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Introduction

With the coming into operation of the Large Hadron Collider (LHC), a new era has begun
in the search for the Higgs boson(s). During the first year of collisions at

√
s = 7 TeV the

LHC has performed surprisingly well. By the end of 2012 (after only two years of collisions),
it is expected to deliver about 10fb−1 of integrated luminosity, which is comparable to that
delivered by the Tevatron Run II in its operation lifetime.

The main production mechanism at hadron colliders for the Standard Model (SM)
Higgs boson, HSM, is the loop-induced gluon fusion mechanism [1], gg → HSM, where the
coupling of the gluons to the Higgs is mediated by loops of colored fermions, primarily the
top quark. The knowledge of this process in the SM, which depends on the only unknown
SM parameter mHSM

, includes the full next-to-leading order (NLO) QCD corrections [2–
5], the next-to-next-to-leading order (NNLO) QCD corrections [6–11] including finite top
mass effects [12–19], soft-gluon resummation effects [20], an estimate of the next-to-next-
to-next-to-leading order (NNNLO) QCD effects [21, 22] and also the first-order electroweak
corrections [23–29].

The Minimal Supersymmetric extension of the Standard Model (MSSM) is an attractive
New Physics (NP) scenario which typically implies a rich phenomenology at energies not
far above the weak scale. The Higgs sector of MSSM consists of two SU(2) doublets, H1

and H2, whose relative contribution to electroweak symmetry breaking is determined by
the ratio of vacuum expectation values of their neutral components, tan β ≡ v2/v1. The
spectrum of physical Higgs bosons is more complex than in the SM, consisting of two
neutral CP-even bosons, h and H, one neutral CP-odd boson, A, and two charged scalars,
H±. The couplings of the MSSM Higgs bosons to matter fermions differ from those of the
SM Higgs, and they can be considerably enhanced (or suppressed) depending on tan β.
As in the SM case, the gluon-fusion process is one of the most important production
mechanisms for the neutral Higgs bosons, whose couplings to the gluons are mediated by
top and bottom quarks and their supersymmetric partners, the stop and sbottom squarks.

In the case of the CP-even bosons h and H the gluon-fusion cross section in the MSSM
is known at the NLO in QCD.∗ The contributions arising from diagrams with quarks and
gluons can be obtained from the corresponding SM results with an appropriate rescaling
of the Higgs-quark couplings. The contributions arising from diagrams with squarks and
gluons were first computed under the approximation of vanishing Higgs mass in ref. [31].

∗First results for the NNLO contributions in the limit of degenerate superparticle masses were presented
in ref. [30].
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The complete top/stop contributions, including the effects of stop mixing and of the two-
loop diagrams involving gluinos, were computed under the same approximation in ref. [32,
33], and the result was cast in a compact analytic form in ref. [34]. Later calculations aimed
at the inclusion of the full Higgs-mass dependence in the squark-gluon contributions, which
are now known in a closed analytic form [35–38].

The approximation of vanishing Higgs mass in the contributions of two-loop diagrams
allows for compact analytic results that can be implemented in computer codes for a fast
and efficient evaluation of the Higgs production cross section. For what concerns the top-
gluon contributions, the effect of such approximation on the result for the cross section has
been shown [37, 39] to be limited to a few percent, as long as the Higgs mass is below the
threshold for creation of the massive particles running in the diagrams (in this case, the
top quarks). This is typically the case for the light Higgs h, while such situation is realized
for the heavy Higgs H only in specific regions of the MSSM parameter space. Concerning
the two-loop diagrams with gluinos, this approximation has been shown [34] to work well
for the contribution of top, stop and gluino to h boson production, while in the case of the
H boson it is somehow less reliable and, again, not feasible for general values of the MSSM
parameters. No approximate computation valid in the top-pair threshold region has ever
been made available so far.

The Higgs mass cannot obviously be neglected in the corresponding diagrams involv-
ing the bottom quark, where the Higgs is always above threshold and whose contribution
can be relevant for large values of tan β. For the latter diagrams the dependence on the
Higgs mass should in principle be retained, which has proved a rather daunting task. A
calculation of the full quark-squark-gluino contributions via a combination of analytic and
numerical methods was presented in ref. [40] (see also ref. [41]), but neither explicit ana-
lytic results nor a public computer code have been made available so far. However, ref. [42]
presented an evaluation of the bottom-sbottom-gluino diagrams based on an asymptotic
expansion in the large supersymmetric masses that is valid up to and including terms of
O(m2

b/m
2
φ), O(mb/M) and O(m2

Z/M
2), where mφ denotes a Higgs boson mass and M de-

notes a generic superparticle mass. This expansion should provide a good approximation
to the full result, at least comparable to the one obtained for the top-stop-gluino diagrams,
as long as the Higgs boson mass is below all the heavy-particle thresholds. An independent
calculation of the bottom-sbottom-gluino contributions, restricted to the limit of a degen-
erate superparticle mass spectrum, was also presented in ref. [43], confirming the results
of ref. [42].

In the case of the CP-odd boson A the calculation of the production cross section
is somewhat less advanced. Due to the structure of the A-boson coupling to squarks,
only loops of top and bottom quarks contribute to the cross section at LO, with the
bottom loops being dominant for even moderately large values of tan β. In the limit of
vanishing A-boson mass, mA, the contributions from diagrams with quarks and gluons
were computed at NLO in ref. [44, 45] and at NNLO in ref. [46] (see also ref. [47–49]).
The dominant two-loop electroweak contributions have been evaluated in ref. [50]. For
arbitrary values of mA the NLO contributions arising from two-loop diagrams with quarks
and gluons, as well as from one-loop diagrams with emission of a real parton, were computed
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in ref. [4]. Supersymmetric particles contribute to the cross section at NLO through two-
loop diagrams involving quarks, squarks and gluinos. The top-stop-gluino contributions
were computed in ref. [51] in the limit of vanishing mA. The analytic result for generic
values of the stop and gluino masses was deemed too voluminous to be explicitly displayed
in ref. [51], and was instead made available in the fortran code evalcsusy.f [32, 33]. On
the other hand, neither the two-loop bottom-sbottom-gluino contributions (which can be
relevant for large values of tan β) nor the two-loop top-sbottom-gluino contributions in the
top-pair threshold region, have never been directly computed so far.

With the present work we aim at reducing the gap in accuracy between the available
NLO calculations of the production cross sections for CP-odd and CP-even Higgs bosons
of the MSSM, exploiting the techniques developed for computing the top-stop-gluino [34]
and bottom-sbottom-gluino [42] contributions in the CP-even case. Moreover, we also aim
at obtaining approximate formulae for the top-stop-gluino contributions to CP-even and
CP-odd Higgs production valid when the Higgs mass is close to the top-pair threshold and
an expansion in m2

φ/m
2
t is not feasible (φ = h,H,A).

In particular, we present an evaluation of the two-loop top-stop-gluino contributions
to the CP-odd production cross section valid up to and including terms of O(m2

A/m
2
t ) and

O(m2
A/M

2). We show how the terms of order zero in m2
A can be cast in an extremely

compact analytic form, fully equivalent to the result of ref. [51], and we investigate the
effect of the first-order terms. We also evaluate the same contributions via an asymptotic
expansion in the large superparticle masses, valid up to and including terms of O(m2

A/M
2)

and O(m2
t/M

2). While the latter result is valid for mt,mA � M but does not assume a
hierarchy between mt and mA, the former is expected to provide a better approximation in
the region with mA < mt and relatively light superparticles, M ' mt. As a byproduct, we
also obtain a result for the bottom-sbottom-gluino contributions valid up to and including
terms of O(m2

b/m
2
A) and O(mb/M). Finally, we compare our results for the bottom-

sbottom-gluino contributions to both CP-even and CP-odd Higgs production cross sections
with those obtained in the effective-Lagrangian approximation of refs. [52, 53]. The results
on CP-odd Higgs production have been published in ref. [54].

We also apply the asymptotic expansion strategy to the evaluation of the two-loop top-
stop-gluino contributions to the CP-even production cross section. We present original
results which do not assume any hierarchy between the Higgs mass mφ (φ = h,H) and
the top mass mt and are valid up to and including terms of O(m2

φ/M
2), O(m2

t/M
2) and

O(m2
Z/M

2). These results are expected to provide a better approximation of the full result
if the Higgs mass is in the threshold region mφ ' 2mt.

A non-trivial technical issue that arises in the calculation of the pseudoscalar production
cross section is the treatment of the Dirac matrix γ5 – an intrinsically four-dimensional
object – within regularization methods defined in a number of dimensions d = 4− 2ε. The
original calculation of the two-loop quark-gluon contributions of ref. [4] was performed in
Dimensional Regularization (DREG), employing the ’t Hooft-Veltman (HV) prescription
[55] for the γ5 matrix and introducing a finite multiplicative renormalization factor [56] to
restore the Ward identities. In ref. [51] the calculation of the top-gluon and top-stop-gluino
contributions to the Wilson coefficient in the relevant effective Lagrangian was performed
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both in DREG and in Dimensional Reduction (DRED), which, differently from DREG,
preserves supersymmetry (SUSY). The latter method does not require the introduction of
finite renormalization factors, but it involves additional subtleties concerning the treatment
of the Levi-Civita symbol εµνρσ.

In our calculation of the quark-squark-gluino contributions we avoided all problems
related to the treatment of γ5 by employing the Pauli-Villars regularization (PVREG)
method. Being defined in four dimensions, the PVREG method respects both SUSY
and the chiral symmetry, therefore no symmetry-restoring renormalization factors need
to be introduced. We tested our implementation of PVREG by computing the top-gluon
contributions via an asymptotic expansion in the top quark mass, and recovering the result
obtained in DREG in refs. [4, 36]. As a further cross check, we also computed the quark-
squark-gluino contributions using the DREG procedure outlined in ref. [56], and found
agreement with the result that we obtained in PVREG.

We made extensive use of symbolic manipulation software in order to process the very
large intermediate expressions entering the calculations. Our computations are fully au-
tomatized and require only little external input. In particular we generated the relevant
two-loop diagrams with the help of the Mathematica [57] package FeynArts [58], using
a modified version of the MSSM model file [59] which implements the Background Field
Method [60–64]. The integrals are processed through a chain of Mathematica and/or
FORM [65] programs optimized in order to perform Dirac algebra, color algebra, Taylor and
asymptotic expansions and the actual integration (through reduction to Master Integrals).
For the reduction in DREG of a class of integrals entering the asymptotic expansions we de-
veloped a FORM code which performs an Integration By Parts (IBP) reduction by efficiently
importing and enforcing the IBP identities generated with the software REDUZE [66].

The present thesis is organized as follows: part I is devoted to reviewing useful Higgs
phsyics concepts and defining the framework in which this work has been performed, in
part II we discuss some technical aspects relevant for our calculation, while part III contains
our original results. In chap. 1 we give an overview of the status of the experimental searches
for the SM Higgs boson and we describe the main problems of the SM, thus motivating
the statement that New Physics (NP) is actually “needed” at the TeV scale. In chap. 2
we introduce the Minimal Supersymmetric extension of the SM (MSSM) and discuss some
aspects which are relevant to our work, namely the MSSM Higgs sector, the squark masses
and the Higgs interactions with quarks and squarks. In chap. 3, after presenting a brief
overview of the main MSSM Higgs production mechanisms at hadron colliders, we focus
on the gluon fusion process and summarize some general results on the hadronic cross
section for CP-even and CP-odd Higgs production. We also give the corresponding LO
expression and discuss the origin of the NLO contributions. In chap. 4 we illustrate some
issues related to the regularization of ultraviolet and infrared divergences in DREG and
PVREG and discuss our renormalization procedure. In chap. 5 we give the details of
our asymptotic expansion procedure and in chap. 6 we present our method for the exact
evaluation of disconnected two-loop integrals which is needed in the asymptotic expansion
approach. Chap. 7 and chap. 8 contain our two-loop results for, respectively, CP-even
and CP-odd Higgs production, while in chap. 9 we give some concluding remarks. The
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appendices contain some results or explicit formulae which we did not include in the main
body of this work.
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Part I

Physics





Chapter 1

Standard Model Higgs status and the
“need” for New Physics

The Standard Model (SM) has proven to be impressively succesful in describing, with a
rather modest number of free parameters, the vast phenomenology of particle interactions
observed by the experiments in the last decades.

Quantum Chromodynamics (QCD) [67–70] is well established as the fundamental the-
ory of strong interactions. Asymptotic freedom grants the possibility of describing and
predicting, through perturbative computations, a series of high energy experimental re-
sults like the ones from Deep Inelastic Scattering or Drell-Yan processes, the spectrum
of quarkonium, the production of hadrons in e+e collisions. In the low energy regime,
where QCD becomes non-perturbative and must be approached with different techniques
(e.g. Lattice QCD or Sum Rules), the theory has proven capable of predicting from first
principles many hadronic quantities, e.g. certain classes of weak decays hardonic matrix
elements or the masses of several hadrons.

The Glashow-Weinberg-Salam [71–73] model of electroweak (EW) interactions is ex-
tremely well supported by the data. Nevertheless, there is still one particle predicted by
such model (and actually crucial for its consistency) which has so far escaped detection,
namely the Higgs boson, whose mass represent the only paramter of the SM which is still
completely unknown. Then, even if the Higgs boson would be found, there would still
remain several phenomenological and conceptual reasons why we believe the SM cannot
be considered as a fundamental theory, valid up to arbitrarily high scales.

In sec. 1.1 we will first give an overview of the status of the experimental searches for
the SM Higgs boson, then in sec. 1.2 we will describe the main problems of the SM and
motivate the statement that New Physics (NP) is actually “needed” at the TeV scale.

1.1 Experimental Standard Model Higgs searches

Evidence for the SM Higgs boson has been seeked for in the past decades at collider
experiments. We will focus on the most recent results about direct searches at LEP/LEP2,
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Figure 1.1: (a) LEP combination (the green and yellow areas represent the 68% and 95%
probability bands around the median background expectation, respectively); plot from ref. [74],
(b) CDF-D∅ combination; plot from ref. [75]

the Tevatron and the LHC, and then spend a few words about the indirect information
provided by the electroweak precision measurements.

The LEP2 phase of the LEP e+e− collider at CERN consisted in a scan in the center of
mass (c.o.m.) energy, up to

√
s = 209 GeV, primarlily searching the SM Higgs boson HSM

in the Higgsstrahlung channel e+e− → Z∗ → ZHSM. Except for a slight 2.1σ fluctuation
reported by one of the four detectors operating at LEP2, no signal has been observed.
Given the Z boson mass, an on-shell Higgs as heavy as 118 GeV could in principle be
produced, but due to sensitivity limits the final combined lower limit is [74]

mHSM
< 114.4 GeV excluded at 95% Confidence Level (LEP2) ,

as it can be seen in fig. 1.1a, where the Confidence Level (CL) ratio CLs = CLs+b/CLb for
the signal plus background hypothesis is plotted against the Higgs mass (the intersection of
the horizontal line CLs = 0.05 with the curve defines the 95% CL exclusion limit). Before
the LHC started being operational, the pp̄ collider Tevatron was the only hadron collider
taking data. The Tevatron has been shut down at the time this thesis was being written
(end 2011), and has had an impressive performance rise in its final years. The analysis
of the whole amount of delivered integrated luminosity (around 10 fb−1) has not yet been
completed. The last CDF-D∅ public combination for the SM Higgs searches results is
shown in fig. 1.1b, where the 95% CL exclusion limit is plotted as a function of the Higgs
mass in the range 100 GeV ÷ 200 GeV. The excluded regions are those where the solid



Experimental Standard Model Higgs searches 5

 [GeV]Hm
200 300 400 500 600

S
M

σ/
σ

9
5
%

 C
L
 L

im
it
 o

n
 

110

1

10

Observed

Expected

σ 1 ±

σ 2 ±

ATLAS Preliminary

1
 Ldt = 1.02.3 fb∫

 = 7 TeVs

CLs Limits

(a)

)2Higgs boson mass (GeV/c
100 200 300 400 500 600

S
M

σ/σ
95

%
 C

L 
lim

it 
on

 

1

10

Observed

σ 1±Expected 

σ 2±Expected 

LEP excluded

Tevatron excluded

Observed

σ 1±Expected 

σ 2±Expected 

LEP excluded

Tevatron excluded

-1 = 1.1-1.7 fb
int

Combined, L

 = 7 TeVsCMS Preliminary,  Observed

σ 1±Expected 

σ 2±Expected 

LEP excluded

Tevatron excluded

-1 = 1.1-1.7 fb
int

Combined, L

 = 7 TeVsCMS Preliminary,  

(b)

Figure 1.2: (a) ATLAS Lepton-Photon 2011 combination for SM Higgs; plot from ref. [76] and
(b) CMS Lepton-Photon 2011 combination for SM Higgs; plot from ref. [77]

black line dips below the horizontal dashed line at 1, that is

100 GeV < mHSM
< 108 GeV

156 GeV < mHSM
< 177 GeV

}
excluded at 95% CL (Tevatron, Summer 2011) .

The LHC (pp collider) is running at
√
s = 7 TeV, that is at an energy lower than its

design value. It is expected to deliver around 10 fb−1 of integrated luminosity by the end
of 2012. This would be a remarkable performance, since only 2 years of collisions should be
enough to deliver the same amount of integrated luminosity delivered by the Tevatron in
its entire “lifetime”. Such a result would allow combinations of Tevatron and LHC results
to achieve a combined 5σ sensitivity for a SM-like Higgs boson for masses between 114
GeV and 600 GeV. The current 2011 LHC exclusions are based on the analyses of about
1 fb−1 of integrated luminosity and the combinations of the different search channels are
given separately by each experiment. The Atlas analysis (see fig. 1.2a) excludes at 95%
CL the existence of a Standard Model Higgs boson in three Higgs mass ranges

146 GeV < mHSM
< 232 GeV

256 GeV < mHSM
< 282 GeV

296 GeV < mHSM
< 466 GeV

 excluded at 95% CL (ATLAS, Summer 2011) .

Similarily, as shown in fig. 1.2b, the CMS analysis excludes at 95% CL the three Higgs
mass ranges

145 GeV < mHSM
< 216 GeV

226 GeV < mHSM
< 288 GeV

310 GeV < mHSM
< 400 GeV

 excluded at 95% CL (CMS, Summer 2011) .

All these limits arise from direct searches, where one seeks for the decay products of an
on-shell Higgs and tries to reconstruct its mass. Another source of information about
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the Higgs mass is represented by the many electroweak precision observables (EWPO)
measured with remarkable precision in several experiments, like the various leptonic and
hadronic asymmetries or the corrections to the relation ρ = m2

W/(m
2
Z cos2 θW ) = 1. When

loop effects are included in the theoretical predictions for such quantities, since in the
SM the Higgs mass is the only free parameter, one can gain indirect information about
it through combined fits of all the EWPO data available. At one-loop level the higher
order predictions for many EWPO are typically dominated by terms proportional to m2

t .
Instead (due to the SU(2) custodial symmetry) it is only the logarithm of the Higgs mass
that enters the one-loop formulae, while quadratic terms appear at two-loops (thus being
suppressed). On the one hand this allowed a quite accurate prediction for the top mass [78],
by assuming mHSM

to vary in a reasonably large range between 60 GeV and 1 TeV, a few
months before its discovery was announced (actually after the first few candidate events
and their plausible interpretation in terms of tt̄ pairs were made public). On the other
hand, the predictions one derives for the Higgs mass are bound to be less stringent and
strongly depend on the value and the accuracy of the top mass measurements. Several
analyses have been performed to date [79–81]. Without entering the details, they are all
consistent with the statement that if no New Physics (NP) is assumed at the weak scale,
all the available electroweak precision data require a light Higgs boson, excluding with a
high confidence masses above ∼ 200 GeV. It is peculiar that the expected value for its
mass should actually be around 91 GeV, below the LEP2 limit. Anyway, by considering
the fitting procedure uncertainties, the expected value is still consistent with the direct
searches data. The general picture one obtains by consistently combining the information
from direct searches and from precision fits, is that we expect the SM Higgs to be relatively
light. Its discovery could be just around the corner.

1.2 SM issues and the “need” for New Physics

As already mentioned, there are still good reasons why we believe that the SM is not the
full story. Here we will give an overview of the main arguments and motivate the need for
New Physics, starting from the TeV scale.

Three observational motivations come from cosmology. First of all, there is strong as-
trophysical evidence for dark matter (DM) in the universe, which would explain structure
formation, the observed anisotropies in cosmic microwave background radiation, the galac-
tic rotation curves. DM properties can be inferred by cosmological considerations and it
turns out that favourite candidates for DM are non-relativistic, TeV-scale, neutral weakly
interacting massive particles (WIMP’s). The SM cannot provide any candidate for dark
matter but, surprisingly enough, it is quite easy to have DM candidates with the requested
properties in many NP scenarios. Second, ordinary baryonic and dark matter contribute
only with a small fraction (respectively ∼ 4% and ∼ 23%) to the total cosmological energy
density which is observed. The large remaining fraction of the total energy density, needed
in order to account for the rate of expansion of the universe, is attributed to the so-called
dark energy. Dark energy behaves like a negative pressure fluid, which can be included in
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the Einstein equations in the form of a cosmological constant Λ. No fundamental explana-
tion for the origin of such a term has been devised so far. The most direct interpretation
of the cosmological constant as the energy of the vacuum in Quantum Field Theory (QFT)
fails to reproduce the correct order of magnitude, e.g. ΛSM/Λobs ∼ 10120. One last fact is
that the SM has no explanation for the baryon-antibaryon density asymmetry observed in
the universe. CP violation is a necessary condition for baryogenesis [82], but the SM fails
to provide the right amount of CP violation.

Another obvious remark is that the gravitational force, which we believe becomes rele-
vant at quantum level at energies of O(1019 GeV)∗, cannot be straightforwardly included in
the SM. A QFT treatment of gravitation, just like the other particle interactions, gives rise
to a non-renormalizable theory. After all, it is the very meaning of a quantum treatment
of gravity which has to be investigated: QFT describes the quantum dynamics of fields
on a spacetime, while gravitation is a theory of the dynamics of the spacetime. Different
approaches like String Theory, Loop Quantum Gravity, Non-commutative Geometries are
being studied. Without entering the details, the lesson is that we expect our SM to be
just an effective theory, valid at most up the Planck scale, of a more fundamental theory
including gravity.

A theoretical argument in favour of NP is based on the observation that the renormal-
ization group running of the three SM gauge couplings is such that they almost reach the
same value at a scale ΛGUT of O(1016 GeV). This may be much more than a coincidence,
and reducing the number of fundamental parameters in our model by embedding the SM
gauge group SU(3)c⊗SU(2)L⊗U(1)Y in a single Grand Unified gauge group G would be
quite welcome. Moreover, Grand Unified Theories (GUT’s) can predict quantities like the
weak angle θW or the specific pattern of gauge quantum numbers assigned to matter fields,
which is unexplained in the SM. Unification is not quantitatively perfect if one assumes
that the SM is valid as is up to the unification scale, but one can always hope that NP
contributions entering at some intermediate scale may improve such behaviour.

Concerning the flavor sector, one observes that the specific pattern of fermion masses
and Cabibbo-Kobayashi-Maskawa matrix elements is very peculiar (e.g. all the fermion
masses being much smaller than the typical EW scale ΛEW ' 250 GeV but the top mass,
which is of the same order). This is the so-called SM flavor problem. The flavor sector
is the least understood part of the SM, in which only a phenomenological description
is given: indeed the majority of the SM free parameters (13 out of 19 if one assumes
massless neutrinos) are needed in the flavor sector. Moreover, the observation of neutrino
oscillations (which depend on the difference of the squared neutrino masses), requires at
least two massive neutrinos. Cosmological considerations allow to set bounds on the sum
of the neutrino masses, requiring it to be less than O(0.1 eV). Including in the SM right-
handed, gauge singlet neutrinos represents a quite natural extension. Just as for the other
SM particles, Dirac mass terms mν ν̄LνR+h.c. can be added, where mν is generated through
EW spontaneous symmetry breaking. Then one would have to choose mν to be several
orders of magnitude smaller than ΛEW, ending up with an even worse flavor problem.

∗If there are no extra dimensions or other mechanisms bringing down the Planck scale.
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More attractive scenarios can be devised, as the so-called type-I see-saw mechanism. A
Majorana mass term Mν̄cRνR is actually gauge invariant and can be added as well, although
it violates lepton number conservation (which anyway is only an accidental symmetry of
the SM). By diagonalizing the neutrino mass matrix, the lightest eigenvalue turns out to
be m2

ν/M . If one assumes a natural value for the Dirac mass term, mν ∼ ΛEW, then one
must actually require M ∼ ΛGUT in order to justify the smallness of neutrino masses. This
seems to suggest that ν masses fit well in GUT scenarios, where lepton number violating
interactions are expected at scales ∼ ΛGUT. This is just an example of the fact that in
general we expect that a theory that could dynamically explain the EW scale flavor sector
in terms of a few parameters would probably involve NP at higher scales.

There are actually compelling reasons why NP is needed right at the EW scale. The
Higgs potential is put by hand in the SM Lagrangian and in particular there is no explana-
tion why the coefficient of the quadratic term develops a “wrong” sign, contributing to the
potential as a negative mass term and thus triggering EW spontaneous symmetry breaking
(EW SSB). The dynamics of the EW SSB is an urgent problem of particle physics and hints
for its solution are expected to lie not too far above the EW scale. Indeed, if one considers
the scattering of longitudinally polarized vector bosons (whose degrees of freedom actually
come from the Goldstone bosons of the SSB sector, realized in the SM through the Higgs
mechanism), an upper limit on the Higgs mass can be set by requiring that the theory
remains perturbatively unitary. In the SM it is actually the Higgs scalar exchange that
unitarizes the process. A thorough analysis of partial waves amplitudes [83] (where a pre-
cise unitarity constraint can be defined), shows that its mass cannot exceed O(700 GeV).
Even if no SM Higgs boson is observed, we still believe that some sort of SSB mechanism is
at work since gauge symmetry is observed in the couplings but is broken in the spectrum.
On the other hand, NP around the TeV scale is needed in order to recover perturbation
theory unitary. In this perspective the SM Higgs boson represents the minimal choice for
an ultraviolet (UV) completion of the SM, while more involved solutions may be invoked in
the form of weakly coupled NP (e.g. Supersymmetry) or strongly interacting sectors (e.g.
Technicolor or Composite Higgs models). A discussion of all the NP scenarios is beyond
the scope of this thesis, but in any case the general picture is that the scale of NP cannot
be pushed too high if one wants to preserve perturbative unitarity.

Two more bounds, as functions of the NP scale, can be obtained by analyzing the
Renormalization Group (RG) behaviour of the SM couplings. In particular, let us consider
the running [84, 85] of the Higgs quartic coupling λ:

32π2 dλ

d lnQ/Q0

= 24λ2 − (3g′ + 9g2 − 24y2
t )λ+

3

8
g′

4
+

3

4
g′

2
g2 +

9

8
g4 − 24y4

t + . . . , (1.1)

where g and g′ are respectively the SU(2)L and the U(1)Y couplings and yt is the top quark
Yukawa coupling. We see that when m2

HSM
= 2λv becomes large, the first term dominates.

Then the RG equation reduces to

λ(Q) =
λ(Q0)

1− 3
2π2λ(Q0) lnQ/Q0

, (1.2)
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which can be easily solved in order to show that λ has a Landau pole at some scale Q = Λ.
If one requires that the theory is well behaved of any Λ, then λ must be zero in the low
energy theory (triviality problem). Otherwise, one can require that the denominator never
vanishes, that is λ(Q) is always finite and 1/λ(Q) > 0, obtaining an upper bound [86–89]

m2
HSM

<
8π2v2

3 ln Λ/v2
, (1.3)

where we have chosen Q = Λ and Q0 = v. Then if one insists that the theory can be
extrapolated (perturbative stability) up to the Planck scale, the Higgs must be lighter than
rougly 150 GeV. On the other hand, if NP is allowed around the TeV scale, the Higgs can
be as heavy as 700− 800 GeV.

On the other hand, for a light Higgs the −24y4
t term dominates the RG equation. If

we neglect all the other terms, the solution is given by (Q = Λ, Q0 = v)

λ(Λ) = λ(v)− 3

4π2
y4
t ln

Λ2

v2
. (1.4)

A lower bound on mHSM
can then be obtained if one enforces the requirement of vacuum

stability [86, 87, 89–92], by imposing that λ never becomes negative, so that the Higgs
potential is always positive definite:

m2
HSM

>
3v2

2π2
y4
t ln

Λ2

v2
. (1.5)

In particular, a Higgs boson heavier than 130 GeV is consistent with a SM that is valid all
the way to the Planck scale. This lower bound on mHSM

can be reduced to about 115 GeV
if one allows for the electroweak vacuum to be metastable, with a lifetime greater than the
age of the universe [93, 94].

Last, but not least, we discuss the fine-tuning or hierarchy problem (see e.g. ref. [95]).
Contrarily to the SM fermion masses, which are protected by chiral symmetry from re-
ceiving large radiative corrections, the squared masses of the SM scalar particles are not
protected by any symmetry and obtain arbitrarily large radiative corrections, quadratic in
the cutoff at which we expect NP to enter. This has the consequence that, if the scale of
NP is much higher than the typical EW scale v ' 246 GeV (e.g. the Planck scale if we
insist the SM is the correct theory valid up to the scale where gravity must be taken into
account) and mHSM

is of the order of the EW scale (as it is plausible), the renormalized
Higgs mass must result from an extremely fine-tuned cancellation between the bare mass
and the counterterm. This raises the question whether there is some more natural mecha-
nism which stabilizes the Higgs mass, i.e. either NP enters at much lower scales (roughly
of order 1÷ 10 TeV if one admits a “modest” amount of fine-tuning), or the scalar masses
are protected by new symmetries.

In summary, we have discussed a number of reasons why the introduction of NP not
too far above the EW scale seems plausible. Several different approaches have been studied
and in this thesis we will focus on one of the most attractive possibilities, that is based on
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the introducion of a new kind of symmetry known as Supersymmetry. In the next chap-
ter we will discuss some general principles of Supersymmetry and introduce the Minimal
Supersymmetric Standard Model, which is the framework in which the present work has
been carried on.



Chapter 2

The Minimal Supersymmetric
Standard Model (MSSM) and its
Higgs sector

The Minimal Supersymmetric Standard Model (MSSM) is an attractive extension of the
SM which allows to solve some of the issues discussed in the previous chapter and implies
interesting phenomenological scenarios, including some peculiar features in its (extended)
Higgs sector. In this chapter we give a brief overview of the concepts of the Minimal
Supersymmetric Standard Model (MSSM) which will be needed in this thesis. A discussion
of the status of the MSSM Higgs searches and of the parameter space exclusions, which are
considerably more involved than those in the SM due to the many unknown parameters of
the model and thus require more sophisticated analyses or the introduction of constraining
assumptions, is beyond the scope of the present work.

In particular in sec. 2.1 we will recall some general ideas concerning supersymmetry.
In sec. 2.2 we will introduce the MSSM field content. Then in sec. 2.3 we will discuss in
more detail the MSSM Higgs sector, focusing on the way EW symmetry breaking arises
and on the Higgs spectrum. Finally, in sec. 2.4 we will discuss the squarks spectrum and
comment on the interactions arising in the model which are relevant for our computation.

2.1 Supersymmetry

A supersymmetry (SUSY) transformation turns a bosonic state into a fermionic state (and
vice versa) and one can see that the operator that generates such a transformation must be
an anticommuting spinor [96–100]. The attractive feature is that supersymmetry relates
the couplings and masses of fermions and bosons, thus being very constraining on the
structure of the interactions. The most phenomenologically interesting models are those
in d = 4 spacetime dimensions in which there is only one SUSY generator (N = 1).
Irreducible representations of the SUSY algebra (supermultiplet or superfield) contain an
equal number of fermionic and bosonic degrees of freedom (d.o.f.’s). More specifically,
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N = 1 SUSY supermultiplets contain two fermionic and two bosonic d.o.f.’s, their spins
differing by one half. Moreover, SUSY generators commute with the Poicaré and internal
symmetries, meaning that particles in a supermultiplet share the same mass (eigenstate
of pµp

µ) and quantum numbers. In such theories, supersymmetry automatically tunes the
couplings so that the quadratically divergent correction to the scalar masses coming from
fermion and boson loops exactly cancel, thus solving (at least technically) the hierarchy
problem.

No SUSY partners of the SM particles have been observed so far. If SUSY is a symmetry
of nature, we should have already detected those particles, exactly degenerate in mass
with the SM states. Thus we know that SUSY must be broken in such a way that the
sparticles obtain large masses, which justifies the fact that they have escaped detection so
far. After all, we have observed only particles whose masses are prohibited by (chiral) gauge
invariance, namely vector bosons and matter fermions, and need to be generated through
a SSB mechanism at the EW scale, which fixes their order of magnitude. On the contrary,
scalars and adjoint fermions have no such a strict constraint and nothing prevents them
from having mass terms. There is one subtlety. One should make sure that, by breaking
SUSY, does not lose one of the interesting properties that make a SUSY extension of
the SM appealing, namely the solution to the hierarchy problem. SUSY breaking may
occur spontaneously or explicitly, through the introduction of non SUSY-invariant mass
and interaction terms in the Lagrangian. The former case would automatically preserve
the cancellation of quadratic divergences, while if explicit terms are introduced they must
be chosen judiciously (operators of dimension strictly less than four, the so called soft-
terms). Moreover, sparticle masses cannot be chosen too large since in a soft SUSY theory
the quadratic divergences are reintroduced as terms proportional to the mass splitting
between the partners in the same multiplet. In particular, if the superparticle spectrum
lies around TeV scale (at least the top superpartners), naturalness can still be retained.
This of course gives us hope that if SUSY is the NP scenario nature has chosen, the
discovery of supersymmetric particles at colliders could be near.

Understanding the origin of SUSY breaking represents an important theoretical chal-
lenge and many models have been devised. These models typically consist in including
new particles and interactions at high scales. Anyway, from a practical point of view, it is
convenient to simply parametrize the breaking sector at low energy just adding the most
general allowed terms with unknown parameters. The problem with such approach is that
a very big number on unknown parameters and phases is introduced in the theory, which
e.g. in general allow tree level FCNC processes, which we do not observe, and represent
unwanted sources of CP-violation, which apparently is well described by the SM itself.

We have already seen that SUSY provides a natural mechanism for solving the hierarchy
problem. Actually, considering a weak scale SUSY extension of the SM is phenomenologi-
cally and theoretically appealing for several other reasons. Let us just mention a few other.
As we will see, SUSY can allow for a radiatively generated EW SSB. Another interesting
fact is that the MSSM is able to quantitatively improve the Grand Unification of the SM
gauge couplings. Another completely unexpected feature is that, by requiring R-parity
symmetry to hold in order to forbid large contributions to (so far) unobserved processes
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such as proton decay, one actually gets a WIMP candidate for Dark Matter. In fact, the
lightest SUSY particle (LSP) cannot further decay because interaction vertices must al-
ways involve an even number of supersymmetric particles. Without entering the details,
typical SUSY scenarios predict electrically neutral LSP’s with properties compatible with
the requirements derived from cosmological considerations. Supersymmetry is also an es-
sential ingredients for Superstring theory, which is a possible approach to the problem of
quantum gravity.

2.2 The MSSM field content and interactions

We will avoid introducting the formalism of superfields, which would allow to immediately
write supersymmetric Lagrangians but at the same would demand a rather formal treat-
ment. Let us just remark that a (left-handed) chiral superfield contains as physical d.o.f.’s
a complex scalar ϕ and the left-handed component of a Majorana fermion ψL = PLψ,
where PL is the usual chirality projector and ψ is a four component spinor satisfying the
Majorana condition ψ = ψc (the superscript c denotes charge conjugation). Instead, a
vector superfield contains a real vector boson Vµ and a Majorana spinor λ (in the Wess-
Zumino gauge). All of these fields are described by two real d.o.f.’s when the equations of
motion are enforced, so that the SUSY requirement that each bosonic d.o.f. is matched by
a fermionic d.o.f. is satisfied. One actually needs auxiliary scalar fields when spinors and
vectors are off-shell, but the equations of motion for those fields are actually just algebraic
constraints and allow one to eliminate them in favour of the physical fields.

It can be shown that the most general Lagrangian (see e.g. ref. [101]) for a set of
Majorana fermions ψi and complex scalars ϕi which is gauge invariant under a gauge
group G, with generators T a and gauge coupling g, renormalizable and invariant under
supersymmetry transformations is given by (after the equations of motion for the auxiliary
fields have been imposed)∗

∗ When the gauge group G contains one or more U(1) factors (as in the case of the SM gauge group),
for each U(1)p factor of G one can actually add to the Lagrangian a so-called Fayet-Iliopoulos (FI) term,
which upon enforcing the equations of motion for the auxiliary fields reads LFI,p = −gpξp(

∑
i ϕ
∗
i Tpϕi+ξp).

It can be shown (see e.g. [102]) that such terms can drive spontaneous SUSY breaking in the scalar sector,
but a FI term for the SM U(1)Y is excluded or disfavoured because it would lead to electromagnetism
and/or color breaking. The introduction of extra U(1) factors (for extra gauge symmetries either broken
at higher scales or decoupled from the SM) gives rise to other problems, so we will not discuss FI terms
any further.
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LSUSY = − 1
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(2.1)

where the scalar potential V (ϕ) is given by

V (ϕ) =
∑
i

∣∣∣∣∂W∂Φi
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2

∑
a

[∑
i
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aϕi

]2

, (2.2)

and W(Φi) is the superpotential, which is required to be an analytic function of the (left
chiral super-) fields Φi in order to guarantee invariance under supersymmetry. This obser-
vation will be crucial in the construction of the MSSM Higgs sector. The superpotential
arises in the superfield formulation of supersymmetric theories but, as we have seen, it is
only its functional form that determines the Lagrangian in terms of component fields. Thus
we will interchangeably speak of fields and superfields when referring to W(Φi). It can be
shown that renormalizability of LSUSY is enforced by requiring W(Φi) to be a polynomial
of degree three in the superfields.

Let us examine the content of the SUSY Lagrangian (2.1). The first line contains the
kinetic terms for all the dynamical fields belonging to the chiral and vector supermultiplets
(F a

µν is the standard field strenght tensor for the non-abelian gauge boson V a
µ ). Covari-

ant derivatives are defined as usual, keeping in mind that the ψi and ϕi fields are in the
fundamental representation of the gauge group, while the λa fields are in the adjoint rep-
resentation, as the corresponding gauge bosons V a

µ . The scalar potential in the second
line is composed by two terms, see (2.2). The first addendum is completely determined
by the superpotential W(Φi) and is commonly referred to as F -term contribution. The
second term contains the quartic scalar interactions, which are determined by their gauge
quantum numbers, and is commonly referred to as D-term contribution. The third line
contains the scalar-fermion Yukawa interactions, which once again are fixed by the func-
tional form of the superpotential, and a new kind of interaction which is genuine to SUSY
theories, namely the ψi-ϕj-λ

a interaction, whose coupling is constrained by SUSY and
gauge invariance.

The MSSM is the minimal supersymmetric extension of the SM. The gauge group is
the same as that of the SM, i.e. SU(3)c ⊗ SU(2)L ⊗ U(1)Y . The SM spin-1 gauge bosons
are identified to be the vector components V a

µ of non-abelian vector supermultiplets, whose
spin-1/2 fermionic components λa will be denoted as gauginos. The SM spin-1/2 fermions
are taken to be the spinor component of left chiral superfields, implying that to each fermion
ψ is associated a spin-0 complex scalar ψ̃ (sfermion). The SM is a chiral gauge theory, but
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we choose to work with left-handed fields only†, i.e. we trade each right-handed fermion
ψR for the corresponding left-component of its charge conjugate (ψc)L. In particular the
MSSM supermultiplets corresponding to the SM fields qL, (uc)L, (dc)L, lL and (ec)L

‡ will
be denoted as Q, U c, Dc, L and Ec. To be explicit, e.g. for the top superfields we have

T 3
(
t̃L, tL

)
, (2.3)

T c 3
(
t̃R, (t

c)L
)
∼
(
t̃R, tR

)
, (2.4)

where T is the up-type component of Q3 and T c = U c
3 . Since the SUSY generators

commute with the generators of all the other symmetries of the theory, fields in the same
supermultiplet are required to share the same quantum numbers. Thus each supermultiplet
will be in the same representation as the corresponding SM field. Let us note that up to
now we have effectively “doubled” the SM spectrum.

As already noted, the Higgs sector is quite delicate. The SM Higgs is a scalar field that
shares the same quantum numbers as the leptons lL. One could thus imagine identifying
the Higgs as the scalar partner of the lepton doublet. When a non vanishing vacuum
expectation value is assigned to the Higgs, one would end up with the spontaneous breaking
of lepton number together with that of the EW gauge group. On the other hand, neither
the corresponding (massless) Goldstone boson nor lepton number violating interactions
have been observed so far, thus we seek for another strategy.

One could follow the same procedure adopted for the matter fields, simply promoting
the SM Higgs field to a chiral superfield. The SM Yukawa terms are built by employing
the Higgs doublet φ and its conjugate φ̃ = iσ2φ∗ (which has the opposite hypercharge as
φ) in order to write gauge invariant terms that give mass to up-type quarks and down-type
quarks. On the other hand, as shown in (2.1), fermion mass terms originate from the
superpotentialW(Φi), which is required to be an analytic function of the Φi. In particular
it cannot be a function of the conjugate Higgs superfield and we are thus forced to introduce
two separate Higgs supermultiplets if we want them to have opposite U(1)Y charge,

H1 =

(
H0

1

H−1

)
Y=−1/2

, H2 =

(
H+

2

H0
2

)
Y=+1/2

, (2.5)

composed by four complex Higgs scalars and four Majorana higgsinos. A further remark
is in order. If only one Higgs doublet (say with Y = −1/2) were included, the higgsinos
would give rise to a non vanishing contribution to chiral anomalies because no Y = +1/2
higgsino would compensate.

†In the superfield formalism this is necessary. In fact right-handed chiral superfields can always be
written as the hermitian conjugate of a left-handed chiral superfield but, as we have already stated above,
the superpotential W is restricted to be an analytic function of left-handed chiral superfields only.
‡Unless explicitly specified, all the fields have to be considered as vectors in flavor space. With a slight

abuse of notation we have e.g. (uc)L =

uccc
tc


L

. The fields qL and lL are the SU(2)L doublets qL =

(
u
d

)
L

and lL =

(
ν
l

)
L

.
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We are now ready to write down the most general gauge invariant renormalizable su-
perpotential for the MSSM, which reads

W = (U chUQ)H2 + (DchDQ)H1 + (EchEL)H1︸ ︷︷ ︸
Yukawa

+ µH1 ·H2︸ ︷︷ ︸
µ−term

(2.6)

+ (Dch′
D
Q)L+ (Ech′

E
L)L+ µ′iLiH2 + YijkD

c
iD

c
jU

c
k︸ ︷︷ ︸

R-parity violating

, (2.7)

where the fields are vectors in the gauge and flavor spaces, the hX are matrices in the
flavor space and the sums in the last line run on the flavor indices (the last term is to be
intended as a color singlet). The first line is the MSSM generalization of the SM Yukawa
sector; the second line contains the only term quadratic in the Higgs superfields allowed
by gauge invariance (the SU(2) invariant H1 ·H2 = εαβH

α
1 H

β
2 , where εβα = −εαβ and

ε12 = 1) and supersymmetry; the last line contains terms that are in principle allowed
but are disastrous when it comes to phenomenology. Those terms generate lepton (L) and
baryon (B) number violating interactions, leading to processes like the proton decay or
µ → eγ or other tree level Flavor Changing Neutral Currents (FCNC) processes, which
have not been observed. It is interesting to note that B and L violating interactions are
forbidden in the SM because of two U(1) accidental symmetries, while it is not so in the
MSSM. One can posit an additional symmetry of the Lagrangian, named R-parity, defined
for each particle as

PR = (−1)3(B−L)+2s , (2.8)

where B and L are the baryon and lepton number and s denotes the spin. Particles in the
same supermultiplet have opposite R-parities, in particular all the SM particles have even
R-parity while all the superpartners have odd R-parity. If R-parity is to be conserved,
sparticles must be always appear in an even number in each interaction vertex. Note that
R-parity is defined in terms of B − L, which means that it can be consistently introduced
regardless of the non-perturbative effects that break U(1)B ⊗ U(1)L down to U(1)B−L. It
can be shown that the terms in the last line all violate R-parity and must therefore be
dropped from the superpotential if R-parity is assumed (as we will do):

WMSSM = (U chUQ)H2 + (DchDQ)H1 + (EchEL)H1︸ ︷︷ ︸
Yukawa

+ µH1 ·H2︸ ︷︷ ︸
µ−term

. (2.9)

The last MSSM ingredient is the soft SUSY-breaking Lagrangian, which contains mass
terms for the supersymmetric particles making them heavy enough to have escaped detec-
tion. SUSY breaking should be explained in terms of some dynamical mechanism occuring
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at higher scales and/or in different sectors of the theory. One can nevertheless parametrize
in the most general way the soft Lagrangian at the weak scale, writing it as

Lsoft = Lm,sfermions + Lm,Higgs + Lm,gauginos + Lsoft-trilinear . (2.10)

The first piece is a sum of mass terms for the scalars

−Lm,sfermions = q̃†Lm
2
q̃L
q̃L + ũ†Rm

2
ũR
ũR + . . . , (2.11)

where q̃L, ũR etc. are again matrices in flavor space and q̃L, l̃L are weak isospin doublets§.
The second term contains mass bilinears for the Higgs doublets (note that here we are
allowed to introduce H†H terms since we are breaking explicitly SUSY)

−Lm,Higgs = m2
H1
|H1|2 +m2

H2
|H2|2 + 2Re(BH1 ·H2) , (2.12)

wherem2
H1

andm2
H2

are real parameters while B needs not (and againH1 ·H2 = εαβH
α
1 H

β
2 ).

One phase in the Higgs sector can be redefined and this phase is usually taken to be that
of B, which is chosen real and positive. The third contribution contains mass terms for
the gauginos (g̃ is the Majorana gluino etc. and Mi, M

′
i are real)

−Lm,gaugino =
1

2

(
M3

¯̃gg̃ +M1
¯̃bb̃+M2

¯̃wiw̃i

)
+

1

2

(
M ′

3
¯̃gγ5g̃ +M ′

1
¯̃bγ5b̃+M ′

2
¯̃wiγ5w̃i

)
, (2.13)

where summation on non-abelian gauge indices is understood. We note that the terms with
M ′

i violate CP. One of such masses may be removed by performing a chirality transforma-
tion on the gaugino field, and we take this to be M ′

3. The last term of the soft-Lagrangian
contains trilinear SUSY-breaking interactions between the sfermions and the Higgs bosons
(“A-terms”), analogous to those in the superpotential

−Lsoft-trilinear = ũ†RA
U q̃LH2 + d̃†RA

Dq̃LH1 + ẽ†RA
E l̃LH1 + h.c. , (2.14)

where AE, AU etc are matrices in flavor space and each trilinear coupling can be expressed
in terms of the superpotential Yukawas (X = U,D,E and no summation on i, j)

AXij = AXijh
X
ij . (2.15)

In summary, the MSSM Lagrangian is then given by

LMSSM = LSUSY + Lsoft , (2.16)

where LSUSY is (2.1) with gauge group G = SU(3)c⊗SU(2)L⊗U(1)Y , the above discussed
field content and the superpotential (2.9), while Lsoft is the soft SUSY-breaking part,

§Note that the L,R subscripts on the sfermion fields do not indicate any chirality, since they are scalar
fields. Such labels are just a reminder of the fact that e.g. q̃L and ũR are the scalar partners of the chiral
fermions qL and (uc)L ∼ uR.
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defined by (2.10) and the equations below. By carefully counting the masses, the phases
and the mixing angles introduced in the MSSM (removing those that can be eliminated by
field redefinitions), one can see that the MSSM parameter space cosists of 124 (105 more
than the SM) free parameters [103]. One has 9 parameters in the gauge/gaugino sector, 5
parameters in the Higgs sector, while the remaining 110 parameters are all needed in the
flavor sector. It is plausible that once the SUSY breaking mechanism is understood, a large
number of those parameters could be expressed in terms of a few fundamental parameters.

Note that the Lagrangian contains many quadratic terms for the MSSM fields, excluding
the gauge bosons of the unbroken SU(3)c ⊗ U(1)Q which remain massless after EW SSB.
Such terms can in general be put in diagonal form just as in the case of the SM Yukawa
couplings. For given spin, the mass eigenstates of the SUSY particles will then be given
by combinations of the interaction eigenstates, respecting all the Lagrangian symmetries.
We refer to this phenomenon as mixing. For instance, SU(2)L ⊗ U(1)Y gauginos (winos
and binos) will separately mix into charged and neutral mass eigenstates, while no gluino
mixing is allowed. The scalar partners of the SM fermions represent the most complicated
sector, since in general up-type and down-type sfermions will be obtained by diagonalizing
two 6× 6 matrices (two sfermion “chiralities”, L and R, for each flavor).

In order to allow for efficient, manageble low energy phenomenological studies, one often
makes certain assumptions on the MSSM parameters. Let us recall that the scale of the
dimensionful parameters in the soft SUSY-breaking sector is required not to exceed a few
TeV. This has to be done if one does not want to re-introduce large quadratic corrections to
the scalar squared masses, e.g. in the form of terms proportional to the coupling times the
splitting between the particle and sparticle masses squared. This justifies the assumption
that at least the third generation fermions, which have large Yukawa couplings with the
Higgs(es), have not too heavy supersymmetric partners. On the other hand, we can also
rely on the many experimental results in the flavor sector that actually provide stringent
constraints on those couplings. For instance, there are strong upper bounds on the flavor
violating processes (like µ→ eγ) that would be induced at tree-level by the MSSM if the
off-diagonal (in flavor space) terms in the soft trilinear couplings A were comparable to the
diagonal terms. Also, neutral meson mixing processes provide constraints on the structure
of squark masses, at least for the first two generations. Other constraints derive from the
limits on the CP violating processes which would be predicted if the many new CP violating
phases were different from zero. Therefore, one often works in a simplified framework in
which the soft trilinear couplings AX are proportional to the Yukawa matrices appearing
in the superpotential. For our purposes we can safely consider the AX matrices as flavor
diagonal and neglect the first two generations.

2.3 The MSSM Higgs sector

We want now to discuss the Higgs sector of the MSSM. Let us proceed by assuming a van-
ishing vacuum expectation value for all the sfermions and considering the scalar potential
for the Higgs fields. It is important to remark that the only dimensionless couplings en-
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tering the MSSM Lagrangian (2.16) are the gauge couplings and the Yukawa couplings in
the superpotential. This means that, at variance with the SM Higgs sector, no λφ4 terms
appear in the scalar potential. A consequence of this fact is that the Higgs mass(es) are
not free parameters but satisfy some constraints. In particular, as we will see, a stringent
upper bound on the lightest mass eigenstate can be derived.

The tree level Higgs potential of the MSSM is

V = m2
1|H1|2 +m2

2|H2|2 − 2BRe(H1 ·H2)

+
g2

8

(
H†1~σH1 +H†2~σH2

)2

+
g′2

8

(
|H1|2 − |H2|2

)2
, (2.17)

where: m2
1 = m2

H1
+ |µ|2, m2

2 = m2
H2

+ |µ|2 (we remind the reader that m2
Hi

and B are the
soft supersymmetry-breaking masses (2.12), m2

Hi
are real and B has been chosen real and

positive as explained in sec. 2.2, µ comes from the only term allowed in the superpotential
(2.9) and g and g′ are the SU(2)L and U(1)Y gauge couplings.

A remark is in order: while mZ is of the order of the EW scale and the parameters m2
Hi

and B are of the order of the soft SUSY breaking scale, µ is a completely arbitrary param-
eter of the superpotential. If one does not want to re-introduce miraculos cancellations,
the observed value of the scale of EW SSB breaking suggests that, although apparently
unrelated, both µ and the scale of the soft parameters should not exceed a few hundreds of
GeV or a few TeV (this is called the “µ-problem”). A solution to this puzzle is probably
related to a precise understanding of the mechanism of SUSY breaking.

The parameters entering (2.17) must satisfy

m2
1 +m2

2 ≥ 2B , m2
1m

2
2 ≤ B2 . (2.18)

The first condition in (2.18) guarantees the potential is bounded from below: the D-term
induced quartic interactions (whose coefficients in the MSSM are given in terms of the gauge
coupling and quantum numbers) stabilize the potential for almost all arbitrarily large values
of the fields, but it is easy to see that such quartic interactions vanish identically along
the direction H1 = H2, so that a positivity condition must be imposed on the quadratic
term. The second condition is necessary in order to make sure that the neutral components
of the Higgs doublet acquire non-zero vacuum expectation values (VEV’s) by allowing a
combination of H0

1 and H0
2 to have the “wrong sign” mass term (close to H0

1 = H0
2 = 0),

triggering SSB. Note that two conditions cannot be simultaneously satisfied if m2
1 = m2

2.
Thus in order to break EW symmetry we must also break SUSY by introducing non zero,
different mass terms for the two Hi in the soft breaking sector. In many popular models
(such as minimal supergravity or gauge mediated SUSY breaking) the soft SUSY-breaking
parameters are chosen to be equal at some high scale. It is their running to lower energies
that removes this degeneracy, typically via the contribution of top/bottom quarks and
their superpartners. In these models EW SSB is said to be radiatively induced. Note
also that the B-term always favors EW SSB. We define the VEV’s aquired by the neutral
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components as¶

〈H0
1 〉 = v1 , 〈H0

2 〉 = v2 , (2.19)

The neutral Higgs fields can then be written as fluctuations around the VEV’s as follows:

H0
1 =

v1 + S1 + iP1√
2

, H0
2 =

v2 + S2 + iP2√
2

. (2.20)

After EW SSB, the gauge bosons obtain their masses in the usual way

m2
W =

g2

4
v , m2

Z =
g2 + g′2

4
v , v ≡

(
v2

1 + v2
2

)
. (2.21)

The important difference with respect to the SM is that the two Higgs doublets contain a
total of eight scalar d.o.f.’s, of which only three are the Goldstone bosons G± and G0 that
are transferred to the W and Z gauge bosons, becoming their longitudinal d.o.f.’s. In the
MSSM there remain thus five physical Higgses. If CP invariance is assumed in the Higgs
sector (as we will do) the real and imaginary components of the Higgs fields do not mix,
so the 4× 4 mass matrix decomposes into two 2× 2 blocks. The physical states are then
two neutral CP-even bosons h and H, one neutral CP-odd‖ boson A and a charged boson
H±, obtained as the eigenstates of the mass matrices of the corresponding sectors of the
scalar potential. By imposing the minimum condition with respect to the fields in (2.17)

∂V

∂φi

∣∣∣∣
min

= 0 ,
(
φi = P1, P2, S1, S2, H

−
1 , H

+
2

)
, (2.22)

and taking the second derivatives(
M2

P

)
ij

=
∂2V

∂Pi∂Pj

∣∣∣∣
min

= −Bv1v2

vivj
, (2.23)

(
M2

S

)
ij

=
∂2V

∂Si∂Sj

∣∣∣∣
min

= (−1)i+j
[
−Bv1v2

vivj
+
g2 + g′2

4
vivj

]
, (2.24)

(
M2
±
)
ij

=
∂2V

∂H+
i ∂H

−
j

∣∣∣∣∣
min

=
v1v2

vivj

[
−B +

g2

4
v1v2

]
, (2.25)

one gets the mass matrices for the separate sectors. In terms of the original gauge
eigentstates, the charged and CP-odd mass eigenstates are (we compactly write cθ ≡ cos θ
and sθ ≡ sin θ for any angle θ)(

G0

A

)
=

(
sβ −cβ
cβ sβ

)(
P1

P2

)
,

(
G+

H+

)
=

(
sβ −cβ
cβ sβ

)(
H+

1

H+
2

)
, (2.26)

¶By an SU(2)L transformation it is always possible to rotate the charged Higgs fields in such a way
that the minimum condition for the potential V reads H±i = 0. After all, we want to break the SM gauge
group down to the subgroup U(1)Q, leaving electromagnetic gauge invariance intact.
‖If CP-violation stems only from phases in the couplings, the CP-odd A boson couples only to the

CP-odd fermion bilinears ψ̄iγ5ψi. Then one also deduces that it has also to be a Lorentz pseudoscalar. In
the following, we will interchangeably speak of CP-even/odd and scalar/pseudoscalar Higgses.
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where tan β ≡ v2/v1 and H+
1 =

(
H−1
)∗

. The corresponding eigenvalues for the physical
states A and H± are

m2
A = −2B

s2β

, m2
H± = m2

A +m2
W . (2.27)

The mass matrix for the CP-even sector (2.24) can be rewritten in terms of mA, mZ and
the angle β as

(
M2

S

)
ij

=

(
m2

Zc
2
β +m2

As
2
β − (m2

Z +m2
A) sβcβ

− (m2
Z +m2

A) sβcβ m2
Zs

2
β +m2

Ac
2
β

)
, (2.28)

so that its eigenvaules read

m2
H,h =

1

2

[
m2

A +m2
Z ±

√
(m2

A +m2
Z)2 − 4m2

Am
2
Zc

2
2β

]
. (2.29)

The CP-even eigenstates h and H are connected to S1 and S2 through(
H
h

)
=

(
cα sα
−sα cα

)(
S1

S2

)
, (2.30)

where the angle α is determined by

tan 2α = tan 2β
m2

A +m2
Z

m2
A −m2

Z

. (2.31)

The angle α is traditionally chosen to be negative, so from this definition it follows that
−π/2 < α < 0 (provided mA > mZ). These (tree-level) relations show how the neutral
Higgs masses are not independent parameters of the theory. In particular, from (2.29) one
can actually derive an upper bound on the lightest Higgs mass:

mh < |c2β|mZ , (2.32)

which is of course already ruled out by LEP2 results. If the above relation were valid beyond
tree-level, MSSM would be already excluded by direct searches. Fortunately, these tree-
level relations receive sizable higher order corrections which allow this bound to be evaded,
so that the MSSM can still be a candidate scenario for NP. An impressive theoretical effort
has been devoted to precision loop computations of the MSSM Higgs sector masses, see [104]
and references therein for more details on the status of two-loop calculations and their
implementation in computer codes for numerical evaluation of the Higgs spectrum (see also
ref. [105] for the first complete three-loop result in the limit of degenerate supersymmetric
particles and ref. [106] for an asymptotic expansions based result valid for some specific
hierarchies of the supersymmetric particle masses).

An interesting region of the MSSM parameter space is the one with mA � mZ (ac-
tually even if mA & 2mZ only). Then one has the so-called “decoupling limit” in which,
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as it can be seen from (2.29), m2
h can saturate the upper bound, with m2

h ∼ m2
Zc

2
2β +

radiative corrections. In this case α ∼ β − π/2, which in turn implies that h couples to
the SM fields basically like a SM Higgs boson. The other Higgs particles H,A,H± sub-
stantially become heavy and degenerate, forming an isospin doublet that decouples from
sufficiently low energy experiments. Note that a similar scenario is realized in the opposite
regime mA � mZ, where it is the H boson that becomes SM-like (“anti-decoupling limit”).

2.4 Squark masses and relevant MSSM interactions

A thorough discussion of the MSSM mass spectrum and interactions arising in the MSSM
is well beyond the scope of this thesis and we refer the reader to more complete references,
such as ref. [107], where also a complete set of the MSSM Feynman rules can be found.
Instead, only a few more aspects of the MSSM will be relevant in the following. In the
present work we consider the (SUSY) QCD corrections to CP-even and CP-odd Higgs
boson production at hadron colliders through gluon fusion which, as we will discuss in
the next chapter, proceeds at leading order through a quark or squark loop (since no
Higgs-gluon-gluon coupling is present in the Lagrangian). We will therefore spend a few
words about the squark mass matrices, the Higgs-(s)quark-(s)quark interactions and the
quark-squark-gluino vertices which contribute a two-loop.

Squark masses

Ignoring intergenerational mixing according to the discussion at the end of sec. 2.2, squark
mass-squared matrices decompose in a series of 2 × 2 blocks [108], one for each flavor,
resulting in mass terms in the Lagrangian of the type (q̃ denotes here a generic up-type or
down-type squark e.g. t̃ or b̃)

LMSSM 3
(
q̃†L , q̃

†
R

)
M2

q̃

(
q̃L
q̃R

)
, (2.33)

where the squared mass matrix (the upper part of
{}

is for up-type quarks, the lower part
for down-type quarks)

M2
q̃ =

m
2
q̃L

+m2
q +Dq,Lm

2
Z cos 2β −mq

(
Aq + µ

{
cot β
tan β

})
−mq

(
Aq + µ

{
cot β
tan β

})
m2
q̃R

+m2
q +Dq,Rm

2
Z cos 2β

 (2.34)

receives several contributions, which we now discuss. The LL and RR entries contain the
corresponding soft SUSY-breaking masses, the quark mass (which is generated through
EW SSB as in the SM) and a contribution stemming from the EW (hypercharge) D-
term quartic interaction with two Higgs fields taking their VEV’s, with coefficients given
respectively by

Dq,L = I3,q −Qq sin2 θW , Dq,R = Qq sin2 θW , (2.35)
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φ gφu gφd

h cosα/ sin β − sinα/ cos β
H sinα/ sin β cosα/ cos β
A cot β tan β

Table 2.1: The couplings of CP-even and CP-odd Higgs mass eigenstates to up-type (u) and
down-type (d) quarks.

where I3,q = ±1/2 for up-type and down-type squark and Qq is the corresponding electric
charge (sin θW is the weak angle). The LR and RL entries are entirely due to the soft
trilinear coupling in (2.14) and the µ-term in the superpotential (2.9). The eigenvalues of
such a matrix are easily found to be

m2
q̃1,2

=
1

2

(
m2
q̃L

+m2
q̃R

+
Dq,L +Dq,R

2
m2

Z cos 2β

)
+m2

q

±
√

1

2

(
m2
q̃L
−m2

q̃R
+
Dq,L −Dq,R

2
m2

Z cos 2β

)2

+m2
q

(
Aq + µ

{
cot β
tan β

})2

,

(2.36)

where we adopt the convention that m2
q̃1
> m2

q̃2
. The mass eigenstates basis can be obtained

by a rotation of the chiral fermions superpartners:(
q̃1

q̃2

)
=

(
cθq sθq
−sθq cθq

)(
q̃L
q̃R

)
, (2.37)

where θq̃ is the squark mixing angle, given by

s2θq =

2mq

(
Aq + µ

{
cot β
tan β

})
m2
q̃1
−m2

q̃2

. (2.38)

Thus in general one expects that mixing can be large for third generation sfermions, stops
in particular, while in many scenarios the eigenstates q̃1,2 of the first two generation squarks
will roughly correspond to the interaction eigenstates q̃L,R.

Higgs-quark-quark vertices

The interaction of the neutral CP-even H0
1 (H0

2 ) Higgs boson with the quarks is analogous
to that in the SM, the only difference being a rescaling of the SM couplings by a factor
1/sβ (1/cβ). The CP-odd Higgs couples to the CP-odd quarks bilinears q̄γ5q. Up to a
rescaling factor, the CP-even Higgs-quark-quark interaction terms take the standard form
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(we consider only a generic up-down doublet and use the definition of the Higgs-quark-
quark Yukawa coupling hq given in (A.3))

LMSSM 3 −
gmu

2mW

ghu hūu−
gmd

2mW

ghd hd̄d

− gmu

2mW

gHu Hūu−
gmd

2mW

gHd Hd̄d , (2.39)

The couplings of the mass eigenstates h,H are obtained from those of H0
1 , H

0
2 with the

help of (2.30). The interaction with the CP-odd Higgs is given instead by

LMSSM 3 + i
gmu

2mW

gAu Aūγ5u+ i
gmd

2mW

gAd Ad̄γ5d , (2.40)

Explicit expressions for the couplings in (2.39)-(2.40) can be found in tab. 2.1.

Higgs-squark-squark vertices

The trilinear interactions of the CP-even and CP-odd Higgses with the squarks, analogously
to the case of the squark mass matrix, are more involved. They result from the many
D-term and F -term contributions to the scalar potential (2.2) and from the soft SUSY-
breaking trilinear vertices. We qualitatively describe their origin and refer the reader to
app. A for the explicit couplings.

F -term contributions consist in the sum of (the modulus squared of) derivatives of the
superpotential (2.9) with respect to one superfield. The relevant terms will thus contain
quartic interactions between two Higgses and two sfermions. When one of the two Higgses
is replaced by its VEV, a trilinear interaction is generated. In particular, the structure of
the superpotential is such that those terms will always couple L and R sfermions together.
Note that such interactions are proportional to the Yukawa couplings in the superpotential,
so that they will basically be important only for third generation sfermions. A-terms are
introduced in the Lagrangian in order to generate (soft) SUSY-breaking trilinear couplings
between the sfermions and the Higgses, with the same structure as the ones described
above but with couplings which in principle are arbitrary (see (2.14)). In our simplified
framework the AX are basically zero for the first two generations.

D-term contributions are instead generation-independent. The structure of the sfermion
bilinears which enter the D-term part of the scalar potential forces the resulting interaction
to couple either LL or RR sfermions together with two Higgses. Again, when one of the
two Higgses gets its VEV, a trilinear interaction is generated.

Quark-squark-gluino vertices

Let us now comment on the last ingredient needed for our computation. Quark-squark-
gluino vertices arise from the SU(3)c contribution to the first term in the last line of the
SUSY Lagrangian (2.1) and, as already noted, are genuinely supersymmetric interactions
whose coupling strength is fixed by SUSY and gauge invariance. Note that in the mass
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eigenstates basis the couplings will involve the entries of the sfermion mixing matrix ap-
pearing in (2.37). What we want to highlight here is that these vertices generate diagrams
in which many different mass scales appear (quark, squark and gluino mass), which rep-
resents a complication if one pursues the exact evaluation of Feynman amplitudes. The
computational effort grows strongly when loop diagrams are considered, so that the evalua-
tion of two-loop contributions to gluon fusion represents a challenging task. The strategies
for tackling such a challenge will be the subject of part II of this thesis. In the next chapter
we will give some details about the process being studied.
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Chapter 3

Neutral MSSM Higgs production at
hadron colliders: gluon fusion at
NLO

The total cross section for neutral Higgs boson(s) production at hadron colliders is pre-
dicted to be extremely large both in the SM and the MSSM, e.g. O(100 pb) for a SM Higgs
at the LHC with

√
s = 14 TeV. An important task for Higgs phenomenology on the theory

side is the accurate determination of the cross sections, taking into account higher order
effects and aiming at having all the uncertainties well under control.

In sec. 3.1 we will give a brief overview on the mechanisms of SM and MSSM Higgs
production are hadron colliders. Then in sec. 3.2 we will concentrate on the gluon fusion
process, introducing the hadronic cross section for (pseudo)scalar production through gluon
fusion and then specializing to the cases of SM, scalar MSSM and pseudoscalar MSSM
Higgs production. In each case we will recall the leading order (LO) cross section and
discuss the structure of the form factors which encode the one- and two-loop contributions
to the process. Explicit, original results for the two-loop virtual form factors for scalar and
pseudoscalar MSSM Higgs production, will be presented in chaps. 7 and 8.

3.1 Main production mechanisms at hadron colliders

Neutral Higgs bosons phenomenology in the MSSM can in principle differ considerably
from the SM case. In particular, the large number of couplings in the model and the
richer spectrum of the Higgs sector (e.g. no pseudoscalar Higgs is present in the SM) have
as a consequence that the couplings involved in the production/decay of a MSSM Higgs
boson may be much different from those in the SM. Another complication may arise in CP
violating extensions of the MSSM, where h,H,A mixing must be taken into account. The
presence of the additional SUSY particle spectrum can significantly influence production
and decay processes. Several production mechanisms, like the production in association
with SUSY particles or in the decay of SUSY particles (or even of heavier Higgs particles),
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Figure 3.1: Parton level processes for MSSM Higgs production at hadron colliders: gluon
fusion gg → h,H,A 3.1a, vector-boson fusion qq → qqV ∗V ∗ → qqh, qqH 3.1b, Higgs-strahlung
qq̄ → V ∗ → hV,HV 3.1c and the associated production gg → QQ̄h,QQ̄H 3.1d. Diagrams drawn
with Jaxodraw [109]

can contribute in some regions of the MSSM parameter space. Nevertheless, if the SUSY
particles are heavy enough that these processes are kinematically forbidden, the main
production and decay mechanisms of Higgs bosons at hadron colliders are basically the
same as in the SM. Moreover, as already illustrated in chap. 2, there is also the possibility
(“decoupling limit”, roughly for mA & 2mZ) that the light neutral CP-even MSSM Higgs
boson mimics the SM Higgs boson.

A complete survey of the production mechanisms relevant for hadron colliders searches
is beyond the scope of this thesis. Below we will only summarize the main features of the
most important production channels and highlight some differences between the SM and
the MSSM case.

The main SM Higgs production mechanisms at hadron colliders are those involving
the Higgs couplings to the heavy particles, namely the massive vector bosons, the top
quark and, to a lesser extent, the bottom quark. The gluon fusion channel, although the
Higgs-gluon-gluon coupling originates at one-loop, is strongly enhanced by the high gluon
luminosity at hadron colliders and by the high sensitivity of the Higgs coupling to the mass
of the particle running in the loop. The parton level processes contributing to the above
mechanisms are shown in fig. 3.1. Figure 3.2 shows the SM cross section for the main
channels at the LHC for the two values of the center of mass (c.o.m.) energy,

√
s = 7 TeV

(the current LHC c.o.m. energy) and
√
s = 14 TeV (LHC design c.o.m. energy). Figures 3.3

and 3.4 show the same cross sections in the MSSM case (
√
s = 14 TeV only), respectively

for scalar and pseudoscalar Higgs production, considering only the QCD corrections and
focusing on two representative scenarios, tan β = 3 and tan β = 30. For a comprehensive
and rather recent review of Higgs phenomenology, respectively in the SM and in the MSSM,
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Figure 3.2: SM Higgs boson production cross section at the LHC as a function of mHSM
for

(a)
√
s = 7 TeV and (b)

√
s = 14 TeV. Each curve represents the contribution of the different

channels. The most important channel is gluon fusion. The curves below (in order of importance),
show the cross section for vector boson fusion, associated production with W and Z, associated
production with heavy quarks (tt̄ pairs, in particular). Figure from ref. [110].

see e.g. refs. [111] and [112].

Gluon fusion

The name gluon fusion refers to the partonic process gg → φ. As already noted, despite
the fact that the Higgs-gluon-gluon coupling is absent at tree level and therefore only
arises as a loop suppressed effect, the large mass of the heavy particles the Higgs couples
to and the high gluon luminosity at hadron colliders renders the gluon fusion channel the
prominent production mechanism. Moreover, since the process starts at one-loop, it is
in principle sensitive to loops of non SM particles. Actually, in the MSSM, the squarks
contribution scales as the ratio m2

q/m
2
q̃1

, so the squarks contribute only if they are not too
heavy (masses less than, say, 500 GeV). Another interesting effect arises in the MSSM,
in which the relative contribution of top and bottom quarks is weighted by tan β as we
will see in sec. 3.2.3. In particular, the bottom contribution is enhanced for large values of
tan β despite mb � mt. This channel will be the object of our study in this work in the
following chapters, both in the case of scalar and pseudoscalar Higgs. For more details on
the hadronic cross section and a discussion of the NLO contributions see sec. 3.2 below.

Vector boson fusion

Vector boson fusion (VBF) is the partonic process qq → V V ∗ → qq + φ. The A boson
cannot be produced in VBF at tree level if we assume a CP conserving MSSM. It is the
second important channel in the SM, which becomes competitive with gluon fusion for
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Figure 3.3: Neutral (φ = h,H) MSSM Higgs production cross sections at the LHC (
√
s =

14 TeV) for gluon fusion gg → φ, vector-boson fusion qq → qqV V → qqφ, Higgs-strahlung
qq̄ → V ∗ → φV and the associated production gg, qq̄ → bb̄φ/tt̄φ, including all known QCD
corrections. Figure from ref.[113]

large Higgs mass. In the MSSM it is an important channel in the decoupling (antidecou-
pling) limit, mA & 2mZ (mA . 2mZ), where the h (H) boson becomes SM-like. In other
regions of the parameter space, the cross section is typically suppressed by the structure
of SUSY couplings. Still, it may provide essential information of the Higgs coupling to the
electroweak vector bosons.

Associated production with V = W,Z

Associated production together with the massive vector bosons, or Higgsstrahlung, qq̄ →
V ∗ → φ+V (V = W,Z) is another process which can be important in the (anti)decoupling
limit. Againt, the A boson cannot be produced in association with W,Z bosons at tree
level if we assume a CP conserving MSSM. The cross section is considereably smaller than
that for the gluon fusion channel, but the advantage is that one can use the clean signature
of the leptonic decays of the vector bosons in order to discriminate Higgs events, which
come with a huge QCD background. We note that this process (V = Z) is important also
at e+e− colliders.

Associated production with heavy quarks

The process gg, qq̄ → φ + QQ̄, where Q is a heavy quark, is important for low values of
the Higgs mass. Top quarks decay almost exclusively in W and b quarks, which produce
b-jets. It is clear that a perfect understanding of the QCD background and of the b-
tagging procedures is essential if one wants to disentangle the signal for this process from
the background. On the other hand, it is worth noting that this process would allow to
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Figure 3.4: Neutral (φ = A) MSSM Higgs production cross sections at the LHC (
√
s = 14 TeV)

for gluon fusion gg → A and the associated production gg, qq̄ → bb̄A/tt̄A, including all known
QCD corrections. Figure from ref.[113]

measure the Higgs-Q-Q coupling properties. Concerning the MSSM, a last comment is in
order: as shown in figs. 3.3b and 3.4b, for large values of tan β the case Q = b becomes
dominant, despite the smallness of mb.

3.2 Hadronic cross section for gg → φ (φ = h,H,A)

In this section we recall for completeness some general results on scalar and pseudoscalar
Higgs boson production via gluon fusion. The hadronic cross section at c.o.m. energy

√
s

can be written as (φ = h,H,A)

σ(h1+h2 → φ+X) =
∑
a,b

∫ 1

0

dx1dx2 fa,h1(x1, µF ) fb,h2(x2, µF )

∫ 1

0

dz δ

(
z − τφ

x1x2

)
σ̂ab(z) ,

(3.1)
where τφ = m2

φ/s, µF is the factorization scale, fa,hi(x, µF ) the parton density of the
colliding hadron hi for the parton of type a (for a = g, q, q̄), and σ̂ab the cross section for
the partonic subprocess ab→ φ+X at the center-of-mass energy ŝ = x1 x2 s = m2

φ/z. The
partonic cross section can be written in terms of the LO contribution σ(0) and a coefficient
function Gab(z):

σ̂ab(z) = σ(0) z Gab(z) . (3.2)

The LO cross section can always be written as

σ(0) =
Gµ α

2
s(µR)

128
√

2π

∣∣H1`
φ

∣∣2 , (3.3)
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where Gµ is the muon decay constant, αs(µR) is the strong gauge coupling expressed in
the MS renormalization scheme at the scale µR and H1`

φ is the one-loop contribution to the
φ-gluon-gluon form factor Hφ, which up to and including NLO terms can be decomposed
as

Hφ = H1`
φ +

αs
π
H2`

φ +O(α2
s) . (3.4)

In the same spirit, the coefficient function Gab(z) in eq. (3.2) can be decomposed as

Gab(z) = G
(0)
ab (z) +

αs
π
G

(1)
ab (z) +O(α2

s) , (3.5)

with the LO contribution given only by the gluon-fusion channel:

G
(0)
ab (z) = δ(1− z) δag δbg . (3.6)

The NLO terms include, besides the gg channel, also the one-loop induced processes
gq → qφ and qq̄ → gφ:

G(1)
gg (z) = δ(1− z)

[
CA

π2

3
+ β0 ln

(
µ2
R

µ2
F

)
+ 2 Re

(H2`
φ

H1`
φ

)]
+ Pgg(z) ln

(
ŝ

µ2
F

)
+ CA

4

z
(1− z + z2)2D1(z) + CARφ

gg , (3.7)

G
(1)
qq̄ (z) = Rφ

qq̄ , G(1)
qg (z) = Pgq(z)

[
ln(1− z) +

1

2
ln

(
ŝ

µ2
F

)]
+Rφ

qg , (3.8)

where the LO Altarelli-Parisi splitting functions are

Pgg(z) = 2CA

[
D0(z) +

1

z
− 2 + z(1− z)

]
, (3.9)

Pgq(z) = CF
1 + (1− z)2

z
. (3.10)

In the equations above, CA = Nc and CF = (N2
c − 1)/(2Nc) (Nc being the number of

colors), β0 = (11CA − 2Nf )/6 (Nf being the number of active flavors) is the one-loop
β-function of the strong coupling in the SM, and

Di(z) =

[
lni(1− z)

1− z

]
+

, (3.11)

where the plus prescription is defined by∫ 1

0

dxf(x)g(x)+ =

∫ 1

0

dx [f(x)− f(1)] g(x) . (3.12)

The gg-channel contribution, eq. (3.7), involves two-loop virtual corrections to gg → φ
and one-loop real corrections from gg → φg. The former, regularized by the infrared-
singular part of the real emission cross section, are displayed in the first line of eq. (3.7).
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The second line contains the non-singular contribution from the real gluon emission in
the gluon fusion process. The latter contribution as well as the ones due to the qq̄ → φg
annihilation channel and the quark-gluon scattering channel, eq. (3.8), are obtained from
one-loop diagrams where only quarks (or squarks, in the MSSM) circulate in the loop.

In the following sections we will specialize (3.3) to the cases of SM (for completeness),
scalar MSSM and pseudoscalar MSSM Higgs production, by giving the explicit expression
of the form factor H1`

φ in σ(0) and discussing the origin of the NLO contributions.

3.2.1 SM Higgs production (gg → HSM)

We will specialize here to the SM Higgs boson φ = HSM. We are interested in the QCD
corrections to the gluon fusion process, so we will focus on the contribution due to quarks.
As well known, the coupling of HSM to fermions ff̄ is proportional to mf/v, where mf is
the fermion mass and v is the vacuum expectation value of the (real part of the down-type
component of the) Higgs doublet.

Neglecting the contributions of the first two generations by virtue of the smallness of
their Higgs coupling, the SM one-loop contribution to the form factor (3.4) which enters
(3.3) can be written as

H1`
HSM

= TF
[
G1`

1/2(τt) + G1`
1/2(τb)

]
, (3.13)

where TF = 1/2 is a color factor and τq = 4m2
q/m

2
HSM

. The function G1`
1/2(τ) originates

from the quark-loop diagram, which represents the sole contribution at LO, and is defined
as:

G1`
1/2(τ) = −2 τ

[
1− 1− τ

4
ln2

(√
1− τ − 1√
1− τ + 1

)]
. (3.14)

The analytic continuation is obtained with the replacement m2
HSM
→ m2

HSM
+ iε . It is

interesting to consider the function G1`
1/2 in the limit in which the Higgs boson mass is

much smaller or much larger than the mass of the particle running in the loop. In the first
case (τ � 1), which applies to the top contributions if the Higgs is light as suggested by
the EW global fits (as discussed in sec. 1.1),

G1`
1/2(τ)→ −4

3
− 14

45 τ
+ O(τ−2) , (3.15)

while in the opposite case (τ � 1), which is relevant for the bottom quark,

G1`
1/2(τ)→ −2 τ +

τ

2
ln2

(−4

τ

)
+ O(τ 2) . (3.16)

The crucial remark is that if the quark running in the loop is much heavier than the Higgs
boson, its contribution goes to a constant, while if the quark running in the loop is much
lighter than the Higgs boson, its contribution is suppressed by one power of τ . For the
actual hierarchy between mb and mHSM

(given the known SM Higgs bounds, see sec. 1.1),
in the SM the bottom contribution can be safely neglected.
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In this approximation, two-loop contributions to the form factor arise in the SM only
from diagrams with virtual top quarks and gluons. If the Higgs is below the top-pair pro-
duction thresold, it has been shown in ref. [39] that the approximation of keeping only the
zeroth-order in τ in the two-loop top contributions to the cross section allows to reproduce
the full result with an accuracy of a few percent. The important advantage of such an
approximation is that it allows for compact analytic results that can be implemented in
computer codes for a fast and efficient evaluation of the Higgs production cross section.

The NLO real corrections have been first evaluated in ref. [114] in the τ � 1 limit
and then in ref. [115] also in the τ � 1 limit. General, exact expressions for the functions
Rφ
gg, Rφ

qq̄, Rφ
qg entering (3.7) and (3.8) for φ = HSM can be found in ref. [37] where, together

with an independent evaluation of the fermion loop contributions, also new results for the
contributions due to a colored massive scalar loop were presented.

3.2.2 Scalar MSSM Higgs production (gg → h,H)

Concerning the MSSM Higgs bosons, we consider now the production of the CP-even Higgs
bosons, φ = h,H, via gluon fusion. In this case the one-loop term of (3.4), which enters
the LO cross section (3.3), can be written as

H1`
h = TF

(
− sinαH1`

1 + cosαH1`
2

)
, (3.17)

H1`
H = TF

(
cosαH1`

1 + sinαH1`
2

)
, (3.18)

where α is the mixing angle in the CP-even Higgs sector of the MSSM. Hi (i = 1, 2) are
the form factors for the coupling of the neutral, CP-even component of the Higgs doublet
Hi with two gluons, which we decompose in one- and two-loop parts as

Hi = H1`
i +

αs
π
H2`
i +O(α2

s) . (3.19)

The one-loop form factors H1`
1 and H1`

2 contain contributions from diagrams involving
quarks or squarks. The two-loop form factors H2`

1 and H2`
2 contain contributions from

diagrams involving quarks, squarks, gluons and gluinos. Focusing on the contributions
involving the third-generation quarks and squarks, and exploiting the structure of the
Higgs-quark-quark and Higgs-squark-squark couplings, the form factors Hi can be written
to all orders in the strong interactions as [34]

H1 = λt
[
mt µ s2θt Ft +m2

Z s2βDt

]
+ λb

[
mbAb s2θb Fb + 2m2

b Gb + 2m2
Z c

2
βDb

]
, (3.20)

H2 = λb
[
mb µ s2θb Fb −m2

Z s2βDb

]
+ λt

[
mtAt s2θt Ft + 2m2

t Gt − 2m2
Z s

2
βDt

]
. (3.21)

In the equations above λt = 1/ sin β and λb = 1/ cos β and the parameters entering the
equations above have been defined in chap. 2. Note that Aq (for q = t, b) are the soft
SUSY-breaking Higgs-squark-squark couplings in the simplified framework described at
the end of sec. 2.2). The functions Fq and Gq appearing in eqs. (3.20) and (3.21) denote
the contributions controlled by the third-generation Yukawa and A-term couplings, while
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Dq denotes the contribution controlled by the electroweak, D-term-induced Higgs-squark-
squark couplings. The latter can be decomposed as

Dq =
I3q

2
G̃q + c2θq̃

(
I3q

2
−Qq s

2
θW

)
F̃q , (3.22)

where I3q and Qq denote respectively the third component of the electroweak isospin and
the electric charge of the quark q, while θW is the weak angle.
The one-loop functions entering H1`

1 and H1`
2 are:

F 1`
q = F̃ 1`

q =
1

2

[
1

m2
q̃1

G1`
0 (τq̃1)−

1

m2
q̃2

G1`
0 (τq̃2)

]
, (3.23)

G1`
q =

1

2

[
1

m2
q̃1

G1`
0 (τq̃1) +

1

m2
q̃2

G1`
0 (τq̃2) +

1

m2
q

G1`
1/2(τq)

]
, (3.24)

G̃1`
q =

1

2

[
1

m2
q̃1

G1`
0 (τq̃1) +

1

m2
q̃2

G1`
0 (τq̃2)

]
, (3.25)

where τk ≡ 4m2
k/m

2
φ, the function G1`

0 reads

G1`
0 (τ) = τ

[
1 +

τ

4
ln2

(√
1− τ − 1√
1− τ + 1

)]
, (3.26)

and G1`
1/2 has been defined in (3.14). As usual, the analytic continuation is obtained with

the replacement m2
φ → m2

φ + iε. We recall the behavior of G1`
0 in the limit in which mφ is

much smaller or much larger than the mass of the particle running in the loop. In the first
case, i.e. τ � 1,

G1`
0 → −

1

3
− 8

45 τ
+ O(τ−2) , (3.27)

while in the opposite case, i.e. τ � 1,

G1`
0 → τ + O(τ 2) , (3.28)

The two-loop top/stop contributions to the form factors H2`
1,2 entering eq. (3.7) are

fully under control when the mass ratios between the φ boson and the particles running in
the loops allow for the evaluation of the relevant diagrams via a Taylor expansion in mφ.
In most of the MSSM parameter space the lightest Higgs h is sufficiently light. On the
other hand, the H boson is light enough only in specific regions of the parameter space.
This scenario has been extensively studied in the literature (see e.g. [34] and the references
therein) and it was also shown that the zero-order term in the series is already a very good
approximation of the full result, as in the SM. Even if the H boson is moderately heavy
(but still below the top-pair production threshold), neglecting the first-order contributions
proves to be a still acceptable, although worse, approximation.

The case in which the Higgs mass is close to or above the first physical threshold is
completely different. In general, Taylor-expanded evaluations of the relevant diagrams are
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no longer viable, due to the presence of the light particles in the loops. Thus, the diagrams
must be evaluated either exactly or via an asymptotic expansion in the large masses. An
exact evaluation of the two-loop quark-squark-gluino diagrams is well beyond our current
possibilities due to the presence of a large number of different mass scales (up to four
different particles running in the loops and the center of mass energy s = mφ). The two-
loop bottom-sbottom-gluino contributions have been considered (for in ref. [42] (and then
confirmed in ref. [43]), where compact analytic formulae were computed via an asymptotic
expansion in the large supersymmetric particle masses valid up to and including terms
of O(m2

b/m
2
φ), O(mb/M) and O(m2

Z/M
2) (assuming that the Higgs is below the top-pair

production threshold).

In the case of top/stop contributions to the production of a Higgs which is not too far
from the top-pair threshold, an asymptotic expansion in the large M should give a more
accurate determination of the NLO cross section than a Taylor expansion in the small
momentum. No such results have been made available so far. In chap. 7 we present our
result for the top/stop contribution, obtained by combining earlier results in the litera-
ture with a new calculation of the top-stop-gluino diagrams obtained via an asymptotic
expansion valid up to and including O(m2

φ/M
2), O(m2

t/M
2) and O(m2

Z/M
2), where M is

a superparticle mass and no specific hierarchy between m2
φ and m2

t is assumed.

Concerning the NLO one-loop real corrections, these arise from diagrams involving
either a fermion or a squark loop. General expressions for the functions Rφ

gg, Rφ

qq̄, Rφ
qg,

describing both contributions for general Higgs-fermion-fermion and Higgs-scalar-scalar
couplings and valid for arbitrary values of the Higgs mass, can be found in ref. [37]. Such
formulae have been specialized to the case of relatively light CP-even MSSM Higgs pro-
duction in ref. [42], where they are provided in a compact form suitable for an efficient
numerical evaluation. There the contributions due to top, stop and sbottom loops is eval-
uated in the approximation of neglecting the Higgs mass, while the contribution due to
the bottom loop is kept exact. Analogous formulae can be derived in our approximation
by suitably combining and expanding the general results of ref. [37].

3.2.3 Pseudoscalar MSSM Higgs production (gg → A)

Here we will discuss the case of pseudoscalar Higgs boson production through gluon fu-
sion (φ = A). The form factor for the coupling of the pseudoscalar A with two gluons
decomposes as usual in one- and two-loop parts as

HA = H1`
A +

αs
π
H2`

A + O(α2
s) . (3.29)

Due to the structure of the pseudoscalar coupling to squarks (see sec. 8.3), only diagrams
involving top or bottom quarks contribute to the one-loop form factor H1`

A . The latter can
be decomposed into top and bottom contributions as

H1`
A = TF

[
cot βK1`(τt) + tan βK1`(τb)

]
, (3.30)
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where τq = 4m2
q/m

2
A and

K1`(τ) =
τ

2
ln2

(√
1− τ − 1√
1− τ + 1

)
. (3.31)

We recall the behavior of K1` in the limit in which the pseudoscalar mass is much smaller
or much larger than twice the mass of the particle running in the loop. In the first case,
i.e. τ � 1, which may apply to the top contribution if mA is relatively small,

K1`(τ) −→ −2− 2

3τ
+ O(τ−2) , (3.32)

while in the opposite case, i.e. τ � 1, which is relevant for the bottom contribution,

K1`(τ) −→ τ

2
ln2

(−4

τ

)
+ O(τ 2) . (3.33)

The analytic continuation ofK1`(τ) corresponds to the replacement m2
A → m2

A+iε , thus the
imaginary part of eq. (3.33) can be recovered via the replacement ln(−4/τ)→ ln(4/τ)−iπ.

The two-loop form factor H2`
A entering the one-loop/two-loop interference term in the

first line of (3.7) receives contributions from diagrams involving quarks and gluons, as
well as from diagrams involving quarks, squarks and gluinos. The contributions from two-
loop diagrams with quarks and gluons valid for any Higgs mass were first computed in
ref. [4], and later confirmed in ref. [36]. As a consequence of the A-squark-squark coupling
structure, no two-loop contributions with squarks and gluons are allowed. The contribution
to H2`

A arising from top-stop-gluino diagrams was computed in ref. [51] in the limit of
vanishing mA but the analytic result for generic values of the stop and gluino masses
was deemed too voluminous to be explicitly displayed and was instead made available
in the Fortran code evalcsusy.f [32, 33]. No genuine two-loop calculation has been
made available so far for the contribution arising from quark-squark-gluino diagrams when
such approximation cannot be done, that is when mA is above or not too far from the
threshold for quark-pair production. Also, no compact analtytic formulae for the case
of vanishing mA have ever been made available. Concerning the real NLO contributions,
general expressions for the functions RA

gg, RA
qq̄, RA

qg entering the coefficient functions (3.7)-
(3.8) were first computed in ref. [4] (see also ref. [116]). In app. C.1 we present our
independent results. We compared our formulae with the corresponding results in ref. [4]
and found full agreement.

In chap. 8 we present our original results for the two-loop virtual contributions. First,
we have computed the two-loop diagrams via a Taylor expansion in the small external
momenta, up to and including terms of O(m2

A/m
2
t ) and O(m2

A/M
2). We provide compact

analytic formulae for the terms of order zero in mA and investigate the effect of the first-
order terms. Then, we have also evaluated the same two-loop virtual contributions via an
asymptotic espansion in the large supersymmetric masses valid up to and including terms
of O(m2

A/M
2) and O(m2

t/M
2), without assuming any particular hierarchy between m2

A and
m2
t . These results are expected to be a better approximation of the full result when mA
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is near threshold. As a byproduct, we obtained formulae for the bottom-sbottom-gluino
contributions through the obvious replacements of masses and couplings and a further
expansion in the small ratio m2

b/m
2
A. In particular, we provide results valid up to and

including O(m2
b/m

2
A), O(mb/M), that is at the same expansion order as the ones for the

scalar Higgs production computed in ref. [34] (where of course mA is replaced by mφ,
φ = h,H).
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Chapter 4

Regularization and Renormalization
of loop integrals

In this chapter we will discuss two equivalent strategies for overcoming the ultraviolet (UV)
and infrared (IR) divergences of loop integrals.

In Dimensional Regularization (DREG) the integrals are computed in d-dimensional
spacetime, where d < 4 in such a way that the integral converges in the UV and can
be evaluated. The 4-dimensional result is then recovered by analytic continuation. It is
interesting to note that also IR divergences can be regularized in DREG.

Pauli-Villars regularization (PVREG) is instead based on a systematic subtraction
procedure which renders each UV divergent integral finite, while keeping d = 4. In this
case a suitable treatment of IR divergences is needed.

The chapter is structured as follows. In sec. 4.1 and sec. 4.2 we will present respectively
DREG and PVREG, discussing the issue of γ5 and the violation of SUSY Ward identities
in DREG and the regularization of IR divergences. In sec. 4.3 we will briefly comment on
the renormalization procedure we followed in our computation.

4.1 Dimensional Regularization (DREG)

The Dimensional Regularization (DREG) scheme introduced in refs. [55, 117–119] (see
[120] for a systematic and formal development) represents an extremely convenient means
to regulate the UV divergences of perturbation theory, two important features being its
manifest Lorentz invariance and the fact the it does respect all the symmetries (hence
the Ward identies) in non-abelian gauge theories. As we will see below, IR divergences
can be regularized with basically the same strategy. DREG represents thus a very efficient
regularization scheme and has actually become the de facto standard in loop computations.
Below we will discuss the two main drawbacks of DREG, namely the treatment of γ5 in
chiral theories, which can be cumbersome, and the fact that it breaks SUSY Ward identities.
Let us now recall some basic facts about DREG.

In DREG the loop integrals are computed in d-dimensional spacetime, where d = 4−2ε
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and is chosen sufficiently smaller than 4 in such a way that the integral converges in the
UV and can be evaluated. The 4-dimensional result is recovered by analytic continuation
and the UV divergences show up as poles in the variable ε, irrespectively of them being
quadratic, linear or logarithmic. Consider for instance the integral∫

d4p

(2π4)

1

[p2 −∆ + iε]α
−→ µ4−d

∫
ddp

(2πd)

1

[p2 −∆ + iε]α
≡ I(d)

α (∆) . (4.1)

In d = 4 the above integral is quadratically (logarithmically) divergent for α = 1 (α = 2).
We note that in d-dimensions we must introduce an arbitrary mass scale µ in order to
preserve the original mass dimension of the integral. Dimensional regularization is most
easily performed on Wick-rotated integrals: consider the p0 integral as a contour integral
in the complex p0 plane. The location of the poles, crucially determined by the Feynman
prescription +iε, and the fact that the integrand falls off sufficiently rapidly at large p0

for a convenient choice of d (for a given α), allow us to effectively rotate the contour
counterclockwise by π/2 without hitting any pole. With the replacements

p0 = ip0
E , ~p = ~pE , (4.2)

since now −p2 = +p2
E = (p0)2 + |~p|2, we obtain the Euclidean version of our original

Minkowskian integral which can be evaluated in spherical coordinates with standard tech-
niques:

I(d)
α (∆) = µ4−d

∫
Rd

ddpE
[−p2

E −∆ + iε]α
(4.3)

= µ4−d (−1)α
∫

Ωd

dΩd

∫ ∞
0

d|p| |p|d−1

[|p|2 + ∆− iε]α (4.4)

= µ4−d i(−1)α

(4π)d/2
Γ(α− d/2)

Γ(α)

(
1

∆− iε

)α−d/2
, (4.5)

where Ωd is the d-dimensional solid angle and Γ(z) is the Euler Gamma function

Γ(z) =

∫ ∞
0

dt tz−1 e−t , (4.6)

which has the property Γ(n) = (n − 1)! for n = 1, 2, . . .. The function Γ(z) is analytic
everywhere in the complex plane except for non-positive integer values of its argument,
z = 0,−1,−2, . . ., where it develops simple poles. Its Laurent expansion around z = 0
reads

Γ(z) =
1

z
− γ +O(z) , (4.7)

where γE ' 0.5772 is the Euler-Mascheroni constant. The expansion around all the other
poles can be obtained by using the above equation and exploiting the property

(z − 1)Γ(z − 1) = Γ(z) . (4.8)
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The +iε prescription in (4.3) is crucial for the determination of the branch of the exponen-
tial function involving ∆ in case ∆ < 0. In that case the integral acquires a non vanishing
imaginary part, which implies a discontinuty of the related S-matrix elements across the
cut, as well known from the optical theorem. As a concrete example, loop integrals often
contain logarithms which can have negative arguments such as ln(−s − iε) = ln(s) − iπ,
where the sign of the iε part determines that of the imaginary part.

Once the integral has been performed (for some suitable value of d), all the ingredients
are available for a straightforward analytic continuation of the result to arbitrary values
of d. In particular we are interested to the limit d → 4, which we perform by writing
d = 4− 2ε and expanding in the small quantity ε. The UV divergences thus stem from the
analytic behaviour of the Γ function and appear as poles in ε. For instance, in the case
α = 1, one obtains

I4−2ε
1 (∆) = ∆

(
1

ε
− γE + ln 4π − ln

(
∆− iε
µ2

)
+ 1

)
+O(ε) . (4.9)

4.1.1 DREG and γ5

Up to now we have discussed just scalar integrals, but in a theory of particle interactions
involving fermions and vector bosons other objects need special care when considered
in dimension different than four. In particular one has to define what is meant by d-
dimensional space when d is not integer, and what the vector space of d-vectors looks like.
As discussed in [120], it actually turns out that in order to guarantee the existence and the
uniqueness, besides the desired properties, of the integration operation, such space must
be an infinite dimensional vector space. We will not dwell on these technical details, but
let us just note that a consistent definition of the metric tensor such that gµµ = d can be
devised.

We would rather discuss a subtle point related to the definition of the Dirac γ5 ma-
trix in this infinite dimensional space, since this matrix is crucial the calculation of the
cross section for the pseudoscalar Higgs production. It is tempting to assume the direct
generalization to d dimensions of the equations defining the Dirac algebra

{γµ, γν} = 2gµν

{γµ, γ5} = 0
γ2

5 = 1

 for µ = 0, 1, . . . , d , (4.10)

which is commonly referred to as Naive Dimensional Regularization (NDR). As observed
already by ’t Hooft and Veltman [55], this prescription is legitimate only in the case of
theories with vector-like gauge symmetries like QCD. In particular an inconsistency arises
when the theory under consideration has chiral gauge symmetries like the SM or the MSSM.
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Following [120], let us consider the trace of a single γ5:

dTr (γ5) = Tr (γ5γαγ
α) (γαγ

α = 1/2{γα, γα} = gαα = d)

= Tr (γαγ5γα) (ciclycity)

= −Tr (γ5γαγ
α) (anticommutation)

= −dTr (γ5) , (4.11)

from which we deduce that, as in 4 dimensions, it must hold Tr (γ5) = 0 since our result is
required to be a meromorphic function of the spacetime dimension d. Now let us perform
analogous manipulations on the following trace:

dTr (γ5γ
µγν) = Tr (γ5γ

µγνγαγ
α)

= Tr (γαγ5γ
µγνγα)

= −Tr (γ5γαγ
µγνγα)

= −2gµα Tr (γ5γ
νγα) + 2gµν Tr (γ5γ

νγν)− dTr (γ5γ
µγν)

= −2 Tr (γ5) {γµ, γν}+ (4− d) Tr (γ5γ
µγν)

= (4− d) Tr (γ5γ
µγν) , (4.12)

where in the last step we used the identity Tr (γ5) = 0 derived above. Thus we see that
also Tr

(
γ5γ

αγβ
)

must vanish and again we recover the 4 dimensonal result. We can now
check what happens to the trace of a γ5 together with four other Dirac matrices, which in
4-dimensions obeys the identity

Tr (γ5γ
µγνγργσ) = 4iεµνρσ , (4.13)

involving the (intrinsincally 4-dimensional) totally antisymmetric Levi-Civita tensor, de-
fined as

εµνρσ =


+1 if (µνρσ) is an even permutations of (0123) ,

−1 if (µνρσ) is an odd permutations of (0123) ,

0 otherwise .

(4.14)

In d-dimensions let us consider, as in [121],

Tr

(
4∏
j=0

γµjγ5γ
α

)
= Tr

(
4∏
j=0

γµj{γ5, γ
α}
)
− 2

4∑
i=0

(−1)igαµi Tr

(
4∏

j=0, j 6=i

γµjγ5

)
. (4.15)

Contracting with gαµ0 one obtains

2 (d− 4) Tr

(
4∏
j=1

γµjγ5

)
+ Tr

(
4∏
j=1

γµjγα {γ5, γ
α}
)

= 0 . (4.16)
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Therefore it is clear that, if the left hand side must vanish for any d and we insist that γ5

anticommutes with γµ for any µ (so that chiral fields remain well defined in chiral gauge
theories and no Ward identity is violated), the trace of γ5 together with four Dirac matrices
must vanish as well. This is in sharp contrast with the well known 4-dimensional result.
Moreover, it poses a serious problem in the computation of amplitudes involving genuinely
chiral couplings, just as in the case of the triangle anomaly and the process gg → A studied
in this thesis.

Therefore, if one wishes to employ DREG as a regulator, a choice has to be made: either
the anticommutativity of γ5 with γµ for any µ is abandoned, or one must separately treat
the integrals involving traces of Dirac matrices with an odd number of γ5. In particular,
one has to restore the correct value of the axial-vector current anomaly.

The former solution, proposed by ’t Hooft and Veltman [55] and Breitenlohner and
Maison [122] (HVBM scheme), consists in separately treating the first four components
µ = 0, 1, 2, 3 of the d-dimensional vectors. In the four dimensional subspace both the anti-
commutativity of γ5 and the non vanishing of γ5-odd traces can be retained. In particular,
the definition of εµνρσ (4.14), which is intrinsically 4-dimensional, still makes sense in this
subspace. One can then use it to write a concrete expression for γ5, namely

γ5 = iγ1γ2γ3γ4 =
i

4!
εµνρσγ

µγνγργσ . (4.17)

In the complementary space, one trades the anti -commutativity of γ5 with commutativ-
ity. This separation is explicitly not Lorentz invariant on the full d-dimensional space,
since the first four components are picked out as special. In particular, since γ5 does not
commute with all the γµ, chirality is broken and so are the Ward-Takahashi identities of
chiral gauge theories. These spurious anomalies would spoil renormalizability, which is
indeed guaranteed by the Ward-Takahashi identities. It is thus necessary to restore them
“by hand”, order by order in perturbation theory, by the introduction of extra finite coun-
terterms. On the other hand, physics is actually confined to the first four dimensions, so
one would expect that when the regularator is removed (and the WT identities have been
fixed), the correct result is recovered. As an example, the correct result for the axial-vector
current anomaly is obtained. A main practical drawback of this approach is that one has
actually to split every γµ in the sum of two orthogonal Dirac matrices, living in the two
complementary subspaces. The same has to be done with the loop momenta. It is not
hard to imagine the algebraic complications which are therefore introduced in multiloop
computations.We will thus not adopt this procedure.

The more efficient approach that we will follow in the computation of the NLO cor-
rections to the gg → A cross section is the one advocated by Larin [56]. The idea is to
write γ5 as in (4.17), where the Levi-Civita tensor is a 4-dimensional object kept out of
the renormalization operation. The crucial difference with the strategy outlined above is
that the indices (µνρσ) are treated as d-dimensional. Anticommutativity of γ5 with the
d-dimensional γµ is clearly lost when γ5 is written in this form. When the singlet axial
current (just like in the case of gg → A) is involved, it can be restored by introducing an
extra finite counterterm, fixed by the requirement that the one-loop character of the axial
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anomaly (Adler-Bardeen theorem [123]) is preserved. Explicitly, if ZMS
Aqq is the renormal-

ization constant of the vertex Aqq in the MS scheme, the full renormalization constant of
such vertex reads

ZAqq = ZMS
Aqq Z

fin
Aqq , (4.18)

where
Zfin
Aqq = 1 + 2CF

αS
π
. (4.19)

One further simplification can be made: products of Levi-Civita tensors can be represented
in a standard way in terms of the determinant of the 4-dimensional metric tensor:

εµνρσεµ′ν′ρ′σ′ = g
[µ
[µ′ g

ν
ν′ g

ρ
ρ′ g

σ ]
σ′] , (4.20)

where the square bracket denotes antisymmetrization. Nevertheless, since the renormalized
Agg vertex is finite, we can effectively consider the above metric tensors as d-dimensional
(which will add only irrelevant O(d − 4) terms to the renormalized vertex) and contract
them with the remaining vectors. In such a way one obtains a scalar expression exclusively
made of d-dimensional quantities.

As a last comment, when a fermion trace contains more than one γ5, before using (4.17),
we naively anticommute them past the Dirac matrices until either they are all eliminated
by the use of γ2

5 = 1 or only one is left.

4.1.2 DREG and IR divergences

It is remarkable that DREG can be actually employed as a means for regularizing both the
UV and the IR divergences. An important consequence is that also the IR regularization
is again both Lorentz and gauge invariant. This implies that all the Ward-Takahashi
identities are respected even in non-abelian gauge theories with massless particles and
renormalizability is not spoiled.

Let us first consider an integral which has no UV divergences but is singular in the IR,
e.g. (from here on the +iε prescription will be understood)∫

ddp

(2π)d
1

(p2)2(p2 −m2)
. (4.21)

In 4 dimensions this integral is manifestly UV convergent by power counting, but we see
that it is singular in the IR. In the integration region p ∼ 0 it behaves like∫

p∼0

ddp

(2π)d
1

(p2)2
∝
∫
p∼0

d|p|
(2π)d

|p|d−4

|p| , (4.22)

which is indeed logarithmically divergent if d = 4. On the other hand, it is also clear that
if d is chosen sufficiently greater than 4 (in this case d > 4 is enough), the integral is IR
convergent. Thus, as in the case of UV divergences, it can be unambiguously computed
and the result can be continued back to d = 4. IR divergences will again show up as poles
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in ε. In particular, each loop integration can give rise to a double IR pole (corresponding
to soft and collinear singularities) or to a single pole (corresponding to subleading collinear
singularities).

We are now in the condition to state that UV and IR divergences can be regularized
at the same time, with great calculational simplifications. One would object that that the
UV and the IR divergences are regularized by non-overlapping choices of d in the complex
plane (respectively d < 4 and d > 4). Nevertheless, for integrals that are singular in both
the UV and the IR, it sufficient to carefully split the integration region by introducing an
arbitrary separation scale. One can then regularize the UV and the IR singularities with
suitable, independent choices of d. The analytic continuation of the separate results to
arbitrary d guarantees that we can consistently combine them and we end up with the
desired result. As an example, let us consider the diagram∫

ddp

(2π)d
1

(p2)2
, (4.23)

which, being a scaleless integral, is known to vanish in DREG. By power counting we
also see that it is both UV and IR divergent (logarithmically, for d = 4). Let us see how
these different behaviours combine and produce the correct result. By applying our above
strategy, we separately regulate the two kinds of singularities. The UV region gives (d < 4)∫ ∞

λ

ddp

(2π)d
1

(p2)2
= Ωd

∫ ∞
λ

d|p||p|d−5 = −Ωd
λd−4

d− 4
, (4.24)

while the IR region gives (d > 4)∫ λ

0

ddp

(2π)d
1

(p2)2
= Ωd

∫ λ

0

d|p||p|d−5 = +Ωd
λd−4

d− 4
. (4.25)

After continuation to arbitrary d we can sum the two pieces and obtain the expected
vanishing result.

4.1.3 DREG and SUSY

Despite being fully invariant and consistent in the cases discussed above, it is known that
DREG explicitly breaks SUSY (see ref. [124] for a review on the topic of SUSY regular-
ization). In particular the SUSY Ward-Takhashi identities and relations in SUSY gauge
theories do not hold and would have to be restored by adding suitable counterterms (much
in the spirit of the what said about γ5 in DREG), whose existence is always guaranteed by
the renormalizability of SUSY gauge theories. It is not hard to imagine why DREG should
break SUSY: a necessary condition for supersymmetry to hold is the equality of bosonic
and fermionic degrees of freedom. When non-gauge theories are considered, only scalars
and fermions are involved and DREG is still a supersymmetry invariant regulator. Gauge
theories require a special attention, due to the fact that the number of components of a
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vector field is determined by the spacetime dimension d. If d 6= 4, the number of bosonic
(gauge bosons) and fermionic (gauginos) degrees of freedom do not match.

Dimensional Reduction (DRED) is an elegant modification of DREG in which the
analytic continuation from 4 to d dimensions is made by compatctification [125–127]. Ba-
sically, one splits the ordinary 4-dimensional spacetime in the sum of a d-dimensional and
a 2ε-dimensional spaces. The crucial assumption is that the fields, whose number of field
components remains unchanged, do not depend on the coordinates in the 2ε space ∗. In this
way, the loop momenta are effectively d-dimensional, just as in DREG, but supersymmetry
is preserved. It is worth to mention the fact that, concerning the issues with γ5, DRED is
completely equivalent to DREG, and ambiguities still arise [127, 128].

For the computation of the gg → h NLO corrections presented in this thesis, we have
employed DREG and used the MS scheme for simplicity. The conversion of the parameters
from the MS scheme to the DR scheme (the equivalent of MS in DRED) was discussed in
ref. [129]. In particular, the DR and the MS Higgs-quark-quark Yukawa couplings differ
by a finite one-loop shift. When inserted in the one-loop diagrams, this shift generates
an additional two-loop contribution. Concerning the Higgs-squark-squark couplings, since
we are only considering the corrections due to strong interactions, they are the same in
both schemes and they are related by supersymmetry to the corresponding DR Yukawa
couplings.

4.2 Pauli-Villars Regularization (PVREG)

Pauli-Villars Regularization (PVREG) [130] is conceptually based on the introduction of
auxiliary massive auxiliary fields with the “wrong” statistics. Such fields essentially con-
tribute with an opposite sign w.r.t the standard fields and the UV behaviour of divergent
integrals is improved. These extra massive fields formally correspond to indefinite metric
sectors of the Hilbert space of the theory. Nevertheless this does not pose problems with
unitarity since the original theory is recovered (after renormalization) in the limit in which
the auxiliary fields are infinitely heavy, so that it corresponds to the effective theory in
which those auxiliary states decouple.

We recall that in PVREG, given an UV divergent integral I(q,m2) where q and m2

denote collectively the external momenta and masses, its regularized version is constructed
as

IR(q,m2, ci,m
2
i ) = I(q,m2) +

n∑
i=1

ci I(q,m2
i ) . (4.26)

In the equation above the original integral I(q,m2) is combined with a number n of replicas,
weighted by coefficients ci, in which some of the masses of the original integral are replaced
by the PV mass regulators (mi), in such a way that the regularized integral is finite if

∗Still, a vector field has to be split in d-dimensional and 2ε-dimensional parts. The former behaves like
a standard vector boson, while the latter effectively is an extra Lorentz scalar in the adjoint representation,
usually referred to as ε-scalar, with its corresponding Feynman rules.
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mi are kept finite, but tends to infinity as mi → ∞. The number of added terms, as
well as the relation that the coefficients ci should satisfy in order to make IR convergent,
depend on the divergent nature of the original integral. If the latter is only logarithmically
divergent, a single subtraction is sufficient to construct IR, i.e., n = 1, c1 = −1, m1 =
MPV . We will not discuss here the other cases since all the diagrams contributing to the
virtual NLO contributions to pseudoscalar Higgs production are at most logarithmically
UV-divergent (and we stick to DREG for the case of scalar Higgs production). Therefore
a single subtraction is sufficient to make them convergent. In this case, PVREG reduces
to subtracting from the original diagrams the same diagrams with some of the masses
replaced by MPV , and then taking the limit MPV →∞.

PVREG, just as DREG, is a fully Lorentz invariant regulation which, at the cost of
increasing the computational effort needed to compute one integral due to introduction of
additional terms (the number of which essentially depending on how much severe is the UV
divergence), has been used for fully consistent computations in abelian, non-chiral theories.
The limitation of this formulation of PVREG to non-chiral theories stems from the fact
that fermions cannot be regularized by introducing massive, opposite statistics spinor fields,
since a mass term explicitly breaks chiral invariance. More sophisticated strategies have
been devised, see e.g. [131], but as we will see in sec. 8.2 for the case gg → A it will be
enough to introduce heavy replicas of the squark (scalar) fields. In the next subsection,
we will comment on the use of PVREG in non-abelian gauge theories, which is intimately
related to the presence of massless particles (the gluons).

4.2.1 PVREG and IR divergences

For what concerns the IR divergences associated to massless particles, in PVREG they are
regularized by giving a fictitious mass λ to the massless particle, and later considering the
limit λ→ 0.

In the case of abelian gauge theories like QED, although a photon mass term is forbidden
by gauge invariance, one can actually consistently prove that the Ward-Takahashi identities
still hold (the Lagrangian is still BRST invariant) and so renormalizability is not spoiled
even if a photon mass term is introduced (see [120] for a thorough discussion). The case
of non-abelian gauge theories as QCD is more subtle. There a gluon mass term badly
violates the Slavnov-Taylor identities and severe problems follow such as the fact that
Faddeev-Popov ghosts no more cancel in the sum over intermediate states.

As discussed in sec. 8.2, the choice of quantizing with the Background Field Method
(BFM) [60–64] seems to provide a way out: in the BFM the external background gluons
satisfy QED-like Ward identities, so one would expect that a formal renormalizability proof
can be done for QCD with a gluon mass as in the case of abelian gauge theories. What we
actually find is that, provided the PVREG IR-divergent term 1/2 log2(−m2

A/λ
2) (mA is the

pseudoscalar Higgs boson mass) is identified in DREG with 1/ε2, our PVREG result for
the NLO pure QCD (thus top-gluon only) corrections to the gg → A cross section exactly
matches the known DREG result [4, 36].



50 Regularization and Renormalization of loop integrals

4.2.2 PVREG and SUSY

Concerning PVREG as a regulator for supersymmetric theories, its use has been advocated
in the literature by West in combination with higher derivative regularization [132] and by
Gaillard at one loop [133, 134] (see also [135] for a recent paper). A formal investigation of
the issues related to the usage of PVREG in (spontaneously broken) SUSY is beyond the
scope of this thesis. Here we adopt a more pragmatical point of view. DREG and PVREG
computations of the NLO QCD corrections to gg → A in the MSSM give the same result
in a common On-Shell (OS) scheme (see chap. 8 for the details on the computation and
on the OS scheme). The shifts of the input parameters needed to bring the DREG OS
result to the MS scheme are known and, as we have noted in sec. 4.1.3, it is known how to
convert from MS to DR, which is based on DRED and preserves SUSY.

4.3 Renormalization in the Background Field Gauge

We have mentioned in the previous section that in the computation presented in this thesis
we made use of the so-called Background Field Method (BFM) [60–64]. Here we wish to
illustrate a few generalities about the method and discuss how the renormalization has
been concretely performed in the case at hand.

It is well known that the quantization of non-abelian gauge theories, due to the d.o.f.’s
redundancy intrinsic to the concept of gauge invariance, is a subtle procedure. In par-
ticular, the standard approach to covariant quantization is the one proposed by Faddeev-
Popov [136], where a parametric gauge fixing term

Lgf = − 1

2ξ
GaGa , (4.27)

Ga = ∂µAaµ , (4.28)

is added to the classical Yang-Mills Lagrangian

LYM = −1

4
F aµνF a

µν , (4.29)

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (4.30)

(Aaµ is the non-abelian vector gauge field). Moreover, one has to add a suitable Lagrangian
term for unphysical, complex scalar fields obeying fermionic statistics (the ghost fields ca

and c̄a)

Lgf = c̄a
∂Ga

∂Abµ
Dbc
µ c

c . (4.31)

These fields basically serve as negative degrees of freedom and compensate the redundancy
due to the fact that we are treating as independent all the four components of Aaµ, de-
spite only two of them being independent. The generating functional is then obtained by
integrating over the gauge field and the ghosts (here and in the following we compactly
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indicate as A and J the SU(N) gauge field matrix T aAaµ and the sources T aJaµ , while the
notation A · J stands for the integral over the 4-dimensional space of the contraction AµJ

µ)

Z[J ] = N
∫
DADcDc̄ exp i {S[A, c, c̄] + J ·A} , (4.32)

with

S[A, c, c̄] =

∫
d4x(LYM + Lgf + Lgh) . (4.33)

The effective action is derived, as usual, by Legendre transforming (−i) times the logarithm
of the generating functional (which generates the connected Green’s functions)

Γ[Ā] = −i lnZ[J ]− J · Ā , (4.34)

where J is the solution of δ(i lnZ[J ])/δJ(x) = −Ā. All the 1PI diagrams can be obtained
by functional differentiation of the effective action.

The introduction of a gauge fixing term, by definition, breaks the gauge invariance of the
original Lagrangian. Still, we know that the full quantum Lagrangian exhibits a residual
BRST symmetry, which is enough in order to prove renormalizability. Moreover, physical
quantities still have to be gauge invariant and so independent of the particular gauge
chosen. Nevertheless, quantities like off-shell Green’s functions or divergent counterterms,
which do not have a direct physical interpretation, will not be gauge invariant. Most
importantly, in a perturbative approach, the individual Feynman diagrams for a particular
process will be gauge dependent as well.

The BFM represents a clever strategy of writing the effective action of the theory with
a choice of the gauge fixing term that allows one to retain explicit gauge invariance. In
practice [137], one first introduces a classical background field Ãaµ and the corresponding

covariant derivative D̃µ ≡ ∂µ − igT aÃaµ. The gauge fixing functional is now chosen to be

G̃a = (D̃µ)ab(A− Ã)bµ , (4.35)

so that the corresponding ghost (ca and c̄a fields) Lagrangian can be written as

Lgh = −(D̃µc̄)a(Dµc)
a . (4.36)

The interesting feature of such a Lagrangian is that it is invariant under a combined
inifinitesimal local transformation (G × G̃)(θ), where

G(θ) :=


δAaµ(x) = −Dac

µ θ
c(x) ,

δcbµ(x) = −igθa(x)(T a)bccc(x) ,

δc̄bµ(x) = −igθa(x)(T a)bcc̄c(x) ,

δÃaµ(x) = 0 ,

G̃(θ) :=


δ̃Aaµ(x) = 0 ,

δ̃cbµ(x) = 0 ,

δ̃c̄bµ(x) = 0 ,

δ̃Ãaµ(x) = −D̃ac
µ θ

c(x) .

(4.37)

In the equations above, G(θ) is an infinitesimal gauge transformation, under which the full
Lagrangian is not invariant for the reasons discussed above (but LYM, by definition, is).
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The transformation G̃(θ) is a background gauge transformation and it can be shown that
Lgf + Lghost is invariant under the combined (G × G̃)(θ) (while of course LYM is invariant
under G̃(θ) because it does not depend on the background field).

The next step is to remember that the (quantum) effective action Γ[Ā, c, c̄|Ã] (which
parametrically depends on Ã through the gauge fixing functional G̃a) inherits all the (non-
anomalous) symmetries of the classical Lagrangian, so it is invariant under the same trans-
formation. If we choose the external field Ā to be equal to Ã, we see that Γ[Ã, c, c̄|Ã] is
invariant under a gauge trasformation with gauge field Ã, since (G × G̃)(θ) reduces to

(G × G̃)(θ) =


δ̃Ãaµ(x) = −D̃ac

µ θ
c(x) ,

δcbµ(x) = −igθa(x)(T a)bccc(x) ,

δc̄bµ(x) = −igθa(x)(T a)bcc̄c(x) .

(4.38)

In order to compute a 1PI function at loop level, the trick is start from a modified generating
functional Z̃[J ], in which we replace S[A, c, c̄] by S[Ã + A, c, c̄], where A represents the
quantum fluctuations over which we integrate and Ã is just the fixed background (with no
associated sources):

Z̃[J |Ã] = N
∫
DADcDc̄ exp i

{
S[Ã+A, c, c̄] + J · A

}
. (4.39)

Incidentally, now the gauge fixing term (4.35) does not depend anymore on the background
field. Then one defines the modified effective action

Γ̃[ ¯̄A|Ã] = −i ln Z̃[J |Ã]− J · ¯̄A , (4.40)

where J is now the solution of δ(i ln Z̃[J ])/δJ(x) = − ¯̄A. The modified effective action is
just a conventional effective action computed in the presence of a background field Ã, thus
it generates all the 1PI Green’s functions when functional derivatives with respect to ¯̄A
are taken. At this point, it is easy to derive the crucial identity

Γ̃[ ¯̄A|Ã] = Γ[ ¯̄A+ Ã] , (4.41)

which means that by computing Γ̃[0|Ã] one actually gets the gauge invariant effective action
Γ[Ã]. Functional derivatives of Γ̃[0|Ã] with respect to Ã result in 1PI diagrams which do
not have ¯̄A field external lines (since we set ¯̄A = 0) and do not have Ã internal lines in loop
diagrams (since we are not integrating over Ã). The Feynman rules can be read off the
shifted action S[Ã +A, c, c̄]. Interactions involving A only are used in the vertices inside
the diagrams and the corresponding Feynman rules are exactly identical to those obtained
in the standard Faddeev-Popov approach. Interactions involving both A and Ã are used
to generate the external lines and their Feynman rules may be different.

The advantage of such procedure is that Γ̃[0|Ã] is invariant under gauge transformations
with Ã as a gauge field. All the Z factors one introduces for renormalizing the theory must
respect the gauge invariance of the effective action. In general, all the 1PI functions one
computes in the BFM will obey the “naive” QED-like Ward-Identities.
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In the BFM treatment of Yang-Mills theories, the only renormalization constants one
has to introduce are those of the background field Ã (ZÃ), the gauge coupling (Zg) and
the gauge fixing parameter (Zξ). Due to gauge invariance of the effective action, the
counterterms must be gauge invariant as well and it must hold, as in QED,

Zg = Z
−1/2

Ã
. (4.42)

Thus the renormalization of the gauge coupling can be performed by computing the correc-
tions to the Ã propagator without considering any vertex correction. The renormalization
of the gauge fixing parameter can in principle be avoided by considering physical, ξ in-
dependent quantities or by fixing the Landau gauge ξ = 0. No Z factors will be needed
instead for ghosts and A since they do only appear in internal lines: the Z coming from
each propagator would cancel with the two

√
Z factors coming from each vertex connected

to the propagator.
When fermions and other fields that do not enter Lgf are introduced, the BFM is com-

pletely transparent to them and the Feynman rules are identical to the standard formalism.
For a systematic BFM treatment of the SM, see [138].

In our calculation, we have generated all the relevant two-loop diagrams with the aid
of the Mathematica [57] package FeynArts [58], using a modified version of the MSSM
model file [59] which implements the BFM.

4.3.1 O(αs) renormalization of the parameters in the LO gg →
h,H and gg → A cross sections

Below we present the the counterterms for the O(αs) renormalization of the parameters
entering the LO cross sections for the processes gg → h,H and gg → A discussed in sec. 3.2.
The only parameters that at one-loop receive corrections due to the strong interactions are
αs, the quark mass mq, the squark masses mt̃1 ,mt̃2 , the squark mixing angle θq and the
coupling Aq. Actually, only 4 of the last 5 parameters are independent.

The computation of gg → h,H was performed in DREG, while the computation of
gg → A was performed both in DREG and in PVREG. At one loop, only the fermion
loop contributes to the latter process, implying that only mq renormalization has to be
considered. For completeness, we will quote the OS counterterms for both DREG and
DRED (by dropping the finite part one immediately gets the MS and DR counterterms).
Note that in the equations below we have suppressed all the constants (γE and ln 4π) that
always show up together with the pole: by writing ε−1 we actually mean ε−1 − γE + ln 4π.

Renormalization of αs

The gg → h,H and gg → A production at LO is proportional to αs. Thus the two-
loop result must include the one-loop renormalization of αs. As discussed above, the
renormalization of αs is easily determined in the BFM by computing the background
gluon one-loop propagator and no vertex correction must be computed. In particular, αs
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renormalization completely decouples from the computation of the two-loop corrections to
the gg → h,H and gg → A vertices. We choose to stick to the standard MS running αs(µ),
even when PVREG is employed for regularizing the two-loop vertex, which at one-loop is
given by the well known formula

αs(µ) =
αs(µ0)

1 + αs(µ0)
π

β0 ln
(
µ
µ0

) , (4.43)

where the one-loop coefficient of the QCD beta function β0 is

β0 =
11CA − 4nfTR

12
, (4.44)

in which CA = Nc = 3 and TR = 1/2 are color factors.

Renormalization of quark and squark masses

For completeness, we collect below the OS counterterms for the squarks and quark masses.
The OS masses are defined as the poles of the corresponding propagators (DREx stands
for both DREG and DRED). The squark mass counterterms read

δm2
q̃1

m2
q̃1

∣∣∣∣
DREx

= CF
αS
4π

{
1

ε

(
4s2θqmg̃mq − 4m2
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q

m2
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)

+ 3 ln
m2
q̃1
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q̃2
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(
ln
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q̃2

Q2
− 1

)
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[
2mg̃s2θqmq −m2
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q̃1
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q̃1

B(m2
q̃1
,m2

g̃,m
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+
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g̃
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q̃1

(
ln
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g̃

Q2
− 1

)
+
m2
q

m2
q̃1

(
ln
m2
q

Q2
− 1

)]}
+O(ε) , (4.45)

δm2
q̃2

m2
q̃2

∣∣∣∣
DREx

=
δm2

q̃1

m2
q̃1

∣∣∣∣
DREx

[
(q̃1, s2θq)↔ (q̃2,−s2θq)

]
, (4.46)

while the fermion mass counterterms read (DREx)

δmq

mq

∣∣∣∣
DREx

= CF
αS
4π

{
−2

ε
+ d+ 3 ln

m2
q

Q2
+
m2
g̃
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q

(
ln
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g̃
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− 1

)
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− 1
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[
B(m2

q,m
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q
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q

(
ln
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)
+ (q̃1, s2θq)↔ (q̃2,−s2θq)

]}
+O(ε) .

(4.47)
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In the above expressions B(m2
q̃1
,m2

g̃,m
2
q) is the finite part of the one-loop Passarino-Veltman

two-point function B0(m2
q̃1
,m2

g̃,m
2
q), which is defined in eq. (B.2). The quark counterterm

is different in DREG (d = −4) and DRED (d = −5). With the corresponding choice of d,
one can get the MS and DR counterterms by keeping only the divergent parts of the above
expressions.

Renormalization of the squark mixing angle

The gg → h,H processs arises at one-loop through two classes of diagrams, respectively
due to quark and squark loop. Therefore, in the case of scalar production we have to
consider also the one-loop renormalization of the Higgs-squark-squark form factors due
strong interactions (see eqs. (3.20) and (3.21) for a definition of the form factors valid to
all orders in the strong interactions). Besides the quark mass, the squark mixing angle
and the trilinear coupling Aq are the only parameters entering the Higgs-squark-squark
coupling that are renormalized at O(αs) by the strong interactions.

While the OS prescription for the renormalization of the quark/squark masses is given
by defining the physical masses as the poles of the corresponding propagators, there is no
obvious definition for the stop mixing angle. Following the discussion of refs. [34, 139], we
adopt the following “symmetrical” definition [140–143]

δθq :=
1

2

Π̂12(m2
q̃1

) + Π̂12(m2
q̃2

)

m2
q̃1
−m2

q̃2

, (4.48)

where Π̂12(q2) denotes the finite part of the off-diagonal self-energy of the squarks. The
squark mixing angle takes then the form

δθq|DREx = CF
αS
4π

c2θq
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q̃2

{
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4mg̃mq − s2θq(m

2
q̃1
−m2

q̃2
)
)

+ 2mg̃mq

[
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]
+ s2θq
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)
−m2

q̃2

(
ln
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− 1

)]}
+O(ε) . (4.49)

No dependence on the choice of DREG or DRED arises so, by taking the pole of the above
expression, one can get both the MS and DR counterterm.

Renormalization of trilinear coupling At

As already stated, only four among mq,m
2
q̃1
,m2

q̃2
, s2θq , Aq are independent and the con-

straint is given by the tree-level relation (2.38). In the present work we are considering
only the top sector contribution to gg → h,H, therefore we specialize to At. In fact the
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case of Ab is more subtle since loop corrections are tan β enhanced and it is convenient to
adopt a different renormalization prescription [42]. Using (2.38) and the fact that tan β
and µ do not receive any O(αs) correction, the counterterm δAt can be expressed as a
combination of the other counterterms

δAt =

(
δm2

t̃1
− δm2

t̃2

m2
t̃1
−m2

t̃2

+
δs2θt

s2θt

− δmt

mt

)
(At + µ cot β) , (4.50)

where δs2θt = 2c2θtδθt.



Chapter 5

Asymptotic Expansions of Loop
Integrals

5.1 The need for an approximate evaluation

In order to compute the NLO QCD corrections to the gg → h,H,A cross sections, two-loop
vertex diagrams must be evaluated.

Due to the structure of the MSSM interactions, the NLO QCD corrections to the gluon
fusion process in the MSSM involve up to 5 different mass scales. Those scales are the
center of mass energy (q1 + q2)2 = s (where qi is the four momentum of the i-th gluon,
which is massless and is considered on-shell, while s will be equal the Higgs mass, which
is assumed to be produced on-shell) and the masses of the particles running in the loops,
namely the quark mass mq, the squark masses mq̃1 ,mq̃2 and the gluino mass mg̃.

Contrarily to the evaluation of general one-loop integrals, in the two-loop case no uni-
versal algorithm has been devised yet. The analyitic structure of two-loop diagrams can
be very rich, due to the fact that many propagators appear and in general a large number
of different masses and scales can be present. In particular, these mass scales determine
the (pseudo)thresholds of the diagrams and influence its IR structure.

There are essentially two approaches to the calculation of two-loop amplitudes, based
respectively on the numerical and analytical evaluation of the integrals. While numerical
methods have in principle no problems with the presence of many mass scales, it is actually
quite complicated to cope with the several thresholds, pseudothresholds and IR singularities
for reasons of numerical stability. Sometimes a way out in these cases is represented by
a semi-analytic approach. On the other hand, the analytical evaluation is basically a
complementary approach. The integrals that can be exactly evaluated (e.g. through the
method of Differential Equations, see for instance [144–146]) are those depending on at most
three different mass scales. The advantage of the analytic approach is that no problems
arise when manipulating objects with thresholds etc.

Since we aim at providing compact analytic formulae for the NLO QCD corrections in
such a way that they can be easily implemented in computer codes (a straightforward, fast
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numerical evaluation is essential for phenomenological studies), we will pursue the analytic
way. Nevertheless, given the number of mass scales in the processes under study, an exact
analytic evaluation of the two-loop integrals is not feasible with the techniques developed
so far. We will therefore seek for approximate results, valid when some hierarchy is realized
between the various scales, aiming to an accuracy of the percent level. In the following
section we discuss the general features of the method employed.

5.2 Asymptotic expansions in large masses

In particular, for the process gg → h,H we will consider the case in which s = mh,H and mq

are much smaller than the SUSY masses mq̃1 ,mq̃2 ,mg̃, but we will not assume no specific
hiearchy among the s and mq. Infact, results for the case in which mh,H � 2mq have
been already discussed in the literature [32–34]. This hierarchy holds almost certainly in
the case of the lightest scalar Higgs h, but its validity is questionalble when the H boson
is considered. The opposite regime mh,H � 2mq has been investigated in the bottom
sector [42], where it is realized for both h and H. It is thus interesting to compute the
NLO corrections in the regime mh,H ∼ mq, which may be the case for the top contribution
to heavy Higgs(es) production. For the process gg → A, results have been made available in
the literature only in the form of a Fortran code, valid only in the case mA � 2mq [51], but
no compact analytic results have ever been published. Since the corrections for mA ∼ 2mq

and mA � 2mq have never been computed (and can be relevant in the top sector for heavy
A and in the bottom sector for large tan β), we investigate all the three above mentioned
regimes.

The general method for obtaining approximate results valid when all the internal masses
are much heavier than the external momenta is well known and relies on the Taylor expan-
sion under the integral sign in the small ratio q2/M2 (where q is a small momentum and M
is a heavy mass). The simplification consists in the fact that the approximate amplitude
to be computed will consist of vacuum integrals (i.e. integrals where no momenta appear
in the propagators) that can be evaluated with the techniques developed in ref. [147].

A naive Taylor expansion in q2/m2 (where now m is a light mass) obviously fails when
an external momentum reaches the real particle production threshold, since it cannot fully
reproduce the non-analytic structure (e.g. the logarithms which develop an imaginary part
above threshold, according to the optical theorem). A characteristic feature of a wrong,
naive Taylor expansion in q2/m2 is that in the limit m → 0 the result exhibits an (IR)
divergent behaviour.

The correct approach for obtaining approximate results is that of asymptotic expan-
sions. A comprehensive review of several methods and different cases in which asymptotic
expansions can be applied is given in [148], (see also [149] for a brief review). The case of
our interest requires an asymptotic expansion in the large masses of the supersymmetric
particles, of which we describe a practical implementation in the next section.
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Figure 5.1: Pictorial example (from ref. [42]) of the asymptotic expansion of a two-loop diagram
containing one subintegration (k1) with only heavy particles (bold lines) and the other (k2)
with light particles. The IR-divergent part of original diagram, represented by the disconnected
diagram, is subtracted and added. The three terms are grouped in such a way that (A) is the
contribution that can be evaluated via a Taylor expansion and (B) is the one that must be
evaluated exactly. See sec. 5.3 for a detailed explanation.

5.3 Practical implementation

We now illustrate the practical implementation of the asymptotic expansion in the com-
putation of the two-loop integrals for Higgs production. The technique we use is the one
introduced in ref. [42].

The diagrams that contribute to the process g(q1) + g(q2) → φ(q) (where φ = h,H,A
and q2

1 = q2
2 = 0 for on-shell gluons) fall in in two classes:

1. those that have no physical thresholds and can be evaluated via an ordinary Taylor
expansion in powers of q2/M2, for which the general methods of ref. [147] can be
applied;

2. the diagrams that require an asymptotic expansion because of the presence of physical
thresholds.

In the previous subsection we have explained why a Taylor expansion of a two-loop diagram
in an external momentum q2 is viable for values of q2 up to the first physical threshold.
Diagrams with a physical threshold at q2 = 4m2

q are those which, e.g. according to the
Cutkosky rules, can contribute to the imaginary part when a cut is applied. As already
noted, if those diagrams are Taylor-expanded in q2, they exhibit an infrared (IR) divergent
behavior as mq → 0. This will be the criterion for assigning the integrals to class-1 or
class-2.

In practice, we generate the asymptotic expansion of a diagram of class-2 by adding
and subtracting to it the part of the diagram itself that becomes IR-divergent when mq
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and q2 are sent to zero. In fig. 5.1∗, we show how this construction allows us to concretely
compute the asymptotic expansion. We see that the diagram is separated in two parts:
part A in fig. 5.1 which, being by construction IR-convergent, can be evaluated via a
Taylor expansion in the same way as class-1 diagrams; part B in fig. 5.1, containing the
IR-divergent contribution, which must be evaluated exactly.

The IR-divergent part of a diagram is constructed with the following strategy. One
condition must hold, namely that one can choose a routing of the loop momenta such that
the propagators containing both loop momenta k1 and k2, are always accompanied by a
heavy mass M . This is the case in all the diagrams entering our calculation. Then, one
can rewrite such connecting propagators applying the identity [42]

1

(k1 + k2)2 −M2
=

1

k2
1 −M2

− k2
2 + 2 k1 · k2

[(k1 + k2)2 −M2](k2
1 −M2)

. (5.1)

The first term on the r.h.s. of eq. (5.1) generates a disconnected integral (product of two
one-loop integrals) that contains all the IR-divergent contributions present in the original
diagram. This term must be evaluated exactly, i.e. for arbitrary q2 and will bring the correct
ln(q2/m2

q) terms characteristic of the physical threshold (which in general a naive Taylor
expansion fails to reproduce). The strategy for the exact evaluation of these integrals will
be discussed in chap. 6.

The second term, instead, gives rise to a two-loop integral with improved IR convergence
in the k2 integration and improved UV convergence in the k1 integration. Therefore if,
for example, the original integral is logarithmically IR divergent in the k2 integration
when q → 0 and mq → 0, the corresponding two-loop integral associated with the second
term in eq. (5.1) evaluated at q2 = m2

q = 0 is no longer IR divergent, but it actually
gives a finite result that differs from the result valid for q2 6= 0 and mq 6= 0 by terms of
O(m2/M2 ln(m2/M2)), where m2 denotes either q2 or m2

q.

In general, by iteratively applying the identity of eq. (5.1) while keeping track term by
term of the degree of IR divergence, one can build the IR-divergent part of any diagram
(satisfying our hypotheses) in terms of products of one-loop integrals with numerators that
contain terms of the form (ki · qj)m, (ki · kj)n (i, j = 1, 2) where m, n are generic natural
powers.

Two checks of the validity of procedure of ref. [42] for generating the asymptotic ex-
pansion can be devised:

• One can verify that the algorithm correctly produces the IR-divergent part of a
diagram. Indeed, by evaluating its part A with a Taylor expansion, one can check
explicitly whether the IR-divergent contributions of the original diagram are canceled
by the disconnected terms constructed via eq. (5.1). This means that the final result
for part A should be free of any ln(q2/m2

q) or q2/m2
q term, as it must if a Taylor

expansion is viable. We verify that this is always the case.

∗ The diagrams have been drawn using JaxoDraw [109].
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• One can also verify that the asymptotic expansion of a diagram which does not
exhibit any physical threshold produce a result identical to that obtained by a Taylor
expansion. In practice, we evaluate the diagrams of class-1 with the same procedure
we employ for class-2 diagrams. What we expect for class-1 diagrams is that the
Taylor expansion and the exact evaluation of the disconnected contribution give the
same result. In fact this implies that their contributions to the asymptotic expansion
sum to zero and effectively only the Taylor expansion of the original two-loop diagram
survives. We verify that this is always the case.

In the next chapter we will discuss the strategy we followed for the exact evaluation of the
two-loop disconnected diagrams.
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Chapter 6

Evaluation of disconnected two-loop
integrals through Integration By
Parts (IBP) identities

In this chapter we will discuss the exact evaluation of the disconnected two-loop integrals
entering the asymptotic expansion of the original diagram. In general, a very large number
of different Feynman integrals will be generated by the expansion. Algebraic algorithms
can be devised for expressing most of those integrals as combinations of few independent
Master Integrals (MI’s). The evaluation of Feynman integrals separates thus in two distinct
problems. One is algebraic and, despite it can be very challenging in multiloop/multiscale
calculations, can be fully automatized through the use of symbolic manipulation software.
The other is related to the analytic properties of the MI’s, which in the case of two-
loop disconnected diagrams is completely solved since only one-loop MI’s are involved.
In 6.1 we will set the notation for the disconnected integrals under study and define the
MI’s that will result from the reduction to MI’s. In particular, in sec. 6.2 we will focus
on the reduction to MI’s through Integration By Parts identities, which hold in DREG.
An alternative approach, the standard Passarino-Veltman reduction, has been used when
regularizing with PVREG (where we stick to d = 4 in order to evade the problems with
γ5) and a brief comment is made in sec. 6.3.

6.1 Disconnected two-loop integrals

We recall that by “disconnected” we mean that no propagators involving both the loop
momenta (say p and k) appear in the diagram, while it is still possible to have scalar
products of the form p · k at the numerator. We assume that a tensor decomposition of the
original amplitude has been performed and that the scalar form factors have been singled
out with suitable projectors. When considering a two-loop vertex diagram, the asymptotic
expansion will at most produce products of one-loop vertex diagrams, so we will limit our
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discussion to that case. The most general integral will be

J(r1, . . . , r6; s1 . . . , s7) =

∫∫
d4p d4k

Ss11 · · ·Ss77

Dr1
1 · · ·Dr6

6

, (6.1)

where the factors in the denominator are the propagators

D1 = p2 −m2
1 , D4 = k2 −m2

4 ,

D2 = (p− q1)2 −m2
2 , D5 = (k − q1)2 −m2

5 ,

D3 = (p+ q2)2 −m2
3 , D6 = (k + q2)2 −m2

6 , (6.2)

and the scalar products in the numerator are all the possible combinations of an internal
loop momentum with the available internal and external four-vectors

S1 = p2 , S4 = k2 ,

S2 = p · q1 , S5 = k · q1 ,

S3 = p · q2 , S6 = k · q2 , (6.3)

and
S7 = p · k . (6.4)

We can apply some standard techniques for the evaluation of (multiloop) integrals [144–
146]. Since, in general, denominators form a basis for the scalar products in one-loop
diagrams, one can express S1, S2 and S3 as linear combinations of D1, D2 and D3 (we use
q2

1 = q2
2 = 0 since we consider massless on-shell gluons):

S1 = D1 +m2
1 ,

S2 = −1

2
[D2 +m2

2 − (D1 +m2
1)] ,

S3 = +
1

2
[D3 +m2

3 − (D1 +m2
1)] , (6.5)

and the same can be done for the three scalar products involving k only. The scalar product
S7 is a remnant of the two-loop nature of the diagram we expanded. A trick is to introduce
a seventh (auxiliary) denominator, which is not really present in the diagram but serves in
order to complete the denominator basis:

D7 = (p− k)2 ⇒ S7 = −1

2

[
D7 − (D1 +m2

1)− (D4 +m2
4)
]
. (6.6)

Having expressed the scalar products in terms of denominators, we have effectively written
our original integral (6.1) as a linear combination of independent (with respect to the Di’s)
integrals of the type

I(n1, . . . , n7) =

∫∫
d4p d4k

1

Dn1
1 · · ·Dn7

7

, (6.7)
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where the indices ni can be positive (for i 6= 7, corresponding to a propagator in the
corresponding diagram), negative (corresponding to scalar products in the numerator) or
zero (in the case some Di cancel between the numerator and the denominator).

To set the notation, we call auxiliary topology the set of denominatorsA7 = {D1, . . . , D7}
such that each of the scalar products {S1 . . . S7} can be expressed as a linear combina-
tion of denominators belonging to it. We call topology the set of denominators involved
in one integral I(n1, . . . , n7) for which ni > 0. For instance, I(1, 1, 1, 1,−1,−1, 0) and
I(2, 1, 1, 2,−2,−1, 0) belong to the same topology T = {D1, D2, D3, D4}, while the in-
tegral I(1, 0, 1, 1,−1,−1, 0) belongs to a different topology T ′ = {D1, D3, D4}. T ′ is a
sub-topology of a topology T since it can be obtained by removing one or more denomina-
tors from T . Topologies made of t propagators {Di1 . . . Dit} can be uniquely identified by
an identification number N defined as

N :=
t∑

k=1

2ik−1 , (6.8)

so that N ∈ [1, 2n − 1], where n is the number of denominators in the auxiliary topology.
When an integral of the form (6.1) is brought to a combination of integrals of the form

(6.7), in every term it can happen that a number of Di’s in the denominator cancel with
other Di’s coming from the application of (6.5) and (6.6). Thus, if one starts with an
integral belonging to some topology, all its possible sub-topologies must in principle be
considered.

If the divergences of such integrals are regularized through DREG, actually a large
number of these integrals can be reduced to a linear combination of a smaller set of Master
Integrals (MI’s) with coefficients that are rational functions of polynomials in the kinematic
invariants and the dimension d. In particular, in the case at hand of disconnected two-loop
integrals, those MI’s will be the well known three scalar functions [150]

i

16π2
A0(m2

1) :=
µ4−d

(2π)d

∫
ddp

D1

, (6.9)

i

16π2
B0(s,m2

2,m
2
3) :=

µ4−d

(2π)d

∫
ddp

D2D3

, (6.10)

i

16π2
C0(0, 0, s,m2

2,m
2
1,m

2
3) :=

µ4−d

(2π)d

∫
ddp

D1D2D3

, (6.11)

where, besides q2
i = 0 for on-shell gluons, s = (q1 + q2)2 is the center of mass energy. Some

results concerning the three MI’s are collected in app. B.1. In the following section we will
describe the method that allows such reduction.

6.2 Integration By Parts (IBP) identities

The extension of Gauss’ theorem to d-dimensional space states that the integral over a
total derivative is zero. On the basis of this fact, the so called Integration By Parts (IBP)
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identities have been introduced [151, 152], relating combinations of scalar integrals of the
same topology with different indices {n1, . . . , n7} among themselves and to scalar integrals
of subtopologies. The idea is to exploit such relations when computing a given (large)
number of integrals, hoping to recursively express most of the integrals of each topology
in terms of few integrals belonging to that topology and to its sub-topologies.

IBP identities for a generic two-loop integral of the form (6.7) (where the Si have
already been expressed in terms of the Di) are generated starting from∫∫

ddp ddk
∂

∂lµ

[
vµ

1

Dn1
1 · · ·Dn7

7

]
= 0 , (6.12)

which holds in DREG because the integrand is a total derivative. In the above equation
l = p, k and v = q1, q2, p, k. We can thus establish 8 IBP identities, though in general not
all of them will be independent. When explicitly evaluating the derivatives one obtains
a combination of terms where the exponents ni are shifted by ±1, so integrals belonging
to subtopologies of the original topology may be involved. In general it will thus be
necessary to consider IBP identities for those integrals as well if one wants to completely
reduce to MI’s the integral to be computed. We will illustrate below the strategy and the
tools employed in the IBP reduction of the actual disconnected integrals involved in our
computation. Before that, let us first see a couple of simple examples of IBP identity in
the case of one-loop vertex integrals.

6.2.1 One-loop examples of IBP reduction

The auxiliary topology for one-loop vertex integrals is simply given by the three denomina-
tors D1, D2, D3. Let us consider a general vertex, relaxing the hypotesis that q2

1 = q2
2 = 0.

Let us consider massive tadpole diagrams (subtopology N = 1) with the denominator
raised to an arbitrary integer power n1 and the remaining indices equal to zero:

I(n1, 0, 0) =

∫
ddp

1

Dn1
1

. (6.13)

It is immediate to obtain the (only) IBP identity

(d− 2n1)I(n1, 0, 0)− 2m2
1n1I(n1 + 1, 0, 0) = 0 , (6.14)

which can be written as

[(d− 2n1)Id− 2m2
1n11

+]I(n1, 0, 0) = 0 , (6.15)

where we have introduced the identity operator Id and the plus and minus operators i±

defined as

IdI(n1, n2, n3) = I(n1, n2, n3) ,

i±I(. . . , ni, . . .) = I(. . . , ni ± 1, . . .) . (6.16)
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We can symbolically solve (6.15) for 1+,

1+ =
d− 2n1

2m2
1n1

Id ≡ Cn1Id . (6.17)

By the repeated application of the above equation, we see that a generic integral I(n1, 0, 0)
with n1 > 0 is completely determined in terms of one scalar integral, which we may choose
to be I(1, 0, 0):

I(n1, 0, 0) =

(
n1∏
k=1

Ck

)
I(1, 0, 0) , (6.18)

which is proportional to an A0(m1) function as defined in (6.9). It is easy to see that
integrals with n1 < 1 vanish by solving the IBP for Id instead of 1+. One gets

I(n1, 0, 0) =
2m2

1n1

d− 2n1

I(n1 + 1, 0, 0) , (6.19)

which tells us that I(0, 0, 0) = 0 (after all, it is a scaleless integral, which is known to be
vanishing in DREG) and so, I(n1, 0, 0) will be zero for any n1 < 1. By a simple shift in the
integration variable, it is easy to see that analogous identities hold for the sub-topologies
I(0, n2, 0) and I(0, 0, n3), which then result proportional to A0(m2) and A0(m3).

An analogous procedure can be applied to the bubble

I(n1, n2, 0) =

∫
ddp

1

Dn1
1 Dn2

2

, (6.20)

where two IBP identities are obtained:

0 = (d− 2n1 − n2) I (n1, n2, 0)− 2m2
1n1I (n1 + 1, n2, 0)

+
(
−m2

1 −m2
2 + q2

1

)
n2I (n1, n2 + 1, 0)− n2I (n1 − 1, n2 + 1, 0) , (6.21)

0 =
(
m2

2 −m2
1 − q2

1

)
n1I (n1 + 1, n2, 0) +

(
m2

2 −m2
1 + q2

1

)
n2I (n1, n2 + 1, 0)

+ n1I (n1 + 1, n2 − 1, 0)− n2I (n1 − 1, n2 + 1, 0) + (n2 − n1) I (n1, n2, 0) , (6.22)

These two equations can again be symbolically solved in terms of identity, plus and minus
operators

2+ =
Id (−d+ 2n1 + n2)

n2 (−m2
1 −m2

2 + q2
1)

+
1−2+

−m2
1 −m2

2 + q2
1

+
2m2

1n11
+

n2 (−m2
1 −m2

2 + q2
1)

(with n2 6= 0) ,

(6.23)

1+ =
Id (n2 − n1)

n1 (m2
1 −m2

2 + q2
1)

+ 2+

(
n2 (−m2

1 +m2
2 + q2

1)

n1 (m2
1 −m2

2 + q2
1)
− 1−n2

n1 (m2
1 −m2

2 + q2
1)

)
+

2−1+

m2
1 −m2

2 + q2
1

(with n1 6= 0) . (6.24)
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We have already shown that if one of the two indices is negative and the other is zero the
integral (6.20) vanishes in DREG. Also the case n1 , n2 < 0 is zero in DREG: by solving
e.g. (n > 0)

0 = I(−n+ 1, 0, 0)

= 1+I(−n, 0, 0)

=
1

m1 −m2 + q2
1

(I(1− n,−1, 0)− I(−n, 0, 0)) , (6.25)

and using I(−n, 0, 0) = 0, it follows that I(1 − n,−1, 0) = 0. One can easily verify that
analogous relations hold for all the integrals without positive powers for the denominators,
as actually expected in DREG.

Let us now consider the case in which one index is positive and the other one is negative,
e.g. n1 > 0 , n2 < 0, corresponding to a tadpole integral with scalar products at the
numerator. In fact, we are forced to introduce the auxiliary (bubble) topology N = 3
in order to treat integrals belonging to the sub-topology N = 1 with numerators S2 (see
(6.5)). It is immediate to see that the system (n > 1){

I(n, 0, 0) = 1+I(n− 1, 0, 0)

I(n− 1, 0, 0) = 2+I(n− 1,−1, 0)
(6.26)

allows to express I(n,−1, 0) and I(n− 1,−1, 0) in terms of integrals of the type I(k, 0, 0)
(k > 0), which as already seen can be written in terms of one MI, I(1, 0, 0). Then one can
proceed further and consider the system{

I(n,−1, 0) = 1+I(n− 1,−1, 0)

I(n− 1,−1, 0) = 2+I(n− 1,−2, 0)
(6.27)

which can be solved for I(n,−2, 0) and I(n−1,−2, 0). By the structure of (6.23)-(6.24), we
see that the solution will involve again integrals of the type I(k, 0, 0) (k > 0), together with
integrals of the type I(k,−1, 0) (k > 0), for which a reduction was found in the previous
step. The proof that all the integrals I(n1, n2, 0) with n1 > 0 and n2 < 0 are reducible in
terms of I(1, 0, 0) can be completed by induction and an analogous reasonings hold for the
other cases {n1 > 0, n2 < 0, n3 = 0}, {n1 = 0, n2 > 0, n3 < 0} etc.

As a last example we may now consider the bubble sub-topology {n1, n2 > 0, n3 = 0}.
The idea is again to use the plus operators in order to write all the integrals I(n1, n2, 0)
in terms of known integrals. Let us define D = n1 + n2. The integral I(1, 1, 0) cannot
be written in terms of the plus operators since the solutions (6.23)-(6.24) for 1+ and
2+ are defined only for n1 6= 0 and n2 6= 0. Therefore we assume it is a MI for the
bubble topology (note that it is the only one with D = 2). Let us now consider integrals
with D = δ > 2. If we substitute (6.23) in I(n1, n2, 0) = 1+I(n1 − 1, n2, 0), several
terms will be generated in the r.h.s, all proportional to integrals different from that in
the l.h.s. The operator Id produces a term proportional to I(n1 − 1, n2, 0), which has
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D = δ − 1. The action of 2−1+ and 2+1− brings into the expression other integrals
with D = δ − 1. The operator 2+ generates an integral with D = δ. Minus operators can
make denominators disappear, thus bringing into the expressions integrals belonging to the
tadpole sub-topologies N = 1, 2, which we have already solved. Analogous observations
hold for I(n1, n2, 0) = 2+I(n1, n2 − 1, 0).

Therefore, since the number Nδ of integrals with a given D = δ is finite, Nδ = δ − 1,
we can generate Nδ independent equations and solve them for such integrals. The solution
will be given in terms of integrals with D = δ−1. We have already seen that we can by no
means eliminate I(1, 1, 0) in favour of integrals with D = 1. We can then start from D = 3,
writing a system for I(1, 2, 0) and I(2, 1, 0). The solution will involve I(1, 1, 0) and the
tadpole integrals. Then we may proceed with D = 4, considering the integrals I(3, 1, 0),
I(2, 2, 0), I(1, 3, 0). By iterating the procedure, we see that in general we can express all
the D = δ integrals in terms of the D = δ − 1 integrals. So, by recursively applying this
procedure to the l.h.s. down to D = 2, we can reduce a general bubble diagram of the type
(6.20) to the following form:

I(n1, n2, 0) = A(n1, n2)I(1, 1, 0) +B(n1, n2)I(1, 0, 0) + C(n1, n2)I(0, 1, 0) , (6.28)

where the coefficients A, B and C are algebraically determined as discussed above. We
have thus seen that the evaluation of a generic bubble diagram reduces to the algebraic
task of computing the coefficients A, B and C and the integrals that must be actually
evaluated are only two (since I(1, 0, 0) and I(0, 1, 0) have the same functional form). The
MI I(1, 1, 0) is proportional to the B0(q2

1,m1,m2) function defined in (6.10). It is clear that
as D grows, the needed algebrical effort increases considerably. Apart from the solution
of the linear system, the number of nested substitutions for the reduction of the r.h.s. to
MI’s becomes high. A systematic approach is thus needed if one aims at employing the
IBP reduction strategy in the evaluation of actual Feynman diagrams.

We can conclude by noting that, if one applies the same procedure to all the subtopolo-
gies of the vertex topology (N = 1, 2, 3, 4, 5, 6) and to the vertex topology itself N = 7, this
will result in the full reduction of any general one-loop vertex diagrams to a combination
of MI’s. We will not show it here, but all the subtopologies can be reduced in terms of the
MI’s A0 and B0 (with all the possible arguments). The vertex topology needs one more
MI belonging to that topology, namely I(1, 1, 1), which is proportional to the C0 function
(6.11). The number of MI’s actually decreases if some of the masses vanish. For instance,
if one has q2

1 = q2
2 = 0 and all the masses vanish, only one MI is needed: A0(0) vanishes in

DREG and each vertex integral is seen to be fully reducible to the MI of its subtopology
N = 6, B0(s, 0, 0).

6.2.2 Automatized IBP reduction

For general l-loop, n-point diagrams the procedure is exactly the same, except that it
becomes more and more algebraically complicated. Again, i± operators for each exponent
ni will enter the IBP identities, which gives rise to a rather complex system of linear
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equations in the integrals. The full reduction of a given integral can be achieved by
performing the IBP reduction of that integral and all its subtopologies.

A systematic procedure for automatizing this algebraic task is indispensable since it can
be rather heavy for big topologies and when the number of scales is high. A strategy has
been devised by Laporta [153]. We will not enter the details of the algorithm, but rather
explain the idea behind it. The algorithm is based on writing several particular cases of
the IBP identities by replacing the indices ni in the IBP identities with (negative, zero
and positive) explicit values. If a sufficient number of equations is generated, one ends up
with a (typically huge) system of linear equations, where the unknowns are the particular
integrals (with explicit ni’s) themselves. The system is then solved by means of the Gauss-
Jordan elimination method. Actually not all the equations need to be independent. If the
system for a given topology is overconstrained, then all the integrals of that topology can
be reduced to a linear combination of the MI’s of the corresponding subtopologies (upon
substitution of the full tree of IBP equations for the topology and its subtopologies). In case
the system is not overconstrained, there will be also some MI’s belonging to the topology
one has started from (as we have seen in the case of the two-mass bubble diagram). In
any case, the result will be that a large number of scalar integrals, O(100÷ 1000), can be
typically reduced to O(1÷ 10) independent scalar integrals. We have already stated that
for one-loop diagrams, there can be at most 3 MI’s.

The important point relative to the Laporta algorithm is that it can be automated in
a rather general way. Several private and public codes have in fact been written, such as
AIR [154], FIRE [155] and REDUZE [66]. The number of equations to be generated is related
to the maximum and minimun value that can be taken by the sum r of the positive ni’s
and the sum s of the negative ni’s. The resulting list of particular IBP reduction identities
for a given mass pattern can easily exceed the size of O(100) megabytes on a computer. It
is thus necessary implement their application in some symbolic manipulation software like
FORM [65] (which is the one employed in the present work) or MATHEMATICA [57].

6.2.3 Application to disconnected integrals

The Laporta algorigthm “blindly” generates the system of equations for all the possi-
ble combinations of powers of the Di with exponents such that r ∈ [rmin, rmax] and
s ∈ [smin, smax]. We have said that the calculational effort needed for the solution of
the system grows strongly with the number of loops and with the number of different
mass scales available. It is inefficient to consider the two-loop disconnected diagram as a
single two-loop diagram, since many generated identities will actually never be used. We
exploited the disconnected nature of the two-loop integrals we need to (exactly) evaluate in
order to improve the computational efficience of the IBP reduction for the case at hand. In
particular, we reduce separately the two one-loop integrals by assigning the scalar product
p · k to the easiest integral. Suppose we assign it to the k integration. Then p is effectively
an extra external momentum in the k integration, and we need the auxiliary denominator
D7 in order to express it in terms of denominators. So we first perform the reduction of
the one-loop integrals Ik(n1, n2, n3, n7), where as already noted n7 is never positive. This
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observation about the auxiliary denominator is crucial, because it allows us to avoid the
IBP reduction of the full topology {D1, D2, D3, D7}, which would be rather heavy. The
reduction of the vertex subtopology {D1, D2, D3} and its subtopologies is what we need.
The resulting expression will depend on the spacetime dimension d, the kinematic invari-
ants and on the scalar products p2, p · q1 and p · q2, which are functions of the remaining
loop momentum. But now we are left with the standard one-loop integration of a vertex
topology. The scalar products resulting from the k integration are again expressed in terms
of the denominators and the IBP reduction of Ip(n4, n5, n6) is performed (note that the
topology is now simpler since it does not involve D7).

We remark that the typical structure we encouter in our computation is the product
of a one-loop integral with to three different masses times a one-loop integral where each
of the three masses entering the denominators can be either 0 or a common mass m. So,
by always assigning p · k to the easiest of the two (say k), we will optimize the complexity
of the IBP formulae we obtain. In general the IBP identities for that integral where the
coefficients will be rational functions of polynomials in the available kinematical invariants
((q1 + q2)2 = s) and the spacetime dimension d

Ck(d,m, s, p
2, p · q1, p · q2) , (6.29)

while the IBP identities for the p integral will involve coefficient of the kind

Cp(d,m1,m2,m3, s) . (6.30)

The IBP identities have been generated (in FORM syntax) with the open source program
REDUZE [66], which implements the Laporta algorithm. The advantage of IBP reduction is
that one can generate the IBP identities for generic masses once and for all (for a given
problem) and store them in a suitable way. Moreover, the reduction to MI’s is the most
computationally heavy step. Note anyway that it is necessary to generate several sets of
identities corresponding to the cases in which some of the masses mi are equal or vanish,
since it is in general hard and inefficient to analytically compute the corresponding limits
from the general formulae. It is much more efficient to have the IBP identities at our
disposal for all the cases and focus on the algebraic problem of reading and applying the
stored identities and manipulating the rather complex coefficients entering the expressions.

The problem of reducing the actual integrals entering our computation was solved by
writing a FORM code that processes generic and possibly very long expressions made of
arbitrary coefficients times arbitrary disconnected integrals of the form

A = C × J(r1, . . . , r6; s1 . . . , s7)×M(m1, . . . ,m6)

+ C ′ × J(r′1, . . . , r
′
6; s′1 . . . , s

′
7)×M(m′1, . . . ,m

′
6)

+ . . . , (6.31)

where C,C ′, . . . are the coefficients and the functions J × M are nothing else than the
integral (6.1) where we have explicited the masses mi entering the denominators Di:

J(r1, . . . , r6; s1, . . . , s7)×M(m1, . . . ,m6) =

∫
ddp ddk

Ss11 · · ·Ss77

Dn1
1 (m1) · · ·Dn6

6 (m6)
. (6.32)
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Our FORM code performs a series of manipulations to bring expressions like A in (6.31) to a
suitable and efficient form in order to allow a fast application of the previously generated
IBP identities. First of all, scaleless integrals and integrals that are known to vanish by
symmetry arguments are set to zero. Scalar products in the numerators are expressed in
terms of denominators as described in sec. 6.1. Then integrals that are equivalent upon
a rerouting of the loop momenta are brought to a common form. We also collect the
coefficients of the same integrals into compact objects, considerably reducing the number
of terms to be processed. We end up with an expression of the type

C × I(n1, . . . , n7)×M(m1, . . . ,m6, 0) + C ′ × I(n′1, . . . , n
′
7)×M(m′1, . . . ,m

′
6, 0) + . . . ,

(6.33)

where again I ×M is just the integral (6.7) where we explicitly keep track of the mass
pattern (for the reasons discussed above, the auxiliary denominator D7 is always massless)
and each of the I ×M occurs only once.

A further, crucial simplifications stems from the fact that many of the integrals gener-
ated by the asymptotic expansions are equal except for a different labelling of the masses
involved. One would end up reading and applying the same identity several times (which
can be extremely complex, depending on the number of mass scales involved) while process-
ing a long expression. It is much more efficient to collect all the occurrences of equivalent
integrals, read and apply the IBP identities just once for generic masses and substitute
back the masses term by term only as a last step. To this end, we have implemented an
algorithm which efficiently identifies integrals with the same abstract mass pattern, in the
sense that e.g.

I(n1, n2, n3)×M(a, b, b) ∼ I(n1, n2, n3)×M(c, d, d) (6.34)

where ∼ is an equivalence relation. Having identified those integrals, we write them as,
e.g.

I(n1, n2, n3)×M(m1,m2,m2) [P (a, b, b) + P (c, d, d)] , (6.35)

where the function M will enter the IBP reduction (which in this case is therefore performed
once and not twice), while the funtions P are merely coefficients in this step and keep track
of the actual particular pattern of masses, which is replaced term by term at the end.

We remark that no approximation needs to be done in order to perform each of these
steps, so the result of the IBP reduction will be the exact evaluation of the the disconnected
two-loop contributions in d-dimensions. It will consist of a combination of products of two
of the one-loop MI’s (A0(m1)×A0(m2), B0(p2,m1,m2)×C0(0, 0, s,m3,m4,m5) etc.) times
coefficients that depend on the masses, s and d.

At this stage, it is possible to set d = 4 − 2ε and evaluate the limit ε → 0. One has
to carefully expand each function of d to a sufficiently high order in ε since each one-loop
integration can contain at most a double pole ε−2 (in the fully massless case) and can
generate a finite result (pole) when hitting the O(ε2) (O(ε)) part of the result of other
integration.
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6.3 An alternative strategy

Another way of solving the one-loop problem is the traditional Passarino-Veltman (PV)
procedure [156] (see also [157] for a systematic review of one-loop calculations techniques).
We recall that the PV procedure is an algebraic algorithm based on the Lorentz decompo-
sition of a generic one-loop tensor integral as combinations of tensors constructed from the
external momenta qi and the metric tensor with totally symmetric coefficients. By con-
tracting the tensor integral in all possible ways with the external momenta and the metric
tensor one obtains a set of linear equations for the coefficient functions. The solution of
such linear system yelds the latter in terms of the coefficients of the tensor decomposition
of integrals with fewer tensor indices. In principle one can interate this procedure until the
coefficient functions of the original tensor integral are expressed in terms of the three MI’s
A0, B0 and C0.

In the case of three- or higher-point functions, if the matrix (G)ij = {qi · qj} has vanish-
ing (Gram) determinant, the algorithm breaks down and more sophisticated approaches or
workarounds must be devised. This essentially happens when some of the kinematic invari-
ants vanish or in some particular regions of the phase space. Reduction via IBP identities
represents in these cases a much more efficient strategy. Nevertheless, since PV reduction
is vaild for any value of the spacetime dimension d, including d = 4, we have employed
it when PVREG is used. The problem of vanishing Gram determinants is circumvented
a priori since we give a small mass λ to the gluons because we need to regularize the IR
divergences (see sec. 4.2.1).
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Chapter 7

Two-loop NLO QCD corrections to
gg → h,H cross-section

In this chapter we present the result for the two-loop NLO QCD top/stop contributions
to the gg → φ cross section for the CP-even case φ = h,H. We combine earlier results
available in the literature with our new calculation of the top-stop-gluino contribution. The
latter is based on an asymptotic expansion in the large supersymmetric masses and is valid
up to and including terms of O(m2

φ/M
2), O(m2

t/M
2) and O(m2

Z/M
2), where M denotes a

generic superparticle mass. Our results are obtained by extending the method of ref. [42]
for the bottom-sbottom-gluino contributions, valid for m2

φ below all the heavy particle
thresholds, where only terms of O(m2

b/m
2
φ), O(mb/M) and O(m2

Z/M
2) were retained. The

explicit top-stop-gluino results available in the literature are either based on an effective
theory where the heavy particles have been integrated out [33] or on a Taylor expansion in
the small momenta in the full theory [34]. Such results give a good approximation of the
full result when the φ mass is below the top-pair production threshold, m2

φ � m2
t . In our

calculation no specific hieararchy between the Higgs and the top quark mass is assumed,
therefore our formulae are expected to provide a better approximation of the full result in
the threshold region mφ ' 2mt.

The chapter is organized as follows. In sec. 7.1 we give a detailed overview of the
calculation workflow, which will basically apply also to the CP-odd case. In sec. 7.2 we
describe the structure of the two-loop contributions to the form factors, which are due to
top-gluon, stop-gluon, four-stop and top-stop-gluino diagrams. Then we report our NLO
top result. For completeness we recall and adapt to our approximation the earlier results
available in the literature for the first three classes of contributions. Our DR results for
the top-stop-gluino contributions are provided in compact form, by writing them in terms
of a few functions. We gather the explicit expressions in app. D. In sec. 7.3 we provide the
shifts for converting our DR results to a suitable On-Shell (OS) scheme.

A numerical study of our result and a quantitative comparison with the Taylor expan-
sion based result is underway.
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7.1 Details on the computation

Concerning the actual computational details, a few remarks are in order. We generated the
relevant two-loop diagrams with the help of the Mathematica [57] package FeynArts [58],
using a modified version of the MSSM model file [59] which implements the Background
Field Method [60–64] (see sec. 4.3 for an overview and some remarks). The φ-g-g amplitude
can always be written as (φ = h,H)

Mφ =Mµν
φ εµ(q1)εν(q2) , (7.1)

where ε(qi) is the polarization four-vector of the i-th gluon (with momentum qi, which we
consider on-shell). By Lorentz invariance considerations, we can write the most general
tensor structure for Mµν

φ :

Mµν
φ = T1 q

µ
1 q

ν
1 + T2 q

µ
2 q

ν
2 + T3 q

µ
1 q

ν
2 + T4 q

µ
2 q

ν
1 + T5 (q1 · q2) gµν + T6 ε

µνρσq1ρq2σ , (7.2)

where Ti are the scalar form factors. Bose symmetry requires that T1 = T2, gauge invariance
requires that q1µMµν

φ = 0, which for on-shell gluons (q2
i = 0 for i = 1, 2) is satisfied if

T4 = −T5. Applying the other gauge invariance constraint q2νMµν
φ = 0 is equivalent to

imposing Bose symmetry. For on-shell gluons it also holds that qµi εµ(qi) = 0, which implies
that the form factors T1, T2 and T3 are irrelevant for the computation of Mφ. Concerning
T6, such form factor is related to parity violation and vanishes exactly in our case. Thus
we can effectively write

Mµν
φ = T5 [(q1 · q2) gµν − qµ2 qν1 ] . (7.3)

We regularize the loop integrals in DREG as described in sec. 4.1. Since it is convenient
to work with scalar quantities, we introduce the projector

P µν
φ =

1

(d− 2)

[
gµν

(q1 · q2)
− qµ1 q

ν
2 + qµ2 q

ν
1

(q1 · q2)2

]
, (7.4)

such that

P µα
φ P ν

φα = P µν
φ (7.5)

PφµνMµν
φ = T5 . (7.6)

The calculation is fully automatized. The scalar amplitudes are processed with a chain of
Mathematica [57] and FORM [65] programs that implement the several needed steps. First
color and Dirac algebra (in d = 4 − 2ε dimensions) are carried on, then we identify the
diagrams that are equivalent upon a redefinition of the loop momenta or by symmetry
arguments and group them in order to improve the computational efficiency. At this stage
the asymptotic expansion is performed, according to the strategy outlined in chap. 5. For
each diagram (including those without physical thresholds) we:
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1. Generate its IR contribution, which has the form of a sum of (possibly a large number
of) two-loop disconnected integrals.

2. Taylor expand in the small external momentum the IR finite part (obtained by sub-
tracting the disconnected part from the original diagram). Then we process the
output with a code that implements the vertex diagram tensor reduction algorithm
of ref. [158], follwed by the application of the methods of ref. [147] for the integration
of the resulting scalar massive vacuum tadpoles. These steps are implemented in a
Mathematica code.

3. Carry on the exact evaluation of the disconnected part as described in chap. 6 through
a FORM code which performs the IBP reduction to one-loop Master Integrals (MI’s),
computes the limit ε→ 0 and expands the MI’s assuming m2

φ ,m
2
t � m2

t̃1
,m2

t̃2
,m2

g̃.

4. Check that the result for the IR finite part obtained through the Taylor expansion
is actually free of terms that exhibit an IR divergent behaviour in the limit m2

t → 0,
as we expect by construction.

5. Check that the result of the asymptotic expansion coincides with that of a naive
Taylor expansion of the original two-loop diagram in case the latter does not exhibit
any physical threshold.

6. Also perform the following validation test of our programs through a check on the
disconnected diagrams: we i) Taylor expand the diagrams and integrate the resulting
massless tadpoles with the methods of [147] and ii) process the diagrams with our
IBP reduction code and then we further expand the exact results for m2

φ � m2
t . Since

the two operations of Taylor expansion and integration must commute, we verify that
i) and ii) actually produce the same result.

Renormalization is carried on according to the discussion in sec. 4.3.1 (note that, by con-
struction, counterterm diagrams are disconnected contributions). We perform the calcula-
tion in the MS scheme and then we apply the known MS → DR shifts. We also compute
the shifts for the transition to an OS scheme as defined in [34] and discussed in sec. 4.3.1.
We explicitly verify that the dependence on the renormalization scale Q2 cancels in the OS
scheme.

As a last check we verify that, with the correct replacements t→ b (see (A.6)) and after
a further Taylor expansion for m2

b � m2
φ ,M

2 in such a way that only terms of O(m2
b/m

2
φ),

O(mb/M) and O(m2
Z/M

2) are retained, our result for the bottom contributions agrees with
that in ref. [42].

7.2 Two-loop top/stop contributions

In the following we present the result for the two-loop top/stop contributions to the form
factor for CP-even Higgs boson production via gluon fusion. For clarity, let us recall the
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t

(a) top-gluon

t

t

g̃t̃i

(b) top-stop-gluino

Figure 7.1: Examples of two-loop diagrams involving the Higgs-top coupling.

t̃i

(a) stop-gluon

t̃i

t̃j

t̃k
(b) 4-stop

t̃i
g̃

t̃j

t
t̃i

(c) top-stop-gluino

Figure 7.2: Examples of two-loop diagrams involving the Higgs-stop coupling.

structure (to all orders in the strong interactions) of the form factor entering the LO cross
section (3.3) for the CP-even case in the MSSM (see sec. 3.2.2)

Hh = TF (− sinαH1 + cosαH2) , (7.7)

HH = TF (cosαH1 + sinαH2) , (7.8)

where

H1 = λt
[
mt µ s2θt Ft +m2

Z s2βDt

]
+ λb

[
mbAb s2θb Fb + 2m2

b Gb + 2m2
Z c

2
βDb

]
, (7.9)

H2 = λb
[
mb µ s2θb Fb −m2

Z s2βDb

]
+ λt

[
mtAt s2θt Ft + 2m2

t Gt − 2m2
Z s

2
βDt

]
, (7.10)

(see below (3.20)-(3.21) for a description of the quantities entering the above expressions).
For later convenience we also recall that the D-term-induced Higgs-squark-squark contri-
bution can be decomposed as (see (3.22))

Dq =
I3q

2
G̃q + c2θq̃

(
I3q

2
−Qq s

2
θW

)
F̃q . (7.11)

There are several classes of two-loop diagrams which contribute to the form factors. The
diagrams involving the Higgs-top coupling generate two kinds of two-loop contributions,
namely diagrams with top quarks and gluons (e.g. fig. 7.1a) and diagrams with top-stop-
gluino vertices (e.g. fig. 7.1b). The diagrams involving the Higgs-stop coupling gener-
ate three kinds of two-loop contributions, namely diagrams with stops and gluons (e.g.
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fig. 7.2a), diagrams with four-stop vertices (e.g. fig. 7.2b) and diagrams with top-stop-
gluino vertices (e.g. fig. 7.2c).

We can express our results for the functions Gt, Ft, F̃t, G̃t in a rather compact way
by writing them as linear combinations of four functions Yt, Yt̃1 , Yt̃2 , Yc22θt

. Each of these

functions receives two-loop contributions due to gluon exchange in diagrams with top or
stop loops (g), diagrams involving the four stop vertices (4t̃) and diagrams involving the
top-stop-gluino vertices (g̃):

Yx = Y g
x + Y 4t̃

x + Y g̃
x (x = t, t̃1, t̃2, c

2
2θt) . (7.12)

The contributions due to gluon exchange and to diagrams involving the quartic coupling
are already known, respectively retaining the full dependence on the masses∗ [34, 36] and
in the limit of vanishing Higgs mass [34]. For completeness we recall their expressions,
which we decompose as

Y g
x = CFY

(g,CF )
x + CAY

(g,CA)
x , (7.13)

Y 4t̃
x = CFY

(4t̃,CF )
x , (7.14)

(due to the MSSM coupling structure the diagrams with four stop vertices have no CA part).
Assuming that the the one-loop form factor H1`

2 is expressed in terms of DR-renormalized
parameters evaluated at the scale Q2, the gluon contributions read

Y
(g,CF )
t =

1

2m2
t

[
F (2`,a)

1/2 (x(τt)) + F (2`,b)
1/2 (x(τt))

(
ln
m2
t

Q2
− 1

3

)]
, (7.15)

Y
(g,CA)
t =

1

2m2
t

[
G(2`,CA)

1/2 (x(τt))
]
, (7.16)

Y
(g,CF )

t̃1
=

1

2m2
g̃

(
− 3

4x1

)
, (7.17)

Y
(g,CA)

t̃1
=

1

2m2
g̃

(
− 1

6x1

)
, (7.18)

Y
(g,CF )

c22θt
= Y

(g,CA)

c22θt
= 0 , (7.19)

where τi ≡ 4mi/mφ, x(τ) ≡
√

1−τ−1√
1−τ+1

and the variable xi is defined as xi ≡ m2
q̃i
/m2

g̃. Explicit

exact expressions for the functions F (2`,a)
1/2 , F (2`,b)

1/2 and G(2`,CA)
1/2 are given in eqs. (2.12), (2.13)

and (3.8) of ref. [36].

∗The SM contribution Y
(g)
t , due to top-gluon diagrams, is given by eq. (4.2) of [42] with the trivial

replacent b→ t.
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The four squark contributions read

Y
(4t̃,CF )
t = 0 , (7.20)

Y
(4t̃,CF )

t̃1
= − 1

24m2
g̃

[
c2

2θt
x1 + s2

2θt
x2

x2
1

+
s2

2θt

x2
1x2

(
x2

1 ln
mt̃1

Q2
− x2

2 ln
mt̃2

Q2

)]
, (7.21)

Y
(4t̃,CF )

c22θt
= − 1

24

[
(x1 − x2)2

x1x2

+

(
1− x1

x2

)
ln
m2
t̃1

Q2
+

(
1− x2

x1

)
ln
m2
t̃2

Q2

]
. (7.22)

The results for Y t
t̃2

and Y 4t̃
t̃2

can be immediatly obtained from those for Y t
t̃1

and Y 4t̃
t̃1

with

the replacement (1←→ 2), that is by substituting (x1, t̃1) with (x2, t̃2) and viceversa.

The quark-squark-gluino contribution to the Higgs-gluon-gluon form factor, for Higgs
bosons not below the qq̄ threshold, is known only in the bottom sector [42]. There the
relevant diagrams were evaluated in the further approximation m2

b � m2
φ and neglecting

terms of O(m2
b/M

2) and O(m2
φ/M

2). In this work, we performed a new computation of
the relevant diagrams, valid in the top sector for large supersymmetric particle masses. In
particular we do not assume any specific hierarchy between the top mass and the Higgs
mass and we retain terms up to O(m2

t/M
2), O(m2

φ/M
2) and O(m2

Z/M
2).

By putting together all the contributions, we can write the full DR result for the Yx
functions as a power series in the small ratio m/M (where we recall that m = mt, mφ,mZ

and M = m2
g̃, m

2
t̃1
, m2

t̃2
):

Yx =
1

Nx

∞∑
n=−1

[(
mt

mg̃

)n
Y (n)
x

]
, (7.23)

where

Nx =


2m2

t if x = t ,

m2
g̃ if x = t̃1, t̃2 ,

1 if x = c2
2θt
.

(7.24)

Keeping in mind that we aim atO(m2/M2) accuracy and in the form factorsH1,2 (eqs. (7.9)
and (7.10)):

• Gt is multiplied by 2m2
t ∼ O(m2),

• Ft is multiplied by mtAt ∼ O(m) and mt µ ∼ O(m),

• F̃t and G̃t are multiplied by m2
Z ∼ O(m2),

our results for the two-loop functions G2`
t , F

2`
t , F̃

2`
t , G̃

2`
t can be cast in the following form
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(see also [34, 42]):

G2`
t =

1

2m2
t

2∑
n=−1

(
mt

mg̃

)n
Y

(n)
t +

1

m2
g̃

0∑
n=−1

(
mt

mg̃

)n [
Y

(n)

t̃1
+ Y

(n)

t̃2

]
, (7.25)

F 2`
t =

1

m2
g̃

1∑
n=−1

(
mt

mg̃

)n [
Y

(n)

t̃1
− Y (n)

t̃2
− 4 c2

2θt

x1 − x2

Y
(n)

c22θt

]
, (7.26)

F̃ 2`
t =

1

m2
g̃

0∑
n=−1

(
mt

mg̃

)n [
Y

(n)

t̃1
− Y (n)

t̃2
+

4 s2
2θt

x1 − x2

Y
(n)

c22θt

]
, (7.27)

G̃2`
t =

1

m2
g̃

0∑
n=−1

(
mt

mg̃

)n [
Y

(n)

t̃1
+ Y

(n)

t̃2

]
, (7.28)

where the expansion coefficients Y
(n)
x entering (7.25)-(7.28) can be decomposed as (δij is

the Kronecker delta)

Y (n)
x = Nx

(
Y g
x + Y 4t̃

x

)
δn0 + Y (n,g̃)

x , (7.29)

in which Y g
x and Y 4t̃

x , given respectively by eqs. (7.13) and (7.14), contribute only for n = 0.
We decompose as usual the gluino part as

Y (n,g̃)
x = CF Y

(n,g̃,CF )
x + CA Y

(n,g̃,CA)
x , (7.30)

where our explicit results for the coefficients Y
(n,g̃,CF )
x and Y

(n,g̃,CA)
x can be found in app. D.

For later convenience let us denote with B the finite part of the B0(mφ,mt,mt) function,
renormalized at Q2 = m2

t , and recall the expressions for the one-loop functions (eq. (2.6)
of ref. [54] and eq. (2.10) of ref. [42])

K1`
1/2(τ) =

τ

2
ln2

(√
1− τ − 1√
1− τ + 1

)
, (7.31)

G1`
1/2(τ) = − 2τ

[
1− 1− τ

4
ln2

(√
1− τ − 1√
1− τ + 1

)]
. (7.32)

In the explicit formulae we will also use the function F (2`,b)
1/2 , defined in eq. (2.13) of ref. [36],

and the supersymmetric contribution to the finite part of top mass self-energy. The finite
part of the full top mass self-energy (in DRED, see (4.47)) involves the finite part of a B0

function depending on heavy (supersymmetric) and light (top quark) masses, which we
expand according to our power counting. The resulting expression can be written as

δmt

mt

= CF
αs
π

[
(δmt)

mt

(QCD)

+
(δmt)

mt

(SUSY)
]
, (7.33)
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where

(δmt)

mt

(QCD)

= δ
(0)
mt,QCD ≡

3

4
ln
m2
t

Q2
− 5

4
, (7.34)

(δmt)

mt

(SUSY)

=
2∑

n=−1

(
mt

mg̃

)n
δ

(n)
mt,SUSY +O

(
m3
t

m3
g̃

)
, (7.35)

and the expansion coefficients of the supersymmetric contribution are

δ(−1)
mt = − 1

4
s2θt

(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)
, (7.36)

δ(0)
mt = − 1

4

(
ln
m2
g̃

Q2
+ f(x1) + f(x2)

)
, (7.37)

δ(1)
mt = − 1

4

s2θt

(1− x1)3

(
x1 lnx1 +

1− x2
1

2

)
−
(
x1 −→ x2

)
, (7.38)

δ(2)
mt = − 1

4

1

(1− x1)4

(
(1− x1)(x2

1 − 5x1 − 2)

6
− x1 lnx1

)
+

(
x1 −→ x2

)
. (7.39)

The function f(x) entering eq. (7.37) is defined as

f(x) =
x− 3

4(1− x)
+
x(x− 2)

2(1− x)2
lnx . (7.40)

Note that the expansion of the supersymmetric contribution to the finite part of the top self-
energy up to order zero in mt/mg̃ matches eq. (4.8) of [42] (with the obvious replacements
for converting from the bottom sector to the top sector). Together with the remaining
terms of the expansion, such quantity represents the shift needed for converting (at one-
loop and in our approximation) the top mass from the DR scheme to the On-Shell (OS)

scheme (discussed in sec. 4.3.1), in the sense that mDR
t = mOS

t + δmt .

7.3 Shifts DR→ OS

In the spirit of [34] (eqs. (31)-(35)), we now present the shifts for converting our two-
loop results, valid if the parameters appearing in the one-loop part of the form factors are
expressed in the DR scheme, to formulae which hold if such parameters are expressed in the
OS scheme presented in sec. 4.3.1. As in the case of the shift δmt, already discussed in the
previous section (eq. (7.33) and below), the shifts for mt̃1 , mt̃2 , θt and At (corresponding
to the finite parts of eqs. (4.45), (4.46), (4.49) and (4.50)) involve the finite part of B0
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functions depending on the superparticle masses and on the top mass. Therefore they
must be expanded according to our power counting. Below we collect the expansions of
such quantities up to and including O(mt/mg̃), which in our approximation is enough for

converting the DR results for the two-loop functions G2`
t , F

2`
t , F̃

2`
t , G̃

2`
t to the OS scheme

(see the discussion below eq. (7.24)). The shift for m2
t̃1

is given by

δmt̃1

mt̃1

= CF
αs
π

1∑
n=−1

(
mt

mg̃

)n
δ(n)
mt̃1

+O
(
m2
t

m2
g̃

)
, (7.41)

where

δ(−1)
mt̃1

= 0 , (7.42)

δ(0)
mt̃1

=
1

4

[
3 ln

m2
t̃1

Q2
− 3− c2

2θt

(
ln
m2
t̃1

Q2
− 1

)
− s2

2θt

x2

x1

(
ln
m2
t̃2

Q2
− 1

)

− 6

x1

− 2

(
1− 2

x1

)
ln
m2
g̃

Q2
− 2

(
1− 1

x1

)2

ln |1− x1|
]
, (7.43)

δ(1)
mt̃1

= − s2θt

x1

[
ln
m2
g̃

Q2
+

(
1− 1

x1

)
ln |1− x1| − 2

]
. (7.44)

The shift for m2
t̃2

is obtained from the above with the replacement (1, s2θt) ↔ (2, −s2θt),

where the first rule means that all the occurrences of x1 and m2
t̃1

must be replaced by x2

and m2
t̃2

and viceversa. The stop mixing angle shift is given by

δθt = CF
αs
π

1∑
n=−1

(
mt

mg̃

)n
δ

(n)
θt

+O
(
m2
t

m2
g̃

)
, (7.45)

where

δ
(−1)
θt

= 0 , (7.46)

δ
(0)
θt

= − 1

4

c2θts2θt

x1 − x2

[
x1

(
1− ln

m2
t̃1

Q2

)
− x2

(
1− ln

m2
t̃2

Q2

)]
, (7.47)

δ
(1)
θt

= − 1

2

c2θt

x1 − x2

[
ln
m2
g̃

Q2
+

(
1− 1

x1

)
ln |1− x1| − 2

]
−
(
x1 ↔ x2

)
. (7.48)

As already noted in sec. 4.3.1, the shift δAt can be expressed in terms of the above con-
sidered shifts. Starting from eq. (4.50) we can write

δAt = CF
αs
π

1∑
n=−1

(
mg̃

mt

)n
δ

(n)
At

+O
(
m2
t

m2
g̃

)
, (7.49)
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where (δij is the Kronecker delta)

δ
(n)
At

=

[
m2
t̃1
δ

(n)
mt̃1
−m2

t̃2
δ

(n)
mt̃2

m2
t̃1
−m2

t̃2

+ 2
c2θt

s2θt

δ
(n)
θt
−
(
δ

(n)
mt,QCD δn0 + δ

(n)
mt,SUSY

)]
(At + µ cot β) (7.50)

The shifts for the two-loop results are then given by

F 2`
t −→ F 2`

t +
CF
6

[
1

m2
t̃1

(
δ(0)
mt̃1

+
mt

mg̃

δ(1)
mt̃1

)
− 1

m2
t̃2

(
δ(0)
mt̃2

+
mt

mg̃

δ(1)
mt̃2

)

−
(
mg̃

mt

δ
(−1)
mt,SUSY + δ

(0)
mt,QCD + δ

(0)
mt,SUSY +

mt

mg̃

δ
(1)
mt,SUSY

)(
1

m2
t̃1

− 1

m2
t̃2

)

− 8

15

mtmg̃

τt
δ

(−1)
mt,SUSY

(
1

m4
t̃1

− 1

m4
t̃2

)

−2
c2θt

s2θt

(
δ

(0)
θt

+
mt

mg̃

δ
(1)
θt

)(
1

m2
t̃1

− 1

m2
t̃2

)]
, (7.51)

G2`
t −→ G2`

t +
CF
6

[
δ

(0)
mt̃1

m2
t̃1

+
δ

(0)
mt̃2

m2
t̃2

− 2

(
mg̃

mt

δ
(−1)
mt,SUSY + δ

(0)
mt,QCD + δ

(0)
mt,SUSY

)(
1

m2
t̃1

+
1

m2
t̃2

)

− 4
(δmt)

m3
t

(SUSY)

F (2`,b)
1/2 (x(τt))

]
, (7.52)

F̃ 2`
t −→ F̃ 2`

t +
CF
6

[
δ

(0)
mt̃1

m2
t̃1

−
δ

(0)
mt̃2

m2
t̃2

+ 2
s2θt

c2θt

δ
(0)
θt

(
1

m2
t̃1

− 1

m2
t̃2

)]
, (7.53)

G̃2`
t −→ G̃2`

t +
CF
6

[
δ

(0)
mt̃1

m2
t̃1

+
δ

(0)
mt̃2

m2
t̃2

]
. (7.54)

In addition, the shift in At generates a two-loop contribution in H2`
2 :

H2`
2 −→ H2`

2 −
mts2θt

sβ

CF
6

(
1

m2
t̃1

− 1

m2
t̃2

)
×[

mg̃

mt

δ
(−1)
At

+ δ
(0)
At

+
mt

mg̃

δ
(1)
At

+
8

15

mtmg̃

τt
δ

(−1)
At

(
1

m2
t̃1

+
1

m2
t̃2

)]
, (7.55)

where δAt is given in eq. (7.49).



Chapter 8

Two-loop NLO QCD corrections to
gg → A cross-section

In this chapter we present our original two-loop results for the NLO QCD contributions to
the gg → A form factor H2`

A , defined in sec. 3.2.3. The calculation has been performed in
two ways. The first one is based on a Taylor expansion in the small external momentum,
retaining terms up to O(m2

A/m
2
t ). We provide compact analytic formulae for the terms

of order zero in mA and investigate the effect of the first-order terms. The second one
is based on an asymptotic expansion in the large supersymmetric masses and is valid
up to and including terms of O(m2

A/M
2) and O(m2

t/M
2), where M denotes a generic

superparticle mass. In the second approach, no specific hieararchy between the Higgs
and the top quark mass is assumed, therefore our formulae are expected to provide a
better approximation of the full result in the threshold region mA ' 2mt as compared to
the Taylor expansion approach. As a byproduct, we obtained formulae for the bottom-
sbottom-gluino contributions through the obvious replacements of masses and couplings
and a further expansion in the small ratio m2

b/m
2
A. In particular, we provide results at the

same expansion order as the ones for the scalar Higgs production computed in ref. [34],
that is valid up to and including O(m2

b/m
2
A), O(mb/M). Our results have been published

in ref. [54].

The chapter is organized as follows. In sec. 8.1 we give a few details on the DREG
computation, while in sec. 8.2 we illustrate some technical aspects of the PVREG com-
putation. In sec. 8.3 we describe the structure of the two-loop contributions to the form
factor, which are due to quark-gluon and quark-squark-gluino diagrams. First we show
that our PVREG results for the quark-gluon part agree with the results available in the
literature, then we present our top-stop-gluino and bottom-sbottom-gluino results (as well
as a discussion of suitable renormalization schemes in the case of bottom contributions).
Sec. 8.4 contains a comparison with the bottom results obtained in the effective-Lagrangian
approximation. Finally in sec. 8.5 we assess the validity of the expansion in powers of m2

A

in the top contributions, and discuss the numerical relevance of the different NLO contri-
butions. In app. C we also include, for completeness, the explicit NLO contributions from
one-loop diagrams with emission of a real parton.



88 Two-loop NLO QCD corrections to gg → A cross-section

8.1 Details on the computation in DREG

In our computation of the two-loop form factor H2`
A , defined in sec. 3.2.3, we regularized

the loop integrals using both the DREG and the PVREG method.
With the remarks of sec. 4.1 concerning the treatment of γ5 and the SUSY Ward

identities, the DREG computation follows the usual strategy. The workflow closely follows
the one described in sec. 7.1, the only difference being the projector we employ in DREG.
Due to the coupling structure, the only one-loop contribution is the one with a quark
loop, which always involves a γ5 in the coupling. Thus the tensor structure of the A-g-g
amplitude is forced to be

MA =Mµν
A εµ(q1)εν(q2) = A εµνρσq1ρq2σ εµ(q1)εν(q2) , (8.1)

where A is the scalar form factor and εν(qi) is the polarization vector of the i-th gluon (with
momentum qi). The scalar form factor can be extracted if we drop the two polarization
vectors and contract with the projector

PA

µν =
εµνρσ q

ρ
1q
σ
2

(q1 · q2)2(d− 2)(d− 3)
. (8.2)

Moreover, since we always have in our expressions the product of exactly two Levi-Civita
tensors, one coming from the γ5-odd traces and one from the projector, we can use (4.20) in
order to express those products in terms of the antysimmetric combination of 4-dimensional
metric tensors. Then, keeping in mind the comment below such equation, we can actually
treat them as d-dimensional metric tensors and use them for contracting all the vectors in
the integrand. We thus end up with purely scalar integrals. We dedicate the next section
to discussing some details of the PVREG computation.

8.2 Technical aspects of the calculation in PVREG

In the following we provide further details about the PVREG computation.
For the purposes of this computation, the main advantage of PVREG with respect to

DREG is the fact that all the Lorentz indices remain strictly 4-dimensional, thus the γ5

matrices anticommute with the other gamma matrices and the trace on a string of gamma
matrices can be taken using the standard 4-dimensional relations.

In the case of the top-gluon contributions also the limit λ → 0 must be taken on the
fictitious gluon mass. In the present calculation, taking the relevant limits for the mass
regulators does not introduce additional complications with respect to the same calculation
performed in DRED or DREG. This is due to the fact that we are computing the two-
loop diagrams via an asymptotic expansion, so that the final result is expressed in terms
of two-loop vacuum integrals with different masses and of one-loop integrals. Both kinds
of terms are fully known analytically, including all the relevant limits when one or more
masses are sent to infinity or to zero.
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In order to test our implementation of PVREG we first considered the two-loop top-
gluon contributions. These contributions can be split in two parts, one proportional to CF
and the other proportional to CA. The latter, which stems from the non-abelian nature of
SU(3), is not IR finite but contains a soft and collinear divergence that factorizes on the
lowest-order cross-section. In DREG, this IR divergence appears as a 1/ε2 pole multiplying
the top contribution to σ(0). We computed the top-gluon contributions via an asymptotic
expansion in the top mass up to and including terms O(m8

A/m
8
t ). The IR divergences

are regularized by giving a mass λ to the gluon, while the UV divergences are regularized
by subtracting to any term a replica in which λ is replaced by MPV . The final result is
then obtained taking the limits MPV → ∞ and λ → 0. We were able to reproduce in
PVREG the known result for the top-gluon contributions obtained in DREG [4, 36] once
the PVREG IR-divergent term 1/2 log2(−m2

A/λ
2) is identified in DREG with 1/ε2. This

is quite non-trivial, because it is known that, in general, regularizing the IR divergences
via a fictitious gluon mass does not respect the non-abelian symmetry of SU(3). Thus,
one expects to get the correct result only for the part proportional to CF . However,
we quantize the Lagrangian employing the Background Field Method (BFM) [60–64], so
that the external background gluons satisfy QED-like Ward identities. Then it is not
surprising that PVREG gives the correct results also for the CA part. We also remark that
within the BFM the renormalization of the strong gauge coupling is due only to the wave
function renormalization of the external background gluons. Thus, the renormalization of
αs decouples completely from the rest of the calculation, and can be treated separately
in the standard way. As a consequence, even if PVREG is used to regularize the loop
integrals, the LO partonic cross section σ(0) can be directly expressed in terms of the
running coupling αs(µR) as in eq. (3.3).

In the evaluation of the top-stop-gluino contributions to H2`
A , the two-loop integrals

are regularized by subtracting from each of them the same expression with m2
t̃1

and m2
t̃2

replaced by M2
PV . The top-stop-gluino contributions are then computed in two alternative

ways: either by means of a Taylor expansion in the external momentum, retaining terms of
O(m2

A/m
2
t ) and O(m2

A/M
2), or by means of an asymptotic expansion in the superparticle

masses, retaining terms up to O(m2
A/M

2) and O(m2
t/M

2). The bottom-sbottom-gluino
contributions to H2`

A can then be recovered from the top-stop-gluino contributions com-
puted with the asymptotic expansion, by performing appropriate replacements and taking
the limit mb � mA. Considering the hierarchy between mb and the other masses, we retain
only terms up to O(m2

b/m
2
A) and O(mb/M).

We conclude this section with a couple of observations concerning the use of PVREG
in the computation of the virtual NLO contributions. First, we recall that in PVREG one
obtains directly the correct result without the need of introducing a finite renormalization
factor to restore the Ward identities (see sec. 4.1.1). Second, we note that in PVREG the
evaluation of the leading term in the Taylor expansion (i.e., the term corresponding to
mA = 0) does not require the computation of counterterm diagrams. This seems natural,
because the leading term in the one-loop expression, eq. (3.32), does not depend on the
top mass. However, the same evaluation in DREG or DRED does require the computation
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q

(a)

A q̃i g̃
q

q

(b)

A q g̃
q̃1

q̃2
(c)

A

Figure 8.1: Examples of two-loop quark-gluon diagrams (a), and of two-loop quark-squark-
gluino diagrams involving (b) the pseudoscalar-quark coupling or (c) the pseudoscalar-squark
coupling. Here, q = t, b and i = 1, 2.

of counterterm diagrams. Indeed, in d dimensions the one-loop leading term in the Taylor
expansion contains an O(ε) part that depends on the top mass, so that the counterterm
diagrams give rise to a non-vanishing contribution.

8.3 Two-loop quark/squark contributions

The interactions of the CP-odd Higgs with quarks and squarks has been discussed in
sec. 2.4. The fact that the pseudoscalar only couples to two different squark mass eigen-
states, while gluons only couple to two equal eigenstates, implies that the form factor HA

receives neither one-loop contributions from diagrams with squarks nor two-loop contribu-
tions from diagrams with squarks and gluons. However, contributions to H2`

A do arise from
two-loop diagrams with quarks and gluons, as well as from two-loop diagrams with quarks,
squarks and gluinos. Examples of such diagrams, involving either the pseudoscalar-quark
coupling or the pseudoscalar-squark coupling, are given in figure 8.1.

The two-loop form factor for pseudoscalar production can be decomposed as

H2`
A = TF

[
cot β

(
K2`
tg + K2`

tt̃g̃

)
+ tan β

(
K2`
bg + K2`

bb̃g̃

)]
, (8.3)

where K2`
qg denotes the quark-gluon contributions (q = t, b), and K2`

qq̃g̃ denotes the quark-
squark-gluino contributions. In the following we discuss separately the two-loop contribu-
tions arising from quark-gluon, top-stop-gluino and bottom-sbottom-gluino diagrams.

8.3.1 Quark-gluon contribution

We recall for completeness the results of refs. [4, 36] for the contributions to H2`
A arising

from diagrams with quarks and gluons (see figure 8.1a). If the corresponding contribution
in the one-loop form factor H1`

A is expressed in terms of the physical quark mass, the
two-loop contribution for a given quark q reads

K2`
qg = CF

[
F1(τq) +

4

3
F2(τq)

]
+ CAF3(τq) , (8.4)
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where as usual τq ≡ 4mq/mA. If the one-loop form factor is instead expressed in terms
of the running quark mass, renormalized in the DR scheme at the scale Q, the two-loop
contribution becomes

K2`
qg = CF

[
F1(τq) + F2(τq)

(
ln
m2
q

Q2
− 1

3

)]
+ CAF3(τq) . (8.5)

Expressions for the functions denoted here as F1(τ), F2(τ) and F3(τ), valid for arbitrary

values of τ , can be found in ref. [36]. They correspond to the functions E (2`,a)
t (4/τ) in

eq. (4.6), E (2`,b)
t (4/τ) in eq. (4.7), and K (2`,CA)

t (4/τ) in eq. (4.12) of that paper, respectively.
Their limiting behaviors for heavy and light quark are respectively

(τ � 1) : F1(τ) −→ − 4

3τ
+ O(τ−2) , (8.6)

F2(τ) −→ −1

τ
+ O(τ−2) , (8.7)

F3(τ) −→ −2− 1

6τ
+ O(τ−2) , (8.8)

and

(τ � 1) : F1(τ) −→ −τ
[

9

5
ζ2

2 − ζ3 + (2− ζ2 − 4 ζ3) ln

(−4

τ

)
− (1− ζ2) ln2

(−4

τ

)
+

1

4
ln3

(−4

τ

)
+

1

48
ln4

(−4

τ

)]
+ O(τ 2) , (8.9)

F2(τ) −→ 3 τ

4

[
2 ln

(−4

τ

)
− ln2

(−4

τ

)]
+ O(τ 2) , (8.10)

F3(τ) −→ τ

[
8

5
ζ2

2 + 3 ζ3 − 3 ζ3 ln

(−4

τ

)
+

1

4
(1 + 2 ζ2) ln2

(−4

τ

)
+

1

48
ln4

(−4

τ

)]
+ O(τ 2) . (8.11)

8.3.2 Top-stop-gluino contribution

While a fully analytic computation of the top-stop-gluino contributions to H2`
A valid for

arbitrary values of all the relevant particle masses is currently beyond our reach, it is pos-
sible to derive approximate analytic results valid in different phenomenologically relevant
limits.

To start with, we computed the term K2`
tt̃g̃

in eq. (8.3) via a Taylor expansion in the

external Higgs momentum up to terms of O(m2
A/m

2
t ) and O(m2

A/M
2), where M denotes
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generically the stop and gluino masses. Such expansion should give a reasonable approx-
imation to the full result when mA is small compared to the other masses, and is anyway
restricted to values of mA below the lowest threshold encountered in the diagrams (this
usually means mA < 2mt). In the limit of vanishing mA we find that our result for K2`

tt̃g̃

can be cast in an extremely compact form:

K2`
tt̃g̃ =

(
s2θt

2
− mt Yt
m2
t̃1
−m2

t̃2

) [
f(m2

g̃,m
2
t ,m

2
t̃1

)− f(m2
g̃,m

2
t ,m

2
t̃2

)
]
, (8.12)

where

f(m2
g̃,m

2
t ,m

2
t̃i

) = CF
mg̃

mt ∆

[
m2
t (m2

g̃ −m2
t +m2

t̃i
) ln

m2
t

m2
g̃

+m2
t̃i

(m2
g̃ +m2

t −m2
t̃i

) ln
m2
t̃i

m2
g̃

+2m2
g̃m

2
t Φ(m2

g̃,m
2
t ,m

2
t̃i

)

]
+ CA

mt

mg̃ ∆

[
m2
t̃i

(m2
t̃i
−m2

t −m2
g̃) ln

m2
t

m2
g̃

+m2
t̃i

(m2
t −m2

t̃i
−m2

g̃) ln
m2
t̃i

m2
g̃

+m2
g̃ (m2

t +m2
t̃i
−m2

g̃) Φ(m2
g̃,m

2
t ,m

2
t̃i

)

]
, (8.13)

the function Φ(m2
g̃,m

2
t ,m

2
t̃i

) is given, e.g., in appendix A of ref. [159], and we introduced

the shortcut ∆ = m4
t +m4

g̃+m4
t̃i
−2 (m2

t m
2
g̃+m2

t m
2
t̃i

+m2
g̃m

2
t̃i

) . As appears from eqs. (3.30)

and (3.32), in the limit of vanishing mA the one-loop top contribution to HA reduces to
− cot β, i.e., it does not actually depend on any parameter subject to O(αs) corrections.
Therefore, the results in eqs. 8.12 and 8.13 do not depend on the renormalization scheme
in which the calculation is performed. The contributions to K2`

tt̃g̃
of the first order in the

Taylor expansion in m2
A are too lengthy to be printed here, but in section 8.5 we will discuss

their relevance in a representative region of the MSSM parameter space.
The two terms between parentheses in eq. (8.12) come from the diagrams with pseudoscalar-

top and pseudoscalar-stop couplings in figs. 8.1b and 8.1c, respectively. Inserting the ex-
plicit expressions for s2θt and Yt we find

K2`
tt̃g̃ =

mt µ

m2
t̃1
−m2

t̃2

(cot β + tan β)
[
f(m2

g̃,m
2
t ,m

2
t̃1

)− f(m2
g̃,m

2
t ,m

2
t̃2

)
]
, (8.14)

i.e., the explicit dependence of K2`
tt̃g̃

on At drops out, leaving only a dependence on µ.

Ref. [51] points out that this happens because the µ term breaks the axial U(1) Peccei-
Quinn symmetry of the MSSM potential, thus violating the Adler-Bardeen theorem [123]
which would otherwise guarantee the cancellation of all contributions from irreducible
diagrams beyond one loop.

We compared our result for K2`
tt̃g̃

in the limit of vanishing mA, eqs. (8.12)–(8.13), with

the result for the coefficient c̃
(1)
1 defined in ref. [51]. That result was deemed too voluminous
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to be printed explicitly in ref. [51], and was made available in the fortran code evalcsusy.f
[32, 33]. We find full numerical agreement with evalcsusy.f, after taking into account

that c̃
(1)
1 = −TF cot βK2`

tt̃g̃
and that ref. [51] employs the opposite convention for the sign

of µ with respect to our (2.38).

Even when the superparticles are much heavier than the pseudoscalar, the validity of
the result for K2`

tt̃g̃
obtained via a Taylor expansion in m2

A becomes questionable if mA is
close to or even larger than mt. To cover this region of the parameter space we performed
an asymptotic expansion of K2`

tt̃g̃
in the large superparticle masses. More specifically, we

consider the case (mA,mt)�M without assuming any hierarchy between mA and mt, and
retain terms up to O(m2

A/M
2) and O(m2

t/M
2) in the expansion. Assuming that the top

contribution to H1`
A in eqs. (3.30) and (3.31) is expressed in terms of the pole top mass, we

find

K2`
tt̃g̃ = − CF

2
K1`(τt)

mg̃

mt

(
s2θt

2
− mt Yt
m2
t̃1
−m2

t̃2

)(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)
− mt

mg̃

s2θtR1 +
2m2

t Yt
mg̃ (m2

t̃1
−m2

t̃2
)
R2 +

m2
t

m2
g̃

R3 −
1

2
K1`(τt)

m2
A

m2
t̃1
−m2

t̃2

R4 ,

(8.15)

where xi = m2
t̃i
/m2

g̃ , the one-loop function K1`(τ) was defined in eq. (3.31), and the terms

Ri collect contributions suppressed by mt/M or m2
t/M

2:

R1 =
CF

4 (1− x1)3

[
(1− x2

1 + 2x1 lnx1)

(
2 ln

m2
g̃

m2
t

− 3− 3

2
K1`(τt) + 2B

)
− 8x1 Li2(1− x1)− 2x1 (3 + x1) ln x1

]
+

CA
2 (1− x1)2

[
(1− x1 + x1 lnx1)

(
ln
m2
t

m2
g̃

+ 1 +
1

2
K1`(τt)− B

)
+ 2x1 Li2(1− x1) + x1 (1 + x1) lnx1

]
+

CF
(x1 − x2)2

Yt
mg̃

(
1 +

1

2
K1`(τt)

)[
x2

1 (1− 2x2)

2(1− x1)(1− x2)

+
x1

2(1− x1)2
(x2

1 − 2x2 + x1 x2) ln x1

]
−
(
x1 ←→ x2

)
, (8.16)
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R2 =
CF

4 (1− x1)3

[
2 (1− x2

1 + 2x1 lnx1) ln
m2
g̃

m2
t

− 8x1 Li2(1− x1)

+ (1− x2
1)

(
1 +

1

2
K1`(τt)

)
− 2x1

(
2 + x1 −

1

2
K1`(τt)

)
lnx1

]
+

CA
2 (1− x1)2

[
(1− x1 + x1 lnx1) ln

m2
t

m2
g̃

+ 2x1 Li2(1− x1) + x1 (1 + x1) lnx1

]
−
(
x1 ←→ x2

)
, (8.17)

R3 =
CF

6 (1− x1)4
(−2− 3x1 + 6x2

1 − x3
1 − 6x1 lnx1)

(
2 +K1`(τt)− B

)
+

CA
8 (1− x1)3

(1− x2
1 + 2x1 lnx1)

(
2 +K1`(τt)− 2B

)
+

(
x1 ←→ x2

)
, (8.18)

R4 =
CF

(x1 − x2)2

Yt
mg̃

[
x2

1 (1− 2x2)

2(1− x1)(1− x2)
+

x1

2(1− x1)2
(x2

1 − 2x2 + x1 x2) lnx1

]
−
(
x1 ←→ x2

)
. (8.19)

In the equations above, B denotes the finite part of the Passarino-Veltman function
B0(m2

A,m
2
t ,m

2
t ) computed at the renormalization scale Q2 = m2

t . The comparison between
the result for K2`

tt̃g̃
obtained via a Taylor expansion in m2

A and the corresponding result
obtained via an asymptotic expansion in M will be discussed in section 8.5.

8.3.3 Bottom-sbottom-gluino contribution

A result for the bottom-sbottom-gluino contribution K2`
bb̃g̃

can be obtained by performing

the obvious replacement t→ b in the result for K2`
tt̃g̃

obtained via the asymptotic expansion

in M , eqs. (8.15)–(8.19). Considering that mb � mA, and that we are assuming mA �M ,
we retain only the terms up to O(mb/M) and O(m2

b/m
2
A). In particular, the terms R2,

R3 and R4 in eq. (8.15) give contributions of higher order in mb and can be neglected,
while in the expression for R1, eq. (8.16), we drop the occurrences of K1`(τb) and use
B = 2 − ln(−m2

A/m
2
b). As a result, assuming that the bottom contribution to H1`

A in
eqs. (3.30) and (3.33) is fully expressed in terms of the pole bottom mass, we again find a
rather compact expression for the term K2`

bb̃g̃
in eq. (8.3):

K2`
bb̃g̃

= −CF
2
K1`(τb)

mg̃

mb

(
s2θb

2
− mb Yb
m2
b̃1
−m2

b̃2

)(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)
−mb

mg̃

s2θbR1 .

(8.20)
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Here xi = m2
b̃i
/m2

g̃ , and R1 collects the contributions suppressed by mb/M :

R1 =
CF

4 (1− x1)3

[
(1− x2

1 + 2x1 lnx1)

(
1− 2 ln(

−m2
A

m2
g̃

)

)
− 8x1 Li2(1− x1)

− 2x1 (3 + x1) ln x1

]
+

CA
2 (1− x1)2

[
(1− x1 + x1 lnx1)

(
ln(
−m2

A

m2
g̃

)− 1

)
+ 2x1 Li2(1− x1)

+ x1 (1 + x1) lnx1

]
+

CF
(x1 − x2)2

Yb
mg̃

[
x2

1 (1− 2x2)

2(1− x1)(1− x2)
+

x1

2(1− x1)2
(x2

1 − 2x2 + x1 x2) lnx1

]
−
(
x1 ←→ x2

)
. (8.21)

As in the case of the top-stop-gluino contribution, the terms proportional to Yb originate
from the diagrams that involve the pseudoscalar-sbottom coupling, while the other terms
originate from the diagrams that involve the pseudoscalar-bottom coupling. Inserting the
expressions for s2θb and Yb in the first term in the right-hand side of eq. (8.20) we obtain

K2`
bb̃g̃

= −CF
2
K1`(τb)

mg̃ µ

m2
b̃1
−m2

b̃2

(tan β+cot β)

(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)
−mb

mg̃

s2θbR1 .

(8.22)

Similarly to what found in ref. [42] for the production of CP-even Higgs bosons, if the
one-loop contribution to HA is expressed in terms of the pole bottom mass the bottom-
sbottom-gluino diagrams induce potentially large two-loop contributions. According to
whether or not we insert the explicit expression for s2θb in our formulae, such contributions
manifest themselves either as terms enhanced by the ratio mg̃/mb, as in eq. (8.20), or
as terms enhanced by tan β, as in eq. (8.22). However, such terms cancel out if the
pseudoscalar-bottom coupling entering the one-loop contribution to HA is identified with
the DR-renormalized mass m̂b, while the mass of the bottom quark running in the loop is
identified with the pole mass Mb (this amounts to rescaling by m̂b/Mb the one-loop result
fully computed in terms of Mb). As a result, the two-loop form factor in eq. (8.3) is shifted
as

H2`
A −→ H2`

A − tan βK1`(τb)TF CF

[
3

4
ln
m2
b

Q2
− 5

4
+

(δmb)

mb

SUSY ]
(8.23)

with respect to the result obtained when the one-loop bottom contribution is fully expressed
in terms of Mb. Here Q is the scale at which the running mass m̂b is renormalized, and
(δmb)

SUSY denotes the SUSY contribution to the bottom self-energy, in units of CF αs/π
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and in the limit of vanishing mb :

(δmb)

mb

SUSY

= −1

4

[
ln
m2
g̃

Q2
+ f(x1) + f(x2) +

mg̃

mb

s2θb

(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)]
,

(8.24)
where

f(x) =
x− 3

4 (1− x)
+
x (x− 2)

2 (1− x)2
lnx . (8.25)

While the shift in eq. (8.23) removes the contributions enhanced by mg̃/mb (or tan β),
it does introduce potentially large logarithms of the ratio between the renormalization
scale Q and the masses of the particles running in the loop. Such logarithms cannot
be eliminated by a specific scale choice for m̂b, unless Q is set to a value much smaller
than the bottom mass itself. Therefore, as already found in ref. [42] for the CP-even
Higgs bosons, the bottom contributions to H2`

A may turn out to be sizable even in the
“mixed” renormalization scheme in which the tan β-enhanced contributions are absorbed
in a redefinition of the pseudoscalar-bottom coupling entering H1`

A .

Finally, if the bottom contribution to H1`
A is fully expressed in terms of the running

bottom mass m̂b the bottom-sbottom-gluino contribution to the form factor in eq. (8.20)
is shifted as

K2`
bb̃g̃
−→ K2`

bb̃g̃
+

4

3
CF F2(τb)

(δmb)

mb

SUSY

. (8.26)

In this case H2`
A contains both terms enhanced by mg̃/mb and potentially large logarithms,

the latter arising from (δmb)
SUSY in eq. (8.26) as well as from the two-loop bottom-gluon

contribution in eq. (8.5).

8.4 Comparison with the effective-Lagrangian approx-

imation

It is well known that, in the MSSM, loop diagrams involving superparticles induce in-
teractions between the quarks and the “wrong” Higgs doublets, i.e., interactions that are
absent from the tree-level Lagrangian due to the requirement that the superpotential be a
holomorphic function of the superfields [160]. Such non-holomorphic, loop-induced Higgs-
quark interactions result in tan β-enhanced (or tan β-suppressed) corrections to the MSSM
predictions for various physical observables. If all superparticles are considerably heavier
than the Higgs bosons they can be integrated out of the Lagrangian, in which case the
loop-induced corrections are resummed in effective Higgs-quark couplings. In particular,
if gφb denote the tree-level couplings of a neutral Higgs φ = (h,H,A) to bottom quarks
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(normalized to the SM value), the corresponding effective couplings g̃φb read [52, 53]

g̃hb =
ghb

1 + ∆b

(
1−∆b

cotα

tan β

)
, (8.27)

g̃Hb =
gHb

1 + ∆b

(
1 + ∆b

tanα

tan β

)
, (8.28)

g̃Ab =
gAb

1 + ∆b

(
1−∆b cot2 β

)
, (8.29)

where α is the mixing angle in the CP-even Higgs sector and, to O(αs),

∆b =
αsCF

2π

mg̃ µ tan β

m2
b̃1
−m2

b̃2

(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)
. (8.30)

In the calculation of processes involving the Higgs-bottom couplings, it is often found
that the tan β-enhanced corrections can be included to all orders in an expansion in powers
of αs tan β by inserting the effective couplings of eq. (8.27) in the lowest-order result. A
comparison with our explicit results for the two-loop form factors allows us to test the
validity of that procedure in the case of the production of both CP-even [42] and CP-odd
Higgs bosons in gluon fusion.∗

We recall that the bottom-quark contributions H1` ,b
φ to the one-loop form factors for

the production of the Higgs boson φ = (h,H,A) read

H1` ,b
h = −TF

sinα

cos β
G1`

1/2(τb) , H1` ,b
H = TF

cosα

cos β
G1`

1/2(τb) , H1` ,b
A = TF tan β K1`(τb) ,

(8.31)
where the function G1`

1/2(τ) is given, e.g., in eq. (12) of ref. [42]. Assuming that H1` ,b
φ

are expressed in terms of the pole bottom mass, and that the Higgs-sbottom couplings are
renormalized in a way that avoids the introduction of additional tan β-enhanced corrections
(see ref. [42]), we find that the two-loop form factors read

H2`
h = H1` ,b

h

[
− π

αs
∆b

(
1 +

cotα

tan β

)
+
CF
4

Ab − µ cotα

mg̃

s2
2θb
g(x1, x2)

]
+ . . . ,(8.32)

H2`
H = H1` ,b

H

[
− π

αs
∆b

(
1− tanα

tan β

)
+
CF
4

Ab + µ tanα

mg̃

s2
2θb
g(x1, x2)

]
+ . . . ,(8.33)

H2`
A = −H1` ,b

A

π

αs
∆b (1 + cot2 β) + . . . , (8.34)

where the ellipses denote contributions suppressed by mb/M or m2
Z/M

2, as well as all of

∗A comparison for the light scalar h in the limit of vanishing sbottom mixing was discussed in ref. [43],
and a numerical comparison for the heavy scalar H was shown, without a detailed discussion, in ref. [41].
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the contributions from diagrams involving top and stop, and

g(x1, x2) =
1

1− x1

(
1 +

lnx1

1− x1

)
+

1

1− x2

(
1 +

lnx2

1− x2

)
− 2

x1 − x2

(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)
. (8.35)

In practice, the effective-Lagrangian approximation consists in rescaling the one-loop
bottom contributions H1` ,b

φ by the same factors that rescale the Higgs-bottom couplings

gφb in eq. (8.27). Expanding the rescaling factors to the first order in ∆b it is easy to
see that the effective-Lagrangian approximation does indeed reproduce the two-loop terms
proportional to ∆b in eqs. (8.32)–(8.34).

It is also interesting to consider the so-called decoupling limit of the MSSM, mA �
mZ, in which cotα → − tan β and the light scalar h has SM-like couplings to fermions
and gauge bosons.† Eq. (8.27) shows that in this limit the effective coupling of h to
bottom quarks is equal to the tree-level coupling, therefore in the effective-Lagrangian
approximation there are no tan β-enhanced contributions to H2`

h . Indeed, for cotα →
− tan β the terms proportional to ∆b drop out of the two-loop form factor in eq. (8.32).
However, eq. (8.32) also shows that in the decoupling limit H2`

h contains additional tan β-
enhanced contributions, controlled by the left-right sbottom mixing Xb = (Ab + µ tan β),
which are not reproduced by the effective-Lagrangian approximation. However, when the
implicit dependence of the sbottom masses and mixing on the bottom mass is taken into
account, such contributions turn out to be partially suppressed by powers of mb. Indeed,
taking for illustrative purposes the limit in which the diagonal entries of the sbottom mass
matrix as well as the squared gluino mass are all equal to M2, and expanding the form
factor in powers of mb, we find

H2`
h ⊃ −H1` ,b

h

CF
12

m2
b X

3
b

M5
+ TF

2CA + 25CF
18

m2
b X

2
b

M4
+ . . . , (8.36)

where the ellipses denote terms further suppressed by powers of mb or mZ, as well as all
of the contributions from diagrams involving top and stop. The first term in eq. (8.36)
comes from the expansion of the terms proportional to s2

2θb
in eq. (8.32), while the second

comes from the expansion of terms not shown in eq. (8.32). The contributions neglected
by the effective-Lagrangian approximation can be relevant for values of Xb large enough
to compensate for the suppression due to mb. It should however be recalled that in the
decoupling limit H1` ,b

h is not further enhanced by tan β, therefore – differently from what
happens in the case of the heavy Higgs bosons – the total form factor for h production can
still be dominated by the top/stop contributions even for large values of tan β.

†The validity of the effective-Lagrangian approximation for the light scalar h in the decoupling limit
was already discussed in ref. [53] in the context of Higgs boson decays to bottom quark pairs.
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8.5 Numerical examples

We will now illustrate the effect of the two-loop quark-squark-gluino contributions to the
form factor for pseudoscalar Higgs production in a representative region of the MSSM
parameter space.

The SM parameters entering our calculation include the Z boson mass mZ = 91.1876
GeV, the W boson mass mW = 80.399 GeV and the strong coupling constant αs(mZ) =
0.118 [161]. For the pole masses of the top and bottom quarks we take Mt = 173.3 GeV
[162] and Mb = 4.49 GeV, the latter corresponding to the SM running mass (in the MS
scheme) mb(mb) = 4.16 GeV [163–165].

Since the squarks do not contribute to the one-loop amplitude for pseudoscalar produc-
tion, the only parameters entering H1`

A in addition to the quark masses are tan β and mA.
Neither of those parameters is subject to one-loop O(αs) corrections, therefore we need
not specify a renormalization scheme for them (although it is natural to consider mA as
the pole pseudoscalar mass). The remaining input parameters are mg̃, µ, At, Ab and the
soft SUSY-breaking mass terms for stop and sbottom squarks, mQ, mU and mD. Since
these parameters only enter the two-loop part of the form factor we need not specify a
renormalization scheme for them either. For simplicity, in our numerical examples we will
set all the SUSY-breaking parameters, as well as the supersymmetric mass parameter µ,
to a common value M . Note however that the squark mass eigenstates will differ from
M , because of the supersymmetric (F-term and D-term) contributions to the squark mass
matrices as well as of the left-right mixing terms.

In figure 8.2 we show the top-stop-gluino contribution to the two-loop form factor
for pseudoscalar production, i.e., the term K2`

tt̃g̃
entering eq. (8.3), as a function of the

common SUSY mass M , for mA = 150 GeV and tan β = 2. Even for the lowest value of M
considered in the plot, M = 100 GeV, the stop and sbottom masses are above the threshold
for real-particle production. The dashed line represents the result obtained in the limit of
vanishing mA, shown explicitly in eqs. (8.12) and (8.13), while the solid line represents the
result computed at the the first order of the Taylor expansion in the pseudoscalar mass,
i.e. it includes the effect of terms of O(m2

A/m
2
t ) and O(m2

A/M
2) which are too long to be

presented in analytic form. In the computation of these additional terms we assumed that
the O(m2

A/m
2
t ) part of the one-loop top contribution, see eq. (3.32), is expressed in terms

of the pole top mass.
It can be seen in figure 8.2 that the two-loop top-stop-gluino contribution K2`

tt̃g̃
is of

non-decoupling nature, i.e., it does not tend to zero when all the superparticle masses
become large (note that the superpotential parameter µ increases together with the SUSY-
breaking parameters). In addition, the comparison between the solid and dashed lines
shows that when the common SUSY mass M is close to mA the combined effect of the
terms of O(m2

A/m
2
t ) and O(m2

A/M
2) can be as large as 20%–25% with respect to the

result obtained for vanishing mA. However, when M increases the effect of the terms of
O(m2

A/M
2) becomes quickly negligible. The remaining discrepancy between the solid and

dashed lines for moderate to large values of M is due to the terms of O(m2
A/m

2
t ), and it

amounts to a modest 6% for the value of mA considered in this example.



100 Two-loop NLO QCD corrections to gg → A cross-section

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M  [TeV]

-5

-4

-3

-2

-1

0

Κ
tt

g

2
l

0th order in m
A

1st order in m
A

2

2

Figure 8.2: Top-stop-gluino contribution K2`
tt̃g̃

as a function of a common SUSY mass M , for

mA = 150 GeV and tanβ = 2. The dashed line is the result in the limit of vanishing mA, while
the solid line includes the first-order term of a Taylor expansion in m2

A.
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Figure 8.3: Real part of K2`
tt̃g̃

as a function of mA, for a common SUSY mass M = 1 TeV and

tanβ = 2. The solid and dashed lines are as in figure 8.2 above, while the dot-dashed line is the
result of an asymptotic expansion in M which does not assume a specific hierarchy between mt

and mA.
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To assess the importance of the terms of O(m2
A/m

2
t ) for larger values of mA, we plot in

figure 8.3 the real part of K2`
tt̃g̃

as a function of the pseudoscalar mass, up to a value mA =
500 GeV well above the threshold for real top-quark production. The common SUSY mass
is set to the relatively large value M = 1 TeV, and tan β = 2. As in figure 8.3, the dashed
and solid lines represent the results obtained at the zeroth and first order of the Taylor
expansion in m2

A, respectively. The comparison between those lines shows that when mA

approaches 2mt the effect of the terms of O(m2
A/m

2
t ) gets as large as 30% with respect to

the result obtained for vanishing mA. However, it is natural to wonder whether a Taylor
expansion in m2

A can give an accurate approximation to K2`
tt̃g̃

for values of mA close to or
larger than mt. To address this question, we show in figure 8.3 as a dot-dashed line the
result of the asymptotic expansion in M , given explicitly in eqs. (8.15)–(8.19). This result
was derived under the assumption that both mA and mt are much smaller than M , which
is indeed the case for M = 1 TeV, but it does not require any specific hierarchy between
mA and mt. The comparison between the dot-dashed and solid lines shows that the Taylor
expansion at the first order in m2

A provides a good description of the dependence of K2`
tt̃g̃

on the ratio mA/mt up to values of mA of the order of 250 GeV. On the other hand, when
mA reaches the threshold for real top production (i.e., at the cusp of the dot-dashed line)
the result of the asymptotic expansion in M is roughly 80% larger in absolute value than
the result at the first order of the Taylor expansion in m2

A, and a full 140% larger than the
result obtained for vanishing mA.

In summary, it appears that the compact result for K2`
tt̃g̃

given in eqs. (8.12) and (8.13),
which was derived for mA = 0, can be safely applied only to scenarios in which mA is
smaller than mt. While the inclusion of the terms proportional to m2

A pushes the validity
of the Taylor expansion up to larger values of mA, the expansion fails when mA gets close to
the threshold for real top production. In that case one can use the result of the asymptotic
expansion in M , provided that the latter is still considerably larger than mA.

We are now ready to discuss the relative importance of the various two-loop contri-
butions to the form factor for pseudoscalar production. We will see that, at least in the
region of the parameter space that we consider in this example, the results are qualitatively
similar to what we found in ref. [42] for the case of the heavy scalar H.

A precise NLO determination of the cross section for pseudoscalar production would
require us to take into account the contribution of one-loop diagrams with real parton
emission, and to perform an integration over the phase space (see section 3.2.3). However,
for the purpose of illustrating the relative importance of the various two-loop contributions,
we can just define a factor KA that contains the ratio of two-loop to one-loop form factors
appearing in eq. (3.7):

KA = 1 + 2
αs
π

Re

(H2`
A

H1`
A

)
. (8.37)

In the left panel of figure 8.4 we plot KA as a function of tan β, for mA = 150 GeV and all
SUSY mass parameters equal to M = 500 GeV. The one-loop form factor H1`

A in eq. (8.37)
contains both the top and bottom contributions, computed under the approximations of
eqs. (3.32) and (3.33), respectively. We identify the quark masses in the one-loop form
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Figure 8.4: K factor for the production of a pseudoscalar Higgs A as a function of tanβ, for
mA = 150 GeV and all SUSY mass parameters equal to M = 500 GeV. The three lines show the
effect of the different two-loop contributions, in the OS scheme (left panel) and in the “mixed”
scheme (right panel).

factor with the pole masses, and refer to this choice as “on-shell” (OS) scheme. The lines
in the plot correspond to different computations of the two-loop form factor H2`

A : the
dotted line includes only the contributions of the top/stop sector (both those involving
top quarks and gluons and those involving top, stop and gluinos) computed at the first
order of the Taylor expansion in m2

A; the dashed line includes also the contributions of
two-loop diagrams with bottom quarks and gluons; finally, the solid line includes the full
contributions of the bottom/sbottom sector.

Comparing the three lines in the left panel of figure 8.4 it can be seen that the top/stop
contributions dominate the two-loop form factor up to values of tan β around 5. For larger
values of tan β the contribution of the bottom-sbottom-gluino diagrams (included in the
solid line) becomes the dominant one, and KA grows linearly with tan β. This behavior
can be understood by recalling that, as discussed in sec. A.2, the Yukawa coupling of the
pseudoscalar to bottom quarks is enhanced by tan β with respect to the coupling of the
SM Higgs, while the coupling to top quarks is suppressed by tan β. Consequently, for
moderate to large values of tan β both the one-loop and the two-loop form factors in KA

are dominated by the contribution of the diagrams controlled by the pseudoscalar-bottom
coupling, with the result that the coupling itself cancels out in the ratio. However, the
dominant contribution from the bottom-sbottom-gluino diagrams in the OS scheme, see
eq. (8.22), contains an additional tan β-enhancement, which explains the linear rise of KA.
On the other hand, the proximity between the dotted and dashed lines shows that, in the
OS scheme, the contribution to H2`

A of the two-loop diagrams with bottom quarks and
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gluons is very small. This is due to a partial cancellation among the three terms entering
K2`
bg in eq. (8.4), and to the fact that, in this scheme, the term F2(τb) is not enhanced by the

potentially large logarithm of the ratio between the bottom mass and the renormalization
scale, as can be seen by comparing eqs. (8.4) and (8.5).

As discussed in section 8.3.3, all tan β-enhanced terms cancel out in a “mixed” renor-
malization scheme in which the pseudoscalar-bottom Yukawa coupling in the one-loop part
of the result is identified with the DR-renormalized MSSM bottom mass m̂b(Q), where Q
is a reference scale that we take equal to mA, while the mass of the bottom quark running
in the loop is identified with the pole mass Mb. To determine m̂b(mA), we first evolve the
MS-renormalized SM mass mb(mb) up to the scale mA via the NLO-QCD renormalization
group equations, then we convert it to the DR-renormalized SM mass m̂SM

b (mA) via the
appropriate shift, and finally we convert it to the MSSM running mass according to

m̂b(mA) = m̂b
SM(mA)

1 + δb
1 + ∆b

, (8.38)

where ∆b is given in eq. (8.30), and δb is proportional to the part of (δmb)
SUSY in eq. (8.24)

that is not enhanced by tan β:

δb = −αsCF
4π

[
ln
m2
g̃

m2
A

+ f(x1) + f(x2) +
2mg̃ Ab
m2
b̃1
−m2

b̃2

(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)]
.

(8.39)
The “mixed” renormalization prescription is realized by computing the one-loop bottom

contribution K1`(τb) in eq. (3.30) in terms of the pole mass Mb, then rescaling it by a factor
m̂b(mA)/Mb. The two-loop form factorH2`

A must then be shifted as in eq. (8.23). In the right
panel of fig. 8.4 we present the result of this manipulation. The input parameters and the
meaning of the different lines are the same as for the plot in the left panel. The proximity
between the dashed and solid lines, and the flatness of the lines for moderate to large values
of tan β, show that the contribution of the two-loop bottom-sbottom-gluino diagrams is
rather small in this renormalization scheme, and it does not induce an additional tan β-
enhancement. However, the comparison between the dotted and dashed lines shows that
there is a sizable contribution to KA from the two-loop diagrams involving bottom quarks
and gluons. This is due to the fact that the shift in eq. (8.23) brings back a large logarithm,
ln(m2

b/m
2
A), which compensates the scale dependence of the running mass m̂b.
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Chapter 9

Conclusions

The calculation of the gluon fusion production cross section for the MSSM Higgs bosons
is not quite as advanced as in the SM. Indeed, despite valiant efforts [40, 41], a full com-
putation of the two-loop quark-squark-gluino contributions, valid for arbitrary values of
all the relevant particle masses, has not been made publicly available so far. Approximate
analytic results, however, can be derived if the Higgs bosons are somewhat lighter than the
squarks and the gluinos. In the MSSM this condition almost certainly applies to the light-
est scalar h. Moreover, recent results from SUSY searches at the LHC (see e.g. ref. [166])
set preliminary lower bounds on the squark and gluino masses just below the TeV (albeit
for specific models of SUSY breaking), suggesting that there might be wide regions of the
MSSM parameter space in which the condition also applies to the heavy scalar H and to
the pseudoscalar A.

In this thesis we presented an original calculation of the two-loop quark-squark-gluino
contributions to the cross section for the gluon fusion processes gg → φ (where φ is a
CP-even or CP-odd Higgs) in the limit of large supersymmetric particles masses. We
exploited the techniques developed for the computations of the MSSM CP-even Higgs
boson production cross section in ref. [34, 42], where the cases m2

φ � m2
t and m2

φ � m2
b

were considered, in order to compute the cross section for MSSM CP-odd Higgs production
to the same accuracy. We also extended the above mentioned techniques in such a way that
no specific hierarchy is assumed between m2

φ and m2
t . This allowed us to obtain analytic

formulae for CP-even and CP-odd Higgs production which are expected to give a better
approximation of the full result when the Higgs mass is not too far from the top-pair
production threshold.

Our computation relies on an extensive use of the last generation of symbolic manipu-
lation software like Mathematica [57] and FORM [65]. We generated the relevant two-loop
diagrams through FeynArts [58], using a modified version of the MSSM model file [59],
which implements the Background Field Method [60–64]. Such a choice turns out to be
important in the use of Pauli-Villars regularization (PVREG). The asymptotic expansions
procedure requires the exact evaluation of two-loop disconnected diagrams, i.e. two loop
integrals in which propagators involving both integration momenta are absent, while scalar
products of the two integration momenta, raised to integer powers, can occur. For the
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reduction in Dimensional Regularization (DREG) of this class of integrals we developed a
FORM code which performs an Integration By Parts (IBP) reduction by efficiently importing
and enforcing the IBP identities generated with the software REDUZE [66].

In the case of CP-odd Higgs production, we performed the computation by regularizing
the loop integrals both in DREG and PVREG. While in the former inconsistencies are
known to arise in connection with the definition of the Dirac matrix γ5 in d 6= 4 dimensions,
the latter allows to avoid such difficulties, at the price of a somehow greater computational
effort. We obtained identical results in the two approaches. No such problems affect the
computation of the contributions to CP-even Higgs productions, so in that case we adopted
DREG only.

For what concerns the top-stop-gluino contributions to CP-even Higgs production, we
provided an original result based on an asymptotic expansion in the superparticle masses
(which we generically denote by M), up to and including terms of O(m2

A/M
2), O(m2

t/M
2)

and O(m2
Z/M

2), for which no results have been made available so far. A numerical study
of the result of this asymptotic expansion based evaluation and its renormalization scheme
dependence, as well as a quantitative comparison against the Taylor series based result, is
underway and will be presented in a forthcoming publication.

Regarding the contributions to CP-odd Higgs production cross section, we provided
both the result of a Taylor expansion in the pseudoscalar mass, up to and including terms of
O(m2

A/m
2
t ) and O(m2

A/M
2), and the result of an asymptotic expansion in the superparticle

masses, up to and including terms of O(m2
A/M

2) and O(m2
t/M

2). The latter can be
easily adapted to the case of the bottom-sbottom-gluino contributions, which allowed us
to provide a result valid up to and including terms of O(m2

b/m
2
A) and O(mb/M). We

discussed how the tan β-enhanced terms in the bottom-sbottom-gluino contributions can be
eliminated via an appropriate choice of renormalization scheme for the parameters entering
the one-loop part of the calculation, and compared our results with those obtained in the
effective-Lagrangian approximation.

In both cases we obtained explicit and compact analytic results based on asymptotic
expansions. All of our results can be easily implemented in computer codes for an efficient
and accurate determination of the cross section for scalar and pseudoscalar production at
hadron colliders.

Finally, the results derived in this work for the production cross section can be straight-
forwardly adapted to the NLO computation of the gluonic and photonic decay widths of
the pseudoscalar Higgs boson in the MSSM, in analogy to what described in sec. 5 of
ref. [34] for the case of the CP-even bosons.
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Appendix A

Higgs-squark-squark couplings

For completeness we collect here the explicit Higgs-squark-squark couplings for both the
CP-even and the CP-odd cases.

A.1 CP-even (φ = h,H)

The φ-q̃-q̃ (φ = h,H) interaction Lagrangian can be arranged in the following way (ũ and
d̃ denote here a generic up-type and down-type squark e.g. t̃ and b̃):

LMSSM ⊃ −
1√
2

(
ũL, ũR

)
Gφ
ũ

(
ũL
ũR

)
φ− 1√

2

(
d̃L, d̃R

)
Gφ

d̃

(
d̃L
d̃R

)
φ

= − 1√
2

(
ũ1, ũ2

)
Ĝφ
ũ

(
ũ1

ũ2

)
φ− 1√

2

(
d̃1, d̃2

)
Ĝφ

d̃

(
d̃1

d̃2

)
φ . (A.1)

For concreteness we specialize to the light Higgs case. The heavy Higgs couplings can be
obtained with the replacement (sα → −cα, cα → sα). The coupling matrix for up-type
squarks reads

Ĝh
ũ =

(√
2 cα humu − gmZ

cW
Du,L sα+β

hu√
2

(Aucα − µsα)
hu√

2
(Aucα − µsα)

√
2 cα humu − gmZ

cW
Du,R sα+β

)
, (A.2)

where the up-type and down-type Yukawas are defined by (we also explicitly show our
conventions for v and mW )

hu =
√

2
mu

v2

=
√

2
mu

v sβ
=

g√
2mW

mu

sβ
, (A.3)

hd =
√

2
md

v1

=
√

2
md

v cβ
=

g√
2mW

md

cβ
. (A.4)

For convenience we recall the definition (2.35) of the coefficients of the D-term induced
interaction (q = u, d)

Dq,L = I3,q −Qqs
2
W , Dq,R = Qqs

2
W , (A.5)
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where I3,q = +1/2 (−1/2) is the third component of the weak isospin for up-type (down-
type) squarks, Qq the q squark electric charge and sW is the sine of the weak angle θW .
The coupling for down-type squarks can be obtained from the one for up-type squarks with
the replacements (

Gh
ũ → Gh

d̃

)
=
(
u→ d, cα → −sα, sα → −cα

)
(A.6)

The h-q̃-q̃ coupling matrix in the mass eigenstates basis is obtained by rotating Gh
q̃ of

an angle θq.

Ĝh
q̃ = R(θq)G

h
q̃R

T (θq) , R(θq) =

(
cθq sθq
−sθq cθq

)
, (A.7)

where θq is defined by (2.38). Eventually one gets for up-type squarks(
Ĝφ
ũ

)
11

= −
(
Ĝφ
ũ

)
22

=
hu√

2

[
2 cαmu + s2θu (Aucα − µsα)

]
− gmZ

cW

[
I3u

2
+ c2θu

(
I3u

2
−Qus

2
W

)]
sα+β (A.8)(

Ĝφ
ũ

)
12

=
(
Ĝφ
ũ

)
21

= c2θu

hu√
2

(Aucα − µsα) + s2θu

gmZ

cW

(
I3u

2
−Qus

2
W

)
sα+β , (A.9)

while the corresponding result for down-type squarks can again be obtained through (A.6).

A.2 CP-odd (φ = A)

The A-q̃-q̃ interaction Lagrangian can be arranged in the following way (ũ and d̃ denote
here a generic up-type and down-type squark e.g. t̃ and b̃):

LMSSM ⊃
i√
2
cβ
(
ũL, ũR

)∗
GA
ũ

(
ũL
ũR

)
A+

i√
2
sβ
(
d̃L, d̃R

)∗
GA
d̃

(
d̃L
d̃R

)
A

=
i√
2
cβ
(
ũ1, ũ2

)∗
ĜA
ũ

(
ũ1

ũ2

)
A+

i√
2
sβ
(
d̃1, d̃2

)∗
ĜA
d̃

(
d̃1

d̃2

)
A , (A.10)

where (the upper part of
{}

is for up-type squarks, the lower part for down-type squarks)

GA
q̃ =

(
0 −hqYq̃

hqYq̃ 0

)
, Yq̃ = Aq −

{
tan β
cot β

}
µ , (A.11)

and, due to the structure of the A-q̃-q̃ coupling, it turns out that

ĜA
q̃ = R(θq)G

A
q̃ R

T (θq) = GA
q̃ . (A.12)

By defining the Yukawa couplings hq in terms of mq, one easily sees that the down-type
contributions are tan β enhanced. Note also that the interaction Lagrangian is purely
imaginary.



Appendix B

Loop integrals

In this appendix we collect some useful known results concerning the one-loop scalar in-
tegrals (sec. B.1) and the two-loop vacuum scalar integrals relevant to our calculation in
DREG (sec. B.2).

B.1 One-loop scalar integrals in DREG

We have shown in chap. 6 that, by making use of the IBP identities, every one-loop scalar
integral in d-dimensions can be expressed as a linear combination of three master integrals
(MI). Here we collect for completeness some basic definitions and results concerning the
one-loop MI.

The one-loop scalar one-point (tadpole diagram) and two-point (bubble diagram) func-
tions are defined in d = 4− 2ε dimensions by

i

16π2
A0(m2) ≡ µ4−d

(2π)d

∫
ddp

p2 −m2 + iε
, (B.1)

i

16π2
B0(q2,m2

1,m
2
2) ≡ µ4−d

(2π)d

∫
ddp

[p2 −m2
1 + iε][(p+ q)2 −m2

2 + iε]
. (B.2)

The above integrals can be evaluated with the standard techniques of d−dimensional inte-
gration (for a systematic discussion see, e.g., ref.[120]) and their expressions as a Laurent
series in ε, in the limit ε→ 0, read∗

A0(m2) = m2

(
1

ε
+ 1− ln

m2

Q2

)
+O(ε) , (B.3)

B0(q2,m2
0,m

2
1) =

1

ε
− B(q2,m2

0,m
2
1) +O(ε) . (B.4)

∗ Note that, in order to avoid the clutter, we always suppress all the constants (γE and ln 4π) that
show up together with the pole: by writing ε−1 we actually mean ε−1 − γE + ln 4π.
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The finite part of the two-point function is given by the integral over the Feynman param-
eter x

B(q2,m2
0,m

2
1) ≡

∫ 1

0

dx ln
(1− x)m2

0 + xm2
1 − x(1− x)q2 − iε
Q2

(B.5)

where Q2 = 4πµ2e−γE . The quantity γE is the Euler-Mascheroni constant,

γE = lim
n→∞

(
n∑
k=1

1

k
− lnn

)
' 0.5772 . (B.6)

An explicit expression for the integral in (B.5) can be found, e.g., in ref. [167].
The scalar three-point function (vertex diagram) is defined in d = 4−2ε dimensions by

i

16π2
C0(q2

1, q
2
2, (q1 + q2)2,m2

0,m
2
1,m

2
2) ≡ µ4−d

(2π)d

∫
ddp

D0D1D2

, (B.7)

where the denominators read

D0 := p2 −m2
0 + iε , (B.8)

D1 := (p+ q1)2 −m2
1 + iε , (B.9)

D2 := (p+ q1 + q2)2 −m2
2 + iε . (B.10)

The general result for the scalar three-point function, valid for all real momenta and phys-
ical masses, was calculated in ref. [150]. In our calculation the kinematics is fixed by the
assumption of on-shell external particles, that is q2

1 = q2
2 = 0 and (q1 + q2)2 = s = m2

φ

(where we generically denote with φ the produced Higgs boson). Concerning the masses
of the particles running in the loop, in our computation of the Higgs boson amplitudes
by means of asymptotic expansions in the large sparticle masses, the C0 function enters
only in two particular cases. The first is the case s � m0,m1,m2, which allows for an
approximate evaluation through an expansion in the small external momenta under the
integration sign. In the second case m0 = m1 = m2 = m, and an explicit, compact analytic
expression for the finite part of the C0 function is given by

C0(0, 0, q2,m2,m2,m2) =
1

2q2
ln2


√

1− 4m2

q2
− 1√

1− 4m2

q2
+ 1

 . (B.11)

Concerning the terms of O(ε) in the Laurent series for the three MI’s A0, B0 and C0,
one remark is in order. As illustrated in chap. 5, in the asymptotic expansions approach
one has to compute the product of two disconnected one-loop integrals. In case both the
UV and the IR divergences are regulated withing DREG, the A0 and B0 functions will
have just a simple UV pole in ε, while the vertex functions can in principle have single
(double) poles, corresponding to collinear (collinear and soft) singularieties due to massless
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particles†. Therefore, when the pole (double pole) of one integral hits the O(ε) (O(ε) and
O(ε2)) part of the other integral, this will generate a finite term (a simple pole and a finite
term) which ends up in the final result.

B.2 Two-loop scalar integrals in DREG

The basic two-loop integrals are:

1

(16π2)2
J(x, y) ≡ −µ

2(4−d)

(2π)2d

∫∫
ddp ddk

[p2 − x][k2 − y]
, (B.12)

1

(16π2)2
I(x, y, z) ≡ −µ

2(4−d)

(2π)2d

∫∫
ddp ddk

[p2 − x][k2 − y][(p− k)2 − z]
. (B.13)

The functions I(x, y) and J(x, y, z) have been evaluated in ref.[147], and their expressions
read

J(x, y) =
xy

ε2
− xy

ε
( lnx+ lny − 2)− xy

[
2 lnx+ 2 lny − 1

2
ln

2
xy −

(
3 +

π2

6

)]
, (B.14)

I(x, y, z) =− x+ y + z

2ε2
+

1

ε

[
x lnx+ y lny + z lnz − 3

2
(x+ y + z)

]
+

1

2
(x lny lnz + y lnx lnz + z lnx lny)− x+ y + z

2

(
7 +

π2

6

)
− 1

2
(x lnx+ y lny + z lnz)(x lnx+ y lny + z lnz − 6)− ∆(x, y, z)

2z
Φ(x, y, z) ,

(B.15)

where we use the compact notation lnx ≡ ln(x/Q2), the function ∆ is the triangular (or
Källén) function (∆(x, y, z) ≡ x2 + y2 + z2−2(xy+xz+ yz)) and the function Φ is defined
by

Φ(x, y, z) =
1

λ

[
2 lnx+ lnx− − lnu ln v − 2 (Li2(x+) + Li2(x−)) +

π2

3

]
, (B.16)

where

u =
x

z
, v =

y

z
, λ =

√
(1− u− v)2 − 4uv , x± =

1

2
[1± (u− v)− λ] . (B.17)

The definition of the Φ function given above is valid when x, y < z, while symmetry
properties allow to obtain the other branches:

Φ(x, y, z) = Φ(y, x, z) , xΦ(x, y, z) = zΦ(z, y, x) , (B.18)

†In the MSSM, these singularities arise only in the diagrams for the virtual corrections due to gluons,
which are already known in the literature.
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and the limit for small x:

lim
x→0

Φ(x, y, z) =
1

1− v [lnu ln v + 2 Li2(1− v)] . (B.19)

The function Φ has also the property that Φ(x, y, y) = y/x φ (x/(4y)), where

φ(z) =

{
4
√

z
1−z Cl2 (2 arcsin

√
z) if 0 < z < 1

1
λ

[
−4Li2(1−λ

2
) + 2 ln2 (1−λ

2
)− ln2 (4z) + π2

3

]
if z > 1 .

(B.20)

In the above equation Cl2(z) = Im Li2(eiz) is the Clausen function. For z → 1 one has
φ(z)→ 8 ln 2 while for z = 1/4 (corresponding to the case Φ(x, x, x)) one gets

φ(1/4) = 4
√

3

∫ π/6

0

dx ln(2 cosx) ' 2.343907 . (B.21)

Finally, in the derivation of analytical formulae for the two-loop corrections valid in simpli-
fied cases (e.g. for given hierarchies between the mass scales involved), it is often necessary
to perform Taylor expansions of the results around some specific value of one or more of
its arguments. The Taylor expansion of the Φ function can be easily recovered by using
the following expression for the partial derivative w.r.t x (the partial derivative w.r.t. y
and z can be obtained by means of the symmetry properties of eq.(B.18):

∆(x, y, z)
Φ(x, y, z)

x
= (y + z − x)Φ(x, y, z) +

z

x

[
(y − z) ln

z

y
+ x

(
ln
x

y
+ ln

x

z

)]
.

(B.22)



Appendix C

NLO contributions from real parton
emission

In this appendix we present for completeness our results for the NLO contributions to
pseudoscalar production from one-loop diagrams with emission of a real parton, i.e., the
functions RA

gg, RA
qq̄ and RA

qg entering eqs. (3.7) and (3.8) in the case φ = A. Such contri-
butions were first computed in ref. [4] (see also ref. [116]).

C.1 Pseudoscalar Higgs

The contribution of the gluon-fusion channel, gg → Ag, can be written as

RA

gg =
1

z(1− z)

∫ 1

0

dv

v(1− v)

{
8 z4

∣∣Agg(ŝ, t̂, û)
∣∣2

|H1`
A |2

− (1− z + z2)2

}
, (C.1)

where t̂ = −ŝ (1− z)(1− v), û = −ŝ (1− z) v, and

|Agg(s, t, u)|2 = T 2
F

[
cot2 β

∣∣Attgg(s, t, u)
∣∣2 + tan2 β

∣∣Abbgg(s, t, u)
∣∣2 + 2

∣∣Atbgg(s, t, u)
∣∣2] ,

(C.2)
with ∣∣Aijgg(s, t, u)

∣∣2 = |Aij(s, t, u)|2 + |Aij(u, s, t)|2 + |Aij(t, u, s)|2 . (C.3)

Defining, for i = t, b ,

yi ≡
m2
i

m2
A

, si ≡
s

m2
i

, ti ≡
t

m2
i

, ui ≡
u

m2
i

, (C.4)
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we find:

|Aij(s, t, u)|2 =
yiyj
4m4

A

{[
b1(s, t, u)H2(si, yi)H

†
2(sj, yj) + b2(s, t, u)H2(si, yi)H

†
2(tj, yj)

+b3(s, t, u)H3(si, ti, ui)H
†
3(sj, tj, uj) + b4(s, t, u)H3(si, ti, ui)H

†
3(uj, sj, tj)

+b5(s, t, u)H2(si, yi)H
†
3(sj, tj, uj) + b6(s, t, u)H2(si, yi)H

†
3(tj, uj, sj)

+b7(s, t, u)H2(si, yi)H
†
3(uj, sj, tj)

]
+ (i↔ j)

}
+ h.c. , (C.5)

where the function H3(s, t, u) is defined in eq. (2.28) of ref. [37], and

H2(s, y) =
1

2

[
log2

(√
1− 4/s− 1√
1− 4/s+ 1

)
− log2

(√
1− 4y − 1√
1− 4y + 1

)]
. (C.6)

The coefficient functions bi(s, t, u) entering eq. (C.5) are

b1(s, t, u) =
1

2

[
4t2u2

(t+ u)2
+ s2 − 3tu+ s(t+ u) + (t+ u)2

]
, (C.7)

b2(s, t, u) = s2 + t2 + u2 + st+
2s2tu

(s− t)(s+ u)
− 2st2u

(s− t)(t+ u)
, (C.8)

b3(s, t, u) =
1

8

[
s2 + t2 + u2 + tu+ s(t+ u)

]
, (C.9)

b4(s, t, u) =
1

4
(s+ t)(t+ u) , (C.10)

b5(s, t, u) = −1

2

[
t2 + u2 + s(t+ u)

]
, (C.11)

b6(s, t, u) = −1

2

[
s2 + (t+ u)(s+ u) +

(t− u)ut

(t+ u)

]
, (C.12)

b7(s, t, u) = −1

2

[
s2 + (t+ u)(s+ t) +

(u− t)ut
(t+ u)

]
. (C.13)

The contribution of the quark-antiquark annihilation channel, qq̄ → Ag, can be written
as

RA

qq̄ =
512

27

z (1− z) |Aqq̄(ŝ)|2

|H1`
A |2

, (C.14)

with
Aqq̄(s) = TF

[
cot β ytH2(st, yt) + tan β ybH2(sb, yb)

]
. (C.15)

Finally, the contribution of the quark-gluon scattering channel, qg → Aq, can be written
as

RA

qg =
CF
2
z + CF

∫ 1

0

dv

(1− v)

{
1 + (1− z)2v2

[1− (1− z)v]2
8 z
∣∣Aqq̄(t̂ )

∣∣2
|H1`

A |2
− 1 + (1−z)2

2z

}
. (C.16)
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We compared our results for the functions RA
gg, RA

qq̄ and RA
qg with the corresponding

results in ref. [4], and found full agreement.∗

∗Some misprints in ref. [4] must be taken into account in the comparison. In eq. (C.4) of that paper
the term within square modulus in the definition of dgq should be divided by 2. Also, the formulae in the
Appendices B and C omit all occurrences of the MSSM Higgs-quark couplings, denoted in that paper as
gΦ
Q.
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Appendix D

Explicit formulae for the gg → φ
(φ = h,H) two-loop top-stop-gluino
contributions

In this appendix we collect the explicit results for the two-loop top-stop-gluino contribu-
tions to the functions Yx, in terms of which we express the functions G2`

t , F
2`
t , F̃

2`
t and

G̃2`
t entering the two-loop part of the form factors H1 (7.9) and H2 (7.10) for CP-even

Higgs production. In particular, we collect the formulae for the CA and CF parts of the
expansion coefficients Y

(n,g̃)
x (x = t, t̃1, c

2
2θt

) entering (7.30). We assume that the one-loop

form factor H1`
2 is expressed in terms of the DR-renormalized parameters evaluated at the

scale Q2. For the definitions of the quantities entering the formulae below, see sec. 7.2.

D.1 Top-stop-gluino contributions to Yt

The expansion coefficients of the CA part are given by

Y
(−1,g̃,CA)
t = 0 , (D.1)

Y
(0,g̃,CA)
t = 0 , (D.2)

Y
(1,g̃,CA)
t =

1

6 (1− x1)2 s2θt

[
3 (1− x1 + x1 lnx1)

(
ln
m2
t

m2
g̃

− B −
K1`

1/2(τt)

2
+ 2

)

+ 6x1Li2 (1− x1) + 2x1 + 2x1 (1 + x1) lnx1 − 2

]

−
(
x1 −→ x2

)
, (D.3)
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and

Y
(2,g̃,CA)
t = − 1

12 (1− x1)3

[
3
(
1− x2

1 + 2x1 lnx1

)(
2 ln

m2
t

m2
g̃

− B −
K1`

1/2(τt)

2
+ 2

)

+ 24x1Li2 (1− x1) + 1− x2
1 + 2x1 (3x1 + 10) lnx1

]

+

(
x1 −→ x2

)
, (D.4)

while the expansion coefficients of the CF part read

Y
(−1,g̃,CF )
t = − 1

4
s2θtG1`

1/2(τt)

(
x1

1− x1

lnx1 −
x2

1− x2

lnx2

)
, (D.5)

Y
(0,g̃,CF )
t =

4

3
F (2`,b)

1/2

(
x(τt)

)(δmt)

mt

(SUSY)

, (D.6)

Y
(1,g̃,CF )
t = − s2θt

6 (1− x1)3 x1

[
−3
(
x3

1 − x1 − 2x2
1 lnx1

)(
ln
m2
t

m2
g̃

− B −
G1`

1/2(τt)

4
−
K1`

1/2(τt)

2
+ 2

)

+ (1− x1)3 ln
m2
g̃

Q2
+ 12x2

1 Li2 (1− x1) + 5x3
1 − 5x2

1 + x1 − 1 + 2
(
x3

1 + 2x2
1

)
lnx1

]

−
(
x1 ←→ x2

)
, (D.7)

and

Y
(2,g̃,CF )
t =

1

18 (1− x1)4 x1

{
− 3x1

[
(1− x1)

(
x2

1 − 5x1 − 2
)
− 6x1 lnx1

]
×

×
(

2 ln
m2
t

m2
g̃

− B −
G1`

1/2(τt)

2
−
K1`

1/2(τt)

2
+ 2

)
+ 6 (1− x1)4 ln

m2
g̃

Q2

+ 72x2
1 Li2 (1− x1)− x1 (1− x1)2 (11x1 − 26)− 6 (1− x1) + 6x2

1 (2x1 + 9) lnx1

}

+

(
x1 ←→ x2

)
, (D.8)

where we recall that in (D.6) x(τ) ≡
√

1−τ−1√
1−τ+1

.
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D.2 Top-stop-gluino contributions to Yt̃1

The explicit expressions for expansion coefficients of the CA part read

Y
(−1,g̃,CA)

t̃1
= 0 , (D.9)

Y
(0,g̃,CA)

t̃1
= − 1

12

[
1

1− x1

+
1

(1− x1)2 lnx1

]
, (D.10)

Y
(1,g̃,CA)

t̃1
=

s2θt

6 (1− x1)3

{
3 [2− 2x1 + (x1 + 1) lnx1]

(
ln
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while for the CF part we have
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D.3 Top-stop-gluino contributions to Yc22θt

The explicit results for expansion coefficients of the CA part are given by

Y
(−1,g̃,CA)

c22θt
= 0 , (D.15)

Y
(0,g̃,CA)

c22θt
= 0 , (D.16)
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and

Y
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, (D.17)

while the explicit results for the CF part read
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