

2

A Memetic NSGA-II for bi-objective Mixed Capacitated General Routing Problem

A thesis presented by
Santosh Kumar Mandal

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Automation

Roma Tre University
Department of Engineering

2014

3

ADVISORS:
Prof. Dario Pacciarelli
Late Prof. Arne Løkketangen

REVIEWERS:
Prof. Franceso Viti
Prof. Stefano Giordani

4

Dedicated to my Parents.

5

6

Abstract

The Mixed Capacitated General Routing Problem (MCGRP) is concerned with the de-
termination of the optimal vehicle routes to service a set of customers located at nodes
and along edges/arcs on a mixed weighted graph representing a complete distribution
network. Although using nodes, edges and arcs simultaneously yields better models for
many real-life vehicle routing problems such as newspaper delivery and urban waste
collection, very few research works have been dedicated since the MCGRP was de-
fined. Furthermore, most of the studies have focused on the optimization of just one
objective, that is, cost minimization. Keeping in mind the requirements of industries
nowadays, MCGRP has been addressed in this thesis to concurrently optimize two cru-
cial objectives, namely, minimization of routing cost and route balance (the difference
between the largest route and the smallest route with respect to duration). To solve this
bi-objective form of the MCGRP, a multi-objective evolutionary algorithm (MOEA),
coined as Memetic NSGA-II, has been designed. It is a hybrid of non-dominated sorting
genetic algorithm-II (NSGA-II), a dominance based local search procedure (DBLSP)
and a clone management principle (CMP). The DBLSP and CMP have been incor-
porated into the framework of NSGA-II with a view to empowering its capability to
converge at/or near the true Pareto front and boosting diversity among the trade-off so-
lutions. In addition, the algorithm also contains a set of three well-known crossover
operators (X-set) that are employed to explore different parts of the search space. It was
tested on twenty three instances simulating real-life situations and of varying complex-
ity. The computational experiments verify the effectiveness of the Memetic NSGA-II
and also show the energetic effects of using DBLSP, CMP and X-set together while
finding the set of potentially Pareto optimal solutions.

7

8

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dario Pacciarelli for his guidance,
support and kind advices throughout my Ph.D studies. This thesis work would not have
been possible without my second advisor Late Prof. Arne Løkketangen, who passed
away on June 10, 2013. A major portion of this research was accomplished under his
constructive guidance of eleven months at Molde University College, Norway. I also
would like to thank Dr. Geir Hasle, chief research scientist at SINTEF (an indepen-
dent research organization in Norway), for providing valuable suggestions that helped
improve the quality of this work.

I wish to thank Prof. Stefano Giordani (Università di Roma "Tor Vergata") and Prof.
Franceso Viti (Université Du Luxembourg) for agreeing to be reviewers of my thesis.
Their suggestions helped me shape this thesis in a better way.

Last but not the least, I wish to thank my parents, Dwarika Mandal and Laxmi Devi and
my sister Renu Kumari, for their supports in achieving my personal and academic goals.
I owe them everything and I hope that this work makes them proud.

9

10

Contents

Abstract 7

Acknowledgements 9

Page

List of Tables 13

List of Figures 16

Introduction 2

1 Foundations 6
1.1 Mixed Capacitated General Routing Problem 8

1.1.1 Real-life cases . 10

1.1.1.1 Newspaper delivery problem 10

1.1.1.2 Urban waste collection 12

1.2 Solution Methods . 13

1.2.1 Neighborhood and moves . 13

1.2.2 Local Search . 16

11

1.2.3 Evolutionary Algorithm . 18

1.3 Multi-objective Optimization Problem 28

1.3.1 MOP basics . 28

1.4 Design issues: Multi-objective Evolutionary Algorithm 30

1.4.1 Fitness assignment . 30

1.4.2 Diversity Preservation . 34

1.4.3 Elitism . 35

1.5 Performance metrics . 36

2 Literature Survey 40
2.1 Notations . 42

2.2 Node-based Vehicle Routing Problems 43

2.2.1 Single-objective CVRP . 43

2.2.2 Multi-objective CVRP . 54

2.3 Arc-based Vehicle Routing Problems 59

2.3.1 Single-objective CARP . 60

2.3.2 Multi-objective CARP . 68

2.4 Mixed General Routing Problems . 71

2.4.1 Single-objective MCGRP . 71

2.5 Summary . 74

3 Application of Memetic NSGA-II 76
3.1 Problem background . 78

3.2 Model of bi-objective MCGRP . 79

3.2.1 Mathematical formulation . 80

3.2.2 Constraints . 82

12

3.3 Solution Methodology . 83

3.3.1 Initialization of population and Evaluation 84

3.3.2 Formation of mating pool . 86

3.3.3 Recombination, Mutation & Environmental selection 88

3.4 CBMix dataset . 90

4 Results and discussion 94
4.1 Parameter tuning . 97

4.2 A comparative analysis . 103

4.3 Effect of CMP and X-set . 105

4.4 Evolution of Pareto set . 109

4.5 Deviation from the best known upper bound 111

4.6 Pareto fronts . 112

Conclusions and future works 118

Appendix 120

Bibliography 132

13

List of Tables

1 Template of local search . 16

2 Template of an EA . 18

3 Roulette wheel selection . 23

4 Tournament selection . 23

5 Neighborhood operators in GA2 . 50

6 Neighborhood operators in MA2 . 63

7 Neighborhood operators in MA4 . 64

8 Operator selection strategies in MA4 64

9 Neighborhood operators in MA5 . 65

10 Different versions of NSGA-II in MOEA7 70

11 Notations-I . 81

12 Pseudocode of Memetic NSGA-II . 84

13 Non-dominated sorting . 87

14 Crowding distance calculation . 88

15 Best known results on CBMix dataset 91

16 Notations-II . 96

17 Algorithm parameters . 97

18 Problem data . 97

19 Effect of population size . 100

20 Effect of crossover probability . 101

14

21 Effect of local search probability . 102

22 results on CBMix instances . 104

23 Comparison table . 106

24 Pareto set of CBMix19 . 107

25 Effects of CMP on CBMix19 . 108

26 Effects of crossover operators on CBMix19 109

27 Pareto set evolution of CBMix19 . 110

28 Percentage gap . 111

29 Pseudocode of Simulated Annealing 120

30 Pseudocode of Tabu Search . 121

31 Pseudocode of Iterated Local Search 121

32 Pseudocode of Variable Neighborhood Decent 122

33 Pseudocode of Variable Neighborhood Search 122

34 Pseudocode of GRASP metaheuristic 123

35 Greedy Randomized Construction of GRASP 123

36 Pseudocode of Floyd-Warshall Algorithm 123

37 Pareto set evolution of CBMix1 . 124

38 Pareto set evolution of CBMix2 . 124

39 Pareto set evolution of CBMix3 . 124

40 Pareto set evolution of CBMix4 . 125

41 Pareto set evolution of CBMix5 . 125

42 Pareto set evolution of CBMix6 . 125

43 Pareto set evolution of CBMix7 . 126

44 Pareto set evolution of CBMix8 . 126

45 Pareto set evolution of CBMix9 . 126

46 Pareto set evolution of CBMix10 . 127

15

47 Pareto set evolution of CBMix11 . 127

48 Pareto set evolution of CBMix12 . 127

49 Pareto set evolution of CBMix13 . 128

50 Pareto set evolution of CBMix14 . 128

51 Pareto set evolution of CBMix15 . 128

52 Pareto set evolution of CBMix16 . 129

53 Pareto set evolution of CBMix17 . 129

54 Pareto set evolution of CBMix18 . 129

55 Pareto set evolution of CBMix20 . 130

56 Pareto set evolution of CBMix21 . 130

57 Pareto set evolution of CBMix22 . 130

58 Pareto set evolution of CBMix23 . 131

16

List of Figures

1 A vehicle tour in MCGRP . 9

2 Newspaper distribution process . 10

3 A sample solution string for MCGRP 14

4 2-opt illustration . 15

5 λ-interchange illustration . 15

6 Re-insert illustration . 16

7 Search space . 17

8 Fixed length chromosome . 20

9 Variable length chromosome . 20

10 An illustration of PMX . 24

11 An illustration of OX . 25

12 Formation of adjacency matrix . 25

13 An illustration of Inversion mutation 26

14 (left) Francis Y. Edgeworth (1845-1926) and (right) Vilfredo Pareto (1848-
1923) . 28

15 Pareto front . 29

16 Concave Pareto curve . 31

17 Epsilon constraint method . 32

18 Dominance depth . 33

19 Kernel . 34

17

20 Nearest neighbor . 35

21 Histogram . 35

22 Hypervolume . 38

23 Node routing . 43

24 Saving calculation . 44

25 Representation of a solution in GA1 (10 customers) 49

26 Representation of solution in GA3 (10 customers) 50

27 Route exchange crossover in MOEA2 55

28 Co-operative model in MOEA6 . 58

29 Definition of a sector . 59

30 Arc routing . 60

31 Mixed routing . 72

32 A random sequence of phases . 85

33 Crowding distance calculation (bi-objective case) 88

34 Pareto front of CBMix19 (Popsize = 50) 100

35 Pareto front of CBMix19 (Popsize = 75) 100

36 Pareto front of CBMix19 (Popsize = 100) 100

37 Pareto front of CBMix19 (Pc = 0.45) 101

38 Pareto front of CBMix19 (Pc = 0.7) 101

39 Pareto front of CBMix19 (Pc = 0.95) 101

40 Pareto front of CBMix19 (Pls = 0.5) 102

41 Pareto front of CBMix19 (Pls = 0.75) 102

42 Pareto front of CBMix19 (Pls = 1.0) 102

43 Pareto front of CBMix19 with DBLSP 105

44 Pareto front of CBMix19 without DBLSP 105

45 Pareto front of CBMix19 without CMP (S.C. RNI = 1) 108

18

46 Pareto front of CBMix19 with OX . 109

47 Pareto front of CBMix19 with PMX 109

48 Pareto front of CBMix19 with ERX 109

49 Pareto front of CBMix1 . 113

50 Pareto front of CBMix2 . 113

51 Pareto front of CBMix3 . 113

52 Pareto front of CBMix4 . 113

53 Pareto front of CBMix5 . 113

54 Pareto front of CBMix6 . 113

55 Pareto front of CBMix7 . 114

56 Pareto front of CBMix8 . 114

57 Pareto front of CBMix9 . 114

58 Pareto front of CBMix10 . 114

59 Pareto front of CBMix11 . 114

60 Pareto front of CBMix12 . 114

61 Pareto front of CBMix13 . 115

62 Pareto front of CBMix14 . 115

63 Pareto front of CBMix15 . 115

64 Pareto front of CBMix16 . 115

65 Pareto front of CBMix17 . 115

66 Pareto front of CBMix18 . 115

67 Pareto front of CBMix19 . 116

68 Pareto front of CBMix20 . 116

69 Pareto front of CBMix21 . 116

70 Pareto front of CBMix22 . 116

71 Pareto front of CBMix23 . 116

19

1

Introduction

In today’s fast growing and highly competitive goods distribution business, firms are
giving the top priority to route planning in order to acquire a dominant position in the
market. A more efficient routing plan not only brings economical advantages for a
company but also reduces several private and public concerns, such as traffic conges-
tion, air pollution and energy consumption, to name a few. Moreover, modern road
infrastructures, especially in the urban areas, are much more complex and pose new
challenges in the designing of vehicle routes. For these reasons, vehicle routing prob-
lem (VRP)– which was defined several decades ago and studied extensively – is still
drawing considerable attention of researchers around the world. In its simplest form,
the VRP/Capacitated VRP (CVRP) is defined on an undirected graph in which nodes
represent customers and edges connecting them have a traversal cost. A fleet of identical
vehicles with limited carrying capacity is stationed at a central depot node. The goal is
to construct a set of tours for the vehicles to service geographically scattered customers.
Some of the most commonly used objectives and constraints in VRPs have been shown
below in the bulleted lists:

• Objectives:

– Minimization of travel cost

– Minimization of tour length

– Minimization of the number of vehicles

– Maximization of the route compactness

• Constraints:

– Each tour should start and end at the depot node.

– Vehicle capacity should not violate on any tour.

– Each customer must be served only once by a single vehicle.

2

Several approaches have been suggested to solve the classical VRP and its different
variants; for example, VRP with time windows, heterogeneous fleet VRP, multi-depot
VRP, VRP with pickup & delivering and VRP with satellite facilities. In accordance
with solution techniques, the available literatures on VRPs can be divided into three
groups: exact algorithms, heuristics and meta-heuristics. It is a well-known fact that
owing to NP-hard complexity of the VRP, exact algorithms can not accomplish the opti-
mal solutions for large real-life instances. Heuristics and meta-heuristics approximation
methods, on the other hand, prove to be viable techniques to find near optimal solutions
for all kinds of VRPs within a reasonable amount of computational time.

One of the best and widely known heuristics for VRPs is the saving-based algorithm of
Clarke and Wright (1964). It is simple in structure, easy to implement and flexible as
well. The sweep algorithm of Gillett and Miller (1974) was also proved to be efficient
for solving the medium and large scale VRPs. Beasley (1983) described the route-first
cluster-second method for VRPs. This is a two-phase method in which a giant tour is
constructed first, ignoring the vehicle capacity constraint and then this tour is partitioned
into feasible vehicle routes. Due to the dependency of heuristic methods on the specific
characteristics the problem, they can not be applied to a wide range of VRP variants.
This is why meta-heuristic approaches have been the top choice to tackle VRPs. Osman
(1993) implemented Simulated Annealing (SA) algorithm to solve a VRP subjected to
the distance and capacity constraints. Gendreau et al. (1994) introduced the Taburoute
algorithm, a variant of Tabu search meta-heuristic, to obtain near optimal solutions of
constrained VRPs. Rochat and Taillard (1995) proposed an adaptive memory procedure
within Tabu Search for the CVRP. An adaptive memory is basically a pool of routes
belonging to the elite solutions discovered during the search. It is dynamically updated
and used to provide new starting solutions for Tabu Search. Later, Toth and Vigo (2003)
put forward another interesting variant of Tabu Search, so called Granular Tabu Search
(GTS), for the CVRP. The GTS is based on the concept of drastically restricted neigh-
bourhoods; it discards moves that insert only long edges into the solution. Berger and
Barkaoui (2003) proposed a hybrid genetic algorithm to address the CVRP. It concur-
rently works on two populations of solutions with the periodic exchange of some local
best individuals, and also uses well-known heuristics in the genetic operators.

Recently, Nagata and Bräysy (2009) suggested a Memetic Algorithm (MA), enhanced
by a novel Edge Assembly Crossover (EAX) operator and efficient local search pro-
cedures, for solving the CVRP. This EAX based MA was found to be robust and very
competitive. It yielded new best solutions to 10 large-scale benchmark instances (out
of 12) of Golden et al. (1998) in a reasonable computational time. Some other no-
table approaches using meta-heuristic for VRPs include the work of Pisinger and Ropke
(2006b)[Adaptive Large Neighbourhood Search (ALNS)], Prins (2004)[Hybrid Genetic
Algorithm], Alba and Dorronsoro (2004) [Cellular Genetic Algorithm] and Reimann

3

et al. (2004) [Ant Colony Optimization].

All of the above cited and most existing works on VRPs were solved on an undirected
network graph and assuming the node-based routing in which demand locations on
street segments are clearly represented by nodes. Nevertheless, for many real world
VRPs, such as newspaper delivery and urban waste collection, this assumption seems
to be unrealistic. In such problems, sometimes vehicles have to serve full streets besides
specific spots. Theses circumstances can not be modelled by even pure CARP (Capac-
itated arc routing problem), a class of VRP in which vehicles are constrained to move
on arcs and demand is also assigned to only arcs. Furthermore, an undirected graph can
only model a 2-way street whose both sides are serviced in parallel and in any direction.
In the real road network, a street can be a 2-way with bilateral service (an edge in the
modelled network), a 2-way street with two sides serviced independently (two opposite
arcs) or even 1-way street (one arc)[Prins and Bouchenoua (2004)].

The MCGRP, formally defined in the Section 1.1, allows to tackle such real-world sce-
narios in a natural way. The MCGRP has been studied by several researchers in the last
two decades using different terminologies. Pandit and Muralidharan (1995) solved the
problem with a heterogeneous set of vehicles, denoting it as the capacitated general rout-
ing problem (CGRP). Gutiérrez et al. (2002) investigated the homogeneous fleet version
of the CGRP. Prins and Bouchenoua (2004) proposed a Memetic Algorithm for the MC-
GRP, calling it as the MCGRP (node, edge and arc routing problem). Kokubugata et al.
(2007) solved the MCGRP/MCGRP using a Simulated Annealing algorithm with com-
peting neighborhood operators. More recently, Bosco et al. (2013) proposed an integer
programming formulation for the MCGRP.

The common element in the above works on the MCGRP is the consideration of single
objective of the minimization of the tour cost. The minimization of the cost function,
without any doubt, is essential to survive in the competitive logistic market. However,
most companies involved in the waste management, newspaper or other distribution
business have also realized the need of well-balanced (in terms of cost or time or length)
routes. As for instance, Distribution Innovation AS – an industrial partner of a research
organization in Scandinavia, called SINTEF (Stiftelsen for industriell og teknisk forskn-
ing) – which manages the delivery of newspapers almost in the whole Norwegian mar-
ket, has estimated that a maximum imbalance (duration-wise) between routes of about
20% is tolerable for the efficient operation [Hasle (2012)]. A routing plan with balanced
tours can help achieve several other goals. For example, shift duration for drivers and
workloads among vehicles are related to the route balancing objective. Hence, in this
thesis, MCGRP is being resolved to concurrently optimize these two important objec-
tives (minimization of routing cost and route balance). Moreover, route balance in this
thesis has been defined as the difference between the largest route and the smallest route
in terms of the routing cost (proportional to the travel time).

4

Since the targeted objectives are conflicting in nature; therefore, providing a set of com-
promised solutions will help decision makers to choose the best one according to the re-
quirements. Thus, a multi-objective evolutionary algorithm (MOEA), named Memetic
NSGA-II, is being proposed to obtain an efficient Pareto set for the present bi-objective
MCGRP. The NSGA-II (Non-dominated sorting genetic algorithm-II), propounded by
Deb et al. (2002), is a very popular MOEA and so far has had phenomenal success
in solving multi-objective problems from different research domains. Similarly, local
search based meta-heuristics (such as Tabu search, Simulated annealing and Memetic
algorithm) have performed very well in the VRP area. Moreover, hybrid algorithms
more often perform better than the individual algorithms from which they are designed.
Motivated by these facts, in the proposed algorithm, NSGA-II has been hybridized with
a dominance based local search procedure (DBLSP) for better approximation of the true
Pareto set. Furthermore, even though NSGA-II is equipped with a so called crowded
comparison operator to promote diversity (and convergence as well), it may become
susceptible to the phenomena of genetic drift, which often occurs in real-world com-
binatorial optimization problems. Hence, it has also been amalgamated with a clone
management principle (CMP) to increase its ability to generate uniformly distributed
Pareto sets. In addition, Memetic NSGA-II is also equipped with a set of three differ-
ent crossover operators (X-set) that are used to explore different promising regions of
the search space. With the aid of these three components (DBLSP, CMP and X-set),
it produced good compromised solutions on the MCGRP instances, maintaining a fine
balance between exploration & exploitation and avoiding premature convergence.

The rest of the thesis has been organized into four parts as follows. The first part lays
down the basic foundations for this thesis. It provides a detailed description of the
MCGRP along with its two real life examples. Specifically, the key concepts of lo-
cal search method, evolutionary algorithm, multi-objective optimization problem and
multi-objective evolutionary algorithm are presented. In the second part, an extensive
literature survey on three types of routing problems: node, arc and mixed, has been con-
ducted. The third and fourth parts present the complete research work accomplished in
this thesis. The third part mainly contains the mathematical formulation of objectives &
constraints and the working process of Memetic NSGA-II. The details of computational
experiments have been provided in the fourth part.

At last, conclusions and possible extensions of the present research work are discussed.
An Appendix has also been provided which contains pseudocodes of some algorithms
reported in this thesis.

∗ ∗ ∗ ∗ ∗

5

Part 1

Foundations

6

7

Foundations

The purpose of this part is to explain the MCGRP in detail and study basic foundations
of the MOEA. This part of thesis begins with the description of the problem. Next,
two real-life cases of the MCGRP have been discussed. The basics of local search
techniques and evolutionary algorithms, which are generally used to solve hard com-
binatorial optimization problems, have been presented then for better understanding of
the whole algorithmic idea later in the third part. Following this, basic concepts of the
multi-objective optimization problem are introduced. In particular, definitions of Pareto
dominance, Pareto optimality and ideal & nadir points have been provided. Next, var-
ious design issues of MOEAs are discussed. This part ends with an overview of some
available performance metrics for multi-objective optimizers.

1.1 Mixed Capacitated General Routing Problem

The Mixed Capacitated General Routing Problem (MCGRP) was first defined by Pandit
and Muralidharan (1995) in order to assimilate peculiarities of real world vehicle rout-
ing problems. The classical Vehicle Routing Problem (VRP), introduced by Dantzig
and Ramser (1959), is concerned with the determination of the optimal vehicle routes
to service a given set of geographically dispersed customers. The exact locations of
customers are known in advance and can be clearly represented by nodes/points on a
network graph. A variant of the VRP, called Arc Routing Problem (ARP), seeks to ser-
vice a set of streets on a street network. However, most of real world and/or industrial
routing problems naturally involve in servicing streets as well as specific spots. Such
circumstances can not be tackled by either the VRP or the ARP alone. The MCGRP
system helps handle such complex routing situations as it generalizes the classical VRP,
the ARP and the general routing problem.

A distribution network for the MCGRP can be represented by a mixed weighted graph
(G) consisting of nodes, edges and arcs, i.e, G = (V,E ∪ A). Where, V represents
the set of nodes, E is the set of edges and A stands for the set of arcs. Furthermore,

8

an edge on the G represents a two-way street whose both sides can be traversed in any
direction. A street with uni-directional sides is represented by a pair of two opposite
arcs. A single arc stands for the one-way street. The entities (nodes, edges and arcs) on
the G are of two kinds: required and non-required. The required items (except nodes)
have a traversal cost and have to be processed. The non-required items do not require
any service. However, they are needed to determine the minimum deadheading costs
(traversal costs without service) between all pairs of nodes to move between required
items. More importantly, G may not obey the triangle inequality as there can be several
edge/arcs between two given nodes. Thus, deadheading costs between nodes may not
be symmetric. The system also contains a fleet of homogeneous (or non-homogeneous)
vehicles. The vehicles are having limited carrying capacity and initially based at a
central depot.

N1

N2

N3

N4

N5

Depot

Figure 1: A vehicle tour in MCGRP

The problem seeks to design the set of optimal tours for the vehicles to process all
required tasks. Each constructed vehicle tour, as shown in the Figure 1, contains a subset
of tasks and also shows the order in which they will be processed. As for instance,
the processing order of three tasks (node N1, edge N2 ↔ N3 and arc N4 → N4)
in the Figure 1 is (N1) → (N2 ↔ N3) → (N4 → N5). As stated earlier in the
Introduction, the vehicle tours have to be constructed in such a way that some objectives
associated with efficiency of the routing operation could be optimized, while meeting
some constraints.

9

1.1.1 Real-life cases

The model of MCGRP brings node and edge/arc routings together on a network graph
simulating the real-world road topography. It is flexible and can be used to tackle rout-
ing problems seeking to serve specific locations or full streets or both. In the following
sub-sections, two practical cases - newspaper delivery and urban waste collection - have
been described, where the MCGRP seems to be a better model than the VRP and the
ARP.

1.1.1.1 Newspaper delivery problem

One of the world’s largest newspaper publishers is Japan’s "The Yomiuri Shimbun".
As of mid-year 2011, it had a combined morning-evening circulation of whopping 13.5
millions for its national edition. The "Aftenposten", which is the Norway’s largest news-
paper, had a circulation of 239,831 in 2010 of its morning edition. Similarly, "La Re-
publica", which is one of the Italy’s largest daily-interest newspaper, had an average
daily circulation of 504,098 in 2009. The "Dainik Jagran" of India has daily readership
of about 16.370 millions, according to Indian Readership Survey 2012 Q4. These statis-
tics [source: Wikipedia] certainly prove that the newspaper delivery problem (NDP) is
one of the largest vehicle routing problems in terms of the number of units distributed.

Printing press

Drop points

Home
subscribers

Businesses/
Counters

Figure 2: Newspaper distribution process

As shown in the Figure 2, the newspaper distribution process involves the downstream
movement of newspapers from the printing press to the readers via a two-echelon pro-
cess. In the first echelon, newspapers are transferred to the drop points. The final
distribution takes place from these drop points to the ultimate customers in the second

10

echelon with the help of some transportation facilities, such as vans, cars and carriers.
Some general features of the NDP in Norway (or similar countries) observed by Hasle
et al. (2011) have been listed below.

• There are thousands of geographically scattered customers that are served from
one drop point.

• Newspapers are delivered by either cars or pedestrians.

• For each subscriber, there is a service time.

• Route duration is the main constraint.

• Car routes are usually open with return to the drop point.

• Pedestrian routes are closed as trolleys are returned to the drop point.

• Travel times between subscribers & between subscribers and the drop point may
not be symmetric due to road topography and traffic issues.

See Golden et al. (2002) for a detailed survey of the early (until 1996) papers on the
newspaper delivery vehicle routing problem (NDVRP). It contains nine papers that fo-
cused on the first part of the distribution process, modelling the problem as node routing.
Some other papers on the NDVRP since 1996 include the work of VanBuer et al. (1999),
Song et al. (2002), Cunha and Mutarelli (2007), Russel et al. (2008), Boonkleaw et al.
(2009) and Eraslan and Derya (2010). These papers also focused on the first echelon
of the supply chain, using node routing formulation. There are, however, several cases
where the NDVRP can not be considered as a node routing problem. As for instance,
the distribution area of Euro Press (EP), a publisher/distributor of newspapers and other
publications in a European country, is so dense that the problem is seen as an arc routing
problem with two-sided service of the street segments [Toth and Vigo (2002)].

[Hasle (2012)] clearly stated: "The assumption that all point-based demands can be
aggregated into edges or arcs may be crude in practice. It may lead to solutions that
are unnecessarily costly, as partial traversal of edges is not possible. An industrial route
planning task may cover areas that have a mixture of urban, suburban, and rural parts
where many demand points will be far apart and aggregation would impose unnecessary
constraints on visit sequences. A more sophisticated type of abstraction is aggregation
of demand based on the underlying transportation network topology. Such aggregation
procedures must also take capacity, time, and travel restrictions into consideration to
avoid aggregation that would lead to impractical or low quality plans. In general, such
procedures will produce a MCGRP/NEARP instance with a combination of demands
on arcs, edges, and nodes."

11

1.1.1.2 Urban waste collection

The waste collection process is one of the crucial parts of the waste management prac-
tice. It is concerned with the transfer of solid wastes or recyclable materials from the site
of use and disposal to the point of treatment or landfill by garbage vehicles. The design
of vehicle routes in a waste collection vehicle routing problem (WCVRP), especially
in the urban areas, is considered as one of the most important and challenging VRPs
as it is linked with the public health and several environmental issues. Other factors,
such as collection frequency (daily or weekly), large volume of waste and complex road
network, greatly increases complexity of the task. The WCVRP is mainly divided into
following three classes.

• Roll-on roll-off : The Roll-on roll-off WCVRP deals with pickup, transportation,
unloading and drop-off of large containers, which are typically found at construc-
tion sites and large shopping centers [Toth and Vigo (2002)]. The size of contain-
ers may range from 20 - 40 loose yards. Due to the large size, only one container
is generally serviced at a time. The trip of a vehicle can be of two kinds: round
and exchange. In the round trip, the vehicle picks up a full-container, transports it
to the landfill for emptying and returns the empty container to the site of use. In
the latter case, on the other hand, the vehicle picks up an empty container at the
landfill, carries it to the site for exchanging with a full-container and returns back
to the landfill.

• Commercial: The commercial WCVRP involves in collecting solid wastes and re-
cycling materials from commercial establishments, such as small shopping malls,
restaurants, offices and schools These organisations deposit garbage items in a
comparatively smaller container (about 8 loose yards) placed at the side of the
road. Furthermore, these commercial organizations are generally scattered through
the metropolitan area. This facilitates point-to-point marking of sites, and mod-
elling the problem as a node routing.

• Residential: A residential WCVRP, on the other hand, is concerned with the de-
sign of garbage vehicle routes to service customers residing in the densely pop-
ulated residential areas. The vehicles move along the streets to collect garbage
bags placed in front of houses and therefore, it has mainly been formulated as
the ARP in literatures. The exact locations of customers are not needed as in the
case of commercial/Roll-on-roll-off WCVRP. Moreover, the number of customers
served in the residential problem is much higher than that of the commercial and
Roll-on-roll off WCVRPs.

12

In most of today’s modern cities, the waste collection process requires the movement
of garbage vehicles in the residential areas as well as to the commercial spots for more
profitable and efficient operation. Moreover, real road networks are generally mixture of
both kinds of links: uni-directional and bi-directional streets. Neither the VRP nor the
ARP model are applicable for such cases. The MCGRP would be the most appropriate
model to handle such integrated problems as it is compromised of all three required
elements: nodes, edges and arcs.

1.2 Solution Methods

The MCGRP belongs to the class of combinatorial optimization problems, where the
goal is to find an optimal solution from a finite set of many alternative solutions. It is
an integrated model of the VRP and the ARP, which are NP-hard (non-deterministic
polynomial-time hard) combinatorial problems. Hence, exact algorithms are applicable
to only small size instances of the MCGRP. To solve large instances simulating real-
life situations, heuristics and meta-heuristics seem to be pragmatic approaches. These
methods can produce near optimal solutions in a reasonable computational time, but do
not provide any upper limits on deviation from the optimality like approximation algo-
rithms. The computationally efficient approaches for the MCGRP (or any combinatorial
optimization problem) can be broadly classified into two groups:

• Local search

• Evolutionary algorithms

The local search based methods start with a single solution, whereas evolutionary al-
gorithms begin the search with a set of solutions. However, there is a common thread
between these optimization techniques. They iteratively improve a solution/set of solu-
tions by applying some operators in each iteration. In the context of the local search,
an operator is generally referred as neighbourhood operator/or move. In the upcoming
subsections, the concept of neighbourhood and neighbourhood operator are discussed
first. Then, an insight into the working principles of a local search technique and an
evolutionary algorithm are presented.

1.2.1 Neighborhood and moves

A move (or neighborhood operator) can be defined as a systematic mechanism of chang-
ing the structure of a solution to generate a new one in its vicinity. In order to describe

13

the notion of a neighborhood N , let’s consider a solution s and an operator µ. Suppose
that, operation of µ on s produced a neighboring solution s′, that is, s′ ∈ N(s). Let
(s)ג is the set of all possible operators that can be implemented on s. Then, the neigh-
borhood of s can be represented as: {N(s) = s⊕ µ;µ ∈ ,{(s)ג where s⊕ µ stands for
the transition of s to the neighboring solution s′ [Gómez-Villouta et al. (2010)]. For an
effective implementation of neighborhood operators, a solution of the problem must be
represented in such a way that it can include problem specific features.

0 6 4 5 9 0 3 1 10 2 8 7 0

Figure 3: A sample solution string for MCGRP

A possible solution representation for the MCGRP could be as shown in the Figure 3.
It has been coded as a permutation of 10 tasks (represented by positive integers) with
the trip delimiter (0: depot node). The string contains two vehicle routes (sequences of
tasks between the depot node). The sequence of tasks also represents their processing
order by a vehicle. In the Memetic NSGA-II, detailed in the third part of this thesis,
inter-route (between two different routes) version of following three commonly used
VRP operators have been utilized.

• 2-opt: This neighborhood operator was first proposed by Croes (1958), although
the basic version had already been suggested by Flood (1956). It involves in elim-
inating two existing connections between tasks and reconnecting the broken paths
in some other way by inserting two new connections. The Figure 4 illustrates the
working process of the standard 2-opt method on an example MCGRP solution
(depicted in the Figure 3). In Figure 4, j is a randomly chosen task and j′ is its
successor task. The task denoted by j′′ is another randomly selected task in the
different tour and j′′′ is the task right after it. Two connections - between tasks
4 & 5 and tasks 10 & 2 - have been deleted. And, two new connections have
been inserted between tasks 4 & 10 and tasks 5 & 2. The two new tours can be
constructed as:

1. 0–j–j′′–0 (via task 1)

2. 0–j′–j′′′ –0 (via task 8)

• λ-interchange: This method was brought by Osman and Christofides (1994) for
the capacitated clustering problem. Let’s Consider a MCGRP/VRP solution con-
sisting of a set of routes S = (R1, . . . , Rp, . . . , Rq, . . . , Rn). The λ-interchange

14

0 6 4 5 9 0 3 1 10 2 8 7 0

j j’ j’’ j’’’

0 6 4 10 1 3 0 9 5 2 8 7 0

Figure 4: 2-opt illustration

between any two routes (Rp & Rq) is performed by replacing a subset of tasks
(Sp) of Rp by another subset of tasks (Sq) of Rq. The cardinality of Sp & Sq
should be less than or equal to λ. In the present research work, this operator has
been used with λ = 1. If it is applied to the two routes displayed in the Figure 5
with Sp = j and Sq = j′′, then the resulting tours will be as shown in the bottom
string in the Figure 5. The positions of tasks 4 & 10 have been exchanged.

0 6 4 5 9 0 3 1 10 2 8 7 0

j j’’

0 6 10 5 9 0 3 1 4 2 8 7 0

Figure 5: λ-interchange illustration

• Re-insert: The reinsert neighborhood operator was conceived by Savelsbergh
(1992) for the VRP with time windows. As the name suggests, it removes a task
from its current position and inserts right after another task. The process has been
graphically explained in the Figure 6. As it can be seen, task j has been moved
after j′′.

Some other neighborhood operators/moves that are frequently used to solve VRPs in-
clude Or-opt, Cross exchange and 3-opt. In the Or-opt method, introduced by Or (1976),
a chain of l consecutive tasks is relocated to another place. On the other hand, cross-
exchange move, designed by Taillard et al. (1997), involves in exchanging two segments

15

0 6 4 5 9 0 3 1 10 2 8 7 0

j j’’

0 6 5 9 0 3 1 10 4 2 8 7 0

Figure 6: Re-insert illustration

of any length (or less than a prefixed length) from two different routes. The 3-opt [Lin
(1965)] move is an extension of the 2-opt procedure. It works exactly in the same fash-
ion, but deals with the removal and insertion of three connections.

1.2.2 Local Search

In computer science, local search is defined as an iterative algorithm, which is used to
solve hard combinatorial optimization problems [Wikipedia]. It involves in transiting
from one solution to another in the search of the optimal solution, using a neighbor-
hood operator. A template of the basic local search has been provided in the Table 1.
Starting with an initial solution, the current solution is repeatedly replaced by a better
neighboring solution. The process is continued until a stopping criteria is met (e.g., the
maximum number of iterations, an upper limit on computation time and the number of
iterations without improvement). The final output is the best solution that minimizes
(or maximizes) an objective function most. A local search algorithm mainly consists of
four elements: a starting solution, a neighborhood operator, a solution updating rule and
a termination criteria.

step 1: Generate an initial solution (s)
step 2: Find s′(s′ ∈ N(s)) using a neighborhood operator µ
step 3: s← s′ (if s′ is better)
step 4: Repeat step 2 - step 3 until (stopping criteria)

Table 1: Template of local search

Initial solution: An initial solution for beginning the local search is a pivotal compo-
nent in the algorithm. It can be generated uniformly at random or by means of any
fast greedy construction heuristics. As for instance, the saving algorithm of Clarke and
Wright (1964) or the sweep algorithm proposed by Gillett and Miller (1974) can be

16

utilized to build a reasonable good starting solution for the MCGRP. It has been exper-
imentally observed that starting the search with a good quality solution brings several
advantages. The algorithm takes comparatively lesser computational time to reach at
the local optima. Furthermore, the quality of the final solution also gets better.

Acceptance rule: Another important ingredient in a local search procedure is the solu-
tion acceptance rule. In fact, it is the only component which can maintain the balance
between intensification and diversification in the local search based meta-heuristics. A
straight forward approach is to accept only better moves. This strategy promotes in-
tensification, but leads the search towards the nearest local optimum solution if the
landscape has several "valleys of attraction" as shown in the Figure 7. The local search
based meta-heuristics use different strategies to jump out of the local optima. For ex-
ample, Simulated Annealing [Kirkpatrick et al. (1983)] exerts a little randomness in the
selection process by accepting non-improving moves with some probability. In Tabu
Search [Glover (1986)], a tabu list is maintained that stores the recently visited solu-
tions and the search is prevented from returning to these solutions for a fixed number
of iterations. This is how the search is driven into different directions in Tabu search to
avoid a local optima. One can also restart the search from a random position, which is
indeed an effective way to explore different parts of the search space.

Figure 7: Search space

Neighborhood operator: The performance of a local search algorithm heavily depends
on the design of a neighborhood operator. Its strength (i.e, the degree of perturbation)
should be moderate. If it is too high, a neighborhood function will behave like a random
solution generator. In case it is too low, the structural changes will not be high enough
to create a neighbor solution possessing different properties. A good operator is thus
the one which can act in between random and deterministic perturbations. More impor-
tantly, if more than one operators are used, then they should be applied in such a way
that one can not undo the positive contributions of other(s).

17

1.2.3 Evolutionary Algorithm

Darwin (1859) in his seminal work "On the origin of species by means of natural se-
lection" incepted an idea about the evolution of species. Darwin stated: "it follows one
general law, leading to the advancement of all organic beings, namely, multiply, vary,
let the strongest live and the weakest die". Later, based on this principle of natural
selection/survival-of-the-fittest, three main forms of the Evolutionary Algorithm (EA
henceforth) were developed:

• Evolutionary programming [Fogel et al. (1966)]

• Genetic Algorithm [Holland (1975)]

• Evolution strategies [Rechenberg (1973) and Schwefel (1977)]

The term EA, in fact, stands for all population based meta-heuristic optimization tech-
niques whose functioning mimics the Darwinian’s evolution principle. EAs have been
capable of producing optimal/near-optimal solutions on varieties of research problems
with complex and multi-modal search spaces. A general framework of an EA has been
presented in the Table 2.

step 1: Generate an initial population of solutions (Pt)
step 2: Evaluate fitness values of each solution in Pt
step 3: Mating selection
step 4: Recombination
step 5: Mutation
step 6: Form a child population (Qt)
step 7: Create a new population (Pt+1) from Pt ∪Qt

step 8: Set Pt = Pt+1

step 9: Repeat step 3 - step 8 until (stopping criteria)

Table 2: Template of an EA

As shown in the Table 2, an EA begins with the initialization of a population of candidate
solutions. The quality of each of these solutions is evaluated with respect to a fitness
function. Following this, the algorithm enters in an evolutionary cycle. Firstly, some
promising members of the current population (Pt) are selected to create a pool, so-called
mating pool. The solutions of the mating pool undergo recombination and mutation to
produce a population of child solutions/off-springs (Qt). A new population (Pt+1) of
fittest individuals is then created from solutions of the current population and the child
population. The new population becomes the current population and is passed to the

18

next cycle to continue the search process. It is quite clear that following components
must be specified in order develop an architecture of the EA.

• Solution representation of the optimization problem

• Population initialization

• Fitness function

• Parent selection mechanism (mating selection)

• Recombination and mutation operators

• Survivor selection (or environmental selection) method

Representation of a solution: This is the first step in the designing of any optimization
algorithms (local searches or EAs), where a solution of the problem is coded into a data
structure that can be decoded by a computer program. In the context of an EA, a legal
solution of the problem is called chromosome and each member of a chromosome is
referred as gene. The design of a chromosome is an extremely crucial task in EAs as it is
directly linked with other issues, such as the choice of crossover & mutation operators.
Moreover, it also governs the size and shape of the search space. An inappropriate
representation of the solution will eventually result failure of the whole algorithmic
model. The most suitable form of representation for ordering (or queuing) problems is
the permutation encoding. As for instance, for the Travelling Salesman Problem (TSP),
a good representation is a sequence of integers showing the visiting order of cities. For
VRPs, following two representation schemes have been widely used in literatures.

• Fixed length: In this method, a VRP solution is coded as a fixed-length string of
integers representing customers/tasks, as shown in the Figure 8. The string can be
transformed into a complete VRP solution by simply dividing it according to the
vehicle capacity or by any heuristic methods (such as Ulusoy’s heuristic [Ulusoy
(1985)] and Split [Prins et al. (2009)]). In the Figure 8, the bottom string contains
three tours, each begins and ends at the depot node (represented by zero). The
sequences of positive integers in the tours show the visiting order of tasks.

• Variable length: As the name suggests, the length of the solution data structure
varies during the search process. A variable length chromosome is a more pre-
cise model for the VRP as it gives the complete information about solution of
the problem. An example of the variable length representation for the VRP has
been shown in the Figure 9 [Tan et al. (2006)]. It contains routes with customers
arranged in the order they have to be served. In the Figure 9, 10 customers have
been assigned to three vehicles.

19

3 5 8 6 7 1 2 4 10 9

0 3 5 8 0 6 7 1 2 0 4 10 9 0

Figure 8: Fixed length chromosome

Figure 9: Variable length chromosome

Population initialization: With the representation of solution on hand, the next crucial
task in EAs is to create an initial population of candidate solutions to start the search. A
general approach is filling the initial population by randomly generated solutions. This
method favours unbiased exploration of different parts of the search space. However,
poor random solutions require more computational efforts and may also cause prema-
ture convergence to a suboptimal point. Experiments have demonstrated that placing
initial solutions in the fruitful regions of the search space helps improve the online per-

20

formance (i.e., time-to-solution) and quality of the final solution. Several other meth-
ods have also been tried. For example, to solve the single-objective MCGRP, Prins
and Bouchenoua (2004) created a mixed initial population, which contains randomly
generated chromosomes and also a few good solutions created by fast greedy heuris-
tics. Furthermore, the size of the population is generally fixed constant throughout the
search. In fact, it is an important parameter of an EA that must be set appropriately
according to the size of the search space. A higher population size will consume a large
amount of computation time. Whereas, if the size is too small, the EA will not be able
to find (or reach near) the optimal solution. The optimal population size is therefore the
point at which a satisfactory balance could be achieved between solution quality and
computational time.

Fitness Evaluation: The fitness value of a solution indicates how promising it is in
comparison to others. The fitness of a chromosome is evaluated with respect to an
objective function, which represents the ultimate goal of the problem solving. For a
single-objective optimization problem, the fittest solution will optimize the objective
function most. Note that, the fitness function and the objective function can be differ-
ent for the same problem. For example, in a single-objective minimization problem,
a solution with the lowest objective function value will have the highest fitness value.
Therefore, a fitness function must be derived from the objective function to apply an EA
on mono-objective minimization problems. A simple mapping method is shown below.

F (x) =
1

1 + f(x)
(1.2.1)

In the equation (1.2.1), F (x) and f(x) are the fitness and objective values of a solution
x. For mono-objective maximization problems, the fitness function can be considered
equivalent to the objective function. The section 1.4 will discuss various fitness assign-
ment strategies for multi-objective optimization problems.

Mating selection: As the name suggests, mating selection is the process of choosing
solutions from a population that mate with each other to produce off-springs. All these
selected solutions are separately stored in a mating pool, whose size is set equal to the
size of the population. A selection operator should function in such a way that it could
maintain an appropriate amount of the selection pressure (the degree of being biased
towards the better individuals). The selection pressure largely controls the convergence
rate of an EA. More is the selection pressure, better will be the convergence rate. How-
ever, if the selection pressure is too high, only fittest solutions will get selected and
premature convergence to a suboptimal point may occur. On the other hand, if it is set
too low, then the rate of convergence towards the optimum will be slower. The most
commonly used selection methods are roulette wheel and tournament selection. Both of

21

these methods favour the fittest individuals. Their working processes have been detailed
below.

• Roulette wheel selection: This method was developed by Holland (1975). It is
also known as the fitness proportionate selection as the probability of selection of
an individual depends on its fitness value. The most fit members of the population
get highest selection probability. To understand the underlying concept, imagine
a roulette wheel of area 1 unit2. Each individual i (i = 1, 2, 3, . . . , n) of the
population is assigned some portion of the wheel. The area of the wheel allocated
to a solution i is directly proportional to its fitness value

(
Fi∑n
i=1 Fi

)
. Thus, fittest

individuals will get larger part of the wheel. The wheel is rotated and the solu-
tion corresponding to the segment on which it stops is selected. The pseudocode
shown in the Table 3 transforms this principle into a valid computer program.
First, solutions are sorted in the ascending order of their fitness values. Then, the
probability of selection of each solution is determined by dividing its fitness value
by the sum of fitness values of all solutions. Next, the cumulative probability of
selection for each solution is calculated. Subsequently, the method enters in a
loop, which stops once the mating pool is full. In each iteration of this loop, a
random number (r) is generated in the range [0, 1]. If r is less than the cumula-
tive probability of selection of the first solution (in the arranged sequence), then
it is selected. In case, r lies between cumulative probabilities of two consecutive
solutions, then the solution having higher cumulative probability of selection is
inserted into the mating pool.

• Tournament selection: In the tournament selection method, t (tournament size)
solutions are randomly drawn from the population and the fittest one among them
is selected with some probability. The t individuals are then put back into the
population. A general template of the tournament selection has been shown in
the Table 4. In the binary tournament selection, only two players are involved.
Furthermore, in the deterministic version of the tournament selection, the winner
of tournament is always the fittest one.

With regards to maintaining the selection pressure, the tournament scheme is more ro-
bust than the roulette wheel procedure. The intensity of the selection pressure is directly
proportional to the tournament size. As the number of competitors increases, the selec-
tion pressure rises and weak individuals get smaller chance to get selected. The effects
of different selection operators on the convergence speed have been studied by Goldberg
and Deb (1991).

Recombination/Crossover: This is the process of generating off-springs by mixing ge-
netic properties of two or more solutions. The solutions to be recombined are selected

22

Arrange solutions in the ascending order of their fitness values;
Calculate the probability of selection of each solution i as Pi = Fi∑n

i=1 Fi
;

Set C1 = P1 C1: cumulative probability of selection of the first solution;

For each i(> 1)
set Ci = 0;

End For

For (i = 2 to n)
Ci = Pi + Pi−1;

End For

Repeat
Generate a random number r ∈ (0, 1);
If (r < C1), then select the first solution ;
Else

For (i = 1 to n− 1)
if (Ci ≤ r < Ci+1), then select solution i+ 1 ;

End For
End If

Until (the size of the mating pool)

Table 3: Roulette wheel selection

set: p (probability of selection)
Repeat

Draw t solutions from the population t: tournament size ;
Generate a random number r ∈ (0, 1);
If (r < p)

select the fittest one;
Else

select the least fittest one;
End If
Put drawn solutions back into the population ;

Until (the size of the mating pool)

Table 4: Tournament selection

from the mating pool and the operation is executed with some probability. A crossover
probability in fact indicates that how many solutions will be given chance to produce
child solutions. For example, a crossover probability of 0.8 suggests that 80% solutions
of the mating pool will participate in the off-springs generation process. The crossover
operation in EAs can help in both exploring and exploiting the search space. Some of

23

the well-known crossover operators for permutation chromosomes are being described
below.

• Partially Mapped Crossover (PMX): The PMX, which was designed by Goldberg
and Robert Lingle (1985), is a two point crossover operator with an additional re-
pairing procedure. Given two parent solutions, an offspring is created as follows.
First, two crossover points are randomly selected and the substring defined by
these two points from one parent is exactly copied to the child solution at the
same position. Then, the remaining positions in the child solution are filled by
elements from the alternative parent. An infeasibility is tackled with the help
of a mapping relation, which is defined by the previously selected sub-strings in
the parent solutions. This whole procedure has been graphically explained in the
Figure 10.

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 7 8 3
Parent 1

Parent 2

6 9 2 1

3 4 5 6

Proto-Child 1

Proto-Child 2

1 6 3

2 5

9 4

3 5 6 9 2 1 7 8 4

2 9 3 4 5 6 7 8 1

Mapping
relationship

Offspring 1

Offspring 2

Random selection of substrings

Exchange of substrings between parents

Legalizing of child solutions by mapping relationship

Figure 10: An illustration of PMX

• Order Crossover (OX): The OX operator is also a two point crossover like the
PMX, but works in a slightly different fashion. The Figure 11 has been supplied
to help visualize the working process of OX developed by Oliver et al. (1987). As
in the case of PMX, first a randomly selected sub-string from one parent is copied
to the offspring without disturbing the order and positions of elements. Then, the
other parent is scanned (from right after the second cut-point to the end and then
from the beginning to the second cut-point), while inserting the missing elements

24

in the offspring, starting at the the position just after the second crossover point. If
the end of offspring-string is reached, then the insertion process is resumed from
the first position.

1 2 3 4 5 6 7 8 9 Parent 1

3 4 5 6 Proto-Child 1

9 1 3 4 5 6 2 8 7 Offspring 1

Random selection of substring

Copying substring to the child solution

5 7 4 9 1 3 6 2 8 Parent 2

Figure 11: An illustration of OX

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 7 8 3

Parent 1

Parent 2

1 2 9 7

2 3 1 9

3 4 2 5 8

4 5 3 6

5 6 4 3

6 7 5 9 4

7 8 6 1

8 9 7 3

9 1 8 2 6

Adjacency
matrix

Neighbor list

Figure 12: Formation of adjacency matrix

• Edge Recombination (ERX): The ERX operator was conceptualized by Whitley
et al. (1989). It focuses on the adjacency relation instead of the order of elements

25

in a sequence. It uses an adjacency matrix - which stores immediate neighbors
of all elements from parent solutions - to create an offspring with the minimum
number of new relations. An example of the adjacency matrix has been shown
in the Figure 12. The neighbor lists give informations about edges/links of the
network. After forming an adjacency matrix, a child solution is created as fol-
lows. First, an element from the parent starting points is randomly selected. This
element is deleted from neighbor lists. Then, among the neighbor members of
this previously selected element, a new element with the smallest neighbor set is
selected. The ties are broken arbitrarily. The process is repeated until all elements
have been selected.

Mutation: Once an offspring is created through recombination, its structure is further
changed slightly by altering genes (or their positions) in the mutation/education process.
The mutation is also done with some probability and helps in exploring the search space.
The design of mutation operators is a little tricky, especially in the problems where a
chromosome is represented as a sequence of elements without duplication. The two
widely used mutation operators for a permutation chromosome are:

• Swap: In this method, two elements on the chromosome are randomly selected
and their positions are exchanged.

• Inversion: The Inversion operator, on the other hand, takes a segment of the chro-
mosome out and puts back at the same site but with inverted direction. An illus-
tration of the inversion mutation has been shown in the Figure 13. The substring
defined by the two randomly selected points on the chromosome has been re-
versed.

5 7 1 3 8 9 6 4 10 2

5 7 4 6 9 8 3 1 10 2

Figure 13: An illustration of Inversion mutation

Environmental/Survivor Selection: This is the final stage of an EA cycle in which a new
population is formed for the next generation of search. Since the size of the population

26

is kept constant; therefore, a selection is made among the parent and offspring solutions.
Following the principle of survival-of-the-fittest, basic EAs directly select the top best
individuals to fill the new population.

Stopping criteria: The EAs are stochastic search techniques; therefore, the chances
of finding the optimal solution is low, especially in high dimensional problems. The
stopping criteria should be set in such a way that high quality solutions can be obtained
within a reasonable computational time. An EA is generally allowed to run over a
number of generations until a termination criteria is met. The most commonly used
termination conditions are as follows:

• The maximum allowable CPU time.

• A limitation on the number of function evaluations.

• The maximum number of iterations with fitness improvement under a threshold
value.

• A satisfactory fitness level has been achieved.

Parameters: EAs require the right settings of several parameters (shown below in the
bulleted list) to find a near-optimum solution. The optimal parameter values set does not
exist for any meta-heuristic [Talbi (2009)]. As discussed above, the best setting is the
one with which an EA can output a high quality solution in a reasonable computational
time.

• Population size

• Tournament size (for tournament selection)

• Crossover probability

• Mutation rate

• Termination criteria

The above parameters can be adjusted in two ways: tuning and control. In the param-
eter tuning, experiments are performed with several possible values. The best ones are
selected and kept constant throughout the run of the algorithm. Whereas, in the control
method, the algorithm begins with initial parameter values that are changed dynamically
or adaptively during the evolutionary process.

27

Figure 14: (left) Francis Y. Edgeworth (1845-1926) and (right) Vilfredo Pareto (1848-
1923)

1.3 Multi-objective Optimization Problem

The multi-objective optimization problem (MOP), which is sometimes also called as
the vector optimization problem, deals with the simultaneous optimization of two or
more objectives (normally conflicting with each other). The roots of multi-objective
optimization originate from the original work of Edgeworth (1881). In fact, Edgeworth
first proposed the notion of optimum for multi-criteria economic decision making. For
the multi-utility problem with two hypothetical consumer criteria P and Π, Edgeworth
stated: "It is required to find a point (x, y) such that in whatever direction we take an
infinitely small step, P and Π do not increase together but that, while one increases, the
other decreases." Later, Pareto (1906) generalized this notion as (English version): "The
optimum allocation of the resources of a society is not attained so long as it is possible
to make at least one individual better off in his own estimation while keeping others
as well off as before in their own estimation." Afterwards, this theory has intensively
been used in mathematics and engineering. And, in the last few decades, the MOP has
become a prominent research area in various scientific fields. See Stadler and Dauer
(1992) for more detailed history of MOPs.

1.3.1 MOP basics

Definition 1. Consider an optimization problem with n(≥ 2) objectives, which are,
without loss of generality, all to be minimized. A MOP can be defined as follows:

28

MOP =

{
min F (x) = (f1(x), f2(x), ..., fn(x))
s.c. x ∈ S (1.3.1)

Where, x = (x1, x2, . . . , xl) represents a solution vector of length ’l’ in the decision
space, and S is a feasible decision-variable space. The vectorF (x) = (f1(x), f2(x), . . . , fn(x))
contains objectives to be optimized at the same time. The space to which F (x) belongs
is called objective space.

Definition 2. Pareto dominance: A solution x is said to dominate another solution y
(denoted by x ≺ y) if and only if ∀i ∈ (1, 2, 3, ..., n), F (x) ≤ F (y) ∧ ∃ i ∈
(1, 2, 3, ..., n): F (x) < F (y).

Definition 3. Pareto optimality: A solution x∗ is Pareto optimal if for every x ∈ S,
F (x) does not dominate F (x∗).

O
min 𝑓𝑓1

min 𝑓𝑓2

Pareto front

Pareto optimal
solutions

Figure 15: Pareto front

The definition of Pareto optimality directly comes from the seminal work of Edgeworth
(1881) and the theory given by Pareto (1906). A Pareto optimal solution denotes that an
objective can not be improved without deteriorating atleast one other objective. There
exists no solutions in the dominance cone of a Pareto optimal solution (see Figure 15).
The definition of Pareto optimality leads to the possibility of several alternative Pareto
optimal solutions as can be seen in the Figure 15. These solutions are also called as
non-dominated solutions, trade-off solutions and compromised solutions. The whole
set of non-dominated solutions is referred as the Pareto set. The image of this set in the
objective space is termed as the Pareto front.

Definition 4. Ideal vector: The objective vector F (x) = (f1(x), f2(x), ..., fn(x)) is said
to be an ideal vector if ∀i ∈ (1, 2, 3 . . . , n) fi(x) is the minimum possible value in the
entire Pareto-optimal set.

29

Definition 5. Nadir point: The objective vector F (x) = (f1(x), f2(x), ..., fn(x)) is said
to be a nadir point if ∀i ∈ (1, 2, 3 . . . , n) fi(x) is the maximum possible value in the
entire Pareto-optimal set.

The ideal and nadir points are essential in many ways. For example, these two extreme
points are used for determining the range of a Pareto front along each objective and
visualizing the trade-off informations through bar charts, petal diagrams, etc. [Miettinen
(2003)]. They are also used for scaling objectives of different magnitudes in the same
range [Miettinen (1999)], which is indeed necessary for multi-objective optimization
algorithms to perform an unbiased search.

1.4 Design issues: Multi-objective Evolutionary Algo-
rithm

A MOP seeks to find the optimal Pareto set constituting of non-dominated solutions of
equivalent quality. The Pareto set should be uniformly distributed and diverse so that
a decision maker can easily select the one best compromised solution. EAs have had
the ability to approximate a Pareto set in just a single simulation run as they operate on
several solutions simultaneously. However, single-objective EAs are not applicable on
MOPs due to the need of a set of compromised solutions. To design a multi-objective
evolutionary algorithm (MOEA), three major components are required. First, a fitness
assignment strategy to select non-dominated solutions. Second, a diversity preserva-
tion method to avoid premature convergence at a suboptimal Pareto front and obtain an
evenly spaced Pareto set. Last but not the least, an elitist mechanism for preventing the
loss of global non-dominated solutions found during the search. In addition, one also
has to define a performance indicator to check the quality of an approximate Pareto set
generated by a MOEA. In the following subsections, existing ideas to tackle these issues
have been presented.

1.4.1 Fitness assignment

The fitness assignment strategy in MOPs is not as straightforward as in single objective
optimization problems (SOPs). In a single objective minimization (maximization) prob-
lem, the fitness of a solution is inversely (directly) proportional to the objective function
value. A MOP deals with several conflicting objectives and therefore, the fitness value
must be derived from all objectives. More importantly, it should drive the evolutionary

30

search towards the optimal Pareto set. Some of the commonly used fitness assignment
methods are being discussed below.

Weighted linear aggregation: This is one of the first methods developed to formulate
a fitness function for MOPs. It actually transforms a MOP into a SOP by combining
various objective functions into a single form, mostly in a linear way as shown in the
equation (1.4.1). The traditional single-objective local searches and EAs can be applied
on the equation (1.4.1).

f(x) =
n∑
i=1

ci × wi × fi(x) (1.4.1)

Where, wi ∈ (0, 1) [
∑n

i=1wi = 1] is the weight assigned to the objective fi. The weight
vector is determined by some prior knowledge of the problem and represents a hyper-
plane (a line in the 2-dimension case) in the objective space. A Pareto optimal solution
lies on the border of the Pareto curve, and is defined as the point of contact of this hy-
perplane and the curve. The weighted linear aggregation concept is simple and compu-
tationally efficient too, but fails to detect non-dominated solutions lying on the concave
portion of the Pareto curve.

min 𝑓𝑓1

min 𝑓𝑓2
a

b

c

Figure 16: Concave Pareto curve

To demonstrate what has been stated above, consider a Pareto curve as shown in the
Figure 16. The point ’c’ lies on the concave portion, whereas ’a’ & ’b’ are on the
convex part of the curve. The objectives are to be minimized and the hyperplane has
been shown by the dotted line. As the combined objective function is minimized, the
hyperplane shifts downwards. It can be seen that point ’c’ has been missed and the
final contact points are ’a’ & ’b’. No matter how the weights are initialized, all other
non-dominated solutions between the points ’a’ and ’b’ can not be found [Talbi (2009)].
Another disadvantage of this method is that it generates only one solution in a single
simulation run.

31

∈-constraint method: The ∈-constraint method, conceived by Haimes et al. (1971),
is another traditional scalar approach for fitness assignment in MOPs. It aims to opti-
mize one of the objectives, while considering other(s) as inequality constraints of the
optimization problem (see equation 1.4.2).

MOPk(∈) =


minfk(x)

x ∈ S
s.c.fj(x) ≤ ej ∀j = 1, 2, . . . , n & j 6= k

(1.4.2)

min 𝑓𝑓1

min 𝑓𝑓2

∈1 ∈2 ∈3

a
b

c

Figure 17: Epsilon constraint method

In the equation (1.4.2), the vector e = (e1, e2, . . . , en) represents an upper bound for
the objectives. For each e-vector, the ∈-constraint method will produce one Pareto
solution. For exemplification, consider a bi-objective case shown in the Figure 17. The
objective f2 is being minimized while setting upper limits on the objective f1. As it
can be seen, Pareto solutions ’a’, ’b’ and ’c’ have been obtained under the constraints
f1 ≤∈1, f1 ≤∈2 and f1 ≤∈3, respectively. Furthermore, unlike the weighted linear
aggregation method, this approach is able to find points on the non-convex boundary of
the Pareto front. Nonetheless, a major disadvantage of this method is that determining
an appropriate e-vector can be a difficult task. Also, it increases complexity of the
optimization problem by introducing extra constraints.

Dominance-based ranking methods: In these approaches, a MOP is not converted into
a mono-objective one like the weighted linear aggregation and ∈-constraint methods.
Instead, solutions are ranked using the concept of Pareto dominance [Definition 2, sec-
tion 1.3.1]. As a general rule, lower is the rank, better is the fitness of a solution. The
most commonly used dominance-based ranking procedures for multi-objective optimiz-
ers are described below.

• Dominance rank (rp): The dominance rank of a solution is calculated as the

32

number of solutions in the population P that dominate it [Fonseca and Fleming
(1993)]. The rank of a solution p ∈ P is calculated as follows:

rp = 1 + |s| s ≺ p, s ∈ P and s 6= p (1.4.3)

• Dominance depth: In this method, population of solutions is decomposed into
several fronts of dominance. The non-dominated solutions of the whole popu-
lation create the first front (F1) and are awarded rank 1. Among the remaining
solutions, those that are non-dominated except by the solutions of F1 receive rank
2 and construct the second front (F2). The members of subsequent fronts are ex-
tracted in the similar way. In general, members of front Ff (f > 1) are dominated
by solutions of the population belonging to the front F1 ∪ F2,∪ · · · ∪, Ff−1. This
procedure has been illustrated in the Figure 18.

min 𝑓𝑓1

min 𝑓𝑓2

a 1

b 1 c 1

d 2

f 3

e 2

Figure 18: Dominance depth

The solutions ’a’, ’b’ and ’c’ have been given rank 1 as they are non-dominated
solutions. The solutions ’d’ and ’e’ are dominated by only solutions having rank
1 and therefore receive rank 2. The solution ’f’ is dominated by solution ’d’ (rank
2) and solutions ’b’ & ’c’ (rank 1) and hence, gets rank 3.

• Dominance count (cp): The dominance count of a solution is defined as the num-
ber of solutions in the population P that are dominated by it. The fitness of an
individual p ∈ P can be directly obtained by using its dominance count [Zitzler
and Thiele (1999)].

fitness(p) = cp = |s| p ≺ s, s ∈ P and s 6= p (1.4.4)

33

1.4.2 Diversity Preservation

The fitness assignment strategies just described in the previous section drive the search
towards the optimal Pareto set, but in no way helps in maintaining diversity among the
trade-off solutions. One of the most successful ways to obtain an uniformly distributed
Pareto set in MOEAs is by giving higher selection probability to lesser dense/crowded
solutions at various selection stages of the algorithm. The density of a solution in
MOEAs can be measured by one of the following methods.

• Kernel methods: In these methods, in order to estimate the density id of a solution
i, the distances dij between i and all other solutions in the population j are calcu-
lated. Then, a kernel function (K) is applied over all the distances. The sum of all
kernel function values gives the density of solution i. The kernel methods have
been used in NSGA[Srinivas and Ded (1995)] and NPGA[Horn and Nafpliotis
(1993)].

id =
∑
j

K(dij) j 6= i (1.4.5)

• Nearest neighbor methods: Contrary to Kernel methods, this principle does not
consider all of the neighbors to determine the density of a solution. Only a set
of kth nearest neighbors is used. This technique has been used in the SPEA2
(Strength Pareto Evolutionary Approach 2) algorithm [Zitzler et al. (2002)].

• Histogram: In this approach, the search space is divided into several hyper-grids
that define neighborhood of a solution, as shown in the Figure 21. The density
of a solution i is computed as the number of solutions in the same box of the
grid. This idea has been used in the PAES (Pareto Archived Evolution Strategy)
algorithm [Knowles and Corne (1999)].

min 𝑓𝑓1

min 𝑓𝑓2
i

Figure 19: Kernel

34

min 𝑓𝑓1

min 𝑓𝑓2
i

Figure 20: Nearest neighbor

min 𝑓𝑓1

min 𝑓𝑓2
i

Figure 21: Histogram

In MOPs, diversity is generally desired in the objective space. But, it can also be com-
puted in the decision space. To calculate the density of a solution in the decision space,
the Levenshtein edit distance method (or an encoding specific solution similarity mea-
sure) can be used for defining the distance between two strings. Løkketangen et al.
(2012) discussed various solution similarity measures for VRPs.

1.4.3 Elitism

Elitism is the process of preventing the loss of promising solutions discovered during
the search. One of the simple ways to apply elitism in EAs is to select the top best indi-
viduals from parent and offspring solutions for the next generation of search. Another
technique is to store elite solutions in a secondary population, which is called archive in
EAs. An archive can be of two kinds:

• Passive archive: The passive archive stays out of the main search engine and is
only used to store elite solutions. With the passive mechanism, it is sure that the
algorithm will have a monotonically non-degrading performance in terms of the

35

approximated Pareto set [Talbi (2009)]

• Active archive: The solutions of the active archive participate in the different se-
lection processes (mating/survivor selection) during the evolutionary search. The
active mechanism can boost the convergence rate, but may cause premature con-
vergence if the adequate elitist-selection pressure is not maintained.

In MOEAs, an archive is used to store only elite non-dominated solutions and its size is
generally bounded. Thus, all trade-off solutions obtained during the search can not be
stored. Several strategies were developed to cope with the size restriction of the archive.
For example, if the number of non-dominated solutions exceeds the size of the archive,
then NSGA-II takes the density information into account to reject some solutions. The
SPEA algorithm [Zitzler and Thiele (1999)] uses the average linking clustering method
[Morse (1980)] to reduce the size of the non-dominated set to a desired level.

1.5 Performance metrics

The performance of a mono-objective optimizer is judged on the basis of quality of
the final single solution and utilized computational resources. In MOPs, the outcome
is a set of solutions possessing multiple criteria. This raises difficulty in comparing the
effectiveness of multi-objective optimizers. Usually, a Pareto set is assessed on the basis
of following three criteria:

• The number of non-dominated solutions in the set.

• Its closeness to the true Pareto set.

• The distribution and spread of the non-dominated solutions.

Several metrics have been proposed to determine the quality of an approximate Pareto
set. However, truly speaking, there is still need of a standard indicator for the perfor-
mance evaluation of multi-objective algorithms. The available metrics can be divided
into two categories: unary indicators and binary indicators. The former assigns an
approximate Pareto set a scalar value, which signifies its quality in terms of conver-
gence/diversity. A binary performance measure outputs a scalar value by comparing
two approximations. Some quality indicators require additional informations, for ex-
ample, a reference point/set, the ideal vector, the nadir point, etc.

36

• Contribution: It is a convergence-based binary metric, which measures the per-
centage of solutions of the combined non-dominated set of two approximations
(PS∗ = PS1 ∪ PS2) that are provided by individual sets (PS1 & PS2). For
example, Cont (PS1/PS

∗) (equations 1.5.1 – 1.5.2) value of 0.7 indicates that
70 % of the solutions of PS∗ are from PS1 and 30 % are provided by PS2.

Cont (PS1/PS
∗) =

(||PS||/2) + ||W1||+ ||N1||
||PS∗||

(1.5.1)

N1 =
PS1

PS ∪W1 ∪ L1

(1.5.2)

Cont (PS1/PS
∗) + Cont (PS2/PS

∗) = 1 (1.5.3)

Where, PS is the set of solutions in PS1∩PS2. W1 is the set of solutions in PS1

that dominates some solutions of PS2. L1 is the set of solutions in PS1 that are
dominated by some solutions of PS2.

• Generational distance: The generational distance (GD), suggested by Veldhuizen
and Lamont (1998), is also a convergence-based metric. It measures the average
distance from an approximate Pareto set (PS) to the true Pareto set (PS∗).

GD(PS, PS∗) =

(∑|PS|
i=1 d

q
i

)1/q
|PS|

(1.5.4)

di = min
p∈PS∗


√√√√ M∑

k=1

(fk(si)− fk(p))2
 (1.5.5)

Where M is the number of objectives. When q is set equal to 2, di becomes the
Euclidean distance.

• Distribution: Deb et al. (2000) proposed a distribution performance indicator
(4) for measuring the distribution of non-dominated solutions in an approximate
Pareto set(PS). Firstly, the Euclidean distance di between consecutive solutions
in PS is calculated. Then, the average distance d̄ is determined. Finally, 4 is
calculated by the equation 1.5.6.

4(PS) =

|PS|−1∑
i=1

|di − d̄|
|PS| − 1

(1.5.6)

37

• Spread: The spread indicator (Is) measures the extent of the spread of the ob-
tained Pareto front. It can be evaluated as shown below.

Is =

∑
u∈PS |{u′ ∈ PS : ||F (u)− F (u′)|| > σ}|

|PS| − 1
(1.5.7)

In the equation (1.5.7), σ is a neighborhood parameter. Is gives a value in the
range [0-1]. The closer it is to 1, better will be the dispersion of non-dominated
solutions in the Pareto set.

• Hypervolume: It is an unary indicator, which can assess the quality of a poten-
tially optimal Pareto set in terms of both criteria (convergence towards the true
one and diversity among trade-off solutions). It is measured as the volume of the
objective space portion that is dominated by a set of non-dominated solutions. It
is calculated with respect to a fixed anti-optimal reference point. With all objec-
tives (Z1, Z2, . . . , Zn) are of minimization type, the reference point can be set as
(1.05 × Zmax

1 , 1.05 × Zmax
2 , . . . , Zmax

n) [Talbi (2009)]. Fleischer (2003) proved
that hypervolume is maximized if and only if the set of solutions contains only
Pareto optima. The Figure 22 has been drawn to demonstrate the calculation of
the hypervolume metric in a two-dimensional objective space. The Pareto front
contains four non-dominated solutions. The area of the shaded region will give
the hypervolume measure. This whole area can be determined by summing up
the areas of rectangles drawn using non-dominated points and the reference point,
counting dominated space only once.

Reference point

O
min 𝑍𝑍1

min 𝑍𝑍2

Figure 22: Hypervolume

∗ ∗ ∗ ∗ ∗

38

39

Part 2

Literature Survey

40

41

Literature survey

This part of the thesis presents an in-depth literature review of some notable approaches
developed to solve single as well as multi-objective models of the VRP, considering
different routing mechanisms. However, due to the excessive abundance of published
papers for VRPs, this survey has mostly been restricted to research works that used
heuristic and meta-heuristic algorithms to tackle the most basic form (i.e., routing prob-
lems under the capacity constraint). The whole survey has been divided into three parts:
node-based routing, arc-based routing and mixed general routing. Each part has further
been broken into different sections based on the number of considered objectives. The
main concepts and key features of the reported algorithms have been highlighted.

2.1 Notations

Notation Description

ILS Iterated Local Search
TS Tabu Search
GA Genetic Algorithm
MA Memetic Algorithm
ACO Ant Colony Optimization
SA Simulated Annealing
LSP Local Search Procedure
HA Heuristic Algorithm
GRASP Greedy Randomized Adaptive Search Procedure
ALNS Adaptive Large Neighborhood Search
NPM Non-Pareto Method
VND Variable Neighborhood Decent
VNS Variable Neighborhood Search

42

2.2 Node-based Vehicle Routing Problems

A VRP in which locations of customers/tasks on the streets are exactly known and sparse
enough to be clearly represented by points, as shown in the Figure 23, belongs to the
class of node routing problems. Under the three basic VRP constraints discussed earlier,
a node-based VRP is popularly known as the Capacitated Vehicle Routing Problem
(CVRP). It is generally represented on an undirected graph, which consists of nodes
representing service points and edges connecting them.

Figure 23: Node routing

2.2.1 Single-objective CVRP

HA1: One of the mostly discussed heuristics in the VRP literature is the saving-based
algorithm of Clarke and Wright (1964). Given two customers i and j, saving s(i, j) is
calculated as: s(i, j) = d(i,D) + d(j,D)− d(i, j), where D stands for the depot node.
The main algorithm starts with an initial solution in which each customer is served alone
on a route. Then, savings are calculated for all customer pairs and arranged in a non-
increasing fashion. The customer pair (i, j) with the highest saving is considered first.
While allocating these customers, link (i, j) is created if constraints do not violate and
one of the following two situations emerges.

1. Either i or j has already been assigned to a route and its position is adjacent to the
depot. In this case, link (i, j) is added to that same route.

2. Both i and j are already present in two different existing routes and their positions
are adjacent to the depot. The routes are merged in this case.

Likewise, the next customer pair with the second highest saving is processed and so on.
The key features of this algorithm are: simple structure, easy to implement and flexi-
bility. However, due to its greedy nature, a major shortcoming of this method is that

43

i

D

j

d (i, D)
d (j, D)

d (i, j)

Figure 24: Saving calculation

it does not produce good routes towards the end. To eliminate this drawback, Gaskell
(1967) and Yellow (1970) introduced a shape parameter (λ), a measure of relative im-
portance of the direct arc between two customers, in the calculation of saving equation:
s(i, j) = d(i,D) + d(j,D)− λ× d(i, j). Recently, Segerstedt (2013) proposed another
variant, which uses only the first pair of calculated savings and utilizes these for search-
ing customers to an already decided route. First priority is given to the position before
or after the distribution point that presents the highest saving to the new point or that
has the shortest distance to it. If both conditions satisfy, then the distribution sequence
which gives the total shortest distance is chosen. The author retrieved the best known
solution to the Dantzig and Ramser (1959)-problem.

HA2: Gillett and Miller (1974) introduced the Sweep Algorithm for efficiently solving
medium and large scale vehicle-dispatch problems. In order to implement this heuristic,
the polar co-ordinates of all locations are first determined, fixing depot as the pole. The
vertices are then re-arranged in the increasing polar angle by sweeping (clockwise or
counter-clockwise) a ray joining the depot to an arbitrary point, called seed point. From
this seed point, formation of the first cluster begins. The vertices are included satisfying
vehicle’s loading capacity as they are swept. The next cluster is created by resuming
the sweeping operation from the next available vertex and the process is stopped when
all vertices have been swept. Once the assignment of vertices to the vehicles is done,
Travelling Salesman Problem (TSP) is solved for each cluster independently to form
the optimum routing sequence of vertices. Although this method is simpler than the
Clarke and Wright’s saving heuristic, the latter dominates the former in both accuracy
and speed. Another major disadvantage of Sweep Algorithm is that it is not suitable for
city logistic problems.

HA3: The algorithm of Fisher et al. (1982) is also widely used to solve the VRP. It
is a two-phase heuristic like the Sweep Algorithm. The first phase (clusters formation

44

phase) itself consists of three steps:

step 1 : The selection of initial dummy seed points (one for each cluster)

step 2 : The determination of insertion costs of all vertices (with respect to the seed
point) for each cluster.

step 3 : Solving a General Assignment Problem (GAP), by the Lagrangian Relaxation
Technique.

While in the second phase, TSP is solved (optimally or approximately) to optimize
the delivery routes for vehicles. This algorithm was found to be good for the single-
day VRP; nevertheless, its computing speed is a matter of concern. Furthermore, it is
neither flexible nor easy to implement like Clarke and Wright’s saving-based algorithm.
Contrary to Fisher’s algorithm, Bramel et al. (1991) proposed a two-phase heuristic in
which the initial seed points are determined by solving a capacitated location problem.
After this, vertices are gradually included, following the least cost insertion rule and
satisfying the vehicle loading capacity. The insertion cost of an unrouted customer i
into a tour Tk is calculated as: t (Tk ∪ {i}) − t (Tk), where t (Tk) is the length of an
optimal TSP tour on Tk.

HA4: Beasley (1983) described another two phase heuristic method for VRPs, called
route-first cluster-second. In this approach, a giant TSP tour is constructed first, ignoring
the vehicle capacity constraint and then this tour is partitioned into feasible routes. To
decompose a giant tour into feasible tours, a standard shortest path problem is solved on
an acyclic graph. While solving the shortest path problem, the travel cost between two
nodes i and j is calculated as: d(i, j) = d(i,D)+d(j,D)+li,j , whereD is the depot and
li,j is the travel cost between nodes i and j on the TSP tour. Although this principle is not
as effective as the cluster-first route-second method, it has had some attractive features.
As for instance, the partition of a giant tour is a computationally fast procedure (o(n2)
operations by Dijkstra’s Algorithm), where n is the total number of nodes. Thus, several
giant tours can be created to obtain a diverse set of solutions. Moreover, this method is
naturally well suited to problems with the free number of vehicles.

TS1: Gendreau et al. (1994) introduced the Taburoute algorithm, a variant of TS, to
obtain near optimal solutions for constrained VRPs. Some of the salient features of
Taburoute are:

• Neighborhood operator: The neighbor solutions are generated by removing a
vertex from its current route and inserting to another route containing one of its
closest neighbours, using the GENI method developed by Gendreau et al. (1992)
for the TSP.

45

• Random tabu tags: After removing a vertex from a route, its insertion back into
that route is forbidden till t+ θ iterations, where t is the current iteration and θ is
a random number in the range [5, 10].

• False start: In this strategy, several solutions are generated initially and a limited
search is performed on each of them. The best one is selected as a starting solution
for the main search.

• Periodic post-optimization by US (unstringing and stringing) procedure during
the search.

• Intense search: If the current solution does not improve after some number of
iterations, Taburoute performs an extensive search by allowing the removal of
more vertices.

• Continuous diversification: It is produced by adding a term in the objective func-
tion that is proportional to the movement frequency of vertices.

With the aid of these effective features, Taburoute had outperformed the best heuristics
available at that time, producing high quality solutions and often the best knowns.

TS2: The adaptive memory procedure (AMP) utilized by Rochat and Taillard (1995)
within the framework of TS for the VRP is an interesting idea. An adaptive memory is
basically a pool of routes belonging to the elite solutions discovered during the search.
It is dynamically updated and used to provide new starting solutions for TS. Initially,
several solutions are generated and routes belonging to them are stored in the adaptive
memory. In order to create a new solution, routes of the adaptive memory are proba-
bilistically selected (giving larger weight to the routes of fittest solutions) and combined
differently. Moreover, once the first route is selected, the next route to be included must
not contain customers which are already present in the previously extracted route(s).
The selection process of routes from the adaptive memory is continued until all cus-
tomers have been served or no more feasible extraction is possible. If latter is the case,
an insertion algorithm developed by Solomon (1987) is invoked to insert all the un-
routed customers. This AMP empowered TS obtained two new best solutions on the 14
standard VRP benchmark instances.

TS3: Rego and Roucairol (1996) also used the framework of TS algorithm for a VRP
under the capacity and distance restrictions. They introduced a novel feature, so called
node-ejection chains for defining neighbor solutions. This method ejects a vertex from
its current position and inserts at the place of another neighbor vertex, thereby triggering
a chain reaction that might end up producing a cycle. An infeasibility condition is
defined to ensure the feasibility of the resulting solution. To reduce computational time,
a set of vertices was chosen for the ejection together with their nearest neighbours.

46

Although the ejection chain method increased the capability of TS to produce quality
solutions, it failed to reach the level of the best known algorithms of that time period.
Hence, Rego (1998) further proposed a variant of this scheme, called Flower algorithm.
In this approach, a route is seen as a blossom, a path as a stem and a complete VRP
solution (consisting of several routes) is called flower. An ejection move is performed
by deleting and inserting suitable edges so that the flower structure can be maintained.
The computational results on a set of real world and academic problems suggested that
the flower algorithm might be a good alternative to the best known VRP heuristics.

Another well-known TS that exploits the concept of ejection chain was proposed by
Xu and Kelly (1996). A neighbour solution in this work is defined by oscillating be-
tween ejection chains and vertex swaps between two routes. The ejection chains are
determined by solving an auxiliary network flow problem. A pool of best solutions
is maintained that are periodically used to re-initiate the search. Furthermore, individ-
ual routes are also periodically re-optimized by means of 2-opt [Croes (1958)] and 3-opt
[Bock (1998), Lin (1965)] tour improvement heuristics. The Xu and kelly’s TS obtained
several best known solutions on the CVRP benchmark instances. But, the major disad-
vantage of this method is that it needs high computational effort and the right settings
of several parameters.

TS4: Toth and Vigo (2003) put forward another variant of TS, so called Granular Tabu
Search (GTS), for capacitated VRPs. The GTS is based on the concept of drastically
restricted neighbourhoods. The moves that insert only long edges into the solution are
discarded. This idea originates from the observation that longer edges have a small
likelihood of belonging to the final optimum solution. In order to implement GTS, first
the problem is solved by means of any fast heuristic (e.g., Clarke and Wright’s saving
algorithm) and the average edge cost is determined. Then, a sparse graph is obtained
from the original network graph by eliminating edges whose cost is greater than the
granularity threshold (ϑ)[see equation 2.2.1], but except those incident to the depot and
belonging to the high quality solutions. A move is applied only if it inserts at least one
edge of the sparse graph. The GTS was implemented with inter & intra neighbourhood
exchange operators and several features of the Taburoute algorithm [TS1]. It obtained
excellent results, that too within very short computing times. The authors also showed
that with sparsification parameter between 1.0-2.0, 80-90% of the unpromising edges
could be removed.

ϑ = β × z′

(n+ k)
(2.2.1)

47

In the equation (2.2.1), n & k are the number of customers and vehicles, respectively.
The β is a positive sparsification parameter and z′ is the solution value found by a
heuristic algorithm.

GA1: Berger and Barkaoui (2003) proposed a competitive hybrid GA to address the
classical VRP. It concurrently works on two populations of solutions with the periodic
exchange of some local best individuals. The algorithm also uses well-known heuristics
within the genetic operators in order to minimize the total travelled distance. A chromo-
some was simply represented as an ordered list of customers, as depicted in the Figure
25. The initial populations were generated by a sequential insertion heuristic proposed
by Solomon (1987), which adds customers in random fashion at randomly chosen po-
sitions. The selection procedure was carried out by the roulette-wheel scheme. To
perform the crossover operation, an insertion based operator was designed with the idea
to improve some routes of one parent (P1) using good genes of other parent (P2). The
routes (1, . . . , k, . . . , n) of P1 to be improved are probabilistically selected (by uniform
probability distribution or based on the number of customers defining a tour/the aver-
age distance between consecutive route members). The gene set (g − set) from P2
includes all members of the routes whose centroid is located within a certain range from
the centroid of route k of P1. To create a child route, some of the customers (selected
randomly or based on the large waiting times/distance separating adjacent members)
are removed. Next, Solomon’s insertion heuristic with stochastic features (random se-
lection of the cost function parameters and the consideration of three best candidates)
is applied to add customers from a combined set containing genes of the g − set and
the unrouted but already visited customers. The feasibility is maintained by removing
inserted customers from the remaining unvisited routes chosen for the improvement in
P1. Finally, an offspring is created by inheriting other routes of P1 while discarding
the already routed customers. If some customers have not been routed, then a new tour
is built using the nearest neighbor principle. The mutation operator, on the other hand,
consists of three heuristics:

1. Large Neighborhood Search (LNS) [Pisinger and Ropke (2006a)]

2. Edge Exchange (EE)

3. Reorder Customers (RC)

The LNS and EE are applied with some probability, whereas RC is employed only
when a new best feasible solution is discovered. In the EE operation, each customer is
checked for reinsertion in its neighbor routes. While, RC tries to reconstruct a new tour
by reordering customers within a route, using the non-deterministic form of Solomon’s
insertion heuristic. This synergy of GA and heuristic methods was tested on the well-
known VRP benchmarks created by Christofides et al. (1979) and proved to be very

48

5 7 1 3 8 9 6 4 10 2

Figure 25: Representation of a solution in GA1 (10 customers)

cost-effective. It reached at the best known solutions for 6 out of 14 instances, giving
an overall average deviation of 0.48% from the best knowns and consuming on average
21.25 minutes of CPU time.

GA2: Prins (2004) developed a simple and effective hybrid GA to solve the CVRP. The
key components of this algorithm are: chromosome representation, clone management
and a LSP for mutation. A chromosome was coded as a sequence of clients without trip
delimiters (see Figure 25), and the procedure Split [see Prins et al. (2009) for details]
was used to partition it into feasible vehicle routes. The initial population was made up
of random chromosomes and three good solutions created by the heuristics of Clarke
and Wright (1964), Mole and Jameson (1976) and Gillett and Miller (1974). The clones
(solutions whose fitness values differ by a pre-defined positive constant) were not al-
lowed in the main population for better dispersion of solutions. For improvements, LSP
consisting of nine neighborhood operators (see Table 5) was applied instead of using
any conventional mutation operator. Each iteration of the LSP scans all possible pairs
of two distinct tasks (nodes), successively implements moves and stops with the first
improvement. The current solution is updated and the next iteration is continued. The
LSP stops when no further improvement can be made. They compared the performance
of this hybrid GA on the instances of Christofides et al. (1979) against 10 TS methods
and the best SA algorithm published for the CVRP at that time. The results were out-
standing indeed; this hybrid GA surpassed most TS algorithms in terms of the average
solution cost and became the best solution method for the 20 large instances created by
Golden et al. (1983).

GA3: Alba and Dorronsoro (2004) utilized the cellular Genetic Algorithm (cGA), a sub-
class of GA in which individuals interact only with their neighbors, to solve the VRP.
A solution was represented as a permutation of c + k − 1 integers [0 . . . (c+ k − 1)],
where c and k are the number of customers and vehicles, respectively (see Figure 26).
For crossover operation, they used Edge Recombination operator (ERX) [Whitley et al.
(1989)], which builds a child solution by preserving edges from both parents. The
mutation operator consists of three neighborhood operators: insertion, swap and in-
version. These operators were applied to each gene with equal probability. In this
work, they also added a local post optimization stage in which 2-opt and λ-interchange
were applied to all members of the population after each generation. These ideas were
tested on the problems taken from an online OR library (http://people.brunel.ac.uk/ mas-

49

1 If u is a client node, remove u then insert it after v.
2 If u and x are clients, remove them then insert (u, x) after v.
3 If u and x are clients, remove them then insert (x, u) after v.
4 If u and v are clients, swap u and v.
5 If u, x and v are clients, swap (u, x) and v.
6 If (u, x) and (v, y) are clients, swap (u, x) and (v, y).
7 If T (u) = T (v), replace (u, x) and (v, y) by (u, v) and (x, y).
8 If T (u) 6= T (v), replace (u, x) and (v, y) by (u, v) and (x, y).
9 If T (u) 6= T (v), replace (u, x) and (v, y) by (u, y) and (x, v).

Note: u & v are distinct tasks (nodes) and x & y are successor nodes
of u and v, respectively. T (u) and T (v) are trips of u and v, respectively.

Table 5: Neighborhood operators in GA2

tjjb/jeb/info.html). The results were very clear; local search operators greatly improved
the performance of cGA. The cGA with only 2-opt significantly reduced the overall
cost on all instances, but could not find the best known solutions. It was λ-interchange
that helped cGA reach at the optimum solutions. The experiments also indicated that
CGA2o1i (cGA with 2-opt and 1-interchange) was better than cGA2o2i as it achieved
the similar results in lesser computational time. They also compared the performance
of cGA2o1i with some classical VRP algorithms: saving, sweep, 1-petal, 2-petal, TS
[Rochat and Taillard (1995)], GA [Prins (2004) and Berger and Barkaoui (2003)] and
Ant Colony Optimization [Bullnheimer et al. (1999) and Reimann et al. (2004)]. It was
seen that TS, Prins’ GA and cGA2o1i outperformed other algorithms on all the studied
instances.

4 5 2 10 0 3 1 12 7 8 9 11 6

Trip splitters

Figure 26: Representation of solution in GA3 (10 customers)

The Figure 26 shows a sample solution string with c = 10 and k = 4 as coded in (GA3).
The customers have been represented by numbers [0 . . . c − 1]. The integers greater
than (c− 1) represent trip delimiters that belong to the range [c . . . c+ k − 2].

50

GA4: Nazif and Lee (2012) proposed a GA, which uses an optimized crossover operator
designed by a complete undirected bipartite graph, to solve the CVRP. The solution was
represented as an integer string. The optimized crossover operation, originally proposed
by Aggarwal et al. (1997) for the independent set problem, works as follows:

step 1 : Given two parents P1 and P2, an undirected bipartite graphG = (U ∪ V,E1 ∪ E2)
is constructed, whereU = (u1, u2, . . . , un) represents customers, V = (v1, v2, . . . , vn)
represents nodes, E1 & E2 represent the arc sets in which, (uj, vi) ∈ E1 if cus-
tomer j of P1 is located at node i and (uj, vi) ∈ E2 if customer j of P2 is located
at node i.

step 2 : All perfect matchings representing temporary off-springs are determined in G
(several efficient matching algorithms can be found in the work of Ahuja et al.
(1993)).

step 3 : A temporary offspring having the least objective function value is selected as a
O-child (Optimum child).

step 4 : An E-child (Exploratory child) is created as ((P1 ∪ P2) − child) ∪ (P1∩ P2).

For mutation, inversion and swap operators were applied with equal probability. In ad-
dition, clones were replaced by uniformly randomly generated solutions while filling the
new population. The algorithm was tested on problem instances from the benchmark of
Christofides et al. (1979) and Taillard (1993). On Christofides’ instances, the algorithm
retrieved the best known solutions for most cases. The deviation from the best known
was always under 0.7435 %. On 5 cases of Taillard’s instances, the algorithm found the
best known solution available at that time. In addition, the algorithm improved the best
known solution by 0.0018% on one instance.

MA1: Nagata and Bräysy (2009) suggested a MA, enhanced by Edge Assembly Crossover
(EAX) operator and well-known local searches, for the CVRP. They also designed an
efficient modification algorithm to convert an infeasible solution into a feasible one.
The main ingredient in their approach was the EAX operator. In the first step of EAX,
two parents are selected and a graph is created that consists of uncommon edges be-
tween them. In the second step, cycles are formed on this graph by randomly selecting
a starting point and then alternately linking edges from the parent solutions. All edges
belonging to these cycles are deleted from the graph. This process is repeated until
all edges on the graph have been removed. The third step constructs, so called E-sets,
which are any combination of cycles formed in the previous step. Two strategies, called
single and block are applied. In the single strategy, one cycle is randomly selected that
form the current E-set. Whereas, in the block method, cycles sharing nodes with the

51

randomly selected cycle are also included in the E-set. Finally, in the fourth step, inter-
mediate child solutions are generated as follows. A parent (as the base solution) and an
E-set are selected. Then, all edges from the base solution that are also member of the
selected E-set are removed. Next, all common edges between the E-set and the other
parent solution are added to the base solution. In the fifth and the last step, disjoint
sub-tours are eliminated by merging them in random order with the routes connected to
the depot, using the 2-opt heuristic. In the local search phase of MA, 2-opt and (λ, µ)-
interchange neighborhood operators were employed. This Edge Assembly based MA
was found to be robust and competitive. It yielded new best solutions to 10 large-scale
benchmark instances (out of 12) of Golden et al. (1998) in reasonable computational
time.

SA1: Osman (1993) implemented SA algorithm to solve a VRP subjected to the distance
and capacity constraints. The SA structured by him was more involved and successful,
mainly due to the combination of following characteristics:

• Use of λ-interchange move: This operator first selects two routes together with
two subsets of customers (one from each route and of size less than or equal to
λ). A neighbour solution is then produced by exchanging the selected subsets.

• Beginning the search with a high quality solution found by means of Clarke and
Wright’s saving algorithm.

• Adjustment of the algorithmic parameters in the trial phase itself.

In addition, the cooling schedule was used in a more sophisticated way. It is decreased
only when the current solution is modified. Otherwise, the current temperature is ei-
ther halved or replaced by the temperature at which the current solution was obtained.
The algorithm yielded good solutions, but failed to identify the best known solutions
available at the same time period.

ALNS1: Pisinger and Ropke (2006a) presented a robust ALNS meta-heuristic, an im-
proved version of the Large Neighborhood Search proposed by Shaw (1998), to solve
VRPs and pickup & delivery problems with time windows. The ALNS itself consists of
several fast removal and insertion heuristics and was embedded into the framework of
SA algorithm. The main search begins with a solution found by any simple construc-
tion heuristic (e.g., sequential insertion). In each iteration of the main loop, a destroy
(or removal) heuristic and a repair (or insertion) heuristic are applied to the current solu-
tion for building a new one. Furthermore, the selection of destroy and repair heuristics
depends on their past performances. In fact, based on the quality of the new solution,
some weights are given to the heuristics that determine their selection probabilities (see
equation 2.2.2). They used the roulette-wheel selection method to choose heuristics.

52

The ALNS was applied on more than 350 benchmark problems containing up to 500
customers. It delivered a superb performance, improving the best known solution for
more than 50% of the problems. They also observed that the use of several competing
heuristics produced better results than the just one.

wi,j+1 = wi,j × (1− r) + r × πi
θi

(2.2.2)

In the equation (2.2.2), wi,j is the weight associated with heuristic i at jth segment of
the search. The πi is score of heuristic i obtained during the last segment of the search,
r is a reaction factor and θi counts the number of times heuristic i was used.

VND1: Chen et al. (2010) designed Iterated Variable Neighbourhood Decent (IVND)
algorithm for solving the CVRP. Firstly, an initial solution s is built by the saving al-
gorithm of Clarke and Wright (1964). Then, the solution s is improved by a VND
procedure. Once a local optimum solution s∗ is found, the VND procedure is stopped
and s∗ is perturbed to obtain a new solution s′. From the solution s′, a new VND proce-
dure is started to obtain a new local optimum s

′∗. The acceptance of s′∗ as s∗ depends
on its quality and the search history. If the best solution does not improve after a pre-
determined number of iterations, then the best found solution is set as s∗ and the above
procedure is repeated. Otherwise, reminiscent SA criteria is used to update s∗. In the
VND procedure, four operators: relocate, swap, 2 − opt and 2 − opt∗, were used. To
restrict the neighbourhood size, the concept of Granular neighbourhood [Toth and Vigo
(2002)] was applied. For perturbation, cross-exchange move [Taillard et al. (1997)]
was used. The IVND algorithm was applied on 14 VRP instances of (Christofides
et al., 1979) and 20 large scale problems by Golden et al. (1998). On Chhristofides’
instances, IVND found more best known solutions than the general heuristic of Pisinger
and Ropke (2006a). The algorithm produced an average relative percentage deviation
(RPD) of 0.12 from the best knowns. For large scale problems, the proposed IVND
found the best known solutions to 3 problem, giving an average RPD of 0.67.

ACO1: Bell and McMullen (2004) tackled the VRP, using ACO algorithm in which an
ant simulates a vehicle and its route is constructed by incrementally selecting customers.
To select the next available customer j, an ant uses the equation 2.2.3.

j = argmax
{

(τiu) (ηiu)
β
}

u /∈Mk, q ≤ qo (2.2.3)

Where, τiu is equal to the amount of pheromone on the path between the current lo-
cation i and possible locations u. The value ηiu is defined as the inverse of the dis-
tance between two customer locations and the parameter β establishes the importance
of distance in comparison to pheromone quantity in the selection algorithm (β > 0).

53

Locations already visited by an ant are stored in the ants working memory Mk and are
not considered for selection. The value q is a random uniform variable in [0,1] and the
value qo is a parameter. When each selection decision is made, the ant selects the arc
with the highest value from equation 2.2.3 unless q is greater than qo. In this case, the
ant selects a random variable (S) to be the next customer to visit based on the proba-
bility distribution of pij (equation 2.2.4), which favors short paths with high levels of
pheromone:

pij =

{
(τij)(ηij)

β∑
u/∈Mk

(τij)(ηij)
β j /∈Mk

0 otherwise
(2.2.4)

Once the capacity constraint is satisfied, the ant returns back to the depot. This selection
process is continued until all customers have been visited. For further improvements,
pheromone trails are updated by the equation 2.2.5.

τij = (1− α)× τij + α× τo (2.2.5)

Where, α is a parameter that controls the speed of evaporation and τo is equal to an
initial pheromone value assigned to all arcs in network graph. In this work, τo is set
equal to L−1 (L is the best known route distance found for the particular problem).
Furthermore, 2-opt heuristic is also applied to each vehicle route for attainment of better
solutions. Another improvement strategy applied in this work is the use of candidate list
for determining the next location to be added in a vehicle route. Only a set of closet
locations are made available for selection. The algorithm was applied to 3 problems
[Christofides et al. (1979)], and was found to be able to generate solutions within 1% of
the optimum solution.

2.2.2 Multi-objective CVRP

MOEA1: Murata and Itai (2005) conceived an idea of Two-fold NSGA-II for optimiz-
ing two conflicting VRP objectives: minimization of the maximum driving duration and
the number of vehicles, in periods when demands suddenly surge up (e.g., festive sea-
sons). Firstly, trade-off solutions were obtained for the normal demand problem (NDP).
Then, the high demand problem (HDP) was solved, using trade-off solutions of the NDP
in the initial population. In NSGA-II, they applied cyclic crossover[Oliver et al. (1987)]
and following two kinds of mutation operators:

• Split: In the split mutation, an offspring is sub-divided into new vehicle routes by
randomly changing positions of the splits (trip delimiters).

54

• Order: In the order mutation, a route is selected and the order of customers is
reversed.

They also defined a solution similarity measure to compare the non-dominated solutions
of HDP and NDP. The two-fold approach produced higher similarity on a data set con-
sisting of 5 customers for the NDP and 10 customers for the HDP, thereby reduced the
efforts to make changes in the normal routing plan.

MOEA2: Tan et al. (2006) solved a multi-objective truck-trailer CVRP for a logistic
company in Singapore. The aim was to design an effective routing schedule so that the
overall distance and the number of trucks could be minimized while satisfying some
constraints, such as time window and availability of the trailers. To solve the prob-
lem, they hybridized the standard MOEA with a LSP. A solution string was coded as
a variable-length chromosome representing the complete routing plan (Figure 9). It in-
cludes tasks placed in their processing order and the number of routes. In the LSP, all
routes in which the number of tasks is below a pre-defined threshold value are randomly
grouped into pairs. After this, all tasks in each pair are combined to form a new route
that is sorted in ascending order by the earliest service time. The infeasible tasks are
stored in an outsourced list. Another novelty in their approach was the use of specialized
genetic operators:

• Route exchange crossover: It consists of two simple and independent steps as
shown in the Figure 27: (1) two randomly selected routes (one from each parent)
are swapped and (2) routes with the highest number of tasks from each parent
are swapped. In the Figure 27 showing route exchange crossover process, lets
say randomly selected routes are 1 & 2 and routes 3 & 4 contain the maximum
number of tasks in the chromosomes 1 & 2, respectively.

Chromosome 1

 Chromosome 2

route 1

route 2

route 3

route 4

Figure 27: Route exchange crossover in MOEA2

• Multi-mode mutation: Two modes of operations were used and one of them was
selected (with equal probability) to mutate an offspring. The first operation ran-
domly selects two routes and concatenates them. In the second method of mu-
tation, the sequence containing all the outsourced tasks is considered as a new
route.

55

This hybrid multi-objective evolutionary algorithm (HMOEA) performed better than
two of its variants, i.e., STD_MOEA (MOEA with standard genetic operators: cycle
crossover and remove & insert mutation operation) and NH_MOEA (MOEA without
local search) on various test cases with the different number of tasks. The HMOEA
was also found to be computationally efficient in finding good Pareto solutions for the
truck-trailer VRP.

MOEA3: Jozefowiez et al. (2006) solved the CVRP on an undirected graph, minimiz-
ing the overall tour length and the route balance (length difference between the largest
route and the smallest route). To jointly optimize these two objectives, they proposed
an enhanced version of the NSGA-II by adding two mechanisms into its framework:

• Elitist diversification: It maintains an additional archive, which contains poten-
tially Pareto optimal solutions when one objective is maximized. These solutions
are included into the main population at each generation to improve the explo-
ration capability of the algorithm.

• Parallelization: The parallelization was done by means of a ring-network based
island model, a network topology in which each node is connected with exactly
two other nodes. The aim of parallelization was not to reduce computational time,
but explore larger part of the search space in a given time.

Other features include the use of Route Based [Potvin and Bengio (1996)] & Split
[Prins (2004)] crossover operators and Or-opt/2-opt local search methods as mutation
operators. Nevertheless, when a generation corresponds to the communication phase,
crossover and mutation are not performed. Instead, an island receives the top 50 % of
solutions (according to the ranking and crowding distance sort, of the population after
the selection phase) from each neighbor. These solutions form the child population. The
computational experiments carried out on the benchmark problems of Christofides et al.
(1979) showed that the elitist diversification significantly improved the performance of
NSGA-II when one processor was used. In the case of more processors, the algorithm
performed quite well without the elitist diversification as parallelization alone was ca-
pable of approximating a better Pareto set.

MOEA4: Jozefowiez et al. (2007) designed a Unified Tabu Search [Cordeau et al.
(2001)] based multi-directional Pareto local search, named Target Aiming Pareto Search
(TAPaS), for the capacitated VRP with route balance (CVRPRB). The TAPaS was em-
ployed for improving the quality of the approximate Pareto set generated by NSGA-II.
For each local search, a different goal point is set to explore different parts of the search
space. The local search loop is terminated when it either reaches at the goal point or
finds a solution that dominates the goal point. To establish the effectiveness of this idea,

56

they first compared the performance of TAPaS against NSGA-II on the benchmarks
of Christofides et al. (1979) using the S-metric [Zitzler and Thiele (1999)]. To do so,
the initial population for NSGA-II was generated by a greedy algorithm and the non-
dominated solutions of this population were used as a starting Pareto set for TAPaS.
It was seen that TAPaS-std (with standard UTS) and TAPaS-dp (UTS with two diver-
sity penalties: length and balance) outperformed NSGA-II on average three and four
times, respectively. On the other hand, observations on the C-metric [Zitzler and Thiele
(1999)] confirmed that TAPaS improved the convergence ability of NSGA-II towards
the optimal Pareto set. Whereas, NSGA-II alone was found to be better in generating
well-diversified sets.

MOEA5: Pasia et al. (2007) also utilized the idea of Pareto local search to address
the CVRPRB. The algorithm constitutes of just two phases: the initialization of a set
of trade-off solutions and the Pareto local search. In the initialization phase, a pool of
solutions is created by a randomized saving algorithm. Thereafter, the 2-opt heuristic
is applied to each member of this pool in order to balance the artificially bounded so-
lutions. Before beginning the local search phase, a Pareto set is constructed from this
pool by removing all the dominated solutions. A Pareto local search (P-LS) designed by
Basseur et al. (2005) is then implemented in the second phase on each non-dominated
solution. The P-LS utilizes three neighborhood structures, namely, move, swap and
2-opt. Moreover, 2-opt is always applied after performing either move or swap to the
affected partial tours. A set of seven CVRP benchmark instances of Christofides et al.
(1979) was used to compare the performance of P-LS algorithm with an enhanced ver-
sion of the NSGA-II developed by Jozefowiez et al. (2006). The box plots of three
unary quantitative measures – hypervolume, unary epsilon and R3 indicator – demon-
strated that the median values found by the P-LS were better than those obtained by the
NSGA-II.

MOEA6: Jozefowiez et al. (2009) again employed the same elitist diversification and
parallelization methods to propose a standard MOEA for the CVRPRB. However, the
co-operative model in this work was a two-dimensional toroidal grid instead of a ring,
as depicted in the Figure 28. An island has been denoted by I ij , which means that it
belongs to the ith brick and its additional archive is of Aj type. The main loop of an
island algorithm consists of four steps: communication, selection, recombination and
archives update. In the communication phase, an island I ij sends its standard archive
(Ao) to all neighbors: I ij−1, I

i
j+1, I i−1j and I i+1

j . But, it communicates Aj archive to
only I i−1j and I i+1

j . The selection phase itself consists of several steps: ranking [Deb
et al. (2002)], sharing [Goldberg and Richardson (1987)], fitness calculation and sorting
according to the fitness values. After sorting solutions, half of the mating pool is filled
by solutions of the current population and rest half by the solutions belonging to Ao and
Aj . Following this, recombination (with route-based and Split crossover operators) and

57

Figure 28: Co-operative model in MOEA6

mutation (by 2-opt) are performed to yield child solutions and finally archives (Ao&Aj)
are updated. In case, the size of an archive exceeds from a predetermined limit, it
is reduced by a clustering method, so called average linking method [Morse (1980)].
Similar to the prior work, the S-metric was used to asses the contribution of the elitist
mechanism on the CVRP benchmarks of Christofides et al. (1979). It was noticed that
the elitist diversification technique was always able to improve the quality of the final
Pareto set.

NPM1: Corberán et al. (2002) addressed a school bus routing problem with the aim
to optimize two conflicting objectives, namely, minimization of the number of buses
and minimization of the maximum time a student spends in the bus. They modelled
the problem as a node routing, created a composite objective function (weighted combi-
nation of the individual objectives) and applied the Scatter Search (SS) meta-heuristic.
The SS was equipped with four effective features:

First Clustering & sector based heuristics H1 & H2: The H1 is based on a clustering
mechanism, which keeps the nodes assigned to each cluster ordered. Initially,
all nodes are served alone on separate routes. Then, at each iteration, the best
pair of routes (one with the minimum traveling time between the two routes) are
merged. Instead of considering all possible pairs of routes, an ordered candidate
list is maintained that stores the top pairs of routes. On the other hand, H2 works
on building sectors around nodes/locations (see Figure 29). The size of a sector is
predefined by an input parameter (Angle). First, the location with largest traveling
time (tm) to school is selected and a sector is built around it. The next location
to be assigned is randomly selected from a pool of unassigned locations with
traveling time to school larger than or equal to tm× α, where α is a user defined
parameter. A chosen node is assigned to the current sector if the assignment is
feasible; otherwise, a new sector is created around it.

58

school

Figure 29: Definition of a sector

Second Swap exchange: It tries to locally optimize the length of a route by swapping
positions of two vertices. If the length is reduced, then positions are exchanged.
The procedure stops when no more reduction is possible.

Third Insert exchange: This mechanism is applied to the longest route only. It re-
moves a node from its current route and feasibly inserts into another route, which
contains one of its nearest neighbors. The node to be removed is carefully chosen
such that its removal could bring the maximum decrease in the length of the route.

Fourth Combine: This procedure generates new solutions from the combination of
two existing solutions. It begins with building a match matrix, which contains
the number of common elements between routes of the solutions. Afterwards, a
voting mechanism is used to create a new combined solution.

A real data set of 16 middle schools (Burgos, spain) was used to check the performance
of this Scatter Search. It produced an average improvement of 23.4% over the existing
solution at that time.

2.3 Arc-based Vehicle Routing Problems

In arc-based VRPs, locations of customers along streets are so dense that they can not
be clearly marked by points, as shown in the Figure 30. Therefore, the problem seeks
to design vehicle routes to service full streets rather than individual nodes. The network
graph can be of all three kinds: undirected, pure-directed and mixed. Some of the prac-
tical examples of such problems are: mail delivery, school bus routing, meter reading
and snow plowing. Among its several variants, this survey has been focused on its basic
model, that is, the capacitated arc routing problem (CARP).

59

Figure 30: Arc routing

2.3.1 Single-objective CARP

TS5: Hertz et al. (2000) suggested the first TS based algorithm, called CARPET, for
an undirected CARP. The CARPET algorithm contains seven efficient procedures –
Shorten, Drop, Add, Paste, Cut, Switch and Postopt – that are applied to each route of
a solution one at a time. It is advised to see Hertz et al. (1999) and Hertz et al. (1997)
for the implementation details of Shorten, Drop, Add and Cut methods. The method
Paste first builds a single route by relaxing the capacity constraint and then calls the
Shorten procedure. The function Switch reverses the order of vertices present between
the two consecutive copies of another vertex that has appeared more than once in a
route. The Postopt method attempts to find a better solution by sequentially applying
Paste, Switch, Cut and Shorten methods. An initial solution for TS is constructed by
solving a Rural Postman Problem (RPP), using the heuristic proposed by Frederickson
(1979). The feasibility is maintained by the Cut method and neighborhood search is
performed by successively applying Drop & Add to routes of the current solution. The
CARPET was tested on 23 instances of gdb set [DeArmon (1981)] and 34 instances of
val set [Benavent et al. (1992)]. On DeArmon’s instances, it generated the best known
solutions 20 times, giving an average deviation of 0.17 %. Whereas, on Benavent’s
instances, it obtained 17 best known solutions while giving an average and the worst
deviations of 1.13 % and 8.110 %, respectively.

TS6: Brandáo and Eglese (2008) described a completely deterministic version of the TS
algorithm for an undirected CARP. Since the starting point in TS affects the quality of
the final solution; therefore, they designed five different types of fast methods – Cheap-
est edge, Dearest edge, Insert, Connected component and Path scanning – to produce
varieties of feasible initial solutions. In the Cheapest edge method, the construction of a
vehicle route begins with the required edge that is nearest to the depot. The next edge to
be added is the unassigned required edge, which is nearest to the end vertex of the last
inserted edge. In case there is more than one candidate, the method selects the cheapest
cost edge while breaking ties arbitrarily. The Dearest edge method works exactly in

60

the same way, but chooses the highest cost edge whenever a selection has to be made.
In the Insert procedure, the next edge to be inserted is the one that increases the route
cost by the least amount. Moreover, an edge can be inserted between any pair of edges
connected together by a dead-heading path. The Connected component procedure uses
a version of Frederickson’s heuristic [Frederickson (1979)] described in the work of
Pearn and Wu (1995) to build a solution. The path scanning is a well known heuristic
proposed by Golden et al. (1983) for the CARP. It uses five selection rules to determine
the next required edge:

rule 1 : Maximize the distance to the depot.

rule 2 : Minimize the distance to the depot.

rule 3 : Rule 1 if the vehicle is less than half-full, otherwise Rule 2.

rule 4 : Maximize the ratio d(e)/c(e), where d(e) and c(e) are the demand and the cost
of edge e, respectively.

rule 5 : Minimize d(e)/c(e).

The main search utilizes three neighborhood operators: single insertion, double inser-
tion and swap. In addition, at the end of each iteration, a route improvement procedure
is applied to further reduce the cost of the two individual routes that have been modified
during the main search to obtain a new solution. For each route, the least-cost visiting
order of required edges belonging to the route is formed using Frederickson’s heuristic.
With the assistance of these heuristics and the absence of random parameters, the al-
gorithm performed quite good against the CARPET on instances of gdb & val sets and
MA [Lacomme et al. (2004a)] on instances of gdb, val as well as egl set [Eglese (1994),
Li and Eglese (1996b) and Li and Eglese (1996a)].

GA5: Deng et al. (2007) solved a real-life directed CARP for designing routes of
sprinkler-cars for the sanitation department of Chongquing, China. They proposed a
GA to minimize the total travelled distance. Similar to most of the approaches of GA
to routing problems, a chromosome was encrypted as a sequence of tasks and the pro-
cedure Split was used to subdivide it into feasible car routes. The initial population
was completely filled by randomly generated solutions. The crossover operation was
performed by order crossover operator (OX) [Davis (1985)] and the mutation was done
by simply exchanging positions of two randomly selected tasks. In addition, they also
implemented a LSP consisting of five moves and a function restart, which restarts the
system from its beginning if the population does not change after a large number of
iterations. On a real data consisting of 37 vertices and 8 sprinkler cars having equal
capacity of 8 tons, computational experiments illustrated that this approach reduced the

61

per day travel distance by 33 % (from 95 Km to 64 Km), thereby resulted the overall
saving of 40,000 Yuan per year. They also compared the performance of this hybrid
GA with the MA proposed by Lacomme et al. (2004a). The MA obtained the lowest
objective value of 67 Km, consuming on average 29m 18s. On the other hand, GA took
only 11m 13s to obtain the best result of 64 Km.

GA6: A biased random key genetic algorithm (BRKGA) was proposed by Martinez
et al. (2011) for solving the CARP with the fixed vehicle fleet size. See Goncalaves and
Almeida (2002) and Ericsson et al. (2002) for details of BRKGA. A chromosome was
coded as a vector of random keys, each having a value in the interval [50, 200]. The
length of each random key vector is equal to the number of required arcs. A random
key vector is decoded as follows. First, it is sorted in an increasing order of the keys.
Mapping the ith-position in the chain with the position of the key in the ordered chain,
a sequence of positive integers is then obtained that represents the processing order of
required arcs. Finally, the tour partitioning procedure of Haimovich and Kan (1985)
is applied to obtain a complete CARP solution. Before applying genetic operators, all
random key vectors are sorted according to their fitness values and classified as Elite
individuals, Non-elite individuals and random key vectors that will be mutated. The
crossover operation is performed by parametrized uniform crossover method [Spears
and DeJong (1991)] between an Elite individual and a Non-elite one. In mutation, some
keys are replaced by new random keys, thereby producing a new solution. A local search
procedure is further applied to improve an offspring, following ideas of Beullens et al.
(2003). Furthermore, if the best found solution does not change after a certain number
of iterations, a new population is generated. Elite solutions are kept and new solutions
are generated to fill the new population. The BRKGA was tested on several instances
taken from Hirabayashi et al. (1992), Golden et al. (1983) and Benavent et al. (1992).
In 21 (out of 25) instances, the algorithm found the best known results. On other 4
instances, the gap was less than 4%.

MA2: Lacomme et al. (2004a) combined basic heuristic procedures with MA for solv-
ing an extended version of the CARP. The extension parts include the consideration of:
(a) mixed multi-graph with two kinds of links (edges and arcs) and parallel links, (b)
two distinct costs per link (dead-heading and collecting), (c) prohibited turns (e.g., U-
turns) & turn penalties (e.g., to penalize left turn) and (d) maximum trip length (an upper
limit on the cost of any trip). The MA search was started with a population consisting
of random chromosomes and the two good quality solutions generated by Path Scan-
ning and Augment Merge heuristic [Golden and Wong (1981)]. A solution was directly
coded as a sequence of tasks and Ulusoy’s tour splitting method [Ulusoy (1985)] was
used to obtain feasible trips. Other main features incorporate the use of order crossover
(OX)[Davis (1985)] and a LSP in the place of a simple mutation operation. The LSP
utilizes five different moves (see Table 6) and its working process is same as in Prins

62

(2004). The resulting best MA (with the optimum parameter setting) outperformed
heuristic techniques on the benchmark instances of gdb, val and egl sets. It found 26
new best solutions and retrieved the best known solutions on 55 problems. The obtained
results by the MA were also compared against those found by the CARPET algorithm.
This MA produced better results than the CARPET. For example, CARPET found 17
best solutions in an average running time of 63.87 seconds on val set. Whereas, MA
produced 32 best solutions in only 38.35 seconds.

1 Invert task u in T (u) if it is an edge task.
2 Move adjacent tasks (u, x) after task v, or before v

if v is the first task in T (v).
3 Swap tasks u and v.
4 2-opt moves

Note: u & v are distinct tasks and x & y are successor tasks of u
and v, respectively. T (u) and T (v) are trips of u and v, respectively.

Table 6: Neighborhood operators in MA2

MA3: Tang et al. (2009) proposed a variant of the MA, named Memetic Algorithm
with Extended Neighborhood Search (MAENS), for solving a mixed CARP. As the
name itself indicates, MAENS is equipped with a special local search operator, called
Merge-split (MS), for exploring a large number of neighbor solutions. The MS operator
chooses some routes of a solution and all tasks belonging to them are merged to form
an unordered list. After this, Path Scanning heuristic is applied to obtain an ordered list
of tasks and finally it is decomposed into feasible trips by Ulusoy’s heuristic. The MS
operator was used in a two phase local search procedure within MA. In the first phase,
the most commonly used moves for VRPs were employed (single & double insertion,
swap and 2-opt). Whereas, MS operator was applied in the second phase to the local
optima obtained in the previous stage. Other simple features of MAENS include the
use of sequence based crossover (SBX) [Potvin and Bengio (1996)] and the prevention
of clones in the population. The performance of MAENS was tested against CARPET
[Hertz et al. (2000)], VND [Hertz and Mittaz (2001)], Guided Local Search [Beullens
et al. (2003)], MA [Lacomme et al. (2004a)] and TS [Brandáo and Eglese (2008)] on
the CARP benchmark instances taken from gdb, val, egl and Beullens’ [Beullens et al.
(2003)] sets. It retrieved the best known solutions on 175 problems and discovered new
best solutions on 16 problems. Overall, MAENS was found to be superior in terms
of solution quality, but suffered from heavy computational burden, mainly due to the
implementation of MS operator.

MA4(EA+LSP): Xing et al. (2010) solved the extended capacitated arc routing prob-
lem, defined by Lacomme et al. (2004a), but considering both the multiple depot and

63

1 Invert arc u in T (u) if it is a bi-directional arc.
2 Move adjacent arcs (u, x) after arc v.
3 Move u after v.
4 Swap arcs u and v.
5 2-opt moves on one trip.
6 2-opt moves on two trips.

Note: u & v are distinct arcs and x & y are successor arcs of u
and v, respectively. T (u) and T (v) are trips of u and v, respectively.

Table 7: Neighborhood operators in MA4

the maximum service time. They named the problem Multidepot CARP(MCARP). An
individual solution is defined simply as a sequence of required arcs, without trip delim-
iters, and the Split procedure is applied to generate a valid MCARP solution (i.e, list of
required arcs with trip delimiters). The initial population is generated by Extended Ran-
dom Path-Scanning (ERPS) heuristic, Extended Random Ulusoy’s heuristic (ERUH)
and uniformly at random. The mating pool is formed by either binary tournament selec-
tion or rank selection method. The crossover operation is performed by OX and Linear
order crossover (LOX) operators. With some probability, an offspring undergoes a LSP
consisting of six moves (see Table 7). A move is probabilistically selected based on
its successful past performances and a fixed number of optional moves are produced.
Finally, the best move (in terms of the objective function value) is performed. After
this, Partial Replacement Procedure (PRP) [Lacomme et al. (2004a) and Cheung et al.
(2001)] is applied with five restarts, each having length 20, to all instances.

Phases Version 1 Version 2 Version 3
selection S1 S2 S2
Crossover S1+S3 S2+S3 S2+S4
Mutation S1+S3 S2+S3 S2+S4

Table 8: Operator selection strategies in MA4

The authors developed three different versions of the algorithm based on different strate-
gies for selection, crossover and mutation. See Table 8, where S1 is uniform selection
of different operators, S2 is empiristic selection of different operators adopting the ob-
tained heuristic data, S3 stands for uniform selection of one broken position and S4 rep-
resents empiristic selection of a broken position adopting the obtained heuristic data.
The algorithms were tested on 107 instances containing up to 140 nodes and 380 arcs
against the two extended heuristics (ERPS and ERUH). The computational experiments
showed that the performances of algorithms were greatly improved by integrating clas-

64

sical heuristics and heuristic information for choosing selection, crossover and mutation
operators. It was found that the Version 2 selects more appropriate operators than the
Version 1. The Version 3 outperformed others, giving a confidence degree of 0.95. The
Version 3 was also compared with the MA of Lacomme et al. (2004a) on 23 MCARP
instances. The Version 3 was significantly better with a confidence degree of 0.95.

MA5: Liu et al. (2013) proposed MA with ILS (MAILS) to solve the CARP on an
undirected graph. In addition to ILS, MAILS also incorporates a new crossover oper-
ator (LCSX: longest common substring crossover) and a perturbation mechanism. A
solution was represented as a permutation of required edge tasks and Ulusoy’s partition
procedure was used to convert it into a CARP solution (a set of feasible vehicle trips).
The LCSX operates on two parent solutions as follows. Firstly, the longest common sub-
string from one parent is copied to the offspring solution at the same position. Then,
the other parent solution is scanned from the beginning to the end to fill vacant slots
in the offspring with the missing tasks. The initial population consists of ps chromo-
somes. Among them, two chromosomes were constructed by Frederickson’s heuristic &
Path scanning method and (ps− 2) solutions were created randomly. All chromosomes
are stored in increasing order of cost. Each iteration of the main loop compromises of
following three major steps:

step 1 : Two off-springs are created using either LCSX or OX and one of them is ran-
domly selected as a child solution.

step 2 : With some probability, this child solution undergoes a LSP containing six
neighborhood moves (see Table 9). The LSP works in the similar fashion as
in Prins (2004) and also explores capacity infeasible solutions by operating on a
penalized cost function. The obtained solution after LSP is further improved by
the ILS if its cost is close enough to the best found solution.

1 Move task u after task v.
2 Move two adjacent tasks (u, x) after task v.
3 Swap tasks u and v.
4 Swap task u and (v, y)
5 Swap task (u, x) and (v, y)
6 2-opt move

Note: u & v are distinct tasks and x & y are successor tasks of u
and v, respectively. T (u) and T (v) are trips of u and v, respectively.

Table 9: Neighborhood operators in MA5

65

step 3 : Two solutions are selected from the population and the worst one is replaced
by the child solution. If the child solution is a clone of any other solution in the
population, then double swap perturbation is applied to it.

The main phase is restarted with a new population in which first, third, fifth, ..., (ps−
1)th old chromosomes are kept and others are replaced by randomly generated solu-
tions. This whole process is repeated for a predetermined number of times. The MAILS
was tested on gdb, val and egl instances. It found all 23 optimal solutions on gdb set,
best solutions on 30 instances (out of 34) of val set and 17 (out of 24) large instances of
egl set. It also discovered two new best solutions on the egl set.

VND2: Hertz and Mittaz (2001) reported the use of VND algorithm for the undirected
CARP. In the first neighborhood, a solution is generated by moving a required edge
(u, v) from its current route (T1) to another one (T2). Route T2 contains either only
the depot or a required edge whose one of the end points lies within a predetermined
limiting value from u or v. The insertion of (u, v) into T2 is performed only if the
capacity constraint does not violate. The removal of (u, v) from T1 and insertion into
T2 are performed using Drop and Add procedures described in the work of Hertz et al.
(1999). Furthermore, for obtaining a neighbor solution in other neighborhoods, a set of
routes of the current solution is merged into a single tour and the procedure Switch is
applied to it for making an ordered list of required edges. Then, the method Cut divides
this tour into feasible routes that further undergo the Shorten process. The algorithm was
tested against CARPET on the three sets of CARP instances: gdb, val and the set created
by Hertz et al. (2000). On gdb instances, both algorithms were able to generate the
proven optima for 18 out of 23 instances. On val set, both algorithms produced almost
similar results, but VND was faster. On the instances proposed by Hertz et al. (2000),
VND surpassed CARPET in terms of solution quality and computing time as well. The
average deviations from the lower bound (of optimum value) and computational times
on 270 instances were 0.71% & 349 seconds for the CARPET and 0.54% & 42 seconds
for VND algorithm.

VNS1: Polacek et al. (2008) solved a CARP with intermediate facilities (IFs), which
serve as the loading/unloading points for vehicles. An example of the IF that has also
been cited by them is the rivers at special dump sites where vehicles dump snow during
the plowing operations. They applied a basic version of the VNS algorithm, proposed
by Hansen and Mladenovi (2001), to minimize the travel cost of vehicles. To provide a
feasible initial solution for the VNS, a giant tour was created and Ulusoy’s heuristic was
implemented to obtain vehicle trips. Furthermore, cross-exchange operator [Taillard
et al. (1997)] was used to define a neighborhood of the current solution in the shaking
phase. It takes two segments of different routes and exchanges them while preserving
the orientation of the selected sequences. A solution obtained through the shaking is

66

sent to a LSP, which re-optimizes the two routes that have changed. A simple inversion
operator was adopted for the local search; however, inverting was done for all combi-
nations of successive serviced edges of a tour. The obtained candidate solution after
the shaking and the local search is straightforward accepted if it is better. Otherwise,
it is accepted only if its objective function value deviates from the best found solution
value by a pre-determined fixed threshold. The VNS yielded excellent results on four
data set (two of them include the extension of IFs) adopted from literatures. On egl and
val sets, it outperformed MA of Lacomme et al. (2004a). In fact, 17 new best solutions
were found on the egl set. On the instances of Belenguer and Benavent (2003), the VNS
found 4 new best solutions and reproduced all other 30 best known solutions. For the
CARPIF instances, the VNS found 23 new best solutions. Furthermore, it improved all
28 solutions for the CLARPIF (CARPIF with route length constraint) of Ghiani et al.
(2004). Overall, it could find the best known solutions for 120 instances and discovered
new best solutions for 72 cases.

GRASP1: The GRASP meta-heuristic was used by Usberti et al. (2011) in conjunction
with the Path-Relinking (PR) algorithm to solve the undirected CARP. The objective
was to minimize the overall tour cost. Some impressive features of this integrated ap-
proach are:

• reactive parameters tuning, where parameters are stochastically selected while
being biased towards those values, which produced the best solutions in average.

• statistical filter, which allows a solution to undergo the local search only if the
confidence probability (see equation 2.3.1) of obtaining a better solution than the
best one is minimum 95 %. In the equation (2.3.1), cini and cbest are costs of the
candidate solution for the local search and the best found so far, respectively. The
µ equals to the average ratio of cini/cls of the first 100th iterations, where cls is
the local search solution cost. Similarly, σ is the standard deviation of the ratio
cini/cls of the first 100th iterations. The right hand side of the equation (2.3.1)
gives a confidence interval of slightly more than 95 %.

cini
cbest

≤ µ+ (2× σ) (2.3.1)

• infeasible local search, where high quality infeasible solutions are used to explore
the feasible/infeasible boundaries of the solution space.

• evolutionary PR, where the pool of elite solutions is progressively improved by
successive re-linking of pairs of elite solutions.

For the local search, three operators: swap+reversal, single insertion + reversal, double
insertion + reversal, were employed. A block-insertion operator, which removes a block

67

of adjacent required edges and inserts at another position, was used to generate solutions
in PR. This whole idea was tested on 81 instances adopted from gdb, val and egl sets. On
comparing results with TS [Brandáo and Eglese (2008)], VNS [Polacek et al. (2008)]
and ACO [Santos et al. (2010)], it was found that this hybrid algorithm achieved the
best overall deviation from the lower bounds and also obtained the highest number of
best solutions.

ACO2: Santos et al. (2010) presented an improved ACO algorithm for the CARP. It
has five basic steps: (1) Generation of initial population: the initial population contains
complete CARP solutions. Three heuristics, namely, random arc selection, path scan-
ning with ellipse rule and path scanning with ellipse rule & a local search heuristic, were
tested to generate the initial population. The initial population is used to determine the
initial pheromone values on paths joining required arcs., (2) Generation of single net-
work tours: each ant generates a single network tour servicing all required arcs (using
pheromone update strategies of Bullnheimer et al. (1999) & Lacomme et al. (2004b))
and decision rules. Two decision rules were tested. The first one is a pseudo-random-
proportional-rule, in which the attractiveness of moving between required arcs depends
on the amount of pheromones determined by local heuristic information which is usually
a function of distance between arcs. In the second rule, some ants make their decisions
based on only pheromone amounts and others consider both pheromone amounts and
local heuristic information. Which strategy to use is decided randomly., (3) Generation
of feasible routes: Ulusoy’s heuristic was used to decompose a single network tour into
feasible routes., (4) Improvement of feasible routes: to improve feasible routes identified
in the previous stage, a local search procedure consisting of 12 moves was applied., (5)
termination of algorithm: steps 2-4 are repeated until either the maximum number of
iterations is reached or the lower bound has been attained.

The algorithm was tested on 181 CARP instances taken from DeArmon (1981), Be-
navent et al. (1992), Belenguer and Benavent (2003) and Beullens et al. (2003) against
the best five CARP algorithms available at that time: GLS [Beullens et al. (2003)],
MA [Lacomme et al. (2004a)], BACO [Lacomme et al. (2004b)], VNS [Polacek et al.
(2008)] and TS [Brandáo and Eglese (2008)]. Overall, this ACO algorithm identified
95% of the best known solutions. Whereas, GLS, VNS, TS, MA and BACO retrieved
90%, 86%, 80%, 74% and 58% best known solutions, respectively. Furthermore, this
ACO algorithm could also generate 14 new best known solutions for the 181 problems.

2.3.2 Multi-objective CARP

MOEA7: Lacomme et al. (2006) solved a bi-objective CARP, using the framework of
NSGA-II. One of the objectives was the minimization of the overall tour cost. While,

68

the other was the minimization of the makespan, which is defined as the cost of the
longest trip. A chromosome was represented as a list of tasks without trip delimiters
and the procedure Split was implemented for deriving a set of least-cost vehicle tours.
Furthermore, solutions computed by the well-known heuristics, namely, Path Scanning,
Augment-Merge and Ulusoy’s heuristic, were included in the initial population to speed
up the convergence of NSGA-II. Taking advantage of permutation chromosomes, OX
operator was utilized for recombination. The mutation operation was performed by a
LSP, which operates in the same way as in Prins (2004), but employs only two moves
(remove & insert and 2-opt). In addition, four different acceptance criterion: based on
the cost (LS1), makespan (LS2), Pareto dominance (LS3) and weighted sum method
(LS4), were suggested to update the current solution while performing the local search.
They prepared 8 versions of the algorithm, called MO2-MO9, based on the number of
iterations and types of local search (see Table 10). A basic version, called MO1 (NSGA-
II without local search), was selected as a reference algorithm. The performances of
MO2-MO9 were tested on three sets (gdb, val and egl) of the classical CARP instances
against the MO1, using µ(F,R) measure proposed by Riise (2002) for comparing a
Pareto front F with a reference Pareto front R. On the gdb set, MO9 gave the minimum
normalized µ value of -6.53 unit (sum of the signed distances between the solutions of
the Pareto front F generated by MO9 and their projections onto the etrapolated reference
front R created by MO1). On the val set, MO7 was the best in terms of the normalized
µ value. Whereas, on the egl set, MO5 had a slightly better normalized µ value than
MO9. The algorithms were also found to be competitive vis-à-vis the state-of-the-art
meta-heuristic CARPET. The results on the gdb set showed that MO9 was very robust
as its worst deviation to the lower bound on the cost (LB1) was 2.23 % vs. 4.62 % for
CARPET. No total cost established by MO9 was improved by other versions. On the
val set, MO4 -MO9 outperformed CARPET in terms of LB1. On the set, all versions
except MO1 and MO3 outperformed CARPET with regard to LB1. MO9 was even able
to improve two best known solutions.

NPM2: Mei et al. (2011) put forward D-MAENS (Decomposition-based Memetic Al-
gorithm with Extended Neighbourhood Search) for a bi-objective CARP. The targeted
objectives were minimization of the total cost of all the routes and the makespan. In
the D-MAENS approach, the original multi-objective problem is decomposed into sev-
eral single-objective problems, using the weighted sum method with a set of uniformly
distributed weight vectors. A population X of solutions whose size equals the number
of sub-problems is maintained throughout the search. Each solution in the population
X represents a unique sub-problem. For each sub-problem, a sub-population is created.
Two solutions are randomly selected and the crossover and local search operators of
MAENS [Tang et al. (2009)] are applied to produce one child solution. A child popula-
tion Y is formed by generating child solutions for all sub-problems. After this, X and
Y are combined and decomposed into several fronts of dominance as in NSGA-II. A

69

Version Iterations LS type LS location
MO1 100 None Irrelevant
MO2 100 LS1 On children, rate 10%
MO3 100 LS2 On children, rate 10%
MO4 100 LS3 On children, rate 10%
MO5 200 LS3 On children, rate 10%
MO6 100 LS4 On children, rate 10%
MO7 200 LS4 On children, rate 10%
MO8 100 LS4 Periodic, every 10 iterations
MO9 200 LS4 Periodic, every 10 iterations

Table 10: Different versions of NSGA-II in MOEA7

new population is then formed for the next generation. The D-MAENS was tested on
three well-known CARP benchmark sets: gdb, val and egl sets, against NSGA-II and
the MOEA-9 version (LMOGA henceforth) of Lacomme et al. (2006). On the ID met-
ric (distance from reference Pareto set), D-MAENS produced significantly better results
than the others on 71 out of the total 81 instances. On gdb1 and gdb19, D-MAENS and
LMOGA reached the minimal value 0 of ID. In terms of 4 [Deb et al. (2000)] metric,
D-MAENS was better than the NSGA-II and LMOGA on 10 gdb instances, 25 val in-
stances and 5 egl instances. It was also found that D-MAENS achieved larger value of
the hyper-volume measure on 18 gdb instances, 32 val instances and 22 egl instances.
The LMOGA was superior on gdb instances, but the NSGA-II could not surpass others
on any instance.

NPM3: Grandinetti et al. (2012) tackled a multi-objective undirected CARP, optimiz-
ing three conflicting objectives at the same time. The considered objectives were mini-
mization of transportation cost, makespan (cost of the longest route) and the number of
vehicles. They approached the problem by ε-constraint method, considering the third
objective (minimization of the number of vehicles) as a parameter of the optimization
procedure. The proposed optimization algorithm consists of following four stages:

stage 1 Populate Ω: The generation of a set of feasible solutions (Ω) in the first stage
was accomplished with the aid of three heuristics: path scanning with an ellipse
rule [Santos et al. (2010)], Deterministic TS [Brandáo and Eglese (2008)] and
ILS. In the ILS, the initial solution is created randomly and the local search con-
tains three inter-route moves: Add, Switch and Remove. The method Add re-
moves a required edge from its current route and inserts into any other route.
Whereas, the function Remove inserts into the least-cost route. The Switch is the
swapping mechanism of two randomly selected required tasks.

70

stage 2 Optimizefirst: In the second stage, Optimizefirst solves a mixed integer lin-
ear model in which the transportation cost is minimized while considering the
makespan as a constraint.

stage 3 Optimizesecond: Likewise, Optimizesecond minimizes the makespan while fix-
ing an upper limit on the cost function.

stage 4 Dominance (Ω): Finally, Dominance(Ω) returns all the non-dominated solu-
tions by removing the dominated individuals from Ω.

The algorithm was run for each possible value of the number of vehicles and the two
optimization models were solved by CPLEX ILOG 10.1. They tested the performance
of this ε-constraint method against the NSGA-II of Lacomme et al. (2006). On gdb
set, in about 57% of the problems, the number of non-dominated solutions was higher.
The average improvements of the makespan and routing cost objectives were equal to
9.75% and 1.21%, respectively. On val set, in 10 (out of 33) problems, the minimum
routing cost established by the NSGA-II was improved. However, obtained values of
the makespan on this dataset were mostly worse. On egl set, in majority of the instances,
the number of trade-off solutions was higher and the lowest value of the routing cost on
the approximated Pareto front was better.

2.4 Mixed General Routing Problems

A general VRP that seeks to design vehicle routes on a mixed graph for servicing full-
streets and specific spots both falls into the class of mixed general routing problems
(MGRPs). Under the capacity constraint, the MGRP can be termed as the Mixed Ca-
pacitated General Routing Problem (MCGRP). It is an integrated form of node and
edge/arc routing problems, as represented in the Figure 31. The newspaper delivery
and urban waste collection are typical examples of such problems. The network graph
consists of all three entities: nodes, edges and arcs.

2.4.1 Single-objective MCGRP

HA5: Pandit and Muralidharan (1995) first addressed the MCGRP, routing a heteroge-
neous set of vehicles over specified segments and nodes of a street network under the
capacity and route duration constraints. The problem was denoted as the Capacitated
General Routing Problem (CGRP). They formally defined the CGRP and designed a
route-first partition-second based heuristic algorithm for solving it. Firstly, a condensed

71

Figure 31: Mixed routing

network graph G1 is formed using nodes, edges and arcs that need to be visited. Next,
the disconnected components of the sub-graph G1 are joined together by finding a min-
imum spanning tree (MST) between these components. Once the MST is formed, the
direction of arcs are restored and the graph G1 is augmented with the links of MST.
The restoration of direction on arcs may create zero in-degree or zero out-degree nodes
on the connected graph G2. To make G2 a strongly connected graph, additional links
are added to it such that there is a path between each pair of vertices. They devised
a fast heuristic procedure that uses Tarjan’s algorithm [Eswaran and Tarjan (1987)] to
find strongly connected components. Finally, the strongly connected sub-graph is con-
verted into an Eulerian graph which produces a tour. This Eulerian tour is partitioned
into vehicle routes. They tested the performance of this heuristic algorithm on randomly
created test instances from curb-side waste collection in residential areas on a network
with 50 nodes and 100 links. They also investigated the robustness of proposed method
on random instances of the Capacitated Chinese Postman Problem for which they had
two lower bound procedures. From computational experiments, they observed: (1) As
the percentage of directed arcs increases, the ratio of the solution to the lower bound in-
creases and (2) the solution value also increases as the number of directed arcs increases
because the distance to reach some of the nodes/arcs from the depot increases. They in-
tegrated their solver in a micro-computer based interactive route planning system.

HA6: Gutiérrez et al. (2002) solved a homogeneous fleet version of the CGRP stud-
ied by Pandit and Muralidharan (1995) under the given number of vehicles. However,
the problem was titled as CGRP-m (CGRP on mixed graphs). They devised a heuris-
tic procedure, which constructs vehicle routes sequentially. Firstly, for each required
task, the algorithm finds the minimum cost route joining the required task with the de-
pot. A largest route is selected and demands are added to this route according to the
following preferences: (1) the nearest required element without violating the capacity
constraint, (2) demands corresponding to required elements traversed by the route but
with demands not inserted yet and (3) if the loaded demand is not greater than 0.9W (W:
vehicle capacity), it tries to insert demands corresponding to required elements that are

72

very close to the route. The next largest route is selected and demands are added in the
same fashion. This process is repeated until all required elements have been assigned
to vehicles. At last, the heuristic proposed by López (1998) is applied to each route of
the obtained solution for further improvement. They tested this heuristic algorithm on
a set of 28 instances containing 20 - 50 vertices, 25 - 97 edges, and 0 - 16 arcs. They
also compared it against the heuristic proposed by Pandit and Muralidharan (1995). On
average, the heuristic of Pandit and Muralidharan (1995) produced a cost increment in
the solution of 11.05 % and produced better solution in only one instance. In 2 instances
(out of 28), this CGRP-m heuristic gave a solution with k + 1 vehicles (k is the max-
imum number of vehicles), whereas the heuristic of Pandit and Muralidharan (1995)
produced a solution with k + 1 vehicles in 6 instances.

MA6: Prins and Bouchenoua (2004) proposed a MA to address the MCGRP, calling it as
the Node, Edge and Arc Routing Problem (NEARP). The objective was to minimize the
cost under the vehicle capacity constraint. First of all, they created an internal network
in which all tasks were coded with the same attributes and stored together in a list.
The attributes assigned to each task were: a begin node, an end node, a traversal cost,
a demand and a processing cost. A chromosome was represented as a sequence of
tasks without trip delimiters. Furthermore, the initial population was filled with the
solutions generated by well-known heuristics: Nearest neighbor with path scanning,
Augment-Merge with Clarke & Wright saving algorithm and the first method with Split,
and random chromosomes. The clones were managed in the same way as in Prins
(2004). For recombination, they used order crossover operator developed by Oliver
et al. (1987) to quickly produce good solutions. The mutation was performed by a LSP
(see Prins (2004)) consisting of following moves: task flipping, movement of one task
after another task or after the depot, movement of two consecutive tasks after another
task or after the depot, swapping and 2-opt. An offspring created by recombination is
first converted into a MCGRP solution (a list of tasks with trip delimiters) using the
Split procedure and then LSP is applied to it. The resulting solution is structured back
into a standard chromosome by concatenating all trips. They established the first upper
bounds on 23 randomly generated instances. However, they tested the performance of
this MA on 25 CARP instances [Golden et al. (1983)] and 14 VRP instances created
by Christofides et al. (1979). For CARPs, this MA solved 17 out of 23 instances to
optimality, consuming on average 42 seconds and giving an average deviation of 0.43
% from the best knowns. While in the case of VRP instances, MA retrieved 3 best
known solutions, produced a small average deviation of 0.39 % from the best known
solutions and utilized an average CPU time of 10 minutes.

SA2: Kokubugata et al. (2007) resolved the NEARP/MCGRP, proposing a simpler
structure of the internal network for representation of the problem data and using SA
algorithm. The internal network in this work is a three dimensional array in which the

73

first component expresses the head nodes of entities and the second expresses the tail
nodes. The third is a Boolean value that attains 1 if and only if the entity is an arc. A
solution for the NEARP was expressed as a sequence of integers representing required
tasks with trip delimiters. The algorithm starts with an initial solution, which is gen-
erated as follows. First, all tasks are sorted in the descending order of their quantities
of demand. Afterward, the sorted tasks are assigned to the vehicles without violating
their loading capacity. Subsequently, a solution string is formed in accordance with the
assignment. Furthermore, random changes are applied according to one of the three
transformation rules (one to one exchange, delete & re-insert and partial reversal) for
1000 times to the initial solution. Then, for each transformation rule, the feasibility rate
is calculated as the ratio of the number of feasible solutions generated to the number
of total generated solutions. The feasibility rates are used in the main loop of the al-
gorithm for probabilistically choosing a transformation rule to generate a new state of
solution. With theses features, the algorithm produced some new best known solutions
on the CBMix instances. Out of the 23 instances, SA with standard parameter settings
obtained better results on 10 instances and similar results on 5 instances.

2.5 Summary

The large volume of published research papers on VRPs shows its importance in the
distribution management. In this part of the thesis, a survey was conducted on the
single and multi-objective approaches to routing problems under the vehicle capacity
constraint. This survey included different routing mechanisms (node, edge/arc and their
combinations), but focused on only applications of heuristic and meta-heuristic tech-
niques. It was found that local search based methods (such as TS, SA, MA and GA
with a LSP) yielded excellent results on the standard benchmark instances for mono-
objective VRPs. The NSGA-II, on the other hand, has been the top choice for solving
multi-objective VRPs. It is clearly noticeable from this survey that there is a dearth of
research on the single and multi-objective MCGRP despite the fact that it possesses the
peculiarities of real-life routing problems. Hence, the VRP research community should
pay more attention on the MCGRP, especially on the multi-objective model. In this
thesis, the work of Prins and Bouchenoua (2004) has been extended by including the
route balance objective. Seeing the effective use of NSGA-II for multi-objective VRPs
in literatures, a Memetic version of it has been designed to solve the problem. This
research, detailed in the next two parts, is expected to make a significant contribution in
promoting research on the multi-objective MCGRP.

∗ ∗ ∗ ∗ ∗

74

75

Part 3

Application of Memetic NSGA-II

76

77

Application of Memetic NSGA-II on
bi-objective MCGRP

This part of the thesis begins with the description of the vehicle tour construction rule.
Subsequently, the considered model of bi-objective MCGRP is presented along with the
mathematical formulation of objectives and constraints. The importance of considered
objectives: minimization of the overall routing cost and the route balance, in the vehicle
route planning has also been briefly highlighted. Next, the working process of Memetic
NSGA-II is described, while detailing its three major components (Dominance based
local search procedure, X-set and Clone management principle). Lastly, some details
of the CBMix dataset have been provided on which the effectiveness of the Memetic
NSGA-II was examined.

3.1 Problem background

In the MCGRP model considered in this research work, the unlimited number of homo-
geneous vehicles are available, all having an equal carrying capacity. The routes must
be closed; therefore, vehicles start their journey from the depot node, process some as-
signed tasks in the given order and return back to the same depot. In order to have a
clearer picture, let us consider a very small hypothetical instance containing five nodes
(N1, N2, ..., N5), one depot node, one vehicle with the infinite loading capacity and
three tasks. These three tasks, shown in Figure 1, are as follows:

1. node task (N1).

2. task along edge (N2↔ N3) having uni-directional sides.

3. arc task (N4→ N5).

78

� See F igure 1�

Let’s also assume that the processing/visiting order of these three tasks defined for this
vehicle is 1→ 2→ 3. As stated and also shown in the Figure 1, a route originates from
the depot node. The first task to be processed is a node task (N1); therefore, vehicle
follows the least-cost path to arrive at the node N1 from the depot and processes the
associated task. Now, the next is an edge task, processing of which can be started from
either N2 or N3. Since node N2 is closer to N1 than N3, vehicle goes to N2, begins
service and finishes at node N3. The last task to be serviced is an arc task, processing
of which can only be started from its beginning node N4. So, vehicle moves to N4 and
traverses in the direction of the arc while processing the assigned task and eventually
returns back to the same depot. This is how a vehicle tour is constructed in this work.

In the bi-objective MCGRP addressed in this thesis, vehicles have limited loading ca-
pacity and therefore a solution may contain several tours, each constructed by a different
vehicle. The aim is to design an efficient delivery routes for the vehicles so that the ob-
jectives (minimization of route balance and routing/traversal cost of vehicles) could be
jointly optimized. And for this purpose, Memetic NSGA-II - a Pareto-dominance based
MOEA - has been conceptualized which determines the visiting order of required tasks
for the vehicles.

Furthermore, among the several existing performance indices for MOEAs, the Hyper-
volume metric [Zitzler and Thiele (1999)] has been considered in this research for a
fair assessment of the Pareto sets retuned by the Memetic NSGA-II. It can compare two
sets in terms of both criteria: proximity to the true Pareto set and diversity among the
trade-off solutions.

� See F igure 22�

It can be observed in the Figure 22 that lateral diversity (convergence towards the true
Pareto curve) and longitudinal diversity (the spread of solutions along the Pareto curve)
will improve if the magnitude of hyper-volume surges. Nonetheless, it is not guaranteed
that a front closer to the true Pareto front than another one will have higher hypervolume
as it is also governed by the number of solutions in the Pareto set and the shape of the
Pareto front.

3.2 Model of bi-objective MCGRP

The bi-objective MCGRP considered in this study can be defined on a mixed weighted
graph, G = (V,A ∪ E), where V = (VR ∪ VNR), E = (ER ∪ ENR) and A = (AR ∪

79

ANR). The V stands for the set of nodes, E is the set of edges and A represents the set
of arcs. The symbols (VR, ER, AR) and (VNR, ENR, ANR) stand for the set of (nodes,
edges, arcs) with required and non-required tasks, respectively. Each required task j
(j = 1, 2, 3, . . . , | J |), with J = VR ∪ ER ∪ AR, is associated with a non-negative
demand dj of some goods/services. A homogeneous fleet |M | of vehicles, each having
a maximum loading capacity of Q units, are based at the depot node. The size of the
vehicle fleet (|M |) is assumed to be large enough to ensure the existence of a feasible
solution.

The problem seeks to design the set of optimal vehicle routes to process all required
tasks. Each route, constructed by a different vehicle m (m = 1, 2, 3, . . . , |M |), consists
of permutation of some required tasks which represents their processing/visiting order.
The routes have to be constructed in such a way that two objectives, namely, minimiza-
tion of routing cost and route balance, could be optimized concurrently while satisfying
some constraints. The following three basic VRP constraints have been considered in
this research work.

• The route of a vehicle should originate and end at the depot node.

• Each required task must be visited exactly once by exactly one vehicle.

• Total demands of tasks on each tour should not exceed the vehicle capacity.

3.2.1 Mathematical formulation

In this section, importance of the two aforementioned objectives (minimization of rout-
ing cost and route balance) will be briefly highlighted. Subsequently, the objectives and
constraints will be mathematically represented using the following 0/1 variable. The
various notations used in this part have been provided in the Table 11. In addition,
j = j′ = 0 denotes the depot node.

χmjj′ =

{
1 if vehicle m visits task j′ immidiately after visiting task j
0 otherwise (3.2.1)

• Minimization of routing cost: The routing cost has been the primary criterion to
assess the effectiveness of a vehicle routing plan. It accounts for a major portion of
the whole logistic cost and therefore directly impacts on the revenues/long term
sustainability of the logistic company. Hence, this objective function has been

80

G The network graph
|M | Total number of vehicles used
|J | Total number of required tasks
j, j′ Index for required tasks
m Index for vehicles
cjj′ Cost of deadheading from task j to task j′

tj Traversal cost of task j
cm Travel cost of vehicle m
cmax Maximum route cost
cmin Minimum route cost
O1 Overall routing cost (RC)
O2 Route balance (RB)
χmjj′ A 0-1 variable

Table 11: Notations-I

considered. It can be measured in terms of any unit related to the economy of
the plan, e.g., actual travel cost, distance travelled, time and the number of served
customers [Jozefowiez et al. (2008)]. In this study, however, routing cost has
been defined as the total traversal cost of vehicles to process all the given required
tasks. It is represented by O1, as shown in equations (3.2.2)–(3.2.3).

O1 =

|M |∑
m=1

cm (3.2.2)

cm =

|J |∑
j=0

|J |∑
j′=0, j′ 6=j

χmjj′ × (cjj′ + tj′) (3.2.3)

The equation (3.2.3) computes the cost associated to vehicle m. The deadheading
cost from j to j′ (cjj′) is calculated as the minimum cost of travel from the tail
(node at which the vehicle stops processing) of j to the head (node at which the
vehicle begins processing) of j′. In case of an edge task, as mentioned earlier, both
ends are checked and the vehicle starts processing from the nearest end (routing
cost is proportional to the travel time). Also, note that tj′ (traversal cost) is zero
for all nodes and so is for the depot node.

• Minimization of route balance: Efficient utilization of resources (materials, ma-
chines or humans) is one of the important factors for success of any enterprise.
Thus, it is of utmost importance to strike an appropriate balance among drivers’

81

working duration and vehicles’ usage in the distribution business. The route bal-
ance objective fulfils this purpose as it helps to efficiently allocate customers/tasks
among vehicles. In fact, it is another important criteria that greatly influences the
vehicle route planning and decision making process. It can be defined as the
difference between two tours with respect to some disparity measures (e.g., the
number of served customers, total demands of goods and duration/length/cost).
In the present research, two tours are discriminated with respect to their routing
cost values. This objective function has been represented by O2 and is computed
as shown in the equations (3.2.4)–(3.2.6).

O2 = cmax − cmin (3.2.4)

cmax = max {cm;m = 1, 2, 3, ..., |M |} (3.2.5)

cmin = min {cm;m = 1, 2, 3, ..., |M |} (3.2.6)

Where, cmax and cmin are traversal costs of vehicles belonging to the largest and
smallest routes (in terms of cost), respectively. Thus, route balance can simply be
defined as the cost difference between the costliest tour and the cheapest tour.

3.2.2 Constraints

Both the objectives (minimization of routing cost and route balance), which are of equal
importance for management and operational personnel (e.g., drivers), are jointly opti-
mized under the following constraints.

|J |∑
j=1

dj |J |∑
j′=0, j 6=j′

χmjj′

 ≤ Q ∀ m ∈M (3.2.7)

|J |∑
j=0, j 6=j′

|M |∑
m=1

χmjj′ = 1 ∀ j′ ∈ J (3.2.8)

|J |∑
j=0, j 6=p

χmjp −
|J |∑

j′=0, j′ 6=p

χmpj′ = 0 ∀ m ∈M, p = 0, . . . , |J | (3.2.9)

|J |∑
j′=1

χmjj′ = 1 j = 0, m ∈M (3.2.10)

82

yj − yj′ + |J | ×
|M |∑
m=1

γmjj′ ≤ |J | − 1 ∀j, j′ ∈ J, j 6= j′ (3.2.11)

χmjj′ ∈ {0, 1} ∀ j, j′,m (3.2.12)

yj arbitrary.

Constraints (3.2.7) ensure that the vehicle loading capacity will not be violated on any
route. Constraints (3.2.8) state that each task is visited exactly once. Expression (3.2.9)
states that if a vehicle arrives at a task, it also departs from it. Constraints (3.2.10)
confirm that each vehicle m ∈ M must be used exactly once. The subtour-elimination
condition has been represented by equation (3.2.11) [Miller et al. (1960)]. Constraints
(3.2.12) impose binary conditions on the variables.

It can be noticed that the problem has been formulated as an integer programming for-
mulation of the CVRP [Christofides et al. (1981)]. Using the definition of the decision
variable χmjj′ (equation 3.2.1), it could be done nicely and the work was mainly focused
on the development of the algorithmic model. In the next section, Memetic NSGA-II
has been described which employs appropriate solution structures according to the def-
inition of χmjj′ .

3.3 Solution Methodology

An Evolutionary Algorithm (EA) is seen as a potential optimization technique for solv-
ing real-world hard combinatorial optimization problems. EAs draw inspiration from
natural selection/or survival-of-the-fittest of biological evolution process, and have al-
ready shown their strengths on a variety of hard optimization problems. It maintains a
population of solutions, which undergo an iterative improvement process consisting of
four successive phases:

1. Evaluation

2. Mating selection

3. Recombination and mutation

4. Environmental selection

The one characteristic that makes an EA most suitable for the MOP is its inherent ability
to carry several solutions simultaneously during the search. This enables it to approx-
imate an entire Pareto set in just a single simulation run. Thus, to solve the present

83

step 1: Initialize a population of parent solutions (Pt)
step 2: Evaluate objective values for each solution of Pt
step 3: Improve solutions of Pt by DBLSP
step 4: Apply non-dominated sorting procedure on Pt
step 5: Calculate crowding distance of solutions on each front
step 6: Form a mating pool using crowded comparison operator
step 7: Perform crossover operation and make a child population (Qt)
step 8: Apply DBLSP on each solution of Qt

step 9: Create a combined population Rt = Pt +Qt

step 10: Remove clones from Rt by CMP
step 11: Execute step 4 - step 5 on Rt

step 12: Form a new population Pt+1 (Environmental selection)
step 13: Repeat step 6 - step 12 until (stopping criteria (S.C.))

Table 12: Pseudocode of Memetic NSGA-II

bi-objective MCGRP, the framework of NSGA-II has been utilized. It was empow-
ered by a dominance based local search procedure (DBLSP) and a clone management
principle (CMP). A pseudocode illustrating the working process of proposed technique,
coined as Memetic NSGA-II, is provided in the Table 12. The implementation details
of its various stages have been discussed in the following subsections.

3.3.1 Initialization of population and Evaluation

Like any other EAs, Memetic NSGA-II also begins with a population of candidate so-
lutions. Following the notion of stochastic search technique, the initial population is
generated uniformly at random to favour unbiased investigation of the solution space.
Each member of the initial population is further improved by DBLSP for better conver-
gence and quality of the final non-dominated solutions. A solution has been coded as
the permutation of integers [1 . . . |J |] representing required tasks. It can be seen as a
giant tour for a vehicle of infinite carrying capacity. Whenever needed in any step of
the algorithm, it is decomposed into a complete MCGRP solution (i.e., list of required
tasks with trip delimiters) by simply dividing it according to the vehicle loading capac-
ity. Before describing the further steps of the Memetic NSGA-II, the working process
of DBLSP is being detailed below.

Dominance based local search procedure: The DBLSP is one of the main ingredients
within the framework of Memetic NSGA-II, and consisting of three phases. Each phase
contains a different inter-route neighborhood operator. The following three operators

84

have been used: 2-opt, Re-insert and λ − interchange with λ = 1. A solution is suc-
cessively passed through all three phases while updating the current solution as shown
in the Figure 32. The order in which these phases are used is determined randomly.
Each of these phases remains active until a new solution is discovered that dominates
the current solution or the end of full search.

Re-insert 2-opt 1-interchange s s’

Figure 32: A random sequence of phases

To speed up the convergence, a restricted number of neighbours are explored as follows.
LetR(j) stands for the route containing task j and (j, j′) stands for the partial route from
task j to task j′. Now, assume that N(j) is the set of nearest neighbours of task j and
j′′ is a task chosen in the set N(j) \R(j). The operators work in the following way:

• 2-opt: Let j′ be the successor of j in R(j) and j′′′ be the successor of j′′. For
each task j, for each task j′′, replace (j, j′) and (j′′, j′′′) by (j, j′′) and (j′, j′′′),
respectively.

• Re-insertion: For each task j, for each j′′, j is removed from its current position
and inserted right after j′′.

• 1− interchange: each task j, for each j′′, positions of j and j′′ are interchanged.

To implement these neighborhood operators in the above described manner, first a task
j is randomly picked up. Next, the nearest neighbors of task j are determined. Subse-
quently, the neighborhood exploration is begun with the closest task j′′. Once all com-
binations of j and j′′ are checked, the process is repeated with a new randomly selected
task j that has not been used before. Nevertheless, as mentioned above, neighborhood
exploration in each phase is stopped once a better solution (in terms of dominance re-
lation) has been found. The current solution is updated and passed to the next phase.
The operators are applied to the complete MCGRP solution. The DBLSP may produce
an infeasible solution; therefore, the resulting solution is changed into a giant tour by
removing trip delimiters and converted back into a feasible MCGRP solution before
evaluating the objective values. As described in the subsection 3.2.1, the routing cost is
calculated as the sum of traversal cost of all vehicles (equations 3.2.2 – 3.2.3) running
between nodes on the network. Whereas, route balance is equal to the cost difference
between the most expensive tour and the least expensive tour (equations 3.2.4 – 3.2.6)
in the obtained set of vehicle tours.

85

3.3.2 Formation of mating pool

As mentioned earlier in the first part of this thesis, the mating pool (]) contains solu-
tions which mate with each other to give birth to new solutions, called off-springs in
the context of an EA. The size of] is set equal to that of population; however, only
promising solutions are inserted into it. In fact, members of] in NSGA-II are selected
by a special operator, called as crowded comparison operator (≺t). It merely uses two
attributes: rank and crowding distance, associated with solutions to guide the selection
process at various stages of the algorithm toward a uniformly spread-out Pareto-optimal
front (PF ∗)[Deb et al. (2002)]. The procedures to determine non-domination rank and
crowding distance of solutions are explained below.

Non-dominated sorting: It is a method of classifying solutions into different fronts of
dominance in such a way that non-dominated solutions lie on the nearest front to PF ∗.
In other words, closer a front to PF ∗, better is the solution belonging to it. The rank of
a solution is simply the front number (f) on which it lies. The implementation details of
sorting procedure can be divided into three phases as shown in the form of a pseudocode
in Table 13. Firstly, for each individual, domination count (the number of solutions
that dominates it) and solutions dominated by it are determined. Secondly, all those
solutions which have zero domination count are extracted. These are trade-off solutions
and therefore assigned to the first front (PF1). The subsequent fronts are formed in
the third phase as follows. For each solution in the newly formed front, domination
count of all solutions dominated by it is reduced by one. In doing so, if domination
count of any solution becomes zero, it is stored in a separate list (H). These solutions
together create the second non-dominated front (PF2). This process is continued until
all solutions have been decomposed into different fronts. It is worth noting here that
a member of PFf (f > 1) is dominated by solutions of the population belonging to
PF1 ∪ PF2 ∪ · · · ∪ PFf−1.

Crowding distance (ρdistance): It provides an estimate of the density of solutions sur-
rounding that solution [Deb et al. (2002)], and more importantly, is calculated front
wise. For a solution, it is defined as the average length of the cuboid formed by using
its nearest neighbours as vertices. Therefore, a solution with smaller value of ρdistance
will be more crowded. The computation of ρdistance requires the sorting of solutions
along each objective. Once solutions are arranged, the extreme points are assigned an
infinitely large value as their ρdistance. For all intermediate points, the sum of distances
between adjacent solutions over all the objectives gives ρdistance. If this concept is ap-
plied to the bi-objective case shown in the Figure 33, ρdistance of solution ’b’ will simply
be equal to d1 + d2, which is indeed the Manhattan distance between its immediate
neighbour solutions (’a’ & ’c’) on the front. Furthermore, since ’a’ & ’c’ are boundary
solutions, ρdistance can be set a very large number for them. A pseudocode for com-

86

Phase 1:
For each p ∈ P P : Population of solutions, p, q : solution counter
Sp = ∅ Sp : Set of solutions dominated by p
np = 0 np : no. of solutions that dominate solution p

for each q ∈ P
if (p ≺ q), then Sp = Sp ∪ q
else if (q ≺ p), then np = np + 1

End for
End For

Phase 2:
For each p ∈ P
if (np = 0), then PF1 = PF1 ∪ p PF1 : First front

End For

Phase 3:
f = 1 f : front counter
while (|PFf | 6= 0)
H = ∅ H : list to store members for next front
for each (p ∈ PFf)

for each (q ∈ Sp)
nq = nq − 1
if (nq = 0), then H = H ∪ q

End for
End for
PFf+1 = H
f = f + 1

End while

Table 13: Non-dominated sorting

puting ρdistance in the objective space of any dimension is provided in Table 14. While
calculating it, the distance between solutions along each objective is locally normal-
ized as shown in Table 14. If not done so, the search may become biased towards the
objective function with largest value.

Having calculated the non-domination rank and the crowding distance of solutions, ≺t
in conjunction with the binary tournament selection (with replacement strategy) is used
to create]. Basically, two solutions are randomly drawn from the population and ≺t
is applied to them. It selects a solution with lower rank; if they possess the same rank,

87

O
Routing cost

R
o

u
te

 b
al

an
ce

d1

d2

b

a

c

Figure 33: Crowding distance calculation (bi-objective case)

For each front PFf
Determine the total number of solutions on it (|l|)
For each solution p ∈ PFf

set ρpdistance = 0
End For
For each objective O

sort solutions along O (in the ascending order)
set ρ1distance = ρ

|l|
distance =∞

For p = 2 to |l| − 1

ρpdistance = ρpdistance +
PFf [p+1].O−PFf [p−1].O
PFf [Omax]−PFf [Omin]

End For
End For

End for

Note: PFf [p].O : value of objective O of solution p on the front PFf
PFf [Omax] & PFf [Omax] : maximum and minimum values of objective O on the front PFf

Table 14: Crowding distance calculation

then the solution that resides in the lesser crowded region is preferred. This process is
repeated until] is completely filled.

3.3.3 Recombination, Mutation & Environmental selection

During the recombination phase, off-springs are generated by mixing genetic properties
of two or more parents chosen from]. Following the scheme of binary tournament
selection, two solutions are drawn randomly from], and a crossover operator is applied
on them to produce child solutions. One child is generated via crossover in Memetic

88

NSGA-II; hence, this process is repeated dPopsize ∗ Pce times. The Memetic NSGA-II
has been appended with a set containing three well-known crossover operators (X-set)
for ordered chromosomes:

• Partially mapped crossover (PMX)[Goldberg and Robert Lingle (1985)]

• Order crossover (OX)[Oliver et al. (1987)]

• Edge recombination crossover (ERX)[Whitley et al. (1989)]

� see section 1.2.3 for details of operators�

One of them is chosen (with equal probability) each time crossover is to be performed.
All of these operators create a feasible solution string (i.e., each task appears only once
in it). Furthermore, once an off-spring is created, it is sent to the DBLSP for its matura-
tion/education. The finally obtained child solutions after crossover and DBLSP may be
similar to one or more other solutions. The presence of such solutions, called clones, are
extremely undesirable as they may cause premature convergence to a suboptimal Pareto
front. To avoid this in Memetic NSGA-II, a clone management principle (CMP) has
also been included into its framework. In CMP, two solutions are considered clone of
each other if they are at the same position in the objective space AND Jaccard’s index
based similarity co-efficient (Ω) is greater than zero in the decision space.

Ω =

∑|J |−1
j=0

∑|J |
k=j+1 ψjk∑|J |−1

j=0

∑|J |
k=j+1 Ψjk

(3.3.1)

ψ =

{
1 if tasks j and k are adjacent to each other in both solutions
0 otherwise

(3.3.2)

Ψ =

{
1 if tasks j and k are adjacent to each other in one of the solutions
0 otherwise

(3.3.3)

More importantly, similarity between two solutions is checked after converting their
chromosome strings into a complete MCGRP solution (i.e., list of required tasks with
trip delimiters). The trip delimiter (depot node) is represented by j = 0 in the equation
(3.3.1). If solutions are 100 % similar, then Ω will be equal to 1. Once all clones

89

are detected, they are replaced by their mutated structures. To do so, two mutation
operators, namely, SWAP and INVERSION have been utilized as follows:

{
SWAP 0 < Ω ≤ 0.5

INV ERSION 0.5 < Ω ≤ 1
(3.3.4)

In SWAP, two tasks are randomly chosen on the standard chromosome string of a clone
and their positions are exchanged. The INVERSION operator, on the other hand, se-
lects two points and the order of tasks between them is reversed. It is more likely that
INVERSION will produce a new solution with higher degree of structural diversity, and
this is why it has been used when Ω is quite large.

Once the population is clone free, non-dominated sorting and crowding distance cal-
culation are done and then the new population is formed for the next generation. This
stage is called Environmental selection (or survivor selection), and executed with the
help of crowded comparison operator (≺t). Starting with the first non-dominated front
(PF1), solutions are inserted into the new population. While doing so, following two
cases may emerge:

case 1 |PFf | ≤ |rs|: In this case, all solutions belonging to the front under considera-
tion are inserted into the new population.

case 2 |PFf | > |rs|: In this case, first solutions are sorted in the descending order of
their crowding distance values with the largest one at the top and the smallest one
at the bottom. Next, the top |rs| solutions are inserted into the new population
and rest of the solutions are rejected.

The symbols |PFf | and |rs| stand for the total number of solutions on the Pareto front
PFf and the number of remaining slots in the population, respectively.

3.4 CBMix dataset

The Memetic NSGA-II has been implemented on the CBMix dataset. It was created by
a random generator. The networks are mixed, planar, strongly connected and imitate
the shape of real street networks [Prins and Bouchenoua (2004)]. The dataset consists
of twenty-three large scale MCGRP (or NEARP) instances containing 11-150 nodes,
29-311 internal arcs and 20-212 tasks. The tasks comprise 3-93 node tasks, 0-94 edge
tasks and 0-149 arc tasks. The vehicles are homogeneous with limited loading capacity

90

No. Upper bound (U b) Author Lower bound (U l) Author GAP (%)
1 2589 PB 2409 BHW 7.2
2 12220 KMK 9742 BHW 22.3
3 3643 HKSG 3014 BHW 18.9
4 7583 PB 5302 BHW 35.4
5 4531 KMK 3789 BHW 17.8
6 7087 PB 5201 BHW 29.1
7 9607 HKSG 7296 BHW 27.3
8 10524 KMK 7956 BHW 27.8
9 4038 PB 3460 BHW 14.6
10 7582 PB 6432 BHW 16.4
11 4494 PB 3031 BHW 38.9
12 3138 BLMV 3138 BHW 0.0
13 9110 PB 6524 BHW 33.1
14 8566 PB 5731 BHW 39.7
15 8280 KMK 6318 BHW 26.9
16 8886 KMK 7416 BHW 18.0
17 4037 PB 3654 BHW 10.0
18 7098 KMK 6089 BHW 15.3
19 16347 KMK 11143 BHW 37.9
20 4844 PB 3452 BHW 33.6
21 18069 KMK 12474 BHW 36.6
22 1941 PB 1825 BHW 6.2
23 780 PB 780 BLMV 0.0

Table 15: Best known results on CBMix dataset

PB: Prins and Bouchenoua (2004), HKSG: Hasle et al. (2011), KMK: Kokubugata
et al. (2007), BLMV: Bosco et al. (2013)

in all instances. The depot is not at the same node in all instances. See Prins and
Bouchenoua (2004) for further details. The best known upper and lower bound values
of the cost objective have been shown in the Table 15. As highlighted in boldface, the
optimal solutions have already been found for two instances, that are, CBMix 12 and
CBMix 13. The gaps from the best known upper bound (U b) to the lower bound (U l)
vary between 0.0 % and 39.7 % with an average of 23.1 %. The % gaps have been
calculated by the equation (3.4.1).

% GAP =
U b − U l

(U b + U l)/2
× 100 (3.4.1)

91

Note: In addition to the CBMix dataset, which has mostly been used in the MCGRP
literature, there are four more MCGRP dataset:

• BHW dataset [Bach et al. (2013)]

• DI-NEARP dataset [Bach et al. (2013)]

• MGGDB dataset [Bosco et al. (2013)]

• MGVAL dataset [Bosco et al. (2013)]

The 20 BHW, 114 MGGDB and 150 MGVAL instances were derived from the bench-
mark CARP instances. The 24 instances of the DI-NEARP benchmark were generated
from six real life cases from the design of carrier routes for home delivery of subscrip-
tion newspapers and other media products in the Nordic countries.

∗ ∗ ∗ ∗ ∗

92

93

Part 4

Results and discussion

94

95

Results and discussion

In this segment of the thesis, the effectiveness of the whole algorithmic concept just
described in the previous part will be tested on the CBMix dataset. The algorithm was
coded in the Visual Studio C++ 2010, and run on windows server 2008 R2 Enterprise
with 3.40 GHz and 16GB RAM. It was allowed to carry out till Maxgen iterations (see
Table 17) no matter how much computational time is absorbed; however, it stops if no
change in the hyper-volume measure (IH) is observed in genwc consecutive iterations
(see Table 17). Unless otherwise stated, the algorithm has been run five times and the
presented results belong to the Pareto set having the highest hypervolume (not the min-
imum value of routing cost/route balance). See Table 16 for the definitions of various
notations used in this part.

j Index for required tasks
|J | The total number of required tasks
IH Hyper volume of the obtained Pareto set
RNI The ratio of non-dominated solutions
RC* The lowest routing cost in the obtained Pareto set
RB Associated route balance
RB* The lowest route balance in the obtained Pareto set
RC Associated routing cost
CPU(s)* CPU time in seconds to obtain the whole Pareto set
Avg. RC The average routing cost of the obtained Pareto set
Avg. RB The average route balance of the obtained Pareto set
dj Demand associated with task j
tj Traversal cost of task j
Ij A boolean parameter to identify an arc task

Table 16: Notations-II

The problem data has been modelled in the form of a two-dimensional array as shown
in the Table 18. The second and third columns in the Table 18 show beginning node
(bn) and end node (en) of required tasks, respectively. The same value of these two

96

Notations Definitions Values
Popsize Population size 100
Maxgen Maximum number of iterations 5000 *

√
|J |

genwc Number of generations with no change in IH 1000*
√
|J |

NNS Nearest neighbour set size for local search 10 +
√
|J |

Pc Crossover probability 0.95
Ls Local search probability 1.0

Table 17: Algorithm parameters

j bn en dj tj Ij
1 6 6 10 0 0
2 4 5 12 8 0
3 7 9 13 11 1
- - - - - -
- - - - - -
- - - - - -
|J | 11 13 20 40 1

Table 18: Problem data

attributes (bn = en) verifies that j is a node task. Furthermore, a node task incurs the
zero traversal cost as can be seen in the fifth column. The last column is assigned value
1 if and only if j is an arc task. The calculations of the objective functions require
the determination of the minimum deadheading costs between all pairs of nodes in the
mixed weighted graph. In this work, the Floyd-Warshall algorithm [Floyd (1962)] was
implemented to find the cheapest paths between nodes beforehand. A pseudocode of
the Floyd’s algorithm has been provided in the Table 36.

4.1 Parameter tuning

To analyze the impact of parameters of the Memetic NSGA-II (population size and
crossover & local search probabilities), initial computational experiments were con-
ducted on the CBMix19, which is the largest instance in terms of the length of the
solution string in the CBMix dataset. Following some existing guidelines, the algorithm
was run with different values of these parameters and the obtained results were analysed
with regard to the following criteria:

• Hypervolume metric

97

• RNI measure

• RC*/RB

• RB*/RC

• Avg. RC

• Avg. RB

• CPU(s)*

The details of the observations made while tuning the above mentioned parameters are
provided below.

Effect of population size : The population size (Popsize) was varied from 50 to 100 in
a step of 25, keeping the crossover and local search probabilities at 0.95 and 1.0,
respectively. As it can be seen in the Table 19, Memetic NSGA-II obtained the
best RC* value of 18297 units with the population size of 100 solutions. As the
size of the population increases, the values of RC* and Avg. RC get better. The
algorithm produced better value of the average route balance (167.1 units) using
50 initial solutions than 75 and 100. However, the algorithm found solutions pro-
ducing good route balance objective at the population sizes of 75 and 100 also.
As tabulated, the algorithm gave RB* value of 31 and 89 units at the population
sizes of 75 and 100, respectively. The value of the hypervolume measure (IH)
is slightly higher at the population size of 50 than 75 and 100, mainly because
of comparatively larger range of the Pareto front along the cost objective (See
Figures 34, 35 and 36). From these results, it can be concluded that a large popu-
lation size (> 50) is not needed if the route balance objective is the main decision
making factor. However, to obtain a large set of better compromised solutions,
larger population sizes (≥ 75) seem to be more promising.

Effect of crossover probability : To check effects of the crossover probability (Pc), the
algorithm was run with three different values (0.45, 0.70 and 0.95), fixing the size
of the population and the local search probability at 100 and 1.0, respectively.
The properties of the obtained Pareto sets and their images in the objective space
have been shown in the Table 20 and Figures 37 – 39, respectively. Contrary to
population size, the medium value of Pc produced better solutions in terms of the
route balance objective. As presented, the algorithm gave Avg. RB of 171.696
units at Pc = 0.7. Whereas, it reached at the Avg. RB values of 206.509 and
268.295 units at Pc values of 0.45 and 0.95, respectively. With regard to the RNI
measure, the algorithm performed better with Pc value of 0.95, discovering 95

98

different non-dominated solutions. Whereas, it could create only 57 and 69 non-
dominated solutions with Pc of 0.45 and 0.70, respectively. The values of the
hypervolume measure (IH) are larger at Pc = 0.45 & 0.7 than at Pc = 0.95 due to
higher values of the end points of the Pareto curves along the cost objective. From
Pareto fronts portrayed in the Figures 37, 38 and 39, it is very clear that the distri-
bution of non-dominated points is more uniform at high values of Pc (> 0.45). At
Pc = 0.95, the algorithm obtained the best RC* value of 18297 units, while giving
the associated route balance of 577 units. These observations certainly suggest the
use high crossover probability (> 0.75) for better exploration/exploitation of the
search space and create a more smooth & uniformly-spread-out Pareto front.

Effect of local search probability : The table 21 presents the summary of the obtained
results on CBMix19 with different local search probability (Pls) values. It was
increased from 0.5 to 1.0 in a step of 0.25, while keeping the size of the popula-
tion and the probability of crossover at 100 and 0.95, respectively. The behaviour
of the algorithm is quite similar as in the above experiments on population size
and crossover probability. Using high values of Pls, the algorithm could generate
a better approximation of the true Pareto set. As can be seen from the reported
RNI values in the Table 21, the algorithm obtained more non-dominated solu-
tions at Pls = 1.0 than at 0.5 and 0.75. Despite this, the value of IH is compar-
atively lower at Pls = 1.0. The reason being the same, i.e, high end points of
the cost objective. At Pls = 1.0, the algorithm gave the lowest average routing
cost (Avg. RC) of 20367.9 units, utilizing 49695.9 cpu seconds of computational
time. The average route balance increases as Pls value is raised. At the small
value of Pls, the algorithm obtained better value of the route balance objective,
but the associated routing cost is much higher. On the other hand, at high val-
ues of Pls, the algorithm produced very good solutions in terms of the routing
cost. Also, the associated route balance objectives are not too bad. A high local
search probability is therefore more effective for generating good compromised
solutions. Nonetheless, computational time increases as more solutions undergo
the dominance based local search procedure (DBLSP). As tabulated, when the lo-
cal search probability was increased from 0.5 to 1.0, the algorithm took 16534.1
cpu seconds more to output the final Pareto set.

99

IH CPU(s)* RC* RB RB* RC RNI Avg. RC Avg. RB Popsize
1.14894 22333.3 19619 342 22 30566 1.0 22562.9 167.1 50
1.09258 31972.8 18978 499 31 27619 0.9733 21813.2 222.274 75

0.902345 49695.9 18297 577 89 23209 0.95 20367.9 268.295 100

Table 19: Effect of population size

0

50

100

150

200

250

300

350

400

18000 20000 22000 24000 26000 28000 30000 32000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 34: Pareto front of CBMix19
(Popsize = 50)

0

100

200

300

400

500

600

18000 20000 22000 24000 26000 28000 30000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 35: Pareto front of CBMix19
(Popsize = 75)

0

100

200

300

400

500

600

700

17000 18000 19000 20000 21000 22000 23000 24000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 36: Pareto front of CBMix19
(Popsize = 100)

100

IH CPU(s)* RC* RB RB* RC RNI Avg. RC Avg. RB Pc
0.925304 18183 19874 543 62 24719 0.57 21694.7 206.509 0.45
0.997011 33968.3 19515 390 30 26390 0.69 22632.9 171.696 0.70
0.902345 49695.9 18297 577 89 23209 0.95 20367.9 268.295 0.95

Table 20: Effect of crossover probability

0

100

200

300

400

500

600

18000 19000 20000 21000 22000 23000 24000 25000 26000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 37: Pareto front of CBMix19
(Pc = 0.45)

0

50

100

150

200

250

300

350

400

450

18000 19000 20000 21000 22000 23000 24000 25000 26000 27000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 38: Pareto front of CBMix19
(Pc = 0.7)

0

100

200

300

400

500

600

700

17000 18000 19000 20000 21000 22000 23000 24000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 39: Pareto front of CBMix19
(Pc = 0.95)

101

IH CPU(s)* RC* RB RB* RC RNI Avg. RC Avg. RB Pls
1.0431 33161.8 19000 448 25 26367 0.83 22080.7 183.867 0.5

0.998965 39919 19095 502 37 25304 0.87 21483.5 211.184 0.75
0.902345 49695.9 18297 577 89 23209 0.95 20367.9 268.295 1.0

Table 21: Effect of local search probability

0

50

100

150

200

250

300

350

400

450

500

18000 19000 20000 21000 22000 23000 24000 25000 26000 27000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 40: Pareto front of CBMix19
(Pls = 0.5)

0

100

200

300

400

500

600

18000 19000 20000 21000 22000 23000 24000 25000 26000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 41: Pareto front of CBMix19
(Pls = 0.75)

0

100

200

300

400

500

600

700

17000 18000 19000 20000 21000 22000 23000 24000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 42: Pareto front of CBMix19
(Pls = 1.0)

102

Based on this preliminary experiments, the local search and crossover probabilities were
set equal to 1.0 and 0.95, respectively, for maximum exploration/exploitation of the
search space. Thus, all off-springs obtained after the crossover operation undergo the
local improvement through DBLSP. A population size of 100 solutions was maintained
throughout the search. Furthermore, it is a well known fact that the performance of
meta-heuristic algorithms is hugely affected by the length of the solution string in prob-
lems where some sort of sequences are needed to find out. In the present case, for
example, the optimal processing order of tasks for the vehicles has to be determined.
Therefore, some other parameters of the Memetic NSGA-II were designed as a func-
tion of |J |. As for instance, NNS (≤ |J | − 1) was made directly proportional to |J |,
as shown in the Table 17). As the size of the problem increases, intensity of the local
search also augments accordingly to investigate large part of the increased search space.
The maximum number of iterations and stopping criteria (genwc) were set (5000 ∗ |J |)
and (1000 ∗ |J |), respectively.

4.2 A comparative analysis

Since the reference Pareto set is not available; therefore, a comparative analysis will
be performed in this section between the solutions produced by the proposed Memetic
NSGA-II and a basic version of the algorithm (NSGA-II with only X-set and CMP). The
results obtained by the Memetic NSGA-II and its basic version (will be called XNSGA-
II henceforth) have been provided in the Table 22. The columns labeled RC* and RB* in
Table 22 give the lowest values of the cost function and the route balance objective, re-
spectively, found by the algorithms. Out of the 23 instances, Memetic NSGA-II yielded
better value of RC* than XNSGA-II on the first 22 cases. Both versions reached at the
same value of 780 units on CBMix23. However, Memetic NSGA-II achieved it, pro-
ducing higher value of IH . Also, the associated route balance (48 units) in the solution
found by Memetic NSGA-II is lesser than the value (65 units) obtained by XNSGA-
II. Moreover, the average value of RC* (7839.0 units) given by Memetic NSGA-II is
significantly better than the value (9485.13 units) achieved by XNSGA-II. While deal-
ing with the two highly conflicting objectives, Memetic NSGA-II also retrieved the
best known upper bound values of the cost objective on CBMix22 and CBMix23. The
Memetic NSGA-II succeeded well in finding solutions with very low route balance ob-
jective (without being biased) on CBMix instances. As shown in Table 22, the algorithm
discovered solutions giving route balance in a very small range [1-20] on 9 instances. It
produced an average RB* value of just 58.652 units, whereas XNSGA-II could obtain
an average value of 93.304 units of RB*. These statistical analyses strongly advocate
the application of Memetic NSGA-II for constructing good compromised solutions for
multi-objective general routing problems.

103

Memetic NSGA-II XNSGA-II
No. (|J |) IH CPU(s)* RC* RB RB* RC IH CPU(s)* RC* RB RB* RC
1(48) 1.44582 3599.03 2781 160 4 5558 0.878738 765.275 3194 396 10 3734
2(185) 0.919243 35144.6 13229 372 56 16943 0.657629 28292.4 15184 417 157 16907
3(79) 1.16019 5448.57 4250 296 17 6531 0.769882 2426.37 5181 229 46 5854
4(98) 0.924781 4795.52 7941 450 91 11090 0.83294 2610.66 9401 477 119 11944
5(65) 1.28003 8046.96 4797 503 17 8040 0.87054 1330.77 6251 258 36 7629
6(108) 1.24406 13236.7 8039 419 10 12886 0.909754 4461.82 10125 502 55 12442
7(168) 1.05667 27892.5 10939 320 24 15354 0.833492 15262 12496 466 105 15262
8(177) 0.845301 25726.3 11885 439 118 15245 0.579132 26662.7 15029 339 155 16138
9(50) 0.968628 2757.35 4187 348 63 5769 0.992061 1151.46 4559 340 42 6144
10(107) 0.887287 7374.69 7984 305 75 10666 0.671652 3298.16 8969 264 105 10510
11(82) 1.24004 6335.33 4714 452 13 8081 0.941658 2418.91 5363 396 36 6893
12(53) 1.06777 5741.11 3349 285 17 4687 0.839232 849.09 3775 263 40 4475
13(141) 1.05053 25907.8 10308 503 65 14859 0.990518 11963.5 13487 629 66 17724
14(93) 0.916485 5628.65 8993 710 157 12214 0.888958 1727.91 9786 525 143 13442
15(91) 0.728584 8950.5 8577 342 129 10378 0.646842 2197.1 9448 269 130 11374
16(169) 1.10571 36900.1 10212 323 29 15542 0.633115 22403.2 12797 324 127 14020
17(63) 1.22358 10969.3 4536 214 3 7328 0.670644 1507.89 6106 229 74 6786
18(127) 1.35262 18604.4 8306 426 23 16345 0.713326 14693.4 11554 361 99 12828
19(212) 0.902345 49695.9 18297 577 89 23209 0.747271 42023.6 23488 606 233 28741
20(73) 1.17186 4599.37 5196 503 23 8063 1.03991 2044.98 6041 407 41 8441
21(180) 0.675185 30563.2 19056 708 323 23001 0.6767 13285.7 22563 785 313 26068
22(42) 1.29898 4090.65 1941 119 2 3280 1.14618 863.486 2581 212 13 3835
23(20) 1.17465 790.388 780 48 1 1182 1.02632 151.778 780 65 1 1025
Avg. 1.07132 - 7839.0 - 58.652 - 0.824195 - 9485.13 - 93.304 -

Table 22: results on CBMix instances

Providing some more informations regarding performances of the algorithms, the columns
titled CPU(s)* and IH in Table 22 display consumed computational times to obtain the
whole optimal/near-optimal Pareto sets and their qualities in terms of IH values. As
stated earlier in the section (1.5), a reference point (Zref) is needed to determine IH .
In this work, the co-ordinate of Zref is set as (1.5, 1.5), and values of the objectives in
the Pareto set are normalized in the range [0-1] before computing IH . To do the nor-
malization, each objective value is divided by its maximum value present in the Pareto
set. As it can be observed, the algorithm is more effective (with respect to IH) when
the DBLSP component is switched on. The Memetic NSGA-II gave an average IH of
1.07132. Whereas, XNSGA-II reached at an average IH value of 0.824195 without
DBLSP. From these results, it is amply clear that DBLSP very well performed the task
of local exploitation and increased the convergence ability of XNSGA-II. Comparing
Pareto fronts exposed in the Figures 43 & 44, it becomes very clear that the algorithm is
able to find a better approximate set covering a wide range of trade-off solutions when
DBLSP is in action. Nevertheless, these enhancements were achieved through DBLSP
at the expense of computational time. As for instance, on CBMix 19 (the largest in-
stance in terms of the total required tasks), the algorithm consumed 7672.3 cpu seconds
more to help generate the whole optimal/near-optimal Pareto set.

104

0

100

200

300

400

500

600

700

17000 18000 19000 20000 21000 22000 23000 24000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 43: Pareto front of CBMix19
with DBLSP

0

100

200

300

400

500

600

700

21000 22000 23000 24000 25000 26000 27000 28000 29000 30000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 44: Pareto front of CBMix19
without DBLSP

The table 23 further reveals some additional characteristics of the discovered potentially
optimal Pareto sets by the Memetic NSGA-II (termed as MNSGA-II) and its basic form
XNSGA-II. It compares values of the RNI measure (the ratio between the number
of obtained non-dominated solutions and the size of the population) and the average
values of routing cost & route balance of Pareto sets generated by the algorithms. The
Memetic NSGA-II yielded an average RNI value of 0.662, whereas XNSGA-II gave
an average RNI value of only 0.563. It was found that the algorithms could obtain
more number of non-dominated solutions on the complex instances comprising of large
number of nodes, edges and arcs. As for instance, there are 11 nodes, 2 edges, 25 arcs
and 20 required tasks in CBMix23. Despite the small size of the solution string, the
algorithms could obtain RNI value of just 0.24. On the other hand, both algorithms
produced RNI of 1.0 on CBMix11, which contains 69 nodes, 6 edges, 229 arcs and 82
required task. The reason being its highly dense network that provides more opportunity
to create many alternative trade-off solutions. Furthermore, the average routing cost
produced by Memetic NSGA-II is better than that obtained by XNSGA-II on all 23
instances. With respect to the average route balance, Memetic NSGA-II surpassed its
competitor XNSGA-II 16 times. As this is the first bi-objective approach to the MCGRP,
the reference Pareto set is hereby established for all CBMix instances. Researchers are
welcomed to improve the reference set created in this research work.

4.3 Effect of CMP and X-set

In order to investigate the effects of CMP and X-set on the performance of Memetic
NSGA-II, CBMix19 was selected again and the algorithm was run with and without the
assistance of these ingredients. The CMP, which can also be seen as a multi-mode mu-
tation function, contributed tremendously in maintaining diversity along the front as the

105

No. RNI Avg. RC Avg. RB
MNSGA-II XNSGA-II MNSGA-II XNSGA-II MNSGA-II XNSGA-II

1 0.35 0.33 3085.37 3475.21 48.4571 76.5152
2 0.75 0.91 14809.7 16030 159.853 230.879
3 0.67 0.63 5010.9 5470.25 99.7761 117.714
4 0.69 0.76 9318.52 10417.9 258.319 279.579
5 0.63 0.35 5523.7 6890.57 141.556 114.2
6 0.63 0.64 9286.81 11230.7 132.111 178.641
7 0.66 0.84 12379.0 13426.8 141.879 242.988
8 0.61 0.5 12967.0 15536.8 245.525 228.06
9 0.52 0.43 4721.5 5086.72 167.019 142.256
10 0.60 0.41 9060.77 9887.12 157.567 165.22
11 1.0 1.0 5577.82 5985.52 233.48 201.52
12 0.47 0.14 3861.74 4108.29 98.383 121.643
13 0.90 0.75 11957.6 15183.7 198.811 207
14 0.87 0.57 10182.9 10931.4 377.218 322.649
15 0.57 0.21 9200.23 10161.7 208.193 197.857
16 0.83 0.47 11979.1 13353.1 146.554 199.851
17 0.48 0.41 5421.21 6463.73 86.7292 145.927
18 0.64 0.41 10592.7 12195.1 152.016 172
19 0.95 1.0 20367.9 24989.5 268.295 362.96
20 1.0 0.73 5983.63 6767.71 209.08 194.712
21 0.72 1.0 20533.2 22563 472.667 479.78
22 0.45 0.24 2148.96 3013.96 51.7333 66.6667
23 0.24 0.24 878.083 884.208 19.5833 20.8333
Avg. 0.662 0.563 - - - -

Table 23: Comparison table

algorithm was moving towards the true one. The CMP was so effective that there was
not even one pair of similar solutions in the finally obtained Pareto sets for all instances.
In order to instantiate this claim, the co-ordinates of all obtained non-dominated solu-
tions of CBMix19 (the largest instance in terms of the number of required tasks) are
reported in the Table 24. As it can be seen, there are no clones at all according to the
adopted criteria (mentioned in the section 3.3.3).

The Pareto fronts portrayed in the Figures 49-71 further confirms the capability of the
Memetic NSGA-II in generating fronts with a well-spread of trade-off solutions (non-
duplicates). Only for inspecting the behaviour of the algorithm without CMP, it was
permitted to navigate till Maxgen generations as earlier, but a different constraint has
been imposed on its running time. It is stopped once RNI becomes equal to 1. The
outputs have been provided in the Table 25. In the absence of CMP, the algorithm was
found suffering from premature convergence due to the occurrence of genetic drift. It
stopped in just 168.483 cpu seconds, giving RNI value of 1 unit. But, out of the 100
non-dominated solutions, there were only 12 solutions that occupied different positions

106

RC, RB RC, RB
23209, 89 18676, 372
18297, 577 22414, 136
21399, 190 18651, 382
21393, 193 18634, 383
21420, 189 20837, 229
21383, 196 18735, 369
23198, 93 22983, 110
21431, 186 21627, 170
21427, 188 20410, 258
20395, 261 18576, 399
22356, 139 21971, 162
21066, 210 18710, 371
20404, 259 21931, 167
19932, 285 22276, 141
21604, 173 21192, 203
20508, 247 21962, 165
20505, 250 18751, 365
18987, 328 18609, 391
21461, 181 22695, 119
18924, 347 22803, 113
18978, 333 22867, 111
20264, 269 21215, 201
20270, 265 18759, 363
18945, 338 22997, 108
20470, 254 22778, 116
18336, 538 21219, 200
18560, 400 19303, 315
20472, 251 19415, 291
18430, 429 18435, 423
18848, 355 19379, 292
22163, 153 23170, 94
18821, 357 19378, 298
18341, 533 21961, 166
18665, 373 21923, 169
20285, 262 18626, 388
18604, 394 23075, 98
20520, 246 23108, 96
20276, 264 20869, 224
22384, 137 18547, 404
22496, 134 19319, 314
20638, 237 19354, 299
18351, 479 20238, 277
20556, 239 18391, 435
19038, 324 19432, 289
20920, 218 18463, 409
18606, 392 -
18876, 352 -
19013, 325 -
18621, 390 -
20236, 281 -

Table 24: Pareto set of CBMix19

107

0

50

100

150

200

250

300

350

400

450

500

22500 23000 23500 24000 24500 25000 25500 26000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 45: Pareto front of CBMix19 without CMP (S.C. RNI = 1)

in the objective space and rest of the 88 solutions were clones. These 12 solutions can
easily be visualized in the Figure 45. On the other hand, the Memetic NSGA-II had
yielded 95 different non-dominated solutions (see Table 23 and Figure 67) under the
influence of the CMP component.

S.C(RNI = 1) CPU(s)* RC* RB RB* RC IH Avg. RC Avg. RB CMP
satisfied 168.483 22799 438 62 25484 0.761989 25370.5 81.58 Deactivated

Table 25: Effects of CMP on CBMix19

The table 26 summarizes the obtained results on CBMix19 by the Memetic NSGA-II
while utilizing each crossover operator alone. The corresponding Pareto fronts have
been shown in the Figures 46 – 48. The OX operator was found generating solutions
with the low route balance objective. As presented in the Table 26, the algorithm could
discover a solution giving route balance of only 34 units. Whereas, it produced the
lowest route balance of 89 units (see Table 22) when the other two operators (PMX
and ERX) were also used with the equal probability. In terms of the average value,
Memetic NSGA-II with OX gave far better result (165.69 units of route balance) than
with ERX alone and the complete algorithm. On the other hand, ERX intensively pro-
moted the exploration in the cost-function-rich regions of the search space. Employing
ERX operator, the algorithm yielded the average routing cost of 20256.7 units (bet-
ter than the value outputted by Memetic NSGA-II with X-set), but consuming a large
amount of computational time (124492 cpu seconds). Looking at the average route
balance/routing cost values in Table 26, it can be said that the behaviour of PMX lies
between OX & ERX and is mostly closer to the former operator. Together in the X-set,
they drove search into different regions of the search space and helped find the diverse

108

sets of Pareto-optimal solutions on the CBMix dataset. Moreover, the Pareto front (Fig-
ure 67) created by Memetic NSGA-II with the X-set is better evenly spaced than using
the operators alone.

IH CPU(s)* RC* RB RB* RC RNI Avg. RC Avg. RB Operator
1.3147 42170.3 18736 440 18 34013 0.98 22459.1 170.827 PMX

1.08052 39287.8 19957 353 34 29134 0.58 22561.4 165.69 OX
0.923709 124492 19661 556 51 24497 0.99 20526.7 345.121 ERX

Table 26: Effects of crossover operators on CBMix19

0

50

100

150

200

250

300

350

400

15000 17000 19000 21000 23000 25000 27000 29000 31000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 46: Pareto front of CBMix19
with OX

0

50

100

150

200

250

300

350

400

450

500

15000 20000 25000 30000 35000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 47: Pareto front of CBMix19
with PMX

0

100

200

300

400

500

600

17000 18000 19000 20000 21000 22000 23000 24000 25000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 48: Pareto front of CBMix19
with ERX

4.4 Evolution of Pareto set

The table 27 shows properties of the Pareto sets generated by the Memetic NSGA-II
for CBMix19 in every 5000 iterations. The changes in the RNI measure during the

109

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.09 0.612813 45594.1 1125.22 40892 1524 806 49781 0.281
5000 0.62 0.769446 21348 229.758 19967 385 92 23344 4463.15
10000 0.64 0.83031 21125.2 235.891 19365 483 92 23313 8188.88
15000 0.71 0.872656 21197.7 231.169 19226 615 92 23301 11498.4
20000 0.64 0.875866 21068.2 234.031 18980 589 92 23301 14542.7
25000 0.75 0.880093 20769.2 265.787 18932 595 92 23301 17549.3
30000 0.72 0.8267 21074.6 228.611 18662 420 91 23283 20338.8
35000 0.77 0.897336 20713.2 258.234 18359 577 91 23252 23371.8
40000 0.82 0.909097 20657.3 261.927 18329 615 91 23252 26795.6
45000 0.9 0.909576 20491.7 270.344 18329 615 91 23252 30189.2
50000 0.96 0.899756 20433.5 273.188 18325 577 91 23252 33876.2
55000 0.99 0.899895 20321.5 280.293 18325 577 91 23252 37507.3
60000 1 0.900328 20331.0 278.0 18300 577 89 23209 40965.7
65000 0.91 0.901493 20455.6 268.033 18297 577 89 23209 43925.1
70000 0.96 0.90202 20281.8 277.448 18297 577 89 23209 46887.5
75000 0.95 0.902345 20367.9 268.295 18297 577 89 23209 49784.8

Table 27: Pareto set evolution of CBMix19

search are neither increasing nor decreasing. The RNI value is 0.71 at the 15000th

iteration, but drops to 0.64 between 15001-20000 iterations. One more fall in RNI
value can be observed in Table 27, that is, between 60001-65000 iterations. The algo-
rithm finally stops at the 75000th iteration, givingRNI value of 0.95 (obtained between
70001 - 75000 iterations). The final RNI value, however, is significantly better than
that obtained till 40000 iterations. The hypervolume measure (IH) improved signifi-
cantly as Memetic NSGA-II kept exploring the search space. Starting with a IH value
of 0.612813, the algorithm finally achieved IH value of 0.902345 between 70001-75000
iterations. It is worth noting that the values ofRNI are equal at the 10000th and 20000th

iterations, but IH value is higher at the 20000th iteration. Furthermore, the algorithm
produced higher IH value at the 65000th, 70000th and 75000th iterations despite ob-
taining lesser number of non-dominated solutions than at the 60000th iteration. These
results clearly confirm the capability of the Memetic NSGA-II in finding well-spread
Pareto sets.

The decreasing values of the lowest routing cost and the lowest route balance in the
Table 27 (provided under the column titled RC* and RB*, respectively) prove that the
algorithm moves towards the true Pareto set containing the optimum values of both
objectives. It can be observed that the algorithm outputted the final hypervolume of
0.902345 between 70001-75000 iterations, consuming 46887.5-49784.8 cpu seconds.
But, the best values of RC* (18297 units) and RB* (89 units) were obtained much
earlier. As it can be seen, the best RC* was obtained between 60000-65000 iterations,
utilizing 40965.7-43925.1 cpu seconds. Whereas, the solution giving the best RB* was
encountered between 55000-60000 iterations.

110

No. UB* RC* % gap
MNSGA-II XNSGA-II MNSGA-II XNSGA-II

1 2589 2781 3194 6.90 18.94
2 12220 13229 15184 7.62 19.52
3 3643 4250 5181 14.28 29.68
4 7583 7941 9401 4.50 19.33
5 4531 4797 6251 5.54 27.51
6 7087 8039 10125 11.84 30.00
7 9607 10939 12496 12.17 23.11
8 10524 11885 15029 11.45 29.97
9 4038 4187 4559 3.55 11.42
10 7582 7984 8969 5.03 15.46
11 4494 4714 5363 4.66 16.20
12 3138 3349 3775 6.30 16.87
13 9110 10308 13487 11.62 32.45
14 8566 8993 9786 4.74 12.46
15 8280 8577 9448 3.46 12.36
16 8886 10212 12797 12.98 30.56
17 4037 4536 6106 11.00 33.88
18 7098 8306 11554 14.54 38.56
19 16347 18297 23488 10.65 30.40
20 4844 5196 6041 6.77 19.81
21 18069 19056 22563 5.17 19.91
22 1941 1941 2581 0.0 24.79
23 780 780 780 0.0 0.0
Avg. - - - 7.59 22.31

Table 28: Percentage gap

The average values of routing cost (Avg. RC) and route balance (Avg. RB) also do
not change in any particular fashion as they depend on the number of non-dominated
solutions in the obtained Pareto set. However, from the 15000th iteration onwards, it
appears that the improvement in one has been gained by deteriorating the other. For
Pareto set evolution properties of other instances, see Tables 37-58 (Appendix).

4.5 Deviation from the best known upper bound

In the Table 28, the column named UB* gives the best known upper bound values of the
cost objective of CBMix instances. The column labeled RC* shows the lowest values of
the routing cost found by Memetic NSGA-II and XNSGA-II. The % gap of RC* from

111

UB* has been calculated by (equation 4.5.1) and provided in the last column.

%gap =
RC ∗ −UB∗

RC∗
× 100 (4.5.1)

As it can be seen in the Table 28, on each instance of the CBMix dataset, the percentage
gap given by the Memetic NSGA-II is significantly better than that produced by the
XNSGA-II. The XNSGA-II retrieved the best known upper bound value of the cost
objective on only one instance (CBMix23) and gave a percentage deviation of 22.31.
On the other hand, the Memetic NSGA-II reached at UB* on two instances (CBMix22
and CBMix23), producing a comparatively very small percentage deviation of just 7.59.
On 7 (out of 23) instances, Memetic NSGA-II produced the gap between RC* and UB*
of less than 5%. Despite the search has been directed to find compromised solutions,
Memetic NSGA-II generated Pareto sets constituting of good solutions with regard to
the routing cost.

4.6 Pareto fronts

The Pareto fronts created by the Memetic NSGA-II for CBMix instances have been dis-
played in the Figures 49 – 71. Upon closely visualizing the curves, it is found that the
proposed algorithm has created Pareto fronts with a good spread of non-duplicate trade-
off solutions. The Pareto fronts provide a wide range of non-dominated solutions. As
for instance, ranges of the Pareto curve along the cost and balance objectives on the CB-
Mix19 are 4912 and 488 units, respectively. For CBMix3 (Figure 51), CBMix10 (Figure
58), CBMix20 (Figure 68) and CBMix21 (Figure 69), most parts of the Pareto fronts
look convex. On CBMix23, the shape of the Pareto curve (Figure 71) is mostly linear.
The Pareto front of CBMix15 (Figure 63) clearly shows that it is a mixture of concave
and convex shapes. In fact, none of the curves is completely convex or concave. Hence,
the use of a Pareto-dominance based multi-objective evolutionary algorithm (such as
the proposed Memetic NSGA-II) seems to be the most suitable approach to solve the
present bi-objective MCGRP.

112

0

20

40

60

80

100

120

140

160

180

2000 2500 3000 3500 4000 4500 5000 5500 6000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 49: Pareto front of CBMix1

0

50

100

150

200

250

300

350

400

11000 12000 13000 14000 15000 16000 17000 18000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 50: Pareto front of CBMix2

0

50

100

150

200

250

300

350

3000 3500 4000 4500 5000 5500 6000 6500 7000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 51: Pareto front of CBMix3

0

50

100

150

200

250

300

350

400

450

500

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500

R
o

u
te

 b
al

an
ce

Routing cost

Figure 52: Pareto front of CBMix4

0

100

200

300

400

500

600

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500

R
o

u
te

 b
al

an
ce

Routing cost

Figure 53: Pareto front of CBMix5

0

50

100

150

200

250

300

350

400

450

6000 7000 8000 9000 10000 11000 12000 13000 14000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 54: Pareto front of CBMix6

113

0

50

100

150

200

250

300

350

9000 10000 11000 12000 13000 14000 15000 16000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 55: Pareto front of CBMix7

0

50

100

150

200

250

300

350

400

450

500

11000 11500 12000 12500 13000 13500 14000 14500 15000 15500

R
o

u
te

 b
al

an
ce

Routing cost

Figure 56: Pareto front of CBMix8

0

50

100

150

200

250

300

350

400

3500 4000 4500 5000 5500 6000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 57: Pareto front of CBMix9

0

50

100

150

200

250

300

350

7000 7500 8000 8500 9000 9500 10000 10500 11000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 58: Pareto front of CBMix10

0

50

100

150

200

250

300

350

400

450

500

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500

R
o

u
te

 b
al

an
ce

Routing cost

Figure 59: Pareto front of CBMix11

0

50

100

150

200

250

300

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800

R
o

u
te

 b
al

an
ce

Routing cost

Figure 60: Pareto front of CBMix12

114

0

100

200

300

400

500

600

8000 9000 10000 11000 12000 13000 14000 15000 16000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 61: Pareto front of CBMix13

0

100

200

300

400

500

600

700

800

8000 8500 9000 9500 10000 10500 11000 11500 12000 12500

R
o

u
te

 b
al

an
ce

Routing cost

Figure 62: Pareto front of CBMix14

0

50

100

150

200

250

300

350

400

7000 7500 8000 8500 9000 9500 10000 10500 11000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 63: Pareto front of CBMix15

0

50

100

150

200

250

300

350

8000 9000 10000 11000 12000 13000 14000 15000 16000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 64: Pareto front of CBMix16

0

50

100

150

200

250

3000 4000 5000 6000 7000 8000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 65: Pareto front of CBMix17

0

50

100

150

200

250

300

350

400

450

5000 7000 9000 11000 13000 15000 17000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 66: Pareto front of CBMix18

115

0

100

200

300

400

500

600

700

17000 18000 19000 20000 21000 22000 23000 24000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 67: Pareto front of CBMix19

0

100

200

300

400

500

600

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500

R
o

u
te

 b
al

an
ce

Routing cost

Figure 68: Pareto front of CBMix20

0

100

200

300

400

500

600

700

800

18000 19000 20000 21000 22000 23000 24000

R
o

u
te

 b
al

an
ce

Routing cost

Figure 69: Pareto front of CBMix21

0

20

40

60

80

100

120

140

1500 2000 2500 3000 3500

R
o

u
te

 b
al

an
ce

Routing cost

Figure 70: Pareto front of CBMix22

0

10

20

30

40

50

60

600 700 800 900 1000 1100 1200 1300

R
o

u
te

 b
al

an
ce

Routing cost

Figure 71: Pareto front of CBMix23

116

117

Conclusions and future works

A bi-objective model of the Mixed Capacitated General Routing Problem (MCGRP)
has been tackled in this thesis so that the emerging practical needs of several private and
public firms involved in the goods distribution (or similar) business could be fulfilled.
To the best of our knowledge, this work made the first successful attempt to optimize
two major objectives at the same time for the MCGRP, while satisfying the capacity
constraint. One of them was the minimization of the overall routing cost and other
was the minimization of the route balance (difference between the largest tour and the
smallest tour in terms of the routing cost). This NP-hard problem was mathematically
modelled and an architecture of a hybrid MOEA, named Memetic NSGA-II, has been
designed to generate the optimal/near-optimal Pareto front with a good spread of non-
dominated solutions in a single simulation run.

The proposed algorithm utilizes the framework of notable NSGA-II, which has been
integrated with a dominance based local search procedure (DBLSP), a clone manage-
ment principle (CMP) and a set of three crossover operators (X-set). The DBLSP em-
ploys inter-route version of three well-known tour improvement heuristics: 2-opt, Re-
insertion and λ-interchange, to improve the convergence ability of NSGA-II towards
the true Pareto front. While, the aim of incorporating CMP was to prevent the occur-
rence of genetic drift that leads to premature convergence at a locally optimum Pareto
front. The CMP was equipped with swap and inversion operators for the replacement of
clones by their mutated structures. The rational of using three crossover operators (with
equal selection probabilities) was to direct the search into different attractive regions of
the solution space.

The whole concept was tested on the twenty three MCGRP benchmark instances with
and without the support of these additional components. The obtained results demon-
strated the effectiveness of the whole algorithmic idea and also justified the compound-
ing of DBLSP, CMP and X-set with NSGA-II to create its Memetic version. The
Memetic NSGA-II, in fact, overshadowed the performance of the basic version (NSGA-
II with only X-set and CMP) with regard to the average hypervolume measure, RNI
metric as well as solution quality. Furthermore, this thesis work also provides a lot of

118

scope for future research. It can be extended in many interesting ways on the problem
and algorithm levels:

• The problem can be solved in more than two-dimension by including other impor-
tant objectives, such as minimization of the number of vehicles and maximization
of the route compactness.

• It will be challenging to solve the present bi-objective MCGRP incorporating
some more real-world side constraints.

• Other variants of the basic MCGRP, such as MCGRP with time time windows
(MCGRPTW) and multi-depot MCGRP (MDMCGRP), are needed to formulate
and address.

• The Memetic NSGA-II can further be enhanced or a new multi-objective opti-
mization algorithm can be proposed to improve the first reference set established
in this work.

• A comparison between the multi-objective versions of other well-known meta-
heuristics in the VRP area (such as tabu search, simulated annealing, ant colony
optimization and particle swarm optimization) on the present bi-objective MC-
GRP will be an useful work.

Finally, it is hoped that the proposed Memetic NSGA-II will also prove itself as a
promising multi-objective optimization tool for various complex models of routing prob-
lems.

∗ ∗ ∗ ∗ ∗

119

Appendix

Input: s(o) - the initial solution;
Output: s∗ - the best found solution;
Determine the initial temperature T ;
set: s = s(o), s∗ = s and t = T ;
Repeat

Repeat Generate a new solution s′ in the neighborhood of s;
Calculate4f = f(s′)− f(s);
Generate a random number r ∈ [0, 1];
if4f < 0

set s = s′;
else

if r < exp (−4 f/t);
set s = s′;

end if;
end if;
if s < s∗

set s∗ = s;
end if;

Until (Equilibrium condition)
Update temperature: t = t× α ; α ∈ [0, 1] ;

Until (stopping condition is satisfied);

Table 29: Pseudocode of Simulated Annealing

120

Input: s(o) - the initial solution;
Output: s∗ - the best found solution;
Initialize the Tabu List T ;
set: Aspiration criteria;
set: s = s(o) and s∗ = s;
Repeat

Generate solutions in the neighborhood of s;
Select the best possible solution s′ /∈ T or satisfying the aspiration criteria;
set s = s′;
Insert the solution s (or its attribute) into the tabu list T ;
if f(s) < f(s∗)

set s∗ = s;
end if;
Update the tabu list T ;

Until (stopping condition is satisfied);

Table 30: Pseudocode of Tabu Search

Input: s(o) - the initial solution;
s = local search (s(o));
Repeat

s′ = Mutate (s);
s′′ = Local Search (s′);
if f(s′′) < f(s)

set s = s′′ ;
end if ;

Until (stopping condition is satisfied) ;
Return s;

Table 31: Pseudocode of Iterated Local Search

121

Input: Neighborhood structures Nl l = 1, 2, 3, . . . , lmax;
Generate the initial solution s(o);
set: s = s(o);
l = 1;
while (l ≤ lmax)

Find the best neighbor s′ ∈ Nl(s);
if f(s′) < f(s)

set s = s′ ; l = 1 ;
else
l = l + 1;

end if;
end while;
Return s;

Table 32: Pseudocode of Variable Neighborhood Decent

Input: Neighborhood structures Nl l = 1, 2, 3, . . . , lmax;
Generate the initial solution s(o);
set: s = s(o);
l = 1;
while (l ≤ lmax)

s′ ← shake (s) ; s′ ∈ Nl(s);
s′′ ← Local Search(s′) ;
if f(s′′) < f(s)

set s = s′′ ; l = 1 ;
else
l = l + 1;

end if;
end while;
Return s;

Table 33: Pseudocode of Variable Neighborhood Search

122

s← φ;
Repeat

s← Greedy Randomized Construction;
s′ ← Local Search (s);
Update s according to the acceptance criteria;

Until (maximum number of iterations);
Return best solution;
End;

Table 34: Pseudocode of GRASP metaheuristic

s← φ;
Evaluate the incremental cost of the candidate elements;
Repeat

Build the restricted candidate list (RCL), a set of best elements;
Select s′ ∈ RCL randomly;
s ∪ s′;
Re-evaluate the incremental costs;

Until (s is not complete);
Return s;
End;

Table 35: Greedy Randomized Construction of GRASP

Input: A weight matrix (W) of size n× n, where n is the number of nodes;
E: set of paths;

set: wij = 0 if i = j, wij = w(i, j) if (i, j) ∈ E, wij = inf if(i, j) /∈ E ;
wij: weight/cost of path i→ j

set: D0 ← W , where D is a matrix of size n× n ;
For (k = 1 . . . n)

For (i = 1 . . . n)
For (j = 1 . . . n)
dkij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj);

end For;
end For;

end For;
Return Dn (matrix containing the shortest paths between all pairs of nodes);

Table 36: Pseudocode of Floyd-Warshall Algorithm

123

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.768427 5670.8 351.2 5411 680 144 6074 0.047
5000 0.31 1.389 3169.13 37.8065 2857 84 4 5558 557.349
10000 0.32 1.42177 3145.88 39 2821 120 4 5558 1090.56
15000 0.32 1.44381 3139.72 41.3438 2781 160 4 5558 1626.82
20000 0.32 1.44446 3111.59 46.4063 2781 160 4 5558 2128.9
25000 0.35 1.44479 3088.86 48.9143 2781 160 4 5558 2638.97
30000 0.33 1.44493 3096.09 48.8485 2781 160 4 5558 3141.88
35000 0.35 1.44582 3085.37 48.4571 2781 160 4 5558 3623.67

Table 37: Pareto set evolution of CBMix1

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.02 0.358091 26846.5 721.5 26420 795 648 27273 0.218
5000 0.36 0.8052 15656.7 132.944 14384 288 61 17050 3091.53
10000 0.4 0.80113 15538.5 130.75 13908 256 61 17025 5526.2
15000 0.45 0.85432 15206 152.222 13608 308 57 16948 7899.27
20000 0.52 0.845071 15023.3 160.096 13544 285 57 16942 10309.8
25000 0.52 0.844326 15028.7 157.077 13501 280 57 16942 12652.9
30000 0.5 0.910406 15010.6 161.58 13432 395 57 16942 14987.2
35000 0.53 0.914301 15093.9 155.604 13357 395 57 16942 17292.6
40000 0.56 0.890764 15094.7 154.875 13335 340 57 16930 19629
45000 0.5 0.893951 15009.4 153.54 13335 340 57 16911 22299.2
50000 0.68 0.913035 14875.1 158.397 13245 372 57 16911 25037.6
55000 0.67 0.913977 14913.7 154.239 13245 372 57 16911 27687.6
60000 0.71 0.91846 14922.1 151.183 13229 372 56 16944 30194.2
65000 0.76 0.918867 14802.9 159.132 13229 372 56 16943 32730.7
70000 0.75 0.919243 14809.7 159.853 13229 372 56 16943 35220

Table 38: Pareto set evolution of CBMix2

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.484804 9041.8 357.6 8458 439 285 9407 0.062
5000 0.51 1.07905 5076.12 96.0392 4559 230 18 6519 799.123
10000 0.6 1.09516 5120.17 96.0833 4553 262 18 6507 1712.6
15000 0.59 1.08325 5162.49 90.7458 4501 224 18 6507 2418.63
20000 0.56 1.09327 5176.41 83.7321 4469 216 17 6532 3028.44
25000 0.61 1.09927 5106.98 91.1148 4303 201 17 6532 3509.09
30000 0.61 1.1008 5148.54 86.3279 4297 201 17 6532 3983.19
35000 0.66 1.15827 5040.62 102.121 4250 296 17 6532 4482.17
40000 0.7 1.15864 5050.31 99.6 4250 296 17 6531 4962.48
45000 0.67 1.16019 5010.9 99.7761 4250 296 17 6531 5449.18

Table 39: Pareto set evolution of CBMix3

124

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.03 0.443433 14065.3 555 13398 666 459 14455 0.094
5000 0.3 0.820832 9686.6 231.467 8483 360 97 11087 508.164
10000 0.4 0.82536 9626 226.8 8475 360 96 11077 1000.05
15000 0.45 0.825885 9584 230.444 8460 359 96 11070 1478.2
20000 0.49 0.829977 9700.78 219.143 8460 359 95 11091 1917.1
25000 0.54 0.849865 9588.87 229.241 8413 381 95 11091 2391.3
30000 0.54 0.851437 9582.89 228.37 8399 381 95 11091 2860.46
35000 0.52 0.910697 9591.87 229.288 8145 449 91 11093 3311.65
40000 0.61 0.918973 9460.36 245.148 8020 450 91 11093 3778.69
45000 0.64 0.919605 9358.94 254.703 8020 450 91 11090 4295.35
50000 0.69 0.924781 9318.52 258.319 7941 450 91 11090 4798.32

Table 40: Pareto set evolution of CBMix4

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.06 0.718843 11393.5 442.667 10289 838 287 12301 0.062
5000 0.47 1.26149 5623.62 150.723 4898 503 17 8044 1060.36
10000 0.49 1.26258 5659.63 150.163 4898 503 17 8044 2015.05
15000 0.55 1.26453 5617.44 151.145 4881 503 17 8044 2953.93
20000 0.53 1.2642 5622.68 152.509 4881 503 17 8040 3890.66
25000 0.56 1.26442 5664.55 147.214 4881 503 17 8040 4812.86
30000 0.56 1.2793 5522.73 140.714 4797 503 17 8040 5721.47
35000 0.58 1.27996 5517.21 143 4797 503 17 8040 6656.72
40000 0.6 1.28001 5507.67 146.117 4797 503 17 8040 7597.13
45000 0.63 1.28003 5523.7 141.556 4797 503 17 8040 8530.36

Table 41: Pareto set evolution of CBMix5

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.57319 18545.6 952.2 18098 1242 574 19428 0.11
5000 0.34 1.11243 10320.1 74.3824 8634 155 24 14015 1135.4
10000 0.62 1.26473 9476.47 145.129 8308 386 22 13997 2332.87
15000 0.38 1.21059 9446 120.211 8254 386 12 12888 3812.03
20000 0.57 1.22796 9184.37 151.982 8131 425 12 12888 4930.58
25000 0.69 1.23397 9267.33 140.812 8097 425 12 12878 6314.82
30000 0.74 1.23573 9266.55 143.541 8097 425 11 12882 7641.13
35000 0.79 1.23631 9313.61 133.215 8097 425 11 12882 8849.13
40000 0.81 1.23639 9240.85 137.679 8097 425 11 12882 9911.59
45000 0.85 1.23699 9164.95 153.988 8097 425 11 12881 10996.6
50000 0.83 1.23752 9190.23 164.349 8097 425 11 12881 12152
55000 0.63 1.24406 9286.81 132.111 8039 419 10 12886 13238.6

Table 42: Pareto set evolution of CBMix6

125

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.04 0.52181 25994.3 848.5 24053 1113 667 27332 0.187
5000 0.31 0.990521 12539.7 154.355 11217 275 33 15477 2854.24
10000 0.44 1.0549 12514 160.295 11118 387 27 15443 5413.94
15000 0.5 1.06127 12407.3 150.76 11091 387 27 15419 7966.93
20000 0.5 1.06428 12517.6 142.58 11091 387 27 15414 9975.19
25000 0.57 1.0646 12582.1 136.456 11091 387 27 15395 11884.4
30000 0.59 1.02694 12714.9 127.492 11005 276 27 15395 13848.5
35000 0.64 1.02861 12599 133.891 10992 276 27 15395 15978.8
40000 0.7 1.03063 12567.8 133.986 10992 276 26 15393 18084.7
45000 0.68 1.03212 12429.5 137.824 10992 276 26 15393 20095
50000 0.62 1.02845 12572.9 128.435 10992 269 26 15371 22029.4
55000 0.6 1.03119 12516.8 128.717 10992 269 24 15354 23989.7
60000 0.6 1.05642 12487.2 132.3 10939 320 24 15354 26025
65000 0.66 1.05667 12379 141.879 10939 320 24 15354 27994.5

Table 43: Pareto set evolution of CBMix7

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.09 0.520475 28167.8 816.222 25940 1010 656 30272 0.203
5000 0.42 0.732085 14113.3 208.238 12596 346 119 15379 2196.41
10000 0.33 0.745519 13961.4 197.273 12306 334 119 15357 4351.99
15000 0.37 0.77374 13651.5 216.324 12173 359 119 15350 6322.38
20000 0.42 0.767401 13543.3 219.929 12171 350 119 15330 8208.34
25000 0.41 0.769361 13535.4 217.634 12171 350 119 15330 9911.84
30000 0.43 0.770573 13417.6 224.279 12171 350 119 15330 11476.8
35000 0.51 0.782805 13320.6 227.784 12098 359 119 15330 13148.5
40000 0.55 0.808536 13315.7 226.982 12062 392 119 15330 14769.9
45000 0.56 0.808691 13285.3 228.482 12062 392 119 15330 16421.8
50000 0.55 0.808311 13262.3 232.545 12024 389 119 15330 18012.3
55000 0.6 0.857797 13104.9 247.067 11920 468 119 15330 19682.9
60000 0.55 0.847807 13313.3 224.945 11920 439 118 15357 21453.4
65000 0.59 0.849098 13122 239.78 11917 439 118 15357 23462.3
70000 0.61 0.845301 12967 245.525 11885 439 118 15245 25795.2

Table 44: Pareto set evolution of CBMix8

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.521478 7027.8 305.6 6762 410 221 7217 0.047
5000 0.36 0.939588 4761.61 161.528 4243 348 68 5718 382.608
10000 0.42 0.966291 4755.33 164.714 4187 348 65 5792 789.116
15000 0.46 0.971598 4813.46 154.609 4187 348 64 5806 1355.71
20000 0.44 0.967267 4736.82 164.568 4187 348 63 5769 1633.18
25000 0.49 0.967659 4740.06 164.939 4187 348 63 5769 1913.02
30000 0.5 0.967951 4708.14 169.82 4187 348 63 5769 2192.87
35000 0.5 0.968349 4729.86 167.32 4187 348 63 5769 2504.78
40000 0.52 0.968628 4721.5 167.019 4187 348 63 5769 2780.72

Table 45: Pareto set evolution of CBMix9

126

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.419876 13827.8 381.6 13223 417 311 14344 0.125
5000 0.23 0.817029 9315.57 150.435 8383 259 75 10708 737.252
10000 0.3 0.789264 9198.3 148.2 8259 227 75 10666 1434.16
15000 0.32 0.791256 9205.94 146.156 8259 227 75 10666 2120.94
20000 0.37 0.80642 9200.73 147.27 8245 238 75 10666 2775.43
25000 0.5 0.876721 9076.8 160.04 8131 305 75 10666 3551.83
30000 0.5 0.88608 9078.36 158.42 7984 305 75 10666 4225.11
35000 0.53 0.886708 9002.04 163.585 7984 305 75 10666 4864.33
40000 0.56 0.886882 9014.64 162.125 7984 305 75 10666 5479.43
45000 0.6 0.886928 9034.88 160.3 7984 305 75 10666 6139.69
50000 0.58 0.887193 9044.16 159.052 7984 305 75 10666 6764.64
55000 0.6 0.887287 9060.77 157.567 7984 305 75 10666 7403.58

Table 46: Pareto set evolution of CBMix10

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.07 0.707301 11030.3 447 9695 715 315 12364 0.094
5000 0.36 1.14979 6386.97 137.889 5224 348 13 8081 373.443
10000 0.46 1.15604 6079.11 159.457 5118 322 13 8081 765.192
15000 0.63 1.21195 5858.21 196.968 4907 425 13 8081 1261.74
20000 1 1.22511 5542.13 248.42 4832 448 13 8081 1990.92
25000 1 1.22567 5499.75 253.53 4828 448 13 8081 2813.13
30000 1 1.23876 5500.03 259.5 4823 496 13 8081 3625.97
35000 1 1.24055 5514.09 257.49 4800 496 13 8081 4422.27
40000 0.72 1.2446 5732.11 221.583 4764 496 13 8081 5201.73
45000 0.99 1.24952 5568.28 238.162 4734 496 13 8081 5815.36
50000 1 1.24004 5577.82 233.48 4714 452 13 8081 6353.5

Table 47: Pareto set evolution of CBMix11

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.08 0.694694 8137.25 448.375 7317 684 254 8832 0.062
5000 0.35 1.00679 4055.31 86.9714 3501 229 18 4723 714.662
10000 0.32 1.00964 3947.69 95.5625 3485 218 17 4706 1438.3
15000 0.36 1.03537 3984.08 87.75 3415 241 17 4697 2155.34
20000 0.36 1.03312 3896 94.9722 3415 230 17 4697 2880.82
25000 0.45 1.04348 3888.89 95.6667 3405 251 17 4687 3607.26
30000 0.47 1.06429 3845.17 105 3349 285 17 4687 4337.42
35000 0.47 1.06678 3846.51 103.277 3349 285 17 4687 5063.69
40000 0.47 1.06777 3861.74 98.383 3349 285 17 4687 5775.94

Table 48: Pareto set evolution of CBMix12

127

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.04 0.622683 28626.3 1169.5 25772 1598 767 31092 0.203
5000 0.47 0.974713 12451.6 165.83 10871 383 65 14979 2496.75
10000 0.6 1.02492 12213 181.117 10702 495 65 14932 4461.91
15000 0.68 1.00704 12044.8 191.382 10553 420 65 14932 6549.81
20000 0.86 1.04257 11778.8 225.407 10433 504 65 14913 8856.66
25000 0.84 1.04217 11769.5 224.774 10433 504 65 14889 11288.3
30000 0.77 1.04326 11843.6 217.675 10425 504 65 14889 13786.7
35000 0.77 1.04354 11849.9 210.065 10424 504 65 14887 16087.7
40000 0.83 1.04668 11884 208.988 10385 504 65 14887 18132
45000 0.79 1.04795 11968.4 202.025 10344 504 65 14861 20114.1
50000 0.85 1.04911 11907.4 205.941 10308 503 65 14859 22152.4
55000 0.95 1.04976 11768.6 223.021 10308 503 65 14859 24212.3
60000 0.9 1.05053 11957.6 198.811 10308 503 65 14859 26259.4

Table 49: Pareto set evolution of CBMix13

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.06 0.654833 17773.5 745.333 15438 1027 575 20090 0.047
5000 0.49 0.880232 10211.4 388.755 9004 630 159 12240 697.21
10000 0.63 0.882563 10128 396.27 9004 630 159 12238 1365.71
150000 0.73 0.913456 10100.4 397.342 9002 710 159 12238 1967.93
20000 0.79 0.914144 10187.9 385.696 9002 710 159 12238 2506.12
250000 0.78 0.912192 10348 360.167 9002 710 159 12210 3024.27
30000 0.76 0.91114 10236.8 372.079 8993 710 159 12184 3553.41
35000 0.8 0.911709 10262 369.488 8993 710 159 12184 4090.55
40000 0.77 0.912014 10272.4 368.481 8993 710 159 12184 4642.78
45000 0.81 0.922511 10245.3 371.938 8993 710 157 12290 5153.79
50000 0.87 0.916485 10182.9 377.218 8993 710 157 12214 5643.11

Table 50: Pareto set evolution of CBMix14

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.06 0.531115 15897.7 500 13737 643 426 16908 0.047
5000 0.34 0.619199 9523.65 180 8824 254 130 10448 728.316
10000 0.38 0.637061 9414.89 187.184 8728 259 129 10460 1549.68
15000 0.65 0.728789 9188.86 213.323 8613 342 129 10422 2484.3
20000 0.57 0.729912 9270.84 202.175 8577 342 129 10403 3449.04
25000 0.57 0.72854 9260.54 204.789 8577 342 129 10386 4434.04
30000 0.56 0.728795 9253.95 204.411 8577 342 129 10386 5376.52
35000 0.56 0.728165 9249.88 204.607 8577 342 129 10378 6275.11
40000 0.58 0.728356 9250.79 204.362 8577 342 129 10378 7149.17
450000 0.54 0.72849 9247.2 203.759 8577 342 129 10378 8084.09
50000 0.57 0.728584 9200.23 208.193 8577 342 129 10378 9086.61

Table 51: Pareto set evolution of CBMix15

128

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.04 0.499946 29778 957.25 27054 1130 734 31518 0.187
5000 0.39 0.975561 12752.8 128.359 11256 255 40 15637 3012.08
10000 0.4 0.966633 12661.3 121.4 11005 215 39 15603 6872.75
15000 0.47 0.984877 12560.8 123.021 10948 215 33 15592 9770.41
20000 0.41 0.997752 12755.9 116.732 10920 215 29 15591 12359.4
25000 0.43 1.00172 12572.1 122.233 10910 215 29 15566 14868.5
30000 0.51 1.08839 11916.2 155.529 10401 317 29 15550 18412.5
350000 0.65 1.09328 11867.6 157.431 10336 316 29 15542 21454.7
40000 0.73 1.08679 11872.9 156.493 10312 299 29 15542 24358.6
45000 0.76 1.08907 11793.8 157.408 10275 299 29 15542 27171.6
50000 0.77 1.08952 11899.1 151.922 10275 299 29 15542 29813.8
55000 0.82 1.0993 12000.3 144.768 10271 316 29 15542 32323.3
60000 0.87 1.10489 12017.9 143.437 10219 323 29 15542 34737.9
65000 0.83 1.10571 11979.1 146.554 10212 323 29 15542 37099.4

Table 52: Pareto set evolution of CBMix16

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.494823 11302.8 427.6 10132 537 371 11948 0.062
5000 0.2 1.2062 6069.35 77.4 4553 273 5 7340 2039.16
10000 0.34 1.21237 5607.79 93.7059 4547 273 5 7334 3050.59
15000 0.4 1.21568 5480.7 98.825 4544 273 5 7333 4208.58
20000 0.46 1.21752 5651.07 85.913 4544 273 5 7333 4979.17
25000 0.49 1.2217 5432.39 85.3061 4536 214 3 7332 7550.99
30000 0.47 1.2217 5424.4 87.3617 4536 214 3 7328 8759.31
35000 0.5 1.22257 5410.04 89.02 4536 214 3 7328 9760.74
40000 0.48 1.22358 5421.21 86.7292 4536 214 3 7328 11026.3

Table 53: Pareto set evolution of CBMix17

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.620606 25402 923.2 24099 1321 594 27429 0.094
5000 0.34 1.2512 12220.3 115.324 9332 284 27 17282 1631.8
10000 0.4 1.23099 11747.9 129.5 9330 250 27 17282 3300.17
15000 0.34 1.33913 10696.5 160.412 8682 501 24 16375 4990.92
20000 0.41 1.34042 11416.9 135.537 8536 466 23 16371 6425.76
25000 0.42 1.3447 11077.3 142.667 8536 466 23 16371 7784.74
30000 0.53 1.34227 10710.5 155.736 8422 426 23 16353 9341.68
35000 0.46 1.34442 10420.4 155.935 8422 426 23 16353 11011.9
40000 0.47 1.34737 10890.5 145.34 8380 426 23 16345 12584.5
450000 0.55 1.34816 10451.1 158.509 8380 426 23 16345 14078.1
50000 0.6 1.34855 10549.5 158.95 8380 426 23 16345 15654.5
55000 0.63 1.34878 10476.2 161.746 8380 426 23 16345 17196.3
60000 0.64 1.35262 10592.7 152.016 8306 426 23 16345 18658.6

Table 54: Pareto set evolution of CBMix18

129

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.611709 10666.8 584.4 10484 797 262 10896 0.078
5000 0.49 1.07796 6290.69 162.898 5593 332 27 8092 431.692
10000 0.53 1.14149 6176.32 191.774 5403 490 27 8089 927.858
15000 0.63 1.14659 6162.21 174.27 5260 446 27 8083 1401.64
20000 0.76 1.16734 6080.28 188.671 5196 503 27 8083 1968.05
25000 0.92 1.16804 6026.83 200.185 5196 503 27 8083 2540.44
30000 0.92 1.16853 6038.3 196.859 5196 503 27 8083 3086.4
35000 0.99 1.17044 6006.72 208.364 5196 503 23 8063 3605.8
40000 0.96 1.17138 6014.92 204.531 5196 503 23 8063 4125.43
1 1.17186 5983.63 209.08 5196 503 23 8063 4632.35

Table 55: Pareto set evolution of CBMix20

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.05 0.549553 39183.6 889.4 36379 1231 712 41307 0.234
5000 0.26 0.60709 21176.7 455.154 19825 633 323 23033 2032.83
10000 0.27 0.586196 21321.1 422.704 19688 586 323 23028 4274.03
15000 0.33 0.614504 21122.4 434.545 19586 626 323 23028 6425.82
20000 0.4 0.665649 20795.5 470.025 19390 714 323 23021 8764.43
25000 0.55 0.686383 20574.7 480.945 19158 746 323 23002 11288.9
30000 0.71 0.687674 20387.1 497.789 19141 746 323 23002 13790.8
35000 0.75 0.674514 20451.1 487.373 19095 712 323 23002 16023.7
40000 0.77 0.672739 20476.1 484.013 19095 708 323 23002 18242
45000 0.71 0.67298 20539.6 468.887 19095 708 323 23002 20427.7
50000 0.72 0.674018 20581.6 467.319 19070 708 323 23001 22637.8
55000 0.66 0.670561 20632 464.773 19068 700 323 23001 24655.2
60000 0.72 0.674934 20617.4 469.347 19056 708 323 23001 26646.2
65000 0.71 0.675073 20509.3 476.268 19056 708 323 23001 28595.5
70000 0.72 0.675185 20533.2 472.667 19056 708 323 23001 30574.7

Table 56: Pareto set evolution of CBMix21

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.02 0.398718 4105.5 109.5 3726 117 102 4485 0.047
5000 0.31 1.2368 2365.29 44.871 2071 150 3 3280 628.008
10000 0.29 1.27286 2249.45 39.4138 1975 98 2 3282 1077.46
15000 0.42 1.30258 2158.24 49.6667 1941 131 2 3282 1700.14
20000 0.4 1.29837 2169.63 46.4 1941 120 2 3282 2331.87
25000 0.42 1.2979 2167.29 46.7619 1941 120 2 3280 2924.45
30000 0.45 1.29816 2156.8 48.6222 1941 119 2 3280 3510.5
35000 0.45 1.29898 2148.96 51.7333 1941 119 2 3280 4106.73

Table 57: Pareto set evolution of CBMix22

130

Iteration no. RNI IH Avg. RC Avg. RB RC* RB RB* RC CPU(s)*
1 0.03 0.732796 1147.67 52 1066 106 17 1196 0.031
5000 0.22 1.17352 880.136 20.1818 780 48 1 1182 234.385
10000 0.24 1.17361 880.208 19.4167 780 48 1 1182 467.392
15000 0.26 1.17423 876.962 19.8462 780 48 1 1182 696.939
20000 0.24 1.17465 878.083 19.5833 780 48 1 1182 924.071
22082 0.24 1.17465 878.083 19.5833 780 48 1 1182 1020.05

Table 58: Pareto set evolution of CBMix23

131

Bibliography

Aggarwal, C. C., Orlin, J. B., and Tai, R. P. (1997). Optimized crossover for the inde-
pendent set problem. Operations Research, 45(2):226–234.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: theory, algorithms
and applications. Prentice Hall.

Alba, E. and Dorronsoro, B. (2004). Evolutionary Computation in Combinatorial, chap-
ter Solving the vehicle routing problem by using cellular genetic algorithms, pages
11–20. Springer.

Bach, L., Hasle, G., and Wøhlk, S. (2013). A lower bound for the node, edge, and arc
routing problem. Computers and Operations Research, 40(4):943–952.

Basseur, M., Seynhaeve, F., and Talbi, E. (2005). Path relinking in pareto multi-
objective genetic algorithms. In Coello, C., Aguirre, A., and Zitzler, E., editors,
Evolutionary multi-criterion Optimization, volume 3410, pages 120–134. Springer.

Beasley, J. E. (1983). Route first-cluster seconds methods for vehicle routing. Journal
of Management Science, 11(4):403–408.

Belenguer, J. M. and Benavent, E. (2003). A cutting plane algorithm for the capacitated
arc routing problem. Computers and Operations Research, 30(5):705–728.

Bell, J. E. and McMullen, P. R. (2004). Ant colony optimization techniques for the
vehicle routing problem. Advanced Engineering Informatics, 18:41–48.

Benavent, E., Campos, V., Corberán, A., and Mota, E. (1992). The capacitated chinese
postman problem: Lower bounds. Networks, 22(7):669–690.

Berger, J. and Barkaoui, M. (2003). A new hybrid genetic algorithm for the capacitated
vehicle routing problem. Journal of the Operational Research Society, 54(12):1254–
1262.

132

Beullens, P., Muyldermans, L., Cattrysse, D., and Oudheusden, D. V. (2003). A guided
local search heuristic for the capacitated arc routing problem. European Journal of
Operational Research, 147(3):629–643.

Bock, F. (1998). An algorithm for solving traveling-salesman and related network op-
timization problems. unpublished manuscript associated with talk presented at the
14th ORSA National Meeting.

Boonkleaw, A., Suthikarnnarunai, N., and Srinon, R. (2009). Strategic planning and
vehicle routing algorithm for newspaper delivery problem: Case study of morning
newspaper, bangkok, thailand. In Proceedings of the World Congress on Engineering
and Computer Science, volume II, San Francisco, USA.

Bosco, A., Laganà, D., Musmanno, R., and Vocaturo, F. (2013). Modeling and solving
the mixed capacitated general routing problem. Optimization Letters, 7(7):1451–
1469.

Bramel, J., Coffman, E. G., Shor, P. W., and Simchi-Levi, D. (1991). Probabilistic
analysis of the capacitated vehicle routing problem with unsplit demands. Operations
Research, 40(6):1095–1106.

Brandáo, J. and Eglese, R. (2008). A deterministic tabu search algorithm for the capac-
itated arc routing problem. Computers and Operations Research, 35(4):1112–1126.

Bullnheimer, B., Hartl, R. F., and Strauss, C. (1999). An improved ant system algorithm
for the vehicle routing problem. Annals of Operations Research, 89:319–328.

Chen, P., Huang, H.-K., and Dong, X.-Y. (2010). Iterated variable neighborhood decent
algorithm for the capacitated vehicle routing problem. Expert Systems With Applica-
tions, 37:1620–1627.

Cheung, B. K. S., Langevin, A., and Villeneuve, B. (2001). High performing evolution-
ary techniques for solving complex location problems in industrial system design.
Journal of Intelligent Manufacturing, 12(5-6):455–466.

Christofides, N., Mingozzi, A., and Toth, P. (1981). Exact algorithms for the vehicle
routing problem, based on spanning tree and shortest path relaxations. Mathematical
prograaming, 20:255 – 282.

Christofides, N., Mingozzi, A., Toth, P., and Sandi, C., editors (1979). Combinatorial
Optimization, chapter 11, pages 315–328. John Willey, Chichester.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4):568–581.

133

Corberán, A., Farnandez, E., Laguna, M., and Marti, R. (2002). Heuristic solutions to
the problem of routing school buses with multiple objectives. Journal of Operational
Research Society, 53:427–435.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic
for vehicle routing problems with time windows. Journal of Operational Research
Society, 52(8):928–936.

Croes, G. A. (1958). A method for solving traveling-salesman problem. Operations
Research, 6(6):791–812.

Cunha and Mutarelli (2007). A spreadshet-based optimization model for the integrated
problem of producing and distributing a major weekly newsmagzine. European Jour-
nal of Operational Research, 176:925–940.

Dantzig, G. B. and Ramser, J. M. (1959). The truck dispatching problem. Management
Science, 6(1):81–91.

Darwin, C. (1859). The Origin of Species. John Murray, London.

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. In Proceedings
of the 9th international joint conference on Artificial intelligence, volume 1, pages
162–164.

DeArmon, J. S. (1981). A comparison of heuristics for the capacitated chinese postman
problem. Master’s thesis, University of Maryland, College Park, MD.

Deb, K., Agrawal, S., Pratap, S., and Meyarivan, A. (2000). A fast ellitist non-
dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In
Parallel Problem Solving from Nature-PPSN VI, pages 849–858, Paris, France.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation,
6:182–197.

Deng, X., Zhu, Z., Yang, Y., Li, X., Tian, Y., and Xia, M. (2007). A genetic algorithm
for the capacitated arc routing problem. In Proceedings of the IEEE International
Conference on Automation and Logistics, pages 1551–1556.

Edgeworth, F. Y. (1881). Mathematical Psychics. C. Kegan Paul and Co., London,
England.

Eglese, R. W. (1994). Routing winter gritting vehicles. Discrete Applied Mathematics,
48(3):231–244.

134

Eraslan, E. and Derya, T. (2010). Daily newspaper distribution planning with integer
programming: an application in turkey. Transportation Planning and Technology,
33(5):423–433.

Ericsson, M., Resende, M., and Pardalos, P. (2002). A genetic algorithm for the weight
seting problem in ospf routing. Journal of Combinatorial Optimization, 6:299–333.

Eswaran, K. P. and Tarjan, R. (1987). Augmentation problems. SIAM Journal on Com-
puting, 5(4):653–665.

Fisher, M. L., Greenfield, A. J., and Jaikumar, R. (1982). A computrized vehicle routing
application. Interfaces, 12(4):42–52.

Fleischer, M. (2003). The measure of pareto optima applications to multi-objective
metaheuristics. In Proceedings of the 2nd International Conference on Evolutionary
Multi-Criterion Optimization, pages 519–533.

Flood, M. M. (1956). The traveling-salesman problem. Operations Research, 4(1):61–
75.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM,
5(6):345. doi: 10.1145/368996.369016.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligenece through
Simulated Evolution. John Wiley and Sons.

Fonseca, C. M. and Fleming, P. L. (1993). Genetic algorithms for multiobjective op-
timization: Formulation, discussion and generalization. In Forrest, S., editor, Pro-
ceedings of the 5th International Conference on Genetic Algorithms, pages 416–423,
Urbana-Champaign, IL, USA. Morgan Kaufmann.

Frederickson, G. N. (1979). Approximations algorithms for some postman problems.
Journal of the ACM, 26(3):538–554.

Gaskell, T. J. (1967). Bases for vehicle fleet scheduling. Operational Research Society,
18(3):281–295.

Gendreau, M., Hertz, A., and Laporte, G. (1992). New insertion and postoptimization
procedures for the traveling salesman problem. Operations Research, 40(6):1086–
1094.

Gendreau, M., Hertz, A., and Laporte, G. (1994). A tabu search heuristic for the vehicle
routing problem. Management Science, 40(10):1276–1290.

135

Ghiani, G., Guerriero, F., Laporte, G., and Musmanno, R. (2004). Tabu search heuristics
for the arc routing problem with intermediate facilities under capacity and length
restrictions. Journal of Mathematical Modelling and Algorithms, 3(3):209–223.

Gillett, B. and Miller, L. (1974). A heuristic for the vehicle dispatching problem. Op-
erations Research, 22:340–349.

Glover, F. (1986). Future paths for integer programming and links to artificial intelli-
gence. Computers and Operations Research, 13(5):533–549.

Goldberg, D. E. and Deb, K. (1991). Foundations of Genetic Algorithms, chapter A
comparative analysis of selection schemes used in genetic algorithms. Morgan Kauf-
mann, California.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multi-
model function optimization. In In Second International Conference on Genetic Al-
gorithms, pages 41–49.

Goldberg, D. E. and Robert Lingle, J. (1985). Alleles loci and the travelling salesman
problem. In Proceedings of the 1st International Conference on Genetic Algorithms
and their applications, pages 154–159.

Golden, B. L., Assad, A. A., and Wasil, E. A. (2002). Routing vehicles in the real world,
chapter Applications in the Solid Waste, Beverage, Food, Diary, and Newspaper In-
dustries. SIAM. Section: 10.4.

Golden, B. L., Dearmon, J. S., and Baker, E. K. (1983). Computational experiments
with algorithms for a class of routing problems. Computers and Operations Research,
10(1):47–59.

Golden, B. L., Wasil, E. A., Kelly, J. P., and Chao, I. M. (1998). Metaheuristics in
vehicle routing. Springer, Kluwer, Boston.

Golden, B. L. and Wong, R. T. (1981). Capacitated arc routing problems. Networks,
11(3):305–315.

Gómez-Villouta, G., Hamiez, J.-P., and Hau, J.-K. (2010). IEA/AIE, Part-I, LNAI, chap-
ter Tabu search with consistent neighbourhood for strip packing. Springer.

Goncalaves, J. F. and Almeida, J. (2002). A hybrid genetic algorithm for assembly line
balancing. Journal of Heuristics, 8:629–642.

Grandinetti, L., Guerriero, F., Laganá, D., and Pisacane, O. (2012). An optimization-
based heuristic for the multi-objective undirected capacitated arc routing problem.
Computers Operations Research, 39(10):2300–2309.

136

Gutiérrez, J. C. A., Soler, D., and Hervás, A. (2002). The capacitated general routing
problem on mixed graphs. Revita Investigacion Operacional, 22(5):15–26.

Haimes, Y. Y., Lasdon, L. S., and Wismer, D. A. (1971). On a bicriterion formulation
of the problems of integrated system identiïňĄcation and system optimization. IEEE
Transaction on Systems, Man, and Cybernetics, 1(3):296–297.

Haimovich, M. and Kan, A. (1985). Bound and heuristics for capacitated routing prob-
lems. Mathematics of Operations Research, 10:527–542.

Hansen, P. and Mladenovi, N. (2001). Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130(3):449–467.

Hasle, G. (2012). Routing applications in newspaper delivery. Report A23753, SINTEF,
Oslo, Norway. ISBN: 978-82-14-05310-4.

Hasle, G., Kloster, O., and Smedsrud, M. (2011). A capacitated clustering-based method
for newspaper delivery routing. In 19th Triennial Conference of the International Fed-
eration of Operational Research Societies (IFORS), Melbourne, Australia. Presented
paper.

Hertz, A., Laporte, G., and Hugo, P. N. (1999). Improvement procedures for the undi-
rected rural postman problem. INFORMS Journal on Computing, 11(1):53–62.

Hertz, A., Laporte, G., and Mittaz, M. (1997). A tabu search heuristic for the capacitated
arc routing problem. In Centre for research on transportation. Montreal, Canada, crt-
97-03 edition.

Hertz, A., Laporte, G., and Mittaz, M. (2000). A tabu search heuristic for the capacitated
arc routing problem. Operations Research, 48(1):129–135.

Hertz, A. and Mittaz, M. (2001). A variable neighborhood decent algorithm for the
undirected capacitated arc routing problem. Transportation Science, 35(4):425–434.

Hirabayashi, R., Saruwatari, Y., and Nishida, N. (1992). Tour construction algorithm for
the capacitated arc routing problem. Asia-Pacific Journal of Operational Research,
9:155–175.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The
University of Michigan Press.

Horn, J. and Nafpliotis, N. (1993). Multiobjective optimization using the niched pareto
genetic algorithm. Technical report, University of Illinois at Urban-Champaign. Illi-
GAL Report 93005.

137

Jozefowiez, N., Semet, F., and Talbi, E. G. (2006). Enhancements of NSGA II and its
application to the vehicle routing problem with route balancing. In Proceedings of
the 7th international conference on Artificial Evolution, pages 131–142.

Jozefowiez, N., Semet, F., and Talbi, E. G. (2007). Target aiming pareto search and its
application to the vehicle routing problem with route balancing. Journal of heuristics,
13(5):455–469.

Jozefowiez, N., Semet, F., and Talbi, E. G. (2008). Multi-objective vehicle routing
problems. European Journal of Operational Research, 189(2):293–309.

Jozefowiez, N., Semet, F., and Talbi, E. G. (2009). An evolutionary algorithm for
the vehicle routing problem with route balancing. European Journal of Operational
Research, 195(3):761–769.

Kirkpatrick, S., Gelatt, J., and Vecchi, M. P. (1983). Optimization by simulated anneal-
ing. Science, 220(4598):671–680.

Knowles, J. D. and Corne, D. W. (1999). The pareto archived evolution strategy: A
new baseline algorithm for pareto multiobjective optimization. In Proceedings of the
IEEE Congress on Evolutionary Computation, pages 98–105.

Kokubugata, H., Moriyama, A., and Kawashima, H. (2007). A practical solution us-
ing simulated annealing for general routing problems with nodes, edges, and arcs.
In Stuetzle, T., Birattari, M., and Hoos, H. H., editors, Proceedings of the Inter-
national conference on Engineering stochastic local search algorithms: designing,
implementing and analyzing effective heuristics, volume 4638 of Lecture Notes in
Computer Science, pages 136–149, Berlin, Heidelberg. Springer.

Lacomme, P., Prins, C., and Ramdane-Cherif, W. (2004a). Competitive memetic algo-
rithms for arc routing problems. Annals of Operations Research, 131(1-4):159–185.

Lacomme, P., Prins, C., and Sevaux, M. (2006). A genetic algorithm for a bi-objective
capacitated arc routing problem. Computers and Operations Research, 33(12):3473–
3493.

Lacomme, P., Prins, C., and Tanguy, A. (2004b). First competitive ant colony scheme
for the CARP. In Ant Colony Optimization and Swarm Intelligence, volume 3172 of
Lecture Notes in Computer Science, pages 426–427.

Li, L. Y. O. and Eglese, R. W. (1996a). An interactive algorithm for vehicle routeing for
winter-gritting. Journal of the Operational Research Society, 47(2):217–228.

138

Li, L. Y. O. and Eglese, R. W. (1996b). A tabu search based heuristic for arc routing with
a capacity constraint and time deadline. In Meta-heuristics Theory and Applications,
pages 633–649, Dordrecht. Kluwer Academic Publishers.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44:2245–2269.

Liu, T., Jiang, Z., and Geng, N. (2013). A memetic algorithm with iterated local search
for the capacitated arc routing problem. International Journal of Production Re-
search. DOI: http://dx.doi.org/10.1080/00207543.2012.753165.

Løkketangen, A., J. Oppen, J. O., and D. L, W. (2012). An attribute based similarity
function for vrp decision support. Decision making in manufacturing and services,
6(2):65–83.

López, M. (1998). Optimización mediante técnicas de simulación monte carlo del recor-
rido del servico de recogida de residuos en el municipo de aldaya (valencia): caso
de trazado urbano con alto número de calles con sentido de circulación prohibido.
Proyecto Final de Carrera. Escuela Técnica Superior de Ingenieros Industriales de
la Universidad Politécnica de Valencia.

Martinez, C., Loiseau, I., Resende, M. G. C., and Rodriguez, S. (2011). BRKGA al-
gorithm for the capacitated arc routing problem. Electronic Notes in Theoretical
Computer Science, 281:69–83.

Mei, Y., Tang, K., and Yao, X. (2011). Decomposition-based memetic algorithm for
multiobjective capacitated arc routing problem. IEEE Transactions on Evolutionary
Computation, 15(2):151–165.

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Kluwer, Boston.

Miettinen, K. (2003). Multi-Objective Programming and Goal Programming: Theory
and Applications, chapter Graphical illustration of Pareto optimal solutions, pages
197–202. Springer-Verlag, Berlin, Heidelberg.

Miller, C., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formula-
tion of the travelling salesman problem. Journal of the Association for Computing
Machinery, 7:326–329.

Mole, R. H. and Jameson, S. R. (1976). A sequential route-building algorithm employ-
ing a generalized savings criterion. Operational Research Quaterly, 27:503–511.

Morse, J. N. (1980). Reducing the size of non-dominated set: Pruning by clustering.
Computers and Operations Research, 7(1-2):55–66.

139

Murata, T. and Itai, R. (2005). Multi-objective vehicle routing problems using two-
fold EMO algorithms to enhance solution similarity on non-dominated solutions. In
Proceedings of the Third international conference on Evolutionary Multi-Criterion
Optimization, pages 885–896, Berlin, Heidelberg. Springer.

Nagata, Y. and Bräysy, O. (2009). Edge assembly-based memetic algorithm for the
capacitated vehicle routing problem. Networks, 54(4):205–215.

Nazif, H. and Lee, L. S. (2012). Optimised crossover genetic algorithm for capacitated
vehicle routing problem. Applied Mathematical Modelling, 36:2110–2117.

Oliver, I. M., Smith, D. J., and Holland, J. R. C. (1987). A study of permutation
crossover operators on the travellng salesman problem. In Proceedings of 2nd Inter-
national Conference on Genetic Algorithms and Their Application, pages 224–230.

Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the
logistics of regional blood banking. PhD thesis, Northwestern University, Evanston,
Illinois.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41(4):421–451.

Osman, I. H. and Christofides, N. (1994). Capacitated clustering problems by hybrid
simulated annealing and tabu search. International Transactions in Operational Re-
search, 1(3):317–336.

Pandit, R. and Muralidharan, B. (1995). A capacitated general routing problem on
mixed networks. Computers and Operations Research, 22(5):465–478.

Pareto, V. (1906). Manuale di Economia Politica. Societa Editrice Libraria, Milano,
Italy.

Pasia, J. M., Derner, K. F., Hartl, R. F., and Reimann, M. (2007). A population-based
local search for solving a bi-objective vehicle routing. In European conference on
Evolutionary computation in combinatorial optimization, pages 166–175.

Pearn, W. L. and Wu, T. C. (1995). Algorithms for the rural postman problem. Com-
puters and Operations Research, 22(8):819–828.

Pisinger, D. and Ropke, S. (2006a). An adaptive large neighborhood search heuristic
for the pick up and delivery problem with time windows. Transportation Science,
40(4):455–472.

140

Pisinger, D. and Ropke, S. (2006b). An adaptive large neighbourhood search heuristic
for the pick up and delivery problem with time windows. Transportation Science,
40(4):455–472.

Polacek, M., Doerner, K. F., Hartl, R. F., and Maniezzo, V. (2008). A variable neigh-
borhood search for the capacitated arc routing problem with intermediate facilities.
Journal of Heuristics, 14(5):405–423.

Potvin, J.-Y. and Bengio, S. (1996). The vehicle routing problem with time windows
part II: Genetic search. INFORMS Journal on Computing, 8:165–172.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers and Operations Research, 31(12):1985–2002.

Prins, C. and Bouchenoua, S. (2004). A memetic algorithm solving the VRP, the CARP
and GENERAL routing problems with nodes, edges and arcs. In Hart, W. E., Krasno-
gor, N., and Smith, J. E., editors, Recent Advances in Memetic Algorithms, volume
166 of Studies in Fuzziness and Soft Computing, pages 65–85. Springer, Berlin, Hei-
delberg.

Prins, C., Labadi, N., and Reghioui, M. (2009). Tour splitting algorithms for vehicle
routing problems. International Journal of Production Research, 47(2):507–535.

Rechenberg, I. (1973). Evolutionsstrategie-Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. PhD thesis, Frommann-Holzboog Verlag.

Rego, C. (1998). A subpath ejection method for the vehicle routing problem. Manage-
ment Science, 44(10):1447–1459.

Rego, C. and Roucairol, C. (1996). A parallel tabu search algorithm using ejection
chains for the vehicle routing problem. In Osman, I. H. and Kelly, J. P., editors,
Meta-heuristics: Theory and Applications, pages 661–675. Springer, Kluwer, Boston,
Kluwer, Boston.

Reimann, M., Doerner, K., and Hartl, R. F. (2004). D-ants: Savings based ants di-
vide and conquer the vehicle routing problem. Computers and Operations Research,
31(4):563–591.

Riise, A. (2002). Comparing genetic algorithms and tabu search for multi-objective
optimization. In Proceedings of the IFORS Conference, page 29, Edinburgh, UK.

Rochat, Y. and Taillard, E. D. (1995). Probabilistic diversification and intensification in
local search for vehicle routing. Journal of heuristics, 1:147–167.

141

Russel, R., Chiang, W.-C., and Zepeda, D. (2008). Integrating multi-product produc-
tion and distribution in newspaper logistics. Computers and Operations Research,
35:1576–1588.

Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2010). An improved ant colony
optimization based algorithm for the capacitated arc routing problem. Transportation
Research Part B: Methodological, 44(2):246–266.

Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: mini-
mizing route duration. INFORMS Journal of Computing, 4:146–154.

Schwefel, H.-P. (1977). Numerische Optimierung von Computer-Modellen. PhD thesis,
Birkhäuser.

Segerstedt, A. (2013). A simple heuristic for vehicle routing-a variant of clarke
and wright’s saving method. International Journal of Production Economics.
doi:http://dx.doi.org/10.1016/j.ijpe.2013.09.017.

Shaw, P. (1998). Using constraint programming and local methods to solve vehicle
routing problems. In Proceedings of the 4th International Conference on Principles
and Practice of Constraint Programming, pages 417–431.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research, 35(2):254–265.

Song, S. H., Lee, K. S., and Kim, G. S. (2002). A practical approach to solving a news-
paper logistics problem using a digital map. Computers and Industrial Engineering,
43:315–330.

Spears, W. and DeJong, K. (1991). On the virtues of parametrized uniform crossover.
In Proceedings of the Fourth International Conference of Genetic Algorithms, pages
230–236, San Diego, USA.

Srinivas, N. and Ded, K. (1995). Multiobjective optimization usinf non-dominated sort-
ing in genetic algorithms. Evolutionary Computation, 2(3):221–248.

Stadler, W. and Dauer, J. P. (1992). Structural Optimization: Status and Promise, chap-
ter Multicriteria optimization in engineering: a tutorial and survey, pages 211–249.
Published by American Institute of Aeronautics and Astronautics, Washington DC.

Taillard, É. (1993). Parallel iterative search methods for vehicle routing problems. Net-
works, 23(8):661–673.

142

Taillard, E., Badeau, P., Gendreau, M., Guertin, F., and Potvin, J.-Y. (1997). A tabu
search heuristic for the vehicle routing problem with soft time windows. Transporta-
tion Science, 31(2):170–186.

Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. WILEY. ISBN:
0470278587 9780470278581.

Tan, K. C., Chew, Y. H., and Lee, L. H. (2006). A hybrid multi-objective evolutionary
algorithm for solving truck and trailer vehicle routing problems. European Journal
of Operational Research, 172(3):855–885.

Tang, K., Mei, Y., and Yao, X. (2009). Memetic algorithm with extended neighborhood
search for capacitated arc routing problems. IEEE Transactions on Evolutionary
Computing, 13(5):1151–1166.

Toth, P. and Vigo, D. (2002). The vehicle routing problem, chapter Routing vehicles in
the real world: Applications in the solid waste, beverage, food, dairy and newspaper
industries. SIAM, Philadelphia.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the vehicle-
routing problem. INFORMS Journal on Computing, 15(4):333–346.

Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European
Journal of Operational Research, 22(3):329–337.

Usberti, F. L., França, P. M., and França, A. L. M. (2011). Grasp with evolutionary
path-relinking for the capacitated arc routing problem. Computers and Operations
Research. doi: http://dx.doi.org/10.1016/j.cor.2011.10.014.

VanBuer, M. G., Woodruff, D. L., and Olson, R. T. (1999). Solving the medium news-
paper production/distribution problem. European Journal of Operational Research,
11:237–253.

Veldhuizen, D. A. V. and Lamont, G. B. (1998). Evolutionary computation and conver-
gence to a pareto front. In Late Breaking Papers on the Genetic Programming, pages
221–228.

Whitley, L. D., Starkweather, T., and Fuquay, D. (1989). Scheduling problems and
traveling salesman: The genetic edge recombination operator. In Proceedings of the
3rd International Conference on Genetic Algorithms, pages 133–140, George Mason
University, Fairfax, Virginia, USA.

Xing, L., Rohlfshagen, P., Chen, Y., and Yao, X. (2010). An evolutionary approach to
the multidepot capacitated arc routing problem. IEEE Transactions on Evolutionary
Computation, 14(4):356–374.

143

Xu, J. and Kelly, J. P. (1996). A network flow-based tabu search heuristic for the vehicle
routing problem. Transportation Science, 30(4):379–393.

Yellow, P. C. (1970). A computational modification to the saving method of vehicle
scheduling. Operations Research Quarterly, 21(2):281–283.

Zitzler, E., Laumanns, M., and Thiele, L. (2002). Evolutionary Methods for Design, Op-
timisation, and Control, chapter SPEA2: Improving the strength pareto evolutionary
algorithm for multiobjective optimization, pages 19–26. CIMNE, Barcelona, Spain.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A compara-
tive case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271.

∗ ∗ ∗ ∗ ∗

144

