.703°

mean 0.413° 0.391° 0.573° 0.425° 0.425° 0.608°
SD ±0.103° ±0.052° ±0.092° ±0.084° ±0.093° ±0.088°

RSD% ±24.9% ±13.3% ±16.0% ±19.8% ±22.0% ±14.4%

Session 2 Calibration grid Test grid 
User RMSEx RMSEy RMSEρ RMSEx RMSEy RMSEρ

1 0.336° 0.307° 0.455° 0.434° 0.342° 0.552°
2 0.348° 0.291° 0.453° 0.304° 0.388° 0.493°
3 0.298° 0.406° 0.504° 0.289° 0.475° 0.556°
4 0.367° 0.286° 0.465° 0.374° 0.397° 0.546°
5 0.440° 0.358° 0.567° 0.476° 0.474° 0.672°
6 0.433° 0.452° 0.626° 0.524° 0.490° 0.717°

mean 0.370° 0.350° 0.512° 0.400° 0.427° 0.589°
SD ±0.051° ±0.062° ±0.065° ±0.086° ±0.055° ±0.078°

RSD% ±13.8% ±17.7% ±12.6% ±21.5% ±12.9% ±13.3%

mean 0.392° 0.371° 0.542° 0.413° 0.426° 0.598°
SD ±0.084° ±0.061° ±0.085° ±0.086° ±0.077° ±0.084°

RSD% ±21.5% ±16.4% ±15.7% ±20.8% ±18.0% ±14.0%
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3.4. Conclusions 

Model-based approach to EGTS is analyzed and its drawbacks highlighted 

(oversimplified models, complex initial setup, and scarce flexibility of the system after the 

setup). A model-independent EGTS based on the optimal use of ANNs (training set and 

complexity of the architecture adequate to the POG estimation task) is proposed and realized. 

Large flexibility to different users, system setting, and a simplified free geometry setup is 

allowed, with no need to calibrate the camera and to perform any preliminary estimation or 

measure. That enables a relatively free engineering of the prototype giving large flexibility to 

both the assembly of the components and the potential applications.  

The proposed EGTS showed also uniform accuracy all over the observed screen and 

neither particular training nor user assistance was showed needed. 

The worst value of the achieved accuracy (0.622°) is quite better than the requirement 

of 1° usually accepted to design EGTSs to be used as HCI, approached the lower bound of 

0.6° given by the projection of the human fovea, and proved the validity of the proposed 

model-independent approach. 

Only commercial EGTSs using superior hardware and rigidly assembled equipment 

declare a typical accuracy slightly better than the proposed EGTS. The latter performs 

generally better than other examined model-based and model-independent systems. 

As the use of ANNs was reported able to incorporate head movement into the EGTS 

mapping function, we plan to adequate the calibration phase by asking the user to opportunely 

move her/his head so to measure and achieve good accuracy even when the user is let free to 

naturally move it. 

Future work is also planned to sophisticate the ANNs, for example using feedback 

connections, which should preserve some of the information from previously estimated eye 

features and POGs (e.g. recurrent networks). 

The simplification and optimization of the calibration phase by minimizing the 

number of points, the gaze duration and the grid structure is another potential field of future 

investigation. 
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Chapter 4  

Real-time adaptive neural predictors 

ABSTRACT 

The feasibility of eye gaze tracking with neural based mapping function encouraged 

the research on new neural networks architectures and learning schemes. In order to 

overcome the problems due to failures in eye features detection and head motion, a real-time 

time series prediction based on the neural networks used to regress the mapping function is 

proposed. 

That prediction scheme is successfully validated applying it to the gesture recognition 

considering the time series given by the output of two accelerometers placed on the upper 

arm and on the forearm respectively. The prediction errors are used both to train the neural 

networks and to estimate a measure of the unlikelihood of the specific gesture occurrence. 

The first repetition of each gesture trains the related neural networks and the current motion 

is recognized after a few successive repetitions. Neither a priori assumptions nor signal pre-

processing is performed. The training is performed at the beginning and can be repeated 

during the running (adaptability). On the four significant gestures considered (Wolf motor 

function test), the proposed method shows a correct recognition rate higher than 83%∗. 

                                                 

∗ Results described in this Chapter were published in Proceedings of the 11th International Congress of 

the IUPESM - Medical Physics and Biomedical Engineering, Munich, Germany, vol. 25/IX, pp. 536-539, 2009. 
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4.1. Introduction 

The aim, in this Chapter, is to prove the feasibility of a real time limb gesture 

recognition system based on ANNs. 

The system is integrated with a simplified sensor set of only two accelerometers 

placed on the upper limb and the recognition rate is assessed on real data. 

Due to their pattern classification and pattern recognition capabilities and their 

property to learn from and generalize from experience, ANNs have been mainly applied to 

data regression and classification problems. As a particular regression task, ANNs have been 

also widely used for time series prediction (Zhang et al., 1998; Crone, 2005; Zhang et al., 

2001; Neural Forecasting Competition [Online]). 

The rationale of the proposed method is to use ANNs as real-time neural predictors 

(RTNPs) in order to utilize the prediction errors to both continuously train the ANNs and to 

recognize the current motion using wearable sensors. 

The latter ones are being increasingly used in many applications related to the 

monitoring and the recognition of daily living activities in healthy people (Pentland, 2005).  

Being these sensors easy to use and wear, they can be used in home environment allowing to 

implement tele-rehabilitation programs able to remotely monitor gesture performance 

(Schasfoort et al., 2002), and eventually to quantify the progress of rehabilitation in people 

recovering from pathologies. Thus, they are also being used to analyze and quantify human 

motion, for both lower limb and upper limb applications (Veltink et al., 1996; Mathie et al., 

2004). Accelerometers are also often used in combination with magnetometers, cameras and 

gyroscopes to study tremor and balance, and for pose reconstruction (Giansanti et al., 2003). 

The related signals are analyzed by various processing methods, ranging from classic 

frequency analysis, to HMM-based techniques, to different types of Template Matching 

(Muscillo et al., 2007). 

In this proposal, for each gesture a different RTNP is trained to predict each of the 

time series of the accelerometers channels, constituting a bank of RTNPs. After few 

consecutive motion repetitions, the recognition system guesses the gesture category referred 

to the RTNPs bank exhibiting the best predictions. The use of ANNs and of the on line 

learning scheme gives the system a powerful ability to learn different gestures and to be 

adaptive in learning the way different subjects perform the same gestures. 
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Although very challenging test conditions were considered (the RTNPs banks are not 

specialized to the related gesture, only the first gesture trains the ANNs, no signal processing 

is performed) an encouraging mean value of the percentage recognition rate greater than 83% 

is obtained, proving the robustness and the recognition power of the proposal, which will be 

detailed in the following 

4.2. Materials and Methods 

4.2.1. The proposed real-time neural predictor 

ANNs are a neurologically inspired computational paradigm using many simple 

elaboration units (neurons) highly interconnected.  A set of significant inputs and 

corresponding desired output couples (training set) is used to train the ANNs connections 

strengths (weights) minimizing the distance between the desired outputs and the actual 

outputs.  According to the neurological long-term potentiation principle – the efficacy of 

synapses change as a result of experience providing both memory and learning to the brain – 

the training reinforces or depresses the connections giving the ANN the capability to learn the 

knowledge and the behavior contained in the training set. Thus, ANNs have been mainly 

applied to data regression and classification tasks. 

A particular regression task is the time series prediction: L delayed samples {x[n-l]; 

l=0, 1,…, L-1} of the series are provided as L inputs to the ANN; the ANN H outputs give the 

predictions of the H future values { nhnx ][ˆ + ; h=1, 2, …, H}. A non linear AR(L) model is 

thus assumed for the series (equation 3.1 (Zhang et al., 1998 and 2001; Crone, 2005). 

[ ] [ ] [ ] [ ]( )nxnxLnxfnx ,,..., 111 −+−=+  (3.1) 

Assuming N previous samples of the series are available and considering a one-step-

ahead prediction, the ANN training set is schematized in Table 4.1 (Zhang et al., 1998). 

An essential feature of ANNs is the option to train them continuously even during 

functioning. The so called on-line training is conceptually opposite to the generally used 

batch training method, referred to the off-line ANN training. 
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Item No Inputs Desired output 

1 x[1], x[2],…, x[L] x[L+1] 

2 x[2], x[3],…, x[L+1] x[L+2] 
… … … 
N-L x[N-L], x[N-L +1],…, x[N-1] x[N] 

TABLE 4.1 Time series forecasting: generally used training set 

A basis of this proposal is to use ANNs as RTNPs. Referring to Figure 4.1, at each 

time n the RTNP stores the last N samples, predicts the H future values and uses the H 

prediction errors eh[n] (equation 3.2) to concurrently perform the training during the 

prediction phase, according to Table 4.1. 

[ ] [ ] [ ] H ..., 2, 1,h    =−−= hnnxnxneh ˆ  (3.2) 

These prediction errors will serve as inputs for the performance measurement step, 

described in the following. 

RTNP
[ ] nnx   1ˆ +

[ ] nHnx   ˆ +

[ ]nx …

z-1

--
[ ] 1  ˆ −nnx

[ ]ne1 z-H

--
[ ] Hnnx −  ˆ

[ ]neH [ ] 1  ˆ −nnx…

 

FIGURE 4.1 Real-time neural predictor (RTNP) 

4.2.2. Performance measurements 

Although the crucial performance measurement for predictors is the prediction 

accuracy, based on the prediction error (equation 3.2), a suitable figure for any given problem 

is not defined (Zhang et al., 1998; Neural Forecasting Competition [Online]). There are 
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absolute performance measurements, which are used to compare the performances of different 

predictors operating on the same dataset: 

- the mean square error (MSE)  = (∑ne2[n])/N 

- the root mean square error (RMSE) = MSE1/2 

- the mean absolute deviation (MAD) = (∑n|e[n]|)/N 

and normalized performance measurements, which are in turn used to compare 

different data sets: 

- the mean absolute percentage error (MAPE) 

[ ]
[ ]nx
ne

N
MAPE nΣ⋅=

100  (3.3) 

- the symmetric mean absolute percentage error (SMAPE) 

[ ] [ ]
[ ] [ ] 2

100
/ˆ

ˆ
nxnx

nxnx
N

SMAPE n +
−

⋅= Σ  (3.4) 

As in this proposal the several RTNPs prediction performances are compared to 

recognize gestures, a normalized performance measurement has to be used. Moreover, since 

the accelerometer signals used in this work have zero mean, the use of the MAPE would lead 

to very large values when x[n] is close to zero. On the other hand the SMAPE is used for 

positively defined series. A corrected SMAPE (cSMAPE) (equation 3.5) is thus proposed. 

[ ] [ ]
[ ] [ ]( ) 2

1
/ˆ

ˆ

nxnx
nxnx

N
cSMAPE n +

−
⋅= Σ  (3.5) 

The performance measurement of the recognition system is the correct recognition 

percentage rate (CRPR). 

4.2.3. Application: the accelerometers signals 

The signals were recorded using two different accelerometers (ADXL202): a three-

axis one, placed on the inside of the forearm (Acc1), and a dual-axis one placed on the upper 

arm (Acc2).  The axes are oriented as in Figure 4.2. 
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FIGURE 4.2 Placement of the accelerometers 

For each subject 100 time series (5 repetitions × 5 channels × 4 gestures) were 

recorded.  Signals were sampled at 400 samples/s and have a duration ranging from 2.5 s to 

6.5 s (raise pencil, RP and stack pieces, SP task, respectively). 

4.2.4. Application: experimental setup and protocol 

Three healthy subjects were recruited to execute five repetitions of each exercise. The 

gesture categories are selected from a set of exercises listed in the Wolf motor function test 

(WMFT) which is generally used to monitor the improvement of functional movements in 

people recovering from stroke. The following four exercises are selected as they are more 

similar to the gestures performed during daily living: 

- SP - stack pieces – stack up 3 different draughts pieces, 

- LD – lock the door – reach, grasp and turn the keys as if locking a door three 

times, 

- RJ – raise jar – reaching and raising a jar and bring it to the mouth, mimicking 

drinking, 

- RP – raise pencil – reaching and then raising a pencil at a distance of 20 cm 

from the subject. 

4.2.5. The proposed real-time gesture recognition system 

In this section a real-time implementation of the use of RTNPs to recognize gestures is 

detailed. 

A multilayer neural network (MNN) with one hidden layer is used for the RTNP. The 

standard error backpropagation (EB) training algorithm is used and the transfer functions for 
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the hidden and the output layer units are the hyperbolic tangent (tanh) and the linear function, 

respectively. 

The selection of the main MNNs factors is essentially problem-dependent and none of 

the existing methods can be assumed as superior to the others. Given the real-time feasibility 

requirement, an heuristic trial-and-error approach in modeling the RTNPs is so applied. For 

each gesture category a different bank of RTNPs is trained with the different accelerometer 

output channels (a RTNP for each channel).  Four gesture categories are considered and five 

motion repetitions are totally available from the 3+2 channels of the two used accelerometers. 

With reference to Figure 4.3, the proposed system is composed of 4 RTNPs banks, 

each being formed by 5 RTNPs. Only the single initial repetition of each gesture trains the 

RTNPs of the related bank and then the signals given by the 5 accelerometer channels are 

simultaneously provided to all the RTNPs banks so that H=40 series of the prediction errors 

eh[n] (equation 3.2) are evaluated. 

After 4 movement repetitions of the same gesture, the mean cSMAPE for each RTNPs 

bank is evaluated averaging both in the 5 different channels and in the prediction directions 

h=20, 21,…, 40.  The bank with the minimum mean cSMAPE provides the system guess 

about the gesture category. 

The finally settled RTNPs model uses a training size of 5000 samples (the first 

repetition of each gesture, with N=1200 in Table 4.1), 600 input nodes, 2 hidden units and 40 

output nodes. 

As other authors found (Zhang et al., 1998; Crone, 2005; Zhang et al., 2001), it was 

confirmed that: 

- the number of input nodes is the most critical factor for prediction and 

recognition task, 

- a large training data set may overcome the overfitting problem, 

- parsimonious models have both the best recognition performance and the 

highest generalization capability. 
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FIGURE 4.3 Real-time gesture recognition system 

4.3. Results and Discussion 

Figure 4.4 shows the predictions for the 5th accelerator channel of a SP gesture during 

the on-line training. The first repetition of each gesture is used twice during the training. 

Figure 4.5 shows the cSMAPE for each of the 4 accelerometer channel RTNPs when 

RJ is performed: the minimum cSMAPE is found in the RTNP trained with RJ. Moreover, the 

higher is the prediction step, the higher is the cSMAPE but the higher is the system 

discrimination power. 
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FIGURE 4.4 Real time prediction during the on line training 
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FIGURE 4.5 Different gestures RTNPs - cSMAPE vs. prediction step 

It is also worth highlighting that: 

- for each subject the RTNPs are re initialized; only the first gesture repetition is 

used for the training; the train is never again repeated, 

- the different RTNP bank structure is not optimized for the specific related 

gesture category, 

- for each bank the different cSMAPEs of the related RTNPs are simply 

averaged over the channels, 

- neither any assumption nor any pre-processing or normalization of the data is 
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performed. 

Even in these very challenging test settings, a mean CRPR higher than 83% is 

obtained, proving the robustness and the recognition power of the proposed system (Table 

4.2). 

 

Gesture correct detection percentage rate Gesture 
Subject SP LD RJ RP Mean 

Mean 100% 66.7% 66.7% 100% 83.3% 

TABLE 4.2 Time series forecasting: generally used training set 

4.4. Conclusions 

An implementation of a real time gesture recognition system based on the use of time 

series neural predictors is proposed. The CRPR is measured on real data obtained from two 

inertial sensors placed on the upper limb. The accelerometer sensors, the ANNs architecture, 

and the prediction accuracy block are assembled in the system. 

The use of ANNs and of the on line learning scheme gives the system a powerful 

ability to learn different gestures and to be adaptive in learning the way different subjects 

perform the same gestures. 

As the learning can be repeated during the functioning, the system is also able to learn 

the change in performing movements for the same subject, suggesting applications in remote 

monitoring of gesture performance, and in adaptive rehabilitation pro-grams. 

The lack of both a priori assumptions and signal pre processing makes the system 

prone to recognize different kind of gestures and, in general, of data patterns. 

Even in the described test conditions, results obtained in this preliminary version of 

the system prove both the correctness and the robustness of the inspiring principles and the 

feasibility of a real time implementation. 

To improve the recognition ability allowing the system to recognize motions at the end 

and even during the single gesture repetition, the following future works may be planned: 

- to specialize each RTNPs bank architectures for the related specific gesture 

category, 

- to sophisticate the ANNs (e.g. recurrent networks), 
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- to authomatize the ANNs modeling (e.g. generating more than a model and 

selecting the winning one (Crone, 2005)), 

- to use more than one gesture repetition to train each RTNPs and periodically 

refreshing the training (e.g. using the trusted current recognition). 

In order to overcome the problems due to failures in eye features detection and head 

motion, the neural time series prediction described in this Chapter may be included within the 

neural mapping function of the EGTS proposed in Chapter 2. 
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Chapter 5  

New self-organizing meaningful 

artificial neural networks 

ABSTRACT 

The infinite support of sigmoidal activations of multilayer neural networks (MNNs) 

cause slow learning rate, lack of physical meaning, negative interference. This may prevent 

the useful application of ANN on eye-gaze tracking giving, in particular, slow calibrations. 

Localized receptive field (LRF) networks have promised similar regression power and faster 

learning than MNNs, and physically meaningful modeling. Unfortunately, LRF networks have 

often large size and/or performance worse than MNNs due to unsupervised placing and 

shaping of identical and radially symmetric kernels. 

As networks of new LRF, called quadratic exponential elliptical neuron (QuEEN), can 

be reduced to opportune MNNs, the standard error backpropagation allows each QuEEN to 

be self placed and shaped by a supervised training. The separability of the hidden units of 

QuEEN networks allows parallelism and growing/pruning strategies. According to 

simulations, QuEEN networks showed comparable regression power and faster learning than 

MNNs, keeping the pros of LRFs and MNNs and overcoming the respective cons∗. 

                                                 

∗ Results described in this Chapter have been submitted for Publication in Neuocomputing. 
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5.1. Introduction 

The success of neural networks (ANNs) – and in particular the standard multilayer 

neural networks (MNNs) – can be attributed to the ability of approximating any multivariate 

non-linear measurable function with an arbitrary degree of accuracy (Cybenko, 1989; Hornik, 

Stinchcombe, & White, 1989). 

The success of a particular neural network model can be strongly connected to the 

properties of its learning algorithm, so that the huge diffusion of MNNs was certainly due to 

the computational efficiency and the quite ease of use of the error backpropagation (EB) 

algorithm and its variants (Rumelhart, Hinton, & Williams, 1986; Widrow & Lehr, 1990) 

(e.g. the virtual absence of any a priori assumption on the system to be modeled). Despite the 

huge set of application tasks ranging from the multivariate regression to the time series 

prediction (Zhang, Patuwo, & Hu, 1998), from the nonlinear control to the eye tracking 

systems (Gneo, Schmid, Conforto, & D’Alessio, 2012), some age-old drawbacks have raised 

some skepticisms on the application of MNNs. Among these we highlight those due to the 

infinite support of sigmoidal functions that are used as neuron activation rules: the slow 

learning rate (Cybenko, 1989; Hornik, Stinchcombe, & White, 1989), the lack of physical 

meaning of the representation built during the training (Rumelhart, Hinton, & Williams, 

1986), the negative interference (Schaal & Atkeson, 1998), and the unfeasibility of the 

parallel implementation. 

Network of localized receptive fields (LRFs), such as the well-known and popular 

radial basis functions (RBFs), would in principle overcome those drawbacks (Powell, 1987; 

Park & Sandberg, 1991; Park & Sandberg, 1993). 

Unfortunately, the real concern with a RBF network (RBFN) is the optimization 

process for the choice of the RBF centers and smoothing factors (Chen, Cowan, & Grant, 

1991): this choice is data dependent (Webb & Shannon, 1998), and suboptimal centers may 

reduce the learning rate (Broohmhead & Lowe, 1988). The usually adopted learning scheme 

performs the unsupervised LRF placing and shaping with no exploitation of the knowledge 

about the desired input-output mapping. This sub optimal two-phase scheme, together with 

the excessive simplification given by identical and radially symmetric LRFs (as the RBFs), 

often leads to networks with unreliable behavior, large size and performance worse than 

MNNs (Schwenker, Kestler, & Palm, 2001). 
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As neither the same smoothing factors, nor the radial symmetry for the LRFs are 

required to prove they are universal approximators (Park & Sandberg, 1991; Park & 

Sandberg, 1993), we derived the requirements an ideal LRF network should have: 

1. it should be formed by elliptical and differently shaped LRFs, 

2. all the network adjustable parameters should be jointly trained in a supervised 

procedure. 

Similarly to what reported in (Lapedes & Farber, 1987; Poggio & Girosi, 1990a), we 

propose a multidimensional elliptical Gaussian LRF with different variances along each 

different input, so meeting the first requirement. The proposed network can be implemented 

as an opportune not fully connected two hidden layers MNN with quadratic and exponential 

activations. We therefore call its kernel a quadratic-exponential elliptical neuron (QuEEN). 

Moreover, since a standard EB can be applied to QuEEN networks to jointly train all the 

QuEEN’s parameters (i.e. centers, smoothing factors and heights) the second requirement is 

also respected.  

All the QuEEN units of the network self-organize by jointly placing, shaping and 

dimensioning themselves during the fully supervised EB training that exploits the whole 

knowledge about the desired input-output mapping included in the (input, desired-output) 

pairs of the training set, with no need of either a priori assumptions or unsupervised learning 

phases. 

Contrarily to conventional RBFN – that cannot estimate the influence of each input on 

output – the physical meaning of QuEEN networks also allows to evaluate the importance 

factor, let’s call it S, of each input variable on the output also derived in (Yeh, Zhang, Wu, & 

Huang, 2010a and 2010b), so that the model resulting after the training may provide an 

interpretation of the modeled system. 

Regarding the two-phase learning usually performed for RBFNs, we highlight that 

neither the numerical complexity nor the time needed to determine the LRFs centers and 

smoothing factors have ever been taken into account to assess different ANN models. We 

therefore introduce a complexity measure given by the total number of the adjustable 

parameters of the network, so that a comparison between the conventional MNNs and the 

QuEEN networks may be performed in terms of regression power and learning rate. 

Through numerical simulations, we will show that QuEEN networks exhibit a similar 

regression power with a considerably faster learning than MNNs, so confirming what was 
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found about LRF in (Lapedes & Farber, 1987; Moody & Darken, 1988; Poggio & Girosi, 

1990a). 

Therefore the proposed QuEEN networks allow keeping the advantages of both MNNs 

(in terms of popularity and easiness of use of the EB algorithm and its variations) and LRF 

networks (in terms of fast learning rate and physical meaning), overcoming their respective 

drawbacks. 

This work is structured as follows: in Section 5.2 a brief review about MNNs, LRFs 

and RBFs is provided, together with the analysis of their respective advantages and 

drawbacks. In Section 5.2.2 the proposed approach is introduced together with some 

considerations about the physical interpretation of QuEEN networks and the information that 

such representation may give on the modeled system. A complexity network measure is also 

introduced to allow comparing QuEENs with MNNs. In Section 5.4 the study of simple 

regression tasks and the comparison in terms of regression power and learning rate, between 

QuEENs and MNNs with the same complexity, is performed. In Section 5.5 the results and 

the conclusion of this work are summarized and some hints are provided about future work. 

5.2. Background 

5.2.1. Multilayer neural networks and backpropagation 

The generalization power of ANNs is related with the ability to correctly predict the 

output values for inputs not contained in the training set. Learning and generalization are 

among the most useful attributes of ANNs (Widrow & Lehr, 1990). 

When ANNs are applied to a regression task, the learning corresponds to finding a 

surface on the input space that gives the best fit to the training data following one optimum 

criterion, whereas generalization means interpolation between (and possibly extrapolation 

outside the range of) the sample data points along the regressing surface built during the 

training. 

MNNs belong to the larger class of feedforward neural networks (FNNs), where the 

data processing flows from the input nodes towards the output, and the related graphs have no 

cycles. 

Each unit of a MNN mimics the all-or-none behavior of biological neurons, which 

give a complete (and limited) response if stimulated above a certain activation threshold or, 

otherwise, give no response at all. This behavior is traditionally modeled by squashing 
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sigmoidal functions quickly saturating as input moves away from a threshold towards 

negative and positive values (the logistic function monotonically grows assuming values in 

[0,1], whereas the hyperbolic tangent similarly ranges in [-1,+1]). 

Since the single-hidden layer MNN class – the simplest nontrivial class of FNNs – 

with sigmoidal hidden units gives universal arbitrarily good approximators (Cybenko, 1989; 

Hornik, Stinchcombe, & White, 1989), we only consider one-hidden layer one-output MNNs 

(the extension to multidimensional output is obvious). We refer to this class of ANNs as 

conventional MNNs. 

Conventional MNNs have been traditionally trained using the standard EB algorithm 

(Rumelhart, Hinton, & Williams, 1986; Widrow & Lehr, 1990; Brown, 1996), which 

implements the steepest descent rule to minimize the mean square error (MSE) surface in the 

weight space by iteratively scanning each pattern of the training set. 

Notwithstanding their impressive diffusion, the following age-old claimed EB 

drawbacks have raised some skepticisms on the application of MNNs: 

- the slow learning rate (Cybenko, 1989; Hornik, Stinchcombe, & White, 1989), 

and 

- the lack of physical meaning of the representation of the modeled system built 

during the training (Rumelhart, Hinton, & Williams, 1986). 

Despite its numerical efficiency due to recursion, EB is a first order steepest descent, 

which suffers from slow convergence due to the possibility of zigzagging about the actual 

direction to a local minimum. More sophisticated second order variants may generally 

improve convergence rates (e.g. quasi-Newton algorithm) (Broohmhead & Lowe, 1988), 

whereas some known factors and corrections may be applied to the weights update equation 

to modulate the learning factor and/or introduce a memory of the past weight updates via the 

so called momentum (Rumelhart, Hinton, & Williams, 1986; Widrow & Lehr, 1990). 

Notwithstanding that, the EB learning rate may be so slow to allow the application of MNNs 

to only “off-line” static tasks where training is performed once and for all, whereas the 

application to real-time adaptive systems, where repeated training may be required with strict 

time constraints, may be precluded (Moody & Darken, 1988). 

Regarding the lack of physical meaning of the MNNs, during the learning an internal 

representation of the desired mapping regression task is built by the training of the network 

weights. The difficulty related to the physical meaning of this representation is due to its 

distributed nature, as it is the whole pattern of activity over all the hidden units – and not the 
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meaning of any particular hidden unit – that is relevant. This is directly related to the non-

limitation of the support of the sigmoidal activation functions (Rumelhart, Hinton, & 

Williams, 1986). 

Among other secondary but not negligible drawbacks of MNNs, we also highlight:  

- each MNN unit is activated on the basis of the input that is the sum of the 

outputs from all the preceding units; thus, a total parallelism is not realizable in 

MNN implementations, 

- the so called negative interference effect (Schaal & Atkeson, 1998): due to the 

non-local nature of sigmoidal basis function, any change to the MNN weights 

has non-local effect that may lead to the effect known as negative interference 

when the input-output relationship is not stationary. 

As any weight update during learning only greedily reduces the error related to the 

current training data, MNNs usually show excellent interpolation power but poor 

generalization capability outside of the range of training data. Any further training phase 

updates the MNN’s  weights to fit the new data, and may catastrophically lose the accuracy in 

the previous range of data. 

In the following Section we highlight that, as the other described drawbacks, also the 

slow learning rate of MNNs is due to the infinite support of the sigmoidal activations. ANNs 

with compactly supported kernels are thus potentially able to overcome all the mentioned 

drawbacks of MNNs. 

5.2.2. Localized receptive fields 

In this work we informally – and with no distinction – refer to a bump or localized 

receptive field (LRF) as a function on an Euclidean space Rn having continuous derivatives of 

any order on a compact support. In this support it assumes values different from zero and has 

its maximum (the function center), whereas it has zero values or vanishes out of the support 

(Lapedes & Farber, 1987; Moody & Darken, 1988). 

The interpretation of the Fourier analysis/synthesis as a superposition of half-period 

bumps (within suitable spectra of wavelengths), heuristically demonstrates that regression can 

be performed by a one hidden layer ANN whose hidden units are LRFs conveniently placed 

in the input space, with the coefficients of the regression given by the weights of a linear 

output unit. 
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The mapping performed by MNNs with sigmoidal units is interpretable as a 

summation of opportune bumps that the EB procedure needs to appropriately form, scale and 

place (Lapedes & Farber, 1987). Some gain in terms of learning rate can be so expected if the 

bumps of the network are available from the beginning instead of having the network build its 

own bumps from sigmoidal non compactly supported surfaces. Furthermore, only the small 

fraction of hidden LRFs centered very close to a given input are involved during both the 

network operation and training, whereas all sigmoidal units of a MNN must be trained for 

each input pattern (Moody & Darken, 1988; Moody & Darken, 1989). 

Regarding the network physical meaning, unlike MNNs, the biological plausibility and 

the physical interpretation of LRF networks regard not only each single unit, but also the 

representation given by the whole units interconnection. 

The network is formed by resonating hidden units each of which is a “receptive field” 

responding only for inputs falling in an input space region around its center, out of which its 

influence is rapidly vanishing. Locally-tuned neurons with “selective” response for some 

range of the input variables are found in many parts of the biological nervous systems. For 

example cochlear stereocilia (auditory system) have locally-tuned response to limited bands 

of frequencies, or cells in the visual cortex respond selectively to stimulation, which is both 

local in retinal position and local in certain directions of the visual field (Poggio & Girosi, 

1990b). These locally-tuned neurons only respond to a limited and small range of the input 

space (Schwenker, Kestler, & Palm, 2001). This representation is believed to be important for 

improving signal to noise ratio and fault tolerance. 

With the exception of the stereocilia cells, having locally tuned response given by their 

biophysical properties, locality is generally a property of the overall system and should not be 

confused with the biophysical response properties of cells, usually modeled in MNNs as a 

thresholding/squashing of a weighted sum of inputs. This historical knowledge regarding 

neurobiological locality of LRFs is fully reported and referenced in (Moody & Darken, 1988; 

Moody & Darken, 1989; Schaal & Atkeson, 1998). 

Thanks to LRF locality, a spatially localized learning is possible, since the training 

data falling in some limited range maximally affect only the nearest LRFs, whereas distant 

LRFs are only negligibly affected (Schaal & Atkeson, 1998). Therefore, LRF networks allow 

parallel implementations and show natural robustness to negative interference. 
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5.2.3. Radial basis function networks 

Most part of the literature regarding LRF networks has been related to radially 

symmetrical LRFs known as radial basis functions (RBFs), and RBF networks (RBFNs) are 

shown to offer an alternative to regression by MNNs with sigmoidal activations (Powell, 

1987; Poggio & Girosi, 1990a; Poggio & Girosi, 1990b). 

A RBF can be modeled by a scalar function Φ defined on Rn, with a single maximum 

in its center c, that vanishes as the (usually Euclidean) norm ||·|| of the vector difference 

between the input x and center c grows, accordingly to a scalar non negative smoothing factor 

σ also known as radius as in equation (4.1): 

( ) ( ) +ℜ∈ℜ∈−Φ=Φ σσσ      ,;,; n,cxcxcx  (4.1) 

Similarly to MNNs, we consider a one-dimensional output space without loss of 

generality, so that the generic RBFN with M hidden units can be expressed as in equation 

(4.2). 

( ) ( )∑ =
−Φ=

M

i iiiif
1

σλ ;cxx  (4.2) 

If M input-output training pairs are available, each of the M RBFs is centered in a 

different input vector with a fixed radius, and the resulting function is constrained to go 

through the known M points. The weighting coefficients λi in equation (4.2) are uniquely 

given by the inversion of the M×M square matrix of the linear system (its non-singularity is 

proven for a large class of functions Φ if the data points are all distinct (Broomhead & Lowe, 

1988)). When the number M’ of data exceeds the number M of RBFs and the condition that 

RBF centers correspond to the data points is relaxed, the determination of the coefficients λi 

becomes an overspecified – but still linear and uniquely solvable – least squares optimization 

problem (e.g. via the Penrose pseudo-inverse, or single value decomposition). 

Since a global shift of the desired function is hard to achieve by RBF weighting, an 

output bias weight λ0 may be considered as provided by a trivial bias unit b having infinite 

radius and output fixed to 1. The mapping thus implemented is given by equation (4.3), and 

the corresponding RBFN is depicted in Figure 1, where each continuous arch is a trainable 

weight. 

( ) ( )∑ =
−Φ+=

M

i iiiif
10 σλλ ;cxx  (4.3) 
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FIGURE 5.1 A conventional radial basis function network (RBFN) 

We just highlight here that RBFN in Figure 5.2 is similar but not equivalent to an one-

hidden layer MNN with RBFs as activations – with prefixed centers and radii – instead of 

sigmoids. Firstly each input is directly linked to each RBF by a unitary and fixed connection 

(dashed arches are not trainable and fixed to 1). Moreover, there are some other striking 

differences, better described in the following paragraph, also regarding the role of the bias 

unit and, above all, the hidden units. We will show as a LRF network similar to the RBFN in 

Figure 4.1 can be implemented by an opportune not fully connected two-hidden layer MNN. 

The hugely claimed simplicity of the RBF training is due to the described theoretical 

non-iterative procedure to evaluate only the output weights λi, but this implies that all the RBF 

centers and radii have to be in some way pre-determined, whereas the real concern with 

RBFNs is the (best) choice of appropriate RBF centers and smoothing factors (Chen, Cowan, 

& Grant, 1991). This choice is data dependent (Webb & Shannon, 1998), and suboptimal 

centers may reduce the learning rate (Broohmhead & Lowe, 1988), while the choice of the 

RBF shape seems to be not crucial (Chen, Cowan, & Grant, 1991). 

 As RBFNs were mainly introduced to overcome the slow convergence of EB in 

MNNs, the simultaneous learning of all the network parameters performed by EB has been 

generally replaced by a two-phase learning that separates the evaluation of the RBF centers 

and smoothing factors of the hidden layer from the training of the output weights (Schwenker, 

Kestler, & Palm, 2001). 
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The literature has been so concerned with centers that a whole classification scheme 

for the different learning strategies derived for RBFNs positioning has been introduced 

(Karayiannis, 1997; Karayiannis, 1999), whereas the smoothing factors optimization has been 

almost ignored: 

1. the RBFN has a RBF for each data included in the training set (the RBF 

centers are chosen to be training input vectors), 

2. the RBF centers are randomly selected from the training input data, 

3. the RBF centers are evaluated via the inputs clustering, 

4. the RBF centers are evaluated via supervised procedures using the desired 

output information. 

Although the first three unsupervised strategies do not consider at all the information 

about the desired output included in the training set, they are the most used to find out the 

RBF centers in the first phase of learning. 

After the RBF centers evaluation, the second phase learns just the output weights (i.e. 

the RBF heights) via the mentioned least mean squares rule. 

Notwithstanding its large use, the two-phase learning scheme was recognized as 

ineffective and responsible for RBFNs having unreliable behavior, large size or performance 

that is worse than MNNs (Schwenker, Kestler, & Palm, 2001). 

First of all, the separation of the learning in two phases cannot obviously lead to 

RBFN implementing models that are optimal in a global way (Webb & Shannon, 1998; Yeh, 

Zhang, Wu, & Huang, 2010a; Yeh, Zhang, Wu, & Huang, 2010b). 

Secondly, the second phase can be ill-conditioned when the RBF centers are too close 

to each other (the application of singular value decomposition is then required) (Chen, 

Cowan, & Grant, 1991). 

Moreover, the selection of RBF centers given by the first two unsupervised strategies 

is arbitrary and clearly unsatisfactory (Chen, Cowan, & Grant, 1991). The use of as many 

RBFs as input known patterns is actually reasonable only for “encoding” problems (e.g. the 

exclusive-OR) where the limited and noise-free training set is given by the dictionary of the 

code and there is no need to generalize inputs not belonging to that dictionary (Broohmhead 

& Lowe, 1988). The selection of RBF centers is the simplest alternative to the previous 

strategy when there is plenty of training data. In this case no suitable selection strategy is 

easily applicable if the function to be regressed is not known, and the centers are thus often 

chosen randomly. The unsupervised clustering of the input vectors (e.g. k-means clustering 
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(Moody & Darken, 1988; Moody & Darken, 1989) or linear vector quantization (Karayiannis, 

1997; Karayiannis, 1999)), puts similar (near) input patterns in the same cluster and set the 

RBF centers as the centroids of the clusters. Clustering algorithms like k-means are heuristics 

whose results may strongly depend both on the number and on the choice of the initial 

clusters, and some problems may arise when the input patterns are not equally distributed 

(Chiu, Cook, Pignatiello, & Whittaker, 1997). 

Furthermore, the two-phase learning scheme generally chooses identical RBF 

smoothing factors without any particular strategy, and kept them fixed during training as not 

persuasive procedures have been developed and relatively little effort has been made to 

optimize RBF smoothing factors. At best, they are evaluated in an intermediate phase of the 

two-phase learning scheme, between the centers determination and the output weights 

calculation, by means of unsupervised contiguity heuristics that try to find a tradeoff between 

RBF locality and smoothness (i.e. overlapping). 

Besides the mentioned reasons of trouble, accordingly to other authors we believe that 

the main problem with the two-phase learning is that the information about the desired 

mapping given by the input-output pairs in the training set is usually ignored during the first 

unsupervised phase of centers evaluation (Karayiannis, 1999). Moreover, also the described 

smoothing factors evaluation, when performed, is unsupervised (Guillén, Rojas, González, 

Pomares, Herrera, Valenzuela, & Rojas, 2007). The application of unsupervised strategies to 

determine RBF centers (and smoothing factors) to regression tasks represented by two 

different training sets having the same input vectors (e.g. given by the same input sampling 

scheme) but different output targets, will come out with two RBFNs having the same hidden 

layer: this simple example outlines the criticality of this topic. 

Moreover, the target function can have a large bandwidth in some areas (i.e. high 

variability) where a lot of (narrow) RBFs may be needed, and narrow bandwidth in other 

areas (i.e. smooth behavior), where just a few (wide) RBFs are needed. Thus, the 

unsupervised center evaluation could unsuitably place RBFs where the target function is 

smooth or easy to model, whereas the naïve use of a high number of narrow RBFs densely 

placed in the input space, simply gives non-practicable RBFNs. 

We thus strongly also believe that RBF smoothing factors should be different, 

allowing the radii to be different in different areas (Guillén, Rojas, González, Pomares, 

Herrera, Valenzuela, & Rojas, 2007). As a matter of fact, even if RBFNs with the same radius 

can still be universal approximators (Park & Sandberg, 1991; Park & Sandberg, 1993), RBFs 

with identical radii should be avoided (Benoudjit & Verleysen, 2003) as when each RBF can 
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define its own value for the radius, the RBFN performance can be increased, whereas 

inadequate values can severely impair the regression power. Different radii can be evaluated 

by an unsupervised input clustering, considering the centroids and the standard deviations of 

the training data in each cluster, but although this approach is far better than the fixed-width 

methods, the smoothing factors so evaluated still remain sub-optimal (Benoudjit & Verleysen, 

2003). 

Another important criticism of the RBFNs regards the radial symmetry of traditional 

RBFs: the regression so performed is not invariant to scaling of the input variables unlike 

MNNs (Webb & Shannon, 1998), and the circular contour lines of RBFs implicitly consider 

that all the input variables have equal weights. Therefore, conventional RBFNs cannot 

estimate the influence of inputs on the output, so that the resulting model is unsuitable to 

provide an interpretation of the modeled system. 

As neither the same smoothing factors, nor the radial symmetry for LRFs are required 

for the proof of the universal approximation capability (Park & Sandberg, 1991; Park & 

Sandberg, 1993), and the influence of each independent variable on the desired mapping has a 

generally different scale, a more reasonable LRFs should have oval contour lines (Yeh, 

Zhang, Wu, & Huang, 2010a; Yeh, Zhang, Wu, & Huang, 2010b). 

Summarizing all the previous considerations about RBFNs, we thus conclude that 

networks of LRFs with the following characteristics should be considered: 

1. all the LRF adjustable parameters (smoothing factors, centers and output 

weights) have to be jointly optimized during a fully supervised training, taking 

into account the output values of the target function, and 

2. each kernel function needs N different smoothing factors for the N different 

input variables, so to obtain not symmetrical LRFs. 

These two conditions have been practically never considered together. A gradient 

descent based supervised learning minimizing the mean quadratic RBFN output error was 

developed in (Karayiannis, 1997; Karayiannis, 1999; Karayiannis & Randolph-Gips, 2003), 

but smoothing factors are prefixed, whereas only the centers and output weights are trained. 

A partially supervised approach was proposed where the number of RBFs is iteratively 

increased starting from one and continuing by adding RBFs chosen from a large set of 

candidates so that the explained variance of the desired output is maximized (Chen, Cowan, & 

Grant, 1991). Sadly, the candidate RBFs correspond to centers still chosen from the data 

points, and the smoothing factors optimization is not considered at all. In reference (Chiu, 
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Cook, Pignatiello, & Whittaker, 1997), different smoothing factors for the different LRFs 

were trained together with output weights in a supervised learning based on gradient descent, 

but the centers are evaluated, as usual, via input unsupervised clustering. In reference 

(Benoudjit & Verleysen, 2003), the performance deterioration due to RBFs with identical 

scalar and fixed widths is described and the smoothing factor optimization is considered in the 

case of symmetrical RBFs. Shape-adaptive RBFs were proposed and two learning schemes 

were derived in (Webb & Shannon, 1998), the first with radially symmetrical RBFs, each 

with a different scalar smoothing factor, and the second with identically shaped standard 

symmetrical RBFs. Shape-adaptive RBF networks give rise to lower errors and smaller 

networks than conventional RBFNs, but the centers are still evaluated via the suboptimal 

unsupervised k-means clustering of the inputs. A supervised approach where RBF centers and 

smoothing factors are trained so that RBFs are placed where the target function is highly 

variable, whereas centers are rarefied in smooth evaluated areas is derived in (Guillén, Rojas, 

González, Pomares, Herrera, Valenzuela, & Rojas, 2007), but symmetrical RBFs are 

considered. As smoothing factors are evaluated after centers, and then are the output weights, 

a joint optimization was not performed. 

In the following section we propose a network of powerful elliptical multivariate 

Gaussian LRFs, each having a multidimensional smoothing factor. We also show that such a 

network can be implemented by a convenient MNN so that the standard EB allows jointly 

training all the network adjustable parameters during a fully supervised training scheme, 

whereas the speed of the training is kept so to combine the advantages of both MNNs and 

LRFs, overcoming their drawbacks. 

Networks of adaptive radial basis function (ARBF) having oval contour lines were 

recently proposed (Yeh, Zhang, Wu, & Huang, 2010a; Yeh, Zhang, Wu, & Huang, 2010b). 

Conventional symmetrical RBFs were fed with weighted input variables and a supervised 

steepest descent learning scheme was derived for RBFs centers, radii, output and input 

weights. ARBF networks resulted much more accurate than RBFNs, but as the input weights 

indirectly give the elliptical shape of the kernel functions, the real need to increase the 

network complexity to adaptively train also the RBF radii is not clear. 

An efficient fully supervised learning scheme of networks having generalized 

multivariate Gaussian kernels, referenced as hyper basis functions (HBFs), was proposed in 

(Poggio & Girosi, 1990a) with performance comparable to MNNs. The contours of HBFs 

with a generic covariance matrix are hyperellipsoids in the input space that have arbitrary 

orientation (Schwenker, Kestler, & Palm, 2001). 
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The network kernel proposed in this work (QuEEN) can be considered as a separable 

HBF having diagonal covariance matrix, with the axes of (hyper)elliptical contour lines 

parallel to the axes of the input space. As the proposed approach considers QuEEN networks 

as particular MNNs, it allows the direct application of just the standard EB. 

5.3. Quadratic Exponential Elliptical Neurons Networks 

In this work we propose a LRF given by a multidimensional Gaussian function Q 

having diagonal covariance matrix with different smoothing factors along the different input 

variables, gathered in the vector σ as in equation (4.4), where Σ is the inverse of the 

covariance matrix with the diagonal given by the square of the component of the vector σ, and 

T denotes the transpose of a matrix. 
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Given the diagonality of the matrix Σ, the equation (4.4) is separable and so is the 

kernel function Q so that the Eq.(4) can be expressed as in equation (4.5) 
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We thus can define N basic functions, the j-th of which qj(xj;cj) simply gives the 

square of the projection on the j-th input space dimension of the difference between the input 

x and the center c vectors, the kernel function Q may also be expressed as in Eq.(6), where the 

negative exponential is defined as E() for simplicity. 
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The Q kernel unit given by equation (4.6) can be so implemented by an elementary 

MNN given by the connection of N basic units with quadratic activation to an output basic 

unit having the negative exponential E(x) as activation, where N is the input space dimension. 

The j-th quadratic unit thus implements the function qj(xj;cj), and receives as input the j-th 
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variable of the input space and the j-th output of a trivial bias unit, whose N output weights 

implement the (opposite of the) components of the Q center c. 

 

FIGURE 5.3 A quadratic-exponential elliptical neuron (QuEEN) 

In Figure 5.3 we show the implementation of the QuEEN already defined as a 

multidimensional Gaussian unit. The possibility to freely update both the QuEEN center and 

its smoothing factors is represented by continuous arches, whereas the dashed arches indicate 

one valued connections from the input 
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Similarly to equation (4.3), in equation (4.7) the regression performed by the 

superposition of M QuEENs is expressed, whereas the related network of QuEENs 

conveniently placed, shaped and weighted is shown in Figure 5.4. 
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FIGURE 5.4 A quadratic-exponential elliptical neuron (QuEEN) network 

The striking differences between the QuEEN network in Figure 5.4 and a one-hidden 

layer MNN, whose units have multidimensional Gaussian activations instead of sigmoids, are: 

- input layer connections: MNNs input connections need to be trained, whereas 

QuEEN networks have unitary fixed input connections, 

- role of the bias unit: in MNNs the bias unit is connected to all the hidden and 

output units, whereas the QuEEN bias is just connected to the output unit, 

- input of the hidden units: the hidden units of a MNN apply the activation 

function to the weighted sum of all the incoming inputs, whereas each QuEEN 

applies the conveniently placed and shaped elliptical activation just to the 

input, 

- parameters of hidden units: all the hidden units of a MNN have the same shape 

and no adjustable parameters (even the unit threshold is externally given by the 

bias connection), whereas a QuEEN network needs the output weights training 

and the centers and smoothing factors of each QuEEN. 

If in each term in equation (4.7) every QuEEN function is expressed as in equation  

(4.6), the following equation (4.8) is straightforwardly obtained: 
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The equation (4.8) expresses the particular MNN depicted in Figure 5.5 – where N is 

the input space dimension and M is the number of regressing units – that can be also 

graphically derived if each unit in the QuEEN network in Figure 5.4 is implemented in terms 

of quadratic and exponential unit as in Figure 5.3. 

 

FIGURE 5.5 Reduction of a QuEEN network to a not fully connected MNN 

The special MNN so derived, that we simply refer to in the following as a QuEEN 

network, exhibits the following distinctive features with respect to a conventional MNN: 

- it is a two hidden layer MNN, whose first hidden layer is formed by M×N units 
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having quadratic activations, and the second hidden layer is given by N units 

having a negative exponential activation, 

- the hidden layer units are separable in M isolated groups (see dashed ovals in 

Figure 5.5), so that each group implements a QuEEN (see Figure 5.3) and is 

formed by N quadratic units and one exponential unit, 

- given the disjunction of the previous M groups, the hidden layer units are not 

fully connected each other, 

- even the N input clampers are not fully connected with the first hidden layer 

units as the j-th input variable is connected only to the j-th unit of each unit 

group, 

- the connections between the input and the first hidden layer are not trainable as 

they have to be kept fixed to one, and 

- the bias is connected only to the first hidden layer and to the output unit, 

whereas in conventional MNNs the bias unit is fully connected with all the 

units. 

The EB algorithm strictly requires the network to be only a FNN whose all units have 

continuous and differentiable activations, whereas the units are not required either to be fully 

connected, or to show the same sigmoidal activation (Rumelhart, Hinton, & Williams, 1986). 

It follows that a fully supervised and joint learning of all the adjustable parameters of the 

QuEEN network (centers, asymmetric smoothing factors and heights) can be simply given by 

the standard EB. 

5.3.1. Physical meaning of the QuEEN networks weights 

As all the QuEEN network weights have an immediate physical meaning, differently 

from conventional MNNs, the whole QuEEN network representation built during the training 

has a direct physical interpretation. 

With reference to all the trainable connections in the QuEEN network shown in Figure 

5.5, it follows that: 

- the (i,j)-th connection -ci,j from the bias unit to the first hidden layer units 

directly represents the (opposite of the) j-th input coordinate of the i-th QuEEN 

center, 

- the (i,j)-th connection wi,j from the first to the second hidden layer is inversely 

proportional to the variance of the i-th QuEEN along the j-th input direction, 

- the i-th output weight λi directly gives the height of the i-th QuEEN, 
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- the bias weight λ0 gives the output function offset. 

Thanks also to the separability in M groups of the hidden units, the evolution of the 

parameters of each QuEEN during the training is physically meaningful. 

Contrarily to conventional RBFN – that cannot estimate the influence of each input on 

output, so that the resulting model is unsuitable to provide an interpretation of the modeled 

system (Yeh, Zhang, Wu, & Huang, 2010a and 2010b) – the proposed QuEEN networks are 

also prone to the following physical interpretation: 

- the smaller is the (i,j)-th weight wi,j, the larger is the smoothing factor of the 

i-th QuEEN along the j-th input direction. The vanishing of wi,j thus represents 

a scarce influence of the j-th input variable on the i-th QuEEN as it will give a 

constant value output along the j-th input direction, 

- the vanishing of the i-th output weight λi (i.e. the height of the i-th QuEEN) 

represents a negligible response of the network for inputs around the center 

ci=[ci,1…ci,j… ci,N]T of the i-th QuEEN. 

These qualitative considerations may find an analytical confirmation on the 

importance factor Sj of the j-th input variables on the output of a fully supervised adaptive 

radial basis function network recently derived through the first differential of the output on 

the j-th input in (Yeh, Zhang, Wu, & Huang, 2010b). If applied to a QuEEN network, the 

importance factor Sj gives the following equation (4.9): 
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where λm and σm,j are respectively the output weights and the variance along the j-th 

input direction related to the m-th QuEEN. The bigger Sk as compared to Sj, the more the k-th 

input affects the network output with respect to the j-th input. 

As the weights of a QuEEN network represent QuEEN centers and asymmetric 

smoothing factors, the EB training of QuEEN may be regarded as supervised clustering of the 

input space that takes into account the knowledge on the input-output mapping, and provides 

the centroids and the shape of M elliptical clusters. 
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5.3.2. A complexity measure for neural networks 

What has been generally done in the assessment of ANNs is the quite rough 

performance comparison for different kinds of networks having the same number of hidden 

units, e.g. in terms of regression power and learning rate. 

Notwithstanding this, given the same number of hidden units, different kinds of ANNs 

will generally have a different number of adjustable parameters. 

We think that it may not have much sense, for example, to observe that, for a network 

having a certain number of adjustable parameters, the regression error converges faster than 

for another kind of network having many more adjustable parameters; it is indeed reasonable 

to expect that the more complex the network – given the same training set – the higher the 

number of learning cycles to converge. 

In this work we aim to compare MNNs to QuEEN networks evaluating 

commensurable performances, and we choose to compare networks having exactly the same 

number of adjustable parameters to be jointly trained with the same standard EB. 

Therefore, as each kind of ANN constitutes a C-parameter family of models where C 

is the total number of adjustable parameters which are varied during the training, we simply 

decided to consider the network complexity as given by the total number of adjustable 

parameters.  

As a conventional MNN is fully connected and all of its connections have generally to 

be trained, its complexity is simply given by the total number of its connections. 

Given N the input dimension and M the number of hidden units of the MNN, as the 

bias unit is connected to all the hidden and output units, the complexity of a generic one-layer 

(one output) MNN is given by equation (4.10). 

( ) ( )11 +++= MMNCMNN  (4.10) 

As the RBFN learning has usually been performed with the two-phase learning 

scheme where the determination of RBF centers and smoothing factors is separated by the 

output weights training, the complexity of LRF networks has been roughly considered given 

by the number of hidden units. 

Notwithstanding this, as also the LRF smoothing factors and centers are adjustable 

network parameters as the output weights are (i.e. the LRF heights), the QuEEN network 

complexity is given by all of its adjustable parameters as in equation (4.11).  
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( )12 ++= MMNCQuEEN  (4.11) 

5.4. Test protocol and experimentation data 

In the following we firstly regress Gaussian functions. These simple tasks allow 

validating the proposed EB application and help better understand the behavior of QuEEN 

networks, by analyzing the trajectories of the QuEEN network weights, thanks to their 

physical meaning. 

Then we compare conventional hidden layer MNNs with sigmoidal units to the 

proposed QuEEN networks in terms of both regression power and learning rate. The 

comparison is performed for networks having the same complexity as defined in the previous 

section. 

In this work we just consider the regression of bivariate functions as it allows 

obtaining graphical views of the results of the regression task, to better understand the 

QuEEN behavior without any loss of generality. 

As in reference (Schaal & Atkeson, 1998), we consider the approximation of a two-

dimensional desired function fd(x,y) whose samples are corrupted by (0 mean, 0.01 variance) 

additive Gaussian noise (AGN), whereas the training set is formed by 500 pairs of (x,y) input 

points randomly drawn from the square [-1.0,1.0]×[-1.0,1.0] of R2, and the related desired 

outputs are given by 500 noisy samples of the z(x, y) in equation (4.12). The test set is formed 

by 1681 data points taken on a 41×41 grid over the square [-1.0,1.0]×[-1.0,1.0] uniformly 

sampled in each dimension at 0.05 wide step. 

( ) ( ) ( )0.01 0,,, Nyxfyxz d +=  (4.12) 

The regression power is evaluated through the output root mean square error (RMSE) 

given by the difference between the actual network output and the fd(x,y) function value, 

evaluated on both the training and the test sets. 

The learning time is qualitatively given by the number of epochs the network RMSE 

needs to converge to a quasi-constant value. 

It is straightforward to see that, for a two dimensional input, the complexities of 

MNNs and QuEEN networks are given by equation (4.10) where N=2 and M gives the 

number of hidden units (i.e. QuEENs) respectively as reported in equation (4.13). 
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In the following Table 4.1 the network architectures giving exactly the same 

complexity for two-input networks as functions of the number of hidden and QuEEN units are 

listed. 

 

QuEEN Units no. MNN Units no. Network complexity

4 5 21

8 10 41

12 15 61

16 20 81

20 25 101

24 30 121

28 35 141

TABLE 5.1 Complexity of a two input network in function of the number of hidden units 

The standard EB training is applied to both MNNs and QuEEN networks and the same 

learning factor and momentum are used. For both the tested architectures, the units of the 

output layer are linear, to avoid issues related to the output range. Both the MNN and the 

QuEEN network weights are randomly initialized. Three different realizations of random 

weights were considered for each network architecture. Each network realization was then 

trained with a different randomly formed training set. The RMSE values obtained were 

averaged over the three realizations for both QuEENs and MNNs. 

5.4.1. Regression of one Gaussian function 

We start our analysis considering the elliptical Gaussian bivariate desired function 

centered in the origin with standard deviations σx=0.2 and σy=0.6 as expressed in equation 

(4.14), and we regress it by one-QuEEN networks. This trivial regression task validates the 

proposed EB application and helps better understand the behavior of QuEEN networks, by 

analyzing the trajectories of the weights thanks to their physical meaning. 
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The 3D surface diagram and the 2D contour diagram of such desired function are 

shown in Figure 5.6 a). 

The regressing one-QuEEN two-input network is derived from equation (4.5), 

equation (4.8) and Figure 5.5 where M=1 and N=2, so that equation (4.15) and Figure 5.6 b) 

can be obtained. 
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The network in Figure 5.6 b) was so randomly initialized and then trained using EB 

for 10000 iterations (epochs) of the training set built as previously described. 

The trajectory and the evolution of each coordinate of the QuEEN center for one 

realization of the network are depicted in Figure 5.6 c) and Figure 5.6 d). Just after the first 

100 epochs the QuEEN center quickly moves quite near the center of the desired function (it 

is only 0.06 far from the origin). The QuEEN then slowly approaches the origin reaching it 

after about 5000 epochs, whereas the center estimation oscillates around the correct value in 

the last 5000 remaining epochs (see the little dashed circle in Figure 5.6 c)). 

The QuEEN center coordinate cx convergence is faster than cy as the target function 

steepness along the X coordinate is greater than the Y coordinate (σy>σx). 

A similar trend is exhibited in Figure 5.6 e) by the output weights and the smoothing 

factors that quickly jump near their final values to which they slowly converge in less than 

5500 epochs (only the first significant 6000 epochs are shown): 

- the output offset λ0 vanishes, 

- the QuEEN smoothing factors respectively reach the target function standard 

deviations (σx=0.2, σy=0.6), 

- the QuEEN height λ1 reaches the correct value which is 1. 

The RMSE related to the regression error was measured on both the training and the 

test set and is depicted in Figure 5.6 f). After a quick reduction, in about 5000 epochs both the 

errors approach the standard deviation 0.1 of the AGN so proving that the QuEEN network 

reaches a very good fitting of the target function. 
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The rightness of the proposed approach and the physical significance of the QuEEN 

network weights were so verified. 
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FIGURE 5.6 a) 3D surface diagram and 2D contour diagram of a bivariate Gaussian 
function centered in the origin with σx=0.2 and σy=0.6.  
b) The one QuEEN two input regressing network.  
c) Trajectory of the QuEEN center during the training.  
d) Evolution of the QuEEN center coordinates during the training.  
e) Evolution of output offset, smoothing factors and height of the QuEEN during 
the training.  
f) Root mean square error (RMSE) evaluated on both the training and test set. 
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5.4.2. Regression of two Gaussian functions 

Now we consider a bimodal desired function given by the superposition of two 

elliptical Gaussian bells and we regress it by a two-QuEEN network. The target function is 

expressed in equation (4.16), where the first bell is negative, centered in (-0.5,0.5) with 

standard deviations (0.6,0.2), and the second bell is positive, centered in (0.5,-0.5) with 

standard deviation (0.2,0.6). The related 3D surface and 2D contour diagrams are shown in 

Figure 5.7 a). 
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The regressing two-QuEEN two-input network derived from equation (4.5), equation 

(4.8) and Figure 5.5 where M=2 and N=2, so that equation (4.17) and Figure 5.7 b) can be 

obtained. 
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Three random realizations of the QuEEN network in Figure 5.7 b) were trained using 

EB for 50000 epochs of training sets built as previously described. 

The trajectories and the evolution of each coordinate of the two QuEEN centers for 

one realization of the network are depicted in Figure 5.7 c) and Figure 5.7 d). Just after the 

first 100 epochs the two QuEEN centers quickly move quite near the maximum and minimum 

of the target function, whereas the center estimations oscillates around the correct values in 

the remaining epochs (see the little dashed ellipses in Figure 5.7 c). 

Similarly to what already observed, the convergence of the first QuEEN center 

coordinate c1,y is faster than c1,x as the first Gaussian bell steepness along the Y coordinate is 

higher than the X coordinate (σ1,x >σ1,y). Similarly, the convergence of the second QuEEN 

center coordinate c2,x is faster than c2,y as the second Gaussian bell steepness along the X 

coordinate is greater than the Y coordinate (σ2,y >σ2,x). 
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A similar trend is exhibited in Figure 5.7 e) by the output weights and the smoothing 

factors that quickly jump near their final values to which they slowly converge in less than 

15000 epochs (only the first significant 20000 epochs are shown): 

- the output offset λ0 vanishes very quickly, 

- all the QuEEN smoothing factors respectively reach the local standard 

deviations of the target function, 

- both the QuEEN heights λ1 and λ2 reach the minimum and the maximum values 

of the target function. 

The RMSE related to the regression error was measured on both the training and the 

test set and is depicted in Figure 5.7 f). After a quick reduction, in about 10000 epochs both 

the errors approach the standard deviation 0.1 of the AGN so proving that, also in this case, 

the QuEEN networks reach a very good fitting of the target function. 

As already found, the QuEEN parameters converge faster for the input coordinates 

along which the target function steepness is higher. 
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FIGURE 5.7 a) 3D surface diagram and 2D contour diagram of a bimodal Gaussian target 
function.  
b) The two QuEEN two input regressing network.  
c) Trajectory of the centers of the two QuEENs during the training.  
d) Evolution of the two QuEENs center coordinates during the training.  
e) Evolution of output offset, smoothing factors and height of the two QuEENs 
during training.  
f) Root mean square error (RMSE) evaluated on both the training and test set. 
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5.4.3. Regression of bump functions 

From now on we compare QuEEN networks to conventional MNNs with the same 

complexity in terms of regression power and learning rate for different target functions. We 

firstly consider a basic bump function as a target different from the trivial Gaussian bumps we 

used before. Afterwards, a more complex bump target function given by the superposition of 

basic bumps opportunely placed and scaled is introduced.  

The first one is the basic bump function defined in equation (4.18), whose 3D surface 

and 2D contour diagrams are shown in Figure 5.8 a). 
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Three random realizations of each network for both QuEENs and MNNs were trained 

using EB for 100000 epochs of training sets randomly built as previously described. 

The RMSEs obtained for one-QuEEN networks and one, two and three sigmoidal 

hidden units MNNs were evaluated for both the training and test sets and respectively showed 

in Figure 5.8 c) and Figure 5.8 d). 

MNNs with either one or two hidden sigmoidal units are not able to regress the basic 

bump function, whereas at least three hidden units are needed to reach the AGN, while a 

simply one-QuEEN network does. 

This result is confirmed by the exam of the best regression given by respectively one, 

two and three sigmoidal hidden units MNNs after 100000 epochs, as depicted in Figure 5.8 

b). 

Then, at least three sigmoidal units are needed by the MNNs to build a bump during 

the training phase. 

Similarly to what found in (Lapedes & Farber, 1987) for LRF networks, the 

one-QuEEN network is advantaged in the regression of such a bump target functions with 

respect than MNN that needs more complex configuration to build a bump during the training 

and reach the same accuracy. 
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This is confirmed by the evaluation of the network complexities as defined in Section 

5.3.2: a MNN with three units has complexity 13, whereas an one-QuEEN network showing 

the same regression power has complexity 6. 

The comparison between QuEEN networks and MNNs was then performed for 

networks having exactly the same minimum complexity that is given by 4-unit QuEEN 

networks and 5-unit MNNs, having complexity 21 (see Table 5.1). 

The RMSEs evaluated for both the training and test set are respectively showed in 

Figure 5.8 e) and Figure 5.8 f) (only the first 2000 significant epochs are considered). 

These results show that for the basic bump target function, QuEENs networks exhibit 

regression power similar to MNNs but with faster convergence as the AGN level is already 

reached after less than 500 epochs, whereas MNNs needs more than 1000 epochs. 

In Figure 5.9 the regression of the target basic bump (Figure 5.9 a) performed by one 

realization of a 4-units QuEEN network is showed, together with the one performed by a 

5-units MNN (same 21 complexity) after 100, 1000, 10000, and 100000 epochs. 

After only 100 epochs the 4 QuEENs already grouped together to form a bump (Figure 

5.9 b)), whereas the 5-units MNN is far from the bump shape (Figure 5.9 b’)). 

After 1000 epochs the 4 QuEENs are placed to form a better bump, whereas the global 

offset is closer to zero level than after 100 epochs (Figure 5.9 c)). The 5-units MNN have 

formed the bump, but the zero level offset is not correctly approximated, as the actual 

function goes down to negative values at the border of the domain (Figure 5.9 c’)). 

The QuEEN network bump approximation practically keeps its shape after 1000, 

10000, and 100000 epochs (Figure 5.9 c), d), and e)), whereas the MNN only slightly 

improves its bump shape and the negative values at the domain border. epochs (Figure 5.9 c’), 

d’), and e’)). 
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FIGURE 5.8 a) 3D surface diagram and 2D contour diagram of the basic bump target 
function.  
b) Regression after 100000 epochs with MNNs having 1, 2 and t3 sigmoidal 
hidden units.  
c) Regression by one QuEEN networks and 1, 2, and 3 sigmoidal hidden units 
MNNs: RMSE (training set).  
d) Regression by one QuEEN networks and 1, 2, and 3 sigmoidal hidden units 
MNNs: RMSE (test set).  
e) Regression by 4 units QuEEN network and 5 units MNNs: RMSE (training 
set).  
f) Regression by 4 units QuEEN network and 5 units MNNs: RMSE (test set). 
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FIGURE 5.9 Regression of the basic bump function by 5 units MNN and 4 units QuEEN 
network (complexity 21):  
a) 3D surface diagram and 2D contour diagram of the theoretical function. 
b), b’) Regression after 100 epochs.  
c), c’) Regression after 1000 epochs.  
d), d’) Regression after 10000 epochs.  
e), e’) Regression after 100000 epochs. 
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Then we considered a target function given by the superposition of seven basic bumps 

placed and scaled as in equation (4.19). Given its shape (the 3D surface and 2D contour 

diagrams are shown in Figure 5.10 a), we call it the crown function. 
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Three random realizations of each network for both QuEENs and MNNs were trained 

using EB for 100000 epochs of training sets randomly built as previously described. 

The RMSEs obtained for QuEEN networks and MNNs with the same complexity 

ranging from 21 (4-unit QuEENs, 5-unit MNNs) to 121 (24-unit QuEENs, 30-unit MNNs, see 

Table 5.1) were evaluated for both the training and test sets. Similarly to what found for the 

basic bump, the RMSEs on the training and test set are practically the same (see Figure 5.10 

e) and Figure 5.10 f)). We thus only show in Figure 5.10 e) the RMSE on the test set after 

100, 1000, 10000, and 100000 epochs of training. 

Whereas, the higher is the number of epochs, the considerably lower is the RMSE of 

MNNs, the QuEEN networks show a faster learning rate (after only 100 epochs the QuEEN 

RMSE nearly approach the AGN) and a lower dependency on the number of epochs. The 

RMSE of QuEEN networks is also uniformly lower than MNN with the same complexity for 

all the considered learning time. Whereas MNNs show a RMSE slightly decreasing as the 

network complexity increase, the RMSE of QuEEN networks is practically not depending on 

the network complexity for complexities greater than 21. The higher is the number of epochs 

of training, the more marked is that behavior for both the networks. 

The uniformly better regression power and the faster convergence of QuEEN network 

with respect to MNNs can be also verified from the exam of the RMSE decay during the 

training shown in Figure 5.10 f) for networks having complexity 21 and 121 (only the first 

significant 30000 epochs are showed). The higher the networks complexity, the faster the 

learning rate expressed in number of epochs, and the lesser the dependence of RMSE of 

QuEEN networks on the number of training epochs. 
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We conclude that when the regression of bump-like target functions has to be 

performed, provided the same complexity, the QuEEN networks show a generally better 

regression power with a considerably faster learning time than MNNs. 

In Figure 5.10 the regression of the target crown bump (Figure 5.10 a)) performed by 

one realization of a 24-units QuEEN network is shown, both with the one obtained by a 

30-units MNN (same 121 complexity) after 100, 1000, and 10000 epochs, respectively in 

Figure 5.10 b)-b’), c)-c’), and d)-d’). 

After only 100 epochs the QuEENs already formed a good approximation of the 

crown with the global offset already near zero (Figure 5.10 b)), whereas the MNN is very far 

from the crown shape  (Figure 5.10 b’)). 

After 1000 epochs the QuEEN network shapes the crown slightly better  (Figure 5.10 

c)), whereas the MNN forms a bump still far from the crown shape, while negative values at 

the border of the domain are reached  (Figure 5.10 c’)). 

After 10000 epochs the QuEEN network approximation is practically not changed  

(Figure 5.10 d)), whereas the MNN forms a bimodal bump still far from the crown shape with 

more negative values at the border of the domain  (Figure 5.10 d’)). 

Summarizing the results, we found that MNNs need at least three hidden sigmoidal 

units to slowly form a bump during the training. This result corroborates what previously 

obtained showing that the regression of bump-like functions may be efficiently performed by 

QuEEN networks having less complexity than MNNs, whereas, given the same complexity, 

QuEEN networks exhibit similar or better asymptotic regression power and a faster learning 

rate than MNNs. 

Furthermore, the negative interference due to the infinite support of the sigmoidal 

activation of MNNs is verified as the accuracy of MNNs is generally made worse by the non 

zero values assumed out of the target function support. 
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FIGURE 5.10 Regression of the crown function by 30 units MNN and 24 units QuEEN network 
(compl. 121):  
a) 3D surface diagram and 2D contour diagram of the theoretical function. 
b), b’) Regression after 100 epochs, c), c’) Regression after 1000 epochs.  
d), d’) Regression after 10000 epochs.  
e) RMSE of MNN and QuEEN networks (compl. from 21 to 121) after different 
epochs (test set).  
f) RMSE of MNN and QuEEN networks having complexity 21 and 121 (test set). 
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5.4.4. Regression of a well-known benchmarking function 

Finally we compare QuEEN networks to conventional MNNs considering a well 

known sufficiently complex learning task given by the regression of the crossed ridge 

function (Schaal & Atkeson, 1998) expressed in equation (4.20), and whose 3D surface and 

2D contour diagrams are shown in Figure 5.11 a). 
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Crossed ridge function if formed composing a Gaussian bump at the origin with a 

narrow and a wide ridge, which are perpendicular to each other. 

Three random realizations of each network for both QuEENs and MNNs were trained 

using EB for 100000 epochs of training sets randomly built as previously described. 

The RMSEs obtained for QuEEN networks and MNNs with the same complexity 

ranging from 61 (12-unit QuEENs, 15-unit MNNs) to 141 (28-unit QuEENs, 35-unit MNNs, 

see Table 5.1) were evaluated for both the training and test set. 

As observed before, the RMSE on both the training and test sets is practically the 

same, we only show in Figure 5.11 e) the RMSE on the test set after 100, 1000, 10000, and 

100000 epochs of training. 

Whereas the higher the number of epochs, the considerably lower the RMSE of 

MNNs, the QuEEN networks show a faster learning rate (after only 100 epochs the QuEEN 

RMSE nearly approaches the AGN) and a lower dependency on the number of epochs. The 

RMSE of QuEEN networks is also uniformly lower than MNN with the same complexity for 

all the considered learning time with the only exception of 100000 epochs, after which the 

RMSE of MNNs is slightly lower than RMSE of QuEEN networks.  

After 100 epochs MNNs show a RMSE decreasing as the network complexity 

increases with the exception of the highest considered complexity of 141, whereas both 

MNNs and QuEEN networks show a RMSE practically not dependent on the network 

complexity. The greater the number of epochs of training, the more marked that behavior for 

both the networks. 

The similar regression power and the faster convergence of QuEEN network as 

compared to MNNs can be also verified from the exam of the RMSE decay during the 

training shown in Figure 5.11 f) for networks having complexity 61 and 141 (only the first 
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significant 10000 epochs are showed). The higher the networks complexity, the faster the 

learning rate expressed in number of epochs, and the lesser the dependency of the QuEEN 

networks RMSE on the number of training epochs. 

We conclude that when the regression of the crossed ridge function has to be 

performed, and the same complexity is considered, the QuEEN networks show a generally 

similar asymptotic regression power with a considerably faster learning rate than MNNs. 

In Figure 5.11 the regression of the target crossed ridge function (Figure 5.11 a) 

performed by one realization of a 28-units QuEEN network is shown, together with the one 

obtained with a 35-units MNN (same 141 complexity) after 100, 1000, and 10000 epochs, 

respectively in Figure 5.11 b)-b’), c)-c’), and d)-d’). 

After only 100 epochs the QuEENs already formed a quite good approximation of the 

crossed ridge function with the global offset already near to zero (Figure 5.11 b)), whereas the 

MNN is very far from the crossed ridge shape (Figure 5.11 b’)). 

After 1000 epochs the QuEEN network better shaped the crossed ridge (Figure 5.11 

c)), whereas the MNN formed a central bump still far from the crossed ridge shape while 

negative values at the border of the domain are reached (Figure 5.11 c’)). 

After 10000 epochs the QuEEN network slightly better shaped the crossed ridge 

(Figure 5.11 d)), whereas the MNN formed a shape quite resembling to crossed ridge but less 

accurate than QuEEN (Figure 5.11 d’)). 

Summarizing the results, we found that, given the same network complexity, QuEEN 

networks exhibit similar asymptotic regression power and a faster learning rate than MNNs. 

Furthermore, the negative interference due to the infinite support of the sigmoidal 

activation of MNNs was verified as the accuracy of MNNs regression is generally made 

worse by the non zero values assumed out of the support of the crossed ridge target function. 



 91

 

FIGURE 5.11 Regression of the crossed ridge function by 35 units MNN and 28 units QuEEN 
network (compl. 141):  
a) 3D surface diagram and 2D contour diagram of the theoretical function. 
b), b’) Regression after 100 epochs. c), c’) Regression after 1000 epochs. d), d’) 
Regression after 10000 epochs. 
e) RMSE of MNN and QuEEN networks (compl. from 61 to 141) after different 
epochs  (test set). 
f) RMSE of MNN and QuEEN networks having complexity 61 and 141 (test set). 
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5.5. Conclusions 

We analyzed the main following drawbacks still plaguing the MNNs and EB training 

algorithm despite their huge knowledge and diffusion: 

- the slow learning rate, 

- the lack of physical meaning of the trained network, 

- the negative interference, and 

- the unfeasibility of parallel implementations. 

We also reviewed LRFs as compactly supported kernels thus potentially able to 

overcome the mentioned drawbacks with particular focus on RBFNs. Unfortunately RBFNs 

have often been shown to be unreliable, with large size or with performance worse than 

MNNs because of: 

- the unsupervised and sub-optimal two-phase learning that places and shapes 

RBFs with no exploitation of the knowledge about the desired mapping, and 

- the excessive simplification given by identical and radially symmetric LRFs  

Therefore, as neither the same smoothing factors, nor the radial symmetry for the 

LRFs are required to prove they are universal approximators, we derived the requirements an 

ideal LRF network should have: 

1. elliptical and differently shaped LRFs, 

2. joint supervised training of all the network adjustable parameters. 

We thus proposed QuEEN networks based on an elliptical Gaussian LRF with 

different variances along each different input, and we showed that such a network may be 

reduced to an appropriate not fully connected two-hidden layers MNN with quadratic and 

exponential activations. 

The standard fully supervised EB can thus be used and all the adjustable parameters of 

QuEEN networks – namely centers, smoothing factors and heights, having an inherent 

physical meaning – can be so jointly trained exploiting all the available information, thus 

meeting the preceding requirements. 

Contrarily to conventional RBFN – that cannot estimate the influence of each input on 

output – the QuEEN networks allow determining the importance factor S of each input 

variable on output also derived in (Yeh, Zhang, Wu, & Huang, 2010a; Yeh, Zhang, Wu, & 

Huang, 2010b) for ARBF networks, so that the model resulting after the training may provide 

an interpretation of the modeled system. 
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As the weights of a QuEEN network represent QuEEN centers and asymmetric 

smoothing factors, the EB training of QuEEN may be regarded as a supervised clustering of 

the input space that takes into account the knowledge on the input-output mapping, and 

provides the centroids and the shape of M elliptical clusters. 

As neither the numerical complexity nor the time needed to determine the LRFs 

centers and smoothing factors have ever been taken into account to assess the network 

complexity and the overall training time, we introduce a complexity given by the total number 

of adjustable parameters of the network, so that a comparison between the standard MNNs 

and the QuEEN networks may be performed in terms of regression power and learning rate. 

The validity of the EB training of the QuEEN networks and their physical meaning 

was shown by regressing two simple functions by one- and two-QuEEN networks trained by 

500 noisy samples on the [-1.0,1.0]×[-1.0,1.0] square of R2, and tested by samples extracted 

on a grid of the same domain. After the training, the residual regression RMSE was given by 

the AGN standard deviation so that the targets were perfectly learned, whereas the QuEEN 

networks parameters rightly reached the related target function characteristics (maximum, 

minimum, variances and heights). The QuEEN parameters converge faster for the input 

coordinates corresponding to a high steepness of the target function. 

We then considered a basic bump function as a target and we showed that, to obtain 

the RMSE value provided by an one-QUEEN network, a MNN needs at least three hidden 

units, and that by fixing the same complexity, the networks have the same regression powers 

but the QuEENs converge faster than MNNs.  

A very similar behavior was found in the regression of the more complex crown 

function, so outlining the advantage of using QuEEN networks as compared to MNNs, in 

terms of training epochs, complexity and accuracy to build a bump, and confirming (Lapedes 

& Farber, 1987) about LRFs. 

QuEEN networks were also compared to conventional MNNs considering a well-

known complex learning task given by the regression of the crossed ridge function (Schaal & 

Atkeson, 1998). 

We still found that, when considering the same complexity, QuEEN networks showed 

a generally similar regression power with a considerably faster learning rate than MNNs, so 

confirming what found about LRF in (Lapedes & Farber, 1987; Moody & Darken, 1988). 

A fully supervised learning of multivariate Gaussian kernels – referenced as hyper 

basis functions (HBFs) – with a generic covariance matrix and contours given by arbitrarily 
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oriented hyper-ellipsoids in the input space was also proposed in (Poggio & Girosi, 1990a) 

where HBFs showed performance comparable to MNNs. QuEENs can thus be considered as 

separable HBFs with diagonal covariance matrix, with the axes of hyper-elliptical contour 

lines parallel to the axes of the input space. The proposed approach regards QuEEN networks 

as particular MNNs, it allows the direct application of just the standard EB and confirmed 

(Poggio & Girosi, 1990b) as QuEEN networks performance resulted comparable to MNNs. 

Therefore the proposed QuEEN networks allow keeping the advantages of both MNNs 

(in terms of know-how and simplicity of EB and its variations) and LRFs (in terms of fast 

learning rate and physical meaning), overcoming their respective drawbacks. 

Contrarily to QuEEN networks, the regression by MNNs showed some saddle-like 

effects (non zero values) at the corner of the target support. This behavior is an example of 

negative interference due to the infinite support of the sigmoidal activations. 

We also found that both learning rate and regression power of QuEEN networks are 

improved if the initial values for the smoothing factors are chosen small with respect to the 

smoothness of the target function. This confirmed the results of sensitivity analysis of 

gradient descent that other authors performed for radially symmetrical RBFs with fixed 

widths (Karayiannis, 1997; Karayiannis, 1999; Karayiannis & Randolph-Gips, 2003). 

LRF networks need more data to achieve a precision similar to standard MNNs and 

sigmoidal units perform global, rather than local, fit to the training data as found in (Moody & 

Darken, 1988). Even if this topic is not deepened in this work, some preliminary results allow 

us to strongly believe that this is also true for QuEEN networks. This is a good point to try to 

answer to one of the everlasting questions around which ANN is better. When data are hard to 

get, MNNs approach would be preferred. On the contrary, if there is plenty of data, QuEENs 

may be the best choice. The latter situation is e.g. commonly found in adaptive signal 

processing or adaptive control, where data are generally acquired at a high rate. 

Anyway, the QuEEN approach may be the only choice when the regression task 

regards the identification of real time adaptive systems and continuous training is needed to 

track the system variation with strict time constraints, and fast processing is required. 

Several issues have not been addressed in this paper and are left to future research and 

they are listed in the following. 

First of all, given the results found by other authors for adaptively shaped symmetrical 

(Webb & Shannon, 1998) and asymmetrical LRFs (Yeh, Zhang, Wu, & Huang, 2010a; Yeh, 

Zhang, Wu, & Huang, 2010b), we strongly believe that QuEENs would give lower errors than 
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the conventional RBFs, and that QuEENs would also achieve their minimum RMSE at a 

lower number of centers than RBFs. 

As EB may be performed updating some connections and keeping fixed the others, the 

learning procedure for QuEEN centers, smoothing factors and heights may be separated, 

similarly to what suggested in (Broohmhead & Lowe, 1988) and performed in the two-phase 

learning of RBFN. It is thus possible to firstly train only the QuEEN centers and then, once 

each QuEEN is centered, keep fixed each center while only the variances are trained. If the 

initial QuEEN variances are chosen to be narrow enough, the first phase of training would 

place each QuEEN under the closer function maximum (or minimum). Further training for 

variances would allow each centered QuEEN to widen and correctly fit the data. Lastly, the 

output weights may be adapted to adjust each QuEEN height. If opportunely tuned, this 

learning strategy may lead to even faster learning. 

With quite reasonable extra computation, it is possible to replace the standard EB by 

more sophisticated second order variants that generally improve convergence rates (e.g. quasi 

Newton algorithm) (Broohmhead & Lowe, 1988). Other variants of the EB are basically 

related to factors and corrections applied to the weights update equation (Rumelhart, Hinton, 

& Williams, 1986; Widrow & Lehr, 1990). As QuEEN networks are reduced to a MNN, the 

application of those well-known EB variations is straightforward. 

In this work we only considered real-valued regression problems. As arbitrary decision 

regions can be formed as unions of convex regions, LRF networks are naturally able to 

separate convex regions (Moody & Darken, 1988). A classification scenario very similar to 

what has been applied to RBFN in (Schwenker, Kestler, & Palm, 2001) may be considered, 

where the number of output units L corresponds to the number of classes with class 

memberships encoded through a 1-of-L coding into a binary vector of {0, 1}L. Classification 

is then performed by assigning the input vector to the class of the output unit with maximum 

activation. As the class of real-valued mappings contains classification problems as particular 

case, we believe that QuEENs would give even better results if classification problems 

formulated as a Boolean mapping task were considered. 

Given both the introduction of the importance factor and the feasibility of parallel 

implementation of QuEEN networks, opportune pruning and growing strategies may be 

derived to better understand the behavior of the modeled system and reduce the computational 

burden. The importance of each input on the output may be evaluated even during the training 

in order to prune inputs with low importance. QuEENs with small heights (i.e. output 

weights) may be also pruned. Moreover a QuEEN may be pruned if it overlaps too much with 
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another QuEEN (Schaal & Atkeson, 1998). As a first trivial growing strategy, further 

QuEENs may be added if the RMSE on the training set is too large or even during the training 

when the RMSE stops decreasing. QuEENs may be also added when one (or more) of the 

training input data do not activate any QuEEN. This growing strategy may be applied with an 

incremental learning scheme: the network training starts with few QuEENs and only a small 

subset of the training data; new QuEENs are successively added if the training error exceeds a 

threshold when new training data are used. 

Given the fast learning time, promising applications of QuEENs regard real-time 

systems and online learning schemes where the training set is adaptively changed and 

continuous training is required as in control systems, real-time recognition and time series 

prediction (Zhang, Patuwo, & Hu, 1998; Gneo, Muscillo, Goffredo, Conforto, Schmid, & 

D'Alessio), neural based eye tracking systems (Gneo, Schmid, Conforto, & D’Alessio, 2012). 
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Chapter 6  

Towards eye-controlled wheelchairs 

ABSTRACT 

The neural mapping function of the new model-independent eye-gaze tracking system 

proposed in Chapter 2 and Chapter 3 allows to avoid any specific model assumption and 

approximation either for the user’s eye physiology or the system initial setup, and admits a 

free geometry positioning for the user and the system components. Those properties allow to 

investigate new fields of applications of eye-gaze tracking systems such as the control of 

electric-powered wheelchair. 

All the methods to control electric-powered wheelchair with user’s gaze require a 

graphical user interface (GUI) to select and confirm commands. This kind of GUI may give 

non natural guide and partial obstructed sight. Further gaze independent inputs are so 

needed for safety issues. Thanks to the flexibility of the proposed eye-gaze tracking system, a 

high-level scheme of a system integrating it to a brain-computer interface is conceived so to 

allow the user to select the desired motion command using his/her gaze, and using the user’s 

electroencephalogram as a motion activation command, obtaining a safer obstruction-free 

eye- and brain guided electric-powered wheelchair∗. 

                                                 

∗ Results described in this Chapter were published in International Journal of Bioelectromagnetism, Vol. 

13, No. 1, pp. 44-45, 2011. 



 98

6.1. Introduction 

A standard electric-powered wheelchair (EPW) is a wheelchair acted by an electric 

motor with a hand-operated joystick providing navigational controls. 

Though paralyzed users who cannot use the joystick have other special devices 

available (touchpad, head/chin/speech control, sip-n-puff), some locked-in patients keep only 

very poor residual motor abilities, among which the oculomotor control is preserved for long 

periods (e.g. amyotrophic lateral sclerosis). 

Two possible approaches allowing those patients to guide EPWs – eye-gaze tracking 

systems (Tuisku et al., 2008) and brain computer interfaces (BCIs) (Millán et al., 2009) – 

have been mainly analyzed alone. In (Zander et al., 2010) eye movements select objects and a 

BCI gives the mouse click on a human computer interface (HCI). Following a similar 

philosophy, we propose to integrate an EGTS with an EEG BCI to control EPWs. 

EGTSs estimate the user’s point of gaze (POG) either providing information on the 

oculomotor tract (e.g. in ophthalmology, neurology) or to drive input devices for HCI. While 

intrusive EGTSs require physical contact (e.g. contact lenses, electrodes fixed around the 

eye), video-based EGTS use eye images captured by cameras (Duchowsky, 2002). There are 

no currently available systems allowing the user to directly look where he/she wishes to go 

(eyes-up interfaces), since existing systems require the user to continuously look at a GUI to 

select and validate the EPW command during motion (eyes-down interfaces) (Tuisku et al., 

2008). Thus, eye-controlled EPWs exhibit two main problems: first, as the user is always 

gazing at somewhere, undesired commands may be activated (the so-called Midas touch); 

then, the GUI hardware may obstruct visibility, and the driver always needs to stay really 

focused in the desired direction. 

An EEG-based BCI uses the electric signal measured on the scalp to classify cortical 

activity and translate it into commands for a given device. Due to the noise and reduced 

spatial resolution, EEG-actuated devices are limited by a low information transfer rate and are 

generally considered too slow for controlling rapid and complex robot movements. EEG-

based BCI can be, however, used as an effective binary switch for movement activation: for 

instance, event related de/synchronization (Pfurtscheller & da Silva, 1999 can be exploited as 

a method to drive this switch based on non complex motor imagery tasks. 

As some authors considered eye-control still immature (Tuisku et al., 2008) and unsafe 

to control EPWs (independent inputs should be considered), and the BCI activation command 
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has been shown as being more reliable (though slower) than the eye dwell time (Zander et al., 

2010), we propose to use an EGTS to select the desired direction, and EEG signals to activate 

the motion along that direction, avoiding both the Midas touch and the need to stare at a GUI. 

Therefore, the user can naturally control the EPW looking at the place to be reached and 

activating the BCI when motion is desired, letting her/his sight free. 

6.2. Materials and Methods 

The high-level control signal for an EPW may be given by the desired linear and 

angular speeds (Vdes,Ωdes). A simple kinematic model of the EPW may transform it in the left 

and right wheel angular speeds (ΩL,ΩR) for a 2-wheel EPW (Barea et al., 2002). 

A simplified set of 4 commands can be: Move forward/Move backward (Vdes steps 

up/down), Move left/right (Ωdes steps up/down). A scheme of the proposed system is shown in 

Figure 6.1. The POG estimated by a video-based EGTS selects which among the 4 possible 

commands the user desires, so the (Vdes,Ωdes) couple can be calculated. A visual lighting 

scheme can provide the user with a feedback about the selected command (e.g. 4 LEDs, 

placed as cardinal points near the camera and/or within the user’s peripheral sight). 

Depending on the received feedback, the user validates and activates (or ignores) the 

command via the EEG-BCI. The visual feedback scheme guides also the EGTS calibration 

asking the user to look at 4 known directions corresponding to the possible commands. 

 

FIGURE 6.1 High-level scheme of the proposed guidance system for electric-powered 

wheelchairs 
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Given its large flexibility, the geometry-free EGTS recently presented in Chapter 2 

(Gneo et al., 2010) and Chapter 3 (Gneo et al., 2012) can be easily assembled on an EPW. 

Since asynchronous BCIs are showed able to continuously control mobile robots in a house-

like environment (Millán et al., 2004), the asynchronous EEG-based binary switch based on 

the method proposed in (Townsend et al., 2004) can be used as the activation command 

generator. This unit will be activated only when the user gets a positive feedback, i.e. when 

the command selected by the EGTS matches the desired command. In this contribution, a 

preliminary EGTS testing phase on two healthy subjects was performed. 

6.3. Results and Discussion 

With reference to the free geometry model-independent EGTS proposed in Chapter 3 

(Gneo et al., 2012), we considered a system configuration having the illumination system and 

the camera displaced respectively 30° to the left and right of the user’s sagittal plane. That 

system configuration allows a convenient integration of the EGTS with the EPW so that the 

user sight is not obstructed.  

Tests performed on such a configuration of the EGTS, showed 0.44° and 0.41° for the 

horizontal and vertical POG estimation accuracies, respectively. 

6.4. Conclusions 

A high-level scheme is proposed to integrate an EGTS and a EEG-BCI to control an 

EPW, overcoming the problems exhibited by eye-controlled EPWs (Midas touch, eyes-down 

interface) and BCI (slow command rate), and augmenting its safety (BCI-activation is a 

conscious, explicit command in contrast to the implicit commands of dwell time solutions). 

A convenient configuration of the free geometry model-independent EGTS proposed 

in (Gneo et al., 2012) is considered so that the user visibility is not obstructed. 

Preliminary tests on this EGTS configuration showed a horizontal and vertical POG 

estimation accuracies (0.44° and 0.41°, respectively) proving that the proposed EGTS can be 

conveniently integrated with an EEG-based binary switch derived from (Townsend et al., 

2004). 

This will be object of future research. 
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General Conclusions 

Contrarily to the model based eye gaze tracking systems, model-independent methods 

estimate the mapping function by means of regression techniques with no need of any specific 

model assumption and approximation either for the user’s eye physiology or the system initial 

setup. 

In this context, the results presented in this dissertation confirm the suitability of 

artificial neural networks for the estimation of the mapping function. 

According to the consolidated pupil center corneal reflection technique, the 

coordinates of the pupil and outer corneal reflections (i.e. glints) of the user’s eye images are 

mapped onto the coordinates of her/his gaze on the observed surface. 

A new model-independent eye gaze tracking system based on this technique has also 

been conceived and built. The neural mapping function gives the system the property to admit 

a free geometry positioning for the user and the system components, whereas the triangular 

pattern given by the particular configuration of the proposed illuminating system increases the 

robustness of the detection of pupils and corneal reflections. 

New architectures and learning scheme for artificial neural networks have also been 

proposed to further improve the system robustness and the mapping function learning rate 

during the calibration. 
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Thus following the rationale of reducing the effects of the main drawbacks still 

plaguing each studied or sold eye tracking system, avoiding the assumption (and the inherent 

approximation) of any explicit model, simplifying the system architecture, and hopefully 

increasing its accuracy and robustness, this thesis specifically dealt with the following 

aspects: 

1. the proposal of a new model-independent (neural based) eye-gaze tracking system 

equipped with a innovative simplified illuminating system, 

2. the real-time time series prediction based on neural networks, in order to overcome the 

problems due to failures in eye features detection, 

3. the introduction of artificial neural networks of new localized receptive fields given by 

elliptical neuron in order to give physical meaning to the model built during the 

calibration with similar regression power and faster learning rate than conventional 

neural networks, 

4. a high-level scheme of a system integrating the proposed eye-gaze tracking system and 

a conventional brain-computer interface into an electric-powered wheelchair to allow 

the user to select the desired motion command using his/her gaze, using the user’s 

electroencephalogram as a motion activation command. 

 

With respect to the first aspect, the prototype of an eye-gaze tracking system equipped 

with an innovative illuminating system and estimating the mapping function by means of 

artificial neural networks was built. Three sources of lights generate a triangular pattern of 

three glints on the user’s eye and avoid the synchronization with the image capturing system, 

whereas the use of artificial neural networks allows to directly evaluate the mapping function 

and avoids the assumption of any explicit model, so giving a geometry-free system. 

The feasibility of the proposed system was proven in Chapter 2, where the successful 

tests performed during several sessions of real operation are reported. 

The robustness of the proposed system was also proven in detail in Chapter 3 by 

assessing its accuracy when tested on real data coming from: i) different users; ii) different 

geometric settings of the camera and the light sources; iii) different protocols based on the 

observation of points on a calibration grid and halfway points of a test grid. The achieved 

accuracy is not greater than 0.49°, 0.41°, and 0.62° for respectively the horizontal, vertical 

and radial error of the point of gaze. Then, the actual system performs better than eye-gaze 
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tracking systems designed for human computer interaction which, even if equipped with 

superior hardware, show accuracy values in the range 0.6°-1°. 

 

With respect to the second aspect, in order to overcome the problems due to failures in 

eye features detection in eye-gaze tracking systems, a real-time time series prediction based 

on the neural networks used to regress the mapping function was proposed in Chapter 4. That 

prediction scheme was successfully validated applying it to the gesture recognition 

considering the time series given by the output of two accelerometers placed on the upper arm 

and on the forearm respectively. The prediction errors are used both to train the neural 

networks and estimate a measure of the unlikelihood of the specific gesture occurrence. 

According to the model-independent approach, neither a priori assumptions nor signal pre-

processing is performed. On the four significant gestures considered, the proposed method 

showed a correct recognition rate higher than 83%. That encourages the future integration of 

the described prediction scheme into the mapping function of the previously proposed 

eye-gaze tracking system.  

 

The infinite support of sigmoidal activations of conventional multilayer neural 

networks causes slow learning rate, lack of physical meaning, negative interference. This may 

prevent the useful application of artificial neural networks on eye tracking giving, in 

particular, slow calibrations. Localized receptive field networks have promised similar 

regression power and faster learning than multilayer neural networks, and physically 

meaningful modeling but, unfortunately, they have often large size and/or performance worse 

than multilayer neural networks due to unsupervised placing and shaping of identical and 

radially symmetric kernels.  

With respect to the third aspect, new elliptical localized receptive fields giving similar 

regression power and faster learning rate were introduced in Chapter 5. As networks of the 

proposed localized receptive fields, called quadratic exponential elliptical neurons (QuEENs), 

can be reduced to opportune multilayer neural networks, the standard error backpropagation 

allows each neuron to be self placed and shaped by a supervised training. According to 

simulations, QuEEN networks showed comparable regression power and faster learning than 

multilayer neural networks. 
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Furthermore, with reference to the last issue, as the neural mapping function of the 

proposed eye-gaze tracking system allows to avoid any specific model assumption and 

approximation either for the user’s eye physiology or the system initial setup, and admits a 

free geometry positioning for the user and the system components, a promising application of 

the proposed system to control an electric-powered wheelchair with user’s gaze was analyzed 

in Chapter 6. All similar systems require a graphical user interface to select and confirm 

commands. This kind of interface may give non natural guide and partial obstructed sight. 

Further gaze independent inputs are so needed for safety issues. Thanks to the flexibility of 

the proposed eye-gaze tracking system, a high-level scheme of a system integrating it to a 

brain-computer interface was conceived so to allow the user to select the desired motion 

command using his/her gaze, and using the user’s electroencephalogram as a motion 

activation command, obtaining a safer obstruction-free eye- and brain guided electric-

powered wheelchair. 

 

Some important drawbacks still plague studied or sold eye-gaze tracking systems and 

much needs to be done: the results obtained in this thesis could hopefully offer several useful 

issues and hints to overcome those problems related to the scarcity of the robustness and 

accuracy mainly due to the approximation inherent in the assumptions related to each system. 

Towards that direction, given the results reported in this thesis, future work should be 

planned to apply all the learning scheme and architecture of artificial neural networks to 

model-independent eye-gaze tracking systems based on neural networks. 
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List of Acronyms 

ALS Amyotrophic lateral sclerosis 
ANN Artificial Neural Network 
AR Auto Regressive 
BCI Brain Computer Interface 
CCD Charge-Coupled Device 
CRPR Correct Recognition Percentage Rate 
cSMAPE Corrected Symmetric Mean Absolute Percentage Error 
EB Error Backpropagation 
EEG Electroencephalogram 
EGTS Eye-Gaze Tracking System 
EPW Electric-Powered Wheelchair 
FNN Feedforward Neural Networks 
GRNN Generalized Regression Neural Network 
GUI Graphical User Interface 
HBF Hyper Basis Function 
HCI Human-Computer Interaction 
HT Hough Transform 
ILED Infrared Light Emission Diode 
IPP Integrated Performance Primitive 
IR Infrared light 
LED Light Emitting Diode 
LRF Localized Receptive Field 
LRFN LRF network 
MAD Mean Absolute Deviation 
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MAPE Mean Absolute Percentage Error 
MNN Multilayer Neural Network 
MSE Mean Squared Error 
PCCR Pupil Center Corneal Reflection 
POG Point Of Gaze 
POR Point Of Regard 
QuEEN Quadratic Exponential Elliptical Neuron 
QuEENN Quadratic Exponential Elliptical Neuron Network 
RBF Radial Basis Function 
RMSE Root Mean Squared Error 
RSD Relative Standard Deviation 
RTNP Real-Time Neural Predictor 
SMAPE symmetric mean absolute percentage error 
VOG Video-oculography 
WMFT Wolf Motor Function Test 
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