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Introduction

The need for modelling diffusion of innovations in a statistical framework
has been motivating important reasearch from both practical and theoreti-
cal perespective for the last 30 years. Diffusion of innovation has been an-
alyzed both at a microscopic level (Niu, 2002; R.Guseo and M.Guidolin,
2010; Moldovan and J.Goldenberg, 2003) and at an aggregate level (Fourt
and Woodlockl, [1960; Bass|, |1969; Manstfield}, |1961; Rogers, [1995; [Mahajan
and Wind, 1986; |Skiadas and Giovanis, [1997). In the microscopic approach,
what is modeled is the behaviour of a single individual, interacting with
other individuals of a social system, in terms of adoption of a recently intro-
duced innovation. At a given time, the probability of adopting the innova-
tion is associated to each individual. Depending on the model complexity,
the adoption probability depends on a certain number of factors, such as the
specific characteristics of the potential adopter, or the environmental condi-
tions. Typically, the probability for an individual to adopt the innovation
depends on the number of people who are already adopters: the higher the
number of adopters, the higher the probability of a new adoption. In this
respect, the diffusion of innovations is similar to other diffusion phenomena,
such as the diffusion of a desease, or the dynamics of a population, and
can be studied through the same methodologies, (e.g., birth-death processes,
SIR/SIS models).

With the aggregate approach, the dynamics of the total number of adopters,
instead of individual behaviour, is directly modeled. In the approaches based
on the classical Bass model (Bass, 1969), cumulative adoption is modeled
through a deterministic differential equation of logistic-type, where the in-
stant rate of adopter number at time ¢ is assumed to be proportional to the
sum of two terms. The first term is the adopter number and accounts for the
individual propensity to the adoption (“self-innovation”). The second term
is the product of the number of people who at time ¢ are already adopters
and the ones who are not. This term, considered the most important in many
applications, captures the “word by mouth” or “imitation” effect, that takes



into account, under suitably simplifying assumptions, the impact of the com-
munication among the individuals on the adoption. The relationship between
micro and aggregate approach is, in general, an interesting field of research.
In particular, it is of great interest to analyze under which conditions models
for cumulative adoption can be derived from probabilistic micro-level mod-
els. For instance, in the limit of large size population, it can be proved (Niu,
2002)) that the deterministc Bass equation is fulfilled by the expected value
of the total adopter number, under a micro-level dynamic governed by a pure
birth-death process.

In this thesis, the aggregate approach is adopted. In particular, the clas-
sical Bass model is generalized by introducing random noise in the dynamics
of the diffusion. Stochastic aggregate models for the diffusion of innovation
have been studied by many authors. For instance, Gutierrez et al. (2005)
use an extension of the classical Gompertz innovation diffusion model to pre-
dict natural-gas consumption in Spain. Kanniainen et al.|(2011)) and |Skiadas
and Giovanis (1997)) propose two stochastic extensions of the Bass model:
in the first paper a mean reverting Orstein-Uhlenbeck process is added to
the logarithm of the classical solution of the Bass equation, while in the sec-
ond the authors propose an SDE which is obtained from the classical Bass
equation by adding a Brownian diffusion term chosen so that an explicit
analytic solution of the SDE can be found. Introducing randomness in the
diffusion Bass model by replacing the ordinary differential equation (ODE)
with a suitable stochastic differential equation (SDE) is a natural approach.
The crucial point is the choice of the diffusion coefficient. In fact, in or-
der to interpret the solution of the SDE as a (continuous approximation of)
stochastic process corresponding to the number of adopters, some qualitative
properties have to be satisfied. For instance, it is desirable that at each time
the process takes a.s. values belonging to the interval [0, K|, where K is the
number of potential adopters (regularity conditions). This latter condition is
not satisfied, for instance, if the diffusion coefficient is chosen as in Skiadas
and Giovanis (1997)).

In this thesis, the diffusion term has been defined so that the resulting
stochastic Bass model has the right regularity conditions. Moreover, the
drift of the SDE includes a term which accounts for the possibility that some
people cease being adopters (“disadoption”). The resulting stochastic Bass
model (SBM) is a parametric model with four “deterministic” parameters
associated, respectively, to: self-innovation (a), imitation (b), disadoption
(1) and number of potential adopters (K), and one “stochastic” parameter
(o) governing the volatility of the process. As disadoption is allowed, and in



any case, since random noise can determine decrease of adoptions, the SBM
is not an a.s. increasing process. This makes it suitable to model adoption of
innovations referring to services or social behaviours, more than diffusion of
new products measured in terms of sale growth. However, the SBM can be
useful in modeling sales period by period (for instance daily sales), for kind of
durables whose consumption is believed to be approximately “proportional”
to the number of users.

Using some results on the regularity of solution of logistic-type SDEs in [Shurz
(2007), it can be proved that sample paths from the law of the SBM remain
in the interval [0, K] provided that the process starts in the same interval
and that all model parameters are non negative. In this thesis (Chapter (1)),
the results on regularity conditions have been extended to include also the
(time non-homogeneous) case where the number of potential adopters is a
deterministic non decreasing function of time. This extension can be useful
when the effects of the population dynamics on the diffusion of innovation
are to be taken into account.

In this thesis, some theoretical properties of the SBM have been explored. It
has been proved that when all the model parameters are positive, an equi-
librium distribution exists (i.e., the process is ergodic). Furthermore, its
explicit representation in terms of modified Bessel functions of second kind
has been derived. In case of no self-innovation (a = 0), the conditions on
the other parameters for the existence of the equilibrium distribution have
been investigated. Moreover, the stochastic stability of the trivial solutions
corresponding to “no adopter” or “all adopters” has been studied, when the
parameters are such that the process has not a proper stationary distribution.

Although the stochastic Bass model has good theoretical properties that
make it suitable to model diffusion phenomena, the analytic solution of the
underlying SDE; as well as the explicit form of its transition density, is not
available. This poses serious problems in statistical inference for the SBM
parameters, based on a finite set of observations.

Inference on discretely observed diffusion processes is a challenging area of
research. In fact, except for a few cases (e.g., solutions of linear SDE or CIR
model) the transition density of the diffusion process cannot be expressed in
analytic form. Hence, likelihood-based inferential approaches, such as max-
imum likelihood (ML) estimation and Bayesian inference, are not easy to
apply because the likelihood function is not known. Unavailability of the
transition density makes also difficult to evaluate specific functionals of the
diffusion process, such as hitting times, or expectations at given times. In



these cases, one possible approach is to simulate a large number of process re-
alizations and to approximate the quantities of interest via sample averages.
A common method for random drawing of approximate realizations from the
law of a diffusion process is to discretize the time interval on which the pro-
cess is defined and to approximate the original SDE via some Eulerian-type
scheme. As the discretization step tends to zero, the solution of the approx-
imate SDE converges, in a suitable metrics, to the solution of the original
SDE. Thus, the accuracy of the approximations depends on a further pa-
rameter (the discretization step), in addition to the number of MC replicates
used to approximate expectations. Another problem with Eulerian methods
is that boundness conditions, such as regularity properties with respect to a
given domain, are not ensured. For instance, in the case of the SBM model,
there is no guarantee that the process values remain lower than K, the num-
ber of potential adopters.

In this thesis, it is shown how sample paths from the “exact” law of the
stochastic Bass model without self-innovation (SBM1) can be drawn. Exact
simulation of SBM1 trajectories is based on the methodology of retrospec-
tive sampling recently introduced by Beskos, Papaspilioupolos and Roberts
(2006). Essentially, it is an Acceptance-Rejections (A/R) scheme which al-
lows, for a cetain class of diffusions, to accept (or reject) a proposal in an
infinite-dimensional space, by checking only a finite set of conditions. Besides
“exactness”, another important advantage of the exact simulation method-
ology for diffusion processes, is that, differently from the Eulerian methods,
it also allows one to easily obtain realizations from the law of the process
conditioned on both its starting and ending points (diffusion bridge). This
characteristic is of great importance in all those inferential methods, as EM
algorithm or Gibbs sampling, based on data augmentation schemes. In this
thesis, however, major emphasis is posed on inferential methods based on
Monte Carlo (MC) approximation of the transition density. Specifically, for
two given consecutive observations of the SBM process, one starts by con-
sidering the diffusion bridge obtained by conditioning the target process to
these two observations and the times they refer to. Then, exploiting the ex-
pression of the Radom Nikodyn derivative of the target diffusion bridge with
respect to the corresponding Brownian bridge, one can express the transi-
tion density in terms of expectation of a suitable Brownian functional. This
expectation is analytically intractable but can be easily approximated via
MC average. MC approximation of the transition density for each pair of
consecutive obervations provides, in turn, an MC approximation of the like-
lihod function. Thus, approximate maximum likelihood estimates (amle) of
the model parameters can be obtained by maximizing the approximate like-
lihood. The amle methodology has been applied to the estimation of the
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SBM1 model parameters and compared with other classical methodologies.
The comparison shows that amle performs better than the competing tech-
niques, especially when the process is sampled at low frequency.

The thesis is organized as follows. In Chapter [1| the stochastic Bass model is
introduced. The new results on the regularity conditions and the derivation
of the stationary distribution are presented in Subsections |1.2.2| and [1.2.3|
respectively. The latter section also contains the analysis of stochastic sta-
bility of the degenerate equilibrium solutions of the Bass SDE. In Chapter
the methdology of exact simulation of diffusion processes based on retro-
spective sampling is illustrated. Chapter [3| contains a description of different
approaches to the parametric inference for discretely observed diffusions. In
particular, a detailed description of the inferential methods based on MC
approximation of the transition density is provided. Chapter |4|is devoted to
exact simulation and statistical inference for the stochastic Bass model. The
methodologies introduced in general in Chapters [2] and || are described for
the case of SBM in Sections [4.1] and [4.2| respectively. In particular, in Section
(Subsection , a numerical application is presented where the amle is
compared with the classical estimator based on the Gaussian approximation.
Finally, comments and remarks are presented in a concluding section.







Chapter 1

The stochastic Bass diffusion

1.1 The classical Bass model

In marketing sciences, a growing area of research is focused on market de-
mand for new products or services. In this field, it is of great interest to model
the diffusion of innovation within a population of potential consumers/users
in order to optimize promotion and distribution strategy. To this aim, many
deterministic models have been proposed in the last three decades to cap-
ture the most important aspects of innovation diffusion. See, for instance,
Bass (1969), Mahajan and Wind, (1986)), Parker| (1994)), Rogers| (1995). The
dynamics of the population of interest is often modeled by an ordinary dif-
ferential equation (ODE). In most of these works, efforts are made in order
to properly take into account the role played by the communication among
the members of a network or social system. Effects on innovation diffusion of
contacts among individuals of the population are typically captured by non-
linear terms in the ODE. Logistic-type equations, often used for modeling
population growth, are particulary suitable to model diffusion of innovation.
Among them, the Bass model (Bass| |1969) is often used:

dy _

= a(K —y) + b (K —y) — . (L.1)

K

where y(t) represents the number of innovation adopters at time t. The three
terms on the r.h.s. of equation can be interpreted as follws: The first
one (self-innovation) models the effect of commercials on adoption and is
proportional to the number K — y(t) of individuals who are not adopters at
time t, where the positive parameter K is the number of potential adopters.
The second term is sometimes called “imitation” or “word of mouth” and
captures the effect of interactions between individuals on adoption. The last



term takes into account the effect of adopters who stop being so. All the
parameters a, b, u are non negative. In some contexts, the second term can
also be directly related to the benefit for new adopters due to the presence
of current adopters. This is the case for instance, when adoptions refer to
goods or services (e.g., social networks) such that individual utility increases
with the number of current adopters.

If (b—a— p)?+ 4ab > 0 equation (1.1)) has the two equilibrium points:

b—a—pu+/(b—a—p)?+4ab

+
_K
y 2

(1.2)

It is easy to verify that y* € [0, K] and is asymptotically stable, while y~ is
non positive and unstable. The non-negative solution of equation (|1.1)) with
initial condition y(0) = yo > 0 is:

oyt Aexp{EWt -y )} +y
y(t) = 1+ Aexp {%(y+ — y*)t} ’

where A = (yo —y~)/(y* — yo). Furthermore, one can easily check that, for

(1.3)

t >0, y/(t) is positive if yo < yT, and negative if yo > y*. It follows that for
Yo < yT (yo > y™T), the solution is an increasing (decreasing) positive
function with lim; ., y(¢) = y. Thus, starting from the initial value yg, the
number of adopters tends to its asymptotic value y*, i.e., the system goes
to “saturation”. It is worthwhile noting that, if mortality is not included
in the model (u = 0), as for instance in the case when y is the number of
purchases of a certain good, then y™ = K, i.e., for ¢ large enough, in practice
all potential consumers become adopters. It is of some interest to measure
the speed at which the system goes to saturation. A frequent parameter used
to this aim is the time ¢* at which y/(¢) is maximum (inflaction time). Direct
calculation shows that

K 1 ?J+—?Jo
n .

=
20yt —y=)  wo—y

In the case (b —a — pu)> + 4ab = 0, ie., a = 0, b = p, the two stationary
points collapse in the point y* = 0 and the solution of ([1.1)) is:

1

t) = ————.
?J() y51+%t
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1.2 The stochastic Bass model

Deterministic model can be justified in different ways. For example,
in Niu (2002) it is shown that the evolution law for the proportion y(t)/K,
provided by equation (L.3), can be derived, in the limit of large population
size, from a stochastic microscopic model where the trajectory of cumulative
number of adoptions is governed by a pure birth process. In R.Guseo and
M.Guidolin| (2010), the authors obtain the solution from a suitable
Cellular Automata representation under the mean field approximation.
Recently, there has been a growing interest in the stochastic generalization
of equation capable of taking into account the presence of random
mechanisms in the adoption dynamics. This allows to have non-monotone
solutions as it is the case in practice in some applications. In the next Section,
a stochastic generalization of the Bass model will be introduced and some of
its known theoretical properties will be described.

1.2.1 Introduction and known properties

A natural way of introducing stochasticity in the model is to replace the de-
terministic equation ([1.1]) with an appropriate stochastic differential equation
(SDE):

Y,
dY; = |a(K = Y;) + b2 (K = Yi) = Yy | dt + 5(Y;)dW:, (1.4)

where (-) is the volatility function and W; is a one-dimensional Brownian
motion. For instance, this is the approach of [Skiadas and Giovanis (1997)),
who propose a particular choice for . While the choice of the drift term
is naturally guided by the deterministic version of the differential equation,
it is not obvious how to specify the stochastic term. As we will see soon,
some restrictions are imposed by the requirement that the solutions have
certain reasonable qualitative properties. In particular, since y represents
the number of adopters, it must remain non-negative. Furthermore, we wish
the number of adopters does not exceed the maximum number K of poten-
tial adopters. In other words, we want that the trajectory evolves within the
interval [0, K]. According to the terminology of Shurz| (2007), we call the pro-
cess Y; regular with respect to the domain D C R, if P{Y (t) € D;t > 0} = 1.
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The following theorem (Shurz, [2007) shows that the solution of (1.4) is not

regular on [0, K] if & is a numerical constant.

Theorem 1.2.1 Assume that {Y;,t > 0} satisfies equation with 6 =
o> 0,K > 0,a >00b2>0,u>0, and Yy € [0,K] is independent of
the o-algebra o(Wy,t > 0). Then {Y:,t > 0} is not regular with respect to
D = [0,K]. More precisely, Vx € D, P(1*(D) < +00) > 0, where 7°(D)
1s the first exit time of the process Y from the domain D, when the starting
point is T.

The previous result shows that although the drift has the “right sign”
on the boundary of the region D, in the classical sense that it pushes the
motion towards the interior of the region, additive random noise may cause
the process to leave the region in finite time. It is reasonable to expect that,
in order to have regularity with respect to region D, the diffusion term has to
vanish on 9D. The next result (Shurz, 2007) shows that regularity is ensured
in a class of SDEs with “multiplicative noise”.

Theorem 1.2.2 Let {Y;,t > 0} be a strong solution of the Bass SDE :

Y,
dY; = |a (K = i) + b7 (K = i) — uYy | dt+ | Vi*[K = Y| dW,, (L5)
with initial condition

Yy € (0, K),

where K > 1, and a,b, u, o, a, B are non-negative constants.
Let T be the stopping time defined by:

r=inf{t>0:Y; ¢ (0,K)}.
Then, under the conditions o > 1, f > 1, we have P(t <t) =0, VYt > 0.

1.2.2 Extension and new properties

In this section, we prove a new result corresponding to a generalization of
the last theorem. Specifically, we assume that K is no more constant, but
it is varying along time, i.e., K = K(t). The extendend non homogeneous
Bass equation is:

dY; = B(Y;, t)dt + D(Y, t)dW,, (1.6)

10



where B(+,-) and D(-,-) denote the drift and the diffusion coefficients, re-
spectively, defined by:

Blot) = a(KW) =y +bps (KO —v) = (07)
Dly,t) = gl 1K) =yl (1.8)

Theorem 1.2.3 Let {Y;,t > 0} be a strong solution of equation (1.6) with
drift and diffusion functions , (@, and initial condition:

Yo € (0,K(0)),  K(0) >1.
Assume that K(-) € CY(RTU{0}) is a non decreasing function and a, b, u, o, o,
are as in theorem . Then, if T is the stopping time defined by:
T=inf{u>0:Y, ¢ Du)},

where D(t) = (0, K(t)).
we have P(t <t) =0, Vt > 0.

Proof. Let T > 0 and K* = max{K(t), t € [0,T]}. For each t € [0,T]
and n € N define the “time dependent” open interval:

Do(t) = (e, K(t) —e™).

Define the random time: 7, = inf {u € [0,7]: Y, ¢ D, (u)}. We assume

that 7,, = 400, if {u € [0,T]:Y, ¢ D,(u)} = 0. For t € [0,T], let us intro-
duce the Lyapunov function V:

V(z,t) = K* —log(x(K(t) — x)).
From the elementary inequality y — 1 > logy valid for all positive y, it
follows that:

11



V(z,t)= K*—K({t)+K(t)—xz—log(K(t)—z)+xz—logr > K*—K(t)+2 > 2.
Let us introduce a second Lyapunov function W defined as:

Wz, t) = eV (z,1),

where:

‘ a+b+U2K(t)2a+26—4 +M
c(t) = 5 :

Now, for fixed ¢t € [0,7], we introduce another stopping time 77 =t A 7,

and we use the Dynkin formula (see, e.g., [Oksendal (1998))) to obtain an
expression of the expectation of W computed at the (random) point (Y-, 7,):

EW (Y, 1r)) = W(Y,,0)+E {/ ’ {%—Z/(Yu,u) + EOW(YU,U)} du} , (1.9)
0

where:

£+B§+1 2 0 (1.10)

07 oy T 27 gy '
The integrand in ((1.9) can be written as:
, ov
—cW — duW + exp(—c(u)u) — + exp(—c(u)u) LoV, (1.11)

ou

where the simbol ' denotes the derivative with respect to time. Now, we
prove the following inequality:

LoV < V. (1.12)

Note that, for fixed t € [0,7] and 0 < y < K(t), from V(y,t) > 2 it follows
that:

12



V(yt)— LoV(y,t) > a+b+ K> 4 — LoV (y,t)

= a+b+ Ky — [(a+b%)(K—y) —uy}

1 1 o? 1 1
- o aK_ 28 | -
X{ y+K—y} 2K2Y ( v) LﬁjL(K—y)Q}

o2 20284 (a+by/K)(K —y) n MY
Yy K-y

v

o2
2K?

YK — )P (K —y)? + o7

o2 20+26-4

v

ag _ _
gV K =) (K =) + v
N2 2
K-y +v| o 0.

2 1-20+28—4
K 1—
g 2K2 =

v

where, in order to make notation simpler, we have omitted the argument ¢ in

the functions ¢ and K. From (1.9), (1.11) and (1.12), when Y, € (0, K'(u))

for u € (0,7), and «, 5 > 1, it follows:

*
Tn

E(W (Y., 72) < V(YO,O)+E{/0 {—c'uW#—eXp(—c(u)U)&—V} du}

ou

IN

V(Yo,0) + E { i exp(—c(u)u)g—‘;du}

S—

*
Tn

1

_ V(YO,O)+E{ exp(—c(u)u) [—K(u)—_y] K’(u)du}

S—

< V(¥,0),
where the first and last inequalities hold because K(-) is not decreasing.
Now, it is easily seen that for t > 0, it holds:
V(-,t) >1+n on D(t)\ D,(t). Thus, V> 1+ n on the open set

13



n={(y,s): K(s)—e " <y<K(s),0<s<t}U{(y,s): 0<y<e ™ 0<s<t}.
For fixed ¢ < T we have:
P(r <t) < P(r, <t)=P(1; <t) = E(1:). (1.13)

Using the inequality E(W (Y.., 7)) < V(Yp,0), previously proved, and the

n
fact that ¢(t) is positive and not decreasing, we obtain:

Plr <0< Bl < B { LRIV 0z )

inf {V(z,s): (x,s) € U} 1T;<t}

exp [e(ry)(t — )]V (Yrr, 77)
E{ inf {V(x,s): (z,s) € Uy} }

< ec(t)tE exp [_C(T;:>T:;] V(}/T;{? 7—;:)
- inf {V(z,s): (z,s) € U}
< etV (30,0) nooo o

N 1+n

Since times ¢t and 1" are arbitrary, the thesis follows.

1.2.3 Stationary distribution and asymptotic stability

In this section, we cope with the particular case « = 1,8 = 1, and K
constant. We refer to this model as SB model (shortly, SBM) and the cor-
responding stochastic process as SBM process. We notice that the result
proven in the previous section allows us to remove the absolute values ap-
pearing in the definition of the stochastic term ([1.8]). Now we are interested in
analyzing conditions for the parameters a, b, i, o that ensure the existence of
equilibrium distribution. When the equilibrium distribution does not exist,
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we study the asymptotic stability of the singular equilibrium solutions Y; = 0
and Y; = K. Furthermore, hereinafter we will assume that the parameter b is
strictly positive. In fact, the condition b = 0 would imply the absence of the
“word of mouth” effect, and the corresponding process is of no interest for
modeling diffusion of innovations. Moreover, the corresponding SDE would
become linear. Let Y; be the solution of the SDE (1.5)) with (deterministic)
initial condition Y; € (0, K') and volatility function
6= Vi (K=Y,

i.e., of the SDE:

b Y,
dY, = |a(K = Y)) + 2V, (K = Yi) = Y, | dt + 02 (K = Y,) dW,. (1.14)
First, we note that, the “proportion” process defined as:

Y,
Zt:?t

is a strong solution of the SDE:

dZt = [a,(l — Zt) + bZt(l — Zt) — [I,Zt] dt + UZt (1 — Zt) th7 s (115)

with initial condition:

Y
%:%emu

It is convenient to transform the process into a new process with unit volatil-
ity. To this aim, we use the Lampert transformation and we introduce the
new process valued on the entire real axis:

. o1 Z
Xy =n(Z) = _EIOg 1 —tZt'

From the Ito Lemma, it follows that the process X is solution of the SDE:

dXt = Oé(Xt)dt + th, (116)
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where the new drift a(-) is defined as:

alz) = D - Zerw  Eomoe ¢ ,
o o 1+ e-o%
a b o
p - & bin, o
o o o 2

To find the stationary distribution density ¢(-) of the process X;, we look for
a solution of the homogenous Fokker Plank equation (Risken, 1996):

1, d

S0'(2) = 5 (a(x)a(x)) = 0. (117)

After integrating equation (|1.17)) we have:

5d(@) — (a(@)(@) = C. (113)

where C'is a constant. The general solution of equation ([1.18) can be written
as:

q(x) = KleQA(””)qLQCeQA(x)/ e 240 gt

d
= 2@ [Kl +2C / eQA(t)dtl : (1.19)
d
where
Ax) = / a(t)dt = Dx — %e‘m - %e_” +log(1+¢e77%) — Ko,
d g g

K, and d are constants such that 0 < ¢(d) = K;, and Ky = Dd — U%e"d -
Lre 7% +log(1 + e 7).
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In order for ¢(-) to be a probability density, it must be positive everywhere
on (—oo,+00) and tend to zero as x — +oo. As we will see, this implies
some restrictions on the family of solutions . Let us consider different
cases separately.

i)a> 0, > 0 (both self-innovation and recess are possible).

we have:
. : a | R —ox o
xgrinoo Ax) = xgrinoo Dz — ol LI log(1+e %) — Ky| = —00

The requirement of non negativity for ¢(-) implies that C' = 0. In fact, for
C # 0, the quantity 1 + (2C/K;) [} e >4®dt, for |z| large enough, would
have different sign for different sign of = — d, hence ¢(-) would fail to be
positive on the entire real axis.

Thus, the stationary distribution density ¢(-) reduces to:

q(x) = K162A(x) =z exp {2Dx — 2%6‘” _ 2%6_096 + 210g(1 I e_UI)} ’
g o

where Z is the normalization constant. In order to obtain the equilibrium
distribution for the original process Y;, we use the relation:

Y
K-y

1
z=n(y/K) = ——log
o
Thus, the stationary distribution density p(y) for the original process is:

1 \dn

ply) = Q(n(y/K))K e

z=y/K

_ Y 20K —y  2n oy K
= z 1 - = lad 210g [ ———
eXp{pogK—y o’y K-y Og(K—y

- <§+K1—y>'

_ 1 y \ 20K —y  2u y
= N7! -= -= , (1.20
y(K —y)? (K—y) eXp{ o’y o? K —y (1.20)




where

2 (a+b—p)—1, (1.21)

o2

p=—-2D/o =

and

K 1 Y P 20K —y  2u oy
= —— - — dy. (1.22
N /0 y(K —y)? <K—y> eXp{ o? UQK—y} .

We notice that, in the considered case, the integral in (1.22)) is finite. By
considering the change of variable:

(1.23)

the normalization constant can be expressed as:

1 too
N = ﬁ/ wP7H (1 4 u)? e CutB/I2gy,
0
1 too
= = / uPHle—(autB/w)/2 g0,
0
2 [t
Voo / P (OutB/w/2 g,
0
1 too
* o / e (@wtB/n/2 gy,
0

where o = 4p /0%, B = 4a/o*. We notice that, the integrals in the previous
formulas can be expressed in terms of appropriate special functions. In fact,
remembering that the integral representation of the modified Bessel function
of second kind K,(-) of index ¢ is:

1 [t
K,(x) = 5/0 exp(—x cosh u) cosh(qu)du

B +o0 o _z . 1
= p (u+u)pu? du,
0 2
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we obtain:

Ve () {me (D) awan + (2) Kp+2<\/a_5)} .

Similar calculations allow us to express the first two moments m, my of the
r.v. distributed as ([1.20) in terms of the modified Bessel functions of the

second kind:

m = N1[(2 /+0° uP (1 + U) e—(au+5/u)/2du
0
K BlaK,n1(VaB) + (8/a) Ky (Vapd) '

2 |\/Bla = (p+ 1)/VaB| Kp1(VaB) + [1 + (8/)] Kpya(v/aB)

1 +oo _
my = W/O uwPe (au+,3/u)/2du

— < /) Kypa(/ap),

where we have used the recursive relation:

2(p+1)

Kpia(2).

K@) = Kppale) -

It is intersting to study the deterministic limit (6 — 0) of the above expres-
sions. Direct analysis is difficult because both the indices and the arguments
of the K-functions depend on parameter o2. However, asymptotic behaviour
can be analyzed using Laplace’s approximation method. In fact, a simple
re-writing of A/, m and my provides:
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1

+oo 2
_ L —2 2 Ea _ 2
N = 3/0 (1 + u) exp{g2 [(b+a w) logu — pu }}du,

_ /+oo T1+u)e 2 [(b—i— — p) logu — _a] d
m—N,Kzou u)expq — a—p)logu —pu——1 o du,

a

1 oo 2
my = /\/_K/O exp{;[(b%—a—u)logu—uu—a]}du.

Thus, if we let

u" = argmax {g(u)},

ueR+

where

g(u):(b—l—a—,u)logu—uu—%, u >0,

we can use the following approximation, valid for small o

+oo
/ h(w)e ™/ du o’ h(u*)e?9w)lo*,
0 19" (u*)]

Using this approximation for the integrals appearing in the definitions of
N, m, and msy, we obtain:

Ku*
m =
1+ u*
9 Ku* \°
me = M = .
1+ u*

Straightforward calculations show that

. bta—p+/(b+a—p)?+4an

u 2
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and

. b—a— b—a— p)?+ dab
= g b et b= ) dab (1.24)
1+ u* 2b

We conclude that

lim m =m*,  lim (my — m?) = 0.
c2—0 020

Note that the limit value (|1.24) concides with the positive solution y* in
. In other words, as one could expect, the equilibrium distribution den-
sity of the SBM in the small noise limit tends to be concentrated around the
(positive) stationary point of the corresponding deterministic equation.

As an important remark, we notice that the stationary density does de-
pend on the volatility parameter o only through the ratios a/o?,b/0?, /o
In other words, the stationary distribution density is invariant with respect
to the transformations 0? — co?, a — c2a, b — b, u — cp with c
arbitrary positive constant. This implies that the model parameters are not
identifiable. Lack of parameter identifiability for the stationary distribution
has important consequences in parametric inference for the SBM (see Chap-

ter 4)).

ii) a=0, p > 0 (no self-innovation, but possibility of recessing).

We first consider the case where:

o? < 2(b— p).
In this case:
S A)
: pob o [ oz _
- xgrinoo|:(;_;+§)x_;€ +log(l+e77") — Ky| = —o0.
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As in the previous case, the positivity of ¢(-) implies C' = 0, so that:

b
a(w) = K1e* = N exp {2 (E LT Z) r—20 77 4 2l0g(1 + e“’m)}
g o

(1.25)

where Nj is to be determined by normalization. Returning to the original
variable, the equilibrium density is:

1 p 2
" :No_ly(K—y)3 (Ky—y) eXp{_a_/;Ky_y}’ (1.26)
where
= " 1 Y P 2y
NO_/O y(K —y)? (K—y) eXp{‘pK_y}dy, (1.27)

and p = 2b/0? — 2u/0? — 1 > 0. The change of variable z = 2%4y/(K —y) in
(1.27)) provides:

1 o2\P [t o2 2
= — (= 1+—z) 2P le%dz.
No= % (QM) /0 ( +2uz> -

Expliciting the squared term in the integrand in the previous expression, we
obtain:

1 a2 \? o? ot
= — (=) rp1+=p+r— 1
No 73 (2u) (p) { + up+ 4#2p(p+ )}

- w5 (2) T - Zw).

where we have used the relation I'(§ + 1) = £I°(€), with I'(+) denoting the
Gamma function. The expected value m of the r.v. whose distribution
density is p(-), is given by:

K 1 # 2
m:NO_I/o (K —y)? (Ky—y> eXp{_U_ZKy—y}dy' (1.28)
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Expressing again the integral in terms of Gamma functions and using the
expression of Ny, it can be proved that:

b(b—pu—c?/2)
b2 —o2(u+0b)/2

(1.29)

Similar calculations lead to the following expression for the second moment:

my = K*(b— ) (b—u—(;) (b2—%2(u+b)>_l. (1.30)

Then, it follows that:

2

- 2 — BB (b= = )
202 — Z(b+p)]”

Remark. It is interesting to study the behaviour of the first two moments
and in the “deterministic limit”, i.e. as 0? — 0. It is easily seen that:

lim m = K;M; lim (my — m?) = 0. (1.31)

Equalities show that, as one would expect, the equilbrium distribution
tends to become singular with mass on the deterministic stationary point,
as the noise vanishes. Furthermore, it is easily checked that, for arbitrary
values of o2

limm = K;  lim(my —m?) = 0. (1.32)

n—0 n—0

The last equations imply that the equilibrium distribution tends to become
concentrated around the point y = K as the mortality parameter vanishes.
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In the special case:
02 = 2(b - :u)a
A(x) tends to a constant as x — +00, so that ¢(x) cannot vanish at © = +oc.
Then, in this case the equilibrium distribution density does not exist.

Now we deal with the case: 02 > 2(b — p).
In this case,

S A
: pob o [ -
= lim |[[=——+=)x— = +log(l+e ") — Ky| = +o0.
a—too |[\Oo o 2 o?
If C' =0, then
lim ¢(z) = lim Ke*4® = 4c0.
T—+00 T—+00

In the opposite case, by applying the L’Hopital’s rule we find:

im AW e po b o\
= lim e Ki+2C | e dt| =C|——=+—-——— # 0.
r—+00 d o g 2

Therefore, also in this case the equilibrium distribution density does not ex-
ist.

Since in the case of no self innovation (a = 0), both drift and diffusion func-
tions vanish for Y = 0, the process Y; = 0 is a (trivial) solution of (L.14).
Thus, it is interesting to study the stability properties of this trivial solu-
tion when the parameter are such that an invariant distribution does not
exist. In particular, in analogy with the deterministic framework, it is of
interest to analyze the qualitative behaviour of solutions corresponding to
initial conditions yo that belong to a small right interval of 0. The analysis
of the stochastic stability is based on the Lyapunov theory (see Appendix
for definition of stochastic stability and Lyapunov function). Without loss
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of generality, we set K = 1.

Theorem 1.2.4 The solution Y; = 0 of the SDE:

dY; = [bY;(1 =Y,) — uY]dt + oYy (1 = Y,)dW, (1.33)
is stochastically asymptotically stable for o > 2(b — p).
Proof.

The generator of SDE (1.33)) is:

0 o2 0?
L=by(l—y)— py o " 73/2(1 — y)28—y2~

Let us define the Lyapunov function:

where

g(y) = exp {—Alog

2b
v [ %oy
1—y| 21—y

Assuming A < 1, so that V' is well defined in a neighbourood of {0}, we have:

LV(y) = sgn(y)g(y) by(1 —y) — py]

A 2b 1 ] o?

yi—y T —yp) 2V Y

+sgn(y)g(y) [— 5

O'2 O'2
= g(y)ysgn(y) {b — = ?A + gAy] ,

Since g(y)ysgn(y) > 0, the thesis is proved if there is a neighbourood D of
y = {0} , such that

2 2
b—y—%A+%Ay<O (1.34)
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for y € D. In fact, this follows from the r.h.s. of (1.34)) being a continuous
function of (A,y), taking negative value at point (1,0).

Remark.

It is interesting to note that the presence of sufficiently strong noise can de-
termine disadoption of all individuals with high probability, also in situations
where the corresponding deterministic system goes away from zero. Specif-
ically, this happens when b — u — 02?/2 < 0 < b — p. The stationary point
y = 0 is deterministically unstable, but the solution Y; = 0 of the Bass SDE
is asymptotically stable in probability. This situation is typical of logistic
models and in population dynamics is responsible for the fact that “noise
can cause extintion”.

(73i) p = 0 (self-innovation is present but recess is not allowed).
In this case we have:

lim A(x)
T—>—00
. a b o a _
= lim ————+ - |z — e’ +log(l+e ) — Ky| = +o0.
z——00 o o 2 o2

The same analysis as in the case 0 = 2(b — p) leads to the conclusion
that the equilibrium distribution density does not exist.
Without loss of generality, let us assume that K = 1. We note that in treated
case of no recess (u = 0), Y; = 1 is a solution of the equation

dY; = (a + bY;)(1 — Yy)dt + oYi(1 — Y;)dW,. (1.35)

Thus, since the process does not admit a proper equilibrium distribution, one
could ask whether Y; = 1 is stable in probability. Note that the transformed
process defined by Z; =1 — Y, is solution of the SDE:

dZt = — [CLZt + bZt(l — Zt)] dt — O'Zt(l - Zt>th, (136)

with Zy = 1 — Yy. Thus, stochastic stability of Y; = 1 is equivalent to
stochastic stability of Z; = 0.
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It can be easily shown that the Lyapunov function:

satisfies:

EV(Z):—(a+b)zsgn(z)exp{—2b : }

021 —z

Thus, LV (z) < 0,Vz € R. This shows that the solution Z; = 0 of (1.36)
(correspondingly, the solution Y; = 1 of equation ([1.35))) is stable in proba-
bility.
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Chapter 2

Exact Simulation

2.1 Simulation of diffusion processes

In many cases, when analytic expression for the transition density of a dif-
fusion process is not available, one uses simulation of sample paths in order
to approximate some characteristics of the process (such as expected value
of the process at some fixed times, or hitting time at the boundary of some
region of interest) via Monte Carlo average. One of the simplest method
for simulation of solutions of SDEs is based on the Euler-Maruyama scheme
(Maruyamal, [1955; [Kloeden and Platen) [1995). According to this scheme,
given the SDE on [0, T7:

dYy = b(t,Yy)dt + o(t,Y,)dWs, Y (0) = o, (2.1)

sample paths of the (strong) solution (provided that it exists and it is unique)
are obtained by partitioning the interval [0, 7] in n sub-intervals [t;_1,t;],7 =
1,...,n, with tg = 0, t, = T, and using a Gaussian approximation on
each sub-interval. More specifically, denoting by At; the time increment
t; — t;_1 and conditionally on the value of the process at time t;, the process
increments AY; =Y, , — Y;, are approximated, for ¢ = 0,...,n — 1, by the
random variables:

i+1

where Z; ~ N(0, 1) are independent standard Gaussian variables. It is well
known, (Kloeden and Platen, |1995; Pascucci, 2008), that under some regu-
larity conditions, scheme (2.2)) defines an “approximate process” that in the
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limit max; |A¢;| — 0 converges, in a suitable metrics, to the solution of (2.1).
In order to avoid possible bias deriving from Euler approximation, a very fine
partition of the interval [0, T is generally taken, resulting in a very large num-
ber of Gaussian random variables to be generated. Besides computational
complexity, Euler scheme has another disadvantage in case some qualitative
properties have to be preserved by the simulated trajectories. For instance,
if it is known that sample paths of a process Y cannot exit from some do-
main D, this property, reffered to as regularity on D, is not guaranteed by
the Euler approximation. As we will see in Section [1.2] this is the case for
solutions of certain classes of logistic-type stochastic differential equations
that are known to have particular regularity properties. This can be a se-
rious problem when the interest is focused on hitting time of some regions
inside the domain D. In some cases it is possible to use numerical schemes to
approximate solutions of SDEs that preserve the regularity properties of the
solutions mantaining, at the same time, the convergence order of standard
Euler scheme (Shurz, [2007)). In this section we describe an approach recently
introduced by |Beskos, Papaspilioupolos and Roberts (2006)), that allows to
simulate ezact solutions of certain classes of SDEs. The methodology is based
on a suitable acceptance-rejection algorithm (AR) that provides realizations
from arbitrary finite dimensional distributions of the target process. Accord-
ing to the terminology of Beskos, Papaspilioupolos and Roberts| (2006]), the
algorithm will be reffered to as ezact algorithm (EA). A major advantage
with this approach is that, as we will see in the following, a slightly different
version of the EA allows one to draw realizations from diffusion processes
conditioned on the ending point of a (possibly d-dimensional) interval (dif-
fusion bridges). Simulation of diffusion bridges is often necessary in many
techniques for inference on diffusion processes, but it is difficult to implement
with traditional numerical schemes.

We start by illustrating the methodology in the time-homogeneous one-
dimensional case.

2.2 Exact Algorithm

2.2.1 Approach based on change of measure

Let Y;, t € [0,T] be a strong solution of the SDE:

dY; = b(Y,)dt + o(Y,)dW,, (2.3)
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with initial condition Y (0) = yo € R. Note that both the drift and the
diffusion coefficients depend on time only through the process (homogeneity).
We want to obtain a realization of the n-dimensional random variable
(Y, ., Ys,), where 0 < t; < ... <t, <T are arbitrary time instants. We
will first draw the process at a finite collection of random times 7 < 7 <
. < 7 (K random) in [0,7], and then we will obtain Y, (: = 1,...,n)
exploiting the Markov property of the process Y and using the dynamic
of a suitable “bridge” process. We can assume, without loss of generality,
ty =0, t, =T. The first step is to transform the process Y in a new process
X verifying a SDE with unit diffusion coefficient. This can be easily done
through the transformation X; = n(Y;) where:

o) = | ' %du, (2.4)

with ¢ arbitrary constant, provided that the integral above does exist.
Transformation ([2.4]) is sometimes referred to as Lamperti transform and
is frequent in applications to inference problems where change of measure is
used (Florens, |1999; Ait-Sahalial 2002).
Applying Ito’s lemma to the transformation , it is easily seen that
the new process X verifies the SDE:

dX, = a(Xy)dt + dW,, X(0) = zo =n(yo), (2.5)
with
RIS
o) = 2 L [y o). 2:0)

Since realizations from the law of Y can be obtained from realizations from
the law of X, by simply inverting the trasformation (2.4]), hereafter we will
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deal with the problem of drawing from the law of a diffusion process X sat-
isfying equation ({2.5]).

The core of the methodology is the Girsanov theorem on change of measure
(see, for instance, [Karatzas and Shreve (1991))). According to this theorem,
given the canonical set-up (€2, F, F;, P) the process X, the solution of the
equation on [0,7T], is a Brownian motion with respect to the measure
() defined by:

Q(A) = Ep(Z1,),

where Ep denotes expectation with respect to the natural measure P, A €
Fr, and Z is the exponential martingale:

Zr = exp {— /O L (X)W, — % /0 ' a(Xs)2ds} | (2.7)

Remark. Actually, the process (2.7)) is guaranteed only to be a local martin-

gale. In order to conclude that X; is a Brownian motion w.r.t. (), one should
prove that Z is in fact a martingale.

An important consequence of the Girsanov theorem is that it implies that
the distribution laws of diffusion processes having the same diffusion coeffi-
cient are absolutely continuous with respect to each other. In particular, let
P¥ be the probability measure induced by the process X, solution of the SDE
(2.5)), on the space (C[0, T, B) of the continuous functions on [0, T, equipped
with the o-algebra of the cylinder sets B. Then, the Radon-Nikodym deriva-
tive of P* with respect to the Wiener measure W0, corresponding to the
Brownian motion starting in x(, can be expressed as:

dP* g 1"
Ve — OXP {/0 a(Wy)dW, — 5/0 a(WS)zds} . (2.8)

Formula ([2.8) can be simplified by eliminating the stochastic integral
appearing on the right hand side. To this aim, define:

where a is an arbitrary constant, and introduce the new process:
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U, = A(W)).

Ito’s formula provides:

t 1 t
U, = U, —|—/ 50/(Ws)ds —|—/ a(Ws)dWy,
0 0

thus we obtain:

dp*o
dWeo

1

= exp {A(WT) — A(xg) — 3 /OT [a(W,)? + o/(WS)}ds} . (2.10)

In formula (2.10)), and in the rest of this subsection, W. is to be intended as
the typical element of C[0, 7] rather than a Brownian motion.

Remark. Note that, although the Girsanov theorem remains valid if W
is a d dimensional Brownian motion for d > 1, however for d > 1, the
elimination of the stochastic integral in formula is possible only if the
function a(-) verifies some extra conditions (see Section [2.2.7)).

Now, following [Beskos, Papaspilioupolos and Roberts (2006), we intro-
duce the biased Brownian motion defined as the stochastic process Wy° whose
law is that of the Brownian motion starting from xo and conditioned on hav-
ing marginal density hp(-) at the end of time interval T, where hp(u) is
proportional to exp {A(u) — (u — 10)?/2T}, u € R (we assume that hy
is integrable). Let Z7° be the measure on (C[0,T], B) associated with the
process W, Then, a change of measure argument shows that:

e {3 [ o+ ao)as) 211

Formula (2.11)) can be justified using the (formal) relation:
dpeo dpro dwre

A7~ AW dZ5 (2.12)

and the following proposition (Beskos, Papaspilioupolos and Roberts, 20006):
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Proposition 1 Let M, N be two stochastic processes defined on [0,T] and
M, N the corresponding measures on (C[0,T|,B). Let fy, fn be the density
functions of the random variables My, Nt respectively, corresponding to the
value of the processes at the ending point T and assume that fy and fy
have the same support. Then, if for all y € R, the processes obtained by
conditioning M and N on the events {Mr =y}, { Ny = y} respectively have
the same law, it holds:

dM  fu
dN  fx

Proof As usually, we denote by W. the typical element of (C[0,77],B).

The statement in the proposition about equality in law of the conditioned
processes can be formally expressed as:
M(Alo(Wr)) = N(Alo(Wr)) Na.s., Ae€hB,

where o(Wr) denotes the o-algebra generated by the r.v. Wy, Thus we
must prove that, for all A € B:

() = i |12 )

Using the chain property of expectations:

Ex |:1A§—A]\/[[(WT):| = En [EN [h%(WTﬂU(WT)H
= B0 | 2L B Lalo(Wr)]| = Bie| 2 v) N Al

where the third equality follows from %(WT) being o(Wr)- measurable.

The last term is the N-expectation of a o(Wr)-measurable r.v. and thus
it can be expressed as expectation with respect to the restriction of N to
o(Wr), i.e., the density fn. Thus
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far _ biY ‘Nldlo
By f—N<WT>-N[A|o<WT>1] " [ B 1) - N (Al (V)

= By, IN[Alo(Wr)]] = Ey,, M [Alo(Wr)]]
= En[M[Ale(Wr)]] = Em[4]. ¢
If in proposition (1)) we take M = Z7* | N = W* | we obtain:

dW=o W N (xo; T)

dZ%O( ): hT (WT> x e—A(WT)7

where N (p; 02) is the Gaussian density with mean p and variance 2. Using

the last expression in (2.12)) and taking into account ([2.10]), we obtain ([2.11)).

2.2.2 Retrospective Sampling

Formula expresses the Radon-Nykodyn derivative of the target mea-
sure associated to the process X in terms of an ordinary integral (although
the integrand is random). Under some additional conditions, it can be used to
implement an acceptance-rejection algorithm for exact simulation of strong
solutions of SDEs. Details are provided below.

Let a(-) be the drift in the standardized equation and assume that
the function a(-)*4«/(+) is bounded below. Define the non negative function:

O(u) = — l, (2.13)

where
2 /
| < inf a(u)* + o (u)
u€eR 2

We have:

dP*o T

—— X exp —/ O (Wy)ds p < 1. (2.14)

dZy 0



On the basis of expression a rejecton sampling scheme can be adopted
to draw sample paths from P*0. In fact, an ideal (impossible) procedure would
be that of drawing a path from the dominating measure Z7° and accepting
it with probability:

PAW) = exp{—/oT CI)(WS)ds}. (2.15)

The previous scheme is impossible in the sense that it would require random
drawing a continuous path from Z* and evaluating the integral . Of
course, one can use a discrete approximation of , and simulate from
the finite dimensional distribution of the process W} corresponding to the
partition used for the discretization. However, for a certain class of diffu-
sion processes, ezact simulation from P* can be performed by retrospec-
tive sampling. This is based on noting that, given an element of C[0, 7],
the acceptance probability can be recognized as the probability of a
certain event associated with a suitable Poisson process. Specifically, let
U be the homogeneous Poisson process with unit intensity on [0,7] x R,
and N the number of points under the graph of the function {t — ®(W};)}.
Then, P,(W.) = P{N =0 | Wt € [0,T]}, i.e., the acceptance probability
can be viewed as the probability that, conditionally on W;, t € [0,T], no
point is below the graph of ®(WW.) on [0,7T]. The idea of restrospective sam-
pling is to invert the usual order for drawing the proposal and the “decision
variable” in acceptance-rejection (A/R) scheme (see Appendix [A]). This al-
lows to implement an A/R algorithm such that the “proposal” is accepted
with the right probability without knowing the proposed path on the en-
tire interval [0,7]. More in detail, suppose we are able to draw K ran-
dom points (K random) from ¥ on a domain in R? which contains with
certainty the region {(t,9) € R? | 0 <t <T;0 < < ®(W,)}. Let these
points be {Vq,..., U} = {(7,¢1),..., (7, ¥x)}. Then, we could draw a
vector x1, ...,z from the K-dimensional marginal distribution correspond-
ing to the times 7, ..., 7 of the process WffTO and check the K conditions:
®(x;) < vy, i=1,...,K (see figure R.1). If all these conditions are satis-
fied, no points from the Poisson process are below the graph of ®(W.). In
other words, using the previous notation, one can check the condition N = 0,
checking only a finite number of conditions involving the random points from
the Poisson process.

If the condition N = 0 holds, the whole trajectory {W;; 0 <t <T} is
accepted (see Fig.. In practice, the path between each pair of consecutive
points (7;, z;) can be reconstructed by means of the Brownian Bridge dynam-
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Figure 2.1: Sample path accepted by A/R algorithm. In this example K = 3.

ics (see Appendix [B| for definition and properties of the Brownian Bridge).
More precisely, let us suppose that we are interested in drawing a value of the
process at time s, where s_ < s < s, , and s_, s, are the closest times on the
left and on the right of s, respectively, where the values of the sample path,
say r_, x4, are already available. Then, from the Markov property it fol-
lows that a realization from X can be obtained by drawing from a Brownian
Bridge BB(;_s_)—(xy,s,) between x_ at time s_ and x, at time s;. In par-
ticular, random draw from the distribution of X, can be obtained by drawing
from the Gaussian density function N (u(z_,z,s_,s,); Y(r_, 24,5 ,5;))
with mean:

wle_ i, s sy) =0+ ———(xy —z_)
Sy — S

and variance:
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The important point here is that the realization of the auxiliary random el-
ement used to decide if a path is to be accepted or not is available before
(collection of istances of) the path itself is generated. This inversion is the
essence of the “restrospective” approach and allows to perform exact simula-
tion through the acceptance-rejection scheme, even though the knowledge of
the path drawn from the dominating measure is limited to a finite (although
random) collection of points.

Y(x_,xy,8.,81) =

2.2.3 EA1 Algorithm

From a practical point of view, exact algorithm requires drawing from a Pois-
son process on a two-dimensional region containing the graph of the function
t — ®(W,), t€[0,T]. By assumption, the function ® is bounded below. If
an upper bound, say M, does also exist for ®, then it is sufficient drawing
from the Poisson process ¥ in the rectangle [0, 7] x [0, M]. This is the sim-
plest version of the Exact Algorithm, and it will be reffered to as EA1. A
detailed description of EA1 for simulation of sample paths from the solution
of SDE ({2.5)) is provided below.

EA1 algorithm

1. Draw the value x of the process X on the right extreme of the interval
[0, 7] from the law of the r.v. with density hz(u) proportional to:

exp {A(u) — (u— x0)?/2T'} .

2. Draw a number K from a Poisson r.v. with parameter A = M x T

3. Draw K points (71,11) ..., (7x,¥x) from a two-dimensional uniform
r.v. in the rectangular region [0, 7] x [0, M].

4. At times (7q,...,7c), draw K instances W, ..., W, of the Brownian
Bridge BB(07$O)_>(T7QCT) .

5. Compute the function ® in W,,... , W, . Let x; = ®(W,,),..., 2 =
O(W,,.). If the inequalities: z; < 9y, ...,z < Yk are verified accept
the path, otherwise go to step [1}
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2.2.4 EA2 Algorithm

If the function ® defined in Section is not bounded above, the exact
algorithm based on retrospective sampling is more involved. In fact, a region
where the graph of the function t — ®(W}) lies with certainty does not exist.
As a consequence, one has the practical problem of drawing points from the
auxiliary Poisson process used to decide whether the proposed path has to
be accepted or rejected. However, if one of the two conditions:

lim ®(u) < 400 (2.16)

u—+oo

holds, a relatively simple version of the exact algorithm can still be used. In
the following we illutrate the version described by |Beskos, Papaspilioupolos
and Roberts (2006) named EA2. To fix ideas, suppose that lim, . ®(u) <
+00. Then, it follows that for any m € R, we can find a number M (m) such
that:

sup  D(u) < M(m). (2.17)

u€[m,+o00)

Thus, if we knew the minimum m attained by the path on [0,7], we could
proceed as in algorithm EA1, and draw from a unit intensity Poisson process
on [0, 7] x [0, M(m)] with M(m) satisfying (2.17). This suggests a sligthly
different version of the exact algorithm that allows to apply the retrospective
sampling approach to a much wider class of diffusion processes.

EA2 algorithm

1. Draw the value xr of the process X on the right extreme of the interval
[0, 7] from the r.v. with density hz(u) proportional to:

exp {A(u) — (u— z9)*/2T} .

2. Draw the minimum m of a Brownian Bridge between xg at time ¢t = 0
and xr at time t = T', and the time ¢,, at which it is attained.

3. Find an upper bound M (m) for the function ®(-) on [m, +00).

4. Draw a number K from a Poisson r.v. with parameter A = M(m) x T..
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5. Draw K points (71,%1) ..., (7k, ¥x) from a two-dimensional uniform
r.v. in the rectangular region [0, 7] x [0, M (m)].

6. At times (7q,...,7c), draw K instances W, ..., W, of the Brownian
Bridge BB(0,50)—(T,ap) conditioned on having its minimum m at time
tin-

7. Compute the function ® in W,,,... , W, . Let xy = ®(W,,), ...,z =
O(W,,.). If the inequalities: z; < 9y, ...,z < Yk are verified accept
the path, otherwise go to step [1}

The main difference between EA1 and EA2 is that in EA2 the proposed
trajectories are drawn conditionally on the value of their minimum on [0, 7]
and on the time at which the minimum is achieved. In order to implement
EA2 we must be able to draw from the joint distribution of m and t¢,,, and
to generate paths of a Brownian Bridge conditionally on the realized values
of these random variables. Fortunately, both these problems can be easily
solved by using the results reported below. As far as the first problem is
concerned, the joint distribution of interest is given by the following theorem.

Theorem 2.2.1 Let W = {W;;0 <t < T} be a standard Brownian motion
(Wo =0) on [0,T], and define:

my = inf{W;; 0<t<T}
6 = sup{tel0,T]|W,=mp}.
Then, the pdf f, o(m,ty) of the joint distribution of the random variables

my and 6, conditional on {Wr = a} is given by:

;’zrlT,@ (m7 tm) =

., m(m—a) m?  (m—a)?
Z )3eXp{_2tm_2(T—tm)}’
m < min{0,a} (2.18)

where Z 1s the normalization constant. Moreover, the marginal distribution
w.r.t. mr has density:

S (M) :EeXp{ai—M}. (2.19)
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Proof (Karatzas and Shreve, 1991, Chapter 2, p. 225 ).

The following theorem provides a simple scheme to draw from the distri-
bution ([2.18)).

Theorem 2.2.2 Let mp and 6 be defined as in Theorem Ey an expo-
nential random variable with unit mean, and

N vV 2TE1 + &2

Zy = 5

Then

P{mr edm | Wy =a} =P{Z, € dmn}. (2.20)

Moreover, for a given realization m of mr, let
 (a—m)? m?
C1 = 2T y Co = 2T7

and let X ~ IG(y/c1/c,2¢1), Y ~ IG(\/ca/c1,2¢3) be two independent in-
verse Gaussian random variables with parameters (\/c1/co,2¢1) and (\/ca/c1,2¢5),
respectively. Then, if V' is a r.v. whose law is a mixture of the distributions
of X and Y1, with mizing weight (1 + \/c1/c2)™t, the pdf of the joint dis-
tribution of Zy, Z, with Zy =T/(1+ V), is the same as the one in ([2.1).

Proof

Remebering that the pdf f(u), (v € RT) of an exponential r.v. with unit

. _ . . \/ 2 .
mean is e %, and using the change of variable u — %, one can easily

check that the pdf of Z; is (2.19)). In order to prove the second statement of
the theorem, we first note that:

P{0 € dt,,|Wr = a, mr =m} (2.21)
1 2 _ 2
exp {— o (m —a) } dt,,.

If we define the new random variable:
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(g — (2.22)
we find, after little algebra:

2

)2
P{V e dv} x (v_% + v_%> exp {—;n—yv - %dv} : (2.23)

The pdf of the Inverse Gaussian distribution with parameters g > 0, A > 0
is:

A(v — p)?

ZG(v; s A) = 508 &P {— 22

] . v>0 (2.24)

(see, for instance, Shuster| (1968))). Starting from the expression ([2.24), it is
easy to prove that, if X has density function IG(z; i, ), the pdf of the r.v.
X tis:

A A1 — 2
TG (v, ) = \/%exp {—%} , v>0. (2.25)

Thus, if we set in ([2.24))

2

. a—m . la—m
L= g = — =/c1/co; )\E)\lz%ZQCl

and in ([2.25))

2

. m . m
= g = =/ /cq; )\E)\QZ?:QCQ

a—m

we can re-write the density in (2.23)) as:

F; A p, A2) = p-ZG(v; pun, A1) + (1= p) - ZG (03 pia, A2), (2.26)
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where

b= Ny + Ny’

and

+o00 A o 2 +o00 by _ 2
Ny = / v_% exp {——1@ 2,u1) ] dv, Ny = / ’U_% exp {——Q(U 2'u2) ] dv.
0 27V 0 2p5v

Noting that Ny /N; = \/)\1/)\2 = \/cl/cg gives the thesis. <

On the basis of theorems [2.2.T] and [2.2.2] it is easy to draw from the joint
distribution of the Brownian Bridge minimum and the time it is achieved.
In fact, firstly one obtains a value m of the minimum by drawing from the
distribution of a unit mean exponential r.v. and using the appropriate trans-
formation. Then, for given m, a realization u from a uniform r.v. on [0, 1]
can be used to decide from which component of the mixture a random
draw v is needed: if u < p, IG(y/c1/ca,2¢1) is to be used, otherwise the right
distribution is IG~!(y/ca/c1, 2¢2). Finally, the time ¢, corresponding to m is
obtained via the transformation: ¢,, = 7'/(1+4v). The above scheme requires
generation from inverse Gaussian distribution. To this aim, a simple scheme
is based on the following lemma due to Shuster| (1968)):

Lemma 1 Let: X ~ IG(pu, A). Then, the random variable:

AX = p)?

Y =
X

(2.27)

is distributed as the square of a normal random variable, i.e., it is chi-square
with one degree of freedom (x1).

The proof of lemma [I] is straigthforward. With the aid of the lemma,
it is easy to generate from an inverse Gaussian r.v.: it sufficies drawing
from a y;-r.v., and then inverting through some suitable method for
the inversion of one-to-many transformations. A simple method for drawing
from an inverse Gaussian distribution can be found in Devroye| (1986)).
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Once we have a realization (m,t,,) of the minimum of the Brownian
Bridge and of the time it is achieved, we must reconstruct the rest of the
Brownian path conditionally on the already drawn elements. To this aim, we
use a result from |Asmussen et al. (1995) which provides the decomposition of
the Brownian path given its minimum and the values at the extremal points
of an interval (and the corresponding times) in terms of two independent
Bessel processes.

Proposition 2 Let the process:

Wci{W|mT:m, tam, WT:CL}

be the Brownian motion on the interval [0,T] conditioned on achieving its
minimum m at time t,, and terminating at point a (Wr = a). Then, the two
processes:

{(W&0<s<tn}t, and {Wet, <s<T}

are independent of each other, and the following equalities hold:

Wi 0<s<tn} =4 \/tm{RtTi—s(él); Ogsgtm}+m

{Wes it <s<T} =4 w/T—tm{R;:m (02) 5 tm < ng}er,

where =4 denotes equality in distribution, R(J) is the Bessel Bridge between
0 and 0 > 0 of unit length, i.e. Rs ={R(5); 0 <t <1}, and

m . a—m

)= — ey Gy

Proposition [2| allows to recover the path to be used as ”proposals” in
EA2, given the pair (m,t,,). All we need is random draws from the unit time
length Bessel Bridge with the appropriate parameters. This can be easily
done by using the following representation of the Bessel Bridge:

Rt((S) = \/(5t + BBt(l))2 + (BBt(Q))2 4 (BBt(S))2,
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where BB®, (i = 1,2,3) are independent standard Brownian Bridges, i.e.,
Brownian Bridge of unit time length starting and terminating at point 0. The
representation formula reduces the problem of generating from the Bessel
Bridge to the one of drawing from standard Brownian Bridge.

Wy~ h

e« Bessel Bridge Bessel Bridge ———

Figure 2.2: Path recostruction given minimum m and time it is achieved t,,.

The scheme described above provides a collection of instances (skeleton)
of the target process at random times determined by the realization of the
auxiliary Poisson process (plus the minimum of the path with the correspond-
ing time). It is clear that, as in the case of EA1, realizations of the process
at arbitrary times can be obtained from the dynamics of the bridge process
used as proposal. Thus, in case of EA2, a realization of the process at time
s, can be obtained by simulating from a distribution whose density can be
expressed in terms of the transition density function ¢(-,-,-) of the Bessel
process. In fact, in analogy with the EA1 case, let s_,s, (s_ < s < sy4,),
be the closest times on the left and on the right of s respectively, where the
values of the sample path, say x_, x,, are already available. Then, using
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proposition [2| and Markov property, it is easily shown that the density func-
tion of the random variable X (conditionally on the skeleton obtained from

EA2) is:

S—S_ r——m Ts—MmM X S4—S Ts—MmM Ty—m
a9\ 7=, VT—tm’ VT—tm 9\ 7=, VT—tm’ VT—tm

— — ~ , (2.28)
q ( ;—trrj’ \/}ftm’ \/;—“ftm> VI =ty
for s > t,,,
and:
o5 ) < (T e )
, (2.29)

S1—S_ T4L—m r——m
q < +tm 9 :r/% I \/ﬂ ) V tm
for s <t,,.

Funally, we recall that the exact algorithms described above allow to ob-
tain realizations from the finite dimensional distributions of the transformed
process X = n(Y) where the function 7(-) is given by formula (2.4). Thus,

once realizations from the random vector X, ,..., X, are available, real-
izations from Yy, ..., Y, can be simply obtained by inverting the function
7.

2.2.5 [Efficiency of the exact algorithm

The efficiency of the exact algorithm can be studied in terms of the number of
proposed paths that are generated until the first path is accepted. It is clear
that the probability P of accepting a path depends on the number of points
drawn from the auxiliary Poisson process, i.e., on the number of conditions to
be checked. For the case of EA1, it follows from the definition of the Poisson
process that the expected number D of the points on which the conditions
for acceptance are to be checked is M x T, where M is the upper bound
for the functional ®. From , using the Jensen inequality, it is easily
shown that the acceptance probability is greater than exp(—M - T). For
EA2, it can be proved (Beskos, Papaspilioupolos and Roberts, 2006) that
similar relations are valid with M replaced by E[M (mg)], where the r.v.
mqp has been defined in Theorem Moreover, it is not difficult to show
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that, for both EA1 and EA2, the expectation of the total number of Poisson
process points drawn until the first path is accepted is less than E[D]/P.
The last result can be used to estimate the computational cost of the exact
algorithm. For instance, for EA1, it implies that the computational cost is
O (MT - eMT). For EA2 it is difficult to find explicit bounds because one
should find bound for E[M (mr)]. However, it is clear that for both EA1 and
EA2 in some cases it could be convenient to break the interval [0, 7] into (say
K) smaller intervals in order to increase the efficiency. For instance, for EA1,
this implies a computational cost O (M T . eMT/K ) that, for a fixed value of
the ratio T/ K, is linear in the length of the interval where the simulation is
required.

2.2.6 Simulation of conditioned diffusions

The algorithms illustrated in the previous sections provide sample paths of a
diffusion with a given starting point on a fixed interval [0, 7. In some situa-
tions, particularly in applications to inferential problems, one is interested in
simulating sample paths conditioned on taking fixed values at both extremes
of the time interval (diffusion bridges). It is important to stress that FEule-
rian schemes do not allow to obtain, even approximately, realizations from
such conditioned diffusions. On the other hand it is well known (see, e.g.,
Rogers and D.Williamsg| (2000)) that if Y is solution of the SDE (2.1]), then
the distribution of the diffusion Y conditioned on Y7 = v is the same as that
of a new process Y satisfying the SDE:

AV = b(t, Y, )dt + o (t, Y, )dWs, Yy = yo, (2.30)

where:

B(t,y) = b(t. ) + o, y>a% {log plt, y: T, v)}

and p(t,y;T,v) is the transition density of the (in general time non homo-
geneus) process Y between point (y) at time ¢ and point v at time 7.

Unfortunatly, formula is not useful because in general (actually in
all cases where simulation of the target process is not straightforward) the
transition density p is not known.

Despite of this difficulties, a slight modification of the exact algorithm
(actually a simplification) can be used to obtain exact simulations of diffu-
sion bridges (of course for class of diffusion where EA is applicable). In fact,
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reasoning as in Section and decomposing the measures of the involved
processes as products of the unconditional measures with the respective den-
sities corresponding to the process values at the right exreme of the interval
[0, 77, it can be argued that:

dPey 1
B 2

A(y) — A(z) — -/0 [a(W,)2 +O/(W5)]ds}, (2.31)

where P> and W*¥ denote the measures associated with the target bridge
process and the Brownian Bridge respectively, both bridges being between
points (0,z) and (7', y). Formula implies that the Radon Nikodym
derivative of the measure P“*¥ with respect to W»*¥ is proportional to

exp —fOT<I>(Wt)dt}, with @ defined as in Section [2.2.2l The fact that

in (2.31) the dominating measure is the one associated with the Brownian
Bridge instead of the biased Brownian motion as in , allows to avoid
the first step of algorithms EA1 and EA2 for simulation from the measure
]Pt,:]c,y.

Remark

In case of conditional diffusion, it is sometimes convenient to describe the
exact algorithm in an equivalent slightly different manner which will turn
out to be useful when inference on diffusion parameters will be discussed. In
fact, for both EA1 and EA2, we can define a (random, in general) quantity
r(W) such that:

F(W) > sup a(Wy)? + o/ (W)

s€[0,T 2

— .

Then, we simply re-define the functional ® by scaling the definition (2.13]):

1

o0 = iy {

(2.32)

WO )

so that, the Radon-Nikodym derivative (2.31)) becomes:

- exp{A(y)—A(w)—r(W) /0 T@(Ws)ds} (2.33)

o exp {—T(W) /OT @(Ws)ds} <1.
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Note that, depending on () +a/(-) being boundend above or not (EA1 and
EA2 cases respectively), 7(W) can be identified with the quantities M and
M (m) in paragraphs and respectively. From expression ([2.33])
it follows that in the EA algorithm, the Poisson process with unit intensity
has to be replaced by a Poisson process with intensity r(W). However, due
to the re-definition of ®, it is sufficient to draw from the Poisson process in
the rectangular area [0,77] x [0, 1] instead of [0,7] x [0,7(W)] as in steps
and [5| of EA1 and EA2 respectively.

As final remark, we note that in cases of diffusion bridges, although the ex-
act algorithm is simpler than the corresponding algorithm for unconditioned
diffusions, the computational cost cannot be reduced by breaking the in-
terval [0,7] in sub-intervals. This poses some practical restrictions to the
applicability of EA in inferential problems.

2.2.7 Extensions

In this Section, possible extensions of the exact algorithm are presented. The
first extension discussed concerns time non-homogeneous diffusions. Let us
consider the SDE ({2.1)), where drift and diffusion b = b(t,y) and o = o(t,y)
are allowed to explicitly depend on time. Note that also in this case we can
reduce the initial SDE to one with unit volatility through the transformation:

1
o(t,u)

where in this setting the function 7 explicitely depends on time.

Starting from the Girsanov theorem and using Ito’s rule, it can be easily
proved that an acceptance-rejection scheme can be defined in terms of a new
functional ® which is the generalization of the one defined in Section [2.2.2

Yy
X, = n(t,Y7), where (t,y) = / du,

O(t,z) = %{a%t,x)+a'(t,x)+2%} —1,
L 1, 1, 0A(t, z)
= gt et + gl + S,

where A(t,z) = [T a(t,u)du, and a(t,z) is the drift of the SDE satisfied by
the transformed process X:
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A more involved issue is the extension of the methodology to multivariate
contexts. In fact, let Y : Q x [0, T] — R< be a strong solution of the SDE

Y, = b(Y)dt + S(Y)dW; Yy =y, (2.34)

where b(-) : RY — R?is a d dimensional drift, Y is a d x d matrix valued func-
tion on R, and W is a d-dimensional Brownian motion. The first problem
we encounter is to find a function 1 : R¢ — R? such that the volatility of the
process X defined via the transformation X; = n(Y};) is the identity matrix
in R?. From the multidimensional Ito’s lemma it follows that the function
n(-) = (n*(-),-..,n%()) must fulfill the conditions:

vy =37} j=1,...,d (2.35)

where E]’j is the jth row of the matrix ¥~!. In other words, the rows of
the matrix 7! are vector fields of gradient type (conservative fields). If the
d conditions are satisfied, then one can define the new d-dimensional
process X = (X!,..., X9) as:

. . . Y
Xj = (V).  where nj(y)ﬁ/ S du (G=1,....d)

the integral being independent of the particular path in R¢ from the (arbi-
trary) point ¢ to the point y. From standard conditions for a vector field to
be conservative, it follows that trasformation of the original SDE in a
new SDE with identity diffusion matrix is possible if and only if:

azij (y) _ azik(y)
Oy dy;

. Vi k=1,...,d. (2.36)

Matrices 3 that verify the conditions (2.36) are sometimes referred to as
reducible (Ait-Sahaliaj, 2008]).
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A second problem we have to deal with in extending the methodology to
multivariate diffusions concerns the possibility of eliminating the stochastic
integral in the expression of the Radon-Nykodyn derivative of the target
measure with respect to the measure associated with the biased Brownian
motion (or with the Brownian Bridge in the conditional case). In fact, once
the initial SDE has been reduced to the standardized form (provided it is
possible)

dX, = a(X,)dt + dW, Xo = 0, (2.37)

generalization of formulas — implies that the d-vector valued func-
tion a(-) must be of gradient type, i.e., a(z) = VA(z) for some scalar field
A on R In this case, the integral is to be intended as a curvilinear
(path independent) integral.
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Chapter 3

Parametric inference for
discretely observed diffusion
processes

3.1 Introduction

The last three decades have seen a tremendous explosion of research in the
area of statistical inference for diffusion processes. Interest in this topic arises
from the fact that diffusions have been increasingly used for modelling a big
variety of phenomena randomly varying in time. In fact, they are flexible and
powerful tools for the analysis of phenomena whose evolution can be tought
of as continuous in time. From a practical point of view, continuous time
is a useful assumption whenever processes are observed at high frequency
or, in any case, when lag between pairs of consecutive observations is not a
known fixed time interval. For this feature, diffusions have been widely used
in mathematical finance to describe dynamics of stock prices, interest rates,
exchange rates, etc. Although these quantities are modeled as continuously
varying in time, they are typically measured at discrete times. For instance,
discrete observations may correspond to months, weeks, days, or even to ran-
dom times. Thus, the problem arises of making inference on the generating
process based on a set of discrete observations. The problem of estimation
for diffusion processes observed at discrete times is highly non-trivial. This
is because diffusions are often specified as solutions of stochastic differen-
tial equations (SDEs), and the transition density is typically intractable.
Important exceptions where the transition density can be explicitly known
are solutions of linear SDEs (e.g., Brownian motion with drift and Ornstein
Uhlenbeck process) having Gaussian transition density, or some other special
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cases, such as the geometric Brownian motion or the Cox-Ingersol-Ross (CIR)
model, whose transition densities are log-normal and non-central chi-square
respectively. These simple models have been extensively used in many areas
of reasearch, but they are sometimes not adequate to describe the observed
data. For instance, it has been recognized that log-prices do not seem to
be independent and Gaussian as assumed in market models based on the
geometric Brownian motion (Black and Schole theory). Nevertheless, as we
will see in the following, transition densities of diffusions of interest can of-
ten be expressed in terms of the known transition densities of these simple
processes. From an inferential point of view, non-tractability of transition
density determines difficulties for approaches based on likelihood function.
This has motivated significant research focused on methods for likelihood
approximation (both analytical and numerical), or alternative approaches.
In this chapter we will give a short overview of the main inferential ap-
proaches limiting ourselves to parametric inference and mainly focusing on
methods based on numerical approximations of the transition densities for
one-dimensional processes.

3.2 Model and set-up

In the following, and throughout this chapter, we will consider the canonical
set-up in which a model on the filtered space (2, F, F;, P) is specified through
the one-dimensional time homogeneous SDE:

where W is a standard Brownian motion and 6 is a p-dimensional param-
eter in some subset © C RP. The drift and the diffusion coefficients b, 0 :
(R x©) — R are assumed to be smooth functions of their arguments and the
true value of the parameter is denoted by 6,. Moreover, it is assumed that
equation has a unique strong solution Y and a stationary distribution
fo, : R = R exists, i.e., the process Y is ergodic. These assumptions are
quite standard and are necessary to ensure asymptotic consistency proper-
ties of various estimators.

An important issue in the study of parametric inference on diffusion pro-
cesses is the sampling scheme, i.e., the way the observations are available.
Different asymptotic contexts are analyzed in the literature depending on
the approach followed. In particular, if ¢1,...,t, are the times when obser-
vations are available, the limit n — oo can be analized in the set-up where
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max;—1_n|tis1 —t;| — 0 and ¢, = T (T fixed), or from the different per-
spective where the time points are equally spaced, i.e., t; = to +iA | (A
fixed). One reason of interest for the sampling scheme arises from the fact
that for many estimation approaches, estimators of parameters involved in
the drift and diffusion coefficients have quite different properties. In fact, if
a sample path were entirely known on the interval [0, 7] (continuous obser-
vations), then, in principle, the diffusion cofficient could be ezactly known as
well, being related to the quadratic variation of the process (Karatzas and
Shreve, 1991). More precisely, given the partition I = (tg, ¢y, ...,t,) of [0,1],
with to < t; < ..., < t, = t, and defining the p-th variation over II of the
process Y as:

Vt(p)(l_[) _ Z Y, — Y, [P, (3.2)
1=1
we have:
lim V,%)(IT) = (Y), in probability, (3.3)
=0

where ||II]| is the mesh of the partition II, i.e., |II|| = max; |Y;, — Y, |, and
(Y'), denotes the quadratic variation of Y

(v), = /Ot o2(Y,,0)ds.

Thus, intuitively, sampling at higher and higher frequency allows an increas-
ingly accurate estimate of o. In contrast, estimation of drift does not have
this property, and tipically consistency requires availability of data on in-
creasingly longer time intervals.

3.3 Continuous time likelihood

In this Section, as usually, (C[0, T, .A) will denote the space of the continuous
functions on [0, 7] equipped with the o-algebra of the cylinder sets, and w a
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typical element of C[0,T]. We refer to the usual framework where the target
diffusion process Y induces a probability measure on C[0,T], such that the
coordinate mapping process defined via Y;(w) = w(t) has the law of Y. In
this framework, as we have already mentioned in Chapter [, an important
consequence of the Girsanov theorem on the change of meausure is that,
under certain conditions, measures associated to solutions of SDEs with the

same diffusion term are absolutely continuous with respect to one another
(Oksendal, 1998). More in detail, let Y be a solution of the SDE

dY; = b(Y,)dt + o(Y;)dW,,

and X a solution of another SDE having the same diffusion function o(-) but
different drift, say a(-) (here dependence on parameter has been removed
from the notation), and let Py, Px be the measures on (C[0,T],.A) associated
with processes Y and X respectively. Then, the Girsanov theorem implies
that the Radon-Nikodyn derivative of the measure Py w.r.t. Py is:

dPy ! 1,
—— =exp h(Ys)dWs — = | h*(Ys)ds ¢, (3.4)

where function h satisfies the equation:

a(y)h(y) = bly) — aly).

For inferential purposes, the Radon-Nykodin derivative (3.4]) is more conve-
niently written as:

th—a A -
Y)Y, — = Y.)ds. b | 3.5
e { [Pt mav - g [ T was (35)

Now, assume that the diffusion coefficient is known and interest is in es-
timating parameters in the drift term b = b(y,#). Then, using with
a = 0 provides an expression L{(f) that can be interpreted as continuous
time likelihood for the parameter § (Lipster and Shiryayev, 1977) :

Zﬁm:@m{i?%%?mg—%lqé%gh&} (3.6)
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where dependence on 6 is only in the drift coefficient. When data Y;,,...,Y;,
are available at discrete time points tq,...,t, = t, and when ¢ is assumed
to be known, a possible approach is to consider the log-likelihood obtained
from Ito-Riemann approximation of :

i=1

where AtZ = tz‘+1 — tz

Note that the approximate likelihood ({3.7)) is, up to a multiplicative con-
stant, the exact discrete-time likelihood of the approximate model obtained
via Euler-Maruyama scheme:

AY; = Y;i“ - Y;fz = b(Y;n H)Atz + U(Y;fm 9) \Y AtiZia (38)

where Z; ~ N(0,1) are independent standard Gaussian variables. Model
has been studied by [Florens-Zmirou| (1989) in the case of constant dif-
fusion term, o(Y;) = o. In this case, |Prakasa-Rao (1983)) studied the (least
squares) estimator of 6 obtained by minimizing . The previous ap-
proach has been extended by [Yoshida| (1992) and Florens-Zmiroul (1989) to
the case of unknown but multiplicative diffusion coefficient: o(z,v) = ¥ g(x)
where ¢ is a parameter appearing only in ¢ and ¢ is a real valued func-
tion. In their works, v is estimated using the relation between ¢ and the
quadratic variation, and 6 is still estimated by minimizing . Florens-
Zmirou| (1989) proves asymptotic efficiency in the context of fixed time in-
tervals h, =t; 41 —t;, (i =1,...,n) between consecutive data points under
the assumption nh? — 0 (rapidly increasing experimental design). Using a
Gaussian approximation of the transition density more accurate than the one
implied by , Kessler| (1997)) obtaines joint estimates of the parameters
in b and o by assuming nh? — 0, with p arbitrary integer.

One problem with the discrete approximation of the continuous time like-
lihood, or equivalently with the approximation of the target process via Euler-
Maruyama scheme, is that the resulting estimators are strongly biased for
not sufficiently small intervals between consecutive observations. In |Florens-
Zmirou| (1989) it is shown that, for fixed A = t;.1 — ¢;, (i = 1,...,n), the
estimator is not consistent for n — oo.
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3.4 Discrete time likelihood

From now on we will consider time homogeneous diffusion processes specified
through the SDE ({3.1]), with transition density p(t,x,y; ) defined via:

P{YsHEF!Ys—xﬂ}—/p(t,x,y;ﬁ)dy, Vs >0, TekF
I

p(0,z,y;0) = 6(y — x).

We assume that the process Y is observed at a finite collection of times 0 =
to, t1,...,t, =t, the corresponding values being y = (Yy = Y;,, Vs, ... Vs, =
Y:), i.e., Y is discretely observed. From Markov property it follows that the
log-likelihood based on the n observations Y;, can be written as:

[(Oly) = > logp(A,, Y, Yi,,50), (3.9)

i=1

where Ay, =11 — t;.

Under mild conditions, the estimator obtained by maximizing the function
has the usual nice consistency properties, but unfortunately, except for
a few cases, the transition density p(t, z,y) is unknown. Among processes for
which transition density is explicitly known, an important class is composed
of solutions of linear SDEs, i.e., SDEs of the form:

dY, = (b)Y, + a(t)) dt + o(t)dW,, Y (0) = yo, (3.10)

with a, b, o real valued functions. Strong solutions of (3.10|) are known to be
Gaussian processes with mean m,; and variance V; which satisfy the ordinary
differential equations (ODE):

dm

# = b(t)my + a(t), mo = Yo,
4V,

d—tt = 2(t)V; + o2(t), Vo = 0.

In the case b, a, o are numerical constants, the solution of (3.10) is the well
known Ornstein-Uhlenbeck process, whose transition density is:
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where:

and 0 = (b,a,0).

3.4.1 Analytic approximations and estimating functions

Based on log-likelihood with the above transition density function, max-
imum likelihood estimates (MLEs) can be easily found. Because of the easi-
ness in using discrete likelihood approach for the linear case, many methods
for inference on diffusions are based on linearization of the corresponding
SDEs. One example is the Euler-Maruyama scheme described in the previ-
ous Section. This scheme results in approximating conditional distributions
with Gaussian distributions and can determine serious bias if time intervals
between consecutive observations are not small. Using a more sophisticated
approximation of the transition density based on Hermite polynomial ex-
pansion, Ait-Sahalial (2002)) proposes an estimator which converges to the
maximum likelihood estimator as the expansion order increases. A possi-
ble alternative approach is based on estimating functions (Sorensen, 1999 ab;
Heyde, |1997)). In the context where the parameter § to be estimated is p-
dimensional, an estimating function is a RP-valued function F(yi,...,yn;0)
with data and parameter as its arguments. An estimator 6 of 0 is obtained
by solving the equation F(y1,...,ys;0) = 0 w.r.t . The reference example
of estimating function is the score function. In problems where it is not avail-
able, as in the case of diffusions with unknown transition density, one tries
to find an estimating function which is able to distinguish the ”true value”
of the parameter 6, from all other values:

Egy [Fu(yr, -, yn; 0)] = 0 iff 0 = 6. (3.11)

A common choice is to take an estimating function which is a martingale
with respect to the discrete-time filtration generated by the data. In case
of fixed time interval A, the estimating function F,(0) (we have removed
dependence on data from the notations) can be written as:
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n

Fn(e) = Z f(Yv(i—l)Aa Y;Aa 9)7

i=1

where f verifies : Ey, f(Yp, Ya,0) =0 if and only if 6 = 6,. The advantage
of using martingales as estimating functions is that the properties of the
resulting estimators can be derived from the classical asymptotic theory for
stationary martingales (Billingsley|, [1961). Another common choice is to use
simple functions (Kessler|, 2000)), i.e., functions of the form:

Fa(0) = 3 f(Yia, 0).

In this case, the condition for distinction of the true parameter 6
simplifies to: FEy, f(Yp,0) = 0 if and only if 6 = 6,. Here we assume
that Yy ~ pg,, g, being the invariant stationary distribution of the (ergodic)
process Y.

3.4.2 Numerical solutions of Fokker-Planck equation

It is well known that, under some regularity conditions, for fixed z, 6 the tran-
sition density p(t, x,y;0) of the SDE is solution of the partial differen-
tial equation (PDE) called Fokker-Planck equation, or Kolmogorov forward
equation (Karatzas and Shreve, [1991)):

1 0°

0 9 ,
) — : : 19 : - 12
(0. :0) =~ O O0p(2.:0)+ 5 55 (0 Ot . :6)), (312)

with initial condition p(0,x,y;0) = §(y — x). Actually, n equations of type
have to be solved, one for each value of x = Y;,, and what is of
interest for the likelihood function is the set of values that the function
(t,y) — p(t,Y:,_,,y;0) takes on the points (A,Y;). Typically, equation
(3.12) must be solved numerically through some finite difference scheme.
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It can be proved that, maximization of the approximate log-likelihood ob-
tained from a suitable discretization of equation , results in an estima-
tor asymptotically equivalent to the true MLE, provided that the step of the
lattice used for discretization tends to zero sufficiently fast (Poulsen, [1999).

3.4.3 Estimators based on indirect inference

Another approach to parametric inference on diffusion processes is based
on using indirect inference (Gourieroux et al. [1993)). According to this ap-
proach, an auxiliary model, easy to estimate, is fitted to the data Y;,,..., Y, .
Assume that the auxiliary model is characterized by a (possibly multi dimen-
sional) parameter p and that maximum likelihood estimate p,, based on the
n sample data is available. Then, for different values of parameter 6, a long
trajectory Y/ ,...,Y/ is simulated from the original model and, based on
each trajectory corresponding to a specific value of , an MLE estimator
pm(0) is calculated. Finally, an estimator of € is obtained by minimizing the

quadratic form:

[ﬁn - ﬁm<9)]t Q [ﬁn - ﬁmw)] 3

where € is a suitably defined semi-positive definite matrix.

A natural choice is to use, as auxiliary model, the one obtained by ap-
proximating the solution of the generating SDE via Euler-Maruyama scheme.
This results in estimating parameters of Gaussian distributions and then ad-
justing for the discrepancies deriving from the assumption of normality of
the process increments implied by the Eulerian approximation.

3.5 MC approximation of the transition den-
sity function
3.5.1 Introduction

An important class of inference methods for diffusions observed at discrete
times is based on the numerical approximation of their transition density
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via Monte Carlo simulation. Within this class, two broad strategies can be
distinguished. The first one is based on approximating the process itself
with a finite dimensional random variable via some Euler-type discretization
scheme and estimating the transition density corresponding to each pair of
time-consecutive observations via a large number of MC simulations of the
approximate process. This approach is sometimes referred to as a projection-
simulation approach (Papaspiliopoulos and Roberts, 2009). The problem
with this approach is that the number n of intermediate points between con-
secutive observations used in discretization has to be taken large enough to
reduce bias, typically implying increase in variance.

The second strategy (simulation-projection) more relies on the infinite-dimensional
nature of the problem and tries to directly obtain (at least in principle) re-
alizations from the (infinite-dimensional) distribution of the process condi-
tional on pairs of observed values (diffusion bridges). This approach is math-
ematically more complex in that it involves change of measure in infinite-
dimensional spaces. Again, simulated diffusion bridges have to be approxi-
mated by n-tuples of intermediate points and the resulting bias tends to zero
as n — o0o. However, trade-off between bias and variance is typically better
than with projection-simulation strategy, and for some class of models, the
fine discretization step can be avoided using the restrospective-sampling ap-
proach (see Chapter 1). The simulation-projection approach can be viewed
as a strategy for a missing data problem where missing data can be iden-
tified with the unobserved path between (discrete) observations. For this
reason, different methods in this framework are related, to some extent, to
the problem of simulating diffusion bridges (imputation). This problem is
difficult to treat in general, and in particular in the framework of Eulerian-
type schemes, which are typically not able to take into account conditioning
on ending point.

A more appropriate approach seems to be the one based on change of
measure in the space of sample paths. This approach naturally leads to
acceptance-rejection and importance sampling schemes that can be incor-
porated in the inferential procedure. In the remainder of this Section we
will provide some examples of inferential procedures based on both the ap-
proaches, with major emphasis on the simulation-projection approach. In
the following we refer to the context of Section [3.4] and assume that the log-
likelihood is to be estimated. In the homogeneous case we can limit
ourselves to the analysis of a single term in the sum . Thus, we as-
sume that the target quantity to estimate is the transition density function
p(t, z,y;0), from point (0, z), to (t,y).
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3.5.2 Approach based on simulation of unconditional
paths

A first proposal for inference based on simulation of diffusion paths uncon-
ditionally on the ending point is due to |Pedersen (1995)). The main idea is
to approximate the target diffusion on the interval [0, ¢] through an Eulerian
scheme based on m points corresponding to intermediate times in [0, ¢], the
first point being x at time 0. Let Y™ be the corresponding approximate
process, and assume for simplicity that the time-intervals between consecu-
tive points have the same length A, = ¢/m. For a single realized trajectory
of Y™ let y,,—1 be the point corresponding to time ¢(m — 1)/m (the last
point before y). Then, if p,,(s,u,v;6) denotes the transition density of the
approximate process Y™, we have, from the Chapman-Kolmogorov formula:

Pm(t,z,y;0) = /ﬁm((m — DA, 2, Ym—150) P (Diny Ym—1, Y5 0) Y1

= Ey" [Pm((m — D)An, 2, ym—1;0)[Yo = ], (3.13)

where EJ* denotes expectation w.r.t. the law of the approximate process cor-
responding to parameter 6. Now, for large m, the last term of should be
close to the analogue expression obtained by replacing Ej* with the expecta-
tion Ey w.r.t. the law of the original process Y, and p,,,((m—1)A,,, €, Ym—_1;0)
with the target transition density corresponding to the same points x and
Ym—1. This suggests that one could estimate p(t, x,y; #) through the Monte
Carlo average, over a large number N of simulations, of the quantities:

; ! v =y — A bk )
pm(Anayfn—lay;e ( L ( 1)) I

= exp
) \/27TA ~o2(yk _,,0) { 20 - 02 (Y1, 9)

where, for k = 1,...,N, y* | is the k-th realization from the marginal
distribution of the approximate process Y™ corresponding to time (m —1)A.

It can be proved (Pedersen, (1995) that, considering each pair of consecutive
observed points (Y;, ,,Y;,) as points z,y above (i.e., z =Y, |, y=Y, t =
ti —ti_1 = Ay,), the approximate likelihood:

n

L 0) = [[pm(Ar. Y, Ve 0), (3.14)

i=1
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converges in probability to the true likelihood:

n

Ln(e) - Hﬁ(Atla }/;51;17 }/;fza 9)7

=1

and that there exists a sequence m(n) such that, maximizing L?(”)(H) pro-
vides an estimator of # which is asymptotically equivalent to the MLE. How-
ever, MC approximation of approximate likelihood typically requires
a large number of simulations, because of the lack of efficiency deriving from
ignoring the realized values of the process on the right extreme of the inter-
vals, in the path simulation.

Essentially, the same approach based on simulating paths unconditionally on
the ending points is followed by |Beskos, Papaspilioupolos and Roberts| (2006),
but in this case trajectories are drawn from the exact probability distribution
associated with the driving SDE using the retrospective sampling technique
(see Chapter 1). Being based on exact simulation, the methodology does not
require drawing instances of the processes on a very fine time-grid, but its
applicability relies on the conditions under which the EA is feasible. In de-
tail, suppose that, for a fixed value of the parameter 6, we want to estimate
the transition density function p(t¢,z,y;6), where ¢ is the time-separation
between the two consecutive observations x and y of the target process Y.
Due to time-homogeneity, we can take, without loss of generality, : = = Y},
y = Y;. The first step (ee Chapter [2)) is to "standardize” the process through
the transformation:

X, = g(Ye6):  n(y:0) = / ' U(ul gy (3.15)

so that the new process satisfies the following SDE with unit diffusion coef-
ficient:

dX; = a(Xy, 0)dt + dW, Xo = n(x;0), (3.16)
where
_ b (w0),6) 1, i
a(u,d) = —a(n_l(u;ﬁ)ﬁ) 5 (n~"(u;0),0) (3.17)



A change of measure argument shows that the target transition density p
is related to the transition density p associated with the process X, via the
relation:

p(t,x,y;0) = p(t,n(x;0),n(y; 0); 0)|n' (y: 0)] (3.18)

Thus, we are now interested in estimating the function p(t, n(z;0),n(y; 0);0)
for a specific value of 6. To this aim, we can apply the EA (in the version EA1
or EA2 depending on the boundness conditions of the drift of transformed
process, see Chapter [2) in order to obtain a skeleton of the process X in a
time interval [0, ¢4 J] that includes the time ¢ at which the value y is observed
for the original process. The skeleton is composed of a collection of instances
of the process (Xg, X, ..., X¢ys) corresponding to times (0, 7y, 7o, . . ., , t+9),
where (79, 72,...,) are random. Let w be a path between the times s = 0
and s =t + 0 accepted by the acceptance-rejection scheme used in the EA,
and S(w) its skeleton provided by the algorithm. It is clear that S(w) is non-
empty because it contains at least the pairs (0, Xy) and (¢ + d, X;15). Then,
conditionally on the current skeleton, the transition density p(t, Xo, X¢|5)
of the random variable X; (conditional one-dimensional distribution of the
process X at time t) is known, being related to the Brownian Bridge or
Bessel Bridge dynamics depending on the particular algorithm (EA1 or EA2)
being used. In particular, as illustrated in Chapter 1, due to the Markov
property, it is sufficient to consider conditioning on the points of the skeleton
(t—, X: ), (t+, Xy, ), where t_ and ¢ are the closest times to ¢, on the left
and on the right respectively, returned by the EA. Thus, for instance, in the
case of EA1 we have:

p(t,n(z;0),n(y; 0)|S(w)) =

e { s i)~ ).

where:

p=Ep(Xe, Xey st t) =X +

(Xt+ - Xt )

ty —t_

and:

N =X, Xy, b, ty) = (t _(tt‘)ftt* >_ H
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Note that, in case of EA2, the skeleton includes also the minimum of the
path and the time at which it is attained. The target transition density can
be expressed as:

p(tn(x;0),n(y;0);0) = Es [p(t, n(x;0),n(y;0);0) |S]. (3.19)

where Fg denotes expectation with respect to the law of S. The latter is
in general intractable, but the r.h.s. of can be approximated via MC
simulation. This method, called bridge method in Beskos, Papaspiliopoulous
and Roberts (2006]) is based on exact simulation, thus the estimate of the
transition density is unbiased for each value of # and the only approximation
is in MC average of conditional transition densities. However, its applica-
bility relies on the feasibility of the EA. Moreover, as for the methodology
in [Pedersen| (1995)), drawing paths unconditionally on the observed value on
the right extreme of the interval can result in inefficient estimation.

3.5.3 Methods based on diffusion bridge simulation

Lack of efficiency due to unconditional simulation in the bridge method can
be avoided by using inferential methods which take into account all the infor-
mation in observed data, i.e., the values of the process on both the extremes of
the time interval between consecutive observations. As a matter of fact, these
methods involve to some extent simulation of diffusion bridges. The core of
the methodology is based on the change of measure for diffusion bridges.
From now on, we can consider diffusions which are solutions of SDEs of the
form , i.e., with unit volatility term. In fact, the process Y solution of
the SDE can always be transformed in the process X solution of ,
via the tranformation . Moreover, by means of the change of variable
formula (3.18)), the problem of estimating p(¢,u,v;6), with Yy = u, Y; = v,
is the same as that of estimating p(¢, z,y;60), where z = X(0) = n(u,6),

and y = X (t) = n(v,0). Thus, we focus on estimation of p(t, z,y; 0), keeping
in mind, however, that the values x and y are not directly observed, but
depend on the observed data u and v, and on the parameter 6 through the
transformation (3.15)). In the following, dependence on 6 of initial and fi-
nal point will not be reported. The estimation of the transition density of
the tranformed process X is again based on the change of measure on the
space (C[0,t],.A). An intuitive argument is based on the Girsanov theorem
and on the factorization of the measure associated with the diffusion process
{X;,0 < s <t} as product of a bridge measure and the measure on the real
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line corresponding to the law of the random variable X;. Specifically, let P
be the measure associated with process X (with initial point x) on [0, ¢], and
P,™Y the measure associated with X conditioned on having its ending point
y at time t. Then, we have the factorization: P§ = Py™ @p(t, z,y;60)- Leb(y),
where Leb(y) denotes the Lebesgue measure on R. A similar decomposition
holds for the Wiener measure W* corresponding to the Brownian motion
starting from z: W* = W-¥ @ N (y — x,t) - Leb(y), where W5¥ is the the
measure induced by the appropriate Brownian bridge, and N (y — x;t) is the
density of a zero-mean Gaussian r.v. with variance t. From the Girsanov
theorem, we have:

dPy
dwx - Zt('x)7
where
T ! x x 1 2 T
ZF (W) = exp a(WZ0)dWs — 5 (W2 0)ds ¢ .,
0
It follows:

t7x’y
dP
AWt

Ny —2,0)Z; (W) = p(t, z,y;0) (W) (3.20)

Letting
A(x,@):/ a(u; 0)du,

with ¢ arbitrary constant, and using the Ito’s formula as in formula [2.10] of
Chapter [2| in order to eliminate the stochastic integral in Z7 (W), equation

(3.20) becomes:

dIPZ’I’y _ Ny —x,t)
AWy p(t,x,y;0)

(3.21)

X exp {A(y;&)—A(w;@)—%/ot [aQ(WS;e)m’(WS;e)}ds}.
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Finally, taking expectation of (3.21) w.r.t. the bridge measure W"*¥ pro-
vides:

Pta,y:0) = Ny -z, 1)eli0)-Aw0) (3.22)

X

[o. {exp {—% /O 02y 6) + o (Wes ) dsH |

Formula is crucial in many inferential approaches for discretely ob-
served diffusions. In general, the expected value in is intractable, but
it can be estimated via numerical methods. In particular, a Monte Carlo
approach would be repeatedly drawing from the measure W% and averag-
ing over the obtained realizations of the functionals on the r.h.s of .
In practice, of course, one has to approximate the integral in (3.22) with a
finite sum, i.e., to discretize the integral. This could imply bias that can be
reduced by taking a discretization grid fine enough. Moreover, as we will
see in the next Section, for a class of diffusions, an “unbiased ” estimator of
can be obtained in the spirit of the restrospective sampling.

3.5.4 The acceptance method

In this section we describe, following [Beskos, Papaspiliopoulous and Roberts
(2006), how the idea of retrospective sampling can be used to obtain an
unbiased estimator of the transition density p(¢,x,y;6) of the process X
with unit volatility. Suppose that, for a given value of #, the drift of the
transformed process a(z,0) satisfies the boundness conditions required in
order for exact algorithm to be applicable (see Chapter [2)). In this case,
it has been shown in Chapter 2] Section [2.2.6] that an exact algorithm for
the simulation of conditional diffusions (diffusion bridges) can be obtained
according to an appropriate acceptance-rejection scheme. The latter is based
on accepting the proposed path on [0, ] with probability:

P(W:0) — exp{—/ot(b(Ws;H)ds}, (3.23)

or

P(W;0) = eXp{—r(W;é’) /0 tCID(WS;H)ds}, (3.24)
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depending on whether definition or Chapter|2]) is used for ¢ (note
that in and , the same notation as in Capther 1 is used except
for explicit dependence on parameter §). Comparison with shows that
the target transition density can be related to the unconditional acceptance
probability of the exact algorithm via the relation:

B(t,2,y;0) = Ny — 2, 4)e A=A O g5y g), (3.25)

where

a(x,y,0) = Ewtey [P,(W;0)]. (3.26)

Explicit computation of the expected value (3.26]) is not feasible, but a Monte
Carlo approximation of can be obtained by means of the unconditional
acceptance frequency of the proposed paths in the EA, over a large number of
proposals from the measure W*¥. Thus, an unbiased estimator of p(¢, z, y; 0)
can be obtained by plugging-in the MC approximation of a(z,y, #) in the ex-
pression (3.25)). To be concrete, assume that, using the same notation of

chapter 1, Section 2.6, ® is defined as 7«(11/1/) {0‘2(“;9)30‘1(“;9) - l(@)}, so that,

given a proposal W (path), the conditional acceptance probability is given
by . In this case, in the retrospective sampling framework, an auxil-
iary planar Poisson process ¥ on [0,¢] x [0,1] is used with intensity (V)
(see Chapter [2)). Specifically, realizations from ¥ are obtained by drawing
an integer K from a Poisson distribution with parameter r(W) - ¢, then,
conditional on C, drawing C points (71,1), ..., (7, ¥x) from the product
measure U(0,t) ®@U(0, 1) on {[0, ] x [0, 1]} where U(a, b) denotes the law of a
uniform r.v. on [a, b]. We recall that the EA is based on comparing the values
(11, ..., 1x) with the values taken by the function ® on the proposed skele-
ton S. The latter is obtained by randomly drawning values (W, ..., W,) of
the Brownian bridge BB, )y, at times (71, ..., 7). Thus, the acceptance
indicator in the EA can be expressed as:

K
I(,y,0,9,8) = [ [T{o(W~:6) <}, (3.27)

where T is the indicator function. Thus, if M proposals (skeletons) S7, (j =
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.., M) are generated according to the EA, an unbiased estimator a(x,y,0)
of a(x,y,0) can be obtained as:

Zj]\/il I((L’7 ya 07 S])
M .

Correspondigly, an unbiased estimator of p(¢, z, y; 0) is:

plt, 2,55 0) = Ny — a, ) A= A0 4(5 y, 9). (3.28)

As remarked in |Beskos, Papaspiliopoulous and Roberts| (2006), the estimator
(3.28) has the nice property of being almost surely bounded, so that all its
moments are finite.

3.5.5 Simultaneous estimation methods

It is important noting that methodologies based on MC estimates of the
transition density for a given value of the parameter 6 provide independent
estimates for different values of this parameter. This can result in inconsis-
tent estimators of some characteristics of the likelihood function such as
the maximum. In order to guarantee consistency of the maximum like-
lihood estimator, one should estimate the [likelihood function itself rather
than the particular values that it takes on some grid of the parameter space
©. This problem is related to the convergence of random variables in Ba-
nach spaces. In particular, suppose that for each pair of consecutive points
(Xt Xt,01), @ =0,...,n (possibly obtained from the observations through
the transformation (3.15])) we are able to use a Monte Carlo procedure whose
output

) . 1 )
BYEL €)= 5 2P,

is an average of bounded random functions § — P(},0) continuous in 6

and depending on iid random elements £i, ... &4 which in turn are inde-
pendent of . Then, we can appeal to the strong law of large numbers in
Banach spaces to establish that the random sequence pl (£i,... &%, 60) con-
verges a.s. uniformly in 6 to E[P(¢1,0)] as N — oo (here the parameter
space O is assumed to be compact). Moreover, if for j = 1,..., N, P( ]i-, 0)
is an unbiased estimator of the transition density p(A;,, Xy, ,, X4,;60), then

i—17
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P&, €, 0) = p(Ay, Xy, Xy,;0) a.s. uniformly in 6. Uniform conver-
gence of the single terms corresponding to pairs of consecutive observations
implies uniform convergence of the estimator:

LY(©O) = ]2V, &5 0),
=1

to the true likelihood:

n

Ln(e) - Hﬁ(Atw Xti—u Xti; 0)?

=1

based on the points X, ,...X;,. This in turn implies that the estimator
oy = LN (9
n = argmax Ly (0)

converges a.s. to the maximum likelihood estimator:

~

0, = arg max L.(0).

Here the crucial point is the a.s. uniform convergence of the MC approxima-
tions of the transition density. This is because uniform convergence ensures
that the estimator obtained by maximizing the approximate likelihood con-
verges a.s. to true maximum likelihood estimator. As mentioned at the
beginning of this Section, to establish uniform convergence, one has to use
results from the theory of random variables taking values in separable Banach
spaces. In fact, under the previous hypoteses, the approximating functions
P(&',-) take values in the Banach space (C(O) ) of the continuous func-
tions on © with the uniform norm:

/1l = sup f(6)
66

Thus, uniform convergence of the likelihood approximating functions is the
same as convergence in norm in a Banach space. It is well known (D.P.Giesy,
1976)) that, if a sequence of iid r.v.s fi, ..., fy in a Banach space B with norm
||-|| satisfies E||f;]|]] < oo and E[f;] =0, for j =1,... N, then, a.s.:




Note that for a typical element f of the Banach space B, E(f) is defined as
the only vector £ € B, such that E [T'(f)] = T(§) for each linear functional
T in the dual space of B.

The desired convergence is obtained by taking
f]() = P( ;) ) - ﬁ(Atla Xti_nXti; )

In the last part of this section, we will show how dependence on # can be
made explicit in the random function that approximates the transition den-
sity corresponding to values x and y at times 0 and ¢ respectively. In the
case of the acceptance estimator, in Beskos, Papaspiliopoulous and Roberts
(2006) and Beskos et al. (2009) methods are illustrated for EA1 and EA2
respectively. In both cases, the random elements required by the algorithm
for MC estimation have to be expressed as deterministic functions of 6 and of
random variables independent of the parameters. To this aim, specific prop-
erties of the various random elements are exploited. Let us first describe the
approach for EA1. In this case, when p(t, x, y) is to be estimated, the relevant
random elements are the auxiliary Poisson process and the Brownian bridge
between x and y. Since the functional ® in is bounded, for a fixed
value of 6, the intensity of the Poisson process can be taken independent of
the proposed path (differently from the EA2 case), i.e., 7 = (). Assume
that, as # varies in the parameter space ©, we can find an upper bound 7,
such that r < rj;. Then, using the thinning property of the Poisson process,
we can obtain random draws from the Poisson process W), with intensity r(6)
on the rectangular area R = [0,t] x [0, 1] by first drawing points on R from a
Poisson process with intensity r,;, and then dropping each generated point
with probability 1 —r(#)/ry. In practice, we draw a number from a Poisson
r.v. K with parameter r,;, and generate from a K-variate random vector
T = (m,...,7c) whose components are uniform r.v.s on [0,¢]. Then, we
draw from K independent r.v.s (¢1,...,%x) = ¢ uniform on [0, 1] and drop
each point (7;,7;) in R with probability 1 — r(0)/ru, i.e., if u; > 7(0)/ru,
where u = {u;};_, ) are other independent random variables uniformly
distributed on [0, 1]. In order to eliminate dependence on parameter 6 from
the random elements needed for the acceptance algorithm, it remains to ex-
press the Brownian Bridge BB, 0)-(y) between the -dependent points x
and y in terms of a deterministic transformation of a standard Brownian
bridge BB(,0)-(0,). To this aim, we note that, from the standard proper-
ties of the Brownian bridge, it follows that a sample path from the bridge
measure W5 can be obtained from a sample path W from the the bridge
measure W50 via the transformation:
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Wy — Ws+ (1 —s/t)x + (s/t)y, (3.29)

It follows that the indicator variable (3.27)) for the acceptance condition can
be re-written as:

I(x,y,@,\IJM,u,S):[(x,y,Q,T,w,u,S) (330)

"M

li—[ { { (m}CI)[WTi—I—(l—Tj/t)x—i—(Tj/t)y;e]Szﬁj},

Le., the random elements {u;},_; {TJ} Gt i) Wi} (=1, i), are all in-

dependent of 6. Taking expectation of with respect to the dlstribution
of the uniform random variates u, we obtain:

EI(z,y,0,u,v,S)| 1, 5] (3.31)

m

= H{[ }ﬂ(@) Wy, + (1 —1;/t)z + (1;/t)y: ]}

J=1

- H{ B, + (1= 7/ + (130}

<.
[y

Thus, one can obtain an unbiased simultaneous estimator of , and then
of the density function by averaging over a large number of realizations
from the joint probability distribution of the Poisson process on [0, ] with
intensity rj; and the standard Brownian bridge on [0, ¢].

In the case of the EA2 algorithm the simultaneous acceptance method (SAM)
is much more complicated. In this case the intensity of the Poisson process
used to decide if a proposed path is to be accepted, depends on some charac-
teristics of the path itself, namely the minimum m and the time ¢,, at which
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it is attained. These last random elements have to be generated from the
appropriate probability distributions which depend, in turn, on the model
parameters. However, it is not difficult to show that, as in case of EA1
algorithm, dependence on parameters can be decoupled from the relevant
probability distributions. For instance, a realization of the minimum of the
Brownian bridge between two given points can be obtained through a deter-
ministic function of a realization from an exponential r.v. with unit mean
(see, Section . Analogously, random drawing the time t,, at which the
minimum m is attained involves drawing from an Inverse Gaussian distribu-
tion with suitable parameters. Again, one can obtain realizations from this
distribution by random drawing from a squared standard normal r.v. and
using the relation of Section As a matter of fact, the simulta-
neous acceptance estimator based on algorithm EA2 requires drawing the
random elements {E, Z, ¥, N}, where E is exponential with unit mean, Z is
a standard Gaussian variable, U are A points from a homogeneous Poisson
process on [0, t] with parameter of intensity A which, given E (and hence m),
is independent on @, and N is a collection of 3 x A standard normal variables.
Details are provided in [Beskos et al.| (2009), where the statistical properties
of the SAM estimator are also illustrated.

Starting from formula , simultaneous acceptance methods can be
used also when exact algorithm (and hence SAM estimator) is not feasible.
In fact, all one needs is using a parameter-independent procedure to approx-
imate the integral in (3.22)) with a discrete sum and to take the MC average
over the realizations of the corresponding functional. To this aim, it sufficies
to obtain realizations from W%®¥ by random drawing from the parameter-
independent measure W5%? and then using the transformation . More
precisely, once a grid H = (0 = to, t1,...,t, = t) has been chosen fine enough
to well approximate the integral, at the jth MC iteration (j = 1,...,N), h—1
values W]QI, WJQQ, cee WJQh are drawn from the finite-dimensional distribution
of the standard Brownian bridge (i.e., starting and ending in 0) correspond-
ing to time points in H. Thus, if according to the notation of Section (3.5.2]
x =n(u;0), y =n(v;0) the MC approximation is:

N h

1 062+O/ tk tk
o> expq - Wo 4 (1=2) g Byl b
_>Nj:1exp{ 2 9 { ]k+< t)erty’

Correspondingly, we have the following approximation of the target transition
density:
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p(t,u,w;0) = p(t, x,y;0)|n (v; 0)| (3.32)

N(y —z,t)exp {A(y; 0) — A(x;0)}

Q

N h
1 24+ [, Ly 2
X N;:lexp{— E 5 [ij—l—(l—? x+7y;0

k=1

x|’ (v;0)].

3.6 Missing data approach

A common approach for parametric inference on discretely observed diffusion
processes is based on considering the continuous paths between consecutive
observations as missing data. In this framework, inference is often based on
recovering unobserved path in suitable sense. In some contexts, the problem
of re-constructing “missing data” between available observations is referred
to as an imputation problem. Since for a discretely observed diffusion process
the observed data are process values measured at a finite collection of times,
re-construction of missing information involves imputation of paths between
pairs of consecutive observations. This requires managing the distribution
law of the process conditional on taking certain values at the extremes of
a time interval (diffusion bridge). Since in most cases the latter distribu-
tion is not explicitly available, numerical techniques are generally used to
draw realizations from the target diffusion bridge law. In contrast to the
case of unconditional simulation, where Eulerian-Marujana schemes can be
successfully applied (provided that a sufficiently fine discretization is used),
simulation of diffusion bridges is a highly non trivial problem. However, as
noticed in section [2.2.6], for a class of diffusions, the conditional version of
the restrospective sampling algorithm can be easily used to generate paths
with given values at the extremes of a time interval, from the “exact” law of
the corresponding diffusion bridge.
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3.6.1 Expectation Maximitazion algorithm

Among the inferential methods based on the missing data approach, an im-
portant role is played by likelihood maximization via expectation-maximization
(EM) algorithm (Dempster et al., [1977). This is based on repeatedly apply-
ing, until convergence, an expectation step (E-step) and a maximization step
(M-step). Loosely speaking, the E-step computes the expectation of the
complete data log-likelihood with respect to the distribution of the missing
data conditional on the observed data and the current values of the model
parameters. The M-step maximizes the outcome of the E-step as function of
the parameters. The algorithm produces a sequence of parameters that con-
verge, under some regularity conditions, to the (in general local) maximum
of the observed data log-likelihood. In the present context, the definition of
complete data likelihood is a subtle point. In fact, it crucially depends on
whether the diffusion coefficient contains or not unknown parameters. In the
latter case, one can use the Girsanov theorem to define the complete data
likelihood as the continuous time log-likelihood (see Section. Specifically,
let us assume the model:

dY; = b(Y;,0)dt + o (Y))dW;,  Y(0) = yo, (3.33)

where the parameter 6 in the drift is to be estimated. Without loss of gener-
ality, consider the case where the observed data are just the two consecutive
observations Yy = v and Y; = v.

In order to make EM algorithm feasible, we transform the process Y in a new
process X with unit volatility using transformation of Section [3.5.2]
Note, however, that in the present case, the function 7(:) does not contain
unknown parameters, and consequently the “transformed data-points” z =
n(u), y = n(v) can be considered as really observed. As illustrated in Section

the new process is solution of the SDE (3.16)) with drift function:

b(n_l(u)78> 1 I —1
————— — =d'(n" " (u)).
oGty 27 )
Using the Girsanov theorem as in Section [3.5.3] it is easy to show that
the complete-data log-likelihood I., based on the path {X,; 0 < s <t} can

be written as

alu,d) =

le = A(y;0) — A(x;0) — %/Ot [0*(X:0) + o' (X,; 0)] ds, (3.34)
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where

Awi0) = [ a0,

with ¢ arbitrary numerical constant.

Given the current value of the parameter 6, the E-step consists in taking
expectation of with respect to the law of the target diffusion X con-
ditioned on {X, = z, Yy = y}, i.e., with respect to the diffusion bridge mea-
sure PH*Y. Typically the latter is analytically intractable, nevertheless in
situations where exact algorithm is feasible, one can easily approximate the
expectation of the integral in through an MC average based on ex-
act simulations from P“*¥. Beskos, Papaspiliopoulous and Roberts (2006)
suggest to draw values from a uniform random variable ¢ on [0,¢], and for
each realized value U using the conditioned version of EA to draw from the
distribution of the univariate r.v. Xy. An approximation of the E-step can
be obtained by averaging over independent realizations of the r.v.:

Al:0) — Al:0) = 2 [0(Xu:0) + o/ (X3 0)] (3.35)

The algorithm is an example of Monte Carlo Expectation Maximization algo-
rithm (MCEM) inroduced by [Wei and Tanner| (1990). Convergence proper-
ties and practical implementation issues can be found in (Chan and Ledolter
(1995)), |[Sherman et al.| (1999)), and Fort and Moulines| (2003).

The case when the diffusion function depends on some unknown parame-
ters, i.e., 0 = o(y,#) is more involved. In fact, in this case, considering
the unobserved path between consecutive observations as missing data re-
sults in a data augmentations scheme where, according to the terminology
of the incomplete data literature, the fraction of missing information is 1.
This is because, due to the relation between diffusion function and quadratic
variation of the process, the knowledge of the continuous path between pair
of observations allows perfect estimation of the volatility function. In order
to make the EM algorithm feasible, a re-parametrization of the process is
needed. The re-parametrization consists of two steps. The first step is the
same as in the case where the diffusion term is parameter-independent and
is simply the definition of the process X with unit volatility. The aim of
the second step is to re-define the process so that the missing data are iden-
tified with the path of a suitable diffusion bridge starting and ending in 0.
The need of this second step arises from the fact that in the present case, the
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transformation that defines the unit volatility process depends on the param-
eters, and consequently the transformed data points = = n(u; ), y = n(v;0)
are no longer directly observed. In detail, let X be solution of the SDE:

dX, = a(X,,0)dt + dW,,

where « is obtained from the drift in the original SDE through the formula
(3.17). Let Z be the new process defined by:

Sy, seo,1]. (3.36)

ZsiXS—<1—§>x—t

t
The process Z is a diffusion bridge taking values 0 at the extremes of the
interval [0,¢]. For a given value of the parameter 6, it is possible to draw
paths from the law of Z by first drawing via EA from the bridge measure
Pt#¥ induced by the conditioned process X, and then using . The
unobserved path of Z between 0 and ¢ can be considered as “missing data” in
a data augmentation scheme where the observed data are: {Yy = u,Y; = v}.
In this framework, the complete data likelihood is:

l. = logif(v;0)] +log[N(y — )] + A(y;0) — A(2;6)  (3.37)

/ {o?(g90(Z o'(go(Zs);0) } ds,

where gp(+) is the inverse transformation of (3.36)), namely:
. 5 s
90(Zs) = Zs + (1 — ¥> T+ Y SE€ [0, ¢].

As in case of parameter independent volatility, expectation of , given
{Yo = u,Y; = v} and the current value of ¢, can be approximated via MC
average based on random draws from the Z law. Thus, using the same ap-
proach as in the previous case, the E-step can be approximated by averaging
independent realizations of the r.v.:

log |1 (v; 0)| 4 1og[N (y — x)] + A(y; 0) — A(x; 0)

_% {a*(90(Z0); 0) + &/ (96(Zv); 0) } ds
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where U is a uniform r.v. on [0, ¢].

3.6.2 Bayesian Inference

As in the case of classical analysis, also Bayesian inference on discretely ob-
served diffusion processes is problematic for diffusion whose transition density
is unavailable. Occasionally, when the time distances between consecutive
observations is sufficiently small, one can base the analysis on a suitable ap-
proximation of the continuous time likelihood (Polson and Roberts, [1994)).
However, in cases where the diffusion process is not observed at “high fre-
quency”, discretization of the integral in the continuous time likelihood (see
Section can result in strong bias. In such cases, a better approach can
rely on a data augmentation scheme (Tanner and Wong, [1987)). The latter is
a Gibbs sampling scheme based on alternately imputing missing data (data
augmentation) conditionally on the current values of the parameters, and
drawing parameters from the posterior distribution defined in terms of the
likelihood based on complete data (i.e., including currently imputed data).
This scheme produces a Markov chain which, under suitable conditions, has
the joint posterior distribution of missing data and parameters as its invari-
ant distribution. In this context, as illustrated in the previous Subsection,
the missing data are the unobserved path between observations. Thus, due to
the Markov property, imputation of missing data reduces to drawing indepen-
dently from the appropriate diffusion bridge law. In general, the performance
of the data augmentation algorithm, in terms of convergence properties, cru-
cially depends on the fraction of missing information available in the observed
data, with respect to the information contained in the complete data. This
relation is strictly related to the one between missing information and speed
of convergence of the EM algorithm in the approach based on likelihood
maximization. The problem of data augmentation for diffusion processes is
that the fraction of missing information associated with parameter in the
diffusion function is 1. This phenomenon directly depends on the fact that,
due to the relation between quadratic variation and diffusion function
in the Ito’s processes (see Section , the knowledge of the continuous path
on a (although finite) time interval allows “perfect estimate” of the diffusion
term. An implication is that, when Markov Chain Monte Carlo (MCMC)
schemes are used in the context of Bayesian inference, the better one tries to
approximate the continuous unobserved path (i.e., the higher is the amount
of augmented information), the worse the algorithm becomes (Roberts and
Stramer, 2001)). To better understand this problem, consider the case where
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the diffusion coefficient is just a multiplicative parameter, i.e., o(-,0) = o.
Then, in the limit case corresponding to imputation of a continuous path
between any pair of consecutive observations, the posterior distribution of
o? given the “completed information” is just a mass point on the current
value of 02, so that drawing from this distribution just confirms this value.
In other words, the chain is reducible. In order to overcome this difficulty,
Roberts and Stramer (2001)) use essentially the same strategy illustrated in
Subsection consisting of a transformation of the diffusion into a new
process with unit volatility and a re-parametrization. The first step allows
to remove dependence on unknown parameters from the diffusion coefficient,
so that the continuous likelihood for the new unit volatility process can be
expressed via the Girsanov formula using a dominating measure independent
of the parameter (namely, the Wiener measure). As in the case of EM al-
gorithm, the aim of the re-parametrization (see formula in Subsection
3.6.1), is to define a data augmentation scheme where the missing data are
the continuous path of a diffusion bridge starting and terminating at 0. In
Roberts and Stramer| (2001) a MCMC strategy is presented where, given a
prior distribution for the parameters, a two-step Metropolis-Hastings (MH)
algorithm is used which (after a suitable burn-in period) alternates drawing
from the posterior parameter distribution given the current diffusion trajec-
tory, and drawing from the law of the diffusion bridge resulting from the
re-parametrization. In this second step, a Brownian bridge, or a suitable
conditioned Ornstein-Uhlenbeck process can serve as diffusion bridge to be
used as proposal in the MH algorithm.

In situations where EA is feasible for generating trajectories from the law
of the (suitably transformed) target diffusion bridge, the second MH step is
unnecessary. Rather, at each iteration of the MCMC algorithm, it is suffi-
cient to use, as augmented information, the skeletons of the diffusion bridge
produced by the (conditioned) EA. In fact, in Beskos, Papaspiliopoulous and
Roberts (2006), a hierarchical MCMC scheme is presented where, given the
current elements obtained as output of the EA (i.e., the random elements
of the auxiliary Poisson process used to decide if the proposed path is to be
accepted and the values of the process at the corresponding random times,
see Chapter , Section , and given the observed values of the process,
the parameters are independent of the entire unobserved path. Thus, this
approach is not directly based on augmentation of paths via imputation of a
large number of process values, but only requires simulating the process at a
few (random) times, and drawing the parameter from their posterior distribu-
tion conditioned on the realized skeletons. As a consequence, the state space
of the MCMC algorithm has a dimension much smaller than with traditional
data augmenttion scheme, resulting in a higher computational efficiency.
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Chapter 4

Simulation and inference for
the stochastic Bass model

4.1 Simulation of trajectories from the SBM
process

We have seen that some characteristics of the SBM, such as (a.s.) regularity
on (0, K), ergodicity, or stochastic stability of the trivial solution Y; = 0,
can be determined without explicitly knowing the solution of the SDE (1.5]).
However, since the transition density of the process is not explicitly known,
analytic expressions of many characteristics of interest are not available. For
instance, in marketing applications, the interest is often focused on expected
number of adopters of some new products or services at a specific time, or
simmetrically, on the expected time for number of adopters to become larger
than some critical threshold (hitting time). Since analytic computation of
these quantities requires use of conditional density, numerical approximations
are necessary. The most natural way to obtain approximations for functionals
(e.g., moments) of the finite dimensional distributions of the SBM process
is to use Monte Carlo averages based on simulations of sample paths. As
illustrated in Section a possible simple method to obtain realizations
from the solution of the SDE on [0, 7] is based on the Euler-Maruyama
scheme. However, beside the computational cost deriving from partitioning
the interval [0,7] in a high number of sub-intervals and using a Gaussian
approximation on each of them, another problem arises when simulating SBM
trajectories via Eulerian methodology. In fact, Euler approximation does
not guarantee regularity of the solution in [0, K]. This can negatively affect
analyses focusing on hitting time of some regions inside the interval [0, K].
Thus, in order to garantee regularity, one has to use some regularization
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scheme like the Balanced Implicit Method (BIM) (Shurz, 2007), capable of
adjusting the basic Eulerian procedure so that the regularity properties of
the exact solution are preserved. In the particular case of no self innovation
(a = 0), we will show that ezact solutions of equation can be simulated
at a finite but arbitrary collection of times, by means of exact simulation
based on the retrospective sampling technique described in Chapter [2]

4.1.1 Exact Simulation for SBM without self-innovation

Let Y;, t € [0,T] be a strong solution of the SDE:

b
dY; = | Yl = Yi) = Y| dt + =Yi(1 = Yi)dW, (4.1)

with initial condition Y (0) = yy € (0, K). This model will be referred to
as SBM1. We want to obtain a realization of the n-dimensional random
vector (Yi,,...,Y:, ), where 0 < t; < ... < t, < T are arbitrary times. If
the EA is applied on the entire interval [0, 7], the output of the algorithm
is a set of instances of the process at a finite collection of random times
T, ..., T (K random), plus the time T' (right extreme of the interval). In
this case, exploiting the Markov property, the values Y;,, (i = 1,...,n) at
times of interest can be obtained through the dynamic of a suitable bridge
process. However, if the interval [0,7] is not small enough to have high
acceptance probability in the EA, it can be computationally convenient to
partition the interval in small sub-intervals and apply the EA on each sub-
interval (see Section [2.2.5). In the remainder of this Section, we will assume
that the EA is directly applied on the interval [0,7]. Thus, according to
the methodology described in [Beskos, Papaspilioupolos and Roberts (2006),
first the value of the (suitably transformed) process at time 7' is generated,
and then, a suitable diffusion bridge between 0 and the realized value of
transformed process at time 7' is used to draw proposals in the acceptance-
rejection scheme of the EA.

In order to apply the EA, we first transform the process Y into a new
process with unit volatility. To this aim, according to the transformation
illustrated in Section (1.2.3)), we define the process

where
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K [Y du Y

1
EE L . 4.3
ny) o Jrp u(K —u) o BK Yy (43)

Since, as proved in Section (|1.1]), Y is regular on [0, K|, the process X is well
defined and is valued on (—oo,4+00). It can be represented as solution of a
SDE of the form:

dX; = a(Xy)dt + dWy, X(0) =z0 =n(yo), (4.4)
with
o e o7
— D _ ox _ -
a(z) + ae 14 e—ox’
b
D = —+ H + g
o o 2

In the following, we describe exact simulation for the transformed process X.
Once a sample path from the law of X is available, a sample path from the
law of the original process Y can be obtained by inverting transformation

(4.3), namely:

e—O'Xt

Y= ) = R

Application of the methodology described in Section requires using the
quantities:

and

Az) = /x a(u)du, (4.5)
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where ¢ is an arbitrary constant.

Straightforward calculation provides:

| I e 1?
o) = 5 [P e —“m}
(4.6)
1 —ozT 2 e 7" :|
- —|pe =t ——m— |,
2 _HJ (1+eom)?
and
A(z) = Dz — %e‘” +In(1+e77), (4.7)
o

with a suitable choice of the constant ¢ in (4.5]).

It is easy to verify that the function £ is bounded below. Thus, it is
possible to find a lower bound [ for ¢ such that the function ® = £ — [ to
be used for exact simulation is non-negative. Since £(x) depends on x only
through the function u(x) = exp (—oz), it is sufficient to find a lower bound
for the function

1 0 w 171 5 U }
u) = —|D+—-u—o ——|lpu—o0"——=|;
9(u) 2 o l—l—u] [’”L (1+u)?

u > 0. (4.8)

In order to find a lower bound, consider the following inequalities:

2 2Dp U U
2 > D2 (ﬁ> R 9D —9 —
g(u) = + au * o b 01+u 'u1+u p
2 D b
> DQ—i—(Hu) —i——'uu—ZU £_2.7 “ Iz
o o c o 2)1+u
2 2
> (H) 2—1—( M—Z’w)u—l—(DQ—Zp—aQ)
o o



For u > 0, the expression in the last row of the previous chain of inequalities
attains its minimum at point w,, = max(0, u*), where:

2
b—
ut = 1(30_2])) _oro—k
24 I

It follows that, for u > 0:

glu) >

v

D+ =e —0 ¢

! l
2 o 14e 9 ’

(1+ e*"x)2

,U . e—az :|2 1
Unfortunatly, the potential ®(x) is not bounded above, hence the EA cannot
be applied in its simplest version (EA1), because a region containing with
certainty the graph of the function ¢t — ®(W;) does not exist, if the process
W, is allowed to vary in (—oo, +00). However, it is easy to check that:

lim sup @(z) < oo,
r—r+00
so that we can use the exact simulation in the version EA2 of Beskos, Pa-
paspilioupolos and Roberts| (2006). We refer to Section for the general
illustration of EA2. Here we decribe its implementation for the special case
of the SBM1. Let us assume that we want to draw a sample path in [0, 7T
from the measure P* associated with the diffusion defined via the SDE (4.4]).
The first step is to draw the value x1 corresponding to the right extreme of
the interval from the density:
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h(z) = Nexp {A(z) — (x —x0)?/2T}, z €R, (4.9)

where the function A(-) has been defined in (4.7)), and N is the normalization
constant. Note that the function is integrable, so that the constant N is
well defined. In order to draw from the density (4.9), different algorithms can
be used. In the numerical applications, we have used the adaptive rejection
sampling (ars) algorithm implemented in the R-package ars. Recall that,
in order to use the explicit expression of the Radon-Nykodin derivative of
the target measure P*° with respect to the measure Z7° corresponding to the
biased Brownian motion (formula ([2.14))), we follow an A /R strategy based on
acceptance or rejection of paths drawn from the law of the Brownian Bridge
BB(3,0)=s(er,1)- According to the general EA2 methodology illustrated in
Section [2.2.4] we first have to generate from the appropriate distributions
the minimum m of the process BB 4,,0)-(xp,r) and the time 6 at which it is
attained (see Section for the appropriate distributions and the methods
to draw from them), then to find an upper bound M for the function ®(-) on
[m, +00). This will be also an upper bound for the function t — ®(W;), t €
[0, T]. Thus, we have to find a number B such that:

sup{®(z);z > m} < B.

Remembering the definition (4.8)) and using the chain of inequalities:

2 > 2D
= 0t (B et (1) + 5

2
u u 9

_9 _
Ul—i—u ul—i—u puto

2 2D
D2+(&> +o?+ oy
o o 14w

— 9D v
(14 u)?

IA

—,uu—|—02

2 2D
<—) u? + (—“ —3;;) u+ D* +20% +2(b + ),
g

IN

we find:
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where
H = D*+20 +2(b+ p).

Finally, since the r.h.s. of the previous inequality is quadratic in exp (—ox)
and 0 < exp (—oz) < exp (—om), for m < z < 400, it reachs it maximum
at y = m or at ©* = 400, thus we can define:

2 2D H
M = max {0.5 [(ﬁ) e=2om 4 (—“ = 3#) e~ 4 H} Lo z} .
g

(4.10)

Note that M depends on the random element m, i.e., the minimum of the
Brownian bridge used as a proposal in the EA. Thus, differently from the EA1
case, the rectangular area where the auxiliary Poisson process is simulated
changes at each run of the EA (see Section [2.2.4).

In Figures 4.1]and 4.2 trajectories of SBM1 process simulated via exact simu-
lation are shown. In each box, the green curve corresponds to the correspond-
ing deterministic trajectory, i.e., the solution of the ODE obtained from the
corresponding SDE by removing the diffusion term. The blue horizontal line
corresponds to the potential number of adopters (K = 1000 in all examples).
In both cases shown in Figure b—p—0%/2 >0, thus a stationary dis-
tribution exists. Moreover its first moment (red dashed line) is close to the
deterministic equilibrium point (green dashed line). Note that in the case of
the path represented on the top, the stochastic trajectory is not close to the
deterministic one, although the volatility parameter is quite low (o = 0.04).
The qualitative behaviour of the sample paths simulated in Figure is quite
different. As in the previous cases, the parameters reported in the box on the
top correspond to an ergodic process, i.e. one having an equilibrium distri-
bution. However, the expected value of the r.v. with density corresponding
to the stationary distribution is quite distant from the deterministic limit.
Moreover, it can be shown that, for the given values of the parameters, the
stationary distribution is bimodal. Finally, the path depicted in the box on
the bottom of Figure represents a situation where a stationary distribu-
tion does not exist. In fact, in this case b — u — 0?/2 = 0. Thus, as proven
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in section , the solution Y = 0 is stochastically (asymptotically) stable,
i.e., the trajectories tend to be trapped in a small neighborhood of 0.

From a computational point of view, it results that the algorithm becomes
lower as the volatility parameter o tends to zero (deterministic limit). In fact,
for a fixed time interval [0, 7], as o becomes smaller, an increasing number
of proposals from the Brownian bridge measure are needed in order for a
trajectory to be finally accepted. This is related to the fact that the upper
bound for the functional ® defined in terms of the transformed process
X, becomes larger as o decreases implying a smaller acceptance probability
(see section . However, as noticed in Chapter , the problem can be al-
leviated by breaking the time interval into smaller sub-intervals and applying
the EA on each sub-interval. This allows one to reduce the number of points
of the Poisson process used for the A/R scheme at each EA application, thus
increasing the acceptance probability. In practical implementation of EA for
Bass model, a useful strategy is breaking the simulation interval into shorter

intervals whose length is proportional to o2
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Figure 4.1: Sample paths simulated through EA2. Parameters correspond
to unimodal stationary distribution.
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Figure 4.2: Exact simulation of SBM1 paths. Top: stationary distribution is
bimodal. Down: stationary distribution does not exist.
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4.2 Parameter estimation for SBM1

In this Section we deal with the problem of estimating the parameters of the
Bass model without self-innovation. We recall that the parameter vector 6 is
composed of the following parameters: K (number of potential adopters), b
(imitation coefficient), p (disadoption rate), and o (volatility). We will focus
on the approach based on Radon Nikodyn derivative of the target diffusion
measure w.r.t. the Wiener measure. In order to evaluate the methodology,
a Monte Carlo study is described, where the classical approach based on the
Gaussian approximation (see next subsection) of the transition density is also
considered for comparison.

4.2.1 Estimation based on Gaussian approximation

In this Section we describe an estimation method of the Bass model param-
eters based on the Gaussian approximation of the transition density. For a
general description of this approach and its relationship with the continuous
likelihood discretization approach, see Section (in particular equations
B-7-(2.2)). Let Y,...,Y, represent the values of the process Y at times
to=0,...,t,, (At; = t;11 —1;), and approximate the dynamics of the process
through the Eulerian scheme:

AY; =Y — Y = B(Y;0)A; + D(Y;0)V At Z;, (4.11)

where:

B(y,0) = by(l—y)— py,

D(y,0) = oy(1—y),

and Z; are standard independent Gaussian random variables (i = 1,...,n).

Then, the corresponding approximate log-likelihood function is (up to addi-
tive constants independent of the model parameters):
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1 , " [ (AY; — B(Y;;0)At)?
LE(0) = —§Zglog(D (Yi;Q)Ati)_Z{< 2D2(Y(;-;9)A>ti : }

i=1
1o 2 N 2
= —52(&—57714‘#0%) —Eloga + const (4.12)
i=1
where:

AY; At;

P = S om= VAL o= -

Sy ovvar " Ny,

Maximizing (4.12]) with respect to the parameters provides the Gaussian
estimates:

[ 0O {08 () an)? ]
b= [ ) [1 (o) <nﬂ7>] )
5, = Dim1 (52’ —sni-i‘ﬂ%) (4.15)

where we have used the notation (u,v) = > "  wv;. Note that ¢ could

also be estimated by exploiting the relation between diffusion coefficient and
quadratic variation (see the end of Chapter [3.2)). In this case, if the process
is observed at sufficiently high frequency, we could use the approximation:

o VA1 -Y)P At Y AY?,
i=1 i=1
and derive the estimate:

_ > AY?
YL Y1 - Y2

Q>

(4.16)
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4.2.2 MC likelihood estimation

In this Section we apply the general estimation method based on MC aprox-
imation of the transition density described in Section [3.5.3] to the particular
case of the Bass model without self-innovation. We recall that the infer-
ence on process parameters is essentially based on formula , relating
the transition density to the expectation of a Brownian functional (more
precisely a functional of a Brownian bridge). Actually, formula (3.22) is
not applied to the original process Y, but rather to the process X obtained
through the transformation (4.3). As described in Section the strategy
is to estimate, via Monte Carlo simulation, the transition density of the pro-
cess for each pair of values observed at consecutive times. This allows one
to estimate the discrete (log)likelihood function (3.9), and to maximize it
with respect to the model parameters. Since the bridge simulation approach
provides an estimate of the transition density for the tranformed process X,
a corresponding estimate of the transition density for the original process Y
must be obtained using equation (3.18). Thus, if z = n(w; ), y = n(v;0),
with

1 w

0) = —=1
n(w; 0) = ——log -—,

(4.17)

and p, p are the transition functions of the processes Y and X, respectively,
we have:

p(t,u,v;0) = p(t, z,y;0)|n'(v;0)| = p(t, 2, y; 9)0_ (4.18)

(K —v)

Correspondigly, the likelihood function based on a set of observations ug, u1, . . .

at times tg = 0,%1,...,t, is:
n—1 n—1 K
L, = || p(A;, wiswig1;0) = | | B(A;, zi, 23415 60) , (4.19)
ill " le oK =Y (wi)

where z; = n(u;, 0) and A; =t — ;.

Thus, once estimates of p(A;, x;, x41;0) = p(A, n(u; 0),n(uir1;6);0) have
been obtained for ¢ = 0,...,n, an estimate of L, can be easily derived
via formula (4.19). An approximate maximum likelihood (aml) estimate
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of the model parameters 6 will be obtained by maximizing the estimate of
L,,. Following the approach of Section , the functions p(A;, x;, ;41 6),
(shortly p;(#)) will be estimated independently, for ¢ = 0,...,n. We recall
that, in order the resulting approximate maximum likelihood estimator to be
consistent, the transition density function has to be estimated simultaneously
with respect to 8 € ©. In other words, we have to estimate a function on the
parameter space ©, rather than to estimate independently the values it takes
on a grid of points in ©. According to the methodology illustrated in Section
an estimate p2 () of formula expressing the transition density
pi(0) in terms of expectation of a Brownian functional, can be obtained by
approximating the expectation with a MC average over N realizations of a
standard Brownian bridge. A further approximation is the discretization of
the integral in through a (fine enough) partition of the time interval
[ti,tis1]. In practice, simultaneous MC estimation of p;(f) consists of the
following steps:

MC' approximation of the transition density

1. partition the interval [0, A;] in m; sub-intervals sk, sg11], £ =0,...,m;;
So — 0, Sm; = Az

2. draw N vectors from the m,-dimensional distribution of a standard
Brownian bridge from ¢; to t;,; corresponding to the times s;, k =
1,...,m; — 1. Let W']Qk be the N x m; matrix whose entry at row j and

column k£ is the kth component of the jth vector.

3. put:

= N(vip1 — x5, Aj) exp {A(xi41;0) — A(zi;0)}

N m;
1 - 0 Sk Sk
X NZGXP{_ 5<ij+(1—Ki)$i+EiBi+1;9)}>
7=1 k=1
where the functions A(-) and &(-) have been defined in formulas (4.6)

and (4.7)) respectively.
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Based on the n independent estimates p¥ (6) (one for each pair (u;, u;q1) of
consecutive observations), a MC estimate of the likelihood function is:

K

Ly = HﬁfV(Q)J(K— (4.20)

- Ui+1).

We highlight that the random elements necessary to obtain the matrix 1#°
in pV (i.e., standard Gaussian variables) do not explicitly depend on the
parameters to be estimated. As a result, the MC approximation of the like-
lihood function , converges a.s. to the true likelihood function in the
|||, norm. For illustration, an example of parameter estimation for SBM1
using MC approximation of the likelihood function is reported. The data are
generated through the EA2 algorithm using the parameters K = 1000,b =
0.3, = 0.01,0 = 0.3 (see Figure . The sample size is n = 1000 with
observations equally spaced (A =t,4y —t; =1; i =1,...,1000).

sample path (yO= 850)

950

900

850

K = 1000
b=030
n=001
0=0.30

T T T T T
0 200 400 600 800 1000

time (n=1000, A=1)

Figure 4.3: Sample path from SB1 model.

In Figure [£.4] estimated likelihood profiles are shown. The curves are ob-
tained by computing the approximate likelihood based on N = 100 MC
iterations. At each iteration the integral appearing in the likelihood expres-
sion has been discretized using a grid step h = 0.1. For each parameter,
the other three are set to the corresponding true values. From the figure it
results that the true values are close to the ones that maximize likelihood
profile curves.
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Figure 4.4: Likelihood profiles for Bass model without self-innovation.

4.2.3 Numerical evaluation

In this section, the estimation method based on Monte Carlo approx-
imation of the transition density is evaluated through a simulation study.
Preliminary estimates of the parameters are performed on a data-set con-
taining daily number of visits to a certain web site. These “realistic” values
(b = 0.03,0 = 0.14,b = 0.32) are used to draw from the corresponding
stochastic Bass model in numerical experiments. In the experiments, we
assume that K is known. This turns to be equivalent to considering the
Bass model for time dynamics of proportion instead of absolute number of
adopters (see equation in Section . The parameter estimates are
compared to the estimates obtained through the Gaussian approximation of
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the transition density (see Section [4.2.1)). These estimates are also used in
all experiments, as starting points for the optimization routine.

The Montecarlo study is based on 1000 replicates of the following steps:

1. use EA2 algorithm to draw from the law of the n-dimensional random
vector Yy,...,Y,, corresponding to the values of the SBM1 process
with parameter b = 0.32, u = 0.03, ¢ = 0.14, K = 1 at times
to, .-« tn, with A = t;41 —t;, (1 =0,...,n) fixed. Let uyg,...,u, be
the corresponding realized values

2. estimate b, p and o via the Gaussian approximations {D Let ég =

~

(by, fig, 4) be the resulting estimates.

3. apply the transformation (4.17)) to the points ug, . .., u,. Let zg, ..., 2z,
be the corresponding transformed points

4. for each pair of consecutive points (z;,z;41), fix a discretization step
h and an integer N and apply steps — of the algorithm described
in Section [4.2.2] with m; = m = int(A/h) + 1, where int(z) is the

smallest integer not greater than x
5. compute the approximate likelihood function (4.20))

6. find the aml estimates 6 = (l;, fi,0) by maximizing the approximate
likelihood function in step .

7. compute the estimation 6 — 6 error ég — 0 and 6 — 6 for the estimates
obtained both via Gaussian and MC approximation respectively.

Percentual relative errors for Gaussian and aml estimators are represented
in Figures for ma single run of the previous experiment corresponding to
the sampling steps A = 70072.

The Gaussian and aml estimators are evaluated by averaging over the re-
sults of the MC replicates of the previous steps. In Table the results
of the Monte Carlo experiment are shown. The sample size is n = 2000.
Relative bias (RBIAS) and relative root mean square error (RRMSE) are
reported for the three sampling steps A = 702, A = 7002, A = 70002, .
For each sampling frequency, also the estimator & based on quadratic vari-
ation approximation (see formula is evaluated. Moreover, error in the
estimators of mean and standard deviation of the stationary distribution
(m.staz and std.staz), obtained by plugging-in the parameter estimates in
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relative error for parameter estimators (A = 7002)
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Figure 4.5: Relative error for the Gaussian and aml estimators.

the corresponding expressions is also reported for each of the two considered
methods.

The results in Table show that for small sampling step (A = 70?),
performances of Gaussian estimator and aml estimator are quite similar.
However, as the sampling frequency increases, the accuracy of the estimator
based on the Gaussian approximation deteriorates becoming worse than the
accuracy of the aml estimator. Moreover, comparison between the Gaussian
estimator and the quadratic-variation based estimator of the volatility pa-
rameter o shows that the latter is more accurate for the all the considered
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Table 4.1: estimation error: Gaussian estimator (Gauss) vs. approximate
mle (amle) for different sampling steps (A).

A =To? 1 o b m.staz std.staz
rbias Gauss 0.01 0.04 0.01 0.00 0.06
amle 0.02 0.00 0.03 0.00 0.00
o - 0.00 - - -
rrmse Gauss 0.13 0.05 0.14 0.00 0.08
amle 0.14 0.02 0.15 0.00 0.07
o - 0.00 - - -
A = 7002
rbias Gauss -0.19 -0.16 -0.20 0.00 0.04
amle -0.02 0.00 -0.02 0.00 0.01
o - -0.08 - - -
rrmse Gauss 0.20 0.16 0.20 0.00 0.06
amle 0.06 0.02 0.06 0.00 0.03
o - 0.09 - - -
A = 70002
rbias Gauss -0.76 -0.61 -0.76 0.00 0.28
amle 0.03 0.05 -0.03 0.00 0.04
o - -0.49 - - -
rrmse Gauss 0.77 0.61 0.77 0.00 0.30
amle 0.20 0.11 0.20 0.00 0.05
o - 049 - - -

sampling steps and that its accuracy decreases as A increases. These results
agree with the general theory illustrated in Chapter [3] where asymptotic
theory for A — 0 is illustrated (see Section . Analysis of the last two
columns of Table shows that poor performance in estimating the model
parameters does not reflect in a bad estimation of the first two moments of
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the stationary distribution. In particular the estimator of the first moment
is almost unbiased.

Table 4.2: estimation error for standardized parameters g and b,.

A= 70'2 Ms bs

rbias Gauss 0.01 0.01
amle 0.02 0.02

rrmse Gauss 0.14 0.15
amle 0.14 0.15

A = 700°

rbias Gauss -0.05 -0.06
amle -0.02 -0.02

rrmse Gauss 0.07 0.07
amle 0.05 0.05

A = 70002

rbias Gauss -0.15 -0.15
amle -0.06 -0.06

rrmse Gauss 0.16 0.15

amle 0.07 0.08

It is worth noting that in the third experiment, corresponding to the
largest sampling step (A = 7000?), the RRMSE of the approximate ML
estimator is higher than in the case of the second experiment (A = 700?).
This is probably due to the fact that, for very large sampling steps, the
transition density function tends to coincide, as a function of its second
spatial argument, with the density of the stationary ditribution. As we
have remarked at the end of Section [1.2.3] the parameters of the latter
are not separately identifiable. Specifically, in the present case, the sta-
tionary distribution density is invariant with respect to the transformations
o2 = cot b — b, u — pu; ¢ > 0. Hence, lack of identifiability for the
stationary distribution reflects in low identifiability of the model parameters
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for large sampling steps. The previous argument seems to be confirmed by
the results reported in Tables [£.2] where, using the same experimental set
up described above, the approximate ML and Gaussian estimators of the
“standardized parameters” pu, = u/0?, by = b/o? are evaluated. In fact, for
the standardized parameters, the RRMSE of both estimators for A = 70002
is much smaller than for the original parameters, the approximate ML esti-
mator being more accurate than the Gaussian estimator. As in the previous
experiment, for the smallest sampling step (A = 70?), the performances of
the two estimators are quite similar, while the Gaussian estimator is slightly
less accurate than the competing estimator for A = 7002.

The previous argument suggests an alternative estimation strategy based
on the equilibrium distribution. In fact, one could estimate the standardized
parameters by maximizing the likelihood corresponding to the equilibrium
density, based on a set of sufficiently “distant” observations, and, using an
independent estimate of the volatility parameter ¢ (obtained, for instance,
through Gaussian or quadratic variation approximation), to obtain estimates
of the model parameters. In Table|4.3] results of such a strategy are reported.
For each considered sampling step, the estimates of the model parameters
based on the observations uq, ..., u, are obtained as follows:

1. find the estimates l;S, s of the standardized parameters b, s by max-
imizing the likelihood function:

Lo i) = N T —— U o d oy
st\Usy s) — X T 4fbs )
t " 0 = Ul(K — Ui)g K — U; eXP H K — U;

- (4.21)

(2

where N is the normalization constant and p = 2(bs — pus) — 1 (see

formula (1.26)) in Section [1.2.3)

2. multiply the obtained estimates l;S, its by the volatility estimate & ob-
tained via the quadratic variation approximation.

Comparison of tables and shows that for large time interval be-
tween consecutive observations, the estimates of the standardized parameters
are approximately as accurate as the aml estimates. However, poor accuracy
of the volatility estimate causes bad estimates of the original parameters p
and b. For small sampling step (A = 70?), the quadratic variation based es-
timator of o has low RRMSE, but due to the lack of independence between
the observations, the estimates of the standardized parameters are biased.
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Table 4.3: estimates based on the stationary distribution.

A =70 Iz o b s bs
rbias -0.16 -0.00 -0.18 -0.15 -0.16
rrmse 0.21 0.02 0.22 0.20 0.21
A =700 i o b Hs bs
rbias -0.22 -0.08 -0.22 -0.07 -0.08
rrmse 0.23 0.09 023 0.09 0.09
A = 70002 1 o b [bs bs
rbias -0.76  -0.49 -0.76 -0.08 -0.08
rrmse 0.76 049 0.76 0.08 0.08

In order to obtain approximate independence among the observations, one
could subsampling the observed values of the process and use for estimation
only values srongly separated in time. However, this would imply decrease
of the sample size causing loss of efficiency.

The experimental results show that the relative errors for the estimates
of the parameters p and b are quite similar. In fact, it results that the
estimation errors are strongly correlated (see Figure

An interesting issue is the sensitivity of the results to the number of sub-
intervals used for discretization in the algorithm. In Table [4.4] we report
the parameter estimates corresponding to different discretization steps for
a given realization of the SBM1 process with parameters as in the previous
experiment. Again, three experiments are considered where the process is
discretely observed (n = 2000 observations) at fixed time intervals between
consecutive observations A = 702, A = 7002, A = 70002 respectively. The
different discretization steps correspond to different partitions of A in (nint)
sub-intervals. The number of MC iterations for the likelihood approximation
is fixed (nsim = 20). The values (I.true) that the approximate likelihood
function takes on the true parameters is also reported for each discretization
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Table 4.4: sensitivity of the estimates with respect to the discretization step.

A =702, n = 2000 (A)

A = To? nint U o b l.true

10 0.0433 0.1429 0.4081 7553.183
20 0.0433 0.1428 0.4081 7552.022
30 0.0432 0.1428 0.4077 7551.629
40 0.0432 0.1428 0.4070 7551.415
50 0.0432 0.1428 0.4070 7551.291
60 0.0433 0.1428 0.4078 7551.239
70 0.0432 0.1428 0.4075 7551.186
80 0.0432 0.1428 0.4076 7551.144
90 0.0432 0.1428 0.4076 7551.109
100 0.0432 0.1428 0.4071 7551.072

A = 7002

10 0.0318 0.1432 0.3074 5641.321
20 0.0317 0.1427 0.3067 5636.894
30 0.0315 0.1425 0.3045 5634.522
40 0.0317 0.1425 0.3057 5634.431
50 0.0316 0.1424 0.3046 5633.557
60 0.0316 0.1424 0.3052 5633.542
70 0.0319 0.1426 0.3081 5635.008
80 0.0315 0.1423 0.3042 5632.768
90 0.0316 0.1424 0.3052 5633.128
100 0.0314 0.1423 0.3034 5632.190

A = 70002

10 0.0680 0.2529 0.6527 5091.313
20 0.0191 0.1158 0.1858 4966.004
30 0.0203 0.1180 0.1973 4984.717
50 0.0180 0.1112 0.1750 4939.406
100 0.0177 0.1101 0.1723 4934.595
160 0.0194 0.1143 0.1884 4968.043
200 0.0188 0.1122 0.1821 4956.892
500 0.0172 0.1082 0.1671 4918.850
800 0.0175 0.1088 0.1698 4928.970
1000 0.0174 0.1088 0.1688 4926.722
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Table 4.5: sensitivity of the estimates of parameters u,, by with respect to
the discretization step (A = 700 )

nint [Ls b

10 1.064 10.199
20 1.430 13.847
30 1.461 14.167
20 1.459 14.148
100  1.463 14.210
200 1.493 14.469
o500  1.473 14.257
800  1.481 14.359
1000 1.472 14.291

step. From Table it results that the estimates stabilize very soon for the
small and the medium sampling steps, while a large number of discretization
subintervals are needed in order the estimates to become stable for A =
70002, In particular, comparing the A = 7002 and A = 70002 experiments,
where equal length sub-intervals correspond to mint values differing for a
factor 10, it can be noticed that stabilization of the estimates is slower for
the A = 70002 case. Major instability with respect to the discretization step
for low frequency sampling case is probably due to the low identifiability of
the parameters for large sampling step. This seems to be confirmed by the
slightly higher stability in the estimates of the standardized parameters (see
Table [4.5)).

An other concern is the stabilization of the results with the number of
MC iterations used for the likelihood approximation. The results of Monte
Carlo experiments, not reported here, show that, for a fixed discretization
step, the number of MC iterations needed to obtain stability of the estimates,
increases as the sampling frequency becomes lower.

The analysis conducted on these numerical applications shows that in general,
the approximate maximum likelihood estimators perform better than the
competing estimators, specially when the sampling frequency is low. How-
ever, aml methodology requires much more computing time and memory
resources and in some circustances, namely when the process is observed at
high frequency, the benefits deriving from using aml methodology, instead of
a much simpler method (like the one based on Gaussian approximation) do
not justify so intensive computational efforts. Finally, it is worth mention the
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optimization method used to maximize the approximate likelihood function.
We recall that the latter is the product of the MC approximations of the
transition densities evaluated on pairs of consecutive observations. Each ap-
proximating factor in the product is, in turn, a complicated function involving
the MC average of discrete approximations of Brownian functional realiza-
tions (see step (3] of the algorithm in Section ). Since the explicit form
of the function to be maximize is quite complex, a maximization method that
does not require computation of derivatives has been used. Specifically, aml
estimates have been obtained through the methodology of bound optimiza-
tion by quadratic approximation (bobyga) as implemented in the R-package
minga (R Development Core Team) 2005]).

All the procedures needed for the experimental applications are based on

ad hoc R functions. In particular, functions for exact simulations and aml
estimation of the SBM1 parameters have been implemented.
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Concluding remarks

Modeling and forecasting the diffusion of innovations has received practical
and academic interest since the 1960s. Pioneering works on this topics are
those of Fourt and Woodlock| (1960), Bass| (1969)), Manstfield (1961)), dealing
mainly with diffusion of new consumer durables, although the characteristics
of the diffusion of new technologies or social phenomena are quite similar.
One possible approach to the study of diffusion of innovations is to model
the cumulative adoption, i.e., the total number of individuals that at a given
time are adopters. Curve of cumulative adoption is typically S-shaped, and
modeling efforts have been made in order to explain this behaviour. Models
defined through logistic-type differential equations are particulary suitable
to describe dynamic of innovation diffusions, in that they can account for
the most important diffusion characteristics. In particular, the classical Bass
model has been a reference model for many works in the marketing literature.
In the Bass model, the main aspect of the diffusion, namely the interaction
among different individuals of the population under investigation, is captured
by the quadratic term in the differential equation governing the dynamic of
the adoptions. This term is the product of the number of individuals who
are already adopters by the number of individuals who have not adopted
the innovation yet. Individual propension to adoption and disadoption are
also taken into account through linear terms. In the early works, mainly in
the marketing literature, diffusion has been often modeled via deterministic
models. However, the need of introducing uncertainty in the analysis and
forecasting diffusion of innovations has motivated significant reasearch in the
area of statistical modeling. In this thesis, a stochastic extension of the de-
terministic Bass model has been studied. The extension has been obtained
by means of the machinery of stochastic differential equations (SDE). In par-
ticular, the stochastic Bass model (SBM) is defined as a diffusion process
which is solution of a SDE that directly extends the corresponding ordinary
differential equation (ODE)in the classical theory. The stochastic term in the
SDE has been defined in such a way that the solutions have (a.s.) a quali-
tative behaviour that allow to interpret them as continuous approximation
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of number of adopters. In fact, exploiting some recent results (Shurzl, 2007)
on the qualitative behaviour of solutions of logystic-type SDEs in bounded
domains, it is possible to define the stochastic Bass model in such a way that
cumulative number of adoptions does not exceed a.s. the potential number
K of adoptions. This property, referred to as “regularity” on the interval
[0, K], has been proved to hold more in general on time-dependent domains.
More precisely, under the assumption of a dynamic of potential adopters
represented by a (deterministic) non decreasing function K(t), it has been
shown that the solution Y(¢) of the resulting (non-homogeneous) Bass SDE
belongs a.s. to the time-dependent interval [0, K (¢)] for each time ¢. This
result could be useful in situations (not considered here) where interest is fo-
cused on potential adopters population dynamic. For instance, the function
K(-) could contain unknown parameters to be estimated. The theoretical
properties of the stochastic Bass model have been extensively studied in the
central part of the thesis (Chapter . It has been shown that the process
is ergodic with non degenerate invariant distribution when all the model pa-
rameters are positive. Furthermore, an explicit expression for the stationary
distribution has been found involving modified Bessel functions of second
kind. A supplemetary analysis has been carried out in the special case of
stochastic Bass model without self-innovation (SBM1). In this case, it has
been proved that ergodicity holds only under certain restrictions among the
model parameters. Specifically, if the noise parameter o is large enough (with
respect to the difference between imitation and disadoption parameter), an
invariant distribution does not exist. A detailed analysis has been conducted
on the stochastic stability of trivial solutions of the SDE corresponding to
the SBM1, when the model parameters are such that the process is not er-
godic. Using a suitably defined Lyapunov function, it has been shown that
the trivial solution Y¥; = 0 can be (asymptotically) stable in probability even
in situations where the corresponding deterministic solution (o = 0) is not,
i.e., when the imitation coefficient b is greater than the disadoption coeffi-
cient p. In other words, similarly to what happens for other logistic models
used, for instance, for the study of population dynamics, noise can determine
extintion.

Introduction of uncertainty in models for the diffusion of innovations
through stochastic differential equations poses serious problems that have
to be faced in order this modeling to be of practical interest. A central prob-
lem concerns the estimate of the model parameters. This is related to the
general issue of statistical inference on diffusion processes discretely observed,
a topic that has received growing interest during the last three decades. Re-
search on this topic has moved along different directions. Among various
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approaches, we mention numerical solution of the Fokker-Planck equation,
estimating functions, indirect inference, and likelihood-based methods. A
review of the main approaches to the statistical inference for diffusion pro-
cesses is contained in Chapter [3] Major emphasis is posed on methods based
on likelihood function. If the stochastic process were continuously oberved,
inference could rely on the continuous time likelihood, provided that the dif-
fusion term is known. Thus, some approaches exploit the relation between
diffusion term in SDE and quadratic variation of the solutions, to estimate
parameters in the diffusion term, and then, treating these parameters as
known, approximate continuous time likelihood with some discretization pro-
cedure based on the observed values. However, as remarked in Chapter [3]
this approach can determine serious bias if the process is not observed at
sufficiently high frequency. In fact, [Florens-Zmirou (1989) has shown that
for fixed time intervals between consecutive observations, the resulting esti-
mator is not consistent as the number of observations becomes infinite.

In the thesis, another approach has been adopted. In fact, inferencial
procedures have been considered that directly rely on the discrete nature of
the observation process. More precisely, estimation is based on the discrete
time likelihood. By Markov property, the latter is simply the product of
the values that the transition density function takes on pairs of consecutive
times/observations. The problem with this approach is that for the stochas-
tic Bass model, as for most diffusion processes implicitely defined through
SDEs, the analytic form of the transition density function is not available.
Thus, estimation procedures must rely on numerical approximations. In this
thesis, two types of numerical related schemes have been studied and imple-
mented. The first one, based on the recent work of Beskos, Papaspilioupolos
and Roberts| (2006), concerns “exact” simulation of diffusion process. The
methodology, based on the retrospective sampling has been described in gen-
eral in Chapter [2 The specific adaptation to the stochastic Bass model has
been presented in Chapter[d The second class of numerical methods includes
methods for MC approximation of the transition density function. This class
of methods has been illustrated in general in Chapter

In Chapter {4| parameter estimation via MC approximation of the transi-
tion density function has been analyzed for the SBM1. The approach adopted
is based on the relation between the transition density of the (suitably trans-
formed) process and the expectation of a particular Brownian functional.
Evaluation of the methodology has been performed by comparing the re-
sulting estimator with the classical estimator based on Gaussian approxi-
mation of the transition density. As expected, it results that if the process
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is observed at high frequency, the accuracy of the estimators based on the
Gaussian approximation is similar to the one of the estimators based on
the MC approximation. Thus, in these circustamces the Gaussian estima-
tor is prefearable, because of its simplicity. However, as the sampling step
increases, the accuracy of the Gaussian estimator rapidly deteriorates becom-
ing much worse than the competing estimator. These experimental results
agree with the general asymptotic results mentioned in Chapter [3] On the
other hand, when the process is sampled at very low frequency, also the MC
estimator of the model parameter provides poor performaces. One possible
explanation for this behaviour is that, as the time interval between consec-
utive observations increases, these observations tend to become independent
one of each other. In these situations, the observed values of the process
can be (approximately) viewed as a sample from the invariant distribution
of the process. Since density function of this distribution dependens on the
volatility parameter o only through the ratios involving the “deterministic”
parameters a/c? b/o?u/o?, the parameters are not separately identifiable.
This is confirmed by the fact that, in spite of the lack of identifiability, the
estimators of the first two moments of the stationary distribution seem to be
consistent.

The estimation strategy adopted in this thesis relies on the Girsanov the-
orem. In this context, it is used to express the transition density of the
target diffusion process in terms of the Radon Nikodym derivative of the its
law with respect to the Wiener measure. The resulting expression contains
an integral Brownian functional, which is approximated with a discrete usm
whose terms are randomly drawn from a suitable finite dimensional law of
the Brownian Bridge. Discretization may imply bias, and its impact should
be evaluated in specific cases. In certain circustamces, basically the same
that must hold for the applicability of the exact algorithm, an umbiased es-
timator can also be used in the spirit of the SAM method (see Section [3.5.5)).

Another approach is based on explicit simulation of diffusion paths. In
this framework, two classes of methods can be distinguished depending on
whether unconditional simulation (Section or diffusion bridge simula-
tion (Section is required. Methods belonging to the latter class are
more efficient because they are based on a data augmentation strategy that
explicitly take into account observed values. However, simulation of paths
conditioned to the ending points of an interval is more difficult than un-
conditional simulation. In fact, unconditional simulation, differently from
conditional simulation, can use simple Euler-type schemes. An elegant and
efficient method for diffusion bridge simulation is the conditioned exact algo-

110



rithm (see Section . It is an acceptance-rejection scheme that provides
sample paths with given starting and ending points, from the true target
bridge measure. However, differenltly from unconditional simulation meth-
ods, the time interval on which the diffusion bridge is defined, cannot be
broken in sub-intervals in order to incerase the accepyance probability. Thus,
the applicability of the algorithm within inferential approaches based on data
augmentation schemes depends on the time distance between consecutive ob-
servations.

Extension of the methodology to multivariate diffusions is highly non
trivial. In fact, two important limitations make the methodology dificult to
apply. First, the tranformation needed to “standardize” the stochastic pro-
cess, i.e., to reduce it to a unit volatility process, requires that the rows of
the inverse of the volatility matrix are conservative fields (see formula ([2.36))
of Chapter . Second, in order the Brownian integral in the Girsanov for-
mula to be eliminated, the drift function in the trasformed SDE must be of
gradient type. These two requirements seriously limit the class of multivari-
ate diffusions for which exact simulation (and related inferential methods) is
applicable.

In this thesis, inference on diffusion processes has been considered in sit-
uations where he process is observed without errors. However, filtering of
discretely observed diffusion processes is also of great interst. A recent paper
on this topic, involving exact simulation methodology is that of Fearnhead
et al.[ (2008). In this paper, the authors use retrospective sampling in combi-
nation with the particle filter methodology (Pitt and Sheppard, 1999; Doucet
et al., 2001} |Chopinl |2004)) to approximate the filtering density of interest. A
variety of observation schemes are considered including partial observation of
the components of a diffusion process and arrival times of a Cox process. In
Fearnhead et al.| (2008), the diffusion parameters, as well as the parameters
of the observation proces are assumed to be known. An interesting topic is
the extension of the approach to include filtering problems with unknown
parameters.
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Appendix A

Rejection Sampling Algorithm

Proposition 3 Let (S,.A) a probability space and p,v, two measures on S
with the property that there exists € > 0 such that

d
fied—'ugl, v oa.s.
v

Let (Yo, In)n>1 be a sequence of i.i.d. random elements taking values in S X
{0,1}, such that Yy ~ v, and:

P{L=1Y1=y} = f(y), VyeS.

Define T =min{i > 1|I; = 1} . Then P{Y, € dy} = u(dy).

Proof.

P{I, =1}

/S P{L = 1|Yi = y} v(dy) = / F(y)v(dy)

= /SEEZZ—ZV(dy) = E/Su(dy) = e

For F € A, we have:
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P{Y.,e F} = P{Y,eF L =1}+P{Y, e F, I, =0}
= P{Y,e F, L =1}+P{Y, e F|[, =0} P{[, =0}
= P{Y,eF I, =1}+P{Y, e F} P{l, =0},
where the last equality follows from the independence of the random elements
(Yo, In)n>1 for different values of ¢ and the fact that if I; = 0, then 7 > 1.

Since I; = 1 implies 7 = 1, it follows that the event {Y, € F,[; = 1} is the
same event as {Y; € F,[; = 1}. Thus:

PMern=1} = [ P{h=11=yvia

= / Fv(y) = ep(F).
_F
Finally we obtain:

P{Y,eF} = euF)+P{Y,eFP{l, =0}

= u(F)+P{Y, e F}(1—e).

It follows that P{Y, € F} = u(F) <

Note that the previous scheme does not assume any order in the simulation of
the “decision variable” (I) and the target variable (Y'). This circustamce al-
lows to implement a a acceptance-rejection scheme for simulation of diffusion
process based only on a finite number of instances of sample paths.
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Appendix B

The Brownian Bridge

Let W be a standard Brownian motion on the filtered space (2, F, F, P).
The Brownian Bridge BBy s)—(y,1), between (x,.5) and (y,T') is the stochas-
tic process defined as the process W conditioned on taking values x, y at
times S, T" respectively. Without loss of generality we will assume S = 0
and denote the corresponding Brownian Bridge as BBT**¥. The Brownian
Bridge BB'%. is called standard Brownian Bridge and is shortly denoted
by BB.

Properties.

o (Gaussianity.

The Brownian Bridge BBT**¥ is a Gaussian process with expected value
and covariance:

¢
E [BBtT’“’y] = z+ T(y —z);

¢

Cov [BB;M’Z’, BB ’W] N ‘%

e relocation invariance property.

If BB/*? is a Brownian Bridge between (0,0) and (0,7"), then

BB = BB+ (1-2)z+ 2y

is a Brownian Bridge between (z,0) and (y, T).

115



e characterization via SDE.

The Brownian Bridge BB ™" can be defined as the solution of the
linear SDE: T
y —_—
dY, = ——dt + dW,
CE Ty +aWy

and thus can be represented as:

bdw,

T—s

t
BB = <1—§>x+yf+(T—t)/
0

e relation with standard Brownian motion.

The Brownian Bridge BBI'*Y can be obtained as trasformation of the
standard Brownian motion W':

BBIO" =W, — —Wr.
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Appendix C

Stochastic stability

Consider the SDE

dY; = b(Y,)dt + o(Y,)dW,, (C.1)

and assume that 6(0) = 0(0) = 0, so that ¥; = 0 is a solution of the SDE.
In order to make notation simpler, we will use the notation PY to denote
the probability measure induced on C(0,7T") by the solution of the SDE
with initial condition Y (0) = y.

Definition 1 The solution Y; = 0 is said to be stochastically stable, or
stable in probability, if

m PY {sup Y| > e} =0 (C.2)

li
y—)O tZO

holds for any € > 0.

The definition means that we can make arbitrarily small the probability
of escape from a (arbirarily) small right neighborood of the origin, provided
that the initial condition vy is close enough to the equilibrium condition y = 0.
In other words, for given e, the probability p®(y) of escape from (0, €) for the
solution with initial condition y, is a continuous function at y = 0.

The following definition introduces a stronger notion of stability.
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Definition 2 The solution Y; = 0 s said to be stochastically asymptot-
ically stable if it is stochastically stable and if

lim P { lim V; = o} ~1. (C.3)

y—0 t—00

If PY{lim;,~ Y; =0} =1, for any y, then we say that the zero solution is
globally asymptotically stable in probability.

As for the case of ODEs, a useful tool for studying stochastic stability is the
Lyapunov function that we define below.

Let U be an open set in R™ A function V: U — R is proper if it satisfies:

flzl) < V(x) < g(l=])

for some strictly increasing functions f and g which satisfy f(0) = g(0) = 0.
A Lyapunov function is a proper continuous function which is C? on U \ {0}.

In the deterministic context, given the autonomous system & = F(z), the
stability (asymptotic stability) of an equilibrium point z* (F(z*) = 0), can
be established if one can find a Lyapunov function V such that V(z) < 0
( V(z) < 0) in a neighborood U of zero (here the dot notation denotes
derivative with respect to time). The Lyapunov criterion for stability has
the following generalization to the stochastic case [Has'minski| (1980)).

Let £ be the generator of the SDE (C.1), i.e.:

0 1 0?
L= b(y)a—y + 502(y)6—y2,

and assume that a Lyapunov function V' exists such that

LV (y) <0 (CA4)

for y € U\ {0}; then the equilibrium solution Y; = 0 is stochastically stable.
If inequality ((C.4) is strict, asymptotic stochastic stability holds.
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