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Abstract

Nel presente lavoro di tesi vengono trattate approfonditamente alcune temati-

che relative allo studio di sistemi alla microonde per applicazioni di rilevazione di

oggetti sepolti ed accoppiamento di potenza elettromagnetica a plasmi fusionistici.

In particolare, il lavoro sarà convenientemente presentato in due parti nelle quali

si esporranno estensivamente sia l’impianto teorico associato allo stato dell’arte di

ciascun argomento, sia i principali contributi di innovazione che costituiscono l’e-

lemento originale del lavoro. Particolare enfasi sarà rivolta alla presentazione dei

risultati, che verranno organizzati in modo da rendere il più possibile esaustiva l’a-

nalisi dei diversi scenari.

Nella prima parte sarà dapprima introdotto il problema della rilevazione e loca-

lizzazione di oggetti cilindrici sepolti, operando alcune ipotesi semplificative circa

la struttura fisica dei mezzi considerati, in particolare si assumerà un modello di

propagazione elettromagnetica ideale nel quale non sono tenute in considerazione le

perdite dovute alla conducibilità non infinita nei conduttori e nulla nei dielettrici.

Questi ultimi, inoltre, sono stati assunti lineari, isotropi, omogenei e non dispersivi,

in modo da ricavare un modello elettromagnetico semplificato quantunque utile in

molte applicazion pratiche. Gli scenari di riferimento, in questo caso, sono mol-

teplici, a partire dalle indagini sottosuperficiali in terreni sabbiosi per attività di

sminamento, fino alle prospezioni non invasive di strutture in cemento o lastricati

stradali.

Le caratteristiche del problema di localizzazione possono essere associate con l’inver-

sione dello scattering elettrognetico che è molto spesso trattato attraverso la “teoria

dei problemi inversi”. A differenza delle tecniche più utilizzate, come ad esempio la

tomografia o l’approccio Ground Penetrating Radar, la tecnica che è stata svilup-

pata prevede un formalismo di tipo elettromagnetico per il problema diretto (che

riguarda cioè la derivazione dei contributi di campo elettromagnetico generato dalle

correnti indotte sugli oggetti e successivamente re-irradiato verso l’antenna), mentre

affronta il problema dell’inversione attraverso una tecnica basata sulla stima delle

direzioni di arrivo del segnale diffuso dagli oggetti sepolti.
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Nel Capitolo 1, sarà quindi costruita l’impalcatura teorica che riguarda il modello

del segnale e del rumore, e saranno brevemente introdotti i metodi di stima che sono

stati implementati. in particolare, essi saranno divisi in tre gruppi a seconda delle

loro caratteristiche. Alla fine del capitolo sarà invece descritta la tecnica statistica

che è stata adottata per estrarre una stima della posizione degli oggetti. Nel Capi-

tolo 2 verrà analizzata la localizzazione di un singolo cilindro, supposto dapprima

perfettamente conduttore e successivamente dielettrico, assumendo diverse combi-

nazioni tra l’indice di rifrazione del cilindro e quello del mezzo di sepoltura. In

questo caso, verranno eseguite delle variazioni di alcuni parametri, come ad esempio

il raggio dell’oggetto o la posizione rispetto all’array, per derivare alcune indicazioni

circa la robustezza della procedura di stima. In secondo luogo sarà presentata una

analisi legata alla possibilità di estrarre informazioni circa le dimensioni dell’oggetto

sepolto.

Nel Capitolo 3, il procedimento verrà esteso al caso delle localizzazione di due ci-

lindri, attraverso l’utilizzo di alcuni algoritmi di data mining, di cui ci siamo serviti

per elaborare i dati ottenuti dalla stima delle direzioni di arrivo. Dopo un breve ac-

cenno sui costituenti fondamentali della “clustering analysis”, saranno descritti gli

algoritmi di nostro interesse. Successivamente, verrà dato un ampio spazio alla pre-

sentazione dei risultati all’interno di una casistica molto esauriente nella quale sono

stati considerati inizialmente due cilindri conduttori variando l’indice di rifrazione

del mezzo opite e ancora due cilindri dielettrici aventi differente indice di rifrazione

rispetto al mezzo di sepoltura e rispetto a sè stessi.

Anche in questo caso la variazione dei parametri ha interessato sia la dimensione dei

cilindri che la loro posizione, evidenziando un buona capacità di localizzazione in

molti dei casi esaminati. In particolare, la procedura si dimostrata particolarmente

adatta alla localizzazione di cavità cilindriche sia nel caso di un singolo oggetto che

di coppie di oggetti. Alla fine del capitolo sarà offerta una ampia bibliografia sui

diversi argomenti.

Nella seconda parte della tesi, ci occuperemo della progettazione di alcuni compo-

nenti a microonde per il riscaldamento di plasmi fusionistici. Il lavoro prodotto in

questo campo, scaturisce dalla collaborazione pluriennale dell’Università di Roma

Tre con ENEA-Fusmag all’interno dell’Associazione Euratom. In particolare, nel

corso degli anni 2009, 2010 e 2011, si sono affrontate alcune problematiche relati-

ve alla progettazione di un sistema addizionale di riscaldamento a radiofrequenza

per la risonanza ibrida inferiore, nell’ambito del progetto europeo denominato ITER

(International Thermonuclear Reactor Experiment). La collaborazione ha rigurdato

il task dell’European Fusion Development Agreement (EFDA) WP08-03-01 LH4IT
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e si è conclusa con la pubblicazione di un Report tecnico sull’argomento (EU con-

tribution to the ITER LHCD development plan).

Dopo una introduzione generale sulle macchine termonucleari a confinamento ma-

gnetico (Tokamak), verranno presentati i principali obbiettivi tecnologici che si è

inteso raggiungere con il presente studio. Nel Capitolo 1 saranno fornite alcune ba-

si teoriche riguardanti l’implementazioni di componenti a microonde di particolare

interesse per questo tipo di applicazioni. Saranno considerati rispettivamente, un

convertitore tra quattro guide retangolari in regime unimodale e una guida circolare

in regime surmodato, una serie di filtri di modo ottenuti tramite opportune corru-

gazioni in guida rettangolare, ed infine alcune rilevanti tipologie di curve in guida

rettangolare surmodata con delle interessanti propriet in grado di mitigare l’eccita-

zione di modi spuri dovuta alla presenza della discontinuit.

Lo studio di componenti in guida d’onda in regime surmodato è un argomento che

difficilmente viene affrontato nella letteratura scientifica; anche gli strumenti teorici

a disposizione del progettista sono di gran lunga trascurati rispetto ad altri settori

dell’elettromagnetismo applicato. Appare quindi di particolare interesse aver conse-

guito un modesto know-how in questo tipo di applicazioni, non solo in fase di sintesi,

attraverso l’utilizzo di CAD elettromagnetici, ma sopratutto nel momento di analisi,

dove si è sviluppata una certa “sensibilità” nell’affrontare i numerosi problemi della

propagazione elettromagnetica in regime multi-modale.

Nel Capitolo 2 sarà descritto in dettaglio il funzionamento di un componente inno-

vativo in grado di convertire quattro guide a sezione rettangolare operanti nel loro

modo fondamentale, in una guida circolare surmodata rispetto alla frequenza di uti-

lizzo, operante nel solo modo circolare elettrico. Lo scopo di questo componente è

quello di ridurre al minimo possibile l’attenuazione in guida e consentire la trasmis-

sione di potenza in lunghi tratti di linea di trasmissione. Nello specifico, saranno

descritte le fasi principali del progetto, lo studio prestazionale ed infine l’analisi delle

non idealità. Nel Capitolo 3 sarà affrontato il complicato tema della progettazione

di componenti in guide rettangolari funzionanti in regime surmodato, con partico-

lare attenzione verso il filtraggio selettivo e il controllo dell’eccitazione di modi di

ordine superiore. A questo proposito, è stata di particolare interesse la progetta-

zione di curve in guida rettangolare in regime multi-modale in grado di limitare il

più possibile l’accoppiamento tra il modo fondamentale e i modi di ordine superio-

re all’uscita della discontinuità, in modo da minimizzare lo scambio di potenza tra

essi, conservando pressochè inalterata la trasmissione del modo fondamentale, come

richiesto per questo tipo di applicazioni. Infine, anche per questa sezione, un’ampia

bibliografia fornirà gli adeguati strumenti di approfondimento.
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Introduction

During my three-years of research activity, I have been dealt with two main

topics: the localization of buried targets of cylindrical shape, and the design of

microwave components for fusion engineering applications. Therefore, the present

thesis is organized in two parts, each one developing exhaustively the various aspec-

ts connected with the arguments, with a particular emphasis laid on the outcomes.

Moreover, each part of the manuscript will conclude with an extensive and selected

bibliography that can be considered as the starting point for further developments.

The problem of reconstruction of buried objects by the use of electromagnetic survey,

is generally referred as “microwave imaging” or “electromagnetic inverse problem”.

The principal technique implemented in this frame is the electromagnetic tomo-

graphy, which is based on the Born Approximation (BA) and can be applied to

approximate the integral equation resulting to the scattering inversion, assuming

that the electromagnetic field scattered by the object is small if compared with the

incident field. The scattered field is given as the “difference” between the total field

and the unperturbed field which is the field reflected at the interface when the ob-

jects are absent, providing a function accounting for the dielectric contrast between

the object and the surrounding medium. The unknowns of the problem are the

spatial distributions of both the relative dielectric permittivity and the conductivity

inside a fixed domain of investigation. Under BA, the relationship between the un-

known contrast function and the scattered field data is provided by an the integral

equation that, for cases in which the scattering amplitude can be directly measured

(modulus and phase), then reduces to solving the Fredholm integral equation of the

electric potential in terms of the scattering amplitude. Such a solution can also

be calculated numerically by iterative procedures that in the most of cases, take a

considerable computational effort.

On the other hand, Ground Penetrating Radar (GPR) is a well assessed diagnostic

technique that finds many applications involving the detection and localization of

objects buried in different media. The basic principle on which GPR is based on,

xi
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concerns the electromagnetic wave that is radiated from a transmitting antenna,

traveling through the material at a velocity which is determined by the relative

dielectric constant of the material. When the transmitted wave hits an object, it

produces a scattered wave that move backward to the antenna. In particular, part of

the energy carried by the incident wave is reflected by the surface of the encountered

object and can be captured by a receiver. Electromagnetic waves travel at a specific

velocity that is determined by the permittivity of the material. The relationship

between the velocity of the wave and material properties is the fundamental basis

for using GPR to investigate the subsurface. In fact, since the velocity depends on

the dielectric properties of media, a signal passing through two different materials

over the same distance will arrive at different times. The velocity is proportional

to the inverse square root of the permittivity of the material, and therefore, the

difference between the time of arriving (ToA) of the pulse reflected by the interface

and the ToA of the wave traveling through the material and then scattered back to

the surface, can provide useful information about the presence of buried objects on

the track of the transmitted signal.

The recording of both pulses is called a “trace”, which is such a time-history of the

travel of a single pulse from the transmit antenna to the receive antenna, and inclu-

des all of its different travel paths. All the traces recorded during a period of time

are collected together to form a radargram. The round-trip travel time is greater

for deep objects than for shallow objects. Therefore, the ToA for the reflected wave

recorded on each trace can be used to determine the depth of the buried object, if

the velocity of the wave in the subsurface is known.

The widely use of GPR is due to the some advantage offered by the instrumentations

that can be stated as the low cost and easiness of employ. Moreover, the flexibility of

the GPR system is ensured by the adoption of antennas (mostly portable) working

at different frequencies and that can be moved. Despite of this, the main drawback

that affects the use of GPR consists in the difficult interpretation of the radargram

in order to achieve clear and accurate information about the presence, location and

dimension of the buried objects.

For what stated up to now, it is important to develop innovative techniques that

could be able to deal with the non-invasive localization problem that, in addition,

shows different features depending on the particular area of application. For exam-

ple, in the typical GPR surveys the main difficulty is represented by the soil atte-

nuation, so that the losses of the ground could affect seriously the localization, on

the other hand, in civil engineering applications, it is important to see through dry

concrete walls and the attenuation is suitably small. Another important application
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is the remediation of unexploded mines, which consists on the survey of few centi-

meters deep on the ground, that very often is a dry soil. Differently happens for

geophysical prospections where higher range capability is instead required.

In this study we present a procedure that could be conveniently implemented for

low-attenuation environments and for low relative electric permittivities of the em-

bedding media (up to ten). The most important advantage of this technique consists

in its simplicity and low-computational implementation, while the evident drawbacks

are related to the excessive approximation of the analytical model that force to carry

on the study in order to consider more realistic scenarios. Anyway, the outcomes

presented in this work, cannot be ignored encouraging further developments.

The approach that we follow is hybrid electromagnetic-statistical because we con-

sider the direct electromagnetic scattering rigorously by means of a full-wave scat-

tering solver implementing the Cylindrical Wave Approach in the spectral domain,

while we derived a simplified model for the scattered signal reconstruction. In fact,

by using an uniform linear array of sensors, we consider the total scattered field by

a cylindrical infinitely long object, as a superimposition of narrowband signals each

one having a different Direction-of-Arrival (DoA) corresponding to the direction of

the maximum backscattered power at each antenna of the array. Furthermore, by

triangulating all the DoAs we obtain a crossing pattern made of two different re-

gions: one of them represented by a dense cloud of crossings, and the other region

in which the number of crossings is small and they are quite sparse. Is intuitive to

understand that the first region is the one having the higher probability to identify

the object. So that, we adopt a simple an efficient statistical technique based on the

Poisson distribution, that allow us to erase the second region and estimate the posi-

tion of the center of the cylindrical cross section by averaging the co-ordinates of the

first region crossings. We describe the signal and noise model in Chapter 1, together

with many DoA estimation algorithms that we found in literature commonly refer-

red to wireless communication systems. We also treat exhaustively the derivation of

the statistical procedure based on the Poisson statistic and the sub-array processing

adopted. In Chapter 2, we collect a great number of simulation results relevant to

the single-object localization, considering both conducting and dielectric cylinders

with several combinations of refractive indexes, embedded in different media. We

provide a performance analysis by varying both the co-ordinates of the cylinder cen-

ter in a two-dimensional reference system considering the horizontal displacement

of the object along the array line as the abscissa, and the distance from the array

axis as the ordinate. We also report a typical trend among the cylinder radius, its

depth and dielectric permittivity, and a characteristic parameter of the array, that
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could be generalized in order to estimate the object dimension. The outcomes of

these simulations are published in [r1, r5] and presented in important national and

international conferences [c1-c4] and [c10, c11], and we are also checking the possi-

bility of using some Support Vector Machines methods for the DoA estimation [c12,

c13].

The multiple-object localization is performed by using some algorithms used in Data

Mining application an in particular for the clustering analysis. These methods are

very effective in classifying homogeneous groups of data, by deriving a proximity

function that iteratively updates the number of “clusters” found by the algorithms,

together with their co-ordinates. For our scopes, the number of clusters is equal to

the number of cylinders, and the same for cluster co-ordinates. We implemented

several algorithms even though they return quite the same estimation, but not all of

them can find arbitrary configurations of clusters, so that we use some algorithms to

find the correct number of clusters and others to estimate the cluster co-ordinates. In

Chapter 3 we describe these algorithms together with a brief introduction about the

clustering analysis; successively we present many simulations of double-localization

both for conducting and dielectric configuration. Also in these cases we provide per-

formance analyses and derive some statements about them. The outcomes achieved

for the multi-object localization are not yet published or presented elsewhere, and

we take on a commitment to publish them as soon as possible.

The second part of the thesis is dedicated to the analysis and design of microwave

components for the Lower Hybrid and Current Drive (LHCD) system relevant to

the International Thermonuclear Experimental Reactor (ITER). The present work

has been developed within the EURATOM-ENEA-“Roma Tre” University collabo-

ration for the activities of the European Fusion Development Agreement (EFDA)

task WP08-HCD-03-01 LH4IT, which leaded to the “EU Contribution to the ITER

Lower Hybrid Current Drive Development Plan” of 2011.

It is well known that Tokamak machines required to implement additional heating

systems that are mainly obtained by two typologies. The neutral-beam injection

involves the introduction of high-energy (rapidly moving) atoms into the magneti-

cally confined plasma. The atoms are ionized as they pass through the plasma and

are trapped by the magnetic field. The high-energy ions then, by interacting with

plasma, transfer part of their energy in repeated collisions, increasing the overall

temperature. The other possibility to realize an effective plasma heating consists

in the electromagnetic power injection, by means of three different frequencies cor-

responding to the resonances of plasma. The lower frequency system is the Ion

Cyclotron Resonance Heating (ICRH) that, for ITER, covers the bandwidth from
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40 to 55 MHz; the intermediate frequency heating system is the Lower Hybrid,

working at 5 GHz, and the upper frequency bound is represented by the Electron

Cyclotron Resonance Heating (ECRH) that transfers electromagnetic power to the

plasma at 170 GHz.

Anyway the ECRH is affected by serious technological problem, since high-power-

steady-state sources at very high frequency are very hard to create. More feasible is

the ICRH even if some problems occur limiting the efficiency, as for example the De-

bye shielding. Furthermore, even though both ECRH and ICRH can safely provide

an efficient power injection of many MWs, these two system have many difficulties to

allow the tokamak to operate continuously, by establishing a non-inductive current

drive (NICD) in the toroidal co-ordinate. For these reason, the LH system is used;

in fact, besides heating capability, it also provides (in theory) an efficient current

drive.

Nevertheless, there are several technological problems that have to be taken into

account in the LHCD transmission line design, and many microwave components

must be properly optimized. After a brief introduction about the fundamentals of

Tokamak machines and radiofrequency plasma heating, described in Chapter 1, we

go into detail of the design of some important components. In Chapter 2 we intro-

duce the concept of a mode converter able to transform four rectangular waveguide

excited in their fundamental mode, into a circular waveguide which is oversized at

the working frequency. To better realize the scope of such a component, one must

consider that the engineering of heating system is stressed by strict requirements

in terms of power transfer, and the overall system must be optimized to dissipate

the lowest amount of power through the line. To accomplish with this constraint,

the transmission line must be designed to minimize the attenuation losses cased by

the large distance between generators and plasma vessel. At the same time, the

waveguide used to carry the electromagnetic power must be properly dimensioned

in terms of power handling. A good trade-off between these two main specifications,

can be achieved by delivering high power with low attenuation, and it is possible on-

ly considering oversized waveguides. In fact, the first electric mode propagating in a

oversized circular waveguide allows to have a low attenuated transmission (because

this particular mode does not affect the waveguide walls) and at the same time the

oversizing structure is adequate to carry many MWs power on.

After designing and optimizing the mode converter, we conclude for the unsuitability

of such a component, since it is fairly reliable because poorly fault-tolerant. In fact,

if all the input waveguides are fed uniformly, the behavior is really outperforming

but, as one of them turns off or some malfunctioning occurs, the performances are
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drastically compromised. The outcomes of this study are published on [r2, t1] and

presented in important homeland and international conferences [c5, c8].

Furthermore, we consider the opportunity to shorten the distance between klystrons

and plasma vessel, that allow us to design an oversized rectangular waveguide sy-

stem. This part of the study must consider to be quite significant since the oversized

propagation relevant theory is very fair when not altogether absent in literature. In

particular, in Chapter 2, we analyze and design mode filters that could attenuate

the power content of higher order modes propagating in oversized regime, since the

most of the power content must be carried on the fundamental mode, as required

by the launcher specifications. On top of this, we also design innovative bends in

oversized rectangular waveguide that show the important capability to have a low

coupling between the fundamental mode and higher order modes, together with very

good performances in terms of reflection and transmission coefficients. In Chapter 3

we introduce the theoretic framework of curved waveguide propagation and then we

develop optimized design of several existent curved framework. Moreover, we syn-

thesize an innovative curved profile (that we called Trapezoidal-Miter Bend) able to

fulfill the specifications with the important improvement consisting in an apprecia-

ble reduction of the bending radius, that means an overall reduction of the curved

path and thus, of the attenuation. The outcomes of these conceptual and technolo-

gical achievements are published in [r2-r4, t2, t3] and presented in the occasion of

significant conferences [c6-c9].

Other important contributions have been brought by the candidate to several work

[r6-r10], even though not as principal author.
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Parte I

Localization of Buried Objects
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Capitolo 1

Signal model and localization

procedure

In this part of the thesis, a new technique relevant to the microwave imaging of

buried cylindrical objects is going to be proposed. Our purpose consists in develop-

ing a non-destructive detection method, useful in many technical applications, such

as in remote sensing, geophysics and civil engineering. Many different technologies

are currently used to this aim as, above all, Ground Penetrating Radar [1], Elec-

tromagnetic Tomography [2], Acoustic and Thermal Imaging [3, 4]. ], and more.

Innovative methods are required to improve the detection capabilities in a big num-

ber of contexts, like for example the detection of sub-surface utilities (pipes, cables,

etc.), the localization of damages in the road pavement, land mine reclamations,

geophysical prospecting and so on.

The localization of objects in an unknown scenario is an inverse-scattering problem

and it depends strongly on several components: the method adopted to solve the

forward scattering problem or to collect experimental data, the characteristics of the

incident field, the scatterer geometry, their number, and of course the electromag-

netic properties of both the objects and the medium in which they are embedded.

In particular, the procedure presented in this chapter assumes a half-space geom-

etry in which air and ground are separated, by a planar interface. The two media

are considered linear, isotropic, homogeneous and lossless. Moreover, cylindrical

objects with axes parallel among them and to the interface are embedded in the

ground. The whole structure has an infinite extension along the direction identified

by the axes of the cylinders. The propagating vector of the incident field lies in

the plane orthogonal to the interface and to cylinder axis. The problem is thus

two-dimensional.

A sketch of the scenario is depicted in Fig. 1.1. We assume the incident field to

3



4 CAPITOLO 1. SIGNAL MODEL AND LOCALIZATION PROCEDURE

be z -polarized and uniform along z, that is Einc(r)=Einc,z(rt)ẑ (transverse mag-

netic - TM). For symmetry reasons, both the scattered electric field and the total

electric field turn out to be independent of z and z polarized, Escat(r)=Escat,z(rt)ẑ

and E(r)=Ez(rt)ẑ, where r is the position of the measurement point and rt is his

transversal component, such that r=xx̂+yŷ+zẑ=rt+zẑ.

Figure 1.1: Geometry of the problem.

As a general statement, all the inversion algorithms are associated with the method

used to solve the forward scattering problem, which depends on the incident field,

the physical-geometrical object configuration and the propagating media as well.

We may assume that the whole structure shows a cylindrical symmetry, then the

fields are obtained by the superposition of cylindrical wave functions (obtained by

solving the Helmholtz equation with appropriate boundary conditions and impos-

ing the Sommerfeld condition of radiation at infinity) centered at the axis of each

cylinder.

The method of solving the forward scattering problem is the Cylindrical Wave Ap-

proach (CWA) solver which is a rigorous and fast spectral-domain method that

solves the scattering problem of perfectly-conducting [5] or dielectric [6] cylindrical

objects with circular cross-section, buried in a dielectric half-space or in a multilevel

medium, as a finite-thickness slab [7]. The CWA may deal with both TM and TE

polarization fields. It can be applied for arbitrary values of permittivity, size, and

position of the targets. Since the method is implemented in the frequency domain,

dispersive soils can be modeled (soils with frequency-dependent permittivity). The

technique can be employed to study the scattering of an incident pulsed wave, with

a rather general time-domain shape [8].

As shown in [5, 9], for perfectly-conducting cylinders, and in [6] for dielectric cylin-

ders, obstacles of general shape can be simulated through the CWA with good

results, by using a suitable set of small circular-section cylinders. In order to study

more in depth the wire-grid modeling of perfectly-conducting cylinders, we here
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consider the reference case of a circular cylinder buried in a linear, isotropic, homo-

geneous, dielectric, lossless half-space, and we solve the scattering problem exactly,

or by simulating the target through a circular array of N wires, see Fig. 1.2. The

cylinders are parallel to the y axis and the structure is assumed to be infinite along y

direction. A monochromatic plane wave, with wave-vector ki lying in the xz plane,

impinges normally from medium 0 (a vacuum, with permittivity ε0) on the planar

interface with medium 1 (the ground, with permittivity ε1). A normalized reference

frame (O, ξ, ζ) is introduced, with coordinates ξ = k0x and ζ = k0z, k0 = 2π/λ0

being the vacuum wavenumber and λ0 the vacuum wavelength. In such reference

frame, the radius of the big cylinder is called R, its burial depth is χ and the wire

radius is α (Fig. 1.2).

In the CWA, the solution to the scattering problem is carried out in terms of V (ξ, ζ),

representing the y-component of the electric/magnetic field: V = Ey(ξ, ζ) for TM(y)

polarization, and V = Hy(ξ, ζ) for TE(y) polarization.

In order to obtain a rigorous solution for V (ξ, ζ), the total field can be expressed as

the superposition of a set of terms, produced by the interaction between the incident

field, the interface and the cylinders: the incident plane wave, the reflected field (due

to the reflection in medium 0 of the incident plane wave by the interface), the trans-

mitted field (due to the transmission in medium 1 of the incident plane wave by the

interface), the field scattered by the cylinders in medium 1, the scattered-reflected

field (due to the reflection in medium 1 of the scattered field by the interface), the

scattered-transmitted field (due to the transmission in medium 0 of the scattered

field by the interface). The scattered field is expressed as the sum of the fields

scattered by each buried obstacle. The field scattered by a cylinder is represented

in terms of a superposition of cylindrical waves, by means of unknown coefficients,

and use is made of the plane-wave spectrum of such waves to treat their reflection

and transmission by the interface. The presence of the planar interface, in fact, is

taken into account by means of its complex plane-wave reflection and transmission

coefficients. To express the scattered-reflected and scattered-transmitted fields, the

presence of the planar surface is taken into account by considering the reflection and

trans- mission of each elementary plane wave constituting the Fourier spectrum of

a cylindrical function. The scattered-reflected field is given by the sum of the fields

scattered by each buried cylinder and reflected by the interface; suitable reflected

cylindrical functions are introduced. The scattered-transmitted field is expressed as

the sum of the fields scattered by each buried cylinder and transmitted to medium

0; transmitted cylindrical functions are defined.

Given the expressions of all the field terms, the boundary conditions on the cylinder
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surfaces are imposed: due to the hypothesis of perfectly-conducting cylinders, the

tangential component of the total electric field must vanish. A linear system for the

unknown coefficients of the cylindrical-waves expansions is obtained. Once such sys-

tem is solved, the V (ξ, ζ) field is determined in any point of the space and for both

polarizations. All the other components of the electromagnetic field are derived by

using Maxwell’s equation.

(a) (b)

Figure 1.2: Geometry of the scattering problem: a) a buried circular cylinder with

radius R; b) simulation of the cylinder in a) by means of N smaller circular cylinders

with radius α.

1.1 Assumptions

The electromagnetic propagation model used to represent the fields is derived

from Maxwell’s equations. In particular, in a vacuum, far away from sources (charges

and currents), they form the following system:

∇ ·D = 0 (1.1)

∇ ·B = 0 (1.2)

∇× E = −∂B

∂t
(1.3)

∇×B = µ0ε0
∂E

∂t
(1.4)

where B is the magnetic induction
[
Wb
m2

]
, E is the electric field

[
V
m

]
, ε0 = 8, 84×10−12

F
m

and µ0 = 12, 56× 10−7 H
m

are the electric and magnetic permittivity, respectively.

Properly combining the four equations above, we derive the following homogeneous
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wave equation:

∇2E− 1

c2

∂E2

∂t2
= 0 (1.5)

∇2B− 1

c2

∂B2

∂t2
= 0 (1.6)

where c = 1√
µ0ε0
≈ 3 × 108 m

sec
is the propagation velocity in a vacuum. Eqs. (1.5)

and (1.6) are both vectorial, but in many cases it is possible to introduce a scalar

approximation and consider the vectors B and E as scalar functions B(r, t) and

E(r, t) depending on position r and time [10]. So that, instead of Eqs. (1.5) and

(1.6) we have the following scalar equations:

∇2E(r, t)− 1

c2

∂E(r, t)2

∂t2
= 0 (1.7)

∇2B(r, t)− 1

c2

∂B(r, t)2

∂t2
= 0 (1.8)

Considering E(r, t) and assuming the same for B(r, t), every solution in the form

E(r, t) = f (rT · ααα) fulfills the scalar equation, Eq. (1.7), being ααα = |ααα| · α̂αα, con

|ααα| = 1
c
.

The function f (rT · ααα) represents a traveling plane wave in α̂αα direction, having

propagation velocity equal to c. A further assumption is made for the solutions of

the Eq. (1.7), in particular, we consider only those that are consistent with the the

narrowband condition.

A signal emitted from a narrowband transmitter can be expressed as in [?]:

E(0, t) = s(t)e−jωt (1.9)

where ω = 2πf0 and the signal bandwidth Bs is lower the carrier frequency f0 , as

sketched in Fig. 1.3.

Figure 1.3: Narrowband representation

Being |r| � c
Bs

, |rT ·ααα| � 1
Bs

we obtain:

E(r, t) = s(t− rT ·ααα)e−jω(t−rT ·ααα) ≈ s(t)e−jω(t−rT ·ααα) (1.10)
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Moreover, considering k = αααω, Eq. (1.10) comes into the following equation:

E(r, t) ≈ s(t)e−jω(t−rT ·k) (1.11)

where k is the wave vector and |k| = k = ω
c

is the related wave number, noting that

k and α̂αα have the same direction as the propagating vector.

In a Cartesian coordinate system subsists that:

k = (cos θ, sin θ)T (1.12)

where θ is the angle between k and the x axis as shown in Fig. 1.4.

In the case of interest, an isotropic source emits a field that satisfies Eq. (1.11).

This field is received by a sensor placed in r1. Once the time is fixed, the phase of

Eq. (1.11) is constant if rT · k = const , and, supposing the propagation direction

and frequency to be constant too, when r = const . Therefore, all points lying on

the spherical surface of radius r have uniform phases. This means that the isotropic

source emits a spherical wave with amplitude inversely proportional to the distance

from the source and phase-constant on spherical wavefronts. If we consider an

Figure 1.4: Parametric model

array of receiving antennas, it is necessary to introduce the far-field (or Fraunhofer)

condition, which consists to impose a minimum distance between the receivers and

the source in order to assume the impinging field as a plane wave. In particular,

when this condition is satisfied, the spherical wavefront approximates a plane wave

and then we can consider the array as a phase constant line for the impinging plane

wave.

The far-field condition is often expressed like |r| ≥ 2D2

λ
, where D is the width of the

array (D =dM where d is the spacing among the M antennas of the array) and λ

is the wavelength of the incoming signal.

With reference to an array of receiving antennas, in a Cartesian coordinate system,

we represent the generic sensor as a receiving point with distinct coordinates. As
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shown in Fig. 1.4, rm = (xm, ym)T . Following the Eqs. (1.11) and (1.12), the field

received by the m-th sensor and coming with the Direction of Arrival (DoA) θ is:

E(r, t) ≈ s(t)ej[ωt−k(xm cos θ+ym sin θ)] (1.13)

If we consider a constant frequency response at the mth sensor, like gm(θ), in the

whole signal bandwidth, the received field is proportional to the incident one at the

point rm. Suppressing the harmonic time dependence, the output is:

xm(t) = gm(θ)s(t)e−jk(xm cos θ+ym sin θ) = am(θ)s(t) (1.14)

Remembering Eq. (1.11), Eq. (1.14) is fulfilled when the array width is narrower

than the bandwidth (f /B). This is often referred as narrowband condition. In

particular for a M -element array, the output signal, included noise, is:

x(t) =
M∑
m=1

xm(t) = a(θ)s(t) + n(t) (1.15)

where a(θ) is the steering vector and n(t) is the noise vector. So that, for a signal

incoming from the direction θ, we obtain:

a(θ) = [a1(θ) · · · aM(θ)]T (1.16)

The most common uniform array geometries are depicted in Fig. 1.5.

Figure 1.5: Array geometric configuration a) unifom linear array (ULA) e b) uniform

circular array (UCA).

In the case of an uniform linear array (ULA) with spacing d, the receiving-antenna

positional vector is rm = [(m− 1)d 0]T , and considering all the elements having

the same directivity g1(θ) = · · · = gM(θ) = g(θ) = 1, the steering vector becomes

aULA(θ) =
[
1 e−jkd cos θ e−2jkd cos θ · · · e−(M−1)jkd cos θ

]T
(1.17)
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The Eq. (1.17) is a Vandermonde vector, and all the components of the vector, have

a unitary norm with a constant phase shift. For a L-element uniform circular array

(UCA) of radius R = λ/[4 sin(π/L)] the positional and steering vectors become

instead

rm =

[
R cos 2π(l − 1)

L

R sin 2π(l − 1)

L

]T
aUCA =

[
1 e−jkR cos(θ−2π/L) · · · e−jkR cos(θ−(l−1)π/L)

]T
where θ ∈ [−π, π], l = 1, · · · , L and the radius R is chosen to maintain an inter-

element spacing of d = λ/2. With no loss of generality we assume that the signal

s(t) has unit power. In this case the complete narrowband model for the received

signal can be written as

x(t) =
√
SNRs(t)a(θ) + n(t) (1.18)

being SNR the signal-to-noise ratio defined as

SNR =
ES

H · ES

Mσ2
n

(1.19)

where ES is the scattered field received by each sensor and σn is the noise variance.

Let’s consider now D signal impinging on a M -elements array. The vector collecting

the signal DoAs is θ1, ..., θD, and the output is:

x(t) =
D∑
d=1

a(θd)sd(t) + n(t) (1.20)

In a matrix form the Eq. (1.20) becomes:

A(θ) = [a(θ1) · · · a(θD)] (1.21)

s(t) = [s1(t) · · · sD(t)] (1.22)

where A(θ) is the [M ×D] steering matrix formed by all the steering vectors, s(t)

is the signal vector; moreover n(t) is the noise vector.

Finally, the well known parametric model used in radar signal processing is obtained

[12]:

x(t) =
√
SNRA(θ) · s(t) + n(t) (1.23)

All the methods that will be presented henceforth, require fulfilled the condition

D < M , that is the number of incoming signals must be smaller than the number of

sensors of the array. The output of the sensors will be properly pre-processed and

sampled at time instants k = 1, 2, ..., K. The x(t) can be seen as an aleatory process

whose characteristics can be investigated through the statistics of first and second

order of signals and noise.
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1.2 Direction of Arrival Estimation

Many of the algorithms used to estimate the DoAs, are based on a proper ma-

nipulation of the array correlation matrix of the array. In Fig. 1.6. a M -element

ULA with M potential weights is used to receive xm(k) signals includes additive,

zero mean, Gaussian noise. Time is represented by the kth time sample. Thus, the

array output y can be given in the following form [13]:

y(k) = wT · x(k) (1.24)

Thus, each of the D-complex signals arrives at angles θi and is intercepted by the M

antenna elements. It is initially assumed that the arriving signals are monochromatic

and the number of arriving signals is D < M . The arriving signals are time varying

and thus our calculations are based upon time snapshots of the incoming signal. At

this stage we consider the process to be stationary so that, the matrix of steering

vectors is not changing with time and the corresponding arrival angles are fixed.

Unless otherwise stated, the time dependence will be suppressed in the following

equations. We define the M ×M array correlation matrix Rxx as:

Figure 1.6: Signal model for a M -element array with D arriving signals.

Rxx = E
[
x · xH

]
= (1.25)

= E
[
(A · s + n) · (A · s + n)H

]
=

= A · E
[
s · sH

]
·AH + E

[
n · nH

]
=

= A ·Rss ·AH + Rnn

Where the source and the noise correlation matrices are found by the expected value

of the respective absolute values squared:
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Rss = E|s(t)|2; [D ×D] signal correlation matrix;

Rnn = E|n(t)|2 = σ2
n · I; [M ×M ].

If we do not know the exact statistics for the noise and signals, but we can assume

that the process is ergodic, then we can approximate the correlation by use of a

time-averaged correlation. In that case the correlation matrices are defined by

R̂xx ≈ 1
K

K∑
t=1

x(t) · xH(t)

R̂ss ≈ 1
K

K∑
t=1

s(t) · sH(t)

R̂nn ≈ 1
K

K∑
t=1

n(t) · nH(t)

(1.26)

When the signals are uncorrelated, Rss obviously has to be a diagonal matrix because

off-diagonal elements have no correlation. When the signals are partly correlated,

Rss is nonsingular. When the signals are coherent, Rss becomes singular because

the rows are linear combinations of each other. The matrix of steering vectors, A is

an M ×D matrix where all columns are different. Their structure is V andermonde

and hence the columns are independent [13].

The goal of DoA estimation techniques is to define a function that gives an indication

of the angles of arrival based upon maxima vs. angle. This function is traditionally

called the pseudospectrum P (θ) and the units can be in energy or in watts (or at

times energy or watts squared). There are several potential approaches to defining

the pseudospectrum and in particular, Stoica and Moses [14] and Van Trees [15] give

an in-depth explanation of many of these possible approaches.

We classify the parameter estimation techniques into two main categories, namely

Non-Parametric (or spectral-based) and Parametric. The Non-Parametric tech-

niques form some spectrum-like function of the parameter(s) of interest, e.g., the

DoA. The locations of the highest (separated) peaks of the function in question are

recorded as the DoA estimates. In this first group, are included also the so-called

Subspace Decomposition methods. Parametric techniques, on the other hand, require

a simultaneous search for all parameters of interest and some statistical hypothesis

about the process. The latter approach often results in more accurate estimates,

albeit at the expense of an increased computational complexity. We will summarize

some of the more popular pseudospectra solutions in the next section.
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1.2.1 Non-Parametric Methods

Spectral-based methods which are discussed in this section, can be classified into

beamforming techniques and subspace-based methods. Non-Parametric methods re-

fer to the spectral estimation algorithms that use additional assumptions about the

signal generation based on the determination of the periodogram obtained by DFT

(Discrete Fourier Transform) of the sampled sequence. The first attempt to au-

tomatically localize signal sources using antenna arrays was through beamforming

techniques.

The idea is to “steer” the array in one direction at a time and measure the output

power. The steering locations which result in maximum power yield the DoA esti-

mates. The array response is steered by forming a linear combination of the sensor

outputs

y(t) =
L∑
i=1

w∗i · xi(t) = wH · x(t)

Given samples k = 1, · · · , K we obtain K snapshots of y, [y(1), · · · , y(K)] and

the Power Spectral Density (PSD) estimations expressed in Eq. (1.29). Different

beamforming approaches correspond to different choices of the weighting vector w.

For an excellent review of beamforming methods, we refer to [16].

P̂ (w) = E

{
1

K

K∑
k=1

|y(t)|2
}

= (1.27)

=
1

K

K∑
k=1

wH · E
{

x(t)xH(t)

}
w =

= wH · R̂xx ·w

So that, an estimation of the received power vs. the θ is possible by properly selecting

the right-hand of the previous equation and notably by a particular choice of the

weight vector w.

Conventional Beamforming

The conventional (or Bartlett) beamformer is a natural extension of classical

Fourier-based spectral analysis [17, 18] to sensor array data. For an array of arbitrary

geometry, this algorithm maximizes the power of the beamforming output for a given

input signal. Suppose we wish to maximize the output power from a certain direction

θ = θi.
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The problem of maximizing the output power is then formulated as,

maxw {P (w)} = maxw
{
E
[
w · x · xH ·w

]}
= (1.28)

= maxw
{
wH · E

[
x · xH

]
·w
}

=

= maxw

{
wH ·

[
a(θ) · E

[
s · sH

]
· aH(θ) + E

[
n · nH

]]
·w
}

=

= maxw

{
wH ·

[
a(θ) · E

[
|s|2
]
· aH + E

[
|n|2
]]
·w
}

=

= maxw
{
E
[
|s|2|wH · a(θ)|2 + σ2

n|w|2
]}

where the assumption of spatially white noise is used. To obtain a non-trivial solu-

tion, the norm of w is constrained to ‖ wH · a(θ) ‖= 1 when carrying out the above

maximization. The resulting solution is the

w =
a(θ)√

aH(θ) · a(θ)
(1.29)

The above weight vector can be interpreted as a spatial filter, which has been

matched to the impinging signal. Intuitively, the array weighting equalizes the

delays (and possibly attenuations) experienced by the signal on various sensors to

maximally combine their respective contributions. Inserting the weighting vector

into Eq. (1.29), the classical spatial spectrum is obtained

PB(θ) = aH(θ) ·Rxx · a(θ) (1.30)

The Bartlett DoA estimate is the spatial version of an averaged periodogram and is

a beamforming DoA estimate. Under the conditions where s represents uncorrelated

monochromatic signals and there is no system noise, Eq. (1.32) is equivalent to the

following long-hand expression:

PB(θ) =
∣∣∣ D∑
i=1

M∑
m=1

ejkd(m−1)(cos θ−cos θi)
∣∣∣ (1.31)

The periodogram is thus equivalent to the spatial finite Fourier transform of all

arriving signals. This is also equivalent to adding all beamsteered array factors for

each angle of arrival and finding the absolute value squared.

One of the limitations of the Bartlett approach to DoA estimation consists in the

ability to resolve angles is limited by the array half-power beamwidth, as indicated

in Fig. 1.7. An increase in resolution requires a larger array. For large array

lengths with d = λ
2

spacing, the DoA resolution is approximately 1
M

. Thus, 1
M

is

the DoA resolution limit of a periodogram and in the case above is an indicator of

the resolution of the Bartlett method. It should be noted that when two emitters

are separated by an angle wider than the array resolution, they can be resolved but

a bias is introduced. This bias cause the peaks to deviate from the true DoA. This

bias asymptotically decreases as the array length increases.
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Figure 1.7: Bartlett pseudospectrum: a) θ1 = −10◦ and θ2 = 10◦; b) θ1 = −5◦ e

θ2 = 5◦.

Capon Beamforming

In an attempt to alleviate the limitations of the above beamformer, such as its

resolving power of two sources spaced closer than a beamwidth, researchers have

proposed numerous modifications. A well-known method was proposed by Capon

[19], and was later interpreted as a dual of the beamformer by Lacoss [20]. The

optimization problem was posed as

w :

{
wH · a(θi) = 1 θ = θi

minwP (w) θ 6= θi
(1.32)

where P (w) is as defined in Eq. (1.29). Hence, Capon’s beamformer (also known

as the Minimum Variance Distortionless Response filter in the acoustics literature)

attempts to minimize the power contributed by noise and any signals coming from

other directions than θi, while maintaining a fixed gain in the “look direction” θi. It

is also alternatively a maximum likelihood estimate of the power arriving from one

direction while all other sources are considered as interference. Thus the goal is to

maximize the signal-to-interference ratio (SIR) while passing the signal of interest

undistorted in phase and amplitude. The source correlation matrix Rss is assumed

to be diagonal. This maximized SIR is accomplished with a set of array weights w

as shown in Fig. 1.6, where the array weights are given by

w =
Rxx

−1 · a(θ)

aH(θ) ·Rxx
−1 · a(θ)

(1.33)

Inserting the above weight into (2.6) leads to the following Capon ””spatial spec-

trum”:

PC(θ) =
1

aH(θ) ·Rxx
−1 · a(θ)

(1.34)
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It is easy to see why Capon’s beamformer outperforms the classical one given in

Eq. (1.32), as the former uses every available degree of freedom to concentrate the

received energy along one direction, namely the bearing of interest. This is reflected

by the constraint given in Eq. (1.34). The power minimization can also be inter-

preted as sacrificing some noise suppression capability for more focused “nulling”

in the directions where there are other sources present. The spectral leakage from

closely spaced sources is therefore reduced, though the resolution capability of the

Capon beamformer is still dependent upon the array aperture and clearly on the

SNR. A number of alternative methods for beamforming have been proposed, ad-

dressing various issues such as partial signal canceling due to signal coherence [21]

and beam shaping and interference control [?, 23].

Looking at Fig. 1.8 It is clear that the Capon estimate has much greater resolution

than the Bartlett estimate. In the case where the competing sources are highly

correlated, the Capon resolution can actually become worse. The derivation of the

Capon (ML) weights was conditioned upon considering that all other sources are

interferers. If the multiple signals can be considered as multipath signals, with

Rayleigh amplitude and uniform phase, then the uncorrelated condition is met and

the Capon estimate will work. The advantage of the Bartlett and Capon estimation

methods is that these are nonparametric solutions and one does not need an a priori

knowledge of the specific statistical properties.

Figure 1.8: Capon pseudospectrum for θ1 = −5◦ e θ2 = 5◦.

1.2.2 Subspace-Based Methods

Many spectral methods in the past, have implicitly called upon the spectral

decomposition of a covariance matrix to carry out the analysis (e.g., Karhunen-
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Lokve representation). One of the most significant contributions came about when

the eigen-structure of the covariance matrix was explicitly invoked, and its intrinsic

properties were directly used to provide a solution to an underlying estimation prob-

lem for a given observed process. Early approaches involving invariant subspaces of

observed covariance matrices include principal component factor analysis [24] and

errors-in-variables time series analysis. In the engineering literature, Pisarenko’s

work [25] in harmonic retrieval was among the first to be published. However, the

tremendous interest in the subspace approach is mainly due to the introduction of

the MUSIC (Multiple SIgnal Classification) algorithm [26, 27].

It is interesting to note that while earlier works were mostly derived in the context

of time series analysis and later applied to the sensor array problem, MUSIC was in-

deed originally presented as a DoA estimator. It has later been successfully brought

back to the spectral analysis with its later developments (see e.g. [28, 29]).

Since the correlation matrix Rxx is an M × M Hermitian matrix, it is equal to

its complex conjugate transpose such that Rxx = Rxx
H . The array correlation

matrix has M eigenvalues
(
λ1, λ2, · · · , λM

)
along with M associated eigenvectors

E =
[
E1 E2 · · · eM

]T
. If the eigenvalues are sorted from smallest to largest, we can

divide the matrix E into two subspaces such that E =
[
ESEN

]
where ES is the sig-

nal subspace and EN is called the noise subspace. In particular, E and is composed

of D eigenvectors associated with signals and of M−D eigenvectors associated with

the noise. For uncorrelated noise, the eigenvalues are λ1 = λ2 = · · · = λM−D = σ2
n.

The signal subspace ES is composed of D eigenvectors associated with the arriving

signals. The noise subspace is an M × (M −D) matrix, while the signal subspace

is an M ×D matrix.

The most important property of these subspaces is that, if signals and noise are un-

correlated, the signal subspace ES and the noise subspace EN are mutually orthog-

onal. Consequently, the scalar product between noise and signal in null, moreover,

since the DoAs belong to the signal subspace, we can select the steering vector that

nullify the scalar product with the noise subspace matrix. In particular, referring

to Eq. (1.25), the eigenvalues of Rxx are given by the sum of the eigenvalues of

A · Rxx · AH and Rnn. Thus, if the signals are also uncorrelated among them,

Rss = E
[
s · sH

]
is a D×D diagonal matrix, full rank, and with D real eigenvalues.

Moreover, the linear transformation A ·Rxx ·AH is a M ×M full rank hermitian

matrix, with D eigenvalues different from zero. In particular, these eigenvalues are

related to the signals.

Furthermore, supposing the noise as a determination of a Gaussian process having

zero mean and variance σ2
n, and assumed to be uncorrelated with signals, Rnn is a
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M×M diagonal matrix, in which the diagonal elements are equal among them and to

the variance. In particular it admitsM equal eigenvalues
(
q1 = q2 = · · · = qM = σ2

n

)
.

So that, the eigenvalues of Rxx are

λi =

{
pi + σ2

n i = 1, · · · , D
σ2
n i = D + 1, · · · ,M

λi ∈ R (1.35)

and, since Rxx is hermitian, the associate eigenvectors are mutually orthogonal.

Diagonalizing Rxx the array correlation matrix we obtain a representation of the

whole vectorial space in terms of eigenvalues and eigenvectors, as follows:

Rxx = A ·Rxx ·AH + Rnn = A ·Rxx ·AH + σ2
nI = U ·Λ ·UH (1.36)

where U is a unitary matrix which columns are the eigenvectors of Rxx, while Λ

is a diagonal matrix in which the M eigenvalues are sorted from smallest to largest(
λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0

)
.

It is important to point out that, every vector orthogonal to A is a Rxx eigenvector

related to the noise eigenvalue σ2
n. This property comes directly from the uncorre-

lation among signals and noise.

As the noise eigenvalues are M − D, the noise subspace admits M − D linearly

independent vectors that form an orthonormal base. At the same time, the signal

subspace (admitting D eigenvalues larger than σ2
n) is composed of D linearly inde-

pendent vectors. We can split the two eigenspaces with the relevant orthonormal

basis:

Rxx = US ·ΛS ·US
H + UN ·ΛN ·UN

H (1.37)

where U =
[
USUN

]
= E =

[
ESEN

]
; Λ =

[
ΛSΛN

]
; ΛN = σ2

nI.

Linear Prediction

The goal of the linear prediction method is to minimize the prediction error

between the output of the mth sensor and the actual output [30, 31]. The goal is to

find the weights that minimize the mean-squared prediction error; the solution for

the array weights is given as

wm =
Rxx

−1 · um
uTm ·Rxx

−1 · um
(1.38)

where um is the Cartesian basis vector which is the mth column of the M × M

identity matrix.
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Upon substitution of these array weights into the calculation of the pseudospectrum,

it can be shown that:

PLPm =
uTm ·Rxx

−1 · um∣∣uTm ·Rxx
−1 · a(θ)

∣∣2 (1.39)

Although the choice made can dramatically affect the final resolution. If the array

center element is chosen, the linear combination of the remaining sensor elements

might provide a better estimate because the other array elements are spaced about

the phase center of the array [30]. This would suggest that odd array lengths might

provide better results than even arrays because the center element is precisely at

the array phase center.

It is obvious that under these conditions, the linear predictive method provides

superior performance over both the Bartlett estimate and the Capon estimate, as

shown in Fig. 1.9. The efficacy of the performance is dependent on the array element

chosen and the subsequent um vector. When one selects the arrival signals to have

different amplitudes, the linear predictive spectral peaks reflect the relative strengths

of the incoming signals. Thus, the linear predictive method not only provides DoA

information but it also provides signal strength information. This linear prediction

Figure 1.9: Linear Prediction pseudospectrum for θ1 = −5◦ e θ2 = 5◦.

technique is sometimes referred to as an autoregressive (AR) method [32]. It has

been argued that the spectral peaks using linear prediction are proportional to the

square of the signal power.
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Maximum Entropy

The Maximum Entropy method is attributed to Burg [33, 34]. A further ex-

planation of the maximum entropy approach is given in [35]. The goal is to find a

pseudospectrum that maximizes the entropy function subject to constraints. The

details of the Burg derivation can be found in the references discussed previously.

Considering Gaussian signals with a limited bandwidth, having a density power

spectrum S(f), the entropy function is defined as

H(S) =

∫ fN

−fN
ln
[
S(f)

]
df (1.40)

where fN is the Nyquist frequence.

Maximizing the entropy function for the pseudospectrum in the interval [0, 2π] we

obtain

H(PME) =

∫ 2π

0

ln
[
PME(θ)

]
dθ (1.41)

where the correlation between the ith and the j th element of the array, rij, has to

fulfill the following relation:

rij =

∫ 2π

0

PME(θ) cos
(
2πτij(θ)

)
dθ (1.42)

being τij(θ) the time delay of the received signal coming from the DoA θ for the

sensors i and j.

The solution of this optimization problem can be found in the references previously

cited [34].

The pseudospectrum PME(θ) is given by :

PMEj(θ) =
1∣∣aH(θ) · cj · cHj a(θ)

∣∣ (1.43)

where cj is the jth column of the inverse array correlation matrix Rxx
−1. It should

be noted that the Maximum Entropy method, when we select the central column

from Rxx
−1 , gives the same pseudospectra as the linear predictive method. The

choice of cj can dramatically effect the resolution achieved. The center columns of

the inverse array correlation matrix tend to give better results under the conditions

assumed in this chapter (Fig. 1.10).

Pisarenko Harmonic Decomposition

The Pisarenko Harmonic Decomposition (PHD) DoA estimate is named after the

Russian mathematician who devised this Minimum Mean-Squared Error (MMSE)
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Figure 1.10: Maximum Entropy pseudospectrum for θ1 = −5◦ e θ2 = 5◦.

approach [25, 36]. The goal is to minimize the mean-squared error of the array

output under the constraint that the norm of the weight vector be equal to unity.

The eigenvector that minimizes the mean-squared error corresponds to the smallest

eigenvalue. The corresponding PHD pseudospectrum is given by:

PPHDj(θ) =
1∣∣aH(θ) · E1

∣∣2 (1.44)

where E1 is the eigenvector associated with the smallest eigenvalue of Rxx.

An example of the PHD DoA estimation is sketched in Fig. 1.11.

Figure 1.11: Pisarenko Harmonic Decomposition pseudospectrum for θ1 = −5◦ and

θ2 = 5◦.

Following this approach, other methods consider not only a single eigenvalue of
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the signal subspace, but the entire signal or noise subspace. We obtain a class of

methods based on the so called eigenvalues decomposition ([37, 38]).

Minimum Norm

The Minimum-Norm method was developed by Reddi [39] and by Kumaresan

and Tufts [40]. This method is also lucidly explained by Ermolaev and Gershman

[41]. The Min-Norm method is only relevant for ULA. The algorithm optimizes the

weight vector by solving the optimization problem
minw wH ·w
ES

H ·w = 0

wH · u1 = 1

(1.45)

where

ES is the signal subspace generated by the eigenvectors
[
v1 · · · vD

]
;

u1 Cartesian basis vector (first column of the M ×M identity matrix)

The solution to the optimization yields the Min-Norm pseudospectrum gives

PMN(θ) =

(
uT1 · EN · EN

H · u1

)2∣∣aH(θ) · EN · EN
H · u1

∣∣2 (1.46)

where EN is the noise subspace generated by the eigenvectors
[
vD+1 · · · vM

]T
.

Since the numerator term in Eq. (1.40) is a constant, we can normalize the pseu-

dospectrum as follows

PMN(θ) =
1∣∣aH(θ) · EN · EN

H · u1

∣∣2 (1.47)

It should be noted by looking at Fig. 1.12, that the pseudospectrum from the

Min-Norm method is almost identical to the PHD pseudospectrum. The Min-Norm

method combines all noise eigenvectors whereas the PHD method only uses thefirst

noise eigenvector.

MUSIC

This approach was first posed by Schmidt [27] and is a popular high resolution

eigenstructure method. MUSIC promises to provide unbiased estimates of the num-

ber of signals, the angles of arrival, and the strengths of the waveforms. MUSIC

makes the assumption that the noise in each channel is uncorrelated making the

noise correlation matrix diagonal. The incident signals may be somewhat correlated
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Figure 1.12: Minimum Norm pseudospectrum θ1 = −5◦ and θ2 = 5◦.

creating a non-diagonal signal correlation matrix. However, under high signal cor-

relation the traditional MUSIC algorithm breaks down and other methods must be

implemented to correct this weakness. These methods will be discussed later in this

chapter.

One must know in advance the number of incoming signals or search the eigenvalues

to determine the number of incoming signals. If the number of signals is D, the num-

ber of signal eigenvalues and eigenvectors is D, and the number of noise eigenvalues

and eigenvectors is M −D (M is the number of array elements). Because MUSIC

exploits the noise eigenvector subspace, it is sometimes referred to as a subspace

method. As before we calculate the array correlation matrix assuming uncorrelated

noise with equal variances

Rxx = US ·ΛS ·UH
S + UN ·ΛN ·UH

N (1.48)

where ΛN = σ2
nI; ΛS =

(
pi+σ

2
n

)
I; UN =

[
vD+1 · · · vM

]T
; US =

[
v1 · · · vD

]T
,

being the eigenvalues Rxx:

λi =

{
pi + σ2

n i = 1, · · · , D
σ2
n i = D + 1, · · · ,M

(1.49)

For uncorrelated signals, the noise subspace eigenvectors are orthogonal to the array

steering vectors at the angles of arrival

vHi · vj = δij =

{
1 i = j

0 i 6= j
(1.50)
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so that

Rxx ·H vi = λi ·H vi =

{ (
pi + σ2

n

)
· vi i = 1, · · · , D

σ2
nvi i = D + 1, · · · ,M

(1.51)

and (
Rxx − σ2

nI
)
· vi = 0 (1.52)

If we consider only the noise subspace for i = D + 1, · · · , M , we can decompose

Rxx following the Eq. (1.39) and obtaining(
Rxx − σ2

nI
)
· vi = A ·Rss ·AH · vi

The previous equation has solutions for A · vi = 0. So that, the base generated by

the noise eigenvalues UN =
[
vD+1 · · · vM

]T
is orthogonal to the array steering

vectors at the angles of arrival in A. Because of this orthogonality condition, one

can show that the Euclidean distance is

d2 = aH(θ) · EN · EN
H · a(θ) = 0 (1.53)

for each and every arrival angle θ1, θ2, · · · , θD. Placing this distance expression in a

denominator creates sharp peaks at the angles of arrival. The MUSIC pseudospec-

trum is now given as

PMUSIC(θ) =
1∣∣aH(θ) · EN · EN

H · a(θ)
∣∣ (1.54)

where EN = UN =
[
vD+1 · · · vM

]T
.

It should be understood that in all examples discussed earlier, it was assumed that

the array correlation matrix was of the form given in Eq. (1.35), that the noise

variance for all elements was identical, and that the different signals were completely

uncorrelated. In the case where the source correlation matrix is not diagonal, or the

noise variances vary, the plots can change dramatically and the resolution will be

worse. We can repeat Eq. (1.35) without assuming that we know the signal statistics

and considering R̂xx, R̂ss and R̂nn instead of Rxx, Rss and Rnn, as discussed

previously (Fig. 1.13).

1.2.3 Coherent Signals

Many of the direction-finding methods require the number of directional sources,

and their performance is dependent on the perfect knowledge of this number [42]. In
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Figure 1.13: MUSIC pseudospectrum for θ1 = −5◦ and θ2 = 5◦: a) considering Rxx

and b) R̂xx.

particular, the interference canceling capability of the optimal beamformer discussed

earlier, assumes that the signal and interference are uncorrelated. In our model,

when multiple sources emit, the DoA estimation problem is related to the angle of

arrival of multiple plane waves, impinging simultaneously on a ULA. Considering

the beamforming techniques, they assume that the design of the optimal weights

is based upon the condition that the signal is not correlated with the interference,

but when two correlated plane waves occur, one of them is considered as correlated

interference. The beamformer, minimizing the mean output power subject to look-

direction constraints, minimizes also the ”interference” output power [43].

In a subspace view, the source covariance matrix Rss becomes rank deficient, and

this results in a divergence of a signal eigenvector into the noise subspace. Therefore,

it will be EH
N · a(θ) 6= 0 for any θ and the spectrum may fail to produce peaks at

the DoA locations. The ability to resolve correlated source, decreases dramatically

for highly correlated signals [44].

In the simple case of two coherent sources, there is a fairly straightforward way

to de-correlate the signals. The idea is to employ a Forward-Backward Averaging

(FBA) [45], by means of a modified M×M correlation matrix J, whose components

are zero except for the ones on the anti-diagonal. Then for ULA case it holds that

J · aH(θ) = e−j(M−1)kd cos θa(θ) (1.55)

The so-called backward array correlation matrix, takes the form

RB = J ·Rxx
H · J = A ·Φ−j(M−1) ·Rss ·Φ−(M−1) ·AH + σ2

nI (1.56)

where Φ is a diagonal matrix with ejkd(δ−1) cos θ, δ = 1, . . . , D on the diagonal. By

averaging the usual array correlation matrix and RB, we obtain the FB array cor-
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relation matrix

RFB =
1

2

(
Rxx + RB

)
= A · R̃ss ·AH + σ2

nI (1.57)

where the new source correlation matrix is R̃ss =
(
Rss +Φ−j(M−1) ·Rss ·Φ−(M−1)

)
/2

and generally has full rank. The FB version of any correlation-based algorithm,

simply consists of replacing Rxx with RFB.

In more general scenarios where more than two coherent sources are present, FBA

cannot restore the rank of the source correlation matrix on its own. A heuristic

solution of this problem was first proposed in [21] for uniform linear array, and

later formalized and extended in the so-called spatial smoothing technique [46, 47].

Anyway, in this thesis, we suppose to face the presence of two signals, postponing

the treatment of more signals in further works.

1.2.4 Parametric Methods

While the non-parametric methods presented previously are computational at-

tractive, they do not always yield sufficient accuracy. In particular for scenario

involving highly correlated signals (that is for example the case of two scatterers

very close each other or even overlapping) the performance of spectral-based meth-

ods may be insufficient. In these cases, an alternative is represented by the so-called

parametric array processing methods, for which coherent signals impose no concep-

tual difficulties.

The most frequently used model-based approach is the Maximum Likelihood (ML)

technique, that requires a statistical framework for the data generation process.

Two different assumption about the emitter signals have led to corresponding ML

approaches (deterministic and stochastic); furthermore subspace-based approxima-

tions are also derived. Parametric DoA estimation methods are generally com-

putationally complex, but for ULA case, a less demanding class of methods are

considered.

Deterministic ML

While the background and receiver noise in the assumed data model can be

thought as realizations of independent noise sources, the same is usually not possible

for the emitter signals. Therefore, we can model the noise as a stationary Gaussian

white random process whereas the signal waveforms are deterministic and unknown.

Assuming spatially white and circularly symmetric noise [Appendice A], the second-
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order moments take the form

E
[
n(t) · n(s)H

]
= σ2

nIδt,s (1.58)

E
[
n(t) · n(s)T

]
= 0 (1.59)

where t, s are two different time samples and δt,s is the Kronecker delta function.

As a consequence of these assumptions, the output vector x(t) is also circularly

symmetric and temporally white Gaussian random process, with mean A(θ)·s(t) and

covariance matrix σ2
nI. The likelihood function is the Probability Density Function

(PDF) of all observations given the unknown parameters. The PDF of the vector

x(t) is then a complex M -variate Gaussian (M is the number of array sensors) :

1(
πσ2

n

)M e−‖x−A(θ)·s‖2

σ2n (1.60)

where ‖ · ‖ denotes the Euclidean norm, and the time dependence has been neglected

for convenience. Since the realizations are independent, the likelihood function is

LDML

(
θ, s, σ2

n

)
=

K∏
t=1

(
πσ2

n

)−M
e
−
∣∣x(t)−A·s(t)

∣∣2
σ2n (1.61)

It can be noted by Eq. (1.61) that the unknown parameters in the likelihood function

are the DoAs θ, the signal waveform s and the noise variance σ2
n. The ML estimates

of these unknowns, consists in maximizing LDML over the arguments
(
θ, s, σ2

n

)
, or

alternatively, minimizing the negative log-likelihood function − logLDML. Then,

neglecting the constant terms, we get:

− logLDML

(
θ, s, σ2

n

)
= M log σ2

n +
1

Kσ2
n

K∑
t=1

‖ x(t)−A · s(t) ‖ |2 (1.62)

Therefore, explicit minima with respect to σ2
n and s(t) are given by [48, 49]:

σ2
n =

1

M
Tr
{

Π⊥A · R̂
}

(1.63)

ŝ(t) = A† · x(t) (1.64)

where R̂ is the sample covariance matrix of Eq. (1.26), A† is the Moore-Penrose

pseudo-inverse of A, and Π⊥A is the orthogonal projector onto the null-space of AH :

A† =
(
AH ·A

)−1 ·AH (1.65)

ΠA = A ·A† (1.66)

Π⊥A = I− ΠA (1.67)
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Substituting Eqs. (1.63)and (1.64) into Eq. (1.61) we obtain the following mini-

mization problem:

θ̂DML = arg
{

min
θ
Tr
{

Π⊥A · R̂
}}

(1.68)

The samples of x(t) are projected onto a model subspace orthogonal to all signal

components, and the power 1
K

∑K
t=1 ‖ Π⊥A ·x(t) ‖2= Tr

{
Π⊥A · R̂

}
is estimated. Since

only a finite number of samples is available, the energy is not exactly measured and

θ̂DML will deviate from the real θ. However, if the scenario is stationary (as it is in

our case), the error will converge to zero as the number of samples increase. This

remains valid for correlated signals, although the accuracy is dependent upon signal

correlation. Notice also that Eq. (1.68) reduces to Bartlett beamformer in the case

of a single signal source.

Stochastic ML

An alternative to the DML method is obtained by modeling the signal waveform

as a Gaussian random Process and it is known as Stochastic Maximum Likelihood

(SML) method .

A first important prerogative of this method is that it is applicable even if the data

are not Gaussian. In fact, the accuracy of the signal parameter estimates can be

shown to depend only on the second-order statistics (power and correlation) of the

signal waveforms. So that, the Gaussian signal model is used only to the aim of

modify the flexibility of the DML algorithm.

Let the signal waveforms be zero-mean and circularly symmetric

E
[
s(t) · s(s)H

]
= Pδt,s (1.69)

E
[
s(t) · s(s)T

]
= 0 (1.70)

leading the vector of observations x(t) to be a white, zero-mean and circularly

symmetric Gaussian random vector with covariance matrix

R = A(θ) ·P ·AH(θ) + σ2
nI (1.71)

The likelihood function in this case, depends on θ, P and σ2
n. The negative log-

likelihood , ignoring constant terms, is proportional to the estimated power

1

K

K∑
t=1

‖ Π⊥A · x(t) ‖2= Tr
{

Π⊥A · R̂
}

(1.72)
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Even if Eq. (1.60) is a strongly non-linear function, for fixed θ, the minimum with

respect to σ2
n and P can be shown to be [50, 51]

σ̂2
n,SML(θ) =

1

M −D
Tr
{

Π⊥A
}

(1.73)

P̂SML(θ) = A† ·
(
R̂− σ̂2

n,SML(θ)I
)
·A†H (1.74)

With replacing Eqs. (1.61) and (1.62) into Eq. (1.60), the following compact form

is obtained

θ̂DML = arg
{

min
θ

log
∣∣A(θ) · P̂SML ·AH(θ) + σ̂2

n,SML(θ)I
∣∣} (1.75)

The Eq. (1.62) is also highly non-linear function of its argument θ. A Newton-type

technique implementation of the numerical recipe is reported in [52] and an excellent

statistical accuracy is reached. In literature, several comparisons between DML and

SML are presented [53, 54], and the SML method have been shown to have a better

accuracy than DML in large sample cases and for a small number of sensor (together

with a low SNR and highly correlated signals). In other words, for our scopes, these

two methods appear to be equivalent.

Subspace-Based Approximations

As noted previously, subspace-based methods offer significant performance im-

provements in comparison to conventional beamformers. The MUSIC method, for

instance, shows the same accuracy of the DML method (with a large number of

samples) when the signals are uncorrelated [55]. When source correlations occur,

these methods suffer a resolution problem cause by a large bias in finite samples.

In this paragraph we consider the most performing subspace-based methods for lin-

ear array (Root MUSIC and ESPRIT), and also other methods having the same

accuracy as the ML methods [56, 57, 58, 59]. The computational cost of these

Subspace Fitting methods are however, less than for the ML methods.

Root MUSIC

The MUSIC algorithm in general can apply to any arbitrary array regardless

of the position of the elements. Root-MUSIC implies that the MUSIC algorithm is

reduced to finding roots of a polynomial as opposed to merely plotting the pseu-

dospectrum or searching for peaks in the pseudospectrum. Barabell [35] simplified

the MUSIC algorithm for the case where the antenna is a ULA. Recalling that the

MUSIC pseudospectrum is given by Eq. (1.54), one can simplify the denominator
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expression by defining the matrix C = EN · EH
N which is Hermitian. This leads to

the root-MUSIC expression

PRMU(θ) =
1∣∣aH(θ) ·C · a(θ)

∣∣ (1.76)

If we have an ULA, the m-th element of the array steering vector is given by

am(θ) = ejkd(m−1) cos θ m = 1, 2, . . . ,M (1.77)

The denominator argument in Eq. (1.75) can be written as

aH(θ) ·C · a(θ) =
M∑
m=1

M∑
n=1

e−jkd(m−1) sin θCmne
jkd(n−1) sin θ =

M−1∑
l=−M+1

cle
jkdl sin θ (1.78)

where cl is the sum of the diagonal elements of C along the l -th diagonal such that

cl =
∑

n−m=l

Cmn

It should be noted that the matrix C has off-diagonal sums such that c0 > |cl| for

l 6= 0. Thus the sum of off-diagonal elements is always less than the sum of the

main diagonal elements. In addition, cl = c∗−l. We can simplify Eq. (1.76) to be in

the form of a polynomial whose coefficients are cl, thus

D(z) =
M−1∑

l=−M+1

clz
l (1.79)

where z = e−jkd sin θ.

The roots of D(z) that lie closest to the unit circle correspond to the poles of the MU-

SIC pseudospectrum (Fig. 1.14). Thus, this technique is called Root-MUSIC. The

polynomial of Eq. (1.65) is of order 2(M−1) and thus has roots of z1, z2, . . . , z2(M−1)

. Each root can be complex and using polar notation can be written as

zi = |zi|ej arg(zi) 1 = 1, 2, . . . , 2(M − 1) (1.80)

where arg(zi) is the phase of angle zi.

Exact zeros in D(z) exist when the root magnitudes |zi| = 1. One can calculate the

DoA by comparing ej arg(zi) to ejkd sin θi to get

θi = arccos
( 1

kd
arg
{
ẑi
})

(1.81)

An example of the Root-MUSIC estimation algorithms is represented in Fig. 1.15.

The roots found with Root-MUSIC clearly do not reflect exactly the actual location
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Figure 1.14: Example of roots in Cartesian system coordinates.

Figure 1.15: MUSIC pseudospectrum and roots found with root-MUSIC for θ1 =

−4
◦

and θ2 = 8
◦
.

of the angles of arrival, but they indicate two angles of arrival. The roots themselves

show the existence of an angle of arrival at near 8
◦

which is not obvious from the plot

of the MUSIC pseudospectrum. The error in locating the correct root locations owes

to the fact that the incoming signals are partially correlated, that we approximated

the correlation matrix by time averaging, and that the SNR is relatively low.

ESPRIT

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance

Techniques and was first proposed by Roy and Kailath [60] in 1989. Useful sum-

maries of this technique are given by Liberti and Rappaport [61]. The goal of the
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ESPRIT technique is to exploit the rotational invariance in the signal subspace

which is created by two arrays with a translational invariance structure. ESPRIT

inherently assumes narrowband signals so that one knows the translational phase

relationship between the multiple arrays to be used. As MUSIC, ESPRIT assumes

that there are D < M narrow-band sources centered at the center frequency f0.

These signal sources are assumed to be of a sufficient range so that the incident

propagating field is approximately planar. The sources can be either random or

deterministic and the noise is assumed to be random with zero-mean. ESPRIT as-

sumes multiple identical arrays called doublets. These can be separate arrays or can

be composed of sub-arrays of one larger array. It is important that these arrays are

displaced translationally but not rotationally. An example is shown in Fig. 1.15

where a four element linear array is decomposed in two identical three-element sub-

arrays or in two doublets. These two sub-arrays are translationally displaced by the

distance d. Let us label these arrays as A1 and A2. The signals induced on each

Figure 1.16: Doublet composed of two identical displaced arrays.

array are given by{
x1(k) = A1 · s(k) + n1(k)

x2(k) = A2 · s(k) + n2(k) = A2 ·Φ · s(k) + n2(k)
(1.82)

where Φ = diag
{
ejkd cos θ1 , ejkd cos θ2 , · · · , ejkd cos θD

}
is a D × D diagonal unitary

matrix with phase shifts between the doublets for each DoA, and Ai is a Vander-

monde matrix of steering vectors for sub-arrays i = 1, 2.

The complete received signal considering the contributions of both subarrays is given

as

x(k) =
[ x1(k)

x2(k)

]
=
[ A1

A1 ·Φ

]
· s(k) +

[ n1(k)

n2(k)

]
(1.83)

It is important to point out that Φ is isomorphic for a rotation in the real plane,

therefore, after the transformation, it is still unitary and diagonal, and so it is

rotationally invariant. For this reason Φ is indicated as the rotational operator that
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characterizes the method.

Consider what previously noticed about the eigenvalues decomposition, and since

the signal subspace ES is the same of the subspace generated by A, there must also

exist a unique non-singular transformation matrix T such that such

ES = A ·T (1.84)

so that,

ES =
[ E1

E2

]
=
[ A ·T

A ·Φ ·T

]
(1.85)

where both E1 and E2 are M ×D matrices whose columns are composed of the D

eigenvectors corresponding to the largest eigenvalues of R11 and R22, respectively{
R11 = E

[
x1 · x1

H
]

= A ·Rss ·AH + σ2
nI

R22 = E
[
x2 · x2

H
]

= A ·Ψ ·Rss ·ΨH ·AH + σ2
nI

Since the arrays A1 and A2 are translationally related, the subspaces E1 and E2 are

related by a unique non-singular transformation matrix Φ such that

E1 = Ψ · E2 (1.86)

Combining the previous Eqs. (1.85) and (1.86), and assuming that A is full-rank,

we can derive the relationship

T ·Ψ ·T−1 = Φ (1.87)

Thus, the eigenvalues of Φ must be equal to the diagonal elements of Ψ such that

λ1 = ejkd cos θ1 , λ2 = ejkd cos θ2 , · · · , λD = ejkd cos θD and the columns of T must be

the eigenvectors of Ψ .

Now estimate the angles of arrival, given that λi = |λi|ej arg(λi)

θi = cos−1
(arg(λi)

kd

)
i = 1 · · · , D (1.88)

If desired, one can estimate the matrix of steering vectors as

A = ES · EΨ (1.89)

where EΨ = T−1.
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Subspace Fitting Methods

Recall the structure of the eigen-decomposition of the array correlation matrix

as in Eq. (1.36)

Rxx = A ·Rss ·AH + σ2
nI = US ·ΛS ·US

H + UN ·ΛN ·UN
H (1.90)

As previously noted, the matrices A and US span the same range space whenever

Rss has full rank. Generally, the number of signal eigenvectors in US equals the

rank of Rss. This can be easily be seen by first expressing the identity up here as

I = US ·US
H + UN ·UN

H . Simplifying the σ2
nUN ·UN

H-term, we obtain

Rxx = A ·Rss ·AH + σ2
nUS ·US

H = US ·ΛS ·US
H (1.91)

Post-multiplying on the right by US (remember that US
H ·US = I) and re-arranging

gives the relation

US = A ·T (1.92)

where T is the full-rank matrix

T = Rss ·AH ·US

(
ΛS − σ2

nI
)−1

(1.93)

The relation in Eq. (1.73) forms the basis for the Signal Subspace Fitting (SSF)

approach. Since θ and T are unknown, it is possible to find them by estimating

US and minimize a suitable distance measure between ÛS and A · T. For this

purpose, the Frobenius norm is used, and the SSF estimate is obtained by solving

the following non-linear optimization problem:{
θ̂, T̂

}
= arg min

θ,T
‖ ÛS −A ·T ‖2

F (1.94)

Similar to DML criterion, this is a separable non-linear least square problem [62].

The solution of the linear parameter T is

T̂ = A† ·US (1.95)

which, when substituting in Eq. (1.74), leads to the function

θ̂SSF = arg

{
min
θ
Tr
{

Π⊥A · ÛS · Λ̂S · ÛH
S

}}
(1.96)

A variation in the SSF algorithm, can be performed since we consider the theory

of the weighted least square [63], by introducing a weighting vector W. In fact, the

matrix ΛS contains the eigenvalues of the signal subspace that include also the noise
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variance. So that, is intuitive to normalize the eigenvalue matrix in such a way to

consider the actual signal eigenvalues:

Wopt =
(
ΛS − σ2

nI
)2

ΛS
−1 (1.97)

Since Wopt depends on unknowns, we use instead estimated values

Ŵopt =
(
Λ̂S − σ̂2

nI
)2

Λ̂−1
S (1.98)

The estimator defined by the weights given into Eq. (1.78), is termed the Weighted

Subspace Fitting (WSF) method, in the following equation

θ̂WSF = arg

{
min
θ
Tr
{

Π⊥A · ÛS · Ŵopt · ÛH
S

}}
(1.99)

It has been shown that WSF theoretically yields the same accuracy as the SML

method, and a lower computational cost provided a fast method for computing the

eigen-decomposition [52].

1.3 Statistical Sub-Array Processing

We consider a plane wave illuminating the region of interest assumed to be ho-

mogeneous, lossless and containing one or more targets located in the near field of

the array of sensors. The ULA configuration suggests that high-resolution array pro-

cessing methods could be used [64] for a near field detection. Such methods typically

assume that the sources are infinitely far away so that the wavefront received on the

array is supposed to be planar. For our problem, since the objects are located quite

close to the receivers, this key assumption appears not valid. Moreover, a problem

common to both the near field and far field array processing algorithms is that the

number of incident wavefront and targets is not known a priori.

To deal with the non-planar nature of the wavefronts over the array, we partition the

sensor array into subarrays, such that the scattered field can be considered locally

planar at each subarray being the target in the far field of the subarray. Then, using

these high resolution subarray processing (SAP) techniques, each subarray identifies

a single direction of arrival (DoA) corresponding to the most dominant scatterer in

the vicinity of that subarray. The localization of the objects in terms of their dis-

tances and bearings is achieved by triangulating the directions of arrival from all

subarrays which turn into a crossing pattern of DoA intersections as sketched in Fig.

1.16.

By examining a typical crossing structure, it is possible to notice that there are two

distinct patterns where the crossings are either dense or sparse. In particular, a
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Figure 1.17: DoAs a); b) Crossing Pattern.

dense crossing region indicates the object localization and is distinguished from a

“background” region where the crossings are sparse. The problem of object detec-

tion is so reduced to the processing of the crossings obtained from our triangulation

procedure.

For this purpose we introduce a simple and at the same time accurate stochastic

model, developed by Hoaglin [65], describing the spatial distribution of DoA cross-

ings. In fact, the crossings are inherently randomly distributed in the plane because

of the presence of Gaussian noise, moreover this method is pretty consistent in terms

of detection and false alarm rate (FAR). We consider two classes of crossings (dense

and sparse) using two different spatial Poisson distributions [66]. The Poisson model

in the target region has a large rate parameter while that one of the background

region is considerably smaller. Based on these models, Şahin and Miller [67] devel-

oped a hypothesis test for the estimation of the rate parameters and the localization

of dense crossing regions which indicate the presence of the target. We verify that

the Poisson model is in fact rather accurate and reliable for our purpose.

The whole algorithm proceeds as follow:

1. Subarray processing: we partition the array of receivers so that the observed

backscattered field is locally planar at each subarray. The DoAs are found

using the DoA estimation algorithms described in the previous paragraph.

The collected DoAs are then triangulated to obtain the crossing pattern.

2. Crossing analysis: the crossing pattern is modeled with two Poisson counting

process, corresponding to target and background regions. After estimating the
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required rate parameters, a hypothesis test is performed to determinate a set

of ””window” regions corresponding to areas containing target.

3. Target extraction: the collected windows are aggregated in a number of

disjoint groups. The total number of groups indicates the number of targets

and by averaging the coordinates of the crossings of all the windows in each

group, we can estimate the center of the corresponding target and thus the

depth measurement.

1.3.1 SAP Technique and Statistical Analysis

The direction finding algorithms previously analyzed, assume plane wave in-

cidences and determine the DoAs associated with each plane wave. For near field

problems, both DoA and the distance of the source (in our case the scatterer) should

be acquired. Here, a subarray processing technique requiring a one-dimensional DoA

search for each subarray, is described. The idea behind this technique, is that one

to reduce the aperture of the whole array partitioning it in a set of subarray that

should be small enough to approximate the scattered field impinging upon the array

to a locally planar one. Planar wavefronts are a consequence of the far field condi-

tion fulfillment, therefore, given the whole array span D, we determine the distance

that fulfill this condition that is 2D2

λ
, where λ is the wavelength in the medium of

propagation. Any source located farther than this limit is in the far field of the

array.

Now, consider that the subarray span is more smaller than D depending to the

partition adopted. Choosing properly the number S of subarrays, it is possible to

locate objects in the near field region of the array of receivers.

At this stage, each subarray finds one DoA for the dominant planar wavefront in the

total backscattered field. Once one DoA at each subarray is determined, all DoAs

are triangulated to estimate the target locations.

In Fig. 1.16 the triangulation of the DoA is depicted together with the subarray

partition. Inspecting Fig. 1.16b, we see two distinct regions where the density of

the crossings are quite different: in the first region (background) the crossings are

sparse, and in the second region target) the crossings are dense. By exploiting this

difference, it is possible to isolate the target region. To this aim, we introduce a

Poisson model for DoA crossings which has a large rate parameter in the target

region and a small one in the background region.

Formally, for a given crossing pattern, we count the number of crossing Yi, i =

1, 2, . . . , Ny in a window of size wx × wy, where Ny is the total number of non-
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overlapping windows1, while wx and wy are the width of the windows in x and y

directions, respectively.

In order to ensure that Yi is Poisson distributed, we adopt the graphical technique

described in [65]. In particular, for each count k observed in Yi we plot k versus(
ln k! + ln Fk

)
where Fk =

Ny∑
j=1

[
Yi = k

]
is the number of data values Yi equal to

k. If the fit to the Poisson model is verified, then the plot shoul form a straight

line with slop approximately ln λ where λ is the rate parameter of the distribution

(Fig. 1.17). Examining the plot, it is possible to decompose the fitting curve in two

Figure 1.18: Example of fitness to Poisson model.

straight lines with negative and positive slope. The first line matches the smaller

values of k (such as k ≤ 2 in Fig. 1.17), and the second line approximates the larger

values of k (k ≥ 3 in Fig. 1.17). It can be easily argued that these two regions

correspond to background and target, which is expected to have a grater number of

crossings compare with the background crossings number.

So that, we can identify kb and kt as the crossings count for background and tar-

get, with kb = 0, · · · , 2 and kt = 3, · · · ,∞). Moreover, Fkb =

Ny∑
j=1

[
Yi = kb

]
and

Fkb =

Ny∑
j=1

[
Yi = kt

]
are the numbers of the windows that fulfill the background and

target condition, respectively. Then, the rate parameter for the background and

1The windows must be non-overlapping to guarantee the independence of random variable Yi.
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target regions are given by their maximum likelihood estimates:

λ̂b =
1

Nb

2∑
kb=0

kb Fkb (1.100)

λ̂t =
1

Nt

∞∑
kt=3

kt Fkt (1.101)

where Nb =
∑
kb

Fkb and Nt =
∑
kt

Fkt .

The probability mass function in the background and target regions can be expressed

as:

fX

(
k|Background, λ̂b

)
= P

(
X = k|Background, λ̂b

)
= (1.102)

=
1

k!
e−λ̂b − λ̂kb

fX

(
k|Target, λ̂t

)
= P

(
X = k|Target, λ̂t

)
=

1

k!
e−λ̂t − λ̂kt (1.103)

To extract crossing clusters, we swept the region of interest with a test window of

size wx × wy. It is important that the area of the test is equal to the area of the

non-overlapping windows used before to estimate the rate parameters. At each lo-

cation of the test window (allowed at this stage to overlap), we count the number of

crossings Tj, j = 1, · · · , Ntest, where Ntest is the total number of the sweep windows

in the region of interest. The number of overlapping windows Ntest defines the res-

olution of detection, and of course it has to be greater than Ny.

The hypothesis test allow us to determine whether the test window is over a back-

ground region or over a target region. The hypothesis test is formally defined as:

• H0: is Poisson distributed with a small rate parameter λ̂b,

• H1: is Poisson distributed with a small rate parameter λ̂t.

Based on this binary test, if H0 is true, we decide that the window belongs to a

background region, otherwise, if H1 is true, we opt for a target window belonging.

The generalized likelihood ratio for the hypothesis test is derived to the Eqs. (1.102)

and (1.103) to be:

Λ
(
Tj
)

=
fX

(
Tj|H1, λ̂t

)
fX

(
Tj|H0, λ̂b

) (1.104)

and the decision is made based on the following generalize likelihood ratio test:

ln
{

Λ
(
Tj
)}

= Tj ≶
H1
H0
K (1.105)
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where the decision threshold K is found from a specific false alarm rate Pfa using

the following equation:

Pfa =
∞∑
k=K

fX

(
k|H0, λ̂b

)
(1.106)

that is the conditional probability occurring when a background window counts a

number of crossings grater than K. Following this formula, all windows which have

K or more crossings in them will be declared as target locations. So that, the false-

alarm probability Pfa provides a degree of freedom, represented by the parameter K,

that is the number of crossings representative of a target window. Since we extract

the cylinder center by averaging the coordinates of the crossings belonging to the

target region, the choice of K affects the positional estimation.

Similarly the detection probability Pd is as follow:

Pd =
∞∑
k=K

fX

(
k|H1, λ̂t

)
(1.107)

In Fig. 1.18 an example of the application of the stochastic Poisson model to a

crossing pattern is presented. It is definitely clear to understand as the Poisson

model provides a solid and reliable detection model. As we are going to explain in

Figure 1.19: Crossings pattern: a) before and b) after the statistic processing.

the next chapters, the statistical filtering of the crossing pattern, allows to estimate

the cylinder position by means of averaging the co-ordinates, reducing the estimation

error due to background crossings.



Chapter 2

Detection of a Single Cylinder

In this chapter many simulation results relevant to a single cylinder detection

and localization are presented and commented. On top on this, a flow chart of

the adopted procedure is reported in Fig. 1.20, where the logic scheduling includes

four main steps. The first one concerns the geometrical and physical concept of the

simulations and in particular, the cylinder dimension, the array configuration, and

the half-space electric properties. The second step consists in the forward scattering

solution by means of the CWA solver, in order to obtain the electric field impinging

to the array and coming from the scatterer in ground. Successively, the whole array

is partitioned in a number of sub-arrays in order to fulfill the far-field condition

at each sub-array for a shorter distance compared with the entire array. By using

this sub-array processing technique it is possible to apply all the DoA algorithms

described in the previous chapter at each sub-array and obtain a set of DoAs that

can be triangulated to form the crossing pattern. The last step of the procedure is

the statistical processing that will allow us to estimate the object position. In fact,

depending on the configuration of both the array of antennas and the half-space

configuration, the geometrical parameters of the problem change, as the far-field

condition fulfillment, for instance.

Recalling the expression

FF = 2
D2

λ

and assuming the array sensors perfectly adhering the ground (in such a way that

we can neglect the refractive effects at the interface), we can obtain the following

simple relation for our uniform linear sub-array geometry

FF = 2
D2

λr
= 2

[
(m− 1)d

]2
λr

= n
λ0

2
(2.1)

41
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Figure 2.1: Localization procedure flow-chart.

where m is the number of elements for each sub-array, d is the sub-array spacing,

λr is the wavelength in the lower half-space, and n is the refractive index of the

homogeneous medium. It is important to point out that Eq. (2.1) expresses the

far-field distance associated to the sub-array but, when the linear dimension of the

object is greater than (m− 1)d, it lies in the near-field of the sub-array. Moreover,

it has to be taken into account that the array spacing must be d ≤ λ/2, in order to

avoid ambiguities in the direction finding process.

In the following paragraphs of this chapter, it will be clear that the accuracy of the

proposed procedure is still effective even though the object cross-section exceed the

λ/2 limit, and thus we can certify an operative near-field detection capability of such

a method. In a single cylinder configuration, we considered both a conductive and a

dielectric cylinder, assuming ideal properties for both of them (infinite conductivity

for the metallic cylinder and absence of losses for the dielectric one). At first, we

performed the localization considering the cylinder in a vacuum, and subsequently,

we analyzed the scenario with the cylinder in a dielectric half-space different from the

one hosting the array. Our scope, consists in verifying the effectiveness of the DoA

estimation methods (and consequently the precision of the statistical localization),

in the simplest physical environment in which, a potential failure in the positional

estimation, has to be ascribed to the bearing algorithm functioning.
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Figure 2.2: DoA estimation by using an uniform linear array (ULA).

2.1 Simulation Settings

The localization procedure describe in Chapter 1, allow us to estimate the po-

sition of the center of the cylinder by averaging the co-ordinates, once fixed several

simulation settings. The estimation error is defined as

err =

√(
∆x
)2

+
(
∆y
)2

a
(2.2)

where ∆x = |xc − x̂s| and ∆y = |yc − ŷs| are the difference between true center

coordinates (x0, y0) and estimated coordinates (x̂s, ŷs), and a is the radius of the

cylinder. When err = 1, the object estimated position is located in a point on the

surface of the actual cylinder, so that we consider successfully detected an object

whose estimated error is less than one.

The parameters that need to be fixed belong to both the physical-geometrical config-

uration of the presented scenario (the number and spacing of antennas, the number

of sub-arrays, the distance between array and cylinder, the cross-section of the cylin-

der, the refractive index of both the dielectric cylinder and the ground, the position

of the cylinder) and the computational settings of the localization procedure (the

noise variance, the dimension of the filtering windows, and the false-alarm probabil-

ity).

In particular, the dimension of the windows used for the statistical filtering of cross-

ings, determines the resolution of the localization. We suppose to have square

window with dimension wx = wy = w, and a total area of investigation to be a

square of side 25λ0, covering the whole length of the array of antennas. Considering
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the window dimensions w = λ0/8, λ0, 2.5λ0, and 5λ0, the total number of windows

is 40000, 625, 100 and 25, respectively.

We here consider the case of a conductive cylinder in a vacuum, positioned at a

fixed distance of 3λ0 from the array. Moreover, the cylinder is varying its radius in

[0.05λ0, 1.05λ0], with step size of 0.02λ0, for a overall number of 50 different values.

The array configuration consists in a 51-sensors array partitioned into 17 sub-arrays,

each one made of 3-elements, equally spaced of d = λ0/4. As we can see by looking

Fig. 2.3, when the window-size increases, also the smaller well-detected cylinder

cross-section increases. On the other hand, the computational time clearly increases

as the number of windows increases, that is when the window side is shorter. Since

(a) (b)

(c) (d)

Figure 2.3: Estimation error vs. cylinder normalized radius, for different values of

the window side: a)w = λ0/8, b)w = λ0, c)w = 2.5λ0, d)w = 5λ0

the resolution acquired with w = λ0/8 and w = λ0 (Fig. 2.3 a and b) is quite

similar around λ0/4, a reasonable choice is that to consider w = λ providing a less

computational complexity, in fact, with this choice we can reduce drastically the

number of windows without paying much of resolution. Probably, an even better

choice might be w = λ/2 for a total number of 2500 windows.
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It is also interesting to point out, that, as the resolution decreases, the error trend

becomes smoother and almost linear. This kind of trend seems to depend on the

cylinder dimension, in fact, when the object is too big compared with the filtering

window, the statistical procedure erases the peripheral crossings corresponding to

the edges of the cylinder. In Fig. 2.3a) this is particularly evident. When a becomes

greater then 0.6λ0, the estimation error starts to increase. In the following Table

2.1, the setting of our simulations is resumed.

The overall number of the sensors is different only for ESPRIT algorithm because

Number of sensors 51

Number of sub-arrays 17

Spacing d λ0/4

Window size w λ0

Distance cylinder-array h FF + a = nλ0
2

+ a

Cylinder radius a 0.05λ0 ≤ a ≤ 1.15λ0

Step size λ
56

Noise variance σ2
n 0.25

False-alarm probability 10−6

Estimation error

√
(xc−x̂c)2+(yc−ŷc)2

a

Table 2.1: Simulations settings.

of geometrical considerations based on the implementation of this method. In fact,

since the sub-array processing in this case, needs overlapping doublet-array, the

number of sub-array (that is equal to the number of estimated DoAs), is higher for

a 51 sensors array, introducing an additive computational cost. We take into account

two implementations of this algorithm (indicated as ESPRIT-48 and ESPRIT-17);

in the first one we assume a number of antennas equal to 51 with 48 sub-arrays

estimating 48 DoAs, where the doublets are formed by 4 elements that sweep the

array along its width. In the second case (ESPRIT-17) we reduce the number of sen-

sors to the only 20 central one, partitioned into 17 sub-arrays estimating 17 DoAs.

This last version often gives better results than the original one, especially when the

object is placed centrally compared with the array axis. Other considerations about

it, are going to be developed further in this chapter.
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2.2 PEC Cylinder Localization

In this section we propose and analyze the localization problem connected with

a perfectly conducting cylinder, with increasing radius, at first in a vacuum and then

buried into a medium having refractive index n = 2 or 3. The simulation setting

is defined in Table 2.1 and here briefly resumed. The radius a of the cylinder is

varying between 0.05λ0 and 1.15λ0 with a step-resolution of 0.02λ0, at the same

time, also the depth of the cylinder changes, following the rule h = FF + a. In

other words, the cylinder is always placed at a range equal to the far-field distance

calculated considering the only sub-array width, so that, when the cross-section of

the cylinder becomes greater than 2a = λ0/2, the localization problem is to all

intents and purposes, a near-field problem. As we can appreciate in this chapter,

the proposed procedure seems to be effective also in these cases, providing a quite

enough accurate positional estimation of the cylinder.

In the next Figs. 2.4-2.6 the estimation error vs. the normalized radius of the

cylinder (with respect to the wavelength), is reported. We collect together non-

parametric methods (Bartlett, Capon, Linear Prediction, Maximum Entropy, Min-

imum Norm, Pisarenko Harmonic Decomposition), MUSIC-root, MUSIC-ESPRIT,

and parametric ML-based methods. The cylinder is initially placed in a vacuum

and at the center of the array width, configuring a geometry with no half-spaces

just to test the effectiveness of the DoA estimation methods in such a localization

procedure.

In Fig. 2.4b)-2.6b), the region in which the estimation error is less than one is en-

larged, and the smaller object size that can be precisely localized is plain to be

0.15λ0.

It is clear that all the implemented algorithms work quite good, and with very

similar results. In particular, the ESPRIT-17 seems to perform better than the oth-

ers, showing the lowest estimation error. Moreover, as we expect from the theory

of ML methods, in a single DoA case, the performances are equal among them and

to non-parametric spectral-based methods (i.e. Bartlett). In all the algorithms is

also possible to point out a dumped oscillating trend that is more mitigated in the

ESPRIT-17 variation in Fig. 2.5b). This suggests that the peripheral sub-arrays

influence the estimation for smaller radii, and gradually approach a linear trend as

the radius increase. A possible explanation of such a behavior consists in the greater

distance among the cylinder and the peripheral sub-arrays rather than the central

ones, that is relevant to a lower field magnitude at the edges of the array, making

the DoA estimation more doubtful. In fact, as the cross-section increases, the DoA

intersections are more thickened around the actual center of the cylinder, mitigating
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(a)

(b)

Figure 2.4: PEC cylinder localization in a vacuum, error vs. normalized radius a/λ0

(Bartlett, Capon, Linear Prediction, Max Entropy, Min Norm, PHD).
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(a)

(b)

Figure 2.5: PEC cylinder localization in a vacuum, error vs. normalized radius a/λ0

(MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48).
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(a)

(b)

Figure 2.6: PEC cylinder localization in a vacuum, error vs. normalized radius a/λ0

(WSF, DML, SML).
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the effect of the peripheral sub-arrays estimation.

In the next Fig. 2.7, we fixed the cylinder cross-section to be a value that al-

lows a good detection (a = 0.5λ0), varying the distance between object and array

h ∈ [0, 5λ0; 1, 5λ0], normalized to the wavelength and with a resolution of 0.05λ0.

As we can see, all the methods improve the precision in estimating the DoA, more-

over the non-parametric methods (both spectral-based and subspace-based) seems

to show a lower gap between starting and ending distances rather than parametric

methods (ML-based). Also in this case, ESPRIT-17 performs the lowest estimation

error and the lowest error gap.

It is also interesting to check the procedure performances when the cylinder is placed

close to one of the edges of the array. To this aim we simulate two different scenarios

in which we change the horizontal coordinate of the cylinder center introducing an

offset from −5λ0 to 10λ0 with a step resolution of 0.25λ0. The cylinder cross-section

is fixed to a = 0.5λ0 and the distance from the array line is the far-field range of

Eq. 2.1.

In Fig. 2.7 the localization error vs. normalized distance h/λ0 between the object

surface and the array, is represented. As it is immediately clear just by a first look,

the vertical displacement of the cylinder does not affect too much the localization

procedure. To be precise, the estimation error decreases slowly as the distance in-

creases.

In Fig. 2.8 the localization error trend vs. the horizontal offset is depicted. Also

in this case, the procedure seems to be quite performing to peripheral detection

(for the most of the DoA estimation methods), even if ESPRIT implementations

are clearly affected by the horizontal position of the cylinder. In particular, since

ESPRIT 17 makes use of the only central sub-arrays, it is quite obvious that it unfits

the peripheral localization. Moreover, in this case ESPRIT 48 presents an unbal-

anced trend, reporting higher error values in the left side inly; this is probably due

to an asymmetric localization capabilities for the first group of sub-arrays. For what

concerns the other methods, the localization error increases (even if only slightly) at

the edges of the range. This behavior is expected since, in peripheral localizations,

part of the backscattered power is spread also in a outwards zone in which there

are no sensors. Consequently, the amount of scattered power toward the array is

slightly less than the central cylinder localization.

When the cylinder is embedded in a surrounding homogeneous medium, the prob-

lem scenario changes, introducing a half-space geometry. In particular, the array of

sensors is supposed to adhere to the ground (being at a distance of 0.001λ0), and

then the interface effects could be reasonably neglected. Of course, as expressed
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(a)

(b)

(c)

Figure 2.7: PEC cylinder localization in a vacuum, error vs. distance: a) Bartlett,

Capon, Linear Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC,

ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.8: PEC cylinder localization in a vacuum, error vs. horizontal offset: a)

Bartlett, Capon, Linear Prediction, Max Entropy, Min Norm, PHD; b) MUSIC,

root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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in Eq. 2.1, the sub-array far-field distance increases and also the minimum cross-

section of the cylinder that is precisely localized slightly increase. In particular,

this is clear by looking at Figs. 2.9-11, that the minimum dimension for a good

localization is about 0.2λ0 or greater (excepted for the ESPRIT-17).

As for a PEC cylinder in a vacuum, also in the half-spaces cases, an oscillating trend

is obtained, almost for all the implemented methods; furthermore the estimation er-

ror vs. the distance h is also oscillating, and differently from the previous case, the

estimation error does not decrease as h increases. In fact, by comparing Figs. 2.7,

2.12, and 2.16, is clear that in the vacuum case, together with an oscillating behavior

of the estimation error, it is also affected by a decreasing trend inversely propor-

tional to h. In the last case, occurring a refractive index of n = 3, a further lack of

accuracy has to be stresses. In particular, even though the procedure still perform

a statistically precise localization, some of the implemented algorithms are to be

considered less affordable. In Fig. 2.13, the loss of precision of Linear Prediction,

Maximum Entropy and Pisarenko methods is quite evident, being their estimations

more chaotic compared with the other methods that instead, still provide a clear

trend similar to the case of n = 2. Once again, ESPRIT-17 seems to be more robust

showing almost the same behavior in both cases.
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(a)

(b)

Figure 2.9: PEC cylinder localization in a homogeneous medium with n = 2, error

vs. normalized radius a/λ0 (Bartlett, Capon, Linear Prediction, Max Entropy, Min

Norm, PHD).
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(a)

(b)

Figure 2.10: PEC cylinder localization in a homogeneous medium with n = 2, error

vs. normalized radius a/λ0 (MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48).
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(a)

(b)

Figure 2.11: PEC cylinder localization in ahomogeneous medium with n = 2, error

vs. normalized radius a/λ0 (WSF, DML, SML).
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(a)

(b)

(c)

Figure 2.12: PEC cylinder localization in a homogeneous medium with n = 2, error

vs. distance: a) Bartlett, Capon, Linear Prediction, Max Entropy, Min Norm, PHD;

b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

Figure 2.13: PEC cylinder localization in a homogeneous medium with n = 3, error

vs. normalized radius a/λ0 (Bartlett, Capon, Linear Prediction, Max Entropy, Min

Norm, PHD).
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(a)

(b)

Figure 2.14: PEC cylinder localization in a homogeneous medium with n = 3, error

vs. normalized radius a/λ0 (MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48).
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(a)

(b)

Figure 2.15: PEC cylinder localization in a homogeneous medium with n = 3, error

vs. normalized radius a/λ0 (WSF, DML, SML).
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(a)

(b)

(c)

Figure 2.16: PEC cylinder localization in a homogeneous medium with n = 3, error

vs. distance: a) Bartlett, Capon, Linear Prediction, Max Entropy, Min Norm, PHD;

b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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2.3 Dielectric Cylinder Localization

In this section we simulate many configurations concerning a dielectric cylinder

buried into a homogeneous medium. The refractive index of the cylinder is sup-

posed to be nc = 1, 2, 3, 4, 5, while for the hosting medium it is nm = 1, 2, 3; also

in these cases, we first assume a free-space localization just to derive some general

statements about the algorithms and the overall functioning of our procedure.

The radius is assumed to be variable from 0.05λ0 to 1.15λ0, in 56 steps, with a

resolution of λ0/50. The parameter h varies with the radius, starting from the value

that satisfies the far-field condition of the sub-array (Eq. 2.1), and following the

rule h = FF + a. In Figs. 2.17-2.20 the estimation error for all the DoA estimation

methods is plotted; in particular, it is possible to appreciate a general loss of preci-

sion in the localization of the cylinder, compared with the PEC cylinder case (see

Figs. 2.4-2.6). Anyway, a detection capability is still performed for the simulated

cases, showing error values concentrated under the localization threshold (indicated

as a red line in figures) for radii larger than λ0/2.

Moreover, the first group of methods, summarized in Fig. 1.17a)-1.20a) and per-

taining to spectral-based and subspace-based methods (except MUSIC), appear as

less affordable in estimating objects having a lower cross-section. This tendency is

clear by looking at the greater localization error in proximity of small radii. On the

contrary, parametric methods seems to perform a better localization, providing an

error at most twice than the threshold (Fig. 1.17c)-1.20c)) in the majority of the

presented results.

Furthermore, as expected, as the refractive index of the cylinder increases, the lo-

calization trend improves, and also the minimum cross-section that can be detected

with precision, gets smaller. In particular, by looking at Fig. 1.20b)-1.20c), is quite

clear that the errors values fall down the threshold, for radii larger than 0.3λ0, while,

for the first group of methods (Fig. 1.20a)), the localization is well performed for

bigger cross-sections. The general behavior of the algorithms, can be also deduced

by looking at Figs. 2.21-2.22, where the mean value and the variance of the col-

lected algorithms is shown. In particular, the non-parametric methods (indicated

as MEAN 1 or VAR 1), provide the larger error trend , while the parametric ones,

both subspace-based together with MUSIC, and ML-based (indicated as MEAN 2

or VAR 2 and MEAN 3 or VAR 3, respectively), are affected by an overall smaller

error. In particular, for a refractive index of the cylinder equal to n = 3, is well

indicated that the estimation error is smaller than one for radii bigger than λ0/2,

and when the index is fixed to n = 5, the threshold roughly decrease to 0.3λ0 (as the

cylinder approaches the PEC case, the procedure improves their performances).
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The performances in terms of the variance also indicate that for the groups indicated

as VAR 1 and VAR 2, there are several peaks corresponding to extremely different

estimations, while the parametric ML-based methods show to perform almost the

same estimation in all the simulated cases. Moreover, it is clear that, for a refractive

index of n = 5, this tendency is very mitigated, and the localization become more

affordable.

It is also interesting to underline, that the error trend is still oscillating (this is

clear by looking at the mean and variance trends of Figs. 2.21-2.22). A plausible

interpretation of such a behavior is that the field transmitted inside the cylinder

at its first interface (air-to-medium) and the field reflected at the second interface

(medium-to-air), corresponding to the cylinder edges, interfere among them and the

peaks of the localization errors might arise from the constructive interference be-

tween the reflections from the two faces (upper and lower) of the dielectric objects.

Moreover, as underlined by Van Bladel [68], the scattering cross-section of a dielec-

tric cylinder immersed in a TM-polarized wave (electric field parallel to the axis)

is affected by resonant peaks depending on the cross-section of the cylinder. This

phenomenon is also evident in Figs. 2.17-2.19 and Figs. 2.21-2.22, where several

sharpened peaks occur at different cross-sections.

When we consider a homogeneous medium surrounding the cylinder, different lo-

calization performances occur depending on the dielectric contrast. As a general

statement, the scenario involving a half-space configuration is much more problem-

atic that the previous PEC case. Anyway, in many cases, the procedure is still

affordable to provide a good detection, even if the precision of the localization de-

grades. In fact, we have to consider not only the reflections and diffraction of the

electromagnetic field in presence of a material body, but also the interference gen-

erates by the dielectric contrast of the two media. On top on this, the dielectric

half-space introduces a drastically decreasing of the field received by the array, be-

cause a part of the field energy is also transmitted inside the cylinder, and thus,

poor accuracy is to be expected if the electric field intensity inside the cylinder and

the incident field intensity do not change much [69].

Generally speaking, we can underline as the first group of non-parametric meth-

ods (Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, Pis-

arenko), seem to be less robust in estimating dielectric object position. In fact, by

looking at Figs. 2.27a)-2.29a), is quite clear that the overall enhancement in the

localization process, due to the dielectric contrast increasing, appear to be quite

mitigated if compared with sub-figures 2.27-2.29 b) and c), especially in reference to

Linear Prediction, Maximum Entropy and Pisarenko algorithms.
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In Figs. 2.23 and 2.24 the localization error vs. the horizontal position of the cylin-

der is represented, for nc = 2 and nc = 5, respectively. Also in this case, as happened

for the perfectly-conducting case, the localization is quite precise; in particular, Pis-

arenko’s method shows higher error values in comparison with the other methods,

and the ESPRIT estimation performances are affected by the same problems de-

scribed previously.

In Figs. 2.25 and 2.26, the error trend vs. vertical offsets is represented for nc = 2

and nc = 5, respectively. For a dielectric cylinder having a low refractive index,

the estimation is affected by an oscillating behavior, but as the dielectric contrast

increases, the effect of a vertical displacement of the cylinder is mitigated (see Fig.

2.26), and the procedure becomes more robust, notably for subspace-based and ML-

based methods.

The same trend of the localization error, with reference to the dielectric contrast

increase, is also revealed when the cylinder is embedded in a homogeneous medium,

as depicted in Figs. 2.32 and 2.33 for the nm = 2 case, and in Figs. 2.39 and 2.40

for nm = 3.
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(a)

(b)

(c)

Figure 2.17: Localization of a dielectric cylinder having nc = 2 in a vacuum, error

vs. normalized radius a/λ0: a) Bartlett, Capon, Linear Prediction, Max Entropy,

Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML,

SML.
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(a)

(b)

(c)

Figure 2.18: Localization of a dielectric cylinder having nc = 3 in a vacuum, error

vs. normalized radius a/λ0: a) Bartlett, Capon, Linear Prediction, Max Entropy,

Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML,

SML.
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(a)

(b)

(c)

Figure 2.19: Localization of a dielectric cylinder having nc = 4 in a vacuum, error

vs. normalized radius a/λ0: a) Bartlett, Capon, Linear Prediction, Max Entropy,

Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML,

SML.
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(a)

(b)

(c)

Figure 2.20: Localization of a dielectric cylinder having nc = 5 in a vacuum, error

vs. normalized radius a/λ0: a) Bartlett, Capon, Linear Prediction, Max Entropy,

Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML,

SML.
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(a)

(b)

(c)

(d)

Figure 2.21: Dielectric cylinder in a vacuum. Mean value vs. normalized radius

a/λ0: a) nc = 2; b) nc = 3; c) nc = 4 ;d) nc = 5.
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(a)

(b)

(c)

(d)

Figure 2.22: Dielectric cylinder in a vacuum. Variance vs. normalized radius a/λ0:

a) nc = 2; b) nc = 3; c) nc = 4 ;d) nc = 5.
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(a)

(b)

(c)

Figure 2.23: Localization of a dielectric cylinder having nc = 2 in a vacuum, error

vs. horizontal offset ∆η: a) Bartlett, Capon, Linear Prediction, Max Entropy, Min

Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML,

SML.
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(a)

(b)

(c)

Figure 2.24: Localization of a dielectric cylinder having nc = 5 in a vacuum, error

vs. horizontal offset ∆η: a) Bartlett, Capon, Linear Prediction, Max Entropy, Min

Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML,

SML.
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(a)

(b)

(c)

Figure 2.25: Localization of a dielectric cylinder having nc = 2 in a vacuum, error

vs. normalized distance h/λ0: a) Bartlett, Capon, Linear Prediction, Max Entropy,

Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML,

SML.
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(a)

(b)

(c)

Figure 2.26: Localization of a dielectric cylinder having nc = 5 in a vacuum, error

vs. normalized distance h/λ0: a) Bartlett, Capon, Linear Prediction, Max Entropy,

Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c) WSF, DML,

SML.
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(a)

(b)

(c)

Figure 2.27: Localization of a dielectric cylinder having nc = 3 buried in a ho-

mogeneous medium with nm = 2, error vs. normalized radius a/λ0: a) Bartlett,

Capon, Linear Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC,

ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.28: Localization of a dielectric cylinder having nc = 4 buried in a ho-

mogeneous medium with nm = 2, error vs. normalized radius a/λ0: a) Bartlett,

Capon, Linear Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC,

ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.29: Localization of a dielectric cylinder having nc = 5 buried in a ho-

mogeneous medium with nm = 2, error vs. normalized radius a/λ0: a) Bartlett,

Capon, Linear Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC,

ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.30: Dielectric cylinder buried in a homogeneous medium with nm = 2.

Mean value vs. normalized radius a/λ0: a) nc = 3; b) nc = 4; c) nc = 5.
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(a)

(b)

(c)

Figure 2.31: Dielectric cylinder buried in a homogeneous medium with nm = 2.

Variance vs. normalized radius a/λ0: a) nc = 3; b) nc = 4; c) nc = 5.
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(a)

(b)

(c)

Figure 2.32: Localization of a dielectric cylinder having nc = 3 in a homogeneous

medium with nm = 2, error vs. normalized distance h/λ0: a) Bartlett, Capon, Linear

Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17,

ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.33: Localization of a dielectric cylinder having nc = 5 in a homogeneous

medium with nm = 2, error vs. normalized distance h/λ0: a) Bartlett, Capon, Linear

Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17,

ESPRIT-48; c) WSF, DML, SML.
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In particular, in Fig. 2.29, while two groups (MUSIC, root-MUSIC and ESPRIT,

and ML-based parametric methods), show clearly a localization capability starting

from a radius value equal to λ0/5, the group of non-parametric methods is still al-

most concentrated around the threshold, but some outlines still occur even for larger

radii. This behavior is also stressed by looking at the statistical properties resumed

in Figs. 2.30-2.31, when as the dielectric contrast increases, the localization become

more precise and the three groups of methods differ from performances. In fact, in

Fig. 2.30a), the average trends are very close and coincident in many configurations,

but in the sub-figures 2.30b) and c), a result worsening of the first group of methods

becomes clear. In addition of this, in Fig. 2.31, the variance behavior is consid-

ered to be significant to underline as the non-parametric methods confirm to have a

great variability (in fact they are actually belonging to different kind of algorithms:

spectral-based and subspace-based), instead of the other groups are more homoge-

neous, showing a slightly smoothed trend for radii larger than λ0/4. Moreover, in all

the simulated cases, the third group of methods shown the same variance, indicating

a total equivalence in estimating DoAs.

A similar comportment is stressed in Figs. 2.35-2.36, but in Fig. 2.34 a different

trend is sketched: when the refractive index of the cylinder is smaller than the in-

dex of the surrounding medium, the localization becomes greatly effective, for many

estimation algorithms. Also in this case, spectral-based together with Linear Pre-

diction, Maximum Entropy, and P.H.D. methods, perform a worsen precision. By

looking at Figs. 2.37-2.38, it is possible to point out that the mean and variance

corresponding to this case, indicate that the localization is quite good and, on the

other side, it get worse when the refractive index of the cylinder becomes nc = 4,

getting better afterwards, when the dielectric contrast increases.

We can comment this behavior, observing that, when the refractive index of the

cylinder is smaller than the index of the surrounding medium, the electric field

propagating in the ground faces at first the interface with a less dense half-space,

represented by the cylinder, and then, once transmitted inside the cylinder, a second

interface with a denser medium. This combination of media is exactly opposite of

what happened in all the other cases, and, moreover, it can be modeled as a cylindri-

cal layered propagation problem, with the external layer that goes to infinity. In our

opinion, such a problem is worthy to be studied intensively in future works. We can

roughly presume that this combination of dielectric layers hallows an enhancement

in the constructive interference between the electromagnetic field reflections by the

two faces of the dielectric cylinder. This kind of trend is to the utmost clear, in the

cavity cases, as we are going to see in the next paragraph.
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(a)

(b)

(c)

Figure 2.34: Localization of a dielectric cylinder having nc = 2 buried in a ho-

mogeneous medium with nm = 3, error vs. normalized radius a/λ0: a) Bartlett,

Capon, Linear Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC,

ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.35: Localization of a dielectric cylinder having nc = 4 buried in a ho-

mogeneous medium with nm = 3, error vs. normalized radius a/λ0: a) Bartlett,

Capon, Linear Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC,

ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.36: Localization of a dielectric cylinder having nc = 5 buried in a ho-

mogeneous medium with nm = 3, error vs. normalized radius a/λ0: a) Bartlett,

Capon, Linear Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC,

ESPRIT-17, ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.37: Dielectric cylinder buried in a homogeneous medium with nm = 3.

Mean value vs. normalized radius a/λ0: a) nc = 2; b) nc = 4; c) nc = 5.
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(a)

(b)

(c)

Figure 2.38: Dielectric cylinder buried in a homogeneous medium with nm = 3.

Variance vs. normalized radius a/λ0: a) nc = 2; b) nc = 4; c) nc = 5.
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(a)

(b)

(c)

Figure 2.39: Localization of a dielectric cylinder having nc = 2 in a homogeneous

medium with nm = 3, error vs. normalized distance h/λ0: a) Bartlett, Capon, Linear

Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17,

ESPRIT-48; c) WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.40: Localization of a dielectric cylinder having nc = 5 in a homogeneous

medium with nm = 3, error vs. normalized distance h/λ0: a) Bartlett, Capon, Linear

Prediction, Max Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17,

ESPRIT-48; c) WSF, DML, SML.
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2.3.1 Localization of Cavities

Several cases have been simulated, regarding a cylindrical cavity in a dielectric

half-space. The target size has been varied; the burial depth has been changed

together with the cylinder radius, following the rule h = nmλ0/2 + a. In Figs. 2.41-

2.46, the estimation error is plotted vs. the normalized radius in sub-figures a),

while in b) an enlargement of the region err ≤ 1 is reported; the hosting medium

is assumed to have nm = 2 in Figs. 2.41-2.43 and n = 3 in Figs. 2.44-2.46, respec-

tively. The procedure is able to localize the center of the cavity with an estimation

error lower than one in many cases with slightly different trends for the implemented

algorithms. Non-parametric methods methods seem to be suitable for an accurate

estimation of the target position, even if Linear Prediction, Pisarenko Harmonic

Decomposition and Maximum Entropy are less robust when the permittivity of the

ground is higher, as can be appreciated from Fig. 2.38. Subspace-based methods

(both parametric and non-parametric) perform a precise localization of the cavity.

Moreover, an oscillating trend is still present in Figs. 2.41-2.46. ML-based meth-

ods, are very effective in this case, as we can appreciate in Fig. 2.46, where all the

estimated error values are lower the threshold.

By looking at Figs. 2.47-2.48, the mean error appears quite smoothed and below

the unity and the variance indicates a homogeneity in the three groups of algo-

rithms except in the case of Fig. 2.48b), where sharpened peaks occur, for the

non-parametric group. As discussed before, this is caused by the lack of precision of

some subspace-based algorithms (Linear Prediction, Pisarenko Harmonic Decompo-

sition and Maximum Entropy) that deteriorate their performances as the refractive

index of the surrounding medium increases.

In Figs. 2.49 and 2.50, the effect of the vertical offset on the localization error is

represented. As previously stated, when the dielectric contrast decreases, the esti-

mation is more affected by this issue, anyway in general, it does not damage the

localization.

The localization procedure is very efficient for a cavity detection. In particular, by

approximating the cylindrical wavefront to be locally planar, a possible explanation

of this behavior can be found in the Snell’s law: when nc < nr, the field that im-

pinges at the interface and is transmitted inside the cylinder is limited by the total

reflection angle, so that, with respect to the case of nc > nr, a smaller amount of

energy enters the cylinder. Consequently, the field scattered by the object is mainly

focused toward the array, making these cases better suitable to be treated with the

procedure (together with the case of a conducting cylinder).
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(a)

(b)

Figure 2.41: Cylindrical cavity localization in a homogeneous medium with n = 2,

error vs. normalized radius a/λ0 (Bartlett, Capon, Linear Prediction, Max Entropy,

Min Norm, PHD).
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(a)

(b)

Figure 2.42: Cylindrical cavity localization in a homogeneous medium with n = 2,

error vs. normalized radius a/λ0 (MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48).
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(a)

(b)

Figure 2.43: Cylindrical cavity localization in a homogeneous medium with n = 2,

error vs. normalized radius a/λ0 (WSF, DML, SML).
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(a)

(b)

Figure 2.44: Cylindrical cavity localization in a homogeneous medium with n = 3,

error vs. normalized radius a/λ0 (Bartlett, Capon, Linear Prediction, Max Entropy,

Min Norm, PHD).
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(a)

(b)

Figure 2.45: Cylindrical cavity localization in a homogeneous medium with n = 3,

error vs. normalized radius a/λ0 (MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48).
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When a lot of multiple internal reflections occurs, instead, also the contribution of

interferences between the cylinder-to-ground interfaces is magnified, and the scat-

tered field presents more radiation lobes forcing false DoA estimations. Obviously,

also the mismatch due to the dielectric contrast between scatterer and ground, plays

an important role.

As a further confirmation of our physical interpretation, in Fig. 2.51-2.52 we report

two-dimensional plots of the magnitude of the total electric field, in the ground and

inside the scatterer, as a function of the normalized coordinates k0x and k0z. These

plots have been calculated by using our codes implementing the CWA. In 2.51a),

a cylindrical cavity is considered, in 2.51b), a dielectric cylinder with nc = 5 are

represented for nm = 2, while in 2.52a), a dielectric cylinder with nc = 5, in 2.51b),

a dielectric cylinder with nc = 5 and for nm = 3 are depicted. In the first case, the

ground, the radius is a = 0.5λ0 and the burial depth is h = 1.5λ0 and in the second

one the radius is a = 0.25λ0 and the burial depth is h = 1.75λ0.

The field values are codified through a gray scale ranging from black (lowest values)

to white (highest values). The effects of the presence of the scatterer on the field

pattern are in both cases very pronounced, however it is apparent that, when the

permittivity of the cylinder is higher than the permittivity of the ground, the field

outside the object is diffracted toward more direction and inevitably the localization

procedure gives worst results.

Figure 2.46: Cylindrical cavity localization in a homogeneous medium with n = 3,

error vs. normalized radius a/λ0 (WSF, DML, SML).
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(a)

(b)

Figure 2.47: Cylindrical cavity localization in a homogeneous medium. Mean value

vs. normalized radius a/λ0: a) nm = 2; b) nm = 3.
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(a)

(b)

Figure 2.48: Cylindrical cavity localization in a homogeneous medium. Variance vs.

normalized radius a/λ0: a) nm = 2; b) nm = 3.
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(a)

(b)

(c)

Figure 2.49: Cylindrical cavity localization in a homogeneous medium with n = 2,

error vs. normalized distance h/λ0: a) Bartlett, Capon, Linear Prediction, Max

Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c)

WSF, DML, SML.
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(a)

(b)

(c)

Figure 2.50: Cylindrical cavity localization in a homogeneous medium with n = 3,

error vs. normalized distance h/λ0: a) Bartlett, Capon, Linear Prediction, Max

Entropy, Min Norm, PHD; b) MUSIC, root-MUSIC, ESPRIT-17, ESPRIT-48; c)

WSF, DML, SML.
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Finally, for the same cases considered in Fig. 2.51-2.52, we show in Fig. 2.53

the magnitude of the field scattered by the buried obstacle and transmitted in air,

calculated along a line parallel to the interface (k0x = −0.0001) that covers the

whole receiving array (i.e., it extends from z = 0 to z = 50d). In the cavity case, the

curve has a simpler behavior, therefore the field values measured by the receiving

array are easier to be statistically interpreted.

(a) (b)

Figure 2.51: Gray-scale map of the magnitude of the total electric field, in the

ground and inside the cylinder; nm = 2, a = 0.5λ0, h = 1.5λ0. The scatterer in a)

is a cavity, in b) is dielectric with nc = 5.

(a) (b)

Figure 2.52: Gray-scale map of the magnitude of the total electric field, in the

ground and inside the cylinder; nm = 3, a = 0.25λ0, h = 1.75λ0. The scatterer in

a) nc = 2, in b) nc = 5.
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Figure 2.53: Magnitude of the scattered-transmitted field impinging on the array.

2.4 Object-Size Estimation

In this section, we explore the possibility to estimate the diameter of a con-

ducting or dielectric scatterer, cylindrically shaped and infinitely long, at first in

a vacuum and also embedded in a dielectric half-space. In particular we consider

the problem configuration as exposed extensively in the previous paragraphs of this

chapter, in which an array of receivers is used to detect a buried cylinder of radius

a and distance h from the array. It has been shown that, by partitioning the whole

array in 3-elements grouped sub-arrays, equally spaced by d = λ0/4 (where λ0 is the

wavelength of the impinging electromagnetic field in the upper vacuum half-space),

it is possible to investigate the objects that are in the near-field of the whole array,

giving also a rough approximation of their position.

The sub-array that shows the bigger eigenvalue of the sub-array correlation matrix

(i.e. the i-th subarray), is the one overhanging the object, as one can clearly deduce

by looking at Fig. 2.54. On top on this, is straightforward to notice the value of the

maximum eigenvalue of the sub-array correlation matrices, is connected with the

received backscattered power. Let start to note that the spectral norm of the cor-

relation matrix R is defined as the maximum eigenvalue of R, κmax [libro Haykin,

Adaptive Filter Theory 3rd, chapter 4]:

‖ R ‖S= κmax (2.3)

Furthermore, considering a linear FIR filter as in Fig. 1.6 (and shown hereafter),

represented by a wide-sense stationary signal s(k) having correlation matrix R, and

a Gaussian noise n(k), having zero mean and variance σ2
n, the average power of the
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(a) (b)

Figure 2.54: Trend of the maximum eigenvalue of the sub-array correlation matrices

for a cylinder a) placed at the center of the array or b) peripherally. The half-space

containing the cylinder has a refractive index n = 2, the radius of the cylinder is

a = λ0/4 and the distance between the array and the cylinder is h = FF + a.

signal component of the filter output y(k), is

Po = wH ·R ·w (2.4)

where the elements of the vector w are the filter coefficients. The average power

of the noise No is calculated by assuming the noise correlation matrix as σ2
nI, and

applying the previous Eq. (2.6), we found

No = σ2
n wH · I ·w = σ2

n wH ·w (2.5)

and thus, the output signal-to-noise ratio is derived as

(SNR)o =
Po
No

=
wH ·R ·w
σ2
n wH ·w

(2.6)

The optimum filter coefficient vector w that maximizes (SNR)o, is subject to the

constraint [libro Haykin]

wH ·w = 1

so that the maximum value of the output signal-to-noise ratio is given by

(SNR)o,max =
κmax
σ2
n

(2.7)

We simulated many different geometrical configuration, changing the value of the

distance between the object and the array in the range h ∈ [FF + a; 6FF + a] with

a step resolution of λ0/20 for a total number of 51 iterations. At the same time, we
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Figure 2.55: Signal model for a M -element array with D arriving signals.

vary we varying the cylinder cross-section in the range a ∈ [0.05λ0; 1.05λ0], with 51

iterations, for an overall matrix of 51 × 51 values in which each column represent

the maximum eigenvalue among all the eigenvalues of the 17 sub-array correlation

matrices, corresponding to a value of a (varying with the columns) for all the dis-

tances h, that varies with the row.

In Fig. 2.56, the maximum eigenvalue is shown vs. normalized distance h/λ0, for

several values of radius a. In particular, it is possible to appreciate as in Fig. 2.56a)

(concerning a conductive cylinder in a vacuum), the tendency is quite regular, there-

fore in our opinion in this case it might be possible to extrapolate the cylinder size.

On the contrary, in Fig. 2.56b)-2.56c), the presence of a surrounding homogeneous

medium, causes an oscillating behavior of the maximum eigenvalue, as noticed in

the previous section for the estimation error. For a better readability of the pictures,

only few tendencies are plotted, but all the other values have been calculated, too,

and show to fit the general trend.

It is interesting to point out that, plotting the maximum eigenvalue vs. radius a, and

varying the distance h thus obtaining different curves, an almost typical trend can

be stressed. In Fig. 2.57a)-2.57b), is clear that the maximum eigenvalue increases

as the radius becomes larger and, at the same time, it decreases as the distance h

increases, with no oscillations; in Fig. 2.57c), indeed, the trend is oscillating. This

behavior suggests the possibility to estimate the cylinder cross-section, based on the

maximum eigenvalue among all the sub-arrays matrices.

For the dielectric case in a vacuum, in Figs. 2.58a) and b), the maximum eigenvalue

vs. distance for several values of the radius a, is represented for two different refrac-

tive indexes (nc = 2 and nc = 3). As in the PEC case, the trend is descent with the

distance from the array.

In Fig. 2.59a) and b) the maximum eigenvalue vs. the normalized radius a/λ0 for
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different distances h is represented for dielectric cylinders in a vacuum. What previ-

ously stated about interferences between the upper and a lower face of the cylinder,

and about multiple internal reflections between these two faces, seems to be con-

firmed, as if the scatterer was a dielectric slab. It can be easily verified that the

SNR peaks in Fig. 2.59b), are centered on radius values such that, in this simplified

model, the multiple internal reflections are in phase at the upper face of the cylinder,

and constructive interference occurs. Moreover, the peaks are higher for larger val-

ues of the cylinder radius, when these considerations, based on geometrical optics,

are more valid. It might be expected that peaks of SNR should correspond to an

easier detection (low values of the localization error), and that small values of the

SNR should correspond to peaks of the localization error. However, the localization

error (see Figs. 2.17-2.18) behavior shows a lower number of peaks, with respect to

the SNR, and some peaks of the localization error (worse detection) are centered on

the same radius values as the SNR peaks. Anyway, it might be taken into account

that the SNR refers to only one sub-array and thus, it has not to be confused with

the whole array SNR.

In Figs. 2.61-2.62, it is possible to appreciate as the SNR behavior becomes more

regular if the cylinder has a refractive index lower that the embedding medium, for a

fixed dielectric contrast. In particular, by looking at Fig. 2.60a) is quite evident the

descendant trend of the maximum eigenvalue as the normalized distance increases,

and in Fig. 2.61a), the peaks of the SNR introduced by the multiple reflections

interference are stressed. In fact, by looking at Figs. 2.51a)-2.52a), it is possible to

appreciate as, when nc < nm, the scattered field distribution is more regular and

the SNR at each sub-array can be consider to have a similar trend of Fig. 2.61a).

Otherwise, when nc > nm, the filed distribution depicted in Figs. 2.51b)-2.52b), is

quite irregular and not predictable. This causes a lack of efficiency of the DoA signal

model, based on the geometrical optic approximation, and also the whole SNR of

the array cannot be deduced by the SNR of the sub-array overhanging the object.

In Figs. 2.61-2.62, we report the SNR of the signal received by the sub-array, as

a function of the cylinder radius normalized to the vacuum wavelength, for an air

cavity embedded in a dielectric half-space with refractive index equal to 2 or 3.

Some peaks are present, centered on radius values such that the multiple internal

reflections are in phase at the upper face of the cavity and constructive interference

occurs.

With respect to the previous couple of figures, we now can see a smaller number

of peaks because the permittivity of the air cavity is smaller than the permittivity

of the previously considered dielectric cylinder, therefore the wavelength inside the
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object is larger and, in the analyzed radius range, there is a smaller number of cases

satisfying the resonance condition.

So that, it is not straightforward to explain the oscillations of the localization er-

ror through geometrical-optics considerations based on the geometrical and physical

properties of the scenario. Unlike the SNR, the oscillations of the localization error

are affected also from the statistical procedure applied to the DoA crossing pattern,

for example the testing-window size and the decision threshold (false-alarm proba-

bility) play an important role.

In conclusion, in the cases when the SNR trend is more regular (PEC cylinder, cav-

ity) it seems to be possible to estimate also the dimension of the buried object, by

means of the maximum eigenvalue among all of the sub-array correlation matrices,

that is directly linked to the maximum value of the SNR.
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(a)

(b)

(c)

Figure 2.56: Maximum eigenvalue vs. distance h and radius a: a) conductive cylin-

der in a vacuum; b) conductive cylinder in a homogeneous medium with nm = 2; c)

conductive cylinder in a homogeneous medium with nm = 3.
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(a)

(b)

(c)

Figure 2.57: Maximum eigenvalue vs. radius a and distance h: a) conductive cylin-

der in a vacuum; b) conductive cylinder in a homogeneous medium with nm = 2; c)

conductive cylinder in a homogeneous medium with nm = 3.
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(a)

(b)

Figure 2.58: Maximum eigenvalue vs. distance h and radius a: a) dielectric cylinder

with nc = 2 in a vacuum; b) dielectric cylinder with nc = 3 in a vacuum.
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(a)

(b)

Figure 2.59: Maximum eigenvalue vs. radius a and distance h: a) dielectric cylinder

with nc = 2 in a vacuum; b) dielectric cylinder with nc = 3 in a vacuum.
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(a)

(b)

Figure 2.60: Maximum eigenvalue vs. distance h and radius a: a) cylindrical cavity

in a homogeneous medium having nm = 2; b) dielectric cylinder with nc = 3 in a

homogeneous medium with nm = 2.
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(a)

(b)

Figure 2.61: Maximum eigenvalue vs. radius a and distance h: a) cylindrical cavity

in a homogeneous medium having nm = 2; b) dielectric cylinder with nc = 3 in a

homogeneous medium with nm = 2.
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(a)

(b)

Figure 2.62: Maximum eigenvalue vs. distance h and radius a: a) cylindrical cavity

in a homogeneous medium having nm = 3; b) dielectric cylinder with nc = 2 in a

homogeneous medium with nm = 3.
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(a)

(b)

Figure 2.63: Maximum eigenvalue vs. radius a and distance h: a) cylindrical cavity

in a homogeneous medium having nm = 3; b) dielectric cylinder with nc = 2 in a

homogeneous medium with nm = 3.



Chapter 3

Detection of Multiple Cylinders

In this chapter we focus on the localization of multiple cylinders, located in the

same geometrical and physical scenario as considered before. It is essential for the

algorithm to estimate the number of cylinders and their mutual distance, together

with their distance from the array.

As we indicated in Chapter 1, the methods that we used to estimate the DoAs,

have limitations for efficiency if the fields are correlated. To avoid this, we here con-

sider the forward-backward (FB) representation of some algorithms that particularly

suffer a loss of efficiency. In particular non-parametric methods (with exception of

MU.SI.C.), have been implemented with their FB-form, resulting appropriate to our

scopes.

Following the same procedure used for the single object localization case, we present

the geometry of the multiple objects detection scenarios in Figure 3.1. The number

of cylinders is fixed to be equal two for all the simulations. This assumption could

be considered as a limitation of the procedure, but actually, as we point out further

in this chapter, a number of objects grater than two can be treated just repeating

the basic sub-array configuration, once determined the minimum horizontal distance

among the objects. In fact the magnitude of the signal correlation depends, among

other things, from the mutual distance of the cylinders, and consequently the DoA

estimation capabilities of the algorithms.

In order to determine, not without ambiguity (just think of the case of cylinders

of different sizes, overlapped at a different burial depth), both the number and the

relative position of objects we use (and compare among them) several clustering al-

gorithms, widely used in the field of image processing and remote sensing data [70].

These methods allow us, in a large number of cases and with sufficient accuracy, to

properly detect the cylinders. We present in the next section a brief description of

the clustering problem and algorithms, used for our purpose, and then we present

115
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the numerical results of many simulations (relevant to both conductive and dielectric

configuration) that allow us to extrapolate significant assumptions about the effec-

tiveness of this technique and the opportunity of further developments concerning

multiple cylinders localization.

Figure 3.1: Multiple-objects localization: two cylinders.

3.1 Clustering Analysis

In clustering, the goal is to understand the macroscopic structure and relation-

ships among the objects by considering the ways in which they are similar and

dissimilar. In many datasets, the distribution of objects with respect to some sim-

ilarity relationship is not uniform, so that some of the objects resemble each other

more closely than average. Such a subset is called a cluster. In a good clustering,

objects from different clusters should resemble each other less than average. For any

particular dataset, there are many ways to compare objects, so a clustering always

implicitly contains some assumption about the meaning of similarity [71].

Clustering techniques can be divided into three kinds: those based on distances

among objects in the geometrical sense described above (clusters are objects that

are unusually close to each other); those based on density of objects (clusters are

regions where objects are unusually common); or those based on probability distri-

butions (clusters are sets of objects that fit an expected distribution well). These

are called distance-based, density-based, and distribution-based clusterings, respec-

tively.

Clustering techniques can also be distinguished by whether they carve up the ob-

jects into disjoint clusters at a single level (partitional clustering), or give a complete
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hierarchical description of how objects are similar to each other (hierarchical clus-

tering), using a dendrogram. As well, some clustering techniques need to be told

how many clusters to look for, while others will try to infer how many are present.

The simplest partitional clustering technique is k-means. Given a dataset considered

as a set of points in m-dimensional space, a set of k cluster centers are chosen at

random. Each point in the dataset is allocated to the nearest cluster center. The

centroid of each of these allocated sets of points is computed, and these centroids

become the new cluster centers. The process is repeated until the cluster centers do

not change. Because k is a parameter to the algorithm, the number of clusters must

be known or guessed beforehand.

An example in two dimensions is shown in Fig. 3.2. The crosses represent data

points. If the cluster centers (circles) are placed as shown in Fig. 3.2a), then each

object is allocated to its nearest cluster center. This relationship is shown by dashed

lines. After this initial, random, allocation, each cluster center is moved to the cen-

troid of the objects that belong to it, as shown in Fig. 3.2b).

The allocations of objects to new cluster centers is again shown by the dashed lines.

It is clear that the allocation of objects to clusters will not change further, although

the cluster centers will move slightly in subsequent rounds of the algorithm. The

k − means algorithm is simple and fast to compute. Typical density-based parti-

tional clustering algorithms choose an object at random to be a potential cluster

center and then examine its neighborhood. Objects that are sufficiently close are

added to the cluster, and then their neighbors are considered, in turn. This process

continues until no further points are close enough to be added. If enough points have

been found, that is the potential cluster is large enough, then it becomes one of the

clusters and its members are removed from further consideration. The process is

repeated until no new clusters can be found. Some objects may not be allocated to

any cluster because there are not enough other objects near them. We implemented

to our purpose, the so-called Density-Based Scan Algorithm with Noise, or DBSCAN

[72, 73].

A hierarchical clustering method [74] works by grouping data objects into a tree

of clusters. Hierarchical clustering methods can be further classified into agglom-

erative and divisive hierarchical clustering, depending on whether the hierarchical

decomposition is formed in a bottom-up or top-down fashion. In particular, the ag-

glomerative hierarchical clustering consists in a bottom-up strategy starts by placing

each object in its own cluster and then merges these atomic clusters into larger and

larger clusters, until all of the objects are in a single cluster or until certain ter-

mination conditions are satisfied. Most hierarchical clustering methods belong to
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(a)

(b)

Figure 3.2: K − means algorithm, with objects denoted by crosses, and k initial

cluster centers denoted by circles. The dashed lines indicate which cluster center

is closest to each object. a) Initialization of the algorithm, b) Second round of the

algorithm, one object has moved from one cluster to another, and all objects are

closer to their center than in the previous round.

this category. They differ only in their definition of intercluster similarity. On the

other side, the divisive hierarchical clustering is a top-down strategy that does the

reverse of agglomerative hierarchical clustering by starting with all objects in one

cluster. It subdivides the cluster into smaller and smaller pieces, until each object

forms a cluster on its own or until it satisfies certain termination conditions, such

as a desired number of clusters is obtained or the distance between the two closest

clusters is above a certain threshold distance.

In Fig. 3.3 an example of agglomerative hierarchical clustering is sketched. The

group choice is based on a particular measure of similarity or dissimilarity, generally

referred as proximity, that is computed for each data point and successively, from

these value, a dendrogram (a kind of tree of proximities) is derived. Up to now,

we generally refer to proximity as a measure of (dis)similarity among data, without
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(a) (b)

Figure 3.3: Hierarchical algorithm, with a) objects denoted by black dots, centroids

denoted by red dots, and clusters denoted by circles; b) dendrogram.

any operative definition about it. The most common similarity criterion is distance;

a good clustering method should produce cluster in which the intra-class distance

is low and the inter-class distance is high. By using this kind of approach, the at-

tribute of (dis)similarity is justified, and the classes of different data so grouped, can

be considered as homogeneous clusters of data, based on this proximity criterion.

The basic form of data that is taken into account in cluster analysis, is represented

by a m× n multivariate matrix X, whose elements are variables that constitute the

data point coordinates in the space of parameters. The entry xij in X presents the

j-th variable of object i:

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (3.1)

The proximity measure used in clustering approaches is very similar to the Euclidean

distance among the data point and the centroids of each cluster. The distance is

defined as

dk,l =
1

N

N∑
j=1

M∑
i=1

[
x(k)ij − c(l)i

]2
(3.2)

where dk,l represents the distance between the element of cluster k and the centroid

of cluster l, while x(k)ij is the value of the element in the i-th row and j-column of

the matrix X, and c(l)i is the value of the i-th row of the centroid vector of cluster

number l.

There are many distance metrics that can be used as proximity measure, the most
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commonly adopted are Manhattan, Minkowski, and Cranberra distances, summa-

rized in the following Table 3.1, where x(k)i is the k-th variable value of the p-

Measure Formula

Euclidean distance dij =
{∑p

k=1

[
x(k)i − x(k)j

]2} 1
2

Manhattan distance dij =
∑p

k=1

∣∣x(k)i − x(k)j
∣∣

Minkowski distance dij =
{∣∣∑p

k=1

[
x(k)i − x(k)j

]r∣∣} 1
r
(
r ≥ 1

)
Cranberra distance dij =

∑p
k=1

∣∣x(k)i−x(k)j

∣∣[
|x(k)i|+|x(k)j |

] x(k)i, x(k)j 6= 0

Table 3.1: Proximity measures.

dimensional observation for individual i and x(k)j is the k-th variable value of the

p-dimensional observation for individual j. An insight of the double cylinder lo-

calization is shown in Fig. 3.4 where, once applied the DoA estimation algorithms

in order to find two crossing clouds, we perform a cluster analysis and extract the

coordinates of the two cylinder centers that are, in practice, the coordinates of the

cluster centroids.

3.1.1 K-means Algorithm

Clustering algorithms group a set of documents into subsets or clusters. The

cluster algorithms goal is to create clusters that are coherent internally, but clearly

different from each other. In other words, documents within a cluster should be as

similar as possible; and documents in one cluster should be as dissimilar as possible

from documents in other clusters.

Clustering is the most common form of unsupervised learning. No supervision means

that there is no human expert who has assigned documents to classes. In clustering,

it is the distribution and makeup of the data that will determine cluster membership.

The procedure follows a simple and easy way to classify a given data set through a

certain number of clusters (assume k clusters) fixed a priori. The main idea is to

define k centroid, one for each cluster. These centroids should be placed in a cunning

way because of different location causes different result. So, the better choice is to

place them as much as possible far away from each other.

The next step is to take each point belonging to a given data set and associate it

to the nearest centroid. When no point is pending, the first step is completed and

an early group is done. At this point we need to re-calculate k new centroids as

barycenter of the clusters resulting from the previous step. After we have these k

new centroids, a new binding has to be done between the same data set points and
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(a)

(b)

(c)

Figure 3.4: Double cylinder localization: a) DoAs estimation; b) crossing clouds; c)

cluster analysis and estimation.

the nearest new centroid. A loop has been generated. As a result of this loop we

may notice that the k centroids change their location step by step until no more

changes are done. In other words centroids do not move any more.

Finally, this algorithm aims at minimizing an objective function, in this case a

squared error function. The objective function. The following description of k-

means can be found in MacQueen [75]. Given N documents in a i -dimensional

vectorial space, X = X1, X2, · · · , XN , we partition the documents in K group P =

P1, P1. · · · , PK satisfying the following properties:
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•
K⋃
1

Pi = X: all the objects in a group must belong at least to one cluster;

•
K⋂
1

Pi = ∅: every object must belong to one and only one cluster;

• ∅ ⊂ Ai ⊂ X: it cannot exist a single cluster;

• 1 < K < N : the number of clusters must be less than the number of docu-

ments.

We represent the partition using a matrix U ∈ NK×N , where the generic element

uij = 0, indicates the belonging of the j object to the i. Moreover, we assume

C = C1, C2, · · · , CK as K centroids.

The objective function

V (U,C) =
K∑
i=1

N∑
Xj∈Pi

∣∣∣∣Xj − Ci
∣∣∣∣2 (3.3)

Finally, this algorithm aims at minimizing an objective function, as follow:

1. generate Uv and Cv;

2. calculate Un minimizing V (U,Cv);

3. calculate Cn minimizing V (Un, C);

4. if the algorithm converges we stop, otherwise we repeat the procedure consid-

ering Uv = Un and Cv = Cn, and coming again to stage 2.

Typically, the algorithm converges if

• no changes happen in the matrix U ;

• the difference between the objective function at two different iterations is less

than a fixed threshold.

3.1.2 Fuzzy C-means Algorithm

The binary character of partitions described so far may not always be a convinc-

ing representation of the structure of data [76]. Consider the set of two-dimensional

patterns illustrated in Fig. 3.5. While we can easily detect three clusters, their

character is different. The first one is quite compact, with highly concentrated
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patterns. The other two exhibit completely different structures. They are far less

condensed, with several patterns whose allocation to a given cluster may be far less

certain. In fact, we may be tempted to allocate them to two clusters with varying

degrees of membership. This simple and appealing idea forms a cornerstone of fuzzy

sets-collections of elements with partial membership in several categories. These sit-

Figure 3.5: Three clusters with outliers of partial membership (pointed by arrows)

in the clusters.

uations of partial membership occur quite often. Structures (clusters) may not be

well separated for a variety of reasons. There may be noise or lack of discriminatory

power of the feature space in which the patterns are represented. Some patterns

could be genuine outliers.

The fuzzy algorithms are quite useful in solving certain kinds of clustering problems

where a population X of n objects, each represented by some vector of s numer-

ical features or measurements x ∈ Rs, is to be decomposed into subpopulations

(or clusters) of similar objects. The Fuzzy c-means (FCM) algorithms [77] use the

set of feature vectors, along with some initial guess about the cluster substructure,

to obtain a partitioning of the objects into fuzzy clusters, and as a by-product of

the partitioning procedure, produce a prototypical feature vector representing each

subpopulation. FCM is known to produce a reasonable partitioning of the original

data in many cases. Let us assume that the partition matrix U = [uik] consisting of

grades of membership distributed in the unit interval, by following a specific crite-

rion of proximity. In particular let c ≥ 2 be an integer; let X = {x1, · · · , xn} ∈ Rs

be a finite data set containing at least c < n distinct points; and let Rcn denote the

set of all real c×n matrices. A non-degenerate fuzzy c-partition of X is conveniently
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represented by the matrix U = [uik] ∈ Rcn, the entries of which satisfy

uik ∈ [0, 1] 1 ≤ i ≤ c; 1 ≤ k ≤ n, (3.4)
c∑
i=1

uik = 1; 1 ≤ k ≤ n, (3.5)

n∑
k=1

uik > 0; 1 ≤ i ≤ c; (3.6)

The set of all matrices in Rcn satisfying Eqs. (3.4-6) is denoted by Mfcn. A matrix

U ∈Mfcn can be used to describe the cluster structure of X by interpreting uik as the

grade of membership of xk in cluster i; uik = 0.95 represents a strong association

of xk to cluster i, while uk = 0.01 represents a very weak one. Note that Mcn,

the subset of Mfcn which contains only matrices with all uik’s in [0, 1], is exactly

the set of non-degenerate crisp (or conventional) c-partitions of X. Other useful

information about cluster substructure can be conveyed by identifying prototypes

(or cluster centers) v = (v1, · · · ,vc)T ∈ Rcs, where vi; is the prototype for class i,

1 ≤ i ≤ c,vi ∈ Rs. Good partitions U of X and representatives (vi for class i) may

be defined by considering minimization of one of the family of c-means objective

functionals Jm : (Mfcn × Rcs)→ R defined by

Jm(U,v) =
n∑
k=1

c∑
i=1

(uik)
m ‖ xk − vi ‖2 (3.7)

where l < m < ∞ and ‖ · ‖ is any inner product induced norm on Rs. This

approach was first given for m = 2 in Dunn [78] and then generalized to the above

range of values of m in Bezdek [79]. For m > 1, Bezdek gave the following necessary

conditions for a minimum (U∗,v∗) of Jm(U,v) over Mfcn × Rcs:

(v∗) =

∑n
k=1(u∗ik)

mxk∑n
k=1(u∗ik)

m
∀i (3.8)

and for each k such that d∗ik =‖ xk − v∗i > 0∀i, then

u∗ik =

[ c∑
j=1

a∗ijk

]−1

∀i (3.9)

where

a∗ijk =
[
d∗ik/d

∗
jk

] 1
(m−1)

but if k is such that d∗ik = 0 for some i, then u∗ik∀i are any non-negative numbers

satisfying
c∑
i=1

u∗ik = 1 u∗ik = 0, d∗ik 6= 0 (3.10)
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The FCM algorithms consists of iterations alternating among Eqs. (3.7) and (3.9).

The process is started either with an initial guess for the partitioning U or an initial

guess for the prototype vectors v, and is continued until successive iterates of the

partitioning matrix barely differ; that is, iteration stops with the first Ur+l such that

‖ Ur+1 −Ur ‖< ε where ε is a small positive number. The numerical convergence

results which follow concern the behavior of the sequences {Ur} and {vr}, while

the stochastic theory refers to how well minima of Eq. (3.7) actually represent the

cluster substructure of a population under certain statistical assumptions.

3.1.3 DBSCAN Algorithm

The Density Based Spatial Clustering of Applications with Noise algorithm [72]

can identify clusters in large spatial data sets by looking at the local density of

database elements, using only one input parameter. Furthermore, the user gets a

suggestion on which parameter value that would be suitable. Therefore, minimal

knowledge of the domain is required.

In Density based notion, a cluster is a set of dense points. Cluster can grow in

any direction that the density leads, thus density based algorithms can discover

clusters of arbitrary shapes. This also provides a natural protection against noisy

outliers. The key idea is that for each point of a cluster the neighborhood of a given

radius has to contain at least a minimum number of points, i.e. the density in the

neighborhood has to exceed some threshold. Before explaining how the algorithm

works, we need son introducing definitions. In the rest of this section, we will rewrite

almost entirely the original algorithm implementation reported in [72].

Definition 1: The ε-neighborhoodof a point p, denoted by Nε(p), is defined by

Nε(p) = {q ∈ D | dist(p, q) ≤ ε}.
A naive approach could require for each point in a cluster that there are at least a

minimum number (MinPts) of points in an ε-neighborhood of that point. However,

this approach fails because there are two kinds of points in a cluster, points inside of

the cluster (core points) and points on the border of the cluster (border points). In

general, an ε-neighborhood of a border point contains significantly less points than

an ε-neighborhood of a core point. Therefore, we would have to set the minimum

number of points to a relatively low value in order to include all points belonging to

the same cluster. This value, however, will not be characteristic for the respective

cluster, particularly in the presence of noise. Therefore, we require that for every

point p in a cluster C there is a point q in C so that p is inside of the ε-neighborhood

of q and Nε(q) contains at least MinPts points. This definition is elaborated in the

following.
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(a) (b)

Figure 3.6: a) Core points and border points and b) directly-density core points and

border points.

Definition 2: A point p is directly density-reachable from a point q wrt. (i.e. with

respect to) ε and MinPts if:

1. p ∈ Nε(q) and

2. |Nε(q)| ≥MinPts (core point condition).

Obviously, directly density-reachable is symmetric for pairs of core points. In gen-

eral, however, it is not symmetric if one core point and one border point are involved.

Fig. 3.6 shows the asymmetric case.

Definition 3: A point p is density-reachable from a point q wrt. ε and MinPts, if

there is a chain of points p1, · · · , pn; p1 = q, pn = p such that pi+1 is directly density-

reachable from pi.

Density-reachability is a canonical extension of direct density-reachability. This re-

lation is transitive, but it is not symmetric. Fig. 3.7 depicts the relations of some

sample points and, in particular, the asymmetric case. Although not symmetric in

general, it is obvious that density-reachability is symmetric for core points. Two

border points of the same cluster C are possibly not density reachable from each

other because the core point condition might not hold for both of them. However,

there must be a core point in C from which both border points of C are density-

reachable. Therefore, we introduce the notion of density-connectivity which covers

this relation of border points.

Definition 4: A point p is density-connected to a point q wrt. ε and MinPts if

there is a point o such that both, p and q are density-reachable from o wrt. ε and

MinPts.

Density-connectivity is a symmetric relation. For density reachable points, the re-

lation of density- connectivity is also reflexive (c.f. Fig. 3.7).

Now, we are able to define our density-based notion of a cluster. Intuitively, a cluster

is defined to be a set of density-connected points which is maximal wrt. density-
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reachability. Noise will be defined relative to a given set of clusters. Noise is simply

the set of points in D not belonging to any of its clusters.

Definition 5: Let D be a database of points. A cluster C wrt. ε and MinPts is a

non-empty subset of D satisfying the following conditions:

1. ∀p, q : ifp ∈ C and q is density-reachable from p wrt. ε and MinPts, then

q ∈ C.(Maximality)

2. ∀p, q ∈ C: p is density-connected to q wrt. ε and MinPts. (Connectivity)

Definition 6: Let C1, · · · , Ck be the clusters of the database D wrt. parameters

ε and MinPts, i = 1, · · · , k. Then we define the noise as the set of points in the

database D not belonging to any cluster Ci , i.e. noise = {p ∈ D | ∀i : p 6∈ Ci}.
Note that a cluster C wrt. ε and MinPts contains at least MinPts points because

of the following reasons. Since C contains at least one point p, p must be density-

connected to itself via some point o (which may be equal to p). Thus, at least o has to

satisfy the core point condition and, consequently, the ε-Neighborhood of o contains

at least MinPts points. The following lemmas are important for validating the

(a) (b)

Figure 3.7: a) Density-reachability and b) density-connectivity.

correctness of our clustering algorithm. Intuitively, they state the following. Given

the parameters ε and MinPts, we can discover a cluster in a two-step approach. First,

choose an arbitrary point from the database satisfying the core point condition as a

seed. Second, retrieve all points that are density-reachable from the seed obtaining

the cluster containing the seed.

Lemma 1: Let p be a point in D and |Nε(p)| ≥ MinPts. Then the set O = {o |
o ∈ D and o is density-reachable from p wrt. ε and MinPts} is a cluster wrt. ε and

MinPts.

It is not obvious that a cluster C wrt. ε and MinPts is uniquely determined by any

of its core points. However, each point in C is density-reachable from any of the

core points of C and, therefore, a cluster C contains exactly the points which are
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density-reachable from an arbitrary core point of C. Lemma 2: Let C be a cluster

wrt. ε and MinPts and let p be any point in C with |Nε(p)| ≥ MinPts. Then C

equals to the set O = {o | o is density-reachable from p wrt. ε and MinPts}. Ideally,

we would have to know the appropriate parameters ε and MinPts of each cluster and

at least one point from the respective cluster. Then, we could retrieve all points that

are density-reachable from the given point using the correct parameters. But there

is no easy way to get this information in advance for all clusters of the database.

However, there is a simple and effective heuristic to determine the parameters ε and

MinPts of the “thinnest”, i.e. least dense, cluster in the database.

Therefore, DBSCAN uses global values for ε and MinPts, i.e. the same values for all

clusters. The density parameters of the “thinnest” cluster are good candidates for

these global parameter values specifying the lowest density which is not considered to

be noise. To find a cluster, DBSCAN starts with an arbitrary point p and retrieves

all points density-reachable fromp wrt. ε and MinPts. If p is a core point, this

procedure yields a cluster wrt. ε and MinPts (see Lemma 2). If p is a border point,

no points are density-reachable from p and DBSCAN visits the next point of the

database.

Since we use global values for ε and MinPts, DBSCAN may merge two clusters

according to definition 5 into one cluster, if two clusters of different density are

“close” to each other. Let the distance between two sets of points S1 and S2 be

defined as dist(S1, S2) = min{dist(p, q) | p ∈ S1, q ∈ S2}. Then, two sets of points

having at least the density of the thinnest cluster will be separated from each other

only if the distance between the two sets is larger than ε. Consequently, a recursive

call of DBSCAN may be necessary for the detected clusters with a higher value

for MinPts. This is, however, no disadvantage because the recursive application of

DBSCAN yields an elegant and very efficient basic algorithm. Furthermore, the

recursive clustering of the points of a cluster is only necessary under conditions that

can be easily detected.

3.1.4 Hierarchical Clustering Algorithm

Hierarchical clustering solutions which are in the form of trees called dendro-

grams, are of great interest for a number of application domains. Hierarchical trees

provide a view of the data at different levels of abstraction [80].

Hierarchical clustering solutions have been primarily obtained using agglomerative

algorithms[81, 82], in which objects are initially assigned to their own cluster and

then pairs of clusters are repeatedly merged until the whole tree is formed.

As we mentioned previously, hierarchical algorithms are subdivided into agglomer-
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ative hierarchical algorithms and divisive hierarchical algorithms (see Fig. 3.8 [83]).

Agglomerative hierarchical clustering starts with every single object in a single clus-

ter. Then it repeats merging the closest pair of clusters according to some similarity

criteria until all of the data are in one cluster. There are some disadvantages for

agglomerative hierarchical clustering, such as (a) data points that have been incor-

rectly grouped at an early stage cannot be reallocated and (b) different similarity

measures for measuring the similarity between clusters may lead to different results.

If we treat agglomerative hierarchical clustering as a bottom-up clustering method,

then divisive hierarchical clustering can be viewed as a top-down clustering method.

Divisive hierarchical clustering starts with all objects in one cluster and repeats

splitting large clusters into smaller pieces. Divisive hierarchical clustering has the

same drawbacks as agglomerative hierarchical clustering.

Hierarchical algorithms can be expressed in terms of either graph theory or matrix

algebra [84].

Figure 3.8: Agglomerative hierarchical clustering and divisive hierarchical clustering.

3.1.5 Data Spectroscopic Algorithm

In this paragraph, we provide only a briefly description of the Data Spectroscopic

Algorithm (DS), recalling some fundamentals from the original work by Shi, Belkin

and Yu [85].

This algorithm takes as input a data set X = {x1, · · · , xn} ⊂ Rd. From this data

an n× n affinity matrix K = [Kn]ij is constructed where each entry is a function of

the Euclidean distance between two data points;

(Kn)ij =
K(xi, xj)

n
(3.11)

K(x, y) = exp−
‖x−y‖2

2σ2 (3.12)
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being K(x, y) the Gaussian kernel with variance σ2. The eigenvalues λ1, λ2, · · · , λn
and eigenvectors e1, e2, · · · , en of the affinity matrix Kn are then calculated. The

number of clusters is then estimated by the number of eigenvectors ej which have

no sign changes up to precision ε. A vector e = (e1, e2, · · · , en) has no sign changes

up to precision ε if either ∀iei > −ε or ∀iei < ε.

The most important feature of this algorithms is not properly the suitability with

our scopes, rather than estimate the number of clusters (such as in our case the

number of cylinders), to give as input to the other clustering methods. In fact,

the DS Algorithm, is the only, among those we implemented, to have no a priori

condition on the number of clusters.

3.1.6 Comparison of Clustering Algorithms

The analysis of clustering methods and the comparison among their perfor-

mances, is a very discussed topic in literature since a long time [86, 75], and it is not

possible to define a definitive performance comparison method; moreover this kind

of problem is out of the topics of the present work. Anyway, during our simulations,

we tried to extrapolate some general statements for what concerns the application of

these method to our purpose. In particular, we did not find a drastic performance

gap among the algorithms, observing that Data Spectroscopic methods performs

definitely worse than the other, but, on the contrary, it is the only algorithm of

those we implemented, that is able to find the number of clusters (an then the num-

ber of cylinders). On the other hand, we find the k-means algorithm performing

better in many cases, so that we will refer to it in the following paragraphs, for what

concerns the data analysis representation.

There are number of methods available for comparing partitions, but they are usually

computational intensive; the most popular one is described as Hubert and Arabie’s

modified index [87]. For example, considering a two-cluster classification, all pairs

of a dataset must be compared; if there are n data points and then
(
n
2

)
comparisons

must be made, thus the method is an O(n2) computation [88].

The feature common to all clustering methods (except DS algorithm) is that the

number of clusters is specified, then the algorithms only partition the data points

into clusters. An effective full comparison among the algorithms, can be made by

allowing the number of clusters to very into finite range of values. In our problem,

we have a fixed number of clusters, even if for practical uses, the number of buried

cylinder is often unknown a priori, so that we contemplate to extend this compari-

son in future works.

For a fixed number of clusters, any clustering algorithm assigns every data point
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to a cluster. Comparing two methods, we must measure the so-called inter-rater

agreement : different raters can disagree about measurement results from the same

object by e.g. variations in the procedures of carrying out the experiment, interpret-

ing the results and, subsequently, presenting them. All these stages may be affected

by experimenter’s bias, that is, a tendency to deviate towards what is expected by

the rater. The standard measure of inter-rater agreement is Cohen’s κ statistic [89],

that can be interpreted as an interclass correlation [90] measurement.

Cohen’s κ measure pairwise agreement among a set of raters, is expressed by

κ =
Po − Pe
1− Pe

(3.13)

where Po is the observed probability of agreement between the two raters and Pe is

the expected probability of agreement under the assumption of independent rating

by the two raters. Of course, κ must be less or equal to 1, and its lower bound de-

pends on Pe, moreover the grater is κ, the fairer is the agreement between raters. So

that, maximizing κ , the observed agreement probability is large and the clustering

is performed quite the same by the two algorithms.

On top on this, when the number of points in dataset is very large (n ≥ 100),

κmax is approximately zero by the Law of Large Numbers. In particular, the rate

at which the statistic approaches zero can be computer for two clusters case. As

demonstrated in [88], the expected value of κmax, is equal to

E[κmax] = 2−
n
2

(
n/2

n/4

)
≈ (2
√
nπ)−1 for large n (3.14)

Since our datasets are typically grater than 300 units, Eq. (3.14) leads to κmax ≈
0.0163, that means that the observed probability of agreement for large datasets is

actually very close to the expected probability of agreement, or in other words, for a

large number of data points and two specified clusters, the partitioning of data points

into the two clusters is quite the same for all the raters, and the number of outliers

(non concordant partitions) is non influent. For such a region we consider assuming

any peculiar significance, at least for the present work, a complete description of

all the simulated cases associated with all the implemented clustering algorithms,

since in our intention, we tried to demonstrate the possibility to face the localization

problem as presented in Chapter 1, by using some statistical classification methods

when a multiple target localization occurs. Anyway, in our simulations we noticed

an outperforming of k-means compared with other methods in the most of cases. In

fact, since the target we are trying to locate are cylinders, those algorithms that seek

spherical shapes (i.e. k-means) typically do better than methods seeking cluster of

arbitrary shape.
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3.2 Simulation settings

In the following paragraphs the localization of two PEC or dielectric cylinders

will be presented. In particular we consider two different scenarios: at first the

cylinders are buried into a homogeneous medium having refractive index nm = 2

and successively the refractive index is fixed to nm = 3. The cylinders are supposed

to have three different radii, that will be combined to analyze several combinations.

The radius size is chosen to be a1 = 0.25λ0, a2 = 0.5λ0, or a3 = λ0, and so there are

six possible values for the quantity (ai−aj), where i = 1, · · · , 3 and j = 1, · · · , 3. A

cylinder axis has coordinates (−10π,−h) where h = FF +ai (being FF the far-field

distance, see Eq. (2.1) of Chapter 2). The second cylinder has the same ordinate

and abscissa varies in the range [−5π, 10π] with a step resolution of 0.25π that is, in

k0 units equals to λ0/8 (k0λ0/8 = (2π/λ0)(λ0/8)), for total 61 points. Normalizing

with respect of π, we define a horizontal offset ∆η ∈ [−5, 10].

With this strategy, we can make several assessments about the procedure perfor-

mances vs. horizontal proximity of the cylinders and also vs. the reciprocal size. In

fact, it is quite obvious that the larger object should be better located.

Subsequently, we provide a second set of simulations in which the ordinate of the

second cylinder is varied while the position of the first cylinder is fixed. In these

scenarios, the abscissa of both the cylinders does not vary, and it is equal to ±5π.

Thus, as the vertical co-ordinate depends on the far-field distance FF , we adopt a

sweep in the range [−FF−ai,−FF−5a1], with a resolution of 0.1π (that is equal to

λ0/20 in k0 units), for total 51 points. So that, we define a vertical offset ∆χ ∈ [0, 5]

for this kind of simulations, considering only a configuration of equal-size cylinders.

In dielectric cylinders case, the geometrical combinations are repeated also for differ-

ent combinations of the cylinder refractive indexes. In fact, once fixed the refractive

index of the ground, we simulate two different scenarios, involving two main cat-

egories: two dielectric cylinders having the same and different refractive indexes.

In both the cases we simulate all the radii combinations, varying ∆η, and only the

equal-radii pairs, for variations of ∆χ.

So that, for nm = 2, we take into account the cylinders refractive indexes nci = 1; 3,

where i indicates the cylinders. We consider these cases very significant, since they

represent a low-dielectric-contrast configuration, and also the presence of cavities.

Our purpose is to check the localization procedure performances for dielectric ob-

jects but also for cavities, which was well-detected in single-object cases.

Furthermore, we present the outcomes considering the localization error defined in

Eq. (2.4) for both the cylinders and for all the implemented methods. Actually, the

implementation of ESPRIT is now changed; in fact, we provide an optimization in
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the double-localization case of this method, choosing a 19-element array partitioned

in 16 doublets each made of 4 elements. The resulting number of estimated DoA

is 16, that is only one less the other methods. This variation is required by the

clustering approach, since the number of crossings cannot be too high otherwise the

implemented methods are not able to identify separate clusters of crossings. Never-

theless, this revised ESPRIT method, allow us to perform an equivalent analysis by

reducing the overall number of sensors drastically.

3.3 Localization of Two PEC Cylinders

The double-PEC cylinders localization, with reference to a surrounding medium

with refractive index nm = 2, shows to be quite effective in presence of a horizontal

offset, as indicated in Figs. 3.9-14. In particular, in most of the cases, the localiza-

tion error does not cross the threshold. By considering the following figures, some

assessments can be pointed out; in particular, two outcomes are evident: first of all,

when the double-objects configuration involves cylinders having different sizes, the

larger is the object the better it is localized, and secondly the moving cylinder is

better localized.

Not much can be exposed further about the first point, but it being understood

that the proving of a such predictable behavior is anyway a result that could not

be stated a priori. It is instead more significant the second issue; in fact, this un-

balanced localization could be intuitive for the different sizes configurations, and

too hastily ascribed to that, but it happens also in equal-size cases, and so more

attention must be paid on it. A possible explanation is that the moving cylinder

“attracts” more DoA that the fixed one. In fact, the fixed cylinder is placed at the

edge of the array, limiting the number of sub-arrays that could be able to detect it.

On the contrary, the moving cylinder can be detected not only by the overhanging

sub-arrays but also by the peripheral one laying on the other edge.

Moreover, the correlation between signals has to be taken into account. In fact,

when the two cylinders are close (within a distance of 3-4 λ0), the fields scattered by

the cylinders toward the group of sub-array overhanging the objects and in-between

of them, is greatly correlated, inducing false DoA estimations. When the horizontal

offset increases, the scattered fields are poorly correlated and the estimation algo-

rithms perform a better estimation. We must notice that the localization error of

the left column of Figs. 3.9-3.14, shows a “step” of the estimation error in corre-

spondence with this distance; moreover the horizontal range distance at which the

field is highly correlated increases as the refractive index of the hosting medium
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increases (see Figs. 3.18-3.29).

This produces a larger amount of crossings identifying the moving object cluster and

thus a better localization is achieved. In addition, only those sub-arrays overhanging

the fixed cylinder, can receive the correlated field, because it is mainly focused in the

in-between of the two cylinder, so that in Figs. 3.9-3.14 the fixed cylinder localiza-

tion is less precise. Thus, it is more significant in terms of localization performances

vs. ∆η, the first fixed cylinder behavior, and in this context we can observe that

the horizontal resolution capability of the procedure depends on the fixed cylinder

size. In particular, in Fig. 3.9a)-3.9f) the localization error is under the threshold

for ∆η ≥ 4, and going further the error becomes homogeneous as one could expect

since the cylinder size is the same. The error levels of the all methods is quite the

same (except P.H.D.), and all the most for parametric methods. It is also interesting

that the resolution remains the same also in Figs. 3.10-3.11, confirming that it de-

pends on the fixed cylinder size. In fact, in the right-side pictures, we can appreciate

that the average error decreases as the moving cylinder increases, but the value of

∆η since which both the cylinders are correctly localized, does not change. In Fig.

3.12a)-3.12f) the correct-double-localization occurs as a shorter horizontal offset is

reached, and more precisely since ∆η = 2π. Even though the overall method perfor-

mances are improved, profiting by the radius increment, P.H.D. estimation is still

the less precise seems to be not able to localize also medium-size objects. In Figs.

3.13-3.14, a further reduction of the localizing threshold is achieved, and when the

cylinders have the larger dimensions, the localization is almost uniform along ∆η.

Anyway, a clear worse performing can be observed for the non-parametric methods

and all the most for the P.H.D. one.

For what concerns the vertical sensitivity, an unexpected behavior has been ob-

served. In fact, even if the starting configuration geometry is absolutely symmetric

(in the first iteration the cylinders are placed at (−5π,−h) and (5π,−h), respec-

tively), the localization error for the two cylinders is very different.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Localization of two PEC cylinders having radii equal to a1 = 0.25λ0,

buried in a homogeneous medium with nm = 2; estimation error for the two centers

vs. horizontal position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Localization of two PEC cylinders having radii equal to a1 = 0.25λ0

and a2 = 0.5λ0, respectively, buried in a homogeneous medium with nm = 2; es-

timation error for the two centers vs. horizontal position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Localization of two PEC cylinders having radii equal to a1 = 0.25λ0 and

a3 = λ0, respectively, buried in a homogeneous medium with nm = 2; estimation er-

ror for the two centers vs. horizontal position: a) Bartlett, Capon, Linear Prediction,

Maximum Entropy, Minimum Norm, P.H.D. center estimations of the fixed cylinder;

b) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT

center estimations of the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT cen-

ter estimations of the moving cylinder; e) WSF, DML, SML center estimations of

the fixed cylinder; f) WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Localization of two PEC cylinders having radii equal to a2 = 0.5λ0,

buried in a homogeneous medium with nm = 2; estimation error for the two centers

vs. horizontal position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Localization of two PEC cylinders having radii equal to a2 = 0.5λ0 and

a3 = λ0, respectively, buried in a homogeneous medium with nm = 2; estimation er-

ror for the two centers vs. horizontal position: a) Bartlett, Capon, Linear Prediction,

Maximum Entropy, Minimum Norm, P.H.D. center estimations of the fixed cylinder;

b) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT

center estimations of the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT cen-

ter estimations of the moving cylinder; e) WSF, DML, SML center estimations of

the fixed cylinder; f) WSF, DML, SML center estimations of the moving cylinder.



140 CHAPTER 3. DETECTION OF MULTIPLE CYLINDERS

(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Localization of two PEC cylinders having radii equal to a3 = λ0,

buried in a homogeneous medium with nm = 2; estimation error for the two centers

vs. vertical position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: Localization of two PEC cylinders having radii equal to a1 = 0.25λ0,

buried in a homogeneous medium with nm = 2; estimation error for the two centers

vs. vertical position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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In fact, in Fig. 3.15a)-3.15f), on the left-side pictures (relevant to the fixed cylinder)

the localization performs quite good, excepted for some DoA estimation methods

(i.e. P.H.D. and root-MUSIC), while in the right-side the error is higher. This could

be well explained if the higher-error region were localized toward the right size of

the plot, corresponding to the zone in which the cylinder is more distant from the

array, but on the contrary, the error trend seems to be oscillating quite uniformly

in a definite range ∆χ ∈ [2, 4].

A possible interpretation of such a curious trend, can be associated not just to the

vertical offset sensitivity of the procedure, but to the capabilities of the clustering

algorithms to deal with symmetric clustering dataset. The same happens in Figs.

3.16-3.17 even if in these two groups of figures, an error decrease in the left-side

pictures can be appreciated. Moreover, all the DoA methods appear more sensitive

to the vertical variation, and the non-parametric methods become significantly less

affordable. On the contrary both parametric methods and ESPRIT behave quite

regularly even though affected by the ambiguity previously described. This is a

good result, in particular for ESPRIT performance, because it could allow us to use

a lower number of antenna elements.

When a medium having refractive index nm = 3 is considered, the localization suf-

fers from a performance worsening. Moreover, we report only the equal-size cases,

since the general behavior has been well-defined during the previous analysis. So

that, in Figs. 3.18-3.20 a higher average estimation error is observed. In particular,

even if the error is still decreasing as ∆η increases, it goes under the threshold, only

for some DoA methods, and generally the localization precision is poor. In par-

ticular, a lack of accuracy can be noted for non-parametric methods, MUSIC, root

MUSIC and sometimes ML-based methods (that in this case are differentiated), but

ESPRIT seems to be more robust. This point suggests that the outer elements of

the array could affect the localization as the refractive index of the burial medium

increases. For what concerns the sensitivity to the vertical offset, a similar behavior

of the previous nm = 2 case can be derived. In Figs. 3.21-3.23 can be appreciated

how the ESPRIT method is outperforming if compared with the other methods.

Even though the localization in this case is not accurately provided, the procedure

is still able to detect the objects. In fact, the average error for methods represented

in Figs. 3.18-3.20, varies in the interval erri ∈ [5, 15], where i = 1, 2, and it is in-

versely proportional to the radius. Consequently, the average distance gap between

the estimated co-ordinates of the object center and the real one is at most 5λ0.

Furthermore, it has to be pointed out, that the error committed on estimating the

vertical co-ordinate (Figs. 3.21-3.23) is quite mitigated in this case (excepted for
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some non-parametric methods and root MUSIC), suggesting a problematic identi-

fication of the cluster abscissas by the clustering methods. It could be interesting

to repeat these simulations by using more efficient clustering methods, considering

also the possibility to derive one ad-hoc algorithm.

Another damaging factor comes into play as the refractive index of the burial

medium increases, and in particular it is relevant to the DoA estimation model. In

fact, the simplified scenario which does not consider the effects due to the ground-air

planar interface, is no more able to fit the propagation in a dense medium, and the

geometrical optic approximation implicitly adopted, becomes improper. In partic-

ular, on one side, the electromagnetic-field wavelength in the medium hosting the

cylinders becomes smaller when the refractive index is higher, so the object is electri-

cally larger. On the other hand, as the refractive index of the homogeneous medium

increases, the limit angle at the planar interface reduces the transmission from the

medium to the array (since the transmission between a more dense medium and a

less dense medium is interdicted by the limit angle towards the less dense medium).

A more rigorous analysis of electromagnetic propagation in stratified media would

be necessary.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Localization of two PEC cylinders having radii equal to a2 = 0.5λ0,

buried in a homogeneous medium with nm = 2; estimation error for the two centers

vs. vertical position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Localization of two PEC cylinders having radii equal to a3 = λ0,

buried in a homogeneous medium with nm = 2; estimation error for the two centers

vs. vertical position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Localization of two PEC cylinders having radii equal to a1 = 0.25λ0,

buried in a homogeneous medium with nm = 3; estimation error for the two centers

vs. horizontal position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: Localization of two PEC cylinders having radii equal to a2 = 0.5λ0,

buried in a homogeneous medium with nm = 3; estimation error for the two centers

vs. horizontal position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Localization of two PEC cylinders having radii equal to a3 = λ0,

buried in a homogeneous medium with nm = 3; estimation error for the two centers

vs. horizontal position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: Localization of two PEC cylinders having radii equal to a1 = 0.25λ0,

buried in a homogeneous medium with nm = 3; estimation error for the two centers

vs. vertical position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Localization of two PEC cylinders having radii equal to a2 = 0.5λ0,

buried in a homogeneous medium with nm = 3; estimation error for the two centers

vs. vertical position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: Localization of two PEC cylinders having radii equal to a3 = λ0,

buried in a homogeneous medium with nm = 3; estimation error for the two centers

vs. vertical position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of

the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

moving cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f)

WSF, DML, SML center estimations of the moving cylinder.
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3.4 Localization of Two Dielectric Cylinders

In this section some results relevant to the localization of two dielectric cylinders

embedded in a homogeneous medium having refractive index nm = 2 are presented.

In particular we analyze different configurations in which the objects are supposed

to have different size and the different refractive index. The first group of figures,

refer to the case of two cylindrical cavities having 6 different combinations of radii,

by partitioning the values a1, a2 and a3 in any way, where the localization error is

reported vs. ∆η. In Figs. 3.24-3.26, the estimation of the standing cylinder is quite

corrupted within a distance of about 4 λ0 between the cylinders. This is most of all

evident when the cylinder is small (see the left column of Figs. 3.24-3.26) because

the field received by the overhanging sub-arrays is more affected by the field scat-

tered by the moving cylinder, since the correlation between the scattered signals is

still present but less prominent than the PEC case. In fact, when the dimensions of

the two cylinders are similar, the cause of a damaged estimation is due mainly to

the effect of the correlated field, but in these cases (see Figs.3.27-3.29, left column)

the localization error decreases.

Almost the same trend can be deduced by looking Figs. 3.30-3.35, when the pres-

ence of two dielectric cylinders having refractive index nc = 3 is simulated. The

localization is less precise, because the permittivity of the objects is now larger than

the permittivity of the medium, anyway the “step” behavior of the estimation error

previously described is still clear. It is quite interesting, by looking at Figs. 3.33 and

3.35, that medium-size objects are better localized than larger objects. In fact, the

far-field region is fixed to be nmλ0/2 by Eq. (2.1), and it is good since the dimension

of the cylinders (or even one of them) are smaller than or equal to this quantity.

Since the radii of the cylinders are normalized to λ0, the electric dimension of the

cylinders depends on the value of nm, that fixes the threshold of a correct far-field

distance for ai ≤ 3λ0/4 (that is the case of Fig. 3.33). Instead, when ai = a3 the

two objects are in the near-field of some sub-arrays, and the estimation is further

worsened.

In Figs. 3.36-3.38, two cylinders with different refractive indexes are simulated. The

standing cylinder is a cavity and the moving one has nc = 3. With this group of

simulations, we intend to check the procedure in order to have information about the

simultaneous localization of two different cylinders, once fixed the dielectric contrast.

The cylinders have same dimensions ai = a1, a2, a3 for the figures, respectively. We

can see hat the “step” in the localization error trend is still present, but out of the

high-correlated field region,the procedure is quite affordable, even if the cavity is

better localized, es observed in the previous chapter.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.24: Localization of two dielectric cylindrical cavities having radii equal

to a1 = 0.25λ0, buried in a homogeneous medium with nm = 2; estimation error

for the two centers vs. horizontal position: a) Bartlett, Capon, Linear Prediction,

Maximum Entropy, Minimum Norm, P.H.D. center estimations of the fixed cylinder;

b) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT

center estimations of the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center

estimations of the moving cylinder; e) WSF, DML, SML center estimations of the

fixed cylinder; f) WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25: Localization of two dielectric cylindrical cavities having radii equal to

a1 = 0.25λ0 and a2 = 0.5λ, respectively, buried in a homogeneous medium with nm =

2; estimation error for the two centers vs. horizontal position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.26: Localization of two dielectric cylindrical cavities radii having equal to

a1 = 0.25λ0 and a3 = λ, respectively, buried in a homogeneous medium with nm = 2;

estimation error for the two centers vs. horizontal position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.27: Localization of two dielectric cylindrical cavities having radii equal

to a2 = 0.5λ0, buried in a homogeneous medium with nm = 2; estimation error

for the two centers vs. horizontal position: a) Bartlett, Capon, Linear Prediction,

Maximum Entropy, Minimum Norm, P.H.D. center estimations of the fixed cylinder;

b) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT

center estimations of the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center

estimations of the moving cylinder; e) WSF, DML, SML center estimations of the

fixed cylinder; f) WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Localization of two dielectric cylindrical cavities having radii equal to

a2 = 0.5λ0 and a3 = λ, respectively, buried in a homogeneous medium with nm = 2;

estimation error for the two centers vs. horizontal position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.29: Localization of two dielectric cylindrical cavities having radii equal

to a3 = λ0, buried in a homogeneous medium with nm = 2; estimation error for

the two centers vs. horizontal position: a) Bartlett, Capon, Linear Prediction,

Maximum Entropy, Minimum Norm, P.H.D. center estimations of the fixed cylinder;

b) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT

center estimations of the fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center

estimations of the moving cylinder; e) WSF, DML, SML center estimations of the

fixed cylinder; f) WSF, DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.30: Localization of two dielectric cylinders having radii equal to a1 =

0.25λ0, and refractive index nc = 3, buried in a homogeneous medium with nm = 2;

estimation error for the two centers vs. horizontal position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.31: Localization of two dielectric cylinders having radii equal to a1 = 0.25λ0

and a2 = 0.5λ, respectively, and refractive index nc = 3, buried in a homogeneous

medium with nm = 2; estimation error for the two centers vs. horizontal position:

a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Max-

imum Entropy, Minimum Norm, P.H.D. center estimations of the moving cylinder;

c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d)

MU.SI.C., root MU.SI.C., ESPRIT center estimations of the moving cylinder; e)

WSF, DML, SML center estimations of the fixed cylinder; f) WSF, DML, SML

center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.32: Localization of two dielectric cylinders having radii equal to a1 = 0.25λ0

and a3 = λ, respectively, and refractive index nc = 3, buried in a homogeneous

medium with nm = 2; estimation error for the two centers vs. horizontal position:

a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Max-

imum Entropy, Minimum Norm, P.H.D. center estimations of the moving cylinder;

c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d)

MU.SI.C., root MU.SI.C., ESPRIT center estimations of the moving cylinder; e)

WSF, DML, SML center estimations of the fixed cylinder; f) WSF, DML, SML

center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.33: Localization of two dielectric cylinders having radii equal to a2 = 0.5λ,

and refractive indexes nc = 3, buried in a homogeneous medium with nm = 2;

estimation error for the two centers vs. horizontal position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.34: Localization of two dielectric cylinders having radii equal to a2 = 0.5λ0

and a3 = λ, respectively, and refractive indexes nc = 3, buried in a homogeneous

medium with nm = 2; estimation error for the two centers vs. horizontal position:

a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Max-

imum Entropy, Minimum Norm, P.H.D. center estimations of the moving cylinder;

c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d)

MU.SI.C., root MU.SI.C., ESPRIT center estimations of the moving cylinder; e)

WSF, DML, SML center estimations of the fixed cylinder; f) WSF, DML, SML

center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.35: Localization of two dielectric cylinders having radii equal to a3 =

λ, and refractive index nc = 3, buried in a homogeneous medium with nm = 2;

estimation error for the two centers vs. horizontal position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.36: Localization of two dielectric cylindrical objects having radii equal to

a1 = 0.25λ, and refractive indexes nc1 = 1 and nc2 = 3, respectively, buried in a

homogeneous medium with nm = 2; estimation error for the two centers vs. horizon-

tal position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum

Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon, Linear

Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations of the

moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the mov-

ing cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f) WSF,

DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.37: Localization of two dielectric cylindrical objects having radii equal

to a2 = 0.5λ, and refractive indexes nc1 = 1 and nc2 = 3, respectively, buried in a

homogeneous medium with nm = 2; estimation error for the two centers vs. horizon-

tal position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum

Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon, Linear

Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations of the

moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the mov-

ing cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f) WSF,

DML, SML center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.38: Localization of two dielectric cylindrical objects having radii equal to

a3 = λ, and refractive indexes nc1 = 1 and nc2 = 3, respectively, buried in a ho-

mogeneous medium with nm = 2; estimation error for the two centers vs. horizon-

tal position: a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum

Norm, P.H.D. center estimations of the fixed cylinder; b) Bartlett, Capon, Linear

Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations of the

moving cylinder; c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the

fixed cylinder; d) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the mov-

ing cylinder; e) WSF, DML, SML center estimations of the fixed cylinder; f) WSF,

DML, SML center estimations of the moving cylinder.
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In the following Figs. 3.39-3.41, the localization error vs. distance ∆χ of two equal-

size cavities is simulated. In particular, the left column refers to the standing object,

while the right one pertains the moving object. The horizontal distance between

the center of the cavities is fixed. As it is clear, the estimation of the position of

the standing cylinder is more precise, and the same happens when the objects are

supposed to be dielectric cylinders with nc = 3 (see Figs. 3.42-3.44), even if in this

case, the estimation performances are worse.

In conclusion, we extend the localization procedure described in the previous chap-

ters, for a double-cylinder configurations, by using some clustering analysis algo-

rithms. The simulation results, showed that the estimation of the position is quite

effective in most of the presented cases. We varied both the size of the cylinders

and its refractive index, performing the analysis for various horizontal distances and

depths.

In particular, better performances are highlighted when perfectly conducting objects

or cavities are simulated. Possible future works, could take into account mixed con-

figuration involving both PEC and dielectric cylinders; moreover, also the number

of the objects could be increased in order to test the clustering analysis algorithm

performances.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.39: Localization of two different dielectric cylindrical objects having radii

equal to a1 = 0.25λ, and refractive indexes nc1 = nc2 = 1, buried in a homogeneous

medium with nm = 2; estimation error for the two centers vs. vertical position:

a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Max-

imum Entropy, Minimum Norm, P.H.D. center estimations of the moving cylinder;

c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d)

MU.SI.C., root MU.SI.C., ESPRIT center estimations of the moving cylinder; e)

WSF, DML, SML center estimations of the fixed cylinder; f) WSF, DML, SML

center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.40: Localization of two different dielectric cylindrical objects having radii

equal to a2 = 0.5λ, and refractive indexes nc1 = nc2 = 1, buried in a homogeneous

medium with nm = 2; estimation error for the two centers vs. vertical position:

a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Max-

imum Entropy, Minimum Norm, P.H.D. center estimations of the moving cylinder;

c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d)

MU.SI.C., root MU.SI.C., ESPRIT center estimations of the moving cylinder; e)

WSF, DML, SML center estimations of the fixed cylinder; f) WSF, DML, SML

center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.41: Localization of two dielectric cylindrical objects having radii equal to

a3 = λ, and refractive indexes nc1 = nc2 = 1, buried in a homogeneous medium with

nm = 2; estimation error for the two centers vs. vertical position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.42: Localization of two different dielectric cylindrical objects having radii

equal to a1 = 0.25λ, and refractive indexes nc1 = nc2 = 3, buried in a homogeneous

medium with nm = 2; estimation error for the two centers vs. vertical position:

a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Max-

imum Entropy, Minimum Norm, P.H.D. center estimations of the moving cylinder;

c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d)

MU.SI.C., root MU.SI.C., ESPRIT center estimations of the moving cylinder; e)

WSF, DML, SML center estimations of the fixed cylinder; f) WSF, DML, SML

center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.43: Localization of two dielectric cylindrical objects having radii equal

to a2 = 0.5λ, and refractive indexes nc1 = nc2 = 3, buried in a homogeneous

medium with nm = 2; estimation error for the two centers vs. vertical position:

a) Bartlett, Capon, Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D.

center estimations of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Max-

imum Entropy, Minimum Norm, P.H.D. center estimations of the moving cylinder;

c) MU.SI.C., root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d)

MU.SI.C., root MU.SI.C., ESPRIT center estimations of the moving cylinder; e)

WSF, DML, SML center estimations of the fixed cylinder; f) WSF, DML, SML

center estimations of the moving cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.44: Localization of two dielectric cylindrical objects having radii equal to

a3 = λ, and refractive indexes nc1 = nc2 = 3, buried in a homogeneous medium with

nm = 2; estimation error for the two centers vs. vertical position: a) Bartlett, Capon,

Linear Prediction, Maximum Entropy, Minimum Norm, P.H.D. center estimations

of the fixed cylinder; b) Bartlett, Capon, Linear Prediction, Maximum Entropy,

Minimum Norm, P.H.D. center estimations of the moving cylinder; c) MU.SI.C.,

root MU.SI.C., ESPRIT center estimations of the fixed cylinder; d) MU.SI.C., root

MU.SI.C., ESPRIT center estimations of the moving cylinder; e) WSF, DML, SML

center estimations of the fixed cylinder; f) WSF, DML, SML center estimations of

the moving cylinder.
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Chapter 1

ITER Lower-Hybrid

Current-Drive System

Since many years, the research on thermonuclear fusion technology has become

a challenging field of application and development for the design of new microwave

components. The present work has been developed within the EURATOM-ENEA-

“Roma Tre” University collaboration for the activities of the European Fusion Devel-

opment Agreement (EFDA) task WP08-HCD-03-01 (EU Contribution to the ITER

Lower Hybrid Current Drive Development Plan), concerning the International Ther-

monuclear Experimental Reactor (ITER) project.

Before starting to explain the contents of our contribution in terms of analysis and

design of microwave components for the Lower Hybrid and Current Drive (LHCD)

system of ITER, a brief introduction about nuclear fusion technology and develop-

ment is presented in this chapter, focusing on the additional radio-frequency (RF)

heating sources, in particular at the lower hybrid resonance frequency [1]. Further-

more we describe in detail, the overall LH heating transmission line system, that

has the job to carry several megawatt of RF power from the generators to plasma,

exciting the resonance frequency of plasma with two important goals: first of all

a massive heating of plasma, secondary but not less outstanding, electromagnetic

power injection at this particular frequency can be used to realize a non-inductive

current drive (NICD) to achieve a quasi steady-state regime. The power is coupled

to plasma by using a particular launcher formed by an array of antennas (called

Passive-Active Multi-junction or PAM [2, 3]), that has the peculiarity to radiate a

non-evanescent electromagnetic field only when facing plasma with specified char-

acteristics; this device is the hard core of the whole system and it is engineered with

respect of strict constrains in term of power efficiency and then, the transmission

losses have to be imperatively minimized.
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We have contributed to the ITER ambitious project, by analyzing and synthesizing

some fundamental microwave components such as the Combiner-Splitter network,

mode filters and bends in oversizes rectangular waveguide. The final scope is to

maximize the power transmission from generators to the launcher reducing as much

as possible the losses in terms of attenuation and spurious modes excitation, with

respect to the system constraints.

1.1 Basics of Tokamak Machines

Under the proper conditions the low atomic number elements will react to con-

vert mass to energy (E = mc2) via nuclear fusion. For example, the fusion of the

hydrogen isotopes deuterium (D) and tritium (T) according to the reaction

D + T →4 He+ n (Q = 17.6MeV )

produces 17.6MeV of energy. The fusion of 1g of tritium together with 2/3g of

deuterium produces 1.6× 105 kWh−1 of thermal energy [4]. As we can see by look-

ing at Fig. 1.1, this kind of fusion reaction will provide much more energy that

the uranium-iron fission reaction. In order for a fusion reaction to take place the

two nuclei must have enough energy to overcome the repulsive Coulomb force acting

between the nuclei and approach each other sufficiently close that the short-range

attractive nuclear force becomes dominant. Thus, the fusion fuel must be heated

to high temperatures. For the D-T reaction, the gas temperature must exceed 100

million degree Celsius before a significant fusion rate is feasible. An even higher gas

temperature is required for the other fusion reactions. At such temperatures the gas

exists as a macroscopically neutral collection of ions and unbound electrons which

is called a plasma.

A fusion plasma cannot be maintained at thermonuclear temperatures if it is allowed

to come in contact with the walls of the confinement chamber, because material

eroded from the walls would quickly cool the plasma. Fortunately, magnetic fields

can be used to confine a plasma within a chamber without contact with the wall.

A charged particle moving in a magnetic field will experience a Lorentz force which

is perpendicular to both the direction of particle motion and to the magnetic field di-

rection. This force does not affect the component of particle motion in the magnetic

field direction, but it causes acceleration at right angles to the particle direction in

the plane perpendicular to the magnetic field direction, producing a circular particle

motion in that plane. Thus, a particle in a magnetic field will move along the field

and circle about it; that is, will spiral about the field line. The radius of the spiral,
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Figure 1.1: Binding energy curve.

or gyroradius, is inversely proportional to the strength of the magnetic field, so that

in a strong field charged particles move along magnetic field lines.

A tokamak (Toroidal Kamera Magnitnaya, invented by Sakharov and Tamm in the

1950s) is a toroidal chamber which uses a strong toroidal magnetic field, Bφ, to

contain a high temperature plasma within the torus. However, this field alone does

not allow confinement of the plasma. In order to have an equilibrium in which the

plasma pressure is balanced by the magnetic forces it is necessary also lo have a

poloidal magnetic field in a tokamak this field is produced mainly by current in the

plasma itself, this current flowing in the toroidal direction. The combination of the

toroidal field Bφ and poloidal field Bθ, gives rise to magnetic field lines which have

a helical trajectory around the torus [5].

The toroidal field is produced by a set of toroidal field coils which encircle the

plasma. The poloidal field is produced by an axial current which is induced by the

transformer action of a set of primary poloidal field, or ohmic heating, coils, so the

plasma can be viewed as the secondary winding of a transformer. This concept is

illustrated in Fig. 1.2.

Since the plasma is an electrical conductor, the current flow through it, causes an

ohmic (or resistive) heating; it is the same kind of heating that occurs in an electric

light bulb, for instance. The heat generated depends on the resistance of the plasma

and the current. But as the temperature of heated plasma rises, the resistance de-

creases and ohmic heating becomes less effective. It appears that the maximum

plasma temperature attainable by ohmic heating in a tokamak is 20 − 30 million

degrees Celsius. To obtain still higher temperatures (20keV ≈ 230 million degree

Celsius), additional heating methods must be used.

Other heating systems are Neutral Beam Injection (NBI), consisting in neutral par-
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Figure 1.2: Magnetic confinement in a Tokamak machine.

ticles (typically a hydrogen isotope such as deuterium) at high energy shot into

the core of the plasma to transfer their energy to the plasma, raising the over-

all temperature, and RF heating, including Electron-Cyclotron Resonance heating

(ECRH), Ion-Cyclotron Resonance heating (ICRH) and Lower-Hybrid Resonance

heating (LHRH). These three additional RF systems, differs among them from the

particular frequency used to excite the plasma at its resonances. In the following

section we present some outlines of plasma wave theory, just to have some physical

basics to understand the technological problem that have to be dealt with in nuclear

fusion engineering. More detailed plasma physic features are out of the purpose of

this work, but some exhaustive literature is reported in the Bibliography [6, 7].

1.1.1 Radio-Frequency Heating

Radio-frequency heating depends on the transfer of energy from electromagnetic

waves generated by an external source to particles at suitable resonance frequen-

cies. Resonance absorption of wave energy does not involve collisions and unlike

ohmic heating, the process becomes more efficient with increasing temperature. A

multi-species plasma in a magnetic field has several resonance frequencies capable

of absorbing the energy of incident waves.

The fundamental properties of waves in plasma can be understood by considering

low-frequency wave phenomena in a cold, uniform, uniformly magnetized, infinite,

and homogeneous plasma which has an equilibrium solution characterized by an

electric field E0 ≈ 0 and a constant magnetic field B0. The plasma is not isotropic,

however, since the presence of a magnetic field provides one preferred direction.

Without the magnetic field, the plasma may be represented by a simple dielectric
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constant and the only wave solution is a simple electromagnetic wave that prop-

agates above the plasma frequency, ωpe. The governing equations for perturbed

solutions are Amperes and Faradays laws,

∇×B = µ0j +
1

c2

∂E

∂t
(1.1)

∇× E = −∂B

∂t

together with the equation of motion for a particle of species l = i, e and charge ql

(being i positive ions and e electrons) in an electromagnetic field (Lorentz law):

ml
dvl
dt

= ql
(
E + vl ×B

)
(1.2)

and the expression for the total current is

J =
∑
l

nlqlvl (1.3)

where the sum is over the species number nl. Since the plasma has been presumed

to be uniform and homogeneous in both space and time, we may Fourier transform

these equations or what is equivalent, assume that

E = E1e
j(k·r−ωt)

B = B0 + B1e
j(k·r−ωt) (1.4)

v = v1e
j(k·r−ωt)

and B0 is the static magnetic field assumed to propagate in z-direction and |B1| �
|B0|. Now, by inserting the previous Eq. (1.4) in the equation of motion, Eq. (1.2),

we obtain the linear form as

−jωmlv1l = ql(E1 + v1l ×B0) (1.5)

where the second order terms have been neglected because we have assumed the

waves having sufficiently low amplitude. Projecting the velocity onto the axes of a

Cartesian system co-ordinates, we lead the following equations

vxl =
jql

ml(ω2 − ω2
cl

(
ωEx + jκlωclEy

)
vyl =

jql
ml(ω2 − ω2

cl

(
ωEy − jκlωclEx

)
(1.6)

vzl =
jql
mlω

Ez
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where κl = ql/|ql| denote the sign of the charge for species l and ωcl = |ql|B0/ml

is the cyclotron frequency for species l. Introducing the rotating co-ordinates such

that
(
v
E

)
± =

(
v
E

)
x
± j
(
v
E

)
y
, we may write both vx and wy of the previous Eq. (1.6)

as

v± =
jql

ml(ω ∓ κlωcl)
E± (1.7)

Similarly, the current density of Eq. (1.3) may be written as

J± = jε0
∑
l

ω2
pl

(ω ∓ κlωcl)
E± (1.8)

Jz = jε0
∑
l

ω2
pl

ω
E±

where

ω2
pl =

nlq
2
l

mlε0

is the plasma frequency for species l.

Combining the plasma current together with the displacement current into the

Maxwell’s equation in Eq. (1.1) for the magnetic field, we get

k×B = µ0

(
J + ε0 − jωE

)
= −jωε0K · E

where k is the wavevector whose amplitude is the index of refraction n = kc/ω and

K is the dielectric tensor of plasma given by

K =

 S −iD 0

iD S 0

0 0 P

 (1.9)

where the indicated elements are defined as

S = 1−
∑
l

ω2
pl

ω2 − ω2
cl

D =
∑
l

κlωclω
2
pl

ω(ω2 − ω2
cl)

(1.10)

P = 1−
∑
j

ωpl
ω2

and the following algebraic parameters can be derived [8]

R = S +D = 1−
∑
l

ω2
pl

ω(ω + κlωcl)
(1.11)

L = S −D = 1−
∑
l

ω2
pl

ω(ω − κlωcl)
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The Stix labels stand for the Sum, Difference, Right, Left, and Plasma terms, re-

spectively.

The resulting wave equation

n×
(
n× E

)
+ K · E = 0 (1.12)

gives the cold plasma dispersion relation that identifies the three principal radio

frequency heating schemes. In a slab approximation it takes the form

An4 −Bn2 + C = 0 (1.13)

where

A = S sin2 θ + P cos2 θ

B = RL sin2 θ + PS(1 + cosθ)2 (1.14)

C = PRL

and θ is the angle between k and the magnetic field z-directed. So that x and y

are the radial and poloidal co-ordinates, respectively. The general solution of the

dispersion relation can be conveniently written in terms of the refractive index n

and angle θ as follow

n2 =
B ± F

2A
(1.15)

tan2 θ = − P (n2 −R)(n2 − L)

(Sn2 −RL)(n2 − P )

where F 2 = B2 − 4AC.

The general condition for a resonance requires that n2 → ∞ or, equivalently that

A→ 0, that is

tan2 θ = −P
S

resonance condition (1.16)

and the general cutoff condition, where n = 0 is satisfied when

C = PRL = 0 cutoff condition. (1.17)

The so-called principal resonances occur at θ = 0 and θ = π/2, hence, for θ → 0,

we require S →∞ (see Eq. (1.16), the resonance condition for θ = 0), since P = 0

leads to cutoff condition. Since S = 1/2(R + L), we have two possibilities:

R→∞ electron cyclotron resonance

L→∞ ion cyclotron resonance
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So that, remembering that the cyclotron frequency is ωcl = |ql|B0/ml and κl = ql/ql,

the term at the denominator of R and L κlωcl = qlB0/ml is positive defined for ions

and negative for electrons. It is now clear that for a simple plasma of species l = i, e,

the ion cyclotron resonance frequency happens when ωci = qiB0/mi and the electron

cyclotron resonance frequency when ωce = qeB0/me, respectively. Since the electron

mass lower than the ion mass (except that in partially ionized plasmas), the electron

cyclotron frequency is higher than the ion cyclotron frequency (30− 120 MHz and

100− 200 GHz, respectively).

Between ωci and ωce, it is possible to define the lower hybrid resonance. In particular,

as θ → π/2, P/S → ∞ and, since P → ∞ only for ω → 0 or ωp → ∞, and both

of them are nonsense solutions, we require that S → 0. This resonances are called

“hybrid resonance” because they generally need combinations of both ωc = ω2
ci+ω2

ce

and ωp = ω2
pi + ω2

pe, wich are extraordinary waves for perpendicular propagation.

The dispersion relation for such a waves is given by

n2
X =

RL

S
=

[(ω + ωci)(ω − ωce)− ω2
p][(ω − ωci)(ω + ωce)− ω2

p]

(ω2 − ω2
ci)(ω

2 − ω2
ce) + ω2

p(ωceωci − ω2)
(1.18)

where the resonances are given by nullifying the denominator of the previous Eq.

(1.18). The derivation of these frequencies is quite complicated and we remind to

the references cited in Bibliography for a complete formulation. For our purpose it

is important to consider the only lower hybrid resonance

ω2
LH = ωceωci

(
ω2
pe + ωceωci

ω2
pe + ω2

ce

)
(1.19)

so that, the lower hybrid resonance approaches the ion cyclotron resonance in the

low density limit (ωpe � ωce), and the geometric mean
√
ωceωci in the high density

limit (ωpe � ωce), so it in-between ion and electron cyclotron frequencies.

The two group of resonances of a cold plasma (θ = 0, π/2) induced different prop-

erties in resultant propagating waves. In particular, in the first case, the particle of

specie l is sped up the static magnetic filed B0 in the z-direction. Of course, this

produces a particle velocity increasing and consequently an effective plasma heating.

Anyway the ECRH is affected by serious technological problem, since high-power-

steady-state sources at very high frequency are very hard to create. More feasible

is the ICRH even if some problems occur limiting the efficiency [9, 10].

Another possibility could enhance the plasma temperature and also allow the toka-

mak to operate continuously (in theory). Such a condition could be achieved mak-

ing k ‖ E, so that the electrons are sped up by a quasi-electrostatic field. The

LH resonce fulfill this condition having θ ≈ π/2, but actually a small component
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of the wavevector parallel to the magneto-static field still exists. In high density

plasma this reveals a component of n‖ = ck‖/ω > 1, that establish a non-inductive

current in accordance with Landau damping theory[7]. Of course this is only a poor

explanation of the complex phenomena involving the excitation of a NICD system,

anyway it help us to focus our attention on the LHCD System of ITER and the

necessity to develop a Transmission Line system able to carry efficiently the power

from generators to the launcher.

1.2 LHCD System Overview

The LHCD system is specialized for off-axis current drive and current profile

control. It is designed to deliver to the ITER plasma a total power of 20 MW at

5 GHz.

In ITER, this is approximately equivalent to a driven current of ∼ 1.5MA in the

region 0.5 < R/a < 0.7 where the distance R is calculated from the center of the

torus to the center of the tube having radius a.

The starting design of the whole LH system [11] is depicted in Fig. 1.3 and it was

supposed to be composed of :

• a generator with 24 one MW klystron,

• a transmission line,

• one launcher.

Figure 1.3: Layout of LHCD System.

The launcher whose principle is made upon PAM (Passive Active Multi-junction)

is firstly described. The wave launching structure is an array of four (two toroidal

and two poloidal) radiating elements, located in the ITER vacuum vessel. The RF
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power is transferred to the array by six circular transmission lines, following paths

of unequal electrical length, from the power sources to the tokamak port. From an

operational point of view, the LH system is composed of four identical subsystems

(LH Subsystems), each consisting of:

• one PAM module;

• two sections of main transmission lines (MTL);

• six klystron power sources.

The physic principle beyond the PAM is based on the high-density plasma properties

to have a density gradient if moving from the edges to the center. In particular, in

the central region of the plasma bulk, the density is actually high and the electric

field of an injected electromagnetic wave at the LH frequency is radially directed.

Moreover, at the interface vacuum-plasma the density is much lower and the electric

field result to be z-polarized and quasi-parallel to the magneto-static field B0 (as

can be demonstrated by solving the wave equation, Eq. (1.12), for a low-edge-

density plasma over cutoff). So that, the polarization of the electric field at the

edge must be E = ẑEz, and it can be fulfilled easily by using a rectangular wave

guide excited in its fundamental electric mode. The other condition that has to be

satisfied, involves the n‖ component that has to be grater than one. By defining

n‖ = ck‖/ω = c∆Φ/ω∆z, (where ∆z is the short side of the rectangular waveguide),

by fixing ∆Φ =≈ π and respecting the fundamental condition ∆Φ/∆z = 2π/λ, we

can design the rectangular waveguide dimension ∆z to realize the desired n‖ profile

(Fig. 1.4).

Furthermore, the power coupling can be enhanced by alternating each waveguide

with a closed-ended rectangular waveguide (this one called “passive” in opposition

with the radiating “active” waveguide), re-radiating the field components reflected

at the interface with the plasma. The single PAM module is then formed by 24 active

and 25 passive waveguides; each module is placed in a matrix of 6× 8 as indicated

in Fig. 1.5. Each row is fed by a rectangular waveguide that is bifurcated to realize

the row of active waveguides. The whole antenna is formed by four quadrants each

made of one half of 3 adjacent modules equal to that represented in Fig. 1.5. The

design of each quadrant consists in:

• 4× 3 waveguides with E plane bends. The bending has been used in order to

avoid to have the RF windows seeing the plasma in straight line;

• 4× 3 TE10 linear tapers,
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Figure 1.4: PAM principle. The phase profile is obtained by means of a grid of

rectangular waveguides excited in their fundamental TE10 mode.

• 4 × 3 TE10 to TE30 mode converters. They are used to allow to divide the

power into three in the vertical direction,

• 12× 3 passive active multi-junctions modules.

For each block, the front face is made of an array of 12 horizontal rows of 24 active

waveguides and 25 passive waveguides each.

More details about mode converters, linear tapers and RF windows can be found in

[12], for our scopes it is important that in each quadrant, the 12× 3 passive active

multi-junction are collected in a 4 × 3 matrix (in which each element is fed by a

TE30 mode, that is converted in 3 waveguide excited in their fundamental TE10

mode vertically) that turn into a 2× 3 by using 3dB couplers. A global view of the

launcher is also represented in Fig. 1.6. In such a configuration every one of the 24

ports is fed by a rectangular waveguide.

The nominal RF power density in the PAM is around 33 MW/m2 (if only the

active waveguides are taken into account) and it corresponds to an amplitude for

the forward wave of 6 kV/cm at the grill mouth. The maximum power density for

ITER is therefore well below the values achieved on present tokamaks.

The launched power is a function of the reflection at the grill mouth and is directly

linked to the electric field at the grill. Power density up to 24 MW/m2 has been

achieved on Tore Supra (Cadarache, France) for 75 sec corresponding to an electric

field value of 5.4 kV/cm at the grill mouth [13]. During the same experimental

campaign on Tore Supra, routine operation with an electric field between 3.8 −
5.4 kV/cm was achieved for more than 4000 sec. These results tend to give a large

safety margin for 5 GHz operation. A well established law shows indeed that the

maximum tolerable electric field increases roughly linearly with the frequency.

In the last ten years, depending on the klystrons number and their power supply
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Figure 1.5: Launcher plug.

capabilities, the PAM configuration has been subjected to several modifications.

At least two successive revised design were proposed [14]. Actually a high power

5GHz klystrons provide maximum output power of 500kW CW; as a consequence

48 klystrons will be used to assure the requested 20MW of LHCD coupled to the

plasma. The reduced power of the klystron influences the MTL and also the PAM

module configuration: it can be realized with only 24 active waveguides assembled

in 6 × 4 waveguides as in Fig. 1.7. In order to transport the elevated RF power

Figure 1.6: Revised PAM module design.

from generators to the antenna, 6 Main Transmission Lines (MTLs) are used. In

particular a single MTL carries 4MW RF power combining the outputs of groups

of 4 klystrons in a single circular waveguide, exciting the electric TE01 mode, that

is the lowest losses mode. In fact the attenuation through the ∼ 70 m path from

klystrons to the launcher for a circular waveguide excited in its TE01 mode, is about
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7 × 10−3dB/m for total 0.49 dB (≈ 10% of the input power), instead of 1.75dB

(≈ 30%) for rectangular waveguides. The MTL is briefly described by Fig. 1.8 and

consists of 4 sections:

Figure 1.7: MTL scheme.

• the cryostat section (that we will not consider in the present work);

• the Splitting Network (SN) Section, running from the cryostat wall to the

circular transmission line. Each MTL feeds 4 vacuum transmission lines (VTL)

through its SN

• the Circular Transmission Line (CTL) Section, running from the splitting net-

work to the LHCD klystron cabinet;

• the Recombining Network (RN) Section, located in the LHCD klystron cabinet,

running from each individual power klystron to the CTL. Each CTL is fed by

4 klystrons through the RN.

The considered standard rectangular waveguide is the WR-229. The propagating

mode is the TE10; the waveguide sizes are 58.17mm × 29.08mm. The frequency

at which the TE20 mode propagates is 5.157 GHz, therefore the frequency margin

is 157 MHz.

The waveguide is supposed made of copper and efficiently water cooled. Since the

RF losses are high the power coming from 4 klystron is combined in order to feed a

circular waveguide as indicated in Fig. 1.8.

The attenuation in a rectangular waveguide for the TE10 mode [15] is given by

αRW =
20

ln 10

√
πεf

σ

a+ 2b
(
λ0/λc

)2

ab
(
λ0/λg

) (1.20)
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where in MKSA system f is the frequency, a×b are the waveguides dimensions, λ0 is

the wavelength in free space, λc is the cutoff wavelength, λg is the wavelength in the

waveguide, and σ is the conductivity. The overall attenuation is then 0.025dB/m,

for a total of 1.75dB for 70 m. The amplitude of the electric field E for a forward

power P on matched load is

E = 2

√
λgη

λ0ab
P (1.21)

that is, for 1MW of forward power, smaller that the breakdown amplitude (30 kV/cm

which is the breakdown amplitude in dry air).

For the construction of the Combiner/Splitter component, the cross section of

(a) (b)

Figure 1.8: Splitting/Combining Network: a) component design; b) rectangular to

sector waveguide transition. labelfig:sottofigure

the circular waveguide is divided in four sector waveguides, with sector angle α =

π/2; each sector is then connected to a rectangular waveguide through a suitable

transition. The device also converts the TE10 mode of the rectangular waveguide

in the TE01 mode of the circular waveguide. The device has a double geometric

symmetry with reference to the orthogonal partition axis, and then it is also used

at the end of the MTL to split the main line into rectangular waveguides.

For a mode TEmn, the attenuation in a circular waveguide of radius a is given in

MSKA system by

αCW =
20

a ln 10

√
πεf

σ

[
m2

ξ′2i −m2
+
( λ0

λ′′ci

)2
]

1√
1−

(
λ0
λ′′ci

)2
(1.22)

where ξ′i is the n-th root of the m-th derivative of the Bessel function and λ′′ci =

2πa/ξ′i is the cutoff wavelength. The azimuthal component of the electric field is
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given by

Eφ = V ′′i

√
εm
π

ξ′i√
ξ′2i −m2

J ′m
( ξ′ir
a

)
aJm(ξ′i)

cos(mφ) (1.23)

and, for m = 0 we have εm = 1, and the forward power P is

P = η

√
1−

( λ0

λ′′ci

)2

|V ′′i |2 (1.24)

where V ′′i is the voltage of the propagating wave. For m = 0 the maximum ampli-

tude of the electric field can be derived by Eqs. (1.) and (1.) as follow

Eφ,max =
β

α

√√√√ P

η
√

1−
(
λ0
λ′′ci

)2
(1.25)

with β = 0.8158.

The minimum radius of this waveguide is limited by the constraint to propagate the

TE01 mode, and thus:

amin =
λcξ
′
01

2π
= 36.59 mm (1.26)

where λc = 60 mm is the wavelength in vacuum at 5 GHz, that is imposed to be

the cutoff frequency of the TE01 mode for the converter and, at the same frequency

ξ′01 = 3.8317. The maximum diameter is instead defined by the cutoff frequency

of the next mode allow to propagating in the rectangular to section transformer,

that is the TE41 (as we demonstrate in the next chapter), so that the output of

the combiner/splitter converter must be a circular cross-section waveguide having

a radius in this range. On the other hand the attenuation in circular waveguide

increases with decreasing radii, as indicated in Fig. 1.10. Thus, a circular waveguide

taper must be designed to connect the output cross-section of the converter to the

MTL.

amax =
λcξ
′
41

2π
= 50.78 mm (1.27)

where ξ′41 = 5.3175. All components (splitting and recombining networks, bends)

have, an efficiency lower than 100%. In closed system it means that part of the RF

power will be dissipated on spurious modes excitation. These modes, being partially

or perfectly trapped modes, can cause undesirable resonance, which spoil the VSWR

parameter of the transmission line and increase the electric fields in comparison with

calculations predictions [16]. The distance between two neighbor resonance for a
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Figure 1.9: Attenuation in circular waveguide.

transmission line of l = 70 m is not less than ∆f = c/2l ≈ 2 MHz. In order to

avoid these resonance, mode filters have to be applied. One of the classic mode

filters is based on corrugated waveguides filled by absorber. Such kinds of mode

filters are more efficient than the so-called resistive filters. The reason is that in a

waveguide with frequent corrugation (impedance-type corrugation) the field do not

penetrate inside the corrugation, where the absorber is placed. A space in-between

the combs of the corrugation is actually a cutoff for modes with an electric field

parallel to the corrugation. On the other hand, the fields of other non-symmetrical

modes can penetrate in the corrugation and, thus, be absorbed.

In Chapters 2 we present the design of the combiner/splitter converter, concluding

that this component is too critical for this application. Then, a revised transmission

line concept is proposed, using 48 rectangular waveguides, oversized at 5 GHz. In

Chapter 3, we design and optimize, for this oversized waveguide, filters and bends.

1.2.1 Rectangular-to-Circular-Sector Mode Converter

The basic theory of the sector waveguides is based on the following hypothesis:

• the radius of the sector waveguide must be constant along the direction of

propagation,

• the angle of the sector must be less then 130◦,
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• the working frequency f0 must be significantly greater than the cut-off fre-

quency of the TE01 mode in the sector waveguide.

If the three previous conditions are satisfied, the theory of the circular waveguides

may be applied to the sector waveguides.

In particular the eigenfunctions of the sector waveguides, the functions that describe

the field configuration in cylindrical co-ordinates (ρ, φ), may be straightforward de-

rived from the corresponding eigenfunctions of the circular waveguides with radius a:

TH =

√
zm(

ξ′2mn −m2
)
π

Jm
(
ξ′mnρ/a

)
Jm
(
ξ′mn
) {

sin(mφ)

cos(mφ)
TEmn modes (1.28)

TE =
1

ξmn

√
zm
π

Jm
(
ξmnρ/a

)
Jm−1

(
ξmn
) { sin(mφ)

cos(mφ)
TMmn modes

where:

• zm is the Neumann number (zm = 1 for m = 0 and zm = 0 for m 6= 0);

• Jm(ξ) is the Bessel function of the first kind of order “m”;

• ξmn is the n-th zero of Jm(ξ);

• ξ′mn is the n-th zero of the function derivative J ′m(ξ) = dJm(ξ)/dξ.

This is obtained by substitution in Eq. (1.28) of the angle π with the sector half-

angle α/2 and of the integer mode number m with the fractional number:

µ =
2πm

α
(1.29)

This last parameter changes the order of the Bessel function in Eq. (1.28), which

becomes Jµ(ξ). The cutoff wavenumbers of the modes propagating in the sector

waveguide are therefore:

kcµn =
ξ′µn
a

(1.30)

depending on the sector angle α.

So that, the modes that may propagate in a generic waveguide depend on the vacuum

wavenumber:

k0 = 2πf0
√
ε0µ0 (1.31)
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and on the cutoff wave number kc of the specific modes, that is on the geometric

characteristics of the waveguide. At a given frequency only the modes with k0 > kc

can propagate. For a circular waveguide, radius a, this means modes for which:

ξmn < 2πf0a
√
ε0µ0 (1.32)

The sector waveguide derived by splitting by four the circular waveguide, has a

sector angle α = 90◦ (or α = π/2); according to Eq. (1.29) the fractional order of

the Bessel functions to consider in Eq. (1.28) is µ = 4m.

On the base of this last equivalence, modes in circular waveguide with m = 0

correspond to propagating modes in the sector waveguides with µ = 0, and their

cutoff wave numbers are not dependent on α and have the same numerical value of

the corresponding modes in circular waveguide.

Furthermore, modes in circular waveguide with m = 1, correspond to modes with

µ = 4 in sector waveguide and circular modes with m = 2 correspond to sector

modes with µ = 8; modes with higher µ are in cutoff in the sector waveguide as in

the circular one. From the above considerations follows that only modes with first

index µ = 4m can propagate in the sector waveguide.

The sector waveguide has even geometric symmetry around the bisector of the angle

α. Therefore only TE and TM modes having even electric field symmetry around

the same bisector may propagate, that is, with reference to the eigenfunctions in

Eq. (1.28), TE modes with cosinusoidal dependence on φ and TM modes with

sinusoidal dependence on φ. But for µ = 0, sin(µφ) = 0 whatever is the value of φ,

therefore the TM0n do not propagate in the sector waveguide. Between them the

TE01 mode is the fundamental one because it has the lowest cutoff wave number.

Given two generic TE modes M and N , with eigenfunctions respectively TM and

TN , propagating in a waveguide with arbitrary cross section, the coupling coefficient

between them is:

CMN =
k2
cN

k2
cM − k2

cN

∮
L

tanφTN
∂2TM
∂n2

s

dls (1.33)

where ns and ls are the normal to the cross section surface and the tangential

component to the cross-sectional contour, respectively, as in Fig. 1.11. The gradient

of the wave function along the side-walls of the sector waveguide with φ = ±α/2 is:

∂T

∂ns
=

∂T

ρ∂φ

and for all the TE0n modes the eigenfunction of the electric field is not dependent on

the angular co-ordinate φ, so that the previous derivative in is zero. Therefore the
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Figure 1.10: Waveguide of arbitrary cross section.

coupling coefficient CMN in between modes TE0n and whatever other TE modes,

are zero even if α is not constant along the propagation direction z. This means

that, if the cross section of a sector waveguide with sector angle α = π/2 is not

affected by significant deformations, then the sector waveguide will propagate only

the TE01 mode.

1.2.2 Mode Filters in Corrugated Waveguides

Generally speaking, classical mono-modal waveguides are not suitable to trans-

mit high electromagnetic power across long paths, since they present high attenua-

tion of the fundamental mode and low power handling capability. Such drawbacks

can be overcome with the use of oversized waveguides that present the following

advantages:

• broadband;

• high power handling capability;

• comparatively low value of attenuation;

• reduced production costs since they can be chosen among the standard waveg-

uide series.

Due to the aforementioned features oversized waveguides are especially suitable for

sub-millimeter waves and high power applications[17]. As a general rule circular

waveguides operating in the TE01 mode are used in order to further reduce transmis-

sion losses. Nevertheless, notwithstanding their higher losses, oversized rectangular

waveguides, operating in the dominant TE10 mode, are to be preferred. The latter

ones present indeed the following advantages:
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1. there is no need for mode converters from rectangular (assumed to be the

standard output of the power sources) to circular waveguides;

2. potential transitions with other rectangular waveguides are realized by means

of simple tapers or quarter wavelength transformers;

3. some devices can be designed more easily due to the simple electromagnetic

field pattern;

4. the mode of interest presents a better stability (the TE01 mode in circular

waveguide is easily transformed into the TM11 mode).

Nevertheless many spurious modes may be excited and propagate within an over-

sized system in proximity of discontinuities such as flanges, bends, tapers, etc. ,

giving rise to the so-called trapped mode resonances. Furthermore, the field pattern

is not definite and varies along the waveguide if several modes are propagating si-

multaneously; so the transmission properties may deteriorate severely.

These unwanted effects may be restrained by inserting some mode filters or mode

absorbers [18]. At the moment corrugated waveguides, with corrugations filled with

an absorbing material, are the most suitable solution for high power applications

since the resistive sheets filter can only handle low power [19]. Scientific literature

related to this topic is scarce and totally lacking in guidelines useful to design such

devices.

This work gives a contribution in this sense, mainly referring to filters based on

rectangular waveguides. In particular it describes the relationship between the ab-

sorption of unwanted modes and the thickness of the absorbing material that fills

the corrugations, deriving a dependence similar to a damped cosine. Such behavior

is explained by means of an analytical model treating the corrugations as normal

guiding structures where forward and backward waves propagate. A check for what

will be analytically derived is given in the Chapter 3 showing the results of a series

of full-wave simulations run on a desktop computer with a commercial software.

Regardless of the waveguide cross section (rectangular, circular, etc.), corrugations

are excited when they are transversally crossed by the field lines of any electric sur-

face current. As a consequence the waveguide slots have to be designed so that the

surface currents of the mode of interest cross them lengthwise, while the ones of the

unwanted modes cut them perpendicularly. In this way the power carried by the

unwanted modes only feeds the corrugations, generating inside them a set of modes

that satisfies Maxwell equations and related boundary conditions.

As shown in Fig. 1.12, a single corrugation is defined by 4 dimensions: the height (bc)

and the width (ac) of its cross section and the thicknesses of the absorbing material
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(hca) and of its empty region (hcv). The empty region is generally air-filled, but the

vacuum will be considered instead of air(εr,air ≈ 1) to simplifies the mathematical

notation. Inside geometries like the one depicted in Fig. 1.12, the electromagnetic

Figure 1.11: Waveguide of arbitrary cross section.

field is given by the superimposition of forward and backward waves given by the

sum of the N modes (both TE and TM) above the cutoff frequency. In a general

form it can be expressed as follows:

E =
N∑
t=0

C+
i (ei + ezi)e

−kiz + C−i (ei − ezi)e
kiz (1.34)

H =
N∑
t=0

C+
i (hi + hzi)e

−kiz + C−i (−hi + hzi)e
kiz

being hzi and ezi the eigenvectors for respectively TE and TM modes [20]. The

unknown wave amplitudes (C+
i and C−i ) and the propagation constants (ki) change

with the transmission medium, being vacuum or an absorbing material, but the

expressions in Eq. (1.34) remain the same. From an electromagnetic point of view,

absorbing materials are lossy dielectrics, thus, at the interface between the vacuum

and the absorber, the following boundary conditions apply:

n̂×
(
Ha −Hv

)
|z=0 = 0 (1.35)

n̂×
(
Ea − Ev

)
|z=0 = 0

and

n̂ ·
(
µrHa −Hv

)
|z=0 = 0 (1.36)

n̂ ·
(
εrEa − Ev

)
|z=0 = 0
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where the subscripts v and a respectively stand for vacuum and absorber. Only the

equations in Eq. (1.35) are linearly independent because among the remaining ones,

that refer to the longitudinal field vector, there are always a redundant equation

and a null one. More precisely the equations of Eq. (1.36) are respectively null for

TM (Hz = 0) and TE (Ez = 0) modes.

At the interface between the absorber and the perfect electric wall, the boundary

conditions are as follows:

n̂×Ha|z=hca = −Js (1.37)

n̂× Ea|z=hca = 0

and

n̂ · µrHa|z=hca = 0 (1.38)

n̂ · εrEa|z=hca = −ρs

For similar reasons, only the second equation of Eq.(1.38) can be used. To sum-

marize, a set of three linearly independent equations, comprising all N propagating

modes, can be derived by the boundary conditions. Enforcing mode orthogonality,

this set of equations reduces to N linear systems with 3 equations and 4 unknowns

that are the wave amplitudes of a single mode in the two propagation media (C+
v ,

C−v , C+
a and C−a , where the subscript “v” and “a” stand for the vacuum and the

absorber, respectively). Thus each system allows the calculation of the reflection

coefficient at the corrugation input for one of the N propagating modes.

The reflection coefficient of a corrugation is very important because it affects the

performances of mode filters being directly related with their absorption capability.

More precisely, since corrugations are lossy passive structures with only one port,

the power that is not reflected is absorbed.

1.2.3 Maxwell’s Equation for Curved Waveguide

The study of curves in cylindrical cross section waveguide requires at first, to

find a convenient system of co-ordinates that allow us to transform the Maxwell’s

equations along the curvature. In particular, some basics of differential geometry

are needed.

Differential geometry of curves is an area of geometry that involves the study of

smooth curves in the plane and in Euclidean space using the methods of differential

and integral calculus. In particular, the Frenet-Serret frame is a moving frame that

can be used to develop an orthogonal system that describes the curve at a point
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completely.

A first important classification of curves can be done, considering as regular a curve

that can be described by a function which derivative is well defined and non zero

on the interval on which the curve is defined. Many different curves typologies are

known, but formally, the differential-geometric invariants are the so-called curvature

and torsion of a curve. The fundamental theorem of curves asserts that the knowl-

edge of these invariants completely determines the curve [21].

More details about the derivation of such a moving frame, can be found in the

Appendix B of this work, together with the co-ordinate metrics (h1, h2, h3) for an

arbitrary but constant cross section waveguide, that follow a specified longitudinal

path. In particular, we use u3 for the axial co-ordinates and u1, u2 for the transverse

cross section co-ordinates. Since the waveguide has a constant cross section, h1 and

h2 are the same occurring in a straight waveguide, and therefore independent of u3;

consequently h3 is function of u1 and u2, and may be also dependent on u3. In such

a co-ordinate system, the Maxwell’s equation can be written as:

∂(h3A
E,H
3 )

∂u2

− ∂(h2A
E,H
2 )

∂u3

= ∓jωh2h3A
B,D
1 (1.39)

∂(h1A
E,H
1 )

∂u3

− ∂(h3A
E,H
3 )

∂u1

= ∓jωh3h1A
B,D
2

∂(h2A
E,H
2 )

∂u1

− ∂(h1A
E,H
1 )

∂u3

= ∓jωh1h2A
B,D
3

where AE,Hn and AB,Dn represent equivalently electric field and magnetic intensity

components, and magnetic field and electric displacement components, intending

the signs in the right part of Eq. (1.39) associated with the electric (negative) and

magnetic (positive) field, respectively.

Of course the relation between these component in free space are the straightforward

equations B = µH and D = εE, for the magnetic and electric field, respectively,

where µ and ε are the permeability and permittivity in a linear, isotropic and ho-

mogeneous medium, respectively.

It is also convenient to use a bi-complex notation [22] to transform Eq. (1.39) into

transverse and axial coordinates, and notably

AE,Ht = AE,H1 + iAE,H2 (1.40)

AE,H = h3A
E,H
3

where A1 and A2 are both real and directly related to the real imaginary part of the

electric (magnetic) transverse field Et (Ht). In particular both i and j are imaginary

constant such that i2 = j2 = −1, but ij cannot be further reduced (ij 6= −1). So
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that, we can define [23] a differential operator F , such that

F =
1

h1

∂

∂u1

[·] + i
1

h2

∂

∂u2

[·] (1.41)

since h1 and h2 are independent of u3, the first two equations in Eq. (1.36) can be

combined together into the next equation

FAE ,H =
∂AE ,H

t

∂u3

∓ ijωh3AB ,D
t (1.42)

To deal with the third equation of Eq. (1.36), another operator is required, and

defined as

F̄ =
1

h1h2

[
∂

∂u2

(h1[·]) + i
∂

∂u1

(h2[·])
]

(1.43)

and the equation become

h3Re
(
F̄AE,Ht

)
= ±jωAB,D (1.44)

with reference to the complex quantity i. It is possible to avoid the presence of Re[·]
in Eq. (1.39), by obtaining the associated imaginary parts ih3Im[·] and adding to

Eq. (1.39). To this aim, we consider the double operator F̄F as follows

F̄F =
i

h1h2

{
∂

∂u1

(
h2

h1

∂

∂u1

[·]
)

+
∂

∂u2

(
h1

h2

∂

∂u2

[·]
)}

(1.45)

resulting to an imaginary term if the operand is real. So that, we can apply this

operator to AE,H and, since it is pure real, the result must be imaginary and so

Re
(
AE,H

)
= 0 must be superimposed. So that, considering Eq. (1.42), we get

Re
{
F̄FAE ,H

}
= Re

{
F̄
[∂At

∂u3

∓ ijωh3AB ,D
t

]}
= 0 (1.46)

Since h1 and h2 are independent of u3, ∂/∂u3 commutes in the Eq. (1.46) out of the

real part operator and, with reference to Eq. (1.44), we obtain

∓∂(jωAB,d)/h3

∂u3

± Im
{
jωF̄h3AB ,D

}
= 0 (1.47)

and, with some algebra, it is possible to lead to the searched expression

h3 Im
(
F̄AE ,H

t

)
= ±∂

(
AE ,H/h3

)
/∂u3 − i Re

(
AE ,H

t F∗h3

)
(1.48)

and, multiplying the previous Eq. (1.48) by i, it is possible to remove the real part

operator into Eq. (1.44), leading to the expression

h3F̄AE ,H
t = ±jωAB ,D − i∂

(
AE ,H/h3

)
/∂u3 − i Re

(
AE ,H

t F∗h3

)
(1.49)
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The previous Eq. (1.49) is actually representing two different equations, that is

for the electric and magnetic field. It is possible to obtain a single compact form

including both Et and Ht terms, by defining a multiplier N and combining in Eq.

(1.42) the Et and Ht contributes. To this aim it is convenient to split Eq. (1.48) in

the next two equations:

FE =
∂Et

∂u3

− ijωµh3Ht (1.50)

FH =
∂Ht

∂u3

+ ijωεh3Et (1.51)

in particular, if Eq. (1.50) is multiplied by N and added to Eq. (1.49), it is easy to

see that Et and Ht occur in the two combinations Et +NHt and εNEt−µHt. If we

define N as

N = ±j
√
µ

ε
= ±N0 (1.52)

we obtain the same expression Et ±N0Ht, apart from an initial factor j
√
µε. If we

now define

Ct± = Et ±N0Ht (1.53)

C± = E ±N0Ht

that combined and elaborated with F operator lead to

FC =

[
∂

∂u3

+ ij εωh3N

]
Ct (1.54)

where th ambiguity of sign ± depends on the sign chosen when defining N . By

using Eq. (1.53) the two relations in Eq. (1.49) can be treated as one by using the

following expression

h3F̄Ct = −
[
jωεNh3 + i

∂

∂u3

]C

h3

− i Re
(
CtF∗h3

)
(1.55)

where the only ambiguity consists in the sign of N .

To get a “wave equation” for the field in a general case when u3 is allowed to vary

arbitrarily, some complicated differential algebra is required, and this subject lie

outside the present dissertation, anyway, when u3 varies as e−γu3 (where γ is a

constant), the propagation in the u3 dimension is uniform and a useful expression

can be derived [23] by taking

Ct =
F(C )

−γ + ijεωh3N
(1.56)
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In particular, by applying the operator F̄ to Eq. 1.54, we get F̄FC , where further

simplification can lead to the following wave equation:{
∇2
t +

∂

∂u3

[
1

h3

∂

∂u3

1

h3

+ ω2εµ

}
C = Re

{
2ijεµNh3

−γ + ijεωh3N
F(C )F∗(log h3)

}
(1.57)

that can be solved for the transverse field component by dividing Eq. (1.55) by

jωεNh3 − iγ and thus eliminating the axial component C, to obtain

F(C ) = F
{

h3 F̄(Ct) + i Re(CtF∗h3 )

−j εωN + iγ
h3

}
= (−γ + ij εωNh3 )Ct (1.58)

by solving Eq.(1.58) to find the transverse Ct component and then extracting by

simple algebra the various electric and magnetic terms, it is possible to apply Eq.

(1.39) to find the electromagnetic field components at each point of the curvature.

It should be noted that neither F̄F nor FF̄ reduced to the transverse Laplacian ∇2
t ,

so that this method has the great convenience to obtain a tranverse wave equation

parametric with the metric of the particular curve frame.



Chapter 2

Combiner/Splitter Design

The LHCD system for ITER has been examined in the “Detailed Design De-

scription of the LHCD System” document [11], produced in the frame of the EFDA-

ITER. That document gives the general description of the system, outlines its main

components and makes the preliminary thermo-mechanical, electro-mechanical and

nuclear analyses. In addition that document describes the operation modes, the

assembly procedures and the maintenance of the system.

The report on the transmission line and, more in detail its appendix, studied the

“combiner/splitter”, that is a high power microwave device that connects the four in-

dependent rectangular waveguides, at the output of the four high power RF sources

of a LHCD subsystem, to the single circular waveguide of the MTL analyzed in

Chapter 1. This device also converts the fundamental TE10 mode carried by the

rectangular waveguides into the low losses, TE01 mode launched into the circular

one.

More details can be found in the following documents [24, 25, ?].

In particular the last two reports put in evidence the need of a more detailed analysis

of the combiner/splitter in non-ideal condition of operations.

The present report concerns the final analysis of the combiner/splitter outlined in

the previous report. The analysis been performed with the help of the ANSOFT

computer code “High Frequency Structure Simulator” (HFSS c©), version 12, based

on the Finite Elements Method (FEM).

2.1 The Combiner/Splitter Optimized Layout

In the analytic formulation reported in the previous chapter, was pointed out

that, under a given set of conditions, in the rectangular to sector waveguide transi-

tion (Fig. 2.1), that is the basic component of the combiner/splitter, the fundamen-

211
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tal TE10 mode in the input rectangular waveguide can only be converted in the TE01

mode in the output sector waveguide. Basing of what demonstrated before, the first

higher spurious mode that could propagate in the sector waveguide, considering its

geometrical symmetry around the bisector of its vertex angle, is the TE41. To avoid

any occasional, but possible, conversion to this spurious mode, as well to avoid any

diffraction losses on the walls of the sector waveguides due to incoming spurious

modes from the MTL, the radius of the sector waveguide was optimized [16].

Furthermore, we design the combiner device, by varying both the total length of

the transition and the radius of the circular sector. In particular, the length of the

device, Lconv is supposed to vary in the range [10 cm, 70 cm], with a step resolu-

tion of 1 cm. At the same time, the radius of the circular sector Rconv is varied

in the range specified by Eqs. (1.26) and (1.27), and here reported for readability:

Rconv ∈ [37mm, 50mm] (the cited values are rounded off for simulation convenience)

with a resolution of 1mm. The next analysis does not take into account losses due

to the waveguide walls which are now considered as perfectly electric. According to

Figure 2.1: The rectangular-to-sector converter.

[16], a length of 500mm, even if it does not correspond to the best result, represents

a good compromise between the performance of the device (S11 = −42.1 dB) and its

dimensions. If considered necessary, better performances could be obtained with a

longer device (S11 = −55 dB at Lconv = 700 mm), but it must be taken into account

that increasing the length of the devise also the attenuation will increase as the me-

chanical stress which the rectangular-to-circular sector transformers are subjected.

The chosen dimensions that assure optimized performances to the transition are

summarized in Table 2.1. A radius of R = 50mm has been chosen for the sector

waveguide because it is the best compromise between the constraints governing its

design. In fact, not only this radius fixes the cut off frequency of the TE41, both
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Design parameters Dimensions

Input Rectangular Waveguide WR-229 (58.17× 29.08mm2)

Output Circular Waveguide R = 50mm

Sector angle φ = 90◦

Overall length 500mm

Table 2.1: Rectangular-to-sector mode converters dimensions.

in the sector waveguide and in the circular one, at 5078 MHz, that is sufficiently far

from the upper limit of the foreseen frequency bandwidth (51,GHz±10 MHz), but it

is also affordable for the power handling point of view.

2.2 Performance Analysis

A more detailed analysis of the behavior of the combiner/splitter in terms of

power carried by the circular TE01 mode, has been performed both in ideal and

wrong conditions. In particular it has been derived an analytical method in which

the component is modeled as a network with N+M ports, as represented in Fig. 2.2,

in which the inputs (N) are the four rectangular TE10 modes, while the outputs (M)

are the seven modes above cut off in the circular waveguide at 5 GHz (TE11, TM01,

TE21, TE01, TM11, TE31, TM21). By assuming the modal orthogonality, it has

been considered the following scattering representation of a microwave (M + N)×
(M+N) network, in which the last M inputs and the first N outputs as null values.

Using the scattering parameters theory is possible to calculate the power content

driven by each mode. In order to calculate the power carried by each propagating

Figure 2.2: Equivalent scattering model of the combiner/splitter network.

mode in the circular waveguide, we can refer to the following scattering parameters
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representation:

V out
1 = VTE11 = S5,1V

in,1
TE10

+ S5,2V
in,2
TE10

+ S5,3V
in,3
TE10

+ S5,4V
in,4
TE10

V out
2 = VTM01 = S6,1V

in,1
TE10

+ S6,2V
in,2
TE10

+ S6,3V
in,3
TE10

+ S6,4V
in,4
TE10

V out
3 = VTE21 = S7,1V

in,1
TE10

+ S7,2V
in,2
TE10

+ S7,3V
in,3
TE10

+ S7,4V
in,4
TE10

V out
4 = VTE01 = S8,1V

in,1
TE10

+ S8,2V
in,2
TE10

+ S8,3V
in,3
TE10

+ S8,4V
in,4
TE10

V out
5 = VTM11 = S9,1V

in,1
TE10

+ S9,2V
in,2
TE10

+ S9,3V
in,3
TE10

+ S9,4V
in,4
TE10

V out
6 = VTE31 = S10,1V

in,1
TE10

+ S10,2V
in,2
TE10

+ S10,3V
in,3
TE10

+ S10,4V
in,4
TE10

V out
7 = VTM21 = S11,1V

in,1
TE10

+ S11,2V
in,2
TE10

+ S11,3V
in,3
TE10

+ S11,4V
in,4
TE10

(2.1)

that turns into a matrix form

Vout
i = Sk,j ·Vin,j

TE10
where i = 1, · · · , 7; k = 5, · · · , 11and j = 1, · · · , 4. (2.2)

The total input power is then calculated as

Pin =
1

2

4∑
j=1

∣∣V in,j
TE10

∣∣2 (2.3)

while the output power of each mode is derived as

P out
i =

1

2

∣∣V out
i

∣∣2 (2.4)

and the total output power is

Pout =
1

2

7∑
i=1

∣∣V out
i

∣∣2 (2.5)

The percentage of power carried by each propagating mode can be written as

P i
[%] =

100P out
i

P out
(2.6)

Actually part of the input power is reflected, so that also the power loss for reflection

at the i-th input port for i = 1, · · · , 4 must be considered:

P loss
in,i =

1

2

4∑
j=1

∣∣Si,jV in,j
TE10

∣∣2 (2.7)

so that

P loss
tot =

4∑
i=1

P loss
in,i (2.8)

and the total input power must be necessarily Pin = Pout + P loss
tot .
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2.2.1 Ideal Working Conditions

Ideal conditions of work for the combiner means that the electric fields in its four

rectangular waveguides, mode TE10, have the same amplitude and the same phase.

In these conditions the four input powers are combined in a pure TE01 mode in the

circular waveguide. If the splitting properties of the device are instead considered, in

ideal conditions the circular waveguide carries a pure TE01 mode and the RF power

is roughly equally split in the four rectangular output waveguides of the device.

These ideal conditions are visualized in Fig. 2.3, where the electric fields in the four

circular sector waveguides, and their combination in the circular one, are shown. The

Figure 2.3: Rectangular to circular waveguide conversion.

most important outcomes of the previous analysis are summarized in the following

Tables 2.2-2.3, and the derivation of the modal power content through the methods

previously described, is presented in Table 2.4. In these tables the ports 1 to 4

corresponds to the four sector waveguides, while port 5 correspond to the circular

one. The analytical model is well enough confirmed by the CAD simulations

Parameters [dB] Port 1 Port 2 Port 3 Port 4

Reflection at the sector input -37.02 -31.54 -30.21 -33.85

Coupling efficiency -6.034 -6.02 -6.028 -6.038

Table 2.2: Combiner reflection and coupling @ 5 GHz.

(provided with Ansoft HFSS c©). In the following Fig. 2.4a)-2.4b), the reflection

and transmission parameters, |S11| and |S21|, are reported. In particular the overall

considered bandwidth is from 4.9 GHz to 5.1 GHz with a step resolution of 1 MHz.
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Port 1 [dB/◦] Port 2 [dB/◦] Port 3 [dB/◦] Port 4 [dB/◦] Port 5 [dB/◦]

Port 1 -14.99/-55.47 -12.76/134.03 -11.51/139.81 -12.72/-46.26 -6.02/-55.18

Port 2 -12.76/134.03 -15.07/-55.68 -12.77/-45.96 -11.53/139.91 -6.02/-55.11

Port 3 -11.51/139.81 -12.77/-45.96 -14.99/-55.59 -12.73/133.63 -6.03/124.76

Port 4 -12.72/-46.26 -11.53/139.91 -12.73/133.63 -14.94/-55.35 -6.02/124.72

Port 5 -6.02/-55.18 -6.02/-55.11 -6.03/124.76 -6.02/124.72 -33.27/-67.59

Table 2.3: Combiner/splitter conversion efficiency: amplitude and phase @ 5 GHz.

Output modes output power [%]

TE11 0.0069

TM01 0.1752

TE21 0.0014

TE01 99.8088

TM11 0.0037

TE31 0.0012

TM21 0.0028

Table 2.4: Modal power content @ 5 GHz.

The frequency sweep is about 200 MHz and it is much wider than the operating

bandwidth, but we adopt a precautionary range in the possibility of further changing.

In the sub-figure a), the |S11| level for all the input ports is suitably under -15 dB in

the frequency interval 5 GHz±10 MHz, and in the same range, the |S21| parameter

(sub-figure b)) is quite smooth around -6 dB. A decrease of |S11| down to -30 dB/-

37 dB, occurs at 5.025 GHz, and then increases again up to -20 dB. Such a |S11|
level is extremely desirable, unfortunately at the same frequencies several notches

affect the |S21| parameter, causing an unbalanced transmission among the input

converters. To avoid this possibility, we design the component in order to have these

oscillations out of the required bandwidth, and provide a transmission stability and

uniformity. The total power loss, obtained from Eq. (2.8) is the 0.47% of the total

input power. Considering a total input power of 4 MW, the total reflection losses are

about 18,8 kW. Even if the values of the |S11| parameter for the 4 input waveguide are

not exactly the same, it can be roughly assumed that this power is equally divided

between the 4 inputs, so that the reflected power at each input port is about 4.7 kW.

The effective transmitted power is about 3.9735 MW, that is the 99.33% of the total

input power. As explained in Chapter 2, at 5 GHz only the circular TE01 mode

can be re-converted to the TE10 mode in the rectangular waveguides and propagate

backward trough the combiner. Thus, the power carried by the other modes remains
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(a)

(b)

Figure 2.4: Splitting/combining network: a) reflection; b) transmission.

trapped into the circular waveguide and must be dissipated. In particular, in the

ideal case, the total amount of trapped power is only 0.19% of the total input power,

that is about 7.6 kW, and corrugations filled of absorbing material can be designed

to solve this problem.

2.2.2 Fault-Tolerance Analysis

As pointed out previously, the wrong conditions can be due to either amplitude

or phase anomalies, or to a combination of the two. Both the two anomalies have

been considered in the following analysis.

In this section, basing on the principle described in Fig. 2.2, the quantitative analysis
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of the most probable amplitude anomalies on the input wave ports is presented. In

particular, 4 different cases are considered. As it will be shown, it is sufficient to

consider only the case in which the anomaly affects just a single wave port to suitably

describe the performances of the device for the actual purpose.

The four amplitude anomalies that have been considered are the following:

• one out of the four rectangular wave ports injects only the 70% of the nominal

1 MW RF power;

• one out of the four rectangular wave ports injects only the 50% of the nominal

1 MW RF power;

• one out of the four rectangular wave ports injects only the 30% of the nominal

1 MW RF power;

• one out of the four rectangular wave ports does not inject RF power at all.

The simulation outcomes are summarized in the next Table 2.5. In Fig. 2.5a) the

100% 70% 50% 30% 0%

TE11 0.0069 0.2815 0.9815 2.0721 4.5692

TM01 0.1752 0.1717 0.1747 0.1783 0.1852

TE21 0.0014 0.027 0.08 0.168 0.3682

TE01 -99.8088 -98.4379 95.721 91.2588 81.11

TM11 0.0037 0.521 1.5172 3.1429 6.8273

TE31 0.0012 0.4218 1.3974 2.9259 6.4088

TM21 0.0028 0.13 0.1361 0.264 0.5613

Table 2.5: Combiner/splitter amplitude anomalies @ 5 GHz: mode contents [%] vs.

input power [%].

variation (in %) of the RF power associated to the TE01 mode as function of the

wave port power reduction (fourth row of the previous Table 2.5) is reported. It must

be taken into account that the percentage is referred to the total output power. If

we consider the power reflection at each step we can understand the effective output

power percentage compared with the actual input power injection (see Table 2.6).

The effective output power associated to the TE01 mode vs. the effective total

input power (last row in Table 2.6) is plotted in Fig. 2.5b). As indicated in [24]

the circular output waveguide has to carry on a minimum RF power content of 95%

associated to the TE01 (that is 5% of power deficit). So that, up to 50% of power

reduction in one out of the four rectangular ports can be tolerated. Moreover, in
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100% 70% 50% 30% 0%

Total input power [MW] 4 3.7 3.5 3.3 3

Power reflection [%] 0.47 0.5475 0.7702 1.1249 1.9045

Effective overall output power [MW] 3.9812 3.6781 3.4692 3.255 2.9238

Effective TE01 power conversion [MW] 3.9735 3.62 3.32 2.97 2.3715

TE01 vs. input power 99.3375 97.838 94.85 90 79.05

Table 2.6: Combiner/splitter performances @ 5 GHz: performances vs. amplitude

anomalies [%].

this case about 4.38% of the total input power, that is about 125 kW, is trapped into

the circular waveguide and must be properly dissipated to avoid possible damages

in this waveguide. To complete the analysis of the combiner/splitter in non ideal

conditions, the influence of the phase variation in one out of the four rectangular

waveguides with reference to the remaining three, has been evaluated. The results

of this study, for a phase variation in the range 0◦ − 180◦, are summarized in Table

2.7. From this table it can be pointed out that the spurious TE11 and TM11 modal

contents increase as the TE01 mode content decreases, in other words, by increasing

the phase difference there is a significant transfer of power from the TE01 modes to

the other two modes. The row related to the TE01 mode, is more detailed in Fig.

2.6.

0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

TE11 [%] 0.007 1 3.61 7.5 11.85 15.36 16.63

TE01[%] 99.8 96.2 86.02 70.5 52.77 38.14 32.43

TM11 [%] 0.004 2.34 9.24 19.8 31.9 42 46

Table 2.7: Combiner/splitter modal content [%] @ 5 GHz vs. phase anomalies [%].
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(a)

(b)

Figure 2.5: TE01 modal content [%]: a) compared with the total output power and

b) compared with the effective input power.

Figure 2.6: TE01 power content vs. phase anomalies.
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2.3 Conclusive Remarks

The study of Combiner/Splitter has shown a good behavior in terms of perfor-

mances of |S11| and coupling in ideal working conditions when all the four input

waveguides are fed uniformly in amplitude and phase. In these conditions it has

been calculated that the total amount of power injected in the circular waveguide

at one side of the combiner/splitter, is about the 99% compared to the sum of the

input powers of the four rectangular waveguides WR-229 standard at the other side.

Furthermore, in this case, the coupling between the modes that propagate in the

circular waveguide, at the frequency of 5 GHz, are quite acceptable in terms of power

losses.

Anyway, in wrong working conditions, the performances of the device are affected

by a steady decrease of efficiency. In particular, in the simple case in which only

one rectangular waveguide suffers a reduction of power of 50% (without any phase

anomalies), the total power losses for the lone TE01 mode, with reference to the

total input power, are about 5%. This means that is enough a simple damage like

the described ones, to force a substantial failure of the component and this could

provoke the suppression of an entire main transmission line.

On the other hand, a phase variation ∆φ in one of the four rectangular waveguides

greater than 35◦ determines a potential dangerous situation for the MTL in circular

waveguide, due to the generation of spurious modes. In fact, even if it were possible

a phase control of the four klystrons, the correct amplitude uniformity of all the

input sectors cannot be assured. In addition, if one of the four klystrons is turned

off as consequence of an internal or of a whichever external failure, the remaining

three klystrons must be suddenly turned off to avoid severe damages to the MTL.

This highly probable event eventually determines an overall power reduction of more

than 16%.

Taking into account the total number of klystrons in operation in the LHCD sytem

(24/1 MW or 48/0.5 MW klystrons) the probability that one or more of them can

be in a faulty condition during a RF pulse is very high, so that the availability of

the whole 24 MW power of the LHCD system could be compromised.

In conclusion, the present and exhaustive analysis definitely confirms the results of

the previous analyses. Therefore the use of this combiner/splitter to gather the RF

power generated by four klystrons into a single circular waveguide, mode TE01, is

positively discouraged.

For what stated before, 48 MTLs in circular waveguide, mode TE01, with direct cou-

pling between rectangular waveguides, mode TE10, and circular ones, mode TE01,

would seem the only available solution.
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Anyway, a possible alternative can be considered. In fact, since the distance of the

klystrons from the launcher influences the length, the path and hence the configu-

ration of the MTL, by reducing this distance (determining new location of the RF

generators for instance), oversized rectangular waveguides, transmitting the funda-

mental TE10 mode, can be profitably used to build the MTL. Moreover integration

of 48 rectangular waveguides through the port cell door could be possible. By the

way, the absence of critical mode converters from rectangular waveguides, mode

TE10, to circular ones, mode TE01, would further enhance the overall efficiency of

the MTL when rectangular waveguides are used. In addition the criticality of the

not fundamental circular TE01 mode in an oversized circular waveguide is avoided

by launching the fundamental TE10 mode in a rectangular waveguide.

To limit the transmission losses to less than 5% (we consider this percentage as a

threshold for an effective power transfer. If we consider that up to 24 MW of avail-

able power, the launcher has to inject 20 MW to the vacuum vessel, so that about

4 MW can be dissipated through the whole LHCD system. A realistic estimation of

the power amount concerning the transmission line subsystem of 30% (1,2 MW that

is exactly the 5% of the total power) seems to be convincing), a preliminary analysis

about rectangular oversized waveguide performances must be provided. Moreover,

the accidental conversion between the fundamental TE10 mode and higher-order

modes (by the presence of discontinuities such as bends) that can be excited and

can propagate in oversized waveguide, has to be taken into account.

In particular, to deal with these spurious modes, adequate mode filters, able to work

at high RF power, have been investigated and a preliminary optimization of these

components has been carried out. The analysis of the bends and of the mode filters

will be finalized once the real length and path of the MTL have been assessed.



Chapter 3

Oversized Rectangular Waveguide

Components

As stated in the previous chapter, the combiner/splitter device is a good-performing

component in normal working condition, showing in this case a great effectiveness

in converting the four rectangular modes into an electric circular one. Nevertheless,

it is poorly reliable when faults occur, even if with some differences between am-

plitudes and phase diseases, and it can be classified as not-reliable for high power

applications.

This technical hitch induced to take into account the possibility of a fully oversized

rectangular waveguide transmission line. In fact, since the transmission losses along

the MTL are substantially reduced in proportion to the line length, it is possible

to limit the power losses by shortening the distance between klystrons lodging and

the launcher. This option suggests the possibility of using oversized rectangular

waveguides to realize the MTL of the LHCD system. Moreover if the MTL is re-

alized with rectangular waveguides, there is no need for mode converters, but only

tapers to connect the different cross-sections are necessary. Therefore the transmis-

sion losses and the mode conversion efficiency of the mode converters must not be

considered in the overall MTL transmission losses [11].

In conclusion the slightly higher transmission losses of the rectangular waveguides

can be compensated by the absence of rectangular to circular mode converters and

of their conversion efficiency. On top on this, the rectangular waveguides will trans-

mit directly the fundamental TE10 mode, reducing the complexity of a MTL based

on circular waveguide transmitting a non fundamental TE01 mode.

On the other hand, the realization of the MTL in waveguides of oversized rectangu-

lar cross-section, allow to propagate several higher-order modes that diminish the

transmission efficiency of the fundamental TE10 mode, dissipating some of the total

223
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power among the other propagating modes. This will produce a decrease of power

injection in the fundamental mode, compared with the expected 20 MW, together

with some problems of reflection toward the line [27].

To deal with this problem, it is mandatory the design of efficient mode filters in rect-

angular waveguide, that allow to partially attenuate the unwanted modes. Moreover,

spurious modes can also be generated by any accidental discontinuity on the way.

Therefore, it is very important to design some “controlled discontinuities”, such as

bends on both the E and H geometrical planes.

3.1 Preliminary Analysis

In Table 3.1, some standard rectangular waveguides that are above cut-off at

5 GHz, with their computed power capability at that frequency for the chosen prop-

agation mode at different electric fields and VSWR, are roughly summarized. The

power capability has been computed according to the following operative relation

[28]:

P

E2
max

= 6.63× 10−1a b
λ0

λg
(3.1)

where Emax (in kV/cm) is the max allowable electric field in the waveguide, while

a × b (in cm22) is the surface of the cross-section of the waveguide; λ0 and λg are

the wavelength in vacuum and the wavelength in the waveguide, respectively.

The maximum allowable power Pmax is instead obtained by waveguides specification

guide. This peak power is obtained considering an electric strength of 30 kV/cm

(ideal dry air) in the nominal frequency bandwidth of each waveguide.

The value indicated in Table 3.1, refer to a maximum electric Emax = 6 kV/cm

and a V SWR = 1.2, that is about a reflection coefficient of |Γ| = 0.0909. From

Waveguide Size (a× b) [mm] P[kW] Pmax [kW] Bandwidth ∆f [GHz]

WR-187 47.5× 22.15 164 1040 3.94-5.99

WR-229 58.17× 29.11 291 1600 3.22-4.90

WR-284 74.14× 34.04 448 2430 2.60-3.95

WR-340 86.36× 43.18 701 3800 2.17-3.00

WR-430 109.22× 54.61 1150 5900 1.72-2.61

WR-510 129.54× 64.77 1978 9200 1.16-2.20

WR-650 165.10× 82.55 3195 15000 1.12-1.70

Table 3.1: Power capability of standard rectangular waveguide @ 5 GHz.
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Waveguide αRW [dB/m] fTE10
c [GHz] fTE20

c [GHz]
No. modes

@ 5 GHz

WR-187 3.4× 10−2 3.16 6.31 1

WR-229 2.16× 10−2 2.58 5.16 1

WR-284 1.6× 10−2 2.08 4.16 7

WR-340 1.15× 10−2 1.74 3.47 8

WR-430 8.7× 10−3 1.38 2.75 10

WR-510 7.1× 10−3 1.15 2.31 13

WR-650 5.4× 10−3 0.91 1.82 18

Table 3.2: Attenuation of standard rectangular waveguide @ 5 GHz.

this table it is evident that the WR-284 could carry the 500 kW of a single klystron

if adequately pressurized and if the power reflection coming back from the load is

limited to a V SWR ≤ 1.2.

An additional parameter to consider for the choice of a waveguide is its specific

attenuation [dB/m] at a given frequency, as can be calculated with Eq. (1.20), here

reported for convenience:

αRW =
20

ln 10

√
πεf

σ

a+ 2b
(
λ0/λc

)2

ab
(
λ0/λg

)
The attenuation value, computed @ 5 GHz for the considered standard waveguides,

is reported in Table 3.2, together with the cut-off value and the overall number of

propagating modes. By analyzing this table it is evident that, to limit the trans-

mission losses, the WR-284 can be used for shortened transmission lines. In fact

the specific attenuation corresponds to a power losses of about 0.36% m−1. Anyway

the power handling with an inner electric field limited to 6 kV/cm and a VSWR =

1.2 is much lower than the specifications. The same happens for the WR-340, that

can carry an average power of about 700 kW. This solution cannot be taken into

account for two main reasons: at first, the overall power attenuation is lower than

the 5% of the transmitted power for a transmission line length of about 14 m that is

considered too short for the actual distance between generators plant and launcher;

moreover, the transmitted power of the fundamental TE10 is reduced because of the

presence of higher order modes. Even though it were possible to attenuate the power

content on these modes, the resulting power on the fundamental mode remain the

same.

The power capability of the WR-430, with an inner electric field limited to 6 kV/cm

and a VSWR = 1.2 is about 1150 kW. This power capability can be increased up
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Mode λc [mm] λg [mm] fc [GHz]

TE10 218.44 62.40 1.373

TE01/TE20 109.22 71.81 2.747

TE11/TM11 97.69 76.03 3.071

TE21/TM21 77.23 95.30 3.884

TE30 72.81 105.90 4.120

TE31/TM31 60.58 433.04 4.952

Table 3.3: WR-430: modes propagating @ 5 GHz.

to 3200 kW if the acceptable maximum electric field in the waveguide is brought to

10 kV/cm by pressurizing it by dry air or by SF6. Thus the standard rectangular

waveguide WR-430 can be effectively used to transmit even more than the 500 kW

generated by a single klystron in the TE10 fundamental mode.

The WR-430 is oversized at 5 GHz, thus it can propagate high order modes other

than the fundamental. These modes (TEmn and/or TMmn) can be easily obtained

from the following relation:

λc =
2√(

m
a

)2
+
(
n
b

)2
(3.2)

being a and b the waveguide largest and smallest rectangular sizes, respectively.

All the modes having λc > λ0 at 5 GHz can propagate inside the WR-430. These

modes are listed in Table 3.3; for each of them also the cut-off frequency and the

wavelength in waveguide are given

According to the that, the first mode in cut-off at 5GHz is the TE40. On the base

of what explained, the path of the transmission line must be accurately designed. In

particular, the total length has to be defined with respect to the attenuation (Table

3.3). For the WR-430 it is about 0.2%m−1, allowing to have a 25-30m line, for an

overall power losses lower than the 5-6% of the transmitted power.

Furthermore, mode filters and waveguide bends have to be properly designed in

order to mitigate the higher modes power content, and the accidental generation of

spurious modes, due to discontinuities along the line. The MTL path design has to

consider not only the best choice in terms of curve typologies, but also the proper

allocation of all the waveguides, considering the possibility of both horizontal and

vertical curvatures (in other words the waveguide bend must be designed for a curve

on both the E and H plane).

In addition, ideally, each MTL should provide almost the same power to the launcher

in order to guarantee the uniformity of the PAM module radiation. This aspect
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needs to be more detailed and discussed, and the problem of an nonuniform PAM

excitation must be deeply studied.

It can be noted that, for a distance of 30m, the WR-430 standard, has an attenuation

of 0.261 dB, equal to the 6% of transmission losses. If it were possible to reduce

the distance, other dimensions could be considered for the waveguides, with the

advantage to reduce the number of propagating unwanted modes. Considering for

example an hypothetic distance of 10 m, the WR-229 can be used with an acceptable

maximum electric field in the waveguide brought to 10 kV/cm (by pressurizing it by

dry air or by SF6). Such solution not only will allow an unimodal propagation, but

also a maximum power handling of 1.6 MW, and a total attenuation of 4.9%. Of

course this would be the optimal solution for an high power unimodal transmission.

3.2 Mode Filters

Scientific literature related to this topic is quite scarce and totally lacking in

guidelines useful to design such devices; this work aims at giving a contribution

in this sense. In detail, the dependence of mode filter performance on various ge-

ometrical parameters has been derived with analytical and numerical approaches.

Subsequently the strength and distribution of the electric field inside the corruga-

tions has been studied by means of a 3D full-wave Finite Element Method. The

problems related with degenerate modes are finally examined and a structure where

all propagating modes have different phase velocity has been analyzed. The mode

filters design is based on the study of corrugations. Unwanted modes in oversized

rectangular waveguides are generally divided into two classes:

• Class 1 - comprises TEmn and TMmn modes with n 6= 0;

• Class 2 - comprises TEm0 modes with m 6= 1 and can be further divided in

modes with m even and modes with m odd.

The structure depicted in Fig. 3.1 can attenuate most of the spurious modal content

of oversized rectangular waveguides. More precisely, modes of class 1 are attenuated

by means of transversal corrugations in the lateral walls, while modes of class 2 with

m even are attenuated by means of longitudinal corrugations in the middle of the

horizontal walls (corrugations like these also affect TE0n modes). With reference

to the rest, i.e. modes of class 2 with m odd, they can not be attenuated by

filters based on corrugated waveguides without affecting the fundamental mode.

Inside both transversal and longitudinal corrugations, making use of the notation

previously adopted (Chapter 1), modes are defined by the following eigenvectors for
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Figure 3.1: Mode filters for rectangular waveguide.

TEmn modes, with m = 0, 1, 2, . . . and n = 0, 1, 2, . . . , and for TMmn modes, with

m = 1, 2, 3, . . . and n = 1, 2, 3, . . . :

hz = cos
(mπx
ac

)
cos
(nπy
bc

)
ẑ (3.3)

ez = sin
(mπx
ac

)
sin
(nπy
bc

)
ẑ (3.4)

where (bc) and (ac) are the height and the width of the corrugation, respectively.

Once the complete expression of the electromagnetic field has been derived from

Eq. (3.3) and (3.4), it has to be inserted in the boundary conditions. Subsequently,

enforcing mode orthogonality, a linear system like the following one is obtained for

each mode: 
C+
v + C−v = C+

a + C−a
kzv
(
C+
v − C−v

)
= kza

(
C+
a − C−a

)
C+
a = −C−a e2kzahca

(3.5)

From Eq. (3.5) the derivation of reflection and transmission coefficient at the cor-

rugation input is straightforward:

Γin =
C+
v

C−v
= 1− 2kza

kza + kzv tanh(kzahca)
(3.6)

Eq. (3.6) has been plotted, as a function of the absorber thickness hca, in Fig. 3.2a)

for the TE10 mode at 5 GHz. The curves have been obtained considering corruga-

tions with bc = 10 mm and several widths ac; Silicon Carbide (SiC) has been used

as absorbing material.
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The refection coefficient has a profile like a damped cosine superimposed on a con-

stant value equal to -3 dB. In order to minimize it, corrugations have to be filled

with about 4 mm of Silicon Carbide; hca > 20 mm can be alternatively chosen in

order to avoid that the absorption depends on SiC thickness. A similar behavior

is obtained for the remaining propagating modes. Fig. 3.2b) shows the reflection

coefficients of the three propagating modes in a corrugation with bc = 10 mm and

ac = 100 mm at a working frequency of 5 GHz. Two structures, like those reported

(a) (b)

Figure 3.2: Reflection coefficient at the input of a corrugation at 5 GHz and partially

filled of SiC (ρ = 3.22g/cm3, εr = 13.5, tan δ = 0.44): a) of the TE10 mode with

bc = 10 mm and several widths ac,and b) of three propagating modes with bc = 10

mm, ac = 100 mm.

in Fig. 3.3, have been simulated by using any 3D-FEM solver: they only have either

lateral or longitudinal corrugations and mainly attenuate, respectively, modes of

class 1 and class 2. For sake of clarity, the correspondence with previously-defined

corrugation parameters has been reported in the same figure. Both filters are based

on the standard waveguide WR-430 at the frequency of 5 GHz. Under these working

conditions ten modes can propagate, as reported in Table 3.3. Unwanted modes are

given by four couples of degenerate modes (TE01/TE20, TE11/TM11, TE21/TM21,

and TE31/TM31) plus the TE30 mode. The latter one can not be absorbed by filters

based on corrugations (in fact it has partially the same current distribution of the

fundamental one, and any filtering of this mode will implicate also a filtering of the

TE10) so, if it would be accidentally generated along the path of the waveguide,

a different filtering approach should be adopted. The outcomes of the parametric

analysis are reported in Fig. 3.4a)-3.4b) for filters with lateral and longitudinal cor-

rugations, respectively. Such results confirm the behavior predicted by the model:

the absorption of unwanted modes oscillates before approaching to a constant value
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Figure 3.3: Filters with either lateral a) or longitudinal b) corrugations.

as the absorber thickness varies. It has a mirror profile with reference to the reflec-

tion coefficients of Fig. 3.4. As previously said, this happens because the less power

corrugations reflect, the more power the filter absorbs. The reflection coefficients

for other modes are depicted in Fig. 3.3. The optimum absorber thickness given by

the parametric analysis is a few tenths of millimeters smaller than the prediction of

the model. In any case the model gives a good starting value for the research of the

exact optimum thickness. A complete parametric analysis performed with HFSS c©,

or similar software, takes a considerable amount of time if run on a general purpose

computer. On the other side Eq. (3.6) can be plotted in a very short time.

With reference to the remaining corrugation dimensions, hcv and ac, their effects are

complex, reciprocally related and depend on the corrugation location. In any case

two general rules can be extrapolated from the full-wave simulations. On one hand,

as the depth of the corrugation empty region increases, also the coupling between

spurious modes increases; in addition the corrugation length has a more influential

effect on the performance of the mode filter. This phenomenon sets an upper bound

to hcv, above which it becomes difficult to evaluate the filtering performance and

to find clear dependences on the geometrical parameters. On the other hand, a rel-

atively small value of hcv too small (less than 4 mm for the present case) negatively

affects the transmission properties of the fundamental mode. The aforementioned

dependences have been used as guidelines for the preliminary design of mode filters.

In particular some simulations using simultaneously both lateral and longitudinal

corrugation has been developed; the filter parameters are resumed in he following

Table 3.4, where the values are intended to be negative and expressed in dB.
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(a)

(b)

Figure 3.4: Absorption performances at 5 GHz in a WR430 of: a) TE11 and TM11

modes with 20 lateral corrugations having dc = 10 mm, ac = 42 mm, bc = 7 mm,

and hcv = 4 mm, and b) TE20 and TE01 modes with 2 longitudinal corrugations

having ac = 100 mm, bc = 10 mm and hcv = 20 mm.

A 100 mm long device, comprising both lateral and longitudinal corrugations has

been designed. Its performances are reported in Table 3.5, where the highest cou-

pling coefficients have been highlighted in bold, while the elements on the main diag-

onal, represent transmission coefficients. Finally reflection coefficients are shown in

Fig. 3.5 and their values at 5 GHz in Table 3.6. As can be appreciated by examining

Table 3.4, the TE10 mode and the TE30 mode are essentially non attenuated (0.46%

and 0.69%, respectively), but the transmission of higher order modes are differently

reduced. As expected, since degenerate modes have the same phase velocity, they

are affected by different absorptions, that is with reference of their current distribu-

tion.

The performances shown in Table 3.4, confirm essentially good filtering capabilities,

so that the corrugation method can be further developed and optimized once the

definitive MTL path will be assessed. The corrugation reflection coefficient shown
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ac[mm] bc [mm] hcv [mm] hca [mm] dc [mm]

Lateral 42 7 4 4 3

Longitudinal 100 16 25 4 none

Table 3.4: Corrugation dimensions.

IN\
OUT

TE10 TE01 TE20 TE11 TM11 TE21 TM21 TE30 TE31 TM31

TE10 0.02 82.38 67.69 73.71 65.62 76.22 84.15 25.61 54.5 67.99

TE01 78.13 6.63 75.08 78.96 63.97 11.73 10 74.22 56.82 62.45

TE20 64.97 65.85 4.01 70.49 65.11 80.28 70.98 79.34 57.36 72.30

TE11 83.80 81.88 77.22 6.46 10.69 77.59 67.82 63.28 28.35 17.26

TM11 67.49 67.65 96.36 10.69 1.81 71.47 64.21 68.63 25.32 25.15

TE21 70.94 11.71 62.33 63.34 63.37 20.99 13.3 68.5 87.03 80.64

TM21 80.09 10.01 83.32 65.9 63.79 13.31 5.48 76.26 61.53 68.47

TE30 25.61 73.47 66.89 62.11 61.61 70.18 75.19 0.03 50.2 68.93

TE31 59.59 61.97 54.44 28.79 25.27 50.99 59.88 56.4 1.93 21.68

TM31 95.84 67.26 72.25 17.26 25.21 73.41 63.37 63.06 21.66 16.58

Table 3.5: Coupling matrix among the propagating modes for a filter of 100 mm.

Figure 3.5: Reflection coefficients for several modes at the input of a corrugation

with bc = 10 mm at 5 GHz and partially filled of SiC (ρ = 3.22g/cm3, εr = 13.5,

tan δ = 0.44).
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that the fundamental mode is almost totally confined inside the rectangular waveg-

uide without any significant contact with corrugations. Anyway, the reflection of

higher order modes, with reference to TE01, TE20, TE21, TE31, and TM31, has to

be enhanced to rich at least -20 dB.

TE10 TE01 TE20 TE11 TM11 TE21 TM21 TE30 TE31 TM31

-42.6 -18.8 -9.2 -24.1 -22.5 -13.9 -21.7 -32.6 -5.2 -4.9

Table 3.6: Reflection coefficients [dB] @ 5 GHz.

Taking the previous design as reference, the study of mode filters has been focused

on three main activities:

1. Power capability: the strength and distribution of the electric field inside the

corrugations has been studied.

2. Parametric analysis: the dependence of mode filter performances on various

geometrical parameters have been analyzed by means of HFSS c© simulations.

3. Degenerate modes: new structures where all propagating modes have different

phase velocity have been investigated.

If the amplitude of the unwanted modes is too high, mode filters could be subject

to electric discharges or excessive heating of the absorber. To properly design mode

filters, the highest expected level of the unwanted modes must be known. Assum-

ing that the output of the power sources is a pure TE10 mode, the power carried

by spurious modes, excited across the transmission line by discontinuities such as

bends, has to be estimated. Up to now two cases have been studied with reference

to the breakdown relevant parameters, just to have an idea about their order of

magnitude. The first one consists in a WR-430, working at 5 GHz, with 20 lateral

corrugations having dc = 10 mm, ac = 42 mm, bc = 7 mm and hcv = 4 mm; the

second one is a WR-430, working again at 5 GHz with 2 longitudinal corrugations

having ac = 100 mm, bc = 10 mm and hcv = 20 mm, and they are represented in

Figs. 3.6. The maximum electric field inside the corrugations has been calculated

when each propagating unwanted mode has a power of 2 kW and a phase that max-

imizes the absorption. The results are about 7.3 kV/cm for the first case and about

2.3 kV/cm for the second one.

With reference to the first item, data have been collected in order to produce curves

showing the behavior of reflection, transmission, absorption and conversion of dif-

ferent modes as a function of the corrugation dimensions. A preliminary iteration of

the parametric analysis has given the outcomes reported in Table 3.6. These values
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(a)

(b)

Figure 3.6: Average electric field between the closest walls of a) longitudinal corru-

gations and b) lateral corrugations.
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ac[mm] bc [mm] hcv [mm]

Lateral 34.4 7 4.6

Longitudinal 100 16 10

Table 3.7: Corrugation revised dimensions.

have been considered a good compromise between wanted and unwanted losses that

take place in mode filters. Corrugation width (ac) mainly affects unwanted mode

absorption and fundamental mode transmission; its value is fixed by the admissi-

ble power loss of TE10 mode. Filters based on corrugated waveguides present the

following drawback: total absorption is not given by the sum of absorptions calcu-

lated when single modes excite the waveguide. Depending on their phase, modes

may interfere destructively just at the input of the corrugation and do not excite it.

When modes have different phase velocity, the relative phase between them changes

during the propagation; accordingly, if the mode filters are long enough, spurious

modes will interfere both constructively and destructively at the corrugation inputs.

Nevertheless, in case of degenerate modes, the relative phase remains unchanged

through the filter. This is shown in Fig. 3.7 for a filter with a single longitudinal

corrugation on the top wall: the magnitude of the component of the surface current

exciting the corrugation has been plotted as an overlay for different excitations of the

TE01 and TE20 modes. A phase shift between degenerate modes can be introduced

Figure 3.7: Overlays of surface current along y direction for different excitations

exciting the corrugation for different excitation cases involving the TE01 and TE20

modes..
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by slightly deforming the shape of the inner walls of the waveguide, as for example

cutting arc-shaped longitudinal grooves in the central part of some walls [19]. A

groove is defined by three dimensions: length (Lg), width (wg) and height (hg), as

indicated in Fig. 3.8. The effect of two lateral grooves with bg = 29 mm, hg = 11

mm and ac = 550 mm is shown in Fig. 3.9. Here the last two patterns of Fig.

3.7 can be recognized respectively at the input and at the output of the waveguide

with grooves. Moreover, Fig. 3.9 shows how the relative phase shift between some

degenerate modes varies in different waveguide cross-sections. In order to reduce the

reflection coefficient at the transition with standard waveguides, the grooves must be

tapered. Grooved waveguides can solve the problems related to degenerate modes;

nevertheless, their integration with corrugations has to be deeply investigated.

Figure 3.8: Groove on the top wall of a waveguide.

Figure 3.9: Change in the relative phase between the TE01 and TE20 modes (2 W)

across 700 mm long standard a) and grooved b) WR-430. The last one has 2 lateral

tapered grooves with bg = 29 mm, hg = 11 mm and ac = 550 mm.



3.3. BENDS 237

3.3 Bends

The problem of the propagation of the electromagnetic field in curved waveguides

of rectangular cross section is comprehensively examined in [23] (only for unimodal

propagation regime). From a practical point of view, several solutions can be taken

into account. In this context, the principal specifications that characterize the design

are:

• minimize the reflection of the fundamental TE10 mode (|S11| parameter);

• maximize the transmission of the fundamental TE10 mode (S12 parameter);

• minimize the coupling between the TE10 mode and other spurious modes that

propagate at 5 GHz (S1j, j = 3, · · · , 10).

Uniform bends in rectangular waveguides, are frequently used components in many

microwave subsystems both a wide range of applications. Several contributions can

be found in the technical literature concerning bends [29]. In particular, Rice [30]

obtains two approximate formulas for the reflection coefficient of both the H and E

plane bends with large radius of curvature.

Cochran [31] presents results of the propagation constants of bends as function of

several parameters, by means of a combination of Bessel functions. Bates [32] ana-

lyzes the junction between straight and curved waveguides with a method based on

an integral equation formulation; Lewin [23] derives approximate solutions through

a perturbation analysis. Accatino [33] applied mode-matching technique to analyze

both H and E plane bends, using an ad-hoc solution of the characteristic equation

(which involves Bessel functions), allowing him to bypass the ill-conditioning of the

problem for the propagation constants in the curved region. Weisshaar [34] presented

an accurate method based on mode-matching technique where the Helmholtz equa-

tion in the curved region is transformed into an eigenvalue problem. Most of the

above publications are based on mode matching technique [35] and give scattering

parameter representations.

In addition to the analysis of uniform waveguide bends, we consider different bend-

ing geometry based on the mitered bends layout [36], where the bend profile is not

circular but linear, configuring a cascade of junction of straight waveguide frames.

In this case, we also develop an original component consisting in approximating a

circular trajectory by means of a polygonal structure made of several straight waveg-

uide segments. We call this kind of bend as “Trapezoidal Mitered Bend” which is

described further in this chapter. The analysis outcomes shown a good behavior of

this component in comparison with the uniform circular case, performing quite the
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same but with an significant reduction of the equivalent bending radius and then of

the overall length of the the curved waveguide framework.

For nuclear fusion relevant applications, a preliminary study of bends in oversized

rectangular waveguide has been also presented in Nantisa and Tantawi work [37].

Recently, modern CAD tools for complex waveguide systems have been developed

which are based on admittance or impedance multi-mode network representations

(for instance [38, 39]).

3.3.1 Simple Circular Bends

For uniform circular-shape bends, we can use a notation to expand the transverse

electric and magnetic field in the curved region [29] as an infinite series of modes.

In particular, by looking at Fig. 3. 10, and considering a radius of curvature equal

to Rbend, the transverse component of the electromagnetic field can be written by

using the associated eigenvectors:

e
(c)
t =

+∞∑
m=1

V (c)
m e(c)

m (3.7)

h
(c)
t =

1

1 + x
Rbend

+∞∑
m=1

I(c)
m h(c)

m

where the reference co-ordinate system is as specified in Fig. 3.11, and the sub-

scripts (c) and (s) denote the curved and straight part, respectively. So that, the

propagation in the curved region can be expanded into an infinite series of parallel

waveguide eigenvectors as follows:

e(c)
m =

+∞∑
n=1

d(m)
n e(s)

n (3.8)

h(c)
m = −

+∞∑
n=1

d(m)
n h(s)

n

where

e(s)
n = −

√
2

a
sin
[nπ
a

(
x+

a

2

)]
ŷ (3.9)

h(s)
n = −

√
2

a
sin
[nπ
a

(
x+

a

2

)]
x̂

where n = 1, 2, · · · . The series in Eq. (3.8) are then inserted in the Helmholtz

equation obtained for the curved region [?], obtaining a matrix of eigenvalues, and

finally the linear system is solved by computing numerically the coefficients of the
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(a) (b)

Figure 3.10: Uniform bend on a) E-plane and b) H-plane.

Figure 3.11: Geometry of the waveguide bend.

expansion d
(m)
m [29]. Once the curved waveguide modes are obtained, the junction

between the straight and curved frameworks must be analyzed. Several techniques

can used to this aim as indicated in [40, 41] and also a FEM solver can be used.

We develop a parametric analysis, varying the radius of curvature of the bend and

finding the optimized value for a WR-430 waveguide at 5 GHz.

Since the only characterizing parameter of a simple circular-trajectory bend, is the

bending radius Rbend (once the waveguide dimensions are fixed), the design is not

much flexible. The point of interest is the behavior of the device vs. the bending

radius, in terms of scattering parameters: |S11| and |S21|, and coupling between the

fundamental TE10 mode and all the other modes over cut-off.

Considering at first an E-plane circularly curved rectangular waveguide, we vary the

radius Rbend in the range [102, 103] mm, with a step resolution of 5 mm, for total

180 points. The simulation has been carried out, and at the beginning we find the



240CHAPTER 3. OVERSIZED RECTANGULARWAVEGUIDE COMPONENTS

value of Rbend that simultaneously maximizes the transmission and minimizes the

reflection back-going to the input. Once we obtain the optimized value of the bend-

ing radius Ropt
bend, we perform a frequency sweep simulation for a 20 MHz bandwidth

around the central frequency of 5 GHz, that is f ∈ [4.99, 5.01] GHz. Finally, we

check the coupling among the propagating modes.

In our analysis, basing on what presented in the previous Section 3.2, about mode

filtering, we suppose to have at the input of the waveguide framework only the prop-

agation of the fundamental TE10 mode (or even that the higher order modes are

strongly attenuated, for instance under -30 dB). In order to face the transitory effect

of the conversion of modes at the discontinuity, we extend the straight part of the

waveguide framework Lref up to 500 mm. A simple geometric layout of the curved

waveguide cross section, is sketched in Fig. 3.13. In Fig. 3.14, the |S11| reflection

Figure 3.12: E-plane curved rectangualr waveguide design paremeters.

parameter is plotted vs. the bending radius Rbend. In particular there are several

negative peaks of the |S11| parameter (expressed with markers in the same figure),

for instance for Rbend = 215, 375, 415, 425, 465, 500 mm. Apparently, one could be

inclined to choose the most negative value (Rbend = 465 mm), anyway we have to

consider that, in high power-transfer application, the specification on the reflection

coefficient (once a suitable value of about -30 dB or less, is achieved) is subordinate

to the corresponding transmission efficiency. In fact, viewing the next Fig. 3.14,

it is clear that the higher power transmission occurs for Rbend = 415 mm. On top

of this, the |S11| parameter at this value is sufficiently small and less than -40 dB.

For such a reason, the further optimization will be developed for Rbend = 415 mm.

At this value the transmission parameter is equal to -0.0025 dB that is the 99.94%

of transmission efficiency, while for Rbend = 465 mm the transmission is 99.84%.

With this choice we gain the 0.1% of transmission that is about 500 W for each

waveguide (for a total amount of 48 MTL it turn into 24kW more or less). On the

other hand we consider less significant to decrease the reflection from -44.85 dB for

Rbend = 415 mm, to -63.75 dB for Rbend = 465 mm. Furthermore, with a 50 mm
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Figure 3.13: H-plane curved rectangular waveguide: |S11| vs. Rbend @ 5 GHz.

Figure 3.14: H-plane curved rectangular waveguide: |S21| vs. Rbend @ 5 GHz.

shorter framework we may save about 4.35× 10−4 dB of attenuation.

Moreover, also the coupling parameters suggest this value showing a negative peak

just for Rbend = 415 mm, proving an effective stand-alone transmission of the the

fundamental TE10 mode. In Fig. 3.15, the most of the propagating modes are sig-

nificantly under the -60 dB threshold, and they are not excited in practice. Only the

degenerate modes pair TE11 − TM11 are weakly allowed to propagate, for a power

content lower than -40 dB (0, 001%). On the contrary, for Rbend = 465 mm we have

a TE11 content around -40 dB, but also a TM11 mode excitation around -33 dB.

Nevertheless, we must take into account that the power injected in the waveguide

is very high and this percentage is equivalent to several tens of Watts.

For what exposed, we perform a frequency sweep of the curved waveguide for the

optimized value of the bending radius. In particular we vary the frequency in the

range [4.99, 5.01] GHz with a step resolution of 1 MHz for total 20 points. This anal-

ysis is useful to make some assessments about the behavior of the component in the
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bandwidth. As exposed in Chapter 1, the LHCD system is a narrowband system of

less than 20 MHz of bandwidth, so that it is desirable a quite uniform trend in this

range. In the following Figs. 3.16-3.18, the |S11|, |S21|, and coupling parameters are

Figure 3.15: H-plane curved rectangular waveguide: coupling vs. Rbend @ 5 GHz.

shown. In particular, a linear trend of the parameters vs. frequency can be noted.

Anyway, the dynamic is quite restricted in all the cases: the |S11| parameter is af-

fected by a range between the bandwidth outers that is lower than 1 dB, decreasing

as the frequency increases. The |S21| parameter shows an opposite trend and, in

the worse case it is equal to -0,004 dB that is about the 99.9% of transmission.

Figure 3.16: E-plane curved rectangular waveguide: |S11| at the optimized value of

Rbend = 415 mm for f ∈ [4.99, 5.01] GHz.

Also the coupling between TE10 and higher order modes increases moderately as the

frequency increases. In this case the gap is lower than 3 dB for both the TE11 and

TM11 mode. This value is quite significant in our opinion, because it means that

the coupling varies with a factor of two in the bandwidth. The coupling between
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Figure 3.17: E-plane curved rectangular waveguide: |S21| at the optimized value of

Rbend = 415 mm for f ∈ [4.99, 5.01] GHz.

Figure 3.18: E-plane curved rectangular waveguide: coupling at the optimized value

of Rbend = 415 mm for f ∈ [4.99, 5.01] GHz.

the fundamental mode and the other propagating modes at 5 GHz is reported in the

following Table 3.8. As stated before, all the values are suitably adequate for our

scopes.

For H-plane waveguide bends, the same analysis has been provided, and the ob-

tained results confirm a potential use of such bends for high-power fusion engi-

neering applications. The H-plane curved waveguide framework design is sketched

in the next Fig. 3.19. Also in this case we note several potential optimized

value of the bending radius. In particular, in Fig. 3.20 six values are indicated:

Rbend = 450, 540, 630, 660, 675 mm. Also in this case, as happened for the E-plane

band optimization, the transmission coefficient |S21| performances give the final as-

sessment: in Fig. 3.21 is clearly suggested the choice of Rbend = 630 mm, and in this

case, we have no ambiguity since the nearest value is exactly two orders magnitude
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Modes @ 5 GHz Coupling [dB]

TE10 -0.0025

TE01 -73.9

TE20 -75.13

TE11 -54.53

TM11 -47.97

TE21 -79.41

TM21 -75

TE30 -70.55

TE31 -77.16

TM31 -66.87

Table 3.8: Coupling matrix for an uniform E-plane bend.

Figure 3.19: H-plane curved rectangualr waveguide design paremeters.

lower. A following frequency sweep analysis has been done considering a 20 MHz

bandwidth around 5 GHz, and the outcomes confirm the component behavior. In

particular, in this case the transmission coefficient printed in Fig. 3.24, presents a

maximum for the central frequency of 5 GHz where is more than 99.98%.

The gap between the bandwidth outers for the reflection coefficient is less than 1

dB and for transmission is less than 5×10−4 dB. Also the coupling is quite good

around the chosen optimized value. In particular it is lower than -40 dB almost on

the entire bandwidth (with the only exception of the TE01 − TE20 at the lowest

frequency) as depicted in Fig. 3.25.

Finally the other modes coupling values are presented in Table 3.9. Indeed, in Ta-

ble 3.10 the optimized parameters for uniform E and H plane bends in oversized

rectangular waveguide WR-430,are summarized. For what assessed, the E and H

plane bends seem to be almost equivalent in terms of performances. In the H-plane

bend have a higher transmission and a lower reflection, but it is longer and thus

the overall attenuation is a little bit more. In particular the length gap between the
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Figure 3.20: H-plane curved rectangular waveguide: |S11| vs. Rbend @ 5 GHz.

Figure 3.21: H-plane curved rectangular waveguide: |S21| vs. Rbend @ 5 GHz.

Figure 3.22: H-plane curved rectangular waveguide: coupling vs. Rbend @ 5 GHz.
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Figure 3.23: H-plane curved rectangular waveguide: |S11| at the optimized value of

Rbend = 630 mm for f ∈ [4.99, 5.01] GHz.

Figure 3.24: H-plane curved rectangular waveguide: |S21| at the optimized value of

Rbend = 630 mm for f ∈ [4.99, 5.01] GHz.

Figure 3.25: H-plane curved rectangular waveguide: coupling at the optimized value

of Rbend = 630 mm for f ∈ [4.99, 5.01] GHz.
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waveguide bends E and H is about 215 mm, corresponding to an additive attenua-

tion of 4.3 × 10−4 dB, so that the transmission coefficient must be reduced of that

quantity, resulting to be about 1.4 × 10−3 that is quite similar compared with the

|S21| of E-plane bend. Moreover, the coupling for the H-plane bend is a little worse

but this not seems to be significant.

Modes @ 5 GHz Coupling [dB]

TE10 -0.0006

TE01 -46.3

TE20 -70.1

TE11 -71.37

TM11 -68.1

TE21 -68.85

TM21 -68.67

TE30 -53.15

TE31 -85.96

TM31 -77.33

Table 3.9: Coupling matrix for an uniform H-plane bend.

Spec. E-plane H-plane

RBend [mm] 415 630

|S11| [dB] -44.85 -47.6

|S21| [dB] -2.5×10−3 -6×10−4

coupling [dB] <-40 dB ≤-40dB

Table 3.10: Uniform bends design and performances.

3.3.2 Mitered Bends

A mitered bend consists in two parts of rectangular waveguide cross section

connected as in Fig. 3.26. The theoretical fundamentals of the electromagnetic

propagation in such a connected waveguide is extensively exposed for a mono-modal

configuration in the exhaustive work of Cornet, Dussaux, and Chandezon [42], in

which this two-dimensional problem is considered as two different problems accord-

ing to the direction of incident electric field in relation to the bend. Both these
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problems ( E and H plane cases) are geometrically similar, but mathematically dif-

ferent. In an H-plane bend, the TE modes are generated, but in an E-plane bend,

the longitudinal-section electric (LSE) modes are generated.

To solve this dual problem the Maxwell’s equations are re-written in a tensorial

(a) (b)

Figure 3.26: Mitered bend on a) E-plane and b) H-plane.

co-ordinate system and thus, the electric and magnetic components are expanded on

trigonometric series that satisfy the boundary conditions on the perfectly conduct-

ing walls. The boundary conditions solution, allow us to determine the scattering

matrix of this elementary structure.

Maxwell’s equations in covariant form are solved in the oblique co-ordinate system

(Σo), which is obtained by the Cartesian system (Σc) with the following transfor-

mation:

u = x v = y w = z − x tan(φ)

where φ is the angle between the cross section plane and the longitudinal vector ẑ.

The Jacobian matrices of the transformation between the two systems are

AΣc
Σo

=

 1 0 − tan(φ)

0 1 0

0 0 1

 AΣo
Σc

=

 1 0 tan(φ)

0 1 0

0 0 1

 (3.10)

In particular, In the case of H-plane bend , the incident TE10 mode couples with

the TEm0 mode only. The mode coupling in rectangular discontinuities can be

demonstrated to be independent from the b side of the waveguide, thus the covariant

component can be derived [42]:{
∂wEv = ikηHu

∂wηHu = 1
1+tan(φ)

(
ik − 1

ik
∂u∂w

)
Ev + 2 tan(φ)

1+tan2(φ)
∂uηHu

(3.11)

where η =
√
µ0/ε0 is the impedance of a vacuum.

In the case of E-plane bend, the TE10 mode generates the LSEm1 modes composed of
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the superposition of TEm1 and TMm1 modes. In this case the transverse components

are  ∂wηHv = k2−β2

ik[1+tan2(φ)]
Eu

tan(φ)
1+tan2(φ)

∂uηHv

∂wEu = ∂u

[
ik

(k2−β2)[1+tan2(φ)]
∂uηHv + tan(φ)

1+tan2(φ)
Eu

]
− ikηHv

(3.12)

where β = π/b.

The resolution of differential systems of Eqs. (3.11) and (3.12) can be performed by

means of the method of moments or FEM, resulting in an eigenvalue problem for

the determination of the electric and magnetic transverse component. Finally, the

scattering matrix of the whole structure can be obtained.

The analysis of mitered band both on E and H plane, do not show a good behavior

for our scopes. In particular, with reference of Fig. 3.27, the E-plane mitered bend

is firstly described.

The design analysis consists in varying the only design parameter L (once fixed the

waveguide cross section) in the range [0.6,54.6] mm with a step resolution of 0.5

mm. The next Fig. 3.28 shows the |S11| coefficient vs. L. where:{
d =
√

2(w − L)

c =
√

21+w
2

(3.13)

As it can be noticed, the |S11| value is quite high at its peak, around -15.28 dB for

L = 27.1 mm. This means that the reflection is the 29.6% of the injected power.

This amount of reflected power is then not safely supported from klystrons which

may be seriously damaged.

Moreover, the transmission is very poor, around -1.6 dB, that is the 69.1%. For

this reason this kind of structure cannot be taken into account for the transmission

line. The coupling among the TE10 and higher order modes, is specified in the next

Table 3.11.

It can be noted that the coupling between the TE10 mode and both of degenerating

modes TE11/TM11 is quite high (2.75% for TE11 and 17.3% for TM11), as expected

by the LSE theory.

For H-plane mitered bend, the layout is specified in Fig. 3.30. The design parame-

ter L has been varied in the range [0.6,108.6] mm with a step resolution of 0.5 mm.

In this case the outcomes are quite better compared with the E-plane case. The

reason of this improvement can be found in the LSE theory. In fact, in E-plane

case LSE modes are generated by coupling with TE10 mode, determining a power

conversion among them. In H-plane case, these mode are not excited, and the TE10

mode coupling, involves the TEm0 modes only. As reported in Figs. 3.31-3.32, the
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Modes @ 5 GHz coupling [dB]

TE01 -83.38

TE20 -76.89

TE11 -15.61

TM11 -7.62

TE21 -82.23

TM21 -76.33

TE30 -65.92

TE31 -64.73

TM31 -67

Table 3.11: E-plane mitered bend: coupling.

|S11| parameter in suitably under -40 dB for L = 6.1 mm, but in spite of this, the

transmission coefficient is still to low, around -1 dB (79.4%). In conclusion, also for

the H-plane case, this kind of solution must be avoided. The coupling for H-plane

mitered bend is reported in Table 3.12.

Also in this case, the theoretic coupling is confirmed involving the degenerating

Modes @ 5 GHz coupling [dB]

TE01 -8.58

TE20 -19.52

TE11 -48.29

TM11 -77.67

TE21 -80.49

TM21 -81.2

TE30 -83.77

TE31 -83

TM31 -89.2

Table 3.12: E-plane mitered bend coupling.

modes TE10/TE02 (the 13.9% for TE20 mode and the 1.1% for TE01). Moreover,

the magnitude of TE30 mode is now reduced, if comparing with the circular H-plane

bend.

As a first general consideration, it seems that mitered solutions mitigate the cou-

pling with TE30 and, a modified version of this kind of curve, could achieved good

performances in terms of return loss and transmission efficiency and simultaneously

reduce the length of the curved framework.
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Figure 3.27: E-plane mitered bend design parameters.

Figure 3.28: E-plane mitered bend: |S11| vs. L @ 5 GHz.

Figure 3.29: E-plane mitered bend: |S21| vs. L @ 5 GHz.
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Figure 3.30: E-plane mitered bend design parameters.

Figure 3.31: H-plane mitered bend: |S11| vs. L @ 5 GHz.

Figure 3.32: H-plane mitered bend: |S21| vs. L @ 5 GHz.
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3.3.3 Trapezoidal Mitered Bend

As previously demonstrated, the mitered bend solution is not suitable for our

purpose, both for the high reflection coefficient but above all, for the extremely

poor transmission. At the same time this kind of structure has the advantage to be

more compact than the circular trajectory bends, with a relevant reduction of the

attenuation. By the way, the circular bends are quite good performing for our pur-

poses, also with a view to the mode filters use. So that, considering a mitered bend

approach, a better design flexibility can be achieved by using a modular structure,

formed by N trapezoidal elements (as described in Fig. 3.27). In this case, when N

is larger, the trapezoidal curve approximates a circular trajectory, indeed when N

is low (i.e. N = 2, 3) the structure can be considered as a modified version of the

mitered bend. Thus, the design of this kind of bends, consists into the optimization

of the mitered bend parameters for each one of the N elements and also the number

of elements becomes a design parameter. In this section the design of such a compo-

Figure 3.33: Trapezoidal mitered bend layout.

nent is considered. In particular the study involves several different types of curves

with 2, 3, 4 and 5 elements. The two-element trapezoidal bends (Fig. 3.28), are

obtained The two trapezoidal elements are obtained starting from the square with

side w′ divided into two triangles isosceles with angle of 45◦ (dividing the 90◦ angle

up on the right, into the number of trapezoidal elements), choosing arbitrarily the

length d = 100 mm corresponding to the distance between the center of the refer-

ence system and the transverse sections of the waveguides. A parametric analysis for

0◦ ≤ α ≤ 45◦ has been done; the value α = 35◦ seems to be the most suitable, any-

way, the |S21| (absolute values) which has a maximum for α = 25◦. In other words

the best value for the reflection coefficient does not coincide with the best value for

the transmission. The performances of this curved framework are specified in the

next Tables 3.13-3.14 for the E-plane and H-plane configurations, respectively. In

particular, for α = 35◦, S11 = −20.21 dB and S21 = −1.55 dB (that is a transmission

efficiency of about 70%), while for α = 25◦, S11 = −14.72 dB and S21 = −0.31 dB (a
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Figure 3.34: Two-element trapezoidal mitered bend design parameters.

transmission efficiency more than 93%). In the H-plane configuration, this kind of

Modes @ 5 GHz α = 25◦ α = 30◦ α = 35◦

TE10 -0.31 dB -0.47 dB -1.55 dB

TE01 -95.54 dB -78.68 dB -91.82 dB

TE20 -84.63 dB -87.41 dB -9.22 dB

TE11 -28.6 dB -21.56 dB -14.25 dB

TM11 -20.61 dB -13.59 dB -6.67 dB

TE21 81.29 dB -84 dB -102.85 dB

TM21 -74 dB -80.92 dB -82.14 dB

TE30 -83.57 dB -85.51 dB -78.14 dB

TE31 -87.36 dB -92.34 dB -72.6 dB

TM31 -82.3 dB -84 dB -75.28 dB

Table 3.13: E-plane two-element trapezoidal mitered bend performances.

structure showed better performances accordingly with the mitered bend theory. In

fact, looking at Table 3.14, for α = 30◦ the return loss (S11 = −37.91 dB) and the

transmission efficiency (S21 = −0.13 dB such as more than 97% of transmission) are

optimized at the same time. Moreover, the |S11| and |S21| values seems to be not so

bad as it was in the E-plane case (|S11| around -40 dB and transmission efficiency

greater than 95%).

It is clear that the coupling affects only TE01 and TE30 modes. Furthermore, if the

transverse section of the waveguide were reduced to WR-340, the TE30 mode does

not propagate and the only mode to filter would be the TE01. This is a very favor-

able condition because this mode has orthogonal distribution of currents compared

with the fundamental TE10 mode and thus it can be filtered without attenuate the

fundamental mode. Let consider the next configuration, concerning the 3-elements
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Modes @ 5 GHz α = 30◦

TE10 -0.13 dB

TE01 -65.79 dB

TE20 -22.51 dB

TE11 -88.79 dB

TM11 -91.86 dB

TE21 -81.67 dB

TM21 -78.69 dB

TE30 -17.57 dB

TE31 -94.11 dB

TM31 -86.39 dB

Table 3.14: H-plane two-element trapezoidal mitered bend performances.

90◦ trapezoidal mitered bends both on E and H planes. The design parameters are

summarize in the table hereafter.

Compared with the previous two-elements design, the square of side w′ is now di-

vided into three parts, each one forming an angle of 30◦ at the vertex up on the

right side. As before, the choice of the slope of the side l (angle α) is the design

parameters. Also in this case, the length of d can be considered as an additive design

parameter.

On E-plane, it is possible to verify a substantial bad performance in terms of return

loss. The best value is S11 = −21.42 dB (about the 0.72% of reflected power) corre-

sponding to α = 35◦; this trend is confirmed from by the |S21| parameter vs. α.

It can be noted that the value of α minimizing |S11|, does not contextually maximize

the transmission efficiency. In fact it is maximized for α = 20◦ (S21 = −0.25 dB

such as a transmission efficiency greater than 94%) where the |S11| parameter is

−13.851 dB (more than 4% of reflected power). On the other hand when the return

loss is minimized, the transmission efficiency, S21 = −2.08 dB (about 62%), is too

low. A balance between the necessity of a low |S11| and a high |S21| can be con-

sidered involving the values α = 25◦, 30◦ and resumed here after in Table 3.15. Of

Parameters [dB] @ 5 GHz α = 25◦ α = 30◦

|S11| -15.22 (3%) -17.43 (1.8%)

|S21| -0.48 (89.5%) -1.04 (78.7%)

Table 3.15: E-plane three-element trapezoidal mitered bend reflection and transmis-

sion parameters.
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Figure 3.35: Three-element trapezoidal mitered bend design parameters.

course, the optimization has to be done taking into account the couplings between

the fundamental TE10 mode and spurious modes as described summarized in the fol-

lowing Table 3.16. By comparing the previous results, the best optimization seems

Modes @ 5 GHz α = 25◦ α = 30◦

TE10 -0.48 dB -1.04 dB

TE01 -83.82 dB -81 dB

TE20 -86.84 dB -85 dB

TE11 -21.53 dB -16.39 dB

TM11 -13.563 dB -.42 dB

TE21 -81.46 dB -91.49 dB

TM21 -96.53 dB -81.82 dB

TE30 -78.77 dB -71.97 dB

TE31 -78.35 dB -70.81 dB

TM31 -87.89 dB -81.92 dB

Table 3.16: E-plane three-element trapezoidal mitered bend coupling.

to be α = 25◦ even if the return loss is greater. As general statement, it is possible

to affirm that the E-plane 3-elements 90◦ trapezoidal bend, does not present good
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performances so that further analyses are avoided.

On H-plane the situation is much better (as happen also in mitered bends cases);

in this case it is possible to select three different values for α corresponding to low

|S11| and acceptable |S21| parameters. The evidences are resumed in Table 3.17.

The reflection parameter is around -40 dB in all of these cases, the transmission

Parameters [dB] @ 5 GHz α = 20◦ α = 25◦ α = 35◦

|S11| -37.51 (0.017%) -17.43 (0.0043%) -38.89 (0.013%)

|S21| -0.2 (95.5%) -0.44 (90.36%) -0.19 (95.72%)

Table 3.17: H-plane three-element trapezoidal mitered bend reflection and trans-

mission parameters.

efficiency corresponding to α = 25◦ seems to be too low and thus this value can be

excluded from the optimization. The next Table 3.18 confirms that the coupling

values at α = 25◦ are not so good compared with the other α values. In particular

α = 20◦ seems to be the best balance considering very small coupling from the fun-

damental TE10 mode and the pair of degenerating modes TE01/TE20. The higher

coupling occurs for the TE30 mode (about 3.36% of power) that is hard to filter as

explained in the next section, anyway if it were possible to consider the WR-340

waveguide, the TE30 mode would not propagate. On the contrary, in this present

configuration using WR-430, it is mandatory the presence of mode filters for TE01

and TE30 modes.

Modes @ 5 GHz α = 20◦ α = 25◦ α = 30◦

TE10 -0.2 dB -0.44 dB -0.19

TE01 -20 dB -32.85 dB -19.32 dB

TE20 -41 dB -18.11 dB .27.41 dB

TE11 -72.81 dB -75.84 dB -100.71 dB

TM11 -75.54 dB -80.66 dB -96.31 dB

TE21 -78.46 dB -82.34 dB 95,1 dB

TM21 -81.5 dB -82 dB 86.48 dB

TE30 -14.73 dB -11.01 dB -16.95 dB

TE31 -85.81 dB -80.39 dB -94.58 dB

TM31 -79.68 dB -86.27 dB -101.62 dB

Table 3.18: H-plane three-element trapezoidal mitered bend coupling.
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In the four-elements design the square of side w′ is divided into four parts and

each one forms an angle of 22◦.5′ at the vertex up on the right side, while in the

five-elements case the angle is of 18◦. Compared to the previous two and three

elements frameworks, now there is an additional design parameters such as the

angle α◦ ≤ σ ≤ 45◦. The optimization has been performed by varying all the design

parameters (Rbend, α and σ) simultaneously. Furthermore, for each value of Rbend

a contour plot has been derived for both |S11| and |S21|, in order to extract some

informations to provide a final refinement.

Also in this case the length d = 100 mm, while the angular parameters α and σ were

varied. As general statement it is possible to expect a trend close to the circular

bends as the number of trapezoidal elements increase.

Figure 3.36: Four-element trapezoidal mitered bend design parameters.

The best results are obtained for the five-element configuration both on E and

H plane. For the E-plane case, we perform an optimization around the couple of

values α = 10◦ and σ = 15◦ for Rbend = 150 mm, toward the values α = 5◦ and

σ = 20◦, as suggested by contour plots of Fig. 3.38, in the intervals α ∈ [0◦, 15◦] and
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Figure 3.37: Five-element trapezoidal mitered bend design parameters.
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σ ∈ [10◦, 30◦], respectively, with 1◦ step refinement, finding the best performance

for α = 7◦ e σ = 19◦ (|S11| = −75.96 dB and |S21| = −210−4 dB, as reported in Fig

3.39a) and 3.39b). Coupling values are suitably lower than −40 dB, as reported in

Table. 3.19. As can be noticed, the specifications in terms of reflection, transmission

and coupling are fulfilled, but in this case the bending radius is reduced than in the

circular case. This is a quite important outcome because the overall attenuation is

further minimized. For the H-plane case, we perform an optimization around the

(a) (b)

Figure 3.38: Contour plot optimization for five-element E-plane trapezoidal bend:

a) |S11| and b) log |S21|.

Modes @ 5 GHz α = 7◦ and σ = 19◦

TE01 -75.56 dB

TE20 -83.25 dB

TE11 -52.93 dB

TM11 -45.17 dB

TE21 -89.7 dB

TM21 -72.38 dB

TE30 -72.65 dB

TE31 -79.38 dB

TM31 -78.60 dB

Table 3.19: E-plane five-element trapezoidal mitered bend coupling.

couple of values α = 25◦ and σ = 10◦ for Rbend = 350 mm, toward the values α = 20◦

and σ = 5◦, as suggested by contour plots of Fig. 3.46, in the intervals α ∈ [20◦, 30◦]

and σ ∈ [5◦, 15◦], respectively, with 1◦ step refinement, finding the best performance

for α = 22◦ e σ = 9◦ (|S11| = −64.82 dB and |S21| = −610−4 dB, as reported in Fig
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(a)

(b)

Figure 3.39: Five-element E-plane trapezoidal bend vs. frequency: a) |S11|, b) |S21|,
and c) coupling.

3.41a) and 3.41b). Coupling values are, also in this case suitably lower than −40

dB, as reported in Table. 3.20. As can be noticed, the bending radius is reduced

than in the circular case, minimizing the overall attenuation losses.

A comparison between the circular shape curve and the trapezoidal bend is sum-

marized in Table 3.23. The advantage of the trapezoidal structure is quite clear,

since not only provides quite the same performances for the |S11|, |S21| and coupling

parameters as the circular shape component, but it reduces the bending radius of

the curvature, providing a more compact device that minimizes the attenuation. Of

course, the manufacturing of such a component is more complicated and it requires

a great precision.
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(a) (b)

Figure 3.40: Contour plot optimization for five-element H-plane trapezoidal bend:

a) |S11| and b) log |S21|.

(a)

(b)

Figure 3.41: Five-element H-plane trapezoidal bend vs. frequency: a) |S11|, b) |S21|,
and c) coupling.
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Modes @ 5 GHz α = 22◦ and σ = 9◦

TE01 -41.9 dB

TE20 -83.79 dB

TE11 -63 dB

TM11 -61.36 dB

TE21 -67.6 dB

TM21 -68.97 dB

TE30 -45.61 dB

TE31 -71.45 dB

TM31 -73.58 dB

Table 3.20: H-plane five-element trapezoidal mitered bend coupling.

Specifications Circular Bend Trapezoidal Bend

|S11| dB -44.84 -75.96

|S21| dB -2.5×10−4 -2×10−4

TE11 TE11

coupling dB -54.85 -52.93

TM11 TM11

-46.71 -45.17

Rbend mm 415 150

Table 3.21: E-plane. Five-element trapezoidal mitered bend vs. circular bend.

Specifications Circular Bend Trapezoidal Bend

|S11| dB -49.16 -64.82

|S21| dB -8×10−4 -6×10−4

TE01 − TE20 TE01

coupling dB -41.2 -41.9

TM30 TE30

-45 -45.61

Rbend mm 630 350

Table 3.22: H-plane. Five-element trapezoidal mitered bend vs. circular bend.
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Appendix A

Gaussian Random Variables in

Noise

A standard Gaussian random variable w takes values over the real line and has

the probability density function [91]

f(w) =
1

sqrt2π
e(−w

2

2
), w ∈ R (A.1)

The mean of w is zero and the variance is 1. A (general) Gaussian random variable

x is of the form

x = σw + µ (A.2)

The mean of x is µ and the variance is equal to σ2. The random variable x is a one-

to-one function of w and thus the probability density function follows from (A.1)

as

f(x) =
1√

2πσ2
e(− (x−µ)2

2σ2
), w ∈ R (A.3)

Since the random variable is completely characterized by its mean and variance,

we denote x by N (µ, σ2). In particular, the standard Gaussian random variable is

denoted by N (0, 1).

An important property of Gaussianity is that it is preserved by linear transfor-

mations: linear combinations of independent Gaussian random variables are still

Gaussian. If x1, · · · , xn are independent and xi ≈ N (µi, σ
2
i ), then

n∑
i=1

c1xi ≈ N
( n∑

i=i

ciµi,
n∑

i=1

c2
i σ

2
i

)
(A.4)

A standard Gaussian random vector w is a collection of n independent and iden-

tically distributed (i.i.d.) standard Gaussian random variables w1, · · · , wn. The
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vector w = (w1, · · · , wn)T takes values in the vector space Rn. The probability

density function of w follows from (A.1):

f(w) =
1

(
√

2π)n
e(− ‖w‖

2

2
), w ∈ Rn (A.5)

Here ‖ w ‖=
√∑n

i=1w
2
i , is the Euclidean distance from the origin to w = (w1, · · · , wn)T .

Note that the density depends only on the magnitude of the argument. Since an

orthogonal transformation O (i.e., OT ·O = O ·OT = I) preserves the magnitude of

a vector, we can immediately conclude that if w is standard Gaussian, then O ·w
is also standard Gaussian.

What this result says is that w has the same distribution in any orthonormal ba-

sis. Geometrically, the distribution of w is invariant to rotations and reflections and

hence w does not prefer any specific direction. Fig. A.1 illustrates this isotropic

Figure A.1: The isobars, i.e., level sets for the density f(w) of the standard Gaussian

random vector, are circles for n = 2.

behavior of the density of the standard Gaussian random vector w. Another conclu-

sion from (A.4) comes from observing that the rows of matrix O are orthonormal:

the projections of the standard Gaussian random vector in orthogonal directions

are independent. How is the squared magnitude ‖ w ‖2 distributed? The squared

magnitude is equal to the sum of the square of n i.i.d. zero-mean Gaussian random

variables. In the literature this sum is called a χ-squared random variable with n

degrees of freedom and denoted by χ2
n. With n = 2, the squared magnitude has

density

f(a) =
1

2
e−

a
2 , a ≥ 0 (A.6)

and is said to be exponentially distributed.

Gaussian random vectors are defined as linear transformations of a standard Gaus-

sian random vector plus a constant vector, a natural generalization of the scalar case
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(cf. (A.2)):

x = A ·w + µ (A.7)

Here A is a matrix representing a linear transformation from Rn to Rn and µ is a

fixed vector in Rn. Several implications follow:

1. A standard Gaussian random vector is also Gaussian (with A = I and µ = 0).

2. For any c, a vector in Rn, the random variable

cT · x ≈ N (cT · µ, cT ·A ·ATc) (A.8)

this follows directly from (A.4). Thus any linear combination of the elements

of a Gaussian random vector is a Gaussian random variable. More generally,

any linear transformation of a Gaussian random vector is also Gaussian.

3. If A is invertible, then the probability density function of x follows directly

from (A.5) and (A.6):

f(x) =
1

(
√

2π)n
√
det(A ·AT )

e

(
− 1

2 (x− µ)T (A ·AT )−1(x− µ)
)
, x ∈ R\

(A.9)

The isobars of this density are ellipses; the circles of the standard Gaussian vectors

being rotated and scaled by A (Fig. A.2). The matrix A · AT replacesσ2 in the

scalar Gaussian random variable (cf. (A.3)) and is equal to the covariance matrix

of x:

K = E[(x− µ)(x− µ)T ] = A ·AT (A.10)

For invertible A, the Gaussian random vector is completely characterized by its

mean vector µ and its covariance matrix K = A · AT , which is a symmetric and

non-negative definite matrix. We make a few inferences from this observation:

• Even though the Gaussian random vector is defined via the matrix A, only

the covariance matrix K = A · AT is used to characterize the density of x.

Is this surprising? Consider two matrices A and A · O used to define two

Gaussian random vectors as in (A.6). WhenO is orthogonal, the covariance

matrices of both these random vectors are the same, equal to A ·AT ; so the

two random vectors must be distributed identically. We can see this directly

using our earlier observation that O · w has the same distribution as w and

thus A ·O ·w has the same distribution as A ·w.
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Figure A.2: The isobars of a general Gaussian random vector are ellipses. They

corresponds to level sets {x :‖ A−1(x− µ) ‖2= c} for constants c.

• A Gaussian random vector is composed of independent Gaussian random vari-

ables exactly when the covariance matrix K is diagonal, i.e., the component

random variables are uncorrelated. Such a random vector is also called a white

Gaussian random vector.

• When the covariance matrix K is equal to identity, i.e., the component random

variables are uncorrelated and have the same unit variance, then the Gaussian

random vector reduces to the standard Gaussian random vector.

• Now suppose that A is not invertible. Then A ·w maps the standard Gaussian

random vector w into a subspace of dimension less than n, and the density of

A ·w is equal to zero outside that subspace and impulsive inside. This means

that some components of A ·w can be expressed as linear combinations of the

others. To avoid messy notation, we can focus only on those components of

A ·w that are linearly independent and represent them as a lower dimensional

vector x̂, and represent the other components of A ·w as (deterministic) linear

combinations of the components of x̂. By this stratagem, we can always take

the covariance K to be invertible.

So far we have considered real random vectors. Complex random vectors are of the

form x = xR + jxI where xR and xI are real random vectors. Complex Gaussian

random vectors are ones in which [xR,xI ]
T is a real Gaussian random vector. The

distribution is completely specified by the mean and covariance matrix of the real

vector [xR,xI ]
T . The same information is contained in the mean µ, the covariance
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matrix K, and the pseudo-covariance matrix J of the complex vector x, where:

µ = E[x] (A.11)

K = E[(x−mu)(x−mu)∗] (A.12)

J = E[(x−mu)(x−mu)T ] (A.13)

Here, A∗ is the transpose of the matrix A with each element replaced by its complex

conjugate, and AT is just the transpose of A. Note that in general the covariance

matrix K of the complex random vector x by itself is not enough to specify the full

second-order statistics of x. Indeed, since K is Hermitian, i.e., K = K∗, the diagonal

elements are real and the elements in the lower and upper triangles are complex

conjugates of each other. Hence it is specified by n2 real parameters, where n is the

(complex) dimension of x. On the other hand, the full second-order statistics of x

are specified by the n(2n+ 1) real parameters in the symmetric 2n× 2n covariance

matrix of [xR,xI ]
T .

In wireless communication we are almost exclusively interested in complex random

vectors that have the circular symmetry property, that means that x is circular

symmetric if ejθx has the same distribution of x for any θ.

For a circular symmetric complex random vector x,

E[x] = E[ejθx] = ejθE[x] (A.14)

for any θ; hence the mean µ = 0. Moreover

E[x · xT ] = E[ejθx(ejθx)T ] = e2jθE[x · xT ] (A.15)

for any θ; hence the pseudo-covariance matrix J is also zero. Thus, the covariance

matrix K fully specifies the first- and second-order statistics of a circular symmetric

random vector. And if the complex random vector is also Gaussian, K in fact

specifies its entire statistics. A circular symmetric Gaussian random vector with

covariance matrix K is denoted as CN (0,K). Some special cases:

1. A complex Gaussian random variable w = wR + jwI with i.i.d. zero-mean

Gaussian real and imaginary components is circular symmetric. The circular

symmetry of w is in fact a restatement of the rotational invariance of the real

Gaussian random vector [wR, wI ]
T already observed (cf. (A.8)). In fact, a

circular symmetric Gaussian random variable must have i.i.d. zero-mean real

and imaginary components. The statistics are fully specified by the variance

σ2 = E[|w|2], and the complex random variable is denoted as CN (0, σ2). (Note

that, in contrast, the statistics of a general complex Gaussian random variable
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are specified by five real parameters: the means and the variances of the real

and imaginary components and their correlation.) The phase of w is uniform

over the range [0, 2π] and independent of the magnitude ‖ w ‖, which has a

density given by

f(r) =
r

σ2
e−

r2

2σ2 , r ≥ 0 (A.16)

and is known as a Rayleigh random variable. The square of the magnitude,

i.e., w2
1 + w2

22, is χ2
2, i.e., exponentially distributed, cf. (A.6). A random

variable distributed as CN (0, 1) is said to be standard, with the real and

imaginary parts each having variance 0.5.

2. A collection of n i.i.d. CN (0, 1) random variables forms a standard circular

symmetric Gaussian random vector w and is denoted by CN (0, 1). The density

function of w can be explicitly written as, following from (A.5),

f(w) =
1

π
e−‖w‖

2

, w ∈ Cn (A.17)

As in the case of a real Gaussian random vectorN (0, 1) (cf. (A.8)), we have the

property that U ·w has the same distribution as w for any complex orthogonal

matrix U (such a matrix is called a unitary matrix and is characterized by the

property U ·U = I). This property is the complex extension of the isotropic

property of the real standard Gaussian random vector. Note the distinction

between the circular symmetry and the isotropic properties: the latter is in

general much stronger than the former except that they coincide when w is

scalar. The square of the magnitude of w, as in the real case, is a χ2
2n variable.

3. If w is N (0, 1) and A is a complex matrix, then x = A ·w is also circular sym-

metric Gaussian, with covariance matrix K = A·A∗, i.e.,N (0,K). Conversely,

any circular symmetric Gaussian random vector with covariance matrix K can

be written as a linearly transformed version of a standard circular symmetric

random vector. If A is invertible, the density function of x can be explicitly

calculated via (A.15), as in (A.8),

f(x) =
1

πndetK
e−(x∗·K−1·x), x ∈ Cn (A.18)

When A is not invertible, the earlier discussion for real random vectors applies

here as well: we focus only on the linearly independent components of x, and

treat the other components as deterministic linear combinations of these. This

allows us to work with a compact notation.
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Orthogonal System for Curved

Structure

Solutions of Maxwell’s equation in source-free, isotropic media

∇×H = jωεE∇× E = −jωµH (B.1)

can be obtained only in a few orthogonal co-ordinate systems [23]; perturbations

of such systems normally introduce non-orthogonal features that further complicate

the solutions. A means whereby a suitable orthogonal system can be obtained from

a general one, has been developed by Tang [43] and it is relevant to applications in

which waveguides are twisted or curved in space.

Fig. B.1 shows a smooth curve in space described by a position vector R(s) which

Figure B.1: Serret-Frenet frame in curved space..

is a function of the arc length s measured from an arbitrary point. At any point we

can define a unit vector at in the direction of the tangent at that point; moreover,

277
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we derive the relation R(s) + atds = R(s+ ds), from which we can derive that

at =
d

ds
R (B.2)

In going from s to s+ ds, this tangential unit vector rotates by dθ, defining a plane

in which the principal normal to the curve an is in relation with the vector at by

the following equation

at(s+ ds) = at(s) + andθ (B.3)

and then,

an =
d

ds
at(

ds

dθ
) (B.4)

where the term ds/dθ = 1/χ, being χ the curvature; so that

an = at
′/χ (B.5)

(the prime representing the differentiation with respect to s).

Since at
′ = R′′, Eq. (B.4) gives the relation

χ2 = R′′ ·R′′ (B.6)

We now define the binormal unit vector ab given by the direction of the right-handed

rotation from the tangent to the normal. Hence, ab = at × an or equivalently

ab = R′ × R′′
χ

(B.7)

We can also relate ab with another important parameter that distinguishes the

curved frame. As the point s moves to s + ds, the normal vector an(s) becomes

an(s + ds), and the difference an(s + ds) − an(s) = an
′ds is perpendicular to an

(being an
′ the slope of the tangent to the unit circle having radii an(s)). Hence, an

′

can be expressed in terms of multiples of the vectors ab and at, being both of them

perpendicular to an:

an
′ = Aab +Bat (B.8)

and, by the definition of torsion, the coefficient A = τ .

Substituting into Eq. (B.7), from Eqs. (B.3), (B.4) and (B.6), gives

R′′′

χ
− R′′χ′

χ2
= AR′ × R′′

χ
+BR′ (B.9)
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Now, thus R′ ×R′′/χ = ab is perpendicular to at = R′ and an = R′′/χ, the scalar

product of Eq. (B.8) with R′ ×R′′, solved for the torsion parameter, gives

A = τ =

(
R′ ×R′′

)
· R′′′(

R′′ ·R′′
) (B.10)

This relation returns the torsion in terms of derivatives of the position vector. From

at ·an = 0, we have R′ ·R′′ = 0, and differentiating gives R′′ ·R′′ = −R′ ·R′′′. Taking

the scalar product of Eq. (B.8) with at = R′ accordingly gives B = R′ ·R′′′/χ =

−
(
R′′ ·R′′

)
/χ = −χ, from Eq. (B.5). Substituting in Eq. (B.7), we obtain

ab =

(
an
′ + χat

)
τ

(B.11)

Differentiating the relation ab = at × an gives ab
′ = at

′ × an + at × an
′. From Eq.

(B.4) at
′ = χan so at

′ × an = 0; and from Eq. (B.10), at × an
′ = τat × ab = −τan.

Hence

ab
′ = −τan (B.12)

The three mutually orthogonal vector at, ab and an define a right-handed orthogonal

co-ordinate system in any point of the curve, and is known as Serret-Frenet frame.

As the point s moves along the curve the frame rotates; if the curve is a plane curve

the rotation is about the axis ab; the effect of the torsion is to provide additional

rotation about at.

A vector which measures the rate of rotation of the frame is the Darboux vector δ,

defined by

δ = τat + χab (B.13)

and Eqs. (B.4), (B.7) and (B.11), can be put in the form

at
′ = χan = δ × at

an
′ = −χat + τab = δ × an (B.14)

ab
′ = −+ τan = δ × ab

From Eq. (B.13) the Darboux vector can be interpreted as an angular velocity

vector describing the rate of the rotation of the trihedral (at, ab, an) as it moves

along the curve.

The Serret-Frenet frame can be used as the basis for setting up an orthogonal co-

ordinate system in the neighborhood of the curve. In fact, even if it constitutes an
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orthogonal frame on the curve, for points off the curve the effect of the torsion is to

destroy the orthogonality. Apart from the case of a plane curve the Serret-Frenet

frame does not provide an othogonal co-ordinate system [23].

On top on this, an orthogonal frame can be derived by producing an alternative

frame with zero rotation around at (i.e. a frame with rotation rate −τ with respect

to the Serret-Frenet one). Denoting the new frame with the unit vectors aν , aβ, at,

and let the angle between an and at be φ, a function of s such that

d

ds
φ = −τ(s) (B.15)

Then for the frame aν , aβ, at the Darboux vector becomes, since there is zero net

torsion,

δ0 = χab = χ(aν sinφ+ aβ cosφ) (B.16)

Since n = ν cosφ − β sinφ is the co-ordinate distance in the direction of an, the

expression of the line element in the (ν, β, s) system, being r the position vector of

an arbitrary point P in the vicinity of the curve, reduces to

(dr)2 = (dν)2 + (dβ)2 + [1− χ(ν cosφ− β sinφ)]2(ds)2 (B.17)

This form identifies the metric coefficient as

hν = hβ = 1, hs = [1− χ(ν cosφ− β sinφ)] (B.18)

Accordingly to that, Maxwell’s equation in the (ν, β, s) frame can be constructed.

In the case of a rectangular waveguide whose axis follow the curve R(s), and the

cross-section is defined by the relation ν = ±a/2 and β = ±b/2, where a and b are

the waveguide transverse dimensions.

For shapes of cross-section other than rectangular, consider the transformation

ν = ν(u, v), β = β(u, v) (B.19)

to orthogonal curvilinear co-ordinate u, v. The orthogonality condition on u and v

takes the form
∂ν

∂u

∂ν

∂v
+
∂β

∂u

∂β

∂v
= 0 (B.20)

The metric coefficients in the new co-ordinates system are

hu =

[(
∂ν

∂u

)2

+

(
∂β

∂u

)2](

1/2)hv =

[(
∂ν

∂v

)2

+

(
∂β

∂v

)2](

1/2) (B.21)

with hs as in Eq. (B.18).

For example, for a curved circular pipe, the polar co-ordinates (ρ0, ψ) transformation

is given by ρ0 = ν2 + β2 and

hρ = 1, hφ = ρ, hs = 1− χρ cos(φ+ ψ). (B.22)



Conclusions

In the first part of this thesis we describe a hybrid electromagnetic and statistic

procedure for the localization of buried objects (both perfectly-conducting and di-

electric). In particular, we adopt a signal model for the field scattered by the object,

and received by an array of sensors, based on the narrowband signal representation.

After that, we partition the whole array in a certain number of sub-arrays in order

to locally validate the plane-wave approximation, and successively we apply at each

sub-array several Direction of Arrival estimation algorithms (non-parametric, sub-

space based, maximum likelihood based). By triangulating all the DoAs we obtain

a dataset made by the intersection co-ordinates, which has been processed by using

a statistical technique based on the Poisson distribution. In fact, the investigation

domain can be geometrically partitioned by means of fixed-size standing windows,

each one containing a number of crossings. It can be demonstrated that the random

variable represented by the number of windows which have on the inside k crossings

(iterating k on the number of crossings), can be represented by a Poisson-based

statistical distribution. In particular, the are two different probability functions, for

the target region windows (in which the number of crossings is high and the rate-

parameter of the distribution in larger) and for the background windows (in which

the crossings are sparse and the rate-parameter of the distribution is smaller).

Moreover, by using a sliding windows, at each step it is possible to verify a binary

test and detecting the windows belonging to the target region. By removing the

background region crossings from the investigation domain, it is possible to esti-

mate the object position by averaging the co-ordinates.

We simulated many cases relevant to a perfectly conducting cylinder and a dielec-

tric one. Moreover, we calculated the localization error varying the cylinder radius,

its horizontal position, the distance from the array and the refractive index of the

ground. For the dielectric case, we also varied the refractive index of the cylinder.

The results achieved for a single-object localization are quite precise in many cases,

and specially for a conductive cylinder or a cavity.

Moreover, we derived some interesting trends of the maximum output SNR versus

281
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the cylinder size and distance from the array. In some cases (i.e. conductive cylin-

ders and cavities) it is possible to cross-check the values of the localization error and

the SNR level, in order to estimate also the dimension of the cylindrical object.

We also take into account the multiple object localization, developing a clustering

analysis method to process the crossing pattern. In particular, we apply several clus-

tering algorithms, generally used to derive homogeneous groups of data in a dataset,

to our scopes. The idea is to identify the cylinder positions by considering them as

the centroids of a group of co-ordinates that minimize the proximity function (that

in this case is consists in a measure of the geometrical distance).

Also in this case we simulate many configurations concerning a double cylinder local-

ization, considering the scatterers perfectly conducting or dielectric. The localization

error value is reported for both the cylinders, varying the geometrical parameters

(dimension, distance, horizontal offset with respect to the array center) and the

permittivity of both the cylinders (in dielectric cases) and ground. The outcomes

show a detection capability of the procedure, specially for conductive cylinders and

cavities.

In the second part of this thesis, we dealt with the design of microwave components

for the transmission line of the LHCD system of ITER. The first component that we

considered is a mode converter taking as inputs four rectangular waveguide excited

in the fundamental mode (representing the generator outputs), and collecting them

into a circular oversized waveguide, in order to transfer more power in a single line.

The utility of such a component was supposed to be to minimize the attenuation

losses of the line, in fact the circular TE01 mode is less attenuated because it does

not affect the waveguide walls. We design the combiner by using a commercial FEM

solver, and then we optimize the dimension of the component in order to minimize

the reflection toward the generators and at the same time, maximize the transmis-

sion efficiency of the desired mode. In ideal working conditions, when the input

waveguides are fed uniformly in amplitude and phase, the combiner performances

are good and the the efficiency is more than 99%.

Problems occur when the input waveguides are unbalanced in amplitude and/or in

phase. In such a scenario, the combiner is poorly fault-tolerant; in fact all the other

modes are allowed to propagate and the efficiency progressively decreases. At the

same time the reflection of power toward the generators increases. Since the event

of a power reduction, affecting one generator or a phase shift among the generators

of the line is not so unusual, the component cannot be used for this high power

application, because a possible malfunctioning will cause the suppression of the line

and consequently a lack of power for the entire system.
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The unsuitability of the combiner for the transmission line achievement, suggested

to consider the design of an oversized-rectangular-waveguide system. In fact, due

to reduction of the distance between generators and plasma vessel, the attenuation

losses along the whole transmission line decreased, making possible the use of rect-

angular waveguides. Unfortunately, the reduction of the attenuation losses was not

so strong to allow the realization of an unimodal system, therefore we worked on

the optimization of a transmission line with oversized cross-section, in order to fulfill

the power transmission requirements. In fact, in such a oversized structure, several

higher order mode are allowed to propagate, while the most of the power transfer

must be carried on the fundamental TE10 mode. So that it is mandatory to design

efficient mode filters in order to reduce the power content on higher order modes.

In particular, designed innovative filters by means of corrugations (both longitudi-

nal and transversal) partially filled with absorbing materials, considering the power

absorption as function of the absorber thickness. With this strategy, a dependence

similar to a damped cosine between the absorption performance and the thickness

of the material that fills the corrugations, can be derived. Such behavior has been

explained by means of an analytical model treating the corrugations as normal guid-

ing structures where forward and backward waves propagate. This model is applied

to filters for rectangular waveguides and has been simulated by means of full-wave

FEM solver.

Supposing to have mode filters attenuating higher order and spurious modes, the

presence of discontinuity on the line (i.e., bend) can further excite unwanted modes.

Therefore, on one hand mode filters attenuate the propagation of these modes while,

on the other hand, the presence of bends will excite them. So, it is important to

properly design the bends to limit the excitation of spurious modes facilitating the

mode filtering. Several bend profiles have been analyzed both on E and H planes,

with a commercial FEM code: circular bend, mitered bend, and trapezoidal ele-

ments bend.

The principal specifications that characterize the bend design consist in the min-

imization of the refection of the fundamental mode (|S11| parameter) and at the

same time the maximization of the transmission efficiency of the TE10 mode (|S12|
parameter). Another important requirement is to minimize the coupling between

the fundamental mode and other spurious modes that can propagate at the working

frequency in the oversized rectangular waveguide.

The optimization of the simple circular bends (on E and H plane), lead to design

efficient structures in terms of specifications fulfillment, but the optimized bending

radius was still too long introducing several dBs of attenuation at each bend. In or-
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der to reduce the bending radius, we designed a bend structure present in literature

as mitered bend. This component resulted to be very poor in terms of transmission

efficiency and thus it was rejected. We have found an excellent solution by con-

sidering the polygonal approximation of the circular bends by means of trapezoidal

elements. With these structure we have obtained the same performances of the cir-

cular bend for what concerns the transmission efficiency, the reflection and coupling

with spurious modes (as one could expect since it performs an approximation of the

circular shape), with a significant reduction of the bending radius.
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