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Introduction

The measurement of dynamical parameters connected to a volcanic eruption
is an important research topic which can provide important insight about
the features and the energy of eruptions.

The development and the final height of an eruptive column during an
explosive eruption, are governed by some physical parameters like energy
or power depending if plume rises instantaneously or is sustained (Morton
et al., 1956; Wilson et al., 1978). Furthermore, eruption column height can
be related to the mass eruption rate (Wilson et al., 1980) or volume flux
(Sparks et al., 1997) of the ejected magma during a sustained eruption. The
knowledge of such physical quantities is necessary to accurately study and
forecast the features of the eruptive cloud.

As well demonstrated by the 2010 eruption of Iceland volcano Eyjaf-
jallajökull, a volcanic eruption can have a significative impact on modern
society, preventing the air transport even in countries thousands of kilo-
meters away from the volcano. An accurate prediction of eruptive cloud
evolution could significantly mitigate the impact of an explosive eruption,
both for safety reasons and for air transport.

Many models describe and forecast the evolution of both the volcanic
plume and the ash fallout. Such models deals with the Navier-Stokes equa-
tions in atmosphere and are usually based on lagrangian (Searcy et al., 1998;
Barsotti et al., 2008) or eulerian viewpoints (Macedonio et al., 1988; Costa
et al., 2006), or on simplified models of advection-diffusion-sedimentation
of particles (Bonadonna et al., 2005; Macedonio et al., 2005). However,
all these models need as input some physical parameters connected to the
eruption such as column height, mass eruption rate and total erupted mass.

A multidisciplinary monitoring of a volcano could provide an accurate
measurement of such parameters. Thermal infrared images (Delle Donne et
al., 2006; Scharff et al., 2008) and radar-doppler (Hort and Seyfried, 1998;
Seyfried and Hort, 1999) are two useful methods to measure mass eruption
rate and gas velocity during an explosive eruption.

Another efficient method for monitoring the activity of a volcano is the
recording of infrasonic signals generated during explosions. Among the dif-
ferent information about the explosion obtainable from infrasound, dynami-
cal quantities such as gas-magma velocity and mass flux could be estimated
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under suitable conditions. From this point of view, the infrasonic monitoring
of an active volcano could be a good method to extract information that can
be used as input values for tephra dispersal models. However, the physical
process that generates the pressure release during an explosive eruption is
still unknown, or at least, not completely understood, and the extraction of
physical parameters from an infrasonic signal is ineffective in many cases.

In this PhD thesis are presented a critical review of the theoretical equa-
tions used to extract gas velocity and mass eruption rate from an infrasonic
signal, and a new inversion methodology to perform an acoustic source char-
acterization from data by means of an integral method.

In the first two chapters the features of infrasonic monitoring of active
volcanoes and the equations of linear acoustics used in data interpretation
are illustrated.

In the third chapter the limitations connected to the measurement of
infrasonic signal are accurately described, integrated by a critical review
of the commonly used formulas in data analysis. By means of theoretical
considerations and data analysis, the validity of simple acoustic relationships
between physical quantities is investigated, pointing out that the actual cases
of applicability of such relationships are rather sparse.

Such study demonstrated the need to perform accurate experiments and
numerical simulations to gain some insight about the physical process at the
base of sound generation during a volcanic explosion. Only in such condition
it could be possible to confidently obtain dynamical parameters connected
to the explosion from acoustic recordings.

In order to extract some information about the acoustic source in a
strombolian explosion, an inversion model was performed on actual data
collected at Stromboli volcano (Italy). A relationship connecting pressure
at microphone to source condition at volcanic vent was defined in terms of
a transfer matrix. Such transfer matrix contains the whole effect of volcano
topography and acoustic propagation.

An integral representation based on a Boundary Element Method was
used to extract the transfer matrix. The solution, expressed in terms of a
normal derivative of acoustic pressure at the source, was obtained by two
different methods: an analytical solution, enabled by the use of a symmetric
geometry, and a optimal solution from a Pareto set based on an Adaptive
Weighted-Sum optimization method (Kim and de Weck, 2005).

The optimization procedure represents a method to find the “best val-
ues” for a given set of variables that satisfy a determined condition. Since
the optimization method has a general validity in terms of geometry com-
plexity and number of parameters involved, this work permitted to test the
accuracy of the optimal solution, by a comparison with the analytical solu-
tion that was obtained thanks to an approximated geometry.

Chapter 4 illustrates the integral method used, the extraction of the
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transfer matrix, and the achievement of both the analytical and the optimal
solutions. A description of approximations and limits of the linear acoustics
is included, for an accurate interpretation of results.

In Chapter 5, results from the inversion are presented. In order to check
the reliability of such methodology, a validation by means of a different
integral method was performed, proving both the quality and the limitations
of our inversion and suggesting possible ways to perform further refinements.

The good agreement between solutions obtained from the two method-
ologies make us confident about the validity of the optimization, enabling the
use of it for future improvement in the methodology, for which an analytical
solution can not be obtained.

On the basis of our results, an accurate source characterization from
infrasonic data can be possible, by using the actual geometry of the volcano
and an adequate number of microphones.
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Chapter 1

Infrasound emitted by
explosive eruptions

1.1 Overview on volcano acoustics

Explosive volcanic eruptions consist in a violent emission of a mixture of
magma and gases at high temperature and pressure. Depending on the
percentage of gas, magma rheology and thermodynamic conditions inside
the conduit, magma can escape from the volcanic vent with different degrees
of fragmentation, resulting in a large spectrum of eruption violence and
intensity (Scandone and Giacomelli, 1998).

The intense decompression associated to the emission of gas and magma
during an explosive eruption is always accompanied by a release of energy
in form of earthquakes (propagating inside rocks) and pressure waves in the
acoustic and (mainly) in the infrasonic band (ν < 20 Hz), propagating in
the free air.

Huge volcanic blasts like those of Krakatau (1883), Mount St. Helens
(1980) or Pinatubo (1991) generated very long period acoustic-gravity waves
that traveled in atmosphere and were registered at distance of thousands of
kilometers (Donn and Balachandran, 1981; Mikumo and Bolt, 1985; Tahira
et al., 1996).

In the last decades the monitoring of explosive processes by the regis-
tration and interpretations of infrasonic waves have been considerably im-
proved, since can provide some information about the eruptive activity of
volcanoes that can be kilometers far away. This operation permits to per-
form a safe and continuous remote sensing, even during violent eruptions.

First registrations on tape of acoustic sounds generated by volcanic erup-
tions were made in the early years of the past century at many volcanoes
including Vesuvius (Perret, 1950), followed in the subsequent years by mea-
surements of acoustic signals both in water and in air (Foshag and Gonzales-
Reyna, 1956; Snodgrass and Richards, 1956; Richards, 1963). In these works
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1.1. OVERVIEW ON VOLCANO ACOUSTICS

the authors focused on the relationship between an acoustic signature (both
from signal shape and frequency spectrum) and a peculiar eruptive style.

The first recording by means of a barograph was performed by Gorshkov
in 1960, in order to obtain a measurement of the energy associated to the
acoustic wave.

In another paper, Woulff and McGetchin (1976) tried to gather some
information about the pressure source and gas velocity considering different
types of acoustic source (monopole, dipole and quadrupole).

In the past two decades the monitoring techniques have been improved
enormously, and microphones and pressure transducers were used to detect
the airwaves in the infrasonic band (Braun and Ripepe, 1993), leading to a
world-wide interest in monitoring infrasonic signals from volcanic explosions.

At present, many active volcanoes around the world are monitored in
real-time by means of an infrasonic recorder, sometimes in array configura-
tion. The wide use of this technique lies in the ample spectrum of informa-
tions obtainable from data analysis:

• discrimination between eruptive styles, and identification of changes
in eruption intensity (Ripepe et al., 1996; Vergniolle and Caplan-
Auerbach, 2004; Ripepe et al., 2009a; Fee et al., 2010; Johnson et
al., 2011);

• source location in multi-vent volcanoes (Ripepe and Marchetti, 2002;
Cannata et al., 2009; Marchetti et al., 2009);

• estimation of eruptive dynamics parameters such as gas velocity and
mass flux (Firstov and Kravchenko, 1996; Vergniolle et al., 2004; Verg-
niolle and Caplan-Auerbach, 2006; Johnson, 2007; Caplan-Auerbach
et al., 2010);

• location of fragmentation depth, integrating the infrasound with seis-
mic and thermal data (Gresta et al., 2004; Johnson, 2007).

Many authors focused on data analysis, others concentrated in the physics
of the problem, that contains both fluid dynamics and acoustics. Bucking-
ham and Garcés (1996) focused on the acoustic theory in order to gain
information for a better interpretation of experimental data. Other authors
tried to identify the most plausible source by means of numerical simula-
tions (Johnson et al., 2008) or spectral analysis (Matoza et al., 2009). La-
canna (2010) used a bi-dimensional Finite Difference Time Domain method
(FDTD) to study the effect of terrain scattering on signal shape. Kieffer and
Sturtevant (1984) performed laboratory experiments to study the behavior
of volcanic jet in supersonic conditions. Ogden et al. (2008) performed nu-
merical simulations on volcanic jets to investigate both the gas-thrust region
and the convective plume generated by a supersonic shock. Pelanti (2005)
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studied a multicomponent compressible flow at the base of wave propagation
by numerical methods.

1.2 Pressure source models

The main goal in volcano acoustics seems to be now the clear understanding
of the source process. The wide range of typology for an explosive volcanic
eruption points to different physical models describing the explosion. In this
work we considered mostly the strombolian eruption, consisting in an im-
pulsive gas thrust phase followed by a gentle plume rise because of buoyancy
(Blackburn et al., 1976).

Integrating experimental data with theory, three models were proposed
in order to explain the generation of pressure waves during a strombolian
explosion:

1. the bursting of gas slug at the magma-air interface (Ripepe et al.,
1996);

2. the oscillation of a gas bubble before bursting at the free surface
(Vergniolle and Brandeis, 1994, 1996);

3. the resonance of waves trapped in the magma column, triggered by a
deep pressure drop (Buckingham and Garcés, 1996; Garcés and Mc-
Nutt, 1997).

The first two are in agreement in terms of a large bubble of gas or slug
surrounded by a thin magma film exploding at the surface; but, while in the
first model the authors connect the pressure pulse directly to the explosion
of a gas bubble, in the second is the oscillation of a gas bubble responsible
for the pressure release. However, for both models, the origin of volcanic
tremor (either seismic and infrasonic) is due to gas bubbles overpressure.

Conversely in the third model an explosion inside the magma column
excites the conduit into acoustic resonance, with a resulting pressure field
propagating both into the ground and in the free air (Garcés and McNutt,
1997). By this consideration, the generation of the seismic wave field results
strictly connected to the acoustic resonance inside the magma body. The
authors analyzed pressure recordings both in time and frequency domain,
concluding that the main features of signals develops from propagation ef-
fects associated to the coherent superposition of normal modes from longitu-
dinal and radial resonances in the magma conduit (Buckingham and Garcés,
1996).

Despite the great diffusion and study of infrasound, the actual source
process that leads to the generation of acoustic waves is still unknown. Al-
though infrasonic signals have a direct connection to the source process
compared to the seismic ones (because the infrasonic wave travels only in
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one medium, the air), it is not possible to accurately reconstruct the actual
source, with just one, or in the better cases, some microphones. Moreover,
the explosion can occur inside the volcanic conduit at an unknown depth.

In this view, numerical simulations of source condition and propagation
effects nearby the vent can provide an accurate method to study what really
happens in the first instants of the explosion. Furthermore it can be possible
to study the actual effect of some parameters (such as magma density or
vent radius) that in most cases are poorly constrained.

1.3 Pressure signals features

Infrasonic signals represent the excess pressure ∆p with respect to the atmo-
spheric pressure (∼ 105 Pa). The excess pressure measured during normal
volcanic activity generally range between 10 and 102 Pa at a distance of
about 102 − 103 m from the active vents. Even for paroxysmal explosions
pressure perturbations are usually smaller than atmospheric pressure: in
this condition infrasound can be treated as a linear elastic wave rather than
non-linear shock wave, which allows simplified modeling of the source by
using the linear theory of sound. As the frequency associated to infrasound
is below 20 Hz, the wavelength associated to this signals will vary in the
range of 10− 103 m.

Signals can assume different shapes, sometimes complicated, but there
are some features connected to peculiar eruptive styles:

• impulsive and isolate bubble bursting like strombolian explosions shows
a N-wave signature (Deihl and Carlson, 1968) lasting less than one sec-
ond, with a decaying tail of one or more seconds (Figure 1.1A);

• multiple pulsation of strombolian activity and persistent active de-
gassing lead to a continuous infrasonic tremor (Figure 1.1B);

• long-lasting fire fountains show signals that can persist for several
hours, with a continuous tremor (generated by both the repeated bub-
ble explosions and the fallout of ejecta) overlapped by single pulses;

• passive degassing with no emission of magma that shows at Stromboli
volcano a typical signature of small amplitude pulses with a period of
1-2 s, called puffing (Ripepe et al., 1996; Ripepe and Gordeev, 1999;
Figure 1.2);

• explosive eruptions like vulcanian, sub-plinian and plinian can have
both huge pressure peaks and long lasting tremor, connected to tur-
bulence inside the volcanic jet or pyroclastic flows (Marchetti et al.,
2009; Matoza et al., 2009; Caplan-Auerbach et al., 2010).
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1.3. PRESSURE SIGNALS FEATURES

Sometimes, the intensity of the eruption leads to the generation of pressure
waves in the transonic and supersonic regime, or eventually shock waves,
and the linear theory of sound results no more valid for the interpretation
of data.
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Figure 1.1: A. Impulsive pressure signal generated by strombolian activity at
Stromboli volcano (Italy). Stacking of 150 signals recorded at 280 m from the
active vent. B. Continuous infrasonic tremor registred at Etna volcano (Italy) at 1
km from the active vent.

Figure 1.2: Repeated infrasonic transient in a range between 0.8 and 1.2 s as-
sociated to small gas bubble bursting at Stromboli volcano (Ripepe and Gordeev,
1999). No transient in the seismic signal are associated to this activity.
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Chapter 2

Linear acoustics

2.1 Basic equations of acoustic theory

Propagation of sound waves in a fluid is governed by the balance between
compressibility and the inertia of the fluid itself.

The use of a linear theory means that the disturbances in the equations
of motion are so weak that we can neglect the products between them, since
they will be small quantities.

Let’s consider the inertial nature of a fluid of density ρ using the Newton’s
equation of motion applied to a small fluid element: in absence of external
forces the acceleration will be due solely to the internal stresses between
the fluid element and the neighboring fluid around it, represented by the
gradient of fluid pressure ∇p:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p. (2.1)

The acceleration of a fluid element depends on two terms: the first, ∂u/∂t
represents the local change of velocity u at a fixed point; the second non
linear, u · ∇u describes the changes in velocity of fluid element due to its
changes in position in space.

Related to the equation of motion, the equation of continuity governs
the changes in density of a fluid element (compressibility):

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0, (2.2)

where the first two terms in (2.2) represent together the total change of
density for a fluid element.

Since we are interested in a linearization of these equations, we will
consider as “small quantities” all departures from an equilibrium state in
which the fluid is at rest with a uniform density ρ0 (Lighthill, 1978). In the
absence of external forces also pressure will take a uniform value p0.
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2.1. BASIC EQUATIONS OF ACOUSTIC THEORY

Considering neglectable the terms u · ∇u in (2.1) and u · ∇ρ in (2.2),
and replacing ρ with ρ0, the basic equations of linear acoustics will become

ρ0
∂u

∂t
= −∇p, (2.3)

and
∂ρ

∂t
= −ρ0∇ · u. (2.4)

As a consequence of equation (2.3), the vorticity field defined as

Ω = ∇× u, (2.5)

will be independent of time. In fact as long as the curl of∇p is zero, equation
(2.3) implies that

∂Ω

∂t
= 0. (2.6)

As the rotational part of the velocity field related to Ω is independent
of time, the remaining part of the velocity field will be irrotational and,
according to the Helmholtz’s theorem, it can be written as the gradient of
a scalar, the “velocity potential”:

u = ∇φ. (2.7)

The fluctuations associated to the sound propagation will affect only this
quantity. On linear theory this irrotational propagating velocity field shows
no interaction with any steady rotational flow field (Lighthill, 1978).

Inserting (2.7) in equation (2.3), and considering the properties of the
gradient operator we have:

p− p0 = −ρ0
∂φ

∂t
. (2.8)

This is an expression of the Bernoulli equation for unsteady irrotational
flows with the absence of the term −1

2ρ0(∇φ)2, negligible on a linear theory.
Inserting (2.7) in equation (2.4), changes in density can be connected to

the Laplacian of the velocity potential:

∂ρ

∂t
= −ρ0∇2φ. (2.9)

The linearization of the theory comes out form the explicit relationship
between changes of pressure and density: assuming the functional depen-
dence p = p(ρ), and expanding p in Taylor series about ρ = ρ0, we’ll have:

p = p(ρ0) + (ρ− ρ0)p′(ρ0) + ... (2.10)

Now, neglecting all the terms with order higher than ρ− ρ0:

∂p

∂t
= p′(ρ0)

∂ρ

∂t
. (2.11)
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Inserting equation (2.8) in (2.11), and then in equation (2.9) we obtain:

∂2φ

∂t2
= c2∇2φ, (2.12)

which is the wave equation.
The constant c has the dimension of a velocity and is defined as:

c2 = p′(ρ0). (2.13)

Anyway, to obtain the actual sound speed we must consider some thermo-
dynamic effects associated to the adiabatic compression of fluid particles
during to the propagation of the wave. In doing so, the sound speed c will
assume its proper form:

c2 = γ
p

ρ
= γRT, (2.14)

where γ for a perfect gas is defined as

γ =
R+ cv
cv

, (2.15)

with R and cv being the gas constant (8314 J K−1kmol−1) and the isochoric
specific heat.

Equation (2.12) describes a propagation in a homogeneous medium at a
single wave speed c independent of waveform and direction of propagation.
Such an equation has a generic solution in the form

φ(x, t) = f(x− ct) + g(x + ct), (2.16)

in which f(x−ct) and g(x+ct) are two plane waves propagating in opposite
directions.

Acoustic intensity

Since sound waves transport energy without the need for transporting any
material, the acoustic energy associated to a sound wave is usually described
by the acoustic intensity I, which means the rate of transport of energy
through unit area.

Acoustic intensity is a vector quantity defined as the product of pressure
perturbation ∆p and particle velocity u

I = ∆p u, (2.17)

where ∆p is the departure from equilibrium pressure p0:

∆p = p− p0. (2.18)
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For a traveling plane wave with solution φ = f(x − ct), equations (2.7)
and (2.8) give

∆p = ρ0cu, (2.19)

then the acoustic intensity can be related to the square of particle velocity:

I = ρ0cu
2. (2.20)

Acoustic intensity can be measured in W m−2, but because of its wide
range of variability (human ear is sensible to pressure variations, not to the
absolute value of pressure itself), a logarithmic scale proves more accurate.
So I is usually expressed in a decibel scale, in comparison to a reference level:

I(dB) = 10 log10

(
I

I0

)
= 10 log10(I) + 120, (2.21)

wiht I0 being the standard reference sound intensity

I0 = 10−12 W m−2. (2.22)

Another frequently used quantity is the sound pressure level (SPL),
which represents the deviation from the ambient pressure caused by a sound
wave:

SPL(dB) = 10 log10

(
∆p2

p20

)
= 20 log10

(
∆p

p0

)
, (2.23)

where p0 is a reference sound pressure p0 which in air has a value of 20 µPa
and is considered as the threshold of human hearing at the frequency of 1
kHz.

2.2 Acoustic sources

In acoustic theory there are three kinds of sources: monopole (or simple
source), dipole and quadrupole. Actually there can be poles of still higher
order, conveniently described in terms of Hankel and Legendre functions
(Morse and Ingard, 1968), though they have less practical interest. Since
in volcano acoustics these kind of sources are not commonly used, they will
not be considered here.

Monopole is the simplest source, point-like and expanding radially in all
directions. Dipole is a combination of two monopoles of the same intensity
and opposite sign positioned at small distance to each other compared to
the source-receiver distance. Quadrupole is a combination of two dipoles,
and can assume different configurations.

In the next subsections are shown the main features of these sources,
introducing some physical quantities useful for data analysis.
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2.2. ACOUSTIC SOURCES

2.2.1 Simple source

Monopole is the elementary acoustic source, a point-like source expanding
spherically without any directional nature. The strength of the source is
related to a mass acceleration and can be physically represented by a sudden
burst of a balloon. In three dimensions the excess pressure for a simple
source is given by:

∆p(t) =
q̇(t− r/c)

4πr
, (2.24)

where q(t) has the dimensions of a rate of mass outflow from the source (kg
s−1).

As one can see, pressure perturbation decay with distance as r−1. As
mass injection have to be instantaneous, pressure signal will be (ideally in
three dimensions) composed by a single oscillation around the equilibrium
pressure (and pressure perturbation ∆p will oscillate around zero) as in
Figure 2.1. Pressure signal has a clear time delay between the source event,
due to the propagation of the signal at the sound speed c. By now the time
dependency will be omitted.
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Figure 2.1: Mass outflow and pressure perturbation generated by the source q(t).
Pressure perturbation has the shape of a blast wave (Reed, 1977). The time delay
of 1 s for the pressure perturbation is due to a distance of 340 m from the source.

Since we want to calculate acoustic power, we have to consider the acous-
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tic intensity I. In the far field condition (2.31), I is related to the radial
velocity of fluid; inserting the (2.19) in the (2.20), I can be written as

I =
1

ρ0c
∆p2, (2.25)

with ρ0 being the density of medium.
In order to calculate acoustic power we have to integrate I over a sphere

of radius r. In doing this, power Π emitted by a monopole will be:

Π =
4πr2

ρ0c
∆p2 =

q̇2

4πρ0c
. (2.26)

This quantity represents the power output generated by the source and
passing after a time delay r/c through the area 4πr2 at a distance r from
the source. Figure 2.2 shows the radiation pattern generated by a monopole.
Amplitude decay due to geometrical spreading is evident.

Figure 2.2: Monopole radiation pattern for an oscillating source with a frequency
of 400 Hz calculated by the code AcouSTO.

2.2.2 Dipole source

Dipole source is a system composed by two coupled simple sources with the
same intensity and opposite sign in an infinite space:

∆p(t) =
q̇(t− r/c)

4πr
− q̇(t− r′/c)

4πr′
, (2.27)
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where r and r′ are the distances of the two simple sources from the point
P (Figure 2.3). If the distance l between the two sources is small compared
to r and r′, the difference (r′ − r) can be approximated with l cos θ. In this
condition the difference between the two monopole terms in (2.27) can be
expressed in terms of a derivative with respect to r (Lighthill, 1978):

∆p(t) = l cos θ
∂

∂r

[
q̇(t− r/c)

4πr

]
. (2.28)

Calculating the derivative we have:

∆p(t) = l cos θ

[
q̇(t− r/c)

4πr2
+
q̈(t− r/c)

4πrc

]
. (2.29)

Figure 2.3: Dipole source geometry. If r � l it is possible the approximation
r′ ≈ r.

This approximation is valid if the derivative varies by only a small frac-
tion of itself when r changes by at most l. The limit of applicability is
expressed by the acoustic compactness condition (Curle, 1955; Lighthill,
1978):

l� c

ω
=

λ

2π
, (2.30)

with ω and λ being the pulsation and the wavelength of the acoustic wave.
This condition is considered rather important since in general allows the
use of elementary sources as monopole and dipole to model more complex
systems.

Pressure signal of dipole described by (2.29) is composed by two terms;
the first has a quadratic dependency on source-receiver distance, and it is
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possible to neglect it for large values of r. This condition, known as the far
field approximation, is mathematically expressed by

r � c

ω
=

λ

2π
, (2.31)

and it is well satisfied in most cases of volcanology.
As one can see, in (2.29) appears the angle θ between the axis of dipole

and the position of the receiver (Figure 2.3). So pressure perturbation will
be maximum in the direction of dipole axis and zero at right angles. Fur-
thermore, pressure perturbation is negative for angles exceeding 90◦(Figure
2.4).

Figure 2.4: Dipole radiation pattern for an oscillating source with a frequency of
400 Hz calculated by the code AcouSTO. Also in proximity of the sources, the
field goes to zero at right angles from the dipole axis.

Inserting (2.29) in (2.25) we obtain the acoustic intensity for a dipole
source:

I =
l2 cos2 θ q̈2

16π2ρ0r2c3
(2.32)

Integrating equation (2.32) on a sphere of radius r, the power emitted by a
dipole source will be:

Π =
l2q̈2

12πρ0c3
. (2.33)

It is important to point out that the pressure field generated at distance
r � l by an acoustically compact dipole is rather small compared to the
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pressure fields generated by the two sources separately. Then, the dipole is
quite inefficient with respect to a simple source, with a power output inferior
for a factor of order (ωl/c)2.

Sometimes in equation (2.28) is used the notation G(t) = lq̇(t), and this
quantity is called the strength of the dipole, having the dimensions of a
force. Thus, for a general force G, (2.28) becomes:

∆p(t) = −∇ ·
[
G(t− r/c)

4πr

]
. (2.34)

In this way, it is possible to relate the properties of a dipole to a force gener-
ating a rate of change of momentum in the external fluid, as the monopole
is associated to a rate of change of mass outflow into the external fluid.

2.2.3 Quadrupole source

A compact source radiating sound in a condition that both the total monopole
and dipole strength are zero is called quadrupole. This kind of radiation
is typically associated to turbulent flows separated from any foreign body
that can act on the air with some forces (Lighthill, 1978). Physically, a
quadrupole can be obtained by two dipoles coupled together, and can as-
sume different geometric configurations (Figure 2.5).

Figure 2.5: Quadrupole source geometries for different configurations: A. Longi-
tudinal quadrupole; B. Lateral quadrupole.

In the far field the sound generated by a quadrupole is significantly weak
compared to that of the individual dipoles. So, although the dipole source
is less efficient with respect to the simple source, is still more efficient than
a quadrupole. This does not mean that the quadrupole far field (in absence
of other simple sources) has no consequences, in fact the turbulent jet noise
generated by aircrafts has its peculiarities (Lighthill, 1963; Tam et al., 1996;
Tam, 1998) and is studied to mitigate the impact on the human ear, for the
people living near airports (Caves et al., 1997; Manneville et al., 2004; Diez
et al., 2007; Barbot et al., 2008).

Since the strength of a quadrupole involves two directions (orientation
and displacement between the two coupled dipoles) it is a tensor quantity.
So we must consider this nature and modify the previous equations for linear
acoustics.
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If we express the vectors position and velocity as x = (x1, x2, x3) and
u = (u1, u2, u3), and we use the Einstein notation (summing for a index
appearing twice), we can express equations (2.1) and (2.2) for the i-th com-
ponent as

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

+
∂p

∂xi
= 0, (2.35)

and
∂ρ

∂t
+
∂(ρuj)

∂xj
= 0. (2.36)

Now, multiplying equation (2.36) by ui, and inserting it in equation
(2.35), we have:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+
∂p

∂xi
= 0. (2.37)

Using the properties of the Kronecker delta, δij , we can express equation
(2.37) as:

∂(ρui)

∂t
+

∂

∂xj
[ρuiuj + (p− p0)δij ] = 0 (2.38)

The term in square brackets in (2.38) represents a total momentum flux
tensor equal to the rate of transport of the i-th component of the momentum
in the j-th direction, due to convection by the j-th component of velocity
and action of the excess pressure p − p0. The rate of change of the i-th
component of momentum in an elementary region is equal to minus the
integrated action of that total flux across the region’s surface (Lighthill,
1978).

The form of (2.38) is useful to understand the generation of sound by
turbulent fluid flows, as represents the connection between linear acoustics
and fluid dynamics. Neglecting the product of small quantities like uiuj as
discussed before, and transforming the pressure perturbation in c2(ρ − ρ0)
according to (2.10) and (2.13), equation (2.38) becomes:

∂(ρui)

∂t
+ c2

∂ρ

∂xi
= 0. (2.39)

Now, performing the derivative operation ∂/∂xi, and substituting equa-
tion (2.36) in (2.39), we obtain

∂2ρ

∂t2
− c2 ∂

2ρ

∂x2i
= 0, (2.40)

that is the linear wave equation in absence of forcing terms (which implies
no radiation of sound). Since the sound radiation in a fluid flow is caused
by departure of the total momentum flux, we can write this contribution as:

Tij = ρuiuj +
[
(p− p0)− c2(ρ− ρ0)

]
δij . (2.41)
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Inserting equation (2.41) in (2.38), the momentum equation becomes:

∂(ρui)

∂t
+ c2

∂ρ

∂xi
= −∂Tij

∂xj
. (2.42)

Performing the derivative operation ∂/∂xi, and considering the continuity
equation (2.36), equation (2.42) transforms in:

∂2ρ

∂t2
− c2 ∂

2ρ

∂x2i
=

∂2Tij
∂xi∂xj

. (2.43)

The forcing term at the right side of (2.43) is responsible for any generation
of sound. This equation is also known as the Lighthill’s acoustic analogy,
and connects directly the acoustic wave propagation to the fluid dynamics
described by Tij .

The tensorial nature of Tij give rise to different quadrupole configu-
rations: the diagonal elements correspond to aligned dipoles, called lon-
gitudinal quadrupole (Figures 2.5A, 2.6A), while the off-diagonal elements
corresponds to dipoles separated in a perpendicular directions, called lateral
quadrupole (Figures 2.5B, 2.6B).

Figure 2.6: Quadrupole radiation pattern for an oscillating source with a fre-
quency of 400 Hz calculated by the code AcouSTO. A. Longitudinal quadrupole
with the configuration of Figure 2.5A. B. Lateral quadrupole with the configuration
of Figure 2.5B.

A jet involving no fluctuation in mass outflow (monopole) and no exter-
nal forces on the fluid (dipole), will generate quadrupole radiation associated
to the excess momentum flux tensor Tij . The solution of (2.43) will be

c2 [ρ(x)− ρ0] =
∂2

∂xi∂xj

∫ [
Tij(y, t− r/c)

4πr

]
dy, (2.44)
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2.3. ACOUSTIC WAVES IN DUCTS

where x is the position vector inside the fluid, y is the position vector inside
the source region where the integration is performed, and r is defined as

r = |x− y|. (2.45)

The corresponding far field of (2.44) will be:

c2 [ρ(x)− ρ0] =

∫ [
rirj T̈ij(y, t− r/c)

4πr3c2

]
dy. (2.46)

Since Tij depends on u2, and their characteristic frequency increase like
u, Tij will increase like u4. Thus the far field amplitude will vary like u4,
while the acoustic intensity and power output will vary like u8. This is the
so called Lighthill’s 8 th power law (Lighthill, 1952, 1954), and is one of the
main features of the quadrupole radiation generated by turbulence.

Considering the condition of acoustic compactness for the quadrupole,
the quantity l appearing in the (2.30) is the effective size of the eddies that
radiate coherently, and the product wl is typically in the order of the root-
mean-square velocity fluctuations, which commonly make the compactness
condition wl� c being satisfied (Lighthill, 1978).

2.3 Acoustic waves in ducts

Since we’ll take in consideration actual volcanic systems and pressure signal
sometimes generated inside conduits, it is useful to introduce briefly some
features of the acoustic waves in ducts.

When a sound wave generated by a piston propagates inside a tube, the
ratio between its wavelength λ and the transverse dimension of the pipe a
will determine the behavior of the wave. If λ � a, the fluid motion will
be mainly parallel to the tube axis, and the wave motion can be treated
as one-dimensional. In this condition, there is a close analogy between the
duct and an electric transmission line: the total flux of fluid plays the role
of the electric current i, and sound pressure p is the analogue of the voltage
V ; any variation in the cross section of the tube, will be represented as
an impedance contrast barrier which will determine the wave propagation
(Morse and Ingard, 1968).

Acoustic impedance Z is a frequency dependent (usually complex) quan-
tity defined as the ratio between sound pressure p and the product of fluid
velocity u and the area A in which the wave propagates through:

Z =
p

uA
=
ρc

A
. (2.47)

If the tube walls are completely rigid, the wave will not undergo any
energy loss, and the amplitude will be maintained without decaying. This
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2.3. ACOUSTIC WAVES IN DUCTS

condition leads to a better efficiency in the propagation of sound than in the
three-dimensional free space, where the amplitude of a pressure perturbation
decays with distance as r−1 (Lighthill, 1978). Differently, if the tube walls
are not perfectly rigid, or if there are significative effects of viscosity and
thermal conduction, the wave will undergo attenuation, although usually
the unattenuated part (represented by the real part of the complex quantity
k = 2π/λ) will be predominant.

An interesting case, close to the actual volcanic systems, is that of a
source (piston) at one side of the tube, in x = 0, and the free space at
the open end, in x = l (where l is the length of the tube). In this case
the pressure distribution across the opening is not uniform, even for long-
wavelength sound waves (Morse and Ingard, 1968). It is then possible to
assume that the air at the open air acts like a piston, radiating sound out
into the free space, as well as reflecting sound back inside the tube. At very
long λ, the most of the energy remains trapped inside the tube, and only
a little is radiated out. Diminishing the wavelength, more and more sound
will escape from the open end of the tube.

The air at the open end of the tube, can be thought (for high values of
λ) acting like a piston of zero mass radiating some energy out, and reflecting
some back inside the tube: in this view, it is possible to look at the open
end as an impedance contrast surface: for λ > 10a (where a is the radius of
the conduit) the majority of the energy remains trapped inside the tube.

Besides the effect on energy radiation outside the tube, the ratio between
wavelength and radius of the conduit controls also the radiation pattern in
the free air:

• For λ > 2πa, sound spreads out uniformly in all directions from
the tube: if the walls were not present, the piston would act like a
monopole. The effect of wall reflection doubles the amplitude with
respect to the free monopole condition.

• For λ < 2πa, there will be a lobe of radiation along the tube axis,
eventually surrounded by secondary maxima due to diffraction effects.

Figure 2.7 shows the effect of tube radius a at different frequencies.
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2.3. ACOUSTIC WAVES IN DUCTS

Figure 2.7: Radiation pattern for different frequencies from a duct of radius a=2
m. Source is located at a depth of 20 m inside the tube. A. ν=10 Hz; the most of
energy is trapped inside the tube. B. ν=50 Hz; the tube radiates likewise a compact
source. C. ν=100 Hz; a radiation lobe is developing along the tube axis. D. ν=130
Hz; secondary lobes develops around the main one.
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Chapter 3

A critical data analysis

Although pressure signals could provide a method to extract many eruptive
parameters, it is actually difficult to make an accurate quantitative analysis
of data. Moreover many authors uses different formulas for the same physical
quantities, giving rise to some paradoxes.

In this chapter is presented a critical analysis of formulas commonly used
in literature, evaluating their actual applicability and limits. An analysis
of the three acoustic compact sources provides more insight to their actual
cases of applicability. Before this, the different sources of uncertainty that
can affect measurements are showed. Considering the limits of the theory,
an accurate data analysis was performed on some pressure signals from two
italian volcanoes: Etna and Stromboli.

Results demonstrate the almost impossibility in the most cases to extract
some eruptive parameters, like velocity and mass flux, being confident to the
source model applied, as long as this is the actual unknown.

3.1 Sources of error

Since detection of infrasonic waves is an experimental technique, it will be
clearly affected by some sources of errors. Most of these are unfortunately
unquantifiable, but for sure they must be considered in doing an accurate
analysis, especially if pressure signals are used to extract some other physical
quantities.

The common sources of uncertainty that affect pressure values measured
by the sensor are:

1. sensor response;

2. wind;

3. temperature;

4. atmospheric attenuation;
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3.1. SOURCES OF ERROR

5. scattering and reflection;

6. poorly constrained parameters.

All these effects together can affect significantly the signal with the result of
a poor accuracy in any physical quantity extracted. The farther the distance
from the vent, the higher the effect of all these uncertainty sources will be.
So care must be taken during data analysis.

Sensor response

Pressure detector must have a well known response, to be confident in the
measured values. Since many physical quantities like energy or acoustic
power depends on ∆p2, any fluctuation on pressure perturbation will be
critical.

Moreover, it is important to know the transfer function of the instru-
ments, that have to be as flat as possible in the frequency band interesting
for the analysis (Ripepe et al., 2004). Accurate calibration is mandatory for
a quantitative analysis on pressure signals.

Wind

The main influence on pressure measurements is due to the wind. Moreover
the effect of wind is twofold:

• can significantly distort the acoustic wave, creating shadow zones;

• represents a source of noise at the receiver, with amplitude up to 100
Pa that can completely cover the signal.

The effect of wind is almost unremovable, and can affect both the location
of vent that the shape and the amplitude of the signal (Garcés et al., 1998;
Ripepe et al., 2004).

As the effect of the wind can be significative, it must not be underesti-
mated. In many cases, pressure recorders are located at a distance of many
kilometers from the volcanic vent, sometimes in hostile weather conditions
(volcanoes can be mountains of thousand meters of altitude), where strong
wind can develop.

The wind can significantly affect the acoustic ray path and give rise to
shadow zones (Johnson, 2003; Figure 3.1). As this effect is well known, but
not quantifiable, maybe it can be better to install a meteorological station
nearby the pressure sensor, to perform a real-time monitoring of weather
parameters. In this condition, a measurement of wind speed and direction
could give an estimation of the perturbation on the signal from the receiver
neighborhood, providing an evaluation of the signal-to-noise ratio.
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3.1. SOURCES OF ERROR

Figure 3.1: Ray path focusing on infrasound under the effect of wind and temper-
ature (Johnson, 2003). A. Homogeneous temperature profile, no wind. B. Temper-
ature inversion, no wind. C. Normal temperature gradient, no wind. D. Isothermal
atmosphere and wind increasing with altitude. Acoustic rays are drawn at 1◦ incre-
ments. An absence of ray paths impacting the ground constitutes a shadow zone.
Magnification factors (MF) represents a departure from the expected pressure am-
plitude for an isotropic acoustic source radiating spherically into a homogenous
atmosphere, and are shown for each scenario.
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Temperature

As shown by equation (2.14) sound speed depends on the atmospheric tem-
perature. Then c will be affected either by any temperature fluctuation or
by the temperature gradient with the altitude. In normal conditions the at-
mosphere is stratified with temperature decreasing with the elevation. But
in particular cases, an isothermal or inverted profile can develop connected
to many causes. The effect of temperature fluctuations, known as atmo-
spheric refraction, results in the bending of the ray path of the acoustic
wave towards regions of low values of c; Figure 3.1 shows both the effect
of temperature gradient and wind shear on acoustic wave propagation in
atmosphere.

Also humidity has an effect on pressure recordings, inducing a distor-
tion in the transfer function of electret condenser microphones, and can be
reduced by an appropriate shielding of the sensor (Ripepe et al., 2004).

Atmospheric attenuation

Since the acoustic wave propagates in a non-ideal atmosphere, together
with the amplitude decay with distance ∝ r−1 associated to the geomet-
rical spreading of the wavefront, pressure perturbation will be attenuated
by propagation inefficiencies through the atmosphere. Such an attenuation
is due to either viscous friction and thermal conduction losses, or absorption
due to the molecular relaxation (both vibrational and rotational) of atmo-
spheric gases, mainly oxygen and nitrogen (Morse and Ingard, 1968). All
these effects are associated to the conversion of acoustic energy in heat, with
the consequent attenuation of the wave amplitude.

Experimental measurements and theoretical analysis demonstrated that
the atmospheric attenuation decays exponentially with the square of fre-
quency of the acoustic wave (Reed, 1972; Sutherland and Bass, 2004), as

∆p = ∆p0 exp

(
−αν

2

ρ0

)
r, (3.1)

where ∆p0 is the initial pressure perturbation, ρ0 is the air density, ν is the
wave frequency, r the distance and α is the attenuation coefficient, dependent
upon the atmospheric moisture content (Bass et al., 1972).

However, the attenuation effect for infrasound seems to be significative
only in high atmosphere, and can be safely neglected in most cases.

Scattering and reflection

If during the propagation in air the acoustic wave encounters obstacles or
topographic barriers, phenomena of scattering, reflection and diffraction will
be important.
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The effect deriving from the incidence of a wave with an angle θ with
respect to the surface normal to a discontinuity plane between two media,
results in a splitting of the incident wave in two new waves: the reflected
wave in the first medium (with an angle equal to θ from the normal), and the
refracted wave in the second medium (with an angle depending on the acous-
tic properties of the two media, Figure 3.2). If an acoustic wave propagating
in air encounters to an acoustically hard medium, no transmitted wave will
propagate in it and the incident wave will be reflected in air maintaining
amplitude and phase.

Figure 3.2: Reflected and transmitted waves at a discontinuity surface between
two different media.

Otherwise, if the wave encounters an obstacle or a barrier can be blocked,
producing any shadow zones. This can be an actual cases for volcanic infra-
sound, as long as both the source and the receiver usually lies at the ground
level, or can not be in line of sight.

When a wave encounters an obstacle, the further propagation depends on
frequency and is controlled by diffraction. If the wavelength is bigger than
the linear dimension of the obstacle, the wave will undergo no perturbation;
instead if the linear dimension of the obstacle is comparable to λ, the effect
of diffraction become important and some shadow zones can appear.

In the actual cases of volcanology, signal frequency is usually below 10
Hz, then will be: λ > 34 m. For such a wavelength, only significant to-
pographic barriers like hills can affect the propagation of the signal. Any
roughness of the terrain will not have any effect on the wave. Anyway, since
the pressure recorder is locater nearby the ground, effect of reflection can
be significative.
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Also diffusion due to atmospheric turbulence or clouds (that represents
localized density perturbations) is a typical mechanism of energy dissipation
for sound waves. But since diffusion is effective at small spatial scales, for
the wavelength related to infrasound does not have any contribution.

Poorly constrained parameters

The formulas used to extract any physical quantities about the eruption
from pressure signals contain many parameters, and these will introduce
further uncertainties on the extracted values. Moreover, the exponent in the
dependence from a parameter gives an indication of the degree of uncertainty
associated to that parameter. For example, in equation (2.26), distance r
and density ρ0 have a different exponent. Since r appears at the second
power, a higher accuracy is required in the measurement of such parameter.

Physical parameters usually connected to pressure perturbation are:

• source-receiver distance, r;

• vent radius, R;

• empirical constants, K;

• magma-gas mixture density, ρm.

Any bad constrained quantity between these will affect results in the anal-
ysis.

3.2 A critical approach

As showed in Chapter 2, there are three kind of elementary sources in acous-
tic theory. The possibility to apply these sources on actual cases in volcanol-
ogy depends on many factors, and the choice is often tricky. Furthermore,
the source model often depends on some unknown or bad constrained param-
eters, and the identification of the source characteristics from data results
almost impossible.

The whole process of data analysis and source choice is strictly connected
and twofold, because each depends on the other:

1. the choice of a source model permits to extract important dynamical
quantities such as velocity and mass flux;

2. data analysis can (or “maybe could”) provide a tool to identify the
source mechanism on the basis of the most likely results.

42



3.2. A CRITICAL APPROACH

The uncertainties connected to both choices are still high, and neither the
way 1 nor the 2 are capable to provide results with high accuracy.

Woulff and McGetchin in 1976 performed a quantitative analysis in vol-
canology to obtain dynamical quantities from acoustic recordings. The au-
thors extracted gas velocity for Acatenango volcano (Guatemala) fumaroles
from acoustic power, and proposed the first connection between volcanic
eruptions and acoustic sources:

• Monopole can be associated to extremely impulsive blast-type erup-
tions. Since the source intensity is connected to a time varying mass
flux (2.24), no monopole radiation will result from a volcanic eruption
where the gas velocity is constant.

• Dipole can be associated to a stationary flowing gas, interacting with
solid boundaries (as the vent wall) or solid particles.

• Quadrupole can result from a turbulent hot jet of gas and solid
particles.

In volcanology, of course the source can’t be a single point but an extended
source. Anyway, measuring signals at long distance from the source (typi-
cally at 1−10 km) it can be possible to consider the source as point-like.

The authors calculated velocity starting from the Lighthill’s 8th power
law (Lighthill, 1952, 1954):

Π ∝ u8, (3.2)

that is valid for subsonic jets. This condition is usually satisfied for volcanic
jets, except for the most violent explosions.

Considering an extension to the cases of monopole and dipole sources
on the basis of dimensional analysis, Woulff and McGetchin obtained the
following formulas:

ΠM = KM
ρ0Au

4

c
, (3.3)

ΠD = KD
ρ0Au

6

c3
, (3.4)

ΠQ = KQ
ρ0Au

8

c5
, (3.5)

where the subscripts M , D, and Q refers respectively to the monopole,
dipole and quadrupole cases; ρ0 is the air density, c is the sound speed, A
is the vent area, and the term ρ0Au

8/c5 in (3.5) is known as the Lighthill’s
parameter.

KM , KD, and KQ, are three empirically determined proportionally con-
stants. KM have to be equal to 1, as will be demonstrated later; anyway,
monopole radiation was not considered by Woulff and McGetchin, since the
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gas flow from Acatenago fumaroles where almost steady. For KD and KQ,
the authors provided the following values, on the basis of their experimental
results:

• KD ≈ (10−2 ÷ 10−1);

• KQ ≈ (3 · 10−5 ÷ 5 · 10−4).

Since the velocities connected to a quadrupole source where too high (a
value of ∼ 10 m s−1 was measured by video recordings), the authors deduced
that the source had to be a dipole, and extracted the velocity considering
a value of KD = 1.3 · 10−2, from the exact solution of the highly-idealized
aeolian tones (Leehey and Hanson, 1970).

A crucial point lies inside these empirical constants. Many authors used
different value in order to have a better fit for data. Furthermore the range
of values associated to constants K together with the uncertainty about the
vent area A can prevent the identification of the actual acoustic source. In
the following subsections I propose some considerations about the three kind
of sources, considering the different approach followed by other authors.

3.2.1 Monopole source

As shown in Chapter 2, monopole source is a spherical expansion related to
a rapid injection of mass, like a bursting balloon. Now, let’s consider the
cases of applicability of this kind of source in volcanology.

Some authors (Vergniolle and Brandeis, 1996; Vergniolle et al., 1996;
Johnson, 2003; Vergniolle et al., 2004; Vergniolle and Caplan-Auerbach,
2004; Vergniolle and Caplan-Auerbach, 2006; Johnson et al., 2008) assume
that a strombolian explosion can be associated to a simple acoustic source.
This can be true considering that we usually look at a strombolian explo-
sion as caused by a sudden decompression and explosion of a gas bubble
surrounded by a thin layer of magma (in the order of some centimeters) at
the top of a magma column. In this view, it can be better to consider a sim-
ple acoustic source radiating only in a half-space. Some authors (Johnson,
2003; Vergniolle et al., 2004), considered that this condition could be more
reliable in actual cases. The problem is that a half-sphere radiating in a
half-space is not actually a half monopole, because of the effect of reflection
of the expansion at the borders (Figure 3.3). However, we will see how to
deal with this effect further.

The second actual problem connected to the monopole source for a
strombolian explosion is the depth of the explosion, because in many cases
this occurs inside the conduit. As shown in Figure 3.4, strombolian explo-
sions, also in cases of steady eruptive style and persistent activity, as at
Stromboli volcano, can have some different shapes (Patrick et al., 2007).
This phenomenon, although is related to the rheology of magma and the
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gas content, is undoubtedly dependent on the depth of the explosion of the
gas bubble. Unfortunately this parameter is in most cases unknown. More-
over, by using a monopole source model, we must consider the expansion
and propagation in the free-space, so if we dip the source inside the conduit,
this model is no more valid.

Figure 3.3: Reflection of acoustic waves at the edge of the hemisphere for inter-
action with the floor prevents the free propagation described by the physics of the
monopole.

In this condition, what does become a monopole forced to expand inside
a cylindrical geometry (if the conduit geometry can be really though as a
cylinder)? Can it behave like a dipole? Maybe something similar, most
likely a piston, but there are no formulas to extract directly the pressure
perturbation of such a source. Furthermore, the depth of the explosion
remains an unknown parameter. It is necessary to investigate this effect
with some experiments or numerical simulations. So, care must be taken in
data analysis considering a simple source at the base of pressure perturbation
generation, because there are two significative problems:

1. the explosion of a hemispherical bubble is not a monopole;

2. the depth of the explosion inside the conduit is unknown, and prevent
the free-space propagation of the simple source.

A peculiar case for Stromboli volcano considering a simple source will be
analyzed in the following.

3.2.2 Dipole source

Dipole is a system composed by two coupled simple sources with the same
intensity and opposite sign, in an infinite free-space. As long as the dis-
tance between the two simple sources is small compared to the distance at
which one calculates pressure perturbation, this quantity will be expressed
by equation (2.29). Furthermore, since in volcanology the source-receiver
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Figure 3.4: The varying styles of eruptions at Stromboli (Patrick et al., 2007). A.
Poor collimated Type 1 eruption. B. High-velocity ash plume, Type 2a eruption.
C. Low-velocity, particle-laden plume with a high degree of visible sedimentation
(arrow), Type 2b eruption. D. Mild Type 1 eruption with moderate collimation.
E. Intense Type 1 eruption with excellent collimation. F. Small Type 2b eruption.
Type 1 are ballistic-dominated eruption, with little to no visible plume due to the
absence of ash-sized particles; Type 2a eruptions involve both ballistic particles and
ash plume; Type 2b eruptions contains mainly ash, with few ballistics.
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distance is usually in the order of some kilometers, the condition of far field
(2.31) can be considered satisfied.

In volcanology the dipole is the most used source in the interpretation
of infrasonic signals from different kinds of explosive eruptions. As long as
the simple source is related to a sudden explosion with a short duration,
dipole can fit better prolonged eruptions. Woulff and McGetchin (1976)
considered the dipole source as the product of interaction of a gas flow with
the solid boundaries of the conduit wall. Actually this effect is a result
of the interaction of a turbulent (therfore quadrupole) gas flow with solid
boundaries (Curle, 1955; Meecham, 1967), and consists in a distribution
of dipoles. So it is not so immediate the application of the physics of a
point-like dipole source. However, there are many applications of dipole
sources in volcano acoustics. Woulff and McGetchin (1976) used dipole
to analyze some fumaroles; some authors used it in analyzing sub-plinian
plumes and thermals (Vergniolle and Caplan-Auerbach, 2006), others for
vulcanian explosions (Caplan-Auerbach et al., 2010). Johnson et al., 2008
considered the explosion of gas bubble at the surface of the lava lake of
Erebus volcano having the nature of a monopole with dipolar asymmetries
connected to the film rupture.

Despite the wide use however, there are some basic problems in the
application of this model. The first is the presence of the angle θ. None of
the previously quoted authors considered this quantity at all. But it is for
sure mandatory if one want to use a compact dipole as actual source, because
pressure perturbation will depend both on r and θ also in the far field, as
shown by equation (2.29). The omission of θ in the analysis necessarily leads
to a paradox.

Let’s look at a simple example. If we perform a measurement of the
pressure perturbation of an explosion in two different spatial points P1 and
P2 placed at the same distance r from the source, but with different angles
from dipole axis (Figure 3.5), for sure we’ll have two signals with different
amplitude (the smaller the angle, the higher the amplitude of pressure per-
turbation). So if we do not consider the angle θ in the interpretation of
signals (as in calculating acoustic power to extract the jet velocity), we will
get two different values for the same physical quantity and the same event!
This is obviously impossible!

The second problem is relative to the length of the dipole. Vergniolle
and Caplan-Auerbach (2006) derived from equation (2.33) a formula similar
to (3.4) used by Woulff and McGetchin (1976), but containing the dipole
length l:

ΠD =
ρ0πl

2u6

12c3
, (3.6)

Using the (3.6) they considered the dipole as long as vent diameter. Such
a consideration put some doubts about the actual positioning of the dipole
axis by the authors, leading to two possible choices:
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1. dipole axis is placed horizontally, lying on the plane of the volcanic
vent (Figure 3.6A), and has a length equal to the vent diameter;

2. dipole axis is placed vertically (Figure 3.6B), and the authors used the
vent diameter to make an estimation of dipole length.

Figure 3.5: Points P1 and P2 are at the same distance r from volcanic vent. But,
having a different angle θ from it, pressure perturbations ∆p1 and ∆p2 will be
different, with ∆p1 > ∆p2.

Figure 3.6: Possible orientation of dipole (represented by the red arrow) by
Vergniolle and Caplan-Auerbach (2006). A. Dipole lies a the plain parallel to the
volcanic vent. B. Dipole is perpendicular to the vent, oriented along the conduit
axis.

The first case seems almost impossible for some reasons: if the dipole is
horizontal, at some azimuthal angles around the volcano (for θ > 90) there
must be a negative first pulse in pressure perturbation. This situation was
never reported in literature, and moreover experimentally denied (Ripepe,
pers. comm.). Furthermore, since the volcanic conduit is directed vertically,
the gas flow must have the same direction, and the dipole axis will do the
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same. Therefore the authors probably considered the dipole axis directed
vertically, but used the vent radius to estimate the length of the dipole, in
absence of any measurements of this quantity. Assuming this assumption
valid, anyway, this value do not satisfy the compactness condition (2.30),
making the use of an elementary dipole no more valid (Curle, 1955; Lighthill,
1978).

The third main problem connected with this source lies in the actual size
and position of the dipole. The physics of the dipole described by equations
of Chapter 2 is valid for a source lying in an infinite free space. But, where
and how the dipole have to be positioned in the volcano? For sure the dipole
axis must be vertical, and coincide with the axis of the volcanic conduit
(with the only exception of the case of Johnson et al., 2008, where the
dipole term is considered as a random asymmetry in the bubble explosion).
So, although we know how to put the dipole in the volcanic vent, we still
don’t exactly know where. Maybe it can be positioned, as the monopole,
at the separation interface vent-air. But, in this case, what will happen
to the negative pressure perturbation? For sure this is not a dipole source
anymore. Maybe we can put the dipole inside the conduit: but at which
depth? In doing this, we fall again out of the cases of applicability of the
theory.

So, although dipole source seems to be better than the simple source
(because of the different types of eruptions that can fit, and the cylindrical
nature of the volcanic conduit), the actual cases of applicability are strongly
reduced because of some primary unknowns (angle θ, length of dipole and
position of source). Also for dipole source, as for the monopole, it seems
to be necessary to perform accurate numerical simulations and experiments
suited to study the effect these parameters for volcanological applications:

1. angle θ from the dipole axis;

2. dipole length;

3. source positioning with respect to the volcanic vent.

Only with a clear insight of the behavior of such a source it will be possible
to use it for data analysis to confidently extract physical quantities.

3.2.3 Quadrupole source

Since quadrupole radiation is generated by a turbulent flux, it seems natural
to connect this kind of acoustic source to the explosive eruptions with a high
degree of turbulence. These are typically eruptions with a moderate to high
degree of violence like vulcanian, sub-plinian, plinian and phreatomagmatic.

As shown in Chapter 2, the equations describing the physics of a quadru-
pole are rather complex. So, there is no possibility to apply directly a
relationship between pressure perturbation and another physical quantity
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like velocity. Furthermore, the length scale of the turbulence is related to
the average eddies size, a quantity quite difficult to estimate.

An effective method to associate an acoustic signal from a volcanic erup-
tion to a quadrupole turbulence, can be made by means of a spectral analy-
sis. That can be really useful, because pressure signals in time-domain from
violent explosions can be rather complex, with the feature of a long-lasting
infrasonic tremor. However, its frequency spectrum can be compared to a
jet noise spectrum, which represents the typical signature of a high speed
turbulent flow. First investigations on jet noise were performed by Lighthill
(1952), whose name is related to the previously quoted eight-power low (3.2).

Experimental results showed that similarity spectra of this kind of noise
can assume two different shapes depending on the scale of turbulent struc-
tures or instability waves of the jet flow (Tam et al., 1996; Tam, 1998).
The functions describing these similarity spectra depend only on the peak
frequency. Large scale turbulence similarity spectrum is described by the
function F :

10 log10 F (dB) =
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where νL is the peak frequency.
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Fine scale turbulence function G has the form:

10 log10G(dB) =
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(3.8)
where νF is the peak frequency. Figure 3.7 depicts the similarity spectra for
the two length scale of jet noise.

Some authors (Matoza et al., 2009; Fee et al., 2010), made a comparison
between the large scale turbulence similarity spectrum and some frequency
spectra from different violent volcanic eruptions, obtaining a pretty good fit.
This method results rather simple because does not involve any manipula-
tion of data but a Fourier transform, moreover ensuring no approximations
or uncertainties. Although can not provide any extraction of dynamic quan-
tities, this analysis is a simple and powerful method to detect the presence
of a quadrupole radiation from the jet noise signature. Since quadrupole
source has a poor efficiency in acoustic radiation compared to monopole
and dipole, the detection of a jet noise spectrum at long distance from the
source can be a proxy to notice the presence of intense turbulence in volcanic
eruptions.
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Figure 3.7: Large Scale Turbulence (LST) and Fine Scale Turblence (FST) simi-
larity spectra described by (3.7) and (3.8) (Tam et al., 1996).

3.3 Data analysis

In this section is reported an experimental validation of the methodology of
source identification proposed by Woulff and McGetchin (1976) and followed
by many authors (Vergniolle et al., 2004; Vergniolle and Caplan-Auerbach,
2006; Caplan-Auerbach et al., 2010). The method consists in using equations
(3.3), (3.4) and (3.5) to extract the gas velocity and identify the source
process from the most likely value of u for the eruption. Although it has been
yet demonstrated in the last section the inefficiency of this methodology on
the basis of theoretical considerations, a detailed analysis from experimental
data is shown in the following.

3.3.1 Etna

Mount Etna is an active stratovolcano situated in the Sicily island in south of
Italy, with an elevation of about 3300 m amsl. Historical volcanism of Etna
has been dated back to 1500 BC. At the present there are three main summit
craters (Central Crater, NE Crater and SE Crater), but flank eruptions
with generation of cones and eruptive fissures are frequent (Giacomelli and
Scandone, 2007). The prevalent activity style is effusive, with a low to
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medium degree of explosivity. Typical explosive phenomena associated to
the presence of gas are strombolian explosions and fire fountains, but ash
emissions and vulcanian explosions (due to the interaction of magma with
water or snow) sometimes occur.

In the last decade, a multi-parametric real-time monitoring network was
installed at Etna volcano by geologists of the University of Florence (Italy).
In the night between 23 and 24 november 2007, pressure sensor recorded
a long-lasting infrasonic tremor generated by a continuous fire fountaining
activity from the SE Crater (Burton and Neri, 2007; Ulivieri et al., 2008).
Figure 3.8 shows the infrasonic signal recorded at a distance of 5 km from
the active vent where fire fountaining was generated. A 50 Hz sampling rate
was used for data acquisition. Signal amplitude is quite low and the shape
complicated since represents a seven hours continuous tremor with abrupt
pulsation connected to strombolian explosions of large gas bubbles.
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Figure 3.8: A. Seven hours infrasonic tremor generated by the 23-24 november
2007 fire fountain from SE Crater. B. Zoom around the main peak: signal is
composed by a superimposition of strombolian explosions on a continuous tremor.
A 50 Hz sampling rate for data acquisition was used. Pressure sensor was located
at a distance of 5 km from the active vent.

A fire fountain is a peculiar low explosive activity typical of basaltic
volcanoes like Etna in Italy and Pu‘u ‘Ō‘ō at Kīlauea (Hawaii). To explain
the mechanism that governs the transition between a strombolian explosion
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and a fire fountain there are two competing models:

1. gas content and bubble coalescence drive the transition from a bubbly
flow (strombolian explosion) to an annular flow (fire fountain) (Jaupart
and Vergniolle, 1988; Vergniolle and Jaupart, 1990);

2. magma rise speed controls the eruption style, from strombolian activ-
ity (at low rise speed) to fire fountains (at higher rise speed) (Parfitt
and Wilson, 1995).

Since the acoustic source connected to the degassing during a fire foun-
tain is unknown, let’s follow the approach of Woulff and McGetchin. From
the pressure perturbation ∆p recorded by the sensor, it is possible to go
back to the acoustic power radiated. Considering an infinite free space, the
power output obtained from a pressure perturbation ∆p measurement will
be:

Π =
4πr2

ρ0cT

∫ T

0
∆p2dt, (3.9)

with r being the distance from the source, ρ0 the air density, c the sound
speed and T the duration of the signal.

Equating the (3.9) to equations (3.3), (3.4) and (3.5) of Woulff and
McGetchin it is possible to extract the velocity for the three different acous-
tic sources. Figure 3.9 shows gas velocity u for the seven hours of fire
fountaining obtained calculating the acoustic power in 5 s windows with
a 50% of overlapping. A value of 5 s is rather accurate, since it smooths
any little departure from a medium value letting clearly identifiable all the
instantaneous pulsations in activity. Two values of 10 m and 20 m were
considered for vent radius.

Estimates of the height of fire fountain from thermal images let suppose
that it was as high as 500 m from the volcanic vent (Andronico and Cristaldi,
2007). This information results rather important since enable the calculation
of exit velocity of gas from the vent by using a simple ballistic relationship:

1

2
mu2 = mgh, (3.10)

from which it can be extracted u:

u =
√

2gh. (3.11)

From equation (3.11) it is possible that the exit velocity reached a value of
about 100 m s−1. Being aware of this information upon the height of fire
fountain, it seems from Figure 3.9 that the most likely source model for the
generation of infrasound can be the dipole.

If vent radius is about 10 m, dipole gives a mean value of 70 m s−1 for
velocity; for a vent radius of 20 m, mean velocity for a dipole is around
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Figure 3.9: Time series of velocity extracted by infrasound using equations (3.3),
(3.4) and (3.5). For A, B and C is considered a vent radius R = 10 m. For D, E
and F is considered a vent radius R = 20 m. C and F show two lines, associated
to different values of KQ: 3 · 10−5 (red) and 5 · 10−4 (blue).
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50 m s−1, with main pulsations reaching the ballistic value of 100 m s−1.
Monopole model gives values of velocity too low, and is discarded. Further-
more, a “continuous” monopole seems almost unreal.

Figure 3.9 shows another interesting remark: if we suppose a quadrupole
source for the eruption, the wide range of variability for the coefficient KQ

makes any estimation of velocity almost impossible for the huge range of
likely results. However, for a vent radius of 20 m quadrupole gives a mean
velocity of about 120 m s−1, that is not so far from the ballistic value.
Actually, if the radius was larger than 20 m, by this methodology quadrupole
model could fit data as the dipole for a vent radius of 10 m.

Another method to detect the presence of turbulence as a source for the
infrasound consists in the comparison between the frequency spectra of the
signal and the similarity spectra of jet noise (Matoza et al., 2009).
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Figure 3.10: Comparison between the frequency spectrum of the pressure signal
from fire fountain (blue) and the Large Scale Turbulence similarity spectrum (red).

Figure 3.10 shows that the large scale turbulence similarity spectrum
almost fits the spectrum of the eruption. Although there is a pretty good
overlapping between the curves, this seems to be not significative at all
frequencies. Therefore we can conclude that the turbulence in the fire foun-
tain, although present is not enough efficient to play a significant role in the
generation of infrasound.

Although a confident measurement of gas velocity results quite compli-
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cated, in this case the method could permits to identify the most probable
acoustic source as a possible combination between dipole and quadrupole
because supported by other experimental evidences:

1. the long-duration activity rejects the monopole model;

2. the height of the fountain can provide a range of reasonable values for
u that helps in the “choice” of the source model.

However, because of the lack of information about the vent radius, whose
value has a significant effect upon the calculation of velocity, it is not possible
to discriminate accurately between dipole and quadrupole. Moreover, during
a long-lasting and intense eruption, it is possible that the vent radius can
change because of the building of a scoria cone.

Furthermore, still remains the lack of information about the angle from
the dipole axis, a mandatory information as we said in the previous section.
Then the realistic values provided by the monopole are be affected by the
presence of the unknown parameter θ: how can we be confident about a
measurement like that?

3.3.2 Stromboli

Stromboli island is a stratovolcano in the south of Italy with an elevation
of 924 m amsl. Since the volcanic structure develops underwater, the island
represents less than a half of the entire edifice. Volcanic activity started
thousands years ago, and the typical style is the bursting of a gas bubble at
the top of the magma column with the ejection of pyroclasts from the magma
film surrounding the bubble (Vergniolle and Brandeis, 1996; Scandone and
Giacomelli, 1998), the so called strombolian explosion.

Thanks to its non-stop activity Stromboli is one of the most studied and
monitored volcano in the world. In the last years geologists of the University
of Florence developed and installed on the flank of Stromboli an experimen-
tal geophysics laboratory, for a real-time monitoring and analysis of many
physical parameters useful to improve the scientific research in volcanol-
ogy, and important for evaluating the volcanic risk connected to population
safety. Figure 3.11 shows the complex monitoring system installed at Strom-
boli by Ripepe et al. (2009b).

To evaluate the approach of Woulff and McGetchin, a peculiar major
explosion of Stromboli volcano was analyzed. The persistent “ordinary” ac-
tivity of Stromboli is sometimes interrupted by more energetic events called
major explosions. That kind of activity can eject scoria and bombs to 150
m of height above the eruptive vents, and occurs at Stromboli a few times
in a year. In some years, occurs even larger explosions called Paroxisms,
with many long-to-medium time precursory phenomena. These events are
usually associated to lava extrusions lasting some months and intense explo-
sions with the development of some kilometers high eruptive columns. The
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Figure 3.11: Multi-parametric monitoring system installed at Stromboly by ge-
ologists of University of Florence (Ripepe et al., 2009b). Circles represent seismo-
acoustic stations; diamonds represent the L-shaped infrasonic array; triangles rep-
resent tiltmeters; squares represent thermal cameras.

presence of two distinct magma it has been observed in paroxismal events
(Landi et al., 2009).

In using the monopole model, it is important to study an explosion as
shallower as possible, in order to eliminate the effect of propagation in the
volcanic conduit. Stromboli major explosion of 24 november 2009 seems to
be a good candidate for the analysis. The event consisted a succession of
two main explosions separated by 13 s, causing bombs fallout in the summit
area and lapilli dispersal on the lower slopes of the volcano. A red-colored
eruption column rose up almost vertically for more than 300 m (Andronico
and Pistolesi, 2010). The EAR infrasonic array of University of Florence
(800 m amsl, Figure 3.11) located the acoustic source at the Central crater.

In Figure 3.12 is shown the eruptive sequence observed by the thermal
camera at the station ROC, at distance of 450 m from active vents. The
explosions seems to be rather shallow, mostly the second stronger explosion
B. As it can be seen from the thermal image, the second explosion shows
a firework-like feature, with sustained magma jets radially dispersed in all
directions, followed by a long-lasting vertical jet of hot material.

Figure 3.13 shows the infrasonic signals associated to the event measured
at the stations ROC and SCI at a respective distance of 450 m and 1 km
from active vents.

Signals demonstrate the almost instantaneous generation of pressure per-
turbation (first pulse have a duration of less than 1 s for a complete positive
and negative oscillation) with the most intense event having a shorter dura-
tion of the first. Figure 3.13 shows another remarkable feature: compared to
the pressure pulse B, the subsequent jet of gas lasting many seconds results
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Figure 3.12: Plume evolution of the 24 november 2009 major explosion recorded
by the FLIR thermal infrared camera installed at station ROC, at 450 m from the
active vents. A and B represents the two explosive events. Sampling rate was 4
Hz. FOV (Field Of View) of thermal camera is about 200 m.
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Figure 3.13: Pressure signals from the major explosion of 24 november 2009,
recorded at station ROC (red) and SCI (blue), respectively at a distance of 450 m
and 1 km from active vents. Sampling rate for data acquisition was 50 Hz.
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almost noiseless. This aspect promotes the model of generation of infra-
sound from the sudden bursting of a gas bubble (Ripepe et al., 1996). In
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Figure 3.14: Detailed image of the signals shown in Figure 3.13. Signals on the
left side represent pulse A, the ones at the right represent pulse B. Both signals
recorded at ROC (red) and SCI (blue) stations show that pulse A is the result of a
superimposition between two peaks.

Figure 3.14 is visible another interesting feature: Andronico and Pistolesi
(2010) pointed out that the first explosion (A of Figure 3.12) consisted of two
simultaneous bursts ejecting products in opposite direction towards Pizzo
and outside the crater terrace. This remark seems to be in agreement with
the pressure recordings: first positive pulse seems to be composed by the
superimposition of two peaks, mostly and the station ROC, nearer to the
vent. This information will be useful in the interpretation of results.

Now let’s follow the approach of Vergniolle and Caplan-Auerbach (2006)
for a monopole source, putting some insight into the limitations of the model.

Pressure perturbation for a monopole source is described by equation
(2.24). As we want to extract the velocity, let’s make appear this quantity
in the equations. To accurately use the equations governing the physics of
monopole, I will consider its definition as a sphere expanding in an infinite
free space. Many authors consider for volcanological applications a half
sphere, but as we have seen, this is not an actual monopole. However,
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if care is taken in writing the correct equations, the relationship between
acoustic power and gas velocity for an actual monopole will be the same of
that for a “half monopole” expanding in an infinite 2π semi-space.

Assuming a harmonic source oscillating with pulsation ω, the source
term q̇ becomes (Morse and Ingard, 1968):

q̇ ≈ ωq. (3.12)

Now, considering a spherical surface expanding radially, the expansion ve-
locity u comes out:

q = ṁ = ρV̇ = ρ04πR
2u, (3.13)

where ρ0 is the air density and R is the vent radius.
Putting the (3.12) and (3.13) in equation (2.26), the power output for a

monopole becomes:

Π =
4πρ0ω

2R4u2

c
. (3.14)

In the following, we make the assumption that the velocity u of the
oscillating body is small compared to the speed of sound, and we can make
the approximation:

u ≈ aω, (3.15)

with a being the amplitude of oscillation (Landau and Lifshitz, 1987).
Taking the amplitude of oscillation equal to the vent radius R, the con-

straint u� c becomes

R� c

ω
=

λ

2π
, (3.16)

that is exactly the compactness condition (2.30).
Inserting the (3.15) in the expression of acoustic power (3.14), the pul-

sation ω disappears, obtaining:

Π =
4πρ0R

2u4

c
. (3.17)

This formula is exactly the (3.3) proposed by Woulff and McGetchin (1976),
and it is now clear that the value of KM in (3.3) have to be equal to 1.

Now, putting the (3.17) equal to the acoustic power extracted from pres-
sure signal (3.9), gas velocity for a monopole source can be expressed as:

u =

(
r2

ρ20R
2T

∫ T

0
∆p2dt

)0.25

. (3.18)

By using the (3.18), gas velocity from a monopole source was calculated
for pressure signals recorded at stations SCI and ROC. A value of 2 m
was considered for the vent radius R. Time windows of 0.6 s with 50% of
overlapping proved to be good to identify velocity peaks in both signals.
Figure 3.15 shows the time series of velocity for the eruption.
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A comparison between velocity calculated from infrasound and by ther-
mal images was performed tracking plume height from the thermal infrared
camera recording (Delle Donne et al., 2006). Figure 3.16 shows the compari-
son between velocities time series obtained from the two methods. Pressure
station ROC and Forward Looking Infrared Radiometer (FLIR) thermal
infrared camera were located in the same place.
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Figure 3.15: Velocity time series for 24 november 2009 major explosion of Strom-
boli. u is calculated by equation (3.18). There is a good agreement between results
from the stations ROC and SCI.

For the second pulse, the agreement between the two methodologies is
pretty high. Conversely, for the first peak the velocity measured by ther-
mal camera is considerably lower than the value extracted from infrasound.
Furthermore, there is not a well developed velocity peak from the thermal
recording. This mismatch can be addressed to the fact that this explosion
consisted of two simultaneous bursts. So this effect can have its influence
both to the thermal recording and the infrasonic signal. As the dual explo-
sion ejected products in opposite directions, it means that the jet were not
vertical. Since the plume tracking method from thermal images is valid for
vertical jets, an underestimation from this method is reasonable.

Conversely, for the infrasonic signal the summation of two peaks can
result in a increase in the pressure recorded, producing a consequent over-
estimation of jet velocity. Furthermore, the assumption of monopole can be
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no more valid, so gas velocity connected to the first explosion probably has
a intermediate value between those measured by the two methodologies.

However, the good matching between the methodologies for the second
explosion allows the actual applicability of monopole model, but only be-
cause the eruption had some peculiarities occurring at the same time:

1. probably due to the previous explosion magma was shallow, and no
propagation of the acoustic wave inside volcanic conduit occurred;

2. thanks to the radial bursting (well demonstrated by thermal video)
the use of a model based on spherical symmetry was enabled.
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Figure 3.16: Comparison between velocity obtained from infrasonic and thermal
recordings. Pulse B shows a pretty high agreement between the methodologies.
Pulse A does not give an impulsive velocity peak for the thermal recording.

To test the accuracy of the monopole model at the base of a velocity
estimation as described by the (3.18), a comparison with the methodologies
proposed by other authors was performed.

Some authors (Vergniolle and Caplan-Auerbach, 2004; Vergniolle et al.,
2004; Vergniolle and Caplan-Auerbach, 2006) used the same procedure show-
ed above to obtain the (3.18), but some differences:
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1. the acoustic power associated to an acoustic wave was calculated as:

Π =
πr2

ρ0cT

∫ T

0
∆p2dt, (3.19)

that is the same of (3.9) but without the coefficient 4 in the geometrical
spreading;

2. the coefficient KM is considered equal to 1/16, for a monopole source
radiating from a circular flat orifice;

3. the power output for a dipole source was calculated as:

Π =
πρ0l

2u6

12c3
= KD

ρ0Au
6

c3
, (3.20)

that is the same of Woulff and McGetchin (1976), but with KD = 1/3,
having estimated the dipole length l from the vent radius R: l = 2R.
No consideration about the angle θ from the dipole axis were made.

Figure 3.17 shows a comparison between the time series of velocity ex-
tracted from the pressure signals recorded at the stations SCI and ROC
considering three different models:

1. red lines represent the monopole model described by (3.18), for both
the signals ROC and SCI;

2. blue line represents the monopole of Vergniolle and Caplan-Auerbach
(2004) described by (3.19) and (3.3) with KM = 1/16;

3. dashed blue line represents the dipole model of Vergniolle and Caplan-
Auerbach (2006) described by (3.19) and (3.20).

Figure 3.17 highlight two interesting features:

1. models proposed by other authors produce high values of velocity, that
can not agree with the assumption (3.15);

2. monopole model of Vergniolle and Caplan-Auerbach (2004) and dipole
model of Vergniolle and Caplan-Auerbach (2006) are almost indistin-
guishable for this eruption, since both gives similar values of velocity.
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Figure 3.17: Comparison of velocity obtained by equation (3.18) (red) with the
velocity monopole model of Vergniolle and Caplan-Auerbach, 2004 (blue) and dipole
model Vergniolle and Caplan-Auerbach, 2006 (dashed blue).
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Conclusive remarks

As a conclusion, although too simple for the most of cases, monopole seems
to be the most applicable acoustic source to model a strombolian explosion,
since the equation are rather simple, and it is possible to use the exact
acoustic relationship between physical quantities. Furthermore, monopole
does not require any information about quantities difficult to obtain, like
angle θ from the dipole axis and dipole length l.

Moreover, performing a measurement of the pressure perturbation ∆p
at large distance from the volcanic vent (many kilometers, as usual), the
spherical wavefronts will be almost plane, and both dipole and quadrupole
radiation pattern will approximate to a monopole.

To accurately investigate the problem it seems to be necessary the use
of numerical simulations. Clearly, it is almost impossible to study the whole
phenomenon since it include non linear acoustics, thermodynamics of mul-
tiphase fluids, and a lot of unknown. Unfortunately, still there is also the
impossibility to have many data for a single event, like in seismology, and
an effective inversion problem it is not applicable.

Some experiments (like that proposed in the last chapter), or improved
monitoring on actual volcanoes can provide more insight in the physics of
the process, and significantly help in the interpretation of data.

66



Chapter 4

Source characterization by
integral methods

As demonstrated in the previous chapter, the measurement of dynamic quan-
tities related to the volcanic explosion from the analysis of infrasonic signals
seems to be ineffective. In this chapter, a new methodology to put some
insight on the acoustic source in volcanic explosions is proposed.

By means of a combined use of experimental data and numerical simu-
lations, an inverse problem has been set up. Using an integral method to
study the effect of volcano geometry on infrasonic wave propagation, pres-
sure recorded at the microphone has been related to source conditions at
volcanic vent by a transfer matrix. In such a way, the acoustic source has
been conditioned to the base of experimental data.

The approximations made for the analysis allowed to solve analytically
the equations relating the pressure at microphone to source conditions. This
advantage permitted us to test a more complex methodology based on a bi-
objective optimization. The comparison of results from the two methods
made us confident about the optimization, that will be necessary for future
improvements where no analytical solution is admitted.

In the first section are illustrated the limits of validity of the model and
the approximations made. The interpretation of results will be made taking
into account all these approximations.

In the following sections are described the numerical code used for sim-
ulations, the inversion problem set-up and the two methods applied to solve
it: analytical solution and optimization.

4.1 Approximations and limits

The generation of infrasonic waves during a volcanic explosion is a com-
plex phenomenon, involving many physical processes. The bursting of a
gas bubble surrounded by a thin magma layer is an extremely impulsive
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event, governed by thermo-fluid dynamics of a two-phase flow: a pressur-
ized volcanic gas mixture and magma at a certain degree of fragmentation
(Blackburn et al., 1976).

Connected to the whole phenomenon, the actual process of generation of
acoustic waves is still unknown, and is probably far from the limits of validity
of linear acoustics, at least in the vicinity of the volcanic vent. Nevertheless,
during the propagation inside the volcanic conduit there can be a transition
zone towards the conditions that permits the use of linear equations.

We considered this assumption, that works similarly to the Kirchhoff’s
approach (Farassat and Myers, 1988; Özyörük and Long, 1994). We placed
the acoustic source at a certain depth inside the volcanic conduit: above this
surface, the linear acoustic theory is adopted (Figure 4.1). Any information
about the process beneath this depth remain unknown, because exceed the
limits of validity of our model.

This section illustrates the approximations made and the physical pro-
cesses that are not considered in our model. The interpretation of results
clearly depends on these approximations.

Above this surface linear 
acoustics is adopted 

•  Nonlinearities 
•  Thermo-fluid dynamics 
•  Multiphase flow 

VOLCANIC VENT 

CONDUIT 

Figure 4.1: Control surface above which linear acoustic theory is adopted. Any
information about acoustic propagation beneath this depth are unknown, because
governed by a more complex physics.
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Nonlinearities and viscosity

In Chapter 2 are illustrated the linearized equations governing the propaga-
tion of acoustic waves. The time varying pressure perturbation p is assumed
to be small with respect to the ambient pressure p0, with zero time average.
On the basis of this assumption, these quantities appear in equations only at
the first power: the linearization consists in neglecting all the higher power,
and products such as u · ∇u.

The linearized equations of acoustics are valid in most cases for infra-
sound emitted by volcanic explosions. But at the very onset of the process
these approximations could be no more valid, and the sound pressure and
corresponding fluid velocity amplitudes can be large enough to be signifi-
cant; neglecting these terms in the equations can be a source of error (Ingard,
2008).

Performing a linearization of the equations, also the effects of viscosity
and heat conduction are neglected, because can be regarded as small per-
turbations on the overall motion. However, viscosity can be as important as
the nonlinear effects, since the magnitude of these terms in the equations of
motion can be the same under appropriate conditions (Morse and Ingard,
1968).

The extremely impulsive pressure release and the high velocities associ-
ated to a strombolian explosion inside a volcanic conduit can make the effect
of nonlinear terms, heat conduction and viscous friction significative, and
the acoustic propagation governed by a more complex equation of motion.

If the acoustic source moves during the process of sound generation, the
entire physical process lies out of the domain of linear acoustics. This can
reasonably occur during volcanic explosions, where the gas-magma mixture
moves inside a conduit before escaping in the free air. Furthermore, the
acoustic source can be the flow itself, interacting with the solid wall of the
volcanic conduit.

In such conditions the equations of generation and propagation of in-
frasonic waves have to be modified in order to contain the Mach number
M = u/c, representing the ratio between flow velocity and sound speed.
Moreover there will be different regimes of flow (subsonic, u < c, transonic,
u ≈ c, and supersonic, u > c), in which the equations change their form.

The velocities associated to a volcanic explosion could be supersonic in
extremely violent eruptions (Donn and Balachandran, 1981; Tahira et al.,
1996), with the generation of shock waves. Although a strombolian eruption
represent the lower-energy explosive volcanic activity, during the onset of
the explosions impulsive high velocities inside a duct can affect the acoustic
wave generation.
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Thermodynamics

Since the pressure perturbation is generated by a high pressure and tem-
perature gas, any effect connected to thermodynamics could affect the wave
generation. In connection to this, the compressibility of air can play a role
in the process (Ingard, 2008). Moreover, the air can be far away from the
standard conditions of temperature and pressure, and the same can occur
to the sound speed c.

In connection with the moving source described above, fluctuation of
pressure, temperature, velocity and density coupled together recall the use
of aerodynamics to accurately describe the flow generating acoustic noise
during a volcanic explosion (Pelanti, 2005).

Multiphase flow

Together with high values of pressure and temperature, the thermodynam-
ics of the eruption is governed by a mixture of magma and volcanic gases
(mainly H2O and CO2).

Gas fraction in a magmatic fluid plays a significant role in the dynamics,
and governs the thrust phase during the development of a volcanic plume
(Wilson, 1980). Moreover the gas bubble dimension and evolution can drive
changes in the eruptive style of a volcano (Vergniolle and Jaupart, 1986).

The pressure release and magma fragmentation are strictly related to
the exsolution of volcanic gases (Wilson et al., 1980). If the generation
of infrasonic wave field occurs inside the magmatic column (Buckingham
and Garcés, 1996; Garcés, 1997; Garcés and McNutt, 1997), the magma-air
interface acts like an acoustic impedance contrast, modifying the infrasonic
signal before it has reached the top of the conduit (where another impedance
contrast will be encountered at the free-air level). Furthermore, the value of
sound speed c depends on the magmatic fluid properties. Then, the complex
features of the magmatic fluid can have an influence both the entire process
of generation and propagation of acoustic waves.

Geometry

The geometry of the magmatic conduit and the volcanic edifice have a sig-
nificative effect on the infrasonic wave propagation. In this work has been
studied Stromboli volcano, but the geometry used does not exactly resem-
bles its actual topography. As illustrated in Chapter 2, the wavelengths
associated to volcanic infrasound are not affected by any roughness of the
terrain. But the overall geometry can alter the results obtained. A refine-
ment of our methodology by the introduction of the actual topography of
Stromboli will be topic for future work.

The conduit geometry represents a more complex problem. Even if a
volcanic conduit is usually depicted as a cylinder, the actual shape is still
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unknown. Furthermore, the depth of the explosion (and then the depth of
the acoustic source) is also unknown, and is an independent quantity for
each eruption. Our choice was to consider different depths for the acoustic
source. The interpretation of results suggested how to deal with the conduit
shape in future.

4.2 Boundary Element Method

The Boundary Element Method (BEM) is a numerical technique for solv-
ing a wide range of physical and engineering problems. Like other compu-
tational techniques as the Finite Element Method (FEM) and the Finite
Difference Method (FDM), the BEM is a method for solving Partial Dif-
ferential Equations (PDEs), expressed in form of integral equations. In the
last decades the use of this method has been significantly improved, and
successfully applied in different research fields like fluid mechanics, stress
analysis, electromagnetics, fracture mechanics and acoustics.

The main advantage of the BEM is that the geometry is defined only
by meshing the surfaces: in such a way, the method provides a complete
solution in terms of boundary values. Especially in linear acoustics the
BEM reveals powerful for problems where the acoustic domain is so large
that can be realistically approximated as having infinite dimension (external
problem): that can be the actual case of acoustic propagation in free air or
in the ocean, where by using the BEM only a mesh of the surface of the
body is required (Kirkup, 2007).

The integral equations that the BEM has to solve assume a boundary
integral form, relating the solution at any points of the domain to functions
defined only on the boundary of the bodies. Such boundary integral equa-
tions are discretized by representing surfaces as panels, and defining the
boundary function on each panel of the mesh.

The code AcouSTO

AcouSTO (Acoustics Simulation TOol) is an open source BEM solver for
the Kirchhoff-Helmholtz Integral Equation (KHIE). The code has been de-
veloped by Prof. Umberto Iemma and Eng. Vincenzo Marchese with the
aim of a research group of the Department of Mechanical and Industrial
Engineering at Roma Tre University in Rome (Italy) (Iemma et al., 2009).
The code is written in the language C and has been developed to enable
parallel computing in order to solve numerical calculations on a distributed
environment. Furthermore, the code can handle 3D boundaries of arbitrary
geometry.

The code AcouSTO studies the acoustic problem in the Laplace domain,
reducing it to the classical single-frequency formulation along the imaginary
axis of the Laplace plane (s = iω). The problem can be written both in
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terms of the velocity potential function ϕ or pressure perturbation p. As
long as this work deals mainly with pressure perturbations, all the equations
will be written depending on this quantity. If p and ϕ represents quantities in
time domain, their corresponding in frequency domain, obtained by Laplace
transformation, will be indicated as p̃ and ϕ̃.

The problem assumes this form:

∇2p̃(x)− κ2p̃(x) = q̃, for x ∈ V (4.1)

with q̃ representing the acoustic sources present in the field, κ = s/c being
the complex wavenumber, s = α+ iω the Laplace variable, and c the sound
speed.

Wave propagation within the domain V described by (4.1) is associated
to boundary conditions expressed in terms of the unknown function p̃ (or
ϕ̃) and its normal derivative:

γ(x, κ)p̃(x, κ) + λ(x, κ)
∂p̃(x, κ)

∂n
= f̃(x, κ), for x ∈ ∂V (4.2)

where γ, λ and f are known complex function of position and frequency.
Assigning the appropriate values to the functions γ, λ and f it is possible to
define different types of boundary conditions (Dirichlet, Neumann or Robin).

Once that the problem (4.1) has been solved in terms of p̃ or ϕ̃, the other
quantity (if needed) can be easily obtained by the linearized Bernoulli’s
theorem:

p̃ = −sρϕ̃, (4.3)

where ρ is the medium density.
If no acoustic sources are present in the domain (q̃ = 0), the boundary

integral formulation for p̃ assumes the form:

E(y)p̃(y) =

∮
S

(
G
∂p̃

∂n
− p̃∂G

∂n

)
dS(x), (4.4)

where the domain function E(y) is defined as:

E(y) =


1 if y ∈ V,
1/2 if y ∈ ∂V,
0 if y 6∈ V,

(4.5)

and the boundary S is defined as:

S =

{
∂V for internal problems,
∂V \ S∞ for external problems.

(4.6)

The fundamental solution of equation (4.1) is described by the Green’s
function, G, defined as:

G(x,y, s) =
−e−sθ

4πr
= G0e

−sθ with r = ‖x− y‖, and θ =
r

c
. (4.7)
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Inserting the solution (4.7) in equation (4.4), we obtain the typical KHIE in
the form:

E(y)p̃(y) =

∮
S

(
G0

∂p̃

∂n
− p̃∂G0

∂n
+ sp̃G0

∂θ

∂n

)
e−sθdS(x). (4.8)

AcouSTO uses equation (4.8) to solve the Boundary Value Problem
(BVP) starting from the boundary conditions (4.2), and to represent the
acoustic field once that the solution on the boundary is known (Iemma and
Marchese, 2011). When y ∈ ∂V, equation (4.8) gives an integro-differential
equation for the unknown p̃ on the boundary ∂V which can be solved from
the boundary conditions χ̃ = ∂p̃/∂n. Once that the solution in known on
∂V, the code uses equation (4.8) as a boundary integral representation of
p̃ at arbitrary points in the field (that play the role of microphones) as a
function of the known distribution of p̃ and χ̃ over the boundary.

AcouSTO solves equation (4.8) by means of a BEM. The boundary of
the domain is divided into N quadrilateral panels on which the 0thorder
approximation is performed: all the quantities are considered as constant
within each panel. The surface integral in equation (4.8) is approximated
with a sum of N panel integrals, using the collocation method: collocation
points are located at the center of the panels. Performing this discrete
approximation, equation (4.8) transforms in:

1

2
p̃n =

N∑
m=1

[Bnmχ̃m + (Cnm + sDnm) p̃m] e−sθnm , (4.9)

where n varies from 1 to N and the subscripts indicate the evaluation at the
corresponding collocation point, and χ̃ = ∂p̃/∂n. The integral coefficients
are defined as:

Bnm =

∫
Sm

G0dS, Cnm =

∫
Sm

∂G0

∂n
dS, Dnm =

∫
Sm

G0
∂θ

∂n
dS. (4.10)

Integral coefficients expressed by (4.10) are evaluated analytically by the
code, and collected into [N ×N ] complex matrices B, C and D. Expressing
the values of pressure and its normal derivative into [N ×1] column vectors,
equation (4.9) can assume a matrix form:

1

2
p̃ = Bχ̃+ (C + sD) p̃. (4.11)

The solution of the problem can be now expressed as:

p̃ = Y−1Bχ̃, with Y =

(
1

2
I− C− sD

)
, (4.12)

which can be solved knowing the boundary conditions (4.2).
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Once that the solution of the problem p̃ is known on the boundary from
equation (4.12), the same formulation is used to evaluate the complex pres-
sure at the M microphones. Collecting the values of pressure p̃M at micro-
phones into a [M × 1] column vector, we obtain:

p̃M = BM χ̃+
(
CM + sDM

)
p̃, (4.13)

where BM , CM and DM are [M × N ] matrices containing the integral co-
efficients which connect the values of p̃ and χ̃ on the boundary with the
solution p̃M at microphones.

AcouSTO can both solve the scattering of planar or spherical waves by
multiple, arbitrarily shaped bodies, or propagate the radiation of vibrating
closed surfaces with assigned wall motion.

For the task of the present work the code has been used to extract the
matrices containing the effect of radiation from collocation points both on
body elements (B and Y), and at the microphones (BM , CM and DM ). In
doing this, the only input data necessary to include in the main file to run
the code where:

• geometry file, that was built from the actual topography of Stromboli;

• microphones file, in which was included the actual position of the
microphone where pressure signal has been recorded.

Symmetric geometry

If the geometry of the problem has a certain degree of symmetry, AcouSTO
can benefit about that reducing the numerical effort required for the solution.

If a symmetry plane is present, the collocation points used to evaluate
the solution can be distributed only along one of the two symmetric halves of
the boundary surface, thus dividing by a factor two the number of equations
of the resulting BEM system (Iemma and Marchese, 2011). Moreover, if the
problem presents an axial symmetry, the code can evaluate the solution only
along one half of a meridian circle, and the reduction of the computational
effort depends on the number of “slices” in which the axially-symmetric ge-
ometry has been divided. Since both memory allocation and computational
time grow according to N2 (where N is the number of collocation points),
using k symmetries these quantities will be proportional to (N/k)2, with a
clear advantage.

For a problem with no symmetry, the matrices involved in the system of
equations will have dimension [N ×N ], with N being the number of panels
(and in such a case, the number of collocation points), and the number of
integral coefficient (4.10) that have to be evaluated to obtain the matrices
is equal to 3 ×N ×N . Differently, if the problem has a level of symmetry
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equal to k, the dimension of matrices reduces to [(N/k) × (N/k)], and the
number of integral coefficients reduces to 3× (N/k)×N . Figure 4.2 shows
the reduction of collocation points with increasing symmetry for the case of
a sphere.

Figure 4.2: Control points (green) for different degrees of symmetry applied to a
sphere with 24 “slices” (Iemma and Marchese, 2011).

4.3 Methodology

Since we are interested in obtaining information about the acoustic source
in volcanic explosions from pressure recordings, we have to solve an inverse
problem. However this kind of approach is possible only having high number
of experimental data, like in seismology, where the number of equations
exceeds that of the unknowns. In actual cases, with some or just one pressure
records for an explosion, this method is ineffective.
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Using AcouSTO it is possible to extract the transfer function connect-
ing the pressure recorded at microphones around the volcano to boundary
conditions on some panels of the mesh (which are considered as “containing”
the source); obtaining such boundary conditions can provide some insight
about the acoustic source.

In this work, a new methodology has been tested in order to evaluate
the possibility to perform a complete acoustic source reconstruction using
as input experimental measurements of pressure around the volcanic vent.
Since only one microphone was used for this preliminary analysis, results
could be considerably improved by using more experimental data.

4.3.1 Experimental data

In order to test this new procedure for volcano acoustic data inversion, ac-
curate and reliable experimental data are needed. A peculiar infrasonic data
was provided by Prof. Maurizio Ripepe of Department of Earth Sciences
of University of Florence (Italy). The signal is the result of the stacking
between 150 pressure signals recorded at Stromboli by the infrasonic sensor
PZZ, placed 160 m above the volcanic vents, at a distance of 280 m from the
crater terrace (Figure 4.3). Pressure signals refers to ordinary strombolian
activity generated by the SW crater. A 100 Hz sampling rate was used for
data acquisition. Figure 4.4 shows the shape of this test signal.

Figure 4.3: Summit craters and infrasonic sensors installed at Stromboli from
geologists of University of Florence. The nomenclature is the same of Figure 3.11.
SW (red) and NE (blue) represents two active vents of Stromboli volcano (Modified
figure of Lacanna, 2010).

Since represents the stacking of many recordings, the signal can be con-
sidered as an infrasonic “signature” of SW vent at Stromboli associated to
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ordinary explosions. Unfortunately, any information about the explosion
depth are completely unknown; furthermore, the stacking operation nec-
essarily mix together signals from explosion occurred at different depths.
However, for a preliminary analysis, this data represents a pretty good test
signal since has been recorded at a very short distance (it is not so safe to
approach an active volcano!), and volcanic vent is perfectly in line of sight.
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Figure 4.4: A. Stacking of 150 pressure signals recorded at Stromboli at a distance
of 280 m from active vents. Ordinary strombolian activity was generated from SW
crater. A 100 Hz sampling rate was used for data acquisition. B. Zoom of the first
1.5 s: main oscillation has a duration of about 0.2 s.

4.3.2 Geometry building

Since it will be used an actual pressure signal recorded at Stromboli, it is
necessary to build the geometry starting from the Digital Elevation Model
(DEM) of the volcano. Figure 4.3 shows a 3D image of the summit zone of
Stromboli. Since both the volcanic vent and the microphone are located at
the top of the volcano, it can be possible to build the geometry considering
only this portion of Stromboli.

As long as the mesh size depends on the wavelength used by the BEM, it
is important to accurately define the minimum length for a panel. Usually,
the linear length of a panel must be at least 1/5 of the wavelength studied.

77



4.3. METHODOLOGY

Since a maximum frequency of 10 Hz will be used in this analysis, I chose a
minimum panel length of λ/10, in order to have a good accuracy: that gives
a minimum panel length of 3.4 m. Since this quantity represents the step
used to build the whole geometry, the entire number of panels of the mesh
will be in the order of 105. This value is pretty high and will require long
computational times for the runs.

To overcome this trouble, AcouSTO permits the use of symmetries. In
order to use the maximum level of symmetry, the geometry has built as
axially-symmetric. This of course represents an approximation of the actual
geometry of Stromboli, but the computing power available did not permit a
higher level of accuracy. Anyway, since this work represents a first attempt
to study the phenomenon of volcano acoustics by an inverse problem, on
the basis of our results a more accurate geometry can be a topic for future
works.

A topographic section passing for the SW vent and the infrasonic recorder
PZZ was used to build the profile of Stromboli, in the zone of interest. In
order to use the axial symmetry with AcouSTO, a conic geometry with the
volcanic vent on the axis was considered: Figure 4.5 shows the actual sec-
tion of Stromboli from SW vent to the PZZ station, and the approximated
profile used in the analysis.
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Figure 4.5: Section of Stromboli topography (blue line) from the SW vent (ma-
genta diamond) to the PZZ infrasonic station (black diamond). Red line represents
the approximated geometry used for our analysis.

The section showed in Figure 4.5 was used to built the mesh by using the
3D graphic platform Blender. A plugin to convert files from a Blender
to an AcouSTO format is provided in the AcouSTO installation package.
Since the acoustic source (represented by boundary conditions χ on some
mesh panels) will be placed in the volcanic conduit, three geometries with
different depth of the source were considered: 0 m (the source lies on the
volcanic vent, with no acoustic propagation in the conduit), 20 m and 50 m.
Figure 4.6 show the bezier curves used in Blender to build the meshes. A
slope developing down to 100 m beneath the volcanic vent was considered to
avoid any problems connected to boundary effects at the edges of the mesh.

78



4.3. METHODOLOGY

A

B

C

Figure 4.6: Bezier curves used in Blender to build the geometry. A. No volcanic
conduit; source at the free-air level. B. Volcanic conduit with a depth of 20 m. C.
Volcanic conduit with a depth of 50 m.
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The axially-symmetric geometry was built by revolution of the bezier
curves showed in Figure 4.6. A number of 512 “slices” was used to accu-
rately maintain the ratio between panel dimension and radiation wavelength.
Figure 4.7 shows the final mesh built by Blender for the case with a conduit
of 0 m of depth.

Figure 4.7: Final geometry of the volcanic cone. Yellow lines represent the two
thin slices on which the collocation points for integral calculation are placed. White
square represents the position of microphone. Image obtained by the software
ParaView.

4.3.3 The inverse problem

If we have M microphones and N mesh panels, pressure at microphones p̃M

is described by a [M × 1] column vector as described by equation (4.13).
Inserting the expression of p̃ (4.12) in equation (4.13), it is possible to relate

the pressure at microphones p̃M to the boundary conditions χ̃ on panels of
the mesh:

p̃M = BM χ̃+
(
CM + sDM

)
Y−1Bχ̃ = H(ω)χ̃. (4.14)

The transfer matrix H(ω) has a [M ×N ] dimension, and is defined as:

H(ω) = BM +
(
CM + sDM

)(1

2
I− C− sD

)−1
B. (4.15)

Equation (4.15) contains the whole effect of acoustic propagation from any
panel of the mesh to the M microphones, for a given angular frequency ω.
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From equation (4.14) the acoustic pressure “recorded” at the nth micro-
phone is defined as:

p̃Mn =
N∑
m=1

Hnm(ω)χ̃m. (4.16)

The code AcouSTO normally calculates the matrices and use them to
evaluate the solution. For this peculiar application, two classes of the code
(matrices.c and pre mic.c) were modified in order to print all the necessary
matrices to build H(ω):

• those containing the effect on body elements: B and Y, with dimension
[N ×N ];

• those containing the effect on microphones: BM , CM and DM , having
dimension [M ×N ].

By equation (4.15), it is possible to obtain the matrix H(ω) for a given
frequency. Performing many runs for the entire set of frequencies interesting
for the analysis, it can be possible by equation (4.14) to extract pressure at
microphones p̃M from boundary conditions χ̃ on panels and vice versa.

Transfer matrix extraction using axial symmetry

In absence of symmetries, the body element matrices B, C, and D of equation
(4.11) have dimension of [N ×N ], where N is the total number of panels of
the mesh. An element n of equation (4.11) can be expressed as:

1

2
p̃n =

N∑
m=1

[Bnmχ̃m + (Cnm + sDnm) p̃m] , (4.17)

where p̃m and χ̃m can assume N different values.
If we use a level of symmetry equal to k, the dimension of matrices B,

C and D reduces to [(N/k) × (N/k)]. In this condition, the summation in
(4.17) assumes the form:

1

2
p̃n =

N/k∑
m=1

[Bnmχ̃m + (Cnm + sDnm) p̃m] , (4.18)

where now each matrix element Bnm, Cnm and Dnm contains the summation
over k symmetric panels, and there is a maximum of N/k possible values
for p̃m and χ̃m.

To understand the process of reduction of dimension in the body matri-
ces, let’s look at the simple 2D example depicted in Figure 4.8.
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Figure 4.8: Eight-panels mesh with axial symmetry. Only two panels are neces-
sary to calculate the quantities p̃ and χ̃.

For this problem there is a total of eight panels, then p̃ and χ̃ can assume
eight different values. If we use the maximum level of symmetry, we can
assume that:

χ̃1 = χ̃3 = χ̃5 = χ̃7; p̃1 = p̃3 = p̃5 = p̃7; (4.19)

χ̃2 = χ̃4 = χ̃6 = χ̃8; p̃2 = p̃4 = p̃6 = p̃8.

In this case, equation (4.18) becomes:

1

2
p̃n =

∑
m odd

(Bnmχ̃1 + Cnmp̃1) +
∑

m even

(Bnmχ̃2 + Cnmp̃2) , (4.20)

with n and m assuming only values 1 and 2.
The advantage in the use of symmetries in AcouSTO is twofold: from

one side makes runs faster and less onerous in terms of memory allocation;
from the other gives smaller matrices, that means “lighter” files (body ma-
trixes can easily reach the dimension of some GB), which provide a faster
post-processing on the solutions.

Having built a cylindrically-symmetric geometry with a total of N pan-
els on 512 sides, AcouSTO permits a level of symmetry k = 512. Un-
fortunately, the panel numeration made by Blender in building the mesh
reduces the highest level of symmetry for a factor two: then the simula-
tion with AcouSTO has been performed with a level of symmetry equal
to 256, with a significative gain in terms of memory allocation (but also in
computing times) with respect to the case without symmetries. Considering
that the meshes of Figure 4.6 were composed respectively by 176640, 179712
and 184832 panels, by using a level of symmetries equal to 256, collocation
points were reduced to only 690, 702 and 722: to have an idea about the
benefit, for the first geometry memory allocation drops for 1766402 to only
6902!!!
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In this condition, and considering only one microphone (since we one
experimental data), equation (4.16) reduces to:

p̃M =

N/256∑
m=1

Hm(ω)χ̃m. (4.21)

where the summation runs over the minimum number of collocation points
(Figure 4.7). Now, since the χ̃m represents the source conditions radiating
sound, there will be only two panels with χ̃ 6= 0, located inside the vent
(Figure 4.9).

Figure 4.9: Source panels are located at the bottom of volcanic conduit. Only
these panels contribute to the generation of sound. The level of symmetry used
reduces the number of significative panels to only two.

Considering for the task of simplicity that the indexes of these two panels
are 1 and 2, equation (4.21) becomes:

p̃M = H1(ω)χ̃1 +H2(ω)χ̃2 = 2H(ω)χ̃, (4.22)

because H1 = H2 = H and χ̃1 = χ̃2 = χ̃ (remember that we are using the
axial symmetry, although for the simulations is reduced for a factor two).

Since we are solving the problem in the frequency domain, all these quan-
tities p̃M , H and χ̃ will be complex. Then, for a given frequency equation
(4.22) assumes the form:

Re(p̃M ) + i Im(p̃M ) = 2 [Re(H) + i Im(H)] [Re(χ̃) + i Im(χ̃)] . (4.23)

Separating equation(4.23) in two equations valid independently for real
and imaginary part, we obtained a linear system of two equation depending
on two unknowns:{

2 [Re(H)Re(χ̃)− Im(H)Im(χ̃)] = Re(p̃M )
2 [Im(H)Re(χ̃) + Re(H)Im(χ̃)] = Im(p̃M )

(4.24)
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Depending on the case, the couple of unknowns can be the pressure at
the microphone p̃M or the source condition χ̃ (Re(H) and Im(H) are two
numbers calculated by the code). The second case is that studied in this
work, where for a given frequency Re(p̃M ) and Im(p̃M ) are the real and
imaginary part of the Fourier transform of the signal showed in Figure 4.4.

If the linear system admits real solutions, for a given frequency it is
possible to obtain the normal derivative of pressure χ̃ on “source panels”
that generated the pressure perturbation p̃M measured by the infrasonic
station PZZ.

4.3.4 Frequency set

Since the code AcouSTO works in frequency domain, but we deal with pres-
sure signals varying with respect to the time, a certain number of frequencies
has to be chosen for the analysis to perform an accurate reconstruction of
time dependent quantities.

Transforming a digital signal from time to frequency domain by means
of a Fourier transform, the frequency spectrum obtained will depend on
temporal axis features:

• the maximum detectable frequency is equal to the half of sampling
rate (Nyquist-Shannon sampling theorem);

• frequency step ∆ν is equal to the inverse of total duration T of signal
in time:

∆ν = 1/T. (4.25)

Similarly, performing an inverse Fourier transform, the temporal axis de-
pends on the frequency used. Then, the choice of frequencies to run with
AcouSTO will determine the features of reconstructed signals in time.

Obviously, the best frequency set is the complete spectrum provided by
the Fourier transform. However, since the reference pressure signal used in
this work has a total duration of 10 s and was acquired at a sampling rate
of 100 Hz, the number of frequencies would be 501. Since the computing
time and power available does not permit the use of such a huge number of
frequencies, the choice of a reliable subset reveals necessary.

Figure 4.10 shows the frequency spectrum obtained from the pressure
signal depicted in Figure 4.4. Since the peak frequency occurs around 4 Hz
(related to the first pressure pulse in time), and the frequency content above
10 Hz drops significantly, we chose to confine our analysis between 0 and 10
Hz. When we perform the Fourier inversion, that choice determines a time
domain signal subsampled down to a 20 Hz rate (the double of maximum
frequency).

The choice of the frequency step between 0 and 10 Hz is even more
tricky: that will determine from equation (4.25) the total duration of the
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Figure 4.10: Power spectrum (SPL) of pressure signal showed in Figure 4.4.
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Figure 4.11: A. Pressure signal measured with a 100 Hz sampling frequency
(blue), and signal reconstruction from Fourier inversion at a sampling rate of 20
Hz (red line). B. Entire power spectrum of test signal (blue line) and the 21 values
(red diamonds) used for our analysis.
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reconstructed signal. Since the process is extremely impulsive, and first
pressure oscillations (connected more to the source process that to propaga-
tion effects) have a duration of about 1 s (Figure 4.4), we chose to perform
a reconstruction of 2 s of signal: setting the frequency step ∆ν to 0.5 Hz,
gives a total number of 21 frequencies. Of course this is an approximation,
based on the supposed short-duration of the entire source process: since
the explosion of a gas bubble during a strombolian eruption is an impulsive
event, the same has been considered for the generation of the infrasonic sig-
nal. However, any refinements can be performed in the future to improve
the accuracy of this methodology.

Figure 4.11A shows the reconstruction of pressure signal on the basis of
the assumption made. Although red line was obtained by a subsampling at
20 Hz, its shape fits almost perfectly the original signal (blue line). Figure
4.11B show the set of frequencies used for the analysis (red diamonds); the
21 frequencies seems to accurately represent the entire spectrum (blue line).

With such a frequency set, 21 runs with AcouSTO were performed, to
extract the transfer matrix H(ω) for each value of ω. By the previously
described methodology, the normal derivatives of pressure χ̃ on source pan-
els has been obtained solving the linear system (4.24) for each of the 21
frequencies.

4.4 Optimization method

Since the linear system (4.24) comes from the use of a high level of symmetry,
any future refinement (as the use of the actual topography of Stromboli) will
prevent such analytical solution. To overcome this limitation we developed
a bi-objective optimization, that permits to obtain the source conditions χ̃
at any panel of the mesh also for more complex geometries. By comparing
the results with those obtained solving the system (4.24) we tested the per-
formances of our optimization methodology, to confidently use it for future
works.

The optimization is a mathematical procedure designed to find the “best
values” for a given set of N variables x = [x1, ..., xn] that makes an objective
function f(x) assuming a peculiar value (the maximum or the minimum,
depending on the case). Usually the problem contains also some constraints,
and a general formulation assumes this form:

minimize (or maximize)f(x), with x ∈ D (4.26)

subjected to gm1(x) ≤ 0,

and to hm2(x) = 0,

where D is the domain of existence of variables x, and gm1(x) and hm2(x)
are respectively M1 inequality and M2 equality constraints.
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Many physical and engineering applications involves more objective func-
tions, sometimes competing, that should be optimized simultaneously. A
simple example is the case of maximization of the performance of a system
while minimizing its cost. The possible cases in multi-objective optimization
problems are two:

• cooperative problems, in which the optimum solution is the same for
all the objectives;

• competing problems, where an improvement in one objective causes a
degradation in another.

A typical multi-objective optimization problem has a definition similar to
equation (4.26), but instead of having a single objective function f(x), ap-
pears the function J = [J1(x), ..., Jz(x)], where each of the Z objective
functions Ji(x) depends on the entire set of N variables x. The simplest
way to solve a multi-objective problem is to reduce to a minimization of a
unique objective function defined as (Kim and de Weck, 2005):

min
x
J̃ =

z∑
i=1

λi
sfi

Ji(x), (4.27)

where J̃ represents a weighted-sum of the individual objectives Ji, and sfi
and λi are respectively the scaling factor and the weight of the ith objective
function Ji(x). Typically the weights λi are defined to satisfy the condition:

z∑
i=1

λi = 1, with λi ≥ 0 ∀i. (4.28)

In multi-objective optimizations, instead of having a unique solution
for x, there is a Pareto optimal set (Pareto, 1906), in which the the “best
solution” can be chosen. Comparing two solutions x1 and x2, x1 is said to
dominate solution x2 if satisfy the following conditions (Deb, 2001; Antoine,
2004):

1. solution x1 is no worse than x2 for all objectives;

2. solution x1 is strictly better than x2 for at least one objective.

The complete set of solutions that are non-dominated by any other solution
represents the Pareto optimal set, or non-dominated set. For a bi-objective
optimization, these solutions can be graphically represented by the so-called
Pareto front (Figure 4.12). The optimal solution of the problem will be
found on the Pareto front. The choice of a point along the Pareto front
depends on the physical meaning of the non-dominated solutions.
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Figure 4.12: Non-dominated solutions along the Pareto front (blue) and domi-
nated solutions (red diamonds) above it.

In last decades many methods were developed in order to find the opti-
mal set of solutions and outline the Pareto front. One of the most widely
used methods is the weighted-sum introduced by Zadeh (1963): the method
consists in transforming a vectorial multi-objective problem in a set of single-
objective scalar problems as in equation (4.27). A development of this
method was proposed by Kim and de Weck (2005), and is the one followed
in the present work. Two other methods commonly used to find Pareto
optimal solutions are the Evolutionary Algorithms (Fonseca and Fleming,
1995) and the Normal-Boundary Intersection (NBI), which provides a uni-
form spacing between solutions and can manage problems with non-convex
Pareto fronts (Das and Dennis, 1998).

4.4.1 Adaptive weighted-sum optimization

Since the optimization for the present work had to deal with two objective
functions, we chose to follow the Adaptive Weighted-Sum (AWS) method
proposed by Kim and de Weck in 2005. With respect to the standard
weighted-sum method, the AWS had the advantage that is capable to iden-
tify the solutions even in presence of varying curvature in the Pareto front.
This can be a pretty good advantage, since we don’t have any a priori in-
formation about the features of the Pareto front.
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A typical weighted-sum problem work with a function defined as:

min
x

[
λ
J1(x)

sf1(x)
+ (1− λ)

J2(x)

sf2(x)

]
, (4.29)

subjected to the constraints g(x) ≤ 0 and h(x) = 0, with λ ∈ [0, 1]. J1(x)
and J2(x) are the two objective function to be mutually minimized, and sf1
and sf2 are normalization factors.

Solving the problem by a typical weighted-sum method, if the Pareto
front has a varying curvature most solutions concentrate in the region whose
curvature is relatively high (near the anchor points and the inflection point),
with no solutions found in the concave region. Moreover, the solutions will
be not uniformly distributed.

The AWS provide many advantages with respect to the standard weighted-
sum method (Kim and de Weck, 2005):

• permits to obtain solutions in convex regions of the Pareto front with
non-uniform curvature (Figure 4.13A);

• permits to obtain solutions in non-convex regions of non-dominated
solutions of the Pareto front (Figure 4.13B);

• permits to obtain solutions in non-convex regions of dominated solu-
tions of the Pareto front (Figure 4.13C);

• provides more uniformly distributed solutions.

Main steps followed by the AWS method consist in:

1. apply a usual weighted-sum method with a small number for the
weighting factor λ;

2. identify feasible regions between solutions in which refinements have
to be performed;

3. apply another weighted-sum method in each feasible region, with addi-
tional inequality constraints that ensure to obtain only non-dominated
solutions (if present);

4. repeat the operations at points 2 and 3 until a termination criterion
is satisfied.

Figure 4.14 illustrates briefly the steps followed by the AWS method.
The first step of the methodology consist in performing a bi-objective

optimization using the weighted-sum method, with a small number of initial
division ninitial. This parameter determines the step of the weighting factor
λ as ∆λ = 1/ninitial. A large step ∆λ provides a small number of solutions.
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A

B

C

Figure 4.13: Advantages of the ASW method with respect to the standard
weighted-sum. A. Pareto front with non-uniform curvature. B. Pareto front with
non-convex regions of non-dominated solutions. C. Pareto front with non-convex
regions of dominated solutions (Kim and de Weck, 2005).
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Figure 4.14: Main steps of the AWS optimization method. A. Initial weighted-
sum optimization. B. Identification of feasible regions for further refinements. C.
Sub-optimization in the feasible regions with additional inequality constraints. D.
Iteration of the method until a uniform Pareto front is obtained (Kim and de Weck,
2005).

91



4.4. OPTIMIZATION METHOD

Once the first solutions are obtained, the next step consists in remov-
ing overlapping solutions. Often the weighted-sum method provided nearly
identical solutions. Comparing the Euclidean distances between all the
neighboring solutions with a threshold value ε, all solutions with distances
lower than ε are deleted, except one.

In the third step is calculated the number of further refinements neces-
sary in each of the regions between two neighboring solutions. This quantity
is determined as:

ni = round

(
C
li
lav

)
, (4.30)

where ni is the number of further refinements for the ith region, li is the
length of the ith segment, lav the average length of all the segments, and C is
a constant. In order to have an integer number, the function round is applied
to the right member of equation (4.30). If ni ≤ 1 no more refinements are
needed in the ith region. Otherwise, the procedure goes to the following
step.

In the regions were a refinement is required, the user choose an offset
distance δJ along the segment connecting the end points P1 and P2 (Figure
4.15): this quantity will determine the final density of the solutions along the
Pareto front. No more refinements are conduced between two point distant
less than δJ . The offset value δJ determines also the additional conditions
to be satisfied during the sub-optimization inside a feasible region, defined
as offset distances parallel to the objective axes (Figure 4.15).

Figure 4.15: Sub-optimization in a feasible region. A. segment connecting two
neighboring points. B. Set up of the additional inequality constraint from δ1 and
δ2. C. New points on the Pareto front found by the sub-optimization (Kim and de
Weck, 2005).

The slope of the segment connecting P1 and P2 is calculated as:

θ = arctan

(
−P

y
1 − P

y
2

P x1 − P x2

)
, (4.31)
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with P1 = (P x1 , P
y
1 ) and P2 = (P x2 , P

y
2 ). The offset distances δ1 and δ2

illustrated in Figure 4.15 are defined as:

δ1 = δJ cos θ, (4.32)

δ2 = δJ sin θ.

A sub-optimization with the weighted-sum method in the form of equa-
tion (4.29) is then performed in the feasible region, with the additional
inequality constraints:

J1(x) ≤ P x1 − δ1, (4.33)

J2(x) ≤ P y2 − δ2.

After a first sub-optimization inside a feasible region, any nearly overlap-
ping solutions are deleted as described above. If there are solutions distant
more than δJ , a further sub-optimization with the additional inequalities
(4.33) is performed again.

The segments in which no converged optimum solutions are obtained
are removed from the set for further refinement, because in this case these
regions are non-convex and do not contain Pareto optimal solutions (Kim
and de Weck, 2005).

When no more segments between neighboring points are longer than the
fixed distance δJ , the optimization procedure is completed.

4.4.2 Objective functions description

The definition of our objective functions J1(x) and J2(x) starts from the
linear system (4.24). With the AWS optimization we developed a method
alternative to (4.24) to find the normal derivative of pressure on source
panels χ̃, from the measured signal. In doing this, we concentrated on a
sound matching between two signals:

• the experimental pressure signal measured at Stromboli, p̃ME ;

• the pressure that would be measured at the microphone, for a given
source function χ̃:

p̃MO = Hχ̃.

All these quantities p̃M , H and χ̃ depends on frequency.
Varying the source parameters χ̃, the optimal solutions are obtained by

matching the two sounds. Since we are working in the frequency domain,
we have to deal with amplitude and phase (or real and imaginary part) of
the signal. That leads to two independent objective functions, defined as
the sound matching between real part, JRe and imaginary part, JIm. Such
objectives are both function of 42 parameters: the real and the imaginary
part of χ̃ for the 21 frequencies studied.

93



4.4. OPTIMIZATION METHOD

To define the difference between two functions we used the concept of Lp-
norm. This application is rather diffuse and permits to obtain an accurate
matching between two functions, taking in account both local differences
and the overall shape of the functions (Diez and Iemma, 2011).

The Lp-norm for the function f is defined as:

‖f‖p = ‖f‖Lp =

[
1

µ(D)

∫
D
|f |pdD

] 1
p

, with p ≥ 1, (4.34)

where the term 1/µ(D) represents the normalization with respect to the
measure of the domain D. A useful property of the Lp-norm is that satisfy
the following condition:

‖f‖∞ = lim
x→∞

‖f‖p = lim
x→∞

[
1

µ(D)

∫
D
|f |pdD

] 1
p

= max{|f |}. (4.35)

Defining the difference between two function f and g from equation (4.34),
we obtain:

‖f − g‖p =

[
1

µ(D)

∫
D
|f − g|pdD

] 1
p

. (4.36)

Equation (4.36) define the difference between two arbitrary functions de-
pending on the order p. The value of p governs the “dimension” of the
significative differences between the function f and g: increasing the value
of p will give more importance to local differences.

Since we are interested to match the overall shape of the signals, we
chose a value of p = 2. As the integration is performed in the frequency
domain, we approximated the operation with a summation over the values
of ν. The two objective function were defined as:

JRe =

[
1

µ

∫ νmax

νmin

∣∣Re
(
p̃ME (ν)− p̃MO (ν)

)∣∣2 dν

] 1
2

(4.37)

'

[
1

µ

∑
k

∣∣Re
(
p̃ME (νk)− p̃MO (νk)

)∣∣2 ∆ν

] 1
2

=

[
1

µ

∑
k

∣∣Re
(
p̃ME (νk)

)
− 2 [Re(H)Re(χ̃k)− Im(H)Im(χ̃k)]

∣∣2 ∆ν

] 1
2

,

and

JIm =

[
1

µ

∫ νmax

νmin

∣∣Im (p̃ME (ν)− p̃MO (ν)
)∣∣2 dν

] 1
2

(4.38)

'

[
1

µ

∑
k

∣∣Im (p̃ME (νk)− p̃MO (νk)
)∣∣2 ∆ν

] 1
2
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=

[
1

µ

∑
k

∣∣Im (p̃ME (νk)
)
− 2 [Im(H)Re(χ̃k) + Re(H)Im(χ̃k)]

∣∣2 ∆ν

] 1
2

,

where µ = νmax − νmin, ∆ν = 0.5 Hz and the summation runs over the 21
values of frequency from 0 to 10 Hz with a uniform step ∆ν. Both JRe and
JIm are function of 42 variables represented by real and imaginary parts of
χ̃ for the complete set of frequencies.

Performing an AWS optimization for the three cases of study described
in subsection 4.3.2, we obtained the optimal solution from the Pareto front.
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Chapter 5

Results

5.1 Analytical solution

Solving the linear system (4.24) it was possible to find the real and imaginary
part of the normal derivative of pressure χ̃ on source panels. Table 5.1 shows
the values obtained for the case with no acoustic propagation in the volcanic
conduit. Power spectrum in SPL for the obtained χ̃ is shown in Figure 5.1.
Peak frequencies occur between 4 and 6 Hz, similarly to the pressure signal
recorded at the microphone.

Normal acceleration an and velocity vn directed outside the source panels
can be obtained from Bernoulli’s theorem:

p̃ = −iωρϕ̃, (5.1)

considering that:

χ̃ =
∂p̃

∂n
=

∂

∂n
[−iωρ ϕ̃] = −iωρ∂ϕ̃

∂n
= −iω∇ϕ̃ · n̂ = −iωρ ~v · n̂. (5.2)

Since in the Fourier space, the derivative operation reduces to the product
for a factor (iω), normal acceleration ãn and velocity ṽn in the frequency
domain can be obtained as:

ãn = −1

ρ
χ̃, (5.3)

and

ṽn = − 1

iωρ
χ̃. (5.4)

By an inverse Fourier transform, it was possible to obtain the time series of
an and vn. Figures 5.2-5.3 illustrate the normal acceleration and velocity
obtained for the case with no volcanic conduit.
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Source depth 0 m

ν (Hz) Re(χ̃) Im(χ̃)

0.0 -3890.57 0.00

0.5 969.22 755.77

1.0 -48.44 -710.02

1.5 -207.43 -397.54

2.0 -441.10 -630.25

2.5 -716.72 -311.87

3.0 -648.90 83.51

3.5 -464.63 780.08

4.0 426.13 829.18

4.5 725.01 378.50

5.0 538.00 -197.63

5.5 385.04 -446.99

6.0 117.35 -582.09

6.5 -277.94 -339.22

7.0 -294.46 -78.29

7.5 -125.87 105.38

8.0 -64.48 120.51

8.5 -44.54 140.53

9.0 14.42 174.00

9.5 70.33 65.96

10.0 89.79 13.68

Table 5.1: Real and imaginary part of normal derivative of pressure χ̃ obtained
by equation (4.24) as a function of frequency, for the case with no volcanic conduit.
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Figure 5.1: Power spectrum (SPL) of χ̃(ω) for a source depth of 0 m.
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Figure 5.2: Normal acceleration on the radiating panels. Source depth 0 m.
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Figure 5.3: Normal velocity on the radiating panels. Source depth 0 m.

Physical interpretation

Figure 5.2 shows the normal acceleration on the source panels (i.e. at the
volcanic vent) obtained by solving the problem for a source depth of 0 m. As
it can be supposed for a strombolian explosion, the event reveals extremely
impulsive, with a high amplitude signal concentrated in a time lapse of 0.2
s.

The acoustic normal velocity time series for the same event is illustrated
in Figure 5.3. Also for vn the shape is rather impulsive, with a rapid increase
to a maximum value, followed by a slow decay. Normal velocity peaks at a
value of about 540 m s−1. Such a result seems to reveal a supersonic velocity.
Nevertheless, considering that the air on the acoustic source is probably hot
or, at least, far from the standard conditions (remember that beneath our
acoustic source there are many complex fluid dynamic processes), sound
speed is reasonably higher than 340 m s−1. Moreover taking into account
the assumptions made in the previous chapter, acoustic signal may have
been generated inside the magmatic body, where the sound speed can reach
values more than twice compared to its value in free air (Buckingham and
Garcés, 1996; Garcés, 1997); anyway, the actual value of c remains unknown
in the gas-magma mixture, since it depends on many thermodynamic and
rheological properties (Murase and McBirney, 1973; Kieffer, 1977).
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Furthermore, the normal velocities vn has to be considered as acoustic
velocities associated to the transit of the acoustic wave. In this view, these
velocities does not directly represent the actual velocity of the gas-magma
mixture. As a matter of fact the acoustic source was placed at a depth
such that the acoustic propagation was completely decoupled from the fluid
motion. Any information about the fluid motion had to be investigated at a
higher depth beneath our acoustic source, but this method does not permits
it. Further investigations on fluid dynamics on the basis of our boundary
conditions could be topic for future works.

5.2 Optimization

Figure 5.4 shows the Pareto front obtained by the AWS method for the
objective functions (4.37) and (4.38) in the case with no volcanic conduit.
As one can see, Pareto front shows the typical almost-hyperbolic shape,
with limit values rather low. This seems a good result and make us confident
about the method, since the objective functions have to reach a value as most
as possible near to zero. The precision of course depends on the features of
the minimization tool. We used a minimization function of the commercial
software Matlab that demonstrates valid to find the first points, but pretty
slow during the sub-optimization. This is the reason for a non-uniformly
sampled Pareto front. Nevertheless, the high curvature zone of the Pareto
front (the hyperbola vertex), is sufficiently dense to make us confident about
the results.

Figure 5.5 shows the normal accelerations obtained from all points of the
Pareto front of Figure 5.4. The points in the high-curvature region (where
the objective functions assumes similar weights) provides for an shapes sim-
ilar to that obtained from the linear system (4.24).

To compare the results from the optimization with that obtained by
solving equation (4.24), we choose as optimal solution the one having the
higher congruency with the values shown in Table 5.1. The congruency
criterion was defined as:

min
∑
|χ̃LS − χ̃OPT |2, (5.5)

where χ̃LS represents the values of real and imaginary part of χ̃ of Table
5.1, joined in a 42-element array, and the sum runs over the entire set of
Pareto points.

Table 5.2 shows the optimal values for Re(χ̃) and Im(χ̃) obtained by the
congruency criterion (5.5). Figure 5.6 illustrates graphically the congruency
between Re(χ̃) and Im(χ̃) as function of frequency obtained by the two
methods. The agreement is remarkable.

Figure 5.7 illustrates the time series of normal acceleration for the op-
timal Pareto solution obtained by the criterion (5.5) superimposed to the
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Figure 5.4: Pareto front obtained by the AWS optimization. Source depth 0 m.
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Figure 5.5: Normal accelerations obtained from each point of the Pareto front of
Figure 5.4. Source depth 0 m.
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time series of an of Figure 5.2, solution of the equation (4.24).
The perfect congruency between the results obtained from the two metho-

dologies make us confident about the potentialities of the optimization in
solving such inversion problem. If we will introduce any improvement in the
future, as a better geometry with no symmetries, the possibility to solve a
linear system like (4.24) and obtain a unique solution could vanish. In such a
condition, we can confidently use the optimization to extract the “optimal”
boundary conditions of the problem.

Source depth 0 m

ν (Hz) Re(χ̃) Im(χ̃)

0.0 -3685.21 10−12

0.5 959.66 757.61

1.0 -47.40 -709.15

1.5 -205.77 -396.73

2.0 -439.34 -629.70

2.5 -720.96 -309.33

3.0 -651.87 86.93

3.5 -465.01 775.92

4.0 428.16 831.22

4.5 728.33 380.57

5.0 540.09 -198.15

5.5 381.11 -443.71

6.0 114.33 -576.16

6.5 -277.75 -338.59

7.0 -293.97 -77.69

7.5 -126.44 105.37

8.0 -65.99 121.34

8.5 -43.99 139.83

9.0 13.98 176.15

9.5 69.48 64.47

10.0 90.31 13.91

Table 5.2: Optimal real and imaginary part of normal derivative of pressure χ̃ as
a function of frequency obtained by the criterion (5.5), for the case with no volcanic
conduit.
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Figure 5.6: Matching of Re(χ̃) and Im(χ̃) between the two methodologies: linear
system (blue) and AWS optimization (red). Source depth 0 m.
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Figure 5.7: Matching of normal accelerations on source panels between the two
methodologies: linear system (blue) and AWS optimization (red). Source depth 0
m.
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5.3 Validation of the model

In order to check the reliability of our inversion, we made a validation with
the commercial software COMSOL. COMSOL is a solver for PDEs and
integral equations based on a FEM. The field of physical applications for
the solver is rather wide, however in order to maintain the same approxi-
mations made using AcouSTO we considered only the Acoustics Module of
COMSOL, studying the problem in the time domain.

We imposed the boundary conditions obtained by the inversion as in-
put values for COMSOL, propagating the acoustic field in the surrounding
space, and recording the pressure signal at a microphone placed in the ap-
proximated position of the actual sensor PZZ at Stromboli. If our boundary
conditions are correct, pressure signal measured at the microphone have to
look like the actual recorded at Stromboli (Figure 4.4).

The same 3D geometry studied with AcouSTO (Figure 4.6) was built
in COMSOL, taking advantage of the axial symmetry. With respect to
the BEM where only the surfaces are meshed to solve the integrals, the
FEM builds the entire mesh of the space. Then we considered a “box”
in which the volcano surface was defined as “scattering surface” (Sound
Hard Boundary), whereas on the remaining surfaces to close the box we
put “radiation conditions” (Plane Wave Radiation), in order to prevent
boundary effects. One side was considered as revolution axis to obtain the
3D geometry. Figure 5.8 illustrates the geometry built in COMSOL.

The spatial scale of the mesh has to be smaller than the minimum wave-
length used in the analysis. To accurately maintain a ratio 1/10 between
the mesh size and λ, we use the finest mesh provided by COMSOL (Figure
5.9).

COMSOL is capable to radiate in the space the acoustic sound gener-
ated by a boundary condition. We defined in the same “radiating panels”
used in AcouSTO some boundary conditions expressed in terms of normal
acceleration an as a function of time.

Figure 5.10 illustrates three snapshots of the pressure field propagating
around the volcanic vent. The change of slope give rise to a focusing of
the acoustic energy in the direction of the microphone. Then, the actual
acoustic pressure measured at the station PZZ at Stromboli is higher with
respect to that measured in conditions of free propagation. Such results are
in agreement with that obtained by Lacanna (2010) using a 2D FDM.

Figure 5.11 shows the shape of the pressure signal recorded at micro-
phone propagating by COMSOL the boundary conditions obtained by our
inversion methodology, compared to the actual pressure signal recorded at
the sensor PZZ. Figures 5.12 shows the comparison between frequency spec-
tra in SPL of the same signals.
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1
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Figure 5.8: Mesh built in COMSOL (gray). Sides 1, 2 and 3 represent the slope
of volcano and were defined as Sound Hard Boundaries. On sides 4, 5 and 6 we
put Plane Wave Radiation conditions, in order to propagate radiation outside the
mesh without any reflection. Side 7 represents the symmetry axis around which is
performed the revolution. Black square represents the microphone. Red rectangle
indicates the position of the acoustic source at a depth of 0 m.

Figure 5.9: Extremely-fine mesh built in COMSOL. Around the vent and the
microphone the mesh is finer. Source depth 0 m.
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Figure 5.10: Pressure perturbation propagating from volcanic vent. The change
in slope causes a focusing of acoustic energy towards the microphone (black square).

107



5.3. VALIDATION OF THE MODEL

0.5 1 1.5 2
−100

−50

0

50

100

150

t (s)

p
 (

P
a
)

 

 

actual signal

COMSOL reconstruction

Figure 5.11: Pressure signals recorded by the station PZZ at Stromboli (blue)
and calculated by COMSOL radiating the boundary conditions on an obtained by
our inversion solving the system (4.24). Source depth 0 m.
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Figure 5.12: Power spectra (SPL) of pressure signals recorded by the station PZZ
at Stromboli (blue) and calculated by COMSOL radiating the boundary conditions
on an obtained by our inversion solving the system (4.24). Source depth 0 m.
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From Figure 5.11 is noticeable the good reconstruction of both the main
pressure peak and the subsequent secondary pulses. That is a surprising
good result, because indicates that the impulsive boundary conditions ob-
tained for χ̃ (or similarly, for an, Figure 5.2) accurately represent source
conditions for the actual pressure signal measured at PZZ station at Strom-
boli. Although the amplitude is higher for the reconstructed signal, the
shape (mostly for the main pressure peak) is pretty similar to the actual
signal. Also the frequency spectrum (Figure 5.12), despite the higher ampli-
tude and the low number of frequencies, shows a similar frequency content
between the two signals.

The mismatch in the amplitude between signals can be addressed both
to the approximated geometry, and to a poor convergence in one of the
two integral methods used (AcouSTO-BEM and COMSOL-FEM). Any
refinement in the mesh could improve the convergence. The use of the
actual topography of Stromboli with an almost uniform size of panels could
probably provide a higher accuracy in the identification of source conditions.
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Figure 5.13: Matching between pressure signals at microphone radiating the ini-
tial conditions obtained by the linear system (4.24) (blue) and the optimization
(red). Source depth 0 m.

A similar result was obtained propagating by COMSOL the optimal
boundary conditions of Table 5.2 provided by the AWS optimization. Figure
5.13 shows the good matching between the two methodologies, confirming
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the validity of the optimization to find accurate results.

5.4 Acoustic source inside the volcanic conduit

5.4.1 Solutions for χ̃

Since the inversion provided good results for the case with the acoustic
source lying on the volcanic vent, we repeated the entire methodology plac-
ing the acoustic source at the bottom of the volcanic conduit. We studied
two cases, with conduit depths of 20 and 50 m (Figure 4.6).

Table 5.3 shows the results for χ̃ obtained solving the linear system (4.24)
for the cases with the source placed inside the volcanic conduit.

Source depth 20 m Source depth 50 m

ν (Hz) Re(χ̃) Im(χ̃) Re(χ̃) Im(χ̃)

0.0 -4460.90 0.00 -3123.31 0.00

0.5 1143.30 648.07 1032.35 221.15

1.0 -59.88 -571.27 13.59 -261.59

1.5 -31.79 -98.81 19.96 29.09

2.0 -221.36 -336.45 50.34 234.53

2.5 446.89 41.73 210.20 347.79

3.0 -151.74 1.64 378.17 196.85

3.5 -51.01 41.34 371.41 -209.37

4.0 -16.17 -51.11 80.56 -361.91

4.5 -157.38 -100.01 2.97 -23.02

5.0 -256.67 -113.15 171.21 -67.11

5.5 -213.09 152.23 185.89 -222.87

6.0 -93.58 226.30 42.75 -316.09

6.5 112.76 303.40 -200.43 -221.35

7.0 141.77 52.21 -96.37 -29.32

7.5 98.38 -78.28 2.59 -4.03

8.0 73.98 -52.06 -18.15 -42.61

8.5 59.44 -75.74 -30.53 -85.54

9.0 -3.47 -7.87 -67.75 -94.55

9.5 50.37 -12.74 -84.62 -6.60

10.0 -31.58 -6.43 -31.47 7.31

Table 5.3: Real and imaginary part of normal derivative of pressure χ̃ obtained
by equation (4.24) as a function of frequency, for the two cases with the acoustic
source at the bottom of the volcanic conduit.

Figures 5.14-5.15 show the power spectra in SPL for χ̃ in the two cases
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with the acoustic source inside the volcanic conduit. Normal accelerations
an are shown in Figures 5.16-5.17.
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Figure 5.14: Power spectrum (SPL) of χ̃(ω) for a source depth of 20 m.

Figures 5.16 and 5.17 show the normal acceleration on source panels for
the cases with a source embedded inside the volcanic conduit, at a depth
of 20 and 50 m. Both Figures show two interesting features, different with
respect to Figure 5.2:

• the time series of an has an initial offset;

• there are some high-amplitude oscillations.

Such a result seems a little bit strange since an oscillating source has to gen-
erate at the microphone an impulsive signal, with an initial high-amplitude
oscillation followed by secondary oscillations with lower amplitude. Any
problems connected to this features of normal accelerations an are high-
lighted by the validation made by COMSOL.

Figures 5.18-5.19 shows the Pareto fronts obtained by the AWS method
for the objective functions 4.37 and 4.38 for the two cases with the acoustic
source placed inside the volcanic conduit. Like Figure 5.4, Pareto fronts
show the typical almost-hyperbolic shape, with limit values rather low.

Table 5.4 shows the optimal values for Re(χ̃) and Im(χ̃) obtained by
the congruency criterion (5.5) for the cases with volcanic conduit. Figures
5.20-5.21 illustrate graphically the congruency between Re(χ̃) and Im(χ̃) as
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Figure 5.15: Power spectrum (SPL) of χ̃(ω) for a source depth of 50 m.
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Figure 5.16: Normal acceleration on the radiating panels. Source depth 20 m.
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Figure 5.17: Normal acceleration on the radiating panels. Source depth 50 m.

function of frequency obtained by the two methods. Also for the cases with
acoustic source placed at the bottom of volcanic conduit the agreement is
remarkable.

Figures 5.22-5.23 illustrate the time series of normal acceleration for the
optimal Pareto solution obtained by the criterion (5.5) superimposed to the
time series of an of Figures 5.16-5.17, solution of the equation (4.24). Also
for these cases the congruency is remarkable.

The agreement between the two methods occurs in all the three cases
of study. This indicate that the strange oscillating character of an (or χ)
for an acoustic source embedded in the volcanic conduit represent the real
solution of the problem. The validation of our methodology helped us in
the interpretation of such results.
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Figure 5.18: Pareto front obtained by the AWS optimization. Source depth 20
m.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Pareto front

J
Re

J
Im

Figure 5.19: Pareto front obtained by the AWS optimization. Source depth 50
m.
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Source depth 20 m Source depth 50 m

ν (Hz) Re(χ̃) Im(χ̃) Re(χ̃) Im(χ̃)

0.0 -4460.90 −10−13 -4378.41 0.00

0.5 1143.30 648.07 1040.20 217.98

1.0 -59.88 -571.27 13.62 -262.00

1.5 -31.79 -98.81 19.97 29.03

2.0 -221.36 -336.45 50.11 235.09

2.5 446.87 41.73 210.89 348.00

3.0 -151.74 1.64 378.02 196.32

3.5 -51.01 41.34 371.35 -210.11

4.0 -16.17 -51.11 80.49 -362.23

4.5 -157.38 -100.01 2.98 -23.00

5.0 -256.67 -113.15 170.95 -66.87

5.5 -213.09 152.23 186.30 -223.75

6.0 -93.58 226.30 43.04 -316.91

6.5 112.76 303.40 -200.21 -220.81

7.0 141.77 52.21 -96.16 -29.18

7.5 98.38 -78.28 2.60 -4.04

8.0 73.98 -52.06 -18.34 -42.17

8.5 -3.47 -7.87 -30.21 -85.46

9.0 59.44 -75.74 -66.93 -95.44

9.5 50.37 -12.74 -85.56 -6.88

10.0 -31.58 -6.43 -31.47 7.31

Table 5.4: Optimal real and imaginary part of normal derivative of pressure χ̃
as a function of frequency obtained by the criterion (5.5), for the two cases with
volcanic conduit.
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Figure 5.20: Matching of Re(χ̃) and Im(χ̃) between the two methodologies: linear
system (blue) and AWS optimization (red). Source depth 20 m.
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Figure 5.21: Matching of Re(χ̃) and Im(χ̃) between the two methodologies: linear
system (blue) and AWS optimization (red). Source depth 50 m.
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Figure 5.22: Matching of normal accelerations on source panels between the two
methodologies: linear system (blue) and AWS optimization (red). Source depth 20
m.
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Figure 5.23: Matching of normal accelerations on source panels between the two
methodologies: linear system (blue) and AWS optimization (red). Source depth 50
m.
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5.4.2 Validation for the cases with volcanic conduit

The same validation made for the case with the the acoustic source at the
vent level was made also for results obtained with the acoustic source placed
at the bottom of the volcanic conduit. Figures 5.24-5.25 show the compar-
ison between the pressure signals recorded at microphone propagating by
COMSOL the boundary conditions obtained by our inversion methodol-
ogy, and the actual pressure signal recorded at the sensor PZZ.

In both the two cases (source at a depth of 20 and 50 m inside the
volcanic conduit), the shape of the main pulse is still reconstructed with a
pretty good accuracy, but instead of having a decay, there are several high
amplitude oscillations. Such a result seems to suggest that the methodology
does not work accurately in these conditions.

Since the case with the acoustic source at the top of conduit works well,
we can confidently state that the weakness of our method lies in the volcanic
conduit, identifying two possible causes for the problem:

1. A significative problem could lie in the thin panels that make up the
mesh of the tube: since we are representing the circular section of the
volcanic conduit having a radius of 2 m with a polygonal line composed
of 512 segments, each segment has a length of about 2.45 cm. As long
as the vertical length of the panels along the tube is 3.4 m (λ/10),
volcanic conduit is composed by many thin panels with one side about
102 times smaller than the other (Figure 5.26). This of course could
give rise to errors during the integral calculation made by AcouSTO.

2. The second cause could be addressed to the nonlinearities associated
to the propagation inside the tube. Maybe the linear acoustic source
can not be placed inside the conduit, regardless the geometry of the
mesh, because nonlinear effects are too high.

A refinement of the mesh inside the volcanic conduit could put some insight
to the actual problem at the base of our results, checking the possibility to
put the acoustic source inside the conduit, if nonlinear effects are neglectable.

Similar results were obtained propagating by COMSOL the optimal
boundary conditions of Table 5.4 provided by the AWS optimization. Fig-
ures 5.27-5.28 show the good matching between the two methodologies, con-
firming the validity of the optimization to find accurate results.

Despite the problems encountered putting the acoustic source inside the
volcanic conduit, the good agreement between the actual signal and that
reconstructed by COMSOL in the first case (no volcanic conduit) makes
us confident about the potentiality of the methodology. Since also the opti-
mization provided significative results, it is possible to confidently perform
any improvement of the methodology in the future, reproducing accurately
the actual features of Stromboli.
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Figure 5.24: Pressure signals recorded by the station PZZ at Stromboli (blue)
and calculated by COMSOL radiating the boundary conditions on an obtained by
our inversion solving the system (4.24). Source depth 20 m.
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Figure 5.25: Pressure signals recorded by the station PZZ at Stromboli (blue)
and calculated by COMSOL radiating the boundary conditions on an obtained by
our inversion solving the system (4.24). Source depth 50 m.
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Figure 5.26: Panels inside volcanic conduit have a rectangular shape with sides of
3.4 m and 2.45 cm. Such geometry may have generated problems in the convergence
of AcouSTO.
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Figure 5.27: Matching between pressure signals at microphone radiating the ini-
tial conditions obtained by the linear system (4.24) (blue) and the optimization
(red). Source depth 20 m.
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Figure 5.28: Matching between pressure signals at microphone radiating the ini-
tial conditions obtained by the linear system (4.24) (blue) and the optimization
(red). Source depth 50 m.
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Conclusions and future works

In this PhD thesis a critical approach in data analysis and a method for
acoustic inversion were presented. The aim of these work was to perform a
validity analysis of commonly used formulas to extract physical parameters
from infrasonic recordings and to propose a new inversion model for acoustic
source characterization from data.

An accurate review of equations relating the infrasonic pressure to gas
velocity, based both on theoretical considerations and data analysis, demon-
strated that the actual cases of applicability of such equations are rather
sparse. All compact source models are defined in an infinite free-space, but
the acoustic source during a strombolian eruption can be located at an un-
known depth inside volcanic conduit: that makes the use of equations for
free-space propagation no more valid.

Dipole model contains two main unknowns: dipole length and angle θ
from the axis. Without any information about such quantities, the model
results completely ineffective. Equations describing quadrupole are too com-
plicated to enable the extraction of velocity. Just the comparison of power
spectrum of the signal with similarity spectrum of jet noise can give an indi-
cation for the presence of turbulence as source of sound. Monopole model,
although implies many simplifications and a complete symmetry in the ex-
plosion, results the more effective model to extract gas velocity during a
strombolian explosion. However, also the cases of actual applicability of
monopole are few.

In order to extract some information about the acoustic source directly
from experimental data, we set up an inversion problem, connecting the
pressure recorder at a microphone to the normal derivative of pressure at the
source. By means of an BEM, we extracted the transfer matrix containing
the effect of acoustic propagation from source panels to the microphone. A
simplified geometry of Stromboli volcano was used to reduce the computing
power required for the simulations.

Source conditions were extracted from the inverse problem by two dif-
ferent methods: an analytical solution provided by the symmetric geometry,
and a generally-valid optimal solution obtained performing an AWS opti-
mization. Thanks to this peculiarity of the problem, we were able to test
the accuracy of the optimization in the achievement of the actual solution.
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The comparison of results obtained by the two methods makes use confident
about the validity of the optimization.

A further validation of our methodology was performed by using a FEM,
radiating in time domain the source conditions obtained by the inversion.
Such validation provided a powerful tool to correctly interpret our results.
In the case with no propagation inside the volcanic conduit, the signal re-
constructed at microphone by the FEM accurately reproduced the actual
pressure signal recorded at Stromboli. Such a result proves the accuracy
of our methodology to extract reliable condition on acoustic source. In the
other cases, with the source located at the bottom of volcanic conduit, the
characterization of the source is less effective. Such a mismatch can be
addressed to two possible causes:

1. the acoustic source can not be located inside the conduit because non-
linear effects are too high to enable the use of linear equations;

2. the geometry used to mesh the volcanic conduit does not work cor-
rectly, because the dimension of panels does not couple efficiently with
the mesh outside the volcanic vent.

Any refinement of the mesh inside the volcanic conduit could put some
insight on this problem.

The good matching between the actual pressure signal recorded at Strom-
boli, and that obtained at the microphone by radiating our source condi-
tions, makes use confident about the inversion methodology. Considering
that such a result was obtained using only one experimental data and a sim-
plified geometry, a higher accuracy could be reached. That could provide
an accurate determination of the acoustic source conditions, enabling the
extraction of new information from infrasonic signals.

On the basis of our results, some improvements of the methodology can
be performed, in order to reach a higher accuracy in the acoustic source
characterization.

First refinement lies in the use of the actual topography of Stromboli.
That could solve definitely the effect of sound propagation, enabling a more
accurate study on vent radius. Source depth of course has to be 0 m, since
our work demonstrated the goodness of such condition. By using no symme-
tries, it could be possible to have no analytical solution from the inversion:
however, the optimization proved its worth to obtain a reliable solution.

The second improvement is the use of a higher number of frequencies and
a lower step ∆ν, in order to perform a reconstruction of the entire pressure
signal in time domain, considering also the secondary oscillations.

A further refinement lies in the use of many experimental data for the
inversion. Moreover, the validation performed radiating the boundary condi-
tions obtained by the inversion, can be performed to reconstruct the pressure



signal at many microphones: in such a way, it could be possible to design
an optimal distribution of microphones around a volcano, in order to have
the better characterization of the acoustic source.

All of these refinement have to be made considering no volcanic conduit.
An accurate design of conduit geometry can prove the actual possibility to
solve the problem putting the acoustic source at the bottom of the conduit.
If such condition can not be satisfied, a more accurate physical model (con-
sidering effects of nonlinearities and fluid dynamics) could be performed,
to study the back-propagation inside the volcanic conduit of the boundary
condition obtained at vent.

A different study, but complementary to the numerical simulations, could
be performed carrying out an experiment designed to study the effect of
source depth inside a duct. Surrounding the tube end by an array of micro-
phones, and changing the depth of the acoustic source (that could be de-
scribed by the bursting of a membrane), an investigation on signals features
could be performed, checking if pressure signals contains any information
about the source depth.





References

Andronico D., Cristaldi A., 2007. Il parossismo del 23-24 novembre 2007
al Cratere di SE: caratteristiche del deposito di caduta. Internal report no.
UFVG2007/073, INGV, Sezione di Catania, Italy.

Andronico D., Pistolesi M., 2010. The November 2009 paroxysmal ex-
plosions at Stromboli. J. Volcanol. Geoth. Res. 196, 120-125.

Antoine N.E., 2004. Aircraft optimization for minimal environmental
impact. Ph.D. Thesis, Stanford University, Stanford, CA, US.
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