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Abstract

In the world of technology, many industrial operations such as design of efficient devices,
or planning production in a big factory, require optimization approach and the solution of
inverse problems|chapter 1].

In this contest, in the last 20 years, the heuristic methods had a primary role considering
their capabilities to find out solutions in all those cases in which a lot of computation time is
requested. The present thesis work is mainly based on swarm algorithms, and on their
capabilities to achieve global optima without remain trapped into local minima. In particular,
in this work we treat high hybridization and integration among the different capabilities in
exploitation and exploration, expressed by 3 optimization algorithms which are: Particle
Swarm Optimization (PSO), Flock of Starlings Optimization (FSO), Bacterial Chemotaxis
Optimization (BCA).

The research of high hybridization among different heuristics led to implement a new
metaheuristic which has been called MeTEO (Metric Topological Evolutionary Optimization).
MeTEO exploits the synergy among the three algorithms already mentioned above. Moreover,
in MeTEO a further method called Fitness Modification (FM) has been used. As will be
shown, the FM enhance the exploration properties of MeTEO together with benefits in the
parallelization.

The first problem encountered making a metaheuristics composed of three complex
algorithms is the computation time required. For this reason, the thesis work has been focused
also in the analysis and synthesis of a parallel structures for supporting calculus. In this
context, two different approaches have been studied: 1)the algorithm-based and 2) the fitness-
based. Moreover, in order to extend the exploration capability of FSO problems with discrete
variable as well, a binary version of FSO has been implemented [chapter 2.

MeTEO has been validated on benchmarks and on inverse problems. The benchmarks
used are called hard benchmarks, because they show a structure without preferential tendency
towards a particular point, and local minima with depth value, some monomodal, with one
global minimum, and multimodal, with many equivalent minima. Afterwards a list of real
inverse and optimization problems are proposed: the parameters identifications of Jiles-
Atherton parameters, the efficiency improvement of Travelling Wave Tube (TWT) device,
taking in account the geometry, the magnetic focusing field, and the voltage of a Multistage
Compressed Collector, the harmonic detection in distorted waveforms. The simulation has
been made with MATLAB, and with the help of a FEM simulator called COLLGUN. All
results have been compared with those from other algorithms such as random walk, and the
also from the use of a single heuristics which MeTEO exploits [chapter 3].

In the Chapter 4 of this thesis the point of view changes toward the hardware, whereas all the
discussion done in the previous three chapters were focused on the improvement of the
optimization process preformed by numerical algorithms (Software). In fact, we present a
method for translating a numerical swarm based algorithm into an electric circuit, that is able
to reproduce by mean of voltages and currents the same trajectories shown by the numerical
swarm-based algorithms. A circuit, called swarn circuit, has been implemented with Simulink
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after to have deduced the mathematical relations between the numerical algorithms and their
translation into a dynamic system. The swarm circuit has been tested with hard benchmarks
and with two inverse problems. The swarm circuit open the road towards a real time

optimization, argument that is difficult to be addressed with software approaches.
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Italian Digest

Introduzione

Nell’ambito dei problemi di ottimizzazione, e piu in generale nella risoluzione di
problemi inversi, ¢ forte I'esigenza di possedere algoritmi di ottimizzazione che siano capaci di
produrre una esplorazione dello spazio delle soluzioni il piu possibile esaustiva. Infatti nelle
funzioni obiettivo di problemi reali si possono incontrare moltissimi minimi locali, nei quali
solitamente gli algoritmi con scarsa capacita di indagine rimangono intrappolati, vanificando

cosi l'intero processo di ottimizzazione.

Draltro canto pero, esiste 'esigenza di poter raffinare la soluzione nel momento in cui ci
si trova davanti a un candidato minimo globale. Quindi un algoritmo di ottimizzazione valido e
performante dovrebbe possedere alte capacita di esplorazione e allo stesso tempo un'ottima

capacita di convergenza.

Ovviamente ¢ impensabile arrivare a ottenere simili performance solo con un singolo
algoritmo, la via da intraprendere ¢ quella della ibridizzazione. Pensando a queste esigenze ¢
stato implementato un nuovo algoritmo meta-euristico chiamato MeTEO (Metric Topological

Evolutionary Optimization).

Gli algoritmi utilizzati in MeTEO sono algoritmi metaeuristici, ovvero sono algoritmi
ispirati al comportamento dei viventi, in particolare MetEO ¢ composto da: Flock of Starlings
Optimization (FSO), Particle Swarm Optimization (PSO) e Bacterial Chemotaxis Algorithm
(BCA). I primi due possiedono un comportamento collettivo, ovvero sono in grado di
condividere I'informazione riguardante ’analisi della funzione di costo tra i vari individui facenti

parte dello stesso stormo. Il BCA invece non possiede un comportamento collettivo.

Con questo tipo di approccio si tenta di ricreare un ambiente naturale reale, in cui sono

presenti stormi di uccelli (FSO), sciami di insetti (PSO) e popolazioni di batteri (BCA).



Nel prossimo paragrafo verra descritto in modo dettagliato il funzionamento di MeTEO
e dei suoi singoli componenti. Un altro importante metodo che completa il quadro descrittivo di
questo algoritmo ¢ la “Fitness Modification” (FM). La fitness modification consiste nel
sommare una funzione gaussiana nei punti in cui 'FSO ha trovato dei minimi locali. Cosi
facendo I'FSO avvertira un repentino aumento della Fitness e verra dirottato in una zona

diversa da quella in cui ¢ presente il minimo locale.

MeTEO ¢ stato progettato per essere utilizzato su una architettura parallela. In
particolare nel lavoro svolto in questa tesi, il parallelismo ¢ stato implementato su un cluster di
20 computer, connessi attraverso una rete LAN. Gli approcci implementati sono stati due:
algorithm-based e fitness-based. Nell’approccio algorithm-based ¢ presente un nodo master sul
quale I'FSO gira con il compito di esplorare il dominio delle soluzioni in modo tale da
individuare delle possibili regioni in cui pud giacere un minimo globale. Quando I'FSO ha
individuato tale regione chiamata “suspected region”, viene lanciata su un nodo slave del cluster
la serie PSO+BCA. Gli individui del PSO vengono inizializzati nel punto che viene fornito dal
master e quindi dal’FSO. Parimenti il PSO alla fine della sua ispezione fornira il minimo trovato
nel suo sotto-dominio di competenza al BCA che avra il compito di rifinire la soluzione.
Nell’approccio fitness-based invece, il cluster viene utilizzato per servire un algoritmo per volta
in serie. In questo approccio il master distribuisce ai nodi slave il task di calcolare la fitness per
ogni individuo che forma il gruppo. Sara compito del master, una volta raccolti tutti 1 dati delle
fitness dai nodi slave, aggiornare tutti gli altri parametri e calcolare le nuove posizioni degli
individui. L’approccio fitness-based viene utilizzato e consigliato quando si ha a che fare con
funzioni di costo che impiegano un tempo di esecuzione che ¢ comparabile con I'esecuzione del
codice di una iterazione di MeTEO. Nel lavoro di tesi sono stati implementati anche altri due
algoritmi, in particolare il MultiFlock (MFSO), il Binary Flock of Starlings Optimization
(BFSO), e una ibdridizzazione tra FSO e PSO indicata con I'acronimo FPSO. Nel’MFSO il
gruppo viene diviso in sotto gruppi, tutti gli individui di uno stesso sotto-gruppo possiedono un
comportamento pari a quello degli individui di un FSO. I vari sotto gruppi condividono pero lo
stesso global best. Tale algoritmo ¢ risultato essere ancora piu performante sotto il punto di
vista dell’esplorazione dei singoli algoritmi con i quali ¢ stato confrontato. Successivamente si ¢
esteso 'FSO anche a problemi di ottimizzazione aventi variabili discrete implementando il
BFSO, nel quale ogni individuo viene codificato attraverso una stringa binaria. La regola di
aggiornamento della velocita del singolo individuo adesso rappresenta la probabilita che una

determinata cifra nella stringa binaria ha di cambiare il proprio stato.



Viene inoltre fornita anche una ibridizzazione tra FSO e PSO in cui per cicli alterni
vengono fatti convivere nello stesso spazio delle soluzioni il e I'FSO. In particolare, il processo
di ricerca viene iniziato dall’FSO, ogni volta che viene individuato un minimo locale il gruppo di
si divide in due parti: un primo sottogruppo continua a indagare lo spazio delle soluzioni a
funzionando quindi come 'FSO, invece il secondo gruppo viene momentaneamente convertito
in PSO e ha il compito di rifinire la soluzione. Dopo alcuni cicli in cui viene applicato
I'interscambio appena descritto, il miglior punto individuato viene indagato con il solo PSO.

MeTEO ¢ stato validato su vari benchmark e su alcuni problemi inversi.

Richiamo sull’algoritmo MeTEO

METEO ¢ un algoritmo basato su tre metaeuristiche diverse: FSO, PSO e BCA. I’FSO
e il PSO appartengono alla classe di algoritmi appartenenti alla swarm intelligence. Dedichiamo 1

seguenti paragrafi a richiamare il tratti fondamentali di ogni algoritmo.

Flock of Starling Optimization e Particle Swarm Optimization.

11 Particle Swarm Optimization (PSO) ¢ uno degli algoritmi piu studiati ed utilizzati tra
gli algoritmi di ottimizzazione. E’ stato ideato da James Kennedy e Russell Eberhart nel 1995
[7]. I PSO sulla base di una regola metrica ¢ in grado di riprodurre il comportamento di uno

sciame di insetti.

L'introduzione di una regola topologica nel PSO ¢ il fulcro della algoritmo chiamato Flock of
Starlings Optimization (FSO). L'FSO, [3], [4] adotta un approccio basato su recenti ossetvazioni
naturalistiche [5], sul comportamento collettivo degli storni europei (Sturnus vulgaris). Gli
autori del lavoro [5] hanno scoperto una interazione tra membri della stesso gruppo che
possiede natura topologica: la proprieta principale dell'interazione topologica ¢ che ogni
individuo interagisce con un numero fisso di vicini, quindi la loro distanza metrica risulta non
essere cruciale. L'approccio topologico ¢ in grado di descrivere le variazioni di densita che sono
tipici di stormi di uccelli, cosa che la regola metrica non ¢ in grado di fare. In stormi reali un
individuo controlla la velocita di suoi 7 individui scelti in modo casuale all’interno del gruppo di

appartenenza. In figura 2 vengono riportati gli pseudo-codici dell'implementazione dell’PSO e

dell’ FSO di una funzione generica, f(X,.....X5), della quale deve essere trovato il minimo, e lo

. . . D
spazio delle soluzioni R~
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Defined just for FSO

15 | Mock] =
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Figura 1: principali parametri del’FSO e del PSO.

‘ For each j-th particle, for each step ¢, with ¢ = 0... T

max

I ‘Jﬂ-(f)=f(xf(f)--x?;(f)) ‘

I J,(f) is better than the personal best fitness of the j-t1 particle 7, (f)
17 p_best] =xi(t) Wk

5 O=5,6

Ir f;(t)is better than global best fitness
g _best, =xi(t) Yk
gW)=70

19 | @' =@, , ¥ =4, random(0,)), ¥ =y, -random(0,1)

W E+) = @i @)+ A (p _best] —xp @) + 7 (g _best, —x ()

20
(just for PSO)
i v+ =@l ()+ A (p_besti —xl () + ' (g _best, —xL(£)) + 67 - Meckl
- (just for FSO)
29

(E+) =X +viE+1)

Figura 2: pseudo codice degli algoritmi FSO e PSO.




I parametri principali di ogni individuo j-#b che forma I’algoritmo sono: la dimensione

dello spazio delle soluzioni R® = (X,.....X5) , il numero massimo di iterazioni T il valore

max /
massimo consentita ad ogni individuo V., . Inoltre le velocita vengono inizializzate in modo
randomico nel dominio[0 1]. Altri parametri sono: la fitness iniziale di ogni singolo individuo

fpj (0) =0, dove il simbolo di « indica un valore arbitrariamente grande; il valore del global
best g(0) =0, i valori delle coordinate dei personal best indicati con p i = (le (0)..x} (0)) , il

valore del coefficiente di inerzia @ , il valore della coefficiente cognitivo 4, e il valore del

max >

coefficiente sociale y,,, ; ed infine il valore il valore di soglia sotto il quale si puo considerare La

minimizzazione del funzionale effettuata pari goal _ fitness = arbitrary small , impostato

dall’utente.

Inoltre nella figura 1 sono stati riportati alcuni parametri che vengono utilizzati solo

nell’FSO, indicati dai numeri alla sinistra da #13 a #15: il coefficiente topologico 9, scelto nel

N

. . - e S C
dominio [0 1]; la quantita Mcch) =———— > v ; il numero di individui che vengono
crl_birds  h=l

seguiti da un individuo all'interno del gruppo.

Estensione dell’FSO al MultiFlock

Con lo scopo di migliorare ulteriormente le capacita esplorative del’FSO, ¢ stata ideata
un’ulteriore variante chiamata MultiFlock of Starling Optimization (MFSO). Essa consiste
nell'implementazione di piu di una serie di strmi che lavorano in contemporanea sulla stessa
funzione di costo. Nel’MFSO la matrice di interconnessione viene divisa in pitu sub matrici di
x N

dimensioni pari a N dove N, 4 indica il numero di individui che

ind _sub birds_ followed >
appartengo a ogni sub-flock. Ogni individuo che appartiene a un sub-flock sara costretto a
seguire individui del suo sub-flock. In questo modo ogni sub-flock avra delle traiettorie non
correlate con gli altri sub-flock; I'unico scambio di informazione che c¢’¢ tra i vari sub-flock ¢

rappresentato dell global best.

L’algoritmo della Chemotassi batterica

Il BCA ¢ stata proposto in [6] ed ¢ un algoritmo basato sulla emulazione del moto di un

vero batterio mentre questo ¢ in cerca di cibo. Una descrizione matematica del movimento del



batterio 2D puo essere sviluppata assumendo una velocita » assegnata e dalla determinazione di
opportune distribuzioni probabilistiche di durata del movimento 7z, e la direzione indicata da

ciascun individuo @ . La descrizione 2D puo essere facilmente estesa per iperspazi n-dimensionali
che definiscono, per il percorso del batterio virtuale, un vettore composto da 7 posizioni X;, con

i=1...,Nn, e un vettore fatto da n—1 direzioni, con K =1,...,n—1. Riportiamo nelle figure 3 ¢ 4

sono elencati i principali parametri dell’algoritmo e le regole proposte implementate nello

pseudo codice.

1 | v=const Define
2 [ <]

s [o]

4 T

s | 1|

6 | =62

-

8 | o =26

9 1/ (x)

Figura 3: principali parametri presenti nell’algoritmo BCA.

Nella figura 3 sono stati indicati il valore estratto da una funzione di densita di probabilita
esponenziale, pari a T, avente valore atteso e varianza pari a and W, e ©, il tempo minimo medio
di uno spostamento T, il modulo della differenza tra la nuova posizione del vettore, XNV e la

NEW _ ,,OLD

. .o oLD . . .. . . .
vecchia posizione, X, di un individuo r =|X X , € infine la funzione di costo da

minimizzare f(X). Riguardo alla direzione la funzione di densita di probabilita descrive
I'angolo di inclinazione tra due traiettorie consecutive. La Figura 4 mostra lo pseudo code del
BCA. 1l BCA ¢ fortemente influenzato dalla scelta dei parametri T, v and b. Tali parametri

vengono scelti in modo empirico.



For each bacterium and for each step

r £
T ez 0
0 per—
T =
7 J
Tn{l+b—’ per—— <0
r T
1 -
P(X=1)=—¢ .
T

n-1

L =r] | cos(e,)

k=

n-1
3 = rsin(g.) | [eos(@)

Fe=}
x, =r-sin(e, )

HEW oLD v
X =N+ x
1

HEW QLD v
X =X + x
i

HEW oLD v
X, = X, X,

End For

Figua 4: pseudo codice dell’algoritmo della Chemotassi Batterica.

Questi tre algoritmi simulano un ambiente naturale completo, in cui ogni elemento
svolge una particolare funzione. Infatti il ruolo dell’FSO ¢ quello di esplorare lo spazio delle
soluzioni trovando i punti candidati ad essere considerati minimo globale. Un punto ¢
considerato un minimo locale se il suo valore rimane costante dopo un fissato numero
d’iterazioni impostate dall’utente. Se questo avviene, I'FSO lancia una Fitness Modification (FM)
che consiste nell'aggiungere una funzione gaussiana alla funzione di costo centrata nel global

best attuale. Quindi, una FM opera secondo la seguente equazione:

Zn:(xj _Xminj)z

ffitnessk (X) = 1:fitnessk,l (X) + Aexp -= 20_2 (l)

dove A ¢ una costante adatta, e o ¢ la deviazione standard che definisce la dimensione
della &-esima FM lanciata dall’FSO. In questo modo, 'FSO rileva un alto valore di fitness, che lo
induce ad allontanarsi da quel particolare punto, accelerando il processo di esplorazione. Ad

ogni FM corrisponde il lancio su un nodo del cluster della serie PSO-BCA. Prima di terminare,



I'FSO attende 1 risultati dai singoli processi paralleli, li raccoglie e li ritorna all’operatore. In
dettaglio, quando viene lanciata una FM, in un nodo del cluster ¢ avviata la serie PSO e BCA
per esplorare nel dettaglio I'area identificata dall’FSO. Il cluster utilizzato ¢ composto da 20
macchine. B’ stato implementato un codice Matlab© che gestisce tutti gli scambi di file tra
Master e Slave, nel nodo principale vi ¢ una cartella condivisa in cui 'FSO scrive un file per ogni
minimo locale, che contiene tutte le informazioni per lanciare e inizializzare la serie PSO-BCA.
Ogni volta che il processo PSO-BCA ritorna 1 valori trovati, scrive 1 risultati sempre nella
cartella condivisa. In seguito, 'FSO raccoglie i risultati, e gestisce la lettura e l'ordinamento dei
file contenuti nella cartella condivisa. Nel nodo slave in cui viene lanciato il processo serie PSO-
BCA, viene prima lanciato il PSO, che alla fine delle iterazioni ad esso assegnate fornisce la
migliore posizione nel sub dominio di pertinenza, in seguito una colonia di batteri viene
inizializzata nel punto fornito dal PSO in precedenza. Per il dettaglio della realizzazione del
singolo algoritmo si fa riferimento a [1]. Ricordiamo che MeTEO racchiude in se un’alta
proprieta di esplorazione conferita dall’utilizzo del’FSO, una buona capacita di convergenza e
media capacita di esplorazione data dal PSO, e un’ottima proprieta di convergenza dovuta
all’utilizzo del BCA. Inoltre tramite la FM ¢ capace di non rimanere “intrappolato” in qualche

minimo locale, situazione che accade spesso quando si trattano problemi di ottimizzazione.

Binary Flock of Starlings Optimization

L’algoritmo di ottimizzazione FSO si basa su un costrutto che si presta alla risoluzione
di problemi di ottimizzazione che abbiano delle variabili continue. Un risultato della ricerca
triennale riassunto in questa tesi ¢ stato quello di estendere 'algoritmo anche a problemi con
variabili discrete. Per fare questo si ¢ agito modificando la formula dell’aggiornamento della
velocita del singolo individuo. Questa nuova versione del’FSO ¢ stata chiamata: Binary Flock of
Starlings Optimization (BFSO).

11 BFSO ¢ un’estensione del Discrete Particle Swarm Optimization. Le traiettorie nel
nuovo modello diventano probabilistiche, e la velocita del singolo individuo rappresenta la
probabilita che quella dimensione ha di cambiare stato da 0 a 1, o viceversa. Ovviamente il
problema che si vuole trattare deve essere convertito in un problema a variabili binarie. Quindi
le possibili posizioni per ogni dimensione possono essere 0 o 1; anche il personal best e il global
best appartengono al dominio {0,1}. Essendo v/ una probabilita essa pud avere valori compresi
tra O e 1. Una trasformazione logistica viene introdotta utilizzando una funzione sigmoidale in

modo tale da “costringere” il valore della velocita tra O e 1:

SW)=——

i @)
1+e™ ™



Successivamente, la variazione della posizione viene decisa in accordo con la:
if (rand <S(v} )) then x/ (t)=ZLelse x} (t)=0 3)

Partendo da queste assunzioni siamo in grado di definire i BFSO. L’equazione che

regola la velocita del singolo individuo diventa:
v (t+1) =[w'v) (t) + A’ (p_best] —x/ (t))+ ' (g _best, —x/ (t))]- Mcch, 4

dove Mcch) ¢ la probabilita media che la cifra cambia da 0 a 1.

Flock-Swarm Starling Optimization

L’FPSO ¢ una nuovo algoritmo ibrido che incorpora i benefici dei gia menzionati FSO e
PSO. All'inizio del processo di ottimizzazione un algoritmo di ottimizzazione dovrebbe essere
in grado di riuscire a trovare il valore del minimo globale nel minior tempo possibile. Quando il
candidato ottimo viene individuato, lo stesso algoritmo dovrebbe essere in grado in questa
seconda fase di rifinire la soluzione individuata. In molti casi queste due opposte capacita di
esplorazione e convergenza, richiedono l'utilizzo di due algoritmi distinti lanciati in serie per
essere espletate. Se nel funzionale invece sono presenti molti minimi locali, c’¢ la necessita di
alternare esplorazione e convergenza. Nell’algoritmo proposto, I'FSO inizia il processo di

esplorazione, se dopo un determinato numero di iterazioni N il valore del global best

switch_off 7
non cambia, il gruppo viene diviso due sottogruppi, modificano in modo opportuno la matrice

di interconnessione MC[N birds,N _ followed]

Identifichiamo con il simbolo F, il sub-swarm che possiede la proprieta esplorative

dell’FSO, e con P, il sub-swarm che muta la propria caratteristica in quella di un PSO

classico che possiede una migliore convergenza. Quindi il gruppo viene diviso in due parti
ognuna delle quali svolge un differente task, una continua 'esplorazione, e 'altra rifinisce il
minimo in esame.
La matrice delle interconnessioni viene modificata nella configurazione ibrida nel
seguente modo:
switch _ [P-N _bird N _ followed]

_ = ®)
[N _birds,N _ followed] O

[N _birds_ PSO,N _ followed]

dove O ¢ una matrice identicamente nulla.
[N _birds _ PSO,N _ followed ]



L’algoritmo ¢ formato quindi da tre configurazioni: 1) 'FSO esplora lo spazio delle
soluzioni, 2) il gruppo viene diviso in due sottogruppi uno avente un comportamento come
I'FSO e Taltro come PSO, che convivono contemporaneamente espletando comportamenti
diverso, 3) infine tutto il gruppo viene mutato in PSO e viene rifinita la soluzione che ¢ stata
individuata come ottimo globale. Il comportamento 1) e 2) vengono alternato per un numero
prestabilito di volte scelto dall’utente, infine si passa alla modalita 3). Le velocita massime

consentite in ogni configurazione sono indicate in tabella 1.

Table 1: velocita massime consentite dai sottogruppi.

Fan Fean
Viax_rso = Viuax (no)
Viax_rso = Viax Viwax_pso = MAX%
(no) Vv :VMAX/
MAX _PSO 10

In figura 5 invece viene riportato i flow chart esaustivo del funzionamento

dell’algoritmo FPSO.
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Figura 5:flow chart dell’algoritmo FPSO.



Architetture Parallele: Algorithm-Based e Fitness-Based.

MeTEO trova una sua naturale applicazione allinterno di un sistema di calcolo
parallelo. Infatti, come descritto nel funzionamento la struttura ¢ formata da un nodo master e
dei nodi slave appartenenti allo stesso cluster di computer. Nel lavoro di tesi sono state
implementate due diverse architetture. L.a prima ¢ stata chiamata algortthm-based, in essa
all'interno del master ¢ presente 'FSO che esplora lo spazio delle soluzioni, e ogniqualvolta
incontra una “regione sospetta” in cui ¢ presente un minimo locale, lancia su un nodo del
cluster la serie PSO-BCA. In questa configurazione il parallelismo avviene su base algoritmica,
ovvero ogni nodo serve la serie di algoritmi PSO-BCA, quindi sul singolo nodo non c’¢ una
successiva parallelizzazione dei singoli algoritmi PSO e BCA; la potremo definire quindi una
parallelizzazione ad alto livello. Tale architettura ha lo svantaggio che se il calcolo della fitness
richiede un tempo comparabile con il tempo di aggiornamento dei parametri e delle nuove
posizioni di tutti gli individui dell’algoritmo, i nodi che vengono identificati per lanciare la serie
PSO-BCA rilasceranno la risorsa dopo un tempo eccessivamente lungo, vale a dire come se
avessimo lanciato il PSO e il BCA su una singola macchina. Per ovviare a questo problema ¢
stata implementata una struttura che parallelizza gli algoritmi pit a basso livello, chiamata
fitness-based. Se dall’analisi del profiling dell’algoritmo risulta che per il calcolo della fitness del
singolo individuo vengono utilizzate la maggior parte delle risorse messe a servizio dal cluster, si
puo pensare di rivedere l'allocazione delle risorse di calcolo sfruttando il parallelismo per
asservire il calcolo della fitness. In questa nuova architettura il cluster viene utilizzato
interamente per asservire un algoritmo alla volta. In particolare inizialmente su di esso viene
lanciato 'FSO, sul nodo master vengono fatte tutte le operazioni descritte tranne il calcolo delle
fitness; questo viene delegato al singolo nodo, in particolare ad ogni nodo viene assegnato il
calcolo della fitness di un individuo. Precisiamo quindi che ’associazione che viene fatta non ¢
individuo-nodo ma fitness-nodo, ¢ sempre compito poi del nodo master raccogliere tutti i dati
delle fitness e aggiornare le posizioni successive. Sempre sul nodo master si opera anche, nel
caso in cui fosse richiesto, il lancio della FM, che come intuibile non richiede particolare sforzo
computazionale. In questo caso ogni singola FM non viene indagata ulteriormente con la serie
PSO-BCA, ma viene utilizzata solamente per individuare il minimo globale. Successivamente
quindi viene centrato un sub-dominio nel quale viene lanciato il PSO. Quindi nella seconda fase
tutto il cluster serve il PSO con identico funzionamento tranne che per la FM. Parimenti nella

terza fase per quanto riguarda il BCA.
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Algoritmi di ottimizzazione come campionatori intelligenti

In un processo di ottimizzazione, prima che I’algoritmo intercetti il punto candidato ad
essere minimo globale, questo ha indagato solitamente una grande quantita di punti, e di essi ne
ha quindi estratto il valore del funzionale. Tali valori di solito non vengono registrati, ma a ben
vedere, rappresentano informazioni estratte dal modello che risulterebbero utili qualora si
volesse ricostruire ad esempio il funzionale. Lo scopo di questo paragrafo ¢ proprio quello di
considerare I'algoritmo di ottimizzazione come un campionatore intelligente in grado di fornire
la mappa del funzionale. Per valutare questa capacita ¢ stata valutata la capacita di ricostruzione
di alcuni algoritmi con e senza FM, in particolare , MFSO, FSO, PSO, GA; quest’ultimo non
descritto nel seguente lavoro di tesi, ma del quale il lettore puo reperire informazioni vastamente
presenti in letteratura visto i suo tenore storico. Gli algoritmi vengono lanciati in due
configurazioni diverse in serie. Nella prima l'obiettivo ¢ quello di individuare i minimi della
funzione, invece nella seconda ¢ quello di individuare il massimo. Ovviamente per ricostruire il
funzionale l'algoritmo deve essere in grado esplorare lo spazio delle soluzioni in modo
esaustivo. Per questo motivo la quantita di dominio indagato dall’algoritmo, e quindi la capacita
di ricostruire il funzionale in esame, puo essere considerato un metodo per misurarne la capacita

esplorativa.

Alla fine del processo effettuato nelle due configurazioni descritte, la nuvola di punti
campionati viene fornita a un interpolatore. Sono stati condotti alcuni test per validare la
proprieta esplorative degli algoritmi con il metodo citato. In particolare ogni algoritmo ¢ stato
lanciato 30 volte su vari benchmark. In tabella 2 sono riportati i risultati ottenuti utilizzando

come funzione di costo la Bird Function:
f(xy) :sin(x)exp[(l—cos(y))z}+cos(y)exp[(1—sin(x))2]+(x— y) . (6)

Nella simulazione sono stati utilizzati lo stesso numero di individui (10) e di iterazioni (2000).

La percentuale di area investigata viene calcolata dividendo il dominio in sub domini
aventi il 5% della dimensione del dominio totale. Una partizione viene considerata investigata

quando almeno un punto ¢ stato campionato in essa dall’algoritmo.

Inoltre vengono forniti TMPE (Mean Percentage Error) e la sua varianza per tutti 1 test
effettuati, individuati nella ricostruzione della funzione. Nell’'ultima colonna sono presenti il
numero di test falliti, ovvero quando I'algoritmo non ha investigato il 100% del dominio.

I’MPE viene calcolato solo nella regione investigata, anche se questa non rappresenta il 100%.
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Tabella 2: risultati dei test effettuati sulla bird function. Ogni algoritmo viene [-9 -9].

Algorithm MPE Variance Mean Area[%] X?;;?g/z]e feiitlsed over 30
MFSO+FM 0.0034538 1.299e-005 99.2645 2.9887 0

MFSO 0.70111 0.28314 54.6482 8.8994 30

FSO+FM 0.062557 0.016329 98.3054 11.3105 20

FSO 0.75573 0.63839 58.4974 9.2509 30

PSO+FM 0.8148 0.5132 86.7807 4.1258 29

PSO 0.5493 0.35416 22.2916 9.2859 30

AG+FM 0.32664 0.15338 17.0897 2.7381 30

AG 0.11969 0.016434 7.569 0.40311 30

E’ stata fatta poi un’ulteriore analisi per stimare la sensitivita che gli algoritmi hanno rispetto
all’laumento delle iterazione e all’utilizzo della FM. Tali test sono stati effettuati sulla Giunta

function:

2
f(x,%)= 0.6+iZ:1: sin(g X, —1)+sin2 (g X, —1j+5—10(4(g X, —1)) Q)

Dai grafici (che non vengono riportati in questa sezione solo per non appesantire la lettura, ma
che possono essere consultati nel capitolo 2 della versione inglese che segue in codesto
documento) ¢ evidente che T'utilizzo della FM opera una sorta di boost al processo di
esplorazione mantenendo il ranking originale degli algoritmi. Quindi la FM puo essere
considerata una tecnica a sé stante per 'aumento delle capacita esplorative di un algortimo,

qualsiasi esso sia.

Validazione

Ottimizzazione di un TWT con collettore bistadio

In questa sezione viene presentata l'applicazione di MeTEO per l'ottimizzazione della
tensione applicata agli elettrodi di un Collettore Multistadio di un TWT al fine di aumentarne
l'efficienza. L’analisi elettromagnetica delle traiettorie all'interno del collettore ¢ stata realizzata
con il risolutore di elementi finiti COLLGUN, che calcola l'efficienza del collettore a ogni
lancio, che ¢ il parametro da ottimizzare. Nei test proposti, relativi a dei collettori a due stadi, la
geomettia e la mesh sono assegnati e non variano durante la fase di ottimizzazione. E stato

sviluppato un wrapper per far dialogare direttamente MATLAB, in cui gira MeTEO, con il
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simulatore COLLGUN.

Ottimizzazione di un Collettore Bistadio [6].

Per quanto riguarda i parametri della mesh utilizzati e quelli relativi al simulatore, questi sono
riportati nella tabella 3. Il numero complessivo di tetraedri ¢ prossimo a 20000 elementi, mentre 1 punti
relativi a questa mesh e quindi le incognite del sistema FEM risolvente sono quasi 6000. II numero di
particelle usate per la rappresentazione del fascio sono 500. La tolleranza di fine iterazioni per il ciclo del
COLLGUN ¢ stata fissata a 0.05%. Per tali valori il tempo di calcolo di ciascun run del solver di
COLLGUN si aggira sui 90 secondi, e il numero di iterazioni ¢ circa 4 .

Tabella 3: parametri di COLLGUN utilizzati per la simulazione del
collettore bi-stadio.

Number of tetrahedral About 20000
Number of node About 600
Number of macro-particles 500

End Tolerance 0,05%
Number of iterations for each simulation 4-6
Computing time of each simulation About 1°30”

METEO eé stato lanciato 30 volte, qui riportiamo i dati relativi al miglior valore trovato. E’ stata
fatta un’inizializzazione casuale per 'FSO, mentre per il PSO e il BCA l'inizializzazione dipende dal
punto fornito dall'algoritmo precedente. Il numero di individui utilizzato per ogni singola meta-euristica
¢ di 10. Un numero maggiore di individui non migliora in modo significativo le prestazioni di METEO
perché con piu individui ¢ possibile campionare pit punti, ma dobbiamo ricordare che ogni punto
campionato rappresenta il calcolo del funzionale. Nel nostro problema il tempo speso per il calcolo della
funzione di costo ¢ pati a lanciare il simulatore COLLGUN che richiede molto tempo per ogni lancio,
circa 90 secondi. Per questo motivo non abbiamo superato il valore di 10 individui. Per mezzo di
METEO, ¢ possibile ottimizzare l'efficienza di questo dispositivo e ottenete un valore massimo del
88,81%. Nel report (Tabella 4), si evince la caratteristica principale di METEOQO, infatti il valore
dell'efficienza trovato dall’FSO diminuisce gradualmente passando dopo I'applicazione tispettivamente
del PSO e del BCA. 1l principio della ibridazione fatta in METEO sta proprio in questa caratteristica.
Nella migliore prova l'efficienza migliora dopo l'applicazione di ogni componente di METEO come

indicato nella Tabella 4.

Tabella 4: efficienze raggiunte da ogni componente di MeTEO.

FSO PSO BCA
Efficiency 88.17% 88.64% 88.81
Number of iterations 40 20 20
FM 3

Nella tabella 5 invece sono riportati 1 valori e i parametri relativi alla miglior efficienza trovata.
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Tabella 5: miglior configurazione fornita da MeTEO

Spent beam power 192W
Power recovered 170W
Collector’s efficiency 88.81%
Stage 1

Potential -3.05kV
Current 38.73 mA
Stage 2

Potential -4.22 kV
Current 12.34 mA

Ottimizzazione della efficienza di dispositivi TWT

Nell’ottimizzazione della geometria sono stati scelti un numero di parametri fissi che
sono: la lunghezza del diametro interno ed esterno del primo stage e il diametro del secondo
stage. I’ utile notare che ogni stage viene ottenuto utilizzando tre solidi primitivi dal
COLLGUN: cilindri, coni, e coni troncati. Per esempio le due configurazioni mostrate in figura
0, sono ottenute utilizzando il valore minimo e massimo per la lunghezza(10 mm) e il raggio
(5mm). Il fascio elettronico ha una tensione di riferimento di 4.8 kV, un raggio di 0.63mm, e

una corrente di 53.2 mA, con potenza di 190 W. Le tensioni assegnate agli elettrodi sono di 2.4

kV and 3.6kV.

Figura 6: sezione delle geometrie dei collettori dei casi limite.

Partendo da inizializzazioni random con efficienza minore del 75%, dopo 100 iterazioni
(10FSO,30PSO,60BCA), si ottiene la configurazione mostrata in figura 7, avente efficienza del
84.8%. 1l tempo richiesto per di calcolo ¢ di circa 24h. In aggiunta si sono comparati i risultati
con un algoritmo random walk fatto girare per 300 iterazioni per 5 volte, e il miglior risultato

trovato ¢ un’efficienza dell’82%.
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Figura 7: geometria e traiettorie elettroniche trovate con I’ottimizzatore MeTEO.

Si ¢ inoltre ottimizzato il campo magnetico focalizzante applicato a un TWT con un
collettore bistadio. Nella figura 8 ¢ possibile osservare le traiettorie elettroniche e il profilo di
campo magnetico. I valori dell’electron beam utilizzati sono presi in letteratura, riferimento di
4.8 kV, raggio di 0.63 mm, e una corrente di 53.2mA, in grado di generare una potenza di
190W. Le tensioni dei due elettrodi sono fissate a 2.4 ¢ 3.8 kV.

Un tetraedro irregolare di circa 20000 elementi ¢ stato utilizzato per la mesh. Come

fitness, ¢ stata utilizzata una combinazione tra lefficienza del collettore 7 | la corrente di

backstreaming in mA, Iba°k. COLLGUN fornisce un risultato in 3min per calcolare la singola
fitness. Partendo da una configurazione con efficienza pari all’81% dopo 300 interazioni (100

FSO, 100 PSO, 100 BCA) si raggiunge un’efficienza dell’83.1%.

-10 - /
4 i N S
125 S~
15 N > S
N e
s
-17.5 Focusing Magnetic Field

Figura 8: sezione 2D della sezione del collettore bistadio, insieme con il campo magnetico

focalizzate e le traiettorie simulate con COLLGUN.
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Risoluzione del problema inverso Amid_Pro proposto da

Schittkowski.

MeTEO ¢ stato utilizzato con successo anche per la risoluzione di uno dei tanti
problemi inversi proposti da Schittkowski. Infatti il problema dell’ottimizzazione dei TWT si
puo considerare come un problema di scelta ottima e non di vero e proprio problema inverso.
Nel problema Amid_Pro, viene presa in considerazione la proteina RNase T1(S54G/P55N-
RNaseT1). RNase T1 ¢ una piccola proteina di 104 residui, che viene utilizzata come “proteina
modello” in laboratorio per investigare il limite di folding della prolina, un aminoacido apolare
avente una molecola chirale. Nello schema 1 ¢ riportato il modello cinetico per 'Unfolding e

PIsometizzazione dell’lRNase T'1a.

K43 K32
— T - U39C. . U390

¥aa 55 Ky 5%

\(12“'\‘\21 \’\12”'\@

K
U 3% 2, U 3%

55c ko3 58

Schema 1: Modello cinetico per 'Unfolding e 'Isomerizzazione del’RNase T1a.

Nel modello U, UZ UE UE rappresentano le forme unfolded del’RNase Tla con

55¢ * =~ 55¢ 1 =755t 1 55t
Pro39 e Pro55 nelle conformazioni cis (c) o trans (t), invece N ¢ la proteina nativa. 11 modello
proposto da Schittkowski, generalizza la cinetica concentrandosi sulla variazione delle 4 specie
presenti. Avremo quindi un sistema di equazioni differenziali con le 4 specie e le relative

concentrazioni come riportato nel gruppo di equazioni 8:

d
%:_kfyl
d
%: kf (C_yz)
©)
d
f =k,y, —0.1k_ (y2 — y3,)—0.9kny3

% =k, y, —0.9ky, +0.1k y,

Nel problema inverso si hanno dei dati sperimentali che indicano I'andamento nel

tempo delle concentrazioni delle varie specie, e si vuole trovare la #-pla di 4 parametri che
inseriti nel modello espresso dalle equazioni differenziali riportate in (8) restituiscono proprio gli

stessi andamenti. Per i dati presi in esame 1 valori ottimi da attribuire ai parametri sono:
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[k, ki, k,, ¢]=[10", 107, 1.18-10*, 1.2:10°]

©)

Come mostrato nella (Tabella 6) METEO ¢ in grado di trovare la soluzione migliore

rispetto all'impiego delle singole euristiche. In questo test le prestazioni sono state calcolate su

50 lanci.
4 4
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Figure 9: Comparazione tra le curve riprodotte dalle single euristiche ( FSO, PSO, BCA) e da

MeTEO.

In figura 9 sono rappresentate le curve per il modello amid_pro riprodotte dalla singola

euristica e da METEO.

Tabella 6:Risultati relativi alla risoluzione del problema inverso Amid_Pro attraverso MeTEO e

i suoi singoli componenti.

Parameter estimated

Percentage error

Algorithm on the 4-dim
[107, 10°, 1.18-10", 1.210° Amid_pro
MeTEO 5 _3 4
9.9975-10°°,1.0004-10%,1.179510*,120039,57 0.0060%
FSO - 3 .
9.9607-10°5,1.0427-10°°,1.1505-10,120076,66 0.7709%
PSO i 3 —4
1.0005-10*,1.004-10°°,1.1793-10*,119985,80 0.1628%
BCA . 5 4
1.0285-10%,1.011710°%,1.268610“,116088,48 2.0764%
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E stata poi effettuata una analisi statistica minima in cui sono state misurate varianza,
media e I'indice R” I risultati della statistica sono riportati in Tabella 7.
Tabella 7: Valori della statistica effettuata per il

singolo componente e per MeTEO nella
risoluzione del problema inverso Amid_Pro.

Amid_pro[0.3] MPE
Algorithm Mean ol R2
BCA 10.8683 5.948e-2 0.3476
PSO 2.9633 7.9884e-3 0.9968
FSO 1.0674 0.4048e-4 0.9987
METEO 0.42562 0.1292e-4 0.9999

Risoluzione del problema inverso sull’identificazione dei

parametri del modello di Jiles-Atherton di un ciclo di isteresi

magnetica.

MeTEO ¢ stato testato anche nel problema dellidentificazione dei parametri del
modello di Jiles-Atherton di isteresi magnetica assegnato un ciclo sperimentale di dati.

Nell’equazione 10 ne viene fatto un richiamo.

dM,.  dM, 20

(1-c)——"+c
dM _ dH,  dH, 0
dH 1—aCdMa”—a(1—c)7dMi”
dH, dH,

M., ¢ la magnetizzazione anisteretica fornita dall’equazione di Langevin:
H a
M""”(He):MS{COth(?&j_H—J (10.2)
Nella quale H, =H +aM . Nella (10) M, ¢ la magnetizzazione irreversibile definita

come:

dMirr _ Man — Mirr (10b)
dH ko

e

dove 6= sign(d—Hj.
dt

I parametri che devono essere identificati nel modello sono Oc,(:l,C,k,l\/ls e il loro
significato fisico il seguente: a¢ il fattore di forma, C il coefficiente di reversibilita dei domini,
M. la magnetizzazione di saturazione, e infine « e K che rappresentano le perdite e I'iterazione

tra 1 domini.



Nell’eseguire 1 test si ¢ fatto uso di inizializzazioni randomiche. I valori corretti dei

parametri da trovare sono:[8, K, @, ¢, M5]=[24.7o, 60, 6.9010°, 0.053, 116-105].

Tabella 8: Risultati relativi al problema inverso di Jiles-Atherton delle single euristiche e di

MeTEO.

Parameter estimated

Percentage error on the

Algorithm . cal 1. int
[a, K a c Ms] experimental loop points
MeTEO 5 5
|:24.34 59.84 6.26-10 0.050 1.158409-10 0.05368%
FSO & 5
[14.36 64.12 357-10° 0.046 1.072892-10° | 4.71548%
PSO 5 s
[17.27 55.73 6.22-10 © 0.004 1.047480-10 :' 7.07373%
BCA " s
|:22.20 53.88 1.080195758008603-10 " 0.006 1.044000-10 :| 8.1803%
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E E
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g g
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Figura 10: Comparazione tra i cicli ricostruiti attraverso lutilizzo delle singole euristiche e di MeTEO. La

linea continua rappresenta il ciclo vero.

E’ evidente che il valore del’'MPE ¢ molto piu basso nel caso dell’utilizzo di MeTEO.

Anche in questo caso ¢ stata fatta un’analisi statistica di cui riportiamo i risultati in Tabella 9.

Quindi in conclusione, l'utilizzo di MeTEO nei tre problemi inversi si ¢ dimostrato

molto fruttuoso. I tre problemi sono completamente diversi 'uno dall’altro, il primo sui TWT ¢
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quello di trovare il valore ottimo di un funzionale sconosciuto (nel caso specifico un massimo),
il secondo (Amid_Pro) ¢ un verso e proprio problema inverso a 4 dimensioni, e infine il terzo
dell’identificazione dei parametri di Jiles-Atherton, sempre un problema inverso ma di natura
isteretica. L’eterogeneita dei problemi presi in considerazione ci permettere di generalizzare la
potenza di MeTEO, premesso il fatto che per il teorema di Wolpert non esiste una sola euristica
(anche ibridizzata) che sia capace di risolvere ed affrontare in modo efficace ogni problema di
ottimizzazione.

Tabella 9: Analisi statistica nella risoluzione del problema inverso di Jiles-Atherton applicando le singole
euristiche e MeTEO.

Jiles-
Atherton[0.3] MPE
Algorithm Mean o’ R?
BCA 2.4268 2.9507e-2 0.5870
PSO 1.6388 1.6527e-3 0.9968
FSO 1.294 0.9030e-3 0.9993
METEO 0.53552 1.4576e-5 0.9996

Validazione del BFSO: distribuzione ottima di cavi di potenza

sotterranei.

Per validare il BFSO ¢ stato utilizzato un problema relativo alla minimizzazione del
flusso magnetico generato in superficie da cavi sotterranei di potenza. I circuiti utilizzati per la

validazione sono stati estratti da [15], i numeri di circuiti impiegati sono rispettivamente 4 ¢ 8.

Le combinazioni che si possono avere per ogni cavo sono 0, variando ovviamente la
terna trifase: 123;132; 213; 231; 312; 321, per esempio se abbiamo la combinazione 6345, questo
significa che i cavi del primo circuito sono disposti nella combinazione 321, i cavi del secondo

fascio come 213 e cosi via. Altri autori scelgono le RST per identificare la terna trifase, nel
nostro caso abbiamo scelto 123 solo per una piu agile implementazione software. Poniamo N
come il numero di circuiti Ny pati al numero di fasci, allora un individuo del BFSO viene

codificato con un array di 0 e 1 come segue:

° Se N. =4 viene utilizzata un array binatio con (3- NB)+(2- Nc) posizioni;

° Se N =8viene utilizzato un array binario con 2. (3' NB) posizioni;

I risultati mettono a confronto il BFSO con il DPSO. Dai dati si pud constatare come la
media dei risultati ¢ minore sia per il displacement a 4 che a 8 circuiti per il BFSO. II BFSO
continua a presentare lo stesso comportamento che ha nel continuo ovvero di esploratore dello

spazio delle soluzioni, infatti come si puo notare dalla tabella, risulta essere lacunoso nella
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convergenza, infatti nel caso a 8 circuiti il valore minore viene individuato con il PSO.

Tabella 10: risultati relativi ai circuiti a 4 e 8 circuiti

4 BUNDLES-4 CIRCUITS 8 BUNDLES-8 CIRCUITS
Best Best Best Best Fit
s S st Fitness
Algorithm Mean Variance s . Fitness Mean Variance s . e €88
Configuration Configuration Value
Value
- ) 6.2566¢- 1.0058¢- (34645531
FSO 6.3148e-007  1.7522¢-016 56533124 5.9456e-007 3.8209¢-007
007 014 _
73854120]
[11411164
PSO 6.4005e-007 3.262e-016 56533124 6'205067()& 6.1731e-007 1'1091056_ 3.7983e-007
47812365]

Swarm Circuits in grado di risolvere problemi inversi e

di ottimizzazione.

In letteratura sono presenti vari tentativi di rappresentare gli algoritmi della Swarm
Intelligence come sistemi dinamici continui. Per esempio, si possono trovare degli importanti
contributi in [11], [12] e [13]. I lavori proposti riguardano lo studio della dinamica del sistema,
ma nessuno ha indirizzato tale ricerca a una possibile implementazione fisica del modello.
Infatti, le componenti hardware, almeno nel settore dell’elettronica, che riguardano
I'implementazione degli algoritmi Swarm Inspired sono solo delle implementazioni embedded
con microcontrollori e FPGA. Nella ricerca svolta invece, si ¢ introdotto il concetto di swarm-
circuit, ovvero un circuito nel quale le caratteristiche cinematiche delle traiettorie seguite dai
membri dello swarm, sono riprodotte in termini di forme d’onda rappresentate dalle tensioni
misurate su dei capacitori e delle correnti che attraversano degli induttori. Tale approccio quindi
porta a un duplice risvolto, per prima cosa possiamo adottare tutti i metodi della Teoria dei
Circuiti per analizzare la cinematica dei membri dello swarm, (Trasformate di Laplace, Metodo
del Tableau etc.), e in seconda istanza, tracciare le basi teoriche per una soluzione hardware

innovativa, da poter sfruttare per le ottimizzazione real-time.

Algoritmi della Swarm Intelligence tradotti in sistemi continui.
I'intento di questa sezione ¢ quello di mostrare come sia possibile convertire I’algoritmo
numerico FSO in un sistema continuo nel dominio del tempo. Consideriamo prima di tutto

I'equazione (11), che rappresenta I'aggiornamento della velocita di un individuo dello swarm:
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U (D) = o (O + A O - X 1+ /97 (0 - X @+

bestk

N . _ . (11)
Y haUs () Vj—th dimension
=1

Riscriviamo poi la (11), introducendo un valore At:

u (t+At)=w u,(t)+ 4 [pbest, (t)—x, (t)]+y [gbest(t) —x, (t)]+...

N 12
N T () (12

L’equazione (12) puo essere interpretata come lo formula di Eulero per I'integrazione di
un sistema di equazioni differenziali rappresentante un sistema fisico continuo, se si assume che

At eR e At — 0 come segue:

(0—-1)u, (t) + A pbest, (t) — X, ()] + y[gbest(t) - x, ()] + i Pl (1)

uk (t+At)_uk(t) — m=1 <13)

At At

In (13) la variabile indipendente ¢ ora considerata come variabile t €R, mentre in (11)
veniva considerata semplicemente come un numero naturale per contare il numero di iterazioni
effettuate.

Anche la formula di aggiornamento della posizione del singolo individuo puo essere

riscritta come segue:
X, (t+At) =u, (t)At+x, (t) (14)

E’ importante inoltre notare che nelle (12) e (13) il valore della variabile At gioca un
ruolo “dimensionale”. Avendo riconosciuto che la (13) rappresenta la formula di Eulero per
Pintegrazione di sistemi continui, il valore At deve essere impostato il piu piccolo possibile per
ottenere una integrazione ideale. Infatti, un’errata scelta del passo di integrazione implicherebbe
una “cattiva” integrazione del sistema, con delle traiettorie che non risponderebbero alla reale
evoluzione del sistema.

Quindi Palgoritmo in cui il passo ¢ pari ad 1, rappresenta solo una delle possibili
integrazioni del sistema reale continuo. Se noi consideriamo At —0 ¢ immediato riscrivere la
(13) nel dominio continuo come segue:

d = N~
at u, (t) = ou, (t) + A[ pbest, (t) — x, ()] + 7 gbest(t) — x, ()] + ; PinUn (£) (15)
Nella (16) vengono introdotti dei nuovi parametri normalizzati, essi sono definiti come

seguc:
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C?):(a)—l)
At
~ A
A=
At (16)
-7
4 At
h _hﬂ
km t

dove ﬁkm =h=h/At ¢ pari a uno se il k-esimo individuo controlla I’ m-esimo,

altrimenti ﬁkm =0. E’ evidente dalla (16) che At ¢ da intendersi come un vero e proptio nuovo

parametro. In aggiunta ¢ utile capire come vengono modellati il personal e il global best di ogni

individuo. Consideriamo come eccitazione del sistema continuo la seguente quantita:
3, (t) = 1 pbest, (t)+ 7 - gbest(t) 17)
€ poniamo poi:
fi=A+7 (18)

L’equazione di stato (15) puo essere riscritta per ogni k-esima particella come segue:
d &~
ORI HORIZAGEDILRINORRAC (19)
m=1

I’equazione di stato (19) deve essere accoppiata a una seconda equazione di stato
relativa alla posizione X, (t) . Ovviamente, per At — 0, noi semplicemente otteniamo la

definizione cinematica della velocita:

d
i (t)=u () (20)

Le equazioni (19) e (20) descrivono il sistema dinamico e la sua evoluzione nel dominio
del tempo t, con delle forzanti espresse in (17) che costituiscono le equazioni di stato del
modello continuo di un individuo dell’algoritmo swarm-based FSO. Se poi consideriamo lo
stormo nella sua totalita formato quindi da N uccelli, otteniamo un sistema di equazioni di stato

di dimensioni 2N x2N che riportiamo scritto in forma matriciale compatta di seguito:

MRl MY

La sub-matrice | (21) ¢ la matrice identita avente dimensioni NxN . La sub-matrice

A, , ¢ una matrice quadrata con dimensioni N xN definita come:
A, =M+H 22)
Dove M=@-1, mentre H tiene conto della componente legata alle velocita, che

esprime il collective behavior dell’algoritmo. Gli elementi che costituiscono H sono e hkm =h
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se il k —th individuo controlla la velocita dell’ m —th individuo, altrimenti zero. E’ evidente che
la matrice H ha elementi diversi da zero solo nel caso del’FSO, mentre per il PSO tale matrice

diventa pari a una matrice nulla. I altra matrice che appare nella (21) ha dimensioni N xN ed ¢

definita come:
AL, =—f-l (23)

Infine, il vettore F ha ogni k-esime riga definita come 3, (t) nell’equazione (17).

The Swarm-Circuit

Una volta scritte le equazioni di stato che rappresentano un algoritmo swarm-based nel
continuo, queste possono essere implementate considerandole come equazioni che governano
un circuito elettrico. Le equazioni (19) e (20) descrivono lo stato di un 4£-#5 lato del circuito che
rappresenta Ialgoritmo swarm-based. Tale lato viene raffigurato in figura 11, imponendo una

corrispondenza 1 a 1 tra la corrente che fluisce il lato serie e la velocita del £-th membro del
gruppo cio¢ i, (t) oc U, (t) , mentre la tensione misurata ai terminali del capacitore v, puo
essere assunta proporzionale alla posizione dell'individuo del gruppo nell’algoritmo. Avremo
quindi X, (t) c v, . La forzante invece viene rappresentata con due generatori di tensione
indipendenti I, (t) =€, (t)+g(t) , che tengono in conto il personal best e il global best.

Abbiamo in particolare: €, (t) oc - pbest, (t) e g(t) oc 7 - gbest(t).

|
: R C L akl I.I (t) a.fcmfm(r)
I

A A - +— +— = |
—/\\/ NN - & (1) T

SV oV 0 0 0 e — T !
[f/((f) A W=~ N
| N : I
Lo
g(t) TO\T

.’/‘ \_.‘

N

Figura 11: k-th lato di uno Swarm-Circuit.

Le equazioni che governano il k-th (VK =1...N) lato in Figura 11, sono:

d. 1( . N )
a|k :—E(le +Vey + Z & i € (t)—g(t)j (24)
j=1, j2k

d .
EQC,k =1 (25)
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In (25) abbiamo introdotto una nuova variabile di stato, Q. , =C -V, per ottenere una

perfetta corrispondenza tra (19)-(20) e (24)-(25). Cosi derivando la (19) e operando con la (21)

otteniamo la corrispondenza tra la formula dell’algoritmo continuo e quella del lato del circuito:

(26)

d? . d - No. d d _» o
Fuk )= a)auk (t) - au, (t) + ;hkm aum t) "‘a[’i' Prestk (1) + 704 (D]

vk

d' R4, 1, dad,

1d
— ==, ——1 | ——1Je (t t
dtZ k L dt k LC k e L dt m + L dt[ k( )+ g( )]

Da questa formula otteniamo la corrispondenza tra i parametri dell’FSO e i parametri
del circuito:
1 -~ o

~ m 9 1 % 1
a,u:E’hkm :__li, A pbestk(t):E'ek(t) and 7'gbest(t) :Eg(t) (27)

@=—

| o

Il modello ¢ stato poi trattato nel dominio di Laplace e sono stati individuati i valori che
permettono al circuito di generare dinamiche convergenti, divergenti o di oscillazione.
Riportiamo di seguito le tre condizioni che devono essere rispettate, per ottenere 1

comportamenti appena citati, in particolare otteniamo una convergenza per :

<a<R (28)

E un comportamento oscillatorio (con poli quindi complessi e coniugati) per:

2 L+R
L L C
-2, | —+R<a<?2/—+R or oa>——- (29)
C C N -1
Nella figura 12 invece vengono riportate le traiettorie di un individuo per i tre

comportamenti appena citati, nella caption della figura sono riportati 1 parametri che sono stati

utilizzati.

I
=
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Figure 13: Implementazione 1D dell’FSO circuit in cui ogni individuo segue tre individui del

gruppo.
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Validazione su funzioni benchmarks di ottimizzazione e su

problemi inversi

In questa sezione vengono brevemente illustrati i risultati della validazione del
funzionamento dello Swarm circuit. Il circuito e tutte le traiettorie illustrate alla fine della
sezione precedente sono state ottenute implementando il modello circuitale che viene descritto
dalle equazioni trattate tramite Simulink (Figura 13). Per validare il circuito come ottimizzatore,
sono stati svolti dei test su dei benchmark noti. In Tabella 11 vengono riportati i risultati che
sono stati ottenuti. Il valore dei parametri utilizzati sono: L=1H, R=1Q, C=1F mentre a ¢

stato scelto in modo randomico: 1Q, 0.25Q e 1.1Q. Questa politica permette di cambiare il

comportamento dell’algoritmo in modo dinamico durante il processo di ottimizzazione e di
alternare 1 comportamenti di convergenza ed esplorazione. Chiaramente questa ¢ solo una delle
possibili politiche di ricerca che si possono adottare. I risultati ottenuti sono stati ottimi € sono

mostrati in tabella 11.



Tabella 11: risultati sui benchmark relativi allo swarm circuit.

Minimum . . L Minimum value
Name Minimum coordinates circuit L
value circuit
blinski-
S;Zb inski -78.332331 (-2.902435; -2.904137) -78.332304
ang
(4.741049;3.199581) ~106.250957
Bird -106.764537 -106.696935
(—1.599922;—3.117082)
(-3.226006;12.603203)
0.398186
Branins 0.397887 (3.145650;2.257012) 0.447557
0.411996
(9.385460;2.523816)
Six-hump (-0.0870;0.7354) -1.0271
-1.0316
camel back (0.0877;-0.711) -1.0316
Michalewics -1.8013 (2.2436;1.5654) -1.7731
Function
Goldstein- 3 (-0.0053; -1.0042) 3.0099
Price function

Lo swarm-circuit ¢ stato anche testato su problem inverse ed in particolare
sull’identificazione dei parametric di due sistemi dinamici: il Brussellatore e il Diodo Tunnel
[14]. I risultati presentati fanno riferimento a 30 lanci con inizializzazioni randomiche delle

posizioni e delle velocita.

Le equazioni differenziali che governano il sistema dinamico detto Brussellatore sono le

seguenti:

%= A+ -y, —(B+1)y,

d
f=8-y1—yf'yz

(30)
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Mentre quelle relative al Diodo Tunnel:

d

%: Y>

q (31)
f =Y, +Y, (L4~ p-yZ)+4-a-(-0.1649y, +0.4606)

Il numero di iterazioni ¢ stato fissato a 2500 per entrambi 1 casi. I risultati ottenuti sono
riportati in tabella 12 dove viene riportato il valore del MAPE (Mean Percentage Absolute
Error). Lo swarm-circuit mostra lo stesso comportamento dell’algoritmo numerico. Nella

figura 14 invece sono riportate le curve della soluzione trovata dallo swarm-circuit e quelle

originali.

Brussellator System [MAPE=3.2300%)] Tunnel Diode [MAPE=0.0181%]
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[ 3
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Figura 14: (a) migliore curva ottenuta dallo swarm-circuit per il sistema Brussellatore (20 s di
simulazione); (b) migliore curva ottenuta dallo swarm-circuit per il sistema Tunnel Diode (4.5s di
simulazione)

Table 12. Risultati della validazione dello Swarm-Circuit sui problemi inversi Brussellatore e Diodo Tunnel

MAPE
Mean o Initial Value Real parameters Best forecast Mape
parameters best
Brussellator ~ 12.3417  13.6110 [15 3] [AB]=[L3] 0.9902,2.9016]  3.3003%

Tunnel 1.0414 1.5094 [-5 -5] [p.a]=[1.4,]] [1.0097,1.4111]  0.0181%
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INTRODUCTION TO THE OPTIMIZATION AND THE INVERSE PROBLEMS.

Chapter 1

Introduction to the Optimization and the
Inverse Problems.

The basics of the arguments treated in this discussed and in particular, those bio-inspired
thesis are introduced. such as Particle Swarm Optimization and its
An overview of optimizations and inverse variants; handling the emergence of social
problems together with the with a description behaviour among the individuals which

of well and ill posed problems. Then, Meta compose the swarm.

Heuristic Optimization Algorithms will be
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INTRODUCTION TO THE OPTIMIZATION AND THE INVERSE PROBLEMS.

1.1 Optimization Problems

In the real world and in practical industrial applications, the most important task is to reach a
desired goal with the maximum efficiency and not just simply to reach it. This way of thinking
is strongly connected with the optimization practice. Many examples could arise in the readet’s
mind about all those activities in which the economic profit has to be increased. But a
optimization process is tested every day by each of us, when you decide the shortest (we may
say “optimal”) path to go to work, or for instance when you try to combine your appointment
in your agenda in order to match your travel needs etc. The first step is to model a system,
identifying some characteristics of it, and assigning them variables; then identify an index of the
system’s performance usually called the objective that can be represented with a function. The
modeling process plays a central role, because the optimization problem will depend on it.
Often it is very difficult to identify which physical quantity is important or which is only noise.
However, once the model has been formulated the goal is to find the optimal values of the
variables that identifying the model in order to optimize the objective. Afterwards, an
optimization algorithm can be employed for solving problems. Over the years several
optimization algorithms have been designed. A quick classification of them can be made as
listed in [1](Figure 1.1). The first distinction is between deterministic and probabilistic
algorithm. An algorithm can be defined deterministic if it always yields the same results
(outputs) for the same inputs. They represent a good tool for solving optimization problems,
but whether there are many non linear relations among the model’s variables and the objective,
find the optimal solution, or just a candidate solution, could became very difficult especially if
the search space is wide. The probabilistic algorithm is an algorithm where the result and/or the
way by which the result is obtained depends on chance. They do not ensure the correctness of
the solution, but in some cases a solution, even though it is not the best solution, is better than
none. A mathematical formulation of an optimization problem can be given in its standard

form as listed follow:

minimize f, (x)
subjectto f,(x)<0, i=1...,m (1.1)
h,(x)=0 i=1...,p

Where the symbols have the following meaning:

» XeR"is s the optimization variable;
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» f,:R" >R is the objective or cost function;
f:R" > R,i=1...,m are the inequality constraint functions

* h:R" >R are the equality constraint functions.

In some applications the variables have to take only integer value, this kind of problems are

usually called Discrete Optimization Problems (DOP). In DOP there is an intrinsic constrain,

because X, €7 ; or else they can be represented by mean of binary formulation. When the

variables are uncountable, for example defined in IR , then the problem is defined as Continnons

Optimization Problems.
Deterministic
State Space Branch and Algebraic
Search Bound Geometry
Probabilistic - |
Artificial
Intelligence (AI)
Bilogotjigﬁ]éo Soft Computing
4 Computational
Intelligence (CI) 3 6
(Stochastic) || |
Hill Climbing Evolutionary
Computation (EC)
Random A Memetic
Optimization [ | T Algorithms
Simulated Evolutionary | | ______ Harmonic
Annealing (SA) [ | Algorithms (EA) Search (HS)
Tabu Search || Genetic Swarm
(TS) B Algorithms (GA) Intelligence (SI)
'y
Parallel | | | (LCS) Learning | | Ant Colony
Tempering Classifier System Optimization (ACO)
Stochastic Evolutionary | | Particle Swarm
Tunneling N | Programming Optimization (PSO)
Direct Monte || Evolution Differential
Carlo Sampling Strategy (ES) Evolution (DE)
| | (GP) Genetic Standard Genetic
Programming Programming
Linear Genetic
Prograaming
Grammar Guided
Genetic Prog.

Figure 1.1: The taxonomy of the optimization algorithm (image showed in the document [1]).
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A third classification can be provided in the case in which there both discrete and continuous
variable are present, such type of problems are called Mixed-Integer Problem. However, different
approaches have been developed over the past years, and each of them owns peculiar
characteristics depending on whether the problem addressed is DOP, COP or Mixed. Perhaps,
the most famous discrete problems is “the Salesman Problem”, and searching through the
scientific works it is possible to find a huge quantities of algorithms for addressing the Salesman
Problem. It is important to point out that in the DOP the constrain information, the objective,

also called fitness, may change in a significantly. In the COP, the function’s smoothness gives
crucial information to find the optimal solution. A function f having a single object is defined

with the term “single-object problem”; otherwise if there is more than one object to reach, the
optimization problem becomes a “multi-object problem”. In the rest of this thesis, we will refer
to some common concepts concerning optimization practice. The first concept is the word
“optimal”. What does an optimal solution mean about an optimization problem? For a function

that represents a model of a real application, it is the maximum or the minimum value that it
has. If we want to maximize a function f we simply consider —f . To explain the other

concepts we will refer to an example of function showed in Figure 1.2, defined in the two-

dimensional space.

Definition 3: A local Maximum X € X of one (objective) function f:X —R is an input
element with f (Y)Z f(X)‘v’Xe X,8>0,|X—Y|<8.

Definition 4: A local Minimum X € X of one (objective) function f:X —R is an input
element with f (K) <f (X)‘v’x eX,e> O,|X—Y| <g.

Definition 5: A Global Maximum X € X of one (objective) function f: X —R is an input
clement with f (X)> f (x)vxe X.

Definition 6: A Global Minimum X € X of one (objective) function f:X —R is an input

element with f (Y) <f (X)VX eX.
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Figure 1.2: yz-plane of a two-dimension bird function.

In the optimization contest we may be faced with problems that can be solved with two
different set of variables that produce the same measure, or else the same value. This problem is
called multi-modal problems; they present two or more equivalent optimal solutions. By

contrast, a problem that has one optimal solution is defined mono-modal problem.

1.2 Non Linear Inverse Problems

Inverse problems arise whenever one searches for causes of observed or desired effects. Usually
there are two problems separated into direct and inverse; they are respectively inverse of each
other if the solution of one involves the solution of the other one. We can refer to an example
that I like to call the Lemonade example. Let me explain it. Let’s say I wanted to get lemonade,
I should prepare the ingredients: sugar, water and lemon juice. Well, I then shake them until I
obtain a lemonade. This is the direct problem. Vice versa, the inverse problem consists, starting
from the taste, of quantifying the three ingredients in order to obtain exactly that taste. In a
scientific perspective we are usually faced with an inverse problem when we encounter partial
differential equations. The direct problem is to solve the differential equations system so as to
find the solution that predicts the system behavior, starting from the initial conditions and the
system’s parameters. The inverse problem consists of estimating the parameters starting from
the observation set of data. In many engineering processes the physical law that governs them is
often known and also the parameters involved in the model, whilst the actual parameters, for
any particular cases, is unknown. Thus, solving an inverse problem means finding out just those
values. The inverse problems are closer related with the definition of ill-posed problem. Hence,
it will be useful to recall some important concepts that start from some studies made by

Hadamard at the beginning of the last century. Hadamard was a famous French mathematician
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who founded out the definition of both well and ill posed problem. A problem of mathematical
physics or a boundary value problem for a partial differential equation is called well-posed if the
following conditions are satisfied: 1) a solution of the problem exists; 2) the solution of the
problem is unique; 3) the solution of the problem depends continuously on the data of the
problem. If one of these properties is violated, the problem is called ill-posed. Neither existence
nor uniqueness of a solution to an inverse problem is guaranteed. Many different regularization
methods have been developed for solving both linear and no linear inverse problems[3][4]. In
this work it will be exposed the utilization of metaheuristic algorithms that in the last fifteen
years have been applied in such mathematical field with optimal results. In the next paragraph
we will introduce metaheuristic algorithms pointing out their usefulness and even their main
shortcomings. Notice, that an inverse problem can be viewed as an optimization problem,
because we can build an error function to minimize it, and thus, generally speaking, optimize it.
The objective of such optimization is the minimization of the error function that describes how
far we are from the good representation of the system’s state and from the optimal estimation

of parameters composed by it.

1.3 Metaheuristic Algorithms

Metaheuristics are innovative algorithms designed for addressing complex optimization
problems, in which other optimization algorithm, often deterministic algorithms, have already
failed. Normally, for addressing an optimization problem, a custom heuristic is made so as to
adapt the resolution strategies of the current problem. This required a new approach to every
problem and lessons learned from one problem did not always generalize well to a different
class of problems. Instead, Metaheuristics requires less work to develop and adapts the
algorithm to the specific problem. Those benefits allow the extension of the field of
applicability of metaheuristics. In general, many metacuristics start by an initial solution or an
initial set of solutions, and then begin an improving search, guided by certain principles. It is
important to point out in this contest that the prefix mefa indicates that the detail of the search
are not specified, but only a general strategy is described by a metaheuristic algorithm. For
mentioned reasons they do not guarantee to find the optimal solution in bounded time. Despite
the fact that they do not give any guarantee, they are applied when problems have large size,
and when the goal is to quickly find a (near-)optimal solution. The main standards in the search
and optimization process are exploration and exploitation, also considered as diversification and
intensification; in particular, when we say intensification, we mean concentrating the search in a

confined, small search space area, whilst diversification is when we explore the search space.
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These two points of view are contrary and complementary; we are going to dedicate many
pages to these peculiar aspects of the metaheuristic algorithms in the rest of the work.

A metaheuristic is usually non-deterministic and allow us to address a optimization problem
with an high abstract level of description of it. For instance, obviously, one does not always
know the close mathematic form of the model, and hence, you can consider it like a black-box.
In this way the operator avoids to be obligated to define the exact model of the problem. He
only has to be able to extract the value of the performance from the model. This is the only
prerequisite for utilize a metaheuristic for solving a optimization problem. When, for example,
we are solving an identification parameter problem (so an inverse problem), we know the
model of the physical system, but we do not know the model of the “error function” that after
the minimization allow us to get the optimal parameter for that problem.

There are many classifications in literature, but in the author’s opinion the most simple and fast
classification is in two wide categories: Trajectory method and Population-based method. In the
Trajectory methods there are a set of individuals that do a trajectories in the search space
following a determined rule. For example, the Particle Swarm Optimization and the Flock of
Starlings optimization belong to this category, which will be exhaustively treated in this work.
The second category is the Population-based methods, in which we can enumerate
Evolutionary Algorithms such as Genetic Algorithm, Differential Evolutions Algorithm, Ant
Colony Optimization etc.; they can be considered as a set of solutions that evolves over various
epochs. Recently, the tendency is to make hybridization among the metaeuristics in order to
improve the search process and overcoming the shortcomings of one with the benefits of

another one. In the next few chapters this aspect will be treated exhaustively.
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METEO

Chapter 2

MeTEO
Metric & Topological Evolutionary
Optimization.

In this chapter we will discuss a new hybrid solution. The idea of a new algorithm starting
metaheuristic algorithm called MeTEO [14], from 3 famous algorithms is an interesting

that represents a solid instruments for hard experience since it is possible to observe how
optimization problems. The algorithm exploits simple algorithmic rules can show the

three heuristics working in synergy on a parallel emergence of complexity when they are used in
architecture in order to reach the best global a co-operative scenario; as simple bricks are able
minimum, or in a multimodal cases the best set to produce cathedrals.
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2.1 Global framework of MeTEO

Exploration and convergence are two important requirements for the algorithms which are
devoted to inverse-problems and/or optimization. In many applications it is usual to prefer
those algorithms showing better capabilities of convergence to the global optimum. On the
other hand, we have to consider that: a) many optimization problems require finding more than
one single global optimum; b) in many cases the global optimum must be found within a
solution space having very high dimensions [1]. Frequently, the previous points a) and b) are
simultaneously present. Thus, the designer of the algorithms must decide if it is better to
expand the search or to privilege the convergence on a subspace. This is very hard to be
decided a-priori [2]. In fact, the risk to be entrapped into a local minimum is higher if an
algorithm does not explore a suitably wide space. On the other hand, an algorithm could make
an over sampling of the space and spend a long time before achieving convergence to a good
solution [2]. This chapter shows a novel approach based on Evolutionary Computation able to
enhance exploration preserving convergence. The proposed algorithm has been called MeTEO
to highlight its Metric-Topological and Evolutionary inspiration. In fact, it is based on a
hybridization of two heuristics coming from swarm intelligence: the Flock-of-Starlings
Optimization (FSO) (topological swarm), the standard Particle Swarm Optimization (metric
swarm) and a third evolutionary heuristic: the Bacterial Chemotaxis Algorithm (BCA) that has
non collective behavior. In particular, the Flock-of-Starlings Optimization (FSO) was first
described and applied in [3] and [4] as a modification of the well-known Particle Swarm
Optimization (PSO) [5] by adding topological rules to the metric rules that are typical of the
PSO. The FSO is inspired by recent naturalistic observation about the real starling flight [5]. As
it is shown in [3] and [4], the FSO is particularly suitable for exploration and multimodal
analysis. The BCA [6] is based on the emulation of the motion of a real bacterium looking for
food (i.e. fitness function). It is a heuristic that shows its better performances in local search [1].
The present approach uses the FSO to explore the solution space, the PSO to investigate
subspaces in which the global optimum could be present whereas the BCA is at the end used
for refining solutions. A parallel strategy is implemented: the FSO is permanently running. Any
time it finds a possible solution, the PSO is launched. After several iterations, the PSO is finally
substituted by BCA, and so on. A final important computational strategy completes the present
approach: the fitness function is made worse solely in those suitable narrow regions in which
the FSO has decided to launch PSO-BCA. This Fitness Modification (FM) has the aim to
prevent FSO from going back to an already explored subspace. MeTEO has been tested on the

main optimization benchmarks currently used in literature but also novel harder benchmarks

43



METRIC & TOPOLOGICAL EVOLUTIONARY OPTIMIZATION.

are presented. However, the following sections will be dedicated to the complete explanation of

these MeTEO features.

2.2 Swarm Algorithms, Particle Swarm Optimization and
Flock-of-Starlings Optimization.

The Particle Swarm Optimization (PSO) is one of the most used and studied algorithms among
the optimization methods. It was proposed by James Kennedy and Russell Eberhart in 1995 [7],
starting from the works of Reynolds [8] and Heppner and Grenander [9]. It is an algorithm
based on some metric rules applied for simulating the collective behaviour of swarms. The
metric approach consists in describing the behaviour of a flying bird which must keep its
distance from its neighbours that is forced to stay into a fixed interaction range, i.c., all birds are
keeping alighments of velocity among all flock members. Although the metric rule allowed the
simulation of a collective movement of animals, significant differences still remained compared
to the behaviour of a real flock. However, on the basis of this paradigm, Kennedy and Eberhart
[1] first proposed their approach by establishing a one-to-one relationship between the motion
of a flock governed by metric rules during its food searching and the iterative steps of a
numerical algorithm searching the solution for optimization problems. As a second step, they
found that some metric rules of the paradigm were an obstacle for multi-objective optimization
tasks. Thus, they modified the algorithm by removing some parts of it. For example, matching
the velocity of the nearest neighbour was removed, and so on. These variations have altered the
virtual collective movement of the swarm and the final algorithm simulates a behaviour more
similar to a swarm of insects than to a flock of birds. Thus, we can say that the original PSO has
been created starting with the simulation of a flock of birds and arriving at the emulation of a
swarm of generic "particles". The introduction of topological rules into PSO is the hub of the
algorithm called Flock-of-starlings Optimization (FSO). The FSO, [3],[4] adopts an approach

based on recent naturalistic observations [5], on the collective behaviour of the European

>
Starlings (Sturnus Vulgaris). The authors of the paper [5] have discovered an interaction among
members of the same flock which has topological nature: it is relevant how many intermediate
birds separate two starlings, not how far apart they are the one from the other. This means that
the main property of the topological interaction is that each starling interacts with a fixed
number of neighbours, i.e. their metric distance is not crucial. Thus, real flocks of starlings have
a behaviour that can be numerically simulated by using topological rules rather than metric

rules. In fact, the topological approach is able to describe the density changes that are typical of

flocks of birds, whereas the metric approach is not able to do it. In real flocks each generic k-th
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bird controls and follows the flights of a generic number of other members of the flock, no

matter which are their positions inside the flock.

The pseudo-codes of the implemented PSO and FSO referred to a generic function,
f(X....X5), to be minimized in the search space having dimension R are recalled in the
following (Figure 2.1) and (Figure 2.2).

In particular in (Figure 2.1), we have indicated into the boxes numbered from 1 to 11 the

definition of the main common parameters to be used both by the PSO and FSO algorithms.

—

R = (xp..%p) x""i“ <x <0 with =10 ‘ Deﬁne
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Figure 2.1: Main parameters managed by PSO and FSO.

They are: the dimension of the search space, R® = (X,.....X;) , the values of the main parameters
for each j-#h particle p; =(x..x}) p; = (... X)) with j =1..0 e 3 the maximum number of
iterations, T, ; the fitness function f(X....X;) ; the maximum value of each velocity
component V. ; the initialization of velocities V)(t=0)=random(0,1)-V__ (where

random(0,1) is a function returning a random value between 0 and 1); the personal fitness
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fpj (0) = (o indicates an arbitrarily large value); the global fitness §(0) =00 ; the position
p;, = (Xf (0)..x) (O)) of each j-th particle with x)(0) = random(O,l)-(x;“aX — X:"n)+ XM ; the

value of the inertial coefficient @’ ;

the maximum value of cognize coefficient, 4, ; the maximum value of social coefficient, ¥,

the fitness threshold goal _ fitness = arbitrary small . Moreover, in Figure 2.1, we have
indicated the parameters used just for FSO,(i.e. they do not appear in the PSO algorithm) by

the blocks numbered from #13 to #15: the maximum value of the topological coefficient, J,,,

among  all  topological  coefficients &' =6, -random(0,1) ; the  quantity

i 1 Ncrl_blrds .
Mcch) =—— Z vl ; the number N
crl_birds  h=l

of the birds that are controlled by each

crl _birds

other single bird within the flock. In (Figure 2.2), is reported the pseudo code valid both for
PSO and for PSO.

‘ For each j-t particle, for each step £, witht=0... T

16

5® =705 ©-x50) ‘

Ir 1, (€)is better than the personal best fitness of the j-¢# particle 7, ()
17 p_best] =xi () Yk

5L 0=5,0

Ir f,(f) is better than global best fitness
g _best, =xj () Yk
2®=750

19 | & =ay, . A =2, -random(©)), ¥ =y, -random(0,1)

viE+D) = @ v @)+ X (p _best] —x} @)+ ¥ (g _best, —x](0))
(Just for PSO )

vt +1) = @] () + A (p _best] — =zl () + 77 (g _bast, —x{ () +&7 - Mech]
( just for FSO )

bl

Figure 2.2: Pseudo code for PSO and FSO.

HE+) = O +viE+D)

How it is evident from (Figure 2.2), the PSO and the FSO differ just for the expressions written
in block #20 and #21 respectively. This apparently small difference produces huge differences
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in the behaviour of the two heuristics. In fact, even if the PSO shows quite a good exploration
capability as well as a good degree of convergence, it has been noted that, especially when the
searching space becomes larger and larger, it can be trapped into a local minimum without the
possibility of escaping [1]. Furthermore, for multi-modal functions, the algorithm is not
comprehensive [1]. In fact, it is important to note that the standard PSO has undergone many

changes. Many authors have derived new PSO versions and published theoretical studies on the
effects produced on the algorithm by changing the values of the various parameters (e.g.,a)j ,

Ay I and so on [10]). Other authors have investigated the effects produced by changing
some aspects of the algorithm (see, for example, [11][12] and the references therein). It is
important to note, however, that the cited papers focus their attention more on convergence
rather than on exploration. On the other hand, in [3] and [4] it has been shown that FSO has
high exploration capability, avoids entrapments into local minima and is particularly suitable for
multimodal optimizations. Unfortunately FSO shows a lack of convergence. This is the cost to
be paid for obtaining a high exploration capability for the algorithm. Practically the FSO does
not stop running without user intervention. But this also is the reason that allows the FSO to
operate a complete mapping of the solution space. This makes the FSO immune to the worst
initializations, i.e. it can return a good solution regardless of how large the dimension of the
solution space is. In fact, the FSO has the potential to find each subspace in which a minimum
(local or global) lies. Although the FSO can or cannot find better solutions depending on the
values assigned to the parameters appearing in (Figure 2.1), the PSO can never achieve the
exploration capability of the FSO simply by means of a modification of its parameters. We can
conclude these notes by saying that FSO is a very good explorer but it is not convergent,
whereas PSO makes a balance between exploration and convergence, favouring (perhaps too

much) convergence.

2.3 The Bacterial Chemotaxis Algorithm

The BCA has been proposed in [6] and is an algorithm based on the emulation of the motion
of a real bacterium looking for food (i.e. fitness function). A mathematical description of a 2D
bacterium motion can be developed by assuming an assigned speed » and by determination of

suitable probabilistic distributions of the motion duration 7 and of the direction ¢ shown by
each individual. The 2D description can be easily extended to n-dimensional hyperspaces
defining, for the virtual-bacterium path, a vector made of n positions X; , with i=1..Nn,and a
vector made of N—1ldirections @, , with K=1,...,n=1. Thus, the virtual bacterium motion

follows the rules proposed in [6] and here summarized in (Figure 2.3) and (Figure 2.4):
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Figure 2.3. Main parameters managed by BCA.

In (Figure 2.3), we have indicated the two expectation values of a suitable exponential
probability density functions with T and g, the standard deviation with o, the minimum mean

time with T} , the module of the difference between the new position vector, X"=" , and the old

NEW _ ,,OLD

position vector, X% | of individuals with r=|x X and the function cost to be

minimized with f (X); the parameters T, t are usually called strategy parameters. Regarding

directions, the probability density function describing the turning angle between two
consecutive trajectories is Gaussian. (Figure 2.4) shows the flow-chart of BCA pseudo code.
The path of each bacterium is composed by adding the vector x'to the old position of virtual
bacteria, step by step, by the equation X"™ =x""" +x’ | with |x’|:r . Moreover, the &
parameter is another strategy parameter and is introduced to modify the dynamic of individuals’

_ fNEW_fOLD

movement. Finally, for each bacterium, fpr is the difference between the

: NEW . .
current fitness function value (™ ), referred to the current position (current algorithm step),

and the value of that ( fOLD) referred to previous position (previous algorithm step). The BCA

effectiveness is strongly influenced by the choice of the parameters: T;, r and b . They are
usually obtained empirically depending on the typology of the optimization problems. In

particular, the BCA convergence becomes difficult if the T} value is excessively large.
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For each bacterium and for each step

r £
T ez 0
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1 1 1
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[}
WEW oLD
n T 'n n

End For

Figure 2.4: Pseudo code of BCA.

This is because Tj is the shortest time interval of a single position change of the bacterium. This
shortest movement should be small enough to allow the BCA to achieve the requested
accuracy. On the other hand, if the elementary bacterium movement were too small, the BCA
running-time would be excessive. Furthermore, in presence of a large gradient (i.e. the motion
excitation for the bacterium), b should be chosen small enough to avoid the risk of a removal

from the attraction zone.

2.4 Extension of the FSO to a MultiFlocks.

With the aim to improve the exploration capability of the FSO, a further variant has
been ideated that has been called MultiFlock of Starling Optimization (MFSO). It consists of
implementing more than one flock working at the same time following the rules next

explained. In the MFSO, the interconnection matrix is divided into several sub matrixes
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where N.

having dimension equal to Nj 4 ¢ <N ind_su

. p 1s the number of individuals

birds _ followed >
belonging each sub-flock. Each individual will belong to a sub-matrix (chunk) and it will be
constrained to follow just the individuals with are members of the same chunk. In this way,
any N, will have no trajectories related to those made by the other sub-flocks, i.e. they are

fully uncoupled and the only exchange of information consists of the sharing of the global

best. The capability of exploration of the MFSO, will be proved in the next sections.
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2.5 Parallel architecture, Fitness Modification and the
activation strategy of the different components of
MeTEO.

2.5.1 Parallel architecture

MeTEO shows best performances on a distributed architecture, in fact, it has been fully
designed for parallel computation based on a Master-Slaves configuration. According to the
peculiarities of each previously described single heuristic (PSO, FSO and BCA), MeTEO uses
FSO just on the Master node whereas PSO and BCA on Slave ones. The FSO performs the
exploration of the whole space of solutions and whenever it finds a sub-region in which there is
a high probability of discovering a global minimum (briefly called “suspected region”), two
simultaneous operations are made: 1) the current fitness is modified with the aim to preventing
FSO from exploring a found “suspected region” again; 2) MeTEO launches the PSO algorithm
on a Slave node of the cluster, being the PSO population initialized by means of the best result
found by FSO at the current iteration. Let us explain these points in more detail in the next few

paragraphs.

2.5.2 Fitness Modification and Switching strategy among MeTEO
components.

The Fitness modification (FM) is based on metric rules similar to those used by the
famous Tabu-search algorithm [13], and in particular to the Tabu list. Since the global
optimum is coincident with the smallest value achievable for a fitness function, the FM has to
ensure that the algorithm does not perform investigations on those “suspected regions”
already detected by the FSO. In fact, the FM consists of adding a positive Gaussian function,
centered into the best co-ordinates found by FSO, to the past fitness function at the current
iteration. A further control is made by MeTEO on the number of iterations for which the
fitness does not improve its value. In other words, if the fitness does not improve for a
number of FSO iterations equal to a fixed threashold, MeTEO assumes the coordinates of the
last found global best as the centre of a “suspected region” and activates a Slave node in
which PSO and BCA acting on. It is important to remark that the effect of the FM acts just
on the PC-Master, i.e. it is valid just for FSO whereas the fitness function holds the original
starting expression both for PSO and BCA working on the PC-Slave. In more detail, let us
show how the FM acts when the FSO finds a generic k-th “suspected region”. Before finding

the generic K—th a “suspected region”, FSO was managing a fitness function that was fixed
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at the moment in which the FSO found the (K—1)—th “suspected region™

(X): D R" with X=(X...Xp) , (it is clear that the starting original fitness will be

f fitness,_;

indicated with f (X)). Let us assume Xmin, to be a vector collecting the co-ordinates

fitness,

(X) . Then, FM operates according to the following equation:

Zn:(xj _Xmin,->2

(X) + Aexp| -2

minimizing the value of fﬁmesskf1

f X) = @.1)

fitness ( f fitness, 4 2

20

where A is a suitable constant and ¢ is the standard deviation that defines the size of the k-

th “suspected region” detected by FSO. In this way, the new fitness g (X), that will be

managed by the FSO, will find a further “suspected region”, and will no longer show a

minimum in X, , i.e. the FSO will no longer be attracted by that region. Obviously, in the
Slave node no FM is made. Let us see now what happens in the Slave node. When a k-th
“suspected region” is detected, a Slave node is activated. On this node the PSO is initialized
by X (X). The

min, Wheteas the fitness function is always set equal to the starting one: f

fitness,

PSO will be left to run for a prefixed number of iterations Npgy ., - When the PSO iterations

are equal to Npgy . the PSO ends its task and it is substituted, on the same Slave node, by

the BCA. The BCA population will be initialized by means of the best result achieved by PSO

so far. The BCA plays the role of the local search. It searches the minimum until its own
number of iterations is equal to a maximum number NBCA_maX that has been set before

running MeTEO.

Meanwhile the process on a Slave node is running, FSO still continues to explore the space on
the Master node. Any time FSO finds a further “suspected region”, MeTEO launches a
further process again on a different Slave node and so on. Any final result coming from Slave
nodes is stored in a dedicated file that is located in a shared folder in the Master node. After to
have delivered to the Master node the found solution, a Slave is ready to be used again for a
further exploration of a new “suspected region”. Finally, when all processes are finished and
all PC-slaves have completed the PSO+BCA procedures, as previous described, a list of all
detected minima is available in the file in which all results, coming from Slaves, have been
stored. At the end, from this stored list the best minimum is trivially identified. Practically, this

kind of parallelization can be defined asynchronous.
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Finally let us to do some remarks on FSO stopping criterion. A simply criterion consists of

SLAVE PROCESS
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Figure 2.5: flow chart of the optimization process provided by MeTEO.

stopping. METEO whenever the FSO performs a number of iterations Ny . that have

been set by the user. But this strategy may not be effective in all cases. In fact, some hard
multi-modal optimizations, i.e. in those cases in which the FSO needs of a higher number of
iterations for detecting all the global minima, it could be convenient to use a different
stopping criterion based on a maximum number of “suspected regions”. In other cases it will
be recommendable to use a Boolean OR logic gate based on both the two proposed criteria.

Obviously, the choice of a specific MeTEO stopping criterion depends on the user experience
on the optimization problem or inverse problem to be solved. This approach is useful when
the fitness function requires short computational time to be calculated. Indeed, if the fitness
function requires a high computational effort, it is best to use a different parallel architecture,
in which each slave-node computes the operation of one single individual, which is involved
in the fitness calculus. The master refreshes only the global and personal bests after the
calculation of all fitness for all individuals. In this approach the asynchronous parallelism
between FSO and PSO present in the approach previously described now is substituted by a
synchronous one. Now, the whole machines of the cluster are used first for the FSO and

afterwards for PSO and BCA population in succession. For implementing the same behavior a
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cluster of cluster should be implemented. In the next third chapter, both the implementations

will be described for facing different kinds of inverse problems.

Let us now to return to the fitness function modification. The three images depicted in
Figure 2.0, refer respectively to the Giunta function [14]. Through these pictures we can better
see the various steps of the FM application. The first image refers to the simple cost function
without the FM. In the second one there is a first FM indicated by the black arrow. In the
third figure the local minima becomes a local maximum, forcing FSO to escape from it. By
choosing different weights for the FM, one can improve the performance in exploration.
However, a parsimonious utilization of FM is recommendable, because if one choose a weight
that is too high the function may be too much modified, in such way that the FM could mask
also important regions in which the global, or one of the global bests, could lie. Then, a pre-
process has to be carried out in order to choose the more suitable FM weight. An empirical
method could be the iterative increasing of the weight, until the operator notices a detectable

change in the fitness value while the optimization is running.

Figure 2.6: Changing in the fitness function Giunta after two launches of FM.

2.5.3 Parallel Architecture: the Algorithm-Based and the Fitness-
Based.

All the methods presented above are oriented to a parallel computation that we could
call “algorithm based”, in this kind of parallel approach, each slave node is used for running
one series PSO-BCA, hence, the task is calculated in a single machine without other
parallelization, for instance working with the cores of each machine. The same philosophy is
adopted in the Parallel computing Toolbox of Matlab®, that we have used in some of our
tests. The exposed method, could generate some problems if the fitness computation time
were too high. In fact, since the process is computed in the single node of the cluster without
parallelization, there is the risk to run into a worst situation because of too many processes to
be computed in series. In any case, even if one could think to overcome this problem by a

further parallelization of the code related to any single node, the time response could be still
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too long. For these reasons, a new framework called “fitness-based” has been proposed. It
consists of using any single node to compute a fitness function linked to a particle. Instead,
the master node has the tasks of computing the new position and new velocities of FSO,
starting from the knowledge of the old ones, provided by the slaves. Whenever the master
node has to compute the fitness for a particle position it assigns a node for this task. The
master will wait the return of all requested, and then it will collect them and will launch a new
iteration. When all the iterations will be done, the cluster will launch the PSO in that sub-
region where FSO found the best minimum. Similarly, after the PSO will be launched the
BCA. In this framework the cluster serves the algorithms one-by-one, and the FM is used only

with FSO. In conclusion, the main difference between and the fitness-based approach is:

1) in the algorithm-based one, the master plays the role of FSO and uses the slaves as

simply finishers having the role to detect the deeper minimum in a suspected region;

2) in the fitness-based one, the master has simply the role to coordinate any slave that

has the task to compute the fitness.

Obviously, the number of nodes is a crucial point. In the algorithm-based framework, it
restricts the number of FM that can be launched; instead in the fitness-based framework it
constrains the number of individuals in the algorithm. The fitness-based is useful when the
fitness computation requires more time than all the other operations that are made in the
algorithm. In this work, we have adopted this method for solving the problems related to the
optimization of TWT in term of geometry, collector potentials, etc. The utilization of fitness-
based for the TWT problem is justified if you think that each fitness requires about 1’307
(Intel dual-core 1.6 GHz). We can suggest this procedure to anyone who wants to use an
external simulator for the fitness function. In fact, many optimization problems are treated
with the help of a simulator software toolkit, especially those problems which involve finite
element method. One can introduce his software in the node and recall it via web by using

command shell. The figure 2.7 and 2.8 show algorithm and fitness based parallel approach.
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Figure 2.7: block scheme of algorithm based parallel framework.
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Figure 2.8: block scheme of fitness-based parallel framework.

2.6 Optimization algorithms like intelligent sampler.

In the optimization process, the exploration capability of an algorithm plays an
important role in the multimodal problems. For this reason the employment of an algorithm
with a good exploration capability can allow us to detect all local minima in the cost function.
To proof the high exploration capability of an algorithm, could be interesting to show its
capability to rebuilt the whole map of the cost function: i.e. the idea of this section is to use
the algorithms as intelligent sampler in such way the cost function can be rebuilt by
interpolation. By measuring the dimension of the space that an algorithm is able to explore,
will be possible to estimate how good is its exploration capability. The algorithms used in this

estimation of exploration capability, have already been mentioned in the abstract: PSO, FSO,
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MFSO. With the aim to compare the performances of the previous algorithms that are the
main subject of this thesis work, the analysis has also extended to the classical Genetic
Algorithm whom description is omitted (please, refer to the bibliography). Moreover, each
algorithm has been tested in presence as well as in absence of the FM. In order to rebuild the
cost function, each algorithm is launched in two different configurations: one oriented find all
minima of the cost function, and the other otiented to find the minima of the inverted cost
function. These two different configurations assure the investigation of the whole cost

function, since the algorithms are designed to find minima.
In this way at the end of the evaluation, any algorithm returns a set sample data.

For rebuilding the cost function it will be necessary to invert the sign of those data coming
from the sampling of the inverted cost function. Finally, it will be sufficient to use a suitable

interpolator.

Several tests have been done in order to validate the exploration capability of each
algorithm by following the approach based on the cost function rebuilding. In particular each

algorithm has been launched 30 times on several different benchmarks.

In Table 1 are shown the obtained result related to simulations made by using the Bird

function as cost function:

f(x,y)=sin (x)exp[(l—cos(y))z] + cos(y)exp[(l—sin (x))z] +(x-y)’. 2.2)
and the same number of iterations and number of individuals has been imposed for all the

different algorithms (2000 iterations and 10 individuals).

The percentage of the investigated domain compared with the whole domain of the cost
function is used as a parameter able to measure the capability of exploration of each
algorithm. In particular the measurement of the investigated domain has been done by using
the following method: the whole domain has been partitioned into several elementary sub-
domains having a dimension equal to the 5% of the whole space of interest. Then we will
consider as an znwvestigated sub-domain that elementary portion in which the algorithm sample the
cost function, or its inverted value, one time at least. Moreover, both MPE (Mean Percentage
Error) and its variance over all tests are provided. MPE is calculated between the rebuilt
function and the true function. As it is possible to see, the results show that MFSO with the
used of the FM, obtains the best performance among the algorithms tested. In the last column
the number of failures are listed. It represents the number of times when the algorithms has
not explored 100% of area. In this case, MPE in calculated only over the zone rebuilt.In all

tests, the cubic spline interpolation has been used. Obviously, the final quality of the
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interpolation depend on the specific interpolator that is used for rebuilding the cost function
after the “intelligent sampling”. For example, if the cloud of sampled points belong to a
concave curve, the interpolator could fall in error by crossing areas that has not been
investigated by the optimization algorithm. Since we make a validation starting of the domain
explored this procedure could insert an overvaluation of the exploration capability. This justify
the reasons from which the domain explored has been estimated by the method consisting of

counting the sub-domain sampled as previously described.

Table 1. Results of the test made for the Bird Function. Each algorithm is initialized in the point [-9 -9].

Algorithm MPE Variance Mean Area[%] X?g;a[g/s]e ;iitlsed over 30
MFSO+FM 0.0034538 1.299e-005 99.2645 2.9887 0

MFSO 0.70111 0.28314 54.6482 8.8994 30

FSO+FM 0.062557 0.016329 98.3054 11.3105 20

FSO 0.75573 0.63839 58.4974 9.2509 30

PSO+FM 0.8148 0.5132 86.7807 4.1258 29

PSO 0.5493 0.35416 22.2916 9.2859 30

AG+FM 0.32664 0.15338 17.0897 2.7381 30

AG 0.11969 0.016434 7.569 0.40311 30

A further analysis has been made with the aim to estimating the sensitivity of the exploration
capability with the number of iterations of the various algorithms. In fact, increasing the
number of iterations (Nol) the exploration obviously improves, because the algorithm simply
has more time to attempt to find the minima. The results of this analysis will be next show

with reference to the Giunta function:

S in(35 1) sine( 3 _1)s L (o265 -
f(xl,xz)_0.6+iz_1:{sm(ﬁxi—1J+sm (15xi 1j+50[4(15xi 1})} (2.3)

From observing the results it is evident that the FM utilization in some way, operates a sort of
boost for exploration capabilities of each algorithm, maintaining the original ranking among
the algorithms. Hence, the FM can be considered as a stand-alone technique and not always
connected with the MeTEO algorithm utilization. The comparison of behavior without FM
shows a behavior that is deeply dependent on the probabilistic terms existing in the algorithm.
In this scenario, when you double the Nol the inspected area could not double. When the

algorithm is trapped in a local minima if the random terms are not high enough, it will remain
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in the local minima, the FM provide a way to escape from it without makes changes in the
kernel formula of swarm algorithm, but simply remarking its attitude of sensing “the hills and
the valley”. In the figures the bar graph representing the percentage of inspected area with and
without the FM are depicted. FM plays a role in a field previous the sake of the right way for
finding a minimum. Before it, there is the concept of exploration that excludes at the
beginning the possibility of reaching a minimum whether a particular area of the solution
space has not been inspected. On the other hand, the other edge is the brute force

computation of all possible solutions without any kind of intelligence. Between these two

boundaties lie the utilization of FM.

Percentage of inspecled area (MFSO+FM) Percantage of inspected area (MFSQ)
: T T T 0.7

1000 1500 1000 1500 2000
Iterations Iterations

Percentage of inspected area (FSO+FM) Percentage of inspected area (FSO)
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500 1000 1500 2000 500 1000 1500 2000
Iterations Iteration
Percentage of inspected area (PSO+FM) Perecentage of inspected area (PSO)

0.9¢ T T 1

10 15 20 25 30 35 40
Iterations Iterations

500 1000 1500 2000

Figure 2.9: comparison of percentage of inspected area vs Number of iterations, with and without FM.
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2.7 Binary Flock of Starlings Optimization BFSO.

BFSO is an extension of the Discrete Particle Swarm Optimization. The trajectory in
the current model is probabilistic, and velocity on a single dimension is the probability that a
bit may change. The velocity of a single particle is interpreted as the probability that the
current position may change from a current state to another. In this case the algorithm
becomes “binary”, thus the position can be 0 or 1. In it, p_best/, x} (t), g _best, are integer in
{0,1}. Being v/ a probability, it is constrained to 0.0 and 0.1. A logistic transformation is

introduced by using a sigmoid function in order to constrain the velocity:

- 1
S(v) = ; 2.3)
1+e ™™
Afterwards, the resulting position is defined by the following rule:
if (rand <S(v;))then x; (t)=1;
( ( k )) (1) 2.4)

else x; (t)=0

Starting from these equations we can obtain the BFSO model. In fact, in the FSO each
individuals chooses the direction in accordance with the velocity of other members random
chosen in the swarm. But now the velocity is the probability that an individual will change its
status. Therefore, the choice of an individual is influenced by the mean probability of
changing of the other member followed by it. The velocity equation for the BFSO simply

becomes:
V) (t+2) =[@'Vv) (t) + A’ (p_best) —x/ (t))+ ' (g _best, —x/ (t))]- Mcch/ (2.5)

|\/|CCbkj is the mean probability that a figure could change from O to 1 affected by the
members in the swarm followed by him. This is a method for linking the choice of 1 with the
other members. The value of the MCCbkj is constrained in [0.0, 1.0], so as to underestimate the

influence of other members on the generic individual. It has proved a right choice because
linking individuals in a strong way could produce a stagnation and saturation in 1 or 0
direction, because if all members are strongly linked, after a short period of time they will
uniform the population saturating to single value, for example an array of all figures 1, or
otherwise an array of only figures 0. Let us to explain the pseudo code, that follows. The
information of all birds is recorded in the array called ‘Starling’. In the function Initialization (

) random initial velocities and positions are assigned to each bird. Afterwards the matrix
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interconnection is made to associate with each bird N, ;4 Of other members of the flock; it

has dimension [ Nyias, Ney piras > Where Ny is the number of the birds of the starling. For

each bird the fitness is calculated and if it is minor than the previous, personal best values are
refreshed. Indeed, global best is the best fitness among the all values of the starling. Then, the
Mccb term is calculated taking the velocities only of the birds listed in matrix
interconnection. These three terms cooperate to update the velocity and position according to

eq 2.5.

Main ()
Initialization();
Make Mat Interc();
For i=l:nstep
For each bird
Fitness () ;
Gbest perform() ;
Pbest perform() ;
MCCB () ;
Velocity update (with equation 2.5);
Position update;
End
End
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Chapter 3

VALIDATION AND APPLICATION OF METEO.

Validation and Application of MeTEO.

MeTEO has been tested on many benchmarks
and to solve inverse problems. The aim of this
chapter is to provide an exhaustive validation of
MeTEO and to show its versatility and
robustness. The validation process of the
optimization algorithm is always a critical task,
because there is not a common layer in the
scientific community that allows to define a
standard procedure for evaluating the various
properties. Into the state-of-art, this problem is
faced by providing tools that automatically
generate tests combining famous benchmarks
through geometric operations such as
translation, mirroring, etc. In the study here
presented, MeTEO has been tested not only by
using of classical approaches, but even on hard
benchmarks specifically ideated with the aim to
proof its strong ability to return good results in

comparison with the performances shown by
other famous heuristics. With “hard
benchmark” we mean those functions that do
not present intuitive derivative direction, and
that are asymmetric in relation to the hills and
valleys distribution. MeTEO has been validated
on typical optimization benchmarks, as well as
on typical inverse problems, i.e. the
identification of the J—A hysteresis model
through the knowledge of an experimental
hysteresis loop, and the fit problem called
‘Amid_pro’ which is one of the 295-ODE-test
examples proposed by Schittkowski.
Furthermore, some paragraphs are spent about

the optimization of the TWT devices efficiency.

63



VALIDATION AND APPLICATION OF METEO.

3.1 Validation on Optimization Benchmarks

Let us to consider an ad hoc benchmark as follows:

{f (x,y)=50c0s(0.27X) +cos(0.057 )~ x* —y o

(—20<x<+20,-20 < y <+20)
In Figure 3.1, the cross-sections of (3.1) in planes at constants x and y are shown.
The benchmark (3.1) shows its smallest value (global minimum) in the point that is located at

the border of the variable-range: (X =-20,Y., = 20) . Thus, if MeTEO is initialized at the

opposite corner of the variable-range: (Xy, =—20, Yo, = 20) (Figure 3.1), it has to exit to
the closest ‘attractive’ local minimum in (—20, 20) , and to the other local minima that are
on the ‘hill’ that separates the starting point from the global minimum.

Point in which FSO has been

initialized :
(x(starf) = 20, y(start) = -20)

200

oy

-200

By T 0 10 2 <10 0 10 20
— sectionfory=-20 — section forx=-20
— -+ section 00 section forx=20

Point in which the global
minimum lies for this range
equal to:

(-20< x£20,-20 Sy £20)
Figure 3.1: Cross-sections of (2) in planes at constants x and y.
Each single heuristic that composes MeTEO will explore a different range within the
solution space according to the different exploration capabilities which are peculiar of an
heuristic rather than the others. Thus, for problem (3.1), whereas the FSO explores the
whole range: —20<X<20,-20<y <20, the PSOs and the BCAs explore smaller sub-
regions, depending on the size of the ‘suspected region’ detected by the FSO. At the end of
the whole process, MeTEO detected 14 ‘suspected regions’ for problem (3.1). Among them,

MeTEO detect the global minimum in the last detected suspected region. More in detail, in

this last region, the FSO detected the smallest value equal to f (—17.03, 17.51) =-323.04,
then the PSO petformed f (—18.03,18.09) =—-327.82 and finally the BCA found the best

fitness equal to -363.77 at the point (—19.82,19.58).
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Taking into account that the true global-minimum co-ordinates are in (-20, 20), the good
accuracy of the MeTEO performance is evident. The total PC-Master processing time (FSO)
has been 54.8 s. After that, the processing time of PC-Slaves working in parallel has been
about 67 s (the average time taken by PSOs was 63 s whereas a time of 4 s has been
necessary for BCA).

This ad hoc example gives us the core potential of MeTEO.

The MeTEO performances has been tested also for each benchmark presented in [11].

The dimension of the search space has been intentionally made sizeable in order to make the
optimization more difficult [12], and just 1000 iterations have been set both for MeTEO and
for the other single heuristic.

All the simulation results are listed in Tables 2 and 3 for analysis and comparisons. In
particular, Table 2 reports the number of global optima correctly detected by each algorithm.
We have considered as a success the event in which the algorithm finds a minimum, showing
a percentage error on the true minimum smaller than a fixed threshold. As it is possible to
see in Table 2, for the unimodal optimization, Levy and Schaffer, the MeTEO always obtains
a success like FSO does, whereas both PSO and BCA fail for the Schaffer function. For
harder multimodal benchmarks, the power of MeTEO is more evident. In fact, whereas it
finds anyway at least one global minimum, and in many cases all the global minima, FSO,
PSO and BCA cannot assure the same performances.

In Table 3, the best fitness results obtained by MeTEO are listed. In particular, Table 3

shows
Table 2:number of global optima correctly detected.
MeTEO FSO (number of  PSO (number of BCA (number
Benchmark (number of found minima)/ found minima)/ of found
found minima)/ (number of (number of minima)/
(number of total minima) total minima) (number of
total minima) total minima)
Levy 1/1 1/1 11 0/1
Schaffer 1/1 1/1 0/1 0/1
Giunta 3/3 1/3 0/3 0/3
Bird 4/4 4/4 2/4 0/4
Test tube older 3/6 2/6 1/6 0/6
Cross in Tray 4/4 2/4 1/4 0/4
Bukin 2/5 1/5 1/5 0/5

the best performance achieved by each single MeTEO component in the best ‘suspected
region’. For multimodal functions, the best results obtained for one of the global minima are
indicated. Finally, in the last column of Table 3, the number of ‘suspected regions’ detected

by MeTEO during the elaboration is finally reported.
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Table 3: MeTEO performances.

Number of detected

Benchmark FSO PSO BCA ‘suspected regions’
Levy 0.001128100069129 1.112549902700000 x 10~° 1.626793947000000 x 10~° 138
Schaffer 0.004245907810385 6.985129917416143 x 10~ —7.216739485161167 x 10-3 30
Giunta 0.064660746325632 0.064471520076312 0.064470421318009 18
Bird —1.066907387112337 x 102 —1.067645235721507 x 102 —1.067645142301463 x 102 169
Test tube older —10.808077079559949 —10.852437039909185 —10.852491680226905 131
Cross in Tray —2.061780609712529 2.062611702638396 —2.062611853281188 155
Bukin 1.297356414422297 0.597342511668211 0.161506034691595 165

3.2 Validation on Inverse Problems

MeTEO has been tested also on inverse problems as follows.

3.2.1 Identification of the J—A model

MeTEO has been tested also on an inverse problem: the Jiles Atherton hysteresis

model identification. Let us remind Jiles Atherton model [5]:

(1_C)dMirr +CdMan
am dH,  dH, 62)
dH 1—aCdMa”—a(1—C)7dM‘"
e dHe

where M, is the anhysteretic magnetization provided by the Langevin equation:

H a
M., (H.) =M, coth(—eJ—— (3.3)
a e
in which H,is the effective magnetic field H,=H+aM . In (3.2) M,, is the
irreversible magnetization component defined by:
dMirr - Man - I\/Iirr (3.4)
dH ko

whereas & = Sign(d—H).
dt

The parameters identified of the J-A model are «,a,C,K,M, and their physical

meaning are: @ is a form factor, Cis the coefficient of the walls movement reversibility, M
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is the saturation magnetization, and finally @ and K represent the hysteresis losses and the

interaction between the domains respectively.

The performed test is based on the use of a given set of parameters [5]
[a k. @, ¢, M,]=[ 2470, 60, 6.9010°, 0.053, 116-10° | that has been inserted into

equations (3.2)-(3.4) to obtain a pseudo-experimental loop by integration. The sampled
points of this pseudo-experimental loop have been used to estimate the error between that
loop and that returned by MeTEO and by the other single heuristics. All the algorithms have

been initialized randomly; the maximum number of “suspected regions” has been set to 80.

Table 4: Jiles-Atherton inverse problem MeTEO and its components results

. Percentage error
Parameter estimated

on the
Algorithm ) 11
[a, K a c, Ms] experimental loop
points
MeTEO 5 5
[24.34 59.84 6.26-10 0.050 1.158409-10 :| 0.05368%
FSO " s
[14.36 64.12 3.57-10" 0.046 1.072892~10] 4.71548%
PSO 5 5
|:17.27 55.73 6.22-10 © 0.004 1.047480-10 :l 7.07373%
BCA

[22.20 53.88 1.080195758008603-10" 0.006 1.044000~105] 8.1803%
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Figure 3.2: Comparison of the simulation results obtained by MeTEO and FSO, PSO and BCA when

In (Table 4) are shown the results obtained by MeTEO and its components working
alone. At the end of the simulation the parameters identified by MeTEO show a low average
percent Mean Square Error (MSE). This MSE is quite lower than that obtained by FSO, or
PSO, or BCA, working alone. In (Figure 3.2) it is possible to see how MeTEO returns a
hysteresis loop practically coincident with the experimental one, compared to the loops

returned by FSO, PSO and BCA when each one works alone. A further statistical analysis

has been made, using two indicators: MPE (Mean Percentage Error) and RZ; the results are
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each one works alone.

listed in (Table 5).

Table 5: Jiles-Atherton inverse problem MeTEO and its components statistic analysis.

Jiles-
Atherton[0.3] MPE
Algorithm Mean o’ R?
BCA 2.4268 2.9507e-2 0.5870
PSO 1.6388 1.6527e-3 0.9968
FSO 1.294 0.9030e-3 0.9993
METEO 0.53552 1.4576e-5 0.9996
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3.2.2 Amid proton replacement inverse problem [4].

To validate MeTEO a further test has been done, considering the Amid_pro inverse

problem. It is described by the differential system equation reported in eq. (3.5):

By
dt

d
%:kf (C_yz)

d
f= Ky, —0.1k, (y,—y;)—0.9k,y,

Y1

(3.5)

d
% =k, y, —0.9ky, + 0.1y,

The performed test is based on the usage of a given set of parameters

[k ks Kk, €]=[10, 107, 1.18:10*, 1.2:10° |. As shown in (Table 6) McTEO

is able to perform the better solution than the employing of singular heuristics. Also in this

tests the performance have been computed over 50 launches and the suspected regions are

equal to 80. In figure 3.3 are depicted the curves for the amid_pro model, for the single

heuristic, and for MeTEO.

Table 6: Amid_pro inverse problem MeTEO and its components results

Parameter estimated Percentage error
Algorithm on the 4-dim
[10%, 10°, 1.18-10%, 1.210° Amid_pro

MeTEO 5 3 4
9.9975-10,1.0004-10,1.179510™,120039,57 0.0060%

FSO - 3 4
9.9607-107,1.0427-10,1.1505-10,120076,66 0.7709%

PSO 9 s 4
1.0005-10,1.004-10,1.1793-10™,119985,80 0.1628%

BCA 4 5 .
1.0285-10,1.011710,1.268610",116088,48 2.0764%

Also for the Amid_pro inverse problem has been made a statistical analysis (Table 7).

The algorithms have been initialized far from the optimal parameter array written above and

in particular in a point equal to [ Ky, k;, k,, ¢|=03-[10, 10°, 11810, 1.2.10°].
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Table 7: Amid_pro inverse problem MeTEO and its components statistic analysis.

Amid_pro[0.3] MPE
Algorithm Mean o2 R?
BCA 10.8683 5.948e-2 0.3476
PSO 2.9633 7.9884e-3 0.9968
FSO 1.0674 0.4048e-4 0.9987
METEO 0.42562  0.1292e-4 0.9999
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each one works alone on the amid_pro inverse problem.

3.3 Optimal Underground Power Cable Displacement

[27].

In this section will be treated a particular kind of problems that has been used to
validate the Binary Flock of starling Optimization introduced in the previous chapter: the
optimal underground power cable displacement problem, which belongs to the discrete
problems class.

In the last years the electric companies have revisited the design method of the underground
power cables displacement in order to face the problem of optimal displacement. In fact,

when a significant number of circuits is placed closer, they can produce a maximum
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magnetic flux density over the tunnel.
A substation is affected by EM pollution, but fortunately consolidated shield techniques
already exist, then the field outside the substation is negligible. The problem moves on the
cables that leave the substation. There is necessity of optimization techniques at design step,
concerning both the geometrical and the circuit assignation of each bundle. Other authors
have faced this problem [1] with evolutionary algorithm as well [2], and with good results.
From the evolutionary computation perspective this kind of problems belongs to the Mixed-
Integer and Constrain Programming (MICP), in which discrete variables appear. In such
kind of problems, the algorithms usually employed operates as a string generator, where the
string is the individual that codifies a possible solution. Being the solution a string of number
the first inconvenient is that some solutions are incompatible with the physical problem. The
aim of this section is to analyze the performance of Binary Flock of Statlings Optimization
over MICP problems. Penalty techniques are widely employed in MICP [3], in our work we
use a death penalty, which consists in assigning a huge value (for example 10° or the value
Inf, if you are using Matlab as in our case) to the “bad” solution that does not meet the
constrains.

The problem taken into exam to test and validate BFSO, is the minimization of the
magnetic flux generated by underground power cables in a substation, in order to decrease
its value over the ground. Following, is given the procedure to calculate of the magnetic flux

using Bio-Savart law. For a cable routed by the current |, the magnetic flux generated in a

generic point locates in the space is:
Mol Ixr
B(r)=—"-—-
2 |r|
A current parallel to z axis is considered; the direction in which it flows is identified by
the vector |, indeed, I'is used to indicate direction that links the axis where the current is

flowing, with the generic point, in the xy plane as shown in Figure(3.4).

71

(3.6)



VALIDATION AND APPLICATION OF METEO.

=y

z

Fig. 3.4: 3D representation of flux magnetic calculation for a cable routed by a current of value 1.
Although the current vector is laid upon the z axis, it is sufficient the analysis of xy
plane (Figure 3.5). Each sample point is indicated with P, =(XS ,Ys ), all samples point are
taken one meter over the ground (Figure. 3.5), for each of them it is calculated the magnetic
flux considering a constant uniform distribution current of value I'k'i. The passages are

shown below:

My I,,2x(ax+by)

k,i 27[ |r|2
T el T S (3.7)
27 (X = X,) +(d +[n)’
My I bX
27 (X =X,)"+(d +[nl)
i a9
27 (X =X;)" +(d +nl)
where:
. I'k’i : complex quantity representing the current that flows in the i-th cable of
the k-th bundle;
. M, : magnetic permeability ;
. X,: x coordinate of the i-th cable ;
. X : x coordinate of the generic sample point;

. h: distance of the cable i-th from X = 0 plane;
° d =1:1is the sample line’s height over the ground;
° b= (h +d ) ¥

. a=|X;—X;|%
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Fig. 3.5: Showing of the xy plane, in the picture there are the distance quote of the sample line over
the ground and the position of the generic I-th cable.

The ' module is simply calculated using the Pitagora Theorem. The above passages
represent the standard application of the Ampere law for a cable routed by a constant and
uniform current distribution. In the fitness calculation this procedure are performed

querying four table in which have been record respectively:

° the value of coordinate x for each cable;

. the value of coordinate y for each cable;

° the complex value of current I for each cable;

o the values of current provided by the available circuit;

o all the possible permutations for a single bundle (for three phase bundle it is

31=6).

The aim of the optimization is to minimize the maximum value of the magnetic field
in the sample line, hence in the fitness function the magnetic field values are first computed

for all sample points and then the max value is chosen.

3.3.1 Simulation and experimental results

The actual design for cables displacement in a tunnel is a trefoil configuration in
order to minimize the effects of capacitive and inductive currents and support by racks, as
suggested in [1]. The circuits used have been reproduced from the [1] and for clarity shown
below in Table 8 and 9, changing the number of circuit employed, that is 4 and 8. In the
(Figure 3.6) is depicted an example of the rack for displacement of cable with the relative
position of the bundles. The combinations of the cables are 6 and they can be explicitly
expressed, 123;132; 213; 231; 312; 321, for instance if there is an individual such as 6345, it
means that the first circuit is arranged as 321, the second as 213 and etc. Other authors have

chosen the letters RST to identify each of the three cables; in this work it is used the

numbers 123 just for a more simple software implementation. Given N as the number of
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circuits, and being N the number of bundles, then an individual is codified as an array of 0
and 1 as follow:

e If N =4we use a binary array of (3-Ng)+(2- N, )positions;
e IfN. =8we use a binary array of 2-(3-N;) positions;

-0.965 0.965
-1.0275 -0.9025 0.9025 1.0275

Ty

N -3.39
M, Y Fan -3.50
BN EAANE]

] L ]
Ty -3.89
I fai -
it 4.00

Fig.3.6: Displacement of bundles in the underground rack, all values are expressed in meter.

All the tests have been conducted with a starting random initialization; the number
of individuals for each algorithm is 10; we have implemented the algorithm with MATLAB©

software.
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Table 9:Power circuit employed test 4

N.circuit P(Mw)  Q(MVAr) Im (A) O (deg)

A 180 60 680 18
B 155 43 577 16
C -100 -25 370 194
D 125 -30 461 193

The first part of the array that represents an individual has to be composed from
integer value in the [1,2....,0] range, in this portion the figures can be equals, whereas in the

second portion of array, which represents the connection among the individuals, all the

Table 8:Power circuit employed test 8

N.circuit  P(Mw)  Q(MVAr Im (A) 0 (deg)

A 160 40 591 14
B 155 43 ST7 16
Cc -105 -15 380 188
D -100 -10 360 186
E 160 35 587 12
F 135 28 494 12
G -90 -10 325 186
H -95 -15 245 189

numbers have to be different from each other because the number of bundles is always equal
to the number of connection circuits, and two different bundles cannot be connected to the
same circuit. For these reasons has been employed a penalty process; besides, 50 launches
for each test and each algorithm have been made and a statistical analysis has been

performed.

As shown in the table A, for the 4 bundles and 4 circuits problem, both algorithms
achieve the same result, although the BFSO with a smaller variance, basically they have the
same response. In the 8 bundles and 8 circuits problem, the BFSO reaches a mean value
better than that of the DPSO, this because it inherits the exploration characteristics of the

continuous algorithm FSO, then it is able to find many different candidate solutions.
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Nevertheless, DPSO provides the better configuration. In fact DPSO owns a good capability
of convergence and over 50 launches, being the initialization random, it might start near a

good solution, and refine that in a better way than the DFSO does.

Table A:result for 4 bundles test.

Mean Variance Best Configuration Best Fitness Value
BFSO 6.31e-7 1.75e-16 56533124 6.25e-7
DPSO 6.40e-7 3.26e-16 56533124 6.25¢-7

Table B:result for 4 bundles test.

BFSO 5.94¢-007 1.00e-014 [34645531 3.82¢-007
73854126

DPSO 6.17¢-007 1.19¢-014 [11411164 3.79¢-007
47812365]
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3.4 Optimization of TWT parameters.

This section describes the performances of MeTEO related to the optimization of
Traveling Wave Tubes (TWTs) devices in order to increment the efficiency of the whole
system. The TWT is a microwave device known as linear-beam tubes. TWTSs are used for
frequencies ranging from just below 1GHz to over 100GHz; power generation capabilities
range from watts to megawatts. The two most important RF circuits devised to use in TWTSs
are:

® Helix, for broadband applications
®  Coupled cavity, for high power applications.

The TWT addressed in this thesis is about helix-type. The efficiency of the TWT is
dependent by the geometry structure, the magnetic focusing field, and utilization of the
multiple depressed collectors. Travelling wave tubes are used for frequencies ranging just
below 1GHz to over 100GHz; power generation capabilities range from watts to megawatts.

For helix TWTs, bandwidths may be as high as two octaves or more. For coupled cavity

TWTs, bandwidths in the 10-20% range are common.

TWTs have many applications. They are used as the final amplifiers in nearly all
communications satellites (both up link and down link). In the coherent radar systems, one
TWT (or more) is used as the high power amplifier that generates the transmitted RF pulse.
In other radar systems, a TWT may be used as the driver for some other high power RF
amplifier such as a crossed field amplifier. In Figure 3.7 are depicted the main components

of a basic helix TWT.

Magnetic Focusing Field

P
>

RF Input RF Output
\ Attenuator /

A

Helix \
Electron Electron Slow-Wave Collector
Gun Beam Circuit

Figure 3.7: basic helix TWT components.

The efficiency in converting dc input power to RF output power at the desired

frequency is an important characteristic for a TWT. One very important part of overall
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efficiency is electronic efficiency, which is the conversion efficiency of power in the electron
beam to RF power. The efficiency of the device can be improved with a suitable design of
the collector. All the inverse and optimization problems of TWT is about the increasing of
the efficiency by mean of MeTEO. Hence, let us to make a briefly recall of the efficiency

calculation.

P, = Heater Power P = Solenoid Power
P, = Beam Power from Gun P, = RF Output
P = Interception Loss Ps, = Power in Spent Beam
Ps = Circuit Loss Pheat = Heat in Collector
Pge = Harmonics, Intermods, etc. P, = Power Recovered
by Collector

Figure 3.8: power flow overview in the linear beam tube.

Using the various elements of power identified in Figure 3.8, it is straightforward to

derive the relationships between power flow and efficiency. The overall tube efficiency, 77,

nov , is simply the ratio of the RF output power to the total input power, Pin, that is

ut

Moy =
P (3.8)

After several calculations, the final formula for the overall tube efficiency is:

ncirne

NNov =
Po I:)in +P
t_77coll|::|'_77e _tRF:|

PO PO

(3.9)

where:

" 74 1s the circuit efficiency, which is the efficiency of the RF circuit in delivering the
generated RF power at the desired frequency to the output connector of the tube.
" 77, is the electronic efficiency, which is the efficiency of conversion of beam power

to RF power at the desired frequency.

" Pot :R)+Ph+Psol'

is given by the following formula P

ot
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N s the collector efficiency, given by P, =7, P

rec sp*

3.4.1 TWT geometry structure optimization [25]

Specialized 3-D simulators are required designing TWT multistage-depressed-
collector (MDC) especially in those cases which new and innovative geometries are
investigated for improving the efficiency of these devices. To perform such a task a Finite
Element (FE) approach can be pursued, since it allows a very flexible meshing by using
irregular meshes to properly fit the MDC’s geometry. In this way, complex geometries can
be accurately simulated [6]. Unfortunately, the use of optimization techniques in the design
process of these devices is rarely used or even it is limited to the evaluation of the optimal
electrodes’ voltages [7]—[10]. This fact is due to the high computational cost requested by the
evaluation of the device efficiency (the fitness function) which requires both electromagnetic
simulation and the tracing of electron trajectories inside the device. A further obstacle
resides in the high number of parameters from which the fitness function depends. In fact,
the performance of MDC is mainly related to the geometry of the electrodes, to their
voltages and to applied focusing magnetic field. Whereas the voltages and the applied fields
can be modified even after the construction of the device during the calibration phase, the

choice of a functional geometry is a much more complicated task.

To optimize the geometrical parameters of multistage collectors, simulated by means
of an FE collector and of an electron gun simulator COLLGUN |[6], a package, that, in its
last release, includes a parametric geometric descriptor, an unstructured mesh generator and

a 3D FE-based Vlasov solver.
MDC Geometry Optimization and FE Analysis for Shape Optimization

The algorithms devoted to the shape optimization requires the combination and the
interaction of several modules: the preprocessor for the geometry description and the mesh
generation, the FE coupled problem solver, the postprocessor for the collector efficiency
evaluation (the fitness function), and the optimizer, which is here performed by MeTEO.
The optimization acts on geometric characteristics and thus it must be coupled with a
geometric descriptor and a mesh generator. In order to ensure the proper optimization
process, that involve functional and feasible geometries, we must consider both the
geometric constraints and the procedures of geometry description that reduces the
dimensionality of the problem, theoretically infinite. To address this problem we make use of

simple geometric solids for the description of each stage, which constitute the entire device.
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In particular we employ the principles of the Constructive Solid Geometry (CSG), which
describe objects in terms of primitive (limited primitive solids) correlated through Boolean
operators. Each primitive can be represented by a complex object consisting of a set of
vertices, segments, and faces which define polygonal regions (piecewise linear complex,
PLC) and consequently all the operations among primitives (fusion, intersection, addition,
subtraction, etc.) can be easily performed by using these PLC representations. Consequently
CSG allows us to desctibe complex geometry usually adopted for MDCs by using a small
number of primitives. For example the two-stage TWT collector, shown in Fig. 3.9 can be
represented by combining just 13 primitives. The primitives currently implemented in our
geometric descriptor are: Cone, Sphere, Truncated Cone, Cylinder, Helix, Grids, Calottes,
Ellipsoids, etc. Once the formal description is complete, the specified primitives are
automatically assembled according to the CSG, and from the PLC representation of the
geometry a Delaunay 3D mesh is generated. In order to be used in the shape optimizer, the
primitives (defining each stage) and the Boolean operations are listed in a file, which is the
input of the mesh generator. In this file some entries are used as optimization parameters
and are modified by the routines of the MeTEO code. The coupled electromagnetic-
motional problem inside the collector region is governed by the Vlasov equation, coupled
with Maxwell equations. This system of coupled equations firstly considers the distribution
of charged particles, solution of the motion equation (Vlasov equation) governed by the
electromagnetic field. Next, we take into account the self-consistent electromagnetic field,
i.e. the solution of the Maxwell equations in which all field sources are assumed to be the
charged particles present into the tube. A variety of methods can be used for solving this
coupled problem, but only few of these are suitable for an optimization framework. Among
these the Particle-in-Cell (PIC)[20] steady-state approach is surely the most appropriate for
this purpose. In PIC the electron beam is represented by a reasonable number of macro-

particles, subject to the dynamic equations and also sources of electromagnetic field.

This algorithm consists of a main loop starting with the solve and update steps. Once
the field is evaluated, the particle tracking algorithm starts. In the present steady-state model,
the particles are launched according to an emission rule or injection rule. They move forward
until each of them encounters one geometric boundary. The trajectories are also used in the
distribution step for the evaluation of charge and current density used as source terms of the
new field problem, and so on. These steps are repeated until the “distance” between two
consecutive solutions becomes lower than a user-specified end-iteration tolerance. In this
situation, a fixed point for the solution is approached and electromagnetic field distributions

can be assumed self-consistent [10]. After the solution of the self-consistent problem the FE
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simulator evaluates the current recovered by each electrode and also the back-streaming
current (due to secondary electrons emitted by electrodes’ surface) in order to evaluate the
total power recovered and the collector efficiency. In particular the latter is used as fitness
function and is estimated from the ratio between the total power recovered by all the stages

and the spent beam power (the power of the electron beam entering the collector).

Fig. 3.9: Some primitives used for geometrical description and a two stages collector
obtained by combining cylinders, cone and truncated cones.

It is worth noticing that in this optimization we have used data related to a TWT,
which uses a tilted electric field (TEF) collector and whose characteristics are reported in
literature [17]. The goal of the optimization is the increasing of the efficiency of the exiting
device, which is about 73%. For this reason we chose in our tests an initial geometry for
MDC different from the TEF collector. In particular for this shape optimization problem a
limited set of parameters has been used: the length and the diameters (inner/outer) of the
first stage and the outer diameters of the second stage. Each stage is easily obtained by using
the CSG starting from 3 primitives: cylinder, truncated cone and cone. For example, the two
configurations shown in Fig. 3.10 are obtained by using the minimum and maximum
admissible values for the length (10 mm) and the radius (5 mm) and represent the borderline
cases. The other data used to carry out the optimization are related to the electron beam
entering in MDC, also available in literature [17]. This beam has reference voltage of 4.8 kV,
a radius of 0.63mm, a current of 53.2 mA and carries out a power of about 190 W. The
voltages of the two electrodes are assigned to 1/2 and % of the reference voltage of the
beam, ie. 2.4 kV and 3.6 kV respectively. In the COLLGUN simulator this beam is
represented by means of a ballistic model, according to which the total current is assumed

uniformly distributed and the cross section of electron beam is modeled by using 25 rings,

81



VALIDATION AND APPLICATION OF METEO.

each of them divided in 10 macro-electrons. For each fitness function evaluation (collector
efficiency) an irregular mesh of first order tetrahedra is generated, using a more refined mesh
in the inter-electrode regions, where a more intense non-uniform electric field is expected.
The typical FE simulation data for the steady-state coupled problem solved by COLLGUN
are summarized in Table 10. Starting from random initial geometries (with an efficiency
values lower than 75%), after 100 MeTEO iterations (10 FSO, 30 PSO, 60 BCA) leads to the
optimized geometry, shown in Fig. 5 together with computed trajectories, having an
efficiency of 84.8%. Very similar results were achieved taking the same test starting from
different initial geometries. The computational time employed to perform this task is about
24 hours. It is worth noticing that optimizing the electrodes’ voltages this geometry can
reach efficiency value over 88%. In addition, in order to compare MeTEO performance with
another optimizer, usually adopted in collector optimization [12], several runs of a random
walk optimizer has been executed. After over 1500 FE simulations (we launch 5 times the
random walk optimizer, running for 300 steps) the best result obtained is collector efficiency
lower than 82%. This result confirms that the MeTEO algorithm, thanks to the combination
of the three heuristics (FSO, PSO and BCA), having different capabilities in exploration and

in local search, allows to obtain good results even after a moderate number of iterations.

T

]

Fig. 3.10: Sections of the two collector geometries, obtained by using the minimum and maximum
admissible values for the parameters.

Fig. 3.11: Plot of trajectories in MeTEO optimized MDC geometry.
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3.4.2 TWT magnetic focusing structure optimization

[28].

The focusing magnetic field of aTWT is usually obtained by using a periodic
permanent magnet (PPM) structure, which consists of a quasi-periodic sequence of toroidal
permanent magnets with some differences in their inner and outer radii and in their length in
such a way to obtain the desired intensity and profile for the on-axis magnetic field [18].
Usually in TWT simulator, when numerical solutions for this kind of structure are
unavailable or too complicated, ESMs are employed in order to obtain approximate 3D field
distributions by minimizing the error with respect to experimental on-axis values|[19][20][21].
In general in an ESM, the magnetic field B is expressed as a function of some geometrical
parameters (inner and outer radius, length, etc.), and of some other physical parameters

strictly connected with the source intensity. Assuming a cylindrical coordinate frame

(r, Z,H) , such that the z-axis is the axi-symmetry axis, the only not zero magnetic field

component for r =0 is B, depending only on the z coordinate:
B,(z)=> F (2,2, R, Ry L My ) (3.10)
K

where Z,,R, R, L, M, are respectively the z-position, the inner radius, the outer
radius, the length and the strength of the k-th magnetic element of the periodic structure,
whereas the F is a generic function depending on the adopted model. Other parameters,

such as the width, the thickness, etc. can be considered in equation (3.10) according to the
model complexity. In literature the ideal loop, the thin solenoid, the full coil, both in the
single and pair configurations have been successfully used for building complex
representations. As it has been shown in [19] any arbitrary focusing field profile can be
represented by using ESM and from the knowledge of ESM the PPM structure can be
synthesized. Following this approach we can use an ESM to represent the focusing magnetic
field and modify its parameter in order to optimize the device performance.

Hereafter, an example of application is presented, regarding the optimal design of the
focusing magnetic field applied to a typical TWT two stage collector, shown in a 2D view
together with trajectories and optimized focusing magnetic field in Figure 3.12. The electron
beam data are available in literature: it has reference energy of 4.8 kV, a radius of 0.63 mm, a
current of 53.2mA and carries out a power of about 190W [22]. The voltages of the two
electrodes are fixed to 2.4 and 3.8 kV. This beam represented is by means of a ballistic
model, according to which the current is radially distributed in 50 rings, each of them divided

in ten macro-electrons, for a total number of 500 macro-particles. An irregular tetrahedral
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mesh of about 20,000 first order elements is used by the COLLGUN simulator for the
electromagnetic analysis. For the representation of the magnetic focusing structure an ESM
based on ideal loops is adopted in the optimization and three parameters of a single loop

(radius, position and current carried) are used. As fitness function f, we use a combination of

the collector efficiency, h, and of the backstreaming current in mA, I, , and exactly:

f(NJZL[R][RLIL][M,...]) =10 =17+ 1y (3.11)
where N is the number of ESM, and[Z],[Ri],[Ro],[L] and M are respectively the vectors

of z-axis positions, inner radii, outer radii, lengths and intensities of ESMs. COLLGUN
takes about 3 min in these conditions to evaluate the fitness function. Starting from a
configuration without focusing magnetic field, which gives a collector efficiency equal to 81
percent and a backstreaming current over 1 mA, after 300 MeTEO iterations (100 FSO, 100
PSO, 100 BCA, that is about 24 h of computing time) we obtain a focusing magnetic field
which gives an efficiency equal to 83.1 percent and a backstreaming current smaller than 0.2

mA.

12.5 «+ mG

~15 4 S Ty

-17.5 = Focusing Magnetic Field

Figure 3.12: 2D view of the two stages collector, together with optimized focusing magnetic field and
the resulting trajectories, blue trajectories represent electrons collected by the first stage, whereas the
violet one represent those trajectories collected by the second stage.
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Figure 3.13: The convergence plot of a typical run of MeTEO for bird function, showing the different
roles played by each heuristic: the FM labels indicate the fitness modification for the FSO heuristic.

3.4.3 Optimization of Multistage Depressed Collectors [10]

This section presents the application of MeTEO to the optimization of the electrodes’

voltages of a typical two stages MDC for Traveling Wave Tubes (T'WT) in order to increase
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Figure 3.14: 3-D view of the two-stages depressed collector geometry used in the test
performed.

its efficiency. As above discussed, the electromagnetic analysis of the trajectories inside
the collector is performed by the FE code COLLGUN, which evaluates at every launch the
collector efficiency, that is the fitness function of our optimization problem. We have used

in our tests a geometry for MDC, shown in Figure 3.14.

Table 10: COLLGUN parameters used for the simulation of the two-stages collector.

Number of tetrahedral About 20000
Number of node About 600
Number of macro-particles 500

End Tolerance 0,05%
Number of iterations for each simulation 4-6

Computing time of each simulation About 1’30”
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The other data used to carry out the optimization are related to the electron beam
entering in MDC, also available in literature [22]. This beam has reference voltage of 4.8 kV,
a radius of 0.63mm, a current of 53.2 mA and carries out a power of about 190 W. For each
fitness function evaluation (collector efficiency) an irregular mesh (shown in Figure 3.13) of
first order tetrahedra is generated, using a more refined mesh in the inter-electrode regions,
where a more intense non-uniform electric field is expected. The typical FE simulation data
for the steady state coupled problem solved by COLLGUN are summarized in table 10.

The tTotal number of tetrahedra is close to 20000 elements, while the nodes are
almost 6000. For these values, the computation time of each run of the solver COLLGUN is
about 90 seconds, and the number of iterations is between 4 and 6. Being the MeTEO code
written in MATLAB, a batch code has been developed on purpose to directly link the
MATLAB with COLLGUN simulator. MeTEO has been launched 30 times and hereafter
we report the information of the best value found. A random initialization has been done for
FSO, whereas for the PSO and the BCA the initialization depends from the point returned
by the previous algorithm. The number of individuals used for FSO/PSO is 10, whereas a
single bacterium is used for BCA. Performed tests have shown that a greater number of
individuals does not improve significantly the performance of MeTEO for this problem
since more individuals require more evaluations of the fitness function, and this has a
remarkable computational cost. In fact, in our problem, the time spent to compute the cost
function is that one coming out from the launch of the simulator COLLGUN, that is about
90 seconds. The best results obtained by MeTEO are summarized in Table2. The high value
of efficiency found for this two-stages collector was 88.81%. It is worth noticing, as cleatly
shown in the table 12, that the efficiency found by FSO gradually increases passing through
the PSO and after to the BCA, confirming the functioning of the MeTEO. In fact, the

foundation of the hybridization done in MeTEO lies exactly in this characteristic.

Figure 3.13: 3-D view of the boundary of the mesh used
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The PSO performs an improvement of the efficiency (about 0.3%), because it is
launched in a sub domain space. The application of the BCA refines the solution found
improving it of 0.12%. Table 13 reports the voltage and the resulting current for each stage

and efficiency found for the two-stages collector.

Table 12: Best values of efficiency of the two-stages collector obtained over all the tests by the various
components of MeTEO.

FSO PSO BCA
Efficiency 88.17% 88.64% 88.81
Number of iterations 40 20 20
FM 3

Table 13: Best configuration values obtained for the two-stage collector considered.

Spent beam power 192W

Power recovered 170W

Collector’s efficiency 88.81%

Stage 1

Potential -3.05kV

Current 38.73 mA 8 7
Stage 2

Potential -4.22 kV

Current 12.34 mA

Comparison between MeTEO and Random Walking algorithm

Furthermore, in order to compare MeTEO performance with another optimizer,
usually adopted in collector optimization [23], several runs of a Random Walk (RW)
optimizer have been executed. The RW, introduced by Karl Pearson in 1905 [24], is a
mathematical formalism used to describe a path built by successive steps in random
directions. For example, the path traced by a molecule that travels in a fluid or the price of a
fluctuating stock can be modeled in this way. The RW algorithm applied to the optimization
of the two-stages collector provides over 30 launches the best value listed in Table 14, which

is worse than the one found by MeTEO.

Table 14. Best value (over 30 launches) of efficiency of the two-stages collector obtained by using
Random Walking Algorithm.

Iterations Efficiency

200 87,42%
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For the comparison between MeTEO and RW an important remark regards how
many times the fitness function is computed in the whole optimization process. Assuming
40 steps for FSO, 20 for PSO and 20 for BCA (all with 10 individuals) we have in total 600
fitness evaluations for each run of MeTEO, whereas each run of RW (10 individuals)
employs 2000 fitness function evaluation. Therefore the hybridization proposed in MeTEO,
with FM, is able to improve the optimization process. This result confirms that the MeTEO
algorithm, thanks to the combination of the three heuristics (FSO, PSO and BCA), having
different capabilities in exploration and in local search, allows to obtain good results even

after a moderate number of iterations.
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Figure 3.14: Trajectories of Random Walk individuals, axis x and y are normalized to 1.

3.5 Validation of FPSO

In this section is presented an inverse problem for validating the FPSO: the harmonic
estimation problem. The harmonic estimation in a power system is becoming important to
guarantee power quality, especially in the actual electrical system in which there are many
different nonlinear types of equipment. Therefore different approaches and algorithms have
been employed in order to identify and estimate the harmonic components due to the
distortion introduced by such nonlinear loads. The Harmonic Estimation Problem consists
of extrapolating amplitudes and phases from a distorted signal composed by a fundamental
frequency and a determinate number of harmonics. The DFT and the Kalman filter
approach have been widely used but they require the knowledge of both the state matrix and
the statistics of the electrical signal. The evolutionary techniques have been recently
employed to solve the harmonic estimation problem with success due to their capability to

exploit exploration. In [29] and [30] are presented the well known Particle Swarm
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Optimization (PSO) and Genetic Algorithm (GA). In the both works [29](30], hybrid
approach with an evolutionary algorithm and the Least Square Algorithm (LS) is
implemented. In particular, the evolutionary algorithm (GA or PSO) is employed to perform
the identification of the phases, and the LS for the amplitude of all harmonics carried in the
distorted signal.

To validate the proposed algorithm it has been employed a test signal already used in
literature by [29] and [30]. In particular it is a distorted voltage signal taken from a two-bus
three phase system with a full-wave six-pulse bridge rectifier at the load bus. Three tests are
presented, respectively under no noise, and under the addition of noise with SNR equal to
10dB and 20dB. The total number of individuals is 10 and it remains constant for all the
estimation process. Setting N the number of harmonics that must be computed, the
number of parameter that must be estimated will be equal to N +1. The first parameter is
the fundamental frequency, and the other N parameters are the phases of each harmonic.
There is no need to add other parameters for the frequencies of each harmonic because they
derive from the fundamental frequency. As mentioned before, the other N parameters are

always the phases of the harmonic. The value of proportion P has been set to 0.5, thus the

number of individuals for P, and F, in the mixed-configuration mode is simply 5. All
parameters have been normalized between[O;l], and the parameters used for the algorithm

are: [a):ZL'C1 =0.005;c, =0.0%c, :O.3] . The percentage error has been employed to

evaluate the performance, following the formula:

S[2(k)-2(0)]
PE = ki %100 (3.12)
S22

Table 15:Best Results over 50 launches no noise

Test Signal Z,(t) FPSO (best PE =1738286x107) PSO (best PE =1.491185x10°°)
. Amplitude Estimated . oy  Estimated Estimated

Harmonic Order () Phase Amplitude Estimated Phase[°] Amplitude Phasc[’]
Fundamental (50 Hz) ~ 0.95 2.02 -0.950004 -2.002 0.949896 -1.979

5th (250Hz) 0.09 82.1 0.090000 82.235 0.089946 81.957

7th (350 Hz) 0.043 7.9 0.043007 8.116 0.043006 7.929

11th 0.03 -147.1 0.029994 146. 0.029982 1.474

13th 0.033 161.6 0.030165 160. 0.064514 1712

Since the benefit of using evolutionary and swarm algorithms has already been

verified, we concentrate the comparison between the improvements that FPSO approach
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can produce versus standard PSO. Finally, a statistical analysis consisting of 50 launches for
each benchmark proposed is presented. All code has been developed in Matlab© code.

For this test the signal reported in [30] has been used and the relative amplitude and
phases are listed in table (16). In particular it consists of 5 harmonics: 5th, 7th, 11th and
13th. In table(16) are reported the best results, for the no noise case; are also listed the
amplitude and the phases for all harmonic components estimated. As it is possible to see, the
percentage error reached by FPSO is lower than PSO. In the table (17)(18)(19) are listed the
best results, all relative to over 50 launches when a Gaussian noise is added to the original
waveform. For concerning the best result over 50 launches, FPSO shows good results with
no noise and with SNR=20dB, whilst in the case of SNR=10dB PSO is able to reach a
better percentage error. In literature has always been showed the best results obtained after
applying of a particular algorithm, but it was never done a statistical analysis. In fact, to
understand the data reported in the tables (17)(18)(19) we need to cross them with the mean
and variance values collected in each test and arranged in the table (19). With this new
information we can say that the FPSO performs on average better than PSO. Nevertheless,
even if the PSO could reach best results, but over many launches this possibility decreases;
instead the FPSO behavior allows us to reach always a good solution. For these reasons the
best practice is to implement a hard hybridization of FSO and PSO, restructuring the logical
framework, modifying matrix interconnection and leaving unchanged the number of

individuals.

Table 16:Best Results over 50 launches 10dB noise

FPSO PSO

Test Signal Z, (t
est Signal Z, () (best PE =1.307165x107) (best PE = 2.384338x10°°)

Harmonic Order ~ Amplitude (p.u.) Estimated Amplitude Estimated Amplitude
Fundamental

(50 Hz) 0.95 0.803157 0.802465

5th (250Hz) 0.09 0.162620 0.166800

7th (350 Hz) 0.043 0.205393 0.209827

11th 0.03 0.212233 0.218075

13th 0.033 0.293665 0.292187
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Table 17:
Statistical analysis
(mean and variance relative to the Percentage error
calculated over 50 launches)

FPSO PSO
Mean o? Mean o?

No noise 0.05706  0.02940  0.60988 0.25422
SNR=10dB  0.53598  0.05374  1.94380 0.14269

SNR=20dB  0.04752  0.06919  0.28319 0.87133

Table 18:Best Results over 50 launches 20dB noise

FPSO PSO

Test Signal
est Signal Z, (1) (best PE =3.361186x10%)  (best PE =3.390877x10%)

Harmonic Order Am(g lllln)lde Estimated Amplitude Estimated Amplitude
Fundamental
(50 Hz) 0.95 0.944501 0.944771
5th (250Hz) 0.09 0.081102 0.081046
7th (350 Hz) 0.043 0.028676 0.028796
11th 0.03 0.027595 0.027454
13th 0.033 0.051525 0.058900
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Chapter 4

Towards Swarm Circuit.

In addition to all the previously described
efforts to improve numerical swarm-based
algorithms, other authors have proposed in
literature several different attempts to treat the
swarm-based numerical algorithms as
continuous dynamical systems. For example,
important contributions are in [27], [31]-[33].
Although the idea to treat swarm-algorithms as
continuous systems it is already in the state-of-
the-art, the way that is proposed this chapter is
quite different with respect to literature since it
provides an equivalent analog swarm-circuit
able to perform the optimization and the

inverse problems by using collective behaviour.

TOWARDS SWARM CIRCUIT.

We call swarm circuits those electrical circuits in
which the cinematic characteristics of the
trajectories followed by the swarm members are
reproduced in terms of waveforms related to
voltages measured at the terminal of capacitors
and currents measured at the terminals of
inductors. Thus, this approach is twofold:
firstly, we can easily adopt all the methods
shown by the Theory of Circuits for analyze the
cinematic of the swarm members, i.e. the
Laplace Transform, Tableau method and so on;
and we can lay the theoretical foundations for
designing of innovative hardware for real-time
optimizations.
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TOWARDS SWARM CIRCUIT.

Using of Swarm Based Algorithms for solving optimization problems represents a
consolidated computational approach. Since 1995, when J. Kennedy and R. Eberhart
introduced the Particle Swarm Optimization (PSO) [1], this kind of algorithms have been
employed for solving many different problems in many subjects such as: economic dispatch,
design of arrays antenna, training neural networks. The real engineering problems are often
non linear, in this scenario swarm-based algorithms are able to recognize the better solution,
even in those problems in which the cost function is multimodal, but, despite of that, they
suffers of long execution time. For these reasons, some authors have implemented a hardware
implementation to take advantage from the proprieties of swarm-based algorithm in a real-
time optimization scenario (RTO problems). Literature offers many different approaches to
implementing heuristics in a hardware environment, many of them regard genetic algorithm
such illustrated in [39][40]. Just a few works treat the PSO implementation [41][42][43][44]. All
the listed approaches suggest, in general, a hardware implementation through DSP or
microcontroller, which perform the algorithm process and manage all the interfaces with
possible sensors. Many of them employ a parallel architecture and FPGA hardware. In this
chapter, a new point of view of the problem is proposed; in fact, recently, a new continuous
PSO algorithm has been proposed, in which the discrete equation have been modified by the
Euler’s formula found out a differential equation of velocity for each particle. This way has
been followed by Brandstitter [46].

An analogy with a mass-spring mechanical system has been made; but in this contest we
will address the system as RLC series circuit, that shows the similar mathematical form.
Hence, starting from the numerical velocity rule of a swarm-based algorithm, the continuous
equation can be carried out; it represents the state equation of the algorithm. Afterwards,
comparing the state equation with the state equation that describes an RLC series, the
parameters correspondences between the numerical algorithm and the values of the RLC
components are obtained. Furthermore, in this procedure the global best and the personal
best become voltage controlled generators. The fitness evaluation of each particle, and the
calculus of global best and personal best, is delegated to an external microcontroller, that is
not treated in this thesis. In the next few paragraph, the mathematical basis of a hardware
implementation of a generic swarm based algorithm has been shown. Furthermore, a
complete validation by means of both inverse problems and classical optimization benchmark

have been made.
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TOWARDS SWARM CIRCUIT.

4.1 Swarm-Based Numerical Algorithms

The used Flock-of-starling optimization algorithm can be described by the following
pseudo-code that can be seen as an extension of the PSO algorithm. Let us to summarize as

said before in the chapter 2, by the following pseudo-code valid for a generic fitness function,

f (X...Xp) , to be minimized in the search space R® having dimension D:

1. Detine:

. Dimension of the search space, R°= (X™..x*77): x<>Mn < x<I> < x<Pm* ith
]=1.D;

= the values of the main parameters for each k-th particle:

. Inertial coefficient @, and its maximum value @, ;

] Cognitive coefficient A, and its maximum values, 4 ;

= Social coefficient y, and its maximum value ¥y, ;

. Maximum number of iterations, T ;

. Fitness function f(X...X5);

= Maximum value of each velocity component V. ;

. Iteration counter t;

. Initialization of velocities v/, (t =0) = random(0,1)-V,__ ;

. Initial position (X,f1 7(0)..x.>” (0)) of each k-th particle

= Initial personal fitness fpj (t=0);

. Initial global fitness g(t =0);

- Fitness threshold goal _ fitness = arbitrary small ;

. Nyirgs (from now on we use the term birds instead of particles) is the total

number of birds into the flock;
= The topological coefficient, h;
= Number of birds into the flock controlled by one single bird, Ny piqs (topology

rule). At each k-th bird is associated a group composed of randomly chosen Ny pigs

of other members of the flock;
2. For each k-th bitds, for each step (integer) t, with t =0,1...T ;. :

. evaluate the fitness f, (t) = f (X (t)..x°7 (1)) ;
. If f (t) is better than the personal best fitness of the k-th particle f, (), then

assign current position as personal best position and update the personal best fitness:

pol> =x7(t)  Vj—th dimension @.1)
fo = fi (1) 4.2)

= If f,(t) is better than global best fitness, then assign current position as global

best position and update the global best fitness:
0 @) =x(t) Vj—thdimension (4.3)

g9(t) = f. (1) (4
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" Update, for each k-th particle, the vector velocity components:

N
U (t+1) = v (1) + ALpds ) = O+ 7197 (1) — %" (01+ D_huy” (1) vj—th dimension  (4.5)
=1
where h, =h if the £#) bird is controlling the 7-# one, h,,, =0otherwise. Thus, we can
say that (5) describes a swarm-algorithm.
Equation (5.5) differs from standard PSO just for the presence of the term:

N .
thmu;P(t) taking into account the topological neighbor-velocity-matching from which
m=1

each single bird controls the velocities of a fixed number of other members of the flock. The
velocity-matching term strongly modifies the collective behaviour of the swarm/flock, as it

will be shown in next sections.

. Update, for each k-th particle, the position:
X7 (t+2) = x77 (1) +us ™ (t+2) (4.0)
- Update, for each k-th particle, all parameters:

@ = ,,, -random(0,1),
A =4, -random(0,1),
¥ = Vmax - Yandom(o,1) .

Then, pose t =t+1, and repeat the procedure.

4.2 Swarm algorithms translated into dynamic systems

Let us consider equation (4.5), in particular, let us rewrite it, by introducing a value At as

proposed in [31] for the standard PSO:
N
u, (t+At) =w u, (t) + 4 [pbest, (t) —x, (t)]+ y [gbest(t) —x, (t)]+ Z h,u,, (t) 4.7)
m=1

Equation (4.7) can be interpreted as the Euler forward numerical integration of a

physical system of differential equations if we assume At €R and At — Oas follows:

oyt @00 2LPbest (-, O]+ lghest() X, 13 )

4.8
At At ( )

In (4.8) the independent-variable is now considered as the variable timet €R, whereas in
(4.5) t was a simple natural number counting the number of iterations. In the same way

equation (4.6) can be rewritten as follows:

X, (t+At) =u, ()At+x, (t) (4.9)
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It is important to note that in (4.8) and (4.9) the value At plays also a dimensional role.
In fact, in a physical system we have to multiply the velocity for a time to compute a
displacement. Since we have recognized equation (4.8) as Euler’s basic formula suitable for
numerical integration, the value At must be set small enough for performing a proper
numerical integration. Thus, an inappropriate choice of At (a value too large, e.g. At=1)
involves a “under-integration” of (4.8) and (4.9). It means that (4.7), (4.5), where At =1,
cannot be seen in one-to-one correspondence with a continuous physical system, but they can
however inspire further developments that pass throw the use of (4.8) and (4.9) as follows. In
fact, if we consider a small enough value At — 0 it is immediate to rewrite (4.8) in the
continuous as follows:

%Uk (t) = @u, (t) + AL pbest, (t) — X, (t)]+ 7Tgbest(t) — x, (t)] + ZN: henln () (4.10)

In (4.10) new normalized parameters appear. They are defined as follows:

o= ((0—1)
At
-t
At @.11)
s
4 At
_ N
km At

where h,_ =h=h/At if the k-th bird is controlling the m-th one, h_ = Ootherwise. It

is evident from (4.11) that At is practically a new parameter to take into account for the
correct translation from numerical algorithms (4.8) and (4.9) to continuous ones. Starting from
equation (4.10) is useful also for understanding how both global and personal bests can be
seen as excitation of the continuous system. In fact, let us assume as excitation of the dynamic

system the quantity:
3, (t) = 1- pbest, (t) + 7 - gbest(t) (4.12)

and finally, by posing

G=d+7 413)

the state equation (4.10) can be written for each k-th particle/bird as follows:

S 0=, 0~ 4,0+ 3,0+ 5,0 414
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The state equation (4.14) must be coupled with a second state equation referred to the
positions X, (t) appearing in (4.6) for the swarm-algorithm and translate in (4.9) by using the

parameter At. Obviously, for At — 0, we simply obtain the cinematic definition of velocity:

d
P () =u () (+.15)

Equations (4.14) and (4.15) describe a dynamic system, evolving in the time domain, t,
being forced by (4.12). Equations (4.14) and (4.15) are the state equations describing the
continuous swarm-based system. Then, if we consider a flock made of N birds, the state-
equation system has 2N x2N dimension and it can be written in compact form, for each j-th

co-ordinate of the space solution as follows:

a1 S

The sub-matrix | appearing in (4.16) is the identity matrix having NxN dimension.

The sub-matrix A, ;is a square matrix having N xN dimension defined as:
A,=M+H (4.17)
where the matrix M=¢@-1, whereas H takes into account the neighbor-velocity-

matching. The H entries are N, =h if the k—th bird control the velocity of the m—thone,

zero otherwise. It is evident that the matrix H has not all zero entries just for continuous FSO,

whereas it is the null matrix for continuous PSO since h, =h=0 (.c, we can simply

commutate from PSO to FSO, just considering the absence or the presence of H in equation
4.17)).
The last N x N sub- matrix appearing in (4.10) is:

A, =—jil (4.18)

Finally, the vector F has each k-th row-entry defined by J, (t) of equation (4.12).

4.3 Time-windowing
An emerging problem is how to consider the force (4.12) that takes into account both
of the global and of the personal bests whose values are a priori unknown. Indeed, they
should be evaluated dynamically according to the several fitness values which are monitored
during the motion of the swarm/flock. On the other hand, for a correct translation of the
numerical swarm-algorithm into the continuum we have to find a way for modeling these

functions of the time. This apparent paradox can be solved if we assume to make a sampling
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of the time axis by means of a succession of time-windows, each of which having duration
equal to a fixed value, 7. For each i-th time-window, we assume that the force (4.12) still
keeps the value that has been evaluated at the previous time-window (guess values are

assumed for the first time-window). Thus, taking into consideration a time-window that

begins at the generic time t;, and ends at the timet;, + 7, we will assume that the force is equal
to a constant value 3, ;(t,,) for any time within that i-th window. Globally, we consider the

complete solution of the continuous dynamic system as the union of all single solutions

obtained from each single time-window.

4.4 The Swarm Circuit

Once one has written the state equations of the continuous swarm (4.14) and (4.15),
they can easily be seen as equations governing an electrical circuit.

Equations (4.14) and (4.15) describe the state equation of a k-th circuital branch as
shown in Figure 1 by posing the one-to-one correspondence between the current flowing in

the k-th branch of the circuit and the velocity of the k-th member of the swarm-flock, i.e.

I, (t) oc u, (t), whereas the voltage measured at the terminals of a suitable capacitor, V¢, , can
be assumed proportional to the displacement: X, (t) oc Ve - Obviously, by following this
approach, the force (4.12) can be made proportional to the summation of the voltage values
of two voltage-independent-sorces: 3, (t) =€, (t)+g(t), i.e. one taking into account personal

best and the other one the global best. We have: €, (t) oc 1- pbest, (t) and g(t) oc 7 - gbest(t).

Thus, let us assume the circuit-branches in Figure 4.1, where the ideal switches, play the

role to make the time-windowing for time depending global-voltage source as well for
personal voltage source. The values of €, (t) and g(t)are evaluated TW-by-TW by the values

computed on the cost-function to be minimized.

| E :

: R C L Q'“J'.]. (f] £ f‘m(“) "E_'— l

LA AN S o (e Rl

o\ | _ ; - | = T::/_| :

. - ' !
g(t) Tﬂ\
-

Figure 4.1: k-th circuital branch of the Swarm-Circuit and the global-voltage generator branch feeding
all circuit branches
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The equations governing the k-th (VK =1...N) electric branch in Figure 4.1, are:

d. 1( . N

alk=—E(le+VC’k+ Z o i —& (1) - g(t)J 4.19)
j=1, j#k
d _
EQQK =i, (4.20)

In (4.20) we have introduced a new state variable electrical charge, Q. , =C -V | just

with the aim to have a perfect one-to-one correspondence among (4.14) - (4.15) and (4.19)-
(4.20). As a consequence, the inductor current and the electric charge on the capacitor are the
velocity and the position of the swarm members, whereas the voltages at the terminals of
capacitors are still the positions but scaled by a factor C. Thus, by deriving (4.14) and
inserting (4.15) and similarly by deriving the (4.19) and inserting (4.20) it is immediate to

obtain the following comparison:

d? N ood
sz(D U(D au, (1) + }: o gg Um (0+~—L%pmwﬂ)+7gma0ﬂ
vk =1..N
d? . Rd. 1. -~ G d
_ [ _ — LR _— t t
a2k T Ldt* Lc* mkadt LmMO+mn “21)

From which the one-to-one correspondences related to FSO parameters and the

circuital parameters are:

1 N __akm
km L

ﬂ“ pbestk (t) ek (t) and 7/ gbest (t) ' g(t) . (422)

N
Il
|
|
™
I
|

Under these statements we can now analyze the circuital behavior by using the Laplace

Transform, as the Theory of Circuits establishes. In the next sections we will focus our

analyses just for the case in which h == h. We will call this case: fully-equal-connected.
k=m

Although this is a simplification it does not involve a loss of generality and allows a easier

writing of the equations governing the swarm-circuit.
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4.5 Dynamic Analysis of Swarm Circuits By Laplace
Transform.
Since the continuous FSO is a time-invariant systems within each time-window, we can
adopt the Laplace Transform of (4.14) and (4.15) (i.e., of (4.16)), window by window. Then, as

it has been made in each time-window for the force (4.12), we will assume that all parameters

keep constant the values 4, 7;, N for each i-th time-window. It is important to note that

more complex approaches than the basic Laplace Transform (methods based on 2D Laplace-
Carson Transform) can be however applied if the previous assumptions are not valid. Under

the previous assumptions, and by assuming that a generic time-window begins at the time
indicating by t, and ends at the timet, + 7, the Laplace Transform,f{-} , in the new variable

s € C, can be easily applied to (4.16) as follows:

U@e)| [AL ALTUG] [RE)T [ut,)
({Xi(s)}{l 0 }{Xi(s)}+{o }{Xi(tm)} (4.23)

In (4.23), both u;(t,) =1, ;(t,) and X (t;,) =C- Vv ;(t,) are column vectors containing

the time-window initial conditions evaluated at the time t;, i.e. all the currents flowing into

in
the inductors, that corresponds to the swarm member velocities, and all the voltages at the
terminals of capacitors, that corresponds to the swarm member coordinates (positions),

respectively. Similarly the unknown vectors contains the Laplace transforms of the inductor

currents: U, (S)=1,(S) , capacitor voltages X;(S) =C-V.(S) and independent generators

voltages F,(S) = -(E(S) +G(s) -1) , where with 1 we indicate a column vector of 1's. More

|~

in details, each single E{ } is then:

U,(s) =£{u, O} =£{i,, (0} j LOp(t L, 7)-e vt (4.24)
For the velocities (inductor currents) at the i-th time window
X;(s)=£{x, (1)} =£{C-v¢, (1)} = j C Ve, (D)p(t.t,,7)-edt (4.25)

For the positions (capacitor voltages) at the i-th time window

F(s)=£{F ()}

(E(s)+G(s)-1) p(t.t,,,7)-e*dt (4.26)

I_|I—‘

I

where
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1 for t <t<t +7
. 4.27)
0 otherwise

p(tltin’r) :{

Moreover the sub-matrices in (4.23) are now, by using (4.22) and (4.17) and in the

simpler case in which b, =h |ie —a,, =a, Vk,m:

R o
A =M+H=——1-=.] 4.28
=T (4.28)

Where J is the symmetric matrix having 0's on the main diagonal and 1's elsewhere. 1t is

evident that the matrix Hhas not all zero entries just for continuous “full connected” FSO,

whereas it is the null matrix for continuous PSO since h, =h=0 (.., we can simply

commutate from PSO to FSO, just considering the absence or the presence of H in equation
(4.17)).
The last N x N sub- matrix appearing in (4.10) is:

1
A . =—ig-l=—"1 4.29
12 =~H C (4-29)

To avoid a cumbersome formalism in the Laplace Transform, let us consider always
t, =0, whereas the proper solution in the time domain will be provided by a suitable a
posteriori time-shifting, since the whole trajectories are obtained simply by the union of every
result valid for each time-window.

Thus, by assuming that the force (4.12) is constant for all the duration of each i-th time-
window, we have that the Laplace-transform of (4.12) for each k-th particle/bitd is:
7-gbest, + 1- pbest, ,

S

Fui(9)= ~2{E.+60)] 430

Where E, (s)= £{ek (t)} = @ and G(s) = £{g(t)} _ 7 - gbest,

Finally, by compacting (23) and solving for X, (S) , we have:

X (s)= (32| _Al,ls _Al,z )71' {(SZI - Al,ls) Ve (tin) + iL,i (tin) +F (S)} (4.31)

where,
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s —@s+a  —h,s -+ —h,s
hys  s*—@s+ [ E
(s’1-A,5-A,,)= 2 e =
hy,S hy,S S°— @S+ fi
52+Bs+i gs ces gs 432
L LC L L (*:32)
a , R 1
~s S*+—S+—
= L L LC
a a >, R
=s =s S°+—s+—
L L L LC
and
R « a
S+— — =
~ L L L
s=d by hy ) | g
—h - - : L o
(s’1-A5)=| .7 . : -t (4.33)
: . . —hy_in : N a
_hN,l _hN,N—l S—@ L
a a R
L L L
How it is usual, we can decompose the response (solution) as:
X; (5) = X[ (s) + X (s) (4.34)
where:
=
Xifree (s) = (32| - A1,1S - A1,2 ) ) {(SZI - Al,ls) "X (tin) U (tin)} (4.35)
is the L-Transform of the free response of the dynamic system and
X[ (5) = (Sl ~ A5~ A,,) -Fi(s) (4.36)

is the forced response.

In this way, we can collect the contributions of initial conditions in the free solution
solution (4.33), whereas the global and personal bests play their role just in the (4.34). For
studying the collective behavior of the swarm, we will just analyze the free response (4.33),
because it is not influenced from habitat (fitness), but just from the initial conditions of the

swarm members.
. . . . . . . . tot
With the aim to consider the contribution of each i-th time-window, the whole X (t)

solution on t domain for each k-th particle/bird can be written as follows, taking into account
time-shifting due to the union of all the responses coming from different time-windows

shifted in time:
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X ()= 3 %, (t—i7) [D(t—ir)-D(t—(i +1)r)] (4.37)

i=0

where NTW is the number of time-windows taken into account and the function

1t=0 . . .
d(t) = is the Heaviside unit step-function.
0 t<O

As it is known from a famous Laplace Transform rule, we can write that:
E{x (t)-[@(t)—@(t—7) ]} = X, (s)[1-e ] (4.38)
In this way the whole Laplace Transform, X, (S) = E.{X‘t(Ot (t)} , can be evaluated as

follows:

Npw -1 Npy -1

X(s)= 2 X (s)e™ =D X, (s)[1-e ™ Je (4.39)

From (4.37) it is possible to note that just the generic functions X, (S) characterize

the swarm dynamics. In fact, X, (S) is just the k-th row-entries of (4.29) valid for a generic i-
th time-window.
. . . . -1
The evaluation of the inverse of the symmetric matrix (SZI —A. ;S _Al,z) returns that

all its entries on the main diagonal are equal to:

s’ —@s+ ji—(N -2)hs

— — (4.40)
(52 —(a3+(N —1)h)s+[¢)(s2 +(h —Eo)s+[1)
whereas all other entries are equal to:
hs
~ ~ 4.41)
(52—(5)+(N—1)h)s+ﬁ)(sz+(h—&))s+ﬁ) (
Thus, after to have defined the following quantity:
N N
& (tin) = _Cbxk (tin) - Z F]'Xm (tin) + Uy (tin) = _a~)Xk (tin) + ﬁXk (tin) - ﬁzxm (tin) (442)
m=1,m=k m=1

and by a suitable rearranging and re-ordering of all terms referred to the solution
expressed by (4.32), (4.33) and (4.34), we obtain the following Laplace-Transform written in

explicit form for each k-th member of the flock:
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sx, (t )+a,(t ﬁSZZLXj (t:)
X, (s)= §? +((ﬁ)—cb)s(+ij+(52_(£)+(N —1)ﬁ)s+g)(sz+(ﬁ_(;,)s+ﬁ)+
hsy ,Laj (t,) ﬁizjilpbest j
+(52‘(5’+(N —1)5)5+ﬁ)(52+(ﬁ—a3)8+ﬁ)+(32—(a”)+(N —1)ﬁ)s+,&)(sz+(ﬁ—a~))s+[¢)+
- pbest, N 7. gbest

5(52 —(cb—ﬁ)s+/3) 3(32 —(a3+(N —1)ﬁ)s+/§z)

(4.43)

Equation (4.41) can be regarded in terms of the Superposition Principle being the
system linear. Moreover, reminding that this system is also time-invariant within each time-
window, it is possible to adopt the concept of transfer (or network) function. A network
function is the ratio between an output (effect) and the input (stimulus) which generated it.
More in general, the network function is the Laplace-Transform of the response (effect)
generated by the unit-impulse (that is a stimulus also said delta function or Dirac function).
Thus, it is immediate to identify seven network-functions in (4.41) which can be compacted as

follows:

xk(s):iHj(s)Sj(s) (4.44) 107

In which the Laplace Transforms of the excitations due to the initial conditions at the

time window-beginning, t;. , are:
3,(8) =% (t,) » J,(5) =a (), 3,(5) = Z’j\l:laj () (4.45)

Whereas the Laplace Transforms of the excitations due to personal and global bests are:

Sy(s) =" pbest; /s , 3;(s) = pbest, /s and Ty(s)=gbest/s.

This way, the Hj (S) in (4.42) are the seven transfer functions that are explicitly written

as follows for initial conditions:

S
Hu(s)= s2—(@-h)s+ i
H, (s)= 1 (4.46)
2 s?2—(@—h)s+ i1
H3(S)= hs’

(52 —(@+(N —1)ﬁ)s+/1)(32 —(cb—ﬁ)s+[z)

And those due to personal and global bests:



TOWARDS SWARM CIRCUIT.

H4(S) = ~ ﬁS ~
(32 ~(@+(N —1)h)S+,[l)(SZ —(c?)—h)s+[z)
~ hls
Rs(5)= (52 —(@+(N-1) ﬁ)s+,£2)(s2 —(d)—ﬁ)s+,&) (4.47)

Ho(8) = AH,(s)

_ 7
9= (s - (@+(N-1)h)s+ )

It is interesting to note that for a PSO-circuit, i.e. based on standard PSO, the H matrix

has all its entries null: h=0. Then, the corresponding transfer functions do not exist and the
related inputs have no effects on the system dynamics.

Now, let us evaluate the Inverse Laplace Transform referred to (4.42). Firstly, we have
to compute the poles of (4.42). These poles referred to the several different transfer functions

S, = %{cb—ﬁia/(cb—ﬁ)z —4[1} (4.48)

53’4:%{CZH(N—1)ﬁi\/(a~)+(N—1)ﬁ)2—4[1} (4.49)

In the following mathematical developments, without loss of generality, we will consider
parameters having values that always return (@— h)? —4/1#0 and (&+ (N-1) h)?—4/1#0,
i.e. all poles are simples with multiplicity equal to 1. In fact, the case for which the poles has
multiplicity equal to 2, do not produce a significant changing in the waveform of the Inverse
Laplace Transform when it is compared with the waveform referred to the case in which the

poles are real and with multiplicity equal to 1. Obviously the poles can be real or complex.

Under this last assumption, we can apply the classic residual method for the evaluation of the

Inverse Laplace Transforms, £ {} , by obtaining the responses to each input of the system:

£1{H,(s)3,(s)} = X (t.n)Z( lij e (4.50)

1

2

£ {H,(93,(9)} =2, (t, Z

1S 1

£ {H,(5)T,(5)} = iﬁ(ixn (tm>j4s—" e (4.52)
= i H (Sj _Sn)

n=1,n#j

(4.51)
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£'1{H4(s)s4(s)}=iﬁ(2“n(t.n)) e (4.53)
=t H(sj—s)

n=1,n#j

£ {H,(5)3, ()] =Z4: (Z pbest. ); e (4.54)
I Gs;-5)

n=Li#j

£ {Hy(5)T,(s)} = 4+ pbest, ZZ: D’

j=1 92

(4.55)

£ (H,(9)3,(5)) = gbestd 7T gns 456

j=t j+2(54_33)
Finally the wanted closed form in the time domain is obtained by Inverse Laplace

Transform of (4.43) by means of superposition:

Xk (t):VC,k (t) :ZE_l{Hm(S)Sm (S)} (457)

Equation (4.55) is valid for a generic k-th particle/bird just within a single time-window

having width 7 and starting from t =t (i.e.t, <t <t +7). The equation (4.57) describes the

o <
portion of the trajectory along the j-#/ dimension followed by the 4-#) member of the flock
within that time-window (remind that we chose to omit the superscript <j> for avoid as more
as possible cumbersome formalisms). The corresponding closed form of the time-varying
component of the inductor currents, ie. velocity, along the /-4 dimension is trivially

obtainable by Inverse Laplace Transform, as follows:

u (t)= iﬁ'l {sH,(5)3,(s)} (4.58)

m=1

Whereas on the basis of (4.20), the current flowing into the inductors is simply:
i ()= C Ve, (t)=C- ZE sH,,(5)3,(s)} (4.59)

Finally, it is enough to apply the superposition shifted in time (4.32) for obtaining the
whole trajectory along the j-th dimension of the space.

Stability Analysis of the continuous swarm-circuit

The stability analysis becomes trivial when the full knowledge of poles and zeros of the
transfer-functions is available. The full asymptotical convergence is achieved if the continuous
swarm parameters are set to be:

p<h<-——2 (4.60)
N -1

For the swarm-circuit parameters (4.22), equation (4.58) becomes:
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<a<R (4.61)

oscillations (i.e., complex conjugate poles) will be observed if
- . el ~ 2W\[|i—-&
2fi+ad<h<2i+d o eSO (4.62)

For the swarm-circuit parameters (22), equations (60) becomes:

3 3 2,"(':+R
—2 ,—+R<a<2,/—+R or oa>——- (4.63)
C C

N-1
A deeper discussion on the tuning of parameters and the effect of stability will be made

in a next section.

4.6 Deterministic tuning of parameters

Another important feature of the continuous dynamic system, i.e. the swarm-
circuit, is the possibility to provide the behaviour of particles/birds simply studying the poles
of the network functions for any different At value. In fact, by varying these poles we can
force the trajectories of the swarm members to converge towards a stable point, to escape
from a space zone, or to stay into a limited zone (closed loops) of the solution space. In this
way we can improve the capabilities of exploration or exploitation simply by modifying the
nature of the poles at each time windows. Thus, by extending the update of poles to all time
windows, it is possible to control the whole behaviour of the swarm-members. On the
contrary, the numerical algorithms employ random updating of parameters to avoid local
minima. By using the continuous dynamic system, the randomness of parameters can be
eliminated, because the user knows how he has to manage the parameters to obtain
convergence or divergence, i.e. how exalting the exploitation or the exploration capabilities.
The best way for the tuning of parameters for the continuous algorithm is an open problem
and will be object of next studied. The simplest idea is to fix the maximal amplitude that is
admissible for a time-interval in which there are not improvements of the fitness value. Thus,
we can use parameters that assure negative values of real poles or complex poles with negative
(or zero) real parts, until the monitoring of the fitness returns improved values. Then, if the
monitoring time exceeds the fixed threshold, the parameters can be switched to a new set of
values that assures positive values of real pole or positive real part of complex poles. An
example of a simple control of parameter working in this way is used and described in a next

section.
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4.7 Comparison between the numerical algorithms and the
closed forms.

The aim of this section is to compare the trajectories made by capacitor voltages and
inductor currents of the swarm circuit versus the behavior of the corresponding numerical
algorithm. The comparative analysis proposed in this section has not the aim to compare the
performances in optimization (see next section) but consists of verifying that the trajectories
of the numerical algorithms can become fully coincident with those obtained by using the
closed forms in the time domain when the amplitude of the time-windowsAlis small enough
to produce the correct integration of Euler’s formulas. First of all, some preliminary
considerations about the way in which the comparative analysis is designed must be done:
both the numerical algorithms and the dynamic state equations have been identically
initialized. The random updating of parameters, which is present in the numerical codes, has
been removed. The parameters inserted in the equations of the swarm circuit have been
evaluated according to (4.22) after to have chosen a suitable integration-step Al that fixes the

values of parameters by (4.11).

Consequently we pose = At for each new i-th time-window (i =0,1...N;, =1, where
N, is both the number of the iterations of the numerical algorithm and the number of time-
windows). The validations are referred to a functional:

f (X, y) = peaks(X, y) +0.01x* +0.01y* + peaks(x +5, y +5) + 2 peaks(x —5, y —5) +
+5peaks(x—5,y+5) +3peaks(x+5,y—5)
(4.64)
in which shifted MATLAB™’s “peaks” functions are used (see Fig.4.2). In Figure 4.3,
the (4.64) is shown.

Fig. 4.2. MATLAB™ “peaks” function.  Fig. 4.3. Functional f(x y) obtained by (4.62).

A swarm composed by 10 particles has been used for all validations. The parameters @, 4 , 7

and h, have been a priori fixed, whereas the parameters inserted into the numerical

algorithm have been fixed by inverting the relations 4.11) as follows:
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w=oAt+1
A=At
y = yAt
hkm = ﬁkmAt

(4.65)

The trajectories of the continuous fully connected swarm-circuit described by (4.48)-
(4.54) have been compared with those performed by the corresponding numerical algorithm
described by the pseudo-code in the first section (the code has been implemented by

MATLAB™), With the aim to allow a full reproducibility of the present validations, we

furnish in Table I all the used initial positions (XO, yo) related to each bird and in Table IT all

the corresponding initial velocities (onx,uo‘y). Each particle has been numbered to be
identified, and the number associated to each particle is shown in the first column of the
tables.

The used fixed values of continuous swarm parameters are @=-1, A =1, y =1 and

ﬁkm =1/9 and, according with (4.22), the swarm circuit parameters have been fixed equal to:

L=05H, R=05Q and C=1F . As a consequence of the value of C, the capacitor
voltages are exactly equal to the value of the positions. In Figures 4.3, 4.4 and 4.5, the
trajectories of particle #1 both for numerical algorithm and continuous system are shown for

different values of At.

Table 20 Table 21
Initial Positions (capacitor voltages) Initial Velocities (inductor currents)
Particle # Xo Yo Particle # Ug Uoy
1 2.7757 -2.7839 1 -0.7578 -0.5640
2 -0.8044 2.0467 2 -0.8951 -0.4093
3 0.3901 6.6219 3 -0.9526 0.3173
4 -5.8568 -6.9263 4 -0.2132 -0.1345
5 2.5187 -4.4633 5 0.3105 -0.2495
6 5.2352 -1.1346 6 1.9085 0.1222
7 2.7788 -5.6013 7 201625 0.6901
8 -7.0789 0.2979 8 -1.5327 -1.0979
9 -6.8048 3.8978 9 -0.4113 -0.3680

10 5.1059 -4.3699 10 0.4394 -0.0896
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Obviously, for different values of Atwe have different values of the numerical algorithm

parameters according to (4.63). The used values of At are shown in each figure caption.

ser Numerical algorithm
3} —— Continuous Dynamic System

v Humerical dlgorithm 7 S Numerical algosithm
—— Continvous Dynamic System

—— Cont. Dynamic System

. L L ‘ L L 8 . L L L L . . . L L L L
5 -4 2 0 2 4 6 05 1 15 2 25 3 35 4 45 5 55 o 1 2 3 4 5 6
X X X

Fig. 4.3. Comparison between the trajectories referred to the numerical algorithm and to the continuous
system made by Bird #1. The time-window duration is 7 = At =0.1 and total number of iterations

N,, =53.

Fig. 4.4. Comparison between the trajectories referred to the numerical algorithm and to the continuous
system made by Bird #1. The time-window duration is 7 = At =0.05 and total number of iterations

N, =70.

Fig. 4.5. Comparison between the trajectories referred to the numerical algorithm and to the continuous

system made by Bird #1. The time-window duration is 7 = At =0.01 and total number of iterations 1 1 3
N, =550.
[conrolX] et
foonirolY] e

yout

I j4—

global_best

Cacuisie Wemary
Clotal Best Block GB

F
T

I TITIII IR

ut @—»m 3 1 1Ad] i @—»m
j . ! ) . | 2 i -
pbrken phen g porden poden  pl pbkn
pby poy poy poy poy
pby pby pby poy| poy
Calouiste Personal Best Calculate Personal Best Calculate Personal Best Galouls Personal Best Calults Personal Best

1 e " i b [ e o nt [ e Jou ntfa—!
o] 2 r2f— | [ty r3 n2 [pbxs] S w2 n2fa— w2 2 [pb)(S] S w2 Inzj—!
poy] s py2] ) dous na| F —ous ous 1n3| k —ous

Memary Blook | Memory Block 2 Memory Block 3 Memory Block 4 Memory Block 5

r|Cuit In1 (5] >4 r|Cuit Intj4—

]
)
3

Figure 4.6:Simulinks block for calculating the global and personal best.



TOWARDS SWARM CIRCUIT.
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Figure 4.7: One dimension of the circuit.
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4.8 Validation on Benchmarks and Inverse Problems.
The Swarm-Circuit has been implemented by Simulink. The implementation of the

Swarm-Circuit starts by assembling a number of Nj circuital branches each one equal to that
shown in Figure 4.1. In particular Ny = D- N where D is the dimension of the solution space

and N is the number of particles. More in detail, we have D independent circuits as in Figure
4.7 each of them dedicated to one dimension of the solution space. As previously said, the

circuit is simulated by a time-windowing. Within each time-window the values of the

independent voltage generators that take into account personal bests € (t), and global best,

g(t), are updated by the values that were found in previous time-windows. These values are
trivially carried out by using standard electronic devices that compare the voltage levels
measured on each capacitor. Obviously, the use of commercial circuital simulators makes
automatic the correct evaluation of the initial conditions measured on inductors and capacitors.
Finally, the switches (see Figure. 4.1) that play the role to generate the time-windowing are
assumed ideal, i.e. they commute instantaneously. Regarding to the Current-Controlled-Voltage-
Sources (CCVC), they are used to govern convergence or divergence of the trajectories
according to (4.59) and (4.61) for a fixed value of R,I. and C parameters. With the aim to
provides some examples on the different behaviors obtainable by tuning the o parameter, the

next figure 4.9 is provided.

Trajectory of the particle £1 Waveform of the capacitor voltage

wog . . : : related to the x coordinate (particle #1)
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2 e time [s]
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Waveform of the capacitor voltage

Trajectory of the particle 21 related to the x coordinate (particle #1)
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Fig. 49: @) a=1Q,b) a=025Q,) a=2Q

In the Table 22 validation results performed by the Swarm-Circuit are shown. The used
parameter values are: L=1H, R=1Q, C =1F whereas «is random chosen, time-window
by time-window, among one of these three values: 1€, 0.25Q and o =1.1Q. This last

strategic choice allows to change the behavior of particles from oscillations to convergence or
divergence and vice versa to perform exploration and exploitation. While the circuit is
working, all the global bests and the relative coordinates found are stored in a suitable

memory. Thus, at the end of the process it is enough to select the best solutions.
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Table 22. Swarm-Circuit Validation Results

Minimum

Minimum value

Name Minimum coordinates circuit
value L
circuit

Sf;bh“kl' -78.332331 (-2.902435;-2.904137) -78.332304

ang
(4.741049;3.199581) ~106.250957
Bird -106.764537 -106.696935
(-1.599922;-3.117082)
(-3.226006;12.603203)
0.398186
Branins 0.397887 (3.145650;2.257012) 0.447557
0.411996
(9.385460;2.523816)

Six-hump L0316 (-0.0870;0.7354) -1.0271
camel back ' (0.0877;-0.711) -1.0316
Michalewics -1.8013 (2.2436;1.5654) -1.7731
Function
Goldstein- 3 (-0.0053; -1.0042) 3.0099

Price function

4.8.1 Validation on Inverse Problems.

The swarm-circuit has been also tested for two inverse problems related to the

identification of two dynamic systems: Brussellator and Tunnel Diode [38]. The presented

results refer to 30 launches with different random initializations of all positions and velocities.

The differential equations system that governs the Brussellator system are:

%=A+yf-yz—(8+l)yl

d
=By -y,

Whereas the Tunnel Diode is governed by the following law:

dy,
dt

% =y, +¥, (L4 p-y2)+4-a-(-0.1649y, +0.4606)

=Y,

(4.66)

(4.67)
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The number of iterations is fixed to 2500 for each case. The obtained results are listed
in table 23 in which appears the Mean Absolute Percentage Error (MAPE). The swarm-circuit
results show the same behavior performed by the FSO numerical algorithm. However it is
important to note that the utilization of hybrid numerical techniques allow reaching a better
performance. In fact, the novel hybrid algorithm MeTEO by using three different numerical
algorithms and the technique called “fitness modification” is able to reach an error closer to
zero. But it is evident that the aim of the test is to validate that a swarm-circuit is just able to
solve inverse problems like a numerical algorithm; whereas future developing could be made
designing hybrid-circuits. A further detail, instead, is worth to notice: even if the Brussellator
system is monomodal, the global minimum is hidden in such way that for an algorithm able to
perform just exploration this is one of the the worst situations. In fact, the exploration
algorithm is just able to detect the region in which the global minimum lies but fails in
founding where actual it is. The error function of the Tunnel Diode, instead, refers to a
smoother function, thus, it is possible to reach a good refinement of the parameters. In figure

5.11 the curves of the best results found over all 30 launches are shown.

Brussellator System [MAPE=3.2300%)] Tunnel Diode [MAPE=0.0181%]
4 118
;3?( mﬁ& ] - Y “ o forecast curve
ei‘x N —real curve
%0&«
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\Jw% prUU 1000 10, 200 400 600 800 1000
umber of Points _ Number of Points

.

eﬂ - W éﬁ"e@ﬁ&- o forecast curve
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= 2 E‘wﬂ é:( E@ﬂoﬂ"ﬂ f q@ﬂw@e@ | [—real curve
2t% -
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Fig. 4.11. (a) best curve forecast found by Swarm Circuit of the Brussellator (20 second of simulation);
(b) best curve forecast found by Swarm Circuit of the Tunnel Diode (4.5 seconds of simulation)

Table 23. Swarm-Circuit Inverse Problems Validation Results

MAPE
Mean o Initial Value Real parmeters Best forecast Mape
parameters best
Brussellator 12.3417 13.6110 [1.5 3] [A B]=[L13] [0.9902,2.9016] 3.3003%

Tunnel 1.0414 1.5094 [-5-5] [p.a]=[1.4,]1] [1.0097,1.4111]  0.0181%
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CONCLUSION

Conclusion

The main arguments treated in this thesis have been: 1) the implementation of a new algorithm
which exploit topology and metric characteristics showed by some meta-heuristics (especially
those swarm-based); 2) the design of a new circuit, called swamn circuit, able to perform social
behavior in terms of voltages and currents. In particular a new meta heuristic algorithm called
MeTEO (Metric and Topological Evolutionary Optimization) has been presented. It consists of
coordination of three different metaheuristic: Flock of starlings Optimization, Particle Swarm
Optimization and Bacterial Chemotaxis Optimization. MeTEO imports from these three
algorithms their main properties that are:

e agood exploration get by the FSO;

e astandard capability of refinement of minima (PSO);

e agood convergence inherited by BCA.

In addition, MeTEO has been completed by using a new method from escaping from local

minima called Fitness Modification.

The innovation of MeTEO is in the robustness and in capability to perform exploitation and

exploration. Thus MeTEO can also be easily used by non-expert users in optimization tasks.

As a further contribution of this thesis work, new techniques (fitness-based and swarm-based
parallelization) have been proposed for designing a suitable parallel framework able to exalt the

characteristics of the swarm based algorithms.
MeTEO has been validate by mean of many benchmarks and inverse problems.

A further step has been made, introducing the interpretation of numerical swarm-based
algorithm as dynamical system in the continuum, and the relative design for hardware

implementation.

This hardware approach represents the first step towards real time optimization without
utilization of microcontrollers or CPUs or ALUs, since the approach is completely “analog-

oriented”.
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