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Abstract

Tsunamis are natural phenomena that can produce devastating effects for

life and human activities. They can be generated mainly by earthquakes or

landslides. As far as tsunamis generated by landslides that occur directly

at the coast are concerned, it has to be noted that the gererated waves can

propagate both seaward than along the shoreline itself. Therefore, several

scientific and engineering issues arise. Indeed, the waves can be trapped by

the bathymetry, inundating the coast itself for long distances. Furthermore,

the waves that propagate seaward can reach the facing coasts (if any) with

devastating effects.

In this work landslide-generated tsunamis that occur at the flanks of a coni-

cal island have been studied. New laboratory experiments have been carried

out in a large wave tank to gain insight on tsunami generation and propa-

gation mechanisms. The data collected during these new experiments are

intended to be a benchmark dataset for validating analytical and numerical

models. This has been achieved using a new acquisition technique, that

allowed to obtain a large number of repetitions for each experiment along

with a high spatial resolution of the measurements. The results of the new

experiments are herein presented and discussed in depth. A detailed analy-

sis of wave generation is provided. The influence of the landslide thickness

is evaluated, since two different landslide models have been used during the

experiments. The repeatibility of the experiments is statistically quantified.

Moreover, the features of the generated waves, both near the generation area

and around the island, are described.

Given the large number of time series collected around the island, a study

of the spatial structure of the wave field has been carried out, and it is pre-

sented in this work. The k-f analysis has been applied in order to identify the

dispersion relation followed by the waves that propagate along the shoreline

(i.e., run-up). Furthermore, this technique allowed to study in detail the

physics of wave propagation around the island. The relevance of each wave

mode, which occurs during the propagation, is then adequately discussed.



Furthermore, aiming at improving the tsunamis early warning systems in

the far field (TEWS), the application of a numerical model, which is based

on the mild-slope equation (MSE) solved in the frequency domain, is pre-

sented. The method proposed herein takes advantage of an inversion tech-

nique which can be used in real time to reconstruct the tsunami waveform

in the far-field. The method is effective in reconstructing the free surface el-

evation time series during the tsunami event. Consequentely, this technique

seems to be suitable to improve the tsunamis early warning systems.

Finally, aiming at providing experimental tools to study the propagation

phenomena of tsunamis, it is shown in this work a simple approach to im-

prove the generation technique of solitary waves in experimental tests. Soli-

tary waves are often used in laboratory experiments to study the propaga-

tion and the interaction with the coasts of tsunamis. A correction technique,

that aims at minimizing the discrepancies between the experimental profile

and the theoretical one, is herein presented. The technique is shown in the

Appendix of this work.
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Sommario

Le onde di maremoto (tsunami) sono fenomeni naturali che possono causare

effetti catastrofici per la vita e le attività umane. Tali onde vengono general-

mente generate da terremoti sottomarini o da frane. Gli tsunami generati da

frane che avvengono in diretta corrispondenza della linea di costa sono carat-

terizzati da onde che si propagano sia lungo la costa stessa che ne ha visto la

generazione, sia verso il mare aperto. Tali fenomeni sono oggetto di studio

e dibattito sia da un punto di vista scientifico che ingegneristico. Le onde

generate possono subire infatti fenomeni di intrappolamento ad opera della

batimetria, inondando dunque la costa per considerevoli distanze. Inoltre,

le onde che si irradiano verso il mare aperto possono raggiungere, con effetti

devastanti, le aree costiere posizionate di fronte all’area di generazione.

In questo lavoro viene proposto lo studio degli tsunamis generati da frane

che avvengono sulle pendici di un’isola di forma circolare. Sono stati con-

dotti, in una grande vasca modelli, nuovi esperimenti di laboratorio per

approfondire la conoscenza dei meccanismi di generazione e propagazione di

tali onde di maremoto. La grande quantità di dati collezionata durante la

campagna sperimentale mira dunque a costituire un benchmark per la vali-

dazione di modelli analitici e numerici. Ciò è possibile grazie all’innovativa

tecnica di acquisizione utilizzata che ha consentito di ottenere, per ciascun

esperimento, un gran numero di ripetizioni e, concordemente, una grande

risoluzione spaziale delle misure. I risultati di questa nuova campagna sper-

imentale sono presentati e discussi nell’ambito di questo lavoro, ove viene

inoltre fornita una dettagliata analisi della generazione delle onde di mare-

moto. Inoltre, grazie all’utilizzo di due differenti modelli di frana durante gli

esperimenti, è stato possibile valutare l’influenza dello spessore di frana in

termini di onde generate. Si noti inoltre che la ripetibilità degli esperimenti

è stata oggetto di quantificazione statistica. Per di più, il grande numero di

misure ha permesso di affrontare quantitativamente lo studio delle caratter-

istiche delle onde di maremoto sia vicino all’area di generazione che attorno

alle coste dell’isola.



Viene inoltre presentato lo studio condotto circa l’identificazione della strut-

tura spaziale del campo d’onda generato; ciò è stato possibile grazie all’elevata

risoluzione spaziale delle misure. L’analisi k-f è stata applicata per identi-

ficare la relazione di dispersione seguita dalle onde che si propagano lungo

la linea di costa (run-up). Tale tecnica ha inoltre consentito di studiare in

dettaglio la fisica della propagazione attorno all’isola. Ciò ha permesso di

valutare la rilevanza dei modi d’onda che si manifestano nei meccanismi di

propagazione.

Inoltre, con lo scopo di fornire strumenti di miglioramento ai sistemi di

allerta in campo lontano per la prevenzione dai maremoti (TEWS), viene

mostrata l’applicazione di un modello numerico basato sulla risoluzione nel

dominio della frequenza dell’equazione di mild-slope (MSE). Il metodo pre-

sentato si basa sull’utilizzo di una tecnica di inversione che viene utiliz-

zata per ricostruire in tempo reale la forma d’onda del maremoto in campo

lontano. Come mostrato nel presente lavoro, il metodo risulta efficace nel

ricostruire la serie temporale di elevazione della superficie libera durante

l’evento di maremoto. Di conseguenza, il metodo proposto risulta essere

utilizzabile per migliorare i sistemi di allerta rapida per la prevenzione dagli

tsunamis.

Infine, con l’intento di fornire uno strumento per lo studio sperimentale dei

meccanismi di propagazione degli tsunami, viene mostrato in questo lavoro

un semplice approccio per migliorare le tecniche di generazione di onde soli-

tarie in esperimenti di laboratorio. Le onde solitarie sono infatti spesso usate

per studiare i fenomeni di propagazione e di interazione con la costa delle

onde di maremoto. In questo lavoro si propone una tecnica di correzione

che mira a minimizzare le differenze tra il profilo sperimentale e teorico

delle onde solitarie generate. Tale tecnica viene mostrata nell’Appendice di

questo lavoro.
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Chapter 1

Introduction

Tsunamis are transient perturbations of the water free surface elevation that

propagate with high celerities for long distances. These waves are character-

ized by large periods and, potentially, large wave heights. Tsunamis can be

generated by submarine earthquakes, by landslides (subaerial, submerged or

partially submerged), by submarine explosions, by meteorite impacts, and

by sudden changes of the atmospheric pressure (meteotsunamis). Regardless

of the mechanisms that generate these waves, their effects can be disastrous.

Many devastating events have indeed occurred in the past. Earthquake-

generated tsunamis are probably more known, rather than those generated

by landslides. However, it has to be mentioned that the latter caused well-

known calamities in the past (see Figure 1.1). The largest known induced

tsunamis run-up (about 524 m) is due to the large landslide that occurred

at Lituya Bay, Alaska, in 1958 (see upper left panel of the Figure 1.1, Miller

[1960]).

This work aims at gaining insight on the physics of landslide-generated

tsunamis that occur at the flank of a conical island. The problem at hand

is quite interesting, both from a scientific than from an engineering point of

view, since many issues arise. Small volcanic islands are often characterized

by steep unstable flanks, where landslides are likely to occur (see lower left

panel of the Figure 1.1). Flank instabilities may lead to landslide gener-

ation, which sliding and entering the water (if subaerial), cause tsunamis.

When a landslide occurs directly at a water boundary the generated im-

pulse waves propagate both seaward (i.e., radiating waves) than alongshore

(i.e., trapped or partially trapped waves), as qualitatively shown in Figure

1.2. In that regard, field measurements (e.g., Tinti et al. [2005]), along with

laboratory experiments (e.g., Di Risio et al. [2009b]), have shown that the

tsunami event that occurred at Stromboli in 2002 (South Thyrrenian Sea,
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(a) Lituya Bay, Alaska, 1958. (b) Vajont Valley, Italy, 1963.

(c) Stromboli Island, Italy, 2002. (d) Damages at Stromboli Island, Italy,

2002.

Figure 1.1: Pictures of hystorical landslide-generated tsunamis.

Italy) caused the largest damages along the coast of the island itself, i.e., the

tsunami reached those areas which are naturally sheltered by the tsunami

source. Furthermore, the small distances imply early wave arrival along the

coast of the island. Thus, little times are available for spreading effective

alarms. Given the above, it is essential to properly identify the physics of the

waves that propagate around the island in order to design effective tsunamis

early warning systems (TEWS). Moreover, the waves that leave the genera-

tion area radiating seaward may reach other coasts, which can placed also at

large distances, with devastating effects. Thus, it is fundamental to identify

and to numerically reconstruct the propagating waves in order to estimate

the magnitude and the arrival times of the waves themselves and, conse-

quentely, to spread an alarm before that the facing coasts are reached by

the tsunamis.

To reach these purposes both physical and numerical models have been used
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and they are shown in this work. The research presented herein, starts from

the experimental study carried out by Di Risio et al. [2009b] that has pro-

vided a detailed analysis of the tsunamis run-up at the coast of a conical

island, focusing on subaerial landslides. A new experimental campagin, aim-

ing at providing a benchmark dataset for validating theoretical models, has

been recently carried out. The new experimental results are in depth shown

in this work. These experiments are characterized by a large numbers of

measurements with a high-spatial resolution (i.e., comparable with that of

a numerical model output), since an innovative acquisition technique, de-

scribed by Molfetta et al. [2010], has been used. Furthermore, two landslide

models, of different size, have been used.

The new measurements allowed to study in detail the features of the

landslide-generated tsunamis that occur at a conical island. As shown in

the following chapters, a detailed analysis of the waves that both radiate

seaward and propagate around the island has been carried out. Then, the

results are discussed in depth. Moreover, the large number of measurements

allowed to estimate statistically the repeatibility of the experiments (i.e.,

confidence intervals of the benchmark dataset are provided). This aspect

is essential to provide a benchmark dataset aiming at validating theoretical

models. The high space-resolution measurements allowed to apply the so-

called wavenumber-frequency analysis aiming at identifying the dispersion

relation followed by the waves that propagate alongshore. Furthermore, a

(a) Tenerife, Canary Islands, Spain. (b) Stromboli, Aeolian Islands,

Italy.

Figure 1.2: Left panel: numerical snapshot of the tsunami that occurred during

the Pleistocene at Tenerife, Canary Islands, Spain [Giachetti et al.,

2011]. Right panel: numerical snapshot of the tsunami that occurred

at Stromboli, Aeolian Islands, Italy in 2002 [La Rocca et al., 2004].
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quantitative analysis of the spatial wave modes around the island is pro-

vided and discussed. Finally, it is shown the application of a numerical

model based on the Mild Slope Equation, as described by Bellotti et al.

[2008], aiming at improving tsunamis early warning systems. An inversion

technique has been used to reconstruct in real-time the tsunamis wave form

in the far-field. Detailed discussions on the real-time application of the

method and on the uncertainties of the initial landslide scenario to be used

are provided.

This work is structured as follows. After this introduction the next chap-

ter provides a brief review of the state of the art. The following chapters

describe the experimental set-up and the experimetal results (i.e., the bench-

mark dataset). Then the study of the spatial wave modes is provided in a

separated chapter. After this, a chapter that describes the numerical model

aiming at improve the tsunami early warning systems follows. Concluding

remarks close the work. Finally, the description of a correction technique to

improve the generation of solitary waves in laboratory experiments is given

in the Appendix.
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Chapter 2

Landslide-generated

tsunamis: state of the art

2.1 Preface

Tsunamis in general, and landslide-generated tsunamis in particular, have

been widely studied in past researches. Many authors dealt with the problem

of impulse waves generation, propagation and interaction with the coast.

Different approaches can be found in the scientific literature: analytical,

numerical and experimental ones. In this chapter a brief overview of the

main scientific works dealing with landslide-generated tsunamis is given. An

exhaustive dissertation of the topic discussed in this chapter can be found

in the work of Di Risio et al. [2010].

2.2 Introduction

When either subaerial or submerged landslides occur, the displacements at

water body boundaries generate transient free surface perturbations. The

involved phenomena are quite different with respect to those related to

earthquake-generated tsunamis. In the case at hand, the tsunami source,

i.e. the landslide, takes place on both larger temporal-, and smaller spatial-

scale. Indeed, the deformations are of the order of hundreds of meters and

the generated waves are different from those induced by submarine earth-

quakes. Landslide tsunamis tend to be a local phenomenon, although ex-

treme [Synolakis et al., 2002].

Among the first researches on the topics it has to be mentioned the work

of Mallet and Mallet [1858], that argued how the impulse waves genaration

can be related not only to earthquakes but to submerged landslides as well.
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Many devastating ladnslide-generated tsunamis events happened in the past;

most of these have been described in scientific works. Among the main hys-

torical events it has to be mentioned the tsunamis occurred at Lituya Bay

(Alaska, July 9, 1958; e.g. Miller [1960]). In this case a huge subaerial land-

slide entered the water and generated the highest known tsunamis run-up; it

has been estimated to be up to 524 m. Furthermore, it has to be mentioned

the tsunami generated by submarine landslide close to the Sissano Lagoon

(Papua Nuova Guinea, July 17, 1998; e.g. Synolakis et al. [2002]). Altough

the induced tsunamis run-up was not very large (i.e., 15 m) more than 2100

people were killed. As far as enclosed basins (e.g., lakes and reservoirs) are

concerned devastating tsunamis have been observed. The event of Vajont

Valley (Italy, October 9, 1963; e.g. Panizzo et al. [2005b]) is one of the

biggest. In this case a subaerial landslide entered the water in the Vajont

reservoir. The generated impulse waves caused a run-up of almost 235 m.

The following overtopping of the reservoir dam caused the flooding of the

village of Longarone with crushing effects: 1901 people were killed.

Following the description of Di Risio et al. [2010], the phenomena related to

landslide-generated tsunamis can be qualitatively separated in four phases;

each of these is characterized by its own physics. The phases are listed as

follows:

� a solid or granular mass starts to move from one of the boundaries of

a water body;

� an impulsive perturbation is generated as a consequence of the inter-

action with the water surface;

� the generated perturbation propagates into the water body;

� the propagated perturbation interacts with water body boundaries

(i.e., coastlines).

The tsunamis generation, propagation and interaction with the coast mech-

anisms are schematically represented in Figure 2.1. The figure also shows

the changes in terms of both physics and wave features, as the generation

mechanism varies (i.e., subaerial, partially submerged or totally submerged

landslide).

In the present work subaerial landslides are considered; thus, we focus mainly

on this kind of generation mechanisms. When a subaerial landslide hits the

water boundary and, consequently, enters the water, the sliding mass inter-

acts with the water body and transfers its energy to it; a tsunami is then

triggered. As shown in the next chapters, Lynett and Liu [2005] argued that
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Fig. 1. Qualitative sketch of landslide induced impulse waves.

(ii) refer to the results of well known basic research experiments performed under idealized
assumptions, both two-dimensional and three-dimensional, intended to be representative of
real cases (e.g. Huber, 1982; Panizzo et al., 2005a).
The chapter is structured as follows. The next section deals with the generation and propaga-
tion of impulse waves induced by both underwater and subaerial landslide. The phenomena
are qualitatively described and empirical formulations suitable for wave features forecasting
are reported on the basis of past researches. The succeeding sections briefly describe the in-
teraction of impulse waves with water body boundaries, i.e. wave run-up and overtopping.
Concluding remarks close the chapter. Due to the limited number of pages, only generation
and propagation of impulse waves are described in depth.

2. Impulse waves generation and propagation

This section deals with experimental investigations aimed at analyzing physical phenomena
occurring in the generation area and in the near- and far-field. In the former, landslide energy
is transferred to water, whereas in the near- and far-field the waves start to propagate and
radiate in the water body.
The first experimental task that has to be addressed is impulse waves reproduction in physical
models. The first studies were carried out by Russell (1838; 1845). This autor used a vertical
falling box in order to generate free surface transient perturbations similar to the “large solitary
elevation” (christened “wave of translation”) induced by a sudden stop of a boat as observed
by Sir Scott Russell along a channel.The box height was higher than the water depth and this
impulse waves generation method was used by many authors (e.g. Wiegel et al., 1970; Noda,

Figure 2.1: Sketch of landslide-generated impulse waves. [Di Risio et al., 2010].

there is a distinction between the wave features in the so-called “near-field”

and “far-field”. In the “near-field” the wave features are mainly related to

the characteristics of the landslide (i.e., volume, velocity, underwater travel

time, density, porosity, shape, etc.). In other words, the wave features in

the“near-field” are related to the initial conditions. As the generated waves

propagate away from the generation area, both radiating seaward and prop-

agating alongshore, other mechanisms dominate the wave features in the

“far-field” (i.e., frequency and directional dispersion, refraction and diffrac-

tion, leaking and trapping of energy, etc.). Furthermore, as the propagating

waves reach a water boundary, complex phenomena take place (i.e., run-

up/draw-down, flooding, etc.).

When the landslide occurs directly at the water body boundaries, impulse

waves both radiate seaward and propagate alongshore. The complex inter-

action that exists between the generation and the propagation mechanisms

has therefore to be taken into account. In such case trapped waves can be

triggered by the source of the tsunami and propagate along the coast by

inducing large wave run-up observed in some real cases [Ursell , 1952; Liu

and Yeh, 1996; Liu et al., 1998; Johnson, 2007]. It is worth to highlight that

this topic is in depth analyzed in the present work, as shown in chapter 5.
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This chapter is structured as follows. After this introduction, the next

section describes the main generation and propagation mechanisms of the

landslide-generated tsunamis. Then an overview of the tsunamis generated

by subaerial landslides is provided and a brief description of the impulse

waves generated by submerged landslides closes the chapter.

2.3 Landslide-generated tsunamis: generation and

propagation mechanisms

In this section a brief dissertation on the landslide-generated tsunamis gen-

eration and propagation mechanisms is given. The first study on the impulse

waves generation in physical models is due to Russell [1844]. This author,

aiming at reproducing solitary waves, used a vertical falling square-shaped

box in a wave flume in order to generate transient perturbations of the free

surface elevation. Russell [1844] showed by means of experimental tests

that a solitary wave of a certain wave height H that propagates on a con-

stant depth h travels with constant celerity c =
√
g(H + h). Many authors

used the so-called “Scott Russell wave generator” aiming at reproducing im-

pulse waves in experimental facilities (e.g., Wiegel et al. [1970]; Noda [1970];

Panizzo et al. [2002]; Di Risio and Sammarco [2008]).

Furthermore, to simulate impulse waves generated by landslides moving pad-

dle systems have been employed in the past (e.g., Noda [1970]; Miller [1970]).

Wave paddles are still used to generate cnoidal, solitary and N-shaped waves

in both two- and three-dimensional experiments (e.g., Goring [1978]; Syno-

lakis [1990]; Guizien and Barthélemy [2002]; Malek-Mohammadi and Testik

[2010]; Romano et al. [2013]). These kind of waves are quite useful to study

the propagation and the interaction with the coast mechanisms of tsunamis,

especially those genearated by earthquakes.

Nevertheless, the above mentioned methods are mainly effective in studying

the tsunamis propagation and inundation phenomena; the energy exchange

problem between the landslide and the water (i.e., the so-called “water en-

try problem”) is not well addressed. Many researches, aiming at gaining

insight on the impulse waves generation due to ideal landslides (i.e., solid

boxes sliding down inclines and entering the water), have been carried out

(e.g., Wiegel et al. [1970]; Watts [1998, 2000]; Watts et al. [2000]; Walder

et al. [2003]; Panizzo et al. [2005a]; Enet and Grilli [2007]). Note that in

these case, the shape of the landslide is defined a priori; furthermore, both

the porosity and the deformation of the landslide are not reproduced in the

mentioned works. Watts et al. [2005] investigated numerically the influence
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that the shape of a submerged landslide can lead, in terms of generated

wave features; they found that the higher the spreading of Gaussian shape,

the lower the amplitude of the generated waves. Furthermore, Watts et al.

[2005] pointed out that as far as submerged landslides are concerned, then

the semi-elliptical-shaped rigid body represents the worst case scenario in

terms of generated wave height. Finally, if subaerial landslides are consid-

ered, Ataie-Ashtiani and Nik-Khah [2008] suggested that landslide shape

does not significatively affect the generated waves.

2.4 Tsunamis generated by subaerial landslides:

wave features

As far as subaerial landslides are concerned, a clear, although qualitative,

description of the generation physics has been provided by Liu et al. [2005],

Di Risio et al. [2009a] and Di Risio et al. [2010]. The latter authors stated

that “When landslide enters the water body, it pushes ahead the fluid and

a leading positive seaward radiating wave is generated. Once the landslide

becomes totally submerged, the water is initially depressed by generating a

trailing wave through. Strong alongshore free surface gradients occur in the

generation area resulting in converging flows that collide and rebound along

the centreline of the landslide. The rebound is the responsible of a large

positive wave radiating offshore”.

Several researches have been carried out aiming at shedding light on the

features of the generated waves. Among these it has to be mentioned the

work of Kamphuis and Bowering [1970]. Based on experimental results they

proposed a dimensional analysis devoted at evaluating the influence and the

relationship f between the dependent quantities (in dimensionless form Π),

as follows:

Π = f

(
F,M,G,X, S, t,

√
g

h
, γ, α, p

)
, (2.1)

where F is the landslide Froude number (F = us/
√
gh), M is the dimen-

sionless two-dimensional landslide volume, G the specific gravity, X the

dimensionless propagation distance, t the time, g the gravitational accel-

eration, γ the landslide slope front, α the slope angle of the incline and p

the landslide porosity. The experimental results, according with the above

mentioned analysis, highlighted that the maximum generated wave height

HM is strongly affected by the dimensionless volume M and the landslide

Froude number F . Furthermore, it is shown that the leading wave period
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Tl is mainly influenced by the dimensionless propagation distance X (i.e.,

frequency dispersion occurs).

More recently, Walder et al. [2003], by performing experimental investiga-

tions using solid landslides, pointed out that the dimensionless underwater

travel time τ (as analytically confirmed by Di Risio and Sammarco [2008]),

the dimensionless landslide volume M , the landslide Froude number F and

the slope of the incline α have a great influence on the generated waves.

More specifically, Walder et al. [2003] demonstrated that the tsunamis wave

height increases as the underwater travel time decreases. Panizzo et al.

[2005a] performed three-dimensional experiments, using a regular-shaped

rigid body sliding along an incline that generated waves in a wave tank,

aiming at evaluating the influence of the incline slope α. They demon-

strated that the wave height increases as the incline slope decreases.

It has to be mentioned that most of the works cited so far mainly aim at

studying the features of the waves that, leaving the generation area, radiate

seaward. But as earlier mentioned, when a tsunamis, which is generated by a

landslide that occurs directly at the water boundary, is triggered, also waves

that propagate alongshore takes place. The physics of the wave propagation

alongshore is dominated by complex phenomena (i.e., refraction, diffraction,

reflection, etc.). In a qualitative way it is possible to state that the wave

propagation alongshore is intimately related to the so-called “tsunamis trap-

ping mechanisms”. In this work this topic is of particular interest and it

is treated in a dedicated chapter (i.e., chapter 5). Given this, just a brief

overview of the main literature works is provided in this chapter.

The first studies on the tsunamis propagation alongshore have been car-

ried out in the last decades. Many authoritative experimental, numerical

and analytical studies have been addressed the propagation of the lanslide-

generated waves both along straight coasts (e.g., Yeh [1985]; Chang [1995];

Liu and Yeh [1996]; Liu et al. [1998]; Lynett and Liu [2005]; Sammarco and

Renzi [2008]; Di Risio et al. [2009a]; Renzi and Sammarco [2012]; Seo and

Liu [2013]) and around circular islands (e.g., Yeh et al. [1994]; Tinti and

Vannini [1994, 1995]; Cho and Liu [1999]; Liu et al. [2005]; Di Risio et al.

[2009b]; Renzi and Sammarco [2010]). As in depth shown in chapter 5, edge

waves (i.e., trapped waves) dominate the wave propagation along the shore,

when a straight beach is considered. More complex is the physics of the wave

propagation alongshore as far as a circular island is concerned, as pointed

out by Renzi and Sammarco [2010]. The latter authors demonstrated that

in a polar-symmetric topogaphy a perfect wave trapping is not possible.

Since the present work mainly aims at extending and improving the works

of Di Risio et al. [2009a] and Di Risio et al. [2009b], it could be helpful to
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recall the main issues addressed in these two works. Di Risio et al. [2009a]

carried out a series of experiments in a three-dimensional wave tank aim-

ing at reproducing landslide-generated tsunamis at a straight beach. The

experimental layout was similar to that simulated numerically by Lynett

and Liu [2005], although the beach was steeper. The landslide model was

a semi-elliptical rigid body (note that the model is the same one that has

been used by Di Risio et al. [2009b] and it is one of the two landslide mod-

els that have been used for the experiments described in this work). Both

partially submerged and subaerial landslides have been tested during the ex-

periments. The experimental layout allowed to observe the near field wave

pattern, just landward to the landslide, and the propagation alongshore of

the leading wave before the sidewalls reflection contaminated the induced

waves. During the experiments secondary run-up peaks were observed and

the maximum run-up was located at about two times the landslide width

away the centreline of the landslide rather than directly landward the land-

slide. Di Risio et al. [2009b] were aimed at reproducing impulse waves prop-

agation around a conical island, similar to that of Briggs et al. [1995], placed

at the centre of a large wave tank. As mentioned, the landslide model was

exactly the same used by Di Risio et al. [2009a]. Only subaerial landslides

have been tested. During the experiments, the induced run-up along the

coast was measured by means of special gauges directly embedded into the

island flanks. The authors found that the higher the undisturbed shoreline

radius, the higher the induced run-up. The large dimensions of the wave

tank allowed to observe the propagation of waves along the whole circular

coastline and dispersive features of wave packets were observed, being the

maximum run-up induced by the first wave near the generation area, by the

second wave up to a curvilinear distance alongshore equal to about 8 times

the landslide width, then the third wave induces the maximum run-up and

so on.

2.5 Tsunamis generated by submerged landslides:

wave features

As highlighted by Di Risio et al. [2010], the features of the tsunamis gen-

erated by submerged landslides are quite different with respect to those

generated by subaerial ones. Since in the following chapters tsunamis gen-

erated by submerged landslides are not considered, just a brief description

of this phenomena is given.
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Watts [1998] demonstrated that the features of the generated waves are in-

timately related to the landslide motion, especially if the landslide starts

to move when it is completely submerged. Enet and Grilli [2007], by per-

forming three-dimensional experiments in a wave tank, pointed out that

submerged landslides cause a depression of the free surface elevation above

the initial position of the landslide; this implies that a rebound takes place.

Thus, the waves leave the generation area as a leading elevation N-wave

that radiate seaward [Tadepalli and Synolakis, 1994] followed by small trail-

ing waves. Moreover, the generated waves propagate alongshore as well,

inundating the coast (i.e., run-up/draw-down occurs). Furthermore, Enet

and Grilli [2007] demonstrated the importance of the so-called initial accel-

eration and terminal velocity of the landslide.
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Chapter 3

Description of the

experimental setup

3.1 The 3D physical model

As introduced in chapter 1, this work aims at describing the physics of

landslide-generated tsunamis that occur at the coast of a conical island. In

order to gain insight on this topic, laboratory experiments have been carried

out on a large scale physical model. In this chapter a detailed description

of the experimental setup is given.

The experiments have been carried out in a large wave tank (50 m long,

30 m wide, 3 m deep) at the Research and Experimentation Laboratory for

Coastal Defence of Polytechnic of Bari (LIC, Italy). The Figure 3.1 shows

the sketch of the wave tank. The physical model consists of a truncated

conical island (base diameter equal to 8.90 m, maximum height equal to

1.20 m, see Figure 3.2) made up of PVC sheets (thickness 0.01 m) sustained

by a rigid steel frame. The island is placed at the centre of the tank in order

to obtain an appropriate distance from the tank walls; indeed, the walls

when are reached by radiating waves induce spurious reflected waves that

contaminate the experimental domain. The water depth was kept constant

to 0.80 m. The slope (α) of the island flanks is of cotα = 3 (i.e. 1 vertical,

3 horizontal) to reproduce the typical slope of volcanic islands where land-

slides are likely to occur (i.e. Stromboli Island, Southern Tyrrhenian Sea,

Italy, Tinti et al. [2005]). One of the island flanks reproduces a slide that

allows landslide model to slide along the island and to enter the water; thus

tsunamis can be triggered. Notwithstanding the physical model reproduces

a geometry as general as possibile, it is interesting to highlight that the

conical island could be a schematized (and idealized) reproduction of the
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Figure 3.1: Sketch of the wave tank.

Stromboli Island (see Figure 3.3), if a Froude law scale 1:1000 is considered.

Accordingly the slide along the island flanks can be seen as a reproduction

of the Sciara del Fuoco (see Figure 3.4).

In order to simulate the effect of landslides, past studies were carried out by

using solid boxes falling vertically (Scott Russell’s wave generator, Russell

[1845]) or sliding along inclines with different shapes (semi-elliptical, triangu-

lar, parallelepiped) with deformable sand bags and with granular materials

(a complete review is provided in the work of Di Risio et al. [2010]). When

a solid landslide model is used, its shape has to be defined preliminarily, and

UNDISTURBED WATER

SURFACE

LANDSLIDE

r

210 3 4 5 m

ISLAND BASE AT THE TANK

 BOTTOM

Figure 3.2: Left panel: picture of the conical island in the wave tank. Right panel:

sketch of the physical model (plan view).
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the deformations and porosity of real landslides are not reproduced in the

model. Grilli and Watts [2003] and Watts et al. [2005] found that, in the

case of underwater landslides, the higher the spreading of a Gaussian shape,

the lower the amplitude of generated waves, at least for underwater land-

slides. Then, Watts et al. [2005] indicate that semi-elliptical shaped rigid

body represents the worst case scenarios, at least for underwater landslides

[Watts, 2000; Enet and Grilli , 2007; Di Risio et al., 2009a, b]. Then, as

in Di Risio et al. [2009a, b], solid landslide models, shaped as a half of an

ellipsoid, have been used (Figure 3.5).

In a reference frame with the origin placed at the centre of the ellipsoid,

the landslide model is described by the following equation:

x2/a2 + y2/b2 + z2/c2 = 1 (3.1)

where x is the coordinate directed along the incline, y the coordinate paral-

lel to the undisturbed shoreline and z is the orthogonal distance from island

flank. The axis a (orthogonal to the undisturbed shoreline) is equal to 0.40

m (landslide length 2a = 0.80 m), the axis b (parallel to the undisturbed

shoreline) is equal to 0.20 m (landslide width 2a = 0.40 m). During the

experiments two different landslide models have been used (see Figure 3.5).

The first one (hereinafter referred to as LS1) is characterized by a thickness

of 0.05 m (c=0.05 m). The LS1 volume is then equal to V = 0.0084 m3.

The thickness of the second landslide model (hereinafter referred to as LS2)

210 3 4 5 m

210 3 4 5 km

THYRRENIAN SEA

STROMBOLI ISLAND

SCIARA DEL FUOCO

LANDSLIDE

ISLAND BASE AT THE TANK

 BOTTOM

UNDISTURBED

WATER SURFACE

Figure 3.3: Left panel: plan view of the Stromboli island (South Thyrrenian Sea).

Right panel: Sketch of the physical model.
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is 0.10 m (c=0.10 m) and the volume V = 0.0168 m3. The density of the

landslide models was kept constant to 1.83 kg/m3 for a total mass of about

15.4 kg and 31.7 kg for LS1 and LS2 respectively (see Table 3.1). The land-

slide models are made up of PVC covered by an exterior layer of fiberglass.

The flat bottom, in contact with the island flank, is made up of steel. In

order to constrain the landslide to move along a fixed line a steel T frame

is welded to the landslide bottom (see Figure 3.5).

(a) Detail of Sciara del Fuoco: rock fall. (b) Detail of the slide along the conical is-

land.

(c) Aerial view of Sciara del Fuoco. (d) Lateral view of the conical island and

the slide.

Figure 3.4: Pictures of the Sciara del Fuoco (Stromboli island) and the slide

placed on the conical island model.

Landslide model VM MM ρM VP MP ρP
(dm3) (kg) (kg/m3) (m3) (kg) (kg/m3)

LS1 8.40 15.4 1.83 8.4E+06 15.4E+06 1.83

LS2 16.80 31.7 1.83 16.8E+06 30.7E+06 1.83

Table 3.1: Landslide models physical parameters. Note: subscript (·)M refers to

model values, while subscript (·)P refers to prototype ones.
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Figure 3.5: Sketch of the landslide models.

3.2 Instruments and acquisition techniques

The experiments aim at measuring the waves generated by the landslide

model that slides down the island flank. Then landslide motion and water

surface elevation data have to be recorded. A high-resolution camera was

placed on a steel frame placed just outside of the wave tank, directly in front

of the generation area (see panel (a) of the Figure 3.9). The digital images

collected by means of the video-camera have been used to reconstruct the

landslide motion, as detailed in the next chapter.

For what concerns the free surface elevation measurements new 3D exper-

iments have been performed aiming at providing a benchmark data set for

validating theoretical models of landslide-generated tsunamis. In order to

reach this purpose it is essential to have both a large number of free surface

elevation measurements, with a spatial resolution as high as possible, both

a large number of repetitions for each experiment. Of course this it would

imply a large number of instruments. Indeed, the idea of this experimental

campaign is to use few instruments; some of these are fixed in space (to

check the repeatibility of the experiments) while some others are placed on

a moving frame (to measure the whole wave pattern around the island). As

described in the following, this method allows to obtain a high-space reso-
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Figure 3.6: Side view of the conical island: detail of the movable steel frame.

lution measurements data set while minimizing the number of instruments.

In order to measure the free surface elevation time series around the conical

island wave gauges (hereinafter referred to as WG), ultrasonic water level

sensors (hereinafter referred to as US) and run-up gauges (hereinafter re-

ferred to as RG) were employed. Some of the instruments were kept fixed in

space (i.e., RG and nine WG), some others were placed on a steel frame (i.e.,

US and six WG) that can rotate around the island centre spanning a half of

the island (see Figures 3.6, 3.7, and 3.8). This “movable” system allows to

collect the free surface time series along cross-shore sections, starting from

the axis along which the landslide moves (θ =0°) up to the rear side of the

island (θ =180°). For each test, the landslide is placed at starting position

and the movable steel frame moved to the correct angular position, then the

acquisition process begins, the landslide model is released and the tsunami

is generated. Typically the acquisition process is stopped about 50 s after

the release of the landslide, when the waves reflected at the side walls had

completely contaminated the wave field. The procedure was repeated for

each position of the movable frame, from θ =0° up to θ =180° every 5°, for

a total of 37 landslide releases. As described in the next chapter the fixed

sensors were used to check the repeatability of the tests; the sensors placed

on the movable frame were used to measure the whole wave pattern around

the island. In particular:

� 12 run-up gauges (RG) were embedded directly into the PVC of the

island flanks in order to measure the shoreline displacements time

series;

� 9 wave gauges (WG) were placed in fixed position near the generation

area and in the far field;
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Figure 3.7: Sketch of the measurement points.

� 7 ultrasonic (US) sensors were placed on the movable frame;

� 6 wave gauges (WG) were placed on the movable frame;

Table 3.2 summarizes the sensors position and naming. All the signals have

been acquired with a sampling frequency of 200 Hz. The acquisition process

has required three different National Instruments boards. Furthermore, in

order to syncronize the measurements collected by the boards, a Labview

software has been used to trigger simultaneously the data acquisition.

Once the repeatability of the tests has been addressed, the whole data

set (37 landslide releases) corresponds to a single test with 497 sensors.

This measurements spatial resolution (comparable to numerical results, e.g.

Montagna et al. [2011]) allows to characterize the wave pattern around the

island in great detail.
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Figure 3.8: Name and position of the instruments (WG = wage gauges, RG =run-

up gauges, US = ultrasonic sensors).

University of Roma Tre - Department of Engineering 22



Wave Gauges Runup Gauges Ultrasonic Sensors

Sensor Radial Angular Sensor Angular Sensor Radial Angular

name Position (R) Position (θ) name Position (θ) name Position (R) Position (θ)

(m) (◦) (◦) (m) (◦)

7WG 4.53 7.9 1RG 14.5 1WG 5.92 0 to 180 by 5

8WG 4.08 8.9 2RG 20.6 2WG 5.62 0 to 180 by 5

9WG 3.66 10.0 3RG 34.3 3WG 5.32 0 to 180 by 5

10WG 3.13 11.9 4RG 47.6 4WG 5.02 0 to 180 by 5

5RG 60.2 5WG 4.72 0 to 180 by 5

6RG 72.9 6WG 4.42 0 to 180 by 5

7RG 86.3 1US 3.88 0 to 180 by 5

8RG 98.7 2US 3.48 0 to 180 by 5

9RG 111.5 3US 3.08 0 to 180 by 5

10RG 125.2 4US 2.78 0 to 180 by 5

11RG 138.6 5US 2.58 0 to 180 by 5

12RG 151.6 6US 2.43 0 to 180 by 5

7US 2.28 0 to 180 by 5

Table 3.2: Sensors position and naming.

(a) High-resolution camera. (b) Lateral view of the conical island.

(c) Moving and fixed arms with sensors. (d) Run-up gauges.

Figure 3.9: Pictures of the conical island and of the instruments used.
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Chapter 4

Data analysis of the new 3D

experiments: a benchmark

data set

4.1 Introduction

In this chapter a detailed description of the new experimental results is

given. As stated in chapter 3, new measurement techniques have been used

to describe in detail the features of the waves that propagate offshore and

those that propagate along the shoreline. In order to achieve measurements

with a high spatial resolution, a new special movable acquisition system has

been employed, along with a series of fixed wave gauges. Each experiment

has been repeated 37 times, changing for each repetition the position of the

movable gauges, devoted at measuring the water surface elevation around

the island. Few surface elevation gauges and several fixed run-up gauges

measure the waves at identical positions: these instruments provide 37 time

series for each experiment, allowing an in depth statistical analysis of the

experimental repeatability. The high-space resolution and the large number

of the measurements have been used for defining a benchmark data set for

the development/calibration/validation of analytical and numerical models

of tsunamis generated by landslides.

This chapter is structured as follows. The next section provides the mea-

surements and the analysis of the landslide motion; the following section

illustrates a detailed analysis of the free surface elevation time series
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4.2 Landslide motion

The proper description of the landslide kinematic is a crucial point when

experimental data are intended to be used as benchmark test case for math-

ematical/analytical models validation. The governing equation of landslide

motion has been widely used in past researches in the case of submerged

landslides (e.g. Pelinovsky and Poplavsky [1996]; Watts [1998]). In the

followings the methodology, used to estimate the parameters needed to re-

produce the observed landslide motion in the case of subaerial landslides, is

illustrated.

During the subaerial phase, the motion is governed by the following equa-

tion:

m
d2s

dt2
= mg (sinα− Cn cosα) , (4.1)

where m is the landslide mass, s the landslide displacements, t the elapsed

time, g the gravity acceleration, α the slope angle, Cn the Columbic friction

coefficient. Then, if landslide displacements are measured and velocities

estimated by numerical differentiation, the Columbic friction coefficient can

be estimated by the following relationship:

Cn =

(
1− u20
2gz0

)
tanα, (4.2)

where u0 indicates the landslide velocity when it hits the free surface and

z0 the dropping height, measured along the vertical direction. After the

landslide hits the free surface a transition phase occurs, during which the

landslide motion is affected by the complex interaction between the landslide

and the fluid flow, related to the water entry problem. When the landslide

becomes totally submerged, then buoyancy and drag forces act on it. During

the underwater travel the landslide motion is governed by the following

equation:

(m+ Cmm0)
d2s

dt2
= (m−m0) g (sinα− Cn cosα) +

+
1

2
CdρA

(
ds

dt

)2

(4.3)

where Cm is the added mass coefficient, m0 is the displaced water mass, A is

the main cross section of the moving landslide perpendicular to the direction

of motion, ρ is the water density. The global drag coefficient Cd describes

both form drag and skin friction:

Cd =
CFAw
A

+ CD (4.4)
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where CD, CF and Aw are the form drag coefficient, the skin friction coeffi-

cient and the wetted surface respectively.

For LS1 Di Risio et al. [2009a] performed a detailed analysis of the landslide

motion on the basis of acceleration measurements collected by means of an

accelerometer placed into the landslide model.

Due to the different scale of the experiments the landslide motion was recon-

structed on the basis of the analysis of a series of digital images collected by

means of a high resolution videocamera (images frequency acquisition equal

to 25 Hz). Then the landslide motion were measured on the basis of its

displacements rather than on the basis of its accelerations, i.e. direct accel-

eration measurements have not been collected during the new experiments.

Of course, it is possible to compute the landslide acceleration by double nu-

merical differentiation of displacements. However the double differentiation

can lead to unacceptable errors on acceleration estimation. Then we used

a different approach to infer the dynamical coefficients. In particular, the

Coulumbic friction coefficient was calculated on the basis of estimated ve-

locity, whilst the added mass and the global drag coefficients were estimated

directly from the observed landslide displacements.

In the case of submerged landslides the theoretical solution of (4.3) is (e.g.

Watts [1998]):

s(t) =
u2t
a0
log

[
cosh

(
a0t

ut

)]
+ s0 (4.5)

where a0 is the initial acceleration and ut is the terminal velocity that the

landslide reaches when the gravity action is balanced by the boyancy, friction

and drag forces. For submerged landslides, the initial acceleration a0 can be

directly inferred from (4.3) by imposing the velocity to be zero at the initial

time:

a0 =
(m−m0)g(sinα− Cn cosα)

m+ Cmm0
. (4.6)

Similarly, the terminal velocity is the (constant) velocity at which the land-

slide moves with a nil force resultant (i.e. d2s/dt2 = 0):

u2t =
2(m−m0)g(sinα− Cn cosα)

CdρA
. (4.7)

It has to be stressed that the solution (4.5) with a0 and ut provided by

(4.6) and (4.7) respectively, is valid only when the landslide motion starts

when it is totally submerged. However such a solution can be used also in

the case of subaerial landslide if different initial conditions are considered.

Indeed equation (4.3) is valid for the submerged phase for both subaerial and

submerged landslide. When the transition phase ends, the landslide motion
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t = 0.02s t = 0.42s t = 0.86s t = 1.08s

t = 1.16s t = 1.28s t = 1.4s t = 1.44s

t = 1.56s t = 1.64s t = 1.72s t = 1.76s

t = 1.92s t = 2.04s t = 2.16s t = 2.36s

Figure 4.1: Example of the image analysis for tracking landslide motion: each

panel shows the landslide at a given time-step after the release; the

white diamond marker identifies the position of the seaward edge of

the landslide.
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is governed by equation (4.3) and the initial velocity is equal to u∗0. In the

case of subaerial landslides, the solution in the underwater phase (t > t∗0,

being t∗0 the instant when the transition phase ends) can be expressed as

follows:

s(t) =
u2t
a∗0

log
{

cosh
[(

a∗0
ut

)
(t− t∗0) +

+ tanh−1
(
u∗0
ut

)]}
(4.8)

Here the acceleration a∗0, provided again by equation (4.8), is not the initial

acceleration of the real landslide, but that of a kind of “equivalent submerged

landslide” that reaches the velocity u∗0 at instant t = t∗0. It has to be noticed

that terminal velocity of the “dummy” equivalent submerged landslide is

equal to that one of the real subaerial landslide.

In order to estimate the values of ut and a∗0 it is possible to use a least square

optimization technique based on observed landslide displacements.

During experimental tests, as anticipated in the previous chapter, a digital

high-resolution camera was employed to collect images of falling landslides.

Then, the collected images were rectified based on a series of points whose

positions in space were measured by means of a high precision topographic

total station. All the images where used to reconstrct the instantaneous

position of the landslide from which the displacement time series is defined.

By means of image analysis techniques based on the colour recognition in

rectified pictures, it was possible to track the position of the lanslide for

each frame (see Figure 4.1).

The velocity was estimated by numerical evaluation of the time deriva-

tive of landslide displacements, needed to estimate the impact velocity u0
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Figure 4.2: Left panel: space traveled. Middle panel: velocity. Right panel:

acceleration. In each panel the round marker identifies th time at

which the landslide hits the water, while the square one identifies the

time at which the motion becomes completely submerged.
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and then to estimate the value of Columbic friction coefficient. During the

subaerial phase, the velocity increases up to the impact velocity. Then the

transition phase occurs and the landslide motion is affected by the water-

solid interaction. Then the transition phase ends and the submerged phase

starts until the landslide hits the tank bottom.

The falling height z0 was kept constant during the experiments (z0= 0.14 m),

then the value of impact velocity (almost the same for all the tests) was used

to estimate the Columbic friction coefficient. Data analysis showed that Cn
is equal to 0.194±0.014. In order to estimate the values of Cd and Cm, the

landslide displacements time series related to underwater phase were used.

In particular, the terminal velocity ut and initial acceleration a∗0 are inferred

by means of non linear least square optimization (Gauss-Newton method)

aimed at minimizing the deviation between the computed, given by equa-

tion (4.8), and observed displacements. The use of relationships (4.6) and

(4.7) allows to estimate the values of the drag coefficient Cd and added mass

coefficient Cm. Obtained results are synthetized in Table 4.1 for both LS1

and LS2 landslide models.

The theoretical landslide velocity v(t) can be defined by the time derivative

of solution (4.8):

v(t) = ut tanh

[
a∗0
ut

(t− t0∗) + tanh−1
(
u∗0
ut

)]
(4.9)

The theoretical value of added mass coefficient Cm can be estimated by

using the strip theory (e.g. Enet and Grilli [2007]; Newman [1989]). In the

case of semi ellipsoid landslide model it reads:

Cm =
2bc2π

3V
(4.10)

The theoretical value of Cm are equal to 0.249 and 0.499 for LS1 and LS2

respectively. Furthermore the estimated value of Cd for LS1 can be compared

with the results of Di Risio et al. [2009a, b] who obtained Cd ≈ 0.40.

Landslide model V Mass Density Added Mass Drag Coefficient Terminal velocity

(dm3) (kg) (kg/m3) (kg) () (m/s)

LS1 8.40 15.4 1.83

LS2 16.80 31.7 1.83 0.421±0.009 1.713 ± 0.018

Table 4.1: Landslide models physical and hydrodynamics parameters.
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4.3 Experimental findings and discussion

This section describes the experimental results in terms of free surface el-

evation collected around the conical island and wave run-up at its coast.

In particular, once the repeatibility of the tests is addressed, the data are

analyzed in order to describe the wave features around the island.

4.3.1 Time series analysis

All the time series collected during the experiments have been analyzed in

the time-domain by means of a zero-crossing analysis (hereinafter ZC). When

a tsunamis time series is considered, ZC analysis is more appropriate than a

spectral one. Tsunamis are unsteady phenomena; this aspect is not perfectly

in line with the hypothesis of the spectral analysis in the frequency domain

(i.e., periodicity of the signal). However, also spectral analysis has been

successfully used in this work to identify meaningful properties of the waves;

but, in order to catch the properties of each single wave in the tsunamis

packet, ZC is supposed to be more effective. Furthermore, ZC allows to

better catch the properties of the analyzed time series in the time-domain
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Figure 4.3: Run-up time series (ith−release).
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(i.e., arrival time of the first wave, arrival time of the maximum wave of the

packet, periods of first waves of the group, etc.), which are of high scientific

and technical interest to describe the features of the wave packet.

Each time series has been processed with zero-crossing analysis in order to

obtain:

� “Beginning” of the tsunamis (i.e., time at which the first crest takes

place at each wave gauge);

� Free surface elevation of the maximum crests and minimum troughs

of the generated waves;

� Wave periods of the generated tsunamis;

To obtain the above mentioned wave properties all the signals have been an-

alyzed by means of an automatic ZC algorithm, which has been fully devel-
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Figure 4.4: Zero-crossing analysis of the run-up time series (ith−release). Note:

gray markers identify the beginning of the tsunamis; red lines identify

the odd waves in the packet; blue lines identify the even waves in

the packet; vertical gray dashed lines identify the time at which the

tsunami begins (left line) and the time at which the fifth wave ends

(right line) respectively.
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oped at the University of Roma Tre. The algorithm has been widely tested;

it is found that it is very effective in identifying each wave of the packet and,

even more important, the “beginning” of the tsunamis. To detect the be-

ginning of the tsunamis two checks have been simultaneously implemented

in the algorithm: the first one identifies the time at which the signal reaches

and exceeds an amplitude treshold, while the second one analyzes the signal

by calculating the Fast Fourier Transform (FFT) on a window that grows

in duration; when the maximum spectral amplitude reaches and exceeds a

given treshold and the peak frequency becomes less than a frequency tresh-

old, the beginning of the tsunamis is uniquely identified. The Figure 4.3

shows the time series collected by means of the run-up gauges (RG), related

to the ith-release of the landslide. Each panel refers to a different RG; the

position of the sensor along the shoreline is showed, for each panel, by the

sketch in the right low corner of the graphs. Figure 4.4 shows the results

of the ZC, which has been applied to the time series represented in Fig-

ure 4.3. Figure 4.4 shows the behavior of the detection algorithm. Gray

markers identify the beginning of the tsunamis; red and blue lines identify

the odd and even waves respectively, that form the tsunamis packet. Note

that only the first five waves have been represented in the plots; this is due

to that the wave packet consists of less than five waves, especially in the

so-called “near-field”. When each wave of the group has been identified,

the algorithm allows to obtain the properties of these (i.e., maximum crest,

minimum trough and wave period, etc.).

University of Roma Tre - Department of Engineering 33



(a)

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
2
W

G
(m

m
)

2WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
3
W

G
(m

m
)

3WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

Corrupted time series

→

t(s)

η
4
W

G
(m

m
)

4WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

Corrupted time series

→

t(s)

η
5
W

G
(m

m
)

5WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
6
W

G
(m

m
)

6WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
1
U

S
(m

m
)

1US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
2
U

S
(m

m
)

2US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
3
U

S
(m

m
)

3US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

Noisy or not calibrated time series

Partly used

t(s)

η
4
U

S
(m

m
)

4US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
5
U

S
(m

m
)

5US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
6
U

S
(m

m
)

6US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

Noisy or not calibrated time series

Discarded

t(s)
η
7
U

S
(m

m
)

7US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
2
W

G
(m

m
)

2WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
3
W

G
(m

m
)

3WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

Corrupted time series

→

t(s)

η
4
W

G
(m

m
)

4WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

Corrupted time series

→

t(s)

η
5
W

G
(m

m
)

5WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
6
W

G
(m

m
)

6WG - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
1
U

S
(m

m
)

1US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
2
U

S
(m

m
)

2US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
3
U

S
(m

m
)

3US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

Noisy or not calibrated time series

Partly used

t(s)

η
4
U

S
(m

m
)

4US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
5
U

S
(m

m
)

5US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

t(s)

η
6
U

S
(m

m
)

6US - ϑ = 0◦

0 2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

→

Noisy or not calibrated time series

Discarded

t(s)

η
7
U

S
(m

m
)

7US - ϑ = 0◦

Figure 4.5: Free surface elevation time series collected by the moving arm at ϑ =

0◦ (upper panels), and zero-crossing analysis (lower panels). Note:

the symbols have the same notation of that in Figure 4.4.
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Figure 4.6: Free surface elevation time series collected by the moving arm at ϑ =

15◦ (upper panels), and zero-crossing analysis (lower panels). Note:

the symbols have the same notation of that in Figure 4.4.
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Figure 4.7: Free surface elevation time series collected by the moving arm at ϑ =

30◦ (upper panels), and zero-crossing analysis (lower panels). Note:

the symbols have the same notation of that in Figure 4.4.
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Figure 4.8: Free surface elevation time series collected by the moving arm at ϑ =

45◦ (upper panels), and zero-crossing analysis (lower panels). Note:

the symbols have the same notation of that in Figure 4.4.
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Figure 4.9: Free surface elevation time series collected by the moving arm at ϑ =

60◦ (upper panels), and zero-crossing analysis (lower panels). Note:

the symbols have the same notation of that in Figure 4.4.
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Figure 4.10: Free surface elevation time series collected by the moving arm at

ϑ = 90◦ (upper panels), and zero-crossing analysis (lower panels).

Note: the symbols have the same notation of that in Figure 4.4.
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Figure 4.11: Free surface elevation time series collected by the moving arm at

ϑ = 180◦ (upper panels), and zero-crossing analysis (lower panels).

Note: the symbols have the same notation of that in Figure 4.4.
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The Figures 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 show the free surface

elevation time series collected by means of the moving arm (upper panel),

and the ZC of the same time series (lower panel), at several angular posi-

tions (ϑ = 0◦, 15◦, 30◦, 45◦, 60◦, 90◦ and 180◦ respectively). Furthermore,

the position at which each time series has been collected is shown in the

sketch, placed in the lower right corner of each sub-panel; the solid black

markers identify the position of the generic wave gauge at the ith-release of

the landslide. It is remarkable to highlight that moving away from the gen-

eration area (i.e., both r and ϑ increase) wave amplitudes become smaller

and smaller. Frequency dispersion seems to play a role during the wave

propagation; this aspect will be quantitatively addressed in the following.

The algorithm seems to be still effective in detecting the wave properties.

Furthermore in this post-processing phase it was possible to discard totally

or partially the corrupted time series. Several time series were considered

to be too much noisy for using these in zero-crossing results; thus they have

been discarded. Otherwise some of these were considered to be noisy enough

for not being used in zero-crossing results, but not too much noisy for be-

ing used in catching the waves propagation properties (as showed in the

followings chapters). In the figures mentioned above the totally discarded

time series are identified by the red cross, the so-called partially discarded

ones are identified by the green dashed cross, while the missing ones (i.e.

so-called corrupting time series in the plots) are identified by black dashed

lines. Figure 4.12 shows the available sensors, i.e. the free surface elevation
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Figure 4.12: Sketch of the available sensors for both LS1 (left panel) and LS2

(right panel).
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time series that have been considered not to be discarded, for both LS1 (left

panel) and LS2 (right panel). A great number of instruments are available

for LS1; conversely, as far as LS2 is considered a great number of instruments

have been discarded.

4.3.2 Repeatibility

As described in chapter 3, some of the deployed sensors were kept in a fixed

position in order to verify the experiments repeatibility. The fixed gauges

were placed directly embedded on the conical island flank (RGs) and close

to the generation area (WGs). To check the experiments repeatibility the

tsunamis time series collected by the RGs have been used.

In Figures 4.13 and 4.14 the superpositions of all the run-up time series,

measured for each landslide release, are plotted. Each panel of the figures

refers to the measurements collected by a different RG. Figure 4.13 refers

to the LS1 experiments, while Figure 4.14 refers to the LS2 ones. From a

qualitative point of view it is possible to state that the experiments have,

globally, a good repeatability (both for LS1 and LS2). Comparing the sig-

nals represented in Figures 4.13 and 4.14 it is prominent that the waves

generated by LS1 are more repeatable than the ones generated by LS2. De-

spite this, some features of both tsunamis shows a poor repeatability (e.g.,

the second wave), as quantitatively showed in the following.

Figure 4.15 shows the results of standard zero-crossing analysis on the run-up

time series collected by means of RGs. The upper panel shows the maxi-

mum induced tsunami run-up (positive values) and minimum draw-down

(negative values) all around the island as a function of the dimensionless

distance s′ from generation area, defined as follows

s′ =
r0ϑ

b
, (4.11)

where r0 = 2.05 m is the radial distance that identifies the undisturbed

shoreline, ϑ is the angular position around the island and b = 0.40 m is the

landslide width. Positive values of s′ refer to experimental results observed

for LS1, negative ones to LS2 data. The four lower panels of Figure 4.15

show ZC results for the first four waves of the generated wave packet. The

markers refer to the first (circles), the second (squares), the third (diamonds)

and the fourth (triangles) wave respectively. The markers used in the upper

panel for maximum run-up and minimum draw-down identify which wave

of the packet induces it.

The experiments repeatibility, is addressed in the Figure 4.16. Each panel

shows the statistical parameters of run-up and draw-down of the first four

University of Roma Tre - Department of Engineering 42



waves, as a function of the dimensionless distance s′. The individual exper-

imental data are represented as black points, their mean values are identified

by blue segments and the confidence intervals (i.e., 95% confidence level) are

identified by red segments. Mean values and confidence intervals, evaluated

at each run-up gauge for both LS1 and LS2, are listed in Tables 4.2, 4.3, 4.4

and 4.5.

The quantitative analysis of the experimental repeatability confirms as it

has been previously mentioned qualitatively: the repeatibility of the exper-

iments is satisfactory. Both tsunamis generated by LS1 and LS2 models

show confidence intervals that are close to mean values, especially for the

first wave. However, it is clearly observable that when the wave run-up, or

wave draw-down, reaches its maximum, the repeatibility deteriorates. This

aspect was already highlighted by Di Risio et al. [2009b]. Therefore, it

is confirmed that small differences in the landslide energetic features (i.e.,

drop height) can lead to some differences in terms of maximum run-up and

minimum draw-down, i.e. on the envelope amplitude. The differences in en-

velope amplitude increase with increasing volume. It has to be stressed that

this aspect is intimately related to the dispersive features of the generated

waves that propagates along the coastline. Furthermore it can be observed

that:

� the confidence intervals of wave run-up are wider than the confidence

interval of wave draw-down;

� the confidence intervals are wider for the larger landslide model (i.e.,

LS2).
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Figure 4.13: Superposition of all the run-up time series (LS1).
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Figure 4.14: Superposition of all the run-up time series (LS2).
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Figure 4.15: Upper panel: maximum induced tsunami run-up and minimum

draw-down around the island as a function of s′. Lower panels:

run-up and draw-down of the first four waves respectively. Note:

positive values of s′ refer to LS1, while negative ones refer to LS2.
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Figure 4.16: Run-up and draw-down of the first four waves respectively: statisti-

cal estimate of the experimental repeatibility. Black points identify

run-up and draw-down. Blue lines refer to the mean values cal-

culated over the whole set of available landslide releases, for each

run-up gauge. Red lines represent the confidence intervals. Note:

positive values of s′ refer to LS1, while negative ones refer to LS2..
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LS1

GAUGES R
(1)
u 95% CI R

(2)
u 95% CI R

(3)
u 95% CI R

(4)
u 95% CI

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

1RG 11.73 ± 0.62 6.10 ± 1.04 2.38 ± 1.74 2.44 ± 0.36

2RG - ± - - ± - - ± - - ± -

3RG 10.88 ± 0.76 15.09 ± 1.41 4.58 ± 1.10 1.26 ± 0.70

4RG 5.16 ± 0.41 10.96 ± 1.32 3.58 ± 0.82 0.34 ± 0.66

5RG 3.74 ± 0.42 10.69 ± 1.35 6.81 ± 2.29 1.59 ± 2.53

6RG 2.41 ± 0.28 11.95 ± 0.74 8.02 ± 0.85 3.27 ± 0.49

7RG 1.67 ± 0.21 8.98 ± 0.57 7.75 ± 0.66 3.00 ± 0.61

8RG 1.13 ± 0.14 6.09 ± 0.56 10.59 ± 1.16 4.41 ± 0.59

9RG 0.89 ± 0.13 4.69 ± 0.25 9.44 ± 0.90 4.87 ± 0.83

10RG 0.67 ± 0.13 3.13 ± 0.31 7.16 ± 0.68 7.82 ± 0.78

11RG 0.49 ± 0.19 2.55 ± 0.29 6.79 ± 0.82 5.51 ± 0.63

12RG 0.38 ± 0.14 1.43 ± 0.21 5.68 ± 0.32 7.35 ± 0.62

Table 4.2: Mean values and confidence intervals of run-up (LS1).

LS1

GAUGES R
(1)
d 95% CI R

(2)
d 95% CI R

(3)
d 95% CI R

(4)
d 95% CI

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

1RG -18.14 ± 0.72 -3.60 ± 1.94 -2.10 ± 1.76 -1.40 ± 1.04

2RG - ± - - ± - - ± - - ± -

3RG -20.08 ± 0.44 -7.50 ± 1.07 -0.40 ± 0.54 -0.90 ± 0.42

4RG -11.95 ± 0.39 -6.20 ± 0.70 -0.70 ± 0.61 -0.60 ± 0.37

5RG -10.11 ± 0.50 -8.10 ± 0.72 -2.10 ± 1.14 -1.00 ± 1.04

6RG -7.20 ± 0.34 -9.90 ± 0.59 -4.70 ± 0.45 -1.20 ± 0.44

7RG -5.20 ± 0.31 -12.40 ± 0.64 -4.90 ± 0.57 -1.30 ± 0.35

8RG -3.70 ± 0.21 -8.90 ± 0.49 -5.30 ± 0.55 -3.10 ± 0.35

9RG -3.10 ± 0.20 -7.20 ± 0.40 -8.50 ± 0.66 -2.50 ± 0.52

10RG -2.20 ± 0.18 -5.60 ± 0.37 -6.90 ± 0.70 -4.90 ± 0.62

11RG -1.70 ± 0.16 -5.00 ± 0.37 -6.40 ± 0.52 -5.20 ± 0.57

12RG -1.20 ± 0.15 -3.60 ± 0.25 -6.30 ± 0.35 -7.00 ± 0.56

Table 4.3: Mean values and confidence intervals of draw-down (LS1).
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LS2

GAUGES R
(1)
u 95% CI R

(2)
u 95% CI R

(3)
u 95% CI R

(4)
u 95% CI

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

1RG 15.94 ± 1.05 7.48 ± 0.84 2.83 ± 0.68 2.51 ± 0.82

2RG 19.14 ± 1.12 14.69 ± 1.12 2.05 ± 0.88 1.48 ± 0.47

3RG 12.48 ± 1.40 14.55 ± 2.26 1.87 ± 1.87 2.38 ± 1.92

4RG 8.24 ± 1.13 14.14 ± 3.05 5.03 ± 3.02 2.71 ± 2.49

5RG 5.19 ± 0.48 13.99 ± 2.21 6.98 ± 1.46 1.49 ± 0.56

6RG 3.62 ± 0.93 16.20 ± 2.03 9.42 ± 1.74 2.08 ± 1.92

7RG 2.56 ± 0.20 16.87 ± 1.48 8.52 ± 1.59 3.25 ± 0.84

8RG 1.90 ± 0.30 13.500 ± 1.81 8.63 ± 1.07 4.17 ± 0.81

9RG 1.44 ± 0.25 7.36 ± 1.21 15.50 ± 1.38 6.11 ± 0.60

10RG 0.96 ± 0.28 5.46 ± 0.40 12.82 ± 1.61 1.09 ± 0.72

11RG 0.72 ± 0.22 3.43 ± 0.47 11.33 ± 1.31 7.72 ± 0.82

12RG 0.68 ± 0.13 3.47 ± 0.50 4.55 ± 0.99 7.49 ± 1.01

Table 4.4: Mean values and confidence intervals of run-up (LS2).

LS2

GAUGES R
(1)
d 95% CI R

(2)
d 95% CI R

(3)
d 95% CI R

(4)
d 95% CI

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

1RG -24.63 ± 1.71 -6.10 ± 1.48 -2.40 ± 0.55 -0.80 ± 0.46

2RG -24.62 ± 1.36 -5.60 ± 0.85 -0.50 ± 0.90 -1.20 ± 0.33

3RG -23.23 ± 1.57 -8.20 ± 1.30 -0.80 ± 1.32 -1.40 ± 1.72

4RG -18.08 ± 1.45 -11.03 ± 1.00 -2.10 ± 2.06 -2.10 ± 1.06

5RG -13.50 ± 0.76 -9.50 ± 1.03 -2.70 ± 0.98 -1.50 ± 0.38

6RG -10.43 ± 0.95 -9.00 ± 1.46 -3.60 ± 1.54 -1.60 ± 1.67

7RG -8.30 ± 0.58 -11.62 ± 1.08 -4.80 ± 0.43 -1.10 ± 1.03

8RG -6.90 ± 0.41 -16.17 ± 0.84 -7.50 ± 1.02 -2.90 ± 1.21

9RG -4.90 ± 0.34 -12.09 ± 0.84 -5.30 ± 0.87 -5.40 ± 0.80

10RG -3.40 ± 0.57 -9.30 ± 0.95 -6.30 ± 1.04 -1.20 ± 1.71

11RG -2.70 ± 0.27 -7.40 ± 0.46 -13.05 ± 1.20 -9.20 ± 0.73

12RG -2.20 ± 0.14 -4.30 ± 0.27 -5.80 ± 0.84 -11.68 ± 1.25

Table 4.5: Mean values and confidence intervals of draw-down (LS2).
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4.3.3 Wave features

Once the experimental repeatibility has been quantitatively estimated, by

analyzing the data of the fixed gauges (i.e., RGs), it is possible to use the

measurements collected by the sensors placed on the moving arm. These al-

low to analyze the free surface elevation time series in the whole experimental

domain, given the high spatial resolution of the measurements themselves.

Furthermore, the high density of the measurements in proximity of the shore-

line allows to better understand the trapping mechanisms of tsunamis that,

↑

t = 3.5s

↑

t = 4.5s

↑

t = 5.5s

↑

t = 6.5s

↑

t = 7.5s

↑

t = 8.5s

↑

t = 9.5s

↑

t = 10.5s

↑

t = 15.5s

Figure 4.17: Free surface elevation around the island at several time steps from

the landslide release. Note: in order to magnify the features of

the wave propagation, different color scales have been used for each

panel.
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as shown, propagate around the coast of the island. In the Figure 4.17 the

free surface elevation contour plots, evaluated at several time steps since the

landslide has been released, are represented. Each contour plot has been ob-

tained by linearly interpolating the free surface elevation, collected around

the island, at a given time step. It is shown that the spatial resolution of the

measurements is high enough to describe in depth the tsunamis propagation

around the island (both alongshore and in deep water area).

Figure 4.17 clearly shows that in the first phases, after the landslide impact,

the waves mainly propagate seaward (i.e., radiating waves), while, as the

time increases, it seems clear that the tsunami propagates alongshore and in-

undate the island coast. This suggests that tsunamis trapping mechanisms,

due to bathymetry, play a fundamental role in the propagation/inundation

phenomena. A detailed study of the physics of the propagation around the

island will be addressed in the next chapter. Finally, the high spatial resolu-

tion measurements provide an effective tool for gaining insight on the wave

propagation phenomena.

Run-up: volume influence

During the experiments two landslide models have been used, thus an anal-

ysis aiming at evaluating the influence of landslide volume on the generated

waves has been carried out and presented in Figure 4.18. The upper panel

shows the maximum induced tsunamis run-up (red markers refers to the

run-up induced by LS1, while the green ones refers to the run-up induced

by LS2) and minimum draw-down all around the island as a function of the

dimensionless distance s′ from generation area (s′ = r0θ/b). The four lower

panels show the run-up and draw-down of the first four waves obtained by

ZC. The influence of landslide volume is almost clear: the larger the volume,

the larger the induced run-up and draw-down (in absolute value). However,

it has to be stressed that although the thickness of the LS2 is twice than the

LS1 the induced tsunamis run-up is not two times larger. Consistently with

Di Risio et al. [2009b] and Lynett and Liu [2005], the maximum run-up and

the minimum draw-down (upper panel in Figure 4.18) first increase close to

the generation area and then they decrease as the distance from the gen-

eration area grows. An extended region is observed to be characterized by

almost constant maximum wave run-up (i.e., 4<s’<10) and minimum wave

draw-down (i.e., 4<s’<10). Lynett and Liu [2005] numerically demonstrated

that the wave propagation in this area (i.e., far field) is dominated by the

so-called edge-waves [Ursell , 1952], as shown in the following chapter.

Furthermore, by analyzing the individual waves of the run-up packet other
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Figure 4.18: Comparison between the run-up and draw-down generated by the

two landslide models. Upper panel: maximum induced tsunami run-

up and minimum draw-down around the island as a function of s′.

Lower panels: run-up and draw-down of the first four waves. Note:

red markers refer to LS1, while green ones refer to LS2).

features can be observed. As far as the first wave is concerned (see left upper

panel of the Figure 4.18), a significant difference between the run-up (and

draw-down) induced by the two landslides can be seen only near the gener-

ation area (i.e., 0<s’<2); as the distance from the generation area grows the

run-up amplitudes, generated by the two landslides, tend to become similar

(in absolute value). As far as the second wave is concerned (see right upper

panel of the Figure 4.18), it is possible to observe that the main differences,

between the ZC results of LS1 and LS2, occur quite far from the generation

area (i.e., 6<s’<10), while in the remaining areas the ZC results are similar.

Analogous features can be seen if the third wave is considered.
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Wave field around the island

As far as the free surface elevation time series collected around the island are

concerned a more complete picture of the overall wave field can be depicted.

Figures 4.19, 4.20, 4.21 show maximum wave crest and trough amplitudes

of the first (circle markers), second (square markers) and third (diamond

markers) wave respectively, measured at different radial distances (r) from

the undisturbed shoreline, as a function of the angular position (ϑ). Solid

markers indicate the data measured at the shoreline (i.e., run-up and draw-

down). Red markers refer to the experiments carried out by using LS1, while

green ones refer to the ones carried out by using LS2. The angular position

ϑ is used instead of dimensionless variable s’ (= rϑ/b), as for constant ϑ

(i.e., cross section) the value of s’ is not constant.

As far as the first wave is concerned (see Figure 4.19), it can be observed

that the maximum wave crest and trough amplitude is observed in front of

the generation area (at r = 2.57 m for LS1 and at r = 2.77 m for LS2). Fur-

thermore, the maximum crest and trough amplitude occurs at ϑ = 0◦. As

the angular distance from the generation area increases (i.e., ϑ > 15− 20◦),

it can be seen that for fixed angular position the maximum crest and trough
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Figure 4.19: Comparison between the maximum wave crest and trough ampli-

tudes (red and green empty markers) of the first wave, measured at

several radial distances r as a function of the angle ϑ, and run-up

and draw-down (red and green solid markers).
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Figure 4.20: Comparison between the maximum wave crest and trough ampli-

tudes (red and green empty markers) of the second wave, measured

at several radial distances r as a function of the angle ϑ, and run-up

and draw-down (red and green solid markers).

amplitude occurs at the island coast (r = r0). Moreover, as the distance

from the coast (i.e., r), or the distance from the generation area (i.e. rϑ),

increases the wave crest and trough amplitudes decrease monotically.

Similarly, by considering the second wave (see Figure 4.20), the maximum

wave amplitudes occur in front of the generation area and, as the angular

distance from the generation area increases (i.e., ϑ > 15 − 20◦), for fixed

angular position the maximum wave amplitudes occur at the coast (r = r0).

However a more detailed inspection reveals that there is a spatial shift of

the amplitudes, i.e. the maximum wave amplitudes at the coast (r = r0)

occur at higher values of angular position than those at which occur the

ones observed as moving away from the coast (i.e., r > r0). Moreover, the

maximum amplitudes are not a monotonic function of angular position (like

the first wave crest and trough amplitudes are), since they reach the maxi-

mum value far from the generation area.

A similar behavior is found also when the third wave is considered (Fig-

ure 4.21). In this case the maximum wave amplitudes, which occur at the

shoreline (r = r0), take place far from the generation area. Therefore, these

features suggest that the overall wave propagation around the island seems
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Figure 4.21: Comparison between the maximum wave crest and trough ampli-

tudes (red and green empty markers) of the third wave, measured

at several radial distances r as a function of the angle ϑ, and run-up

and draw-down (red and green solid markers).

to be governed by frequency dispersion, as pointed out by Di Risio et al.

[2009b], and wave trapping mechanisms.

Furthermore the Figures 4.19, 4.20, 4.21 can be heuristically used for the

experimental identification of the areas on which the wave trapping mecha-

nisms become noticeable. Lynett and Liu [2005] argued that, for a straight

coast, the “near-field” is commonly identified as the region on which the wave

field is dominated by source-specific waves, while the “far-field” is defined

as the region along the shoreline on which edge waves become important,

i.e., where trapped or almost-trapped wave modes become significant. This

split-up is of particular interest along the shoreline (both from a scientific

than from a technical point of view), since the comprehension of the propa-

gation/inundation mechanisms is essential in order to design and realize an

early warning system. The experimental identification of the areas on which

the wave trapping mechanisms are noticeable is showed in the Figure 4.22.

The beginning of these areas has been identified as the angular position ϑ

at which the maximum run-up and draw-down amplitude is greater than

the maximum wave crest and trough amplitude measured in front of the

coastline, evaluated at the same angular position. This limit has been iden-
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Figure 4.22: Experimental identification of the limit between “near-field” and

“far-field” for the first (upper panels), second (middle panels) and

third wave (lower panels). Note: left panels refer to the wave crests,

while right ones refer to the wave troughs. Blue dashed lines identify

the theoretical limit as from Lynett and Liu [2005].

University of Roma Tre - Department of Engineering 56



x (m)

y
(m

)

 

 

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

0

7

14

21

28

x (m)

y
(m

)

 

 

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

0

4

8

12

16

x (m)

y
(m

)

 

 

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−58

−44

−29

−14

0

x (m)

y
(m

)

 

 

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−12

−9

−6

−3

0

Figure 4.23: Spatial distribution of crest and trough amplitudes around the is-

land. Left panels: first wave. Right panels: second wave. Upper

panels: wave crests. Lower panels: wave troughs. Note: colorbars

are expressed in mm.

tified for the wave crest (left panels) and trough (right panels) of the first

three waves of the packet (upper panels: first wave, middle panels: second

wave, lower panels: third wave), and of course for both the landslide models

(red lines refer to LS1, while green ones refer to LS2). It has to be noticed

that the above mentioned experimental limit, in terms of the dimensionless

abscissa s′, varies from 1.3 (when the first wave is considered) to 5.7 (when

the third wave is considered). These values are in line with those found by

Lynett and Liu [2005] for a straight coast (represented by the blue dashed

lines in the Figure 4.22).

A more detailed description of wave pattern can be addressed by looking

at the spatial distribution of crest and trough amplitudes around the island.

Figure 4.23 shows the spatial distribution of the wave crest (upper panels)

and trough amplitudes (lower panels) of the first (left panels) and second

wave (right panels) obtained by linearly interpolating the experimental data
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Figure 4.24: Comparison between experimental data of wave crest and trough

amplitudes of the first wave, generated by LS1, as a function of the

angular distance ϑ and the fitting ones.

obtained by using LS1. As far as the wave crest and trough amplitudes of

the first wave are concerned (left panels), the highest amplitudes occur in

front of the generation area, as pointed out by the Figure 4.19. Furthermore

in Figure 4.23 it is shown that the energy of the first wave (both wave crest

and trough) seems to be channelled in a direction that is parallel to the

one along which the landslide travels, while as the angular distance ϑ from

the generation area grows the wave crest and trough amplitudes rapidly de-

crease.

To better gain insight on these features, Figure 4.24 shows the wave crest

and trough amplitudes of the first wave, generated by LS1, as a function

of the angular distance ϑ (note that the experimental data are the same

of those showed in Figure 4.19). Given the fast decay of the wave ampli-

tudes for increasing ϑ, an exponential function is supposed to be suitable

to describe the evolution of the first wave with the angular distance. This

function is defined as follows

ηu,d(r, ϑ) = η0(r)e
−B(r)ϑ, (4.12)

where both η0 and B are function of the radial distance r. The experimental

data (both wave crest and trough amplitudes) have been processed by means
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Figure 4.25: Fitting parameters of the equation (4.12) as a function of the radial

distance r. Left panel: parameter η0 estimated for wave crest a

trough. Left panel: parameter B estimated for wave crest (diamond

markers) and trough (square markers).

of a Gauss-Newton non-linear optimization method to estimate the fitting

parameters of the equation (4.12). The results of the fitting are represented

in Figure 4.24 with black lines, while experimental data are identified by

red markers. The fitting parameters of the equation (4.12) are shown in

the Figure 4.25 as a function of the radial distance r. It is worth to high-

light that neither η0 nor B are monotonic functions. Given that a good

agreement is found when comparing the experimental data with the fitting

ones, saving for low radial distances, we can state that the first landslide-

generated tsunamis wave is strongly directive, i.e. maximum wave crest and

trough amplitudes occur in front of the generation area and, as ϑ increases

the above mentioned quantities rapidly decrease.

By observing the spatial structure of the second wave (right panels of the

Figure 4.23) other interesting features can be catched. As shown in Figures

4.23 and 4.24, the maximum amplitude of the first wave crest occurs close

to the impact point, while the trailing first wave trough amplitude and,

in particular, second wave crest and trough amplitudes occur at increas-

ing distance, in front of the generation area. This aspect can be catched

in more details looking at the time series collected close to the generation

area. Along the directions close to the one along which the landslide trav-

els (i.e., θ = 0◦, left panels, and θ = 10◦, middle panels, of Figure 4.26),

the first wave exhibits the highest crest and trough amplitudes close to the

impact point. As the distance increases the crest and trough amplitudes

of the second waves become the highest. Actually the first wave crest and

trough can be interpreted as a near-field effect of the wave generation, being

the crest generated by the piston-like generation mechanism occuring when

the landslide enters the water and the trough generated by the rebound of
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Figure 4.26: Free surface elevation time series collected by means of the moving

arm at three angular positions (ϑ = 0, 10, 20◦) and at four radial

distances (r = 2.57, 3.07, 3.47, 3.87m).

water and by the interaction of landslide tail with the free surface. As θ

increases (i.e., θ = 20◦, right panels of Figure 4.26) the effects of the genera-

tion mechanism becomes less important and the wave pattern is governed by

propagation mechanisms. It is important to stress that only when the prop-

agation mechanisms become important, the maximum amplitudes occur at

the coast as already observed in the case of straight coast by Lynett and Liu

[2005] and Di Risio et al. [2009a]. This is due to frequency dispersion which

characterizes the propagation of the seaward radiated waves as well as the

propagation of the ones that travel alongshore. Indeed, by observing the

second wave (right panels), a large part of energy seems to be trapped by

the bathymetry at the shoreline. The maximum amplitudes of the second

wave crest and trough occur along the shoreline as the distance (ϑ) from the

generation area grows. Furthermore, it is evident a spatial shifting between

the position at which the maximum wave crest occurs with respect to the

one at which the minimum trough takes place. As pointed out by Di Risio
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Figure 4.27: Spatial distribution of crest and trough amplitudes around the is-

land. Left panels: third wave. Right panels: fourth wave. Upper

panels: wave crests. Lower panels: wave troughs. Note: colorbars

are expressed in mm.

et al. [2009b] this is clearly due to frequency dispersion, that dominate the

propagation phenomena along the coastline.

Trapping and frequency dispersion phenomena are confirmed, and even em-

phasized, if one takes into account Figure 4.27. This figure shows the spatial

distribution of the wave crest (upper panels) and trough amplitudes (lower

panels) of the third (left panels) and fourth wave (right panels) obtained

by linearly interpolating the experimental data obtained by using LS1. The

third and the fourth waves exhibit their maximum values at the shoreline.

The maximum wave crest and trough amplitude of the fourth wave occurs

as the angular position ϑ, from the generation area, is almost 180◦ (i.e., the

rear side of the island).

Finally, to better gain insight on the wave crest and trough amplitudes fea-

tures around the island the Figures 4.28 and 4.29 are presented. Figure 4.28

shows the contour plot of the maximum wave crests (left panel) and the min-
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Figure 4.28: Spatial distribution of maximum crest (left panel) and mimimum

trough (right panel) amplitudes around the island. Note: colorbars

are expressed in mm.

imum wave troughs (right panel). Figure 4.29 shows the contour plot of the

maximum “wave height” around the island, evaluated in terms of absolute

value (left panel) and percentage (right panel). The maximum wave height

around the island has been obtained as the sum of the maximum wave crest

and trough amplitudes. Note that it is not to be intended as the height

of the maximum wave of the tsunami packet, rather it has to be intended

as the envelope of the maximum and minimum free surface elevation. It is

worth to highlight that in the right panel of the Figure 4.29 also the contour

lines of the wave height have been provided. These are indeed very useful to
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Figure 4.29: Spatial distribution of maximum “wave height” (i.e., envelope of

the maximum and minimum free surface elevation) around the is-
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evaluate, although in a qualitative manner, the wave trapping around the

island. The contour lines show that when the angle ϑ is equal to 90◦ the

20% of the wave height is still present at the shoreline. While, when the

angle ϑ is equal to 180◦ this quantity decreases up to the 10%.

4.3.4 Wave periods and arrival times

The wave periods have been estimated by means of both time domain (zero-

crossing analysis) and frequency domain (spectral analysis) standard tec-

niques.

As far as the run-up time series are considered, Figure 4.30 shows the pe-

riod of the first four run-up waves as a function of the dimensionless distance

s′. Red markers refer to LS1, while green ones refer to LS2. It is worth to

cite that wave periods, generated by both landslide models, are quite simi-

lar, especially if the first two waves are considered (upper panels). Indeed,

this aspect is no longer surprising, since past researches (e.g., Wiegel [1955])

demonstrated that landslide-generated tsunamis wave period is mainly af-

fected by the landslide length and the slope of the beach, rather than the

thickness of the slide. Furthermore it has to be noticed that wave periods

tend to slowly grow as the distance from the generation area increases.

It is also interesting to evaluate the mean arrival times of the run-up waves

along the shoreline. Arrival times are showed in Figure 4.31 as a function
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Figure 4.30: Period of the first four run-up waves. Note: red markers refer to

LS1, while green ones refer to LS2.
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Figure 4.31: Mean arrival times of the run-up waves along the shoreline as a func-

tion of s′. Note: lower black markers refer to the time at which the

tsunami begins; red markers identify the time at which the maxi-

mum of the packet occurs; upper black markers identify the time at

which the fifth wave ends

of the dimensionless distance s′. Positive values of s′ refer to experimental

results observed for LS1, negative ones are referred to LS2 data. For each

run-up gauge (i.e., at a fixed value of s′) the lower black markers identify

the time at which the tsunami begins, the red markers identify the time

at which the maximum of the packet occurs, and finally the upper black

markers identify the time at which the fifth wave ends. It is worth to high-

light that as s′ increases the time at which the maximum of the wave packet

occurs, increases as well; in particular this arrival time tends to move from

the arrival time of the first wave toward the ones of the following waves

(i.e., second, third, etc.). This feature confirm that frequency dispersion is

prevalent in wave propagation alongshore.

As far as the individual first three waves of the generated train are con-

cerned, Figure 4.32 shows the wave periods of the waves measured by means

of both the moving arm and the run-up gauges, as a function of the dimen-

sionless variable s′. The black points refer to the wave periods of the waves

measured by the moving arm, while the solid markers (green and red) refer

to the wave periods of the run-up waves. It is almost clear that the first wave

period, even if rather dispersed, increases as the distance from generation

area grows. The periods of the trailing waves exhibit lower dispersion and it

is possible to observe clear differences between radiating waves period and

the period of the waves that propagate along the coast of the island, with

the former lower than the latter. It can be argued that two different wave

system occurs and each of them obeys to their own dispersion relation.
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Figure 4.32: Individual wave periods of the first three waves measured by the

moving arm and the run-up gauges. Note : black points refer to the

wave periods of the waves measured by the moving arm, while the

solid markers (green and red) refer to the wave periods of the run-up

waves.
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4.4 Preliminary concluding remarks

In this chapter the results of a new set of three-dimensional experiments

reproducing tsunamis generated by subaerial landslides sliding down the

flank of a conical island have been showed. The new experimental investiga-

tion was carried out by employing a special movable system that allows to

achieve high spatial resolution, comparable to the resolution of numerical re-

sults. Then, the experimental data are intended to be useful to gain insight

about the physical phenomenon at hand and to be used as a benchmark

for mathematical models validation. A detailed analysis of landslide mo-

tion were performed and hydrodynamic coefficients were estimated on the

basis of observed landslide displacements in order to provide reliable tools

to define boundary conditions useful for models validation. Furthermore a

measure of the data uncertainty was estimated.

Experimental analysis on free surface elevation shows that near the impact

point the wave features are dependent upon the near-field wave generation

process and the highest wave amplitude occurs in front of the impact point.

When propagation mechanisms become the governing phenomena, the high-

est wave amplitudes occur at the coast. It is almost clear that two different

system of waves are generated. The first one propagates along the coast,

the second one radiates offshore. Wave periods, celerities and lengths of

the two system are rather different. Close to the coast wave periods are

higher and wave celerities are lower if compared to the radiating waves. The

landslides thickness affects significantly only wave amplitudes, whilst wave

periods show little dependence upon landslide thickness.
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Chapter 5

Wave propagation around

the island:

wavenumber-frequency

analysis for detecting spatial

structures of the wave field

5.1 Introduction

The experimental results shown in chapter 4 suggest that tsunamis trap-

ping mechanisms can play a role during the propagation along the island

coast. The knowledge of trapping mechanisms is essential to adequately

catch the physics of the problem and to properly design effective early warn-

ing systems. In this chapter an analysis of the physics of the propagation

of landslide-generated tsunamis around a conical island is provided. As

shown, we focus on the experimental identification of the dispersion relation

followed by the propagating waves.

As far as landslide generated-tsunamis are concerned, the wave generation

is likely to occurr in shallow water regions, thus the interaction between the

waves and the sloping sea bottom plays immediately a relevant role. The

waves can be refracted by the interaction with the bottom, and trapping

mechanisms, like those typical of edge waves, can occur. Trapping phenom-

ena of tsunamis have been observed in nature on the basis of measurements,

in analytical and numerical models, in laboratory experiments, as briefly

reviewed in the following.
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As far as field measurements are concerned, Gonzalez et al. [1995] showed

that the 25 April 1992 Cape Mendocino earthquake generated a tsunami

characterized by both coastal trapped edge waves and non-trapped tsunami

modes. Coastal tide-gauge signals were consistent with the 0th-order edge

waves mode. Neetu et al. [2011] observed from tide-gauge records collected

during the 27 November 1945 Makran tsunami, that large waves persisted

along the Makran coast and at Karachi for several hours after the arrival

of the first wave. Also Yamazaki and Cheung [2011], on the basis of mea-

surements and numerical tools, found that, during the 2010 Chile tsunami,

trapped waves occured along the coastline. The tsunami firstly propagated

away from the rupture zone in radial direction; then the continental slope

refracted and trapped the waves, initially as progressive edge waves on the

shelf and, after reflection at headlands and continental shelf boundaries, a

number of standing and partial standing wave systems occurred along the

coast. Tsunami can also be trapped when, coming from offshore, propagate

toward the coast, as pointed out by Fujima et al. [2000]. Similar trapping

mechanisms were also reported during the 2009 Samoa tsunami by Roeber

et al. [2010].

Evidences of edge waves tsunamis can also be found in analytical, numerical

and laboratory models. Sammarco and Renzi [2008], and later Renzi and

Sammarco [2012], demonstrated that landslides occurring at a straight slop-

ing coast generate waves that travel along the shoreline as edge waves; their

analytical method suggests that perfect wave trapping occurs. Lynett and

Liu [2005], by applying a numerical model to reproduce landslide tsunamis

at a coast, found that edge waves dominate the physics of the run-up in

the far field. The occurrence of trapped modes in the far-field, where edge

waves dominate the wave pattern, can lead to secondary run-up peaks (even

larger than the peak immediatly landward of the slide).

As far as laboratory models investigations are concerned, Yeh [1985], and

few years later Chang [1995], have performed experiments reproducing edge

waves generated at the coast of a straight coast, by using the same ex-

perimental set-up. A special wave paddle hinged offshore and swinging in

the longshore direction, was used to generate edge waves packets. Liu and

Yeh [1996] described the generation theory of such laboratory set-up; it was

found that the wave field is dominated by the 0th-order edge waves mode.

Liu et al. [1998] applied spectral analysis to the same laboratory records

and found a combination of several progressive edge waves modes. They

pointed out that these waves are frequency dispersive (as demonstrated by

Yeh [1987]) and that 0th-order mode dominate in the lower frequency range,

while higher modes dominate in higher frequencies. Di Risio et al. [2009a]
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carried out a series of three-dimensional experimental works aimed at repro-

ducing the generation of impulsive waves by semi-elliptical landslides sliding

down along a straight sloping coast. Based on experimental findings, they

confirmed that landslide-generated waves, which propagate along the shore-

line, are frequency dispersive and remain trapped near the coast itself.

The research cited so far, mainly deals with edge waves at plane and straight

coasts. As far as non rectilinear coast is concerned, Smith and Sprinks

[1975] showed, by using the asymptotic solution of Smith [1974], that trap-

ping phaenomena, in general, and edge waves in particular, can occur at a

conical island. Tinti and Vannini [1994, 1995] studied the wave trapping

mechanism around a conical island using an analytical model. Similarly

to the work of Smith and Sprinks [1975], Tinti and Vannini [1994, 1995]

considered waves coming from offshore, i.e. not generated directly at the

coast. It was found that a local system of edge waves, rotating around

the island, can develop. Renzi and Sammarco [2010], using an analytical

model, demonstrated that landslide tsunamis, generated at the coast of a

conical island, propagate along the coastline in a form similar to that of edge

waves. However they are not perfectly trapped by the bathymetry, as indeed

happens for a straight coast [Sammarco and Renzi , 2008], and the energy

gradually radiates toward the open sea. It is important to stress that Renzi

and Sammarco [2010] do not identify which edge wave mode is prevalent

in the wave propagation alongshore, and no explicit frequency dispersion

relation is provided by their theory.

The knowledge of the trapping mechanisms of tsunamis by the bathymetry,

is of special scientific and technical interest. First, the trapping mechanism

governs the celerity at which the waves propagate along the coast. Second,

trapping mechanisms can induce high waves along the coast, also at very

large distances from the tsunamigenic source, since the wave energy does

not radiate toward the open sea. Third, the effect of the bathymetry can

induce the waves to travel around small islands, attacking areas geographi-

cally sheltered by the tsunami [Smith and Sprinks, 1975; Briggs et al., 1995;

Tinti and Vannini , 1994, 1995; Renzi and Sammarco, 2010].

In this chapter we focus on identifying the propagation and trapping mech-

anisms of the landslide-generated tsunamis that are triggered directly at the

coast of a conical island. In order to shed light on these phenomena we

apply the so-called wavenumber-frequency analysis (hereinafter k-f), which

allows to evaluate the properties of a geophysical signal, measured by a spa-

tial array of sensors, in the wavenumber-frequency plane.

The k-f has been used, although not frequently, to study coastal phenomena.

Huntley et al. [1981] used the k-f, deploying 42 sensors over an area of 0.26
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km2, on a natural beach in California; they were able to identify progressive

edge waves activities. Oltman-Shay et al. [1989], Dodd et al. [1992], Ozkan-

Haller and Kirby [1999], using the data collected during the SUPERDUCK

field experiment [Crowson et al., 1988], applied the k-f aiming at studying

the shear instabilities of the longshore current. Holland and Holman [1999]

used this technique on 26 swash time series (spaced every 10 m in the long-

shore direction) obtained by sampling video recordings of swash motion on

a natural beach.

We apply the k-f to the laboratory experiments described in chapters 3 and

4 [Di Risio et al., 2009b; Molfetta et al., 2010]. Note that only the exper-

imental data collected by using LS1 have been used for the k-f. As shown

later, this analysis needs high space-resolution data. Since a great number

of measurements, with a proper spatial-resolution, are available for the LS1

model only, this implies that only this data are suitable to be processed

by this kind of technique. In order to identify the dispersion relation fol-

lowed by the waves that, travelling around the island, inundate the coast,

the one-dimensional k-f has been applied to the shoreline run-up time se-

ries, collected by Di Risio et al. [2009b] along the coast of the island. The

analysis has been applied to the records, and the comparison of the results

with theoretical frequency dispersion relations allows to understand what

are the dominant propagation mechanisms. Furthermore a comparison be-

tween theoretical and experimental phase and group celerity of the waves

travelling around the island has been carried out.

Moreover the two-dimensional k-f has been applied to the experimental data

described in the chapter 4 [Molfetta et al., 2010]. Molfetta et al. [2010], by

using the same experimental set-up of Di Risio et al. [2009b], performed a

new set of experiments. As shown in chapters 3 and 4 a new acquisition tech-

nique allowed to obtain a very high-space resolution dataset. Thus a great

number of free surface elevation time series collected around the island have

been used to gain insight on the trapping mechanisms of the tsunamis.

The chapter is structured as follows. After this introduction, the next sec-

tion describes in depth the basics of the k-f. Then results and discussions

are presented. Concluding remarks close the chapter.

5.2 Wavenumber-frequency analysis (k-f)

The k-f has been widely used in geophysics. It can be applied to any geo-

physical signal measured by a spatial array of sensors (one-, two- or three-

dimensional). The accuracy of the results depends on the spatial structure

University of Roma Tre - Department of Engineering 70



of the array (e.g. shape and extension of the array, minimum and maximum

distance between two sensors, etc.) related to the properties of the measured

signals.

This analysis is often conceptually divided into two types or techniques: the

high-resolution method [Capon, 1969], and frequency-domain beamforming

method [Lacoss et al., 1969]. In this work the frequency domain beamform-

ing method has been used. A brief description of this method is given in

the following; the reader is referred to Yoon [2005] for further details.

The purpose of the k-f is to estimate the wavenumber-frequency spectral

density P (k, f) (i.e. the steered response power spectrum). Given the time

series acquired by a spatial array of M sensors, placed at known positions

xm = [xm, ym] (where m = 1, ...,M) in a two-dimensional space, the steered

response power spectrum (hereinafter SRPS), for a specific frequency f =

f0, is given by the following relationship

P (k, f0) = eHWRWHe. (5.1)

e is a steering vector, function of the wavenumbers vector k = (kx, ky),

W is a diagonal matrix that contains the shading weights wm, R is the

spatio-spectral correlation matrix and (·)H denotes the Hermitian transpose

operator. It is possible to define the steering vector as follows

e(k) = [exp(−ik · x1), ..., exp(−ik · xM)] , (5.2)

while the diagonal matrix W can be expressed as

W =

w1 ... 0
...

. . .
...

0 ... wM

 , (5.3)

where each term wm represents the shading weight for the genericmth sensor.

In this work the shading weights are set equal to 1 (as suggested by Zywicki

and Rix [2005]). The spatio-spectral correlation matrix R(f0), for a given

frequency, is given by the following relationship

R(f0) =

G11(f0) ... G1M (f0)
...

. . .
...

GM1(f0) ... GMM (f0)

 , (5.4)

where each element Gij(f0) represents the cross-power spectrum between

the sensors i and j (where i, j = 1, ...,M). The cross-power spectrum is

defined as

Gij(f0) = S∗(xi, f0)S(xj, f0), (5.5)
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where the generic element S(xm, f0), contained in the following column

vector

S(f0) = [S(x1, f0), ..., S(xM, f0)] , (5.6)

represents the element corresponding to the frequency f = f0 of the Fourier

Transform of the signal measured at the mth sensor and (·)∗ denotes its

complex conjugate.

The accuracy on estimating the wavenumber-frequency spectral density de-

pends on the spatial structure of the array, compared to the properties of

the signal. It is possible to define a wavenumber resolution ∆k for a linear

array as

∆k =
2π

D
, (5.7)

where D is the extension (or aperture) of the array. Of course a high

wavenumber resolution allows to isolate accurately two waves with adjacent

wavenumbers. Furthermore spatial aliasing phenomena may occur. In order

to avoid it the minimum spatial lag dmin between two adjacent sensors has

to be smaller than a half of the smallest wavelength of the measured signal.

Thus it is possible to define the largest wavenumber that can be measured

without spatial aliasing. This is the Nyquist wavenumber kN , defined for

linear array as follows

kN =
π

dmin
. (5.8)

For a fixed number of sensors there is a trade-off between spatial aliasing

and wavenumber resolution, that (in this case) are substantially competing

objectives. Anyway the use of linear array with irregularly spaced sensors is

one means of achieving a good balance between these two sampling issues.

Although the technique is strictly valid for stationary processes, it has been

applied to transient signals (e.g., Capon [1969], Gupta et al. [1990a, b]),

similarly to those considered in this work.

5.3 Description of the k-f features

As earlier mentioned, the k-f is based on spatial measurements of propa-

gating wave signals collected at some specific locations. As far as spatial

sampling techniques are concerned, similarly to the standard time sampling

ones, several issues can arise. In this section a brief overview of the so-called

“spatial sampling issues” is given. A more detailed and exhaustive descrip-

tion can be found in the work of Yoon [2005], to which we refer to describe

some of the main spatial sampling issues.
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In principle a perfect spatial sampling of propagating wave signal implies

continuous spatial measurements; but in practice, only a finite number of

sensors is used at specific locations. This section aims at evaluate the effects

that finite sampling in space causes on the k-f results. As shown in this sec-

tion, the properties of the sensors array, compared with the features of the

wave signal to be measured (e.g., wavelenght, wave period, etc.), influences

the k-f results in terms of identification of the signal properties themselves.

In order to better comprehend the so-called spatial sampling issues it is use-

ful to show the following dissertation (see pp. 56-57 of the work of Yoon

[2005] for an exhaustive description). If a one dimensional signal η(x, t)

that propagate along x direction is considered, it is possible to describe the

spatial sampling with the following function

z(x, t) = w(x)η(x, t), (5.9)

where w(x) is a function that described the spatial array of sensors in x

direction, which can be defined as follows

w(x) =

{
1 if 0 ≤ x ≤ D
0 otherwise

. (5.10)

Thus it is possible to define the Fourier Transform of z(x, t) as the convolu-

tion between the new functions W (k) and S(k, t) that represent the spatial

Fourier Transfoms of w(x) and η(x, t), respectively. This new quantity is

defined as follows

Z(k, t) = W (k) ∗ S(k, t). (5.11)

In spatial signal processing, the Fourier Transfom W (k) of the spatial ar-

ray w(x) is called the “array smoothing function” (hereinafter ASF). It is

demonstrated (see Yoon [2005]) that as the array apertureD increases, W (k)

becomes similar to the impulse function δ(k) and Z(k, t) approximates ade-

quately the transform of the original signal S(k, t). In other words the ASF

is a filter that magnifies the transform of a signal which is measured by a

spatial array of sensors .

The ASF W (k), by following the approach of [Johnson and Dudgeon, 1993],

is defined as follows

W (k) =

M∑
m=1

wme
ikxm , (5.12)

where M is the number of sensors in the array and wm is the shading weight

for the mth receiver. Thus, as earlier shown, the ASF represents the Fourier

Transform of a discrete spatial window. If a perfect sampling is desidered
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the array smoothing function should be an impulse function. In practice

the spatial data collection is performed in a finite manner; thus the effects

of finite spatial sampling have to be considered in order to evaluate the

performance of the k-f. The array smoothing function W (k), along with

the wavenumber resolution ∆k and the Nyquist wavenumber kN , which is

related to the “spatial aliasing”, can be intended as parameters that are suit-

able to characterize the effectiveness of the array in measuring the signal.

Consequently these quantities allow to estimate the robustness of the k-f.

As shown in detail in the following, the shape of the ASF allows to evaluate

the effectiveness of the spatial sampling. The array aperture influences the

value of the wavenumber resolution ∆k (see the equation (5.7)), which is

equal to the half of the mainlobe width of the ASF. Furthermore, the so-

called spatial aliasing, that depends on the minimum spatial lag dmin (see

the equation (5.8)) between adjacent sensors of the array, can be referred to

the sidelobes height of the ASF.

In the following, several explaining examples are considered in order to in-

vestigate the spatial sampling issues, and the k-f behaviour.

5.3.1 Spatial sampling issues: 1D k-f

In this section the spatial sampling issues, related to the one-dimensional k-f

analysis, are shown. The properties of the ASF (i.e., the so-called mainlobe

width and sidelobe height), along with the capability of the one-dimensional

k-f in identifying the dispersion relation followed by the propagating waves,

are shown in the following.

ASF: mainlobe width

As previously described, the wavenumber resolution ∆k is related to the

array aperture D (i.e., the extension of the sensors array), and it is defined

as the half of the mainlobe width of the array smoothing function W (k). In

Figure 5.1 an example of one-dimensional k-f analysis is provided. A one-

dimensional array, that is made-up of a fixed number M of equally spaced

sensors (i.e., M = 30), is used to measure an ideal wave signal that propagate

in space along the x axis. The wave signal η(x, t) is defined as follows

η(x, t) = a cos (kx− ωt+ φ), (5.13)

where the angular frequency ω is 2.0944 rad/s, the amplitude a is 0.01 m,

and the phase φ has a constant value equal to 0. It is assumed that the waves

are propagating on a constant depth h = 100 m, and follow the dispersion
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relation as for the linear wave theory:

ω2 = g k tanh (kh) . (5.14)

Thus the wavenumber k used in the (5.13) is 0.4471 rad/m.

In this example the influence of the array aperture D is evaluated. As men-

tioned, the number of sensors has been kept fixed, while the array aperture

has been varied (D = 50, 100, 200, 400 m; see the legend of Figure 5.1). It

is shown that as the array aperture increases, then the mainlobe width of

the ASF becomes closer. This implies an improvement of the wavenumber

resolution ∆k. However, considering that the number of sensors is fixed, it

is clear that as D increases, the spatial lag dmin between two adjacent sen-

sors increases as well. This allows to obtain a smaller Nyquist wavenumber

kN ; thus also the features of the spatial aliasing (i.e., occurrence of sidelobe
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Figure 5.1: Array smoothing functions for four array apertures D. Note: the

number of sensors is fixed and equal to 30.
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Figure 5.2: Steered response power spectra. The gray line identifies the linear

waves dispersion relation. Note: the number of sensors is fixed and

equal to 30.

peaks) can be seen in Figure 5.1. As D is equal to 200 m, spurious peaks

occur in the wavenumber domain of the ASF (see lower panels of Figure

5.1).

Figure 5.2 shows the SRPS, which is the result of the k-f, obtained for each

of the four investigated arrays. If the array aperture increases, then the

horizontal spreading (in the wavenumbers domain) of the SRPS drescreases

around the exact wavenumber k of the signal, i.e. the k-f identifies more

precisely the proper pair wavenumber-frequency that characterizes the prop-

agating signal. Accordingly to this, the dispersion relation followed by the

waves is univoquely identified. Of course when D is equal, or greater, to

200 m, spatial aliasing occurs; spurious peaks, related to those of the ar-

ray smoothing functions, occur in the SRPS. In this example, the best
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trade-off between wavenumber resolution (i.e., mainlobe width) and Nyquist

wavenumber (i.e., lack of spatial aliasing) is reached if the array aperture D

is 100 m.

ASF: sidelobe height

Other important issues to evaluate the effectiveness of the k-f are related to

the occurrence and the magnitude of sidelobes in the ASF. These spurious

peaks imply the occurrence of spatial aliasing. In order to comprehend this

feature the following example is provided. In this case the same wave signal

described in the equation (5.13) is measured by four array of sensors. Each

array is characterized by the same array aperture (D = 100 m). A different

number of sensors has been employed for each array; more specifically: 5,
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Figure 5.3: Array smoothing function for four arrays made-up of different num-

bers of sensors (i.e., several spatial lag dmin). Note: the aperture of

the array D is fixed.
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7, 15, 50. Thus, the wavenumber resolution ∆k is constant. Conversely, the

Nyquist wavenumber kN varies, given that the spatial lag dmin decreases as

the number of sensors increases. Figure 5.3 shows the ASF of the mentioned

arrays. As the spatial lag is too coarse (see upper panels and lower left panel

of the Figure 5.3) spurious peaks (i.e., sidelobes that have height comparable

with that of the mainlobe) occur in the ASF. Instead, if the spatial lag is

adequately small the ASF is characterized by small sidelobes (lower right

panel of the Figure 5.3). In order to minimize the sidelobe height, the

optimal spatial lag dmin has to be equal or smaller than the half of the

smallest measured wavelength, and can be defined as follows

doptmin ≤
Lmin

2
. (5.15)
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Figure 5.4: Steered response power spectra. Note: the aperture of the array D is

fixed.
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Figure 5.4 shows the SRPS obtained by applying the k-f to the signals mea-

sured by the four mentioned arrays. It is clear that only the fourth sensors

array provides an accurated identification of the wave properties (lower right

panel of the Figure 5.4), in terms of both frequency and wavenumber. Fi-

nally, as previously stated, it useful to recall that if a fixed number of sensors

is given it is essential to find a trade-off between the wavenumber resolution

and the Nyquist wavenumber.

Dispersion relation detection

This section aims at explaining the potentialities of the k-f in detecting the

dispersion relation followed by the measured wave signals. To better com-

prehend this features, several ideal wave signals have been processed with

the one-dimensional k-f. The detection of the dispersion relation followed

by the measured waves is straightforward in the k-f plane. By observing

the SRPS distribution in the k-f plane the dispersion relation is univoquely

determined. In the following four examples are shown. To show the detec-

tion procedure, a sensors arrays with aperture D = 100 m, made-up of 50

sensors, has been used to measure four ideal wave signals; more specifically:

� wave signal characterized by one frequency component that travel to-

ward the positive x direction following the linear wave dispersion re-

lation;

� wave signal characterized by two frequency components that travel

toward the positive x direction following the linear wave dispersion

relation;

� wave signal characterized by three frequency components. Two of

these travel toward the positive x direction, and the remaining one

travel in opposite direction (i.e., negative x direction). All the com-

ponents follow the linear wave dispersion relation;

� solitary wave that propagate in the positive x direction.

The SRPSs obtained by the k-f are shown in Figure 5.5. For each panel

the shape and the position of the SRPS allows to identify the dispersion

relation followed by the propagating waves. Figure 5.5 shows that the energy

densities are placed on the proper dispersion relations. Furthermore also the

propagation direction of each frequency component is adequately detected.
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(b) Cosine wave (2 frequencies).
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(d) Solitary wave.

Figure 5.5: Steered response power spectra of four test wave signals. Upper left

panel: wave signal characterized by one frequency component. Up-

per right panel: characterized by two frequency components. Lower

left panel: wave signal characterized by three frequency components.

Lower right panel: solitary wave that propagate in space. Note: gray

lines identify the wave dispersion relations.

5.3.2 Spatial sampling issues: 2D k-f

In this section the spatial sampling issues, related to the two-dimensional k-f

analysis, are shown. When the 2D k-f is considered it is important to stress

that other issues, as well as potentialities, occur with respect to those seen

for the 1D k-f. Given that the degrees of freedom of the problem increase,

new spatial sampling issues arise. For instance, the shape of the sensors
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array can affect the ASF and, consequently, the k-f results. However, the

increased complexity of the problem allows to better describe the features of

the propagating wave signals. As shown in the following, the 2D k-f allows

to estimate not only the global (or synthetic) SRPS of the measured signal

in the k-f plane; indeed, for each frequency it is also possible to estimate

the SRPS in the domain of the wavenumber scalar components (i.e., kx-ky).

This allows to evaluate the propagation direction, along with the dispersion

relation followed by the waves, of each frequency component of the measured

wave signal.

Array geometry

In this section the influence of the array geometry on the 2D k-f, is in-

vestigated by means of several ideal tests. To gain insight on this aspect

a theoretical wave signal, that propagate over a constant depth h of 100

m in a two-dimensional space by following the dispersion relation (5.14),

is measured by four different sensors arrays. The theoretical wave signal,

characterized by two frequency components, is defined as follows

η(x, y, t) =
2∑
i=1

ai cos (ki · x− ωit+ φi), (5.16)
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Figure 5.6: Left panel: contour plot of the free surface elevation at t = 1.0 s,

measured by a square-shaped array; white markers identify the sen-

sors that form the array, while blue arrows identify the propagation

direction of the waves. Note: the sensors are equally-spaced. Right

panel: ASF.
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where the angular frequencies ωi are 1.2566 and 0.6283 rad/s respectively,

the amplitudes ai are equal to 0.01 m, and the phases φi have a constant

value equal to 0. Since the waves propagate by following the dispersion re-

lation (5.14), the wavenumbers ki are equal to 0.1610 and 0.0403 rad/m, in

absolute value. Given that the wave propagate in a two-dimensional space,

each wavenumber has two scalar components (i.e., kx-ky). In this test the

angle δ that the wavenumber vector forms with the x axis has been fixed

to 45◦. Thus, the wavenumber scalar components are immediately obtained

(i.e., kx1 = 0.1138 rad/m, ky1 = 0.1138 rad/m, kx2 = 0.0285 rad/m, ky2 =

0.0285 rad/m). The properties of the first sensors array are shown in Figure

5.6. Left panel of the figure shows a contour plot of the free surface elevation

at a given time-step (i.e., t = 1.0 s); in the same plot the sensors that form

the array are identified by the white markers. Furthermore, the propagation

direction of the waves is identified by the blue arrows. The sensors array is

square-shaped, and the sensors are equally-spaced each-other. Right panel

of the Figure 5.6 shows the array smoothing function W (k) of the considered

array. As far as a 2D array is concerned, the ASF is a three-dimensional

function. The ASF represented in the right panel of the Figure 5.6 shows

quite close mainlobe, along with few and small sidelobes.

Figure 5.7 represents the SRPS, evaluated in the wavenumber scalar com-

ponents domain, at the carrier frequencies of the wave signal (left panel:

f = 0.1 Hz
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Figure 5.7: SPRS evaluated at the two carrier frequencies of the wave signal, as

a function of the wavenumber scalar components. Note: gray dashed

lines identify the theoretical values of the wavenumber scalar compo-

nents.
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f = 0.10 Hz; right panel: f = 0.20 Hz). As earlier mentioned, when a two-

dimensional k-f is applied, it is possible to evaluate the energy distribution

of the signal in the k-f plane, both in a global way (as shown at the end of the

section), and in a detailed manner (i.e., at each solved frequency). The lat-

ter feature is quite useful, given that by identifying the energy distribution

in the wavenumber scalar components domain, it allows to estimate both

the value of the wavenumber (absolute value and scalar components value)

at which the maximum of the energy occurs and the propagation direction

of the waves for that frequency. Figure 5.7 clearly shows that the k-f ad-

equately identifies, for each frequency, the wavenumber scalar components

of the two carrier wave components. Moreover the propagation direction of

each frequency component is detected as well.

In the Figure 5.8 the properties of the second sensors array are represented.

Left panel of the Figure 5.8 shows the contour plot of the free surface ele-

vation at a given time-step (i.e., t = 1.0 s) as from the equation (5.16), the

sensors array (white markers) and the propagation direction of the waves

(blue arrows). The array is square-shaped and it is made-up of the same

number of sensors than that earlier described (see Figure 5.6), but it has

to be stressed that in this case the sensors are not equally-spaced. Given

this, the shape of the ASF (right panel of the Figure 5.8), is similar to

that obtained for a equally-spaced array, but not identical. The mainlobe
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Figure 5.8: Left panel: contour plot of the free surface elevation at t = 1.0 s,

measured by a square-shaped array; white markers identify the sen-

sors that form the array, while blue arrows identify the propagation

direction of the waves. Note: the sensors are not equally-spaced.

Right panel: ASF.
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is quite close; conversely, some minor sidelobes occur. Figure 5.9 represents

the SRPS, evaluated in the wavenumber scalar components domain, at the

carrier frequencies of the wave signal (left panel: f = 0.10 Hz; right panel:

f = 0.20 Hz). The figure shows that the k-f analysis is effective in iden-

tifying the proper wavenumber scalar components as well as the direction

of propagation of the waves. The different arrangement of the sensors does

not seem to improve the performance of the k-f. However, it is well known

that a not equally-spaced array is more powerful when a random signal (i.e.,

composed by a large range of frequencies and wavenumbers that are not

known a priori) is measured by the array itself.

In the Figure 5.10 the properties of the third sensors array are represented.

Left panel of the Figure 5.10 shows the contour plot of the free surface ele-

vation at a given time-step (i.e., t = 1.0 s) as from the equation (5.16), the

sensors array (white markers) and the propagation direction of the waves

(blue arrows) The array is diamond-shaped and it is made-up of the same

number of sensors than those earlier described (see Figure 5.6 and 5.8). In

this case the sensors are again equally-spaced. The right panel of the Figure

5.10 shows the ASF obtained for this array geometry. By observing the ASF

some discrepancies occur, if it is compared with those of the Figures 5.6 and

5.8. The mainlobe of the ASF is not very close. Furthermore, sidelobes (al-

though not very large) occur. Figure 5.11 represents the SRPS, evaluated

in the wavenumber scalar components domain, at the carrier frequencies of

f = 0.1 Hz
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Figure 5.9: SPRS evaluated at the two carrier frequencies of the wave signal, as

a function of the wavenumber scalar components. Note: gray dashed

lines identify the theoretical values of the wavenumber scalar compo-

nents.
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the wave signal (left panel: f = 0.10 Hz; right panel: f = 0.20 Hz). It is

evident that the SRPS is properly placed on the right wavenumber scalar

components; furthermore, the direction of propagation of the waves is de-

tected as well. However, as a consequence of the spreading of the ASF,

the SRPS is quite spreaded. In other words, the k-f adequately estimates

the properties of the wave signal, also given that the signal is quite simple,

however a more complicated signal could not be properly analyzed by using

this array shape.

In the Figure 5.12 the properties of the fourth sensors array are repre-

sented. Left panel of the Figure 5.12 shows the contour plot of the free

surface elevation at a given time-step (i.e., t = 1.0 s) as from the equation

(5.16), the sensors array (white markers) and the propagation direction of

the waves (blue arrows). The array is circle-shaped and it is formed by

means of concentric circles. It is made-up of the same number of sensors

than those earlier described (see Figure 5.6, 5.8 and 5.10). In this case the

sensors are not equally-spaced. The right panel of the Figure 5.12 shows the

ASF obtained for this array geometry. The mainlobe of the ASF is quite

close. Furthermore, it is interesting to note that small sidelobes occur at

large distances, in terms of wavenumber, from the mainlobe. The latter as-

pect minimizes the occurrence of the so-called spatial aliasing. It is possible

to state that, for the theoretical wave signal measured by means of these
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Figure 5.10: Left panel: contour plot of the free surface elevation at t = 1.0 s,

measured by a diamond-shaped array; white markers identify the

sensors that form the array, while blue arrows identify the propaga-

tion direction of the waves. Note: the sensors are equally-spaced.

Right panel: ASF.
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ideal sensors array, the fourt array offers the best performance in terms of

ASF, i.e., in terms of spatial sampling requirements.

Figure 5.13 represents the SRPS, evaluated in the wavenumber scalar com-

ponents domain, at the carrier frequencies of the wave signal (left panel:

f = 0.10 Hz; right panel: f = 0.20 Hz). The k-f identifies the proper

wavenumber scalar components accordingly to the propagation direction of

the propagating waves .

Finally, the global, or more appropriate, the synthetic SRPS (hereinafter

S-SRPS), obtained by applying the k-f to the four investigated array geome-

tries, is represented in Figure 5.14. To provide a synthetic representation of

the SRPS in the wavenumber-frequency plane, as far as a two-dimensional

k-f is concerned, we consider the wavenumbers in terms of absolute values.

Consequently, we represent only the absolute values of the wavenumbers

to which correspond the maximum value of the SRPS for each frequency.

Figure 5.14 shows that each panel, which refer to a different array shape, is

in principle similar to the Figures 5.2, 5.4 and 5.5 that are related to the

1d k-f. By observing the shape of the S-SRPS, and even more important

the pairs wavenumber-frequency at which the maximum values occurs, it

is possible to identify the dispersion relation followed by the waves. The

S-SPRS shown in the Figure5.14, are indeed properly placed on the black

lines, that represent the dispersion relation (5.14), which is followed by the

propagating waves. Thus, it is demonstrated how the array geometry can
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Figure 5.11: SPRS evaluated at the two carrier frequencies of the wave signal,

as a function of the wavenumber scalar components. Note: gray

dashed lines identify the theoretical values of the wavenumber scalar

components.
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influence the k-f results and how the results themselves can be interpretated.
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Figure 5.12: Left panel: contour plot of the free surface elevation at t = 1.0 s,

measured by a circle-shaped array; white markers identify the sen-

sors that form the array, while blue arrows identify the propagation

direction of the waves. Note: the sensors are not equally-spaced.

Right panel: ASF.
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Figure 5.13: SPRS evaluated at the two carrier frequencies of the wave signal,

as a function of the wavenumber scalar components. Note: gray

dashed lines identify the theoretical values of the wavenumber scalar

components.
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(d) Circular array.

Figure 5.14: Synthetic SRPS. Note: the black lines identify the linear wave dis-

persion relation.
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Features of circular arrays

In the previous section some spatial sampling issues of the two-dimensional

k-f, related to the array geometry, have been addressed. In this section we

focus on both the features and the potentialities of the circular arrays. In

this case, we not consider arrays of arbitrary shape; indeed, the exact sen-

sors array that has been used to measure the landslide-generated tsunamis

around the conical island (see chapter 3) is considered. But, as shown in

the previous sections, only ideal wave signals have been used to gain insight

on the properties of the considered array. Furthermore, to catch in a more

general way the features of the circle-shaped arrays we not consider the real

bathymetry of the conical island, but a simplified one. The array is sup-

posed to be placed on a flat sea bottom of constant depth h equal to 100 m.

The array is shown in the left panel of the Figure 5.15 and it is identified by

the white markers. To magnify the features of the circular arrays, three ideal

wave signals are analyzed. The free surface elevation η(r, ϑ, t)s is described

by the following equation

η(r, ϑ, t) = a cos [(krr + kϑϑ)− ωt+ φ], (5.17)

where the angular frequency ω is 6.2832 rad/s, the amplitude a is 5.0 m,

the phases φ has a constant value equal to 0 and the wavenumbers kr and

kϑ are the radial and the angular wavenumber respectively.
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Figure 5.15: Left panel: contour plot of the free surface elevation at t = 0.02 s

(radiated waves); white markers identify the sensors that form the

array, while blue arrows identify the propagation direction of the

waves. Right panel: ASF.
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Given the equation (5.17) three different wave signals have been considered;

more specifically:

� radiated waves (i.e., kr 6= 0 and kϑ = 0);

� trapped waves (i.e., kr = 0 and kϑ 6= 0);

� partially trapped and partially radiated waves (i.e., kr 6= 0 and kϑ 6=
0);

Furthermore, the left panel of the Figure 5.15 shows the contour plot of the

free surface elevation at a given time-step (i.e., t = 0.02 s). The propagation

direction of the waves is identified by the blue arrows. The waves propagate

radially (i.e., wave fronts are locally perpendicular to the radius) from the

island’s center toward the open sea and follow the dispersion relation (5.14).

This test aims at evaluate the features of the real sensors array used in the

conical island experiments; given this only the experimental domain covered

by the measurementes collected using the moving arm is considered. No

measurements are available when the radius r is lower than the radius at

which the undisturbed shoreline is placed (i.e., r = 2.05 m), or greater than

the radius at which the last sensor on the moving arm is placed (i.e., r =

5.91 m). The right panel of the Figure 5.15 shows the ASF as a function of

the radial and angular wavenumbers. The mainlobe is quite close, while few
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Figure 5.16: SPRS evaluated at the carrier frequency of the wave signal. Left

panel: SPRS as a function of the wavenumber scalar components

in cartesian coordinates. Right panel: SPRS as a function of the

wavenumber scalar components in polar coordinates.
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minor sidelobes occur. As later described the ASF is defined in wavenumber

scalar components domain expressed in polar coordinates.

Figure 5.16 represents the SRPS, evaluated in the wavenumber scalar com-

ponents domain expressed both in cartesian coordinates (left panel), and in

polar ones (right panel), at the carrier frequency of the wave signal (i.e.,

f = 1.0 Hz). As far as the present problem is concerned, a reference frame

expressed in polar coordinates (r,θ) appears useful to study the direction of

propagation of the waves. Thus it is more convenient to express the vec-

tor wavenumber k not only in its scalar components expressed in cartesian

coordinates (k = [kx, ky]), but also in its scalar components expressed in

polar coordinates (k = [kr, kθ]). In this way if, for a given frequency f0,

the SRPS is concentrated along the kr axis, it implies that the waves, for

that frequency, propagate along the radius (i.e. the wave fronts are locally

perpendicular to the radius). Otherwise if the SRPS is concentrated along

the kθ axis it means that the waves, for that frequency, propagate rotating

around the island (i.e. the wave fronts are locally parallel to the radius).

Furthermore by dividing the angular wavenumber kθ by a specific radius r∗

(for instance the radius of the shoreline) we obtain the new wavenumbe k∗s ,

defined as follows

k∗s = kθ
1

r∗
=

2π

r∗Θ
, (5.18)
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Figure 5.17: Left panel: contour plot of the free surface elevation at t = 0.02 s

(trapped waves); white markers identify the sensors that form the

array, while blue arrows identify the propagation direction of the

waves. Right panel: ASF.
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where Θ is an angular wavelength.

Figure 5.16 shows that the SRPS is totally arranged on the kr axis (see left

panel of the figure). The two-dimensional k-f, expressed in polar coordi-

nates, allows not only to identify the proper wavenumber, and consequently

the proper dispersion relation, but also to accurately estimate the direction

of propagation of the waves for that frequency. Conversely, for that geom-

etry the SRPS evaluated in the wavenumber domain expressed in cartesian

coordinates is not straightforward to interpretate.

The left panel of the Figure 5.17 shows the contour plot of the free surface

elevation of the second test wave signal at a given time-step (i.e., t = 0.02

s). The propagation direction of the waves is identified by the blue arrows.

The waves are perfectly trapped (i.e., wave fronts are locally parallel to the

radius) and propagate, by following the dispersion relation (5.14), rotating

around the center of the island. Figure 5.18 represents the SRPS, evaluated

in the wavenumber scalar components domain expressed both in cartesian

coordinates (left panel), and in polar ones (right panel), at the carrier fre-

quency of the wave signal (i.e., f = 1.0 Hz). The SRPS is totally arranged

on the kϑ axis. The propagation direction of the waves, along with the dis-

persion relation followed by the propagating waves, are properly detected.

The left panel of the Figure 5.19 shows the contour plot of the free surface

elevation of the third test wave signal at a given time-step (i.e., t = 0.02 s).
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Figure 5.18: SPRS evaluated at the carrier frequency of the wave signal. Left

panel: SPRS as a function of the wavenumber scalar components

in cartesian coordinates. Right panel: SPRS as a function of the

wavenumber scalar components in polar coordinates.
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Figure 5.19: Left panel: contour plot of the free surface elevation at t = 0.02

s (partially radiated and partially trapped waves); white markers

identify the sensors that form the array, while blue arrows identify

the propagation direction of the waves. Right panel: ASF.

The propagation direction of the waves is identified by the blue arrows. In

this case the waves are partially trapped and partially radiated, and prop-

agate by following the dispersion relation (5.14). Figure 5.20 represents the
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Figure 5.20: SPRS evaluated at the carrier frequency of the wave signal. Left

panel: SPRS as a function of the wavenumber scalar components

in cartesian coordinates. Right panel: SPRS as a function of the

wavenumber scalar components in polar coordinates.
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SRPS, evaluated in the wavenumber scalar components domain expressed

both in cartesian coordinates (left panel), and in polar ones (right panel),

at the carrier frequency of the wave signal (i.e., f = 1.0 Hz). The SRPS is

placed in an intermediate position between the kr axis and the kϑ one.

Thus, we show that if a reference frame expressed in polar coordinated is

suitable (as for the physical model described in this work), it can be sim-

ple to estimate not only the dispersion relation followed by the propagating

waves, but also the propagation direction of the waves evaluated with re-

spect to the shoreline of the island itlself. This is very useful to assess if the

propagating waves are radiated, trapped or both. In the following section a

detailed application of the k-f is shown on the experimental data described

in the chapter 4.

5.4 Results and discussion

5.4.1 The one-dimensional k-f

The one-dimensional k-f has been applied to 11 run-up time series collected

by the run-up gauges during the laboratory experiments (see Figure 5.21).

Since 37 repetitions of the same experiment are available, this technique has

been carried out for each repetition. Given that the experiment has a good

repeatibility, the results of the one-dimensional k-f are almost identical. The

Table 5.1 reports the position of each sensor; the curvilinear abscissa s, is

defined as follows

s = r θ, (5.19)

where r is the radius of the island evaluated at the undisturbed water sur-

face (r = 2.05 m) and θ is an angle that, moving away from the generation

area (θ = 0◦), is measured counterclockwise.

The k-f has been applied to a portion of each time series of duration of 15 s.

This is measured with respect to the beginning (t =0 s) of each experiment

(i.e. few seconds before the impact of the landslide with the water). This has

reduced the possibility that the spurious waves reflected at the tank walls

could contaminate the analysis. The wavenumber resolution and Nyquist

wavenumber are respectively equal to ∆k = 1.1584 rad/m and kN = 7.0810

rad/m.

In the Figure 5.22 the results are shown. The contour lines and the color

map represent the SRPS. To help the interpretation several theoretical wave

dispersion relations have been plotted on the figure. The two thick black

lines represent the ones of the zero and first order edge waves modes, ac-
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cording to Ursell [1952]:

ω2 = g k sin [(2n+ 1)β] , (5.20)

where n = 0, 1, is the order of the edge waves mode and β is the slope of

the bottom. The Stokes edge waves mode corresponds to n = 0. It is worth

to cite that (5.20) is valid if (2n+ 1)β ≤ 1
2π. The upper line represents the

1st-order, while the lower one the 0th-order. The thin black line represents

the 0st-order edge waves mode, obtained by Smith and Sprinks [1975], when

a curvilinear shoreline is considered:

ω2 = g k tanβ

[
1− 1

4
(k rs)

−1
]2
, (5.21)
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Figure 5.21: Run-up time series (thin black lines) for nine wave gauges (from the

top to the bottom). Each panel contains several run-up time series

(one for each repetition of the same experiment). The envelopes

(thick black line), obtained for each run-up gauge, are also proposed

in each plot.
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Figure 5.22: Steered response power spectrum obtained by means of the one-

dimensional k-f analysis and several dispersion relations (black

dashed line: linear waves for h = 0.8 m; upper thick black line:

1st-order edge waves; lower thick black line: 0th-order edge waves;

thin black line: 0th-order edge waves for curvilinear shoreline; gray

dashed lines: linear waves for different values of water depth).

where rs is the radius of the island evaluated at the shoreline. For this

experimental conditions (i.e., angle of the slope, radius of the shoreline,

etc.) the (5.20) and the (5.21) provide very similar results; however, a

small difference, especially for low frequencies, exists. The dashed gray lines

identify the dispersion relation as from the linear wave theory:

ω2 = g k tanh (kh) . (5.22)

The water depth h, appearing into the (5.22), has been varied in the range

between 0.01 m and 0.8 m. The dashed black line represents the limit of h

= 0.8 m.

The results presented in the figure suggest that the analyzed run-up time

series contain waves following the 0th-order edge waves dispersion relation.

None of the other theoretical functions seem to adequately match with the

experimental data. In order to explore the possibility that smaller energy
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waves exist, we have also examined the small energy values of the power

spectrum. However no other edge waves modes, nor waves following the

(5.22) seem to exist in the records. Thus it seems reasonable to state that

waves travel around the island as a 0th-order edge waves packet. This is

consistent with previous researches (e.g. Chang [1995], Liu et al. [1998],

Lynett and Liu [2005]).

The k-f allows to easily estimate the range of both wavenumbers and fre-

quencies that dominate the measured signals. Wavenumbers appear to be

in the range from 2.0 rad/m to 7.0 rad/m, while frequencies vary from 0.4

Hz to 0.7 Hz. Maximum values of energy are identified approximately at a

wavenumber of 4.3 rad/m and at the frequency of 0.5 Hz. The peak wave

length is therefore of 1.46 m while peak period is 2 s.

Once verified that the waves propagate around the island as a 0th-order edge

waves packet, it is interesting to check if the celerity of the measured waves

follows the (5.20). Both the phase and group celerities are considered. The

phase celerity describes the velocity at which each single wave propagates.

From a technical point of view it is useful to estimate the time taken by the

tsunami to give the first inundation at any point along the coast. But the

first wave, in the far field, is not the one that gives the maximum inundation,

given the frequency dispersion. The waves travel as a packet (or a group),

and the maximum inundation is given by the wave at the center (i.e. at the

crest) of the group. The velocity at which the crest of the group propagates

is the group celerity, that is therefore a quantity of special practical interest.

The theoretical phase (c) and group (cg) celerities can be obtained from the

equation (5.20), considering that c = ω/k, and cg = dω/dk:

c =
g

ω
sin [(2n+ 1)β] (5.23)

cg =
c

2
. (5.24)

In order to calculate these quantities it is fundamental to estimate the an-

gular frequency ω of the carrier wave of the packet; this may differ from

gauge to gauge. A standard spectral analysis has therefore been applied to

all the run-up records to calculate the mean frequency. The spectral am-

plitudes are plotted against the frequency in Figure 5.23 using thin black

lines. Each line refers to one single repetition of the experiment. In the

same figure the averaged value (i.e., averaged over all the repetitions) of the

mean frequency, has been marked for each run-up gauge using gray dashed

lines, and are reported in the Table 5.1. These mean frequencies have been

used to calculate one single value of ω for each run-up gauge.
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In order to calculate the phase celerity from the experimental data, the

run-up time series have been processed using a standard zero-up crossing

method to identify each single wave. Then it has been calculated the time

taken by the crest of the first three waves to propagate from gauge to gauge.

Given that the distance between the gauges is known, it has been possible to

calculate the phase celerity of these waves. The results are reported in the

left panel of the Figure 5.24, using gray circles for the first wave, gray square

markers for the second wave and gray diamonds for the third wave. Note

that the estimated values of c (respectively c∗1w, c∗2w and c∗3w) are considered

to be valid between the two gauges used for the calculation, so in the figure

the markers have been placed at an intermediate position of each couple of

neighbouring gauges. At the first run-up gauge only two waves have been

identified in the packet.
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Figure 5.23: Wave spectral amplitudes (thin black lines) for nine wave gauges

(from the top to the bottom). Each panel contains several spectral

amplitudes (one for each repetition of the same experiment). In each

panel the averaged values of the mean frequency (averaged over all

the repetitions), are marked by the dashed lines.
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Figure 5.24: Left panel: Comparison between the theoretical phase celerities

(black dot markers) and the estimated ones (gray markers) of the

first three waves. Right panel: Comparison between the theoreti-

cal edge waves celerities (black dot markers) and the mean values

(evaluated at an intermediate position of each couple of neighbour-

ing gauges) of the estimated celerities of the first three waves (gray

dot markers). Note: The overlined symbols in the legend are mean

values.

The theoretical edge waves celerity has been calculated applying equation

(5.23) at each gauge, using the value of ω calculated by using the carrier

frequency f reported in the Table 5.1. It has to be mentioned that by using

the peak frequencies, instead of the mean ones, similar wave celerities can

be obtained. These celerities are plotted both in the left and in the right

panels of the Figure 5.24 using black dot markers. Of course from the (5.23)

only one single value of c is obtained for each gauge. Considering that the

mean value c (averaged over the all gauges) of the theoretical phase celerities

c is equal to 0.894 m/s, it appears that the equation (5.23) is able to give a

reasonable estimate of the mean values (averaged over all the intermediate

positions between two adjacent gauges) of the experimental phase celerities

of the first three waves, since these are respectively equal to c∗1w = 1.068

m/s, c∗2w = 0.823 m/s and c∗3w = 0.724 m/s.

Furthermore, in order to better evaluate the agreement between the exper-

imental and the theoretical results, the mean phase celerities c∗
1−3w, calcu-

lated for each intermediate position between two adjacent gauges by aver-

aging the experimental celerities of the first three waves, are plotted in the

left panel of the Figure 5.24 with gray dot markers. The mean value c∗
1−3w

(averaged over all the intermediate positions between two adjacent gauges)
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Gauge Angular Curvilinear aenv Ω t0 Carrier

name position θ (°) abscissa s (m) (mm) (rad/s) (s) freq. f (Hz)

1R 14.5 0.5188 19.34 1.83 2.46 0.544

3R 34.3 1.2272 18.31 1.32 3.79 0.658

4R 47.6 1.7031 11.83 1.13 4.67 0.629

5R 60.24 2.1539 11.29 0.88 5.62 0.578

6R 72.9 2.6083 11.46 0.77 6.74 0.570

7R 86.3 3.0877 11.34 0.82 7.68 0.544

8R 98.7 3.5314 9.37 0.67 8.80 0.517

9R 111.5 3.9894 9.27 0.67 9.83 0.515

10R 125.2 4.4796 7.94 0.59 11.06 0.515

11R 138.6 4.9590 6.56 0.41 12.19 0.524

12R 151.6 5.4241 7.34 0.47 13.43 0.512

Table 5.1: Position and wave parameters at each run-up gauge.

of the c∗
1−3w is equal to 0.8739 m/s. The right panel of the Figure 5.24, and

the mean values of the two set of data (c = 0.894 m/s, c∗
1−3w = 0.8739 m/s),

confirm that the equation (5.23) provides a good estimate of the experimen-

tal phase celerity, at least in a mean sense.

As far as the group celerity is concerned, the run-up time series have been

processed in order to calculate the envelopes of the wave packets. These

have been obtained using a procedure similar to that used by Di Risio et al.

[2009b]. It is assumed that the envelopes are described by the following

function

ηenv(t) = aenv sech [Ω(t− t0)] , (5.25)

where ηenv is the time series of the wave envelope, aenv its amplitude, Ω is

an angular frequency and t0 the instant at which the maximum of the wave

envelope occurs at each gauge. Note that also a numerical procedure, like

the Hilbert transform, can be suitable to describe the wave envelopes. How-

ever, an analytical function, based on the hyperbolic secant (as described

by Di Risio et al. [2009b] and by Yeh [1985]), allows to easily define the

meaning and the value of the group celerity. The unknown parameters (i.e.

aenv, Ω, t0) have been obtained by means of the Gauss-Newton non linear

optimization method, by using the whole set of experimental time series for

each gauge. The results are reported in the Table 5.1 and the envelopes at

each gauge have been plotted using thick solid lines in the Figure 5.21.

Once the parameter t0 is known at each gauge, it is possible to calculate

the group celerity. This is the ratio of the distance between each gauge and
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Figure 5.25: Comparison between the theoretical group celerities (black dot

markers) and the estimated ones (gray diamond markers).

the time taken for the crest of the group to travel from one gauge to the

next one. The results (c∗g) are represented in the Figure 5.25 using gray

diamonds. The edge waves theoretical cg has been calculated at each gauge

and the values plotted in the same figure using black dots. It appears that

a very good agreement between the laboratory results and the theoretical

values is obtained. It is also evident that the group celerity does not vary

significantly during the propagation around the island.

It is worth to stress that also the mean values of the group celerity have

been calculated. The mean value cg, averaged over all the run-up gauges,

of the group celerities, obtained by the (5.20), is equal to 0.447 m/s, while

the mean value c∗g of those obtained from the experimental results is 0.450

m/s. This result implies that the knowledge of the carrier frequency f of the

wave packet (and consequently of the ω) allows to calculate a quite accurate

estimate of the group celerity of the packet itself by using the (5.20).

5.4.2 The two-dimensional k-f

The two-dimensional k-f has been applied four times, by using each time a

different array geometry. In the Figure 5.26 the results are presented. In the

left panels of the figure the four arrays of sensors used are indicated. These

are identified by the black full markers, while the remaining ones (not used)

are identified by the black empty markers.
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Figure 5.26: Left panels: Sketch of the used sensors for the two-dimensional k-f

analysis. Right panels: Synthetic steered response power spectrum

obtained for the four array geometries. Note: The line styles of the

dispersion relations plotted are the same of those described in Figure

5.22.
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The Figure 5.26 shows, starting from the top, that we used a larger number

of sensors as moving away from the generation area (i.e. as the angle θ

increases). In the right panels of the Figure 5.26 the synthetic SRPS (i.e.,

S-SRPS) obtained from each array geometry is represented in the k-f plane.

It is important to recall that in order to provide a synthetic representation

of the SRPS in the wavenumber-frequency plane, since a two-dimensional

k-f has been used, we consider the wavenumbers as absolute values and,

consequently, we represent only the wavenumbers to which correspond the

maximum value of the SRPS for each frequency. Note that only observing

the SRPS for a given frequency, as shown later, information about direc-

tionality can be provided. Furthermore in all the plots are also represented

the dispersion relations such as those described in the Figure 5.22.

The S-SRPS of the first array of sensors (i.e. first line of the Figure 5.26)

shows that the tsunami waves propagate as free radiating waves. Most of

the energy in the k-f plane is around the frequency of 1.0 Hz and along both

the limit (h = 0.80 m) and intermediate waters dispersion relation. Since

the gauges used are placed almost directly in front of the generation area,

in a sector of 10° with the direction of the landslide, this result seems to be

reasonable. In fact no trapped waves are expected to exist in this area.

In the second line of the Figure 5.26 an array that includes sensors placed up

to θ = 45° is considered. For this particular array the S-SRPS shows at least

two different systems of waves. Around a frequency of 0.5 Hz the 0th-order

edge waves mode dominates the propagation mechanisms (this confirms the

one-dimensional k-f). As the frequency increases other modes occur. At a

frequency of about 0.7 Hz the 1st-order edge waves mode appear to become

relevant. For frequencies greater than 1.2 Hz the energy in the k-f plane is

located on the limit of the deep water waves, although if this energy is small

in terms of magnitude.

The third line of the Figure 5.26 considers an array of sensors that covers

one quarter of the island (θ = 90°). In this case most of the energy of the S-

SRPS is located around 0.5 Hz and is concentrated along the 0th-order edge

waves dispersion relation. As the frequency increases 1st-order edge waves

mode and free radiating waves occur, but the magnitudes of the S-SRPS for

these modes are smaller than the values observed for the Stokes edge waves.

A similar result is shown in the fourth line of the Figure 5.26. In this case

the whole set of measurements (θ = 180°) has been used. These results sug-

gest that as the distance from the generation area increases the propagation

mechanisms are dominated primarily by the 0th-order edge waves mode and

then by the 1st-order edge waves mode.
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Figure 5.27: Steered response power spectra, obtained from the first array ge-

ometry, evaluated at four selected frequencies in the kr-k∗s plane

(left panels) and in the kx-ky plane (right panels). Horizontal black

dashed lines: alongshore wavenumbers of the 0th- and 1st-order edge

waves. Vertical black thin dashed lines: radial wavenumbers as from

the linear wave theory dispersion relation. Note: the same color scal-

ing is used for all the plots.

University of Roma Tre - Department of Engineering 104



k0th

k1st

f = 0.53 Hz

k
∗ s
(r

a
d
/
m

)

−10 −5 0 5 10
−15

−10

−5

0

5

10

15

k0th

k1st

f = 0.73 Hz

k
∗ s
(r

a
d
/
m

)

−10 −5 0 5 10
−15

−10

−5

0

5

10

15

k0th

k1st

f = 1.00 Hz

k
∗ s
(r

a
d
/
m

)

−10 −5 0 5 10
−15

−10

−5

0

5

10

15

k1st

f = 1.33 Hz

kr (rad/m)

k
∗ s
(r

a
d
/
m

)

−10 −5 0 5 10
−15

−10

−5

0

5

10

15

f = 0.53 Hz

k
y
(r

a
d
/
m

)

−10 −5 0 5 10
−10

−5

0

5

10

f = 0.73 Hz

k
y
(r

a
d
/
m

)

−10 −5 0 5 10
−10

−5

0

5

10

f = 1.00 Hz

k
y
(r

a
d
/
m

)

−10 −5 0 5 10
−10

−5

0

5

10

f = 1.33 Hz

kx (rad/m)

k
y
(r

a
d
/
m

)

−10 −5 0 5 10
−10

−5

0

5

10

Figure 5.28: Steered response power spectra, obtained from the second array ge-

ometry, evaluated at four selected frequencies in the kr-k∗s plane

(left panels) and in the kx-ky plane (right panels). Horizontal black

dashed lines: alongshore wavenumbers of the 0th- and 1st-order edge

waves. Vertical black thin dashed lines: radial wavenumbers as from

the linear wave theory dispersion relation. Note: the same color scal-

ing is used for all the plots.
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This implies that most of the tsunami energy in proximity of the island re-

mains trapped by the bathymetry, while free waves, radiating seaward, take

place mostly in front of the generation area.

To better investigate the properties of the waves it is helpful to represent the

SRPS, obtained from each specific array geometry, for some selected frequen-

cies. For each frequency it is possible to evaluate the energy distribution,

provided by the k-f, in the plane of the wavenumber scalar components (i.e.

in the kx-ky plane if cartesian coordinates are considered or in the kr-k
∗
s

plane if the polar coordinates are considered).

As discussed in Section 5.3.2, a reference frame expressed in polar coordi-

nates (r,θ) appears useful to study the direction of propagation of the waves.

Thus it is more convenient to express the vector wavenumber k not only in

its scalar components expressed in cartesian coordinates (k = [kx, ky]), but

also in its scalar components expressed in polar coordinates (k = [kr, kθ]).

In this way if, for a given frequency f0, the SRPS is concentrated along the

kr axis, it implies that the waves, for that frequency, propagate along the ra-

dius (i.e. the wave fronts are locally perpendicular to the radius). Otherwise

if the SRPS is concentrated along the kθ axis it means that the waves, for

that frequency, propagate rotating around the island (i.e. the wave fronts

are locally parallel to the radius).

Furthermore by dividing the angular wavenumber kθ by a specific radius r∗

(for instance the radius of the shoreline) we obtain the new wavenumber k∗s ,

defined as follows

k∗s = kθ
1

r∗
=

2π

r∗Θ
, (5.26)

where Θ is an angular wavelength. This quantity is very helpful to compare

the results of the k-f expressed in polar coordinates with the theoretical

wavenumbers of the edge waves.

In the Figures 5.27, 5.28, 5.29 and 5.30 are represented the steered response

power spectra evaluated at four selected frequencies (f = 0.53, 0.73, 1.00,

1.33 Hz), obtained from each array geometry presented in the Figure 5.26.

The left panels of the figures show the SRPS in the kr-k
∗
s plane, while the

right ones present the same quantity in the kx-ky plane.

The plots of the left panels of the Figure 5.27 show that for each frequency

the energy distribution is mostly concentrated along the kr axis. The two

dimensional k-f, performed by using the sensors placed in front of the genera-

tion area, shows that the waves propagate mainly seaward. This is confirmed

also by the plots of the right panels of the Figure 5.27; the SRPS is indeed

located on an intermediate position between the coordinated axes.
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Figure 5.29: Steered response power spectra, obtained from the third array ge-

ometry, evaluated at four selected frequencies in the kr-k∗s plane

(left panels) and in the kx-ky plane (right panels). Horizontal black

dashed lines: alongshore wavenumbers of the 0th- and 1st-order edge

waves. Vertical black thin dashed lines: radial wavenumbers as from

the linear wave theory dispersion relation. Note: the same color scal-

ing is used for all the plots.
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Figure 5.30: Steered response power spectra, obtained from the fourth array ge-

ometry, evaluated at four selected frequencies in the kr-k∗s plane

(left panels) and in the kx-ky plane (right panels). Horizontal black

dashed lines: alongshore wavenumbers of the 0th- and 1st-order edge

waves. Vertical black thin dashed lines: radial wavenumbers as from

the linear wave theory dispersion relation. Note: the same color scal-

ing is used for all the plots.
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Furthermore by observing the colours of the contour plot it is shown that

the carrier frequency of the wave packet is about 1.0 Hz (third line of the

figure). Moreover, for each represented frequency, the radial wavenumbers

have been calculated by the (5.22), using a mean value of h, defined as the

averaged value of the water depths related to the position of each sensor of

the considered array. These are plotted in the left panels of the figure (ver-

tical black thin dashed lines). It is worth to highlight that, for each plot of

the figure, the radial wavenumber at which the maximum value of the SRPS

occurs is in good agreement with the theoretical wavenumber obtained by

the (5.22).

In the first line of the Figure 5.28 (left panel) the SRPS is located on the

k∗s axis. It implies that the waves, that have a carrier frequency of 0.53 Hz,

propagate rotating around the island (i.e. wave fronts almost perpendicu-

lar to the shoreline). Furthermore on the same plot also the values of the

theoretical alongshore wavenumber of both the 0th-order and the 1st-order

edge waves modes are represented (horizontal black dashed lines). A good

agreement exists between the wavenumber at which occurs the maximum

value of the SRPS and the theoretical wavenumber of the 0th-order edge

waves mode. In the second line of the Figure 5.28 (left panel) splitting of

the SRPS occurs. The maximum value of the energy moves towards lower

wavenumbers, however remains closer to the k∗s axis than to the kr one.

Moreover the maximum of the SRPS is in good agreement with the the-

oretical wavenumber of the 1st-order edge waves mode for that frequency.

This suggests that the waves, at a frequency of 0.73 Hz, propagate around

the island mostly as a 1st-order edge waves packet. In the third line of the

Figure 5.28 (left panel) the shape of the SRPS suggests a mixing of trapped

and non-trapped modes. Although the maximum value of the SRPS is in

good agreement with the theoretical wavenumber of the 1st-order edge waves

it is reasonable to state that both trapped (i.e. 1st-order edge waves) and

non-trapped modes (i.e. free radiating waves) exist. On the fourth line of

the Figure 5.28 (left panel) the SRPS slowly shifts towards the kr abscissa

and its maximum value tends to not match with the 1st-order edge waves

wavenumber for that frequency. The waves, which have a carrier frequency

of 1.33 Hz, are not trapped by the bathymetry and propagate mainly in y

direction as from the right panel of the fourth line of the Figure 5.28. Simi-

lar results are presented in the Figures 5.29 and 5.30 which show the SRPS

obtained from the array geometry of the respectively third and fourth lines

of the Figure 5.26. By observing the first line of both figures it is clear that

the greater part of the energy is located along the k∗s axis and the maximum

values of the SRPS match very well with the theoretical wavenumbers of the
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Stokes edge waves. These plots confirm that the propagation mechanisms,

as the distance from the generation area increases, is dominated by the 0th-

order edge waves.

Finally we present the Figure 5.31 to help the reading of the Figures 5.27,

5.28, 5.29 and 5.30, described earlier. For each frequency the maximum

value of the SRPS has been identified; then by calculating the angle δrs
between the scalar components (kr-k

∗
s) at which the maximum value occurs,

it is possible to evaluate if that value is concentrated on the k∗s axis or on

the kr one. If the angle δrs is equal to 0° it means that the maximum value

of the SRPS for a given frequency is located on the kr axis. Otherwise if

the angle δrs is equal to 90° it implies that the maximum value of the SRPS

is located on the k∗s axis. Finally if the angle δrs takes the value of 45° it

implies that the maximum value of the energy for that frequency is at an

intermediate position between the two axes. By knowing the angle δrs for

each frequency, and of course for each array geometry, it is possible to eval-

uate which spectral components of the tsunami are propagating alongshore

(δrs = 90°), seaward (δrs = 0°) or both (δrs = 45°).
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Figure 5.31: Measured angles δrs, frequency function, between the wavenumber

scalar components (k∗s -kr) at which the maximum value of the SRPS

occur at a given frequency.
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5.5 Concluding remarks

The one-dimensional k-f has been applied to the run-up time series collected

during the experiments by Di Risio et al. [2009b]. These refer to tsunamis

generated by subaerial landslides along the flank of a conical island. The

problem considered is similar to that involving flank instabilities at small

volcanic islands like for example the Stromboli volcano, Italy [Tinti et al.,

2005, 2006; Bellotti et al., 2009]. The k-f has revealed that the inundation of

the coast is dominated by a 0th-order edge waves packet. This appears con-

sistent with previous numerical results [Lynett and Liu, 2005], theoretical

models [Sammarco and Renzi , 2008; Tinti and Vannini , 1995] and field mea-

surements [Gonzalez et al., 1995; Neetu et al., 2011; Yamazaki and Cheung ,

2011]. The maximum values of the wave energy are identified approximately

at a wavenumber of 4.3 rad/m, i.e. at a wave length of 1.46 m; the peak

frequency is of 0.5 Hz.

The theoretical frequency dispersion relation of the edge waves [Ursell , 1952]

seems a reliable tool to estimate the celerity of propagation of the tsunamis

along the coast. The phase and group celerity calculated using the experi-

mental data has been compared with those from the edge waves theory. The

agreement between measurements and theory is reasonable for the phase

celerity. It is also to be considered that each wave of the tsunami packet

propagates at its own celerity, while the dispersion relation provides one

single value for the carrier wave of the group. The agreement of the group

celerity appears very good. The edge waves theory can therefore be used to

calculate the celerity of the waves along the coast once an estimate of the

frequency of the tsunami is given. This can be done for instance by knowing

the properties of the landslide (e.g. Wiegel [1955], Watts [1998], Panizzo

et al. [2005a]) or by detecting in real-time the tsunami waves by means of a

authomatic algorithms (e.g., Beltrami and Di Risio [2011]).

Moreover it is interesting to scale up the experimental results to one sample

prototype scale. The physical model of the conical island [Di Risio et al.,

2009b] roughly represents, in a Froude law scale 1:1000, the Stromboly vol-

cano cited before. This implies that in nature the tsunamis considered in

the laboratory would have a wave length of about 1460 m and a wave period

of 63 s; this appears consistent with the the 30 December 2002 landslide-

induced tsunamis at Stromboli, as reported by Tinti et al. [2005]. The phase

and group celerity at prototype scale would be of 28.3 m/s and 14.1 m/s

respectively. At the island of Stromboli the distance, measured along the

coast, between the unstable flank of the volcano and the inhabited area

(considering an intermediate point in the NE coastal segment from Pizzillo
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to Piscitá) is about 3.8 km. This implies that the first tsunami waves takes

about 134 s to travel from the generation area to the inhabited area, while

the maximum of the wave packet takes about 268 s. These results appear

to be in qualitative agreement with those obtained by Tinti et al. [2006] on

the basis of numerical computations.

Furthermore the two-dimensional k-f has been applied to the new measure-

ments that have been collected by Molfetta et al. [2010]. Four different array

geometries have been used to apply this technique. The results confirm that

the 0th-order edge waves dominates the propagation mechanisms in a fre-

quency range around to 0.5 Hz. The offshore gauges allow to observe that

as the frequency reaches a value of about 0.7 Hz the 1st-order edge waves

become relevant, and, as the frequency increases further (f = 1.2 Hz) non-

trapped modes occur as well.

In conclusion, the k-f seems to be an helpful tool to identify the dispersion

relation followed by the tsunami waves, especially when peculiar geometries

of the problem are considered. The use of the one- and the two-dimensional

k-f can provide a comprehensive overview of the propagation and trapping

mechanisms and a quantitative estimate of both the wavenumbers and the

frequencies involved.
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Chapter 6

Numerical modelling of

landslide-generated

tsunamis: an inversion

technique to improve

tsunami early warning

systems (TEWS)

6.1 Preface

In the previous chapters we focus our attention on the experimental study

of the nearshore features of landslide-generated tsunamis that propagate

around a conical island. In this chapter we focus on the numerical modelling

of tsunami waves that radiate offshore and propagate for long distances.

As shown, we test a method for forecasting in real-time the properties of

offshore propagating tsunami waves generated by landslides, with the aim

of supporting tsunami early warning systems (TEWS). The method uses an

inversion procedure, that takes as input data measurements of water surface

elevation at a point close to the tsunamigenic source. The measurements

are used to correct the results of precomputed numerical simulations, repro-

ducing the wave field induced by different landslide scenarios. The accuracy

of the method is evaluated using the results of laboratory experiments that

are described in the work of Di Risio et al. [2009b]. Note that these ex-

periments are partially the same of those described in chapters 3, 4 and 5.
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In this chapter we investigate what is the optimal position where measure

the tsunamis, and what are the effects, on the accuracy of the results, of

uncertainties on the landslide scenarios. Finally the method is successfully

tested using partial input time series, simulating the behaviour of the sys-

tem in real-time when forecasts are updated, during the tsunami event, as

the measurements become available. We refer to Cecioni et al. [2011] for

further explanations.

6.2 Introduction

Tsunami inversion techniques are mainly used to reconstruct the properties

of the tsunamigenic sources (i.e., coseismic displacement field, slip distribu-

tion along the seismic source, etc.) from tsunami records. Among the many

previous studies it is worth to cite Satake [1987], Johnson et al. [1996], Tinti

et al. [2006]. Most of these researches are based on numerical and analytical

solutions of the linear shallow water equations, that are used to compute

the propagation of the tsunami waves. To solve the inverse problem (i.e.,

assessing information on tsunamigenic source from tide-gauges records), dif-

ferent approaches, based on Green’s function, have been used. Recently

some successful attempts of using the inversion techniques to support in

real time tsunami early warning systems have been carried out. Wei et al.

[2003] show a method to determine the tsunami waveforms away from the

generation area by processing real time water level records near the tsunami-

genic source. Their method extends the previous works by using a long wave

model to create a database of synthetic mareograms at a number of strategic

locations. Titov et al. [2005] describe the tsunami forecast system adopted

by Pacific Marine Environmental Laboratory. This system combines real

time seismic and water level data with a forecast database of pre-computed

scenarios. The method uses a set of unit sources for constructing a tsunami

scenario. Both the inversion methods described earlier use of Green’s func-

tion approach.

A different method for tsunami inversion has been proposed by Bellotti

et al. [2008]. They use a numerical model based on the linearized mild-slope

equation, solved in the frequency domain, able to reproduce the propaga-

tion of small amplitude tsunami waves. By using one possible scenario of the

tsunamigenic source, the model solves the governing equations by providing

the Fourier Transform of the free surface elevation. The inversion technique

is applied when the surface elevation time series is recorded at some points

of the computational domain. The comparison between the numerical pre-
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computed solution and the Fourier Transform of the measured free surface

elevation makes it possible to find in real-time a correction parameter in

the complex plane, to be applied to each frequency component. Therefore,

the method allows to compute the tsunami waveform at each point of the

computational domain. By solving the model equations using a scenario of

the tsunamigenic source, it is possible to obtain the solution in terms of the

Fourier Transform of the free surface elevation. The comparison between

the solution referring to the scenario and the Fourier Transform of the free

surface elevation records, makes it possible to find in real time a complex

correction term for each frequency component, and to forecast the tsunami

waveform at any point of the computational domain. The procedure takes

advantage of the fact that the model equations are linearized. Moreover the

authors have investigated the influence of the length of the input free surface

elevation time series using two-dimensional experimental data. By means

of the analysis of results obtained using partial input time series, they show

that the tsunami waveform forecasting is reliable when the first crest has

been recorded, and that as the length of the available record increases, the

results converge smoothly to the final one.

In this chapter we investigate how the model developed by Bellotti et al.

[2008], with further improvements by Cecioni and Bellotti [2010a, b], can

be applied to support in real-time a landslide-tsunami early warning system,

aimed at protecting coasts far away from a potential landslide tsunamigenic

source, i.e. the flank of an island, not focussing on the coast of the island

itself. The idea of a landslide-tsunami warning system is that devices for

the measurement of landslide generated tsunamis are placed close to the

possible tsunamigenic area. When a landslide event occurs, records of water

surface level are processed in real-time to forecast, at some offshore location,

the features of the tsunami, in order to decide if the tsunami alarm has to

be spread or not. To test the applicability of the model and to measure the

accuracy of the procedure we use, as reference data, the experimental results

of Di Risio et al. [2009b], who reproduced tsunamis generated by landslides

at the flank of a circular island.

This chapter is structured as follows. The next two sections give a brief

description of the numerical and the physical models respectively. Then

the results of the inversion procedure applied on the experimental data are

shown, along with an investigation on where it is better to locate the sea

level recorder device, and an evaluation of the effects of uncertainties on

the landslide scenario. Discussion of the results and conclusions close the

chapter.
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6.3 Description of the numerical model

The numerical model is that proposed by Bellotti et al. [2008], which solves

the linearized mild-slope equation (MSE hereinafter). In the following, we

quote the exhaustive description of the model equations that Bellotti et al.

[2008] and Cecioni and Bellotti [2010b] have provided.

The above mentioned authors showed that the model equation can be ob-

tained starting from the linear (small amplitude) water wave equations for

an incompressible irrotational fluid on an uneven bottom

∇2
hφ+ φzz = 0 − h (x, y, t) < z < 0 (6.1)

φz +
1

g
φtt = 0 z = 0 (6.2)

φz + ht +∇hφ · ∇hh = 0 z = −h (x, y, t) , (6.3)

where φ (x, y, z, t) is the velocity potential in the fluid, h (x, y, t) is the water

depth, defined as the fixed sea floor depth minus the landslide thickness,

h (x, y, t) = hf (x, y) − hl (x, y, t). g is the gravity acceleration, while ∇h
is the differential operator which means the divergence in the horizontal

coordinates (x, y) and the symbol · stays for the scalar product. All these

variables are real and scalar. equation (6.1) is the Laplace equation, equation

(6.2) includes the dynamic and kinematic boundary conditions at the free

water surface, while equation (6.3) is the bottom boundary condition which

reproduces the sea floor movements allowing h to varies in time. Cecioni and

Bellotti [2010b] followed the procedure described by Svendsen [2006], who

starts from the Laplace equation and the free surface and bottom boundary

conditions to derive the MSE, with the difference that here we take into

account a moving sea floor. The solution of the given problem is assumed

to be of the form

φ (x, y, z, t) = ϕ (x, y, t) f (z) (6.4)

where ϕ (x, y, t) is the velocity potential at the undisturbed free water

surface z = 0, which can be complex and it includes the effects of reflected

waves; f (z) is a function that describes how the kinematic field varies along

the water depth and can be chosen as that resulting from the linear wave the-

ory valid for harmonic waves propagating in constant depth, which however

still holds locally for uneven bottom, i.e.

f (z) =
cosh [k (hf + z)]

cosh (khf )
(6.5)
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where k is the wave number, defined as 2π/L with L the wave length. In

the cases of not constant depth, hf and therefore k vary with the horizontal

coordinates, therefore f = f (x, y, z). However if the mild-slope assumption
∇hhf
khf

<< 1 is here introduced the variation of the function f with the

horizontal coordinates can be neglected if compared with the vertical one.

From the assumption (6.4) it comes that

φzz = k2ϕ
cosh [k (hf + z)]

cosh (khf )
= k2φ (6.6)

therefore the Laplace equation (6.1) can be written as

∇2
hφ+ k2φ = 0 (6.7)

The following considerations are made:

f (z) = 1 at z = 0 (6.8)

fz = k tanh (khf ) =
ω2

g
at z = 0; (6.9)

fz = 0 at z = −h; (6.10)

In order to depth integrate the field equation (Laplace equation 6.1), here

it is made use of the Gauss’s Theorem, which states for one dimensional

domain
b∫
a

∂−→v
∂x

dx = −→v (b)−−→v (a) (6.11)

where −→v is a differentiable vector field. By considering a special vector field

defined as −→v = φ1∇φ2, where φ1 and φ2 are arbitrary differentiable scalar

functions, the Gauss theorem can be written as

b∫
a

[
φ1
∂2φ2
∂x2

+
∂φ1
∂x

∂φ2
∂x

]
dx =

[
φ1
∂φ2
∂x

]
b

−
[
φ1
∂φ2
∂x

]
a

(6.12)

Equation 6.12 is known as Green’s theorem. Interchanging φ1 and φ2 and

subtracting the resulting equation from (6.12) gives

b∫
a

[
φ1
∂2φ2
∂x2

− φ2
∂2φ1
∂x2

]
dx =

[
φ1
∂φ2
∂x
− φ2

∂φ1
∂x

]b
a

(6.13)
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For the present purpose equation 6.13 is used with x = z, φ1 = f (z) and

φ2 = φ (x, y, z, t), therefore

0∫
−h

(
f
∂2φ

∂z2
− φ∂

2f

∂z2

)
dz =

[
f
∂φ

∂z
− φ∂f

∂z

]
0

−
[
f
∂φ

∂z
− φ∂f

∂z

]
−h

(6.14)

Substituting the Laplace equation (6.1) in the first term at the left hand

side (LHS), and the boundary conditions at z = 0 and z = −h (6.2 and 6.3)

and using Eqs. (6.9, 6.10) in the right hand side (RHS) terms, then, after

changing the sign, equation (6.14) becomes

0∫
−h

(
f∇2

hφ+ k2fφ
)
dz =

1

g
ϕtt + ϕ

ω2

g
− [fht]−h − [f∇hh · ∇hφ]−h (6.15)

the LHS can be seen as the integration over the depth of the field equation.

Considering that

∇hφ = ∇h (ϕf) = f∇hϕ+ ϕ∇hf (6.16)

and

∇2
hφ = f∇2

hϕ+ 2∇hϕ · ∇hf + ϕ∇2
hf (6.17)

using the expression (6.16) for the last term of the RHS and expression

(6.17) for the first term of the LHS, equation (6.15) becomes∫ 0
−h
(
f2∇2

hϕ+ 2f∇hf · ∇hϕ+ fϕ∇2
hf + k2f2ϕ

)
dz =

1
g

(
ϕtt + ω2ϕ

)
− 1

cosh(khf)
ht − [f∇hh · (f∇hϕ+ ϕ∇hf)]−h

(6.18)

Now incorporating the first two terms of the LHS of equation (6.18) follows

∫ 0
−h∇h ·

(
f2∇hϕ

)
dz +

[
f2∇hh · ∇hϕ

]
−h + ϕk2

∫ 0
−h f

2dz =

−
∫ 0
−h ϕf∇

2
hfdz −

1
cosh(khf)

ht − ϕ∇hh · [f∇hf ]−h + 1
g

(
ϕtt + ω2ϕ

)
(6.19)

Applying the Leibniz’s rule for the first two terms on the LHS and knowing

that
0∫
−h

f2dz =
ccg
g

(6.20)

where c and cg are respectively the phase and the group velocities, by mul-

tiplying equation (6.19) for g it results

∇h · (ccg∇hϕ) + ϕk2ccg − ϕtt − ω2ϕ+ ht
g

cosh(khf)
=

−gϕ{
∫ 0
−h f∇

2
hfdz +∇hh · [f∇hf ]−h}

(6.21)
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Rigorously the identity of equation (6.20) is obtained for a single frequency

of the wave spectrum, consequently equation (6.21) is valid for monochro-

matic waves, or can be seen as representative of narrow banded spectra

sea state around a carrying frequency. The RHS terms of equation (6.21)

can be shown to be O
(

(∇hh)2 ,∇2
hh
)

. Therefore, as Cecioni and Bellotti

[2010b] introduced the mild slope assumption above, i.e.: by allowing equa-

tion 6.5, ∇hh � kh and it can be argued that the RHS terms � LHS

terms. Similarly, ∇2
hh� ∇hh, which is a natural additional assumption be-

cause ∇2
hh = O (∇hh) can only occur over short distances without changing

O (∇hh). This means that the RHS terms are � of all the others terms, we

therefore get

ϕtt −∇h · (ccg∇hϕ) +
(
ω2 − k2ccg

)
ϕ = − g

cosh (khf )
ht (6.22)

which is the hyperbolic version of the MSE in terms of fluid velocity poten-

tial and is usually referred to as the ‘time-dependent mild-slope equation’,

allowing the simulation in the time-domain of the wave propagation. To ob-

tain the MSE in terms of the free surface elevation η, equation (6.25) needs

to be differentiated with respect to time.

ϕttt −∇h · (ccg∇hϕt) +
(
ω2 − k2ccg

)
ϕt = − g

cosh (khf )
htt (6.23)

and then use the dynamic boundary condition at the free surface

η = −1

g
ϕt (6.24)

from which we obtain that ϕt = −gη and ϕtt = −gηt, those expressions can

be substituted into equation (6.23) to get, after dividing by g, the hyperbolic

form of MSE, in time domain and in terms of free surface elevation η (x, y, t):

−ηtt +∇h · (ccg∇hη)−
(
ω2 − k2ccg

)
η = − 1

cosh (khf )
htt, (6.25)

where c and cg are the phase and group celerities respectively, k is the wave

number and ω is the angular frequency. Note that if the phase and group

velocities are evaluated in the shallow water limit as c = cg =
√
gh, then

equation (6.25) reduces to the governing equation for forced long waves

ηtt −∇h · (gh∇hη) =
1

cosh (khf )
htt. (6.26)

The MSE [Berkhoff , 1972] describes the small amplitude transient wave

propagation on slowly varying depth. Thus it is shown as Cecioni and
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Bellotti [2010a, b], following Tinti et al. [2006] and Kervella et al. [2007],

proposed the introduction of the source term in the right hand side of

equation (6.25), in order to incorporate the wave generation due to sea

floor displacements. We recall that in the equation (6.25), h (x, y, t) =

hf (x, y) − hl (x, y, t) is the water depth equal to the difference between

the fixed bottom depth hf (x, y) and the landslide (or seismic sea floor) el-

evation hl (x, y, t); its second time derivative is not zero in the area where

the landslide (or the earthquake) occurs. The term 1/cosh(khf ) in equation

(6.25) represents a filter function, which models the transfer of the bottom

movement to the free surface.

It has to be noted that c, cg, k and ω in equation (6.25) have been tra-

ditionally computed with reference to a single wave frequency component.

Therefore the time domain MSE can be solved by assuming a dominant

frequency of the wave spectrum, and the result is valid only for narrow

frequency spectra seas. In order to reproduce the frequency dispersion of

broad banded spectra, as those of tsunamis, Bellotti et al. [2008], Cecioni

and Bellotti [2010a, b] proposed to solve the MSE in the frequency domain.

By taking the Fourier Transform of equation (6.25) with respect to the time,

it follows

∇h · (ccg∇hN) + ω2 cg
c
N = − 1

cosh (khf )
htt. (6.27)

The resulting elliptic equation (6.27) describes the stationary wave field in

terms of N (x, y, ω), which is the Fourier Transform of the free surface ele-

vation, i.e. relative to a monochromatic wave of single angular frequency ω.

The forcing term in the right hand side of equation (6.27) contains htt, the

Fourier Transform of htt. The model solves a set of equations as equation

(6.27), one for each frequency ω, with the appropriate boundary conditions

and the values of c, cg, k. The free surface elevation in the time domain,

η (x, y, t), can be then calculated by taking the Inverse Fourier Transform of

the superposition of all the monochromatic solutions N (x, y, ω).

As already shown in the paper of Cecioni and Bellotti [2010b], when the

tsunami generation mechanism is known and its effects on the water are

reproduced by the forcing term, the model provides accurate reconstruction

of the tsunami scenario. When the model works in a tsunami early warning

application, as preliminarily shown in Bellotti et al. [2008], it also makes use

of the recording of the tsunami itself, and has to forecast the propagating

waveform in real-time while the event is occurring.

A tsunami early warning application of the present model is possible if the

computational procedure is split in two parts: one computationally expen-

sive, which has to be carried out before the occurrence of the tsunami;
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the other, much faster, which provides the forecasting tsunami in real-time

using the recording of the tsunami itself. The pre-event computations gen-

erate a database of possible tsunami scenario, which are computed assuming

a probable generating source, based on the identification of the area where

the co-seismic or landslide events likely will occur. The solution of the pre-

liminary computation is the free water surface elevation ηp−c (x, y, t) (where

p − c stands for pre-computed) and can be stored at any point of the nu-

merical domain.

The second part of the model application starts in real-time when a tsunami

occurs and its waveform ηm (xP , yP , t) is detected from the sea surface mea-

surement at one position (xP , yP ). At that point we can impose the following

identity

ηm (xP , yP , t) = s(t) · ηp−c (xP , yP , t) (6.28)

in order to calculate the time varying correction term s (t). Once the cor-

rection term is applied to the pre-computed time series, the model solution

is equal to the measured one. Indeed, when s (t) is obtained from equation

(6.28), it is possible to adjust the pre-event simulation results at any posi-

tion of the computational domain where no records are available, by using

an identical correction term for all the points of the domain:

η (x, y, t) = s(t) · ηp−c (x, y, t) . (6.29)

Actually, it is more convenient to apply Eqs. (6.28) and (6.29) in the fre-

quency domain. This requires a Fourier Transform of the measured tsunami

time series record, Nm (xP , yP , ω). The correction term can be therefore

defined as follows:

S (ω) =
Nm (xP , yP , ω)

Np−c (xP , yP , ω)
(6.30)

and the forecasted tsunami waveform at any point is computed in the fre-

quency domain as:

N (x, y, ω) = S (ω) ·Np−c (x, y, ω) . (6.31)

As stated the free surface elevation in the time domain is obtained by means

of the Inverse Fourier Transform of N (x, y, ω). The computation of S (ω)

is carried out in the frequency domain. It has complex values, and has

therefore also the effect of correcting both the amplitude and the phase

of each component of the wave specrtum. When switching to the time

domain, it is not necessary to synchronize the computed and the measured

time series.

An important feature of the model is that the tsunami waveform can be
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estimated while the tsunami is occurring, in the sense that the term S (ω)

can be calculated even when sea surface elevation record does not contain

the entire tsunami waveform. It results that the accuracy of the forecasting

model improves with the length of the available registration of the tsunami.

However, as we will show later, good estimation of the tsunami waveform

can be extracted from the model even when just the first tsunami wave has

been recorded.

6.3.1 Boundary conditions

Boundary conditions used in this work are the fully reflective conditions at

solid boundaries and a radiation condition.

The full-reflection boundary conditions can be expressed by imposing that

the fluid velocity in the direction orthogonal to the boundary is zero. By

using equation (6.24) it follows that the derivative of the Fourier Transform

of the free surface elevation η along the normal to the reflective boundary

should be zero (see Mei [1989]):

Nn = 0. (6.32)

The radiation boundary condition can be obtained by using a mathematical

formulation that allows the waves that propagate toward the open bound-

aries to freely exit the computational domain. This condition can be easily

formulated for progressive outgoing waves [Sommerfeld , 1964; Van Dongeren

and Svendsen, 1997]:

ηt +
c

cos (θn)
ηn = 0, (6.33)

where c is the linear phase celerity and θn is the angle the wave direction

forms with the outgoing normal to the considered boundary.

The Fourier Transform of equation (6.33) provides the radiation condition

in the frequency domain (see Beltrami et al. [2001]; Steward and Panchang

[2001]):

Nn + ikcos (θn)N = 0. (6.34)

Please note that the equation (6.34) is nonlinear in the sense that θn is not

known a priori and depends on the solution itself. Iterative techniques can

therefore be applied or a reasonable estimate of this parameter can be used

to solve the indeterminacy.

6.4 Description of the physical model

In order to test the tsunami inversion technique described in the previous

section, experimental results described by Di Risio et al. [2009b] have been
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used. It has to be noted that these experiments are partially the same of

those described in chapters 3, 4 and 5. As shown in Figures 6.1 and 6.2 the

experimental facility, the physical model (i.e., truncated conical island) and

the landslide model (i.e., LS1) are excaltly the same of those described in

chapter 3. Nevertheless, the experiments used to test the inversion proce-

dure are preceding to those described in this work. In particular, different

acquisition techniques, and different number and placement of the instru-

ments have been used by Di Risio et al. [2009b]. Indeed, observing the

Figure 6.2, if one compares it with the Figures 3.2 and 3.6, it is evident that

the moving arm is not installed on the island. Furtermore, the experimental

results, that have been used in this chapter to test the inversion technique,

refer only to the thinner landslide model (i.e., LS1). We refer to Di Risio

et al. [2009b] for further details on the experimental set-up. However, we

briefly recall that Di Risio et al. [2009b] have tested, in the experimental

campaign, different landslide release distances and water depths. The re-

lease distance ζ is defined as the distance between the lower point of the

landslide and the undisturbed shoreline measured along the inclined plane.

In order to test the tsunami inversion technique, we refer to the experimen-

tal results for ζ = 0.30 m and offshore water depth hb = 0.80 m.

Traditional resistive gauges were employed to register the instantaneous ver-

tical displacement of the free surface. All the signals have been acquired
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Figure 6.1: Skecth of the plan view layout of the laboratory experiments (mea-

sures in m).
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Figure 6.2: Picture of the landslide and island models.

simultaneously at a frequency of 1000 Hz. The relative position of all the

gauges can be found in Figure 6.3 and in Table 6.1. The position of the

gauges in Table 6.1 are expressed in polar coordinates, with the origin at

the landslide-water impact point (see Figure 6.3) and the angular position

measured counterclockwise from the landslide motion direction.

Figure 6.3: Layout of the laboratory gauges positions.
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Gauge Angular position Radial position

name θ (◦) r(m)

12S 54.3 0.63

20S 44.9 0.92

7S 29.2 1.82

15S -0.3 2.37

24S 0.8 4.55

Table 6.1: Angular and radial position of sea level gauges: the point where the

landslide impacts the water is taken as the origin, and the angular

position is taken counterclockwise from the landslide motion direction

(see Figure 6.3).

6.5 Real-time tsunami inversion

6.5.1 Numerical simulations

The numerical simulations presented herein are aimed at reproducing the

conical island experiment. The computational domain is semicircular, as

shown in Figure 6.4. Taking advantage of the symmetry of the problem

across the landslide motion direction, only a half of the conical island has

been reproduced. The computational domain is limited at the offshore side

by a semicircular boundary placed at a distance of 8 m from the centre of

Figure 6.4: Sketch of the numerical domain from Cecioni and Bellotti [2010b].

The numbers 2.07, 4.47 and 8.00 express the radii in meters of the

undisturbed shoreline, the island base at the tank bottom, and the

external circular boundary respectively.
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the island.

As sketched in the Figure 6.4, at the offshore boundary a radiation bound-

ary condition is applied; it allows free exit of the propagating waves. At the

undisturbed shoreline it is imposed a perfect reflection condition, represent-

ing a vertical impermeable wall.

The model solves the MSE (6.27) with the boundary conditions, using a Fi-

nite Element Method procedure. The time series reproduced by the model is

50 s long, with a ∆t of 0.01 s, and a total of 5000 time steps. In the frequency

domain, equation (6.27) has been solved for those long wave components for

which relevant energy contents exist. More specifically, 100 discrete angular

frequency ranging from 2π · 0.02 up to 2π · 2 rad/s have been considered for

the numerical solution.

The maximum element size of the triangular mesh elements is set in order to

ensure at least 10 points for the shortest wave length reproduced (0.05 m for

all the performed simulations). It results in about 160,000 mesh elements

and about 81,000 Degrees of Freedom of the problem. The computation time

for the solution of the 100 discrete angular frequencies is about 12 minutes

on an AMD Opteron 246 2GHz Computer equipped with 4 GB of RAM.

6.5.2 Inversion using the correct landslide scenario

Firstly we present results of the inversion procedure applied to the pre-event

computations carried out using the correct landslide scenario. This means

that the available information on the landslide volume and kinematic from

the laboratory experiments are used in the numerical simulations in order

to get the forcing term of the MSE (6.27).

In order to estimate the complex correction term S (ω) of equation (6.30),

the numerical model results and one of the collected time series were used.

We have therefore used the experimental records at one gauge, referred to

as “inversion” gauge in the followings, as if it would represent the tsunami

record given as input for the inversion procedure. Experimental time series

at another gauge located far from the landslide area, referred to as “control

gauge” in the followings, is used to validate the model prediction of the

propagating waves.

The key point here is to analyze where it would be better to locate the

inversion sea level gauge, which will record the tsunami and will provide in

real-time the input for the inversion procedure. On one hand, in order to

give early predictions, it is desirable to use gauges very close to the sub-

aerial landslide; on the other hand, the model is expected to perform better

in deep water, so in order to get accurate results it is desirable to use gauges
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Figure 6.5: Comparison of the numerical result (red solid line) with the experi-

mental time series (black dashed line) at the control gauge 24S. Each

plot refers to a different gauge (12S, 20S, 7S and 15S) used for the

inversion.

located not in the very near field.

In order to investigate what position of the inversion gauge will provide

better accuracy of the tsunami prediction, Figure 6.5 reports the results of 4

different inversions, obtained using as input time series those of the gauges

12S (r=0.63 m, θ=54.3◦), 20S (r=0.92 m, θ=44.9◦), 7S (r=1.82 m, θ=29.2◦)

and 15S (r=2.37 m, θ=-0.3◦). The numerical results (red solid line) are

checked at the control gauge 24S (r=4.55 m, θ=0.8◦) by comparison with the

experimental records (black dashed line). It appears that the performances

of the inversion procedure improve as the distance of the inversion gauge

from the source increases. This is clearly related to the fact that in the

very near field the model results are not satisfactorily, see for example the

results reported on the figure 5 of Cecioni and Bellotti [2010b]. As shown

in that paper, the accuracy of the results deteriorates in the very near field.

This is mostly related to the fact that the present model does not reproduces

complicated three-dimensional flows and nonlinear effects; both are expected

to play a role close to the landslide and in shallow waters. Results obtained

using as inversion gauge the 12S are of very poor quality. When the inversion

gauge 20S is used, the results are good for the largest waves, but the following

smaller waves are not correctly reproduced. The computations obtained

using the gauge 7S give a good reproduction of the largest waves and of the

trailing wave train. Very accurate results are obtained using the very far
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gauge 15S. Note however that the instrument is on the landslide path and

in the field it is not feasible to place wave gauge at that position, since they

would be certainly damaged by landslides. In the following the gauge 7S is

taken as the inversion one, while the gauge 24S is used as the control one,

representative of waves radiating offshore.

6.5.3 Effect of uncertainties on the landslide scenario

It is now evaluated the effect of using pre-event computations carried out

with wrong landslide scenarios on the accuracy of the results. Of course it is

impossible to know exactly the properties of the landslide and its kinematic

before the tsunami event, and it is therefore very important to assess the

effects of scenario uncertainties on the method presented. The effect of un-

certainty of three parameters is separately evaluated here: the volume of the

landslide, its position (i.e. the axis along which it slides), and its kinematic

(i.e. its velocity). Other sources of uncertainty such as the shape of the

landslide and the porosity are not considered herein.

Figure 6.6 presents the results at the control gauge 24S, obtained apply-

ing the inversion from the sea level record at gauge 7S, using 4 landslide

scenarios, including the correct one. These have been computed by using

15 17 19 21 23 25 27
−6
−4
−2

0
2
4
6

Landslide scenario, V = 0.0156 * V
cls

η 
(m

m
)

15 17 19 21 23 25 27
−6
−4
−2

0
2
4
6

Landslide scenario, V = 0.125 * V
cls

η 
(m

m
)

15 17 19 21 23 25 27
−6
−4
−2

0
2
4
6

Landslide scenario, V = 1 * V
cls

η 
(m

m
)

t (s)
15 17 19 21 23 25 27

−6
−4
−2

0
2
4
6

Landslide scenario, V = 8 * V
cls

η 
(m

m
)

t (s)

Figure 6.6: Comparison of the numerical result (red solid line) with the exper-

imental registration (black dashed line) at the control gauge 24S.

Numerical model prediction is performed adopting gauge 7S as the

inversion gauge, and using pre-event numerical computations carried

out with 4 tentative landslide volumes. Vcls is the volume of the so

called correct landlide scenario.
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landslides of different dimensions, but keeping the same ellipsoidal shape.

The 4 landslides have been obtained by scaling the original one used in the

physical model, multiplying the axes by 0.25, 0.50, 1.00 and 2.00. The re-

sulting landslide volumes measure respectively 0.0156, 0.1250, 1.0000 and

8.0000 times the volume of the reference landslide (i.e. the one reproduced

in the physical model). Again the red line reports the numerical model pre-

diction, while the black dashed line refers to the experimental data.

The results indicate that the inversion procedure is not very much affected

by the uncertainty on landslide volume. As far as the largest waves are con-

cerned, no differences can be seen, neither a trend with the volume of the

landslide. It is however pointed out that the train of small waves that fol-

lows the largest, are better reproduced by the small and the correct landslide

scenarios, while increasing the dimension of the landslide a poor accuracy is

obtained. Of course, as the method is aimed at predicting the largest waves,

it can be concluded that the effect of uncertainties on the landslide volume

can be neglected. Let us now analyze the effect of uncertainties on the

landslide position, i.e. on the direction of the landslide motion on the flank

of the island. The reference position is that used in the experiments (see
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Figure 6.7: Comparison of the numerical result (red solid line) with the experi-

mental records (black dashed line) at the control gauge 24S, using in-

version gauge 7S. Numerical model prediction is performed using pre-

event numerical computations carried out with 4 tentative landslide

motion directions. The angle β measures the difference between the

correct landslide scenario and that used in the computations. β = 0o

represents the correct landslide scenario, i.e. that representing the

experiments.
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Figure 6.3). The pre-event numerical computations are created assuming

landslide scenarios with the sliding axis rotated of an angle β equal to 10,

20 and 30 degrees from the reference one. Figure 6.7 presents the sea level

oscillations at the control gauge 24S given by the numerical model, obtained

using the inversion gauge 7S and the 4 pre-event computations with differ-

ent landslide motion direction. Comparing the numerical results (red line)

with the physical model records (black dashed line) it can be noted that the

position of the landslide plays a very important role on the procedure. The

accuracy of the results given by the method decreases as the direction of

the sliding axis diverges from the correct one. An error of 10o on the land-

slide position gives already poor results; an error of 30o appears to produce

unacceptable predictions. Finally it is investigated the effect of uncertain-

ties on the landslide velocity. For simplicity the pre-event computations are

carried out using the same kinematic law derived from the laboratory ex-

periment, but velocities are multiplied by 0.5, 1.0, 1.5 and 2.0 respectively,

thus reproducing one slower and two faster falls than the reference one. The

results of the inversion procedure, again referred to the control gauge 24S

and obtained from the inversion gauge 7S, are reported in Figure 6.8. The

comparison with the laboratory records (black dashed line) indicates that

an underestimation of the landslide velocity in the pre-event simulation still
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Figure 6.8: Tsunami inversion using scenarios computations with wrong landslide

velocity; inversion from gauge 7S, results checked against records at

gauge 24S. Red solid lines refer to numerical results, black dashed

lines to experimental time series. vcls is the velocity of the so called

correct landslide scenario.
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produces acceptable results after the inversion procedure. On the contrary,

the fast landslide scenarios give poor accuracy results, and the forecasted

wave packet is not able to reproduce the largest surface elevation recorded

at the control gauge.

It can be concluded that the pre-event uncertainties on the landslide volume

seems not affect the inversion forecasting results, while the landslide falling

position appears to have strong influence upon the accuracy of the method.

Also very small errors on the position of the axis along which the landslide

moves, induce large errors on the results. Furthermore, it appears that it is

better to reproduce slower landslides, rather than selecting too fast landslide

scenarios.

6.5.4 Real-time inversion

It is now evaluated the ability of the procedure to deal with truncated input

time series. Of course, when performing inversion in real-time, the data

are used as they become available. Results of an example computation

performed with the correct scenario are reported in Figure 6.9. Left panels

refer to the time series at the inversion gauge 7S; the black dashed line refers

to the full record, identical for all the plots, and the blue solid one to the

part of the signal considered available for each plot. Right panels show the

experimental time series at the control gauge 24S (black dashed lines) and

those predicted by the model (red solid line). Each row of plots refers to a

specific elapsed time, measured by the parameter tknown, of the input time

series used for the inversion. For instance, the first row considers an input

time series available up to 0 s, selected as origin of the time: no waves are

measured and therefore no waves are predicted at gauge 24S. The second

row refers to the computation carried out after 0.75 s, after the first wave

crest has been measured: the predicted time series shows an underestimated

wave train at gauge 24S. When the first wave has been completely measured,

and the crest of the second wave (the largest) is included in the input time

series, the predictions appear to be quite close to the reference experimental

data, as shown by the plots of the third row. As the input time series

becomes longer, the results converge to the measured ones. From Figure

(6.9) it appears that the leading wave is well predicted already at tknown =

1.5 s, while the following wave packet is still underestimated.

The convergence process is also shown in Figure 6.10, where it is also

evaluated the effect of changing the inversion gauge. Here the maximum

surface elevation predicted by the procedure at the control gauge 24S, is

plot against the length of the input time series. The 4 lines refer to results
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Figure 6.9: Sample computations of real-time inversion using partial input time

series at gauge 7S; results checked against records at gauge 24S.

obtained using as input time series those of gauges 12S, 20S, 7S and 15S.

The horizontal dashed line represents the maximum experimental surface

elevation at the control gauge 24S, i.e. the correct final results. It appears

that the convergence procedure is relatively smooth. Applying the inversion

procedure using very near-source gauges (12S and 20S) provides a faster

but less accurate estimation of the maximum sea surface elevation. The

inversion carried out using the very far gauge is more accurate but gets

later to the final result.

6.6 Discussion and conclusions

The inversion procedure presented in this work seems to provide forecasts of

the tsunamis of good accuracy and is able to work in real time, using partial

input time series. It seems therefore that it can be a useful tool to support

tsunami early warning systems.

One potential drawback of the procedure is that the accuracy of the results

deteriorates if the precomputed lansdlide scenario used for the inversion is
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not adequate. Among the several sources of uncertainties about the sce-

nario, it has resulted that the landslide dimension and the kinematic do not

play a relevant role. On the contrary, the position of the axis along wich the

landslide falls, appears to have a large effect.

A possible method for reducing the effects of scenario uncertainties is that

of trying to select the most appropriate one using the measurements in real-

time. The simplest approach is that of using two measurement devices of

the free surface elevation. One input time series can be used to forecast, at

the position of the second device, the time history of the surface elevation

for each of the precomputed scenarios. Then, by comparing the results and

the measurements at the second device, it may be possible to decide what

is the scenario that better describes the event.

However, in the practice, monitoring systems of unstable flanks may be

used to obtain reasonable estimates of the position, shape and dimension of

potential subaerial landslides. These information may be used to prepare

specific landslide scenarios to be included in the database. An example of

such measurement technique is shown in Casagli et al. [2010], who have set-
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Figure 6.10: Predicted maximum surface elevation at gauge 24S, using as input

partial time series of length tknown; horizontal dashed line represents

the reference experimental result at gauge 24S.
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up a ground-based radar interferometry system to monitor the Sciara Del

Fuoco unstable flank at Stromboli.

Measurements of tsunamis, essential in the present technique, can be ob-

tained using pressure transducers. Nevertheless, it has to be stressed that

waves generated by landslides are not very long, and a “large portion of

the wave packet energy pertains to deep water waves” [Bellotti et al., 2009].

Then pressure transducers placed at the sea bottom may not be able to

properly measure these tsunamis. A possible alternative is to mount the

pressure transducers on poles or, for high water depths, on mooring lines

of floating devices, so that the level at which measurements are carried out

can be selected independently from the water depth. In the latter case, care

has to be used to compensate the measurements for the possible movements

of the instruments; these are expected to induce further pressure compo-

nents, not related with surface waves. It is also worth to mention that the

measurements have to be processed in real time, using detection algorithms

[Bressan and Tinti , 2011; Beltrami , 2008], since the procedure presented in

this paper expects as input purely the tsunami data. In particular, when

measurement devices are placed close to the water surface, they can measure

also wind-waves components, and special algorithms have to be applied [e.g.

McGehee and McKinney , 1997; Beltrami and Di Risio, 2011].

This chapter has presented a brief analysis of how the position of the in-

version gauge influences the accuracy of the procedure. As stated, it is

desirable to measure the tsunamis close to the source, in order to increase

the amount of time for the spreading of the alert. However, the propagation

model used in the procedure performs better in deep waters, so the accu-

racy of the results can be improved by placing the inversion gauge not too

close to possible landslides. In the practice it is also important to place the

instruments on a stable sea bottom area, that is not expected to be reached

by the landslide material.

The computations presented in this paper refer to a subaerial landslide only,

as the experimental data available so far do not include submerged ones. It

is certainly desirable to evaluate the performances of the method for sub-

merged landslides, for which monitoring systems are not able to provide

information and warning on flank instabilities. This is one of the points

that will be addressed in our ongoing research, since new experimental data

will extend the results of Di Risio et al. [2009b], including submerged land-

slides in the next future.
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Chapter 7

Concluding remarks

This work aims at gaining insight on the physics of landslide-generated

tsunamis that occur at the flanks of a conical island. The problem at hand

has been studied by means of physical and numerical models in order to shed

light on the generation and propagation mechanisms that characterize these

waves. The comprehension and the modelling of the physical phenomena

involved have provided tools to improve the tsunamis early warning systems

(TEWS).

In this work, the results of a new set of three-dimensional experiments re-

producing tsunamis generated by subaerial landslides sliding down the flank

of a conical island, placed in a large wave, tank have been showed. The

new experimental investigation was carried out by employing a special mov-

able system that allows to achieve high spatial resolution, comparable to the

resolution of numerical results. Thus, the experimental data are intended

to be used as a benchmark for validating analytical and numerical models.

A detailed analysis of landslide motion were performed and hydrodynamic

coefficients were estimated on the basis of observed landslide displacements

in order to provide reliable tools to define boundary conditions useful for

models validation. Furthermore, given the large number of repetitions, a

statistical analysis of the repeatibility of the experiments has been carried

out.

Experimental analysis on free surface elevation shows that near the impact

point the wave features are dependent upon the near-field wave genera-

tion process and the highest wave amplitude occurs in front of the impact

point. When propagation mechanisms become the governing phenomena,

the highest wave amplitudes occur at the coast. Furthermore, as previously

demonstrated by Di Risio et al. [2009b], the new experiments confirm that

frequency dispersion mechanisms play a significant role during the wave
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propagation along the shoreline (i.e., run-up). It is almost clear that two

different system of waves are generated. The first one propagates along the

coast, the second one radiates offshore. Wave periods, celerities and wave

length of the two system are rather different. Close to the coast wave peri-

ods are higher if compared to the radiating waves. The landslides volume

affects significantly only wave amplitudes, whilst wave periods show little

dependence upon landslide thickness.

Given the large number of measurements the wavenumber-frequency anal-

ysis has been used to identify the features of the propagating waves. The

one-dimensional k-f has been applied on the run-up time series to identify

the dispersion relation followed by the waves that propagate alongshore. The

two-dimensional k-f has been used to study the spatial structures of the wave

modes around the island. The one-dimensional k-f has revealed that the in-

undation of the coast is dominated by a 0th-order edge waves packet. This

appears consistent with previous numerical results [Lynett and Liu, 2005],

theoretical models [Sammarco and Renzi , 2008; Tinti and Vannini , 1995]

and field measurements [Gonzalez et al., 1995; Neetu et al., 2011; Yamazaki

and Cheung , 2011]. The maximum values of the wave energy are identified

approximately at a wavenumber of 4.3 rad/m, i.e. at a wave length of 1.46

m; the peak frequency is of 0.5 Hz (see section 5.5 for further considerations

at the prototype scale).

The theoretical frequency dispersion relation of the edge waves [Ursell , 1952]

seems a reliable tool to estimate the celerity of propagation of the tsunamis

along the coast. The phase and group celerity calculated using the experi-

mental data has been compared with those from the edge waves theory. The

agreement between measurements and theory is reasonable for the phase

celerity. The agreement of the group celerity appears very good. The edge

waves theory can therefore be used to calculate the celerity of the waves

along the coast once an estimate of the frequency of the tsunami is given.

The two-dimensional k-f has been applied to the new measurements that

have been collected around the island. The results confirm that the 0th-

order edge waves dominates the propagation mechanisms in a frequency

range around to 0.5 Hz. The offshore gauges allow to observe that as the

frequency reaches a value of about 0.7 Hz the 1st-order edge waves become

relevant, and, as the frequency increases further (f = 1.2 Hz) non-trapped

modes occur as well.

Furthermore, aiming at providing tools to improve the tsunamis early warn-

ing systems (TEWS), a numerical model based on the MSE has been pre-

sented in this work. The model is effective in reconstructing in real time

the landslide-generated tsunamis wave form in the far-field. The method
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discussed herein is based on an inversion procedure that operates in the

frequency domain, and makes use of precomputed tsunami scenarios (based

on landslide scenarios defined a priori) to be compared with real time mea-

surements. The inversion procedure presented in this work seems to provide

forecasts of the tsunamis of good accuracy and is able to work in real time,

using partial input time series. It seems therefore that it can be a useful

tool to support tsunami early warning systems.

One potential drawback of the procedure is that the accuracy of the results

deteriorates if the precomputed lansdlide scenario used for the inversion is

not adequate. Among the several sources of uncertainties about the sce-

nario, it has resulted that the landslide dimension and the kinematic do not

play a relevant role. On the contrary, the position of the axis along wich the

landslide falls, appears to have a large effect.

However, in the practice, monitoring systems of unstable flanks may be

used to obtain reasonable estimates of the position, shape and dimension

of potential subaerial landslides. These information may be used to pre-

pare specific landslide scenarios to be included in a database. Moreover,

the present work has presented a brief analysis of how the position of the

inversion sensor influences the accuracy of the procedure. As stated, it is

desirable to measure the tsunamis as close as possible to the source, in order

to increase the amount of time for the spreading of the alert. However, the

propagation model used in the procedure performs better in deep waters, so

the accuracy of the results can be improved by placing the inversion gauge

not too close to possible landslides (see section 6.6 for further considera-

tions).

Finally, it could be useful to mention possible future research activities.

Indeed, other experiments on tsunamis generated by submerged landslides

that occur at a conical island have been recently carried out with the aim

of providing further developments of the topic described in this work. The

same acquisition techniques, as those described in this work, have been used;

thus, these experiments are intended to provide a benchmark for validating

theoretical models. Furthermore, a special electric engine has been used

to move the landslide models. This allows to fix the law of motion of the

landslide models. Thus, it is possible to assess the influence of the law of

motion in terms of generated waves. Moreover, given the large number of

free surface elevation time series it is possible to study the spatial structure

of the waves that are generated by the landslide along with the relevance of

the propagating wave modes as a function of the generation mechanisms.
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Appendix A

Laboratory generation of

solitary waves: an inversion

technique to improve

available methods

A.1 Preface

As described in chapter 2 the earthquake-generated tsunamis differ from

those generated by landslides, especially for what concerns the generation

and propagation mechanisms. In this Appendix it is shown a simple ap-

proach to improve the generation technique of solitary waves in experimen-

tal tests. Indeed, solitary waves are often used in laboratory experiments

to study the propagation and the interaction with the coasts of tsunamis.

However the experimental shape of the waves may differ from the theoretical

one. Thus, a correction technique is herein presented. It aims at minimizing

the discrepancies between the two profiles. Laboratory experiments revealed

that it is effective to correct the experimental shape of the solitary waves,

mainly for low nonlinearities. Further details can be foud in the work of

Romano et al. [2013].

A.2 Introduction

Tsunami are transient perturbations of the water free surface elevation that

propagate with high celerities for long distances. These waves, mainly gen-

erated by earthquakes or landslides, are characterized by large periods and,
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consequently, large wavelengths. It is of scientific and technical interest

to understand the generation, propagation and interaction with the coast

mechanisms. Several experimental studies have been carried out to gain in-

sight into these phenomena. However, when aiming at reproducing in a wave

tank or in a wave flume tsunamis a theoretical wave form has to be chosen.

Long waves theories have been often employed for this purpose. Depending

on the magnitude of the Ursell parameter these theories may lead to the

solitary waves solution [Russell , 1844]. Solitary waves have a theoretically

infinite wavelength and constant celerity for all the spectral components;

are often used to study, in a simple manner, both tsunamis propagation and

interaction with the coast.

The use of solitary waves in laboratory experiments aiming at reproducing

the features of the tsunamis is due to the works of Hammack [1972] and

Hammack and Segur [1974, 1978a, b]. They addressed the generation and

propagation of tsunamis in an ocean of uniform depth, and studied experi-

mentally the impact of an impulsively raised or lowered portion of the sea

bottom. They found that a positive initial surface disturbance of arbitrary

shape, will indeed eventually lead to the formation of solitons or solitary

waves. Synolakis [1987] proposed an approximate theory to estimate the

run-up of a solitary wave on a plane beach. Briggs et al. [1995] performed

laboratory experiments aiming at studying the run-up of a tsunami that

inundates a conical island coming from offshore; a solitary wave was used as

input wave profile.

Recently many authors have criticized the use of solitary waves for tsunamis

experiments. Tadepalli and Synolakis [1994] suggested that N-waves can be

more appropriate in most cases. It is known that real tsunamis often have

a leading depression, preceding one or more crests (indeed this property

depends on the generation mechanism). According to Madsen et al. [2008]

rarely a real tsunami can be represented as a solitary wave. This finding was

also supported by Chan and Liu [2012], which have recently shown that the

2011 Japan Tohoku tsunami can hardly be represented as a solitary wave.

Nevertheless solitary waves remain a tool that is still commonly used in

laboratory experiments. To generate these waves in experimental facilities

many techniques have been developed. The choice of the generation tech-

nique mainly depends on the type of wave maker (i.e. piston-type, flap-type,

etc.). A brief description of the available techniques will be given in the next

section. However, regardless of the wave maker employed the experimental

measured solitary wave shape may deviate from the theoretical one. Various

discrepancies between the two profiles may occur due to several reasons.

In this Appendix we present a correction technique, based on an inversion
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procedure in the frequency domain, that aims at improving the profile of

the experimental solitary waves. The technique, described in detail in the

following sections, consists of several steps. In the first step the solitary

wave is generated by using a given standard generation technique, once the

wave height H and the water depth h in the flume, and consequently the

nonlinearity ε, have been fixed. The experimental free surface elevation is

measured by means of a wave gauge placed along the flume and is compared

with the theoretical free surface elevation. The difference between the two

profiles, evaluated in the frequency domain, is then used to correct the wave

maker motion. Thus the corrected time series of the wave maker is then

used to generate a new solitary waves that is in a better agreement with

the theoretical shape. This technique has successfully been tested in the

experimental wave flume of the University of Roma Tre.

The Appendix is structured as follows. After this introduction, the next

section gives a brief review of the state of the art. The following section

describes the basics of the correction technique. Then a brief description

of the experimental set-up and the main results are presented. Concluding

remarks close the Appendix.

A.3 Solitary waves generation techniques: a brief

overview

Many techniques are available to generate solitary waves in experimental fa-

cilities. Russell [1844] was the first to observe a solitary wave and describe

the generation procedure. This consists in dropping a solid box in the wave

flume. Russell [1844] showed by means of experimental tests that a solitary

wave of a certain wave height H that propagates on a constant depth h

travels with constant celerity c =
√
g(H + h). This technique is still used,

however other methods valid for piston-type wave maker have been devel-

oped. It is worth to mention that when one considers long waves, a uniform

depth-averaged horizontal velocity of the water particles is assumed. This

suggests that a piston-type wave maker is a suitable tool for generating long

waves in general, and solitary waves in particular. The general procedure to

generate long waves and solitary waves is extensively described in the work

of Guizien and Barthélemy [2002]. It is based on the following equation

dX

dt
= u(X, t), (A.1)

where X is the instantaneous position of the paddle and u is the depth-

averaged horizontal velocity, i.e. matching the paddle velocity at each po-

University of Roma Tre - Department of Engineering 141



sition in time with the vertically averaged horizontal velocity of the wave.

Based on this assumption several theories have been developed. Starting

from the chosen solution of the solitary waves [Boussinesq , 1871; Rayleigh,

1876] a paddle time series can be obtained and appears as follows:

X(t) =
2H

hβ
tanh

(
β

2
θ

)
, (A.2)

where θ = ct−X(t) is the phase function, H is the wave height, β is a decay

coefficient, c is the phase celerity and h is the water depth. The stroke of

the paddle is equal to S = 4H/hβ and the duration τ of the paddle motion

can be determined as follows

τ =
4

βc

(
tanh−1(0.999) +

H

h

)
. (A.3)

Goring [1978] proposed a theory to generate long waves (i.e. cnoidal and soli-

tary waves) in laboratory experiments by using a piston-type wave maker. In

this work the Boussinesq’s solution of the solitary waves [Boussinesq , 1871] is

used and the parameter S, c and β are also provided. However by using this

method spurious trailing waves can occur. Guizien and Barthélemy [2002]

started from the Rayleigh’s solution for solitary waves [Rayleigh, 1876]. The

paddle time series is assumed to be

X(t) =
2H

hβ

 h tanh
(
βct
2

)
h+H

[
1− tanh2

(
βct
2

)]
 , (A.4)

where β/2 =
√

3H/4h2(H + h). This technique aims at minimizing the spu-

rious trailing waves. According to the method of Guizien and Barthélemy

[2002] in the right panel of the Figure A.1 several paddle time series , de-

pending on the wave nonlinearity ε, are represented. When this technique

is used the paddle is assumed to be at its rest position during the genera-

tion process. Malek-Mohammadi and Testik [2010] developed a method that

considers that the paddle is moving while the waves are generating. Finally

it is worth to mention that other generation techniques, in which the wave

maker is not a piston-type one, have been developed. Rossetto et al. [2011]

have presented an innovative procedure to generate long waves (i.e. solitary

waves and N-waves) by using a pneumatic wave maker. However in the

present Appendix only the techniques available for piston-type wave makers

are treated.
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Figure A.1: Left panel: solitary waves profile for several wave nonlinearities and

for a given water depth. Right panel: paddle law of motion according

to the method developed by Guizien and Barthélemy [2002].

A.4 The correction technique

In this section the correction technique is described. We recall that this

method aims at improving the shape of the experimental solitary waves

with respect to the desired theoretical profile. The method is made up of

several steps. The first step consists in generating a solitary wave by using

a paddle law of motion X0(t) provided by an existing generation technique,

as those described in the previous section. A comparison between the free

surface time series ηe(t) and the theoretical one ηt(t) at one wave gauge

follows. The difference between the two profiles is processed by an inversion

technique that allows to obtain a corrected paddle law of motion. This

procedure is fairly general and we applied it to improve the solitary wave

profiles obtained from the generation technique described in the work of

Guizien and Barthélemy [2002] because the latter allows to obtain very

accurate initial wave profiles.

Our procedure is based on the comparison between the experimental free

surface elevation of the solitary wave, measured by a wave gauge placed

at known distance x = Xs from the paddle, and the theoretical one. The

Fourier transform (Ne(f)|x=Xs , Nt(f)|x=Xs) of these two time series is given

by the following relations

Ne(f)|x=Xs =

+∞∫
−∞

ηe(x = Xs, t) · e−i2πftdt (A.5)

Nt(f)|x=Xs =

+∞∫
−∞

ηt(x = Xs, t) · e−i2πftdt (A.6)
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where ηe(x = Xs, t) and ηt(x = Xs, t) are respectively the experimental

and the theoretical free surface elevation time series, evaluated at a distance

x = Xs from the paddle. By subtracting the two Fourier transform as follows

∆N(f)|x=Xs = Nt(f)|x=Xs −Ne(f)|x=Xs (A.7)

it is possible to obtain ∆N(f)|x=Xs that takes into account the differences in

terms of spectral components between the two time series. It is important

to stress that this comparison is made within a time window that has a

duration τ , calculated by the equation (A.3). Thus the correction technique

is applied in a time range between (t∗ − τ/2) and (t∗ + τ/2), where t∗ is

the time at which the maximum free surface elevation occurs. Moreover it

is worth to highlight that equations (A.5), (A.6) and (A.7) provide complex

quantities. Then each spectral components given by (A.7) is shifted in space

to the paddle rest position. This step is carried out as follows

∆NS(f)|x=0 = ∆N(f)|x=Xs · eikc(f)XS , (A.8)

where kc(f) is the wavenumber defined as

kc(f) =
2πf

c
, (A.9)

where c is the solitary waves phase celerity. Each spectral components is here

shifted to the paddle’s position travelling at the celerity of the solitary wave.

Nevertheless this hypothesis is acceptable if solitary waves are considered

(i.e. waves that propagate with constant shape), however, when other types

of waves are considered, the appropriate frequency dispersion relation can

be applied to calculate c for each frequency f . The term provided by (A.8)

is thus converted in a correction of the paddle law of motion through the

Biésel transfer function [Biésel , 1951]

∆NX(f)|x=0 = ∆NS(f)|x=0 · e−i
π
2 · FB(f) (A.10)

where FB(f) is the Biésel transfer function that depends only on the fre-

quency, once the water depth is given. So it is now possible to correct, in the

frequency domain, the paddle law of motion by adding the term provided

by (A.10) to the Fourier transform of the initial paddle law of motion. This

is obtained as follows

N
X̃

(f)|x=0 = NX0(f)|x=0 + ∆NX(f)|x=0, (A.11)

where NX0(f)|x=0 is the Fourier transform of the initial paddle law of mo-

tion. Thus by means of an inverse Fourier transform it is possible to obtain a
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corrected paddle law of motion that, if used to generate a solitary wave, will

provide an experimental profile η̃(t) closer to the theoretical one. Indeed,

as it will be showed in the next section, this procedure is supposed to be

a convergent one. Thus by applying in an iterative manner the correction

technique a better agreement between the experimental and theoretical free

surface elevation time series can be reached.

A.5 Experimental set-up

Laboratory experiments have been carried out in the Hydraulic and Mar-

itime Laboratory of the University of Roma Tre (Italy) to test the proposed

technique. The laboratory is equipped with a small wave flume made of

plexiglass panels and a steel frame. It is 9.0 m long, 0.27 m wide and 0.50

m high (see Figure A.2). The waves are generated by means of a piston-

type wave maker. At the other side a vertical fully reflective wall is placed.

The wave maker is moved by an electric engine controlled by a computer.

The total stroke of the paddle is 1.0 m. A Matlab code is used to generate

the waves; the experimental data are collected by means of a National In-

struments 6229 A-C board. The instantaneous free surface elevation in the

flume is measured by four resistive wave gauges placed along the channel.

The positions of the wave gauges, evaluated with respect to the paddle rest

position, are respectively xWG1 = 1.96 m, xWG2 = 3.00 m, xWG3 = 4.00 m,

xWG4 = 4.96 m. The sampling frequency is 1000 Hz.

A.6 Results and discussion

Parametric laboratory experiments have been carried out. The water depth

has been set constant (h = 0.10 m) while the nonlinearity ε of the waves

has been varied in a range from 0.10 to 0.60. In Figure A.3 the results of

Figure A.2: Sketch of the experimental set-up (left panel) and picture of the wave

maker installed on the wave flume (right).
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the correction technique for three nonlinearities (ε = 0.10, 0.30, 0.50) are

represented. In the left panels the paddle laws of motion are showed (grey

lines: initial time series; red lines: corrected ones). In the right panels the

free surface elevation time series are plotted (black lines: theoretical profiles

of the solitary wave; grey lines: initial experimental profiles; red dots: cor-

rected profiles). The experimental free surface elevation time series used in

the correction technique have been measured at the wave gauge n. 3 (i.e.,

xWG3 = 4.00 m). The initial free surface elevation time series deviate from

the theoretical ones. Both the maximum value and the wave “tails” disagree

with the theoretical profile of the solitary wave. It is also clear that, for all

the nonlinearities, the correction technique improves the agreement between

the experimental profile and the theoretical one. The maximum values of

the free surface elevation are also improved. The tail profiles are improved

for the lower nonlinearity (ε = 0.10) while for the larger ones it remains

substantially unchanged. Laboratory experiments show that this drawback

of the method grows as the nonlinearity of the waves increases. In Figure

A.4 the spectral components of the time series represented in Figure A.3 are

plotted. The left panels reports the frequency spectra of the free surface ele-

vations (black lines: spectrum of the theoretical profiles of the solitary wave;

grey lines: spectrum of the initial experimental profiles; red dots: spectrum

of the corrected profiles). In the right panels the differences between the

spectra of the experimental and the theoretical solitary waves are plotted,

for all the nonlinearities. Figure A.4 shows that for the lower nonlinearity

the correction technique is effective for all the frequencies. When the larger

nonlinearities are considered it turns out that the correction technique is

effective for the high frequencies, while fails in correcting the low ones. As

observed in Figure A.3 the low frequencies influence the shape of the tails.

In order to evaluate quantitatively the effectiveness of the correction pro-

cedure, several coefficients aiming at estimating the agreement between the

experimental solitary waves and the theoretical ones have been defined. The

first coefficient CH , aims at evaluating the difference between the experimen-

tal wave height and the theoretical one. This coefficient is defined as follows

CH = 1−
∣∣∣∣1− He

Ht

∣∣∣∣ , (A.12)

where Ht and He are the theoretical and the experimental wave height,

respectively. The second coefficient σf assesses the discrepancies in terms of

shape between the two profile within the time window used to correct the

initial solitary wave.
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Figure A.3: Left panel: comparison between the paddle laws of motion for three

wave nonlinearities (grey lines: initial law of motion; red lines: cor-

rected law of motion). Right panel: comparison between the water

free surface elevation (black lines: theoretical profile; grey lines: ini-

tial profile; red dots: corrected profile). Note: the experimental free

surface elevation time series used in the correction technique have

been measured at the wave gauge n. 3 (i.e., xWG3 = 4.00 m).
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Figure A.4: Left panel: comparison between the spectral amplitudes for three

wave nonlinearities (black lines: spectrum of the theoretical profile;

grey lines: spectrum of the initial profile; red dots: spectrum of the

corrected profile). Right panel: comparison between the spectral

differences (grey lines: spectral difference between the theoretical

profile and the initial one; red lines:spectral difference between the

theoretical profile and the icorrected one). Note: the experimental

free surface elevation time series used for the correction technique

have been measured at the wave gauge n. 3 (i.e., xWG3 = 4.00 m).
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We recall that the time window has a duration of τ , as defined in equation

(A.3). This coefficient is defined by the following

σf = 1−

√
1
Nτ

∑Nτ
i=1 [ηe(ti)− ηt(ti)]2

Ht
, (A.13)

where Nτ is the number of elements in the time window and t∗ is the time

at which the maximum of the profile occurs. Of course this coefficient has

to be calculated in the same time window used to correct the initial profile

of the solitary wave. The last coefficient K is defined as the product of the

previous ones:

K = CH · σf . (A.14)

Each coefficient varies between 0 and 1. When all the coefficients are equal

to 1, then a perfect agreement between the experimental and theoretical

profile is reached. In Figure A.5 the three coefficient are plotted against the

nonlinearity ε. They are calculated for both the initial experimental profile

(round markers) and the corrected one (diamond markers). If nonlinear-

ity is lower than 0.4, the procedure yields a relevant improvement, i.e. for

low values of nonlinearity the corrected solitary waves are in a very good

agreement with the theoretical profile of the waves. Instead, as the nonlin-

earity increases, the correction procedure does not give a larger significant

improvement.

Finally it is interesting to evaluate whether the described procedure is con-

vergent or not. The procedure has been applied five times (N = 5) in an
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Figure A.5: Left panel: peak coefficient. Middle panel: shape coefficient. Right

panel: global coefficient. Note: circle markers identify the coeffi-

cient calculated for the initial profiles, while the diamond markers

are those calculated for the corrected ones. Note: the experimen-

tal free surface elevation time series used in the correction technique

have been measured at the wave gauge n. 3 (i.e., xWG3 = 4.00 m).
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Figure A.6: Peak coefficient (left panel), shape coefficient (middle panel), global

coefficient (right panel) against the number of iteration N , for a

given wave nonlinearity. Note: circle markers identify the coeffi-

cient calculated for the initial profiles, while the diamond markers

are those calculated for the corrected ones. The experimental free

surface elevation time series used in the correction technique have

been measured at the wave gauge n. 3 (i.e., xWG3 = 4.00 m).

iterative manner for a given wave nonlinearity (ε = 0.20). Results are rep-

resented in Figure A.6. In this figure the coefficients, described in equations

(A.12), (A.13), and (A.14) are plotted against the number of iterations for

which the technique has been applied. When N is equal to 0 we refer to those

coefficient calculated for the initial wave profile (round markers). When N

is greater than 0 we refer to those coefficients evaluated for the N th itera-

tion. It can be seen that the largest improvement is obtained between the

0th and the 1st iteration. After the 1st iteration the value of the coefficients

remains almost constant. Similar behaviour has been observed for the oth-

ers nonlinearities investigated, also for the highest ones (i.e., ε = 0.50, 0.60).

Hence, we can conclude that there is no evident improvement in applying

the method more than once.

A.7 Concluding remarks

In this Appendix a correction technique to improve the agreement between

the experimental and the theoretical solitary waves profile is proposed. The

technique aims at correcting the paddle law of motion by comparing, in

the frequency domain, the experimental profile of solitary waves with the

theoretical one. The differences in terms of spectral components between

the two profile are used to correct the paddle law of motion. We test the

technique with focused laboratory experiments in a small wave flume. They

indicated that the correction technique allows to improve the experimental
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solitary waves shape, especially for low nonlinearities (0.10 ≤ ε ≤ 0.40). As

the nonlinearity of the waves increases (ε > 0.50) a minor improvement is

provided. Furthermore experimental tests showed that although the tech-

nique is convergent and may be applied more times for each experiment, the

largest improvement is achieved at the first iteration.
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