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Introduction

The interest in the construction of types is gradually increased over time.
The possibility to define types or classes or states of elements starting from
a plurality of measurements is one of the general purpose of the analysis of
complex phenomena and data mining. The general purpose of clustering is the
identification of groups of objects (or clusters) such that objects in a cluster
are very similar and objects in different clusters are quite distinct [11].

Literature is scattered by many publications on a great numbers of cluster-
ing algorithms in diversificated areas such as pattern recognition [1], artificial
intelligence [19], image processing [4], biology [6], medicine and psychology [18],
marketing [15], climate [9], oceanography [2] and meteorology [16], etc.

Over the last 40 years, a wealth of algorithms and computer programs has
been developed for cluster analysis. The reason for the variety of methods is
twofold. On the one side, automatic classification is a very young scientific
discipline in vigorous development, as it can be seen from the thousands of
articles scattered over many periodicals. Nowadays, automatic classification
is establishing itself as an independent scientific discipline. Even if a general
theory on cluster analysis does not exist, several authors attempted to unify
all methods under an unified approach. On the other side a general defini-
tion of a cluster does not exist, and in fact there are several kinds of them:
spherical clusters, drawn-out clusters, linear clusters, circular clusters, and so
on. Moreover, different applications make use of different data types, such as
continuous variables, discrete variables, similarities and dissimilarities. There-
fore, one needs different clustering methods in order to adapt to the kind of
application and the type of clusters under study.

In order to organize a collection of data items into clusters, such that items
within a cluster are more similar to each others, the notion of similarity can
be expressed in very different ways, according to the purpose of the study, to
domain-specific assumptions and to prior knowledge of the problem.

The supervised clustering approach makes use of a small amount of guides
or adjustment or a priori informations to address the clustering process. As
a result, the similarity is addressed by the initial selection of training data
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ii Introduction

used to infer the model. Unsupervised clustering is performed when no in-
formation is available concerning the membership of data items to predefined
classes. Under this setting, clustering is traditionally seen as part of unsuper-
vised learning. In this case, the most important methods suggested by a large
number of papers, include [13]:

• Hierarchical models, that aim at obtaining a hierarchy of clusters, called
dendrograms, which show how the clusters are related to each other.
These methods proceed either by iteratively merging small clusters into
larger ones (agglomerative algorithms, by far the most common) or by
splitting large clusters (divisive algorithms). A partition of the data
items can be obtained by cutting the dendrogram at a desired level.

• Distance-based methods, that identify each cluster by minimizing a cost
function that is the sum over all the data items of the squared distance
between the item and the prototype of the cluster assigned. In gen-
eral, the prototypes are the cluster centroids, as in the popular k-means
algorithm [17].

• Density-based methods view clusters as dense sets of data items, sepa-
rated by less dense regions; clusters may have arbitrary shape and data
items can be arbitrarily distributed. Many methods have been developed
in this framework, such as DBSCAN [21], [8], that relies on the study
of the density of items in the neighbourhood of each item, or grid-based
methods that quantize the space of the data items into a finite number
of cells.

• Mixture-based methods assume that the data items in a cluster are drawn
from one of several distributions (usually Gaussian) and attempt to es-
timate the parameters of all these distributions. The introduction of the
expectation maximization (EM) algorithm in [5] was an important step
in solving the parameter estimation problem.

Traditionally, techniques of wind-wave data clustering in meteorology and
oceanography are based on distance-based methods. Recent proposals require
the use of a finite number of target distributions, defined as cluster centroids,
and an optimization algorithm that associates the observed data to the closest
centroid [3]. Hierarchical agglomerative clustering methods [12] have been also
suggested to avoid the specification of a family of target distributions. The
statistical properties of distance-based methods are generally unknown [10],
precluding the possibility of formal inference on the clustering results. This
is a critical issue in marine studies, because the identification of wave regimes
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without a measure of the statistical uncertainty of regime specific parameters is
of little practical use. In addition, there is little systematic guidance associated
with distance-based methods for solving basic questions that arise in cluster
analysis, such as the choice of an optimal number of clusters and the choice of
an optimal clustering algorithm. A general framework to address these issues
is provided by latent-class models, which cluster multivariate data according
to a finite number of classes, by approximating the joint distribution of the
data by a mixture of parametric densities, which represent the distributional
shape of the data within each cluster. From a methodological viewpoint, a
latent-class approach allows to solve the clustering problem as a missing value
problem, by treating the unknown cluster membership of each observation as a
missing value, to be estimated from the data. From a technical viewpoint, the
clustering algorithm reduces to likelihood maximization and the choice of the
optimal number of clusters reduces to a model selection problem in parametric
inference.

Overview

Cluster analysis is a useful data mining method to obtain detailed informa-
tion on the physical state of the ocean. Clusters discovery from marine data is
one of the very promising subfields of data mining because increasingly large
volumes of marine data are collected from gauges (buoys, drifters, platforms,
etc.) and satellites and need to be analysed. The focus of the marine data
mining is to maximize the information that can be derived from data of a
marine environment. In the literature, only few works ( [20], [7], [14]) present
modern techniques for the analysis of datasets collected in oceanography.

The primary objective of this thesis is the development of an algorithm to
classify physical oceanographic data and identify relevant sea regimes. Typical
oceanographic data used to describe sea regimes are wave height, wave direc-
tion, wind speed and wind direction. These data are collected in Italy by the
Italian Data Buoy Network in several points along the coasts and are char-
acterised by a mixed linear-circular support (linear support for wave height
and wind speed, circular support for wave and wind directions). Furthermore,
time series are often incomplete, due to unmoorings, transmission errors or
maintenance operations of the gauges. All these issues suggest the use of
mixture-based algorithms, that appear more flexible than others in order to
model data with different supports and missing values.

Chapter 1 includes relevant issues about mixed linear-circular data and
latent class methods for classification. In particular, we focus on the features
of circular data, especially in the case of incomplete datasets. We further
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introduce the general theoretical framework of mixture models and hidden
Markov models.

In Chapter 2 we display the paper A latent-class model for clustering incom-

plete linear and circular data in marine studies, which illustrates a latent-class
model that allows to jointly model wave and wind data by a finite mixture of
conditionally independent Gamma and von Mises distributions. In this case
all the variables are assumed conditionally independent given the latent state,
and each measurement profile is independent from other profiles in time. In a
maximum-likelihood framework, a flexible approach to handle missing values
and mixed type data is presented in order to identify relevant sea regimes.

Model-based clustering of multivariate skew data with circular components

and missing values is displayed in Chapter 3. In this paper, the indepen-
dence assumption between variables is relaxed. Linear and circular data are
modelled as a finite mixture of bivariate circular densities and bivariate skew
linear densities to capture the association between toroidal clusters of circular
observations and planar clusters of linear observations. The advantages of this
approach include a simple specification of the dependence structures between
variables that are observed on different supports and the computational fea-
sibility of a mixture-based classification strategy where missing values can be
efficiently handled within a likelihood framework.

In Chapter 4, in the paper Maximum likelihood estimation of bivariate

circular hidden Markov models from incomplete data, we propose a hidden
Markov model for the analysis of the time series of bivariate circular obser-
vations (wind and wave directions), by assuming that the data are sampled
from bivariate circular densities, whose parameters are driven by the evolution
of a latent Markov chain. Therefore, data are considered not independent in
time, but the temporal correlation is modelled by a latent variable that satisfy
the Markov property. In this paper a computationally feasible expectation-
maximization (EM) algorithm is provided for the maximum likelihood estima-
tion of the model from incomplete data, by treating the missing values and the
states of the latent chain as two different sources of incomplete information.

A multivariate hidden Markov model for the identification of sea regimes

from incomplete skewed and circular time series is proposed in Chapter 5. In
this paper, wind and wave data are clustered by pursuing a hidden Markov
approach, where toroidal clusters are defined by a class of bivariate von Mises
densities, while skew-elliptical clusters are defined by mixed linear models with
positive random effects. Several computational aspects regarding the evalu-
ation of standard errors and the estimation step in the presence of missing
values are discussed.

Conclusions and further remarks are discussed in Chapter 6.
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Mixture-based classification

methods for linear-circular data

Most of the literature on mixture-based classification methods is associated
with the analysis of data whose components share the same support. Contin-
uous observations are typically clustered by mixtures of univariate normal
distributions [12], [2]. More generally, multivariate continuous data are clus-
tered by mixtures of multivariate normal distribution [1]. In the case of skew
or non-negative data, mixtures of univariate gamma [31], t [20] or Weibull [11]
distributions have been proposed for robust classification. These proposal have
been extended in a multivariate context, exploiting mixtures of multivariate
skew normal [19] and t distributions [21], or non-elliptically contoured distri-
butions [16]. In directional statistics, while mixtures of Kent distributions [25]
and Von Mises distributions [23] are popular in the analysis of spherical data,
toroidal data have been recently modelled by mixtures of bivariate circular
densities [24]. Unsupervised classification of mixed type multivariate data has
been studied only in the case of mixed linear and categorical data [13] [17].

1.1 Finite mixture models for multivariate data

Finite mixtures of distributions represent a mathematical-based approach
to the statistical modeling of a wide range of phenomena. Because of their
flexibility, finite mixture models have continued to receive increasing atten-
tion over the past years, from both theoretical and applied viewpoints. Finite
mixture models have often been proposed and studied in the context of clus-
tering. More recently, it has been recognized that these models can provide a
principled statistical approach to the practical questions that arise in applying
clustering methods [1], [9] [10]. Under a finite mixture model, each probability
distribution corresponds to a cluster. The problems of determining the num-
ber of clusters and of choosing an appropriate clustering method can be recast
as model choice problems, and models that differ in number of components
and/or in component distributions can be compared [10]. One of the first

1-1



1-2 Mixture-based classification methods

major analysis involving the use of mixture models was undertaken by Karl
Pearson in 1894 [26] who fitted a mixture of two normal probability density
functions to biological data. In 1977 Dempster et al. formalized the iterative
procedure of the Expectation-Maximization (EM) algorithm that converges
to the Maximum-Likelihood solution of the mixture problem. The impact of
the EM, and the advent of high-speed computers, gave a great impulse to
latent-class classification methods.

Let X1, ...,Xn be a sample of multivariate observations that can be clus-
tered into K groups (or classes). Let Z = (Z1, ..., ZK) be a latent (un-
observed) multinomial random vector with one trial and cell probabilities
π = (π1, ..., πK).

In a finite mixture context, for each observation i an unobserved vector zi

indicates whether Xi belong or not belong to the kth class (k = 1, ..., K). We
assume that each Xi is independently sampled from a mixture of K distribu-
tions, say

f(xi) =
K∑
k=1

πkfk(xi), (1.1)

K∑
k=1

πk = 1 (1.2)

where fk(xi) denotes multivariate densities and the πk are probabilities that
sum to one.

Each probability πk represents the kth mixing proportion or the probability
that the observation Xi belongs to the kth subpopulation with corresponding
density fk(x) called the kth mixing or component density. K is the total
number of components.

This is the most general form of a mixture: usually the fk’s are assumed
to be of parametric form i.e. fk(x) = fk(x; θk), where the functional form of
fk(·; ·) is known the parameter vector θk. Thus, (1.1) can be written in the
form

f(xi, θ) =

K∑
k=1

πkfk(xi, θk), (1.3)

The response x1, ....,xn are assumed to be conditionally independent given
zi, that is

f(x1, ...,xn | θ1, ..., θK , z1, ..., zn) =
n∏

i=1

f(xi | θ1, ..., θK , zi) (1.4)



Finite mixture models for multivariate data 1-3

where f(xi | θ1, ..., θK , zi) is written according to equation (1.3). Under this
setting, the likelihood function is given by:

L(θ1, ..., θK , z1, ..., zn) =
n∏

i=1

K∑
k=1

πkfk(xi | θk). (1.5)

1.1.1 EM Algorithm

The EM algorithm is the most widely used method for estimating the
parameters of a finite mixture probability density. The EM algorithm is an
iterative method for performing maximum likelihood estimation when some
of the data are missing, and exploits the fact that the complete-data log-
likelihood may be straightforward to maximize even if the likelihood of the
observed data is not. The ”complete-data log-likelihood” (CDLL) is the log-
likelihood of the parameters of interest, based on both the observed data and
the missing data [32]. In the mixture framework the observed vector is viewed
as being incomplete as the associated component-label vector z = z1, ..., zn

are not available, so they are ”missing”. The complete-data vector is therefore
declared to be

xc = (x1, ...,xn, z1, ..., zn) (1.6)

The component-label vectors z1, ..., zn are taken to be the realization of
the random vector Z1, ...,Zn, where, for independent feature data, they are
distributed unconditionally as a multinomial distribution. This assumption
implies that the complete-data log likelihood is given by

logLc(θc) =

n∑
i=1

K∑
k=1

zik{log πk + log fk(xi; θk)}, (1.7)

where

θc = (π1, ..., πk−1, θ1, ..., θK) (1.8)

is the vector containing all the unknown parameters to be estimated.
The EM algorithm proceeds iteratively in two steps, the E step (for Ex-

pectation) and the M step (for Maximization).
The E step evaluates the conditional expectation of the complete-data log

likelihood logLc(θc), given the observed data x, using the current estimate of

θ
(t)
c available from the last M step.

Q(θc; θ
(t)
c ) = E{logLc(θc)|x}. (1.9)
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The M-step on the (k + 1)th iteration requires the global maximization

of Q(θc; θ
(t)
c ) with respect to θc over the parameter space, and yields the up-

dated estimate θ
(t+1)
c . The E and M steps are alternated repeatedly until the

difference

L(θ(t+1)
c )− L(θ(t)

c ) (1.10)

changes by an arbitrarily small amount in the case of convergence of the se-
quence of likelihood values {L(θ

(t)
c )}.

The EM algorithm needs the specification of the entire set of unknown
parameters θ(0) at step 0. Different starting strategies and stopping rules
can lead to quite different estimates in the contest of fitting mixtures via EM
algorithm [30].

The slow convergence of the algorithms will be exacerbated by a poor
choice of the unknown parameters. In some cases where the likelihood is
unbounded on the edge of the parameter space, the sequence of estimates may
diverge if the initial values is chosen too close to the boundary. Furthermore,
the likelihood equation will usually have multiple roots corresponding to local
maxima, especially in case of great complexity of the model (e.g. great number
of components/states). So, the algorithms should be applied starting from a
wide choice of initial values.

Usually, the random starts are setted as initial partitions z(0). Data are
random divided into K groups corresponding to the K components or states of
the model. That is, for each observation xi, we randomly generate an integer
between 1 and K, both inclusive. If this random integer is equal to h, the kth
element of z

(0)
i is equal to 1 for i = h and equal to zero for i �= h (k = 1, ..., K).

In order to avoid local maxima short-runs strategies can be applied [4], by
running the algorithms from a number of random initializations, and stopping
the them without waiting for full convergence. The convergence to spurious
maxima is fast (a phenomenon that is well known in the case of mixtures of
multivariate normal densities; [14]) and can be detected within short runs by
monitoring the class proportions.

In Chapter 2 and 3, EM algorithms are developed in case of mixture models
with univariate and multivariate linear-circular densities.

1.1.2 Missing Values

Let X1, ...,Xn denote a set of incomplete multivariate observations. The
n × J matrix measurement X can be split in the observed part XO and the
missing part XM , so that X = (XO, XM). It can be assume that the missing
values are missing at random (MAR), so the probability that an observation is
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missing may depends on XO but not on XM . This assumption is less restrictive
than MCAR (missing completely at random) in which the missing data are a
simple random sample of all data values but it is more restrictive than NIM
(non-ignorable missing) in which the value of the missing observations depends
on the value of the missing data. Known the reasons of the missing mechanism,
it is reasonable to assume the MAR hypothesis as missing mechanism.

For mixture-based data clustering, maximum-likelihood estimation could
be carried out by discarding incomplete data profiles from the sample and
using the complete cases to build up the likelihood function to be maximized
(CC; complete case analysis).

If the joint distribution of the variables of interest is correctly specified and
the data are missing at random, CC-based maximum-likelihood estimation is
known to be (asymptotically) unbiased but inefficient. Loss of efficiency is
due to the fact that incomplete profiles are informative of the parameters of
the joint distribution of several variables, especially when these variables are
strongly correlated. Efficient maximum-likelihood estimation can be carried
out from MAR multivariate data often through data-augmentation or multiple-
imputation methods [29].

Let us introduce a n×J matrix R whose generic component rij = 1 if xij is

missing and 0 otherwise. Accordingly, the row-sums of R, say ri· =
∑J

j=1 rij,
indicate the number of missing values within each ith profile. If the data are
MAR, i.e. the probability of a missing value does not depend on the value
that is missing, maximum likelihood estimates of model (1.1) can be found by
maximizing the marginal log-likelihood function

logL(θ,π) =l(θ,π) =

n∑
i=1

log

∫
XM,i

K∑
k=1

πkfk(xi | θk)dXM,i =

=
∑

i:ri·=0

log
K∑
k=1

πkfk(xi | θk)+

+
∑

i>ri·=0

log

∫
XM,i

K∑
k=1

πkfk(xi | θk)dXM,i =

= lCC(θ,π) + lIC(θ,π);

(1.11)

which is the sum of the log-likelihood contributions of the complete (CC)
and incomplete cases (IC).
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1.1.3 Standard errors

Another critical issue is the provision of standard errors associated to the
parameter estimates. One of the criticism of the EM algorithm is that it
does not automatically provide an estimate of the covariance matrix of the
estimates. A number of methods have been proposed in order to asses the
covariance matrix of the parameter vector θc obtained via the EM algorithm.
One way is to approximate the covariance matrix of the parameters by the
inverse of the observed information matrix I(θ̂c,x). The matrix I(θ̂c,x) can
be directly evaluated after the computation of the MLE θ̂c. However, analytical
evaluation of the second-order derivatives of the log likelihood may be difficult
for most mixture models, in particular in multivariate cases. Louis [22] showed
that I(θ̂c,x), the negative of the Hessian of the incomplete-data log likelihood
can be computed in terms of the conditional moments of the gradient and
curvature of the complete-data log likelihood.

I(θ̂c,x) = Ic(θ̂c,x) (1.12)

The calculation of Ic(θ̂c,x) can be facilitated if the complete-data density
belongs to the regular exponential family.

On the other hand a resampling approach may be considered. Standard
error estimation of θ̂c may be implemented according to the bootstrap [7]
technique, that permits to evaluate the variability of a random quantity using
just the data at hand. It follows three steps:

• a new set of data x∗, called bootstrap sample, is generated according to
F̂ , an estimate of the distribution function of X formed from the original
observed data x;

• the latent-class model is estimated from x∗, to compute the maximum
likelihood estimates for this dataset, say θ̂∗

c ;

• the bootstrap covariance matrix of θ̂∗
c can be approximated by the sample

covariance matrix of these B bootstrap replications:

cov(θ̂∗
c ) ≈

B∑
b=1

(θ̂∗
c,b − θ̂∗

c )(θ̂
∗
c,b − θ̂∗

c )
T/(B − 1) (1.13)

where

θ̂∗
c =

B∑
b=1

θ̂∗
c,b/B (1.14)
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The standard error of the ith element of θ̂c can be estimated by the positive
square root of the ith diagonal element of (1.13).

It has been shown that 50 to 100 bootstrap replications are generally suf-
ficient for standard error estimation [8]. Peel [27] compares the bootstrap
and information-based approaches for some normal mixture models. He found
that unless the sample size is very large, the standard errors found by an
information-based approach were too unstable to be recommended.

1.1.4 Model Selection

Testing the number of components or states K in a latent class model
and the comparison between different models are important but very difficult
problems which have not been completely resolved. In a clustering context,
the choice of K arises with the question of how many clusters or classes there
are. There are two common ways to evaluate the number of clusters. One
way is based on a penalized form of the likelihood. As the likelihood increases
with the addition of a component, the criteria penalizes the model (usually,
the log-likelihood) by a term that depends on the number of parameters. On
the other hand it is possible to carry out an hypothesis test, using the like-
lihood ratio as test statistic. Penalized likelihood criteria are less demanding
than the likelihood ratio test, which requires bootstrapping in order to obtain
an assessment of the P-value [25]. The commonly used penalized likelihood
criteria that would appear to be adequate are AIC and BIC, because they do
not underestimate the true number of components, asymptotically [18]. The
Akaike’s Information Criterion (AIC) selects the model that minimizes

−2 logL(θc) + 2d (1.15)

where d is the total number of parameters θc in the model. In the literature,
many authors observe that AIC tends to overfit the data.

The Bayesian Information Criterion (BIC) penalizes the likelihood by the
total number of parameters d and the dimension of the sample size n:

−2 logL(θc) + d logn. (1.16)

In general BIC tends to penalize complex model more heavily than AIC,
so it reduces the tendency of the AIC to fit too many components.

Additionally to AIC and BIC criterion, many others criteria have been
developed in literature, but in a clustering context some classification-based
information criteria are assuming an increasing relevance. The Integrated
classification likelihood (ICL) is the easiest to apply and it selects the true
model [25], whose components appears to be well separated. The ICL (in
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its simplified ICL-BIC version) penalises the likelihood function by the total
number of unknown parameters, the sample size and the entropy:

−2 logL(θc) + 2EN(π̂) + d logn. (1.17)

where

EN(π̂) = −

K∑
k=1

n∑
i=1

πki log πki, (1.18)

is the entropy index, computed by summing up the posterior classification
probabilities.

1.2 Hidden Markov Models

Although initially introduced and studied in the late 1960s and early 1970s,
hidden Markov models have become increasingly popular in the last fifteen
years, due to their rich mathematical structure that make them very flexi-
ble. Actually they can form the theoretical basis for use in a wide range of
applications. HMM belongs to a class of Markovian models for which the
dynamics of the stochastic process are completely or partially governed by a
Markov chain or a Markov process. The model is hidden in the sense that
the stochastic process is only partially observable. These models are used for
investigating the properties of a given signal or time-series. As pointed out by
Rabiner [28], real-world processes generally produce observable outputs which
can be characterised as signals that can be discrete or continuous, stationary
or nonstationary, pure or corrupted by transmission, distortions, reverbera-
tions, etc. There are two main approaches for characterizing these time-series.
Deterministic models generally exploit some known properties of the signal,
such as periodicity, decomposability, etc, that completely summarize the sig-
nal features. The second broad class is the set of statistical models (Gaussian
models, Markov processes), under which it is possible to characterize only the
statistical properties of the signal. The underlying assumption of the statisti-
cal model is that the signal can be well characterized as a parametric random
process and that the parameters of the stochastic process can be determined
(estimated) in a precise, well-defined manner.

For this reason, hidden Markov models have been used to handle a variety
of real-world time dependent data in a large number of scientific fields, such
as speech recognition, health science, environmental science, biology, etc.

A hidden Markov model can be considered a generalization of a mixture
model where the hidden variables (or latent variables), which control the mix-
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ture component to be selected for each observation, are related through a
Markov process rather than independent of each other. Thus, the HMM pro-
vides a convenient way of formulating an extension of a mixture model to allow
for dependent data.

1.2.1 Discrete-state Markov process

Consider a system which may be described at any time as being in one of
a set of K distinct states S = {1, ..., K}. According to a set of probabilistic
rules, the system may, at certain discrete instants of time, undergo changes of

state (or state transitions). Let St(j) be the event that the system is in state
j at time t. The probability of this event can be written as Pr(St(t)). Each
event may be described by transition probabilities as follow

Pr(St = j|St−1 = a, St−2 = b, ..., S0 = c) (1.19)

where t = 1, 2, 3, ... and 1 ≤ j, a, b, c, ...,≤ K are possible values from a
countable set S called the state space that can be written as st, realization of
St. These transition probabilities specify the probabilities associated with each
instant, and they are conditional on the entire past history of the process. If
the transition probabilities for a series of dependent trials satisfy the Markov

condition, namely:

Pr(St = st|St−1 = st−1, St−2 = st−2, ..., S0 = s0) =

Pr(St = st|St−1 = st−1) ∀t,
(1.20)

then the system is said to be a discrete-state discrete-transition Markov process

[6]. If the state of the system at time t − 1 is known, the Markov condition
requires that the conditional transition probabilities describing in time t do
not depend on any additional past history of the process [6].

The state transition probabilities for a discrete Markov process can be de-
fined as follow:

γij = Pr(St = j)|St−1 = i) 1 ≤ i, j ≤ K. (1.21)

The two obvious properties of the transition probabilities are:

• γi,j ≥ 0

•
∑K

j=1 γi,j = 1 for i = 1, ..., K.
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It is convenient to display these transition probabilities as member of a
K ×K transition matrix Γ for which γij is the entry in the ith row and jth
column, namely:

Γ =

⎡
⎢⎢⎣
γ11 γ12 ... γ1K
γ21 γ22 ... γ2K
... ... ... ...
γK1 γK2 ... γKK

⎤
⎥⎥⎦ . (1.22)

To completely define the Markov chain the initial distribution of the states
δ = (δ1, δ2, ..., δK) must be defined as follow:

δj = Pr(S0 = j), j = 1, ..., K. (1.23)

1.2.2 Likelihood function and parameter estimation

Let {Xt}t≥0 be a stochastic process, yt its realization, that corresponds
to the observed response at time t, and a discrete, homogeneous, aperiodic,
irreducible Markov chain {St}t≥0 as described before with a transition matrix
Γ. The model for the observed process Xt can be defined as follow:

fj(Xt|θ) = Pr(Xt|St = j), (1.24)

where θ denote the corresponding parameter set. The stochastic process is
linked directly to the Markov chain St that drives the distribution of the cor-
responding Xt. The observed process must satisfy two conditions:

• conditional independence condition: random variablesX0:T = (X0, ..., XT )
are conditionally independent given the latent states S0:T = (S0, ..., ST );

• contemporary dependence condition: the distribution of any Xt, given
the state variables (S0, ..., ST ), depends only on the current state St.

Taking into account these assumptions, the likelihood function L(θ,Γ, δ; x0:T )
can be defined as a function of the model parameters θc = (θ,Γ, δ) when the
observation sequence x0:T is given, as follow:

L(θc; x0:T ) =
∑

s0:T∈S

Pr(X0:T = x0:T , S0:T = s0:T |θc) =

=
∑
S

δs0

T∏
t=1

γst−1,st

T∏
t=0

fst(xt|θst)

= δΓP (x1)ΓP (x2)ΓP (x3)...ΓP (xT )1
′.

(1.25)
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In this form, the likelihood expression can not be evaluated because the
number of operations involved is of order TK2, making the evaluation of
the likelihood quite feasible even for large T . In the case of discrete state-
dependent distributions, the likelihood function, being made up of products of
probabilities, become progressively smaller as t increases, and are eventually
rounded to zero.

The likelihood function given the observed data can be efficiently computed
by a Baum-Welch (BW) procedure, by specifying the posterior probabilities in
terms of suitably normalized functions, which can be computed recursively. In
the literature, this approach is known as the Forward-Backward (FB) recursion
and it can be implemented in a number of different ways (details can be found
in Chapter 6, appendix B).

Another computational problem in HMM design concerns the estimation of
the parameters θc. In the literature, two common approaches may be used to
maximize the likelihood function with respect to the parameters. Parameter
estimation can be performed by direct numerical maximization of the likeli-
hood with respect to the parameters. There are several problems that need
to be addressed when the likelihood is maximized numerically. Relevant is-
sues include numerical underflow, re-parametrization of the model in terms of
unconstrained parameters, and multiple local maxima in the likelihood func-
tion [32]. Since the sequence of states visited by the Markov-chain component
of an HMM is not observed, a very natural approach to parameter estimation in
HMMs is to treat those states as missing data and to employ the EM algorithm
in order to find maximum likelihood estimates of the parameters. As already
described in Section 1.1.1, in the EM framework the observed vector X0:t is
viewed as being incomplete, S0:T is called the ”missing” data, while (X0:t, S0:t)
is the complete data vector. The complete-data log-likelihood function can be
easily computed as:

logLc(θc) = logPr(x0:T , s0:T |θc) =

=

K∑
j=1

log δj +

K∑
j=1

K∑
k=1

γjk +

T∑
t=0

K∑
j=1

fj(xt|θst).
(1.26)

As full convergence of the EM is slower then numerical maximization al-
gorithms, it is convenient to combine the EM algorithm and numerical opti-
mization. This approach is often called a hybrid algorithm [5] and provides
a compromise between the large circle of convergence provided by the EM al-
gorithm and the high speed of direct numerical maximization. The approach
worked well in the applications considered in this thesis as we observed that
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direct maximization of the log-likelihood is numerically stable and rapid when
initial parameters are in the neighbourhood of a maximum (more details can
be found in Chapter 5).

1.3 Linear-Circular data in marine datasets

Marine data are useful to describe the physical condition of a given basin.
A set of atmospheric conditions, in particular wind conditions, generates differ-
ent wave regimes depending on the physical, orographic, geographic features.
Usually wave regimes are evaluated through numerical and semi-deterministic
models starting from physical models of global atmospheric circulation. In par-
ticular complex situations such as coastal areas or semi-enclosed basins (e.g.
basins in Mediterranean Sea) numerical wind-wave models, traditionally used
for ocean waves, can give inaccurate results [3].

The data motivating this work are time series of wave and wind directions
(circular data), as well as wind speeds and significant wave heights (linear
data), recorded in wintertime by the Italian data buoy network, owned and
managed by the Institute for Environmental Protection and Research. These
time series are typically incomplete: the measurements taken by gauges can
be missing because of unmoorings, devices maintenance or discontinuous func-
tioning. This time series of environmental measurements were recorded at
Ancona, where the buoy is located in the Adriatic Sea about 30 km from the
coast in high water. The Adriatic Sea is a semi-enclosed basin. This area
is subject to three relevant wind events: Bora, Maestral and Sirocco winds.
Sirocco arises from a warm, dry, tropical air mass that is pulled northward by
low-pressure cells moving eastward across the Mediterranean Sea. It typically
blows from March to October and generates effects along the major axis of
the Adriatic basin (along southeast-northwest direction). Bora episodes occur
when a polar highpressure area sits over the snow-covered mountains of the
interior plateau behind the coastal mountain range and a calm low-pressure
area lies further south over the warmer Adriatic. It transfers a great amount
of energy to the northern portion of the Adriatic basin essentially in winter-
time. Finally, the Maestral is a sea-breeze wind blowing north-westerly when
the east Adriatic coast gets warmer than the sea. While Bora and Sirocco
episodes are usually associated with high-speed flows, Maestral is in general
linked with good meteorological conditions. The orography of the Adriatic
Sea plays a key role in this case study and most of the waves tend to travel
from north-northwest and south-easterly along the major axis of the basin,
where they can travel freely, without being obstructed by physical obstacles,
such as coastlines. In wintertime (from November to March) the dominant
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winds are Maestral and Bora. The first one generates low waves that travel
along the Italian coast from northwest to southeast. The Bora wind generates
high waves coming from North, reaching heights up to four to five meters. In
summertime (April to October) the dominant winds are Maestral and Sirocco
with waves never greater than three meters.

1.3.1 Circular Data

Directional measurements arise in many scientific fields. For examples, biol-
ogists measure the direction of flight of birds, while geologist may be interested
in the direction of the earth’s magnetic pole, geneticists evaluate the attack
direction of proteins, and meteorologists predict wind and waves directions.

A directional data can be represented in a plane like a two-dimensional
measure given by an angle measured with respect to some suitably chosen
”zero direction”, i.e., the starting point and a ”sense of rotation”, i.e., whether
clockwise or anti-clockwise, is taken as positive direction [15]. The simple
directional data (without any magnitude information) can be conveniently
represented as points on a circumference of a unit circle centered at the origin.
Because of this circular representation, directional data are also called circular

data.
Directional data have many unique and novel features both in terms of

modeling and in their statistical treatment [15]. For instance, since the angular
value depends on the choice of the zero direction and the sense of rotation,
the numerical representation of a direction is not unique. There exist ∞2

different representations of the same values. Some relevant reference systems
are adopted in literature. In mathematical analysis, the current reference
system takes East as zero-direction and anti-clockwise as positive direction.
In practical applications, the reference system use North as zero direction and
clockwise as positive direction. It is possible to change the reference system
through linear transformations of the circular observations (given α measured
in the second reference system, it is possible to convert it into the first reference
system by evaluating π/2− α).

Directional data are usually measured in degrees. However, it is sometimes
useful to measure in radians. Angular measurements may be converted from
degree to radians by multiplying by π/180.

Since the ”beginning” coincides with the ”end” i.e., 0 = 2π (in radians) or
0 = 360◦ (in degrees), directional data are assumed to have a bounded support,
but the measurement is also periodic with α being the same as α + p2π for
any integer p, with unbounded support.

It is therefore important to make sure that all statistical inferences and
summaries are functions of the given observations and do not depend either
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on the reference system or on the periodicity of the value.

These features make directional analysis substantially different from the
standard ”linear” statistical analysis of univariate and multivariate data. Com-
monly used summary measures on the real line turn out to be inappropriate.
For instance, it is not possible to evaluate the euclidean distance between mea-
surements. A reasonable measure of the circular distance between data is the
smaller of the two arc lengths between the points along the circumference [15],
i.e. for any two angles α and β

d0(α, β) = min(α− β, 2π − (α− β)) = π − |π − |α− β||. (1.27)

The circular mean is defined as the direction of the resultant vector of the
sample

ᾱ = arctan

∑n

i=1 sinαi∑n

i=1 cosαi

. (1.28)

Even the classical representation of time series must be redefined. The clas-
sical histogram can give misleading informations because it does not represent
the periodic feature of the data. Grouped circular data can be represented by
circular histograms, which are analogous to histograms on the real line, but
”wrapped” on a circle. A useful variant of the circular histogram is the rose
diagram, in which the bars of the circular histogram are replaced by sectors.
The area of each sector is proportional to the frequency in the corresponding
groups.

As a result, also the probability distributions must be rewritten. A circular
distribution is a probability distribution that has the following basic properties:

• f(α) ≥ 0;

•
∫ 2π

0
f(α)dα = 1;

• f(α) = f(α+ 2pπ) for any integer p.

In literature, many circular models may be generated from known prob-
ability distributions on the real line or on the plane by a variety of mecha-
nism (wrapping methods, offset distributions, stereographic projection meth-
ods, etc.), and a number of circular distribution has been studied, such as the
uniform circular distribution:

f(α) =
1

2π
, 0 ≤ α ≤ 2π. (1.29)
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The most used circular distribution is the von Mises (or Circular Normal)
distribution. A circular random variable α is said to have a von Mises distri-
bution if it has the density function:

f(α;μ, κ) =
1

2πI0(κ)
eκ cos(α−μ), 0 ≤ α ≤ 2π (1.30)

where 0 ≤ μ ≤ 2π and κ ≥ 0 are parameters and I0(κ) in the normalizing
constant is the modified Bessel function of the first kind and order zero and is
given by

I0(κ) =
1

2π

∫ 2π

0

exp(κ cos(α))dα =
∞∑
r=0

(κ
2

)2r
(
1

r!

)2

. (1.31)

The von Mises distribution verify the following properties:

• Symmetry: by the symmetry of the cosine function, the density is sym-
metric about the direction μ;

• Mode at μ: the cosine function has a maximum value at zero, so the
density is maximum at α = μ, i.e., μ is the modal direction with the
maximum value

f(μ) =
eκ

2πI0(κ)
. (1.32)

• Anti-mode at (μ± π): the density is minimum at α = μ± π,

f(μ± π) =
e−κ

2πI0(κ)
. (1.33)

• Role of κ: from the previous properties,

f(μ)

f(μ± π)
= e2κ. (1.34)

Hence, the larger the value of κ, the larger will be the ratio of f(μ) to
f(μ ± π) indicating higher concentration towards the population mean
direction μ. Thus, κ is a parameter which measure the concentration
towards the mean direction μ.
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1.4 Mixture-based classification methods for

marine datasets

The multivariate data described in Section 1.3 can be represented as n
vectors di = (di1, ..., diJ), i = 1, ..., n, drawn from the multivariate distribution
of J variables Dj, j = 1, ..., J , measured on linear and circular supports. To
account the different linear and circular support, we split the complete data
vector di = (xi1, ..., xiJ1; yi1, ..., yiJ2) into a vector xi of J1 circular data and a
vector yi of J2 linear data, with J = J1 + J2.

In Chapters 2 and 3 we define two different mixture models starting from
different conditional independence assumptions.

The Univariate Mixture Model (UMM, Chapter 2) simplifies the classifi-
cation problem by assuming that the dependence structure among variables
is well approximated by a conditional independence assumption. Within this
conditional independence assumption, the equation (1.1) can be rewritten by
specifying K×J1 distributions fk(xj |θx,kj) andK×J2 distributions fk(yj|θy,kj),
each known up to the parameter vectors θx,kj, θy,kj, as a finite mixture of J-
dimensional product densities, say

f(di) =
K∑
k=1

πk

( J1∏
j=1

fk(xij |θx,kj)
)( J2∏

j=1

fk(yij|θy,kj)
)
, (1.35)

where fk(xij |θx,kj) and fk(yij|θy,kj) denote the univariate conditional distribu-
tions of Xj and Yj within the kth latent class. In the case of wind and wave
data, circular univariate distributions must be used for the J1 circular data
(i.e. von Mises distribution) and skew univariate positive distributions for the
J2 linear data (i.e. Gamma or Weibull distributions).

In order to relax the conditional independence assumption, a Multivari-
ate Mixture Model (MMM, Chapter 3) can be used to classify marine data.
The joint distribution of multivariate linear-circular data would require the
specification of densities that lie on a multi-dimensional hyper-cylinder. In
order to avoid problems in the specification and identification of these type of
densities, the joint distribution of hyper-cylindrical data can be approximated
by the mixture of products of toroidal and planar densities, by specifying K
distributions fk(x|θx,k) and K distributions fk(y|θy,k), each known up to the
parameter vectors θx,k, θy,k. Equation 1.3 can be rewritten as follow:

f(di) =

K∑
k=1

πkfk(xi|θx,k)fk(yi|θy,k), (1.36)

where fk(xi|θx,k) and fk(yi|θy,k) denote the multivariate conditional distribu-



Bibliography 1-17

tion ofX and Y within the kth latent class. A circular multivariate distribution
must be used for circular data (i.e., a multivariate von Mises distribution) and
a multivariate skew distribution for linear data (i.e., multivariate Gamma or
multivariate skew normal distribution).

Both UMM and MMM start from the main hypothesis in mixture models
that observed data are temporally independent. In Chapter 4 and 5 a multi-
variate hidden Markov model (MHMM) has been proposed for circular data
(Chapter 4) and mixed linear-circular data (Chapter 5). Given a Markov chain,
viewed as as multinomial process in discrete time ξ0:T = (ξt, t = 0, . . . , T ) with
ξt = (ξt1, . . . , ξtK), and assuming that the observations are conditionally inde-
pendent given a realization of the Markov chain, the conditional distribution
of the observed process, given the latent process, is

f(d0:T |ξ0:T ) =

T∏
t=0

K∏
k=1

(f(xt|θx,k)f(yt|θy,k))
ξtk (1.37)

where fk(xt|θx,k) and fk(yt|θy,k) denote the multivariate conditional distribu-
tion of X and Y within the kth latent states as seen in MMM.
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A Latent-Class Model for Clustering Incomplete Linear and
Circular Data in Marine Studies

Francesco Lagona∗ and Marco Picone
Roma Tre University

Abstract: Identification of representative regimes of wave height and direc-
tion under different wind conditions is complicated by issues that relate to
the specification of the joint distribution of variables that are defined on
linear and circular supports and the occurrence of missing values. We take
a latent-class approach and jointly model wave and wind data by a finite
mixture of conditionally independent Gamma and von Mises distributions.
Maximum-likelihood estimates of parameters are obtained by exploiting a
suitable EM algorithm that allows for missing data. The proposed model is
validated on hourly marine data obtained from a buoy and two tide gauges
in the Adriatic Sea.

Key words: Circular data, cross-validation, EM algorithm, Gamma distri-
bution, latent classes, marine data, missing values, Von Mises distribution.

1. Introduction

Wave regimes are specific shapes that the distribution of wave attributes (such
as wave height and direction) takes under latent environmental conditions. The
identification of relevant regimes in a particular area is often necessary to estimate
the drift of floating objects and oil spills (Huang et al, 2011), in the design of off-
shore structures (Faltinsen, 1990) and in studies of sediment transport (Jin and
Ji, 2004) and coastal erosion (Pleskachevsky et al., 2009). The description of wave
data in terms of regimes is also useful in the analysis of coastal areas and enclosed
seas, where numerical wind-wave models, traditionally used for ocean waves, can
give inaccurate results (Bertotti and Cavalieri, 2004). For these reasons, the
Assembly of the International Maritime Organization has repeatedly encouraged
the publication of wave data atlas that include a description of representative
wave regimes in specific areas, characterized by probability of occurrence, and
corresponding to dominant environmental conditions (e.g., wind conditions) over

∗Corresponding author.
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the area of interest. This has motivated an increasing interest in methods for
clustering wave data according to a finite number of regimes.

Traditionally, techniques of wave data clustering are based on distance-based
methods. Recent proposals require the use of a finite number of target distribu-
tions, defined as cluster centroids, and an optimization algorithm that associates
the observed data to the closest centroid (Boukhanovsky et al., 2007). Hierarchi-
cal agglomerative clustering methods (Hamilton, 2010) have been also suggested
to avoid the specification of a family of target distributions.

The limitations of distance-based based methods are well known (Fraley and
Raftery, 2002). The statistical properties of these methods are generally un-
known, precluding the possibility of formal inference on the clustering results.
This is a critical issue in marine studies, because the identification of wave regimes
without a measure of the statistical uncertainty of regime-specific parameters is
of little practical use. In addition, there is little systematic guidance associated
with distance-based methods for solving basic questions that arise in cluster anal-
ysis, such as the choice of an optimal number of clusters and the choice of an
optimal clustering algorithm.

A general framework to address these issues is provided by latent-class models
(Hagenaars and McCutcheon, 2002), which cluster multivariate data according
to a finite number of classes, approximating the joint distribution of the data
by a mixture of parametric densities, which represent the distributional shape
of the data within each cluster. From a methodological viewpoint, a latent-class
approach allows to solve the clustering problem as a missing value problem, by
treating the unknown cluster membership of each observation as a missing value,
to be estimated from the data. From a technical viewpoint, the clustering algo-
rithm reduces to likelihood maximization and the choice of the optimal number
of clusters reduces to a model selection problem in parametric inference.

In this paper we take a latent-class approach to describe sea conditions in
terms of wave regimes, by clustering multivariate environmental profiles in a
finite number of classes. Specifically, we model the data by a mixture of product
densities, i.e. a particular latent-class model where the observed variables are
assumed conditionally independent, given a latent multinomial variable. This
model is tailored to identify wave regimes in practical settings that often arises
in marine studies, where (1) environmental profiles include measurements taken
on linear and circular supports and (2) some of these observations are missing,
due to malfunctioning of the devices that provide the data.

While there is an extensive literature on modelling multivariate continuous,
categorical and mixed continuous-categorical variables by multivariate normal
models, log-linear models or a combination of both, the joint modelling of vari-
ables on linear and circular supports is still an open area of research. Recent
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attempts include multivariate circular distributions defined on toroidal supports
(Mardia et al., 2008), distributions on cylinders that are based on nonnegative
trigonometric sums (Fernández-Durán, 2007) and multivariate distributions with
specified marginals on cylinders, discs and tori (Kato and Shimizu, 2008). When
however the goal of an analysis is the identification of typical wave regimes, the
specification of the joint distribution of marine variables should aim at clustering
the data according to a finite number of classes in a way that the dependence
structure between the data is well approximated by this partitioning of the sam-
ple. Mixtures of product densities provide such clustering of the data and flexibly
accommodate for the mixed supports on which linear and circular data are taken.
Moreover, the semi-parametric nature of the model allows for a parsimonious
specification of the association structure between linear and circular measure-
ments, which is of great help in marine studies, where too little is often known
about the data generating process to assume a fully parametric specification.

Wave regimes identification is additionally complicated by the occurrence of
missing values. Marine databases are often incomplete because of device mal-
functioning or maintenance-related reasons. For mixture-based data clustering,
maximum-likelihood estimation could be carried out by discarding incomplete
data profiles from the sample and using the complete cases to build up the likeli-
hood function to be maximized (CC; complete case analysis). If the joint distri-
bution of the variables of interest is correctly specified and the data are missing
at random (MAR; i.e., the conditional probability of not observing a value, given
the observed data, does not depend on the unobserved value; Rubin, 1987), CC-
based maximum-likelihood estimation is known to be (asymptotically) unbiased
but inefficient (Rotnitzky and Wypij, 1994). Loss of efficiency is due to the fact
that incomplete profiles are informative of the parameters of the joint distribution
of several variables, especially when these variables are strongly correlated. Effi-
cient maximum-likelihood estimation from MAR multivariate data often requires
data-augmentation or multiple-imputation methods (Shafer, 1997). Mixture of
product densities, instead, can be efficiently estimated by including both complete
and incomplete profiles into the likelihood, because likelihood contributions of in-
complete profiles are available in closed form and data-augmentation/imputation
methods are not necessary.

Mixtures of product densities have been already suggested in the statistical lit-
erature to cluster multivariate categorical data (Vermunt et al., 2008) and mixed
linear and categorical data (Hunt and Jorgensen, 2003) in the presence of missing
values. From a technical viewpoint, therefore, our application extends this strand
of literature to the case of linear and circular data with missing values. On the
methodological side, our proposal is an alternative to the existing distance-based
methods for wave regime identification, with three practical advantages. First,
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it is based on an EM algorithm that is less computationally demanding than
the algorithms currently in use for distance-based identification of wave regimes.
Second, missing values are efficiently handled, while distance-based methods nor-
mally require complete data information. Third, while formal inference is not
possible with a distance-based approach to clustering, mixture-based clustering
is carried out within a parametric inferential framework and, as a result, it can
be validated by using traditional methods of parametric inference.

Relevant details on the data that motivated this work are presented in Section
2, while Section 3 is devoted to maximum-likelihood estimation of mixture of
product densities in the case of missing observations. In Section 4 we specify
the Gamma-von Mises latent-class model that was exploited to examine the data
presented in Section 2. Estimation and model validation results are summarized
in Section 5. Relevant points of discussion are listed in Section 6.

2. Data

The Italian Institute for Environmental Research and Protection (ISPRA;
www.isprambiente.it) maintains a network of buoys to monitor wave direction
and height at various points of the Italian seas. A network of ISPRA tide gauges,
located along the Italian coast, additionally provide data about wind direction
and speed.

The data that we have exploited in this work include hourly measurements
of wave height and direction, taken in the period 11/18/2002-01/17/2003 by
the buoy of Ancona, which is located in the Adriatic sea at about 30 Km from
the coast (Figure 1). During the same period, hourly data on wind speed and
direction were obtained from the two nearest tide gauges, respectively located
at Ancona (about 30 Km from the buoy) and at Ravenna (about 120 Km from
the buoy). To account for the cumulative effect that wind has on waves, wind
data were smoothed by taking, for each hour, the average of wind speeds and the
circular average of wind directions, observed during the last eight hours.

Table 1 reports the percentages of missing data observed during the study
period. Measurements taken by buoys and tide gauges can be missing because of
devices maintenance or discontinuous functioning. Occurrence of missing values
on wave measurements is more frequent than the occurrence of missing wind
data because buoys are more exposed to transmission errors than tide gauges.
We remark that our data are in the form of hourly profiles of six observations.
As a result, different patterns of missing values occur: while about the 28% of the
data profiles include at least one missing value, the modal missingness pattern
(15.3%) includes a missing circular and a missing linear variable. During the
study period, there is a very small portion (about 0.1%) of hourly profiles with
no information.
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ADRIATIC
SEA

Ancona buoy

Ancona tide gauge 

 Ravenna
 tide gauge

ITALY

CROATIA

N

Figure 1: Locations of the buoy and the two tide gauges, from which the data
displayed in Figure 2 were obtained; segments indicate the three directions of
maximal fetch, i.e. the distance between the buoy and the closest coastline

Table 1: Percentages of missing values

Site Measurement (Unit) Percentages

Ancona (buoy) Wave Height (Meters) 16.3%
Wave Direction (Radians) 16.3%

Ancona (tide gauge) Wind Speed (Meter/Sec) 1.1%
Wind Direction (Radians) 2.2%

Ravenna (tide gauge) Wind Speed(Meter/Sec) 10.4%
Wind Direction (Radians) 2.3%

Univariate distributions of the available data are displayed in Figure 2. Rose
diagrams indicate the distribution of directions from which the wind and the wave
come from. As expected, waves mostly come from two modal directions (south-
east and north-east), which relate to two of the three angles at which the distance
between the buoy and the nearest coast (fetch) is maximum (Figure 1). Waves
from North-West (along the third maximum-fetch direction) are rarely observed
in wintertime, because winter winds do not typically blow from this direction.
As displayed by the circular wind distributions at the two tide gauges of Ancona
and Ravenna, two are the winds that dominate the Adriatic Sea in wintertime:
bora, a typical cold wind, blowing from West/North-West, and Sirocco, blowing
from South-East, and responsible for the storm surges in the northern part of the
Adriatic sea, and hence for the famous floods of Venice.

The histograms on the right side of Figure 2 show the distributions of wave
height, as observed at the buoy of Ancona, and wind speed, as measured at the
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two tide gauges of Ancona and Ravenna. The multi-modal shape of these distri-
butions is less apparent than that displayed by directional data. This is typical
of wave and wind data that are observed in enclosed seas, such as the Adriatic,
where the geometry of the coastline makes it difficult to separate components
of dominant wind speeds and wave heights and is responsible for the inaccu-
rate results provided by numerical wind-wave models that are normally used for
modelling ocean waves.
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Figure 2: Distribution of the available wave metric data at the buoy of Ancona
and wind data at the two nearest tide gauges (Ancona and Ravenna)



Clustering Incomplete Linear-Circular Data 591

3. Estimation of Mixtures of Product Densities from Incomplete Mixed
Data

The multivariate data described in Section 2 can be represented as n vectors
yi = (yi1, · · · , yiJ), i = 1, · · · , n, drawn from the multivariate distribution of J
variables Yj , j = 1, · · · , J , measured on different supports (e.g., linear or circular).
We assume that these vectors can be clustered into K groups (or classes) and
that the association structure between the variables Yj is well approximated by
this partitioning of the sample. Formally, we introduce a latent (unobserved)
multinomial random vector Z = (Z1, · · · , ZK) with one trial and cell probabilities
(π1, · · · , πK), and assume that the J variables Yj are conditionally independent
given Z. Within this conditional independence assumption, we specify K × J
distributions fk(y|βkj), each known up to a parameter vector βkj , and model the
multivariate distribution of vector yi as a finite mixture of J-dimensional product
densities, say

f(yi) =

K∑
k=1

πk

J∏
j=1

fk(yij |βkj), (3.1)

where fk(y|βkj) denotes the conditional distribution of Yj within the kth latent
class. We observe that (3.1) specifies a multivariate distribution without impos-
ing consistency constraints on the conditional densities fk(y|βkj), which, hence,
do not necessarily need to be member of the same parametric family. This flexi-
bility is of great help in the modelling of mixed linear and circular data. Given
the number K of classes, mixtures of product densities are furthermore strictly
identifiable, provided that the densities fk(y) =

∏J
j=1 fk(yj |βkj) are linearly in-

dependent (Teicher, 1967; Yakowitz and Spragins, 1968).

Mixture (3.1) is a particular latent-class model and is often presented in the
literature as a model-based alternative to the traditional cluster-analysis methods
that are based on distance-based procedures, such as hierarchical agglomerative
clustering or iterative relocation procedures. Typically exploited in social sci-
ence studies and marketing research, mixtures of product densities such as (3.1)
have been successfully implemented in the classification of mixed profiles that in-
clude quantitative (continuous or discrete) and categorical (nominal or ordinal)
observations.

Maximum-likelihood estimation of a mixture model is normally based on an
EM algorithm. Hunt and Jorgensen (2003) developed an EM algorithm for esti-
mating latent-class models from MAR data, in the case of mixed multi-normal
and categorical data. In the case of mixtures of product densities, such as (3.1),
their algorithm can be greatly simplified as follows.

We account for the occurrence of missing values by splitting the complete
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data vector yi = (yO(i),yM(i)) into a vector yO(i) of observed data and a vector
yM(i) of missing values, O(i) ∪M(i) = {1, · · · , J}. We furthermore introduce
a n × J matrix R, whose generic component rij = 1 if yij is missing and 0

otherwise. Accordingly, the row-sums of R, say ri· =
∑J

j=1 rij , indicate the
number of missing values within each ith profile.

If the data are MAR, i.e. the probability of a missing value does not depend
on the value that is missing, maximum likelihood estimates of model (3.1) can
be found by maximizing the marginal log-likelihood function

l(β, π) =

n∑
i=1

log

∫
yM(i)

K∑
k=1

πk

J∏
j=1

fk(yij |βkj)dyM(i)

=
n∑
i=1

log
K∑
k=1

πk

J∏
j=1

(fk(yij |βkj))1−rij

=
∑
i:ri·=0

log

K∑
k=1

πk

J∏
j=1

fk(yij |βkj) +
∑
i:ri·>0

log

K∑
k=1

πk

J∏
j=1

(fk(yij |βkj))1−rij

= lCC(β, π) + lIC(β, π), (3.2)

which is the sum of the log-likelihood contributions of the complete (CC) and
incomplete cases (IC). We observe that the log-likelihood contribution of a com-
pletely missing profile, i.e. such that ri· = J , is given by log

∑
k πk = 0. Under a

CC strategy, the log-likelihood contribution lIC is ignored, leading to inefficient
estimates.

Local maximum points of the log-likelihood (3.2) can be found by an EM
algorithm (Dempster, Laird and Rubin, 1977) that iteratively maximizes the
expectation of the complete data log-likelihood function. In the case of MAR
data drawn from a mixture of product densities, the complete log-likelihood can
be written as follows

lcomp(β,π) =
n∑
i=1

K∑
k=1

zik

log πk +
J∑
j=1

(1− rij) log fk(yij |βjk))

 , (3.3)

where (zi1, · · · , zik) is the ith realization of the multinomial random variable Z.
At the hth step of the algorithm, the expectation of lcomp(β,π) with respect
to the conditional distribution p(Z|y) is computed on the basis of the estimates
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β̂(h−1) and π̂(h−1), obtained at the previous iteration, by evaluating (E-step)

Q(π, β|π̂(h−1), β̂(h−1)) = E(lcomp(β,π))

=

n∑
i=1

K∑
k=1

log πk +

J∑
j=1

(1− rij) log fk(yij |βjk)

E(zik|β̂(h−1), π̂(h−1))

=

n∑
i=1

K∑
k=1

π̂
(h−1)
ik log πk +

J∑
j=1

n∑
i=1

K∑
k=1

π
(h−1)
ik (1− rij) log fk (yij |βjk)

= Q
(
π|β̂(h−1), π̂(h−1)

)
+

J∑
j=1

Qj
(
βkj |β̂(h−1), π̂(h−1)

)
, (3.4)

where

π̂
(h−1)
ik = E(zik|β̂(h−1), π̂(h−1))

=

∫
yM(i)

π̂
(h−1)
k

∏J
j=1 fk(yij |β̂

(h−1)
kj )dyM(i)∫

yM(i)

∑K
k=1 π̂

(h−1)
k

∏J
j=1 fk(yij |β̂

(h−1)
kj )dyM(i)

=
π̂
(h−1)
k

∏J
j=1

(
fk(yij |β̂

(h−1)
kj )

)1−rij
∑K

k=1 π̂
(h−1)
k

∏J
j=1

(
fk(yij |β̂

(h−1)
kj )

)1−rij (3.5)

indicates the conditional probability of vector yO(i) to belong to the kth latent

class. The previous E-step is followed by an M-step where vector (β̂(h−1), π̂(h−1))
is updated by a new vector (β̂(h), π̂(h)) that maximizes the expected log-likelihood
(3.4). We observe that (3.4) is the sum of J + 1 functions, which depend on
independent sets of parameters, and, as a result, the M-step can be carried out
by separately solving J + 1 maximization problems. In particular, the maximum
point of Q(π|β̂(h−1), π̂(h−1)) is available in closed form and it is equal to

π̂
(h)
k =

1

n

n∑
i=1

π̂
(h−1)
ik .

The form of the updating equations for parameters β that maximize the re-
maining J functions Qj(βkj |β̂(h−1), π̂(h−1)) depend on the form of the densities
fk(yj |βkj). In Section 4 we derive these updates under Gamma and von Mises
densities.

The algorithm alternates the E-step and the M-step up to convergence of the
estimates, whose limit (Wu, 1983) is a local maximum point of the likelihood
function (3.2).
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4. A Gamma-Von Mises Latent-Class Model

The J = 6 variables of our case study can be clustered in two groups according
to the scale on which they are measured. A first group includes three circular
variables, say Y1 (wave direction at the Ancona buoy), Y2 (wind direction at
the Ancona tide gauge) and Y3 (wind direction at the Ravenna tide gauge). A
second group includes three variables on a linear support, say Y4 (wave height at
the Ancona buoy), Y5 (wind speed at the Ancona tide gauge) and Y6 (wind speed
at the Ravenna tide gauge).

The mixture model presented in Section 3 allows for a flexible choice of the
univariate distributions that can be placed within each latent class.

We have decided to model wave and wind directions by exploiting three von
Mises distributions, i.e.

fk(y|βkj) = VM(βkj0, βkj1) =
exp(βkj1 cos(y − βkj0))

2πI0(βkj1)
, j = 1, 2, 3, (4.1)

where the parameters βkj0 and βkj1, j = 1, 2, 3, respectively indicate the mean (or
modal) direction and the concentration of each conditional circular distribution,
given the kth latent class, and I0 is the modified Bessel function of order 0.

Wave height at the buoy and wind speeds at the two tide gauges have been
instead modeled by three Gamma distributions, i.e.

fk(y|βkj) = Gam(βkj0, βkj1) =
β
βkj1
kj0 y

βkj1−1 exp−(y/βkj0)

Γ(βkj1)
, j = 4, 5, 6, (4.2)

where parameters βkj0 and βkj1, j = 4, 5, 6, respectively indicate the scale and
shape of the conditional distributions, given the latent class.

Under the above distributional assumptions, the mixture of product densities

f(y) =
K∑
k=1

πk

J∏
j=1

fk(yj |βkj)

is a multivariate distribution on a six-dimensional hyper-cylinder. According to
the sufficient conditions stated by Teicher (1967) and Yakowitz and Spragins
(1968), identifiability of this mixture follows by the linear independence of the
families of the Gamma and the von Mises densities. Moreover, the marginal dis-
tribution of each variable on a linear support is approximated by a mixture of K
Gamma densities and the marginal distribution of each circular variable is ap-
proximated by a mixture of K von Mises densities. As a result, the J-dimensional
profiles of wave and wind data (J = 6 in our application) are clustered according
to K wind-wave regimes. Because von Mises and Gamma densities are known
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up to 2 parameters, each regime is defined on the basis of 2J parameters, which
indicate not only class-specific modal directions of waves and winds and their
average heights and speeds, but also the amount of variation of the circular and
linear measurements around these means. In particular, the association between
each variable and the remaining variables is semi-parametrically described by
conditional densities that take the following mixture form

f(yj |yl, l 6= j;β,π) =

K∑
k=1

πk
∏
h6=j fk(yh|βhk)∑K

k=1 πk
∏
h6=j fk(yh|βhk)

fk(yj |βkj). (4.3)

Class-specific parameters of the above Gamma-von Mises mixture model can
be separately updated by the EM algorithm within the M-step. In particular,
standard derivative computations show that contributions to the expected log-
likelihood function given by the circular data, Qj(βj |π̂(h−1), β̂(h−1)), j = 1, 2, 3
are separately maximized by

• an update of the modal directions, given by

β̂
(h)
kj0 = arctg

∑n
i=1(1− rij)π̂

(h−1)
ik sin yij∑n

i=1(1− rij)π̂
(h−1)
ik cos yij

, (4.4)

• and by the roots β̂
(h)
kj1 of the three equations

I0(βkj1)

I ′0(βkj1)
=

∑n
i=1(1− rij)π̂

(h−1)
ik cos(yij − β̂(h)kj0)∑n

i=1(1− rij)π̂
(h−1)
ik

, (4.5)

which are the updated concentrations of wave and wind directions on the
circle.

Analogous derivative computations show that the remaining three functions
Qj
(
βj |π̂, β̂

)
, j = 4, 5, 6, i.e. the contributions of the linear data to the expected

log-likelihood function, are separately maximized by

• an update of the shape parameters, given by

β̂
(h)
kj0 =

∑n
i=1(1− rij)π̂

(h−1)
ik yij∑n

i=1(1− rij)π̂
(h−1)
ik

,

• and by the roots β̂
(h)
kj1 of the three equations

log(βkj1)− ψ(βkj1) = log

(∑n
i=1(1− rij)π̂

(h−1)
ik yij∑n

i=1 π̂
(h−1)
ik

)

−

(∑n
i=1(1− rij)π̂

(h−1)
ik log yij∑n

i=1 π̂
(h−1)
ik

)
,
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where ψ(βkj1) is the Digamma function.

5. Results and Model Validation

The proposed model was estimated from the data illustrated in Section 2, by
considering K = 4, · · · , 10 classes. According to the BIC criterion, a model with
K = 7 classes is needed to adequately describe the data (results not reported
here and available upon request to the corresponding author).

Table 2 displays the maximum likelihood estimates and the standard errors
of the 7× 12 + 7 = 91 parameters of the model with minimum BIC. The last row
of the table indicate the estimated class probabilities π̂. While point estimates
were computed by exploiting the EM algorithm of Section 3, standard errors
were computed by taking the square root of the diagonal elements of the inverse
observed information matrix, obtained by extracting the observed information
from the complete log-likelihood (Louis, 1982). These estimates (all significant
at a 95% significance level) can be directly exploited for a variety of applications
that include for example the computation of the expected wave load to ships
and off-shore structures. In addition, these estimates have an immediate phys-
ical interpretation, which can be summarized with the help of Figure 3, which
displays the 6×7 densities that have been estimated under model (3.1). To draw
this picture, we have used seven different colors (listed in Table 2) to show the
grouping of the conditional densities according to the seven latent classes. Latent
classes can be interpreted with the help of the map in Figure 1. Components 1,
2 and 7 cluster S-E waves of high (comp. 1), medium (comp. 2) and low (comp.
7) average heights, respectively. As expected, components 1, 2 and 7 are respec-
tively associated with Sirocco winds of high, medium and low speed at both the
tide gauges considered for analysis. Components 3 and 5 cluster N-W waves of
medium (comp. 3) and low (comp. 5) height, associated with Bora winds of
medium (comp. 3) and low (comp. 5) speed, blowing from west and north-west
at the two tide gauges. Components 4 and 6 cluster waves with a direction that
is perpendicular to the coast (coastal waves) and, as expected, are of moder-
ate/medium heights. However, while waves within latent class 4 are associated
with winds blowing along the same direction as waves, waves within latent class
6 are associated with winds coming from north. We note that the occurrence
of coastal waves of moderate heights, regardless of wind and speed direction, is
responsible for numerical wind-wave models giving inaccurate results in coastal
areas. Our mixture model correctly separates coastal waves and wind-generated
waves moving along maximal fetch directions. The results additionally suggest
that regimes that generate coastal waves cannot be ignored in the analysis of
sea conditions, because the probability of occurrence of classes 4 and 6 is about
0.22. We also remark that the model seems able to separate regimes that drive
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severe and moderate conditions of the sea. Component 1 detects the distribu-
tional shape of wave height and direction of sea storms and identifies the wind
conditions under which this event occur.

Table 2: Parameter estimates and standard errors (within brackets)

Component
Parameters 1 2 3 4 5 6 7

(red) (blue) (green) (yellow) (cyan) (magenta) (orange)

Wave Dir a mean 1.935 2.102 5.927 0.820 5.097 0.821 2.409

(radians)
(0.013) (0.020) (0.076) (0.035) (0.051) (0.036) (0.100)

concentration 99.278 16.778 1.215 9.377 6.951 6.269 0.898

(17.476) (1.862) (0.108) (1.343) (1.341) (0.784) (0.116)

Wind Dir b mean 2.339 2.864 4.632 1.195 4.534 5.701 3.411

(radians)
(0.022) (0.049) (0.018) (0.058) (0.052) (0.103) (0.063)

concentration 30.995 3.122 11.111 3.181 7.057 1.240 1.656

(5.223) (0.335) (0.964) (0.447) (1.626) (0.139) (0.122)

Wind Dir c mean 2.305 2.697 5.103 1.065 5.322 5.942 5.319

(radians)
(0.022) (0.169) (0.012) (0.020) (0.034) (0.064) (0.082)

concentration 33.105 0.632 24.259 24.716 13.778 2.467 1.064

(6.116) (0.130) (2.357) (3.908) (2.543) (0.241) (0.110)

Wave Height a shape 99.226 5.782 12.556 35.778 26.081 10.147 3.031

(meters)
(20.640) (0.701) (1.148) (5.125) (5.116) (1.360) (0.247)

scale 0.029 0.174 0.078 0.055 0.014 0.179 0.146

(0.006) (0.021) (0.007) (0.008) (0.003) (0.024) (0.014)

Wind Speed b shape 10.372 5.140 11.779 9.358 9.768 7.685 2.276

(meters/sec)
(1.756) (0.592) (0.915) (1.289) (1.630) (1.013) (0.177)

scale 0.517 0.628 0.420 0.386 0.192 0.771 0.896

(0.089) (0.070) (0.033) (0.056) (0.033) (0.099) (0.084)

Wind Speed c shape 22.656 4.497 10.517 12.732 13.004 4.159 6.232

(meters/sec)
(4.712) (0.586) (0.817) (1.683) (2.354) (0.452) (0.577)

scale 0.223 0.626 0.296 0.448 0.083 0.969 0.210

(0.045) (0.077) (0.023) (0.060) (0.015) (0.110) (0.021)

probability 0.053 0.166 0.250 0.087 0.060 0.135 0.249

(0.006) (0.013) (0.012) (0.008) (0.007) (0.010) (0.015)

a Ancona buoy - b Ancona tide gauge - c Ravenna tide gauge

Figures 4 and 5 display the classification of the multivariate profiles, as obtained
by modal allocation, i.e. assigning each profile i to the latent class k with the
highest probability π̂ik. Fiducial intervals for each single observation yij were
obtained on the basis of the estimated conditional distribution (5.1) whose ex-
pectation

E(yij |yil, l 6= j; β̂, π̂) =
K∑
k=1

π̂k
∏
h6=j fk(yih|β̂hk)∑K

k=1 π̂k
∏
h6=j fk(yih|β̂hk)

Ek(yij |β̂kj) (5.1)

was exploited to impute missing values (the black dots in Figures 4 and 5). The
model gives an adequate fit of the observed data (right-hand histograms in Figures
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4 and 5 and, simultaneously, operates an intuitively appealing classification of
complete and incomplete profiles of wind and wave measurements.
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Figure 3: Densities of wave direction and height at the Ancona buoy (top)
and wind direction and speed (middle: Ancona tide gauge; bottom: Ravenna
tide gauge), as estimated by a 7-components LC cluster model; coloured lines
indicate conditional densities and black lines indicate mixture densities
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Figure 4: Left: directional data, clustered into seven latent classes and 95%
(grey) and 99% (dark grey) fiducial intervals, as estimated by a 7-components
mixture model. Black dots indicate missing values, imputed by the expectation
of the conditional distribution of the missing values given the observed data,
as estimated by the model. Right: histograms of complete data fitted by the
model
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Figure 5: Left: linear data, clustered into seven latent classes and 95% (grey)
and 99% (dark grey) fiducial intervals, as estimated by a 7-components mixture
model. Black dots indicate missing values, imputed by the expectation of
the conditional distribution of the missing values given the observed data, as
estimated by the model. Right: histograms of complete data fitted by the
model
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Goodness of fit was also evaluated by comparing the squared cross-correlations
between the observed data and those expected by the mixture model. To com-
pute the empirical correlation between intensity observations (wind speed and
wave height), we have used the standard Pearson correlation. The empirical
correlation between circular data (wind and wave direction) was computed by
exploiting the Fisher-Lee correlation index (Fisher and Lee, 1983). Finally, we
computed the cross-correlation between linear and circular data (e.g., between
wind direction and wave height) by exploiting the Mardia’s linear-circular corre-
lation index (Mardia, 1976). Table 3 displays a reasonable matching between the
empirical correlations against their expected counterparts, under the estimated
mixture model, showing that the conditional independence assumption of model
(3.1) (coupled with the choice of 7 latent classes) explains a significant part of
data variability.

Table 3: Observed and expected squared correlations

Wave H. Wind S. a Wind S. b Wave D. Wind D. a Wind D. b

Wave Heigth 1

(expected) (1)

Wind Speed a 0.191 1

(expected) (0.320) (1)

Wind Speed b 0.385 0.142 1

(expected) (0.517) (0.199) (1)

Wave Direction 0.199 0.111 0.168 1

(expected) (0.193) (0.117) (0.165) (1)

Wind Direction a 0.233 0.108 0.193 0.002 1

(expected) (0.222) (0.165) (0.111) (0.005) (1)

Wind Direction b 0.184 0.007 0.119 0.008 0.017 1

(expected) (0.194) (0.003) (0.156) (0.011) (0.027) (1)

a Tide gauge: Ancona - b Tide gauge: Ravenna

We also evaluated the predictive accuracy of the model by non-parametric
cross-validation (Gelman et al., 1998). More precisely, we randomly split the
sample in 10 subsamples. From each subsample, we discarded the 10% of the
observations and (1) use the remaining portion of the subsample to fit a new
model and (2) draw 5 imputations for each discarded vector of data, from the
estimated conditional distribution of the discarded values given the observed data.
If multiple imputations were of good quality, then we would expect than the actual
outcome and the multiple imputations to have the same distributions, so that if
one ranked the actual response along to the 5 imputations, then all 6 possible
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orderings (actual outcome lowest, second lowest,· · · , highest) would be equally
likely. Figure 6 displays the cumulative distribution functions of the 6 ranks of
circular and linear outcomes (overlapped to that of the uniform distribution),
showing the good predictive accuracy of the model.
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Figure 6: Rank cumulative distribution of the actual outcome with respect to
5 multiple imputations in a cross-validation experiment and cumulative distri-
bution function of a uniform distribution

6. Discussion

We propose a latent-class approach to identify wave regimes under various
wind conditions and estimate regime-specific wave parameters, such as modal
wave directions and average wave heights, in the case of incomplete data, observed
at different locations.

Using mixtures of product densities to model multivariate data allows for
a simple specification of the dependence structure between variables that are
measured on different supports (e.g. linear and circular) and, simultaneously,
provides a flexible framework within which a variety of different parametric fam-
ilies can be exploited to model the univariate distribution of each single variable,
given the latent class. We exploited von Mises and Gamma distributions, but
the estimation procedure of Section 3 can be implemented by choosing different
parametric families that can be more suitable in different case studies. By as-
suming a mixture densities, moreover, missing values are efficiently handled in a
maximum-likelihood framework.

Modelling flexibility and computational efficiency in the case of incomplete
data information come at the price of a simplifying constraint on the dependence
structure among variables, given by the conditional independence assumption.
In marine studies, this assumption can be often motivated by empirical evidence
of a number of latent sea regimes and by the need of clustering the data in a
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way that the association structure between the observed variables is well approx-
imated by this partitioning of the sample. Nevertheless, issues of goodness of
fit should be carefully addressed. Rigorous goodness-of-fit methods are however
problematic with missing values. We have obtained reassuring results by com-
puting case-wise fiducial intervals, overlaying the estimated marginal densities of
the variables on the observed histograms (Figures 4 and 5) and comparing ex-
pected and empirical squared correlations between the variables (Table 3). These
results should be interpreted with care, because empirical histograms and corre-
lations are computed after discarding the missing values and because having most
of the observed values within fiducial intervals says little about their ability to
include missing values. These issues motivated our cross-validation experiment,
whose results indicate that the proposed model was capable to explain most of
the data variability and to re-impute artificially-removed values with a reasonable
accuracy.
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Motivated by classification issues that arise in marine studies, we propose a latent-class mixture model
for the unsupervised classification of incomplete quadrivariate data with two linear and two circular com-
ponents. The model integrates bivariate circular densities and bivariate skew normal densities to capture
the association between toroidal clusters of bivariate circular observations and planar clusters of bivariate
linear observations. Maximum-likelihood estimation of the model is facilitated by an expectation maxi-
mization (EM) algorithm that treats unknown class membership and missing values as different sources
of incomplete information. The model is exploited on hourly observations of wind speed and direction
and wave height and direction to identify a number of sea regimes, which represent specific distributional
shapes that the data take under environmental latent conditions.

Keywords: circular data; EM algorithm; latent classes; missing values; skew normal; unsupervised
classification; von Mises; wave; wind

1. Introduction

Sea conditions are often monitored by taking circular and linear measurements such as wave and
wind direction, wind speed and wave height. Model-based clustering of these data is helpful in
identifying relevant sea regimes, that is, specific shapes that the distribution of wind and wave
data takes under latent environmental conditions. In a multivariate analysis, mixture models [19]
provide a general approach to classification: the joint distribution of the data is approximated
by a mixture of tractable multivariate distributions, which represent cluster locations and shapes,
and the clustering problem is solved as a missing value problem, by treating the unknown cluster
membership of each observation as a missing value, to be estimated from the data.

Mixture-based clustering of marine data is, however, complicated by the concurrence of dif-
ferent supports on which the data are observed. While a pair of wind speed and wave height is a
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point in the plane, the profiles of wind and wave directions are points in a torus, that is, a surface
generated by revolving a circle in a three-dimensional space.

Most of the literature on mixture-based classification methods is associated with the analysis
of multivariate data whose components share the same support. Linear observations are typically
clustered by mixtures of multivariate normal distributions [2], although mixtures of multivariate
skew normal [13] and t distributions [15], or, more generally, non-elliptically contoured dis-
tributions [9], have been recently proposed for robust classification. Multivariate categorical
observations are instead typically clustered by using latent-class models that involve mixtures
of multinomial distributions [6]. In directional statistics, while mixtures of Kent distributions are
popular in the analysis of spherical data [19], toroidal data that arise in bioinformatics have been
recently modeled by mixtures of bivariate circular densities [18].

Unsupervised classification of multivariate data of mixed type has been studied only in the case
of mixed linear and categorical data [7,12]. We extend this strand of literature by taking a latent-
class approach to cluster mixed linear and circular data. Latent-class models approximate the joint
distribution of the data by a mixture of products of low-dimensional densities, by assuming that
the groups of observed variables are conditionally independent given a latent class, drawn from
an unobserved multinomial random variable (conditional independence assumption).

In the modeling of mixed-type multivariate data, a latent approach has a number of advantages.
First, latent classes non-parametrically capture part of the data dependence structure, which is
difficult to describe with a fully parametric specification. In marine studies, the dependence
between circular and linear measurements is the result of complex environmental conditions. On
the one side, latent classes can be then used to capture the association between toroidal clusters
of wave and wind directions and planar clusters of wind speed and wave height. On the other
side, we take a fully parametric approach to detect locations and shapes of both toroidal clusters,
which are modeled directly by bivariate circular densities, and planar clusters, which are modeled
by bivariate skew normal densities.

Secondly, the conditional independence assumption facilitates maximum-likelihood estimation
from mixed multivariate data. Maximum-likelihood estimation of mixture models is often based
on the expectation maximization (EM) algorithms, which iteratively estimate the expected class
membership and simultaneously update the parameters of the mixture components. Under a
conditional independence assumption, an EM procedure for classifying mixed-type data can be
easily obtained by combining EM algorithms that have been developed for data with homogeneous
supports.

Thirdly, the identifiability of mixtures of product densities can be easily addressed. In general,
identifiability issues may arise when variables on different supports are mixed together. Direct
modeling of the joint distribution of multivariate linear–circular data would require the specifica-
tion of densities that lie on a multi-dimensional hyper-cylinder [10], and identifiability conditions
for mixtures of densities of this type have recently appeared in the literature and have not been
studied, yet. By taking a latent-class approach, on the contrary, the joint distribution of hyper-
cylindrical data is approximated by the mixture of products of toroidal and planar densities, and
a sufficient condition for the identifiability of mixtures of product densities is the linear inde-
pendence of the mixture components [25,26]. The identifiability of the model that we propose
then follows from the linear independence of the bivariate circular densities [17] and the linear
independence of the bivariate skew normal densities [22].

An additional complication in marine classification studies is the presence of missing values.
Marine databases are often incomplete because of device malfunctioning or maintenance-related
reasons. In the case of incomplete data, maximum-likelihood estimation of a mixture model could
be carried out by discarding the incomplete profiles from the sample and using the complete cases
(CCs) to build up the likelihood function to be maximized (CC analysis). If the joint distribution
of the variables of interest is correctly specified and the data are missing at random (MAR; i.e.
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the conditional probability of not observing a value, given the observed data, does not depend
on the unobserved value [21]), the CC-based maximum-likelihood estimation is known to be
(asymptotically) unbiased but inefficient [20]. Loss of efficiency is due to the fact that incomplete
data profiles are informative of the parameters of the joint distribution of several variables. When
data are MAR, mixture models can be estimated by EM algorithms that account for missing class
membership and missing measurements as different sources of incomplete information. Efficient
algorithms of this type are well known for the unsupervised classification of incomplete normal
and incomplete categorical data [23] and have been extended to mixture-based classification
studies for clustering incomplete skew normal or t distributed continuous data [14,16] and mixed
continuous and categorical data [7]. The EM algorithm that we propose in this paper is based on
an extension of the EM algorithms for mixtures of bivariate circular densities [18] to the case of
incomplete data, which is then combined with EM iterations that have been developed for the
estimation of mixtures of multivariate skew distributions from incomplete data [16].

After summarizing relevant details on the data that motivated this study (Section 2), the latent-
class model that we propose for clustering mixed linear and circular data is illustrated in Section 3.
Likelihood-based inference from incomplete data is presented in Section 4, while Section 5
illustrates an application to marine data. Relevant points of discussion are finally summarized in
Section 6.

2. Data

The Adriatic Sea (Figure 1) is a semi-enclosed, long narrow basin, extending for about 800 km
along the major axis from SE to NW, with a width of about 200 km. The basin is also bordered by
mountains on three sides. Relevant wind events in the Adriatic Sea are typically generated by the
sirocco wind, which blows from SE along the major basin axis, and by the bora flow, which creates
fine-structured jets within the Dinaric Alps on the eastern Adriatic coast. These jets typically cross
theAdriatic Sea along the NE–SW minor axis of the basin, but sometimes they rotate anticlockwise
toward SE as soon as they approach the topographic barrier of the Apennines. High-speed winds
generate high waves only when they persistently blow from directions that are highly concentrated
around one modal angle. As a result, when the above rotation episodes occur, offshore winds blow
from multi-modal directions and generate waves of modest size. Wind–wave data are traditionally
examined by exploiting numerical wind–wave models. These models, well suited for the analysis
of ocean waves, are not flexible enough to account for the complex orography of semi-enclosed
basins and, as a result, give biased results in Adriatic studies [3]. When numerical wind–wave

Buoy
Tide Gauge

ITALY

Adriatic

Sea

CROATIA

Figure 1. Locations of the buoy (circle) and tide gauge (square) at Ancona.
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models are problematic, sea conditions can be alternatively described in terms of representative
wave regimes in specific areas, characterized by the probability of occurrence and corresponding
to dominant environmental conditions (e.g. wind conditions), acting in the area and during a period
of interest [11]. The data normally exploited for this purpose are environmental observations taken
by buoys or tide gauges, located within the study area.

The data that motivated this paper are hourly, quadrivariate profiles with two linear and two
circular components: wind speed and wave height, wind direction and wave direction. Hourly
wave height and direction were taken in the period 18 November 2002–17 January 2003 by the
buoy of Ancona, which is located in the Adriatic Sea at about 30 km from the coast (Figure 1).
Hourly wind speed and direction were obtained from the nearest tide gauge, located at Ancona.
To account for the cumulative effect that wind has on waves, wind data were smoothed by taking,
for each hour, the average of wind speeds and the circular average of wind directions, observed
during the last 8 h.

Of the resulting 1440 hourly profiles of wind and wave observations, about 20% include at least
a missing value (Table 1). As expected, missing values on wave measurements are more frequent
than missing wind data because buoys are more exposed to transmission errors than tide gauges.
During the study period, only two are the profiles with no information.

In this paper, we assume that missing values occur at random. Under this hypothesis, the con-
tribution of missing patterns to the likelihood can be ignored, facilitating model-based clustering
of the data. In marine studies, missing values occur because of device transmission errors or
malfunctioning. Because buoys and tide gauges are normally equipped in a way that they are able
to transmit data even in the case of severe environmental conditions, missing values in marine
studies are often missing completely at random (MCAR), that is, the missingness probability does
not depend on observed and unobserved data. The MCAR assumption is a particular case of the
MAR hypothesis and is often likely for marine data that are obtained in semi-enclosed seas, such
as the Adriatic Sea, where severe environmental conditions seldom occur. The MAR assumption
is violated when the conditional probability of device malfunctioning, given the observed data,
depends on the value that the device has not transmitted, and in this case, the missing mechanism
may not be ignored. For example, high-speed wind and high waves might increase the probability
of a buoy transmission error, leading to a non-ignorable missing value when both are missing.
We, however, have only six cases (Table 1) where both wind speed and wave height are missing.
In all the other cases, when either wind speed or wave height is observed, the MAR assumption
seems to be reasonable.

Figure 2 displays the scatter plots of the circular and the linear observations, after discarding
the incomplete profiles. For simplicity, bivariate circular data are plotted on the plane, although
data points are actually in a torus. In particular, point coordinates on the left-hand-side plot of the
figure indicate hourly directions from which the wind blows and the wave travels, respectively.

Table 1. Missing value distribution.

Wind Wind Wave Wave
speed direction direction height Count

obs obs obs obs 1173
obs mis obs obs 21
mis obs obs obs 6
obs obs mis mis 227
mis mis obs obs 6
obs mis mis mis 3
mis obs mis mis 2
mis mis mis mis 2
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Figure 2. Complete profiles of wind and wave direction (left) and complete profiles of wind speed and wave
height (right).

The interpretation of these data is complicated by the complex orography of the Adriatic Sea and
by the different locations (tide gauge and buoy) where wind and wave data are observed.

A number of clusters appear in the directional scatter plot on the left-hand side of Figure 2.
Points around the 3/4(π , π) centroid indicate sirocco events (waves travel along the major axis of
the basin, driven by a southeasterly wind), whereas points centered around the centroid (π/4, π/4)

can be interpreted as bora episodes (waves travel along the minor axis of the basin, driven by a
northwesterly wind). The remaining two clusters at the top of the scatter plot can be interpreted
by recalling that the buoy and the tide gauge are located about 30 km apart. These points are bora
episodes where some NE jets rotate anticlockwise and blow from NW. As a result, on the one side,
the buoy detects waves that travel northeasterly and northwesterly, either driven by the offshore
bora winds that blow from the east side of the basin or driven by bora winds that rotate along the
major axis of the basin. On the other side, offshore northeasterly winds are not observed at the
coast, where the tide gauge is located.

The right-hand-side plot shown in Figure 2 shows that wind speed and wave height are
(marginally) skewed and weakly correlated. Both skewness and weak correlation are traditionally
explained as the result of the orography of the Adriatic Sea and they are often held responsible
for the inaccuracy of numerical wind–wave models. It is, however, possible that the marginal
skewness and weak correlation can be explained, at least in part, as a result of latent data hetero-
geneity. What we observe, in other words, could be the result of the mixing of a number of latent
regimes of the sea, conditionally to which the distribution of the data takes a shape that is easier
to interpret than the shape taken by the marginal distribution. By taking a latent-class approach,
we try to identify these latent regimes by associating toroidal and planar clusters that provide
an intuitively appealing partitioning of the two scatter plots shown in Figure 2 and, when mixed
together, adequately approximate the marginal distribution of the data.

3. A latent-class model for linear and circular data

The data described in Section 2 are gathered in the form of n profiles zi = (xi, yi), i = 1 . . . n, which
include two circular components, say xi = (xi1, xi2), and two linear components, say yi = (yi1, yi2).
We model these data by exploiting the mixture

f (z|π, β, γ) =
K∑

k=1

πkfc(x|βk)fl(y|γk), (1)
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where π = (π1, . . . , πK) are the unknown mixing weights, π1 + · · · + πK = 1, while fc(x|βk)

and fl(y|γk) are the bivariate densities, respectively, defined on the torus and on the plane, and
known up to two independent vectors of parameters, β = (β1, . . . , βK) and γ = (γ1, . . . , γK). In
mixture-based classification studies, mixing weights can be conveniently interpreted as the cell
probabilities of a latent multinomial vector ξ = (ξ1, . . . , ξK). As a result, the above mixture can
be described as a two-level hierarchical model

ξ ∼
K∏

k=1

π
ξk

k

z|ξ ∼
K∏

k=1

(fc(x|βk)fl(y|γk))
ξk .

At the upper level of the hierarchy, directions (e.g. wind and wave directions) and intensities
(e.g. wind speed and wave height) are modeled separately by parametric distributions. These
distributions are then non-parametrically associated to K latent classes at the lower level of the
hierarchy. This hierarchy allows to transform the data clustering problem into a missing value
problem, where missing class membership ξi of each profile can be predicted by its expectation
E(ξi|zi), whose kth component is given by

πik = E(ξik|zi) = πkfc(xi|βk)fl(yi|γk)∑K
k=1 πkfc(xi|βk)fl(yi|γk)

. (2)

The distribution fc(x|β) of the bivariate circular data can be specified in a number of different
ways [18]. The sine model [24] is a parametric distribution on the torus which imbeds naturally
the bivariate normal distribution when the range of observations is small. Its density is given by

fc(x; β) = exp(β11 cos(x1 − β1) + β22 cos(x2 − β2) + β12 sin(x1 − β1) sin(x2 − β2))

C(β)
, (3)

with normalizing constant

C(β) = 4π2
∞∑

m=0

(
2m

m

) (
β2

12

4β11β22

)m

Im(β11)Im(β22),

where

Im(x) = 1

π

∫ π

0
ex cos t cos(mt) dt

is the modified Bessel function of order m.
The sine model can be viewed as a bivariate generalization of the von Mises distribution,

where β12 accounts for the statistical dependence between x1 and x2. The two univariate marginal
densities

fc(xi; β) =
∫ π

−π

fc(x; β) dxj = 2π

C(β)
I0(a(xi)) exp(βii cos(xi − βi)), i = 1, 2, (4)

depend on the marginal mean angles βi, i = 1, 2, and on the shape parameters

a(xi) = (β2
jj + β2

12 sin2(xi − βi))
1/2, i = 1, 2. (5)

If β12 = 0, then a(xi) = βjj, i = 1, 2, and, as a result, x1 and x2 are independent and each of them
assumes the von Mises distribution with marginal mean angles βi and marginal concentrations



Journal of Applied Statistics 933

βii. The conditional distributions

fc(xi|xj; β) = fc(x; β)

fc(xj; β)
= exp(a(xi) cos(xi − βi − b(xj)))

2πI0(a(xi))
(6)

are von Mises with conditional mean angles βi + b(xj) and conditional concentrations a(xi), where

b(xj) = arctan

(
β12

βjj
sin(xj − βj)

)
. (7)

In model (1), we use a family of K sine models fc(x|βk), indexed by the five parameters βk =
(β1k , β2k , β11k , β22k , β12k), to define K toroidal clusters centered at (β1k , β2k) and shaped by the
parameters (β11k , β22k , β12k).

To model the joint distribution of wind speed and wave height, we use seven parameters,
arranged in a triplet:

γ = (γ ′, �, D(γ ′′)) =
((

γ ′
1

γ ′
2

)
,

(
γ11 γ12

γ12 γ22

)
,

(
γ ′′

1 0
0 γ ′′

2

))
,

where γ ′ is a location vector, � is a positive definite, scale covariance matrix and, finally, D(γ ′′)
is a diagonal matrix that includes two skewness parameters. These parameters are exploited to
specify a bivariate skew normal density [22], namely

fl(y; γ) = 22φ2(y; γ ′, � + D2(γ ′′))�2(D(γ ′′)(� + D2(γ ′′))−1(y − γ ′); (I + D(γ ′′)�−1D(γ ′′))−1),
(8)

where φp(·; μ, 	) indicates the density of a p-variate normal distribution Np(μ, 	) and �p(·; 	)

indicates the cdf of a centered, p-variate normal distribution Np(0, 	). Under Equation (8), the
mean vector and the covariance matrix of y are, respectively, given by

Ey = γ ′ +
√

2

π
D(γ ′′)1, E(y − Ey)(y − Ey)T = � +

(
1 − 2

π

)
D2(γ ′′),

where 1 is a vector of ones. When the skewness parameters γ ′′
1 = γ ′′

2 = 0, Equation (8) reduces to
a bivariate normal distribution N2(γ

′, �). Moreover, the marginal distribution of yi is a univariate
skew normal distribution with parameters (γ ′

i , γii, γ ′′
i ), say

fl(yi; γ) = 2φ1(yi; γ
′
i , γii + (γ ′′

i )2)�1

(
γ ′′

i

γii + (γ ′′
i )2

(yi − γ ′
i );

γii

γii + (γ ′′
i )2

)
, (9)

while the conditional distribution of yj given yi is given by

fl(yj|yi; γ) = fl(y; γ)

fl(yi; γ)

= 4φ1

(
yj; γ

′
j + γij

γii + (γ ′′
i )2

(yi − γ ′
i ),

γ 2
ij

γii + (γ ′′
i )2

)

× �2(D(γ ′′)(� + D(γ ′′)2)−1(y − γ ′); (I + D(γ ′′)�−1D(γ ′′))−1)

�1(γ
′′
i /(γii + (γ ′′

i )2)(yi − γ ′
i ); γii/(γii + (γ ′′

i )2))
. (10)
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A bivariate skew normal density can be conveniently represented [1] as the convolution

fl(y; γ) =
∫ +∞

0

∫ +∞

0
fl(y|v; γ)fHN(v) dv,

where fHN(v) is a standard half-normal distribution:

fHN(v) = 2

π
exp

(
−1

2
vTv

)
v ∈ [0, +∞)2,

while fl(y|v) = φ2(y; γ ′ + D(γ ′′)v, �). This random-effect specification of the multivariate skew
distribution facilitates the implementation of EM algorithms for the maximum-likelihood
estimation in the mixtures of multivariate skew normal distributions [13].

In model (1), we use a family of K skew normal densities fl(y|γk), indexed by the seven
parameters included in the vector γk = (γ ′′

k , �k , D(γ ′′
k )), to define K skew clusters centered at

γ ′
k + √

2/πD(γ ′′
k )1 and shaped by the covariance matrices �k + (1 − 2/π)D(γ ′′

k )
2.

4. Maximum-likelihood estimation from incomplete data

Because our data are in the form of incomplete profiles, we, respectively, refer to xi,mis and
xi,obs as the missing and observed circular components of profile i and, analogously, to yi,mis
and yi,obs as the missing and observed linear components. Accordingly, zi,mis = (xi,mis, yi,mis) and
zi,obs = (xi,obs, yi,obs) indicate the missing and observed parts of the ith profile. We further introduce
a vector ri = (ri1, ri2, ri3, ri4) of binary missing indicators, where rij = 1 if zij is missing and 0
otherwise. If the data are MAR, the missing data mechanism can be ignored and the maximum-
likelihood estimate of parameter θ = (π, β, γ) is the maximum point of the marginal log-likelihood
function

log L(θ) =
n∑

i=1

log

(∫ K∑
k=1

πkfc(xi|βk)fl(yi|γk) dzi,mis

)

=
n∑

i=1

log Li(θ)

=
n∑

i=1

log
K∑

k=1

πkLic(βk)Lil(γk), (11)

where Li(θ) is the likelihood contribution of the ith profile and

Lic(βk) = fc(xi; βk)
(1−ri1)(1−ri2)fc(xi1; βk)

(1−ri1)ri2 fc(xi2; βk)
ri1(1−ri2),

Lil(γk) = fl(yi; γk)
(1−ri3)(1−ri4)fl(yi1; γk)

(1−ri3)ri4 fl(yi2; γk)
ri3(1−ri4)

are the conditional likelihood contributions of the circular and linear components of the ith profile,
given the latent class k.

Because direct maximization of (11) can be computationally problematic, we describe an
EM algorithm that generates a sequence (θ̂t , t = 1, 2, . . .) of estimates such that L(θ̂t) ≥ L(θ̂t−1).
The algorithm is based on the iterative maximization of the expected value of a complete-data
log-likelihood function, computed with respect to the conditional distribution of the unobserved
quantities given the observed data. More precisely, we treat the unknown class membership ξi,
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the unobserved data (xi,mis, yi,mis) and the skewness random effects vi as missing values and define
the complete log-likelihood function as

log Lcomp(θ) =
n∑

i=1

log Li,comp(θ) =
n∑

i=1

K∑
k=1

ξik

⎛
⎝ log πk

log fc(xi; βk)

log fl(yi|vi; γk) + log fHN(vi)

⎞
⎠ .

Given the estimate θ̂t , provided by the algorithm at step t, a new point θ̂t+1 is computed within
step t + 1, as follows. We first compute (E step) the expected value of log Li,comp(θ) with respect
to the conditional distribution of the missing values (ξi, xi,mis, yi,mis, vi) given the observed data

yi,obs, evaluated at θ = θ̂t , say

(Estep) Qi(θ|θ̂t) = Et(log Li,comp(θ)|yi,obs), i = 1, . . . , n. (12)

We then (M step) maximize Q(θ|θ̂t) = ∑n
i=1 Qi(θ|θ̂t) by finding the roots θ̂t+1 of the expected

complete data score equations:

(Mstep)
∂

∂θ
Q(θ|θ̂t) =

n∑
i=1

∂

∂θ
Qi(θ|θ̂t) =

n∑
i=1

si(θ|θ̂t) = 0, (13)

where si(θ|θ̂t) is the ith score vector, obtained by deriving the ith contribution to the expected
complete log-likelihood with respect to the parameters.

Variances of the estimates can be found on the diagonal of the inverse of the information matrix
I(θ), which can be consistently estimated by the empirical information matrix:

Î =
n∑

i=1

si(θ̂T )sT
i (θ̂T ),

where θ̂T is the last parameter update, as provided by the algorithm upon convergence.
The practical implementation of both the E step and the M step of the algorithm is facilitated

by the conditional independence assumption between circular and linear data, which holds under
(1). For the purpose of illustration, we observe that the distribution of the missing values given
the observed data can be factorized into three components, as follows:

f (vi, zi,mis, ξi|zi,obs; θ̂t) =
K∏

k=1

(
π̂tk fc(xi; β̂tk)fl(yi|vi; γ̂ tk)fl(vi)

Li(θ̂t)

)ξik

=
K∏

k=1

(
π̂tk fc(xi; β̂tk)fl(yi|vi, γ̂ tk)fl(vi)

π̂tkLic(β̂tk)Lil(γ̂ tk)

π̂tkLic(β̂tk)Lil(γ̂ tk)

Li(θ̂t)

)ξik

= f (xi,mis|ξi, xi,obs; β̂t)f (yi,mis|ξi, yi,obs; γ̂ t)p(ξi|zi,obs; θ̂t), (14)

where

• the conditional density

f (xi,mis|ξik = 1, xi,obs; β̂t) = fc(xi; β̂tk)

Lic(β̂tk)
(15)

is identically 1 if ri1 = ri2 = 0, it reduces to the conditional univariate von Mises densities (6)
with β = βtk if either (ri1, ri2) = (0, 1) or (1, 0) and it is finally equal to the bivariate circular
density (3) with β = βtk , if (ri1, ri2) = (1, 1);
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• the conditional density

f (yi,mis|ξik = 1, yi,obs; γ̂ t) = fl(yi; γ̂ tk)

Lil(γ̂ tk)
(16)

is identically 1 if ri3 = ri4 = 0, it reduces to the conditional univariate skew normal densities
(10) with γ = γ tk if either (ri3, ri4) = (0, 1) or (1, 0) and it is equal to the bivariate skew normal
density (8) with γ = γ tk if (ri3, ri4) = (1, 1)

• and, finally,

π̂tik = P(ξik=1|zi,obs; θ̂t) = π̂tkLic(β̂tk)Lil(γ̂ tk)

Li(θ̂t)
(17)

are the conditional cell probabilities of the multinomial class membership vector, given the
observed data; when profile zi is fully observed, these probabilities reduce to (2), evaluated at
θ = θ̂t .

Upon convergence of the algorithm (t = T ), if desired, distributions (15)–(16) can be exploited to
impute the missing circular and linear observations, respectively. Probabilities (17) can be instead
exploited to cluster incomplete profiles into K groups by modal allocation, that is, assigning each
profile i to the latent class with the highest probability π̂Tik .

Given the factorization (14), the expected value of the complete log-likelihood function with
respect to the conditional distribution of the missing values given the observed data is (at the
(t + 1)th step of the algorithm) given by

Q(θ|θ̂t) =
n∑

i=1

K∑
k=1

π̂tik

⎛
⎝ log πk

Et(log fc(xi; βk)|xi,obs, ξik = 1)

Et(log fl(yi; γk)|yi,obs, ξik = 1)

⎞
⎠

=
n∑

i=1

K∑
k=1

π̂tik

⎛
⎝ log πk

Qic(βk|β̂tk)

Qil(γk|γ̂ tk)

⎞
⎠ ,

where Qic(βk|βtk) = Et(log fc(xi; βk)|xi,obs, ξik = 1) indicates the expected value of log fc(xi; βk)

with respect to (15) and Qil(γk|γ̂ tk) = Et(log fl(yi; γk)|yi,obs, ξik = 1) indicates the expected value
of log fl(yi; γk) with respect to (16). Therefore, both the E step and the M step of the algorithm
essentially reduce to the evaluation of three updating functions, namely

Q1(π) =
n∑

i=1

K∑
k=1

π̂tik log πk ,

Q2(β) =
n∑

i=1

K∑
k=1

π̂tikQic(βk|β̂tk),

Q3(γ) =
n∑

i=1

K∑
k=1

π̂tikQil(γk|γ̂ tk),

which can then be maximized separately within the M step. Function Q1 is maximized by solving
the K − 1 score equations

∂

∂πk
Q1(π) =

n∑
i=1

πk

π̂tik
− πK

π̂tiK
= 0, k = 1, . . . , K − 1,
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which have the following closed-form roots:

π̂t+1,k =
∑n

i=1 π̂tik

n
, k = 1, . . . , K .

Function Q2 is maximized by separately solving K systems of the score equations

n∑
i=1

π̂tik
∂

∂βk
Qic(βk|β̂tk) = 0, k = 1, . . . , K .

In the appendix, we derive the analytical form taken by the expectations Qic(βk|β̂tk) and display a
computationally tractable form of the score equations to update the circular parameters β. Finally,
function Q3 can be maximized by separately solving K systems of the score equations

n∑
i=1

π̂tik
∂

∂γk
Qil(γk|γ̂ tk) = 0, k = 1, . . . , K ,

according to the expressions derived in [16] for the unsupervised classification of incomplete,
multivariate skew normal data.

The EM algorithm can get stuck in the local maxima of the log-likelihood function or can be
attracted by singularities at the edge of the parameter space, where the log-likelihood is unbounded
[27]. The presence of multiple local and spurious maxima is well documented in the case of
mixtures of heteroscedastic normal distributions [19] and less widely known in the case of bivariate
circular distributions [18]. A number of strategies have been proposed to select a local maximizer
and detect a spurious maximizer. To avoid local maxima, we follow a short-run strategy (known as
the emEM algorithm [5]), by running the EM algorithm from a number of random initializations,
stopping at iteration t as soon as

log L(θ̂t) − log L(θ̂t−1)

log L(θ̂t) − log L(θ̂0)
≤ η.

We have observed that convergence to spurious maxima is fast (a phenomenon that is well known
in the case of mixtures of multivariate normal densities [8]) and can be detected within short EM
runs, by monitoring both the class proportions π̂tk and the eigenvalues of the covariance matrices

(
β̂t11k β̂t12k

β̂t12k β̂t22k

)−1 (
�̂tk +

(
1 − 2

π

)
D(γ̂

′′
tk)

)
.

After excluding spurious solutions, we select the output of the EM short run that maximizes the
log-likelihood, which is then used to initialize a long run of the EM algorithm.

5. Results

We have estimated a number of mixture models from the data given in Section 2, by varying the
number of components from two to five. The computer code is available from the corresponding
author upon request. EM short runs were stopped by using a threshold η = 10−3, typically reached
between 50 and 100 iterations, depending on the dimension K of the model. The subsequent
long EM run typically required between 1000 and 2000 iterations to reach convergence (we
stopped the algorithm when the log-likelihood difference between the successive iterations was
less than 10−6).
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EM short runs were initialized as in [7]. We randomly split the observations into K groups.
The first M step was then performed on the basis of these initial groupings. Circular parameters
were estimated from the available data by the method of moments, as suggested in [17]. Means,
covariance matrices and skewness parameters of the skew normal components were estimated by
their empirical counterparts, using the available data, by following Lin [13].

To select the number of components, we computed both the Bayesian information criterion
(BIC) and the integrated complete likelihood (ICL) statistics (Table 2). The BIC statistic is a tra-
ditional approximation of the log-likelihood function, integrated with respect to a non-informative
prior distribution of the unknown parameters, and reduces to the maximum value attained by the
log-likelihood function, penalized by a function of the number of unknown parameters θ to be

Table 2. Model selection results.

Number of Number of
components parameters BIC ICL

2 25 15557.2 15952.3
3 38 14945.4 15550.8
4 51 14865.1 15750.2
5 64 15040.1 16240.0

Table 3. Estimates and standard errors (within brackets).

Component

Parameter 1 2 3

β1k 2.06 1.08 5.60
(Wave mean direction) (0.07) (0.03) (0.08)
β2k 3.13 1.33 4.61
(Wind mean direction) (0.05) (0.06) (0.02)
β11k 1.61 4.57 1.15
(Wave directional concentration) (0.11) (0.51) (0.13)
β22k 2.14 0.76 8.57
(Wind directional concentration) (0.16) (0.09) (0.72)
β12k −0.19 3.09 1.23
(Wind/wave directional inverse correlation) (0.23) (0.28) (0.28)
γ ′

1k 0.38 1.85 0.70
(Wave mean height) (0.05) (1.69) (0.10)
γ ′

2k 1.51 3.35 3.12
(Wind mean speed) (0.22) (0.38) (0.22)
γ11k 0.06 0.41 0.12
(Wave height variance) (0.01) (0.29) (0.03)
γ22k 1.29 2.65 2.85
(Wind speed variance) (0.29) (0.64) (0.55)
γ12k 0.22 0.58 0.54
(Wind/wave covariance) (0.03) (0.10) (0.06)
γ ′′

1k 0.21 0.18 0.20
(Wave skewness) (0.07) (2.15) (0.13)
γ ′′

2k 0.93 1.54 1.68
(Wind skewness) (0.26) (0.44) (0.25)
π 0.32 0.32 0.36
(Component weight) (0.02) (0.02) (0.01)
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estimated. In our application, the BIC takes the form

BIC
(
θ̂, K

)
= − log LK(θ̂) + K(5 + 7 + 1)

2
log n

and suggests a model with K = 4 components. However, this model distinguishes the same
three clusters provided by a model with three components, using two overlapping components to
approximate the distribution of the data under a single latent regime. This behavior of the BIC
has been extensively discussed in [4], and in our application, it arises because the distribution of
the data under one latent class is not very well approximated by the model. In our case study,
however, overlapping components’ lack of physical interpretation and cluster separation are more
important than goodness of fit. We, therefore, used the ICL criterion, which approximates the
integrated complete log-likelihood [4] and reduces to a BIC statistic, penalized by substracting
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Figure 3. Contour plots of the conditional circular and linear bivariate log-densities, as estimated by fitting a
three-component mixture model, at levels 4, 6 and 8; for each component, points are filled with a gray color
that is proportional to the estimated probability that each observation belongs to that component.
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the estimated mean entropy

n∑
i=1

K∑
k=1

π̂Tik log π̂Tik .

Because the ICL includes cluster separation as an additional criterion for model choice, the
minimum ICL is attained by a model with three components, which is the model that we considered
to analyze the data.

The model estimates, displayed in Table 3, indicate the locations and shapes of three pairs of
toroidal and planar clusters, depicted in Figure 3 through contour lines of bivariate log-densities.

The first component of the model includes about one-third of the sample (π̂1 = 0.32) and is
associated with periods of calm sea: weak winds generate small waves. Under this regime, the
shape of the joint distribution of wave and wind directions is essentially spherical (β121 is not
significant at a 95% confidence level) and centered at the directional mean vector (β̂11, β̂21) =
(2.06, 3.13) that summarizes sirocco episodes (southeasterly winds and waves traveling along the
major axis of the basin). As expected, wind and wave directions are poorly synchronized under
good sea conditions, because if wind episodes are weak, then wave direction is more influenced
by marine currents than by wind direction.
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Figure 4. Quantile–quantile plots of the marginal distribution of wave direction and height (left) and wind
direction and speed (right), as estimated by a model with three components.
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The second and the third components are instead associated with bora episodes. Under the
second component, bora jets blowing from a modal direction, β̂22 = 1.33, drive high waves that
travel along the major axis of the basin. Compared with episodes of calm sea, wind and wave
directions appear to be strongly synchronized now. The third component is instead associated with
episodes of bora jets that rotate at the Apennines barrier. Under this regime, the wind direction
at the tide gauge is poorly synchronized with directions taken by waves, which travel according
to offshore winds that are only partially captured by the tide gauge. These winds can blow at a
considerable speed but with multi-modal directions and, as a result, generate waves of modest
height.

Overall, the model indicates that the influence of coastal wind on offshore waves changes
under different environmental regimes. The (marginal) weak correlation between wind speed and
wave height can be then explained by the presence of a regime under which coastal winds do not
generate waves of significant height. Under all the three latent regimes, moreover, wind skewness
is modest, but significant at a 95% confidence level. On the contrary, and interestingly, wave
skewness is either barely or not significant, indicating that the marginal skewness of wave height
is essentially due to latent heterogeneity.

To identify latent sea regimes, the model tries to cluster the data, by providing an adequate fit of
the univariate marginal and conditional distributions of the data. To check the marginal features
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Figure 5. The 99% predictive intervals of wave direction and height (left) and wind direction and speed
(right), as estimated by a model with three components.
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of the model, we have computed the four quantile–quantile plots of the empirical quantiles of
each variable versus the theoretical quantiles, as estimated by the model (Figure 4). These plots
indicate a reasonable goodness of fit of the marginal distributions of the data. Departures from
the y = x line are due to the oversmoothing of the data, carried out by a mixture model that uses
only there components. Oversmoothing can be alleviated by a larger number of components, at a
price of overlapping components that are difficult to interpret, as discussed previously.

Conditional features of the model have been examined by computing predictive intervals
(Figure 5) from the conditional distributions of each variable given the values of the remain-
ing variables, as estimated by the three-component model. For simplicity, the two pictures at the
top of the figure are drawn as rectangles, although they are cylinders. The model shows a good
accuracy in predicting wave height and direction and wind speed. It seems to be less accurate
in the prediction of wind direction, due to the extreme variability of this variable, only partially
captured by three latent classes.

6. Discussion

We clustered multivariate data with circular components by associating toroidal and planar clusters
into a finite number of latent classes. This classification strategy relies on a conditional inde-
pendence assumption between the linear and the circular variables, given a latent multinomial
variable. The advantages of this approach include a simple specification of the dependence struc-
tures between variables that are observed on different supports and the computational feasibility
of a mixture-based classification strategy where missing values can be efficiently handled within
a likelihood framework. These advantages have been illustrated with respect to the wind–wave
data that are difficult to examine by means of traditional ocean numerical models [3].

To identify sea regimes, we exploited bivariate sine and skew normal distributions. While the
EM algorithm given in Section 4 can be easily generalized to allow for multivariate skew normal
distribution of any dimension, circular densities of a dimension larger than two are difficult to
handle, because the normalizing constant is not known in a closed form. A first option could be
to rely on specific M steps, based on the maximization of a complete pseudo-likelihood function.
The pseudo-likelihood function provides good results in the maximum-likelihood estimation of
trivariate circular densities [17], but its performance in a mixture context is at present not known.
A second option could be to use a stochastic M step, based on the Markov Chain Monte Carlo
methods that avoid the direct computation of the normalizing constant.
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Appendix

To derive the analytical form taken by expectations Qic(βk|β̂tk), we first observe that

∂ log C(βk)

∂β11k
= 1

C(βk)

∂C(βk)

∂β11k
= 4π2 ∑∞

m=0

(2m
m

)
(β2

12/(4β11β22))
mIm+1(β11)Im(β22)

C(βk)

∂ log C(βk)

∂β22k
= 1

C(βk)

∂C(βk)

∂β22k
= 4π2 ∑∞

m=0

(2m
m

)
(β2

12/(4β11β22))
mIm(β11)Im+1(β22)

C(βk)

∂ log C(βk)

∂β12k
= 1

C(βk)

∂C(βk)

∂β12k
= 4π2β−1

12

∑∞
m=1

(2m
m

)
2m(β2

12/(4β11β22))
mIm(β11)Im(β22)

C(βk)
,

respectively, indicate the marginal expectations of cos(x1 − β1k), cos(x2 − β2k) and sin(x1 −
β1k) sin(x2 − β2k) with respect to fc(x; βk). Furthermore, let ak and bk , respectively, be the
functions (5) and (7), with β = βk . We observe that

∂ log ak(x1)

∂ak(x1)
= I1(ak(x1))

I0(ak(x1))
,

∂ log ak(x2)

∂ak(x2)
= I1(ak(x2))

I0(ak(x2))
,

respectively, indicate the conditional expectation of cos(x1 − β1k − bk(x2)) with respect
to fc(x1|x2; βk) and the conditional expectation of cos(x2 − β2k − bk(x1)) with respect to
fc(x2|x1; βk).
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Standard integration procedures and trigonometric identities allow to write Qik(βk|βkt) as a
linear combination of expected sufficient statistics, whose value depends on the pattern ri of the
missing values within each profile. Precisely,

Qik(βk|βtk) = − log C(βk) + β11kEtik1 + β22kEtik2 + β12kEtik3,

where

Etik1 = E(cos(xi1 − β1k)|xi,obs, ξik = 1)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos(xi1 − β1k) ri1 = 0,
1

C(βk)

∂C(βk)

∂β11k
ri1 = ri2 = 1,

cos bk(xi2)
I1(ak(xi2))

I0(ak(xi2))
ri1 = 1, ri2 = 0,

Etik2 = E(cos(xi2 − β2k)|xi,obs, ξik = 1)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos(xi2 − β2k) ri2 = 0,

1

C(βk)

∂C(βk)

∂β22k
ri1 = ri2 = 1,

cos bk(xi1)
I1(ak(xi1))

I0(ak(xi1))
ri1 = 0, ri2 = 1,

Etik3 = E
(
sin(xi1 − β1k) sin(xi2 − β2k)|xi,obs, ξik = 1

)
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(xi1 − β1k) sin(xi2 − β2k) ri1 = ri2 = 0,

1

C(βk)

∂C(βk)

∂β12k
ri1 = ri2 = 1,

sin bk(xi2)
I1(ak(xi2))

I0(ak(xi2))
sin(xi2 − β2k) ri1 = 1, ri2 = 0,

sin(xi1 − β1k) sin bk(xi1)
I1(ak(xi1))

I0(ak(xi1))
ri1 = 0, ri2 = 1.

Function Q2(β) is, therefore, maximized by separately solving the following system of score
equations, for each k:

∑n
i=1 π̂tikEtik1∑n

i=1 π̂tik
= 1

C(βk)

∂C(βk)

∂β11k
,

∑n
i=1 π̂tikEtik2∑n

i=1 π̂tik
= 1

C(βk)

∂C(βk)

∂β22k
,

∑n
i=1 π̂tikEtik3∑n

i=1 π̂tik
= 1

C(βk)

∂C(βk)

∂β12k
,

β11k
∑n

i=1 π̂tikAtik1 − β12k
∑n

i=1 π̂tikCtik1

β11k
∑n

i=1 π̂tikBtik1 + β12k
∑n

i=1 π̂tikDtik1
= tan β1k ,

β22k
∑n

i=1 π̂tikAtik2 − β12k
∑n

i=1 π̂tikCtik2

β22k
∑n

i=1 π̂tikBtik2 + β12k
∑n

i=1 π̂tikDtik2
= tan β2k ,
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where

Atik1 = E
(
sin xi1|xi,obs, ξik = 1

)
) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sin xi1 ri1 = 0,

sin(β1k + bk(xi2))
I1(ak(xi2))

I0(ak(xi2))
ri1 = 0, ri2 = 1,

sin β1k
1

C(βk)

∂C(βk)

∂β1kk
ri1 = ri2 = 1,

Btik1 = E
(
cos xi1|xi,obs, ξik = 1

)
) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos xi1 ri1 = 0,

cos(β1k + bk(xi2))
I1(ak(xi2))

I0(ak(xi2))
ri1 = 1, ri2 = 0,

cos β1k
1

C(βk)

∂C(βk)

∂β1kk
ri1 = ri2 = 1,

Ctik1 = E
(
sin(xi2 − β2k) cos xi1|xi,obs, ξik = 1

)
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(xi2 − β2k) cos xi1 ri1 = ri2 = 0,

cos(β1k + bk(xi2))
I1(ak(xi2))

I0(ak(xi2))
sin(xi2 − β2k) ri1 = 1, ri2 = 0,

cos xi1 sin β2k
I1(a(xi1))

I0(a(xi1))
ri1 = 0, ri2 = 1,

cos β1k
1

C(βk)

∂C(βk)

∂β1kk
ri1 = ri2 = 1,

Dtik1 = E
(
sin(xi2 − β2k) sin xi1|xi,obs, ξik = 1

)
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(xi2 − β2k) sin xi1 ri1 = ri2 = 0,

sin(β1k + bk(xi2))
I1(ak(xi2))

I0(ak(xi2))
sin(xi2 − β2k) ri1 = 1, ri2 = 0,

sin xi1 sin β2k
I1(a(xi1))

I0(a(xi1))
ri1 = 0, ri2 = 1,

− sin β1k
1

C(βk)

∂C(βk)

∂β1kk
ri1 = ri2 = 1,

and where Atik2, Btik2, Ctik2, Dtik2 can be derived in a similar way, by exchanging x1 with x2.
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In this paper, we propose a hidden Markov model for the analysis of the time series of bivariate circular
observations, by assuming that the data are sampled from bivariate circular densities, whose parameters
are driven by the evolution of a latent Markov chain. The model segments the data by accounting for
redundancies due to correlations along time and across variables. A computationally feasible expectation
maximization (EM) algorithm is provided for the maximum likelihood estimation of the model from
incomplete data, by treating the missing values and the states of the latent chain as two different sources
of incomplete information. Importance-sampling methods facilitate the computation of bootstrap standard
errors of the estimates. The methodology is illustrated on a bivariate time series of wind and wave directions
and compared with popular segmentation models for bivariate circular data, which ignore correlations
across variables and/or along time.
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1. Introduction

Circular hidden Markov models (HMMs) have been recently introduced as flexible frame-
works for the statistical analysis of univariate circular time series, which arise in environmental,
biological and ecological studies [1]. Univariate circular time series are temporal sequences
of angles and can be represented as trajectories of points on the circle. The marginal distri-
bution of these data is often multimodal, suggesting that the data are drawn from different
distributions, associated with different latent regimes. This often motivates the use of mix-
ture models in circular data analysis. Mixture models are helpful for recovering latent regimes
from the data and for estimating the parameters of the data distribution under each regime.
HMMs are particular mixture models that account for temporal autocorrelation, by assuming
that the temporal transitions between latent regimes occur according to the transition prob-
ability matrix of an unobserved (i.e. hidden) Markov chain. Circular HMMs are particular
HMMs that accommodate for the circular structure of the data, by modelling observations as
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samples drawn from a mixture of circular densities, that is, probability densities with circular
support. The von Mises HMM is obtained by considering mixtures of von Mises densities and
it provides an intuitively appealing tool in the analysis of univariate time series of circular
observations.

We generalize the von Mises HMM to handle bivariate circular time series. Bivariate circular
times series are temporal sequences of bivariate angular observations and can be represented as
trajectories on a torus, that is, a surface generated by revolving a circle in the three-dimensional
space. Examples include time series of hourly wind and wave directions [2] in environmetrics
and sequences of dihedral angles in bioinformatics [3]. An HMM approach has been already
proposed in the literature to model bivariate circular data, through a conditional independence
(CI) assumption [1,3]: at each time, the two observed angles are assumed to be conditionally
independent given the latent state of the Markov chain. As a result, a bivariate circular HMM
is obtained by modelling bivariate observations with the product of two univariate densities. CI
is often exploited in the specification of multivariate HMMs for non-normal observations [4]
and can be motivated by borrowing arguments from the latent-class literature, where multivariate
densities are approximated by mixtures of product densities and latent states capture the associa-
tion structure of multivariate observations. In this paper, we show that CI is not necessary in the
modelling of bivariate circular time series, by introducing the bivariate sine HMM (BSHMM).
The BSHMM is specified by modelling pairs of angles by a mixture of sine bivariate densities
[5], whose parameters depend on the states of a latent Markov chain. The sine bivariate den-
sity can be viewed as the circular counterpart of a bivariate Gaussian density and depends on
five parameters: two mean directions, two concentrations that indicate the spread of the angles
around their means and, finally, a parameter that indicates the dependence between the two angu-
lar observations. As a result, the BSHMM introduced in this paper can be viewed as the circular
counterpart of a bivariate normal HMM, well known in the literature as a powerful tool to study
bivariate time series. The BHMM allows us to segment the data by accounting for possible redun-
dancies due to the dependence across variables and the autocorrelation along time. In addition,
a number of models, often employed in the analysis of bivariate circular data, can be obtained
as particular cases of a BSHMM. For example, if the dependence parameter is equal to zero,
a sine bivariate density is equal to the product of two univariate von Mises densities and the
BSHMM reduces to the aforementioned CI-based circular HMM. Furthermore, if all the rows of
the transition probability matrix in a BSHMM are equal to the initial probability distribution of
the chain, then the Markov chain reduces to a Bernoulli scheme and, as a result, the BSHMM
reduces to a mixture of sine bivariate densities, recently considered in the literature to cluster
independent toroidal data [6,7]. Finally, if both the dependence parameter is equal to zero and all
the rows of the transition probability matrix are equal, a BSHMM reduces to a mixture whose
components are products of von Mises univariate densities, recently exploited in environmental
studies [2].

In this paper, we focus on the maximum likelihood estimation of the BSHMM from
incompletely observed, bivariate circular time series, because missing values often occur in envi-
ronmental and biological studies. Specifically, we present a computationally feasible expectation
maximization (EM) algorithm that treats the unobserved states of the Markov chain and the miss-
ing values as two different sources of incomplete information. We also show that the BSHMM
can be simulated by exploiting standard importance-sampling methods and, as a result, estimate
uncertainty can be efficiently assessed by computing bootstrap standard errors.

The rest of the paper is organized as follows. Section 2 summarizes relevant details of the
BSHMM, while Section 3 presents the technical details of the EM algorithm. Section 4 illustrates
a feasible simulation procedure to compute the standard errors of the estimates. Section 5 is
devoted to an application on marine data and, finally, Section 6 summarizes relevant points of
discussion.
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2. The bivariate sine hidden Markov model

A bivariate circular time series takes the form of a vector xT = (x0, x1, . . . , xT ), with coordinates
xt = (x1t , x2t) ∈ (0, 2π)2. To specify the distribution of xT , we introduce a homogeneous Markov
chain with K states, defined by a vector π = (π1, . . . , πk) of initial probabilities and a transition
probability matrix P, whose (h, k)th element πh,k indicates the conditional probability of visiting
state k at time t, given that the chain is in state h at time t − 1.

We also introduce a parametric family of toroidal densities f (x; β), x ∈ (0, 2π)2, indexed by a
multivariate vector β. Under this setting, the time series xT is distributed according to a bivariate
circular HMM if its joint density is given by

f (xT ) =
1,...,K∑

k0,k1,...,kT

p(k0, k1, . . . , kT ; π, P)

T∏
t=0

f (xt ; βkt
), (1)

where the (T + 1)-fold summation runs over all the possible sequences (k0, k1, . . . , kT ), kt ∈
{1, . . . , K}, t ∈ {0, 1, . . . , T}, that can be visited by a K-state Markov chain, with probability

p(k0, k1, . . . , kT ; π, P) = πk0

T∏
t=1

πkt−1,kt . (2)

Note that if x was a point in the plane R
2 and f (x; β) was a bivariate normal density N(μ, �),

then Equation (1) would be the distribution of a bivariate normal HMM.
Parametric families of toroidal densities f (x; β) can be specified in a number of different ways

[6,8] and plugged into Equation (1) to obtain several bivariate circular HMMs. To our knowledge,
however, none of the existing toroidal densities has been ever considered under an HMM setting.
The BSHMM, proposed here, exploits a bivariate sine model to specify a toroidal density. The sine
density [5] is a parametric distribution on the torus (0, 2π)2 which naturally imbeds the bivariate
normal distribution when the range of observations is small. Given a point x ∈ (0, 2π)2, the sine
density is given by

f (x; β) = exp(β11 cos(x1 − β1) + β22 cos(x2 − β2) + β12 sin(x1 − β1) sin(x2 − β2))

C(β)
, (3)

with normalizing constant

C(β) = 4π2
∞∑

m=0

(
2m

m

) (
β2

12

4β11β22

)m

Im(β11)Im(β22),

where

Im(β) = 1

π

∫ π

0
eβ cos u cos(mu) du

is the modified Bessel function of order m. The sine model can be viewed as a bivariate general-
ization of the von Mises density, where β12 accounts for the statistical dependence between x1 and
x2, β1 and β2 are the modal directions of x1 and x2 and, finally, β11 and β22 are the concentration
parameters of x1 and x2, indicating the spread of the data around the mode.

The two univariate marginal densities

f (xi; β) =
∫ π

−π

f (x; β) dxj = 2π

C(β)
I0(a(xi)) exp(βii cos(xi − βi)), i = 1, 2, (4)
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depend on the marginal mean angles βi, i = 1, 2, and on the shape parameters

a(xi) = (β2
jj + β2

12 sin2(xi − βi))
1/2, i = 1, 2. (5)

We observe that, in general, these marginal densities are not von Mises and can have a bimodal
shape. As has been proved in [5], unimodality holds under the sufficient condition

β2
12 < 2 min{β11, β22},

and in this case, the marginal densities are well approximated by von Mises densities. If β12 = 0,
then a(xi) = βjj, i = 1, 2, and, as a result, x1 and x2 are independent and each of them assumes
the von Mises distribution, that is,

f (xi; β) = exp(βii cos(xi − βi))

2π I0(βii)
= fvm(xi; βi),

where βi = (βi, βii) includes the marginal mode and the marginal concentration parameter of xi.
Regardless of the value taken by β12, the conditional distribution of one component given the
other one follows a von Mises law, namely

f (xi|xj; β) = exp(a(xi) cos(xi − βi − b(xj)))

2π I0(a(xi))
= fvm(xi; βi + b(xj), a(xi)), (6)

where

b(xj) = arctan

(
β12

βjj
sin(xj − βj)

)
. (7)

A BSHMM parsimoniously allows for possible correlations across variables (through the
parameter β12) and along time (through the transition probability matrix P). Popular models
for bivariate circular data ignore some of these correlations and can be obtained as particular
cases of the BSHMM, by appropriately restricting these two parameters. For example, if β12 = 0,
then Equation (1) reduces to a CI-based HMM:

f (xT ) =
1,...,K∑

k0,k1,...,kT

p(k0, k1, . . . , kT ; π, P)

T∏
t=0

fvm(x1t ; β1,kt
)fvm(x2t ; β2,kt

). (8)

If, instead, P = 1πT, that is, all the rows of P are equal to the initial distribution of the chain, then
the data are assumed as independent samples, drawn from a mixture of bivariate sine densities.
As a result, the joint distribution of the time series reduces to the product

f (xT ) =
1,...,K∑

k0,k1,...,kT

πk0 , . . . , πkT

T∏
t=0

f (xt ; βkt
)

=
T∏

t=0

K∑
k=1

πkf (xt ; βk). (9)

If, finally, β12 = 0 and P = 1πT, then the BSHMM reduces to a CI-based mixture model, whose
components are specified as products of von Mises densities, as follows:

f (xT ) =
T∏

t=0

K∑
k=1

πkfvm(x1t ; β1k)fvm(x2t ; β2k). (10)
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3. Maximum likelihood estimation from incomplete data

We allow for missing values and, accordingly, refer to xt,mis and xt,obs as the missing and observed
circular components at time t, respectively. We further introduce pairs rt = (rt1, rt2) of binary
missing indicators, where rtj = 1, if xtj is missing and zero otherwise, j = 1, 2. If the data are
missing at random (i.e. the conditional probability of not observing a value, given the observed
data, does not depend on the unobserved value [9]), the missing data mechanism can be ignored
and the maximum likelihood estimate of parameter θ = (π, P, β) is the maximum point of the
marginal log-likelihood function:

log L(θ) = log
1,...,K∑

k0,k1,...,kT

p(k0, k1, . . . , kT ; π, P)

T∏
t=0

∫
f (xt ; βkt

) dxmis (11)

= log
1,...,K∑

k0,k1,...,kT

p(k0, k1, . . . , kT ; π, P)

T∏
t=0

Lt(βkt
),

where

Lt(βkt
) = f (xt ; βkt

)(1−rt1)(1−rt2)f (xt1; βkt
)(1−rt1)rt2 f (xt2; βkt

)rt1(1−rt2)

is the conditional likelihood contribution of the tth incomplete observation, given the state kt ,
whereas f (xtj; βkt

), j = 1, 2, are the marginal densities, defined in Equation (4), and evaluated at
β = βkt

. As a result, the contribution of a fully missing profile is identically 1.
Because direct maximization of Equation (11) can be computationally problematic, we

describe an EM algorithm that generates a sequence (θ̂p, p = 1, 2, . . .) of estimates such that
L(θ̂p) ≥ L(θ̂p−1). The algorithm is based on the iterative maximization of the expected value of a
complete-data log-likelihood function, computed with respect to the conditional distribution of the
unobserved quantities (e.g. the latent states of the Markov chain and the unobserved directions),
given the observed data.

To specify the complete-data log-likelihood function, the states of the hidden Markov chain
can be conveniently defined as samples drawn from a multinomial process (ξt , t ≥ 0) in discrete
time, where ξt = (ξt1, . . . , ξtK) is a multinomial random variable with one trial and K classes.
Under Equation (2), the distribution of ξ0 is given by

p(ξ0) =
K∏

k=1

π
ξ0k

k ,

while the conditional distribution of ξt given ξt−1 is given by

p(ξt|ξt−1,h = 1) =
K∏

k=1

π
ξt−1,hξtk

h,k .

Treating both the latent states and the unobserved directions as missing values, we define the
complete-data log-likelihood function as

log Lcomp(θ) =
K∑

k=1

ξ0k log π(k) +
T∑

t=1

K∑
h=1

K∑
k=1

ξt−1,hξt,k log πh,k +
T∑

t=0

K∑
k=1

ξtk log f (xt ; βk). (12)

Given the estimate θ̂p, provided by the algorithm at step p, the expected value of log Lcomp(θ)

with respect to the conditional distribution of the missing values (ξ, xmis) = (ξt , xt,mis, t =
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0, . . . , T) given the observed data xobs = (xt,obs, t = 0, . . . , T), evaluated at θ = θ̂p, say

Q(θ|θ̂p) = E(log Lcomp(θ)|xobs), (13)

can be evaluated by observing that the distribution of the missing values given the observed data
can be factorized into two components, as follows:

f (ξ, xmis|xobs; θ̂p) = p(ξ|xobs; θ̂p)f (xmis|ξ, xobs; β̂p)

= p(ξ|xobs; θ̂p)

T∏
t=0

K∏
k=1

(f (xt,mis|ξtk = 1, xt,obs; β̂k))
ξtk , (14)

where the conditional density

f (xt,mis|ξtk = 1, xt,obs; β̂k) = f (xt ; β̂k)

Lt(β̂k)
(15)

is identically 1, if ri1 = ri2 = 0, it reduces to the conditional univariate von Mises densities (6)
with β = βk , if either (ri1, ri2) = (0, 1) or (1, 0), and it is finally equal to the bivariate circular
density (3) with β = βk , if (ri1, ri2) = (1, 1). As a result, the expected value of the complete log-
likelihood function with respect to the conditional distribution of the missing values given the
observed data (at the (p + 1)th step of the algorithm) is given by

Q(θ|θ̂t) =
K∑

k=1

π̂0k(p+1) log πk +
T∑

t=1

K∑
h=1

K∑
k=1

π̂t−1,t,hk(p+1) log πh,k

+
T∑

t=0

K∑
k=1

π̂tk(p+1)E(p+1)(log f (xt ; βkt
)|xt,obs, ξtk = 1), (16)

where the univariate and bivariate posterior probabilities of the latent states given the observed
data and the output of the pth step of the EM algorithm, namely

π̂tk(p+1) = P(ξtk = 1|xobs, θ̂p),

π̂t−1,t,hk(p+1) = P(ξth = 1, ξtk = 1|xobs, θ̂p),

can be computed by standard backward–forward iterations that account for incomplete profiles
and prevent from overflows. To illustrate the recursion that we exploited, let

L0:t(θ) =
1,...,K∑

k0,k1,...,kt

p(k0, k1, . . . , kt ; π, P)

t∏
t=0

Lt(βkt
)

be the contribution of the first t incomplete profiles to the marginal likelihood and let x0:t =
(x0, x1, . . . , xt) be the time series, observed up to time t. During the forward iteration, we exploit the
output of the pth step of the EM algorithm to compute the probabilitiesψ(t)(k) = P(ξtk = 1|x0:t−1),
the likelihood ratios ct = L0:t(θ̂p)/L0:t−1(θ̂p) and the forward probabilities ᾱt(k) = P(ξtk = 1|x0:t),
as follows:

Forward recursion

• Initialization:

ψ(0)(k) = π̂kp,
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c0 =
K∑

k=1

ψ(0)(k)L0(β̂kp),

ᾱ0(k) = ψ(0)(k)L0(β̂kp)

c0
.

• For t = 1, . . . , T ,

ψ(t)(k) =
K∑

h=1

ᾱt−1(h)π̂hkp,

ct =
K∑

k=1

ψ(t)(k)Lt(β̂kp),

ᾱt(k) = ψ(t)(k)Lt(β̂kp)

ct
.

At the end of the forward recursion, we store the values c0, . . . , cT and ᾱ0(k), . . . , ᾱT (k) and run
a backward recursion, by computing the ratios γ̄t(k) = f (xt+1:T |ξtk = 1)/

∏T
l=t cl, as follows.

Backward recursion

• Initialization: γ̄T (k) = 1/cT .
• For t = T − 1, T − 2, . . . , 0,

γ̄t(k) =
∑K

h=1 π̂khpLt+1(β̂kp)γ̄t+1(h)

ct
.

At the end of the backward recursion, we store the values of γ̄0(k), . . . , γ̄T (k) and compute the
posterior univariate state probabilities as

π̂tk(p+1) = ᾱt(k)γ̄t(k)∑K
k=1 ᾱt(k)γ̄t(k)

.

The bivariate posterior probabilities can be instead computed as

π̂t−1,t,hk(p+1) = ᾱt(k)π̂hkpLt+1(β̂kp)γ̄t+1(k).

The E step of the algorithm is completed by evaluating the expected value of log f (xt ; βk) with
respect to Equation (15). This expectation takes the simple form

E(log f (xt ; βk)|xt,obs, ξtk = 1) = − log C(β̂kp) + β̂11kpEtk1p + β̂22kpEtk2p + β̂12kpEtk3p,

where

Etk1p = E(cos(xt1 − β̂1kp)|xt,obs, ξtk = 1) =
⎧⎨
⎩

cos(xt1 − β̂1kp), rt1 = 0,

cos b̂kp(xt2)
I1(âkp(xt2))

I0(âkp(xt2))
, rt1 = 1, rt2 = 0,

Etk2p = E(cos(xt2 − β̂2kp)|xt,obs, ξtk = 1) =
⎧⎨
⎩

cos(xt2 − β̂2kp), rt2 = 0,

cos b̂kp(xt1)
I1(âkp(xt1))

I0(âkp(xt1))
, rt1 = 0, rt2 = 1,
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Etk3p = E(sin(xt1 − β̂1kp) sin(xt2 − β̂2kp)|xt,obs, ξtk = 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(xt1 − β̂1kp) sin(xt2 − β̂2kp), rt1 = rt2 = 0,

sin b̂kp(xt2)
I1(âkp(xt2))

I0(âkp(xt2))
sin(xt2 − β̂2kp), rt1 = 1, rt2 = 0,

sin(xt1 − β̂1kp) sin b̂kp(xt1)
I1(âkp(xt1))

I0(âkp(xt1))
, rt1 = 0, rt2 = 1.

We then carry out the M step of the algorithm by maximizing Q(θ|θ̂p), which is the sum of two
functions of independent parameters and can be then maximized separately. Maximization with
respect to the transition probabilities πhk provides the well-known updated values

π̂hk(p+1) =
∑T

t=1 π̂t−1,t,hk(p+1)∑T
t=1 π̂t−1,hk(p+1)

, h, k = 1, . . . , K .

Maximization with respect to the parameters β is instead obtained by separately solving the
following K systems of score equations:

∑n
i=1 π̂tk(p+1)Etk1p∑n

i=1 π̂tk(p+1)

= 1

C(βk)

∂C(βk)

∂β11k
,

∑n
i=1 π̂tk(p+1)Etk2p∑n

i=1 π̂tk(p+1)

= 1

C(βk)

∂C(βk)

∂β22k
,

∑n
i=1 π̂tk(p+1)Etk3p∑n

i=1 π̂tk(p+1)

= 1

C(βk)

∂C(βk)

∂β12k
,

β11k
∑n

i=1 π̂tk(p+1)Atk1(p) − β12k
∑n

i=1 π̂tk(p+1)Ctk1p

β11k
∑n

i=1 π̂tk(p+1)Btk1p + β12k
∑n

i=1 π̂tk(p+1)Dtk1p
= tan β1k ,

β22k
∑n

i=1 π̂tk(p+1)Atk2p − β12k
∑n

i=1 π̂tk(p+1)Ctk2p

β22k
∑n

i=1 π̂tk(p+1)Btk2p + β12k
∑n

i=1 π̂tk(p+1)Dtk2p
= tan β2k , (17)

where the expected sufficient statistics in the last two score equations are given by

Atk1p = E(sin xi1|xi,obs, ξik = 1) =
⎧⎨
⎩

sin xi1, ri1 = 0,

sin(β̂1kp + b̂kp(xi2))
I1(âkp(xi2))

I0(âkp(xi2))
, ri1 = 0, ri2 = 1,

Btk1p = E(cos xi1|xi,obs, ξik = 1) =
⎧⎨
⎩

cos xi1, ri1 = 0,

cos(β̂1kp + b̂kp(xi2))
I1(âkp(xi2))

I0(âkp(xi2))
, ri1 = 1, ri2 = 0,

Ctk1p = E(sin(xi2 − β̂2kp) cos xi1|xi,obs, ξik = 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(xi2 − β̂2kp) cos xi1, ri1 = ri2 = 0,

cos(β̂1kp + b̂kp(xi2))
I1(âkp(xi2))

I0(âkp(xi2))
sin(xi2 − β̂2kp), ri1 = 1, ri2 = 0,

cos xi1 sin β̂2kp
I1(âkp(xi1))

I0(âkp(xi1))
, ri1 = 0, ri2 = 1,
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Dtk1p = E(sin(xi2 − β̂2kp) sin xi1|xi,obs, ξik = 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(xi2 − β̂2kp) sin xi1, ri1 = ri2 = 0,

sin(β̂1kp + b̂kp(xi2))
I1(âkp(xi2))

I0(âkp(xi2))
sin(xi2 − β̂2kp), ri1 = 1, ri2 = 0,

sin xi1 sin β̂2kp
I1(âkp(xi1))

I0(âkp(xi1))
, ri1 = 0, ri2 = 1,

and where Atk2p, Btk2p, Ctk2p and Dtk2p can be derived in a similar way, by exchanging x1 with x2.
Because the sine model belongs to the exponential family, the derivatives on the right-hand side
of the equations are given by

∂ log C(βk)

∂β11k
= 1

C(βk)

∂C(βk)

∂β11k
= 4π2 ∑∞

m=0

(2m
m

)
(β2

12/4β11β22)
mIm+1(β11)Im(β22)

C(βk)
,

∂ log C(βk)

∂β22k
= 1

C(βk)

∂C(βk)

∂β22k
= 4π2 ∑∞

m=0

(2m
m

)
(β2

12/4β11β22)
mIm(β11)Im+1(β22)

C(βk)
,

∂ log C(βk)

∂β12k
= 1

C(βk)

∂C(βk)

∂β12k
= 4π2β−1

12

∑∞
m=1

(2m
m

)
2m(β2

12/4β11β22)
mIm(β11)Im(β22)

C(βk)

and, respectively, indicate the conditional expectations of cos(x1 − β1k), cos(x2 − β2k) and
sin(x1 − β1k) sin(x2 − β2k) under the hidden state k.

In the case of fully observed, independent profiles, these equations reduce to those used in
[10] for estimating mixtures of toroidal densities. We solve system (17) iteratively, by solving
first the third equation and plugging the estimate of β12k in the first and second equations to
obtain the estimates of the concentration parameters. We finally solve the last two equations to
find the updated estimates of the directional means. Remarkably, this part of the EM algorithm is
computationally fast and numerically stable, if an efficient method to compute Bessel functions
(such as the BesselI function of R) is available.

It is well known that the EM algorithm can get stuck in local maxima of the log-likelihood
function or can be attracted by singularities at the edge of the parameter space, where the log-
likelihood is unbounded. In the classification literature, a number of strategies have been proposed
to select a local maximizer and detect a spurious maximizer. To avoid local maxima, we follow
a short-run strategy [11], by running the EM algorithm from a number of random initializations,
stopping the iterations without waiting for full convergence. Because convergence to spurious
maxima is fast (a phenomenon that is well documented in the case of mixtures of multivariate
normal densities), it can be detected within those short EM runs, by monitoring both the class
proportions π̂kp and the eigenvalues of the covariance matrices:

(
β̂11kp β̂12kp

β̂12kp β̂22kp

)−1

.

After excluding spurious solutions, we select the output of the EM short run that maximizes the
log-likelihood, which is then used to initialize a long run of the EM algorithm. This strategy does
not avoid convergence to local maxima and must be repeated several times.

4. Variance estimation

We computed the standard errors of the parameter estimates using parametric bootstrap, as standard
errors based on the observed information matrix are often unstable (see, e.g. [12]). Specifically, we
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re-fitted the model to the bootstrap data that were simulated from the estimated model. Simulation
of a BSHMM is straightforward. We first simulate a sequence of states from the Markov chain.
Given a sequence of states, a bivariate circular observation is at each time t drawn according to
the appropriate sine density, evaluated at β = βkt

, where kt is the state that has been drawn at time
t. To obtain a bivariate circular sample, we first draw a sample x1 from marginal density (4) with
β = βkt

and then use x1 to draw a value from the conditional distribution of x2 given x1, according
to the von Mises density (6). There are several well-known routines for sampling from a von Mises
distribution. Samples from the marginal circular density can be instead obtained by exploiting
an acceptance–rejection algorithm, with a von Mises density as a proposal. Specifically, we first
compute

β̂11 = max
x∈(0,2π)

{
f (x; β1)

fvm(x; β1, β11)

}
,

where f (x; β1) is the marginal distribution of x1. We then evaluate

p̂ = 1

maxx∈(0,2π){f (x; β1)/fvm(x; β1, β̂11)}
.

Finally, we draw a sample u from the uniform distribution on the unit interval and a sample y
from the von Mises fvm(x; β1, β̂11). If

u ≤
{

f (y)

(1/p̂)fvm(y; β1, β11)

}
,

then we accept y as x1, otherwise, we reject the value and repeat the procedure.
Model re-fitting was repeated R times, and the approximate standard error of each model

parameter θ was computed by

seR(θ̂) =
(

1

R − 1

R∑
r=1

(θ̂r − θ̄R)2

)1/2

,

where θ̂r is the estimate from the rth bootstrap sample and θ̄R is the mean of the bootstrap estimates.
In a general framework, there are at least three different methods for computing the standard

errors of HMM parameters, namely likelihood profiling, bootstrapping and a method based on
a finite difference approximation to the Hessian [13]. In this paper, we adopt the parametric
bootstrap approach generating bootstrap samples according to the parametric model using the
maximum likelihood estimates of the parameters. Our choice is due to both the simplicity of
implementing the parametric bootstrap and the results produced by this procedure. As shown in
[13], in the context of long time series computing, the exact Hessian is not feasible and, via a
simulation study, it can be proved that likelihood profiling and bootstrapping produce similar
results, whereas the standard errors from the finite-difference approximation of the Hessian are
mostly too small.

5. Application

We illustrate the maximum likelihood estimation of a BSHMM using a time series of semi-hourly
wind and wave directions, taken during the period 1 January 2010–21 February 2010 by the
buoy of Ancona, which is located in the Adriatic Sea at about 30 km from the coast. Because of
transmission errors, about 20% of the wind directions are missing and about 12% of the wave
directions are missing. Finally, about 4% of the observed profiles are fully missing.
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Figure 1. Adriatic Sea: wind and wave directions, taken by a buoy in wintertime.

Figure 1 displays the scatter plot of the data. Point coordinates indicate the direction (in radians)
from which winds blow and waves travel. For simplicity, these bivariate circular data are plotted
on the plane, although data points are actually on a torus.

Although in the ocean, wind and wave directions are strongly correlated, this is not necessarily
true in the Adriatic Sea, due to the complex orography of the basin. The Adriatic Sea is a semi-
enclosed, long narrow basin, extending for about 800 km along the major axis from SE to NW,
with a width of about 200 km. In winter, relevant wind events in the Adriatic Sea are typically
generated by the Bora wind, which in the Ancona area blows north–northwesterly along the major
axis of the basin, and by the Sirocco wind, which blows southeasterly. Waves generated by these
winds travel in the same direction of the winds or slightly rotate along the major axis of the basin.
In addition, there are winds that blow northwesterly, westerly and southwesterly from the Italian
coast, along the minor axis of the basin. Coastal winds generate synchronized waves only when
the waves travel unobstructed, that is, either northwesterly or southeasterly, along the major axis of
the basin. In the case of western winds, waves travel southwesterly. When, however, coastal winds
rotate clockwise, waves tend to travel from north. This explains the clusters shown in Figure 1 and
suggests the occurrence of a number of latent wind–wave regimes. Estimation of an HMM from
these data can be helpful in clustering the data into a number of toroidal clusters, each associated
with a specific wind–wave distribution, and assessing the temporal persistence of these regimes,
accounting for the temporal autocorrelation in the classification process.

We estimated a number of BSHMMs and selected a model with K = 3 components by the
Bayesian information criterion (BIC). Maximum likelihood estimates were computed by exploit-
ing the short-run strategy, illustrated in Section 3. EM short runs were started from random
initialization points and stopped as soon as the relative difference of the likelihood

L(θ̂p) − L(θ̂p−1)

L(θ̂p) − L(θ̂0)
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Table 1. Estimates and standard errors of the toroidal distribution parameters.

Component

Parameter 1 2 3

β1k (wave mean direction) 1.476(0.028) 5.660 (0.015) 1.203 (0.015)
β2k (wind mean direction) 4.993(0.030) 5.499 (0.014) 1.470 (0.017)
β11k (wave directional concentration) 2.373(0.102) 8.128 (0.392) 3.910 (0.154)
β22k (wind directional concentration) 2.261(0.108) 8.367 (0.416) 1.980 (0.099)
β12k (wind/wave directional dependence) −0.823(0.129) 5.100 (0.373) 6.002 (0.182)

was less than 10−3. Divergence towards spurious solutions was normally detected within the first
10 iterations of the algorithm. Otherwise, EM short runs typically required between 40 and 60
iterations, depending on the dimension K of the model and the starting point of the algorithm.
The subsequent long-run EM run typically required between 130 and 200 iterations to reach
convergence (we stopped the algorithm when the log-likelihood difference between successive
iterations was less than 10−6). Standard errors were computed on the basis of 250 bootstrap
samples.

Table 1 displays the estimates of the parameters of the three toroidal densities and Figure 2
shows the shapes of the related distributions. We can observe that the dependence parameters
of the three densities are all significant at a 95% level, confirming that in this data set, the CI
assumption is difficult to motivate. In addition, the estimated transition probability matrix (Table 2)
is essentially diagonal, suggesting that the assumption of independent samples (i.e. a transition
probability matrix with equal rows) is, in this example, unrealistic.

The model clusters the data into well-separated groups, which can be interpreted as latent wind–
wave regimes. Components 2 and 3 are, respectively, associated with Bora and Sirocco events
and cluster highly correlated data. In particular, component 3 (Figure 2, bottom) is bimodal and
the two modes are, respectively, located at NW and SE, which are the two opposite directions
of the major axis of the basin. On the other side, component 2 (Figure 2, middle) captures
the northern wind and wave directions that are highly synchronized and concentrated around
their modes. Component 1 is instead associated with coastal winds, which generate waves that
tend to travel along the major axis of the basin. As a result, waves travel in a direction that
is weakly correlated with the wind direction. Overall, the model describes the plasticity of the
wind–wave interaction in the Adriatic Sea, indicating that the joint distribution of wind and wave
data changes under different environmental regimes. Regime switching changes not only the
modal directions and concentrations around these modes but also, and more interestingly, the
correlation structure of the data. As a result, on the one side, the (marginal) weak correlation
between wind and wave directions is explained by the presence of coastal winds (component
1). On the other side, the model indicates that the wind direction is an accurate predictor of
the wave direction during Bora and Sirocco episodes, but that the level of accuracy decreases
in the presence of coastal winds. In summary, wind directions should not be used to predict
wave directions, without accounting for the latent, environmental heterogeneity of the data under
study.

Table 3 compares the overall fit of the BSHMM with that obtained when estimating more
parsimonious models, such as a mixture of conditionally independent von Mises densities, a
mixture of bivariate sine densities and a CI-based bivariate HMM, respectively, described by
Equations (10), (9) and (8) given in Section 2. As expected, the log-likelihood dramatically
increases as correlations across variables and along time are progressively introduced. However,
the monotonic increase of the log-likelihood is only partially explained by the increasing number
of parameters, as shown by the BIC statistic, which suggests the least parsimonious BSHMM as
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Figure 2. Contour plots of the three toroidal densities, as estimated by a three-component bivariate circular HMM;
points are filled on a grey level scale according to their posterior probability of class membership.
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Table 2. Estimates and standard errors of the transition
probability matrix.

1 2 3

1 0.946 (0.009) 0.021 (0.006) 0.033 (0.006)
2 0.014 (0.004) 0.976 (0.005) 0.010 (0.004)
3 0.026 (0.005) 0.008 (0.003) 0.966 (0.006)

Table 3. Overall fit and classification output.

Model Log-likelihood BIC Classification entropy

Mixture of conditionally independent von Mises densities −6403.01 12,915.56 1256.28
Mixture of bivariate sine densities −5792.71 11,718.44 1148.90
CI-based −4465.84 9088.17 228.35
HMM
Bivariate sine −3947.80 8052.09 140.10
HMM

the model of choice. Table 3 furthermore includes the values obtained by the entropy index:

−
T∑

t=0

K∑
k=1

π̂tk log π̂tk ,

computed by summing up the posterior classification probabilities, obtained by the four models.
This index increases with classification uncertainty, reaching a maximum when π̂tk = K−1 for
each time t. Table 3 shows that ignoring correlations typically leads to an unnecessary large
uncertainty in the final classification. On the contrary, the progressive introduction of correlations
across variables and along time strongly influences the final classification, reducing classification
uncertainty.

6. Discussion

In this paper, we have introduced a new HMM for the analysis of bivariate time series of cir-
cular data. The model is useful for clustering biological and environmental data in a number of
latent classes or regimes, associated with different toroidal distributions. Clustering is carried
out by accounting for both the temporal autocorrelation of the data and the special structure
of bivariate circular data, which are wrapped around a torus. The model is based on the sine
model, introduced in [5]. The advantages of this distributional choice include a simple spec-
ification of the dependence structure between variables and the computational feasibility of a
mixture-based classification strategy, where missing values can be efficiently handled within a
likelihood framework. In addition, temporal transitions between regimes are addressed by means
of simple Markov transition probabilities. An application to marine data motivates the model as
a general tool for studying bivariate circular time series and demonstrates that the introduction
of relevant correlations in a segmentation model may significantly reduce the uncertainty of the
final classification.

We have focused on the maximum likelihood estimation from incomplete time series and
proposed an EM algorithm where missing values and hidden states are treated as different sources
of incomplete information. The expected values of complete-data sufficient statistics and hidden
states are evaluated simultaneously through closed-form expressions. The M step of the algorithm
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hence reduces to a battery of score equations that are available in a closed form. As a result, the
EM algorithm is computationally feasible and numerically stable. Standard importance-sampling
strategies allow the straightforward simulation of the model and, as a result, estimate uncertainty
can be easily assessed by bootstrap standard errors.

References

[1] H. Holzmann, A. Munk, M. Suster, and W. Zucchini, Hidden Markov models for circular and linear-circular time
series, Environ. Ecol. Stat. 13 (2006), pp. 325–347. doi:10.1007/s10651-006-0015-7.

[2] F. Lagona and M. Picone, A latent-class model for clustering incomplete linear and circular data in marine studies,
J. Data Sci. 9 (2011), pp. 585–605.

[3] T. Edgoose and L. Allison, MML Markov classification of sequential data, Stat. Comput. 9 (1999), pp. 269–278.
doi:10.1023/A:1008907921792.

[4] F. Lagona, A. Maruotti, and M. Picone, A non-homogeneous hidden Markov model for the analysis of multi-pollutant
exceedances data, in Hidden Markov Models, Theory and Applications, P. Dymarsky, ed., InTech, Rijeka, Croatia,
2011, Chap. 10, pp. 207–222.

[5] H. Singh, V. Hnizdo, and E. Demchuk, Probabilistic model for two dependent circular variables, Biometrika 89 (3)
(2002), pp. 719–723.

[6] K.V. Mardia, G. Hughes, C.C. Taylor, and H. Singh, A multivariate von Mises distribution with applications to
bioinformatics, Canad. J. Statist. 36 (2008), pp. 99–109.

[7] F. Lagona and M. Picone, Model-based clustering of multivariate skew data with circular components
and missing values, J. Appl. Stat. (to appear), pp. 1–19. doi:10.1080/02664763.2011.626850. Available at
http://www.tandfonline.com/doi/abs/10.1080/02664763.2011.626850.

[8] S. Kato and K. Shimizu, Dependent models for observations which include angular ones, J. Statist. Plann. Infer-
ence 138 (2008), pp. 3538–3549. Special Issue in Honor of Junjiro Ogawa (1915–2000): Design of Experiments,
Multivariate Analysis and Statistical Inference.

[9] D. Rubin, Multiple Imputation for Nonresponse in Surveys, Wiley, New York, 1987.
[10] K. Mardia, C. Taylor, and G. Subramaniam, Protein bioinformatics and mixtures of bivariate von Mises distributions

for angular data, Biometrics 63 (2007), pp. 505–512.
[11] C. Biernacki, G. Celeux, and G. Govaert, Choosing starting values for the EM algorithm for getting the highest

likelihood in multivariate Gaussian mixture models, Comput. Statist. Data Anal. 41 (2003), pp. 561–575.
[12] G. McLachlan and D. Peel, Finite Mixture Models, Wiley, New York, 2000.
[13] I. Visser, M. Raijmakers, and P. Molenaar, Confidence intervals for hidden Markov model parameters, British J.

Math. Statist. Psych. 53 (2000), pp. 317–327.





A Multivariate Hidden Markov Model
for the Identification of Sea Regimes from

Incomplete Skewed and Circular Time Series

J. BULLA, F. LAGONA, A. MARUOTTI, and M. PICONE

The identification of sea regimes from environmental multivariate times series is
complicated by the mixed linear–circular support of the data, by the occurrence of
missing values, by the skewness of some variables, and by the temporal autocorrela-
tion of the measurements. We address these issues simultaneously by a hidden Markov
approach, and segment the data into pairs of toroidal and skew-elliptical clusters by
means of the inferred sequence of latent states. Toroidal clusters are defined by a class
of bivariate von Mises densities, while skew-elliptical clusters are defined by mixed
linear models with positive random effects. The core of the classification procedure is
an EM algorithm accounting for missing measurements, unknown cluster membership,
and random effects as different sources of incomplete information. Moreover, standard
simulation routines allow for the efficient computation of bootstrap standard errors. The
proposed procedure is illustrated for a multivariate marine time series, and identifies a
number of wintertime regimes in the Adriatic Sea.

Key Words: Circular data; EM algorithm; Hidden Markov model; Model-based clus-
tering; Skewness; Unsupervised classification; Wave; Wind.

1. INTRODUCTION

A major goal in marine research is the development of models that help scientists
to understand how air–sea interactions influence the sea surface. These models are use-
ful in a variety of application areas, including studies of the drift of floating objects and
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oil spills (Huang, Wing-Keung Law, and Huang 2011), the design of off-shore structures
(Faltinsen 1990), and studies of sediment transport (Jin and Ji 2004) and coastal erosion
(Pleskachevsky, Eppel, and Kapitza 2009). These applications are especially important in
coastal areas and semi-enclosed basins, where wind–wave interactions are influenced by
the orography of the site.

Studies of air–sea interactions involve the analysis of multivariate, often incomplete
time series of marine data, that include hourly or semi-hourly measurements of mixed
type variables, like wind and wave direction (i.e., circular variables) and wind speed and
wave height (i.e., linear variables). These data are traditionally examined through numer-
ical wind–wave models. Although well suited for oceans, numerical wind–wave models
may provide inaccurate results under complex orography conditions (Bertotti and Cava-
lieri 2009). This has motivated the use of statistical models for the analysis of time series
of wind and wave data (Monbet, Ailliot, and Prevosto 2007). Widely exploited are autore-
gressive and Markov-switching autoregressive models for wind speed (Ailliot and Monbet
2012), spectral models for the analysis of wave height time series in the frequency do-
main (Hamilton 2010; Reikard and Rogers 2011), and autoregressive and hidden Markov
chain models for wind speed and direction (Holzmann et al. 2006). Most of these statis-
tical models have been however specified in a univariate setting, where wind and wave
time series are modeled separately. Multivariate extensions are challenging because they
should account for a number of nonstandard features of the data, including correlation in
time and across variables, mixed supports (circular and linear) of the data, the special na-
ture of circular measurements, typically skewness of wind speed and wave height, and the
occurrence of missing values.

We specify a multivariate hidden Markov model (HMM) by describing wind–wave data
in terms of latent environmental regimes, i.e., specific distributions that the data take under
latent environmental conditions. This approach is particularly convenient under complex
orography conditions, such as closed basins or coastal areas, where the correlation struc-
ture of the data can be decomposed according to a finite number of easily interpretable
distributions.

More precisely, we approximate the joint distribution of the data by a mixture of mul-
tivariate densities, each specified as the product of a bivariate von Mises and a bivariate
skew-normal density, the parameters of which depend on the states of a latent Markov
chain. In this setting, wind and wave directions are segmented by toroidal clusters, while
bivariate observations of wind speed and wave height are clustered within skewed ellipses.
This allows clustering mixed linear and circular data separately, avoiding the definition
of possibly hardly interpretable hyper-cylindrical clusters. In addition, toroidal and skew-
elliptical clusters are paired according to the states of the Markov chain, which can be
hence interpreted as latent environmental regimes. Finally, the transition probabilities ma-
trix of the Markov chain captures regime-switching in time, accounting for temporal auto-
correlation. Taking a multivariate HMM approach to classification, observations are clus-
tered according to the latent state that is conditionally expected each time, given the ob-
served data. As a result, classification is not only based on similarities in the variables
space, but also on similarities that occur in a temporal neighborhood. This can be par-
ticularly useful when clustering incomplete time-series data, a specific issue in our case
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study, because the missing information in the variables space can be partially recovered by
similarities observed in time.

Parametric families of bivariate von Mises (Singh, Hnizdo, and Demchuk 2002) and
skew-normal distributions (Sahu, Dey, and Branco 2003) have been recently exploited as
mixture components in classification studies (Lin 2009; Mardia, Taylor, and Subramaniam
2007; Cabral, Lachos, and Prates 2012; Lagona and Picone 2012b). Within this strand of
literature, however, model-based clustering is usually developed by assuming that the data
are in the form of independent multivariate samples. The independence assumption is a
shortcoming when classification is based on data collected in the form of multivariate time
series, such as in marine classification studies, because a clustering procedure should ac-
count for the potential redundancy of the data resulting from temporal autocorrelation. An
HMM-based approach provides a natural extension of mixture models to allow for tem-
poral dependence (Cappé, Moulines, and Rydén 2005). However, the literature on HMM-
based classification studies is dominated by Gaussian HMMs for multivariate continuous
data. Multivariate time series with non-normal components of mixed type are instead tra-
ditionally modeled by approximating the joint distribution of the data with a mixture hav-
ing products of univariate probability distributions as components, therefore assuming that
measurements in a multivariate profile are conditionally independent, given the states of
the hidden Markov chain. In the context of linear–circular data, this approach to the spec-
ification of an HMM has already been proposed for the analysis of bivariate time series
with one circular and one linear component (Holzmann et al. 2006). Conditional indepen-
dence facilitates both the specification and the estimation of a bivariate non-normal HMM,
and can be motivated by borrowing arguments from the latent-class literature. However,
the number of the observed variables is often larger than two in marine classification stud-
ies, and conditional independence should be used with parsimony: products of univariate
distributions may be too restrictive to accommodate for the complex shape of multivariate
clusters and therefore an unnecessary large number of latent classes (states) may be re-
quired to obtain a reasonable goodness of fit (Lagona and Picone 2011). A large number
of states is acceptable to some extent if the purpose of an analysis is density estimation.
It nevertheless complicates the interpretation of the results, especially when the purpose
is to cluster the data into meaningful groups. This has motivated a number of efforts in
order to relax the conditional independence assumption in non-normal HMMs at least par-
tially. Noticeable examples in the analysis of categorical data are provided by Zucchini
and Guttorp (1991) and Zhang et al. (2010) as well as Lagona and Picone (2012a) in the
case of circular data. We extend this strand of the literature in the context of multivariate,
incomplete, mixed linear–circular data by allowing for correlation within latent classes of
circular and linear observations.

The rest of the paper is organized as follows. Section 2 summarizes some relevant de-
tails on the data that motivated this work. In Section 3 we illustrate the multivariate HMM,
exploited for the unsupervised classification of the data, while Section 4 is devoted to
the computational aspects arising in the estimation of model parameters and standard er-
rors (technical details are postponed to the Appendix at the end of the paper). Section 5
summarizes the results obtained when applying the model to marine data recorded in the
Adriatic Sea. A list of relevant discussion points is finally included in Section 6.
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Table 1. Missing values patterns.

Count Wave direction Wave height Wind speed Wind direction

1043 obs obs obs obs
75 mis obs obs obs
77 obs obs obs mis
75 obs mis obs obs
80 obs obs mis obs

7 mis obs obs mis
10 mis mis obs obs

3 obs mis obs mis
2 mis obs mis obs

73 obs obs mis mis
3 obs mis mis obs
1 mis mis obs mis
5 mis obs mis mis
8 obs mis mis mis

39 mis mis mis mis

2. WINTERTIME REGIMES IN THE ADRIATIC SEA

The data that motivated this work are time series of semi-hourly wave and wind di-
rections, as well as wind speeds and wave heights, recorded in the period 12/12/2009–
12/1/2010 by the buoy of Ancona, located in the Adriatic Sea at about 30 km from the
coast. Compared to outputs of meteorological models, known to be smoother than in situ
observations and to underestimate extreme events (Caires and Sterl 2005; Izquierdo and
Guedes Soares 2005), buoy data are of better quality but often include missing values.

Table 1 displays the distribution of the missing values patterns, observed during the
study period. About 30 % of the profiles includes at least one missing value, while a small
portion of the sample (about 2 %) includes fully unobserved profiles. We assume that miss-
ing values occur at random. Under this hypothesis, the contribution of missing patterns to
the likelihood can be ignored, facilitating model-based clustering of the data. In marine
studies, missing values often occur because of transmission errors or malfunctioning of the
device. As buoys are normally constructed to transmit data even in the case of severe en-
vironmental conditions, missing values in marine studies are often missing completely at
random (MCAR), i.e., the missingness probability depends neither on observed nor on un-
observed data. Assuming that the data are missing at random (MAR), we relax the MCAR
assumption and allow for the missingness probability to depend on the observed data,
which seems reasonable for marine data that are collected in semi-enclosed seas such as
the Adriatic Sea, where severe environmental conditions seldom occur.

Figure 1 displays the univariate distributions of the data. The salient features of these
histograms can be interpreted by recalling that the Adriatic Sea is a semi-enclosed, long
narrow basin, bordered by mountains on three sides, and extending for about 800 km along
the major axis from SE to NW, with a width of about 200 km. In wintertime, relevant wind
events in the Adriatic Sea are typically generated by the southeastern Sirocco, the northern
Bora and the northwestern Maestral. These conditions can be associated with the three
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Figure 1. Univariate distributions of the circular (left) and linear (right) variables, observed during the study
period. Circular histograms display the frequency of directions from which the winds blow and the waves travel,
respectively (the area of each sector is proportional to the group frequency).

modes of the bottom-left circular histogram of wind directions in Figure 1. Sirocco arises

from a warm, dry, tropical air mass that is pulled northwards by low-pressure cells moving

eastwards across the Mediterranean Sea. By contrast, Bora episodes occur when a polar

high-pressure area sits over the snow-covered mountains of the interior plateau behind the

coastal mountain range and a calm low-pressure area lies further south over the warmer

Adriatic. Finally, the Maestral is a sea-breeze wind blowing northwesterly when the east

Adriatic coast gets warmer than the sea. While Bora and Sirocco episodes are usually

associated with high-speed flows, Maestral is in general linked with good meteorological

conditions. Hence, the marginal distribution of wind speed (Figure 1, bottom-right) may

be interpreted as the result of mixing different wind-speed regimes.
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Figure 2. Wind and wave direction (left) as well as wind speed and wave height (right), observed at a buoy of
the Adriatic Sea in wintertime. Points on the left-hand side picture indicate the directions from which wind blows
and wave travels (North = 0 rad).

Height and direction of waves are only partially influenced by wind conditions in semi-
enclosed basins. The orography of the Adriatic Sea plays a key role in this case and most of
the waves tend to travel from north-northwest and southeasterly along the major axis of the
basin, where they can travel freely, without being obstructed by physical obstacles, such as
coastlines. As a result, the marginal distributions of wind and wave directions (Figure 1,
left-column pictures) are poorly synchronized. This complicates the interpretation of the
marginal distribution of wave heights (Figure 1, top-right). While this distribution is likely
the outcome of mixing different sea conditions, the association structure between wind and
wave regimes is difficult to visualize.

In traditional wave atlases, marine data are typically depicted in terms of univariate
distributions, such as in Figure 1. The complex wind–wave interaction structure in the
Adriatic Sea is, however, better shown by Figure 2, which displays the scatter plots of
the circular and the linear available observations. For simplicity, bivariate circular data are
plotted on the plane, although data points are actually on a torus. Point coordinates are
measured in radians; 0 and 2π indicate North.

Although a number of patterns appear in these scatter plots, their interpretation is diffi-
cult due to the weak correlation of the circular measurements and the skewness of the linear
observations. Weak correlation and skewness are traditionally explained as the result of the
complex orography of the Adriatic Sea and often held responsible for the inaccuracy of nu-
merical wind–wave models (Bertotti and Cavalieri 2009). Nevertheless, the observations
might result from mixing of a number of latent environmental regimes, conditionally on
which the distribution of the data takes a shape that is easier to interpret than the shape
taken by the marginal distributions. From a technical viewpoint, the identification of rele-
vant regimes is complicated by the toroidal nature of the data in the left-hand plot, and by
the skewness of the data in the right-hand plot. By taking an HMM approach, we cluster
directional and planar data separately to account for the different nature of the data, and si-
multaneously pair these clusters into a number of latent classes evolving in time according
to a Markov chain, being interpretable as time-varying regimes of air–sea interactions.
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3. A MULTIVARIATE HIDDEN MARKOV MODEL

The data considered in this paper are in the form of a time series z0:T = (zt , t =
0, . . . , T ), with bivariate circular and linear components, say zt = (xt ,yt ), xt = (x1t , x2t ) ∈
(0,2π]2 and yt = (y1t , y2t ) ∈ R

2. In mixture-based classification studies, class mem-
bership is conveniently treated as the value taken by a latent multinomial variable with
one trial and K classes. In HMM-based classification studies, the temporal evolution
of class membership is driven by a latent Markov chain, which can be conveniently de-
scribed as a multinomial process in discrete time. Accordingly, we introduce a sequence
ξ0:T = (ξ t , t = 0, . . . , T ) of multinomial variables ξ t = (ξt1 . . . ξtK) with one trial and K

classes, whose binary components represent class membership at time t . The joint distri-
bution p(ξ0:T ;π) of the chain is fully known up to a parameter π that includes K initial
probabilities πk = P(ξ0k = 1), k = 1, . . . ,K,

∑
k πk = 1, and K2 transition probabilities

πhk = P(ξtk = 1|ξt−1,h = 1), h, k = 1, . . . ,K,
∑

k πhk = 1. Formally, we assume that

p(ξ0:T ;π) =
K∏

k=1

π
ξ0k

k

T∏
t=1

K∏
h=1

K∏
k=1

π
ξt−1,hξtk

hk . (3.1)

The specification of a multivariate HMM is completed by assuming that the observations
are conditionally independent, given a realization of the Markov chain. As a result, the
conditional distribution of the observed process, given the latent process, takes the form of
a product density, say

f (z0:T |ξ0:T ) =
T∏

t=0

K∏
k=1

(
fk(zt )

)ξtk ,

where fk(z), k = 1, . . . ,K are K multivariate densities. For classification purposes, these
densities are usually assumed to be known up to a number of parameters that indicate the
locations and the shapes of K clusters. In the context of multivariate continuous data, mul-
tivariate normal distributions have been widely adopted. In the case of mixed linear and
circular data, observations can be conveniently clustered by grouping linear and circular
components into a number of toroidal and planar clusters, respectively, and then associ-
ating these clusters to K latent classes. Accordingly, we assume that circular and linear
observations are conditionally independent given a realization of the Markov chain, and
introduce (1) a family of bivariate densities f (x;β) on the torus, indexed by a parameter
β that indicates the location and the shape of a toroidal cluster, and (2) a family of bivariate
densities on the plane, f (y;γ ), indexed by a parameter γ , which indicates the location and
the shape of a planar cluster. Formally, we assume that

f (z0:T |ξ0:T ) =
T∏

t=0

K∏
k=1

(
f (xt |βk)f (yt |γ k)

)ξtk . (3.2)

Integrating f (z0:T |ξ0:T )p(ξ0:T ) with respect to ξ0:T , we obtain the marginal distribution
of the observed data, known up to a parameter θ = (π ,β,γ ), on which our classification
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procedure is based. In particular, we first maximize the likelihood function

L(θ;z0:T ) =
∑
ξ0:T

p(ξ0:T ;π)f (z0:T |ξ0:T ), (3.3)

and find the maximum likelihood estimate θ̂ . Secondly, we cluster the data according to
the posterior probabilities of class membership

p̂tk = P(ξtk = 1|z0:T ; θ̂) = E(ξtk|z0:T ; θ̂), (3.4)

based on θ̂ . The computational complexity of the estimation of both θ̂ and p̂tk depends
on the choice of the bivariate densities which are used to model the circular and the linear
components of the observations. We exploit bivariate von Mises and skew-normal den-
sities, described below, as a compromise between numerical complexity and modeling
flexibility.

The bivariate von Mises density in the form introduced by Singh, Hnizdo, and Dem-
chuk (2002) is a parametric distribution on the torus, which naturally embeds the bivariate
normal distribution when the range of observations is small. Its density is given by

f (x;β) = exp(β11 cos(x1 − β1) + β22 cos(x2 − β2) + β12 sin(x1 − β1) sin(x2 − β2))

C(β)
,

(3.5)
with normalizing constant

C(β) = 4π2
∞∑

m=0

(
2m

m

)(
β2

12

4β11β22

)m

Im(β11)Im(β22),

where

Im(x) = 1

π

∫ π

0
ex cos t cos(mt) dt

is the modified Bessel function of order m.
This density can be viewed as a bivariate generalization of the von Mises distribution,

where β12 accounts for the statistical dependence between x1 and x2. The two univariate
marginal densities

f (xi;β) =
∫ 2π

0
f (x;β) dxj = 2π

C(β)
I0

(
a(xi)

)
exp

(
βii cos(xi − βi)

)
, i = 1,2, (3.6)

depend on the marginal mean angles βi, i = 1,2, and on the shape parameters

a(xi) = (
β2

jj + β2
12 sin2(xi − βi)

)1/2
, i, j = 1,2, i �= j. (3.7)

For β12 = 0, a(xi) = βjj , i = 1,2, and, as a result, x1 and x2 are independent and each of
them follows a von Mises distribution with marginal mean angles βi and marginal concen-
trations βii . The conditional distributions

f (xi |xj ;β) = f (x;β)

f (xj ;β)
= exp(a(xi) cos(xi − βi − b(xj )))

2πI0(a(xi))
, i, j = 1,2, i �= j, (3.8)
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are von Mises with conditional mean angles βi + b(xj ) and conditional concentra-
tions a(xi), where

b(xj ) = arctan

(
β12

βjj

sin(xj − βj )

)
. (3.9)

A bivariate skew-normal distribution is employed to define skew-elliptical clusters
of wind speeds and wave heights. Following Lin (2009), we specify a bivariate skew-
normal density as a linear mixed model with positive random effects. More precisely, let
ϕ(y;μ,�) be the bivariate normal density function with mean μ and covariance matrix �.
We first introduce a bivariate random effect v = (v1, v2) with independent components,
distributed according to two standard normal distributions truncated at 0, say

v ∼ f (v) = ϕ(v;0, I )∫
(0,+∞)2 ϕ(u;0, I ) du

= 2

π
exp

(
−1

2
vTv

)
, v ∈ [0,+∞)2. (3.10)

Second, we assume that y follows a bivariate normal distribution conditionally on v,

f (y|v;γ ) = ϕ
(
y;μ(v;γ ),�(γ )

)
, (3.11)

with mean

μ(v;γ ) =
(

γ1

γ2

)
+

(
γ ′

1 0
0 γ ′

2

)(
v1

v2

)

and covariance matrix

�(γ ) =
(

γ11 γ12

γ12 γ22

)
.

In this setting, a bivariate skew-normal distribution is obtained as

f (y;γ ) =
∫

(0,+∞)2
ϕ(y|v;γ )f (v) dv (3.12)

and reduces to a bivariate normal distribution when the skewness parameters γ ′
1 = γ ′

2 = 0.
Otherwise, the skewness parameters perturb both the mean and the covariance matrix of y

as follows:

Ey =
(

γ1

γ2

)
+

√
2

π

(
γ ′

1
γ ′

2

)
,

E(y − Ey)(y − Ey)T = �(γ ) +
(

1 − 2

π

)(
γ ′

1 0
0 γ ′

2

)2

.

In our HMM, we use a family of K bivariate von Mises densities f (x|βk), indexed by
the five parameters βk = (β1k, β2k, β11k, β22k, β12k), to define K toroidal clusters of wind
and wave directions, centered at (β1k, β2k) and shaped by the parameters (β11k, β22k, β12k).
K skew-normal densities, indexed by K vectors γ k , serve to define K skew-elliptical clus-
ters of wind speed and wave height.
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4. LIKELIHOOD INFERENCE

As our data are in the form of incomplete profiles, we refer to xt,mis and xt,obs,
respectively, as the missing and observed circular components at time t . Analogously,
yt,mis and yt,obs, respectively, represent the missing and observed linear components at
time t . Accordingly, zt,mis = (xt,mis,yt,mis) and zt,obs = (xt,obs,yt,obs), respectively, indi-
cate the missing and observed parts of an observation at time t . In this setting, we define
z0:T ,obs = (zt,obs, t = 0, . . . , T ) and z0:T ,mis = (zt,mis, t = 0, . . . , T ). If the data are missing
at random (MAR), the missing data mechanism can be ignored and the maximum likeli-
hood estimate of parameter θ is the maximum point of the marginal likelihood function

L(θ |z0:T ,obs) =
∑
ξ0:T

p(ξ0:T ;π)

T∏
t=0

∫
f (zt |ξ t ;β,γ ) dzt,mis,

f (zt |ξ t ;β,γ ) = f (xt |ξ t ;β)

∫
v

f (yt |ξ t ,v;γ )f (v) dv, (4.1)

which reduces to (3.3) in the case of complete data.

4.1. ESTIMATION

In order to estimate θ , we maximize L(θ) by using a version of the EM algorithm. EM
algorithms are based on the definition of a complete-data log-likelihood function, obtained
by considering the sampling distribution of both the observed and the unobserved quanti-
ties. As our HMM is a mixture which integrates circular densities and mixed-effects normal
models, the unobserved quantities are not only the missing measurements, but also the un-
known class memberships and the values taken by the skewness random effects. Treating
all these unobserved quantities as missing values reflecting different sources of incomplete
information, we define the complete-data log-likelihood function as follows:

logLcomp(θ , ξ0:T ,z0:T ,v0:T ) =
K∑

k=1

ξ0k logπk +
T∑

t=1

K∑
h=1

K∑
k=1

ξt−1,hξt,k logπhk

+
T∑

t=0

K∑
k=1

ξtk logf (xt ;βk)

+
T∑

t=0

K∑
k=1

ξtk

(
logf (yt |vt ;γ k) + logf (vt )

)
. (4.2)

The algorithm is iterated by alternating the expectation (E) and maximization (M) steps.
Given the estimate θ̂ s , obtained at the end of the sth iteration, the (s + 1)th iteration is
initialized by an E-step, which evaluates the expected value of (4.2) with respect to the
conditional distribution of the missing values given the observed data. For the HMM, this
distribution takes a complex, but tractable, form, because it factorizes as follows:

f (ξ0:T ,z0:T ,mis,v0:T |zobs; θ̂ s) = p(ξ0:T |z0:T ,obs; θ̂ s)f (z0:T ,mis,v0:T |ξ0:T ,z0:T ,obs; θ̂ s),

(4.3)
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where

f (z0:T ,mis,v0:T |ξ0:T ,z0:T ,obs; θ̂ s) = f (x0:T ,mis|ξ0:T ,x0:T ,obs; β̂s)

× f (y0:T ,mis|ξ0:T ,y0:T ,obs,v0:T ; γ̂ s)

× f (v0:T |ξ0:T ,y0:T ,obs; γ̂ s)

and

f (x0:T ,mis|ξ0:T ,x0:T ,obs; β̂s) =
T∏

t=0

K∏
k=1

(
f (xt,mis|ξtk = 1,xt,obs; β̂ks)

)ξtk , (4.4)

f (y0:T ,mis|ξ0:T ,y0:T ,obs,v0:T ; γ̂ s) =
T∏

t=0

K∏
k=1

(
f (yt,mis|ξtk = 1,yt,obs; γ̂ ks)

)ξtk , (4.5)

f (v0:T |ξ0:T ,y0:T ,obs; γ̂ s) =
T∏

t=0

K∏
k=1

(
f (vt,mis|ξtk = 1,yt,obs; γ̂ ks)

)ξtk . (4.6)

Each distribution f (xt,mis|ξtk = 1,xt,obs; β̂ks) in (4.4) is equal to 1 if the observed pro-
file at time t is complete; it is otherwise equal to the bivariate von Mises (3.5), evaluated
at β = β̂ks , if both measurements at time t are missing; it finally reduces to the univari-
ate conditional von Mises (3.8), evaluated at β = β̂ks , if only one observation is missing.
Analogously, each conditional distribution f (yt,mis|ξtk = 1,yt,obs; γ̂ ks) in (4.5) is identi-
cally equal to 1 in the case of a fully observed profile; it reduces to the bivariate normal
distribution (3.11), at γ = γ̂ ks , if both the observations are missing; it reduces to a univari-
ate, conditional normal density, if only one observation is missing. Finally, the conditional
densities in (4.6) take the form of truncated distributions, with parameters that depend on
the missing pattern in the linear profile. More precisely, we introduce a ot × 2 binary in-
dicator matrix O t for each profile yt with ot observed values. This indicator matrix is
obtained by extracting the rows of a 2 × 2 identity matrix, associated with the row posi-
tions of the observed values. In the case of a fully observed profile, O t is equal to the 2 × 2
identity matrix; it otherwise reduces to the row vectors (1,0) and (0,1), respectively, if y1t

is observed and y2t is missing; and vice versa. Furthermore, we define the matrix

Ct (γ̂ ks) = OT
t

(
O t�(γ̂ ks)O

T
t

)−1
O t ,

�(γ̂ ks) =
(

γ̂11ks γ̂12ks

γ̂12ks γ̂22ks

)
+

(
γ̂ ′

1ks 0
0 γ̂ ′

2ks

)2

,

for each latent class k. By Bayes’ theorem,

f (vt |ξtk = 1,yt,obs; γ̂ ks) = φ2(v;a(γ̂ ks),B(γ̂ ks))∫
(0,+∞)2 φ2(v;a(γ̂ ks),B(γ̂ ks)) dv

,

where

a(γ̂ ks) =
(

γ̂ ′
1ks 0
0 γ̂ ′

2ks

)
Ct (γ̂ ks)

(
y1t − γ̂1ks

y2t − γ̂2ks

)
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and

B(γ̂ ks) = I −
(

γ̂ ′
1ks 0
0 γ̂ ′

2ks

)
Ct (γ̂ ks)

(
γ̂ ′

1ks 0
0 γ̂ ′

2ks

)
.

The factorization (4.3) facilitates the evaluation of the expected complete-data log-
likelihood, which can be computed in terms of iterated expectations as follows:

Q(θ |θ̂ s) = E
(
logLcomp(θ , ξ0:T ,z0:T ,v0:T |z0:T ,obs; θ̂ s)

)
=

K∑
k=1

E(ξ0k|z0:T ,obs, θ̂ s) logπk (4.7)

+
T∑

t=1

K∑
h=1

K∑
k=1

E(ξt−1,hξtk|z0:T ,obs, θ̂ s) logπh,k (4.8)

+
T∑

t=0

K∑
k=1

E(ξtk|z0:T ,obs, θ̂ s)E
(
logf (xt ;βk)|xt,obs, β̂ks

)
(4.9)

+
T∑

t=0

K∑
k=1

E(ξtk|z0:T ,obs, θ̂ s)E
{
E

(
logf (yt ;γ k)

+ logf (vt )|yt,obs, γ̂ ks,vt

)|yt,obs
}
. (4.10)

The function Q generalizes the familiar form of the expected complete-data log-
likelihood Q, traditionally used in EM algorithms for estimating HMMs (Cappé, Moulines,
and Rydén 2005), by allowing for incomplete observations of mixed type and random ef-
fects. Given the distributional assumptions of the model, all the expectations that appear in
the above function Q can be computed exactly (see Appendices A and B for details).

The M-step of the algorithm updates the estimate θ̂ s with a new estimate θ̂ s+1, which
maximizes the above function Q. This function is the sum of three functions that depend on
independent sets of parameters and can thus be then maximized separately. Maximization
of (4.8) with respect to the transition probabilities πhk provides the closed-form updating
formula

π̂hk(s+1) =
∑T

t=1 p̂t−1,t,hk(θ̂ s)∑T
t=1 p̂t−1,h(θ̂ s)

, h, k = 1, . . . ,K.

Maximization of (4.9) reduces to K separate nonlinear systems of five equations, which
may be solved following, e.g., the iterative procedure suggested by Mardia et al. (2008).
This requires a numerically efficient routine for the computation of Bessel functions, such
as the BesselI function of R. Maximization of (4.10) reduces to a system of seven equa-
tions, for which Lin (2009) suggests an iterative procedure.

4.2. COMPUTATIONAL ASPECTS

The EM algorithm may converge to local maxima of the log-likelihood function or sin-
gularities at the edge of the parameter space, where the log-likelihood is unbounded (Wu
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1983). The presence of multiple local and spurious maxima is well documented in the case
of mixtures of heteroscedastic normal distributions (McLachlan and Peel 2000) and less
widely known in the case of bivariate circular distributions (Mardia, Taylor, and Subra-
maniam 2007). A number of strategies have been proposed to select a local maximizer
and detect a spurious maximizer. To avoid local maxima we follow a short-runs strategy
(known as the emEM algorithm; Biernacki, Celeux, and Govaert 2003), by running the
EM algorithm from a number of random initializations, and stopping the algorithm with-
out waiting for full convergence. We have observed that convergence to spurious maxima is
fast (a phenomenon that is well known in the case of mixtures of multivariate normal den-
sities; Ingrassia and Rocci 2011) and can be detected within short EM runs by monitoring
the class proportions.

We selected the ten outputs of the EM short run maximizing the log-likelihood and
checked for spurious solutions, where this effect did not occur. Then, these ten parameter
sets were used to initialize longer runs of the EM algorithm. As full convergence of the EM
algorithm typically requires an inconveniently large number of iterations, we replaced the
final steps of the algorithm by a faster direct numerical maximization of the log-likelihood
function (Zucchini and MacDonald 2009, p. 72). We stopped the optimization when the
increase of two successive log-likelihoods fell below 10−4 %, as this stopping criterion
produced stable parameter estimates in preliminary experiments. This combination of the
EM algorithm and numerical optimization is often called a hybrid algorithm (Lange and
Weeks 1989; Redner and Walker 1984; Bulla and Berzel 2008) and provides a compromise
between the large circle of convergence provided by the EM algorithm and the high speed
of direct numerical maximization. The approach worked well as we observed that direct
maximization of the log-likelihood is numerically stable and rapid when initial parameters
are in the neighborhood of a maximum. In order to numerically maximize the likelihood
with respect to the parameters, one needs to take care of some technical problems, such as
avoiding numerical underflow and re-parameterizing the model in terms of unconstrained
parameters (if an unconstrained maximization algorithm, e.g., nlm() in R, is used). For
details on how to deal with these problems, see, e.g., Chapter 3 of Zucchini and MacDonald
(2009).

The procedure outlined above does not produce standard errors of the estimates, be-
cause approximations based on the observed information matrix often require a very large
sample size (McLachlan and Peel 2000, p. 68). Visser, Raijmakers, and Molenaar (2000,
2002) investigate the reliable estimation of confidence bands in the context of HMMs and
recommend bootstrap-based techniques. We followed their proposal and implemented a
parametric bootstrap approach: we re-fitted the model to R = 200 bootstrap samples, which
were simulated from the estimated model parameters. The approximate standard error of
each model parameter θ was computed by

seR(θ̂) =
√√√√ 1

R − 1

R∑
r=1

(θ̂r − θ̄R)2,

where θ̂r is the estimate from the r th bootstrap sample and θ̄R is the mean of all bootstrap
estimates. For performance reasons, the model estimation for the bootstrap samples was



IDENTIFICATION OF SEA REGIMES FROM INCOMPLETE TIME SERIES 557

carried out by the same quasi-Newton optimization of the log-likelihood function L(θ)

that served for the hybrid algorithm, taking the maximum likelihood estimates as initial
values.

Simulation of the HMM proposed in this paper is straightforward. We first simulate a
sequence of states from the Markov chain. Given a sequence of states, a bivariate circu-
lar observation is at each time t drawn according to the appropriate bivariate von Mises
density, evaluated at β = βkt

, where kt is the state that has been drawn at time t . Simul-
taneously, a bivariate linear observation is drawn from a bivariate skew-normal density,
evaluated at γ = γ kt

. To obtain a bivariate circular sample, we first draw a sample x1 from
the marginal density (3.6) with β = βkt

and then use x1 to draw a value from the con-
ditional distribution of x2 given x1, according to the von Mises density (3.8). There are
several well-known routines for sampling from a von Mises distribution. Samples from the
marginal circular density can be instead obtained by exploiting an acceptance–rejection
algorithm, with a von Mises density as a proposal. Finally, we sample from a bivariate
skew distribution by first drawing a bivariate random effect from the truncated distribu-
tion (3.10), and subsequently drawing a sample from the conditional normal density (3.11)
evaluated at γ = γ kt

.

5. RESULTS

We have estimated a number of HMMs from the data illustrated in Section 2, by varying
the number of components from 2 to 4. To select the number of components, we computed
both the Bayesian Information Criterion (BIC) and the Integrated Complete Likelihood
(ICL) statistics. We intend to select the appropriate number of clusters, and therefore use
the ICL as selection criterion. Alternatively, the commonly used BIC might have been an
option. However, this criterion rather selects the correct number of components, which
are in our case overlapping, thus not adding value for the physical interpretation, but just
improving the fitted density in different clusters. The BIC statistic suggests a model with
K = 4 components, while the minimum ICL is attained by a model with three components,
which is the model we consider to analyze the data (Table 2). Figures 3 and 4 show the
obtained solutions according to the BIC and the ICL, respectively. Circular and linear com-
ponents are displayed as log-densities through contour lines. Each scatter plot includes the
data points, filled with gray levels according to the posterior membership probabilities p̂tk

(black indicates p̂tk = 1). A model with 4 components distinguishes the same three clusters
provided by a model with 3 components, using overlapping components to approximate
the distribution of the data. This behavior of BIC has been extensively discussed in Baudry
et al. (2010) in the context of mixture models. In our case study, however, overlapping
components lack of physical interpretation, and cluster separation is more important than
goodness of fit. We therefore use the ICL criterion, which includes cluster separation as an
additional criterion for model choice (Biernacki, Celeux, and Govaert 2000).

Table 3 displays the estimates and the standard errors of the von Mises and the skew-
normal densities for each state in the final three-state HMM. Regardless of the state, the



558 J. BULLA ET AL.

Figure 3. Log-densities of the circular (left) and linear (right) components of a four-state hidden Markov model.
Contour lines are computed at the levels –0.5, –1.25, –2, –2.75, –3.5, and points are filled on a gray level scale
according to their posterior probability of class membership, where black is associated with probability 1.
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Figure 4. Log-densities of the circular (left) and linear (right) components of a three-state hidden Markov model.
Contour lines are computed at the levels –0.5, –1.25, –2, –2.75, –3.5, and points are filled on a gray level scale
according to their posterior probability of class membership, where black is associated with probability 1.
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Table 2. Model selection results.

Number of Number Log-likelihood BIC ICL
components of parameters

2 27 –6812.9 13828.4 13861.5
3 44 –5493.8 11309.3 11414.9
4 63 –5373.7 11208.2 11419.7

Table 3. Estimated parameters.

State 1 State 2 State 3

Circular Wave mean direction β1 0.341 2.305 6.199
parameters (se) (0.062) (0.024) (0.012)

Wind mean direction β2 5.227 2.840 6.070
(se) (0.028) (0.028) (0.010)

Wave directional concentration β11 0.860 3.235 14.483
(se) (0.074) (0.187) (0.888)

Wind directional concentration β22 2.700 2.154 15.627
(se) (0.185) (0.129) (0.913)

Wave/wind directional dependence β12 –0.669 1.758 18.840
(se) (0.152) (0.155) (1.084)

Linear Wave average height γ1 0.400 0.514 1.119
parameters (se) (0.014) (0.020) (0.024)

Wind average speed γ2 3.665 5.740 7.979
(se) (0.096) (0.183) (0.095)

Wave height variance γ11 0.022 0.085 0.144
(se) (0.003) (0.008) (0.012)

Wind speed variance γ22 1.319 4.257 2.462
(se) (0.098) (0.264) (0.158)

Wind/wave covariance γ12 0.171 0.602 0.596
(se) (0.014) (0.043) (0.041)

Wave height skewness γ ′
1 0.415 0.872 0.629

(se) (0.017) (0.036) (0.018)
Wind speed skewness γ ′

2 0.320 0.409 0.553
(se) (0.094) (0.179) (0.077)

Destination state 1 2 3

1 0.961 0.025 0.014
(0.012) (0.009) (0.007)

Origin state 2 0.011 0.981 0.007
(0.005) (0.007) (0.004)

3 0.013 0.002 0.986
(0.006) (0.002) (0.006)

Initial state 0.240 0.355 0.405
Distribution (0.074) (0.102) (0.118)

dependence between circular variables and the covariance between linear variables is sig-
nificant, indicating that in this case a conditional independence assumption between uni-
variate distributions is unrealistic.
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The first component of the model is associated with periods of calm sea: weak winds
(γ2 = 3.665) generate small waves (γ1 = 0.400). In this regime, the shape of the joint
distribution of wave and wind directions is essentially spherical (β12 is barely significant)
and centered at the average wind direction β̂2 = 5.227, corresponding to northwesterly
Maestral episodes. As expected, wind and wave directions are poorly synchronized under
this regime, because wave direction is more influenced by marine currents than by wind
direction during weak wind episodes.

The second component is associated with Sirocco episodes (β2 = 2.840). Compared to
the first regime, wind and wave directions appear more synchronized (β12 = 1.758) and
characterized by winds of higher speed (γ2 = 5.740) and higher waves (γ1 = 0.514). In
this second regime, waves travel southeasterly along the major axis of the basin (β1 =
2.305), driven by winds that blow from a similar directional angle (β2 = 2.840). As there
are neither coastlines nor mountains, there is little dispersion of energy in the interaction
between wind and wave and, as a result, waves can reach significant heights. In studies of
the Adriatic Sea, detection of Sirocco regimes is very important because it exposes Venice
to the famous flooding tides when occurring in combination with lunisolar astronomical
forces.

A similar phenomenon, although in the opposite direction, is captured by the third com-
ponent of the model. In this regime, northern Bora jets (β2 = 6.070) generate high waves
(γ2 = 1.119) that travel along the major axis of the basin (β1 = 6.199). Compared to the
other two regimes, waves and winds are much more synchronized (β12 = 18.840) and
highly concentrated around one modal direction. Most of the wind energy is transferred
to the sea surface and, as a result, the correlation between wind speed and wave height
is larger than that observed under Sirocco or Maestral episodes. As expected, most of the
profiles with the highest waves in the sample are clustered in this regime.

A somewhat unexpected pattern of point is observed in Figure 4, second plot in the
first row. It is associated with an atypical condition of good sea conditions with waves of
significant height, occurring right after a Sirocco storm.

The rows at the bottom of Table 3 include the estimated transition probabilities and
initial probabilities of the latent Markov chain. As expected, the transition probability ma-
trix is essentially diagonal, reflecting the temporal persistence of the states. Furthermore,
the small off-diagonal transition probabilities between states 2 and 3 (π̂23 = 0.007 and
π̂32 = 0.002) indicate that direct transitions between Sirocco and Bora episodes are very
unlikely. The model hence confirms that the Adriatic Sea typically alternates relevant ma-
rine events with periods of good sea conditions.

The model describes the plasticity of the wind–wave interaction in the Adriatic Sea,
indicating that the joint distribution of wind and wave data changes under different envi-
ronmental regimes. Regime-switching does not only change directional and linear averages
but also, and more interestingly, the correlation structure of the data. As a result, on the one
side the weak (marginal) correlation between wind and wave observations is explained by
the presence of a Maestral-specific regime of good weather conditions. On the other side,
the model indicates that wind is an accurate predictor of wave-metric processes during a
Bora episode, but that the level of accuracy decreases under Sirocco and almost vanishes
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under Maestral episodes. In summary, weather conditions should not be used to predict
wave direction and height, without accounting for the latent, environmental heterogeneity
of the data under study.

6. DISCUSSION

We have illustrated an HMM-based classification method for multivariate mixed-type
time series, focusing on skewed and circular variables. The data are clustered according
to bivariate skew-normal and von Mises distributions, which are associated with the states
of a latent Markov chain. The resulting model captures several sources of heterogeneity:
time-dependence, through the hidden Markov chain; unobserved (or spurious) association,
by defining latent regimes; observed correlations, estimated along with all other model
parameters; skewness, by exploiting positive random effects. Our classification procedure
is motivated by issues that arise in marine studies, but can be easily adapted to a wide
range of real-world cases, including for example ecological studies of animal behavior,
where direction and speed of movements are recorded (Holzmann et al. 2006), and bioin-
formatics applications, where sequences of protein dihedral angles (Mardia, Taylor, and
Subramaniam 2007) are recorded with a number of continuous variables.

The model relies on a latent-class approach to the analysis of multivariate mixed-type
data by assuming that circular and linear variables are conditionally independent given
the states visited by a latent Markov chain. Part of the dependence structure between
variables is therefore non-parametrically captured by the association between planar and
toroidal clusters. This seems a convenient strategy in marine studies, where the depen-
dence between circular and linear measurements is the result of complex environmental
conditions. This conditional independence assumption between pairs of linear and circu-
lar variables could in principle be avoided by taking a fully parametric approach and re-
placing the product of von Mises and skew-normal densities by quadrivariate densities
with a hyper-cylindrical support such as those proposed by Kato and Shimizu (2008).
Their use in an HMM setting is however problematic, because little is known about ef-
ficient estimation procedures and identifiability issues under hyper-cylindrical parametric
models. In addition, mixtures of hyper-toroidal densities would group our data accord-
ing to quadrivariate clusters of difficult visualization and interpretation, without necessar-
ily improving the fit of the model. On the contrary, a conditional independence assump-
tion between pairs of variables offers a number of advantages: clusters interpretation is
intuitively appealing; parameter estimation can be carried out by combining EM algo-
rithms that have been developed for data with homogeneous supports. Finally, identifia-
bility issues do not arise because a sufficient condition for the identifiability of mixtures
of product densities is the linear independence of the mixture components (Teicher 1967;
Yakowitz and Spragins 1968) and, as a result, the identifiability of the model we propose
follows from the linear independence of the bivariate circular densities (Mardia et al. 2008)
and the linear independence of the bivariate skew-normal densities (Sahu, Dey, and Branco
2003).
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We focused on the analysis of a single multivariate time series. Further developments
may include the analysis of multiple time-series, i.e. observations collected at different
sites (for a review on longitudinal data in a HMM framework see, e.g., Maruotti 2011),
and the specification of spatial effects aiming at identifying geographically homogeneous
groups likely to share the same environmental regimes.

A limit of the proposed approach is represented by the assumptions on the hidden chain.
We assume that the dwell time in each state is geometrically distributed as a consequence
of the Markov property of the hidden Markov chain. However, the probability of a state
change may exhibit different patterns or even depend on the time spent in the current state.
Thus, more flexible assumptions could be analyzed, such as considering a hidden semi-
Markov chain, which follows more general dwell time distributions (see, e.g., Barbu and
Limnios 2005; Bulla, Bulla, and Nenadić 2010; Langrock and Zucchini 2011).

The use of the skew-normal distribution for wind speed and wave height theoretically
allows for negative values. Under the estimated model, however, the probability of negative
observations is smaller than 0.0001, a value that we believe as acceptable to justify the
model. In other studies where observations of wind speed and wave height are very close
to zero, this probability can however be (though not necessarily) inadequately large. In
these cases the model can be fit by first taking a logarithm transformation of wind speed
and wave height (see, e.g., Marchenko and Genton 2010 for an analysis of precipitation
log-skew-normal data) and then using the EM algorithm on the transformed data. This
is a straightforward strategy to recast the theoretical validity of the model, at a price of
difficulties in the presentation and the interpretation of the results, which have to be back-
transformed to the original scale of the data.

APPENDIX A

All the expectations in the above Q function can be computed exactly. In particular,

p̂t,k(θ̂ s) = E(ξtk|zobs, θ̂ s),

p̂t−1,t,hk(θ̂ s) = E(ξt−1,hξtk|zobs, θ̂ s)
(A.1)

are the conditional first- and second-order expectations of the latent Markov chain, given
the observed data, and can be efficiently computed by a Baum–Welch (BW) procedure. We
exploited a BW procedure that allows for incomplete time series, illustrated in Appendix B.
The expectations

E
(
logf (xt ;βk)|xt,obs, β̂ks

)
can be computed by replacing the statistics cos(xt1 − β1k), cos(xt2 − β2k) and sin(xt1 −
β1k) sin(xt2 − β2k) by their expected values, with respect to the conditional distributions
(4.4) evaluated at β = β̂ks . The expectations

E
(
logf (yt ;γ k) + logf (vt )|yt,obs, γ̂ ks,vt

)
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can be evaluated by computing the expected values of yt and yty
T
t with respect to the

normal distributions (4.5). Finally, the expectations

E
{
E

(
logf (yt ;γ k) + logf (vt )|yt,obs, γ̂ k,vt

)|yt,obs
}

can be obtained by computing the expected values of vt and vtv
T
t , with respect to the

truncated normal distributions (4.6), using the efficient computation of the moments of the
truncated normal proposed by Lin (2009).

APPENDIX B

The task of computing the posterior probabilities from an estimate θ̂ s is generally re-
ferred to as the HMM-smoothing numerical issue and it is typically solved by specifying
the posterior probabilities in terms of suitably normalized functions, which can be com-
puted recursively, avoiding unpractical summations over the state space of latent Markov
chain and numerical under- and over-flows. In the literature, this approach is known as
the Forward-Backward (FB) recursion and it can be implemented in a number of different
ways (Cappé, Moulines, and Rydén 2005; Chapter 3). We describe below an FB recursion
that allows for incomplete observations.

Let

Lt(β̂s , γ̂ s) =
∫

zt,mis

K∏
k=1

(
f (xt ; β̂ks)f (yt ; γ̂ ks)

)ξtk dzt,mis

be the conditional contribution of zt,obs to the likelihood function. In addition, let

L0:t (θ̂ s) =
∑
ξ0

. . .
∑
ξ t

p(ξ0:t ; π̂ s)

t∏
τ=0

Lτ (β̂s , γ̂ s)

be the contribution of the first t profiles to the likelihood and let z0:t,obs be the time series,
observed up to time t . We run a forward and a backward iteration.

During the forward iteration, we exploit the output of the sth step of the EM algorithm
to compute the probabilities ψ(t)(k) = P(ξtk = 1|z0:t−1,obs), the likelihood ratios ct =
L0:t (θ̂ s )

L0:t−1(θ̂ s )
and the forward probabilities ᾱt (k) = P(ξtk = 1|z0:t,obs), as follows.

Forward recursion:

• initialization:

ψ(0)(k) = π̂ks

c0 =
K∑

k=1

ψ(0)(k)L0(β̂s , γ̂ s)

ᾱ0(k) = ψ(0)(k)L0(β̂s , γ̂ s)

c0
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• for t = 1, . . . , T :

ψ(t)(k) =
K∑

h=1

ᾱt−1(h)π̂hks

ct =
K∑

k=1

ψ(t)(k)Lt (β̂ks, γ̂ s)

ᾱt (k) = ψ(t)(k)Lt (β̂ks, γ̂ s)

ct

At the end the forward recursion, we store the values c0 . . . cT and ᾱ0(k) . . . ᾱT (k). The
sequence c0 . . . cT can be exploited to compute the value taken by the log-likelihood at the
sth step of the EM algorithm, as follows:

logL(θ̂ s) =
t∑

t=0

log ct .

We then run a backward recursion, by computing the ratios ϕ̄t (k) = f (zt+1:T ,obs|ξtk=1)∏T
l=t cl

, as

follows.

Backward recursion:

• initialization: ϕ̄T (k) = 1
cT

• for t = T − 1, T − 2, . . . ,0:

ϕ̄t (k) =
∑K

h=1 π̂khsLt+1(β̂ks, γ̂ s)ϕ̄t+1(h)

ct

.

At the end of the backward recursion, we store the values of ϕ̄0(k) . . . ϕ̄T (k) and compute
the posterior univariate state probabilities as

p̂tk(θ̂ s) = ᾱt (k)ϕ̄t (k)∑K
k=1 ᾱt (k)ϕ̄t (k)

.

The bivariate posterior probabilities can be instead computed as

p̂t−1,t,hk(θ̂ s) = ᾱt (k)π̂hksLt+1(β̂ks, γ̂ ks)ϕ̄t+1(k).
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Bulla, I., Bulla, J., and Nenadić, O. (2010), “hsmm—An R Package for Analyzing Hidden Semi-Markov Models,”
Computational Statistics & Data Analysis, 54, 611–619.

Bulla, J., and Berzel, A. (2008), “Computational Issues in Parameter Estimation for Stationary Hidden Markov
Models,” Computational Statistics, 23, 1–18.

Cabral, C. R. B., Lachos, V. H., and Prates, M. O. (2012), “Multivariate Mixture Modeling Using Skew-Normal
Independent Distributions,” Computational Statistics & Data Analysis, 56, 126–142.

Caires, S., and Sterl, A. (2005), “A New Non-Parametric Method to Correct Model Data: Application to Sig-
nificant Wave Height From the ERA-40 Reanalysis,” Journal of Atmospheric and Oceanic Technology, 22,
443–459.

Cappé, O., Moulines, E., and Rydén, T. (2005), Inference in Hidden Markov Models, Berlin: Springer.

Faltinsen, O. (1990), Sea Loads on Ships and Offshore Structures, Cambridge: Cambridge University Press.

Hamilton, L. (2010), “Characterising Spectral Sea Wave Conditions With Statistical Clustering of Actual Spec-
tra,” Applied Ocean Research, 32, 332–342.

Holzmann, H., Munk, A., Suster, M., and Zucchini, W. (2006), “Hidden Markov Models for Cir-
cular and Linear–Circular Time Series,” Environmental and Ecological Statistics, 13, 325–347.
doi:10.1007/s10651-006-0015-7.

Huang, G., Wing-Keung Law, A., and Huang, Z. (2011), “Wave-Induced Drift of Small Floating Objects in
Regular Waves,” Ocean Engineering, 38, 712–718.

Ingrassia, S., and Rocci, R. (2011), “Degeneracy of the EM Algorithm for the MLE of Multivariate Gaussian
Mixtures and Dynamic Constraints,” Computational Statistics & Data Analysis, 55, 1715–1725.

Izquierdo, P., and Guedes Soares, C. (2005), “Analysis of Sea Waves and Wind From X-Band Radar,” Ocean

Engineering, 32, 1404–1419.

Jin, K.-R., and Ji, Z.-G. (2004), “Case Study: Modeling of Sediment Transport and Wind–Wave Impact in Lake
Okeechobee,” Journal of Hydraulic Engineering, 130, 1055–1067.

Kato, S., and Shimizu, K. (2008), “Dependent Models for Observations Which Include Angular Ones,” Journal of

Statistical Planning and Inference, 138, 3538–3549. Special Issue in Honor of Junjiro Ogawa (1915–2000):
Design of Experiments, Multivariate Analysis and Statistical Inference.

Lagona, F., and Picone, M. (2011), “A Latent-Class Model for Clustering Incomplete Linear and Circular Data
in Marine Studies,” Journal of Data Science, 9, 585–605

(2012a), “Maximum Likelihood Estimation of Bivariate Circular Hidden Markov Models
From Incomplete Data,” Journal of Statistical Computation and Simulation. Available online at
http://www.tandfonline.com/doi/pdf/10.1080/00949655.2012.656642.

(2012b), “Model-Based Clustering of Multivariate Skew Data With Circular Components and Missing
Values,” Journal of Applied Statistics, 39, 927–945.

Lange, K., and Weeks, D. E. (1989), “Efficient Computation of LOD Scores: Genotype Elimination, Genotype
Redefinition, and Hybrid Maximum Likelihood Algorithms,” Annals of Human Genetics, 53, 67–83.



IDENTIFICATION OF SEA REGIMES FROM INCOMPLETE TIME SERIES 567

Langrock, R., and Zucchini, W. (2011), “Hidden Markov Models With Arbitrary State Dwell-Time Distributions,”
Computational Statistics & Data Analysis, 55, 715–724.

Lin, T. I. (2009), “Maximum Likelihood Estimation for Multivariate Skew Normal Mixture Models,” Journal of

Multivariate Analysis, 100, 257–265.

Marchenko, Y. V., and Genton, M. G. (2010), “Multivariate Log-Skew-Elliptical Distributions With Applications
to Precipitation Data,” Environmetrics, 21, 318–340.

Mardia, K., Taylor, C., and Subramaniam, G. (2007), “Protein Bioinformatics and Mixtures of Bivariate von
Mises Distributions for Angular Data,” Biometrics, 63, 505–512.

Mardia, K. V., Hughes, G., Taylor, C. C., and Singh, H. (2008), “A Multivariate von Mises Distribution With
Applications to Bioinformatics,” Canadian Journal of Statistics, 36, 99–109.

Maruotti, A. (2011), “Mixed Hidden Markov Models for Longitudinal Data: An Overview,” International Statis-

tical Review, 79, 427–454.

McLachlan, G., and Peel, D. (2000), Finite Mixture Models, New York: Wiley.

Monbet, V., Ailliot, P., and Prevosto, M. (2007), “Survey of Stochastic Models for Wind and Sea-State Time
Series,” Probabilistic Engineering Mechanics, 22, 113–126.

Pleskachevsky, A., Eppel, D., and Kapitza, H. (2009), “Interaction of Waves, Currents and Tides, and Wave-
Energy Impact on the Beach Area of Sylt Island,” Ocean Dynamics, 59, 451–461.

Redner, R. A., and Walker, H. F. (1984), “Mixture Densities, Maximum Likelihood and the EM Algorithm,”
SIAM Review, 26, 195–239.

Reikard, G., and Rogers, W. E. (2011), “Forecasting Ocean Waves: Comparing a Physics-Based Model With
Statistical Models,” Coastal Engineering, 58, 409–416.

Sahu, S., Dey, D., and Branco, M. (2003), “A New Class of Multivariate Skew Distributions With Applications
to Bayesian Regression Models,” Canadian Journal of Statistics, 31, 129–150.

Singh, H., Hnizdo, V., and Demchuk, E. (2002), “Probabilistic Model for Two Dependent Circular Variables,”
Biometrika, 89 (3), 719–723.

Teicher, H. (1967), “Identifiability of Mixtures of Product Measures,” Annals of Mathematical Statistics, 38,
1300–1302.

Visser, I., Raijmakers, M., and Molenaar, P. (2000), “Confidence Intervals for Hidden Markov Model Parameters,”
British Journal of Mathematical & Statistical Psychology, 53, 317–327.

Visser, I., Raijmakers, M. E. J., and Molenaar, P. C. M. (2002), “Fitting Hidden Markov Models to Psychological
Data,” Scientific Programming, 10, 185–199.

Wu, C. (1983), “On the Convergence Properties of the EM Algorithm,” Annals of Statistics, 11, 95–103.

Yakowitz, S., and Spragins, J. (1968), “On the Identifiability of Finite Mixtures,” Annals of Mathematical Statis-

tics, 39, 209–214.

Zhang, Q., Snow Jones, A., Rijmen, F., and Ip, E. (2010), “Multivariate Discrete Hidden Markov Models for
Domain-Based Measurements and Assessment of Risk Factors in Child Development,” Journal of Computa-

tional and Graphical Statistics, 19, 746–765.

Zucchini, W., and Guttorp, P. (1991), “A Hidden Markov Model for Space-Time Precipitation,” Water Resources

Research, 27, 1917–1923.

Zucchini, W., and MacDonald, I. (2009), Hiddden Markov Models for Time Series: An Introduction Using R,
London: Chapman & Hall.



Conclusions

The contribution of this work is to provide a rigorous and flexible approach
to the classification of mixed linear and circular incomplete data, based on mix-
ture models. The advantages of these methods include a simple specification of
the dependence structure between variables and a good computation feasibility
that allows to efficiently handle missing values within a likelihood framework.

Three mixture-based models have been proposed, an univariate mixture
model, a multivariate mixture model and a multivariate hidden Markov model.
All these models allow to explain the correlation structure of wind and wave
measurements in the Adriatic Sea, in terms of different latent regimes that
reflect the heterogeneity of marine events.

In particular, in semi-enclosed basins, where the observed phenomenon
is driven by a number of variables, such as the orography of the coasts, the
bathymetry, the internal circulation and currents, etc., mixture models can bet-
ter explain the relation between wind and wave data than semi-deterministic
and physical-based model, that are very common in the marine literature.

The thesis proceeds along successive extensions, by extending the flexibility
of the data dependence structures.

The simplest model is the univariate mixture model (UMM). It assumes
that multivariate data profiles are temporally independent and that contem-
porary measurements are conditionally independent given a number of latent
classes. As a results, we obtain a large number of clusters, which are partially
overlapping and of difficult physical interpretation.

By relaxing the conditional independence hypothesis in the multivariate
mixture model (MMM), the cluster interpretation becomes intuitively and
physically appealing even with a small number of latent classes.

By further removing the temporal independence hypothesis in the multi-
variate hidden Markov model (MHMM), clusters are better separated than
the previous models and the uncertainty of the final classification significantly
reduces.

The conditional independence assumption should be used with parsimony.
Under a UMM, products of univariate distributions may be too restrictive

6-1



6-2 Final remarks

to accommodate for the complex shape clusters and therefore an unnecessary
large number of latent classes may be required to obtain a reasonable goodness
of fit. It nevertheless complicates the interpretation of the results, especially
when the purpose is to cluster the data into meaningful groups.

Complex models, such as MHMM, are more flexible and account for the
potential redundancy of the data resulting from temporal autocorrelation. The
price for a good classification is however the computational complexity of the
estimation step.
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