
UNIVERSITÀ DEGLI STUDI

ROMA
TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Extraction, integration and
probabilistic characterization of

web data

Lorenzo Blanco

Extraction, integration and probabilistic characterization of web data

A thesis presented by

Lorenzo Blanco

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University

Dept. of Informatics and Automation

March 2011

COMMITTEE:

Prof. Paolo Merialdo

REVIEWERS:

Prof. Alberto Laender

Prof. Divesh Srivastava

To Chiara

Roma Tre University

Abstract

Extraction, integration and probabilistic
characterization of web data

Lorenzo Blanco

Advisor:
Professor Paolo Merialdo

Computer Science and Engineering

The web contains a huge amount of structured information provided by a
large number of web sites. Since the current search engines are not able to fully
recognize this kind of data, this abundance of information is an enormous oppor-
tunity to create new applications and services.

To exploit the structured web data, several challenging issues must be ad-
dressed, spanning from the web pages gathering, the data extraction and integra-
tion, and the characterization of conflicting data. Three design criteria are critical
for techniques that aim at working at the web scale: Scalability (in terms of com-
putational complexity), unsupervised approach (as human intervention can not
be involved at the web scale), and domain–independence (to avoid custom solu-
tions).

The thesis of this dissertation is that the redundancy of information provided
by the web sources can be leveraged to create a system that locates the pages of in-
terest, extracts and integrates the information, and handles the data inconsistency
that the redundancy naturally implies.

Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Challenges . 4

1.2 Contributions . 8

1.3 Structure of the Dissertation . 10

2 Clustering Web Pages 11
2.1 Introduction . 11

2.2 Related Work . 12

2.3 Overview . 13

2.4 Problem Definition . 16

2.5 Properties of MDL Clustering . 17

2.6 Finding Optimal Clustering . 19

2.7 Experiments . 26

2.8 Conclusions . 30

3 Web Source Discovering And Analysis 31
3.1 Introduction . 31

3.2 Overview . 33

3.3 Related Work . 35

3.4 INDESIT: Searching Pages By Structure 36

3.5 OUTDESIT: Searching Entities On The Web 37

3.6 Experiments . 43

4 Data Extraction And Integration 49
4.1 Introduction . 49

ix

x CONTENTS

4.2 The Generative Model . 52

4.3 Extraction and Integration Algorithms 54

4.4 Scalable Extraction And Integration Algorithms 64

4.5 Related Work . 82

5 Characterizing The Uncertainty Of Web Data 87
5.1 Introduction . 87

5.2 Probabilistic Models For Uncertain Web Data 89

5.3 Witnesses Dependencies Over Many Properties 93

5.4 Experiments . 97

5.5 Related Work . 101

Appendices 103

Appendix A 105
NP-hardness Of The Mdl-Clustering Problem 105

Bibliography 109

List of Figures

1.1 Three web pages containing data about stock quotes from Yahoo! finance,

Reuters, and Google finance web sites. 1

1.2 Google results for the queries “YHOO”, and “michael jordan” (structured

data results are highlighted). 3

1.3 The generative process applied to the publication of stock quote pages by

GoogleFinance, YahooFinance, and Reuters. 5

1.4 The goal of the extraction/integration module. 6

1.5 The uncertain data about one attribute of one instance, and the associated

probability distribution over the possible values. 7

2.1 Precision-Recall of Mdl-U by varying α 28

2.2 Running Time of Mdl-U versus CP-SL 29

2.3 Running Time of Mdl-U . 29

3.1 Web pages representing instances of the BASKETBALLPLAYER entity. . . 31

3.2 The OUTDESIT algorithm. 38

3.3 Pages as sequences of tokens. 41

3.4 The TEMPLATETOKENS algorithm to detect tokens belonging to the tem-

plate of a set of pages. 42

3.5 Generated descriptions for four entities. 43

3.6 Extracted keywords. 45

3.7 Performance of the isInstance() function varying the threshold t. 46

3.8 Pages and players found by OUTDESIT. 47

4.1 Three web pages containing data about stock quotes from Yahoo! finance,

Reuters, and Google finance web sites. 50

4.2 The publishing process: the web sources are views over the hidden rela-

tion generated by four operators. 53

4.3 DOM trees of four stock quote pages. 65

4.4 Extraction rules as XPath absolute expressions for the pages of Figure 4.3. 67

xi

xii List of Figures

4.5 The relation extracted by the extraction rules in Figure 4.4 from the pages

in Figure 4.3. 67

4.6 SplitAndMerge over a mapping m. Labels on edges indicate matching

scores. e1 and e2 belong to the same source; d(e1, e2) = 0.29. 70

4.7 The values of attribute a3 partially match with the values of the attributes

in m. 71

4.8 Comparison of the NaiveMatch and the SplitAndMerge algorithms with

different thresholds. 76

4.9 Synthetic setting: running time of the system over the number of analyzed

sources. 77

4.10 Growing of the number of real-world objects over the number of sources. 77

4.11 Precision, Recall, and F-measure of the mappings of four different exe-

cutions: naive matching, naive matching with wrapper refinement (WR),

SplitAndMerge (SM), SplitAndMerge with wrapper refinement (SM+WR). 78

4.12 Precision, recall, and F-measure for mappings composed by attributes that

appeared in at least 8 sources. 80

5.1 Three sources reporting stock quotes values. 88

5.2 Configurations for the synthetic scenarios. 97

5.3 Synthetic experiments: MultiAtt(5) outperforms alterative configurations

in all scenarios. 98

5.4 Settings for the real-world experiments. 99

5.5 Real-world summary experiments. 100

List of Tables

2.1 Comparison of the different clustering techniques 27

3.1 INDESIT experimental results. 37

4.1 Effect of the dynamic matching threshold on the mapping Precision. . . . 79

4.2 Top-8 results for 100 web sources: for each mapping m the most likely

label and the mapping cardinality are reported. 81

xiii

Chapter 1

Introduction

The web is a surprisingly extensive source of information. It is made up of a large

number of sources that publish information about a disparate range of topics. Unfor-

tunately it is an environment specifically built for human fruition, not for automatic

processing of the data. Nevertheless, this abundance of information is an enormous

opportunity to create new applications and services capable of exploiting the data in

ways that were not possible in the past. In this context, an increasing number of web

sites deliver pages containing structured information about recognizable concepts, rel-

evant to specific application domains, such as movies, finance, sport, products, etc.

Consider for example the web page fragments shown in Figure 1.1. At first glance

a human can easily understand that they contain information about stock quotes, that

specific values are in evidence, that the data pertain to three distinct stock quotes, and

so on. Traditional search engines are extremely good at finding and ranking docu-

Figure 1.1: Three web pages containing data about stock quotes from Yahoo! finance,
Reuters, and Google finance web sites.

1

1. INTRODUCTION

ments, but they are not capable of distinguish instances, attributes, data formats. They

can not process queries such as the current value of the “Apple Inc.” stock quote, or

the biggest change of price in the NASDAQ stock market in the last three (working)

days. Before answering to such queries you have to address several very challenging

issues. The list can contain (and is not limited to) the following:

• Which pages contain the information you are looking for on the web? Or, going

on with the stock quote running example, which pages are about the finance

domain?

• Suppose you want to store the information you need in a relational database,

how do you extract all and only the useful values from the pages? These pages

contain not only the data, but also noise values such as advertisements, page

formatting elements, etc. How do you extract only the useful values?

• What is the semantics of data in web pages? Consider again the fragments

shown in Figure 1.1. You want to group together the values with the same

semantics. For a human it is trivial to associate the “last trade” semantics to the

values “118.76”, “22.93”, and“175.48”, but for an automatic system this can be

very challenging.

• How do you deal with data inconsistencies? Imagine that for the same stock

quote some web sources state that the minimum price in the last year is “10.00”

and other sources state it is “11.00”. Which ones will you trust?

To address the above issues, a system that aims at exploiting data on the web needs

to be:

• Scalable: scaling of the web implies the processing of a very large number of

sites that, in turn, can potentially publish millions of pages. To cope with this

amount of data all the tasks (even the most complex, such as the integration of

the data coming from multiple sources) have to be computationally-efficient.

• Unsupervised: a lot of intermediate steps would be much easier if they were

executed completely or partially by a human. Unfortunately, this is not possible:

we would loose the scalability of the approach.

• Domain–independent: as we want to be able to apply our solutions to general

entities we avoide the use domain–dependent knowledge, or custom solutions.

For example, in the case of the finance domain we could easily extract only the

values containing the symbol “$” (or, at least, give them more importance), but

this would be useless for the vast majority of the web.

2

Figure 1.2: Google results for the queries “YHOO”, and “michael jordan” (structured
data results are highlighted).

This dissertation examines how to automatically locate, extract, integrate and rec-

oncile structured web data about an entity of interest (the “StockQuote” entity in the

running example). We concentrate on a specific type of pages, that is the pages that

publish information about a single instance of the entity of interest. Even if this is

only one of the existing publication pattern, the the web scale involves an impressive

amount of data.

For example, the pages depicted in Figure 1.1 are examples of this kind of pages:

each page publishes structured data about a single instance of the “stock quote” entity.

The results obtained with our approach promise a number of compelling applica-

tions. For example:

• Dataset creation: on the web you can find massive data about nearly every-

thing. Manually locating useful sources, extracting data, and integrating all the

information can be a tedious or impossible task. Instead, with our techniques

3

1. INTRODUCTION

you can create big datasets from a large number of sources, you can know from

which website every single data comes from and how trustable it is.

• Enhanced search engine results: with our results a search engine could improve

the results showing more precise and updated information, rather than simply

the web pages urls. This already happens for a limited set of results. Consider,

for example, the results returned by Google if we search for a stock quote or a

famous basketball player. As you can see in Figure 1.2 for the former we get

structured data just before the other results, but for the latter we get only urls.

We can accumulate data to provide such information, providing updated and

trustworthy data.

In the rest of this chapter we introduce the main challenges that will be tackled

in the next chapters and the contributions of this dissertation. Finally, we provide an

overview of the dissertation’s general organization.

1.1 Challenges

In this section we introduce the main challenges tackled in the dissertation.

The publishing process of structured data

In large data–intensive web sites, we observe two important characteristics that sug-

gest new opportunities for the automatic extraction and integration of web data. On

the one hand, we observe local regularities: in these sites, large amounts of data are

usually offered by hundreds of pages, each encoding one tuple in a local HTML tem-

plate. For example, each page shown in Figure 1.1 (which are from three different

sources) publishes information about one company stock. If we abstract this repre-

sentation, we may say that each web page displays a tuple, and that a collection of

pages provided by the same site corresponds to a relation. According to this abstrac-

tion, each web site in Figure 1.1 exposes its own “StockQuote” relation. On the other

hand, we notice global information redundancy: as the web scales, many sources pro-

vide similar information. The redundancy occurs both a the schema level (the same

attributes are published by more than one source) and at the extensional level (some

instances are published by more than one source). In our example, many attributes

are present in all the sources (e.g., the company name, last trade price, volume); while

others are published by a subset of the sources (e.g., the “Beta” indicator). At the

extensional level, there is a set of stock quotes that are published by more sources.

This redundancy is a fundamental opportunity for us. In fact, as we will describe in

the following chapters, we leverage it to accomplish several tasks that span from the

4

1.1. Challenges

Figure 1.3: The generative process applied to the publication of stock quote pages by
GoogleFinance, YahooFinance, and Reuters.

web source collection to the data extraction and integration. Nevertheless, as web

information is inherently imprecise, redundancy also implies inconsistencies; that is,

sources can provide conflicting information for the same object (e.g., a different value

for the volume of a given stock).

These observations lead us to hypothesize that underlying sources of the same do-

main there is a hidden conceptual relation from which pages of different sources are

generated. According to this model, each of the sources can be seen as the result of

a generative process applied over the hidden relation. Each source publishes infor-

mation about a subset of the tuples in the hidden relation, and different sources may

publish different subsets of its attributes. Moreover, the sources may introduce errors,

imprecise or null values, or they may publish values by adopting different formats

(e.g., miles vs. kilometers). Figure 1.3 depicts this process applied to three finance

web sources that publish their own views of the hidden relation.

Inverting the publishing process

From this perspective, the data extraction and integration problem can be seen as

the problem of inverting this publishing process to reconstruct the hidden relation,

as visually represented in Figure 1.4. We want to extract the data from the pages and

obtain partial views over the hidden relation. Then, we integrate the data by leveraging

the redundancy of the information.

5

1. INTRODUCTION

Figure 1.4: The goal of the extraction/integration module.

A state-of-the-art natural solution to the above problem is a two steps waterfall

approach, where a schema matching algorithm is applied over the relations returned

by automatically generated wrappers. However, important issues arise when a large

number of sources is involved, and a high level of automation is required:

• Wrapper Inference Issues: since wrappers are automatically generated by an

unsupervised process, they can produce imprecise extraction rules (e.g., rules

that extract irrelevant information mixed with data of the domain). To obtain

correct rules, the wrappers should be evaluated and refined manually.

• Integration Issues: the relations extracted by automatically generated wrappers

are “opaque”, i.e., their attributes are not associated with any (reliable) seman-

tic label. Therefore the matching algorithm must rely on an instance-based

approach, which considers attribute values to match schemas. However, due to

errors introduced by the publishing process, instance-based matching is chal-

lenging because the sources may provide conflicting values. Also, imprecise

extraction rules return wrong, and thus inconsistent, data.

Our techniques to invert the publishing process look for the correct extraction rules

and mappings contextually, and leverage the redundancy among the sources to guide

the choice of the rules and their grouping into cohesive mappings.

6

1.1. Challenges

Figure 1.5: The uncertain data about one attribute of one instance, and the associated
probability distribution over the possible values.

Characterizing the uncertainty of web data

The web data is inherently imprecise. Multiple web sites can publish conflicting val-

ues for the same attribute of the same instance, at the same time. To deal with this

uncertainty we analyze the data published by the web sources as a whole, and we

look for the agreement among the sources to detect which are the most trustworthy

web sites. Building on previous results from the literature, our model can also deal

with sources that copy from other sources. If this happens the copied values are not

taken in account (otherwise they would interfere with the agreements detection) and

the most probable values will be determined. Figure 1.5 shows an hypothetical ex-

ample of conflicting web data resolution. By analyzing a dataset of conflicting data,

our model produces, for each instance and for each attribute, a probability distribution

that represents the probability of correctness of each possible value.

Page gathering

So far we assumed that we know in advance the web sources that publish the informa-

tion about the entity of interest, but collecting these sources is a challenging issue. In

the finance domain this could be quite easy: if you cover the most important sites you

can probably cover the majority of the stock quotes. However, in other domains this is

challenging. For example, for the “BasketBallPlayer” entity you can go on collecting

7

1. INTRODUCTION

web sources for a very long time, and you will always discover new titles. Our ap-

proach is the following: given a web site and a sample page, we develop a technique

to collect all the pages similar to the sample page. Then, we iterate by discovering

new sources and by applying again the technique to collect similar pages on them.

The process goes on until no new sources are found.

Page clustering

We start by tackling the problem of how to divide the whole set of pages of a website in

clusters, where each cluster contains pages that publish similar data. This is a central

task of the page gathering process: given a website and some example pages about the

entity of interest we want to discover as many pages as possible that expose the same

kind of information. To do this we assume we have the snapshot of the site and we

cluster the pages mainly relying only on the urls of the pages. The key idea is to not

use standard clustering algorithms, that rely on pairwise comparison of the elements

(the string comparison of the urls is not effective); instead, we adopt an information-

theoretic formulation of the problem. We consider the whole set of urls and we detect

the recurring patterns. As detailed in the chapter this process is highly scalable and

produces good results.

Web sources discovery

To discover the sources of interest the clustering algorithm is used as a sub–routine in

an algorithm named OUTDESIT.1

OUTDESIT takes as input a small set of sample pages publishing data about the tar-

get entity, automatically infers a description of the underlying entity and then searches

the web for other pages containing data representing the same entity. OUTDESIT

queries a search engine with the available data about the known instances to discover

new candidate sites. Then, the description is used to filter out the non–relevant sources

and the clustering algorithm is used to discover all the useful pages on the relevant

sources. This process is iterated until new useful sources are found.

1.2 Contributions

As described above, three design criteria are critical for techniques that aim at work-

ing at the web scale. The techniques must be: scalable, completely unsupervised,

and domain–independent. In this dissertation we applied these criteria to design so-

lutions that, applied together, constitute a whole system that is able to complete all

1 If the snapshot of the analyzed web sites is not available we can adopt an alternative algorithm (called
INDESIT) that, for the purpose of OUTDESIT, is equivalent to the clustering solution.

8

1.2. Contributions

the tasks required to create a dataset of structured web data about a conceptual entity

of interest. These tasks span from the web pages gathering to the probabilistic model

used characterize the uncertainty of web data. Moreover, the contributions are the

following:

• The clustering algorithm explores the novel idea of using URLs for structural

clustering of web sites. We develop a principled framework, grounded in infor-

mation theory, that allows us to leverage URLs effectively, as well as combine

them with content and structural properties. We propose an algorithm, with a

linear time complexity in the number of webpages, that scales easily to web

sites with millions of pages. We perform an extensive evaluation of our tech-

niques over several entire web sites, and demonstrate the effectiveness of our

techniques.

• The OUTDESIT algorithm discovers pages publishing data about a certain con-

ceptual entity, given as input only a small set of sample pages. It is a completely

unsupervised technique that creates a description of the target entity and inter-

acts with a search engine filtering out the web sites that do not fit the description.

We conducted experiments that produced interesting results. This work appears

in the 2008 WIDM workshop [BCMP08b] and, as a demo, at the 2008 EDBT

conference [BCMP08a].

• With the extraction/integration algorithm we introduce an instance based

schema matching algorithm with linear complexity over the number of sources,

which is adaptive to the actual data. It presents significant advantages in general

settings where no a priori knowledge about the domain is given, and multiple

sources have to be matched. Our approach takes advantage of the coupling be-

tween the wrapper inference and the data integration tasks to improve the qual-

ity of the wrappers; to the best of our knowledge, this is the first attempt to face

both issues contextually. We conducted a large set of experiments using real-

world data from three different domains, including 300 web sites. The experi-

ments demonstrate that our techniques are effective and highlight the impact of

their components. This work appears in the 2010 WebDB workshop [BPC+10]

and, as a demo, at the 2010 WWW conference [BBC+10].

• We developed a probabilistic model that manages the uncertainty of the web

data. This model assigns correct trustworthiness scores to the sources, even if

some of them are copying data from other sources. We conducted experiments

to verify the correctness of the approach in challenging synthetic scenarios and

9

1. INTRODUCTION

real cases. The main contribution is that our model processes together all the

attributes of the entity; this holistic approach produces better results in terms of

copiers detection and, therefore, trustworthiness scores. The model was pub-

lished at the 2010 CAiSE conference [BCMP10].

1.3 Structure of the Dissertation

Each of the following chapters tackles one of the problems introduced above. Each

one contains a formalization of the problem, the study of the related scientific litera-

ture, our solution to the problem, and the experimental results.

Chapter 2 covers the clustering problem. Chapter 3 describes the details of the

OUTDESIT algorithm and its relation with the clustering technique. Chapter 4 intro-

duces the extraction/integration process. Finally, Chapter 5 describes the probabilistic

model we use to characterize the uncertainty of web data. A final chapter with con-

clusive remarks will be added in the final version of the thesis.

10

Chapter 2

Clustering Web Pages

To extract and integrate information about an entity of interest you need to locate

the pages containing the data you are looking for. As we observed in [BCM08] in

data–intensive web sites the structure of the page is related with the semantics of the

contained information: if two pages share the same structure it is very likely that they

publish information about the same subject. In this chapter we describe an highly scal-

able technique to divide structured web pages in groups, called “clusters”, that share

the same structure. To do this we rely mainly on the urls of the pages, but, as detailed

later, the same algorithms can take in account also the page content. Moreover, this

technique works on the whole set of urls of a web site, so you need a dump of the

considered web sites or, at least, the complete listing of the urls1.

In Chapter 3 we describe how the solution of the clustering problem can be used

to collect pages about an entity of interest from web sources we do not already know.

2.1 Introduction

Several web sites use scripts to generate highly structured HTML: this includes shop-

ping sites, entertainment sites, academic repositories, library catalogs, and virtually

any web site that serves content from a database. Structural similarity of pages gener-

ated from the same script allows information extraction systems to use simple rules,

called wrappers, to effectively extract information from these webpages. While there

has been an extensive work in the research community on learning wrappers [LRNDSJ02,

CKGS06], the complementary problem of clustering webpages generated from differ-

ent scripts to feed the wrappers has been relatively unexplored. The focus here is to

develop highly scalable and completely unsupervised algorithms for clustering web-

pages based on structural similarity.

1This kind of information was available when we experimented the algorithms, in fact this chapter is
the result of a summer internship at the Yahoo! Research Labs in Santa Clara (California), and is a joint
work with Nilesh Dalvi and Ashwin Machanavajjhala

11

2. CLUSTERING WEB PAGES

In this chapter, we develop highly scalable techniques for clustering web sites.

We primarily rely on URLs, in conjunction with very simple content features, which

makes the techniques extremely fast. Our use of URLs for structural clustering is

novel. URLs, in most cases, are highly informative, and give lots of information

about the contents and types of webpages. Still, in previous work [CMM02b], it was

observed that using URLs similarity does not lead to an effective clustering. We use

URLs in a fundamentally different way. We share the intuition in XProj [ATW+07]

that pairwise similarity of URLs/documents is not meaningful. Instead, we need to

look at them holistically, and look at the patterns that emerge. In this chapter, we

develop a principled framework, based on the principles of information theory, to

come up with a set of scripts that provide the simplest explanation for the observed

set of URLs/content.

2.2 Related Work

There has been previous work on structural clustering. We outline here all the works

that we are aware of and state their limitations. There is a line of work [ATW+07,

CMOT04, DCWS06, LYHY02, LCMY04] that looks at structural clustering of XML

documents. While these techniques are also applicable for clustering HTML pages

(for example in [dCRGdSL04] standard clustering algorithms are used to group

pages in order to extract the relevant information), HTML pages are harder to cluster

than XML documents because they contain more noise, they do not confirm to sim-

ple/clean DTDs, and they are very homogeneous because of the fixed set of tags used

in HTML. At the same time, there are properties specific to HTML setting that can

be exploited, e.g., the URLs of the pages. There is some work that specifically tar-

get structural clustering of HTML pages [CMM02b, CMM05]. Several measures of

structural similarity for webpages have been proposed in the literature (for example:

[FMM+02, FMM+05]). A recent survey [Got08] looks at many of these measures,

and compares their performance for clustering webpages.

We propose the clustering problem in order to locate collections of pages that will

be analyzed later to extract structured data. From this perspective this work is related

to the problem of fetching structurally similar pages of the “hidden” web [LdSGL02,

Kru97, RGM01, GLdSRN00, DEW97].

However, all the techniques that we list here have a fundamental issue: they do

not scale to large web sites. Real web sites routinely have millions of pages, and we

want the ability to cluster a large number of such web sites in a reasonable amount of

time. The techniques covered in the survey [Got08] do not scale beyond few hundred

webpages. In fact, most of the techniques based on similarity functions along with

12

2.3. Overview

agglomerative hierarchical clustering have a quadratic complexity, and cannot handle

large sites. The XProj [ATW+07] system, which is the state of the art in XML cluster-

ing, even though have a linear complexity, still requires an estimated time of around

20 hours for a site with a million pages2.

2.3 Overview

In this section, we introduce the clustering problem and give an overview of our

information-theoretic formulation. The discussion in this section is informal, which

will be made formal in subsequent sections.

Website Clustering Problem

Websites use scripts to publish data from a database. A script is a function that takes

a relation R of a given schema, and for each tuple in R, it generates a webpage,

consisting of a (url,html) pair. A web site consists of a collection of scripts, each

rendering tuples of a given relation. E.g., the web site imdb.com has, among others,

scripts for rendering movie, actor, user, etc.

In structured information extraction, we are interested in reconstructing the hidden

database from published webpages. The inverse function of a script, i.e., a function

that maps a webpage into a tuple of a given schema, is often referred to as a wrapper

in the literature [LRNDSJ02, Ant05, HD98a, HBP01, KWD97, MJ02, SA99]. The

target of a wrapper is the set of all webpages generated by a common script. This

motivates the following problem:

Website Clustering Problem : Given a web site, cluster the pages so that the pages

generated by the same script are in the same cluster.

The clustering problem as stated above is not yet fully-specified, because we

haven’t described how scripts generate the urls and contents of webpages. We start

from a very simple model focussing on urls.

Using URLs For Clustering

An url tells a lot about the content of the webpage. Analogous to the webpages gen-

erated from the same script having similar structure, the urls generated from the same

script also have a similar pattern, which can be used very effectively and efficiently

2It takes close to 1200 seconds for 16,000 documents from DB1000DTD10MR6 dataset, and the doc-
uments themselves are much smaller than a typical webpage.

13

2. CLUSTERING WEB PAGES

cluster webpages. Unfortunately, simple pairwise similarity measures between urls

do not lead to a good clustering. E.g., consider the following three urls:

u1 : site.com/CA/SanFrancisco/eats/id1.html

u2 : site.com/WA/Seattle/eats/id2.html

u3 : site.com/WA/Seattle/todo/id3.html

u4 : site.com/WA/Portland/eats/id4.html

Suppose the site has two kinds of pages : eats pages containing restaurants in each

city, and todo pages containing activities in each city. There are two “scripts” that

generate the two kind of pages. In terms of string similarity, u2 is much closer to

u3, an url from a different script, than the url u1 from the same cluster. Thus, we

need to look at the set of urls in a a more principle manner, and cannot rely on string

similarities for clustering.

Going back to the above example, we can use the fact that there are only 2 distinct

values in the entire collection in the third position, todo and eats. They are most like

script terms. On the other hand, there are a large number of values for states and

cities, so they are most likely data values. We call this expected behavior the small

cardinality effect.

Data terms and script terms often occur at the same position in the url. E.g., the

same site may also have a third kind of pages of the form:

site.com/users/reviews/id.html

Thus, in the first position we have the script term users along with list of states, and in

second position we have reviews along with cities. However, if one of the terms, e.g

reviews, occurs with much higher frequency than the other terms in the same position,

it is an indication that its a script term. We call this expected behavior the large

component effect.

In order to come up with a principled theory for clustering urls, we take an infor-

mation theoretic view of the problem. We consider a simple and intuitive encoding of

urls using scripts, and try to find an hypothesis (set of scripts) that offer the simplest

explanation of the observed data (set of urls). We give an overview of this formu-

lation in the next section. Using an information-theoretic measure also allows us to

incorporate addition features of urls, as well as combine them with the structural cues

from the content.

An Information-Theoretic Formulation

We assume, in the simplest form, that a url is a sequence of tokens, delimited by the

“/” character. A url pattern is a sequence of tokens, along with a special token called

14

2.3. Overview

“ ∗ ”. The number of “ ∗ ” is called the arity of the url pattern. An example is the

following pattern:

www.2spaghi.it/ristoranti/*/*/*/*

It is a sequence of 6 tokens: www.2spaghi.it, ristoranti, ∗, ∗, ∗ and ∗. The arity of the

pattern is 4.

Encoding URLs using scripts

We assume the following generative model for urls: a script takes an url pattern p,

a database of tuples of arity equal to arity(p), and for each tuple, generates an url by

substituting each ∗ by corresponding tuple attribute. E.g., a tuple (lazio, rm, roma, baires)

will generate the url:

www.2spaghi.it/ristoranti/lazio/rm/roma/baires

Let S = {S1, S2, · · ·Sk} be a set of scripts, where Si consists of the pair (pi, Di),

with pi a url pattern, and Di a database with same arity as pi. Let ni denote the

number of tuples in Di. Let U denote the union of the set of all urls produced by the

scripts. We want to define an encoding of U using S .

We assume for simplicity that each script Si has a constant cost c and each data

value in each Di has a constant cost α. Each url in U is given by a pair (pi, tij), where

tij is a tuple in database Di. We write all the scripts once, and given a url (pi, tij), we

encode it by specifying just the data tij and an index to the pattern pi. The length of

all the scripts is c·k. Total length of specifying all the data equals
�

i α ·arity(pi)·ni.

To encode the pattern indexes, the number of bits we need equals the entropy of the

distribution of cluster sizes. Denoting the sum
�

i ni by N , the entropy is given by
�

i nilog
N
ni

.

Thus, the description length of U using S is given by

ck +
�

i

ni log
N

ni
+ α

�

i

arity(pi) · ni (2.1)

The MDL Principle

Given a set of urls U , we want to find the set of scripts S that best explain U . Using the

priciple of minimum description length [Gru07], we try to find the shortest hypothesis,

i.e., S that minimize the description length of U .

The model presented in this section for urls is simplistic, and serves only to illus-

trate the mdl principle and the cost function given by Eq .(2.1). In the next section, we

define our clustering problem formally and in a more general way.

15

2. CLUSTERING WEB PAGES

2.4 Problem Definition

We now formally define the Mdl-based clustering problem. Let W be a set of web-

pages. Each w ∈ W has a set of terms, denoted by T (w). Note that a url se-

quence “site.com/a1/a2/ . . .” can be represented as a set of terms {(pos1 =

site.com), (pos2 = a1), (pos3 = a2), · · · }. In section 2.4, we will describe in more

detail how a url and the webpage content is encoded as terms. Given a term t, let

W (t) denote the set of webpages that contain t. For a set of pages, we use script(W)

to denote ∩w∈WT (w), i.e., the set of terms present in all the pages in W .

A clustering is a partition of W . Let C = {W1, · · · ,Wk} be a clustering of W ,

where Wi has size ni. Let N be the size of W . Given a w ∈ Wi, let arity(w) =

|T (w) − script(Wi)|, i.e., arity(w) is the number of terms in w that are not present

all the webpages in Wi. Let c and α be two fixed parameters. Define

mdl(C) = ck +
�

i

ni log
N

ni
+ α

�

w∈W

arity(w) (2.2)

We define the clustering problem as follows:

Problem 1. (Mdl-Clustering) Given a set of webpages W , find the clustering C that

minimizes mdl(C).

Eq. (2.2) can be slightly simplified. Given a clustering C as above, let si denote

the number of terms in script(Wi). Then,
�

w∈W arity(w) =
�

w∈W |w|−
�

i nisi.

Also, the entropy
�

i ni log
N
ni

equals N logN −
�

i ni log ni. By removing the

clustering independent terms from the resulting expression, the Mdl-Clustering can

alternatively be formulated using the following objective function:

mdl∗(C) = ck −

�

i

ni log ni − α
�

i

nisi (2.3)

Instantiating Webpages

The abstract problem formulation treats each webpage as a set of terms, which we can

use to represent its url and content. We describe here the representation that we use in

this work:

URL Terms

As we described above, we tokenize urls based on “/” character, and for the token

t in position i, we add a term (posi = t) to the webpage. The sequence information

is important in urls, and hence, we add the position to each token.

16

2.5. Properties of MDL Clustering

For script paramters, for each (param, val) pair, we construct two terms: (param,

val) and (param). E.g., the url site.com/fetch.php?type=1&bid=12 will

have the following set of terms: { pos1=site.com, pos2=fetch.php, type, bid,

type=1, bid=12}. Adding two terms for each paramter allows us to model the two

cases when the existence of a parameter itself varies between pages from the same

script and the case when parameter always exists and its value varies between script

pages.

Many sites use urls whose logical structure is not well seperated using “/”. E.g.,

the site tripadvisor.com has urls of the form

www.tripadvisor.com/Restaurants-g60878-Seattle Washington.html

for restaurants and has urls like

www.tripadvisor.com/Attractions-g60878-Activities-Seattle Washington.html

for activities. The only way to separate them is to look for the keyword “Restau-

rants” vs. “Attractions”. In order to model this, for each token t in position i, we

further tokenize it based on non-alphanumeric characters, and for each subterm tj , we

add (posi = tj) to the webpage. Thus, the restaurant webpage above will be rep-

resented as { pos1=tripadvisor.com, pos2=Restaurants, pos2=g60878, pos2=Seattle,

pos2=Washington}. The idea is that the term pos2=Restaurants will be inferred as

part of the script, since its frequency is much larger than other terms in co-occurs

with in that position. Also note that we treat the individual subterms in a token as a

set rather than sequence, since we don’t have a way to perfectly align these sequences.

Content Terms

We can also incorporate content naturally in our framework. We can simply put the

set of all text elements that occur in a webpage. Note that, analogous to urls, every

webpage has some content terms that come from the script, e.g., Address: and Open-

ing hours:, and some terms that come from the data. By putting all the text elements

as webpage terms, we can identify clusters that share script terms, similar to urls. In

addition, we want to disambiguate text elements that occur at structurally different

positions in the document. For this, we also look at the html tag sequence of text

elements starting from the root. Thus, the content terms consist of all (xpath, text)

pairs present in the webpage.

2.5 Properties of MDL Clustering

We analyze some properties of Mdl-Clustering here, which helps us gain some in-

sights into its working.

17

2. CLUSTERING WEB PAGES

Local substructure

Let opt(W) denote the optimal clustering of a set of webpages W . Given a clus-

tering problem, we say that the problem exhibits a local substructure property, if the

following holds : for any subset S ⊆ opt(W), we have opt(WS) = S, where WS

denotes the union of web pages in all clusters in S,

Lemma 2.5.1. Mdl-Clustering has local substructure.

Proof. Let W be any set of pages, S0 ⊂ opt(W) and S1 = opt(W) \ S0. Let N0 and

N1 be the total number of urls in all clusters in S0 and S1 respectively. Using a direct

application of Eq. (2.2), it is easy to show the following:

mdl(opt(W)) = N1 log
N

N1
+N2 log

N

N2
+mdl(S0) +mdl(S1)

Thus, if opt(W0) �= S0, we can replace S0 with opt(W0) in the above equation to

obtain a clustering of W with a lower cost than opt(W), which is a contradiciton.

Local substructure is a very useful property to have. If we know that two sets of

pages are not in the same cluster, e.g., different domains, different filetypes etc., we

can find the optimal clustering of the two sets independently. We will use this property

in our algorithm as well as several of the following results.

Small Cardinality Effect

Recall from Section 2.3 the small cardinality effect. We formally quantify the effect

here, and show that Mdl-Clustering exhibits this effect.

Theorem 1. Let F be a set of terms s.t. C = {W (f) | f ∈ F} is a partition of W

and |F | ≤ 2α−c. Then, mdl(C) ≤ mdl({W}).

A corollary of the above result is that if a set of urls have less than 2α−c distinct

values in a given position, it is always better to split them by those values than not split

at all. For |W | � c, the minimum cardinality bound in Theorem 1 can be strength-

ened to 2α.

Large Component Effect

In Section 2.3, we also discussed the large component effect. Here, we formally quan-

tify this effect for Mdl-Clustering.

18

2.6. Finding Optimal Clustering

Given a term t, let C(t) denote the clustering {W (t),W −W (t)}, and let frac(t)

denote the fraction of webpages that have term t.

Theorem 2. There exists a threshold τ , s.t., if W has a term t with frac(t) > τ , then

mdl(C(t) ≤ mdl({W}).

For |W | � c, τ is the positive root of the equation αx+x log x+(1−x) log(1−

x) = 0. There is no explicit form for x as a function of α. For α = 2, τ = 0.5.

For clustering, α plays an important role, since it controls both the small cardi-

nality effect and the large component effect. On the other hand, since the number of

clusters in a typical web site is much smaller than the number of urls, the parameter

c plays a relatively unimportant role, and only serves to prevent very small clusters to

be split.

2.6 Finding Optimal Clustering

In this section, we consider the problem of finding the optimal MDL clustering of a set

of webpages. We start by considering a very restricted version of the problem: when

each webpage has only 1 term. For this restricted version, we describe a polynomial

time algorithm in Section 2.6. In Appendix 5.5, we show that the unrestricted version

of Mdl-Clustering is NP-hard, and remain hard even when we restrict each webpage

to have at most 2 terms. Finally, in Section 2.6, based on the properties of Mdl-

Clustering (from Section 2.5) and the polynomial time algorithm from Section 2.6,

we give an efficient and effective greedy heuristic to tackle the general Mdl-Clustering

problem.

A Special Case : Single Term Webpages

We consider instances W of Mdl-Clustering where each w ∈ W has only a single

term. We will show that we can find the optimal clustering of W efficiently.

Lemma 2.6.1. In Opt(W), at most one cluster can have more than one distinct values.

Proof. Suppose there are two clusters C1 and C2 in Opt(W) with more than 1 distinct

values. Let there sizes be n1 and n2 with n1 ≤ n2 and let N = n1 + n2. By

Lemma 2.5.1, {C1, C2} is the optimal clustering of C1 ∪ C2. Let ent(p1, p2) =

−p1 log p1 − p2 log p2 denote the entropy function. We have

mdl({C1, C2}) = 2c+N · ent(
n1

N
,
n2

N
) + αN

19

2. CLUSTERING WEB PAGES

Let C0 be any subset of C1 consisting of unique tokens, and consider the clustering

{C0, C1 ∪ C2 \ C0}. Denoting the size of C0 by n0, the cost of the new clustering is

2c+N · ent(
n0

N
,
n1

N
) + α(N − n0)

This is because, in cluster C0, every term is constant, so it can be put into the script,

hence there is no data cost for cluster C0. Also, since n0 < n1 ≤ n2 < n2, the latter

is a more uniform distribution, and hence ent(n0
N , n1

N) < ent(n1
N , n2

N). Thus, the new

clustering leads to a lower cost, which is a contradiction.

Thus, we can assume that Opt(W) has the form

{W (t1),W (t2), · · · ,W (tk),Wrest}

where W (ti) is a cluster containing pages having term ti, and Wrest is a cluster with

all the remaining values.

Lemma 2.6.2. For any term r in some webpage in Wrest and any i ∈ [1, k], |W (ti)| ≥

|W (r)|.

Proof. Suppose, w.l.o.g, that |W (t1)| ≤ |W (r)| for some term r ∈ Wrest. Lemma 2.5.1

tells us that C0 = {W (t1),Wrest} is the optimal clustering of W0 = W (t1)∪Wrest.

Let C1 = {W (v),W0 \W (v)} and let C2 = {W0}. From first principles, it is easy

to show that

max(mdl(C1),mdl(C2)) < mdl(C0)

This contradicts the optimality of C1.

Lemma 2.6.1 and 2.6.2 give us an obvious PTIME algorithm for Mdl-Clustering.

We sort the terms based on their frequencies. For each i, we consider the clustering

where the top i frequent terms are all in separate cluster, and everything else is in one

cluster. Among all such clusterings, we pick the best one.

The General Case : Hardness

In this section, we will show that Mdl-Clustering is NP-hard. We will show that the

hardness holds even for a very restricted version of the problem: when each webpage

w ∈ W has at most 2 terms.

We use a reduction from the 2-Bounded-3-Set-Packing problem. In 2-Bounded-3-

Set-Packing, we are given a 3-uniform hypergraph H = (V,E) with maximum degree

2, i.e., each edge contains 3 vertices and no vertex occurs in more than 2 edges. We

want to determine if H has a perfect matching, i.e., a set of vertex-disjoint edges that

cover all the vertices of H . The problem is known to be NP-complete [CC03].

20

2.6. Finding Optimal Clustering

We refer an interested reader to Appendix 5.5 for further details about the reduc-

tion.

The General Case : Greedy Algorithm

Algorithm 1 RecursiveMdlClustering
Input: W , a set of urls
Output: A partitioning C

1: Cgreedy ← FindGreedyCandidate(W)
2: if Cgreedy is not null then
3: return ∪W �∈Cgreedy RecursiveMdlClustering(W �)
4: else
5: return {W}

6: end if

In this section, we present our scalable recursive greedy algorithm for clustering

webpages. At a high level our algorithm can be describe as follows: at every step,

we refine the intermediate clustering by greedily partitioning one of the clusters if the

mdl score of the new partitioning improves. We stop when none of the intermediate

clusters can be further partitioned without decreasing the mdl score. We implement

efficiently the above outlined procedure as follows:

• Using the local substructure property (Lemma 2.5.1), we can show that a recur-

sive implementation is sound (Section 2.6).

• We greedily explore a set of partitions, each of which is a set cover with small

cardinality k, where urls in k− 1 sets have at least one term in common (i.e., at

least one new script term). The small set covers include (a) {W (t), W−W (t)},

and (b) {U1, U2, . . . , Uk−1,W − ∪
k−1
�=1U�}, where Ui’s are first k − 1 sets in

the greedy set covering using the sets {W (t)}t. The intuition behind using set

covers of small size is motivated by the optimal solution for the special case

for single term web pages (Lemma 2.6.1). In fact we show that our greedy

partitioning is optimal for single term web pages (Section 2.6).

• Rather than actually computing the mdl score of the current clustering, we show

that one can equivalently reason in terms of δmdl, the decrease in mdl∗ (Equa-

tion 2.3) of the child clusters with respect to the parent cluster. We show that

δmdl can be efficiently computed using the set of functional dependencies in the

parent cluster (Section 2.6).

• Finally, we show how to incorporate additional information to improve the web

site clustering solution (Section 2.6).

21

2. CLUSTERING WEB PAGES

Algorithm 2 FindGreedyCandidate
Input: W , a set of urls
Output: A greedy partitioning C if mdl cost improves, null other-
wise

1: T = ∪w∈WT (w)− script(W)
2: Set C ← ∅ // set of candidate partitions
3:
4: // Two-way Greedy Partitions
5: for t ∈ T do
6: Ct = {W (t),W −W (t)}, where W (t) = {w|t ∈ T (w)}
7: C ← C ∪ {Ct}

8: end for
9:

10: // k-way Greedy Partitions (k > 2)
11: Let Ts = {a1, a2, . . .} be an ordering of terms in T such that ai appears in the

most number of urls in W − ∪
i−1
�=1W (a�).

12: for 2 < k ≤ kmax do
13: Ui = Wai − ∪

i−1
�=1Wa� , Wrest = W − ∪k

�=1Wa�

14: Ck = {U1, U2, . . . , Uk,Wrest}

15: C ← C ∪ Ck

16: end for
17:
18: // return best partition if mdl improves
19: Cbest ← argminC∈C δmdl(C)
20: if δmdl(Cbest) > 0 then
21: return Cbest

22: else
23: return null
24: end if

Recursive Partitioning

Our recursive implementation and greedy partitioning are outlined in Algorithms 1

and 2 respectively. We start with W , the set of all web pages and greedily find a par-

titioning with the lowest mdl cost (highest δmdl). If the mdl of the solution improves

(i.e., δmdl > 0), we proceed to recursively partition the clusters. Else, we return W .

Candidates Greedy Partitions

As mentioned above, we use explore set covers with small cardinality to compute

the greedy partition. First, we find the best two-way partitioning of W . In order to

reduce the mdl cost, at least one of the two clusters must have more schema terms

than W . That is, one of the clusters must have at least one more term that appears

in all web pages than in W . We accomplish this by exploring all splits of the form

{W (t),W −W (t)}, for all t that is not a script term in W .

22

2.6. Finding Optimal Clustering

A greedy strategy that only looks at 2-way splits as described above may not suffi-

ciently explore the search space, especially if none of the two-way splits {W (t),W −

W (t)} reduce the mdl cost. For instance, consider a scenario with 3N webpages W ,

N of which have exactly one term names a1, N others have a2 and the final N have

a single term a3. Then, mdl∗({W}) = c − 3N log(3N) − α · 0 (a single cluster

has no script terms). Any two-way split has cost mdl∗({W (ai),W − W (ai)}) =

2 · c−N logN − 2N log(2N)−α ·N . It is easy to check that mdl∗ of any two-way

split is larger than mdl∗({W}) for a sufficiently large N and α = 1. Hence, our

recursive algorithm would stop here. However, from Lemma 2.6.1, we know that the

optimal clustering for the above example is {W (a1),W (a2),W (a3)}.

Motivated by the small cardinality effect, (Theorem 1), we also explore k-way

splits that partition W into k clusters, where k−1 clusters have at least one new script

term. However, since we can not efficiently enumerate all the k-way splits (O(nk),

where n is the number of distinct non-script terms in W), we limit our search to the

following. We first order the non-script terms in W as a1, a2, . . . , an, and then for

every 2 < k ≤ kmax we partition W into {U1, U2, . . . , Uk−1,W − ∪iUi}. Ui is the

set of web pages that contain ai but none of preceding a�, � < i. Since, we would like

to cluster W into k sets whose sizes are as large as possible, we order the non-schema

terms as follows: ai is the non-schema term that appears in the most number of urls

that do not contain any a�, � < i. Note that this is precisely the ordering returned by

the greedy algorithm for set cover, when the sets are {Wt}. We show that if kmax is

sufficiently large, then the above algorithm discovers opt(W) for a set of single term

web pages.

Lemma 2.6.3. If kmax is sufficiently large, Algorithm 2.6 discovers the optimal solu-

tion when W is a set of single term web pages.

Efficiently computing the best greedy partition

In order to find the best greedy partition, when generating each partition we also com-

pute δmdl, the decrease in description length when replacing {W} with the partition

{W1,W2, . . . ,Wk}. That is,

δmdl = mdl∗({W})−mdl∗({W1,W2, . . . ,Wk})

= −c+
�

i

|Wi| log |Wi|+∆ (2.4)

∆ =
�

i

|Wi| · si − |W | · s (2.5)

where, si is the size of script(Wi) and s is the size of script(W). Since every script

term in W is also a script term in Wi, note that (si − s) is the number of new script

23

2. CLUSTERING WEB PAGES

terms in Wi. We now show how to efficiently compute (si − s) for all clusters in

every candidate partition in a single pass over W . Thus if the depth of our recursive

algorithm is �, then we make at most � passes over the entire dataset. Our algorithm

will use the following notion of functional dependencies to efficiently estimate (si −

s).

Definition 1 (Functional Dependency). A term x is said to functionally determine a

term y with respect to a set of web pages W , if y appears whenever x appears. More

formally,

x →W y ≡ W (x) ⊆ W (y) (2.6)

We denote by FDW (x) the set of terms that are functionally determined by x with

respect to W .

Two-way splits First let us consider the two-way split {W (t),W −W (t)}. Since t

appears in every web page in W (t), by definition a term t� is a script term in W (t) if

and only if t� ∈ FDW (t). Similarly, t does not appear in any web page in W −W (t).

Hence, t� is a script term in W −W (t) if and only if t� ∈ FDW (¬t); we abuse the FD

notation and denote by FDW (¬t) the set of terms appear whenever t does not appear.

Therefore, script(W (t)) = FDW (t), and script(W −W (t)) = FDW (¬t).

The set FDW (t) can be efficiently computed in one pass. We compute the number

of web pages in which a single term (n(t)) and a pair of terms (n(t, t�)) appears.

FDW (t) = {t�|n(t�) = n(t, t�)} (2.7)

To compute FDW (¬t), we find some web page w that does not contain t. By defini-

tion, any term that does not appear in T (w) can not be in FDW (�= t). FDW (¬t) can

be computed as

{t�|t� ∈ T (w) ∧ n− n(t) = n(t�)− n(t, t�)} (2.8)

where, n = |W |.

k-way splits Given an ordering of terms {a1, a2, . . . , akmax}, our k-way splits are

of the form {U1, U2, . . . , Uk−1,W − ∪iUi}, where Ui denotes the set of web pages

that contain ai but none of the terms a�, � < i. Therefore (again abusing the FD

notation), script(Ui) = FDW (¬a1 ∧ ¬a2¬ . . .¬ai−1 ∧ ai). The final set does not

contain any of the terms a�, � < k. Hence, script(W − ∪iUi) = FDW (∧k−1
i=1 ai).

The FD sets are computed in one pass over W as follows. We maintain array C

such that C(i) is the number of times ai appears and none of a� appear 1 ≤ � < i. For

each non script term in W , we maintain an array Ct such that Ct(i) is the number of

24

2.6. Finding Optimal Clustering

times t appears when ai appears and none of a� appear 1 ≤ � < i. Similarly, array R

is such that R(i) = |W |−
�i

�=1 C(�). For each non script term t in W , Rt is an array

such that Rt(i) = |W (t)| −
�i

�=1 Ct(�). The required FD sets can be computed as:

FDW ((∧�−1
i=1¬ai) ∧ a�) = {t|C(�) = Ct(�)} (2.9)

FDW (∧�
i=1¬ai) = {t|R(�) = Rt(�)} (2.10)

Incorporating additional knowledge

Our problem formulation does not take into account any semantics associated with

the terms appearing in the urls or the content. Thus, it can sometimes choose to

split on a term which is “clearly” a data term. E.g., consider the urls u1, u2, u3, u4

from Section 2.3). Intuitively, picking a split Ceats = {W (eats),W − W (eats)}

correctly identifies the scripts eats and todo.

However, sometimes the split CSeattle = {W (Seattle),W − W (Seattle)}

has a lower description length than the correct split. This is because of a functional

dependency from Seattle to WA. Thus, a split on Seattle makes two terms contants,

and the resulting description length can be smaller than the correct split. If we have

regions and countries in the urls in addition to states, the Seattle split is even more

profitable.

If we have the domain knowledge that Seattle is a city name, we will know that

its a data term, and thus, we won’t allow splits on this value. We can potentially use a

database of cities, states, or other dictionaries from the domain to identify data terms.

Rather than taking the domain centric route of using dictionaries, here we present

a domain agnostic technique to overcome this problem. Recall that our goal is to

identify clusters such that the web pages in each cluster can be generated using a

single script and a set of tuples. We impose the following semantic script language

constraint on our problem formulation – if t is a script term for some cluster W ,

then it is very unlikely that t is a data term in another cluster W �. This constraint

immediately solves the problem we illustrated in the above example. CSeattle has one

cluster (W (Seattle)) where WA is a script term and another cluster where WA is a

data term. If we disallow such a solution, we indeed get the right clustering Ceats.

Hence, to this effect, we modify our greedy algorithm to use a term t to create

a partition W (t) if and only if there does not exist a term t� that is a script term

in W (t) and a data term is some other cluster. This implies the following. First,

if t� ∈ script(W (t)), then t� ∈ FDW (t). Moreover, both in the two-way and k-way

greedy partitions generate by our greedy algorithm, t� can be a data term in some other

cluster if and only if t� is not in script(W). Therefore, we can encode the semantic

25

2. CLUSTERING WEB PAGES

script language constraint in our greedy algorithm as:

split on t if and only if FDW (t) ⊆ script(W) (2.11)

In Algorithm 2.6, the above condition affects line number 5 to restrict the set of terms

used to create two-way partitions, as well as line number 11 where the ordering is only

on terms that satisfy Equation 2.11.

2.7 Experiments

We first describe the setup of our experiments, our test data, and the algorithms that

we use for evaluation.

Datasets As we described in Section 2.1, our motivation for structural clustering

stems from web-scale extraction. We set up our experiments to target this. We con-

sider a seed database of italian restaurants, which we created by searching the web.

Table 2.1 shows a subset of web sites that we found using this process. Most of these

are web sites specializing in Italian restaurants, although we have a couple which are

generic restaurant web sites, namely chefmoz.com and tripadvisor.com. For

each web site, we crawl and fetch all the webpages from those sites. The second col-

umn in the table lists the number of webpages that we obtained from each site. Every

resulting site has, along with a set of restaurant pages, a bunch of other pages that

include users, reviews, landing pages for cities, attractions, and so on. Our objective

is to identify, from each web site, all the pages that contain restaurant information,

which we can use to train wrappers and extraction.

For each web site, we manually identified all the webpages of interest to us. We

use this golden data to measure the precision/recall of our clustering algorithms. For

each clustering technique, we study its accuracy by running it over each web site, pick-

ing the cluster that overlaps the best with the golden data, and measuring its precision

and recall.

Algorithms We will consider several variants of our technique: Mdl-U is our

clustering algorithm that only looks at the urls of the webpages. Mdl-C is the variant

that only looks at the content of the webpages, while Mdl-UC uses both the urls and

the content.

In addition to our techniques, we also look at the techniques that are described in

a recent survey [Got08], where various techniques for structural clustering are com-

pared. We pick a technique that has the best accuracy, namely, the one that uses a

Jaccard similarity over path sequences between webpages, and uses a single-linkage

hierarchical clustering algorithm to cluster webpages. We call this method CP-SL.

26

2.7. Experiments

Website Pages Mdl-U Mdl-C Mdl-UC CP-SL
p r t(s) p r t(s) p r t(s) p r

2spaghi.it 20291 1.00 1.00 2.67 1.00 1.00 182.03 0.99 0.34 128.79 1.00 0.35
cerca-ristoranti.com 2195 1.00 1.00 1.17 1.00 0.91 8.01 1.00 0.91 7.39 0.99 0.74
chefmoz.org 37156 1.00 0.72 16.18 1.00 0.98 116.73 1.00 0.98 75.54 1.00 0.93
eristorante.com 5715 1.00 1.00 2.07 1.00 1.00 13.63 1.00 1.00 12.62 0.43 1.00
eventiesagre.it 48806 1.00 1.00 15.96 1.00 1.00 799.79 1.00 1.00 484.28 1.00 1.00
gustoinrete.com 5174 1.00 1.00 1.04 1.00 1.00 16.84 1.00 1.00 15.03 - -
ilmangione.it 18823 1.00 1.00 2.08 1.00 1.00 262.44 1.00 0.29 214.24 1.00 0.63
ilterzogirone.it 6892 1.00 0.26 1.32 1.00 1.00 108.93 1.00 1.00 103.22 1.00 0.44
iristorante.it 614 1.00 0.54 0.49 1.00 0.96 26.45 1.00 0.96 25.12 1.00 0.95
misvago.it 14304 0.36 1.00 3.66 0.99 0.93 387.13 0.99 0.93 297.72 1.00 1.00
mondochef.com 1922 1.00 0.79 1.04 1.00 0.79 11.90 1.00 0.79 10.79 0.23 0.89
mylunch.it 1500 0.98 0.94 1.41 0.98 1.00 4.26 0.98 1.00 3.82 0.98 0.97
originalitaly.it 649 1.00 0.96 0.48 0.97 0.85 37.67 0.97 0.85 31.95 0.49 0.93
parks.it 9997 1.00 1.00 1.67 1.00 1.00 15.28 1.00 0.50 14.91 - -
prenotaristorante.com 4803 1.00 0.50 1.33 1.00 0.63 16.62 1.00 0.63 14.05 1.00 0.66
prodottitipici.com 31904 1.00 1.00 4.58 0.72 0.68 522.79 0.72 0.68 465.39 0.49 0.51
ricettedi.it 1381 1.00 1.00 0.88 0.60 0.94 5.63 0.60 0.94 5.29 1.00 0.74
ristorantiitaliani.it 4002 0.99 0.82 1.28 0.99 0.92 15.63 0.62 0.64 12.31 0.77 0.50
ristosito.com 3844 1.00 1.00 1.37 1.00 1.00 19.91 1.00 1.00 17.36 1.00 0.97
tripadvisor.com 10000 0.96 1.00 15.01 1.00 0.82 1974.58 0.12 0.98 1527.70 1.00 0.64
zerodelta.net 191 1.00 1.00 0.21 1.00 1.00 96.21 0.85 1.00 102.16 0.03 1.00
borders.com 176430 0.95 1.00 8.50 0.95 1.00 8.50 1.00 0.93 1055.29 0.97 0.94
chegg.com 8174 0.95 0.99 2.04 0.95 0.99 2.04 0.99 0.95 30.70 1.00 0.53
citylights.com 3882 1.00 0.63 1.65 1.00 0.63 1.65 1.00 0.99 21.30 1.00 0.95
ebooks.com 51389 1.00 1.00 4.96 1.00 1.00 4.96 0.95 0.99 1406.89 1.00 0.87
houghtonmifflinbooks.com 23651 0.76 1.00 3.41 0.76 1.00 3.41 0.92 0.86 240.97 0.41 1.00
litlovers.com 1676 1.00 1.00 1.09 1.00 1.00 1.09 0.92 0.92 5.25 1.00 0.93
readinggroupguides.com 8587 0.88 1.00 2.19 0.88 1.00 2.19 0.92 0.85 79.80 0.50 1.00
sawnet.org 1180 1.00 1.00 0.61 1.00 1.00 0.61 1.00 0.85 2.97 1.00 0.61
aol.com 56073 1.00 1.00 11.97 0.98 0.80 508.76 1.00 1.00 605.67 0.71 1.00
bobandtom.com 1856 1.00 0.89 1.07 0.82 0.96 7.87 0.96 0.82 9.04 1.00 0.82
dead-frog.com 2309 1.00 1.00 1.45 0.72 0.88 31.91 1.00 0.95 37.98 1.00 0.93
moviefone.com 250482 1.00 1.00 8.19 0.91 0.59 3353.17 0.97 1.00 3854.21 1.00 0.94
tmz.com 211117 1.00 0.88 10.74 0.87 0.88 1712.31 0.93 0.82 2038.46 - -
yahoo.com 630873 0.26 1.00 9.39 0.99 0.79 11250.44 0.98 0.94 12931.55 0.38 0.36
dentistquest.com 2414 1.00 1.00 0.97 1.00 1.00 7.08 1.00 1.00 12.15 1.00 0.33
dentists.com 8722 0.99 1.00 1.69 0.69 0.99 12.89 1.00 1.00 43.27 0.23 1.00
dentistsdirectory.us 625 0.97 0.99 0.37 0.95 0.99 2.53 0.95 0.99 2.78 0.96 0.75
drscore.com 14604 1.00 1.00 3.53 1.00 0.72 124.92 1.00 1.00 199.57 1.00 0.67
healthline.com 98533 1.00 1.00 23.33 1.00 0.85 2755.18 1.00 1.00 1624.53 1.00 0.54
hospital-data.com 29757 1.00 1.00 4.91 1.00 1.00 344.82 1.00 1.00 143.60 1.00 0.79
nursinghomegrades.com 2625 1.00 1.00 1.32 0.90 1.00 15.08 0.98 1.00 17.68 1.00 0.45
vitals.com 34721 1.00 1.00 7.46 0.99 0.92 422.26 0.99 0.92 793.10 1.00 0.50
Average 0.95 0.93 0.91 0.87 0.97 0.93 0.84 0.77
Total 1849843 186.74 24143.35 29799.22

Table 2.1: Comparison of the different clustering techniques

Accuracy

Table 2.1 lists the precision/recall of various techniques on all the sites, as well as the

average precision and recall. We see that Mdl-U has an average precision of 0.95 and

an average recall of 0.93, supporing our claim that urls alone have enough information

to achieve high quality clustering. On some sites, Mdl-U does not find the perfect

cluster. E.g., in chefmoz, a large fraction of restaurants (72% to be exact), are from

United States, and therefore Mdl-U thinks its a different cluster, separating it from the

other restaurants. Mdl-UC, on the other hand, corrects this error, as it finds that the

content structure in this cluster is not that different from the other restaurants. Mdl-

UC, in fact, achieves an average precision and recall close to 1. On the other hand,

Mdl-C performs slightly worse that Mdl-U, again confirming our belief that urls are

often more informative and useful than the content.

Table 2.1 also includes the precision/recall numbers for CP-SL. CP-SL algorithm

27

2. CLUSTERING WEB PAGES

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pr
ec

is
io

n

recall

Figure 2.1: Precision-Recall of Mdl-U by varying α

is really slow, so to keep the running times reasonable, we sampled only 500 webpages

from each web site uniformly at random, and ran the algorithm on the sample. For

a couple of sites, the fraction of positives pages was so small that the sample did not

have a representation of positives pages. For these sites, we have not included the

precision and recall. We see that the average precision/recall, although high, is much

lower that what we obtain using our techniques.

Dependency on α

Recall that the α parameter controls both the small cardinality and large compenent

effect, and thus affects the degree of clustering. A value of α = 0 leads to all pages

being in the same cluster and α = ∞ results in each page being in its own cluster.

Thus, to study the dependency on α, we vary α and compute the precision and recall

of the resulting clustering. Fig. 2.1 shows the resulting curve for the Mdl-U algorithm;

we report precision and recall numbers averaged over all Italian restaurant websites.

We see that the algorithm has a very desirable p-r characteristic curve, which starts

from a very high precision, and remains high as recall approaches 1.

Running Times

Figure 2.2 compares the running time of Mdl-U and CP-SL. We picked one site

(tripadvisor.com) and for 1 ≤ � ≤ 60, we randomly sampled (10 · �) pages

from the site and performed clustering both using Mdl-U and CP-SL. We see that as

the number of pages increased from 1 to 600, the running time for Mdl-U increases

28

2.7. Experiments

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600

tim
e

(s
ec

)

of webpages

MDL-U
CP-SL

Figure 2.2: Running Time of Mdl-U versus CP-SL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

tim
e

(s
ec

)

of webpages (thousands)

Figure 2.3: Running Time of Mdl-U

from about 10 ms to about 100 ms. On the other hand, we see a quadratic increase

in running time for CP-SL (note the log scale on the y axis); it takes CP-SL about

3.5 seconds to cluster 300 pages and 14 (= 3.5 ∗ 22) seconds to cluster 600 pages.

Extrapolating, it would take about 5000 hours (≈ 200 days) to cluster 600,000 pages

from the same site.

In Figure 2.3 we plotted the running times for clustering large samples of 100k,

200k, 300k, 500k and 700k pages from the same site. The graph clearly illustrates

29

2. CLUSTERING WEB PAGES

that our algorithm is linear in the size of the site. Compared to the expected running

time of 200 days for CP-SL, Mdl-U is able to cluster 700,000 pages in just 26 minutes!

2.8 Conclusions

In this chapter, we present highly efficient and accurate algorithms for structurally

clustering webpages. We explored the idea of using URLs for structural clustering

of web sites by proposing a principled framework, grounded in information theory,

that allows us to leverage URLs effectively, as well as combine them with content

and structural properties. We proposed an algorithm, with a linear time complexity in

the number of webpages, that scales easily to web sites with millions of pages. The

proposed approach has been tested with several experiments that proved the quality

and the scalability of the technique. We found that, for example, we were able to

cluster a web site with 700,000 pages in 26 seconds, an estimated 11,000 times faster

than competitive techniques.

30

Chapter 3

Web Source Discovering And Analysis

In Chapter 2 we have proposed a solution to the problem of how to automatically

cluster structured web pages. The technique resulted to be very scalable, but it relies

on the dump of the analyzed web sources or, at least, the knowledge of all the urls.

Keeping in mind that the final goal is to collect large amount of structured information

from the web, in this chapter we propose techniques to discover new the web sites that

contain the information we are looking for and to identify which pages are of interest.

To do this we build a description of the target entity and we query a search engine to

discover new web sites and select the ones containing the correct information. The

clustering of the web pages is used to determine which pages, among all the pages in

the web sites, contain the data of interest.

3.1 Introduction

For the sake of scalability of the publishing process, data–intensive web sites publish

pages where the structure and the navigation paths are fairly regular. Within each

Figure 3.1: Web pages representing instances of the BASKETBALLPLAYER entity.

31

3. WEB SOURCE DISCOVERING AND ANALYSIS

site, pages containing the same intensional information, i.e., instances of the same

entity, offer the same type of information, which is organized according to a common

template. In addition, the access paths (e.g., from the home page) to these pages obey

to a common pattern. Consider web sites that publish information about popular sport

events, or web sites that publish financial information: their pages embed data that

describe instances of entities such as athlete, match, team, or stock quote, company,

and so on. To give a concrete example, observe the web pages in Figure 3.1. Observe

that in a given web site, the pages of two distinct players contains data—such as name,

date of birth, and so on—that are organized according to the same page template.

Also, these pages can be reached following similar navigation paths from the home

page.

Although it is easy for a human reader to recognize these instances, as well as

the access paths to the corresponding pages, current search engines are unaware of

them. Technologies for the Semantic web [] aim at overcoming these limitations;

however, so far they have been of little help in this respect, as semantic publishing is

very limited.

To overcome this issue, search engine companies are providing facilities to build

personal search engines that can be specialized over specific domains. A prominent

example is Google Co-op1, a Google facility that allows users to indicate sets of pages

to be included in the personal search engine, and to assign a label (facet in the Google

terminology) to them. Labels aim at providing a semantic meaning to the page con-

tents, and are used to enhance the search engine querying system. For data rich pages,

labels typically represent a name for the underlying entity. For example, a user inter-

ested in building a personal search engine about the basketball world can provide the

system with web pages containing data about players, such as those in Figure 3.1, and

then she can associate them with the label BASKETBALLPLAYER to indicate that they

contain data about instances of the basketball player entity. An alternative approach

with similar goals is based on mass labeling facilities, such as del.icio.us or

reddit.com, which allow users to collaboratively annotate pages with labels.

We observe that although these approaches support users in the definition of search

engines that are somehow aware about the presence of instances of a given entity, the

issue of gathering the relevant pages must be performed manually by the user.

In this chapter we tackle the issue of the page gathering task.

Our method takes as input a small set of sample pages from distinct web sites: it

only requires that the sample pages contain data about an instance of the conceptual

entity of interest. Then, leveraging redundancies and structural regularities that locally

1http://www.google.com/coop

32

3.2. Overview

occur on the web, our method automatically discovers pages containing data about

other instances of the entity exemplified by the input samples, as follows.

1. it crawls the web sites of the input sample pages to collect pages with data about

other instances of the entity of interest;

2. from these pages, it automatically extracts a description of the entity exempli-

fied by the sample pages;

3. using the information computed in the previous steps, it launches web searches

to discover new pages. The results of these searches are analyzed using the

entity description. Pages representing valid instances of the target entity are

stored, and are used to recursively trigger the process.

In the next section we give more details about these three steps.

It is important to notice that our technique has a different semantics with respect

to the “similar pages” facility offered by search engines. Given as input two web

pages from two different web sites describing the basketball players “Kobe Bryant”

and “Bill Bradley”, our method aims at retrieving many web pages that are similar

at the intensional level, e.g., pages about other basketball players, not necessarily the

same two sample players.

3.2 Overview

The ultimate goal of our method is to automatically discover web pages that contain

data describing instances of a given conceptual entity. We assume that the user pro-

vides as input a few input sample pages. No matter the sample pages contain data

about the same instance; we only require they come from different web sites, and

they contain data that represent instances of the same entity. Pages such as those in

Figure 3.1 could be used as input to collect pages with data about instances of the

BASKETBALLPLAYER conceptual entity.

Searching Entity Pages within One Site The first step of our method is to search

the target pages within the web sites of each sample page. This task can be accom-

plished by clustering the whole web sites (using the algorithms discussed in Chap-

ter 2, referred with CLUSTERING from now on) and selecting the clusters containing

the sample pages. Alternatively, if the dump of the web sites is not available, the same

task can be performed by web crawlers specifically tailored to accomplish this goal

(we will refer this strategy with CRAWLING from now on). For example, in [BCM05]

33

3. WEB SOURCE DISCOVERING AND ANALYSIS

we developed a crawling algorithm designed to drive a scan of a given web site toward

pages sharing the same structure of an input seed page.2

With respect to our running example, the output of this step (produced by either

CRAWLING or CLUSTERING) is the set of basketball player pages published in the

web sites of each sample page.

Learning a Description of the Entity As a second step, our method computes a

description for the target entity. To this end, we rely on the observation that pages

containing data about instances of the same entity share a common set of characteriz-

ing keywords that appear in the page template.

In our approach, the description of a entity is then composed by a set of keywords

that are extracted from the set of terms that lay on the templates of the input sample

pages. Our experiments show that these keywords effectively characterize the overall

domain of the entity with very promising results.

Given a set of structurally similar pages returned by CRAWLING/CLUSTERING,

the entity description is generated by computing the terms that belongs to the corre-

sponding template. This task is performed by analyzing the set of terms that occur in

the pages and by removing those elements that belong also to the “site template”, i.e.,

to that portion of the template that is shared by every pages in the site. In this way,

from each sample page a set of terms is extracted. Terms that are shared in the tem-

plates of different web sites are then selected as keywords for the entity description.

Triggering new Searches on the web The results produced in the first two steps

are used to propagate the search on the web. This step is done by the OUTDESIT

algorithm, which issues a set of queries against a search engine and elaborates the

results in order to select only those pages that can be considered as instances of the

target entity. Then, the selected pages are used as seeds to trigger a new execution

of CRAWLING/CLUSTERING, and the whole process is repeated until new pages are

found.

To correctly expand the search on the web, we need to address two main issues.

First, we have to feed the search engine with keywords that are likely to produce new

pages representing instances of the input entity. Second, as these pages will be used

to run a new instance of CRAWLING/CLUSTERING, we have to filter them in order to

choose those that really correspond to instances of the entity of interest.

To generate the keywords to be submitted to the search engine we adopt a simple

yet effective solution. As we are searching for instances of a given entity, we need

2This work was completed before my Ph.D. period.

34

3.3. Related Work

values that work as identifiers for the instances of the entity. We observe that, since

pages are designed for human consumption, the anchors associated with the links to

our instance pages usually satisfy these properties: they are expressive, and they uni-

vocally identify the instance described in the target page. In our example, the anchor

to a player page usually corresponds to the name of the athlete. Therefore, we issue a

number of queries against a search engine, where each query is composed by the an-

chor of a link to one of the pages retrieved by the previous CRAWLING/CLUSTERING

execution. Also, to focus the search engine toward the right domain, each query is

completed with keywords from the entity description.

As search results typically include pages that are not suitable for our purposes, we

filter the off-topic pages by requiring that the keywords of the entity description are

contained in their templates.

The three steps described above are repeated to collect new relevant pages: the

results that are selected from each search are used as CRAWLING/CLUSTERING seeds

to gather further pages and to trigger new searches.

A crucial issue is how to drop out pages that do not represent instances of the

target entity. The inclusion of false positives in this step would compromise the whole

process, as any error would be drastically propagated in the successive steps.

3.3 Related Work

Our method is inspired on the pioneering DIPRE technique developed by Brin [Bri98].

With respect to DIPRE, which infers patterns that occur locally within single web

pages to encode tuples, we infer global access patterns offered by large web sites con-

taining pages of interest. DIPRE also inspired several web information extraction

techniques [AG00, BCS+07]. Compared to our approach these approaches are not

able to exploit the information offered by data rich pages. In fact, they concentrate

on the extraction of facts: large collections of named-entities (such as, for exam-

ple, names of scientists, politicians, cities), or simple binary predicates, e.g., born-

in(politician, city). Moreover, they are effective with facts that appear in well-phrased

sentences, whereas they fail to elaborate data that are implied by web page layout or

mark-up practices, such as those typically published in web sites containing data rich

pages.

Our work is also related to researches on focused crawlers (or topical crawlers) [CvD99,

SBG+03, PS05], which face the issue of efficiently fetching web pages that are rele-

vant to a specific topic. Focused crawlers typically rely on text classifiers to determine

the relevance of the visited pages to the target topic. Page relevance and contextual

35

3. WEB SOURCE DISCOVERING AND ANALYSIS

information—such as, the contents around the link, the lexical content of ancestor

pages—are used to estimate the benefit of following URLs contained in the most of

relevant pages. Although focused crawlers present some analogy with our work, our

goal is different as we aim at retrieving pages that publish the same type of informa-

tion, namely, pages containing data that represent instances of the entity exemplified

by means of an input set of sample pages.

Vidal et al. present a system, called GOGETIT! that takes as input a sample page

and an entry point to a web site and generates a sequence of URL patterns for the

links a crawler has to follow to reach pages that are structurally similar to the input

sample [VdSdMC06], therefore their approach can be used as an implementation of

the CRAWLING strategy.

The problem of retrieving documents that are “relevant” to a user’s information

need is the main objective of the information retrieval field [MRS08]. Although our

problem is different in nature, in our method we exploit state-of-the-art keyword ex-

traction and term weighting results from IR [MRS08].

Another research project that addresses issues related to ours is CIMPLE whose

goal is to develop a platform to support the information needs of the members of a

virtual community [DRC+06]. Compared to our method, CIMPLE requires an expert

to provide a set of relevant sources and to design an entity relationship model describ-

ing the domain of interest. Also, the MetaQuerier developed by Chang et al. has

similar objectives to our proposal, as it aims at supporting exploration and integration

of databases on the web [CBZ05]. However it concentrates on the deep-web.

Other related projects are TAP and SEMTAG by Guha et al. [GM03, DEG+03].

TAP involves knowledge extracted from structured web pages and encoded as entities,

attributes, and relations. SEMTAG provides a semantic search capability driven by the

TAP knowledge base. Contrarily to our approach, TAP requires hand-crafted rules

for each site that it crawls, and when the formats of those sites change, the rules need

to be updated.

3.4 INDESIT: Searching Pages By Structure

For the sake of completeness, in this section we give a brief description of INDESIT,

a crawling algorithm that implements an alternative solution to CLUSTERING that

can be used when the dump of the web sources is not available. A more detailed

description can be found in the original paper [BCM05].

Given a seed page p0 containing data of interest, the goal of the INDESIT algorithm

is to pick out from its site the largest number of pages similar in structure to p0 and

36

3.5. OUTDESIT: Searching Entities On The Web

the anchors pointing to such pages. The underlying idea of INDESIT is that while

crawling, it is possible to acquire knowledge about the navigational paths the site

provides and to give higher priority to the most promising and efficient paths, i.e.,

those leading to a large number of pages structurally similar to the seed.

INDESIT relies on a simple model that abstracts the structure of a web page. The

model adopted by INDESIT to abstract the structure of a web pages is based on the

following observations: (i) pages from large web sites usually contain a large number

of links, and (ii) the set of layout and presentation properties associated with the links

of a page can provide hints about the structure of the page itself. Therefore, whenever

a large majority of the links of two pages share the same layout and presentation

properties, then it is likely that the two pages share the same structure. Based on

this observations, in INDESIT the structure of a web page is described by means of

the presentation and layout properties of the links that it offers, and the structural

similarity between pages is measured with respect to these features. The model is

used by the crawler to explore the web site and to compare the visited pages with the

input seed.

INDESIT also outputs for each discovered web page a unique identifier associated

to the instance published in the page. To do this we use the anchors of links pointing

to the pages collected by INDESIT. The rationale is that as web pages are produced

for human consumption, the anchors of links pointing to entity pages are likely to

be values that univocally identify the target instance. E.g., in our basketball players

scenario, the anchor of the links to each player page is the name of the player. Observe

that, for the sake of usability, this feature has a general validity on the web. For

example, the anchor to a book page usually is the title of the book; the anchor to a

stock quote is its name (or a representative symbol), etc..

The experimental results of our evaluation are reported in Figure 3.1 and summa-

rize the experiments in [BCM05]. We report the average recall (R), the average pre-

cision (P), and the average number of downloaded pages (#dwnl) over 37 INDESIT

executions.

R P #dwnl
95.31% 96.56% 3,389.22

Table 3.1: INDESIT experimental results.

3.5 OUTDESIT: Searching Entities On The Web

CRAWLING and CLUSTERING gather entity pages within the same site of the input

samples. We now describe how the search of entity pages can be extended on the web.

37

3. WEB SOURCE DISCOVERING AND ANALYSIS

Algorithm OUTDESIT
Parameter: N number of iterations
Input: a set of sample pages S = {p0, . . . , pk}

containing data about instances of the same entity
Output: a set of pages about the input entity;
1. begin

Let R be a set of result pages;
Let R = GATHER(S);
// insert into R the pages gathered by

5. // the application of the clustering or crawling strategy
Let σE = {t1, . . . , tn} be the entity intensional description

computed from R;
// search for new web sources for N iterations
for (j=0; j < N; j++) do begin

10. Let I be the set of new identifiers associated to
the pages returned by the last GATHER invocations;

for all terms i ∈ I do begin
Let W be the set of pages returned by a search

engine when looking for i ∧ (t1 ∨ . . . ∨ tn);
15. for all pages p ∈ W do begin // main OUTDESIT iteration

if the domain of p has been already visited continue
if (isInstance(p, σE)) begin

add GATHER(p) to R
end

20. end
end

end
return R
end

Function isInstance
Parameter: t template similarity threshold
Input: a page p,

an intensional description σE of the entity
Output: true iff p is a page about the searched entity
begin

Let P = GATHER(p);
if |P | = 1

return false
Let T be the set of tokens in the template of P ;
Let D be the set of English terms in T ;
return true iff |σE∩D|

|σE | > t;
end

Figure 3.2: The OUTDESIT algorithm.

38

3.5. OUTDESIT: Searching Entities On The Web

The overall idea is to use the results obtained by a first run of CRAWLING/CLUSTERING

on the sample pages in order to issue a number of queries against a search engine,

such as Google or Yahoo!, with the objective of finding new sources offering other in-

stances of the same entity. This task is performed by the OUTDESIT algorithm, which

is described in Figure 3.2.

Let GATHER be a function that takes as input a web page p from the site s and

returns all the pages in s similar to p. For each outputted page GATHER returns also a

unique identifier associated to the instance published in the page. As implementation

of GATHER you can choose between CRAWLING and CLUSTERING.3

Our approach is to extract these identifiers from the results of the previous GATHER

executions. We leverage this property to run searches on the web (lines 9–22). OUTDESIT

launches one search for each new anchor found in the previous GATHER execution.

To better focus the search engine, each query is composed by an anchor plus a set

of keywords, that we call the entity description. Observe (line 14) that the query is

composed by a conjunction of two terms: (i) an anchor; (ii) a disjunction of the key-

words terms t1, . . . , tn, which describe the conceptual entity. All these keywords are

extracted automatically from the sample pages, as described in the following of this

section.

Each search produces a number of result pages,4 which are analyzed with the

isInstance function to check whether they represent instances of the target entity

(line 17). For each page that is classified as an entity page, a new instance of GATHER

is run (line 18), and the whole process is iterated until new pages are found.

A fundamental issue in each iteration is to check whether a page returned by the

search engine can be considered as an instance of the target entity. The search engine

can in fact return pages that, though containing the required keywords, are not suitable

for our purposes. Typical examples are pages from forums, blog, or news where the

keywords occurs by chance, or because they are in a free text description. To control

this aspect OUTDESIT requires that the keywords of the entity description appear in

the template of the retrieved page.

Then, for each page returned by the search engine, an instance of GATHER is

run to obtain a set of structurally similar pages,and their template is computed. If

the computed template contains the keywords of the entity description, the page is

considered valid; otherwise it is discarded.

Valid pages are finally used as seeds for new GATHER scans, thus contributing to

further discover new pages in the iterative step performed by OUTDESIT.

3 In the same way it is done for CRAWLING, to obtain the identifiers for the pages found with the
CLUSTERING strategy we can leverage the anchors of the links pointing to the pages.

4For each search, we take the first 30 result pages returned by the search engine.

39

3. WEB SOURCE DISCOVERING AND ANALYSIS

Learning the Entity Description

The description of an entity E, is composed by an intensional description and by a

domain keyword. The intensional description, denoted σE , consists of a set of terms

σE = {t1, t2, . . . , tn} and is extracted from the sample pages by analyzing the terms

that occur in their templates. The domain keyword, denoted kE , characterizes general

features of the entity and is generated by adapting in our context standard keyword

extraction techniques.

Extraction of the Intensional Description Our approach for generating the set of

keywords to be associated with the conceptual entity is based on the observation that

pages from large web sites are built over a template that usually contains labels de-

scribing the semantics of the data presented in the pages. Consider again the three bas-

ketball player pages in Figure 3.1 and observe labels such as weight, height, position,

college: they are used by the page designers to provide a meaning to the published

data.

Our method for extracting a characterizing description of the entity is based on

the assumption that instances of the same entity have data that refer to a core set of

common attributes, even these from different sources. For example, it is likely that

most of the instances of the BASKETBALLPLAYER entity present fields to describe

height, weight and college data. This is a strong yet realistic assumption; in their

studies on web scale data integration issues, Madhavan et al. observe that in the huge

repository of Google Base, a recent offering from Google that allows users to upload

structured data into Google, “there is a core set of attributes that appear in a large

number of items” [MCD+07].5Also, in web pages, these data are usually accompanied

by explicative labels, and then they belong to the page template. For example, in the

three sample pages shown in Figure 3.1 (it is worth saying that these pages have been

randomly chosen from the web) there are several labels that are present in all three

pages. Our method aims at catching these labels to characterize the description of the

target entity. To this end, we first compute terms that do belong to the page templates

of the sample pages. Then, we choose, as characterizing keywords, those that appear

in all the templates.

To illustrate our solution for extracting terms from the page template it is conve-

nient to consider a web page as a sequence of tokens, where each token is either a

HTML tag or a term (typically an English word). Each token t is associated a path,

denoted path(t), which corresponds to the associated path in the DOM tree. Two

tokens are equal if they have the same path. In the following, for the sake of read-

5In the Google Base terminology, an item corresponds to a set of attribute-value pairs.

40

3.5. OUTDESIT: Searching Entities On The Web

ability, we may blur the distinction between token and path associated with the token,

assuming that different tokens have different paths.

To detect tokens from the template of a given page we have adapted in our context

a technique proposed by Arasu and Garcia-Molina [AGM03]. They observe that given

a set of pages P generated by the same template, sets of tokens having the same

path and frequency of occurrence in every page in P are likely to belong to the page

template.

Figure 3.3: Pages as sequences of tokens.

Let us introduce an example to show how we these sets to infer a entity description.

Figure 3.3 shows the sequence of tokens corresponding to three pages in Figure 3.1.

The set of tokens whose paths occur exactly once is given by: Weight, Profile,

<TR>, <TABLE>, . It is reasonable to assume that they belongs to the template

that originated the three pages.

The above condition allows us to discover template elements, but it might not

hold if a token belonging to the template coincides (by chance) with some other to-

ken appearing in some page; for example with an instantiated value embedded in the

template. However, observe that if the tokens that occur once in all the pages can be

considered template’s elements, it is reasonable that they indicate delimiters of homo-

geneous page segments, i.e., segments generated by the same piece of the underlying

template. Then it is possible to inspect each segment, in order to further discover new

template tokens. Occurrences of tokens that are not unique on the original set of pages

could become unique within the more focused context of a segment. To illustrate this

point, let us continue with the previous example: observe that the token Height,

which is likely to belong to the page template, cannot not be included in the computed

set, because it occurs twice in the second page (it appears in the profile of the player

described in that page). But consider the segments of pages delimited by the tokens

41

3. WEB SOURCE DISCOVERING AND ANALYSIS

detected in the previous step: the token Height occurs once in the second segment

of every page, which delimited by the tokens Weight and <TABLE>.

Algorithm TEMPLATETOKENS
Input: a set of token sequences S = {s1, . . . , sn}
Output: a set of tokens
begin

Let T be an empty set of tokens;
Let E0 = {e1, . . . , ek} be the list of tokens

that occur exactly once in every element of S;
for each token ei ∈ E0 do begin

Let Si = {si1, . . . , sin} be a set of sequences such
that sij = subSequence(sj , E , ei) ∀j = 1, . . . , n;

add TemplateTokens(Si) to T ;
end
return T ;

end

Function subSequence(s, E , ei)
Input: s a sequence of tokens s = t0 · . . . · tn

E a list of tokens e0, . . . , ek, ei ∈ s ∀i = 1, . . . , k
ei a token, e ∈ E

Output: a subsequence of s
begin

Let i be the index of ei in s;
if (index==0) begin
start = 0;
end = index− 1;

end
if (index==k) begin
start = index+ 1;
end = n;

end
else begin
start = index+ 1;
Let end be the index of ei+1 in s;
end = end− 1;

end
return tstart · . . . · tend;

end

Figure 3.4: The TEMPLATETOKENS algorithm to detect tokens belonging to the tem-
plate of a set of pages.

Given a set of pages, the set of tokens that are likely to belong to the template

are computed using the TEMPLATETOKENS algorithm in Figure 3.4. The algorithm

extracts tokens occurring once and uses them to segment the input pages. Segments

42

3.6. Experiments

are then recursively processed to discover other template tokens. The English terms

contained in the set of tokens returned by TemplateTokens are likely to belong to the

template of the input page. However some of them could be originated also by that

portion of the template that is usually shared by every page in a site (comprehending

page portions such as headers, footers, navigational bars, and so on). To eliminate

these terms, we apply the TemplateTokens algorithm over a broader set of pages,

which includes the home page of the sample page site. The terms returned by this ex-

ecution are then subtracted from the set of terms found in the template of the instance

pages. This procedure is performed for each sample page. Finally, in order to obtain

the core of terms that is shared by instance pages from different sources, we compute

the intersection among the sets of terms computed from each sample.6 We report in

Figure 3.5 some examples of the entity description generated using our tool.

DOMAIN attributes
BASKETBALL pts, height, weight, min, ast

GOLF college, events, height, season, weight
HOCKEY born, height, log, round, shoots, weight
SOCCER club, height, nationality, weight

Figure 3.5: Generated descriptions for four entities.

Domain Keyword Extraction Our approach for extracting a keyword character-

izing the conceptual domain of the entity represented by the sample pages is rather

standard. We compute the intersection among the terms that appear in all the sample

pages and in the home pages of their sites. The goal is to extract the keywords that

most frequently occur in the web sites of the samples. The resulting set of terms are

then weighted with the standard TF-IDF scheme [MRS08]. In particular, we consider

the term frequency of each term t as the occurrences of the term in the whole set of

pages including the samples and the home pages of their sites. To compute the IDF

factor, we consider the estimated occurrence of the t on the web, as reported in the

web Term Document Frequency and Rank service of the UC Berkeley Digital Library

Project. The term with the highest weight is then associated to the entity description.

In our example, the term “basketball” is associated to the BASKETBALLPLAYER en-

tity.

3.6 Experiments

We have developed a prototype that implements OUTDESIT and we have used it to

perform some experiments to validate our techniques.
6The resulting set is also polished by removing terms that do not correspond to English nouns.

43

3. WEB SOURCE DISCOVERING AND ANALYSIS

We have focused our experiments on the sport domain. The motivation of our

choice is that it is easy to interpret the published information, and then to evaluate the

precision of the results produced by our method. The goal of our experiments was

to search for a set of pages, each one containing data about one athlete (player) of a

given sportive discipline. We have concentrated on four disciplines: basketball, foot-

ball, soccer, hockey, and golf. Therefore, we may say that our experiments aimed at

discovering pages publishing data about instances of the following conceptual entities:

BASKETBALLPLAYER, SOCCERPLAYER, HOCKEYPLAYER, and GOLFPLAYER.

For each sport we have taken three sample pages, from three different web sites,

each one publishing data about one player of that discipline.7 Then, for each sample

set we have run OUTDESIT. As for the experiments the dumps of all the analyzed web

sources were not available, the function GATHER was implemented using the INDESIT

algorithm. This affected, in particular, the number of collected pages: in some cases

INDESIT was not able to return any similar page.

In the following we presents the results of this activity.

Entity Description

Extracted Intensional Descriptions The results of the entity descriptions genera-

tion are reported in Figure 3.5. A first observation is that all the terms may actually

represent reasonable attribute names for the corresponding player entity. Also, we

notice that there is a core set of terms which is shared by athletes from different disci-

plines (namely, height and weight). Since our experiments involve a taxonomy of the

athlete category, we find reasonable that athletes of different sports are described by a

core set of attributes.

Extracted Domain Keywords Figure 3.6 presents the keywords extracted from

each set of sample pages.8 Observe that the keywords with the greatest weight cor-

rectly characterize the domain (they actually correspond to the sport discipline). The

domain keyword plays a fundamental role in the OUTDESIT iterations. First, as it is

used to generate a more constrained query for the search engine, it allows the system

to elaborate a smaller (and more pertinent) set of pages. Second, in case of homony-

mous athletes involved in different disciplines, the presence of the domain keyword in

the query can constrain the search towards the right discipline.

7The urls of the sample pages, and other experimental results are available at:
http://merialdo.dia.uniroma3.it/flint.

8We only show terms for which the TF-IDF weight is at least 30% of the maximum.

44

3.6. Experiments

DOMAIN
keyword TF IDF TF-IDF

BASKETBALL
basketball 29.0 5.61 162.89

season 27.0 5.08 137.39
team 24.0 4.07 97.86

players 14.0 5.30 74.26
GOLF

golf 64.0 5.29 338.63
leaderboard 17.0 10.29 175.07

stats 26.0 5.65 147.06
players 25.0 5.30 132.62

HOCKEY
hockey 22.0 6.30 138.68
teams 11.0 5.26 57.90

SOCCER
soccer 28.0 5.59 156.62

Figure 3.6: Extracted keywords.

Using Entity Descriptions We have manually analyzed the behavior of the isInstance()

function, which uses the entity description to check whether a given page is valid for

our purposes. We have run a single iteration of OUTDESIT with a set of anchors point-

ing to 500 SOCCERPLAYER pages, selected randomly from 10 soccer web sites. The

search engine returned about 15000 pages distributed over about 4000 distinct web

sites. We have then manually evaluated the web sites to measure the precision and

the recall of the isInstance() function over the pages returned by the search engine.

In particular, we studied how precision and recall behave varying the value for the

threshold t in the OUTDESIT algorithm.

As expected, we can see in Figure 3.7 how raising the threshold the precision

increases and the recall decreases. The system achieves a 100% precision when the

number of keywords from the description required to be in the template of the page

under evaluation is at least 75%. When only 50% of the keywords are required, the

pages marked as valid are 74% of the total valid pages returned by the search engine,

and the precision is still high at 72%. It is interesting to notice that only 20% of the

web pages returned by the search engine were pages offer the same type of information

of the sample pages and therefore instances of the same entity in our definition , over

a sample set of 100 pages returned by the search engine. We have manually classified

these pages: 75 were valid, 25 non valid. Then we have run the isInstance() function

over them. We obtained a precision of 100%: all the pages that have been considered

valid by the function were actually valid; the recall was of 76% (isInstance() has

discarded 18 valid pages). Analyzing the logs of the experiments we have noticed that

45

3. WEB SOURCE DISCOVERING AND ANALYSIS

the failures are due to poor performances of the INDESIT algorithm; namely in the

first step of the function, for the 18 wrongly classified pages, INDESIT was not able to

return any similar page over which computing the template.

Figure 3.7: Performance of the isInstance() function varying the threshold t.

An example of non valid pages that frequently occurred in results returned by the

search engine are personal pages (blog), news or forum pages: they are pertinent with

the keywords passed to the search engine, but they are not instance of the entity as in

our definition. It is worth saying that some of these pages also contained terms of the

intensional description. However, these terms did not appear in the page template as

required by our function, and then these pages were correctly discarded.

Quantitative Evaluation

The number of pages discovered by OUTDESIT for our four target entities are depicted

in Figure 3.8. Each graph plots the number of new instance pages against the number

of new web sites discovered by OUTDESIT. In order to have comparable results, we

have run two iterations for each discipline.

Starting from three sample pages, for each entity our method automatically dis-

cover several thousands of pages. By a manual inspection, conducted on a repre-

sentative subset of the results, we can conclude that all the retrieved pages can be

considered as instances of the entity exemplified by the input sample pages.

The graphs also plot the number of distinct anchors that are found in each step.

Somehow they can approximate the number of distinct players. As expected, it is

evident that they increase less than the number of pages.

46

3.6. Experiments

Figure 3.8: Pages and players found by OUTDESIT.

47

Chapter 4

Data Extraction And Integration

In the previous chapters we have described several algorithms to locate web pages

that contain the data we are interested in. We started from a very few number of

sample pages and we ended up with, possibly, hundreds or thousands of web sources.

For each of them we collected as many pages as we could containing instances of

the target entity. The focus of this chapter is on the data extraction and integration

problems. For the moment we do not consider the possibility that this information

may be more or less trustworthy. In Chapter 5 we introduce a probabilistic model to

deal with the uncertainty of the web data.

4.1 Introduction

We now informally describe the intuitions behind our work; in the following we pro-

vide more details and introduce a formalism to model the extraction and integration

problems.

The development of scalable techniques to extract and integrate data from fairly

structured large corpora available on the web is a challenging issue, because to face

the web scale these activities should be accomplished automatically by domain in-

dependent techniques. To cope with the complexity and the heterogeneity of web

data, state-of-the-art approaches focus on information organized according to spe-

cific patterns that frequently occur on the web. Meaningful examples are presented

in [CHW+08], which focuses on data published in HTML tables, and information

extraction systems, such as TextRunner [BCS+07], which exploits lexical-syntactic

patterns. As noticed in [CHW+08, EMH09], even if a small fraction of the web is or-

ganized according to these patterns, due to the web scale the amount of data involved

is impressive: in their case the 154 millions analyzed tables were contained in only

the 1.1% of the considered pages.

49

4. DATA EXTRACTION AND INTEGRATION

Figure 4.1: Three web pages containing data about stock quotes from Yahoo! finance,
Reuters, and Google finance web sites.

In large data–intensive web sites, we observe two important characteristics that

suggest new opportunities for the automatic extraction and integration of web data:

• local regularities: in these sites, large amounts of data are usually offered by

thousands of pages, each encoding one tuple in a local HTML template. For

example, each page shown in Figure 4.1 comes from a different source and

publishes information about a single company stock.

• global information redundancy: at the web scale many sources provide simi-

lar information. The redundancy occurs both a the schema level (the same at-

tributes are published by more than one source) and at the instance level (some

objects are published by more than one source). In our example, many attributes

are present in all the sources (e.g., the company name, last trade price, volume);

while others are published by a subset of the sources (e.g., the “Beta” indica-

tor). At the extensional level, there is a set of stock quotes that are published

by more sources. As web information is inherently imprecise, redundancy also

implies inconsistencies; that is, sources can provide conflicting information for

the same object (e.g., a different value for the volume of a given stock).

These observations lead us to focus on pages that are published following the

“one tuple” pattern: in each structured page you can find information about a single

tuple. If we abstract this representation, we may say that a collection of structurally

similar pages provided by the same site corresponds to a relation. According to this

50

4.1. Introduction

abstraction, the web sites for pages in Figure 4.1 expose their own version of the

“StockQuote” relation.

For the sake of simplicity in this work we consider the “one tuple” pattern, but it is

possible to extend it in order to consider variations of it. For example, if you want to

analyze pages where multiple tuples are stored in a HTML table you can preprocess

the pages with a tool that divides the rows in page fragments [CYL06].

Once we obtain for each source a list of web pages containing the data of in-

terest using the technique introduced in Chapter 3, our goal is to (i) transform the

web pages coming from each source into a relation, and (ii) integrate these relations

creating a database containing the information provided by all the sources. A state-

of-the-art natural solution to this problem is a two-steps waterfall approach, where

a schema matching algorithm is applied over the relations returned by automatically

generated wrappers. However, important issues arise when a large number of sources

is involved, and a high level of automation is required:

• Wrapper Inference Issues: since wrappers are automatically generated by an

unsupervised process, they can produce imprecise extraction rules (e.g., rules

that extract irrelevant information mixed with data of the domain). To obtain

correct rules, the wrappers should be evaluated and refined manually.

• Integration Issues: the relations extracted by automatically generated wrappers

are “opaque”, i.e., their attributes are not associated with any (reliable) seman-

tic label. Therefore the matching algorithm must rely on an instance-based

approach, which considers attribute values to match schemas. However, due to

errors introduced by the publishing process, instance-based matching is chal-

lenging because the sources may provide conflicting values. Also, imprecise

extraction rules return wrong, and thus inconsistent, data.

In this chapter we propose an unsupervised solution to the problems of wrapper

generation and data integration; to tackle these problems, we propose a technique

that leverages the data redundancy available on the web pages. Our approach takes

advantage of the coupling between the wrapper inference and the data integration

tasks to improve the quality of the wrappers.

To describe the setting, in the next section we introduce a generative model of

the web pages. Then we formally define the extraction and integration problems and

we propose algorithms to solve them. Finally we introduce a solution that produces

sub-optimal results, but is capable to scale over the number of analyzed sources.

51

4. DATA EXTRACTION AND INTEGRATION

4.2 The Generative Model

In order to define more formally the problems we now introduce some definitions and

the description of the publishing process that, eventually, produces the web pages.

The publishing process

In our setting we are interested in extracting and integrating all the available infor-

mation about a target entity, in our running example that is the STOCKQUOTE entity.

Therefore, we can imagine that there exists a hidden relation T , which contains all

the true information about the objects that belong to the entity and their properties. In

some rare cases it can even physically exist (for example when a non-free web service

is available, and sources publish only the information they paid for), but in general it

is an abstraction that works as source of the publishing process.

Each tuple of the relation T contains the data about an instance of the target entity,

and is called conceptual instance. The set of these instances is noted I, and each

I ∈ I represents a real-world object we are interested in. For example, in the case of

the STOCKQUOTE entity the conceptual instances of T represent the concepts of the

Apple stock quote, the Yahoo! stock quote, and so on.

Furthermore, the relation T has a set of attributes A. Each attribute A ∈ A is

called conceptual attribute. In our example they represent the attributes associated

to a stock quote, such as the company name, the current trade price, the volume, and so

on. A possible special conceptual attribute is the (unique) identifier of the conceptual

instance. This is not true in general and is not required in our framework. However,

for the sake of simplicity, we will assume its availability in the following.

According to this model, each of the sources {S1, . . . , Sm} can be seen as the re-

sult of a generative process applied over the hidden relation T . Each source publishes

information about a subset of the conceptual instances, and different sources may pub-

lish different subsets of its conceptual attributes. Moreover, the sources may introduce

errors, imprecise or null values, or they may publish values by adopting different for-

mats (e.g., miles vs. kilometers). As depicted in figure 4.2 for each source Si we can

abstract the page generation process as the application of the following operators over

the hidden relation:

• Selection σi: returns a relation containing a subset of the conceptual instances,

σ(I) ⊆ I.

• Projection πi: returns a relation containing a subset of the conceptual attributes,

π(A) ⊆ A.

52

4.2. The Generative Model

Figure 4.2: The publishing process: the web sources are views over the hidden relation
generated by four operators.

• Error ei: is a function that returns a relation, such that each correct value is kept

or replaced with a null value, a synthetic value, or a value similar to the correct

one.

• Encode λi: an encoding function that produces a web page for each tuple by

embedding its values in a HTML template.

From this perspective, the set of web pages published by a source Si can be

thought as the result of the operators above: λi(ei(πi(σi(T)))). Hence, the sources

can be considered views over the hidden relation. Also, the extraction and the inte-

gration problems can be thought in terms of these operators. The extraction becomes

the inversion of the λ operator, that is obtaining for each source Si the corresponding

view Vi = ei(πi(σi(T))). The integration becomes the problem of reconstructing T

from the views of the sources. Notice that both problems are far from being trivial. To

cope with the web scale the solution must be scalable and unsupervised. Moreover,

the state-of-the-art automatic wrapper inference systems are not able to create wrap-

pers with perfect recall and precision, and the integration task is complicated by the

error operator e, by the fact that the sources publish partial views of T , and so on.

53

4. DATA EXTRACTION AND INTEGRATION

4.3 Extraction and Integration Algorithms

To explain our solution to the extraction and integration problems we present in this

section the problem statements and algorithms that solve them in PTIME. In the next

section we propose another solution that produces a sub-optimal solution, but has

better performances and is able to scale over hundreds of web sources.

For the sake of presentation, we first discuss the integration problem, then we

present the extraction problem and, finally, how they are combined.

Integration Problem

Our first goal is to solve the integration problem. In the following the extraction

problem is ignored (it will be tackled later). Therefore, we assume we have a wrapper

generator that is capable of invert perfectly the encode operator λ. In other words we

do not work on web pages, but on the views of T published by the sources.

In this section we propose some definitions and assumptions we need in the fol-

lowing, where we define the integration problem a describe an algorithm that solves

it.

Given a set of sources S , each Si publishes a view of the hidden relation T such

that Vi = πi(σi(T)) (remember that for now the error operator has no effect). The at-

tributes ai ∈ Vi are called physical attributes, as opposed to the conceptual attributes

of T . This terminology is used to distinguish between the attribute that is “physically”

published by a source and the attribute that exists “conceptually”, as the abstraction of

the concept that attribute is associated to. To state that a physical attribute a contains

data that comes from a conceptual attribute A we write a ∈ A.

Given the hidden relation T = A1, . . . , An, by construction, each physical at-

tribute a has the semantics of one conceptual attribute A and each view contains at

most one attribute for each conceptual attribute A. We say that two attributes a1, a2
are distinct if they belong to two distinct sources S1, S2.

The integration problem can be thought as the creation of sets of physical attributes

m1, . . . ,mn, called “mappings”, such that each attribute a belong to a mapping m and

each mapping contains all and only attributes {a} with the same semantics.

We evaluate the physical attributes of each source and build aggregations of at-

tribute with the same semantics from the sources. If at the end of the process each

mapping contains all and only the physical attributes with the same semantics, we have

an optimal solution for the problem. For example, given a1, a3 ∈ V1 and a2 ∈ V2

with a1, a2 having the same semantics, an optimal solution is m1 = {a1, a2} and

m2 = {a3}.

54

4.3. Extraction and Integration Algorithms

Solutions can also be correct although not optimal. The requirement to be a correct

solution is that it does not group together physical attributes with different semantics.

In the example above a correct solution is the following: m1 = {a1}, m2 = {a2}

and m3 = {a3}. On the contrary, the following mappings are not a correct solution:

m1 = {a1}, m2 = {a2, a3} since a2 and a3 are grouped together but have different

semantics.

To identify physical attributes with the same semantics, we rely on a distance
function d(ai, aj) among their values. This function, considered as given in input,

compares the values aligning the values referred to the same conceptual instances

and return a value between 0 and 1. The more similar the values are the lower the

distance is. For example, consider the physical attributes a1 = [16.12, 22.09] and

a2 = [16.13, 22.15] where the first values 16.12 and 16.13 are referred to the instance

I1 and the second values 22.09 and 22.15 are referred to another instance I2: the

distance d(a1, a2) will be a value close to zero, because the two vectors are very

similar. The distance function can be also used to compute the distance between

physical attributes whose type is different (e.g., comparing a vector of strings to a

vector of numbers), but in this case the distance will always be 1. For example: given

a1 = [16.12, 22.09] and a2 = [“AAPL”, “Y HOO”] d(a1, a2) = 1.

As it works comparing values of aligned instances, the distance function can also

work on conceptual attributes. We denote d(Ai, Aj) the distance between the values

of the conceptual attributes Ai and Aj , and we denote d(a,A) the distance between

the values of the physical attribute a and the values of the conceptual attributeA.

In our setting we noticed that the error function e can introduce random noise

in the values, but this noise cannot be such that the values mix in such way that the

integration is not possible any more. Moreover, if this was not true the data would be a

only a collection of random values, and even a human would not be able to recognize

the semantics behind those values. To limit the randomness we rely on two crucial

hypothesis.

The first hypothesis is the following: for every conceptual attribute A there exists

a threshold tA such that any physical attribute ai belongs to A if for each aj ∈ A,

d(ai, aj) < tA. This hypothesis guarantees that two conceptual attributes cannot have

values so similar that there is no way to distinguish them:

Assumption 1. BOUNDEDMAPPING:

∀ai ∈ A, aj ∈ A ∃ tA : d(ai, aj) < tA

(the distance between any pair ai, aj belonging to an A is always lower than the

threshold of A).

55

4. DATA EXTRACTION AND INTEGRATION

For example, in the finance domain, a very low threshold is associated with the the

conceptual attribute containing the attributes representing the “max” value for a stock

quote. This is required as there are other conceptual attributes, like the current price,

that have similar values. On the other hand, the mapping for the “volume” conceptual

attribute has an higher threshold. Notice that tA is an ideal threshold, and it is not

given as input of the integration problem.

The second hypothesis we rely on is the following: even in the case of publish-

ing errors a physical attribute can have only one semantics, and, therefore, it cannot

have values such that it lies within the thresholds of two distinct conceptual attributes.

In other words, the publishing errors cannot introduce a noise such that a physical

attributes assumes two distinct semantics:

Assumption 2. DISTINGUISHABLESEMANTICS:

∀A1, A2, ai ∈ A1, aj ∈ A2 : i �= j ∧A1 �= A2 ⇒ d(ai, aj) > max(tA1 , tA2)

(it is possible to distinguish the semantics of the physical attributes).

This assumption holds because in our setting we assume that the data published

by each source is locally consistent. That is, within the set of the physical attributes

published by the same source each one has his own semantics, and there exists no

couple of physical attributes with the same semantics. For example, if a web page

states that the current value of the stock quote “YHOO” is 17.01 there cannot be

another place in the page where you can find a different value with the semantics

“current value”. Therefore, denoting S(a) the source publishing the physical attribute

a, two physical attributes of the same source cannot coexist in the same mapping:

Assumption 3. SPLITCONSTRAINT:

∀m ∀ai ∈ m � ∃aj ∈ m : i �= j ∧ S(ai) = S(aj)

(in a conceptual attribute A there cannot be two attributes coming from the same

source).

Finally, we denote S(Ai) a predicate that returns true if the source S publishes the

conceptual attribute Ai. We assume that every possible pair of conceptual attributes is

published at least by a source:

Assumption 4. ANYCOUPLEINASOURCE:

∀Ai, Aj : i �= j ∃ S : S(Ai) ∧ S(Aj)

(every possible pair of conceptual attributes is published at least by a source)

This may seem a strong assumption, but in our setting it is reasonable for the

following reasons:

56

4.3. Extraction and Integration Algorithms

• the total number of conceptual attributes is usually not high;

• the sources usually publish most of the attributes1;

• the web scale implies a lot of redundancy, and the more sources you consider

the more likely this assumption is true;

• in our real-world experiments this assumption holds, even for rare conceptual

attributes.

As described later, in the case this assumption does not hold our system discards

the attributes published only by a source. However this is not a problem, because we

would have discarded them later anyway as it is not possible to automatically verify

the reliability of these values (they are published by only a source).

Problem statement and solution

We can now define the problem as follows:

Problem 2. Integration Problem : given a set of source views V = V1, . . . , Vn, where

Vi = ei(πi(σi(T))), and a measure of distance between two attributes d(ai, aj), find

a set of mappings M such that M = {m : ∀ai, aj ∈ m, ai ∈ A ∧ aj ∈ A}.

To solve the problem above we define a clustering (greedy) algorithm that returns

the optimal solution:

Lemma 4.3.1. ABSTRACTINTEGRATION is correct.

Proof. For the DISTINGUISHABLESEMANTICS hypothesis the weights of the edges

among attributes with different semantics are always higher than the weights of the

edges among attributes with the same semantics. This implies that in L edges are

divided in two sublists. In the first sublist (lower weights) we have pairs of attributes

that have the same semantics. We can therefore add to the solution all the pairs in the

first sublist.

In the second sublist (higher weights) we have pairs of attributes with different

semantics and we need to avoid to add an edge from this sublist to the solution. The

problem here is that we do not know a priori the number of mappings, that is, we do

not know when the second sublist starts. But we know that when the algorithm gets

to the first edge of the second sublist, all and only the attributes with same semantics

have been grouped in mappings. Therefore the partial solution is optimal.

1In [MCD+07] Halevy writes “there is a core set of attributes that appear in a large number of items”.

57

4. DATA EXTRACTION AND INTEGRATION

Algorithm 3 ABSTRACTINTEGRATION

Input: A set of physical attributes extracted from a set of sources.
Output: A set of mapping M, optimal solution to the integration problem.

Let G = (N,E) be a graph where every attribute ai for every source Si ∈ S is a node
n ∈ N . For every pair of distinct nodes ai, aj ∈ N such that S(ai) �= S(aj) add an
edge e between them to E and let d(ai, aj) be the weight of e.
Let m(ai) be the mapping containing the attribute ai.

1. Add to M a mapping m = {ai} for each node ni ∈ N ,

2. insert in a list L the edges E,

3. sort L by the weight of the edges in ascending order,

4. for each edge (a1, a2) ∈ L:

a) let m be the union of the attributes in m(a1) and m(a2)

b) if in m there is no pair of ai, aj such that S(ai) = S(aj)

c) then add m to M and remove from M the mappings m(a1) and m(a2)

d) else break.

We now need to show that the algorithm stops at the first edge of the second

sublist. The first edge in the second sublist is an edge between two mappings m1,m2

with different semantics. For hypothesis ANYCOUPLEINASOURCE there must be a

source which publishes two attributes ai, aj such that they are contained in m1 and

m2, respectively. But, for hypothesis SPLITCONSTRAINT there cannot be a mapping

that contains ai, aj , and therefore the first edge of the second sublist is detected and

the algorithm ends.

ABSTRACTINTEGRATION is O(n2) over the total number of physical attributes, in

fact most of the time is required to create the edges of the graph G. Even if polynomial

this solution is not feasible when the number of physical attributes is high (depending

on how they are extracted there can be thousands of them per source) and the number

of web sites is not small. Later, we will present another solution that produces sob-

optimal solutions, but is able to scale over hundreds of sources.

In the following we introduce the problem of the extraction, that is how to get the

physical attributes we considered as input of the integration problem.

Extraction Problem

In our framework, a data source S is a collection of pages p1, p2, . . . , pn from the same

web site, S = {p1, p2, . . . , pn}, such that each page publishes information about one

58

4.3. Extraction and Integration Algorithms

object of a real world entity of interest.

We distinguish among two different types of values that can appear in a page:

target values, that is values that are derived from the hidden relation T , and noise

values, that is values that are not of interest for our purpose (e.g., advertising, template,

layout, etc). The latter are peculiar values of the web sites and if we use the distance

function d() between values coming from different sources we always obtain values

close to 1.

We consider as given a wrapper generator system. A wrapper w is an ordered set

of extraction rules, w = {er1, er2, . . . , erk}, that apply over a web page: each rule

extracts a (possibly empty) string from the HTML of the page. We denote er(p) the

string returned by the application of the rule er over the page p. The application of a

wrapper w over a page p, denoted w(p), returns a tuple t = �er1(p), er2(p), . . . , erk(p)�;

therefore, the application of a wrapper over the set of pages of a source S returns a

relation w(S), which has as many attributes as the number of extraction rules of the

wrapper. A column of the relation is a vector of values denoted V (eri), it is the result

of the application of an extraction rule eri over the pages of a source.

We say that an extraction rule er∗ is correct if for every given page page it extracts

a value of the same conceptual attribute (i.e., target values with the same semantics) or

a null value if the value for the attribute is missing in that page. If a correct extraction

rule only extracts noise values, it is considered noisy. We also say that an extraction

rule erw is weak if it mixes target values with different semantics or target values with

noise values.

To generate the wrappers, we rely on unsupervised techniques from the literature.

Wrapper generators are able to identify sets of extraction rules that cover the data

exposed by a web site. However, they cannot identify automatically all and only

correct rules. They produce also weak rules. It is important to observe that at wrapper

generation time there is not enough information to automatically distinguish if a rule

is correct or weak. Moreover, in general there is no guarantee that a wrapper generator

produces all the correct rules, while in the following we will assume that we always

have as input all the correct rules plus some weak ones.

It is important to highlight the correlation among extraction rules and the inte-

gration algorithm. Extraction rules are needed to compute the input views, but only

correct rules (i.e., physical attributes) are considered in the algorithm above. However,

it is interesting to notice that among correct rules, noisy ones are harmless for our final

goal. In fact, even if noisy rules are not identified at the wrapper generation step, they

can be identified and deleted later. They will eventually generate mappings of size

one, since it is very likely that the distance between a noisy rule and a correct rule is

59

4. DATA EXTRACTION AND INTEGRATION

big enough such that the integration algorithm above ends before grouping them in a

mapping of size greater than 1. Similar arguments apply for distances among noisy

rules.

Weak rules require a more detailed discussion. It is evident that for the goal of inte-

gration, weak rules must be identified and excluded from the integration input. If they

were not excluded we could have multiple, slightly different versions of the physical

attributes for each source and some assumptions (such as SPLITCONSTRAINT) would

not hold anymore. This would make the integration problem much more complex, and

it is easier to remove the weak rules at extraction time, rather than being constrained

to handle them at the integration time. Unfortunately, the elimination of such rules is

not trivial, since we have no evidence to identify weak rules among all the rules in a

wrapper.

In the following we show that, if we keep the same assumptions introduced for the

integration problem, we can always identify weak rules.

Problem statement and solution

The extraction problem is defined as follows:

Problem 3. Extraction Problem : given a collection of web pages produced by a

set of sources S , and a wrapper generator system W producing a set of wrappers

W = {w1, . . . , w|S|} that contains all the correct rules, find the set of wrappers W ∗

that do not contain weak rules.

We describe how we leverage the abundance of redundant information among

different sources to identify and filter out the weak rules.

Let eri and erj be two extraction rules. We say that two extraction rules “overlaps”

if they extract from a page two strings with the same value, and these strings are

located in the same position in the DOM-tree of the page.

With an abuse of notation, we will say that er ∈ A to state when an extraction

rule extracts at least a correct value of the conceptual attribute A. Notice that, as a

weak rule erw can extract values from n conceptual attributes, we can say erw ∈

A1, . . . , An.

The algorithm ABSTRACTEXTRACTION, given a set of wrappers W , computes

W ∗ which does not contain weak rules. To prove that the algorithm is correct we

introduce the following lemma:

Lemma 4.3.2. INTRACLOSERTHANINTER.

∀er∗i , er
∗
j ∈ A1, erk ∈ A2 d(V (er∗i), V (er∗j)) < d(V (er∗i), V (erk))

60

4.3. Extraction and Integration Algorithms

Algorithm 4 ABSTRACTEXTRACTION

Input: A set of wrappers W produced by a wrapper generator system.
Output: A set of wrappers W ∗ that do not contain weak rules.

1. while there is a er ∈ W which is not marked as correct:

a) let d(V (eri), V (erj)) be the minimal distance between the values of two
extraction rules in W and at least one of them is not marked as correct

b) mark eri and erj as correct, (they are correct rules)

c) remove from W all the rules that overlaps with eri (they are weak rules)

d) remove from W all the rules that overlaps with erj (they are weak rules)

2. now W is W ∗.

Proof. The extraction rule erk can be correct or weak. We prove the lemma for the

two cases:

1. erk is correct (er∗k): consider er∗i , er∗j ∈ A1 and er∗k ∈ A2 and the hypothesis

BOUNDEDMAPPING and DISTINGUISHABLESEMANTICS.

BOUNDEDMAPPING: ∀er∗i , er∗j ∈ A1 ∃ tA1 : d(V (er∗i), V (er∗j)) < tA1

DISTINGUISHABLESEMANTICS: ∀A1, A2, er∗i ∈ A1, er∗k ∈ A2 : i �= k ∧

A1 �= A2 ⇒ d(V (er∗i), V (er∗k)) > max(tA1 , tA2)

We can derive:

d(V (er∗i), V (er∗j)) < tA1 ≤ max(tA1 , tA2) < d(V (er∗i), V (er∗k)).

Therefore:

d(V (er∗i), V (er∗j)) < d(V (er∗i), V (er∗k)).

2. erk is weak (erwk): in the following we treat single values as vectors consisting

of one value only and we denote with V [i, . . . , j] the sub-vector of values for V

from index i (included) to index j (excluded). We first introduce a monotonicity

property of the distance function. Given two vectors V1 and V2 with n values

and a distance d(V1, V2) between them, let V �
2 be a copy of V2. If we replace

the i-th element V2[i] with a new element V2[i]� such that d(V1[i], V2[i]) <

d(V1[i], V2[i]�) it follows that d(V1, V2) < d(V1, V �
2)

2.

In this second case erwk is a weak rule, that is, it can potentially contains values

taken from A1, A2, or any other A. We consider the instance-aligned vectors of

values V �
k = V (erwk), V

�
i = V (er∗i) and V �

j = V (er∗j) and we remove from the

2This is a natural property of the Euclidean distance.

61

4. DATA EXTRACTION AND INTEGRATION

analysis the instances where erwk , er∗i , and er∗j extract the same value: let Vk, Vi

and Vj be the vectors with the remaining values. As erwr cannot contain only

values coming from A1 (otherwise it would not be a weak rule, but a correct

extraction rule of A1) the length of these vectors must be greater than zero, and

notice also that V �
k now does not contain any value coming from A1 (they have

been all removed).

We show now by induction on the length of the vectors that d(V (er∗i), V (er∗j)) <

d(V (er∗i), V (erwk)).

Base case: let Vk[0] be the first value for Vk. We know that it is a correct value

for a conceptual attribute different from A1. Therefore, for the property we just

showed in the previous case:

d(Vi[0], Vj [0]) < d(Vi[0], Vk[0]).

Inductive step: the inductive hypothesis is

d(Vi[0, . . . , n], Vj [0, . . . , n]) < d(Vi[0, . . . , n], Vk[0, . . . , n]).

We show that it is true for n+1 elements of the vectors. Again, for the property

we just showed d(Vi[n + 1], Vj [n + 1]) < d(Vi[n + 1], Vk[n + 1]) holds. For

the monotonicity property of the distance function, it is true that

d(Vi[0, . . . , n+ 1], Vj [0, . . . , n+ 1]) < d(Vi[0, . . . , n+ 1], Vk[0, . . . , n+ 1]).

Lemma 4.3.3. ABSTRACTEXTRACTION is correct.

Proof. In any iteration of step (a) we select two correct extraction rules er∗1 , er∗2 ∈ A1.

This is equivalent to show that if we list the pairs of extraction rules in ascending order,

the first pair is certainly one with correct extraction rules. Suppose, by absurd, that

the first pair contains a weak rule. This contradicts the INTRACLOSERTHANINTER

Lemma.

Every time two correct extraction rules er∗1 or er∗2 are chosen, all the weak rules

containing at least a value in common with er∗1 or er∗2 are removed (steps (c) and (d)).

Therefore, after the algorithm has chosen all the correct rules, there cannot be a weak

rule in W as weak rules mix values shared with correct rules.

ABSTRACTEXTRACTION is O(n2) over the total number of extraction rules gen-

erated by the automatic wrapper generation system. Like in the case of ABSTRACT-

INTEGRATION, most of the time is spent computing distances between the extracted

values.

62

4.3. Extraction and Integration Algorithms

Dealing With The Instances

In the definition of the problems given above we did not mention the role of the in-

stances. This role is crucial, as it is possible to compute the distance between values

only if the instances are aligned.

The hidden relation T = A1, . . . , An contains a finite number of tuples, every

tuple models a real-world instance with its own global identifier. We model this iden-

tifier as the attribute A0: every source has the a0 ∈ A0 attribute for all the instances

that publishes.

For the integration algorithm it is crucial to be able to compute distances between

attributes from different sources. We first align tuples for comparison using their A0

values. We then choose to rely on an instance based distance. Therefore if we want

to compute the direct distance between two attributes d(ai, aj), with S(ai) = Si and

S(aj) = Sj , we need a non-empty overlap of objects between Si and Sj (if Si �= Sj).

Let IA
i be the subset of I for which Si provides values of the conceptual at-

tribute A. Given a positive constant q, we denote OVq,A(Si, Sj) a predicate such that

|IA
i ∩IA

j | ≥ q is true if for at least the same q instances both Si and Sj publish a value

for the attribute A. If OVq,A(Si, Sj) is false, we cannot compute a direct distance be-

tween Si and Sj for A. But, if we have a third source Sw, such that OVq,A(Si, Sw)

and OVq,A(Sw, Sj) are true, as for the Euclidean geometry the shortest path among

two points is a straight line, we can easily write: d(ai, aw) + d(aw, aj) ≥ d(ai, aj).

In this case, we have an upper bound for d(ai, aj) that we call indirect distance. In

the previous example we used the data published by a source (Sw) to indirectly esti-

mate the distance between ai and aj , the same principle applies if we need to lever-

age more sources. For example, using a fourth source Sz , such that OVq,A(Si, Sw),

OVq,A(Sw, Sz) and OVq,A(Sz, Sj) are true, we can write d(ai, aw) + d(aw, az) +

d(az, aj) ≥ d(ai, aj). We remark that the more intermediate sources are involved,

the less precise is the estimation of d(ai, aj). In the case that we have multiple pos-

sible indirect distances, the chosen estimation is the smallest one. For example, given

OVq,A(Si, Sw), OVq,A(Sw, Sj) and OVq,A(Si, Sz), OVq,A(Sz, Sj) as true, we write

min(d(ai, aw) + d(aw, aj), d(ai, az) + d(az, aj)) ≥ d(ai, aj).

We call OV ∗
q,A the transitive closure of OVq,A(Si, Sj): it is a binary relation in

which a tuple Si, Sj means that it is possible to compute a distance (direct or indirect)

between Si, Sj for the attribute A.

In real settings, sources in general do not contain all the objects I of the hidden

relation T and the ability to compute direct or indirect distances is not always guar-

anteed.

Since IA
i ⊆ I, each i-th source publishes a number of instances equal or smaller

63

4. DATA EXTRACTION AND INTEGRATION

than the whole instance universe, it is evident that in real-world setting it is possible

that two sources Si, Sj are not present in a tuple of OV ∗
q,A and we set d(ai, aj) = ∞

with Si = S(ai), Sj = S(aj). Therefore, if ai, aj ∈ A, it is not possible to obtain

an optimal solution to the integration problem, because ai and aj will eventually be

grouped in different mappings.

We then redefine the optimal solution as follow: given a set of sources, the solution

is optimal if for each pair of sources Si, Sj , such that the tuple < Si, Sj > is present

in OV ∗
q,A, and for each conceptual attribute A such that ai, aj ∈ A with Si = S(ai),

Sj = S(aj), ai, aj are in the same mapping.

4.4 Scalable Extraction And Integration Algorithms

So far we have formally defined the extraction and integration problems and we have

proposed two algorithms that solve them. We are now able to extract the information

from the pages of the web sources, and calculate the mappings among the extracted

physical attributes. The solution creates the optimal solution to the problem, but the

complexity, although quadratic, does not allow a complete scalability over the sources

available on the web.

We now describe our scalable algorithms to extract and integrate data from the

sources, obtaining sub-optimal solutions that experimentally resulted being of high

quality.

Our solution addresses the extraction and integration activities in three major

phases, as follows:

1. The first phase consists in automatically producing a wrapper for each source.

To this end we use an automatic wrapper generator. Each wrapper extracts

a relation. Since the wrapping process is completely automatic, the relation

attributes are “opaque”, i.e., they are not associated with any semantic label.

2. The integration issue is tackled by the schema matching phase, which produces

mappings among the attributes of the relations obtained in the previous phase.

Our matching technique exploits both the redundancy of information that occur

at the extensional and at the intensional levels.

3. The results of the schema matching phase are then used to refine the wrappers

inferred in the first phase; dually, wrapper refinements may lead to discover new

mappings.

In the following, we describe more precisely the details of each phase.

64

4.4. Scalable Extraction And Integration Algorithms

Wrapper Generation

We remind that in our framework, a data source S is a collection of pages p1, p2, . . . , pn
from the same web site, S = {p1, p2, . . . , pn}, such that each page publishes infor-

mation about one instance of a real world entity of interest. The goal of the first step

of our approach is to generate a wrapper for each source.

Figure 4.3: DOM trees of four stock quote pages.

We represent pages by means of their associated DOM trees, and we use XPath to

express the extraction rules. Figure 4.3 shows a representation for the DOM trees of

four pages belonging to a fictional source in the finance domain.3

To generate the bootstrapping wrappers, we use a simple yet effective unsuper-

vised technique. For each source, we infer a wrapper by exploiting the local regulari-

ties that occur in the page structure, following the intuitions developed in [AGM03].

In our context, each page of a given source can be considered as an HTML en-

coding of a flat tuple. In this perspective given a set of pages from the same source, a
3For the sake of presentation the example is very simple: in real life web pages, there is a lot of

decorations or other elements in-between the real data that we are interested in extracting and the rest of
the source in a web page.

65

4. DATA EXTRACTION AND INTEGRATION

wrapper is expected to extract the relation used to generate the pages. Therefore each

rule in the wrapper should extract the values of the same attribute for every page. To

describe the wrapper inference technique, it is convenient to abstract the page gener-

ation process as a procedure that fills the placeholders of an HTML template with the

values of a tuple.4 According to this model, within each source, pages generated by

distinct tuples share all the elements that belong to the template, while they differ in

the elements that correspond to attribute values. A wrapper could then be inferred by

computing an XPath expression for each leaf node that does not belong to the tem-

plate. Since elements of the template are shared by all the pages, they can be identified

as those that are present in all the pages of the source.

However, the page generation model is further complicated by the possible pres-

ence of nullable attributes in the generating tuple. The publishing of null values can

be based on two alternative strategies: (i) the template placeholder is filled with an

empty string; (ii) a small part of the template, which is devoted to format the nul-

lable attribute values, is not generated. For example, in the second and fourth page of

Figure 4.3, the minimum price is not published and neither its (null) values, nor the

corresponding formatting tags are reported in those pages.

With these ideas in mind, given a set of pages generated by the same template,

DOM tree elements that occur exactly once in almost every page are considered as

part of the template,5 and they are called invariant. The gray nodes in the DOM

trees depicted in Figure 4.3 represent invariant nodes: some of them appear always

once (caps, max), while others, which are related to the presence of a null, might be

present only in a subset of the pages (min).

All the leaf nodes that do not belong to the template are likely to represent val-

ues of the encoded tuple; therefore, for each of these nodes we compute an XPath

expression. For simplicity, we compute absolute expressions, i.e., XPath expressions

that specify the full path, including node positions, from the root to the leaf node.

At this preliminar step, these expressions work as wrappers and create the physical

attributes for the sources. To give an example, the pages of Figure 4.3 would lead to

the expressions reported in Figure 4.4.

The presence of null values produces irregularities in the pages that can affect the

correctness of the inferred wrapper. In particular, some irregularities can lead to the

inference of weak rules. For example, consider again the pages in Figure 4.3 and the

corresponding inferred XPath expressions reported in Figure 4.4, and note that the

second and fourth pages do not publish the minimum price. Figure 4.5 reports the

4The page generation model applies for both statically and dynamically generated pages.
5We consider as template nodes the values occurring exactly once for a sufficient fraction s = 1/3 of

the input pages.

66

4.4. Scalable Extraction And Integration Algorithms

er1 ← /html[1]/title[1]
er2 ← /html[1]/table[1]/tr[1]/td[2]
er3 ← /html[1]/table[1]/tr[2]/td[2]
er4 ← /html[1]/table[1]/tr[3]/td[2]

Figure 4.4: Extraction rules as XPath absolute expressions for the pages of Figure 4.3.

a1 a2 a3 a4
page 1 sun 16 1.5 1.7
page 2 cisco 16 1.7
page 3 ibm 14 6.4 7.1
page 4 apple 22 17.1

Figure 4.5: The relation extracted by the extraction rules in Figure 4.4 from the pages
in Figure 4.3.

relation extracted by these rules and shows that, because of the missing value, the

extraction rules er3 extracts heterogeneous values: some of the values correspond to

the maximum price (cisco and apple), others to the minimum price.

It is important to observe that at this stage there is not enough information to

evaluate the correctness of the wrapper. Later we will describe how we leverage the

abundance of redundant information among different sources to refine the wrapper by

replacing weak rules with alternative expressions, which extract correct values.

Source Integration

In our context, a data source S is a collection of pages from the same web site,

S = {p1, . . . , pn}, such that each page publishes information about one object from

a domain of interest. As described in Chapter 3 we developed OUTDESIT, a crawling

algorithm to locate collections of pages that publish data according to this publishing

strategy. This algorithm takes as input a small set of pages for an entity of interest.

Hence, it explores the web to gather collections of pages from sites delivering data

about the same entity.

In the integration step, as described before, we need a function that computes the

distance (i.e., how different are the values) between vectors of values. As introduced

before, this distance is computed by comparing the values they assume in a small

sample set of aligned instance pairs. Two instance are aligned if they refer to the

same real world object. In our framework, the task of identifying such a small set

of tuple pairs is simplified by the results returned by the OUTDESIT algorithm which

associates an identifier (e.g., the company name in the stock quote example) with the

67

4. DATA EXTRACTION AND INTEGRATION

collected pages. We therefore align tuples that are extracted from pages having equal

identifiers. However, if these identifiers were not available, record linkage techniques

for opaque relations (such as those described in [BN05]) could be profitably applied

to this end.

Let a1 and a2 be two physical attributes extracted by two distinct sources; we

denote t1[j](a1) and t2[j](a2) the values assumed by a1 and a2 for the instances

associated with the real world object Ij . Given a set of l aligned tuples, the distance

between a1 and a2, d(a1, a2) is computed as follows:

d(a1, a2) =
1

h

l�

j=1

f(t1[j](A), t2[j](B))

where h is the number of tuples such that both t1[j](A) and t2[j](B) are not null;

f(·, ·) is a pairwise distance function that returns value between 0 (the two values

are identical) and 1 (the values are completely different or at least one of them is

null). Function f(·, ·) is a type dependent metric: in case of numbers, it returns the

normalized distance; in case of strings, it uses a standard string distance (e.g., Jensen-

Shannon).

Naive Matching

A naive algorithm for inferring mappings is initialized by choosing the source with

the biggest number of instances as begin of the matching, and building one singleton

mapping (that is a mapping of size 1) for each of its physical attribute. Each mapping

m is associated with a matching threshold, denoted tm, which is initialized to a default

value T . Given a physical attribute a and a mapping m, we denote as dist(a,m) the

distance score of a against m. This score is defined as follows: let {a�1, . . . , a�n} ∈ m

be the physical attributes that come from sources that have in common with the source

of a at α aligned instances. Then:

dist(a,m) =
1

n

n�

i=1

d(A,Bi).

An attribute a can participate in a mapping m if the distance score dist(a,m) is less

than the matching threshold tm.

Once the initial set of singleton mappings is created, the algorithm iterates over the

other sources. The algorithm processes the sources maximizing the number of over-

lapping instances: each iteration picks out the source with the maximum cardinality.

If the chosen source does not have sufficient tuples that align with those of sources

already processed, it is queued and it will be processed later. Each iteration of the

algorithm computes the distance score of each physical attribute of the current source

68

4.4. Scalable Extraction And Integration Algorithms

against all the existing mappings. If the distance score of a physical attribute a against

a mapping m is less than tm, then a is added to m. If a physical attribute cannot match

with any of the existing mappings, it gives rise to a new singleton mapping, and its

matching threshold tm is assigned the default value T .

Observe that a physical attribute may not match with any mapping because of the

weakness of its corresponding extraction rule. The extracted data can thus match only

partially with those of an existing mapping. Then, the distance scores represent a

feedback about the correctness of the wrappers: rules associated to physical attributes

that have a low matching score against some mapping are potential weak rules; they

will be corrected as discussed in the next Section. The algorithm concludes when all

the sources have been processed.

This approach, that we call Naive Matching, is limited by the strong dependence

on the value of the matching threshold. High values of the threshold tend to generate

many small mappings, because small imprecisions are not tolerated. Conversely, low

values produce large heterogeneous mappings, composed of attributes with different

semantics. The choice of a threshold that represents a nice trade-off between precision

and recall is not trivial. To address these issues we have developed a clever matching

algorithm, called SplitAndMerge, that dynamically computes the matching threshold

for every mapping.

SplitAndMerge Matching

Algorithm SplitAndMerge is based on the observation that it is unlikely that a source

publishes the same attribute more than once, with different values. We therefore as-

sume that non identical physical attributes from the same source have always different

semantics. As a consequence, we impose the constraint that a mapping is not allowed

to include more than one physical attribute from the same source. In SplitAndMerge,

mappings are created iterating over the source relations as in the naive approach. How-

ever, before adding a physical attribute to a mapping, the algorithm checks whether the

mapping already contains another physical attribute from the same source. Clearly, if

two physical attributes from the same source match a mapping, their distance scores

against that mapping are less than the matching threshold. As such threshold value

would lead to a violation of the above constraint, the algorithm concludes that it is

too high for that mapping. A suitable threshold that would keep the two attributes

separated is the value of the distance between the two physical attributes. However,

attributes that participated in the mapping before the threshold update were included

by an inappropriate threshold, as well: these attributes need to be re-aggregated in

new mappings around the two conflicting attributes.

69

4. DATA EXTRACTION AND INTEGRATION

Figure 4.6: SplitAndMerge over a mapping m. Labels on edges indicate matching
scores. e1 and e2 belong to the same source; d(e1, e2) = 0.29.

Consider the example in Figure 4.6. Let m be a mapping composed by physical

attributes {a, b, c, d, e1}, with matching threshold tm = 0.56. Let e2 be a physical

attribute that belongs to the same source of e1. Suppose that dist(e2,m) = 0.3:

it is less than tm, then e2 should be added to m. However m already contains e1,

which comes from the same source of e2, thus violating the constraint. In these

cases, SplitAndMerge creates two new mappings, each initialized with one of the two

physical attributes coming from the same source. The matching thresholds of these

mappings are assigned the value of the similarity between the attributes that have

triggered the process. Then, the initial mapping is erased, and it is checked whether

its attributes can participate in the new mappings. In our example, the new map-

pings m� = {e1} and m�� = {e2} would be created, both with matching thresholds

tm� = tm�� = d(e1, e2) = 0.29. Assuming that a matches with both m� and m��

(that is, dist(a,m�) < tm� and dist(a,m��) < tm��) and dist(a,m�) < dist(a,m��),

B matches with m�� (dist(b,m��) < tm��), c and d do not match with neither m� nor

m��, then m� = {e1, a}, and m�� = {e2, b}.

As a final step, attributes from the original mapping that are not included in the

newly generated mappings (because their matching score would be lower than the

new thresholds) are re-aggregated. If an attribute cannot be included in any map-

ping generated in the scope of the current execution, it gives rise to a new (sin-

gleton) mapping. The value of the similarity between the attributes that have trig-

gered the procedure is assigned to the matching thresholds of all the mappings cre-

ated in these steps. In the example, c originates a new mapping m��� = {c}, with

tm��� = d(e1, e2); as dist(d,m���) < tm��� a new mapping m���� = {d} is created, again

with tm���� = d(e1, e2).

Note that the effects of the algorithm propagate for all the remaining iterations;

the similarity between the attributes that trigger the split is assigned to the matching

6Clearly, a, c, b, d, and e1 belong to distinct sources.

70

4.4. Scalable Extraction And Integration Algorithms

thresholds of all the mappings generated by the procedure.

Wrapper Refinement

The key idea behind the wrapper refinement process is that correct rules extract con-

sistent information from different sources; conversely, the values returned by a weak

rule only partially overlap with those of other sources. Therefore, a weak rule extracts

inconsistent data for some tuples, thus producing low but not negligible scores with

the available mappings.

Figure 4.7: The values of attribute a3 partially match with the values of the attributes
in m.

To illustrate these points, consider the extraction rule er3 in Figure 4.4: its ap-

plication over the pages in Figure 4.3 returns wrong data, as shown in Figure 4.5.

Namely, for some pages (1 and 3) it extracts the minimum value of a stock (1.5 and

6.4), for other pages (2 and 4, which do not publish such information) it erroneously

extracts the maximum value (1.7 and 17.1). The refinement process corrects the wrap-

per by replacing a weak rule with an alternative one that extracts consistent values,

thus improving the matching score. To illustrate the technique, consider the example

in Figure 4.7. Suppose that a3 is matched against the mapping m, with current map-

ping threshold tm = 0.1. Due to the heterogeneous values extracted by er3, it cannot

match with m, since dist(a3,m) = 0.13 > tm. Some of its values (1.5 and 6.4)

match with those of x, y, z, while others differ significantly (1.7 and 17.1), negatively

contributing to the score. The high distance score triggers the refinement process,

which considers, among the alternative rules, the following correct rule:

er�3 ← //td[contains(text(),’min’)]/../td[2]. Therefore, er�3 is a “better” rule with re-

spect to m: its distance score is lower than tm. For this reason a new physical attribute

a�3 is created using er�3, and it is added to m because dist(a�3,m) < tm.

71

4. DATA EXTRACTION AND INTEGRATION

Overall, the main steps of the refinement algorithm, can be summarized as follows:

(i) it considers as weak all the rules of any attribute a whose matching score against a

mapping m is such that tm < dist(a,m) < 2tm; (ii) it selects all the matching values

extracted by the weak rule, that is, the values that singularly contribute to reduce the

distance to m; (iii) it generates an alternative rule that extracts the same matching

values and minimizes the distance score of the corresponding attribute against m.

In our example the absolute er3 can be replaced with the relative rule

//td[contains(text(),’min’)]/../td[2] based on the invariant “min” which is a node of the

template occurring close to matching values 1.5 and 6.4 in pages 1 and 3, respectively,

as shown in Figure 4.3.

In the second step, the matching values are selected as the values v satisfying

the predicate: 1
n

�n
j=1f(v, qj) ≤ tm where q1, . . . , qn are the corresponding val-

ues in the mapping and f() is the pairwise distance function. In the above example,

the erroneously extracted value 17.1 is discarded since: 0.24 = 1
3 [f(17.1, 13.0) +

f(17.1, 12.9) + f(17.1, 13.1)] > tm = 0.1. The same reasoning applies to the erro-

neously extracted value 1.7.

In our implementation, the rules generated in the latter step are relative XPath ex-

pressions pivoting on a template node occurring close7 to the matching values. More

complex classes of extraction rules could be adopted. However, our experiments show

that the results would be negligibly affected.

The best candidate rule to substitute a weak rule associated with a physical at-

tribute a is used only if its distance score with respect to a mapping m is both less

than the matching threshold of the mapping tm and less than dist(a,m): the new rule

will generate an attribute which replaces a in m. Since an attribute can have uncer-

tain matches with several other mappings, the procedure is repeated for each mapping

and it can potentially originate multiple new rules and, consequently, multiple new

physical attributes that correctly match.

The new rules are evaluated by computing again the matching scores and imme-

diately discarding the rules that do not improve the previous score, according to a

monotone procedure.

Features of the techniques

It is worth to describe two aspects of the SplitAndMerge and WrapperRefinement al-

gorithms:

7The distance is measured according to a metric counting the number of leaf nodes separating the
template node to the value node in the DOM tree.

72

4.4. Scalable Extraction And Integration Algorithms

• Incremental analysis: they leverage the redundancy of the information in the

sources to extract the data, integrate the data, and refine the wrappers one source

at a time. ABSTRACTINTEGRATION and ABSTRACTEXTRACTION begin with

a quadratic comparison of all the extracted physical attributes and, therefore,

need to know in advance all the sources of interest. On the contrary SplitAnd-

Merge and WrapperRefinement only compare the physical attributes of a source

with the current configuration of mappings. This makes possible to incremen-

tally add new sources without the need of recomputing all the results, a very

important feature when you incrementally discover the sources. Moreover, it is

the foundation of the linearity feature that follows.

• Linearity: to scale on the web we need algorithms whose complexity is as low

as possible. With a reasonable loss of recall we can obtain linear running times.

Let n be the number of sources to analyzed so far, let |M| be the number of

mappings, let |A| be the number of conceptual attributes in the hidden relation,

let |R| be the maximum number of extraction rules generated by the wrapper

generator in a single source, and let N the maximum number of noisy physical

attributes found in a single source by the wrapper generator. If we consider

the comparison of two vectors as a unit, the number of comparisons required

to analyze all the sources will be the complexity of our approach. In SplitAnd-

Merge we compare each physical attribute of the new source with all the existing

mappings, so we do at maximum (|A| + N) · |M| comparisons.8 Wrapper-

Refinement tries to improve the extraction comparing at maximum |R| vectors

of values with the existing mappings, for a maximum of |R| · |M| comparisons.

Hence, the number of comparisons required to analyze a single source will be

at maximum:

(|A|+N) · |M|+ |R| · |M| = (|A|+N + |R|) · |M|.

A, N and R do not depend on the number of analyzed sources and can be

considered as a constant. On the other hand, |M| (the number of the mappings)

depends on the number of analyzed sources because each source contributes to

the mappings with two kinds of physical attributes: the ones containing data

from the hidden relation, and the ones containing noise data. The former type

creates at maximum |A| mappings, and the latter type creates at maximum n·N

mappings. Notice that these n · N mappings are singleton and these noisy
8 To be precise the number of comparisons required to compare precisely dist(a,m) is linear to the

size of m, but in our case we only need to know if it is lower than a threshold. We use several techniques to
avoid comparisons (data types analysis, mean and variance, etc) and, in average, we only need a constant
time.

73

4. DATA EXTRACTION AND INTEGRATION

vectors will never match with any vector of the upcoming sources. To get rid

of these physical attributes we prune the mappings when we are reasonably

sure that we have collected enough information about the conceptual attributes

of the hidden relation. We set a threshold p: at the beginning of the analysis

of the sources p + 1, p + 2, . . . , n we delete the mappings of size one. This

pruning has two effects: the noisy mappings are deleted, but at the end of the

process only the conceptual attributes published twice in the first p sources are

outputted. The latter effect is due to the fact that if a rare conceptual attribute

of the hidden relation does not compare (or compare only once) in the first p

sites, it is recognized as noise and discarded by the pruning because it generated

only a singleton mapping. Nevertheless, in real scenarios the useful conceptual

attributes are published often enough and, in addition, the threshold p can be

used to tune this loss of recall of conceptual attributes.

Using this pruning, after the p-th source, the overall number of mappings does

not depend any more from the number of analyzed sources because |M| can be

at maximum |A|. Therefore, the complexity of the analysis is linear over the n

sources:

O
�
n(A+N +R)|M|

�
= O

�
n · 1 · (|A|)

�
= O

�
n · (1)

�
= O(n).

Adding Labels

After all the sources have been processed (i.e., wrappers have been refined and the

final mappings have been computed), in a last step we can determine the labels of

the mappings. For each rule participating in a mapping, we process the pages of the

extracted values looking for meaningful semantic labels. We leverage the observation

that the labels of many attributes are part of the page template and occur close to the

values.

Our technique returns as candidate labels the textual template nodes that occur

closest to the extracted values. This technique may perform poorly on a single source,

but it leverages the redundancy among a number of websites to select the best candi-

date labels. In other words, it is very unlikely that the same wrong label is associated

with a mapping as frequently as a meaningful one. Therefore, we associate each map-

ping with all the labels associated with the corresponding rules, and then we rank the

labels according to the following formula: score(l) = nl
1+dl

, where nl is the number

of extraction rules associated to the label l, and dl is the sum of the distances between

template nodes and extracted values.

As an interesting side effect, textual template nodes selected by the refinement

74

4.4. Scalable Extraction And Integration Algorithms

process to work as a pivot often represents a meaningful label. In the example consid-

ered, the label “min” would get a score equal to 1.

Experiments

We conducted experimental studies to evaluate the performance of our techniques.

We describe results for both synthetic and real-world scenarios that validate and com-

pare the various techniques proposed in this chapter. The goal of these experiments is

twofold. First, we show how the SplitAndMerge algorithm and the refinement proce-

dure influence the performance of the system in terms of quality of the results. Second,

we evaluate precision and recall of the extraction and integration processes over an au-

tomatically created mediated schema. In addition, we give quantitative results to show

that our solutions scale well with the number of web sites involved in the process.

Metrics

To evaluate our approach we analyzed the mappings automatically produced by our

techniques. We use the standard metrics precision (P), recall (R), and F-measure (F):

for each mapping m generated by our algorithm with respect to the corresponding

golden mapping m� we compute: P = |m∩m�|
|m| ; R = |m∩m�|

|m�| ; F = 2∗P∗R
P+R .

Experimental setup

For our experiments we set the matching threshold T = 0.5, the minimum number of

overlapping tuples to compute their score α = 5, and the pruning threshold p = 16.

Results for Synthetic Scenarios

We evaluated the effectiveness of the dynamic matching thresholds of the SplitAnd-

Merge algorithm against a set of synthetic sources generated by an automatic tool.

The tool we developed generates the desired number of sources, taking as input the

list of attributes exposed by the sources and the average percentage of overlapping

between instances of distinct sources. Namely, for each attribute, we specify: (i) the

type (double, string, date), (ii) the range of values (for strings, a vocabulary), (iii) the

percentage of null values, (iv) the distribution of errors in the values. The tool gen-

erates an HTML template for each source, and creates pages by filling the templates

with values according to the corresponding type features. We generated 1,000 sources,

each composed of 50 pages, with 15 attributes; namely, 3 strings (random words from

a vocabulary), and 12 doubles (all with different distributions); we set up a random

error of 5% between the values of the same attributes across different sites to simulate

75

4. DATA EXTRACTION AND INTEGRATION

the discrepancy introduced by publishers in real web sites; 9 3 attributes have 50% of

null values, to simulate the presence of optional patterns in the pages. We ran several

executions of the NaiveMatch and the SplitAndMerge algorithms: in each execution

the initial value of the dynamic threshold used by the latter was set to coincide with the

fixed threshold used by the former. For each execution we computed the F-measure

of the generated mappings. In this experiment the set of golden mappings was known

a priori, as the sources were generated by the tool.

Figure 4.8: Comparison of the NaiveMatch and the SplitAndMerge algorithms with
different thresholds.

Figure 4.8 reports in a graph the results of the experiment. In particular it draws

the average F-measure computed over the set of output mappings. Observe that, if the

starting value of the threshold is below 0.65, the SplitAndMerge algorithm always dy-

namically improves the threshold reaching perfect results. Around the same threshold

value, the NaiveMatch algorithm starts to perform well, since it reaches a good com-

promise between precision and recall. When the threshold reaches the value of 0.9, the

F-measure for both approaches quickly decreases due to the degradation of the recall:

very high values for the matching threshold are not able to handle the discrepancies in

the values.

To demonstrate the scalability of the system in Figure 4.9 we show the running

time of the approach during the analysis of the 1,000 synthetic sources. The experi-

ment was executed on a FreeBSD machine with Intel Core i7 2.66GHz CPU and 4GB

memory, and it took about 12 hours to complete the execution. Figure 4.9 depicts the

running time when both the SplitAndMerge and the WrapperRefinement algorithms

are enabled: the complexity is clearly linear.

Results for Real World Scenarios

To experiment our techniques over real world scenarios, we collected several data

sources from the web over three application domains: Soccer, VideoGames, and Fi-

nance. For each domain, we let the OUTDESIT algorithm collect 100 sources. Each

9The presence of errors in the strings values has been simulated by inserting random characters.

76

4.4. Scalable Extraction And Integration Algorithms

Figure 4.9: Synthetic setting: running time of the system over the number of analyzed
sources.

source consists of tens to thousands of pages, and each page contains detailed data

about one object of the corresponding entity: (soccer player, video game, stock quote).

Figure 4.10: Growing of the number of real-world objects over the number of sources.

Figure 4.10 reports the increase of distinct real-world objects over the number of

the sources processed. Within the same domain several objects are shared by several

sources. The overlap is almost total for the stock quotes, while it is more articulated

for soccer players and video games as these domains include both large popular sites

and small ones. We estimated that each soccer player object appears on average in 1.6

sources, each video game in 24.5 sources, and each stock quote in 92.8 sources.10

In the finance domain most of the attribute types are numeric, and several at-

tributes have very similar values (min, max, average, open, close values of a stock).

The soccer domain is interesting because it includes attributes with data types that

10Popular soccer players and popular video games are present in a large number of sources; almost all
the sources publish NYSE and NASDAQ stock quotes.

77

4. DATA EXTRACTION AND INTEGRATION

present heterogeneous formats in the various sources; for example, height and weight

of players are expressed in several different units of measure (e.g., meters vs. foots

and inches) and are published according to different formats (e.g., mt1.82 vs. 182cm).

Finally, in the video game domain most of the attributes are strings, and with respect

to the other domains, the page structures are quite irregular.

To evaluate the quality of the mappings, for each domain we selected 20 web

sources (the largest ones) and we manually built a golden set of mappings by inspect-

ing 10 pages per source; only the attributes that were present in at least 3 sources were

included in the mappings. The golden schema of the stock quote entity contains 29

attributes; those of soccer players and video games 14 and 11, respectively.

Figure 4.11: Precision, Recall, and F-measure of the mappings of four different execu-
tions: naive matching, naive matching with wrapper refinement (WR), SplitAndMerge
(SM), SplitAndMerge with wrapper refinement (SM+WR).

78

4.4. Scalable Extraction And Integration Algorithms

For each domain we ran four executions to evaluate the impact of the SplitAnd-

Merge and of the wrapper refinement on the quality of the inferred mappings. The

first execution applied only the NaiveMatch algorithm, without any wrapper refine-

ment. The second execution ran again NaiveMatch, but it was followed by the wrap-

per refinement. Similarly, the third execution ran SplitAndMerge without the wrapper

refinement, while the fourth execution ran with both SplitAndMerge and the wrapper

refinement.

Figure 4.11 reports precision, recall, and F-measure of the experiments. The best

performances in terms of precision and F-measure are always obtained when both

the SplitAndMerge and the wrapper refinement were activated. In only one case,

Videogames, it is overcome by another execution in terms of recall.

A few observations are worth noting here. First, NaiveMatch alone always obtains

mappings with high recall but with low precision, especially in the finance domain.

In fact, NaiveMatch is able to gather many valid attributes, but it aggregates several

heterogeneous attributes within the same mapping, as it is not able to distinguish at-

tributes with similar values, thus producing many false positives. The precision of

the SplitAndMerge algorithm greatly benefits of the more advanced matching tech-

nique, especially in the finance domain. Only in the Videogames domain, a very high

threshold value slightly degrade the recall results, since erroneous data published by

some sources introduce discrepancies in the values and prevent some matches. It is

interesting to observe the direct correlation between the thresholds that have been

dynamically increased and the improvements in the results. The correlation is high-

lighted comparing the NaiveMatch and the SplitAndMerge executions in Table 4.1.

In the finance domain, which contains several similar values, the improvement of the

precision is 250%.

Domain Threshold increment Precision gain
Soccer 32% 81%

Videogames 23% 92%
Finance 37% 250%

Table 4.1: Effect of the dynamic matching threshold on the mapping Precision.

The wrapper refinement has always positive impacts on the performance. First, it

increases both precision and recall: as extraction rules are improved some attributes

can reach a sufficient matching score to be added in the mappings set. Second, it sig-

nificantly improves the global coherence: this is a clear consequence of the improved

quality of the wrappers.

To study the influence of redundancy of data on the performance of our techniques

79

4. DATA EXTRACTION AND INTEGRATION

Figure 4.12: Precision, recall, and F-measure for mappings composed by attributes
that appeared in at least 8 sources.

we have computed precision, recall and F-measure considering only mappings that

involve attributes that appear more frequently; in particular we computed the values

of our evaluation metrics for mappings referring to attributes that appears in at least

8 sources. Figure 4.12 reports the results of this setting. Overall, we observe an

improvement of the F-measure, which is mainly due to a higher recall. Interestingly,

for these mappings the wrapper refinement has a strong influence on the precision.

This means that the presence of redundant information can contribute to improve the

wrappers.

To give a quantitative evaluation of the results, we ran the system against the whole

sets of data sources. Table 4.2 reports, for each of the 8 largest output mappings, the

mapping cardinality |m| (i.e, the number of extraction rules in each of them) and

80

4.4. Scalable Extraction And Integration Algorithms

Soccer players Videogames Stock quotes
45,714 pages 68,900 pages 56,904 pages

(28,064 players) (25,608 video games) (576 stock quotes)
Label |m| Label |m| Label |m|

Name 90 Title 86 Stock 84
Birth 61 Publisher 59 Price 73
Height 54 Developer 45 Change 73
Nationality 48 Genre 28 Volume 52
Club 43 Rating 20 Low 43
Position 43 Release 9 High 41
Weight 34 Platform 9 Last 29
League 14 Players 6 Open 24

Table 4.2: Top-8 results for 100 web sources: for each mapping m the most likely
label and the mapping cardinality are reported.

the most likely label inferred by the system. We observe that both popular attributes

and rare attributes are have been correctly extracted and aggregated in the correct

mapping in all the domain. Interestingly also the labels automatically associated by

the system with each wrapper are correct. It is worth saying that also identification

of the correct labels relies on the redundancy of information. In fact, we rely on

the evidence accumulated by collecting many possible labels for the same attribute.

Achieving the same precision in general is not possible considering only one site at the

time: labels are not always present, are difficult to associate to the correct attribute,

can be in different languages, and so on. This explains why we keep opaque the

relations inferred by the wrappers until we have collected enough evidence to assign

reliable labels.

According to our the model each source provides only a partial view of the hid-

den relation. The mappings and the extraction rules produced by our system allow us

to build an integrated view of its whole extension by accumulating information from

many sources, thus obtaining more information than actually exposed by each partic-

ipating source. To give an example, consider the objects and the 8 attributes reported

for the Soccer and the Finance domains in Table 4.2: the hidden relations for these

entities contain at most 224k values (28k objects × 8 attributes) and 4.6k (576×8) val-

ues, respectively. In the finance domain, a single source covers on average about 3.2k

values (70% of the total), while the integrated view over the 100 sources reaches 4.1k

values (90% of the total). More interestingly, in the soccer domain, a single source

covers on average only 1.4k values (1% of the total), while the integrated view reaches

134k values (71%). As for the same object and attribute different values are provided

by distinct sources, conflicting values can arise. To overcome this issue recent works,

81

4. DATA EXTRACTION AND INTEGRATION

such as [DBES09a], represent suitable approaches.

4.5 Related Work

Extraction and integration of data are a challenging issues and the literature is ex-

tremely rich in these fields. We discuss here relevant works dividing them into three

topics: unstructured information extraction, data integration, and wrapper inference.

Unstructured information Extraction The extraction of structure from noisy, un-

structured sources is a challenging task, that has engaged by many communities and

tackled with different approaches. Some early systems employed manually defined

rules [AHB+93, LMS+93, Ril93] motivating the creation of the automatic learn-

ing of such rules [Ait02, CM99, Cir01, Sod99b]. Later, statistical learning stood

out. Several techniques were deployed: generative models based on Hidden Markov

Models [AG04, BMSW97], conditional models based on maximum entropy [MFP00,

Rat99] and Conditional Random Fields [LMP01]. However, from this variety of ap-

proaches, no solution emerged as clear solution to the problem. Rule based meth-

ods [JKR+06, SR08], statistical methods [BGK+05, W07], and hybrid models [CM03,

CCRP05, FRF06, RJBS07] are currently used in parallel.

Concerning the web setting, DIPRE [Bri98] represents a pioneering technique to

extract relations. Starting from a bunch of seed pairs (e.g., author-book), it collects

similar pairs by means of a process in which the research of new pages containing

these pairs and the inference of patterns extracting them are interleaved. The applica-

bility of the approach is limited, since it cannot deal with generic tuples of more than

two attributes. The paper motivated several web information extraction projects to

develop effective techniques for the extraction of facts (binary predicates, e.g., born-

in�scientist, city�) from large corpora of web pages (e.g., TextRunner [BCS+07]).

Web information extraction techniques mainly infer lexico-syntactic patterns from

textual descriptions, but, as discussed in [CES06], they cannot take advantage of the

structures available on the web, as they do not elaborate data that are embedded in

HTML templates. In a data integration perspective, these information extraction meth-

ods are able to automatically produce semantic mappings for a huge amount of data

extracted from the web. These solutions scale on the extension, as they produce huge

relations from web data, but not in the intension (schema), as the produced relations

express at most binary associations.

Data Integration The field of data integration is very broad. A field of work is about

understanding the data sources and the data itself. The main focus is on the automatic

82

4.5. Related Work

determination of the schema [Bul03], the discovery of the values distribution and

dependencies ([BDF+97, IMH+04]), the sources selection (to choose the best data to

answer a certain query [GGMT99, PFC+00]), and the text analytics, which analyzes

the text in order to find relevant concepts [DRV06].

A second line of work concerns aspects of the reconciliation of heterogeneous

datasets([HS98, DJ03]), the entity resolution problem ([KSS06]), the handling of in-

consistent data ([LLR02, BC03]), and the measurement of the quality of the data

[NGM05].

Moving to works more similar to ours, a challenging problem in our context is

automatic schema matching [RB01, MHH00, RB01]. The idea of using duplicate in-

stances in the matching process to deal with imprecise data and schemas has been

recently studied (e.g., [BN05, ZGBN07]): these proposals show how the redundancy

can help in contexts where schema can be imprecise. However these approaches are

not suitable for dealing with the web scale. Data instances and domain constraints

are used also in Glue [DMDH02], which early introduced a framework for finding

semantic mappings between concepts of ontologies. Although the Glue approach has

a general applicability in the semantic web context, it is not suitable in our setting,

since it relies also on elements names of the ontology taxonomy and on the hierar-

chical relationships among elements. Also, we make a stronger exploitation of the

redundancy of information that occur at the instance level by aligning tuples from a

sample. Our wrapper refinement phase (detailed in the following) resembles the in-

tuitions behind the “augment method” in [MBDH05], with the remarkable difference

that we automatically gather the corpus during the integration process while in their

case the corpus is given as input. In fact, a direct application of their approach is

not possible in our setting, since we do not consider a-priori information about the do-

main (i.e., at bootstrap we do not have any corpus of schemas nor mappings). Another

point of contact with [MBDH05] is the use of the general constraints in the matching,

we also rely on this idea (i.e., the ”uniqueness”) in our work. The main problem in

duplicate detection is data heterogeneity, due to lack of normalization. Many works

try to solve heterogeneity problems in duplicate detection, by composing different

matching techniques [SDV+07], or by taking advantage from data structure, to avoid

ambiguity [DR07]. In the schema-matching literature, it is not known an approach that

consider duplicates with several kind of errors (e.g., misspelling, misplaced charac-

ters etc. etc.), while in the record-linkage literature most of the approaches developed

need intensional descriptions to work.

Another major topic of interest of data integration is the schema integration: the

works in this area focus on the creation of a mediated schema by the analysis of the

83

4. DATA EXTRACTION AND INTEGRATION

semantics of the merging schemas ([BLN86, BDK92, Kal90, PB02, CKP08]).

Finally, our techniques are clearly related to the works on the integration of data

extracted from the web, such as PAYASYOUGO [SDH08b]. However, this work fo-

cuses on explicitly structured sources, such as Google Base, and the proposed inte-

gration techniques are based on the availability of attribute labels; on the contrary,

our approach aims at integrating unlabeled data from web sites and automatically

infers the labels whenever they are encoded in the HTML templates. The exploita-

tion of structured web data is the primary goal of WebTables [CHW+08] and ListEx-

tract [EMH09], which concentrates on data published in HTML tables. Compared to

information extraction approaches, WebTables and ListExtract extract relations with

involved relational schemas but it does not address the issue of integrating the ex-

tracted data. Cafarella et al. have described a system to populate a probabilistic

database with data extracted from the web [CES06]. However, the data are retrieved

by TextRunner [BCS+07], an information extraction system that is not targeted to data

rich web pages as ours. Octopus [CHK09] and Cimple [SDM+08] support users in the

creation of data sets from web data by means of a set of operators to perform search,

extraction, data cleaning and integration. Although such systems have a more general

application scope than ours, they involve users in the process, while our approach is

completely automatic.

Wrapper Inference An important part in our solution is the generation of wrappers,

that is the rules to extract data from collections of structurally similar pages. In this

field the techniques have evolved considerably over the last decade. The literature rage

from the first attempts where the wrappers had to be manually written [HGMC+97]

to completely automated approaches. The problem was attacked under various per-

spectives.

We refer to the “taxonomy for characterizing web data extraction tools” introduced

in the survey [LRNDSJ02] to discuss the literature about wrapper inference:

• Languages for Wrapper Development: one of the first initiatives was to develop

alternatives to general purpose programming languages (such as Java) to assist

users in constructing wrappers. Some of the tools that adopt this approach are

Cut and Paste [AM97], Minerva [CM98], TSIMMIS [HMGM97], and Web-

OQL [AM98].

• HTML-aware tools: this kind of tools leverage the hierarchy of the DOM-tree

to process the web pages. They produce the wrapper either semi-automatically

(W4F [SA01, SA99]) or automatically (RoadRunner [CMM01b, CMM01a, CMM02a],

84

4.5. Related Work

ExAlg [AGM03], XWRAP [LPH00], ViPER [SL05], WDE [PB07], [APR+08,

XYZ09]).

• NLP-based tools: natural language processing techniques (NLP) have been used

to analyze web pages with free text. This kind of approach is usually more

suitable for pages with grammatical text, possibly in telegraphic style (such as

the job listings). Some representative tools are: RAPIER [CM99], SRV [Fre00],

and WHISK [Sod99a].

• Wrapper induction tools: these tools take as input a set of training examples and

generate delimiter–based extraction rules considering the text only in terms of

formatting features. This makes this approach more suitable for web pages

than the previous case. In this category we can cite WIEN [Kus00], Soft-

Mealy [HD98b], and STALKER [MMK99].

• Modeling-based tools: in this category can be included tools that try to find por-

tions of web pages that implicitly conform to given target structure for the ob-

jects of interest. The target structure is provided in terms of modeling primitives

(such as tupes, lists, etc) that conform to an underlying data model. Some of this

kind of tools are NoDoSe [Ade98], Lixto [BFG01] and DEByE [LRNdS02].

• Ontology-based tools: instead of leveraging the structure of the page this kind

tools rely on an ontology to locate constants present in the page and to construct

objects with them. Some examples are [ECJ+99, ETL05, SMM+08].

From our purposes RoadRunner and ExAlg are very interesting: they propose

a complete automatic inference techniques to create the wrapper from a collection

of pages generated by the same template. Unfortunately, these approaches are not

directly suitable to our goals: they do not consider effective techniques to scale with

the number of sources, and they generate complex nested schemas that can be hard to

integrate when dealing with a large number of sources. However, our approach could

be adopted to study how to further improve the level of automation these unsupervised

techniques exhibit.

An approach related to ours is developed in the TurboWrapper project [CCZ07],

which introduces a composite architecture including several wrapper inference sys-

tems (e.g., [AGM03, CMM01b]). By means of an integration step of their output it

aims at improving the results of the single participating systems taken separately. Also

TurboWrapper leverages on redundancy of information from different sources and the

results of the different wrap- per generators to correct the wrappers and to correlate

85

4. DATA EXTRACTION AND INTEGRATION

the extracted data. Interestingly, the design of TurboWrapper is motivated by the ob-

servation that different web sources that offer data for the same domain have a strong

redun- dancy at the schema level. However they do not consider the redundancy of

information that occurs at the instance level, and the correlation of data in the inte-

gration step is based on the assumptions that there exists a generative model for some

attributes (e.g., the isbn in the book domain). This is a strong assumption that limits

the application of the tech- nique on many domains.

86

Chapter 5

Characterizing The Uncertainty Of
Web Data

The web offers a huge amount of information spread over a very large number of

sources. In Chapter 3 we described an unsupervised approach capable of locating

sources that publish information about an entity of interest. Then, in Chapter 4 we

introduced an unsupervised technique capable of extracting and integrating the infor-

mation creating a repository containing the data published by the sources. At this

point only a last obstacle prevent us from querying the database in order to fully take

advantage of information: web data is inherently imprecise, and different sources can

provide conflicting information. To make the setting even more complex, sources can

copy the data from other sources.

Resolving conflicts and determining what values are (likely to be) true is a crucial

issue to provide trustable reconciled data. In this chapter we analyze the published

data as a whole in order to establish which are the more trustworthy sources, and what

is the probability of correctness of every extracted value.

5.1 Introduction

Several proposals [YHY08, GAMS10] have been recently developed to discover the

true value from those provided by a large number of conflicting data sources. These

solutions extend a basic vote counting strategy in several ways: first, they recognize

that values provided by accurate sources, i.e., sources with low error rates, should be

weighted more than those provided by others; second, they consider how to deal with

the presence of sources that copy from other sources. As observed in [BESD+09],

this is a critical issue, since copiers can cause misleading consensus on false values.

Recently, elegant and principled solutions for considering the role of source de-

pendence have been proposed in [DBES09a] and further improved in [DBEHS10].

87

5. CHARACTERIZING THE UNCERTAINTY OF WEB DATA

However, it is assumed that objects are described by just one attribute, e.g., the price

of a stock quote. On the contrary, data sources usually provide complex data, i.e.,

collections of tuples with many attributes. For example, sources that publish stock

quotes always deliver values for price, volume, max and min values, and many other

attributes.

Existing solutions, focused on a single attribute only, turn out to be rather re-

strictive, as different attributes, by their very nature, may exhibit drastically different

properties and evidence of dependence. This statement is validated by the observa-

tion that state-of-the-art algorithms, when executed on real datasets lead to different

conclusions if applied on different attributes published by the same web sources.

Source 1
volume min max

AAPL 699.9k 90 150
GOOG 1.1m 380 545
YHOO 125k 21 48

Source 2
volume min max

AAPL 699.9k 90 150
GOOG 1.1m 380 545
YHOO 125k 21 48

Source 3
volume min max

AAPL 699.9 90 150
GOOG 1100.0k 381 541
YHOO 125.0k 21 44

Source 4
volume min max

AAPL 699.9k 91 150
GOOG 1100.0k 381 541
YHOO 125.0k 21 44

True values
volume min max

AAPL 699.9k 90 150
GOOG 1100.0k 380 545
YHOO 125.0k 21 48

Figure 5.1: Three sources reporting stock quotes values.

This behavior can be caused by two main reasons: lack of evidence (copiers are

missed) or misleading evidence (false copiers are detected). In Figure 5.1 we make

use of an example to illustrate the issues: four distinct sources report financial data for

the same three stocks. For each stock symbol are reported three attributes: volume,

minimum value and maximum value of the stock. The fifth table shows the true val-

ues for the considered scenario: such information is not provided in general, in this

example we consider it as given to facilitate the discussion.

Consider now the first attribute, the stock volume. It is easy to notice that Source

1 and Source 2 are reporting the same false value for the volume of GOOG (errors are

in bold). Following the intuition from [DBES09a], according to which copiers can be

detected as the sources share false values, they should be considered as copiers. Con-

versely, observe that Source 3 and Source 4 report only true values for the volume and

88

5.2. Probabilistic Models For Uncertain Web Data

therefore there is not any significant evidence of dependence. The scenario radically

changes if we look to the other attributes. Source 3 and Source 4 are reporting the

same incorrect values for the max attribute, and they also make a common error for

the min attribute. Source 4 also reports independently an incorrect value for the min

value of AAPL. In this scenario our approach concludes that Source 3 and Source 4

are certainly dependent, while the dependency between Source 1 and Source 2 would

be very low. Using previous approaches and by looking only to the volume attribute,

Source 1 and Source 2 would been reported as copiers because they share the same

formatting rule for such data (i.e., false copiers detected), while Source 3 and Source

4 would been considered independent sources (i.e., real copiers missed).

In this chapter, we extend previous proposals to deal with sources providing com-

plex data, without introducing any remarkable computation efforts. We formally de-

scribe our algorithms and give a detailed comparison with previous proposals. Finally,

we show experimentally how the evidence accumulated from several attributes can

significantly improve the performance of the existing approaches.

5.2 Probabilistic Models For Uncertain Web Data

In our setting, a source that provides the values of a set of properties for a collection

of objects is modeled as a witness that reports an observation. For example, on the

Web there are several sources that report the values of price, volume, dividend for

the NASDAQ stock quotes. We say that these sources are witnesses of all the cited

properties for the NASDAQ stock quotes.

Different witnesses can report inconsistent observations; that is, they can provide

inconsistent values for one or more properties of the same object. We aim at comput-

ing: (i) the probability that the observed properties of an object assume certain values,

given a set of observations that refer to that object from a collection of witnesses; (ii)

the accuracy of a witness with respect to each observed property, that is, the proba-

bility that a witness provides the correct values of each observed property for a set of

objects. With respect to the running example, we aim at computing the probability

distributions for volume, min and max values of each observed stock quote, given the

observations of the four witnesses illustrated in Figure 5.1. Also, for each witness, we

aim at computing its accuracies in providing a correct value for volume, min and max

property.

We illustrate two models of increasing complexity. In the first model we assume

that each witness provides its observations independently from all the other witnesses

(independent witnesses assumption). Then, in Section 5.3, based on the framework

developed in [DBES09a], we remove this assumption and consider also the presence

89

5. CHARACTERIZING THE UNCERTAINTY OF WEB DATA

of witnesses that provide values by copying from other witnesses. The first model is

developed considering only one property at a time, as we assume that a witness can

exhibit different accuracies for different properties. More properties at a time are taken

into account in the second model, which considers also the copying dependencies. As

we discussed in the example of Figure 5.1, considering more properties in this step

can greatly affect the results of the other steps, and our experimental results confirmed

this intuition, as we report in Section 5.4.

For each property, we use a discrete random variable X to model the possible

values it assumes for the observed object. P(X = x) denotes the prior probability

distribution of X on the x1, . . . , xn+1 possible values, of which one is true and the

other n are false. For the sake of simplicity, we consider a uniform distribution, and

then P(X = x) = 1
n+1 , ∀x. Also, let ẋ denote the event X = x, i.e., the event “x is

the correct value for X”. The individual observation of a witness is denoted o; also,

v(o) is used to indicate the reported value. The accuracy of a witness w, denoted A,

corresponds to the conditional probability that the witness reports x, given ẋ; that is:

A = P (o|ẋ), with v(o) = x.

In the following we assume that the values provided by a witness for an object

are independent on the values provided for the other objects (Independent values as-

sumption). Also, we assume that the value provided by a witness for a property of an

object is independent of the values provided on the other properties of the same object

(Independent properties assumption).

Given an object, the larger is the number of witnesses that agree for the same

value, the higher is the probability that the values is correct. However, the agreement

of the witnesses’ observations contributes in increasing the probability that a value is

correct in a measure that depends also on the accuracy of the involved witnesses. The

accuracy of a witness is evaluated by comparing its observations with the observations

of other witnesses for a set of objects. A witness that frequently agrees with other

witnesses is likely to be accurate.

Based on these ideas of mutual dependence between the analysis of the consen-

sus among witnesses and the analysis of the witnesses accuracy, we have developed

an algorithm that computes the distribution probabilities for the properties of every

observed object and the accuracies of the witnesses. Our algorithm takes as input

the observations of some witnesses on multiple properties of a set of objects, and is

composed of two main steps:

1. Consensus Analysis: based on the agreement of the witnesses among their ob-

servations on individual objects and on the current accuracy of witnesses, com-

90

5.2. Probabilistic Models For Uncertain Web Data

pute the probability distribution for the properties of every object (Section 5.2);

2. Accuracy Analysis: based on the current probability distributions of the ob-

served object properties, evaluate the accuracy of the witnesses (Section 5.2).

The iterations are repeated until the accuracies of the witnesses do not significantly

change anymore.

Probability Distribution of the Values

The following development refers to the computation of the probability distribution

for the values of one property of an object, given the observations of several witnesses,

and the accuracies of the witnesses with respect to that property. The same process

can be applied for every object and property observed by the witnesses.

Given a set of witnesses w1, . . . , wk, with accuracy A1, . . . , Ak that report a set

of observations o1, . . . , ok our goal is to calculate: P
�
ẋ
���

k
∩
i=1

oi
�

i.e., we aim at

computing the probability distribution of the values an object may assume, given the

values reported by k witnesses.

First, we can express the desired probability using the Bayes’ Theorem:

P
�
ẋ
���

k
∩
i=1

oi
�
=

P
�
ẋ
�
P
� k

∩
i=1

oi
���ẋ
�

P
� k

∩
i=1

oi
� (5.1)

The events ẋi forms a partition of the event space. Thus, according to the Law of Total

Probability:

P
� k

∩
i=1

oi
�
=

n+1�

j=1

P
�
ẋj

�
P
� k

∩
i=1

oi
���ẋj

�
(5.2)

Assuming that the observations of all the witnesses are independent,1 for any event ẋ

we can write:

P
� k

∩
i=1

oi
���ẋ
�
=

k�

i=1

P
�
oi
���ẋ
�

Therefore:

P
�
ẋ
���

k
∩
i=1

oi
�
=

P
�
ẋ
� k�

i=1
P
�
oi
���ẋ
�

n+1�
j=1

P
�
ẋj

� k�
i=1

P
�
oi
���ẋj

� (5.3)

P (ẋ) is the prior probability that X assumes the value x, then equals to 1
n+1 ; P (o|ẋ)

represents the probability distribution that a witness reports a value v(o). Observe

1This assumption is a simplification of the domain that we will remove later by extending our model
to deal with witnesses that may copy.

91

5. CHARACTERIZING THE UNCERTAINTY OF WEB DATA

that if v(o) = x (i.e., the witness reports the correct value) the term coincides with the

accuracy A of the witness. Otherwise, i.e., if v(o) �= x, P (o|ẋ), it corresponds to the

probability that the witness reports the incorrect value v(o). In this case, we assume

that v(o) has been selected randomly from the n incorrect values of X .

Since P (o|ẋ) is a probability distribution:

�

v(o) �=x

P (o|ẋ) = 1−A.

Assuming that every incorrect value is selected according to the uniform prior

probability distribution, we can conclude:

P (oi|ẋ) =

�
Ai , v(oi) = x
1−Ai

n , v(oi) �= x
(5.4)

Combining (5.3) and (5.4), we obtain the final expression to compute P
�
ẋ
���

k
∩
i=1

oi
�

.

Witnesses Accuracy

We now illustrate the evaluation of the accuracy of the witnesses with respect to one

property, given their observations for that property on a set of objects, and the proba-

bility distributions associated with the values of each object computed as discussed in

the previous section.

Our approach is based on the intuition that the accuracy of a witness can be eval-

uated by considering how its observations for a number of objects agree with those

of other witnesses. Indeed, assuming that a number of sources independently report

observations about the same property (e.g., trade value) of a shared set of objects (e.g.,

the NASDAQ stock quotes), these observations unlikely agree by chance. Therefore,

the higher are the probabilities of the values reported by a witness, the higher is the

accuracy of the witness.

We previously defined the accuracy Ai of a witness wi as the probability that

wi reports the correct value. Now, given the set of m objects for which the source

wi reports its observations o1, ..., om, and the corresponding probability distributions

P1(ẋ), ..., Pm(ẋ), computed from the observations of many witnesses with the for-

mula described above, we estimate the accuracy of wi as the average of the probabili-

ties associated with the values reported by wi:

Ai =
1

m

m�

j=1

Pj

�
X = vj(oi)

�
(5.5)

where vj(oi) is the value of the observation reported by wi for the object j.

92

5.3. Witnesses Dependencies Over Many Properties

Our algorithm initializes the accuracy of the witnesses to a constant value, then

it starts the iteration that computes the probability distribution for the value of every

object (by using equation (5.4)) and the accuracy of sources (equation (5.5)).

5.3 Witnesses Dependencies Over Many Properties

We now introduce an extension of the approach developed in [DBES09a] for the anal-

ysis of dependence among witnesses that removes the independent witnesses assump-

tion. The kind of dependence that we study is due to the presence of copiers: they

create “artificial” consensus which might lead to misleading conclusions.

As we consider witnesses that provide several properties for each object, we model

the provided values by means of tuples. We assume that a copier either copies a whole

tuple from another witness or it does not copy any properties at all (no-record-linkage

assumption). In other words, we assume that a copier is not able to compose one of its

tuple by taking values (of distinct properties) from different sources. Otherwise, note

that a record-linkage step would be needed to perform its operation, and it would be

more appropriate to consider it as an integration task than a copying operation.

As in [DBES09a], we assume that the dependency between a pair of witnesses is

independent of the dependency between any other pair of witnesses, the copiers may

provide a copied tuple with a-priori probability 0 ≤ c ≤ 1, and they may provide some

tuples independently from other witnesses with a-priori probability 1−c (independent

copying assumption).

Under these assumptions, the evidence of copying could greatly improve by con-

sidering several properties, since it is much less likely that multiple values provided

by two witnesses for the same object coincide by chance.

Ignoring Copiers’ Opinions

We exploit the approach presented in [DBES09a] to deal with the presence of copiers.

The equation (5.3), which was based on the independence assumption does not

hold anymore, and equations (5.1) and (5.2) have to be rewritten as follows:

P
�
ẋ
���

k
∩
i=1

oi
�
=

P
� k

∩
i=1

oi
���ẋ
�
P
�
ẋ
�

n+1�
j=1

P
�
ẋj

�
P
� k

∩
i=1

oi
���ẋj

� (5.6)

and then, let Wo(x) the set of witnesses providing x on object O and Wo the set of

witnesses providing a value on O

P
� k

∩
i=1

oi
���ẋ
�
=

�

w∈Wo(x)

Aw

�

w∈W0−Wo(x)

1−Aw

n
=

�

w∈Wo(x)

n ·Aw

1−Aw

�

w∈Wo

1−Aw

n

(5.7)

93

5. CHARACTERIZING THE UNCERTAINTY OF WEB DATA

Among all the possible values x1, . . . , xn+1, assuming as before a uniform a-priori

probability 1
n+1 for each value, we have:

P
� k

∩
i=1

oi
�
=

n+1�

j=1

P
� k

∩
i=1

oi
���ẋj

�
P (ẋj) =

1

n+ 1

n+1�

j=1

�

w∈Wo(xj)

n ·Aw

1−Aw

�

w∈Wo

1−Aw

n

The probability that a particolar value is true given the observations, can be obtained

by applying the Bayes’ Theorem:

P
�
ẋ
���

k
∩
i=1

oi
�
=

P
� k

∩
i=1

oi
���ẋ
�

1
n+1

P (
k
∩
i=1

oi)
=

�
w∈Wo(x)

n·Aw
1−Aw

n+1�
j=1

�
w∈Wo(xj)

n·Aw
1−Aw

The denominator is a normalization factor, it is independent of Wo(x) and it will be

denoted ω to simplify the notation. As [DBES09a] shows, for the following develop-

ments, it is convenient to introduce the confidence of x, denoted by C(x), which is

basically the probability expressed according to a logarithmic scale:

C(x) = lnP (x) + lnω =
�

w∈Wo(x)

ln
n ·Aw

1−Aw

If we define the accuracy score of a witness w as:

A�
w = ln

n ·Aw

1−Aw

it arises that we can express the confidence of a value x as the sum of the accuracy

scores of the witnesses that provide that value:

C(x) =
�

w∈Wo(x)

A�
w

Now it is possible to take into account the presence of copiers by computing the

confidence as weighted sum of the accuracy scores:

C(x) =
�

w∈Wo(x)

A�
wIw

where the weight Iw, is a number between 0 and 1 that we call the probability of

independent opinion of the witness w and essentially it represents which “portion” of

the opinion of w is expressed independently of the other witnesses. Therefore, for a

perfect copier Iw equals to 0, whereas for a perfectly independent witness Iw equals

to 1.

Iw can be expressed as the probability that a value provided by w is not copied by

any other witness:

Iw =
�

w� �=w

(1− cP (w → w�))

94

5.3. Witnesses Dependencies Over Many Properties

where P (w → w�) is the probability that w is a copier of w�, and c is the a-priori

probability that a copier actually copies the value provided.

Next, we will discuss how to compute a reasonable value of P (w → w�) for a pair

of witnesses.

Witnesses Dependence

In [DBES09a] it is illustrated a technique to compute the probability P (w1 → w2)

that w1 is copier of w2, and the probability P (w1⊥w2) that w1 is independent of w2

starting from the observations of the values provided by the two witnesses for one

given property.

Intuitively, the dependence between two witness w1 and w2 can be detected by

analyzing for which objects they provide the same values, and the overall consensus

on those values. Indeed, whenever two witnesses provide the same value for an object

and the provided value is false, this is an evidence that the two witnesses are copying

each other. Much less evidence arises when the two share a common true value for

that object: those values could be shared just because both witnesses are accurate, as

well as independent.
We consider three probabilities, P (w1⊥w2), P (w1 → w2), P (w2 → w1), cor-

responding to a partition of the space of events of the dependencies between two
witnesses w1 and w2: either they are dependent or they are independent; if they are
dependent, either w1 copies from w2 or w2 copies from w1.

P
�
w1⊥w2

��Φ
�
=

P
�
Φ
��w1⊥w2

�
P
�
w1⊥w2

�

P
�
Φ
��w1⊥w2

�
P
�
w1⊥w2

�
+ P

�
Φ
��w1 → w2

�
P
�
w1 → w2

�
+ P

�
Φ
��w2 → w1

�
P
�
w2 → w1

�

Here Φ corresponds to
k
∩
i=1

oi, i.e., the observations of the values provided by the

k witnesses, and namely, oi corresponds to the observation of the tuples provided by

the witness wi on the object o.

The a-priori knowledge of witnesses dependencies can be modeled by considering

a parameter 0 < α < 1, and then setting the a-priori probability P
�
w1⊥w2

�
to α;

P
�
w1 → w2

�
and P

�
w2 → w1

�
are both set to 1− α

2 .2

The probabilities P
�
Φ
��w1⊥w2

�
, P

�
Φ
��w1 → w2

�
, P

�
Φ
��w2 → w1

�
can be

computed with the help of the independent values assumption: the values indepen-

dently provided by a witness on different objects are independent of each other.

For the sake of simplicity, here we detail how to compute, given the assumptions

above, and considering our generative model of witnesses, P
�
Φ
��w1⊥w2

�
the prob-

ability that two independent witnesses w1 and w2 provide a certain observation Φ in

2A similar discussion for P
�
w1 → w2

��Φ
�

, and P
�
w2 → w1

��Φ
�

is omitted for space reasons.

95

5. CHARACTERIZING THE UNCERTAINTY OF WEB DATA

the case of two properties denoted A and B for which they respectively exhibit er-

ror rates3of �A1 , �B1 , �A2 , �B2 . A similar development would be possible in the case of

witnesses providing more than two properties.

Given the set of objects O for which both w1 and w2 provide values for properties

A and B, it is convenient to partition O in these subsets: Ott∪Otf∪Oft∪Off∪Od ⊆

O. For objects in Ott ∪ Otf ∪ Oft ∪ Off , w1 and w2 provide the same values of

properties A and B, whereas for objects in Od the two witnesses provide different

values for at least one property. In the case of objects in Ott, the witnesses agree on

the true value for both properties; for objects in Otf they agree on the true value of A

and on the same false value of B; similarly for Oft they agree on the same false value

of A and on the true value of B; finally, in the case of Off they agree on the same

false values for both properties.

We first consider the case of both witnesses independently providing the same

values of A and B and these values are either both true or both false. According to the

independent properties assumption, wi provides the pair of true values for A and B

with probability (1−�Ai)(1−�Bi), and a particular pair of false values with probability
�Ai
nA

�Bi
nB

, with nA (respectively nB) being the number of possible false values for the

property A (resp. B). Given that the witnesses are independent, and there are nA ·nB

possible pairs of false values on which the two witnesses may agree, we can write:

P (o ∈ Ott|w1⊥w2) = (1− �A1)(1− �A2)(1− �B1)(1− �B2) = Ptt

P (o ∈ Off |w1⊥w2) = �A1 �A2
nA

�B1 �B2
nB

= Pff

A witness wi independently provides a true value of A and a particular false values

for B with probability (1− �Ai)
�Bi
nB

(similarly for P (o ∈ Oft|w1⊥w2)):

P (o ∈ Otf |w1⊥w2) = (1− �A1)(1− �A2)
�B1 �B2
nB

= Ptf

P (o ∈ Oft|w1⊥w2) = (1− �B1)(1− �B2)
�A1 �A2
nA

= Pft

All the remaining cases are in Od:

P (o ∈ Od|w1⊥w2) = 1− Ptt − Ptf − Pft − Pff = Pd

The independent values assumption allow us to obtains P
�
Φ
��w1⊥w2

�
by mul-

tipling the probabilities and appropriately considering the cardinalities of the corre-

sponding subsets of O:

P
�
Φ
��w1⊥w2

�
= P |Ott|

tt · P
|Otf |
tf · P

|Oft|
ft · P

|Off |
ff · P |Od|

d .

Now we detail how to compute P
�
Φ
��w1 → w2

�
, but we omit P

�
Φ
��w2 → w1

�

since it can be obtained similarly. Recall that according to our model of copier wit-

nesses, a copier with a-priori probability 1 − c provides a tuple independently. In
3The error rate � of a witness with respect to a property is the complement at 1 of its accuracy A with

respect to the same property: � = 1−A.

96

5.4. Experiments

this case, we can reuse the probabilities Ptt, Pff , Ptf , Pft, Pd obtained above for

independent witnesses with weight 1 − c. However, with a-priori probability c, a

copier witness w1 provides a tuple copied from the witness w2 and hence generated

according to the same probability distribution function of w2. For instance, w2 would

generate a pair of true values with probability (1− �A2)(1− �B2). Concluding:

P (o ∈ Ott|w1 → w2) = (1− �A2)(1− �B2)c+ Ptt(1− c)
P (o ∈ Off |w1 → w2) = �A2 �

B
2 c+ Pff (1− c)

P (o ∈ Otf |w1 → w2) = (1− �A2)�
B
2 c+ Ptf (1− c)

P (o ∈ Oft|w1 → w2) = (1− �B2)�
A
2 c+ Pft(1− c)

For the remaining cases, we have to consider that since the witnesses are providing

different values for the same object, it cannot be the case that one is copying the other.

P (o ∈ Od|w1 → w2) = (1− Ptt − Ptf − Pft − Pff)(1− c)

Again, the independent values assumption allow us to obtain P
�
Φ
��w1 → w2

�
by

multipling these probabilities raised to the cardinality of the corresponding subset of

O.

5.4 Experiments

We now describe the settings and the data we used for the experimental evaluation of

the proposed approach. We conducted two sets of experiments. The first set of exper-

iments were done with generated synthetic data, while the second set were performed

with real world data extracted from the Web.

For the following experiments we set α=0.2 and c=0.8.

Synthetic scenarios

The goal of the experiments with synthetic data was to analyze how the algorithms

perform with sources of different quality.

#authorities #independents #copiers A
EXP1 0 8 10 0.1 - 0.9
EXP2 1 7 10 0.1 - 0.9

Figure 5.2: Configurations for the synthetic scenarios.

We conducted two sets of experiments EXP1 and EXP2 to study the performances

of the approach with different configurations as summarized in Figure 5.2. In the two

sets there are three possible types of sources: authorities, which provide true values

for every object and every attribute; independents, which make mistakes according

97

5. CHARACTERIZING THE UNCERTAINTY OF WEB DATA

to the source accuracy A; copiers, which copy according to a copying rate r from

the independents, and make mistakes according to the source accuracy A when they

report values independently. The experiments aim at studying the influence of the

varying source accuracies and the presence of an authority source.

In all the experiments we generated sources with N = 100 objects, each described

by a tuple with 5 attributes with values for all the objects; the copiers copy from an

independent source with a frequency r = 0.8. In all the scenarios each copier copies

from three independents, with the following probabilities: 0.3, 0.3, 0.4.

In order to evaluate the influence of complex data, for each of these configura-

tions we varied the number of attributes given as input to the algorithm with three

combinations: 1, 3, and 5 attributes. We remark that our implementation coincides

with the current state of the art when only one attribute is considered [DBES09a].

To highlight the effectiveness of our algorithm, we also compared our solution with a

naive approach, in which the probability distribution is computed with a simple voting

strategy, ignoring the accuracy of the sources.

To evaluate the performance of the algorithms we report the Precision (P), i.e., the

fraction of objects on which we select the true values, considering as candidate true

values the ones with the highest probability.

Results

Figure 5.3: Synthetic experiments: MultiAtt(5) outperforms alterative configurations
in all scenarios.

The results of our experiments on the synthetic scenarios are illustrated in Fig-

ure 5.3. For each set of experiments we randomly generated the datasets and applied

the algorithms 100 times. We report a graphic with the average Precision for the

naive execution and for the three different executions of our approach. We used in

fact executions of MultiAtt(1) with only one attribute given as input, executions of

MultiAtt(3) with three attributes, and executions of MultiAtt(5) with five.

From the two sets it is apparent that the executions with multiple attributes always

outperform the naive execution and the one considering only one attribute. In the first

98

5.4. Experiments

set EXP1, MultiAtt(3) and MultiAtt(5) present some benefits compared to previous

solutions, but are not able to obtain excellent precision in presence of high error rates.

This is not surprising: even if MultiAtt(3) and MultiAtt(5) are able to identify per-

fectly what sources are copiers, there are 8 independent sources reporting true values

with a very low frequency and therefore evidence to compute the true values for most

of the objects is missing. The scenario radically changes in EXP2, where an authority

exists and MultiAtt(5) is able to return all the correct values even for the worst case,

while MultiAtt(3) and MultiAtt(1) start significantly mixing dependencies at 0.8 and

0.5 error rates, respectively.

It is worth remarking that our algorithm does not introduce regressions with re-

spect to previous solutions. In fact, we have been able to run all the synthetic exam-

ples in [DBES09a] obtaining the same results with all the configurations of MultiAtt.

This can be explained by observing that in those examples the number of copiers is

minor than the number of independent sources and MultiAtt(1) suffices for computing

correctly all the dependencies. In the following, we will show that real data are sig-

nificantly affected by the presence of copiers, but there are cases where considering

only one attribute does not suffice to find the correct dependencies between sources.

Real-World Web data

We used collections of data extracted from web sites about NASDAQ stock quotes.

All the extraction rules were checked manually, and the pages were downloaded on

November 19th 2009.4

Attribute #sites %null #symbols #objects
last price 39 0.3 544 250

open price 34 16.09 568 250
52 week high 34 16.59 531 250
52 week low 34 16.59 487 250

volume 39 1.98 1259 250

Figure 5.4: Settings for the real-world experiments.

The settings for the real-world experiments are reported in Figure 5.4, which

shows the list of attributes we studied. Among hundreds of available stock quotes

we have chosen the subset that maximizes the inconsistency between sources.

It is worth observing that in this domain an authority exists: it is the official NAS-

DAQ website (http://www.nasdaq.com). We ran our algorithm over the available data

4Since financial data change during the trading sessions, we downloaded the pages while the markets
were closed.

99

5. CHARACTERIZING THE UNCERTAINTY OF WEB DATA

and we evaluated the results considering the data published by that source as the truth.

The experiments were executed on a FreeBSD machine with Intel Core Duo 2.16GHz

CPU and 2GB memory.

To test the effectiveness of our approach we executed the algorithm consider-

ing one attribute at a time, considering all the 10 possible configurations of three

attributes, and, finally, considering five attributes at the same time. In Figure 5.5.a are

reported the average of the precisions obtained over the five attributes by these con-

figurations. The worst precision (0.39) is obtained considering only one attribute at a

(a) (b)

Figure 5.5: Real-world summary experiments.

time: this is due to the lack of clear majorities in the setting and the consequent diffi-

culty in the discovery of the dependencies. We obtained interesting results considering

the configurations of three attributes. In fact, it turned out that some configurations

perform significantly better than others. This is not surprising, since the quality of the

data exposed by an attribute can be more or less useful in the computation of the de-

pendencies: for example, an attribute does not provide information to identify copiers

if all the sources provide the correct values or all the sources provide different values.

However, it is encouraging to notice that considering all the five attributes we obtained

a good precision (0.84). This shows that even if there exist attributes that do not con-

tribute positively (or provide misleading information), their impact can be absorbed if

they are considered together with the good ones.

Figure 5.5.b reports the average precision scores for the three configurations com-

pared with their execution times (the average in the cases with one and three at-

tributes). It can be observed that the execution times increase linearly with the number

of attributes involved in the computation, with a maximum of 16 minutes for the con-

figuration with five attributes.

100

5.5. Related Work

5.5 Related Work

Many projects have been active in the study of imprecise databases and have achieved

a solid understanding of how to represent uncertain data (see [DS07] for a survey

on the topic). The development of effective data integration solutions making use of

probabilistic approaches has also been addressed by several projects in the last years.

In [DES05] the redundancy between sources is exploited to gain knowledge, but with

a different goal: given a set of text documents they assess the quality of the extraction

process. Other works propose probabilistic techniques to integrate data from overlap-

ping sources [FKL97], or other forms of dependencies between sources [SDH08a].

On the contrary, until recently there has been little focus on how to populate such

databases with sound probabilistic data. Even if this problem is strongly application-

specific, there is a lack of solutions also in the popular fields of data extraction and in-

tegration. Cafarella et al. have described a system to populate a probabilistic database

with data extracted from the Web [CES06], but they do not consider the problems

of combining different probability distributions and evaluating the reliability of the

sources.

TruthFinder [YHY08] was the first project to address the issue of discovering

true values in the presence of multiple sources providing conflicting information.

It is based on an iterative algorithm that exploits the mutual dependency between

source accuracy and consensus among sources. Similarly [WM07] and more re-

cently [GAMS10] other approaches presented fix-point algorithms to estimate the true

values of data reported by a set of sources, together with the accuracy of the sources.

These approaches do not consider source dependencies and they all deal with simple

data.

Some of the intuitions behind TruthFinder were formalized by Dong et al. [DBES09a]

in a probabilistic Bayesian framework, which also takes into account the effects re-

lated to the presence of copiers among the sources. Our probabilistic model is based

on such Bayesian framework and extends it to the case with sources that provide com-

plex data. Further developments by the same authors also consider the variations of

truth values over time [DBES09b], and improve the detection of copiers [DBEHS10].

The former investigation applies for time evolving data and can lead to identify out-

dated sources.

An experimental comparison of authority and quality results for Web sites has

been done in [ATH00]. Our work differs from this study in two important points.

First, in our comparison against common popularity metrics we exploit the accuracy

of the data offered by the Web sources, while they compare quality in term of human

judgement provided by experts. Second, we study the effectiveness of statistical mod-

101

5. CHARACTERIZING THE UNCERTAINTY OF WEB DATA

els for the automatic evaluation of the sources, without requiring any user interaction.

102

Appendices

103

Appendix A

NP-hardness Of The Mdl-Clustering Problem

Given an instance H = (V,E) of the 2-Bounded-3-Set-Packing, we create an instance

WH of Mdl-Clustering. For each vertex v, we create a webpage vw whose terms

consists of all the edges incident on v. We call these the vertex-pages. Also, For

each edge e ∈ E, we create β webpages, each having a single term e, where β is a

constant whose values we will choose later. We call these the edge-pages and denote

the edge-pages of e by eW . We set c = 0, and we will choose α later.

The set of unique terms in WH is precisely E. Also, since H has maximum

degree 2, each webpage has at most 2 terms. Let C = {W1, · · · ,Wk} be an optimal

clustering of WH . Let Ei denote script(Wi), i.e. the set of terms that are constant in

Wi.

Lemma .0.1. For all e ∈ E, there is a i s.t. Ei = {e}.

Proof. Suppose there is an e for which the lemma does not hold. Let Wi be the

cluster that contains the edge-pages for e. We have |eW | = β and |Wi| ≤ |WH | =

|E|β + |V | ≤ |E|β + 3|E| ≤ 2|E|β, assuming β > 3. Thus, |Wi|/|eW | ≥ 1/2|E|.

We set α to a large value such that 1/2|E| is greater than the thresold τ in Theorem 2.

For such an α, we get that {eW ,Wi − eW } is a better clustering for Wi, which is a

contradiciton.

Lemma .0.2. There is no i for which |Ei| > 1.

Proof. Since each webpage has at most 2 edges, |Ei| ≤ 2. Suppose there is a cluster

Wi with |Ei| = 2. Let Ei = {e1, e2}. Clearly, ni = |Wi| ≤ 3, since w ∈ Wi implies

w is a vertex-page and there are at most 3 vertices containing e1 (or e2). Let Wj be

the cluster s.t. Ej = {e1}, which exists according to Lemma .0.1. We will show that

C1 = {Wi∪Wj} is a better clustering that C2 = {Wi,Wj}. We have nj = |Wj | ≥ β.

Let n = ni+nj . mdl∗(C2)−mdl∗(C1) = ni log
n
ni
+nj log

n
nj

−α∗ni ≥ log β
3−3α.

For sufficiently large values of t, this is positive.

105

APPENDIX A

Lemma .0.1 and .0.2 tells us that, for a suitably chosen α and β, the optimal clus-

tering of WH has exactly |E| clusters, one corresponding to each edge. Each cluster

contains the β edge-pages of the corresponding edge. Every vertex-page belongs to

the edge cluster of one of its adjacent edge. We want to find the assignment of vertex-

pages to edge clusters that minimizes the mdl. The number of clusters and the script

terms in each clusters is constant. Thus, we want the assignment that minimizes the

entropy. When there exists a perfect matching, the entropy is minimized when |V |/3

edge clusters contain 3 vertex-pages each and rest do not contain any vertex-page.

Thus, we can check if H has a perfect matching by examining the optimal clustering

of WH

Theorem 3. Mdl-Clustering is NP-hard.

Proof. We give a reduction from the balanced min-cut problem. In balanced min-

cut, we are given an undirected graph, and we want to find a cut of smallest size that

divides the vertices into two equal parts.

The main idea behind our construction is as follows. Given a graph G = (V,E),

we construct a set of webpages W and a set of features F as follows. W is simply

V , i.e. there is a webpage for each vertex. Let t be a constant whose value we will

choose later. For each v ∈ V , there are t unique features f1(v), · · · , ft(v). For each

edge e ∈ E, there is a unique feature f(e). Given a webpage v ∈ V , its set of features

is

{fi(v
�) | 1 ≤ i ≤ t, v� ∈ V − {v}} ∪

{f(e) | e ∈ E, e not adjacent to v}

Let α and c be constants whose values we will set later.

Now consider a clustering C = {W1, · · · ,Wk}. Let us compute mdl(C). Let

|V | = N , |E| = M , |Wi| = ni and mi be the number of edges in the induced

subgraph of V −Wi. Given a w ∈ Wi, the size of its feature set is t(N − 1) +M −

deg(w). The set of features that belong to every vertex in Wi is given by

{fi(v
�) | 1 ≤ i ≤ t, v� ∈ V −Wi} ∪

{f(e) | e ∈ E, e not adjacent to Wi}

and the cardinality of this set is t(N − ni) +mi. Thus, arity of w is t(ni − 1)+M −

deg(w)−mi. Thus, mdl(C) equals

ck +
�

i

ni log
N

ni
+ α

�

w∈W

arity(w)

106

NP-hardness Of The Mdl-Clustering Problem

where

�

w∈W

arity(w) =
�

i

�

w∈Wi

t(ni − 1) +M − deg(w)−mi

=
�

w∈W

deg(w) +N(M − t) +
�

i

(tn2
i −mini)

Denoting
�

w∈W deg(w) +N(M − t) by ∆, we get

mdl(C) = ck + α∆+
�

i

ni log
N

ni
+ α

�

i

(tn2
i −mini)

= ck + α∆+ f1(C) + αf2(C)

where f1(C) =
�

i ni log
N
ni

and f2(C) =
�

i(tn
2
i −nimi). We want to characterize

C that minimizes mdl(C). For a fixed k, let us find the clustering that has k clusters

and minimizes mdl(C). This is the clustering C that minimizes f1(C)+αf2(C). Set

α to be a constant greater than N logN . Since f1(C) is at most N logN , and since

f2(C) is an integer function, we want C that minimizes f2(C) = t
�

i n
2
i −

�
i mi.

Set t to be equal to N2M . Since
�

i nimi is at most NM , we want to minimize
�

i n
2
i , and among all such clusterings, maximize

�
i nimi. The first minimum is

achieved when all ni are equals, i.e. C is a balanced cut. Thus, among all balanced

cuts, we want to maximize
�

i mi.

Lemma .0.3. For any cut C,
�

i mi = N(k − 1)− 3s, where s is the size of the cut.

Proof. Let ei be the number of edges in Ci and si be the number of edges coming out

from Ci. Thus, mi = N − ei − si. Also,
�

i ei = N − s and
�

i si = 2s. The proof

follows.

So maximizing
�

i mi is equivalent to minimizing the cut size. Thus, for a fixed

k, the clusterings that has k clusters and minimizes mdl(C) is a k-balanced min cut.

Denoting optk the size of this cut, the mdl of this cut is

f(k) = ck + α∆+N log k + α(tN2/k −N2(k − 1)− 3optkN)

Finally, we will set c so that the above expression is minimized for k = 2. Let

c = α ∗ t ∗ N2/4. Then, ck + αtN2/k is minimized when k = 2. Choose t large

enough so that other terms don’t change the optimum.

107

Bibliography

[Ade98] B. Adelberg. NoDoSE – a tool for semi-automatically extracting

structured and semistructured data from text documents. In ACM

SIGMOD International Conf. on Management of Data (SIGMOD’98),

Seattle, Washington, 1998.

[AG00] Eugene Agichtein and Luis Gravano. Snowball: extracting relations

from large plain-text collections. In ACM DL, pages 85–94, 2000.

[AG04] Eugene Agichtein and Venkatesh Ganti. Mining reference tables for

automatic text segmentation. In Won Kim, Ron Kohavi, Johannes

Gehrke, and William DuMouchel, editors, KDD, pages 20–29. ACM,

2004.

[AGM03] A. Arasu and H. Garcia-Molina. Extracting structured data from web

pages. In ACM SIGMOD International Conf. on Management of Data

(SIGMOD’2003), San Diego, California, pages 337–348, 2003.

[AHB+93] Douglas E. Appelt, Jerry R. Hobbs, John Bear, David J. Israel, and

Mabry Tyson. Fastus: A finite-state processor for information extrac-

tion from real-world text. In IJCAI, pages 1172–1178, 1993.

[Ait02] James S. Aitken. Learning information extraction rules: An inductive

logic programming approach. In Frank van Harmelen, editor, ECAI,

pages 355–359. IOS Press, 2002.

[AM97] P. Atzeni and G. Mecca. Cut and Paste. In Sixteenth ACM SIGMOD

Intern. Symposium on Principles of Database Systems (PODS’97),

Tucson, Arizona, pages 144–153, 1997.

[AM98] G. O. Arocena and A. O. Mendelzon. WebOQL: Restructuring doc-

uments, databases and Webs. In Fourteenth IEEE International Con-

ference on Data Engineering (ICDE’98), Orlando, Florida, pages 24–

33, 1998.

109

BIBLIOGRAPHY

[Ant05] Tobias Anton. Xpath-wrapper induction by generating tree traversal

patterns. In LWA, pages 126–133, 2005.

[APR+08] Manuel Álvarez, Alberto Pan, Juan Raposo, Fernando Bellas, and Fi-

del Cacheda. Extracting lists of data records from semi-structured

web pages. Data Knowl. Eng., 64:491–509, February 2008.

[ATH00] Brian Amento, Loren G. Terveen, and William C. Hill. Does “au-

thority” mean quality? predicting expert quality ratings of web docu-

ments. In SIGIR, pages 296–303, 2000.

[ATW+07] Charu C. Aggarwal, Na Ta, Jianyong Wang, Jianhua Feng, and Mo-

hammed Zaki. Xproj: a framework for projected structural clustering

of xml documents. In KDD, pages 46–55, 2007.

[BBC+10] Lorenzo Blanco, Mirko Bronzi, Valter Crescenzi, Paolo Merialdo, and

Paolo Papotti. Exploiting information redundancy to wring out struc-

tured data from the web. In Michael Rappa, Paul Jones, Juliana Freire,

and Soumen Chakrabarti, editors, WWW, pages 1063–1064. ACM,

2010.

[BC03] Leopoldo E. Bertossi and Jan Chomicki. Query answering in incon-

sistent databases. In Jan Chomicki, Ron van der Meyden, and Gunter

Saake, editors, Logics for Emerging Applications of Databases, pages

43–83. Springer, 2003.

[BCM05] L. Blanco, V. Crescenzi, and P. Merialdo. Efficiently locating collec-

tions of web pages to wrap. In WEBIST, 2005.

[BCM08] Lorenzo Blanco, Valter Crescenzi, and Paolo Merialdo. Structure

and semantics of data-intensive web pages: An experimental study

on their relationships. J. UCS, 14(11):1877–1892, 2008.

[BCMP08a] Lorenzo Blanco, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti.

Flint: Google-basing the web. In Alfons Kemper, Patrick Valduriez,

Noureddine Mouaddib, Jens Teubner, Mokrane Bouzeghoub, Volker

Markl, Laurent Amsaleg, and Ioana Manolescu, editors, EDBT, vol-

ume 261 of ACM International Conference Proceeding Series, pages

720–724. ACM, 2008.

[BCMP08b] Lorenzo Blanco, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti.

Supporting the automatic construction of entity aware search engines.

In WIDM, pages 149–156, 2008.

110

Bibliography

[BCMP10] Lorenzo Blanco, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti.

Probabilistic models to reconcile complex data from inaccurate data

sources. In Barbara Pernici, editor, CAiSE, volume 6051 of Lecture

Notes in Computer Science, pages 83–97. Springer, 2010.

[BCS+07] M. Banko, M. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni.

Open information extraction from the web. In IJCAI, 2007.

[BDF+97] Daniel Barbará, William DuMouchel, Christos Faloutsos, Peter J.

Haas, Joseph M. Hellerstein, Yannis E. Ioannidis, H. V. Jagadish,

Theodore Johnson, Raymond T. Ng, Viswanath Poosala, Kenneth A.

Ross, and Kenneth C. Sevcik. The new jersey data reduction report.

IEEE Data Eng. Bull., 20(4):3–45, 1997.

[BDK92] Peter Buneman, Susan B. Davidson, and Anthony Kosky. Theoret-

ical aspects of schema merging. In Alain Pirotte, Claude Delobel,

and Georg Gottlob, editors, EDBT, volume 580 of Lecture Notes in

Computer Science, pages 152–167. Springer, 1992.

[BESD+09] Laure Berti-Equille, Anish Das Sarma, Xin Dong, Amélie Marian,

and Divesh Srivastava. Sailing the information ocean with aware-

ness of currents: Discovery and application of source dependence. In

CIDR, 2009.

[BFG01] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web informa-

tion extraction with lixto. In Int. Conf. on Very Large Data Bases

(VLDB’2001), Roma, Italy, September 11-14, pages 119–128, 2001.

[BGK+05] Razvan C. Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Marcotte,

Raymond J. Mooney, Arun K. Ramani, and Yuk Wah Wong. Compar-

ative experiments on learning information extractors for proteins and

their interactions. Artificial Intelligence in Medicine, 33(2):139–155,

2005.

[BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A com-

parative analysis of methodologies for database schema integration.

ACM Comput. Surv., 18(4):323–364, 1986.

[BMSW97] Daniel M. Bikel, Scott Miller, Richard M. Schwartz, and Ralph M.

Weischedel. Nymble: a high-performance learning name-finder. In

ANLP, pages 194–201, 1997.

111

BIBLIOGRAPHY

[BN05] Alexander Bilke and Felix Naumann. Schema matching using dupli-

cates. In ICDE, pages 69–80, 2005.

[BPC+10] Lorenzo Blanco, Paolo Papotti, Valter Crescenzi, Paolo Merialdo, and

Mirko Bronzi. Redundancy-driven web data extraction and integra-

tion. In Xin Luna Dong and Felix Naumann, editors, WebDB, 2010.

[Bri98] S. Brin. Extracting patterns and relations from the World Wide Web.

In Proceedings of the First Workshop on the Web and Databases

(WebDB’98) (in conjunction with EDBT’98), pages 102–108, 1998.

[Bul03] IEEE Data Eng. Bull. Special issue on structure discovery. 26:3, 2003.

[CBZ05] Kevin Chen-Chuan Chang, He Bin, and Zhang Zhen. Toward large

scale integration: Building a metaquerier over databases on the web.

In CIDR 2005, pages 44–66, 2005.

[CC03] Miroslav Chlebk and Janka Chlebkov. Inapproximability results for

bounded variants of optimization problems. Fundamentals of Com-

putation Theory, 2751:123–145, 2003.

[CCRP05] Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth Patwardhan.

Identifying sources of opinions with conditional random fields and

extraction patterns. In HLT/EMNLP. The Association for Computa-

tional Linguistics, 2005.

[CCZ07] Shui-Lung Chuang, Kevin Chen-Chuan Chang, and Cheng Xiang

Zhai. Context-aware wrapping: Synchronized data extraction. In

VLDB, pages 699–710, 2007.

[CES06] Michael J. Cafarella, Oren Etzioni, and Dan Suciu. Structured queries

over web text. IEEE Data Eng. Bull., 29(4):45–51, 2006.

[CHK09] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova. Data

integration for the relational web. PVLDB, 2(1):1090–1101, 2009.

[CHW+08] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu,

and Yang Zhang. Webtables: exploring the power of tables on the

web. PVLDB, 1(1):538–549, 2008.

[Cir01] Fabio Ciravegna. Adaptive information extraction from text by rule

induction and generalisation. In Bernhard Nebel, editor, IJCAI, pages

1251–1256. Morgan Kaufmann, 2001.

112

Bibliography

[CKGS06] C. H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey

of web information extraction systems. IEEE Transactions on Knowl-

edge and Data Engineering, 18(10):1411–1428, October 2006.

[CKP08] Laura Chiticariu, Phokion G. Kolaitis, and Lucian Popa. Interactive

generation of integrated schemas. In Jason Tsong-Li Wang, editor,

SIGMOD Conference, pages 833–846. ACM, 2008.

[CM98] Valter Crescenzi and Giansalvatore Mecca. Grammars have excep-

tions. Inf. Syst., 23(8):539–565, 1998.

[CM99] Mary Elaine Califf and Raymond J. Mooney. Relational learning of

pattern-match rules for information extraction. In AAAI/IAAI, pages

328–334, 1999.

[CM03] Mary Elaine Califf and Raymond J. Mooney. Bottom-up relational

learning of pattern matching rules for information extraction. Journal

of Machine Learning Research, 4:177–210, 2003.

[CMM01a] V. Crescenzi, G. Mecca, and P. Merialdo. The roadrunner project: to-

wards automatic extraction of web data. In IJCAI2001 Whorkshop on

Adaptive Text Extraction and Mining (ATEM2001), Seatlle (Washing-

ton), 2001.

[CMM01b] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards auto-

matic data extraction from large Web sites. In International Conf. on

Very Large Data Bases (VLDB 2001), Roma, Italy, September 11-14,

pages 109–118, 2001.

[CMM02a] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Automatic

data extraction from data-intensive web sites. In ACM SIGMOD In-

ternational Conf. on Management of Data (SIGMOD’2002), Madi-

son, Wisconsin, 2002.

[CMM02b] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo.

Wrapping-oriented classification of web pages. In Symposium on Ap-

plied computing, pages 1108–1112, 2002.

[CMM05] Valter Crescenzi, Paolo Merialdo, and Paolo Missier. Clustering web

pages based on their structure. Data and Knowledge Engineering,

54(3):279 – 299, 2005.

113

BIBLIOGRAPHY

[CMOT04] Gianni Costa, Giuseppe Manco, Riccardo Ortale, and Andrea

Tagarelli. A tree-based approach to clustering xml documents by

structure. In PKDD, pages 137–148, 2004.

[CvD99] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling:

a new approach to topic-specific Web resource discovery. Computer

Networks (Amsterdam, Netherlands), 31(11–16):1623–1640, 1999.

[CYL06] Liang Chen, Shaozhi Ye, and Xing Li. Template detection for large

scale search engines. In Proceedings of the 2006 ACM symposium

on Applied computing, SAC ’06, pages 1094–1098, New York, NY,

USA, 2006. ACM.

[DBEHS10] Xin Dong, Laure Berti-Equille, Yifan Hu, and Divesh Srivas-

tava. Solomon: Seeking the truth via copying detection. PVLDB,

3(2):1617–1620, 2010.

[DBES09a] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Inte-

grating conflicting data: The role of source dependence. PVLDB,

2(1):550–561, 2009.

[DBES09b] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Truth

discovery and copying detection in a dynamic world. PVLDB,

2(1):562–573, 2009.

[DBS09] Nilesh Dalvi, Philip Bohannon, and Fei Sha. Robust web extraction:

An approach based on a probabilistic tree-edit model. In SIGMOD,

pages 335–348, 2009.

[dCRGdSL04] Davi de Castro Reis, Paulo Braz Golgher, Altigran Soares da Silva,

and Alberto H. F. Laender. Automatic web news extraction using tree

edit distance. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and

Craig E. Wills, editors, WWW, pages 502–511. ACM, 2004.

[DCWS06] Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, and Timos Sel-

lis. A methodology for clustering xml documents by structure. Inf.

Syst., 31(3):187–228, 2006.

[DEG+03] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha,

Anant Jhingran, Tapas Kanungo, Sridhar Rajagopalan, Andrew

Tomkins, John A. Tomlin, and Jason Y. Zien. Semtag and seeker:

bootstrapping the semantic web via automated semantic annotation.

114

Bibliography

In WWW ’03: Proceedings of the 12th international conference on

World Wide Web, pages 178–186, New York, NY, USA, 2003. ACM

Press.

[DES05] Doug Downey, Oren Etzioni, and Stephen Soderland. A probabilis-

tic model of redundancy in information extraction. In IJCAI, pages

1034–1041, 2005.

[DEW97] Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. A scalable

comparison-shopping agent for the world-wide web. In Agents, pages

39–48, 1997.

[DJ03] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining

and Data Cleaning. John Wiley, 2003.

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.

Learning to map between ontologies on the semantic web. In WWW

’02, pages 662–673, 2002.

[DR07] Hong Hai Do and Erhard Rahm. Matching large schemas: Ap-

proaches and evaluation. Inf. Syst., 32(6):857–885, 2007.

[DRC+06] AnHai Doan, Raghu Ramakrishnan, Fei Chen, Pedro DeRose,

Yoonkyong Lee, Robert McCann, Mayssam Sayyadian, and Warren

Shen. Community information management. IEEE Data Eng. Bull.,

29(1):64–72, 2006.

[DRV06] A Doan, R Ramakrishnan, and S Vaithyanathan. Managing informa-

tion extraction: state of the art and research directions, pages 799–

800. ACM Press, 2006.

[DS07] Nilesh N. Dalvi and Dan Suciu. Management of probabilistic data:

foundations and challenges. In PODS, pages 1–12, 2007.

[ECJ+99] D. W. Embley, M. D. Campbell, Y. S. Jiang, S. W. Liddle, Y. K. Ng,

D. Quass, and R. D. Smith. Conceptual-model-based data extraction

from multiple-record web pages. Data & Knowledge Engineering,

Elsevier, 31(3):227–251, 1999.

[EMH09] Hazem Elmeleegy, Jayant Madhavan, and Alon Y. Halevy. Harvest-

ing relational tables from lists on the web. PVLDB, 2(1):1078–1089,

2009.

115

BIBLIOGRAPHY

[ETL05] David W. Embley, Cui Tao, and Stephen W. Liddle. Automating the

extraction of data from html tables with unknown structure. Data

Knowl. Eng., 54:3–28, July 2005.

[FKL97] Daniela Florescu, Daphne Koller, and Alon Y. Levy. Using prob-

abilistic information in data integration. In VLDB, pages 216–225,

1997.

[FMM+02] Sergio Flesca, Giuseppe Manco, Elio Masciari, Luigi Pontieri, and

Andrea Pugliese. Detecting structural similarities between xml docu-

ments. In WebDB, pages 55–60, 2002.

[FMM+05] Sergio Flesca, Giuseppe Manco, Elio Masciari, Luigi Pontieri, and

Andrea Pugliese. Fast detection of xml structural similarity. IEEE

Trans. Knowl. Data Eng., 17(2):160–175, 2005.

[Fre00] Dayne Freitag. Machine learning for information extraction in infor-

mal domains. Machine Learning, 39(2/3):169–202, 2000.

[FRF06] Ronen Feldman, Binyamin Rosenfeld, and Moshe Fresko. Teg-a hy-

brid approach to information extraction. Knowl. Inf. Syst., 9(1):1–18,

2006.

[GAMS10] Alban Galland, Serge Abiteboul, Amélie Marian, and Pierre Senellart.

Corroborating information from disagreeing views. In Proc. WSDM,

New York, USA, 2010.

[GGMT99] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. Gloss:

Text-source discovery over the internet. ACM Trans. Database Syst.,

24(2):229–264, 1999.

[GLdSRN00] Paulo Braz Golgher, Alberto H. F. Laender, Altigran Soares da Silva,

and Berthier A. Ribeiro-Neto. An example-based environment for

wrapper generation. In Stephen W. Liddle, Heinrich C. Mayr, and

Bernhard Thalheim, editors, ER (Workshops), volume 1921 of Lecture

Notes in Computer Science, pages 152–164. Springer, 2000.

[GM03] R. Guha and R. McCool. Tap: a semantic web platform. Computer

Networks, 42(5):557–577, August 2003.

[Got08] Thomas Gottron. Clustering template based web documents. In ECIR,

pages 40–51, 2008.

116

Bibliography

[Gru07] P. D. Grunwald. The Minimum Description Length Principle. MIT

Press, first edition, 2007.

[HBP01] Wei Han, David Buttler, and Calton Pu. Wrapping web data into

XML. SIGMOD Record, 30(3):33–38, 2001.

[HD98a] Chun-Nan Hsu and Ming-Tzung Dung. Generating finite-state trans-

ducers for semi-structured data extraction from the web. Information

Systems, 23(8):521–538, 1998.

[HD98b] Chun-Nan Hsu and Ming-Tzung Dung. Generating finite-state trans-

ducers for semi-structured data extraction from the web. Inf. Syst.,

23(8):521–538, 1998.

[HGMC+97] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Ex-

tracting semistructured information from the Web. In Proceedings

of the Workshop on the Management of Semistructured Data (in con-

junction with ACM SIGMOD 1997), 1997.

[HMGM97] Joachim Hammer, Jason McHugh, and Hector Garcia-Molina.

Semistructured data: The tsimmis experience. In ADBIS, pages 1–

8. Nevsky Dialect, 1997.

[HS98] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is

dirty: Data cleansing and the merge/purge problem. Data Min. Knowl.

Discov., 2(1):9–37, 1998.

[IMH+04] Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf

Aboulnaga. Cords: Automatic discovery of correlations and soft func-

tional dependencies. In Gerhard Weikum, Arnd Christian König, and

Stefan Deßloch, editors, SIGMOD Conference, pages 647–658. ACM,

2004.

[IS06] Utku Irmak and Torsten Suel. Interactive wrapper generation with

minimal user effort. In WWW ’06: Proceedings of the 15th interna-

tional conference on World Wide Web, pages 553–563, New York, NY,

USA, 2006. ACM.

[JKR+06] T. S. Jayram, Rajasekar Krishnamurthy, Sriram Raghavan, Shivaku-

mar Vaithyanathan, and Huaiyu Zhu. Avatar information extraction

system. IEEE Data Eng. Bull., 29(1):40–48, 2006.

117

BIBLIOGRAPHY

[Kal90] L. Kalinichenko. Methods and tools for equivalent data model map-

ping construction. In Int. Conf. on Extending Database Technology

(EDBT’90), Venezia, Lecture Notes in Computer Science 416, pages

92–119. Springer-Verlag, 1990.

[Kru97] Bruce Krulwich. Automating the internet: Agents as user surrogates.

IEEE Internet Computing, 1(4):34–38, 1997.

[KSS06] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record link-

age: similarity measures and algorithms. In SIGMOD ’06: Proceed-

ings of the 2006 ACM SIGMOD international conference on Man-

agement of data, pages 802–803, New York, NY, USA, 2006. ACM

Press.

[Kus00] N. Kushmerick. Wrapper induction: Efficiency and expressiveness.

Artificial Intelligence, 118:15–68, 2000.

[KWD97] Nickolas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos.

Wrapper induction for information extraction. In IJCAI, pages 729–

737, 1997.

[LCMY04] Wang Lian, David Wai-lok Cheung, Nikos Mamoulis, and Siu-Ming

Yiu. An efficient and scalable algorithm for clustering xml documents

by structure. IEEE Trans. on Knowl. and Data Eng., 16(1):82–96,

2004.

[LdSGL02] Juliano Palmieri Lage, Altigran Soares da Silva, Paulo Braz Golgher,

and Alberto H. F. Laender. Collecting hidden web pages for data

extraction. In Roger H. L. Chiang and Ee-Peng Lim, editors, WIDM,

pages 69–75. ACM, 2002.

[LLR02] Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. Source

inconsistency and incompleteness in data integration. In Alexander

Borgida, Diego Calvanese, Laurence Cholvy, and Marie-Christine

Rousset, editors, KRDB, volume 54 of CEUR Workshop Proceedings.

CEUR-WS.org, 2002.

[LMP01] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.

Conditional random fields: Probabilistic models for segmenting and

labeling sequence data. In Carla E. Brodley and Andrea Pohoreckyj

Danyluk, editors, ICML, pages 282–289. Morgan Kaufmann, 2001.

118

Bibliography

[LMS+93] Wendy G. Lehnert, J. McCarthy, Stephen Soderland, Ellen Riloff,

Claire Cardie, J. Peterson, Fangfang Feng, C. Dolan, and S. Gold-

man. Umass/hughes: description of the circus system used for muc-5.

In MUC, pages 277–291, 1993.

[LPH00] Ling Liu, Calton Pu, and Wei Han. Xwrap: An xml-enabled wrapper

construction system for web information sources. In ICDE, pages

611–621, 2000.

[LRNdS02] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, and Altigran Soares

da Silva. Debye - data extraction by example. Data Knowl. Eng.,

40(2):121–154, 2002.

[LRNDSJ02] A. Laender, B. Ribeiro-Neto, A. Da Silva, and Teixeira J. A brief

survey of web data extraction tools. ACM SIGMOD Record, 31(2),

June 2002.

[LYHY02] Mong Li Lee, Liang Huai Yang, Wynne Hsu, and Xia Yang. Xclust:

clustering xml schemas for effective integration. In CIKM, pages 292–

299, 2002.

[MBDH05] Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and Alon Y.

Halevy. Corpus-based schema matching. In ICDE, pages 57–68,

2005.

[MCD+07] Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y. Halevy,

Shawn R. Jeffery, David Ko, and Cong Yu. Web-scale data integra-

tion: You can afford to pay as you go. In CIDR 2007, pages 342–350,

2007.

[MFP00] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Max-

imum entropy markov models for information extraction and segmen-

tation. In Pat Langley, editor, ICML, pages 591–598. Morgan Kauf-

mann, 2000.

[MHH00] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández. Schema

mapping as query discovery. In Amr El Abbadi, Michael L.

Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel,

Gunter Schlageter, and Kyu-Young Whang, editors, VLDB, pages 77–

88. Morgan Kaufmann, 2000.

119

BIBLIOGRAPHY

[MJ02] Jussi Myllymaki and Jared Jackson. Robust web data extraction with

xml path expressions. Technical report, IBM Research Report RJ

10245, May 2002.

[MMK98] I. Muslea, S. Minton, and C. Knoblock. Stalker: Learning extraction

rules for semistructured. In AAAI: Workshop on AI and Information

Integration, 1998.

[MMK99] I. Muslea, S. Minton, and C. A. Knoblock. A hierarchical approach

to wrapper induction. In Proceedings of the Third Annual Conference

on Autonomous Agents, pages 190–197, 1999.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.

Introduction to Information Retrieval. Cambridge University Press,

2008. http://www.informationretrieval.org.

[NGM05] Felix Naumann, Michael Gertz, and Stuart E. Madnick, editors. Pro-

ceedings of the 2005 International Conference on Information Qual-

ity (MIT IQ Conference), Sponsored by Lockheed Martin, MIT, Cam-

bridge, MA, USA, November 10-12, 2006. MIT, 2005.

[PB02] Rachel Pottinger and Philip A. Bernstein. Creating a mediated schema

based on initial correspondences. IEEE Data Eng. Bull., 25(3):26–31,

2002.

[PB07] Justin Park and Denilson Barbosa. Adaptive record extraction from

web pages. In Proceedings of the 16th international conference on

World Wide Web, WWW ’07, pages 1335–1336, New York, NY, USA,

2007. ACM.

[PFC+00] Allison L. Powell, James C. French, James P. Callan, Margaret E.

Connell, and Charles L. Viles. The impact of database selection on

distributed searching. In SIGIR, pages 232–239, 2000.

[PS05] Gautam Pant and Padmini Srinivasan. Learning to crawl: Comparing

classification schemes. ACM Trans. Inf. Syst., 23(4):430–462, 2005.

[Rat99] Adwait Ratnaparkhi. Learning to parse natural language with maxi-

mum entropy models. Machine Learning, 34(1-3):151–175, 1999.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to

automatic schema matching. VLDB J., 10(4):334–350, 2001.

120

Bibliography

[RGM01] S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In

International Conf. on Very Large Data Bases (VLDB 2001), Roma,

Italy, September 11-14, pages 129–138, 2001.

[Ril93] Ellen Riloff. Automatically constructing a dictionary for information

extraction tasks. In AAAI, pages 811–816, 1993.

[RJBS07] Ganesh Ramakrishnan, Sachindra Joshi, Sreeram Balakrishnan, and

Ashwin Srinivasan. Using ilp to construct features for information ex-

traction from semi-structured text. In Hendrik Blockeel, Jan Ramon,

Jude W. Shavlik, and Prasad Tadepalli, editors, ILP, volume 4894 of

Lecture Notes in Computer Science, pages 211–224. Springer, 2007.

[SA99] Arnaud Sahuguet and Fabien Azavant. Building light-weight wrap-

pers for legacy web data-sources using W4F. In VLDB, pages 738–

741, 1999.

[SA01] Arnaud Sahuguet and Fabien Azavant. Building intelligent web ap-

plications using lightweight wrappers. Data Knowl. Eng., 36(3):283–

316, 2001.

[SBG+03] Sergej Sizov, Michael Biwer, Jens Graupmann, Stefan Siersdorfer,

Martin Theobald, Gerhard Weikum, and Patrick Zimmer. The bingo!

system for information portal generation and expert web search. In

CIDR 2003, First Biennial Conference on Innovative Data Systems

Research, Asilomar, CA, USA, 2003, 2003.

[SDH08a] Anish Das Sarma, Xin Dong, and Alon Halevy. Data integration with

dependent sources. Technical report, Stanford InfoLab, December

2008.

[SDH08b] Anish Das Sarma, Xin Dong, and Alon Y. Halevy. Bootstrapping pay-

as-you-go data integration systems. In SIGMOD Conference, pages

861–874, 2008.

[SDM+08] Warren Shen, Pedro DeRose, Robert McCann, AnHai Doan, and

Raghu Ramakrishnan. Toward best-effort information extraction. In

SIGMOD Conference, pages 1031–1042, 2008.

[SDV+07] Warren Shen, Pedro DeRose, Long Vu, AnHai Doan, and Raghu

Ramakrishnan. Source-aware entity matching: A compositional ap-

proach. In ICDE, pages 196–205. IEEE Computer Society, 2007.

121

BIBLIOGRAPHY

[SL05] Kai Simon and Georg Lausen. Viper: augmenting automatic infor-

mation extraction with visual perceptions. In Proceedings of the 14th

ACM international conference on Information and knowledge man-

agement, CIKM ’05, pages 381–388, New York, NY, USA, 2005.

ACM.

[SMM+08] Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi Gilleron, and

Marc Tommasi. Automatic wrapper induction from hidden-web

sources with domain knowledge. In Proceeding of the 10th ACM

workshop on Web information and data management, WIDM ’08,

pages 9–16, New York, NY, USA, 2008. ACM.

[Sod99a] S. Soderland. Learning information extraction rules for semistruc-

tured and free text. Machine Learning, 34(1–3):233–272, 1999.

[Sod99b] Stephen Soderland. Learning information extraction rules for semi-

structured and free text. Machine Learning, 34(1-3):233–272, 1999.

[SR08] Khaled F. Shaalan and Hafsa Raza. Arabic named entity recognition

from diverse text types. In Bengt Nordström and Aarne Ranta, editors,

GoTAL, volume 5221 of Lecture Notes in Computer Science, pages

440–451. Springer, 2008.

[VdSdMC06] Márcio L. A. Vidal, Altigran Soares da Silva, Edleno Silva de Moura,

and João M. B. Cavalcanti. Structure-driven crawler generation by ex-

ample. In Efthimis N. Efthimiadis, Susan T. Dumais, David Hawking,

and Kalervo Järvelin, editors, SIGIR, pages 292–299. ACM, 2006.

[W07] Fei Wu 0003 and Daniel S. Weld. Autonomously semantifying

wikipedia. In Mário J. Silva, Alberto H. F. Laender, Ricardo A. Baeza-

Yates, Deborah L. McGuinness, Bjørn Olstad, Øystein Haug Olsen,

and André O. Falcão, editors, CIKM, pages 41–50. ACM, 2007.

[WM07] Minji Wu and Amélie Marian. Corroborating answers from multiple

web sources. In WebDB, 2007.

[XYZ09] Yingju Xia, Hao Yu, and Shu Zhang. Automatic web data extraction

using tree alignment. In Proceeding of the 18th ACM conference on

Information and knowledge management, CIKM ’09, pages 1645–

1648, New York, NY, USA, 2009. ACM.

122

Bibliography

[YHY08] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery with

multiple conflicting information providers on the web. IEEE Trans.

Knowl. Data Eng., 20(6):796–808, 2008.

[ZGBN07] Xuan Zhou, Julien Gaugaz, Wolf-Tilo Balke, and Wolfgang Nejdl.

Query relaxation using malleable schemas. In SIGMOD Conference,

pages 545–556, 2007.

123

