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Abstract

A large effort has been devoted by the scientific community to the field of
multi-robot systems. The main reason relies on the fact that they exhibit
better fault-tolerance, flexibility and performance than a single robot unit.
In this thesis, novel contributions to this field are given. Novel decentralized
swarming algorithms integrated with obstacle avoidance techniques where
the interaction is assumed to be limited by a range of view are presented.
Furthermore, to better comply with the hardware/software limitations of
mobile robotic platforms, the actuators of the robots are assumed to be
saturated.

Due to technological advances in the field of electronic devices, the robots
are able to share data in a fast and reliable manner among themselves. This
capability is used within this thesis to carry out a distributed estimation
of system wide quantities to adjust the interactions of each individual with
its neighbors. In particular, the average consensus problem over digraphs
is addressed and a distributed strategy to solve it is presented. Moreover,
a finite time condition to check if the communication digraph is strongly
connected or it is not is detailed. It can be verified in a distributed fashion
by the robots and can be employed to avoid useless steps in the estimation
process reviewed within this work.

A theoretical characterization of the properties of the presented ap-
proaches is provided. Moreover, experiments in real scenarios using a team
of low-cost mobile robots SAETTA (built in our laboratory) to demonstrate
the effectiveness of the proposed algorithms have been carried out. Finally, a
relative distance and a relative localization system are introduced to provide
the indispensable input for the swarming algorithms.
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CHAPTER 1

Introduction

The coordination problem of multi-robot systems has been an active re-
search field in the last decades [1, 2, 3, 4, 5, 6, 7]. The interest in this
research field is motivated by the large number of possible applications rang-
ing from environmental exploration [8] and monitoring [9, 10], search and
rescue operations [11, 12], to agricultural foraging [13, 14] or de-mining
tasks[15, 16]. However, the inherently distributed nature of these systems
makes the design of effective algorithms very challenging as the overall per-
formance depends significantly on the issues arising from the complex inter-
actions among the robots.

Swarm robotics represents an approach focusing on the coordination
of a large number of a relatively simple robots [17]. Since recent times it
has been considered as a well-developed field belonging to the multi-robot
coordination front. The key idea behind swarm robotics relies on substi-
tuting a complex and expensive single robot unit with a more affordable
and flexible set of robots. It takes inspiration from the suggestive world of
social insects like bees, termites and ants in which the cooperation of sev-
eral individuals produces remarkably complex behaviors. In the literature,
works implementing these behaviors like social foraging [18, 19], formation
control [20], swarm aggregation (see [21], [22] and the references therein),
hole-avoidance [23] and self-assembly [24] appeared in the last decades. The
objective of swarm robotics is to design simple local control laws for each
individual to let the whole multi-robot system perform a complex task. The
behavior of the whole system is called emergent, because it emerges from
the interactions among the robots and between each robot and the envi-
ronment. In this thesis, one peculiar behavior of robots swarms has been
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1.Introduction

investigated, i.e., swarm aggregation. In this case, the interactions among
the individuals are constituted by (see [25, 26]):

• attractive forces,

• repulsive forces.

In order to show the presence of attractive and repulsive forces in the nature,
let us consider the schooling behavior of the fishes. It has been observed
that:

• Attraction is generally based on vision and has a long range.

• Repulsion is based on the pressure on the side of the fish and has a
short range (but it is stronger than attraction).

• Both attraction and repulsion are always on.

• The resulting behavior is due to the interplay between these two forces.

• There is a distance (called the “equilibrium distance” in biology) at
which attraction and repulsion between two individuals balance.

From recent studies, it turns out that in swarms or flocks of animals,
there are no central units coordinating the motion of the individuals. In
other terms, a single point of failure able to compromise the whole task
performed by the swarm does not exist. Instead, the swarm or flock behavior
is generated by several parameters as the wing span of the birds or the
position within the flock itself [27]. The absence of a central coordination
unit may lead to an improvement of several characteristics [28] as:

• Robustness.

• Flexibility.

• Scalability.

The robustness of a system is its ability of performing the assigned task also
in presence of failures of any individual. It is affected by several factors such
as the large number of individuals belonging to the swarm. In fact, even if a
subset of individuals suddenly fail, the rest of the swarm may keep perform-
ing the assigned task. Another important factor is the distributed nature
of the system. The absence of a central coordination unit avoids that its
failure could jeopardize the accomplishment of the mission. The flexibility
is the ability of the swarm to adapt its behavior to different assigned tasks.

4



1.Introduction

For example, let us take into account the collaborative pushing task as the
one in [29]. If the force exerted by a single robot is not enough to push the
object, the collaboration with other robots is necessary to accomplish the
task. Therefore, the same swarm can adapt itself to another task, for exam-
ple, it can pursue an environmental coverage mission as the one in [30]. The
scalability property allows the system to keep performing the tasks despite
of the changes occurring to the number of individuals. This characteristic is
strictly related with the local nature of the interactions because each indi-
vidual is not required to be aware of the state of the whole swarm, e.g., the
number of members within the swarm, but only of its neighbors. The main
drawback in the use of fully distributed control laws relies on the growing
complexity in the design of this kind of algorithms. In fact, the designer has
to take into account the limited information possessed by each individual
and the limited communication and computation capabilities.

By nature, swarm systems are able to operate in a parallel fashion. This
peculiar ability allows the swarm to perform an assigned task more efficiently
w.r.t. a single complex robot.

For a comprehensive overview of swarm robotic systems, the reader is
referred to [22, 21, 31]. Instead, for works dealing with the robustness of
swarming algorithms, the reader is referred to [32, 33] and to [34] for a very
recent discussion on the implications of swarm approaches on fault tolerance.

In this thesis, control laws for robot swarms aggregation are proposed.
Two of them explicitly take into account the limited capabilities of the
actuators of the simple robotic units belonging to the swarm. Moreover, all
the control laws cope with the problem of a limited range of sensing, i.e.,
each robot interacts only with the other robots within a visibility range. A
graph theoretic approach has been used to model the interaction among the
robots where robots are represented by nodes and the interactions by edges.
The existence of an edge in the graph is dictated by the limited range of
visibility of common the sensor devices. Therefore, limiting the range of
visibility is of extreme importance when dealing with real hardware. It
becomes of mandatory considering indoor scenarios where the GPS system
can not be employed by the robots. Finally, an obstacle avoidance technique
is integrated within the control laws.

Swarm aggregation algorithms are based on the sensing capabilities of
each member of the swarm. Due to technological advances in the field
of electronics and the miniaturization of the devices, nowadays the robots
are capable of exchanging data among themselves in a fast and reliable
manner [35, 36]. Therefore, it is possible to exploit communication in or-
der to adjust the interactions among the robots. For example, consensus
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1.Introduction

based algorithms exploiting inter-robots communication can be employed
to solve the rendezvous problem [37]. However, within several works related
to this topic, the communication among the robots is modeled using an
undirected communication graph (see [38, 39] and the references therein).
This is founded on the assumptions that the communication is isotropic, i.e.,
the employed antenna radiates its power uniformly in all directions and that
the transmitter and receiver gains are the same. Therefore, if a robot can
communicate with another one, the opposite is possible as well. However,
these assumptions are not realistic in real world scenarios due, for example,
to environmental effects or the radiation pattern of the robots [40].

In this thesis, a novel contribution in the field of multi-robot systems
where the communication is modeled using digraphs with nodes modeling
the robots and the edges the inter-robot communications is given. In par-
ticular, by assuming the digraph to be strongly connected, a technique to
estimate the left eigenvector associated to the zero eigenvalue of the Lapla-
cian matrix encoding the communication digraph originally proposed in [41]
is reviewed. This technique paves the way for developing communication
based algorithms under the assumption of unidirectional data exchange, for
example, consensus based algorithms for robots rendezvous. Furthermore,
a necessary and sufficient condition to check the strong connectivity of a
weighted digraph in finite-time is proposed. The latter represents a practi-
cal stopping condition for the left eigenvector estimation algorithm to avoid
useless data exchanges.

Summarizing, the main contributions within this thesis are the following:

• Control laws solving the swarm aggregation problem taking into ac-
count both input saturations and local interactions.

• Two effective obstacle avoidance techniques integrated within the con-
trol laws.

• A necessary and sufficient condition to check in a finite-time and in a
distributed fashion the strongly connectedness of the communication
digraph.

• A purely broadcast modified average consensus algorithm to be exe-
cuted concurrently with the left eigenvector estimation.

• A complete theoretical analysis of the proposed approaches.

• A distance and a relative position measurement techniques for robot
swarms.
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• Simulations and experiments to corroborate the theoretical findings.

It is worthy to note that the contributions in this thesis are driven by real
problems arising from hardware related issues. The proposed control laws
copes with the problems arising from the physical limitations of actuators
and sensing devices. The same hold for the techniques arising from the
left eigenvector estimation algorithm. In fact, note that in this thesis the
first technique suitable for an implementation based on a pure broadcast
communication scheme is described. Indeed, this represents a significant
novelty compared to the works available in the literature for which the
communication is required to be point-to-point or the knowledge of the out-
degree is necessary. Publications (published and submitted) related with
the topics in this thesis are [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53].
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CHAPTER 2

Literature Review

There is a very large literature regarding robotic swarms. One of the pi-
oneeristic works on this topic is [54]. In this paper, the author proposes
a model for the motion of flocks of birds where the behavior of each bird
is considered independently. The following three basic rules governing the
interactions among the birds are identified:

• Collision avoidance: each member of the flock has to avoid collisions
with its neighbors.

• Velocity matching: each member of the flock has to match its speed
with the ones of its neighbors.

• Flock centering: each member of the flock has to remain close to its
neighbors.

In [55], a large scale multi-robot system is controlled through the applica-
tion of the social potential field method. Basically, this method consists in
designing the interaction forces among the robots incorporating attractive
and repulsive terms. Such forces can be viewed as the relationship governing
the behaviors of the robots. Note that, these social potential fields agree
with the rules proposed by Reynolds in [54]; in particular, the repulsive term
matches with the collision avoidance rule, while the attractive term with the
flock centering one. An important aspect is represented by the distributed
nature of this control law and its asynchronism, i.e., no central clock is re-
quired to the robots in order to apply the control input. One of the first
theoretical analysis regarding the stability of robot swarms is carried out in
[56]. In this work, the authors propose a linear asynchronous model for the
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swarm and analyze its convergence. In particular, a sufficient condition is
given to let the swarm converge to the synchronous configuration, i.e., to
the configuration that the swarm would achieve if the the communication
within the swarm would be synchronous. A probabilistic modeling of robot
swarms is proposed in [57] where Probabilistic Finite State Machines are
used to model both the behavior of a single unit belonging to the swarm
and the one of the swarm itself using a decentralized manipulation task
as case of study. This work attempts to link the microscopic properties
of individual robots to the emergent macroscopic behaviors of the over-
all swarm. In [58] two macroscopic model for robot swarms are proposed,
namely, the Stock & Flow model and a spatially resolved model based on
diffusion processes. Both offer high prediction quality of the swarm behavior
and experimental results are shown to corroborate the authors findings. The
reader is referred to [59] for a review of the works dealing with macroscopic
probabilistic models for robot swarms.

In the last decade, several swarm aggregation algorithms were proposed
[60, 5, 19, 61, 62, 63, 64, 65, 7, 66, 67]. In [60] a decentralized continuous-
time model for finite-time swarm aggregation is proposed. An interaction
function based on a linear and an exponential term is analyzed. A bound of
the convergence area along with the time required by the swarm to reach it
is given. An extension of this work is given in [5], where a generalized inter-
action function is proposed. In particular, classes of attractive and repulsive
functions are used and a theoretical analysis on the ultimate boundedness
of the trajectory of the swarm is presented along with the finite time con-
vergence. This approach is further extended considering the case of social
foraging swarms [19]. The robots are provided with a potential function
modeling the attractive or repelling areas. Its gradient is used in the control
law to provide a navigation objective to the swarm. In [61], the assump-
tion of isotropic sensing/communication among the robots is released and
the model in [60] is generalized. The circular area where the swarm con-
verges into is detailed in terms of its radius and the stability of the swarm is
proven. In [62], a robust control strategy based on artificial potential func-
tions and sliding mode control is designed. The proposed swarm algorithm
is applied to robot systems with vehicles dynamics, i.e., to the dynamical
model of a mobile robot. An adaptive velocity swarm model which extends
the well-known Vicsek model is proposed in [63]. To control the swarm
formation, a computationally efficient vector field approach is proposed in
[64]. The vector field is generated in a distributed fashion using normal and
sigmoid functions. The robots are required to continuosly sense or compute
the centroid of the whole swarm. In [65], two mechanisms for robot swarm-
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ing, namely, chains and vectorfield are provided. They are used to organize
the robots into connected structures based upon visual information. Simu-
lations and experiments are conducted to test different obstacle avoidance
algorithms, the scalability of the mechanisms, fault tolerance and robust-
ness to noisy conditions. A swarm aggregation control law for unicycles is
proposed in [7]. The authors introduce a control algorithm composed of two
terms: the first one is in charge of guaranteeing the collision avoidance while
the second one leads to a compact configuration of the robots and preserves
the links among them. Eventually, a bound on the size of the region of
convergence is detailed. In [66], a decentralized formation control scheme
that guarantees collision-free motion for a team of rovers with a leader is
presented. In [67], instead, a swarming algorithm where the sensing graph
is not restricted to be undirected or to have unitary weights associated to
its edges is introduced. Indeed, the approach given in [5] is extended paving
the way to a more generalized framework.

Some works consider the presence of actuator saturations, an inevitable
limitation of actual mobile platforms. In [68], a set of control laws to drive
the robots from any initial condition towards a desired configuration taking
into account constraints on the inputs is provided. In [69], a behavior-based
approach to formation maneuvers for groups of mobile robots that works
under this assumption is proposed. In [70], a flocking algorithm for a multi-
agent system with bounded control inputs is proposed; the agents are able to
achieve all the same velocity under the assumption of the connectivity of the
underlying communication graph. A formation control scheme for multiple
unicycles with saturated inputs is described in [71]. However, as far as my
knowledge, all the aforementioned works do not explicitly take into account
both the modeling of the input saturations and the constraints of the local
interactions giving an exhaustive theoretical analysis of the algorithms and
solving the obstacle avoidance problem.

A mandatory requirement for the employment of the swarming algo-
rithms is the ability for each robot to sense the distance/position of its
neighbors. Within this thesis, a Radio Signal Strength and an Infrared
based techniques are presented to fulfill this requirement. Different Radio
Signal Strength based distance sensing techniques can be found in the liter-
ature. These techniques allow to retrieve distance information by exploiting
the Radio Signal Strength Index (RSSI). In particular, the RSSI can be used
in two different ways to determine the distance between a transmitter and
a receiver: fingerprinting-based techniques and propagation-based tech-
niques. Fingerprinting techniques consist of an offline learning phase and
an online localization phase [72, 73, 74]. In the offline phase, RSSI values
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corresponding to different anchor nodes are collected. The stored RSSI val-
ues are then used along with the known locations of the anchor nodes to
construct an RF-fingerprint database. In the online phase, the target node
measures RSSI values to different anchor nodes. At this point, the location
of the target is determined by finding the closest recorded reference finger-
print values to the measured one (in signal space). The unknown location is
then estimated to be the one paired with the closest reference fingerprint or
in the (weighted) centroid of nearest reference fingerprints. The major draw-
back of this approach is the amount of time required to build the database
of signatures. Propagation based techniques [75, 72, 76], instead, consist
of a base station which measures the Signal Strength (SS), Time of Arrival
(ToA), Time Difference of Arrival (TDoA) and Angle of Arrival (AoA) with
respect to a target node. Distances are then retrieved by exploiting the ra-
dio propagation model. The performance of these techniques is significantly
reduced by the presence of obstacles in the environment due to the multi-
ple reflection phenomenon typical in RF signals. Both techniques present
some advantages and disadvantages. Fingerprinting techniques provide bet-
ter performances compared to the propagation techniques but they require
a significant effort to build the radio signature of the environment during
the offline phase [77]. Conversely, propagation techniques do not require any
database, only a calibration of the radio parameters, but they are very sensi-
tive to multi-path effects on the signal in indoor environments [72]. Indeed,
the signal dispersion heavily depends on building dimensions, obstructions,
partitioning materials and surrounding moving objects [78]. This makes the
use of propagation model (free path loss) for accurate RSSI reporting very
complicated. To summarize, the big advantage of RSS-based techniques is
the possibility to use existing infrastructures to build a positioning system
with minimum additional effort. Indeed, it is remarkably easier to obtain
RSSI than the time or angle of arrival which require additional signal pro-
cessing.

Several Infrared based approaches can be found in the literature for the
estimation of relative distance and/or orientation among robots. Among
the others, in [79] an infrared location system for relative pose (position
and orientation) estimation is proposed. In this system, robots use the
intensity and the bearing measurements of the received infrared signals to
estimate the positions of other robots in polar coordinates. In addition, each
robot has a unique modulation frequency from which each individual can be
recognized. The location system performs position estimation by rotating a
beam collector at constant rotation speed and by measuring the bearing and
intensity of the received signal. Infrared signals are received through a small
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aperture in the beam collector enabling accurate bearing measurements. In
[80], an on-board robotic module for relative positions estimation among
miniature robots is proposed. The module uses high-frequency modulated
infrared emissions to enable nearby robots to determine the range, bearing
and message of the sender with a rapid update rate. A CSMA protocol is
employed for scalable operation.

Despite of its usefulness in cooperative control problems, little is avail-
able in the literature regarding the estimation of the left eigenvector associ-
ated with the zero eigenvalue of the Laplacian matrix for digraphs. The work
in [81] possibly represents the best approach in this field. In this work, the
authors propose a distributed approach for the estimation of the left eigen-
vector associated to the weight matrix and the expected consensus value.
The estimate is then used in a control algorithm to improve the network con-
vergence rate. However, the continuous time nature of the algorithm makes
its implementation in a real world scenario challenging. Recently, the same
authors proposed the discrete time version of this algorithm in [41]. This
approach is used along this chapter to provide the left eigenvector estima-
tion algorithm required by the average consensus one. Note that, being
the algorithm in [41] asymptotic, the proposed average consensus has been
developed to be run concurrently with it.

Finally, the average consensus on digraphs is discussed in several works
[82, 83, 84, 85]. Among them, in [82] the fact that the weight matrix sums
to zero over the columns at each step, guarantees that the average consensus
can be performed in parallel with respect to the convergence of the weight
matrix to a doubly stochastic form. However, this work requires each robot
to know its out-neighborhood making the algorithm unpractical in pure
broadcast communication scenarios. In [83, 84], the average consensus over
a directed network topology is addressed. The proposed algorithms require
an augmentation of the variables of each robot adding a “surplus” variable.
Anyway, these approaches require the robots to exchange another set of val-
ues among themselves. In [85], the average consensus problem is addressed
both in the continuous time and in the discrete time. Moreover, the topol-
ogy of the network is assumed to be switching. However, the discrete time
consensus algorithm requires the adjacency matrix to be doubly stochastic.

13
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CHAPTER 3

Swarm Aggregation Control Law with Local
Interactions

In this chapter, a swarm aggregation control law based on the assumption
of local interactions among the robots is detailed. The notation used for the
theoretical analysis of the proposed control law and some basic concepts are
introduced in the next section. Therefore, the approach exploiting a fully
connected graph to model the interactions is reviewed in Section 3.2. A
proposed extension releasing the assumption of a fully connected topology is
presented in Section 3.3. Eventually, in Section 3.4 a possible application of
the proposed swarm aggregation algorithm to an Unmanned Surface Vehicles
(USVs) system is described.

3.1 Preliminaries

Let us consider a swarm composed of n robots with the following dynamics:

_xi(t) = ui(t); (3.1.1)

where xi(t) 2 Rd is the location of the i-th robot and ui(t) 2 Rd is the
local control input. Usually this model is referred to as kinematic agent or
higher level model. It turns out to be useful when dealing with higher level
algorithms ignoring the low-level issues generated by the robots dynamics.
Its outcome can be employed to generate reference trajectory to be tracked
by a lower level robot control algorithm aware, for example, of the nonholo-
nomic constrains imposed by the mechanical structure of the robot. Denote
with �(t) = [xT1 (t) : : : x

T
n(t)]

T the collection of all the robots locations and
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3.Swarm Aggregation Control Law with Local Interactions

with ei(t) = xi(t)� �x(t) the vector distance of robot i from the barycenter

�x(t) =
1

n

Pn
i=1 xi(t). Also, let us denote with e(t) = [eT1 (t) : : : e

T
n(t)]

T the
collection of all the distances from the barycenter. The interaction among
the robots can be modeled by means of an undirected time-varying proxim-
ity graph G(t) = fV;E(t)g where V = f1; : : : ; ng are the vertices (robots)
and E(t) = f�ij(t)g the set of edges representing the interaction between
pairs of robots. An edge �ij(t) exists between a pair of robots i and j if and
only if they are within the range of visibility of each other, that is:

�ij(t) =

8<
:1 iff kxi(t)� xj(t)k � r;
0 otherwise;

(3.1.2)

where k � k is the Euclidean norm and r > 0 is the range of visibility.

Let us denote with A(G(t)) the adjacency matrix encoding G(t), the
entries of which are defined as:

aij(t) =

8<
:1 iff �ij(t) = 1;

0 otherwise:
(3.1.3)

Denote the set of neighboring robots for the i-th robot with

Ni(t) = fj 2 V n fig : �ij(t) = 1g: (3.1.4)

In addition, let D(G(t)) = diag
�
D1(t); : : : ; Dn(t)

�
be the degree matrix of

G(t), where Di(t) = jNi(t)j is the degree of the i-th robot. Finally, let us
denote with L(G(t)) = D(G(t))�A(G(t)) the n�n Laplacian matrix of G(t).
For the sake of readability the notation L(t); A(t); D(t) will be used in the
rest of this thesis.

Let us now review some important properties of the Laplacian matrix
L(t). First, let us recall that L(t) is a weakly diagonal dominant symmetric
matrix where the row and the column sums are both equal to zero. This
implies that there is always at least a zero structural eigenvalue whose cor-
responding eigenvector is 1, the n-vector with all unit components. Thus
L(t)1 = 0 and 1TL(t) = 0T for any G. Furthermore, the number of
zero eigenvalues corresponds to the number of connected components of
G, that is, Rank(L(t)) = n � c with c the number of connected compo-
nents. In addition, since the Laplacian matrix is symmetric, from the Ger-
shgorin Circle Theorem it follows that all the eigenvalues of the Lapla-
cian matrix are real and positive and they belong to [0; 2Dmax(t)], where
Dmax(t) = maxi2V fDi(t)g is the maximum degree of the nodes in the graph.
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3.Swarm Aggregation Control Law with Local Interactions

Among the others, the second smallest eigenvalue �2(L(t)), called the al-
gebraic connectivity, provides information about the connectedness of the
graph. The reader is referred to [39] for further details on graph theoretic
methods for multi-agent systems.

Figure 3.1: A representation of the convergence area for three robots.

For each proposed control law in this thesis, the bounded area where
the swarm eventually converges into is characterized. In order to give a
qualitative idea, let us consider Figure 3.1. The swarm of robots converges
to the area delimited by a green line and described by a radius �. In the
theoretical analysis carried out in the rest of the thesis, an upper bound to
the radius � is given for each control law.

Let us now formalize the concept of interaction function according to
the notation originally introduced in [19]. Denote with g(�) : Rd ! Rd the
interaction function describing the interaction between a pair of robots.

17



3.Swarm Aggregation Control Law with Local Interactions

It is defined as follows:

g(y) = �y (ga(kyk)� gr(kyk)) ; y 2 Rd; (3.1.5)

where:

• The term ga(kyk) : R! R is called the attraction function.

• The term gr(kyk) : R! R is called the repulsion function.

According to the biological aspects illustrated in Chapter 1, the interaction
function has to satisfy the following properties:

• The interaction function is odd, i.e., g(y) = �g(�y).

• On large distances, the attraction dominates the repulsion.

• On short distances, the repulsion dominates the attraction.

The first point is crucial because it leads to the aggregating behavior of the
swarm. Its importance is emphasized in the rest of this chapter. The second
one states that when some robots are getting further from the others, the
attractive function should intervene to reunite the swarm. The third point
deals with the collision avoidance problem. In fact, if two agents are too
close to each other, the repulsive function should distance them.

The following assumption on ga and gr formalizes the requirements on
the interaction function:

Assumption 1 (A1): There exists a unique distance � at which ga(�) =

gr(�). Moreover, the following holds:

• ga(kyk) � gr(kyk) for kyk � �,

• gr(kyk) > ga(kyk) for kyk < �.

To further detail the characteristics of the interaction function, the fol-
lowing aspects are pointed out:

• The vector y defines the alignment, i.e., the direction on which the
interaction acts.

• The term yga(kyk) is called the actual attraction.

• The term ygr(kyk) is called the actual repulsion.
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Figure 3.2: Plot of the interaction function with bounded repulsion with
a = 0:5; b = 2; c = 1.
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Figure 3.3: Plot of the interaction function with an unbounded repulsion
and a = 0:5; b = 2; c = 1.
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In the first point, the role of the vector y is clarified. As far as the last
two points is concerned, they state that the whole term yg�(kyk) represents
the actual attraction/repulsion, i.e., the whole vector with magnitude and
direction.

In order to clarify the behavior of the interaction function, let us consider
the following example, firstly introduced in [60]:

g(y) = �y

2
6664 a|{z}
ga(kyk)

� be
�
 kyk2

c

!
| {z }

gr(kyk)

3
7775 ; kyk = � =

s
c ln

�
a

b

�
;

with a; b; c 2 R+ constant gains. In Fig.3.2 a possible plot of the interaction
function is proposed. Note that the distance vector y is assumed to be a
scalar in order to simplify the plot. The equilibrium distance � is reached in
two symmetric (w.r.t. the vertical axis passing through the origin) points
of the plot and in the origin, even if the latter is not a feasible configuration
as it represents the collision of two robots. Moreover, it is possible to notice
both the ranges of distance where the repulsion dominates the attraction
and the other way round. In this figure, the repulsion between two agents
is bounded, i.e., when the agents get closer to each other the repulsion is
dominated by a finite value. Instead, in Fig. 3.3, the repulsion is unbounded
because it tends to infinity as two agents get closer. Using an unbounded
control law instead of a bounded one, guarantees the collision avoidance
among the robots at the expense of an increased control effort. In the
rest of this thesis, two saturated control laws are introduced to guarantee
collision avoidance taking also into account the limited capabilities of the
robots actuators.

In the next section, classical results on fully connected robot swarms are
reviewed. For the sake of readability, the time-dependency will be omitted
where not strictly required.

3.2 Fully Connected Topology Review

For the sake of clarity and completeness, the approach proposed by Veysel
Gazi and Kevin M. Passino in [19] is reviewed in this section and the main
properties arising from it are highlighted.

Let us suppose that the swarm interactions are encoded by a time un-
varying fully connected undirected graph GfV;Eg. The dynamics of each
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Figure 3.4: Example of fully connected swarm with 3 agents.

robot is given by the following equation:

_xi =
nX

j 6=i;j=1
g(xi � xj); i = 1; : : : ; n: (3.2.1)

An example with 3 agents is illustrated in Fig.3.4.

A peculiar property of the fully connected topology is that the swarm
barycenter is stationary over time. This characteristic is detailed in the
following lemma:

Lemma 3.2.1. The barycenter �x(t) of the swarm consisting of agents
with dynamics (3.2.1) with an attraction/repulsion function g(�) which
is odd and satisfies the assumption A1 is stationary for all t.
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Proof. Let us compute the time derivative of the barycenter:

_�x = � 1

n

nX
i=1

nX
j=1;j 6=i

[ga (kxi � xjk)� gr (kxi � xjk)] (xi � xj)

= � 1

n

n�1X
i=1

nX
j=i+1

h
[ga (kxi � xjk)� gr (kxi � xjk)] (xi � xj)+

+ [ga (kxj � xik)� gr (kxj � xik)] (xj � xi)
i
= 0

Note that the last equation is obtained by using the assumption that
the interaction function is odd. For the sake of analysis, let us consider the
following assumption:

Assumption 2 (A2): There exist functions Ja(kyk) : R+ ! R+ and Jr(kyk) :
R+ ! R+ such that ry Ja(kyk) = y ga(kyk) and ry Jr(kyk) = y gr(kyk).

In the following, the main theorems concerning the swarm aggregation
algorithms for fully connected undirected communication graphs are re-
ported. The proofs are omitted for the sake of brevity. For further details,
the reader is referred to [21] .

Theorem 3.2.1. Let us consider a swarm of robots whose dynamics is
described by (3.2.1) under A1,A2. The swarm reaches a steady config-
uration as time goes to infinity, that is:

�(t)! 
e; t!1 ; 8�(0) 2 Rdn; (3.2.2)

with 
e = f� : _�(t) = 0g, i.e., the set of the equilibrium points.

Theorem 3.2.2. Consider a swarm of n robots with dynamics given
by (3.2.1) under assumptions A1, A2. Assume that the interaction
function is composed of a linear attraction and a bounded repulsion,
i.e., ga(kyk) = a and gr(kyk)kyk = b with a; b > 0 two real constant
values. Then, the members of the swarm converges to the bounded area
described by:

Br = fx 2 Rd : kx� �x(t)k � b

a
g:

Moreover, the swarm eventually converges to the region Br in finite
time, bounded by:

�t � max
i2f1;:::;ng

(
� 1

2a
ln

 
�2

2Vi(0)

!)
(3.2.3)
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with � =
b

a
.

Theorem 3.2.3. Consider a swarm of n robots with dynamics given
by (3.2.1) under assumptions A1, A2. Assume that the interaction
function is composed of a linearly bounded from below attraction and

an unbounded repulsion, i.e., ga(kyk) � a and gr(kyk) =
b

kyk2 with

a; b > 0 two real constant values. Then, the root mean square of the
distances of the swarm members from the barycenter will satisfy:

erms =

vuut 1

n

nX
i=1

keik2 �
s
b

2a
:

Summarizing, the properties of the control algorithm in (3.2.1) are the
following:

P1 The barycenter �x of the swarm is stationary over time.

P2 The swarm converges to an equilibrium state.

P3 The swarm converges to a bounded region.

P4 The swarm reaches the bounded region in finite time.

In the next section, the control law in (3.2.1) is generalized to deal with
fixed and time varying not fully connected undirected graphs. Therefore, in
the rest of this thesis, the input to each agent is saturated to cope with the
hardware limitations of the actuators and an effective obstacle avoidance
algorithm is integrated.

3.3 Swarm Aggregation Control Laws with Local
Interactions

In this section, the control law reviewed in Section 3.2 is extended preserving
properties P1-P4. In particular, the interactions among the robots are
limited by a range of view, i.e., each robot interacts only with its neighbors.
Modeling the robot sensing capabilities using a limited range of view is of
crucial importance as it allows to consider a realistic model for a broad range
of distance measurement or relative pose sensors. This assumption becomes
mandatory in the case of indoor environments where a GPS system can
not be used by the robot. Therefore, the convergence of the fixed topology
scenario is investigated. Eventually, the convergence of the more general
case of switching topology is analyzed.
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3.3.1 Fixed Topology

Let us consider a swarm composed of n robots with a fixed network topology
described by an undirected graph G = fV;Egmodeling the local interactions
among the robots. The following dynamics is considered for each robot i:

_xi =
X
j2Ni

g(xi � xj); i = 1; : : : ; n: (3.3.1)

Note that in Eq.(3.3.1) the term Ni indicates that each robot i interacts
only with its neighbors. Let us first provide a theorem which states that the
swarm will converge towards a steady configuration as time goes to infinity.

Theorem 3.3.1. Let us consider a swarm of robots whose dynamics is
described by Eq. (3.3.1) with an interaction function g(�) defined accord-
ing to Eq. (3.1.5) under A1-A2. If the graph G is connected, then the
swarm reaches a steady configuration as time goes to infinity, that is:

�(t)! 
e; t!1; 8�(t0) 2 Rdn (3.3.2)

with 
e = f� : _�(t) = 0g the invariant set of equilibrium points.

Proof. The proof follows the same argument as in [5, Theorem 1], where
the Lyapunov candidate function has been opportunely modified to take
into account the fact that the robots interaction is limited according to the
network topology. In particular, let us consider the following (generalized)
Lyapunov candidate function:

V =
n�1X
i=1

X
j 2 Ni

j > i

h
Ja(kxi � xjk)� Jr(kxi � xjk)

i
:

Let us now compute the gradient with respect to the i-th agent as follows:

rxiV =
X
j2Ni

h
rxiJa(kxi � xjk)�rxiJr(kxi � xjk)

i

=
X
j2Ni

(xi � xj)
h
ga(kxi � xjk)� gr(kxi � xjk)

i
=� _xi

where A2 has been used.
Let us now compute the time derivate _V of the Lyapunov candidate
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function as follows:

_V = [r� V ]
T _� =

nX
i=1

[rxi V ]
T _xi = �

nX
i=1

k _xik2 � 0:

Therefore, the Lyapunov function V decreases over time until _� = 0,
which implies that the swarm will eventually reach a steady state. In par-
ticular, by choosing 
0 = f� : V � V (�(t0)g and using the LaSalle’s
Invariance Principle, it follows that as t!1 the state � converges towards
the largest invariant subset of the set 
0, that is:


e = f� : _V = 0g = f� : _�(t) = 0g:

Let us now further investigate the region where the swarm members will
converge to and let us provide a bound on the size of the swarm for two
scenarios involving different repulsive actions: (i) bounded repulsion, (ii)
unbounded repulsion.

Bounded repulsion

The following assumption is used along this section:

Assumption 3 (A3): The norm of the total repulsive vector is bounded:

kykgr(kyk) � �: (3.3.3)

In the following, the main result of this subsection is detailed:

Theorem 3.3.2. Let us consider a swarm of robots whose dynamics is
described by Eq. (3.3.1) with an interaction function g(�) defined accord-
ing to Eq. (3.1.5) under A1-A3. If the graph G is connected, the swarm
moves towards and remains within a bounded region defined as:

Br =
(
x 2 Rd : kx� �xk � ��max(G)

p
n

�2(Lga;G)

)
; (3.3.4)

with �max(G) the maximum degree among all the robots in the swarm.
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Proof. Consider the following Lyapunov candidate function V = 1
2

Pn
i=1 keik2

for which the following time derivative holds:

_V =
nX
i=1

eTi _ei: (3.3.5)

For each robot i, the time derivative of the distance ei from the barycen-
ter is defined as follows:

_ei =
X
j2Ni

g(ei � ej) (3.3.6)

where the following facts have been used for the derivation:

• the center of mass �x of the multi-robot system described by Eq. (3.3.1)
with the interaction function g(�) given in Eq. (3.1.5) is stationary over
time (Lemma 3.2.11,)

• the equality (ei � ej) = (xi � xj) is obtained by simply adding and
subtracting the quantity �x to the term on the left side.

Note that, by substituting in Eq. (3.3.6) the definition of the interaction
function given in Eq. (3.1.5), the following expression is obtained:

_ei =
X
j2Ni

�(ei � ej)
�
ga(kei � ejk)� gr(kei � ejk)

�
: (3.3.7)

At this point, by substituting Eq. (3.3.7) in Eq. (3.3.5) the derivative _V of
the Lyapunov candidate function can be re-written as follows:

_V =
nX
i=1

eTi
X
j2Ni

�(ei � ej)
�
ga(kei � ejk)� gr(kei � ejk)

�
: (3.3.8)

In order to study the convergence of the multi-robot system described
by Eq. (3.3.1), let us decompose the derivative _V of the Lyapunov function
given in Eq. (3.3.8) in two terms as follows:

1Note that, although the swarm is assumed to be fully connected in Lemma 3.2.1, the
lemma still holds for the considered scenario.
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_V =
nX
i=1

eTi
X
j2Ni

�(ei � ej) ga(kei � ejk)
| {z }

_Va

+
nX
i=1

eTi
X
j2Ni

(ei � ej) gr(kei � ejk)
| {z }

_Vr

:

(3.3.9)

Let us now investigate the first of the two terms of the derivative _V ,
namely _Va. Note that, the term _Va can be restated in a more convenient
way for the stability analysis as follows:

_Va = �eTLmga;G e; (3.3.10)

with Lmga;G = Lga;G 
 Im, where Lga;G is a time-varying weighted Lapla-
cian matrix associated to ga(�). It is obtained by considering the following
coefficients for the adjacency matrix:

aij =

8<
:ga(kei � ejk) if j 2 Ni;

0 otherwise:
(3.3.11)

Furthermore, 
 defines the Kronecker product and Im an m �m identity
matrix. At this point, since the Laplacian is a positive semi-definite matrix
by construction, the following inequality holds:

_Va = �eTLmga;G e
� ��2(Lga;G) kek2; 8 e =2 spanf1
 �1; : : : ; 1
 �mg;

(3.3.12)

with �i = [0; : : : ; 1|{z}
i�th

; : : : ; 0]T the i-th vector of the standard basis. Note

that, the case e 2 spanf1
 �1; : : : ;1
 �mg is not considered as it implies:

� = [xT1 ; : : : ; x
T
n ]

T 2 spanf1
 �1; : : : ; 1
 �mg;

that is x1 = : : : = xm which represents a trivial steady state for the inter-
action dynamics given in Eq. (3.3.1), namely all the robots are collapsed to
the same point. Furthermore, it should be noticed that due to the repul-
sive component of the interaction function given in Eq. (3.1.5), this trivial
steady state could be achieved only if all the robots were originally located
at the same point, namely spanf1 
 �1; : : : ; 1 
 �mg is an invariant sub-
space which is orthogonal to the swarm trajectories under the assumption
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that �(t0)=[xT1 (t0); : : : ; x
T
n(t0)]

T =2spanf1
 �1; : : : ; 1
 �mg.
Let us now investigate the second of the two terms of the derivative _V ,
namely _Vr:

_Vr =
nX
i=1

eTi
X
j2Ni

(ei � ej) gr(kei � ejk): (3.3.13)

At this point, by recalling A3, the term _Vr can be bounded as follows:

_Vr =
nX
i=1

eTi
X
j2Ni

(ei � ej) gr(kei � ejk)

�
nX
i=1

keik
X
j2Ni

kei � ejk gr(kei � ejk)

�
nX
i=1

keik
X
j2Ni

� � �
nX
i=1

keik�i(G)

� ��max(G)
p
n kek

(3.3.14)

where the fact
Pn

i=1 keik �
p
n kek has been used.

Let us now substitute in Eq. (3.3.8) the bounds obtained for the two
terms _Va and _Vr respectively in Eq. (3.3.12) and Eq. (3.3.14) as follows:

_V = _Va + _Vr � ��2(Lga;G) kek2 + ��max(G)
p
n kek: (3.3.15)

Thus the derivative _V is negative definite if the following holds:

� �2(Lga;G) kek2 + ��max(G)
p
n kek < 0

kek
h
� �2(Lga;G) kek+ ��max(G)

p
n
i

< 0
(3.3.16)

which implies:

kek > ��max(G)
p
n

�2(Lga;G)
: (3.3.17)

Therefore, the solution of the system is uniformly bounded within the
region:

kx� �xk � ��max(G)
p
n

�2(Lga;G)
: (3.3.18)

Remark 3.3.1. Note that, the term �2(Lga;G) is time-varying. This is
due to the fact that no assumption has been made for the attractive
function ga(�). Indeed, a better bound can be obtained if further as-
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sumptions are made on the attractive term ga(�). To this end, let us
consider the following special case:

ga(kyk) = a: (3.3.19)

By having a linear attraction, Eq. (3.3.10) can be modified as follows:

_Va = �a eTLmG e; (3.3.20)

As a result, the bound given in Eq. (3.3.18) becomes:

kek > ��max(G)
p
n

a�2(LG) ; (3.3.21)

which implies:

kx� �xk � ��max(G)
p
n

a�2(LG) : (3.3.22)

Note that, this reflects the bound proposed in [86], where the conver-
gence of the swarm dynamics given in Eq. (3.3.1), is investigated under
the assumption of local communication among neighboring agents for
a particular choise of attractive/repulsive functions originally proposed
in [60], that is:

ga(kyk) = a; gr(kyk) = b exp

 
�kyk

2

c

!
(3.3.23)

with � = b
q

c
2 exp

�
�1

2

�
.

Unbounded repulsion

The following assumptions are used along this section:

Assumption 3b (A3b): The norm of the total repulsive vector is un-
bounded:

gr(kyk) � �

kyk2 : (3.3.24)

Assumption 4 (A4): The norm of the total attractive vector is bounded
below by a linear function:

kykga(kyk) � �kyk: (3.3.25)
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In the following, the main result of this section is detailed:

Theorem 3.3.3. Let us consider a swarm of robots whose dynamics is
described by Eq. (3.3.1) with an interaction function g(�) defined ac-
cording to Eq. (3.1.5) under A1,A2,A3b and A4. If the graph G is con-
nected, then the swarm moves towards and remains within a bounded
region defined as:

Br =
(
x 2 Rd : kx� �xk �

s
� jEj

��2(LG)

)
(3.3.26)

Proof. Let us consider again the Lyapunov candidate function V = 1
2

Pn
i=1 keik2

for which the following time derivative holds:

_V =
nX
i=1

eTi _ei

=
nX
i=1

eTi
X
j2Ni

�(ei � ej)
�
ga(kei � ejk)� gr(kei � ejk)

�
:

(3.3.27)

Note that, the derivative _V could be restated with respect to the set of links
E as follows:

_V = �
X

(i;j)2E
(ei � ej)T (ei � ej)

�
ga(kei � ejk)� gr(kei � ejk)

�
= �

X
(i;j)2E

�
ga(kei � ejk)� gr(kei � ejk)

�kei � ejk2: (3.3.28)

Therefore the time derivative _V is negative definite if the following holds:

X
(i;j)2E

�
ga(kei � ejk)� gr(kei � ejk)

�kei � ejk2 � 0 (3.3.29)

which can be restated as:

X
(i;j)2E

ga(kei � ejk) kei � ejk2 �
X

(i;j)2E
gr(kei � ejk) kei � ejk2: (3.3.30)

Recalling A3b, Eq. (3.3.30) can be re-written as follows:X
(i;j)2E

ga(kei � ejk) kei � ejk2

| {z }
H

� �jEj (3.3.31)
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where jEj denotes the overall number of links for the graph G = fV;Eg.
Let us now consider an attractive function linearly bounded from below

detailed in the following assumption:
The following inequality holds for H by using A4:

H =
X

(i;j)2E
ga(kei � ejk) kei � ejk2

�
X

(i;j)2E
� kei � ejk2 = �

X
(i;j)2E

(ei � ej)T (ei � ej)

= �
nX
i=1

eTi
X
j2Ni

(ei � ej) = � eT LmG e

� ��2(LG) kek2 8 e =2 spanf1
 �1; : : : ; 1
 �mg;

(3.3.32)

Therefore, Eq. (3.3.31) can be re-stated as follows:

��2(LG) kek2 � �jEj (3.3.33)

That is:
kek2 � �

��2(LG) jEj (3.3.34)

Therefore, the solution of the system is uniformly bounded within the re-
gion:

kx� �xk �
s

� jEj
��2(LG) (3.3.35)

A few remarks are now in order.

Remark 3.3.2. If the graph is fully connected, then jEj=n(n�1)
2 . Fur-

thermore, the Laplacian L has only two eigenvalues, namely �(L) =

f�1 = 0; �2 = ng, with multiplicity respectively f�1 = 1; �2 = n � 1g.
This can be proven by looking at the particular structure of the ma-
trices. In fact, for any symmetric matrix A 2 Rn�n with entries
aii = k and aij = 1, the determinant can be written in a closed form as
jAj = (k + n� 1) � (k � 1)n�1. Details of the proof can be found in [46].
As a result, the bound given in Eq. (3.3.35) can be restated as follows:

kx� �xk �
s
� n

� 2
(3.3.36)

which is exactly the result provided in [5].
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Remark 3.3.3. For sake of completeness, let us point out that in [5],
also the case of almost constant attraction is investigated, that is ga(kxi�
xjk) ! 0 as kxi � xjk ! 1. Indeed, this allows to model the fact that
the interaction among agents vanishes as they move apart from each
other. Note that, in this framework this peculiar behavior is obtained
by limiting the agents interaction to their neighborhood, namely agents
who are farther apart than a certain distance do not interact with each
other. Therefore, the case of almost constant attraction will not be
analyzed.

3.3.2 Switching Topology

Let us now consider a swarm composed of n robots for which the net-
work topology might change over time. In this scenario, the interaction
among robots can be modeled by means of a time-varying undirected graph
G(t) = fV;E(t)g, where E(t) = f�ij(t) : kxi(t)�xj(t)k � rg, with r the visi-
bility radius. The interaction dynamics given in Eq. (3.3.1) can be modified
accordingly as follows:

_xi =
X

j2Ni(t)

g(xi � xj); i = 1; : : : ; n (3.3.37)

where Ni(t) it the time-varying neighborhood of robot i. Note that, the
result given in Theorem 3.3.1 still holds in the case of a switching network
topology under the assumption that the graph G remains connected over
time. Indeed, this can be easily proven by exploiting the same Lyapunov
candidate function as the one given in the proof of Theorem 3.3.1. As for
the case of a static network topology, let us now investigate the region where
the swarm members will converge to and let us provide a bound on the size
of the swarm for both a bounded and an unbounded repulsion.

Bounded Repulsion

For a scenario where the swarm has a network topology which can change
over time and the repulsive term is assumed to be bounded, the following
theorem holds.

Theorem 3.3.4. Let us consider a swarm of robots whose dynamics
is described by Eq. (3.3.37) with an interaction function g(�) defined
according to Eq. (3.1.5) under A1-A3. If the graph G remains connected
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over time the swarm moves towards and remains within a bounded
region defined as:

Br =
(
x 2 Rd : kx� �xk � ��max(G)

p
n

�2(Lga;G(t))

)
(3.3.38)

Proof. In order to prove the theorem is sufficient to notice that the Lya-
punov candidate function V = 1

2

Pn
i=1 keik2 is a common Lyapunov function

for the switching dynamics given in Eq. (3.3.37). Therefore, the same argu-
ment proposed for the proof of Theorem 3.3.2 can be used.

Unbounded Repulsion

For a scenario where the swarm has a network topology which can change
over time and the repulsive term is unbounded, the following theorem holds.

Theorem 3.3.5. Let us consider a swarm of robots whose dynamics is
described by Eq. (3.3.37) with an interaction function g(�) under A1,A2,
A3b and A4. If the graph G remains connected over time the swarm
moves towards and remains within a bounded region defined as:

Br =
(
x 2 Rd : kx� �xk �

s
� jEj

��2(LG(t))

)
: (3.3.39)

Proof. In order to prove the theorem is sufficient to notice that the Lya-
punov candidate function V = 1

2

Pn
i=1 keik2 is a common Lyapunov function

for the switching dynamics given in Eq. (3.3.37). Therefore, the same argu-
ment proposed for the proof of Theorem 3.3.3 can be used.

3.4 Unmanned Surface Vehicles Application

The aim of a continuous and widespread monitoring of large water areas,
as well as intensive sampling and surveillance of oceans, harbors, lakes and
rivers has brought in the recent years to the definition and the development
of heterogeneous multi-vehicle frameworks, where a set of networked agents
cooperates and coordinates themselves to achieve global objectives.
In particular, the need of fast-reliable, light-weight and low-cost vehicles is
a key issue for the development of such multi-robot frameworks; the ad-
vantages with respect to huge and fully-equipped single-vehicle systems are

33



3.Swarm Aggregation Control Law with Local Interactions

obvious: multi-vehicle systems allow surveying of wider areas in less time,
different sensing devices can be mounted on different vehicles thus lowering
the cost of each single vehicle and achieving a higher robustness of the entire
framework, avoiding to jeopardize the entire mission if a single robot or sen-
sor fails or gets damaged. Moreover, the tasks of each agent can be replanned
to achieve different sampling resolution of the zones of interest. Being USVs
the interface between water and air environments, they are often also used
as mobile communication relays between Autonomous Underwater Vehicles
(AUVs) and remote control stations. For this reason, a number of studies
and researches are dedicated to the coordination of such kind of vehicles.
The motion coordination of USVs with the aim of providing and maintain-
ing a communication infrastructure is of relevant importance, as exploited
in the AOSN (Autonomous Ocean Sampling Network) Project, presented
in [87] and [88], where an extended interconnection between underwater,
surface and aerial vehicles is provided. For all of these reasons, a number
of approaches and techniques have been developed in order to guide and
control the motion of teams of marine vehicles. First at-field experiments
were carried out to test and validate collision avoidance strategies for USVs
based on COLREGS rules, like in [89]. On September 2008 in Trondheims-
fjord (Norway), the first full-scale vehicle-following experiment in a civilian
setting worldwide was carried out. The experiment involved a manned ve-
hicle, a 30 m long research vessel with upper speed of 13 knots, followed by
a retrofitted leisure boat of length 8.5 m with a maximum speed of 18 knots
as USV [90]. The following year the experiment was replicated with a couple
of slave vehicles following the master vessel [91]. A similar experiment was
carried out by CNR-ISSIA with the Charlie USV following the dual-mode
ALANIS vessel [92] Successful results have been also gained by the European
Project GREX [93] where one of the main project goals was the creation of
a conceptual framework and middleware systems to coordinate a swarm of
heterogeneous robotic vehicles.

The main goal of this section is to merge a virtual target based path-
following guidance system developed in [94] for marine surface vehicle sys-
tems, with the swarm methodology proposed in Section 3.3.2. The intuitive
idea is to rely on a simple potential-based attraction/repulsion swarm ag-
gregation strategy, while using the path-following guidance system, not to
control the motion of each single vehicle, but to directly drive the whole
swarm onto a desired path. In the following, a brief introduction to the
essential concepts of the virtual target based path-following approach for
single-vehicle guidance is firstly given (further details, proofs and experi-
mental results, can be found in [94] and references therein). Subsequently,
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such path-following approach is applied to the task of swarm path-following,
not guiding the motion of each vehicle but providing the convergence to and
the following of the path of the whole swarm.

3.4.1 Single-Vehicle Virtual Target based Path-Following

With reference to Fig. 3.5 and assuming the vehicle’s motion restricted to
the horizontal plane, the task is to reduce to zero both the position error
vector d, i.e. the distance between the vehicle and the virtual target attached
to the Serret-Frenet frame < v >, and the orientation error � =  �  p,
where  and  p are the vehicle’s direction of motion and local path tangent
respectively, expressed with respect to the earth-fixed reference frame <
w >. Performing some geometrical computations, the following kinematic

Figure 3.5: Path-following framework

error model is obtained and expressed with respect to the frame < v >:
8><
>:

_s1 = � _s (1� ccy1) + U cos�

_y1 = �cc _ss1 + U sin�
_� = r � cc _s

(3.4.1)

where r = _ , i.e. the yaw-rate of the vehicle which is also the control input
for the kinematic system; cc is the local path curvature and U is the norm
of the vehicle’s total velocity.
Posing the Lyapunov function V = 1

2(� � ')2, _V is negative-definite, with
the following expression for r:

r� = _'� k1(� � ') + cc _s (3.4.2)
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where k1 is a positive controller gain, while ' is a suitable approach angle,
function of the lateral error y1, given by:

'(y1) = � a tanh(k' y1) (3.4.3)

with k' > 0 and 0 <  a <
�
2 parameters of the approach angle expression.

The second step to guarantee the global convergence and the absence of
singularities is to pose the Lyapunov function Ve = 1

2(s
2
1+y

2
1), computing _Ve

and substituting first and second equations of (3.4.1), the following control
signal guarantee _Ve < 0:

_s� = U cos� + k2s1 (3.4.4)

Such further control input regulates the speed of the virtual target, attached
to the frame < v >, moving along the path.
The developed overall guidance system will reduce the lateral and orienta-
tion errors, y1 and � respectively, driving the yaw-rate of the vehicle, while
at the same time the speed regulation of the virtual target will reduce the
longitudinal error s1. The effect is that both the vehicle and the virtual
target will converge one to each other.

3.4.2 Swarm Path-Following

The path-following behavior for the swarm is achieved modifying the control
law in (3.3.37) by adding the swarm velocity input ug computed by the
path-following algorithm, i.e.:

_xi =
X

j2Ni(t)

g(xi � xj) + ug; i = 1; : : : ; n; (3.4.5)

with ug 2 Rd the swarm guidance velocity input. In particular, the original
single-vehicle path-following algorithm is initially adapted computing the
cartesian error between the virtual target on the path and the coordinates
of the center of mass of the swarm �x. The direction of motion of the swarm
� =

P
i  i
n

is not measured or estimated; being the swarm aggregation
technique proven to converge to the velocity reference, the direction of the
swarm motion is obtained by direct integration of the desired yaw rate
obtained from Eq. (3.4.2) of the path-following controller, therefore � =
� � =

R
r�dt. Regarding the surge speed of the overall swarm, i.e. the norm

of the desired velocity jugj, it is a priori defined and set by the user with a
desired value jugj = u�g.
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The reference velocity to be set as input for the swarm aggregation control
system is then computed as:

ug =

"
jugj cos �b
jugj sin �b

#
(3.4.6)

A simulation of the proposed integration between the swarm methodology
and the path-following algorithm is given in Chapter 6
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CHAPTER 4

Saturated Swarm Aggregation Control Laws with
Local Interactions and Obstacle Avoidance

In this chapter, further extensions to the approach reviewed in Section 3.2
are introduced. Considering that the robot actuators have physical limita-
tions by nature, i.e., they can not generate an arbitrarily large speed, the
aforementioned approach is extended considering a bounded control input
to the robot model in (3.1.1) using saturated inputs. A theoretical analysis
of the implications of this choice is discussed in the rest of the chapter. A
first approach integrating also an effective obstacle avoidance technique is
detailed in the next section. In Section 4.2, instead, a refined control law
with a single virtual robot for the obstacle avoidance is proposed. Note that,
the notation introduced in Section 3.1 is used along this chapter.

4.1 Saturated Aggregation Law with Local Interac-
tions and Obstacle Avoidance

In this section, a saturated swarm aggregation control law where the robot
to robot interaction is limited by a visibility range r is proposed. The
saturation is generated by adding a normalizing factor in the denominator
of the control action of each robot i as follows:

_xi(t) = k

P
j2Ni(t) g(xi(t)� xj(t))

1 +



Pj2Ni(t) g(xi(t)� xj(t))




 ; (4.1.1)

where k � 0 is the saturation gain. Note that the visibility range r is used
to define the neighborhood of the robot i as described by Equations (3.1.2)
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and (3.1.4). Compared to the model reviewed in Section 3.2, the aggregation
dynamics (4.1.1) has the following characteristics:

• The proximity graph encoding the interactions among the robots is
time varying.

• Robots only interact within their visibility range.

• The control law is saturated to better comply with the actuators ca-
pabilities.

A consequence of these characteristics is the loss of property P1, i.e., the
swarm barycenter is no longer stationary. This is due to the fact that,
while the mutual effects of interacting robots are always symmetric in the
model (3.2.1), this does not hold under limited visibility if saturation occurs.
Nevertheless, it will be shown that model (4.1.1) still exhibits properties
P2–P4.

4.1.1 Steady State Analysis

In this section, a convergence analysis for the control law given in (4.1.1)
is provided. In particular, the following theorem shows the existence of a
steady state configuration.

Theorem 4.1.1. Consider a swarm of robots whose dynamics is de-
scribed by (4.1.1) under A1, A2. Then the swarm reaches a steady
state configuration for any given initial condition.

Proof. Define J(kyk) = Ja(kyk) � Jr(kyk), with Ja(�) and Jr(�) as in A2.
Consider the following (generalized) Lyapunov candidate:

V (t) =
1

2

X
(i;j)2E(t)

J(kxi(t)� xj(t)k)

whose time derivative is:

_V (t) =
nX
i=1

(rxiV (t))
T _xi(t): (4.1.2)

By construction, the following is obtained:

rxiV (t) = �
_xi(t)

f(xi(t))
; (4.1.3)

40



4.Saturated Swarm Aggregation Control Laws with Local Interactions
and Obstacle Avoidance

with f(xi(t)) defined as:

0 < f(xi(t)) =
1

1 + kPj2Ni(t) g(xi(t)� xj(t))k
� 1: (4.1.4)

Therefore, by substituting (4.1.3) in (4.1.2):

_V (t) = �
nX
i=1

k _xi(t)k2
f(xi(t))

� 0:

Using LaSalle’s Invariance Principle, it follows that as t!1 the state �(t)
converges towards the largest invariant subset of the set where _V (t) = 0,
that is:


e = f� : _�(t) = 0g:
Since 
e is made of equilibrium points, the thesis follows.

Note that, although Theorem 4.1.1 guarantees that the swarm converges
to a steady state, it should be noticed that the computation of the equi-
librium points in a closed form is impractical. Therefore, in the following
section the area eventually achieved by the swarm of robots is characterized.

4.1.2 Cohesiveness Analysis

Let us now state a theorem concerning the bounded region where the swarm
will eventually converge into.

Theorem 4.1.2. Consider a swarm of robots whose dynamics is de-
scribed by (4.1.1) under A1-A3. Then the swarm converges to the
following bounded region:

Br =
(
x 2 Rd : kx� �xk � �(n� 1)

�2(Lha;G(t))

)
:

Proof. Consider the following Lyapunov candidate:

V (t) =
1

2

nX
i=1

ei(t)
T ei(t): (4.1.5)

Let us now consider the time derivative of the Lyapunov candidate as fol-
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lows:
_V (t) =

nX
i

eTi _ei =
nX
i=1

eTi ( _xi � _�x) =
nX
i=1

eTi _xi| {z }
_V1

�
nX
i=1

eTi _�x

| {z }
_V2

:

Let us first analyze the second term _V2:

_V2 =
nX
i=1

eTi _�x =

 
nX
i=1

eTi

!
_�x = 0T _�x = 0: (4.1.6)

Note that, the motion of the barycenter does not affect the size of the region
where the swarm will eventually aggregate. Interestingly enough, it only
affects the location of such a region.

The term _V1 is now investigated. Let �g(kei � ejk) = ga(kei � ejk) �
gr(kei � ejk) and k = 1 with no lack of generality. By recalling that
xi � xj = ei � ej , the following is obtained:

_V1 =
nX
i=1

eTi

P
j2Ni(t)�(xi � xj) �g(kxi � xjk)

1 + kPj2Ni(t)�(xi � xj) �g(kxi � xjk)k

=
nX
i=1

eTi

P
j2Ni(t)�(ei � ej) �g(kei � ejk)

1 + kPj2Ni(t)�(ei � ej) �g(kei � ejk)k

=
nX
i=1

f(xi)e
T
i

X
j2Ni(t)

�(ei � ej)�g(kei � ejk): (4.1.7)

Therefore, Eq. (4.1.7) can be rewritten as follows:

_V1 =
nX
i=1

f(xi)e
T
i

X
j2Ni(t)

�(ei � ej)�g(kei � ejk)

=
nX
i=1

f(xi)

0
@�eTi X

j2Ni(t)

(ei � ej)ga(kei � ejk)

+eTi
X

j2Ni(t)

(ei � ej)gr(kei � ejk)
1
A

=
nX
i=1

0
@�eTi X

j2Ni(t)

(ei � ej)ha(kei � ejk)+

+eTi
X

j2Ni(t)

(ei � ej)hr(kei � ejk)
1
A
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or

_V1 = �
nX
i=1

eTi
X

j2Ni(t)

(ei � ej)ha(kei � ejk)
| {z }

_Va

+
nX
i=1

eTi
X

j2Ni(t)

(ei � ej)hr(kei � ejk)
| {z }

_Vr

where ha(kei�ejk) = ga(kei�ejk)f(xi) and hr(kei � ejk) = gr(kei � ejk)f(xi)
are the attractive and repulsive terms, respectively.

Now, let us investigate the term _Va:

_Va = �
nX
i=1

eTi
X

j2Ni(t)

(ei � ej)ha(kei � ejk)

= �eTLdha;G(t)e
(4.1.8)

where: Ldha;G(t) = Lha;G(t)
 Id with 
 the Kronecker product and Lha;G(t)
the weighted Laplacian matrix related to the attractive term ha(�):

Lha;G(t) = Dha;G(t)�Aha;G(t): (4.1.9)

Here, Aha;G(t) is the related adjacency matrix whose elements Aij
ha;G(t) are

defined as follows:

Aij
ha;G(t) =

8<
:ha(kei � ejk) if (i; j) 2 E(t);
0 otherwise

andDha;G(t) is the related degree matrix whose elementsDij
ha;G(t) are defined

as follows:

Dij
ha;G(t) =

8<
:
P

j2Ni(t) ha(kei � ejk) if i = j;

0 otherwise:

Note that, although the network topology encoding the robot-to-robot
interaction is described by a time varying undirected graph G(t), the Lapla-
cian matrix Lha;G(t) related to the attractive term does not sum up to zero
on both the columns and the rows but only on the rows as f(xi) 6= f(xj) in
general due to the saturations.
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For the quadratic form in (4.1.8), the following inequality holds:

eTLdha(G(t))e � �2(Lha;G(t))kek2;
8 e =2 spanf1
 �1; : : : ;1
 �dg:

(4.1.10)

Using this fact, it is obtained:

_Va � ��2(Lha;G(t))kek2

= ��2(Lha;G(t))
nX
i=1

keik2:
(4.1.11)

Recalling that:
kxi � xjk gr(kxi � xjk) � �

or, equivalently:
kei � ejk gr(kei � ejk) � �;

the following holds:

_Vr =
nX
i=1

eTi
X

j2Ni(t)

(ei � ej)hr(kei � ejk)

�
nX
i=1

eTi
X

j2Ni(t)

(ei � ej) f(xi) �

kei � ejk

�
nX
i=1

keik
X

j2Ni(t)

kei � ejk f(xi) �

kei � ejk

�
nX
i=1

keik f(xi)�jNi(t)j �
nX
i=1

keik f(xi)� (n� 1)

�
nX
i=1

keik� (n� 1): (4.1.12)

Now combine eqs. (4.1.11) and (4.1.12) to get:

_V1 = _Va + _Vr

� ��2(Lha;G(t))
nX
i=1

keik2 +
nX
i=1

keik� (n� 1)

� �
nX
i=1

keik
�
�2(Lha;G(t))keik � � (n� 1)

�
(4.1.13)
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which is negative definite if the following holds for each term keik:

keik � � (n� 1)

�2(Lha;G(t))
; 8 i 2 V: (4.1.14)

Therefore, the bound on the maximum ultimate swarm size is:

kx� �xk � � (n� 1)

�2(Lha;G(t))
; (4.1.15)

with x 2 Rd.

In view of the convergence time analysis, let us now further detail the
bound given in (4.1.15) under the following hypothesis:

Assumption 5 (A5): Graph G(t) remains connected at all times. In par-
ticular, it is �2(Lha;G(t)) � �2;min > 0; with Lha;G(t) the weighted Laplacian
matrix related to the attractive term ha(�) = ga(�)f(xi(t)), with f(xi(t))

defined as in (4.1.4).

Corollary 4.1.1. Consider a swarm of robots whose dynamics is de-
scribed by (4.1.1) under A1-A5. Then the swarm converges to the
following bounded region:

Br =
(
x 2 Rd : kx� �xk � �

�

(n� 1)

�2;min

)
:

Proof. Let us consider equation (4.1.8). Using A4, it becomes:

_Va = �
nX
i=1

eTi
X

j2Ni(t)

(ei � ej)ha(kei � ejk)

� ��
nX
i=1

eTi
X

j2Ni(t)

(ei � ej) f(xi)

� �� eT Ldf;G(t) e
� ���2

�Lf;G(t)�kek2
� ���2

�Lf;G(t)� nX
i=1

keik2;

with Ldf;G(t) = Lf;G 
 Id(t) and Lf;G(t) the Laplacian matrix defined as
in (4.1.9), where the elements Aij

f;G(t) and Dij
f;G(t) of the adjacency and
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degree matrices, respectively, are obtained by replacing the terms ha(kxi �
xjk) with the terms f(xi). This implies that the condition given in (4.1.14)
can be rewritten as:

keik � �

�

(n� 1)

�2(Lf;G(t)) : (4.1.16)

Using A5, the bound given in (4.1.15) becomes:

kx� �xk � �

�

(n� 1)

�2;min
: (4.1.17)

Noting that (4.1.16) and (4.1.17) depend on the algebraic connectivity
of the Laplacian matrix encoding the graph modeling the robot-robot inter-
actions and that the existence of an edge in the graph is discriminated by
the range of visibility r, then there exists a strong relationship between the
bounds and r. In particular, the higher r the bigger becomes the algebraic
connectivity as the number of edges in the graph increases. Therefore, the
given bounds decrease until the upper bound n is reached for the value of
the algebraic connectivity. In order to establish some interesting relation-
ship with the fully-connected scenario in [5], consider the behavior of the
proposed interaction rule when approaching the equilibrium. Therefore, in
the following the Laplacian matrix Lf;G will be replaced with the Laplacian
LG for the sake of the analysis. The time dependency is omitted in this
analysis since the graph is assumed to be fully connected when approaching
the equilibrium. Consider that if the graph is fully connected it can be
proven that �2(LG) = n. Hence, (4.1.15) becomes:

kx� �xk � �

�

(n� 1)

n
� �

�
(4.1.18)

which is the same result obtained in [5].
In the following section, the time required for the swarm to move arbi-

trary close to the region in (4.1.17) is detailed.

4.1.3 Convergence in Finite Time

In the following theorem, it is shown the finite time convergence of the
dynamics in (4.1.1) towards the bounded region.

Theorem 4.1.3. Let us consider a swarm of robots whose dynamics
is described by Eq. (4.1.1) under A1-A5. Then the swarm moves ar-
bitrarily close to the bounded region Br defined in Corollary 4.1.1 in
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finite-time tf , that is:

tf � � 1

2#�2;min
ln

 
�2

2V (0)

!
; (4.1.19)

with � defined as follows:

� = (1 + �)
� (n� 1)

�2;min
;

where � =
#

1� # with # 2 (0; 1).

Proof. Let us consider the upper bound given in (4.1.13) for the Lyapunov
function:

_V (t) � ��2(Lha;G(t))
nX
i=1

keik2 +
nX
i=1

keik� (n� 1)

� ��2;min

nX
i=1

keik2 + � (n� 1)
nX
i=1

keik

� �(1� #)�2;min

nX
i=1

keik2 � #�2;min

nX
i=1

keik2

+� (n� 1)
nX
i=1

keik

� �#�2;min

nX
i=1

keik2 �
nX
i=1

keik
�
(1� #)�2;min keik

�� (n� 1)
�

where 0 < # < 1. If the following condition holds for each term keik:

keik � � (n� 1)

(1� #)�2;min
= �

the time derivative of the Lyapunov function can be bounded as follows:

_V (t) � �#�2;min

nX
i=1

keik2

� �2#�2;min V (t):
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Thus, the swarm moves arbitrarily close to the bounded region in finite
time:

tf � � 1

2#�2;min
ln

 
�2

2V (0)

!
:

4.1.4 Obstacle Avoidance Integration

The swarm dynamics (4.1.1) does not take into account the avoidance of
the obstacles in the environment. However, this is necessary to ensure a
safe navigation of the swarm within the environment. Nowadays, most of
the mobile robotics platforms are equipped with low level obstacle avoid-
ance algorithms. The approach proposed in the following does not conflict
with the equipped algorithms but offers a smooth potential based obstacle
avoidance forming, together with the swarm aggregation algorithm, a stable
navigation framework for robot swarms.

The key idea is to represent an obstacle as a set of virtual robots in the
neighborhood of the detecting robot. The set of virtual agents are created
on the boundary of the obstacle by projection, i.e., they are located on the
boundary of the obstacle at the minimum distance from the detecting agent.
In order to avoid an undesired attraction from the obstacle, it is sufficient to
set � in A1 as the activation threshold for the obstacle avoidance algorithm.
Furthermore, the number of virtual robots added in the neighborhood of the
i-th agent has to be at least equal to the number of its current neighbors,
i.e. jNi(t)j. This prevents any collision because the repulsion originated by
the virtual agents will certainly counteract any possible influence due to the
actual neighbors. Therefore, the dynamics in (4.1.1) is modified as follows:

_xi = k

P
j2N+

i
(t) g(xi � xj)�(i; j;N+

i (t))

1 +



Pj2N+

i
(t) g(xi � xj)�(i; j;N+

i (t))



 ;

whereN+
i (t) = Ni(t)[N obs

i (t) withN obs
i (t) the indexes of the local set of ob-

stacles detected by the i-th robot and �(i; j;N+
i (t)) = jNi(t)j if j 2 N obs

i (t),
�(i; j;N+

i (t)) = 1 otherwise. As a result, the dynamics are characterized
by a switching topology where sets of virtual robots, i.e., obstacles, are
appropriately added or removed. For such dynamics, the result given in
Theorem 4.1.2 still holds.

Remark 4.1.1. Note that, in this chapter obstacles are assumed to be
convex in order to ensure the repulsive action to be continuous. In
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the case of not convex obstacles, it is always possible to resort to well
known convex decomposition techniques, see [95, Chapter 7], so that
this assumption can be satisfied.

4.2 Saturated Aggregation Law with Local Inter-
actions and a Single Virtual Robot Obstacle
Avoidance

The swarm aggregation algorithm proposed in Section 4.1 requires an obsta-
cle avoidance technique which projects a set of virtual robots on the obstacle
to ensure a safe navigation. In this section, a more refined control law where
the obstacle avoidance requires to project only one virtual robot rather than
a set is introduced.

Let us consider a swarm of n mobile robots for which, as detailed in
Section 3.1, the interaction is described by means of an undirected time-
varying proximity graph G(t) = fV;E(t)g. In particular, for each mobile
robot i consider the following dynamics:

_xi =

P
j2Ni(t)


ij g(xi � xj)P
j2Ni(t)


ij
; (4.2.1)

where 
ij is the weighting factor between each pair of neighboring robots
i and j defined as:


ij =
1

kxi � xjk� ; with � � 1: (4.2.2)

For the proposed dynamics, the attraction and repulsion functions are de-
fined as follows:

ga(kyk) = a(1� �(kyk));
gr(kyk) = b �(kyk); (4.2.3)

where a; b > 0 are constant real values and �(�) : R! R is a suitable gen-
eralized function. Note that, the term ga(kyk)� gr(kyk) by construction
takes values within the range [a; �b]. Similarly to the control law proposed
in Section 4.1, P1 does not hold. However, in the rest of this section the
fact that P2-P4 are still valid for the control law in (4.2.1) is proven.

In order to analyze the characteristics of the proposed control law, the
following assumption is made on the generalized function �(�):

Assumption 6 (A6): A generalized function �(�) must satisfy the fol-
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lowing properties:

� monotonic function,

� limkyk!0 �(kyk) = 1,

� limkyk!1�(kyk) = 0.

Example 1. As an example of generalized function �(�), let us consider:

• exp

 
�kyk

�

c

!
with � � 1 and c > 0,

• sech
�
�kyk�

�
with � � 1.

It is worth pointing out that, compared to the approach in Section 4.1,
the control law given in Eq. (4.2.1) has two major advantages:

1. It allows the input saturation to be asymmetric with respect to the for-
ward and backward velocity to better comply with the hardware/software
specifications.

2. It allows an easier and yet more natural integration of the obstacle
avoidance.

The following assumption is required in the rest of this section:

Assumption 7 (A7): There exist the following functions:

Ja(kyk) : R+ ! R+;

Jr(kyk) : R+ ! R+

such that:
ryJa(kyk) =

�
1

kyk
�� y

kyk ga(y);

ryJr(kyk) =
�

1

kyk
�� y

kyk gr(y):

4.2.1 Steady State Analysis

In the following, the fact that the multi-robot system always reaches a steady
state equilibrium for any given initial condition is proven.
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Theorem 4.2.1. Consider a swarm of robots whose dynamics is de-
scribed by Eq. (4.2.1) under A1, A6 and A7. Then the swarm converges
to an equilibrium state for any initial condition.

Proof. Define J(kyk) = Ja(kyk) � Jr(kyk), with Ja(�) and Jr(�) as in A7.
Consider the following (generalized) Lyapunov candidate:

V (t) =
1

2

X
(i;j)2E(t)

J(kxi(t)� xj(t)k)

whose time derivative is:

_V (t) =
nX
i=1

(rxiV (t))
T _xi(t): (4.2.4)

By construction, it follows that:

rxiV (t) = �
2
4 X
j2Ni(t)


ij

3
5 _xi(t): (4.2.5)

Therefore, substituting (4.2.5) in (4.2.4) and deriving from (4.2.2) that:


i =
X

j2Ni(t)


ij > 0; (4.2.6)

it is obtained:

_V (t) = �
nX
i=1

2
4 X
j2Ni(t)


ij

3
5 k _xik2 � 0:

Hence, using LaSalle’s Invariance Principle, it follows that as t ! 1 the
state �(t) converges towards the largest invariant subset of the set where
_V (t) = 0, that is:


e = f� : _�(t) = 0g;
which proves the thesis as 
e is made of equilibrium points.

Example 2. Consider the following generalized function �(kyk) = exp(�kyk4
c

).
Then, A7 is satisfied and the following (generalized) Lyapunov candi-
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date can be used in Theorem 4.2.1:

V (t) =
X

(i;j)2E(t)

"
� a

2 kxi � xjk4

+(a� b)
0
B@� e�

kxi�xjk
4

c

2kxi � xjk2 �
p
� Erf

�kxi�xjk2p
c

�
2
p
c

1
CA
3
75

with Erf(�) the error function defined as:

Erf(y) =
2p
�

Z y

0
e�t

2

dt:

4.2.2 Cohesiveness Analysis

In the following, the fact that the multi-robot system converges towards a
bounded region whose size is a function of the parameters of the interaction
function and of the network topology is proven. Time dependency is omitted
for compactness.

Theorem 4.2.2. Let us consider a swarm of robots whose dynamics is
described by Eq. (4.2.1) under A1, A6 and A7. Then the swarm moves
towards and remains within a bounded region:

Br =
(
x 2 Rd : kx� �xk � 1

�̂2(L̂)
�
1 +

b

a

�)
: (4.2.7)

Proof. Let us take into account the following Lyapunov candidate function:

V =
nX
i=1

1

2
eTi ei:

Let us now analyze the time derivative of the Lyapunov candidate:

_V =
nX
i=1

eTi _ei: (4.2.8)

From (4.1.6), it is possible to notice that due to the limited interaction
range and to the saturation effects, the barycenter is no longer stationary.
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Consequently, the previous equation becomes:

_V =
nX
i=1

eTi ( _xi � _�x) =
nX
i=1

eTi _xi| {z }
V1

�
nX
i=1

eTi _�x

| {z }
V2

:

Similarly to what happens in (4.1.6), it can be noticed that the dynamics
of the barycenter does not affect the value of the time derivative of the
Lyapunov function, namely:

V2 =
nX
i=1

eTi _�x =

 
nX
i=1

eTi

!
( _�x) = 0T ( _�x) = 0: (4.2.9)

Let us now consider the contribution Vi given by the i-th robot to the
term V1:

_Vi =e
T
i

P
j2Ni(t)

�
ij (xi�xj)kxi�xjk(ga(kxi � xjk)� gr(kxi � xjk))


i

=� eTi

i

2
4 X
j2Ni(t)


ij
(xi � xj)
kxi � xjkga(kxi � xjk)

�
X

j2Ni(t)


ij
(xi � xj)
kxi � xjkgr(kxi � xjk)

3
5

At this point, by substituting ga = a(1� �(kxi � xjk)) and gr = b �(kxi � xjk)
in the previous equation it follows:

_Vi = �e
T
i


i

2
4 X
j2Ni(t)


ij
(xi � xj) a(1� �(kxi � xjk))

kxi � xjk

�
X

j2Ni(t)


ij
(xi � xj) b �(kxi � xjk)

kxi � xjk

3
5

=
eTi

i

2
4�a X

j2Ni(t)


ij
(xi � xj)
kxi � xjk

+(a+ b)
X

j2Ni(t)


ij
(xi � xj) �(kxi � xjk)

kxi � xjk

3
5
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� � a

i

X
j2Ni(t)


ij
eTi (xi � xj)
kxi � xjk

+
(a+ b)


i

X
j2Ni(t)


ij
keikkxi � xjk �(kxi � xjk)

kxi � xjk

= � a

i

X
j2Ni(t)


ij
eTi (xi � xj)
kxi � xjk

+
(a+ b)


i

X
j2Ni(t)


ijkeik �(kxi � xjk)

Now, by considering that �(kxi � xjk) � 1, the following holds:

_Vi � � a

i

X
j2Ni(t)


ij
eTi (xi � xj)
kxi � xjk�̂ +

(a+ b)


i
keik

X
j2Ni(t)


ij :

Noticing that the last term of the equation is equal to 
i, the following
is obtained:

_Vi � � a

i

X
j2Ni(t)


ij
eTi (xi � xj)
kxi � xjk + (a+ b)keik: (4.2.10)

Let us now recall that xi � xj = ei � ej : Thus, by substituting the
previous equality in Eq. (4.2.10), it follows that:

= � a

i

X
j2Ni(t)


ij
eTi (ei � ej)
kei � ejk + (a+ b)keik: (4.2.11)

It turns out that in order to have a semi-definite negative (SDN) time
derivative of the Lyapunov function, the following condition must be satis-
fied:

� a

i

X
j2Ni(t)


ij
eTi (ei � ej)
kei � ejk + (a+ b)keik � 0;

or, in other terms:

(a+ b)keik � a


i

X
j2Ni(t)


ij
eTi (ei � ej)
kei � ejk :
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Let us now consider all the elements of the term V1:

_V1 =
nX
i=1

2
4� a


i

X
j2Ni(t)


ij
eTi (ei � ej)
kei � ejk + (a+ b)keik

3
5 � 0:

The previous equation can be restated as follows:

(a+ b)
nX
i=1

keik �
nX
i=1

2
4 a

i

X
j2Ni(t)


ij
eTi (ei � ej)
kei � ejk

3
5 : (4.2.12)

Basically, a lower bound of the term

a
nX
i=1

2
4wi

X
j2Ni(t)


ij
eTi (ei � ej)
kei � ejk

3
5 ; (4.2.13)

is required, where wi =
1


i
has been used. To this aim, let us take into

account the following error Laplacian matrix L̂:

l̂ij =

8>>>>>><
>>>>>>:

P
j2Ni(t)


ij
wi

kei � ejk ; j = i

�
ij wi

kei � ejk ; j 2 Ni(t)

0 otherwise:

(4.2.14)

Note that in this Laplacian, only the row sum is equal to zero. Equa-
tion (4.2.13) can be restated in terms of the algebraic connectivity of the
Laplacian matrix L̂ as follows:

a
nX
i=1

2
4wi

X
j2Ni(t)


ij
eTi (ei � ej)
kei � ejk

3
5 = a eT L̂de; (4.2.15)

where L̂d = L̂ 
 Id. An upper bound to the term a eT L̂de can be obtained
similarly to (4.1.10). Let us substitute this bound to (4.2.12). The following
is obtained:

(a+ b)
nX
i=1

keik � a�̂2(L̂)kek2: (4.2.16)

Note that, the previous equation can be equivalently stated as:

(a+ b)
nX
i=1

keik � a�̂2(L̂)
nX
i=1

keik2: (4.2.17)
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At this point, since the previous inequality can be rewritten as:

�kek
"
a�̂2(L̂)kek � (a+ b)

nX
i=1

keik
#
� 0;

and by recalling that _V2 = 0 due to (4.2.9), it follows that the derivative of
the Lyapunov candidate is semi-definite negative if the following condition
holds:

keik � (a+ b)

a �̂2(L̂)
=

1

�̂2(L̂)
�
1 +

b

a

�
(4.2.18)

Therefore, the bound on the maximum ultimate swarm size is:

kx� �xk � 1

�̂2(L̂)
�
1 +

b

a

�

with x 2 Rd.

Remark 4.2.1. Note that, differently from the bound given in Theo-
rem 4.1.2, the bound in Theorem 4.2.2 does not depend upon the num-
ber of robots n due to the weighting factor in (4.2.2).

It is worth to point out that the algebraic connectivity �̂2(L̂) is a func-
tion of the Laplacian matrix thus it depends upon the errors ei; 8i 2 V .
Nevertheless, it is possible to derive a bound which does not depend upon
e by exploiting the following assumption:

Assumption 8 (A8): The graph G(t) remains connected all the time.
Furthermore, it is �̂2(L̂(t)) � �2;min(L̂(t)) with L̂ the error Laplacian matrix
whose elements definition is given in Eq. (4.2.14).

Corollary 4.2.1. Let us consider a swarm of robots whose dynamics
is described by Eq. (4.2.1) under A1, A6-A8. Then the swarm moves
towards and remains within a bounded region:

Br =
(
kx(t)� �xk � 1

�2;min(L̂)
�
1 +

b

a

�)
: (4.2.19)

Proof. Applying A8 to (4.2.17), it is obtained:

(a+ b)
nX
i=1

keik � a�̂2;min(L̂)
nX
i=1

keik2: (4.2.20)
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The thesis follows by an algebraic computation similar to the one performed
in Theorem 4.2.2.

4.2.3 Convergence in Finite Time

In the following, the fact that the multi-robot system moves arbitrarily close
the bounded region given in Corollary 4.2.1 in finite-time is proven.

Theorem 4.2.3. Let us consider a swarm of robots whose dynamics
is described by Eq. (4.2.1) under A1,A6-A8. Then the swarm moves
arbitrarily close to the bounded region Br defined in Corollary 4.2.1 in
finite-time tf , that is:

tf � � 1

2#a �̂2;min(L̂)
ln

 
�2

2V (0)

!
(4.2.21)

with � defined as follows:

� = (1 + �)
1

�̂2;min(L̂)
�
1 +

b

a

�
; (4.2.22)

where � =
#

1� # with # 2 (0; 1).

Proof. In order to prove the lemma, let us consider the bound given in
Eq. (4.2.20):

_V� �a �̂2;min(L̂)
nX
i=1

keik2 + (a+ b)
nX
i=1

keik

� �a(1 + #� #) �̂2;min(L̂)
nX
i=1

keik2 + (a+ b)
nX
i=1

keik

� �#a �̂2;min(L̂)
nX
i=1

keik2
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� (1� #) a �̂2;min(L̂)
nX
i=1

keik2 + (a+ b)
nX
i=1

keik

� �#a �̂2;min(L̂)
nX
i=1

keik2

�
nX
i=1

keik
"
(1� #) a �̂2;min(L̂)

nX
i=1

keik � (a+ b)

#

At this point, if the following condition holds for each robot i:

(1� #) a �̂2;min(L̂)
nX
i=1

keik � (a+ b) > 0

that is:

keik> 1

(1� #)
(a+ b)

a �̂2;min(L̂)
=

1

(1� #)�̂2;min(L̂)
�
1+

b

a

�
= �:

Then:

_V� �#a �̂2;min(L̂)
nX
i=1

keik2

� �2#a �̂2;min(L̂)V (t)
Thus, the swarm moves arbitrarily close to the bounded region in finite

time:

tf � � 1

2#a �̂2;min(L̂)
ln

 
�2

2V (0)

!

4.2.4 Obstacle Avoidance Integration

An effective way to integrate the obstacle avoidance has been presented in
Section 4.1.3 where an obstacle is represented as a set of virtual robots
created on the boundary of the closest obstacle by projection, i.e. they are
located on the boundary of the obstacle at the minimum distance from the
detecting robot. Furthermore, the cardinality of this set of virtual robot has
to be at least equal to the current neighborhood of the considered robot.
Indeed, this would prevent any collision because the repulsion originated
by the virtual robots will certainly counteract any possible influence by the
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actual neighbors.
Conversely, by using the control law given in Eq. (4.2.1), only one virtual

robot has to be projected on the closest obstacle. This can be explained by
the fact that the control law proposed in this work relies on the presence
of weighting factors 
ik. To better understand this concept, let us denote
with xk the location of a virtual robot representing an obstacle detected
by a given robot i. It is worthy to recall that, also in this case, the virtual
robot is projected on the closest obstacle only if the distance from the actual
robot to the obstacle itself is shorter than equilibrium distance of (4.2.1),
i.e., the distance for which the repulsive and attractive actions balance.
Then, the closer the robot i moves to the virtual robot xk, the greater the
term 
ik = 1

kxi�xkk� becomes. Hence, the control contribution due to the
interaction with the virtual robot becomes more relevant and this allows to
prevent a collision with the virtual robot k associated to a certain obstacle
regardless of the cardinality of the current true neighborhood of robot i.
Clearly, a normalization 
i for each robot i (as defined in (4.2.6)) is required
to ensure the boundedness of input.

Note that, in the case of non convex obstacles the same arguments as in
Remark 4.1.1 can be used.

59



4.Saturated Swarm Aggregation Control Laws with Local Interactions
and Obstacle Avoidance

60



CHAPTER 5

Distributed Consensus Algorithms for Robot
Swarms over Directed Communication Graphs

In this chapter, the average consensus algorithms over directed communica-
tion graphs for robot swarms is presented. As stated in Chapter 1, model-
ing the robots communications using a digraph appears to be realistic in all
those situations where the robots transmit with varying gains and varying
interference levels appear. In Section 5.1 some preliminary tools coming
from the algebraic graph theory are reviewed. In Section 5.2 the algorithm
for the estimation of the left eigenvector of a Laplacian matrix encoding a
Strongly Connected Weighted Digraph is reviewed and a necessary and suf-
ficient condition to verify the strongly connectedness of the communication
digraph in a distributed fashion is introduced. Eventually, in Section 5.3,
the main contribution of this chapter, namely, a technique to achieve the
average consensus on strongly connected digraphs is presented.

5.1 Preliminaries

5.1.1 Notation

In the following, further concepts concerning the digraphs are introduced to
integrate the notation given in Section 3.1.

Let us consider a set of n robots whose communication network is de-
scribed by a digraph G(V; E) where V = f1; � � � ; ng is the set of nodes
and E � V � V is the set of directed edges, i.e., ordered pairs of nodes.
Let us define the weighted adjacency matrix A(G) 2 Rn�n as follows:
Aij(G) > 0 if (j; i) 2 E , Aij(G) = 0 otherwise. Note that Aij(G) > 0 if
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the robot i can receive data from the robot j. In general, the existence of
(j; i) 2 E does not imply the existence of (i; j) 2 E . It is worthy to point
out that the previously defined adjacency matrix is based on the incoming
edges of each node. It is assumed that no self loops exist in the network,
i.e., (i; i) =2 E . The in-degree and the out-degree of a node k are given by
din(k) =

P
j Akj(G) and dout(k) =P

j Ajk(G), respectively. The Laplacian
matrix is defined as follows:

L(G) = D(G)�A(G);

with D(G) the diagonal in-degree matrix defined as

D(G) =

2
664
din(1)

. . .
din(n)

3
775 ;

and Dij(G) = 0 whenever i 6= j. Note that this definition of Laplacian ma-
trix is different from the one given in Section 3.1 due to the nature of the
degree and adjacency matrices encoding G. For the sake of readability, the
dependency on the graph G will be omitted in the rest of the chapter. Let
us now review some properties of the Laplacian matrix. Generally speaking,
the Laplacian matrix is a non-symmetric weakly diagonal dominant matrix.
It has a zero structural eigenvalue for which the corresponding right eigen-
vector is the vector of ones of appropriate size, i.e., L1 = 0. Let us now
introduce the following definitions:

Definition 5.1.1. A matrix Q � 0 is called nonnegative if all the ele-
ments are strictly nonnegative.

Definition 5.1.2. A matrix Q > 0 is called positive if all the elements
are strictly positive.

Note that a nonnegative matrix is not the same as a positive semidefinite
matrix and a positive matrix is not the same as a positive definite matrix.
The following definitions will be used throughout the rest of the paper:

Definition 5.1.3. Two vertices i; j 2 V are adjacent iff (i; j) 2 E.

Definition 5.1.4. A path from vertex i 2 V to vertex j 2 V is a sequence
of distinct adjacent vertices.

Definition 5.1.5. For i; j 2 V, the distance d(i; j) from i to j is the
number of edges of the shortest i-j path in G.
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Definition 5.1.6. For i 2 V, the eccentricity e(i) of i is the distance
from i to the farthest vertex.

Definition 5.1.7. The diameter d = diam(G) of a graph G is the maxi-
mum eccentricity among the vertices.

Definition 5.1.8. A digraph is called weakly connected if and only if
any two distinct nodes in the vertex set can be connected by a path
regardless of the direction of the edges.

Definition 5.1.9. A digraph is called strongly connected if and only if
any two distinct nodes in the vertex set can be connected by a path
which follows the direction of the edges of the digraph.

Definition 5.1.10. A weighted digraph is said to be balanced if:

din(i) = dout(i); 8i 2 f1; : : : ; ng :

Note that, this definition can be equivalently expressed in terms of the
Laplacian matrix as follows: L1 = 0 and 1TL = 0T .

Definition 5.1.11. A non negative matrix Q 2 Rr�r, with r � 2, is
reducible if there exists a permutation matrix P 2 Rr�r such that:

�Q = P TQP =

"
Q11 Q12

0 Q22

#
; (5.1.1)

being Q11 and Q22 two squared matrices. Otherwise the matrix is said to
be irreducible. Moreover, being P an orthogonal matrix, i.e., P T = P�1,
the previous equation can be restated as:

�Q = P�1QP: (5.1.2)

The link between the definition of an irreducible matrix and digraphs is
given by the following results (see [96, Ch.4]).

Proposition 5.1.1. The adjacency matrix A is an irreducible matrix if
and only if its associated digraph G is strongly connected.

Definition 5.1.12. A non negative matrix Q is said to be primitive if
there exist a positive integer k s.t. Qk > 0.

Eventually, from the Perron-Frobenius theorem it follows that for any
primitive matrix Q the following holds:

lim
k!1

�Q
r

�k
=
v wT

wT v
> 0; (5.1.3)
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where v is the right eigenvector and wT is the left eigenvector both associated
with the eigenvalue r.

5.1.2 Assumptions

Let the following assumptions be satisfied throughout the rest of this chap-
ter:

A1 A unique identifier is associated to each robot i of the network, e.g.,
the MAC address.

A2 Each robot sends n variables.

A3 Each robot does not know the number of robots receiving its informa-
tion (i.e., its out degree).

A4 The network topology of the considered multi-robot system is de-
scribed by a static Strongly Connected Weighted Digraph.

In A1, it is assumed that each robot can distinguish the information coming
from the other robots according to the identifier of the sender. For example,
the MAC address of the robot communication device can be used in order
to avoid burdening the estimation process with extra neighborhood identifi-
cation algorithms and thus preserving the scalability of the system. In A2,
it is assumed that each robot has enough storage size for the values coming
from its in-neighbors. Therefore, the number of robots belonging to the
network is known by each robot. In A3, it is stated that each robot can not
count the number of its out-neighbors. Eventually, in A4 it is assumed that
the information produced by one node is propagated within the network. In
this thesis, an effective way to verify the satisfaction of the last assumption
is provided.

5.2 Decentralized Estimation of the Left Eigenvec-
tor

In this section, a decentralized algorithm for the estimation of the left eigen-
vector associated to the zero structural eigenvalue of the Laplacian matrix
encoding a SCWD originally proposed in [41] is reviewed. To this aim, a
distributed algorithm for the computation of the powers of a matrix is now
discussed. Further details can be found in [97, 98].

Let us now introduce the concept of matrix compatibility with a digraph.

64



5.Distributed Consensus Algorithms for Robot Swarms over Directed
Communication Graphs

Definition 5.2.1. A matrix Q 2 Rn�n is compatible with a digraph G if
Qij = 0 iff (j; i) =2 E and j 6= i.

Loosely speaking, this definition of compatibility guarantees that Qij is
equal to 0 whenever the robot i cannot receive any data from the robot j.

Let each robot i have a variable �i(k) = [�i1(k) : : : �in(k)]
T with initial

values

�ij(0) =

8<
:1 if i = j;

0 otherwise
(5.2.1)

and let Q = [Qij ] be a weighted matrix which is compatible with the com-
munication graph. At each iteration, the robots update their variables as
follows:

�ij(k + 1) =
X

p2Ni[i
Qip�pj(k); (5.2.2)

with Ni the in-neighborhood of robot i, i.e., Ni = fj 2 V : (j; i) 2 Eg.
Update rule (5.2.2) can be put in vectorial form as

�(k + 1) = Q�(k);

with:

�(k) =

2
664
�1(k)

T

...
�n(k)

T

3
775 :

Noting that �(0) = I; it is easy to see that at iteration k, the variable �i(k)
contains exactly the value of the ith row of the matrix Qk: Let us remark
that the algorithm is fully distributed, in the sense that each robot only
uses its previous value and the data sent by its in-neighbors to update the
variable �i(k).

The update law in (5.2.2) is applied on the following matrix C compatible
with the graph in order to estimate the left eigenvector associated to the
zero eigenvalue:

C = I � � L; 0 < � <
1

	
; (5.2.3)

where 	 = maxifPj 6=iAijg. The matrix C is commonly denoted as Perron
matrix and corresponds to the state matrix of the discrete time version of
the consensus algorithm.

Let us notice that the eigenvalues �C of the matrix C and the eigenvalues
of the Laplacian matrix �L are related as follows:

�Ci = 1� � �Li ;
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where �Ci and �Li are the ith eigenvalues of the C and L matrices respec-
tively. It follows that the two matrices also share the same set of eigenvec-
tors. In particular for the eigenvalue of maximum modulus, namely �C1 , the
following holds:

C 1 = �C11;

wT C = �C1w
T ;

with wT the left eigenvector associated to �C1 and �L1 . The following propo-
sition proves the convergence to this eigenvector:

Proposition 5.2.1. Let us consider a strongly connected weighted di-
graph. Moreover, let us assume that an initial value �ij(0), as defined
in (5.2.1), is associated to each robot i. Then if the robots apply the
update rule in (5.2.2) using the compatible with the graph matrix C, as
defined in (5.2.3), then

lim
k!1

�(k) =
1 wT

wT1
(5.2.4)

or, in other terms, �i(k) will tend to the normalized left eigenvector w
of the Laplacian matrix encoding the digraph.

Proof. Using Lemma 3 in [99], it is possible to state that the matrix C
is primitive. Then, the proof follows from the application of the Perron-
Frobenius theorem reported in Section 5.1.1.

Algorithm 1 shows the pseudo-code of the left eigenvector estimation
algorithm. Note that the algorithm requires the digraph to be strongly
connected. This ensures the Perron matrix built according to (5.2.3) to be
irreducible and diagonally positive. Regarding the pseudo-code, the vari-
able max_iter represents the predefined maximum value of the algorithm’s
iterations. The matrix �(max_iter) is the output of the algorithm; each
row i represents the estimation performed by the ith robot. Line 1 describes
the variables initialization. Each robot sets its corresponding component to
1 and the other components to 0. In the second step, the Perron matrix
is computed according to its definition in (5.2.3). Lines 3-5 represent an
implementation of the update rule introduced in (5.2.2).

5.2.1 Strongly Connectedness Verification

In order to estimate the left eigenvector, the communication digraph is re-
quired to be strongly connected. In the following, the relationship between
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Algorithm 1 Left Eigenvector Estimation Algorithm

Require: G SCWD,L, 0 < � <
1

	
, max_iter

Ensure: �i(max_iter)! 1wT

1: �ij(0) = 1 if i = j; �ij(0) = 0 otherwise
2: C  I � �L
3: for k = 0; : : : ;max_iter do
4: �ij(k + 1) =

P
p2Ni[i Cip�pj(k)

5: end for

a weakly connected digraph and the presence of null elements in the dth

power of the Perron matrix is disclosed, where d = diam(G).

Proposition 5.2.2. Let us consider a multi-robot system running the
algorithm given in (5.2.2). The communication digraph is not strongly
connected if and only if at least one robot has one or more zeros in its
estimation of the left eigenvector after d step.

Proof. Let us take into account the Perron matrix C. It can be rewritten
as follows:

C = I � �L = I � �(D �A) = (I � �D) + �A
= H+ �A;

whereH = I��D is a nonnegative diagonal matrix. Let us now consider the
equation describing the algebraic expansion of powers of a binomial applied
to this case:

(H+ �A)d =
dX

q=0

 
d

q

!
�d�qHqAd�q: (5.2.5)

It can be noticed that the dth power of (5.2.5) is composed by the summation
of the matrix products of all the powers of H and A up to d. Note also that
being H diagonal, the null elements in A are preserved after the matrix
product HqAd�q. According to [100, Lemma 1.32], the generic qth power of
the adjacency matrix contains the number of directed paths of length q in
the digraph. If the digraph is not strongly connected then some elements in
the rows of the powers of A corresponding to the set of unreachable robots
are equal to zero. Therefore the following holds:

Cdij = 0() Ak
ij = 0;8k � d; 8i; j 2 V:

The thesis follows.
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Remark 5.2.1. In Proposition 5.2.2, it is explicitly stated that if an
element of the dth power of the Perron matrix is null, i.e., Cdij = 0, then
there is no path up to length d between i and j. Being the diameter d
the longest shortest path among two robots in G, it means that also all
the elements Ckij with k > d are null.

Remark 5.2.2. In order to know the diameter of the digraph G, an
robot has to be aware of the topology of the network. However, it is
known that d � n, i.e., the diameter of the digraph is upper bounded
by the number of robots. Using this fact, each robot can perform the
technique suggested in Proposition 5.2.2 only knowing the number n of
robots in the network.

5.2.2 Weakly Connectedness Notification

A proposition which relies on the strong connectivity of the graph in order
to estimate the left eigenvector of the Laplacian matrix has been given in
Section 5.2 . In the following, it will be shown that each robot, which cannot
detect the weak connectivity of the graph according to Proposition 5.2.2,
can made aware of it by means of notification.

Proposition 5.2.3. Each robot becomes aware of the weak connectivity
of the graph in at most 2 d steps either by self detection or through
notification.

Proof. Let us consider a multi-robot system running Algorithm 1 over a
weakly connected graph G. According to Proposition 5.2.2, there must be at
least one node with one or more zeros in its estimation of the left eigenvector
after d step. It should be noticed that after d steps for each robot two
scenarios are possible: either the robot has one or more zeros in its estimate
and thus it can self detect the weak connectivity of the graph or all the
elements are greater then zero and thus the weak connectivity can be notified
to it by any other robot.

In Algorithm 2, the implementation of the finite-time verification of
the strong connectivity and the weakly connectivity notification are shown.
First of all the diameter of the graph is required along with the Perron
matrix C. Note that, according to the previous remark, d can be set equal
to n. In step 3, each robot i verifies if its corresponding row of Cd contains
at least a value equal to 0. If this happen, in step 4 all the elements in
its row are set to zero for all the iterations k > d. In this way all the
robots receiving a 0 since the dth step are aware of the absence of strong
connectivity of the digraph G.
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Algorithm 2 Finite-Time Strong Connectivity Verification and Weakly
Connectivity Notification
Require: d, C
1: Compute Cd using Algorithm 1.
2: for i = 1 : : : n do
3: if Cdi contains 0 then
4: �ij(k) = 0;8j 2 Ni;8k > d
5: end if
6: end for

5.3 Average Consensus Algorithm Over Digraphs

In this section, a solution to the average consensus problem on a digraph
using the left eigenvector estimation algorithm proposed in Section 5.2 is
presented. First of all, let us suppose that with each robot i 2 V an initial
value xi(0) 2 R is associated. Note that for the sake of simplicity and with-
out loss of generality, the state of each robot is assumed to be a scalar and
the elements of the adjacency matrix are unitary. Let us refer to x(k) 2 Rn

as the state vector x(k) = [x1(k) x2(k) : : : xn(k)]
T and to x(0) 2 Rn as the

initial conditions of the system x(0) = [x1(0) x2(0) : : : xn(0)]
T .

Briefly speaking, the average consensus on a digraph is the problem of
computing � =

P
i xi(0)=n, where each robot uses only its locally available

information. The discrete time update law used to solve the consensus
problem on digraphs is given by the following equation:

xi(k + 1) = xi(k) + �
X

j2N�
i

�
xj(k)� xi(k)

�
: (5.3.1)

Let us remark that, for each robot, the required information to compute
(5.3.1) is obtained by its in-neighbors. The previous equation can be rear-
ranged in terms of the product between a matrix and a vector as follows:

x(k + 1) = C x(k): (5.3.2)

It is a well established result that with a balanced digraph, the classical
consensus algorithm leads to an average consensus, [101]. Unfortunately, the
same statement does not hold for the general case of digraphs, where the
consensus value is given by �� =

P
iwixi(0) 6= �, being wi the ith coefficient

of the left eigenvector.

In order to reach the average in the case of a general SCWD, the initial
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conditions can be opportunely modified as follows:

� =
1

n

nX
i=1

xi(0) =
nX
i=1

wi

�
xi(0) + �i

�
; (5.3.3)

with � = [�1 : : : �n]
T the extra term that needs to be adjusted. In partic-

ular, each component of the initial conditions is required to satisfy:

xi(0)

n
= wi

�
xi(0) + �i

�
;

which leads to

�i = xi(0)

�
1

nwi
� 1

�
= xi(0)

�
1� nwi

nwi

�
: (5.3.4)

In the following proposition, it is shown that if the initial conditions is mod-
ified according to (5.3.3) and (5.3.4) then the average consensus is achieved.

Proposition 5.3.1. Let us assume the initial conditions modified as
follows:

~x(0) = x(0) + �;

then the consensus value is equal to �.

Proof. Let us consider the final value of the consensus algorithm:

�� =
nX
i=1

wi ~xi(0)

by substituting ~xi(0) = xi(0) + �i with �i defined according to Eq. (5.3.4),
it follows:

�� =
nX
i=1

wi

�
xi(0) + xi(0)

�
1� nwi

nwi

��

=
nX
i=1

wi

�
xi(0)

�
1 +

1� nwi

nwi

��

=
nX
i=1

wi

�
xi(0)

�
1

nwi

��

=
nX
i=1

xi(0)

n
= �:

Let us now assume the left eigenvector to be available at time k = 0.
This implies that the vector � can be also computed. Therefore, the av-
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erage consensus over a digraph can be achieved by following two different
approaches:

1. fixing the initial conditions x(0) before starting the algorithm,

2. injecting a suitable exogenous input at any given step k.

To properly design the second strategy the following Proposition is re-
quired:

Proposition 5.3.2. The correction term � can be equivalently injected
at any iteration, such that:

hx(0) + �; wi = hx(k) + �; wi ;

where h�; �i denotes the inner product in Rn.

Proof. First of all, let us resort to the well-known property of the left eigen-
vector for discrete time systems:

hx(k); wi = �k hx(0); wi :

In particular, being � = 1, the previous equality becomes:

hx(k); wi = hx(0); wi :

By linearity of the inner product, it follows that:

hx(0) + �; wi = hx(0); wi+ h�; wi
= hx(k); wi+ h�; wi
= hx(k) + �; wi :

By assuming the estimate of the eigenvector w to be asymptotic, it
follows that a possible technique to asymptotically achieve the consensus is
to modify the update rule given in Eq. (5.3.1) as follows:

xi(k + 1) = xi(k) + �i(k)

+ �
X
j2Ni

�
xj(k) + �j(k)� xi(k)� �i(k)

� (5.3.5)

where the iterative error �i(k) is defined as:

�i(k) = ~�i(k)� ~�i(k � 1) (5.3.6)
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with:
~�i(k) = xi(0)

�
1

n �ii(k)
� 1

�
:

and ~�i(�1) = 0. Clearly, from an implementation standpoint, each robot i
broadcasts the quantity x̂i(k) = xi(k) + �i(k) at each time step k.

The modified consensus algorithm can be expressed in vector form as:

x(k + 1) = C
�
x(k) + �(k)

�
(5.3.7)

with x(k) = [x1(k); : : : ; xn(k)]
T the state vector at time k and �(k) =

[�1(k); : : : ; �n(k)]
T the error vector at time k.

Proposition 5.3.3. Let us assume the multi-robot system applies the
modified consensus algorithm given in Eq. (5.3.7). Then it follows that:

lim
k!1

xi(k) = � 8 i 2 V: (5.3.8)

Proof. Let us consider the update at time k



x(k + 1); w

�
=


x(k) + �(k); w

�
=


x(k); w

�
+


�(k); w

�
=


x(k � 1) + �(k � 1); w

�
+


�(k); w

�
...

=


x(0); w

�
+


�(0) + �(1) + : : : �(k); w

�
=


x(0); w

�
+

 kX
i=0

�(i); w
�

The term
Pk

i=0 �(i) = �(0) + �(1) + : : :+ �(k) is a telescoping series:

kX
i=0

�(i) = ~�(0) +
�
~�(1)� ~�(0)

�
+ : : :+

�
�� ~�(k � 1)

�

= ~�(k)

Therefore, it follows that:

hx(k + 1); wi = hx(0); wi+ 
~�(k); w�
At this point by adding and subtracting the quantity h�; wi to the right-
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hand side, it follows:

hx(k + 1); wi = hx(0); wi+ h�; wi+ h�(k); wi

where �(k) = [�1(k); : : : ; �n(k)]
T with �i(k) = ~�i(k)� �i.

Therefore, since
lim
k!1

�i(k) = 0; 8 i 2 V;

it follows that:
lim
k!1

hx(k); wi = hx(0); wi+ h�; wi

which ensure that:

lim
k!1

xi(k) = �; 8 i 2 V:

The iteration rule in (5.3.7) can also be used to computed any desired
weighted mean of the initial conditions. Concerning this the following corol-
lary is introduced:

Corollary 5.3.1. Let w� = [w�1; : : : ; w�n] be a vector such that
P
w�i = 1

and w�i > 0 for all i, that contains the desired weights of the initial
conditions of each robot. If the robots design their inputs by

�i(k) = xi(0)

�
w�i
wi
� 1

�
: (5.3.9)

and �i(k) as in (5.3.6), then the final value reached by all the robots is
equal to

lim
k!1

xi(k) =
X

w�i xi(0) (5.3.10)

In Algorithm 3, the implementation of the average consensus algorithm
is illustrated. The algorithm requires the number of robots n, the Perron
matrix C, the number of iterations max_iter and the initial state of the
system x(0). The result of the algorithm is the average of x(0) obtained in
a distributed fashion. Line 2 represents the computation of the kth power
of C according to the algorithm provided in section 5.2. In lines 3-5, the
exogenous input �i is computed by each robot relying upon the current es-
timation of the ith component of the left eigenvector, the number of the
robots and the initial conditions of the system. Line 6 represents the mod-
ified consensus step. Note that, as stated above, line 2 and lines 3-6 can be
performed in parallel.
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Algorithm 3 Average Consensus Algorithm
Require: n, C,max_iter,x(0)
Ensure: x(max_iter) =

�
1

n
1Tx(0)

�
1

1: for k = 1 : : :max_iter do
2: Compute Ck using Algorithm 1.
3: for i=1. . . n do
4: �i(k) xi(0)

n

�Cii(k � 1)� Cii(k)
Cii(k � 1)Cii(k)

�
5: end for
6: x(k + 1) = C (x(k) + �(k))
7: end for

Currently, the convergence rate of this algorithm is under investigation
and will be part of upcoming publications.
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CHAPTER 6

Simulations and Experiments

In this chapter, the simulations and the experiments carried out to show the
effectiveness of the proposed approaches are shown. In the first section, the
SAETTA mobile robotic platform used in the experiments is introduced.
Then, in Sections 6.2 and 6.3, a distance and a relative position measure-
ment technique are discussed along with the main differences with other
works in the literature. In Section 6.4 simulations ad experiments regarding
the control law in Chapter 3 are proposed while in Section 6.5 the same
approach is applied to simulate the behavior of a USV swarm. Simulations
and experiments for the control laws in Chapter 4 are in Section 6.6. In
Section 6.7, simulations concerning the left eigenvector estimation along
with the average consensus algorithm are detailed. Where available, links
to extra materials like videos are given.

6.1 SAETTA Mobile Robotic Platform

The SAETTA robotic hardware platform developed at the Robotics Lab
of the University of “Roma TRE” is a low-cost mobile robot. It features a
complete sensorial system, a very accurate traction in indoor environment,
and a ZigBee transceiver for multi-robot applications. The platform shown
in Figure 6.1 has been reproduced into 12 units.

The SAETTA architecture can be conceptually decomposed into a two-
tiers architecture. The first tier is constituted by the interaction between
low level components, such as traction and sensorial system, while the other
is in charge of executing high level tasks. This conceptual division has an
immediate correspondence in the hardware realization: each tier is realized
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Figure 6.1: The low-cost SAETTA robotic hardware platform developed at
the Robotics Lab of the University of “Roma TRE”.

on an electronic board and equipped by a CPU unit. The low level is man-
aged by a Programmable Interface Controller (PIC) while the high level
is a Linux embedded board (FOX Board G20) from Acme Systems. The
first board, which manages strictly time constrained tasks, has a control
cycle (25ms) shorter than the other one (250ms) that is supported, on the
other hand, by a more powerful CPU to implement higher level tasks. In
particular, the FOX Board G20 is a Linux Embedded Single Board Com-
puter built around an Atmel AT91SAM9G20 micro-controller based on the
ARM926EJ-S processor, with a clock speed of 400MHz.

The inter-board communication is realized by exploiting a RS232 chan-
nel. At the moment, a gyroscope, a magnetometer, an accelerometer and 5

infrared (IR) sensors are present. Furthermore, an additional infrared sen-
sor along with a webcam both pointing to the ceiling has been considered
for the measurement of relative distance and orientation among robots.

Regarding the traction system, a very convenient choice has been the
use of stepper motors instead of the more common d.c. motors. They offer
several advantages, first of all the absence of tachometers or encoders and,
as a consequence, of the circuitry associated with the transducer. Moreover,
a stepper motor requires low supply voltages as it has a very low back EMF.
For further information about the SAETTA platform, the reader is referred
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to [102].

6.2 A RSSI-based Inter-Distance Measurement Sys-
tem for Robot Swarms

In this section, the attention is focused on providing a reliable technique to
compute inter-distances among robots by exploiting Zigbee radio transceivers.
Any attempt to use Zigbee devices to achieve this goal has hardly produced
satisfactory performances so far. Several experiments, carried out by ex-
ploiting Xbee-Pro modules, have been performed to show the effectiveness
of the proposed technique. Note that, the approach described in the follow-
ing does not require extra hardware devices as other works in the literature,
for example [103].

In the following, first the Radio Propagation Model is discussed along
with the hardware specification of the Xbee Pro communication devices.
Then the data acquisition technique is introduced. Results for outdoor
and indoor experiments using the hardware platform described in 6.1 are
shown. Eventually, two case studies based on the trilateration and the
Kalman Filtering techniques are discussed. The experiments were carried
out using a custom

6.2.1 Radio Propagation Model

A radio propagation model is an empirical mathematical model to charac-
terize the radio wave propagation as a function of the distance. This model
typically predicts the path loss along a link or the effective coverage area of
a transmitter. The simplest method to relate the received signal power Pr
to the distance d between the transmitter and the receiver is by assuming
that the received power Pr is proportional to such a distance d raised to a
certain exponent �, referred to as the distance-power gradient. This can
be expressed as:

Pr = P0 d
�� (6.2.1)

where P0 is the received power at a given reference distance (usually 1meter)
from the transmitter. The parameter � is generally assumed to be � = 2

for free-space. For indoor and urban-radio channels, the distance-power
relationship will change due to the presence of buildings and street layouts.
Generally, the variations in the value of the parameter � in different outdoor
areas are smaller compared to the variations observed in indoor areas. The
distance-power relationship given in Eq. (6.2.1) can be re-written in decibels
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(dB) as:
10 log10(Pr) = 10 log10(P0)� 10� log10(d); (6.2.2)

where the term 10� log10(d) represents the power-loss in dB with respect
to the received power at 1 meter, namely 10 log10(P0). For sake of clarity,
let us rewrite this equation as:

Lr = L0 � 10� log10(d): (6.2.3)

where Lr is the received signal strength in dB and the parameter � must
be generally fit for each environment. Note that, this model can be fur-
ther detailed by adding an additional term, usually referred to as X, which
describes the effect of the shadow-fading, i.e., the effect by which several
measures referred to the same distance might present some variations.

A different normalized equation is occasionally used in the literature
to represent the distance-power relationship. Let us assume Pt to be the
transmitted power. If the path-loss in dB at a distance of one meter is
defined as �L0 = 10 log10(Pt)� 10� log10(P0), the total path loss Lp in dB
is given by:

Lp = �L0 + 10� log10(d): (6.2.4)

This presents the total path-loss as the path-loss in the first meter plus the
loss relative to the power received at one meter. The received power in dB
is the transmitted power in dB minus the total path loss Lp. In this section
the model given in Eq. (6.2.3) will be used. For a complete overview of the
characteristics of wireless medium the reader is referred to [104] and the
references therein.

6.2.2 Radio Specification

The Zigbee radio transceiver exploited for the experiments was the Xbee-
Pro 802.15.4 RF Module produced by Digi. The Xbee-Pro 802.15.4 is an
IEEE 802.15.4 compliant solution that satisfies the unique needs of low-cost,
low-power wireless sensor networks. The module is easy-to-use, requires a
minimal power and provides reliable delivery of critical data between de-
vices. The XBee-Pro 802.15.4 module operates within the ISM 2.4 GHz
frequency band. Zigbee is a communication protocol built for low-power
radios based on the IEEE 802.15.4 standard which handles all of the physi-
cal and media access control layer operation that is important to this work.
IEEE 802.15.4 dictates that each node operates in a carrier sense, multiple
access/collision avoidance (CSMA/CA) paradigm. Crucial for the exper-
iments is that both radios provide methods for reporting the RSSI. The
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specification returns this measurement directly as an integer ranging from
�36 dBm to receiver sensitivity (�100 dBm for the Xbee-Pro).

6.2.3 Experiments

In this section experiment using the Zigbee radio transceivers equipped on
the SAETTA robotic platform are provided. They have been carried out
both in indoor and outdoor environments.

Data Acquisition Technique

The proposed data acquisition technique relies on spatial and frequency
averaging in order to reduce the effect of multi-path for both indoor and
outdoor environments. A similar technique to deal with the localization
problem for IEEE 802.11 b/g Wireless LAN was proposed in [105]. Besides
the different hardware requirements and applications context, the main dif-
ference is that the spatial movement while performing the channel hopping
to further reduce the multi-path effect to the received radio signal strength
is explicitly taken into account.

The key idea is very simple. As stated in [106] the multi-path com-
ponents at a given frequency add or subtract at the receiving antenna ac-
cording with their phases that in turn are linked to the ratio between the
path length and the wavelength. This permits to compute by averaging a
RSS value which is closer to the expected true readings. Considering that
for IEEE 802.15.4 radio devices operating at 2.4 GHz the wavelength is
in the order of 125 mm, a comparable position variation can provide even
more uncorrelated readings and hence further improve the estimate. In a
multi-robot context, this can be achieved letting robots perform a particular
maneuver, e.g., moving in circle, while collecting measurements. Therefore,
compared to [105], here two parameters to get more uncorrelated readings
near a given position are modified.

In the following, a comparison between results achievable by exploiting
RSS data with (only) frequency averaging and RSS data with both spatial
and frequency averaging is reported. The transmission frequency was set to
5Hz while the acquisition time was set to 10s.

Outdoor Environment

In this experiment, data was collected in an outdoor environment using a
transmission power level fixed at 18 dBm. Figure 6.2a and Figure 6.2b
show the data-fitting with respect to the radio propagation model given in
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Figure 6.2: Outdoor Scenario Data Fitting.

Eq. (6.2.3) for frequency averaging data only and both spatial and frequency
averaging data.

According to the obtained results, the proposed data acquisition tech-
nique significantly outperforms the technique proposed in [105] which relies
only on frequency averaging. In particular, Figure 6.2a, which depicts the
data-fitting obtained changing the frequency only, shows a remarkable fluc-
tuation with respect to the ideal radio propagation model due to the effect
of multi-path. Conversely Figure 6.2b, which depicts the data-fitting ob-
tained by adding a motion of the reader on a circumference having a 90 mm
radius, shows a better matching with the ideal radio propagation model.

Indoor Environment

In this experiment, data was collected in an indoor environment using a
transmission power level fixed at 12 dBm. Figure 6.3a and Figure 6.3b
show the data-fitting with respect to the radio propagation model given in
Eq. (6.2.3) for frequency averaging data only, and both spatial and frequency
averaging data. According to the obtained results, also in this scenario the
proposed data acquisition technique is more promising than the technique
proposed in [105]. However, it should be noticed that compared to the
previous scenario a significant degradation of the performance due to the
multi-path phenomenon is experienced.

6.2.4 Case Study

In this section, two simple applications to test the reliability of the proposed
data acquisition technique are proposed. In the first scenario, a static local-
ization technique based on trilateration is described. In the second scenario,
a mobile localization technique based on the Kalman Filter is described.
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Figure 6.3: Indoor Scenario Data Fitting
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Figure 6.4: Outdoor Scenario (40m � 60m). Trilateration-based localiza-
tion. Three robots (let say A, B and C) act as base stations and a fourth
robot (let say D) acts as the receiver.

Trilateration-based localization

In this case study, it is shown that proposed data acquisition technique
can be used to improve a trilateration-based localization approach. To this
end, let us suppose to have a swarm of n robots (emitters) whose spatial
deployment can be described by means of a set of points

n
Pb = (xb; yb)jxb 2

R; yb 2 R
o
where b = 1; � � � ; n. Furthermore, let us assume that a set of

range measurements Rb = frbg, where rb 2 R, is available for an additional
target robot.

Trilateration is a method to obtain the position of such a target robot
(receiver) with respect to the set of range measurements Rb. The location of
each robot Pb can be seen as the center of a circle, while the distance mea-
surement rb can be considered as the radius of such a circle. The location of
the target can then be achieved as the intersection of these circles. However,
due to the various errors affecting the measurements, the areas of all these
circles rarely intersect, in a real context. In this case, trilateration can be
seen as an optimization problem which can be solved using, for instance, a
least square approach [107]. Obviously, in order to have an unique solution
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to the trilateration problem, at least 3 emitters must be available for the
receiver.

From a mathematical standpoint, this problem can be formulated as
follows: 8>>>>>>><

>>>>>>>:

(x1 � x)2 + (y1 � y)2 = r21

(x2 � x)2 + (y2 � y)2 = r22

...

(xn � x)2 + (yn � y)2 = r2n

(6.2.5)

where x and y are the coordinates of the target robot. This system can be
linearized by subtracting the last equation to the previous n� 1 equations.
The resulting system can be written in a matrix from by re-ordering the
elements as follows:

A =

2
66666664

2(x1 � xn) 2(y1 � yn)
2(x2 � xn) 2(y2 � yn)

...
...

2(xn�1 � xn) 2(yn�1 � yn)

3
77777775

and

b =

2
66666664

x21 � x2n + y21 � y2n + r2n � r21
x22 � x2n + y22 � y2n + r2n � r22

...

x2n�1 � x2n + y2n�1 � y2n + r2n � r2n�1

3
77777775

where A is a n �m matrix and, in this bi-dimensional case, m = 2. It is
worth to note that m < n, so the solution can be obtained by using the left
inverse matrix:

x = (ATA)�1AT b (6.2.6)

Furthermore, this solution is able to minimize the distance from each cir-
cumference exploiting the least square method.

In this experiment, three robots act as base stations (let say A, B and C)
and a fourth robot acts as the receiver (let say D) in an outdoor environment
(parking lot) whose size was 40 m � 60 m. During the trials the receiver has
been placed at different spots and its location has been worked out by ex-
ploiting the trilateration-based technique previously introduced. Figure 6.4
describes the localization accuracy in terms on uncertainty area achieved by
the receiver with respect to different locations. In particular, at time t = 0
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the receiver achieves very poor localization as it is located far away from
the base stations. This can be explained by the fact that trilateration-based
techniques significantly suffer from the collinearity problem. Indeed, the
further the base stations are, the more collinear their deployment looks. At
time t = 10, the receiver approaches the base stations and the localization
accuracy drastically improves. At time t = 15 the receiver is within the
triangular area delimited by the base stations and the best localization ac-
curacy is achieved. Finally, at time t = 20 the receiver is moving away from
the base stations and the localization accuracy downgrades again.

Kalman Filter

In this case study, it is shown how the proposed data acquisition technique
can be used to improve a Kalman Filter-based localization approach.

Two robots act as base stations (let say A and B) and a third robot acts
as the receiver (let say C). Two different environments (one indoor and one
outdoor) have been taken into account for the experiment. In both cases,
during the trials the receiver has been driven from the base station A to
the base station B moving along a linear path. A Kalman filter has been
applied to estimate the position and the velocity of the receiver exploiting
the distances data retrieved from the radio signal strength information of
the base stations. Note that, as the receiver was moving along a straight
line, the simple kinematics model of an integrator chain has been used for
sake of simplicity.

Let us define the state vector of the robot C moving along a linear path
as:

x =

2
4 p

v

3
5 ; (6.2.7)

where p 2 R is the position of the robot and v 2 R is its linear velocity.

In the prediction step, the prediction estimate x̂kjk�1 and its uncertainty
Pkjk�1 are computed as:

x̂kjk�1 = A x̂k�1jk�1 +B uk (6.2.8)

Pkjk�1 = Ak Pk�1jk�1AT
k +BQkB

T (6.2.9)

where x̂kjk�1 is composed by the position p̂kjk�1 and the velocity v̂kjk�1of
the receiver; the input u(t) � N (0; Q) is a random acceleration and the
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dynamic matrix A and the input matrix B are respectively:

A =

2
4 1 �t

0 1

3
5 (6.2.10)

and

B =

2
4 �t2=2

�t

3
5 (6.2.11)

where �t represents the sampling time.

During the update step, the expected observation ẑk, namely the power
of the signals coming from the base stations, is computed by means of the
nonlinear mapping h(�) given in Eq. (6.2.3):

ẑAk , h(dAk ) = L0 � 10� log10(d
A
k ) (6.2.12)

ẑBk , h(dBk ) = L0 � 10� log10(d
B
k ) (6.2.13)

where dAk =


p̂kjk�1�pA

 and dBk =



p̂kjk�1�pB

 are the Euclidean distances
between the base stations and the receivers. The update estimate and its
uncertainty are obtained as follows:

Kk = Pkjk�1Jh
T

x

�
JhxPkjk�1J

hT

x +R
��1 (6.2.14)

x̂k = x̂kjk+1 +Kk(zk � ẑk) (6.2.15)

Pk = Pkjk�1 �Kk

�
JhxPkjk�1J

hT

x +R
�
KT
k (6.2.16)

where Jhx is the Jacobian matrix of the function h(�) with respect to xk, and
R represents the observation uncertainty.

A validation gate is set up to discard outliers, using Mahalanobis distance
and �-square test:

(zk � ẑk)T
�
JhxPkjk�1J

hT

x +R
��1

(zk � ẑk) � 
2 (6.2.17)

where the parameter 
 is tuned to obtain a region of acceptance such that
5% of true measurements are rejected.

Figure 6.5a, Figure 6.5b and Table 6.1 describe the results of the exper-
iments. In the indoor scenario, the receiver covered about 30 m moving at
a constant speed of roughly 0:16 m/s and receiving a signal from the two
base stations at sampling time Tin = 0:1 sec. In the outdoor scenario, the
receiver covered a shorter path of 19 m moving again at a constant speed
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of 0:1 m/s but receiving a signal from the two base stations at sampling
time Tout = 0:2 sec. Both experiments lasted 3 minutes. In addition, in the
indoor scenario the base stations were transmitting at the power level of
14 dBm, while in the outdoor scenario the base stations were transmitting
at the power level of 18 dBm.

Table 6.1: Kalman localization indoor and outdoor

ep0 ev0 min(jepj) max(jepj) êp Cov ep Outlier
[m] [m/sec] [m] [m] [m] [m2] %

In 3.5 0.10 0.005 4.29 0.42 5.01 5.45
Out 2.5 0.04 0.001 3.90 0.02 1.51 2.90

As it is reported in Tab. 6.1, the effects of the multi-path phenomenon
are evident indoor, where the covariance of the estimate is higher as well
as the percentage of the outliers. The Kalman estimate downgrades in the
middle of the path (see Fig. 6.5a –6.5b), due to the logarithmic relation
between the distance and the power signal described by Eq. (6.2.3).

Note that, the range information coming from the proposed data ac-
quisition technique improves dead reckoning localization both in outdoor
and indoor environments. Indeed, due to the initial error, dead reckoning
estimate should result biased.
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6.3 An Infrared-based Inter-Distance Measurement
System for Robot Swarms

In this section, the experiments of a low-cost indoor relative position mea-
surement system for robot swarms are introduced. The idea is to equip each
robot with a light emitter along with a camera both pointing to the ceiling
to retrieve the information concerning the relative position and orientation.
Differently from other works appeared in the literature (see [108, 109]), this
approach does not require the robots to send the IR beam directly towards
each other thus reducing the measurement error due to the discretization of
the bearing. Clearly it is assumed that in the application scenario a ceiling is
available at measurable distance. Experiments are provided to show the ef-
fectiveness of the proposed relative localizing system for typical multi-robot
applications.

In the following, the hardware setup of the proposed infrared based sys-
tem is detailed along with the algorithms running on it. Therefore, accuracy
tests are shown before some observations on the proposed localization sys-
tem. Experiments have been carried out to corroborate the effectiveness of
the approach.

6.3.1 The Proposed Low-Cost Indoor Relative Position Lo-
calizing System

The proposed low-cost indoor relative position localizing system is composed
of a light emitter and a camera. In this way, each robot can see on the
ceiling a constellation with its own position at the azimuth and the (relative)
positions of its neighbors falling in its visual field. The spot can be emitted
by a red laser or by an infrared focused source. Both have been tested and
have shown different pros and cons.

Note that, in the current realization this system does not recognize the
identity of a neighbor or its orientation. Nevertheless, this system could be
easily improved in different ways, for instance, by using special lens that
project easy to recognize shapes.

Image Processing

The image processing for the proposed localizing system consists of three
steps:

• blob detection,
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• centroid computation,

• coordinates extrapolation.

Note that, being the FOX Board G20 equipped only with full-speed USB
ports, the image acquisition resolution was limited to 176x144 pixels. In-
deed, this significantly affects the achievable estimation accuracy.

Blob Detection

The detection of the blobs is highly influenced by the camera settings. Typ-
ically, using automatic contrast and white balancing provide poor results
with both type of lights, namely red laser and infrared source. On the one
hand, the laser spot is very intense but covers very few pixels. Therefore,
since the camera driver sets the exposure suitable for the average environ-
ment, the laser pixels saturate resulting in a white spot with some red fringes
that are useless for the recognition. However, the software drivers available
(Video4Linux) allows for an easy manual regulation of all the involved pa-
rameters. Thus, some simple tests are enough to determine a proper sets of
values. On the other hand, in order to use the infrared light with enough
sensitivity, the infrared filter located between the lens and the sensor must
be removed ( a rather tricky operation when a low-cost webcam is used).
The infrared spot was obtained by a collimated LED and produces a larger
spot that cannot be confused with noise and is easily detected even with
coarse exposure settings, as shown in Figure 6.5. As a result, the blob detec-
tion is based on a simple thresholding process with respect to the luminance
and the chrominance values. Pixels whose value is within a predefine range
of values are marked. As a result a binary matrix is obtained.

Centroid Computation

The centroid computation is based on a labeling process by which all the
connected component representing the detected robots are identified. In
order to avoid erroneous detection, too small components (less than three
pixels) are not considered. As a result a list of centroid coordinates in terms
of pixels is obtained.

Coordinates Extrapolation

The coordinates extrapolation is based on a geometrical relationship be-
tween pixel matrix of the CCD camera and the local reference frame of the
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Figure 6.5: Image processing: a) the snapshot obtained by removing the
infrared-filter, b) the detected blob.

observing robot. Assuming a perfect optics, the relationship is quite simple
owing to the parallelism of the image plane and of the ceiling. If the optic
aberrations were introduced, it would be much more complicated to com-
pute [110].
A couple of assumptions concerning the localizing system implementation
are now in order:

• the height of the ceiling is assumed to be available,

• the emitter and the camera axes are assumed to be orthogonal to the
ceiling.

These limitations can be overcome adding more sensors. In particular,
while the first assumption can be easily released by exploiting a range finder,
e.g. an ultrasonic one, which provides reliable results in a typical office-like
environment, the second one is more problematic. Indeed, if a robot violates
this assumption, its measures would be affected by an offset. Unfortunately,
adding three accelerometers to sense the gravity direction could only help
the violating robot but not the others, as the spots are not associated with
the single robots. Therefore, the only way to overcome this problem is to
mount the laser and the camera on a (maybe passive) stabilized platform, a
solution that would impinge the simplicity as well as the cost of the hardware
setup.

Webcam Calibration

The systematic error sources for the proposed indoor relative position local-
izing system are mainly due to the optical aberrations and to the misalign-
ments. Both can be reduced by a proper calibration.
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On the one hand, lens aberration can be reduced by a calibration pro-
cedure, for instance by using the one in Matlab, that provides a calibration
matrix mapping the pixels space in the world space. Although, the cali-
bration procedure is lengthily, the obtained calibration matrix can be easily
used in real time.

On the other hand, the alignment is more difficult to obtain and cali-
brate. Moreover, as it has been discussed above, it cannot be compensated
by post-processing. Although, a good initial alignment can be ensured by a
well-designed mechanics, it is expensive and demand for costly optical de-
vices that have suitable mounting provisions. Therefore an adaptable rest
device were used and adjusted to obtain satisfying results, as described in
the experimental part below.

Accuracy tests

The proposed localizing system has been evaluated to find out the achievable
accuracy. The test started with the alignment of the camera and of the
emitter along the vertical direction. This step was necessary as no precision
rest was used to support these two items. The residual error measured
on the ceiling is roughly 20mm. The camera was left still at coordinates
(0; 0), while the emitter was moved in nine known points. Figure 6.6 shows
the obtained results, where stars represent the “true” locations and pluses
describe the measured ones. The radial and the angular errors have been
computed, their average and standard deviation are respectively 16; 39 mm
and �1:9; 2:9 degrees. With the used webcam the field of view is about
2:5�2m. It should be noticed that the error distribution shows no similarity
with the usual optic aberration of lenses, this can be ascribed to random
causes such as small misalignments in the floor tiles.

Real-Time Processing: Observations

A crucial aspect is the capability to perform the processing in real-time.
Indeed, this is mandatory to perform almost any task which requires the rel-
ative position and orientation among the robots. From a computation per-
spective, the dominant operation is represented by the second step, namely
the centroid computation, as it requires a labeling process to detect all the
connected components. For this step, the approach proposed in [111], whose
complexity grows linearly with the number of pixels, has been exploited.

In the proposed architecture, the FOX Board G20 is in charge of the
management of the high-level tasks with a control cycle of 250 ms. Ex-
perimental results have show that with a resolution of 176x144 pixels, the
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Figure 6.6: Accuracy test. The camera was left still at coordinates (0; 0),
while the emitter was moved in nine known points.

image processing takes roughly 70ms. Indeed, this allows to have roughly
180ms left for any other task. In order to have a term of comparison for the
cpu usage, it is sufficient to notice that an Extended Kalman filter with 5
infrared takes only 7ms at each time step. Indeed, the video processing has
turned out to be an order of magnitude heavier than any other implemented
task so far.

6.3.2 Experiments

Experiments have been carried out to show the effectiveness of the proposed
low-cost indoor relative position localizing system. Figure 6.7 shows the
hardware setup, that is a Sharp GP2Y0A02YK infrared sensor along with a
Logitech C300 webcam.

Three different experiments have been considered in the following. First
a simple scenario where two robots play the role of landmarks for a third
robot is considered. Successively a more refined scenario, where the three
robots perform rendezvous relying only on the information provided by the
proposed localizing system is described. Finally, a formation control task
where the three robots must reach a line-shaped formation is considered.
Note that, these experiments represent a possible application scenario for
the proposed inter-robot localization system aiming only to provide ideas
for possible use cases. The code used to control the robots behavior will be
subject of future publications. Videos concerning these experiments can be
found at
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Figure 6.7: The proposed low-cost indoor relative position localizing system
composed of a Sharp GP2Y0A02YK infrared sensor along with a Logitech
C300 webcam.

http://www.dia.uniroma3.it/~gasparri/med11.html .

Passing-Through

In this scenario, two robots are assumed to play the role of landmarks, while
a third one has to drive through them. This simple task could be useful
in a multi-robot mapping context to more easily perform the map merging
process.

Figure 6.8 shows a snapshot of the experiments: the landmark robots
are placed to the sides of a door to point the way out to the third robot.

Figure 6.9 shows the odometry (blue) rectangles of the robot passing
through the other two (red) ellipses. Note that, at the beginning only the
closest among the two robots playing the role of landmarks was visible to
the third robot. The implemented strategy to deal with this case was very
simple: move closer to the visible robot in order to let the second one enter
within the field of visibility.

Rendezvous

In this scenario, three robots have to drive towards a common location,
i.e., the rendezvous coordination problem. This task can be performed by
applying a consensus-like algorithm. Furthermore, no direct communication
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Figure 6.8: Experiment one: two robots play the role of landmarks while a
third one has to drive through them.

among the robot is required by using the proposed localizing system, as at
each time-step each robot drives itself toward the center of mass of all the
robots detected in its field of view. In particular, the control law proposed
in [112] has been used for this task. Indeed, it requires the availability of
the relative distances among the robots, and the relative orientation of a
robot with respect to the line of sight with another one.

Figure 6.10 shows a snapshot of the experiments: the three robots are
moving toward the center of mass of all the detected centroids. Note that,
the experiment would stop when all the robots have reached an area of
radius � with respect to the rendezvous point. In particular, Figure 6.10-a)
shows the robots at their starting locations, while Figure 6.10-b) shows the
robots once the rendezvous area has been reached.

Figure 6.11 shows the odometry of the three robots where the small circle
represents the heading direction of each robot. In particular, it should be
noticed how all the robots reach the rendezvous area, a circle located at the
rendezvous point (marked with a cross) of radius �. Note that for sake of
simplicity, no obstacle avoidance has been considered for the experiment.
Indeed, two out of the three robots end up bumping each other.
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Figure 6.9: Experiment one: the (red) ellipses represent the two robots play-
ing the role of landmarks while the (blue) rectangles describe the odometry
of third one passing through them.

Formation Control

In this scenario, a simple formation control task has been considered. Three
three robots have to move in a line-shaped formation by means of a leader-
follower approach where the first robot follows a predefined path while the
other two must follow it keeping themselves at a safe distance.

Figure 6.12 shows a snapshot of the experiments where the three robots
are moving in a line-shaped formation with the leader on the left-side.

6.4 Swarm Aggregation Control Laws with Local
Interactions: Simulation and Experiment

Simulations and experiments of the framework proposed in 3.3 have been
carried out. Simulations have been considered to investigate the scalability
of the proposed framework, while experiments have been considered to show
its effectiveness in a real context.

The Kinect®-based Supervisory Control System described in [46] has
been implemented to issue guidance commands to the swarm. Finite State
Machines (FSMs) have been used for the dynamic hand gesture recognition.
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a) b)

Figure 6.10: Experiment two: three robots have to drive towards a common
location, a) robots are at the starting locations b) robots have reached the
rendezvous area.

For a comprehensive overview about FSMs the reader is referred to [113].
Eight motion commands (North, North-West, West, South-West, South,
South-East, East, North-East) to drive the swarm across the 2-dimensional
environment and two interaction commands, namely “get closer” and “spread
out”, to modify the interaction among the robots have been considered.
Finally a high priority “stop command” to be immediately recognized by
the system has been included.

A bounded repulsive function and a linear attraction function were used
in both the simulations and the experiments for modeling the agents inter-
action, i.e. ga(kyk) = a, gr(kyk) = �be�kyk2 . In order to avoid obstacles, a
virtual agent is projected on the closest obstacle w.r.t. the detecting robot.
An unbounded repulsive action is associated with this virtual agent. An
activation threshold coinciding with the equilibrium distance between at-
traction and repulsion is used. The difference between this approach and
the more refined one in Section 4.2.4 is that the latter uses a single control
law for both the interaction among the actual robots and the virtual ones.
Therefore, less effort is required in the design of the control laws. The initial
values of the parameters of the agents interaction function and the obstacle
avoidance function are: a = 0:5, b = 1. In the following section, how the
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Figure 6.11: Experiment two: All the robots reach the rendezvous area, i.e.,
a circle located at the rendezvous point (marked with a cross) of radius �.

remote operator commands are fused in the swarming algorithm is detailed
for the sake of completeness.

6.4.1 Simulations

Simulations have been carried out by interfacing the Kinect® hardware with
the Player/Stage simulation environment. In this way, a real-time gesture
recognition was possible for an effective guidance of the swarm. A swarm
composed of 20 mobile robots has been deployed within an environment
filled with obstacles to test the obstacle avoidance. Regarding the obtained
results, the swarm safely moves within the environment according to the
guidance commands issued by the human operator. For a more comprehen-
sive understanding of the swarm behavior, the reader is referred to the fol-
lowing video: http://www.dia.uniroma3.it/~priolo/simulation_full_res.
avi.

6.4.2 Experiments

For the experiments five mobile robotic platforms SAETTA have been ex-
ploited. The Kinect®-based remote control system has been implemented
on a central unit equipped also with a low-cost vision system to retrieve the
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Figure 6.12: Experiment three: three robots have to move in a line-shaped
formation.

relative distance among robots. Communication between the central unit
and the swarm has been realized by means of a wifi channel. In Fig. 6.13,
four screenshots of the algorithm execution are depicted. In Fig. 6.13a the
initial configuration of the swarm is shown. In Fig. 6.13b, the robots are
avoiding an obstacle within the environment. Then the robots get closer to
each other after the obstacle is cleared as depicted in Fig. 6.13c. Eventually,
the final configuration achieved by the swarm is shown in 6.13d.

The video of the experiment can be found at: http://www.dia.uniroma3.
it/~priolo/experiment_full_res.avi.

6.5 USV Simulations

In this section, the simulations carried out using the framework proposed
in 3.3 are discussed. Experimental trials at sea will be carried out with the
aim of reporting at-field results and will appear in future publications.
The first simulation, is relative to a scenario where four vehicles are required
to assume the desired formation, which is determined by the two following
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(a) Starting Configuration (b) Moving Around an Obstacle

(c) Grouping after obstacles (d) Final configuration

Figure 6.13: Four screenshots of the experiments concerning the swarm
aggregation algorithms with local interactions.
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attractive and repulsive potential functions respectively:

ga(kyk) = a

gr(kyk) = b exp

 �kyk2
c

!
(6.5.1)

where a = 0:1, b = 1:0 and c = 1:0.
In order to prevent collisions among the robots, a safety threshold �d in the
distance computation has been inserted, basically computing the value of
kyk of the attractive and repulsive functions in the following way:

kyk = k�y � �dk =
q
(�y1 � �d1)2 + (�y2 � �d2)2 (6.5.2)

where �y = [�y1�y2]
T and �d = [ �d1 �d2]

T , with the desired threshold k �dk =q
�d21 + �d22 set to the value of 3.0 meters.

While the vehicles are forming and maintaining the swarm configuration,
the swarm barycenter is required to converge to and follow a desired geo-
metrical path-a 6th order polynomial parameter curve.
Figure 6.14 reports the motion of the four vehicles (blue, red, green and cyan
lines); they initially start from random positions, modulating their speeds
to reach the formation, while the path-following algorithm drives the for-
mation itself towards the desired path (black dashed line). The small circle
close to the vehicles represents the barycenter of the formation.
As it can be noticed from Figure 6.14, the simulation proves the convergence
and maintenance of the combined formation-keeping and path-following
tasks for the robot team. In Figure 6.15 the speed profiles assumed by
each robot during the simulation are reported. As expected, a modulation
of the speed for each robot is required to converge to the swarm configu-
ration and it is then stabilized to a constant cruise speed of 1 m/s for the
proposed experiments.
A second simulation is reported with the aim of proving the validity of the
concept proposed in this work, also in the presence of obstacles in the op-
erative scenario. For the sake of simplicity, a fixed obstacle with dimension
comparable with robots’ one is considered in the reported simulation. A
generic obstacle dimension is again taken into account properly changing
the safety threshold value �d. Under these hypothesis, the combined swarm
and path-following technique is employed, obtaining the result reported in
Figure 6.16, where the deviated motion of the vehicles, due to the obstacle
presence, can be observed. After the obstacle avoidance, the formation is
again driven back along the desired path.
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Figure 6.14: USV motions during swarm & path convergence and mainte-
nance
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Figure 6.15: USV speed profiles assumed during swarm & path convergence
and maintenance
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Figure 6.16: USV Swarm & path-following algorithm tested in presence of
an obstacle
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6.6 Saturated Swarm Aggregation Control Laws with
Local Interactions and Obstacle Avoidance:
Simulations and Experiments

In this section, simulations and experiments regarding the aggregation laws
given in Sections 4.1 and 4.2 are described. As far as the control law in 4.1
is concerned, a bounded repulsive vector and a linear attraction vector, i.e.
ga(kyk) = �, gr(kyk) = ��=kyk, were used. The values of the parameters
of the agents interaction function used along both the experiments and the
simulations are: � = 1:5, � = 1. For the control law in 4.2, the following
functions and parameters are used in both the simulations and the experi-
ments:

�(kyk) = exp

 
�kyk

4

0:02

!
;


i =
1

kxi � xjk3 ;

[�a; b] = [�4; 0:4]:
In Figure 6.17, four screen-shots of the experiments led by using the al-
gorithm in 4.2 are shown. Figure 6.17a depicts the initial configuration
for the swarm which is about to move towards the north of environment.
Figure 6.17b depicts the swarm approaching an obstacle on the east of the
environment, it can be noticed how the swarm is approaching the obstacle
in order to move around it as a whole. Figure 6.17c depicts the swarm split-
ting around an obstacle. Finally, Figure 6.17d depicts the swarm moving
between two obstacles. It can be noticed how the swarm, according to the
fact that only one robot can safely move between two obstacles, shapes itself
roughly as a line.

For both the control laws, the videos showing the simulations and the
experiments can be found at the following URLs:

http://www.dia.uniroma3.it/~priolo/set_virtual.mp4,
http://www.dia.uniroma3.it/~priolo/single_virtual.mp4.

6.7 Distributed Left Eigenvector Estimation and Av-
erage Consensus over Digraphs: Simulations

In this section two simulations with an increasing number of robots are
proposed for the framework introduced in Chapter 5. In each simulation,
all the robots perform both the classical discrete time consensus and the
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(a) Starting Configuration (b) Moving Around an Obstacle

(c) Splitting Around an Obstacle (d) Moving Between Two Obstacles

Figure 6.17: Four screenshots of the experiments concerning the swarm
aggregation algorithms with input saturation and obstacle avoidance.
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modified discrete time average consensus presented in Section 5.3 along
with the required left eigenvector estimation algorithm. The first simulation
involves 6 robots performing both consensus algorithms.
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Figure 6.18: Left Eigenvector Estimate for 6 robots.

The network topology is described by the graph in Fig. 6.19a. The
initial conditions of the robots are x(0) = [64; 79; 4; 32; 9; 60]T ; leading to
� = 41:3333. In Fig. 6.18 the estimation process of the left eigenvector
associated to the zero eigenvalue of the Laplacian matrix is illustrated. For
every robot, the estimation process of each element of the vector is plotted.
It can be noticed that the robots asymptotically achieve the same values. In
Fig. 6.19b the execution of the consensus algorithm is shown. It is worthy
to notice that in this case the robots can achieve a consensus because the
digraph strongly connected, but the consensus value is different from �.
Instead, in Fig. 6.19c the execution of the consensus using the modified
algorithm is given. In this case, all the robots obtain � as their consensus
value.

The same simulation, but considering 20 robots, is depicted in Fig. 6.20
and the following random initial conditions are used: x(0) = [26; 34; 12

94; 10; 19; 44; 20; 34; 89; 68; 89; 59; 21; 63; 81; 81; 84; 13; 23]T ; leading to � =

48:2. Note that also in this case the average consensus is reached. In Fig.
6.21, the corresponding left eigenvector estimation process is illustrated for
a single robot. The robots achieve the same values of the estimated compo-
nents of the left eigenvector wT . This estimate is exploited in the executions
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Figure 6.19: Iterations of the classical consensus protocol and the modified
one. The case of 6 robots. Fig. 6.19-(a) depicts the underlying communi-
cation graph describing the interaction among the six robots. Fig. 6.19-(b)
shows the classical consensus protocol with 6 robots. The dotted line rep-
resents the average value. Fig. 6.19-(c) shows the consensus protocol using
the proposed consensus protocol with 6 robots. The dotted line represents
the average value.
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Figure 6.20: Iterations of the classical consensus protocol and the modified
one. The case of 20 robots. Fig. 6.20-(a) depicts the underlying communica-
tion graph describing the interaction among the twenty robots. Fig. 6.20-(b)
shows the consensus protocol using consensus protocol with 20 robots. The
dotted line represents the average value. Fig. 6.20-(c) shows the proposed
consensus protocol with 20 robots. The dotted line represents the average
value.
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of the consensus protocol depicted in 6.20c. As far as the modified average
consensus is concerned, both in the case of 6 robots and the case of 20 robots
the estimated consensus values decrease rapidly. This is due to the occur-
ring of an abrupt change in the estimation of the left eigenvector during the
first two steps. However, this behavior does not affect the achievement of
the average consensus value.

Finally, the iterations of Algorithm 5.2.2 w.r.t. the powers of the Perron
matrix in the case of a weakly connected digraph are shown. Let us consider
again the network depicted in Figure 6.19a and let us remove the directed
link that ends to the robot placed at the right upper part of the figure from
its only out-neighbor. In this way, this robot is sending its information to
another robot but it is not receiving any data from the others, resulting in a
weakly connected topology. Figure 6.22 shows the values of the elements in
the rows corresponding to the robot in the upper right part of Figure 6.19a
and its only out-neighbor. The vertical bar indicates the nth iteration of the
algorithm, namely, the upper bound of the graph diameter. It is possible
to notice that the first robot is aware of the weakly connectivity at step n
due to the presence of one zero in its estimation. This is coherent with the
theoretical analysis carried out in Section 5.2.1. Moreover, the structure of
the left eigenvector follows from the peculiar choice of the digraph topology.
In fact, there is an robot with only an outgoing edge and no incoming ones.
Therefore, this robot is the one “imposing” its value in the consensus, i.e.,
the value initially assigned to it is the eventually achieved consensus value.
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Figure 6.21: Left eigenvector estimation in the case of 20 robots.
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Figure 6.22: Strong connectivity verification
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Conclusions

In this thesis, novel contributions in the field of multi-robot systems have
been proposed. First of all, the framework proposed by Gazi and Passino
in [5] was extended to deal with the limited sensing capabilities of the robots
within the swarm. The main motivation behind this choice was a more re-
alistic modeling of the constrains imposed by common sensor devices, es-
pecially in indoor environments where the GPS system can not be used.
Then, two control laws were introduced to explicitly consider the physical
limitations of the actuators equipped on the robots by using a saturation
in the robot kinematic model. Two effective obstacle avoidance techniques
were proposed based on the projection of one or a set of virtual robots on the
closest obstacle w.r.t. the detecting unit. The proposed approaches do not
conflict with the low level obstacle avoidance algorithms usually equipped
on mobile robotic platforms but offer a smooth potential based obstacle
avoidance forming, together with the swarm aggregation algorithm, a stable
navigation framework for robot swarms. A novel contribution in the field
of multi-robot systems where the communication is modeled as a digraph
was given as well. A necessary and sufficient condition to check the strong
connectivity of a weighted digraph in finite-time was proposed as a useful
stopping condition for the asymptotic left eigenvector estimation algorithm.
Then, the information coming from it was used by each robot to perform
a modified average consensus algorithm which can be run concurrently to
the estimation process. Eventually, a distance and a relative position mea-
surement technique used to retrieve the necessary inputs for the swarming
algorithms based on the Zigbee and the IR technologies were introduced.
The former does not require any extra hardware to be equipped on the robot
but it uses the same devices employed for the communication. The latter
showed satisfactory performances in all those scenarios where a ceiling is
available and measurable as it does not require the IR beam to be directed
exactly towards the robot thus avoiding angular discretization errors. A
complete theoretical analysis was carried out while simulations and exper-
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iments were shown to corroborate the theoretical findings. Future work
will be mainly focused on adding nonholonomic constrains to the kinematic
model of the robots in order to show the overall system stability even in
their presence. The left eigenvector algorithm will also be subject of future
work. In particular, an algorithm working with switching topologies without
the need of being reset after each switch is under investigation. Distributed
strategies to check the rigidity of the communication graph are currently
under development as well and will be used in the localization field. A port-
ing of the IR relative localization system to the OpenCV library is under
development as well. Eventually, a rigorous experimental validation should
be addressed for the proposed swarming aggregation algorithms in order to
validate the theoretical findings contained within this thesis.
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