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Preamble

Since the last four decades the electrical industry has been characterized by important and
rapid changes around the world, regarding generation, transmission and distribution of electricity.
These changes create the need for more efficient operation and planning of energy generation
systems. Global energy demand is increasing, but most of the energy sources which are used
to produce electricity nowadays are characterized by a limited scope, and electric energy is not
suitable to be stored. Performing proper operation and planning of energy generation systems
leads to a more efficient utilization of the available resources and to a limitation in the global
environmental impact.

The recent changes of electrical market structures, like privatization, restructuring and dereg-
ulation lead to maximize the expected value of the electricity market profits. Moreover, the inte-
gration of different types of energy sources in conventional electrical systems is assuming growing
importance, like renewable sources such as wind and solar energy. These aspects have to be consid-
ered to perform a proper energy production scheduling, taking into account both the uncertainty
related to energy demand load forecast and the uncertainty related to not conventional energy.

For these issues researchers from mathematics, operations research and engineering have fo-
cused for many years on applying mathematical modeling and optimization techniques, in order
to solve the optimization problems related to energy generation systems.

Different types of optimization problems are considered and solved, according to the energy
industry process that is involved; typically, generation, transmission and distribution of electricity,
or a combination of them. These optimization problems are characterized by an objective function,
variables and constraints. Generally, the economic efficiency or the utilities profits are represented
by the objective function, system operating and technical requirements are represented by the
constraints, while the variables are used to model decisions, which can be taken in long-term,
medium-term, short-term or on-line periods.

In a long-term period (months and years), the Power Expansion Problem is solved, in order
to determine the type, the capacity and the number of generating units that the energy system
should have.

In a medium-term period (days and weeks), the objective is to determine the best combina-
tion of generating units in terms of their status (committed or uncommitted) and their output
(power). This schedule has to satisfy the forecast demand at minimum total production cost,
under the operating, technical and environmental system constraints. This problem is known as
Unit Commitment Problem (UC).

In a short-term and on-line period (hours and minutes), the Economic Dispatch Problem (ED)
is solved, in order to determine the power that each unit, scheduled in the previous phase (solving
the UC problem) must produce in order to meet the system demand at real time.

Part of our research activities focused on analyzing the modeling aspects related with the
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production and the scheduling of electrical systems. In particular, we have studied the limits and
the simplifications mainly used in the classical UC models presented in the literature, in order to
develop more realistic formulations for this problem.

UC models are usually characterized by a combination of several difficulties like the presence
of continuous and binary decision variables at the same time, a very large-scale dimension, several
non-linearities (for instance, in fuel costs modeling) and uncertainty of the problem data (for
example, in load demand forecasts, fuel pricing models, stream flows to reservoirs and generating
units failures). For these reasons, numerous simplified variants of models and algorithms for UC
have been proposed in the literature.

Traditional UC models are based on two main hypotheses. First, the power can be instanta-
neously adjusted. Second, the power output is constant in an assigned time interval (i.e. 1 hour),
so that the energy produced in each hour is equal to the power level multiplied by 1 hour. These
assumptions greatly simplify the model, because energy and power can be represented by the same
entity even if they are different from a physical point of view; nevertheless the model does not
properly reflect the realistic operating behavior of the generating units.

For this reason, in our research activities we have defined more realistic mathematical formu-
lations for the UC than the ones proposed in the literature, in order to overcome most of their
main drawbacks. In particular, we propose new Mixed-Integer Quadratic Programming (MIQP)
models for UC, based on power instead of energy. We have also defined and proposed new UC
models integrated with the ED problem, where the variables are associated with the power levels,
that are assumed to change linearly in each time period, while the energy levels are then computed
accordingly. We have thus derived more realistic models that effectively represent the constraints
imposed on the units in order to avoid mechanical stresses to the rotors for conventional units, or
to avoid the use of more units in peak hours.

Conventional electrical systems are highly fossil fuel dependent, being the major contributors
to the greenhouse gas emissions and to the depletion of global fossil fuel resources which are
characterized by more volatile prices. For this reason, the use of clean renewable energy sources
for electricity generation is acquiring global relevance. Several world countries actively support the
growing use of renewable energy sources, such as wind, in order to meet Kyoto Protocol targets
for reducing greenhouse gas emissions. Wind energy contributes to this target with a significant
percentage. In some world and European countries, such as Italy, Spain, Germany, and Denmark,
wind is an important part of the electricity supply.

Nevertheless, the integration of wind energy into the electrical systems is complex and sig-
nificantly challenging, especially when large amounts of variable wind generation are introduced.
Even if there exist positive aspects related with the utilization of wind energy, it is necessary
to take into account some practical considerations. For instance, when wind power plants are
connected to the electrical network, it is necessary to improve transmission lines, in order to avoid
grid stability problems, needing additional operational costs. Furthermore, when the uncertainty
associated with the electricity produced by wind energy sources becomes greater than the uncer-
tainty of the demand, it is no longer possible to maintain the same power system reliability with
the conventional power plant scheduling techniques.

For these reasons, even if the integration of wind energy sources into conventional electrical
system is growing in importance - due to its economical and environmental development benefits
- particular attention must be devoted to the related practical operational aspects. This leads
to the necessity to modify the current industry procedures, such as the UC and the ED, to take
into account large amounts of wind power production. Even if an exhaustive literature exists on
the general UC problem, focused on how improve its mathematical formulation and its solution
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algorithm, the research that considers the UC problem in presence of wind energy resources is
limited.

Part of our research activities has then focused on the development of new UC models in
presence of wind energy sources. The objective of the new proposed UC models is to integrate
renewable energy sources in a conventional electrical system. These models formulate and solve
the problem of determining the best configuration (optimal mix) of available thermal, hydro and
wind power plants.

The ongoing integration and deregulation of electricity markets in Europe and in the world
requires that part of the electricity production is traded daily on power pools where producers
state how much electricity they will provide up to 36 hours in advance. This market structure
induces additional costs for wind power producers due to the greater unpredictability of wind
power at these time horizons. These issues motivate the importance of wind power forecasting
techniques that are fundamental to provide accurate forecasts on wind production. In particular,
wind generation requires complex forecasting techniques which take into account wind speed,
wind direction, hub height, geographical conditions, wind farm size, wind turbine technical and
operational characteristics and so on.

Since the use of wind energy sources and its integration into power generation systems is as-
suming increasing importance, new generation models for synthetic wind data are needed, in order
to properly generate forecasts of wind speed and power. This data is fundamental in simulations
carried out to analyze and improve the performances of wind generating units, individuating the
technical parameters of wind turbines that directly affect power production.

Part of our research activities focused also on developing a new model in order to generate real-
istic synthetic wind data. In this model, wind speed is assumed to behave as a Weibull distribution,
while wind speed forecast error is simulated using First-Order Auto-Regressive Moving Average
- ARMA time-series models. Mathematical Operations Research formulations of the Assignment
Problem are used to model wind speed persistence features, which, as shown by simulation results,
are essential to properly obtain wind speed and power output forecasts.

Furthermore, wind synthetic data, generated with the new generation model proposed, has
been used to carry out simulations studies to individuate wind turbines operational parameters
that mainly affect wind generators performances. In particular, an experimental function which
expresses the average energy produced by a wind turbine in a 24 hours time horizon in a typical day
has been determined, considering the main simulation parameters related with Weibull distribution
and wind turbines.

Below we describe the structure of this dissertation.
In Part I we describe how conventional electrical systems work, focusing our attention on the

UC problem which is solved for their efficient operation and planning. In particular, in Chapter 1
we present the main characteristics of a conventional electrical system and we illustrate how the
energy is traded in the electrical market and how the electricity production is properly scheduled.
Chapter 2 and Chapter 3 illustrate the basic features of the UC, presenting the state of the art of
the models and for methods use to solve this problem, respectively.

Part II deals with the new proposed models for the UC, which represent an improvement
of the conventional electrical systems, since - as previously anticipated - they are based on novel
assumptions which have been neglected in the literature so far. In particular, Chapter 4 illustrates
the novel formulations for the UC with power variables, while in Chapter 5 the new model for the
UC integrated with the ED is presented.

In Part III, the integration of wind energy sources into conventional electrical systems is
treated. In particular, the problems and the challenges that this integration imposes to the
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already existing systems are presented in Chapter 6, where the new model for the UC in presence
of wind energy sources is proposed. The importance of wind speed and power output forecasts
for a proper energy production scheduling is described in Chapter 7, where the new model to
generate synthetic wind data is presented. Chapter 8 describes how this new generation model
can be applied to properly compute the average energy of a typical wind turbine, illustrating the
main parameters of the wind generator that affect the calculation of the energy.

Finally, in the last part of this dissertation, conclusions are drawn and interesting directions
for future research are discussed.



Part I

Planning the production of
conventional electrical systems





Chapter 1

Planning the production of the
energy systems

In this chapter we present the main characteristics of a conventional electrical system, describ-
ing its strengths and its weaknesses, and focusing our attention on the dispatch problem, which
is fundamental for the proper operation and planning of the electricity production. We also illus-
trate how the energy is traded in the electrical market and how the energy production is properly
scheduled, introducing the UC problem.

1.1 How the electrical system works

In a typical electrical system, the energy taken from the final customers is produced and
put into the electrical network by the generating units [ST10] [WW84]. An electrical system is
generally composed by three main subsystems which constitute the value chain of the electrical
industry, as shown in Fig. 1.1:

� production nodes: they are represented by the power plants (thermal, hydro, wind, solar,
and so on);

� transmission lines and interconnections: they are necessary to send the electrical power from
the production nodes to the consumption nodes;

� distribution lines: they constitute the final part of the electrical system and distribute the
energy at each block of loads.

Generally, the production nodes are not numerous and they produce power in a concentrated
point of the network. They are distant from the consumption nodes, which vice versa are really
numerous and dislocated in the whole territory, being mainly concentrated in the urban and
industrial areas.

Two types of transmission lines exist:

� primary transmission lines: they connect the power plants to the primary sorting nodes
which are called distribution substations (or substations);

7



8 Planning the production of the energy systems

Figure 1.1: A typical conventional electrical system.

Figure 1.2: Phases of the electrical system.

� secondary transmission lines: they start from the substations and feed the distribution of
the electric energy at a local level.

Normally, the transmission lines never follow only radial paths. In order to have a greater
flexibility in the electrical distribution, networks where the nodes are interconnected are realized.
For this reason, the transmission lines are properly called interconnection transmission lines and
they can exchange energy also between different power plants. As a matter of fact, all the European
electrical systems are interconnected.

Based on its general structure, the electrical system thus consists of three phases: production,
transmission and distribution of the electrical energy, as shown in Fig. 1.2.

� Producing energy means transforming the energy obtained form primary sources, such as
coal, gas, nuclear, water, into electricity. This transformation happens in the thermal or
hydro power plants, or in wind and solar generating units. The production phase is connected
with the companies that produce electricity; each of them owns several production groups
(usually, from 2 to 5, which belongs to a power plant), dislocated in places distant from the
consumption centers, to respect the environmental constraints.

� Transmitting energy means transferring the energy produced by the production centers to
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the consumption zones. In order to perform this operation it is necessary to build trans-
mission lines, electrical stations and transformation stations, which are the elements that
compose the transmission network. A large amount of energy is transferred to distant places,
with high values of voltage, using overhead lines or cables. The development of the electrical
transmission network has several objectives, such as

– to guarantee the security and the continuity of the electricity supply;

– to increase the efficiency and the economy of the transmission service;

– to reduce the network overloads;

– to develop and strengthen the interconnections with other countries.

� Distributing energy represents the last phase of the electrical system; it is the delivery
of the electricity at a medium and low voltage to the customers, and it is realized with
overhead lines or cables characterized by a length and a power lower than those used for
the transmission. The planning of the development of the electrical transmission network is
based on

– the energy demand required by the customers;

– the forecast of the energy demand to be satisfied;

– the necessity to strengthen the network;

– the requirement of connections of new generating units to the network.

After being distributed, the electrical energy is utilized in various applications such as the
illumination, the movement of machines, the warming of indoor environments.

1.1.1 Strengths and weaknesses of the electrical system

Due to its structure, the electrical system generally presents several strengths which are mainly
related with

� flexibility in the production;

� good quality in the transmission and distribution of the electrical energy;

� security in the utilization of the electrical energy.

As far as the first aspect is concerned, the flexibility in the production is due to the possibility
to produce electrical energy using all the primary energy sources also in places that are distant
from the sources themselves, concentrating the production in a small number of power plants.

The good quality in the transmission and distribution of the electrical energy is related with
the possibility to transfer efficiently the electrical energy in places that are distant from the point
where it has been produced.

Furthermore, the conversion of the electrical energy into its final form that is utilized by
customers is performed in security.

Nevertheless, the electrical system presents also some weaknesses, which represent strong con-
straints:
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� first, the global efficiency of a system which produces, transmits and distributes electrical
energy is rather low and it can vary from 35% up to 45% with respect to the primary energy
source utilized and to the technology employed; most of the energy losses happen in the
production process, within the physical boundaries of the power plants;

� second, it is necessary to instantly and continuously perform a balance between the amount
of energy introduced into the network and the amount that is taken from the network itself,
taking into account the losses in the transmission and distribution phases; furthermore, the
electrical energy can be stored only in limited quantities and at a high cost; storing electricity
with proper plants and batteries requires high costs;

� the frequency and the voltage of the energy in the network must be maintained within a
strict interval, in order to guarantee the security of the plants;

� it is necessary that the energy fluxes on a single network do not overcome the maximum
admissible limits;

� finally, only the already existing transmission network can be utilized: building new lines
requires long time periods and high investments.

If the electrical energy production scheduling respects these constraints it is considered feasible.
Nevertheless, it could happen that real time, when the energy is distributed, these constraints are
no longer respected since the values of power absorbed by the load and/or the values of the
production differ from what has been scheduled, or a failure of a transmission line occurred.
Respecting these constraints is also difficult because of the characteristics of the technologies and
of the modalities in which the electrical energy is produced, transmitted and consumed. For this
reason, a correct planning of the generating units is needed.

1.1.2 The dispatch problem

The high grade of complexity in guaranteeing the correct working of the electrical system
imposes the individuation of a central coordinator that owns a control power on all the production
plants of the system. This coordinator, called ‘dispatcher ’, represents the crucial actor of the
electrical system in the monopolistic regime: it guarantees that the production always equals
the consumption (for all the 365 days of the year, for all the 24 hours of each day) and that the
frequency and the voltage always reach the optimal values, respecting the transmission constraints
of the network and the dynamic constraints of the generating units. In order to achieve this goal,
the dispatcher performs the following two fundamental activities:

� definition of the programs of introduction and extraction of electrical energy, solving the
Unit Commitment (UC) and the Scheduling problems: a week before (or the day before),
the dispatcher defines the programs of production of each generating unit in order to satisfy
the required energy demand, taking into account also the losses, at a minimum total cost.
These programs define, for each hour of the following day, the amount of energy that has
to be introduced into the network. The load forecasting is related with the individuation of
a possible load diagram for a given day or a given week, that is the most realistic possible,
while by the solution of the UC the optimal set of generating units is individuated in order
to satisfy the forecast demand;
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Figure 1.3: Example of load curve.

� real-time balancing of the system: the needed equilibrium between the energy introduced
and extracted at each time instant and in each node of the network is guaranteed by the
regulation and automatic control systems of the generating units (primary and secondary
reserve), which increase or decrease the introduction of the energy into the network in order
to compensate each disequilibrium on the network itself. The dispatcher actively operates,
sending the start-up, increasing or decreasing of the generated power commands to the
reserve units, only when the operating margins of the automatic regulation systems are
lower than the security standards, in order to reintegrate them. This way, the optimal
subdivision of the total load between the set of generating units individuated in the previous
phase is guaranteed.

High attention must be devoted to the individuation of the load curve since the analysis of the
following phases will be based on this curve. The scheduling of the active generating units will be
more complete if this curve is the most realistic possible, being highly similar to the actual load
curve. Fig. 1.3 shows an example of load curve.

These forecast curves are determined considering that, as it happens in many other activities,
also the electrical system is cyclical and thus generally the total load will be high when industrial
and working activities are performed, while it will be lower at night. Furthermore, the weekly
cycles have also to be considered: the demand is lower during the week-end and higher during the
week when working activities are done. For these reasons, the dispatch problem is very complex
and it is subjected to a high number of constraints and variables during the given time period that
have to be properly considered in order to obtain a correct scheduling. In the following sections
we will explain how the electrical energy is traded and the characteristics of the electrical markets
which, in general, constitute a typical electrical system.

1.2 How the electrical energy is traded

The world electrical industry has been always considered monopolistic, nevertheless it is nowa-
days characterized by a restructuring phase in order to take into account competition rules. This
phenomenon is known as the liberalization of the electrical market, which is a well organized
system where the exchange between the demand and the supply of electrical energy is performed.

The electrical market is a place where the producers supply and the customers demand of
energy meet [dMEG]. In this place, the price of the energy of a given country is determined. Fig.
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Figure 1.4: Characteristics of the electrical market.

1.4 represents the different parts that compose the electrical market correlated with the various
phases of the electrical system.

In order to respect the technical constraints, a centralized coordination of the system is re-
quired. Regardless the typology of the electrical market (monopolistic or not), all the electrical
systems present a grid operator), called also System Operator (SO). The SO continuously main-
tains the balancing between the demand and the supply, ensures the stability of the electrical
parameters of the network (in particular, the value of the voltage) and solves the network over-
loads. In most of the electrical markets, the SO is associated to the Market Operator (MO), which
manages one or more electrical markets to perform the short-term production scheduling. The
functions of the SO and MO are strictly related; the grade of established coordination is maximum
in those systems where these functions are assigned to an unique entity, or they are performed by
entities that are strictly related, while this grade is minimum if these functions are assigned to
two independent entities.

Currently, more than a dozen of working electrical markets exist in the world, and each market
presents its own characteristics. The number of electrical markets increases if also the markets
that currently are in the implementation phase are considered. The differences between these
markets depend both on local and technological factors, and on political choices.

1.2.1 Types of electrical markets

The introduction of the competition in producing and selling electrical energy implies the
passage from a traditional monopolistic system, based on the minimization of the cost, to one
system based on the prices determined in the electrical market. The creation of an electrical
market responds to two main needs:

� to promote the competition in producing and selling electrical energy, respecting neutrality,
transparency, and objectivity criteria;

� to ensure the economic management of an adequate availability of the dispatch services.

In general, the electrical system consists of the following three markets [dMEG]:

� day-ahead market: it is the main market, and it is connected with the constraints of the
electrical network; most of the transactions of the electrical energy take place in this market;
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� adjustment market: it allows the generation companies to modify the programs defined in
the day-ahead market, performing other transactions of electrical energy;

� auxiliary services market: it allows the generation companies to obtain the necessary re-
sources to manage and control the system (resolution of the overloads between zones, cre-
ation of the energy reserve, real-time balancing). The auxiliary services market consists of
the balancing market, the market for the resolution of the overloads, and the reserve market.

In the balancing market, the day-ahead, the SO obtains from the producers the resources
necessary to execute real-time, by the regulation, the balancing between the energy generated
and the load.

The market for the resolution of the overloads takes place, in an unique session, the day
before the transactions. In this market, the generation companies have the possibility to
receive an economic compensation for the cancellation of a right obtained on the electrical
energy markets, due to the presence of overloads.

The reserve market takes places in an unique session after the first session of the adjustment
market. Based on the supply presented by the generation companies, the network manager
obtain the reserve power, in order to guarantee the security of the electrical service.

These markets generally constitute a typical electrical system, nevertheless the number and
the type of these markets and structure of the electrical system itself could vary according to
the country considered. In this thesis, we mainly refer to the Italian electrical system and to the
structure previously described.

1.3 How to plan electrical energy production

The efficient planning of the electrical energy production is a complex activity. It requires
a proper co-ordination of the operations of many generating units, that can be distributed in
different geographical areas. This operation must satisfy the required electrical energy demand,
which is always subject to continuous variations, as previously described.

The problem of the scheduling of the production of electrical energy is generally based on three
different sets of decisions, which depends on the length of the time horizon. The first set consists
of the long-term decisions in which the decisional variables to be determined are represented
by the capacity, the type, and the number of generating units that the electrical system has to
own. In the mean-term (days or weeks), it is necessary to decide how to schedule (commitment)
the available units in the given time horizon. The term commitment indicates the start-up of a
given unit, so that it synchronously operates with the electrical system. Finally, in the short-term
(minutes or hours), the objective is to properly determine the amount of power that each scheduled
unit has to produce in order to satisfy the real-time demand. Generally, the long-term problem
is identified as the Power Expansion Problem, the mean-term problem is identified as the Unit
Commitment Problem - UC, while the short-term problem is called Economic Dispatch Problem
- ED, or Generator Allocation Problem.

Once that the electrical agents (or generation companies) obtain the scheduling that derives
from the resolution of the UC, they solve the ED on a 15 minutes time horizon and they change
the outputs of the scheduled units in order to respect the demand estimations.

The generation companies typically posses numerous units and they have to schedule them.
This is due to the fact that the electricity cannot be stored in a large-scale system, that the demand
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varies and that the generating units cannot produce the same amount of power in all the time
instants. Furthermore, the generators cannot be started-up instantly to satisfy the demand and
the commitment of a unit that is not needed represents an economical loss. Moreover, another
source of uncertainty for the problem is related with the supply. For instance, in the case in
which the power system includes wind unit, the power produced by these generators varies in time
according to the wind speed.

For these reasons, the scheduling of the power generators is a crucial economical decision for the
generation companies. Neglecting the importance of this problem can lead to serious consequences.
For instance, if an operator effectuates the over-committing of the generators using the rule to
schedule the demand and in addition a certain percentage of the load peak, then the result will
have a higher production cost. On the other hand, the under-committing of the generators can
lead to a black-out if a failure of a unit or a high peak of the demand occur.

The Unit Commitment (UC) is one of the most important problem to be solved in order to
obtain a proper energy production scheduling. The objective of this problem is to determine a
combination of the available electrical generators, scheduling their respective outputs in order
to satisfy the forecast load demand at minimum total production cost in a specific time period,
which usually varies from 24 hours to one week. The scheduling not only must minimize the
total production cost, but it also should satisfy the operating constraints of the whole electrical
system. These constraints reduce the freedom in the choice of starting-up or shutting-down the
units. Usually, the constraints that have to be satisfied are related with the status of the units,
to the minimum minimum up time and minimum down time of the units, to the capacity and
power production limits, to the maximum ramp up rate and to the maximum ramp down rate, to
the spinning reserve, and to the other operating characteristics such as those of the hydro units.

In order to meet the needs of the electrical industry, many researches have been focused on this
problem. The computational effort to solve the UC is stronger when it is formulated for a large-
scale system, with hundreds of binary and continuous variables, due to its NP-hard nature [Tse96].
Furthermore, the resolution time exponentially increases with the dimension of the system, for
this reason, the UC requires efficient and effective methods to be solved. Moreover, the problem
is dynamic and this means that the current optimal configuration of the set of generating units is
influenced by the previous one and influences the following one.

The problem is challenging because in a typical electrical system various types of generating
units are available to generate electrical energy and each unit has its own characteristics. For
instance, a nuclear power plants can produce energy at a very low incremental cost for each MWh
of additional energy, but it presents a high cost of start-up once it has been shut-down, it takes
some time before it reaches the regime status, producing the maximum power. A typical power
plant should be shut-down only in spring or in autumn, when the demand for the warming or for
the air conditioning is lower.

On the opposite side, a power plant based on turbines can be started-up in a few minutes.
Nevertheless, the incremental cost for MWh is higher. According to the most convenient schedul-
ing, the most efficient units, with a higher start-up cost, should be started-up first as far as the
demand increases, then the remaining units. As far as the demand decreases, the units should be
shut-down in the reverse order.

Decisions are more interesting if a modest load peak of short duration is present. In this
case, it should be more economical to not consider an intermediate unit and instead start-up an
inefficient generator, which is characterized by a lower start-up cost, for all the duration of the
demand peak. The decisions can be complicated by other characteristics and by other types of
units (which for instance can be nuclear, thermal or hydro).



Chapter 2

Models for formulating the Unit
Commitment

Mathematical models are fundamental to understand the optimization problems related to
generation, transmission and distribution of electricity. Different mathematical models of Unit
Commitment (UC) exist, due to the diversity of power systems regarding technological design and
economic requirements, but there are quite a few basic features that UC problems in hydro-thermal
power systems have in common.

In this chapter we illustrate the basic features of the UC, presenting the state of the art on the
models to formulate this problem, analyzing the basic assumptions and simplifications that have
been made in the literature so far.

2.1 Basic features of Unit Commitment models

The UC problem can be formulated as an optimization problem with an objective function,
variables and constraints. The objective of the UC is to schedule at minimum total cost a given
set of generating units, such as thermal, hydro, wind, and so on, ensuring that the required energy
demand is satisfied, on a given time horizon. This goal is reached when the best combination
of generating units in terms of their status (committed/uncommitted) and their output (power)
is found. This schedule has to satisfy the forecast demand at minimum total production cost,
under the operating system constraints, in a specified time horizon (usually 24 hours or one
week). Each type of generating unit considered in the UC problem presents different technical
and operating characteristics that have to be modeled with specific constraints and a proper
objective function. This leads to the existence of different forms of UC problems, depending on
the accuracy considered in the representation of certain aspects of the operating characteristics
of the units. In the literature various types of UC models exist, which take into account for
instance thermal units [AC04] [LS03] [LS05] and hydro units [AOS02] [CMMF05] [CPM10] [FdS06]
[FdSS05]. Nevertheless, there exist some basic features that UC models have in common, as shown
in the following sections.
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2.1.1 Objective function

The objective of the UC decision process is to select the generating units that have to be on
or off, the type of fuel that has to be utilized, the power generation level for each unit and the
spinning reserve margins. The objective function of the UC problem consists in minimizing the
total operational cost, subjected to the system operating constraints. Total energy production
costs may include fuel costs, maintenance and start-up costs of generating units. Fuel costs are
normally represented either by a polynomial cost curve (quadratic or cubic), a piecewise constant
curve or a piecewise linear curve.

However, in recent years, because of environmental considerations and market liberalization,
literature has focused attention also on UC problems whose objective is not only reaching minimum
total operational cost, but maximizing the expected value of the overall electricity market profits,
including costs related to environmental impacts [CHR12]. Moreover, the great complexity of
power networks leads to maximize also reliability and security of the system, keeping them above
a certain minimum level.

The form of the UC model shown in this chapter is the classical UC formulation, which
originated from the era of monopolistic producers. In our model, we assume that the objective
function has a quadratic form with respect to the power pit produced by the thermal unit i at
time period t, as explained in [HRNC01]. As far as this aspect is concerned, recent trends in
the literature have focused attention on the piecewise linear approximation of the quadratic cost
curves of the UC problem, as shown in [Wu11].

Consider a set P of thermal units and a set H of hydro cascades, each comprising one or more
basin units. T = {1, . . . , n} is the set of time periods defining the time horizon (the time period
“0” will be used to indicate the initial conditions of the power system).

We introduce the binary variable uit to express the status of the thermal unit i at time period
t, with i ∈ P, t ∈ T . If uit = 1 the thermal unit i is on at time period t, otherwise, if uit = 0 the
thermal unit i is off at time period t. We also introduce the continuous variable pit to indicate the
power produced by the thermal unit i at time period t, expressed in MW , with i ∈ P, t ∈ T .

Introducing these variables for the thermal units, the objective function of the UC, representing
the total power production cost to be minimized, has the following form

∑
i∈P

ci(pi, ui) =
∑
i∈P

(
si(ui) +

∑
t∈T

ait(p
i
t)

2 + bitp
i
t + citu

i
t

)
(2.1)

where

� si(ui) is the start-up costs function of unit i, possibly time-dependent;

� ait is the quadratic term of power cost function of thermal unit i at period t, expressed in
¿/MW 2;

� bit is the linear term of power cost function of thermal unit i at period t, expressed in ¿/MW ;

� cit is the constant term of power cost function of thermal unit i at period t, expressed in ¿.

In the following sections the basic constraints of the UC problem, such as the operating con-
straints for the units and the power balance constraints are explained.
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2.1.2 Operating constraints for thermal units

The solution of the UC problem is represented by an optimal production schedule that takes
into account all the system constraints, like practical device and operational assumptions, envi-
ronmental considerations and reliability and security assumptions.

In the classical UC model, presented previously, the constraints can be partitioned as follows
[Pad04]:

1. operating constraints for thermal units: these constraints represent operating requirements
related with the utilization of thermal generating units;

2. operating constraints for hydro units: these constraints represent operating requirements
related with the utilization of hydro generating units;

3. power balance constraints: these constraints represent the power balance equation that has
to be satisfied in order to fulfill the required system load demand.

UC can be modeled also with additional constraints which represent further operating require-
ments of the generating units; the meaning of these constraints is explained in section 2.1.4.

The operating requirements of thermal generating units are usually expressed by inequality
constraints, which are used to model the technical characteristics of the units. In the formulation
of the constraints shown below, the complete state of each unit before the beginning of the current
operation is assumed known, i.e. its commitment ui0 and the generated power pi0. In order to
formulate minimum up-and down-time constraints (2.2) and (2.3) it is also necessary to know how
long the unit has been on or off at time period 0.

Minimum up and down time constraints

The most important non-linear constraints for thermal units are the minimum up-time and
down-time restrictions. The start-up of a unit is efficient only if it is required to run for a certain
minimum number of hours continuously (minimum up-time requirement), while minimum down-
time is the number of hours a unit must be off-line before it can be started-up again (minimum
down-time requirement), as in [DT05] [LLM04]. These constraints represent mechanical require-
ments to prevent damages of the most solicited parts of a conventional unit (such as turbine,
compressor and alternator).

For each thermal unit i ∈ P, let τ i+ and τ i− be respectively the minimum up- and down-time
requirements. The minimum up- and down-time constraints can be expressed as follows:

uit ≥ uir − uir−1 t ∈ T , r ∈
[
t− τ i+, t− 1

]
(2.2)

uit ≥ 1− uir−1 − uir t ∈ T , r ∈
[
t− τ i−, t− 1

]
(2.3)

uit ∈ {0, 1} t ∈ T (2.4)



18 Models for formulating the Unit Commitment

Unit generation capability limits

A generating unit is forced to operate within a lower and an upper limit of power, in order to
avoid technical damages.

For each thermal unit i ∈ P, let pimin and pimax be respectively the minimum and maximum
power output of the unit when operating in steady state, expressed in MW. The unit generation
capability limits can be expressed as follows:

piminu
i
t ≤ pit ≤ pimaxuit t ∈ T (2.5)

Ramp rate constraints

The rate of increasing or decreasing electrical power output from the unit is limited by ramp
rate constraints. Ramp-up constraints limit the maximum increase of the unit electrical output,
while ramp-down constraints limit the maximum decrease of this output.

For each thermal unit i ∈ P, let ∆i
+ and ∆i

− be respectively the maximum ramp-up and ramp-

down rates, expressed in MW/h, and let l
i

and ui be the maximum power that can be produced
by the unit in the time period immediately where it is committed or uncommitted, respectively,
expressed in MW. The ramp rate constraints can be expressed as follows.

� Ramp-up constraints: when the unit is committed in both time periods t − 1 and t, the
maximum increase of generated energy from time instant t − 1 to the next is limited to
∆i

+ > 0, as expressed in formula (2.6) and depicted in Fig. 2.1(a)

pit ≤ pit−1 + uit−1∆i
+ + (1− uit−1)l

i
t ∈ T (2.6)

� Ramp-down constraints: when the unit is committed in both time periods t − 1 and t, the
maximum decrease of generated energy from time instant t − 1 to the next is limited to
∆i
− > 0, as expressed in formula (2.7) and depicted in Fig. 2.1(b)

pit−1 ≤ pit + uit∆
i
− + (1− uit)ui t ∈ T (2.7)

In other words, when the unit i is committed, ∆i
+ represents the most rapid power path

that the unit can follow to increase its power output in a given time interval. Analogously,
the same concept can be applied to explain ∆i

−, when the unit decreases its power output.
Instead, when the unit i is not committed, just started, the maximum power level can be

only the l
i

(often assumed equal to the minimum power output). On the other hand, when
the unit i has to be uncommitted in the next period, the last power level output before the
shut-down can be only the ui.

2.1.3 Operating constraints for hydro units

As it happens for the thermal generating units, the operating requirements of hydro generat-
ing units are usually expressed by inequality constraints, which are used to model the technical
characteristics of the generators themselves. In the formulation of the constraints shown below, it
is assumed that each cascade h ∈ H is composed by a set H(h) of individual hydro units. S(j) is
the set of the immediate predecessors of unit j and tkj is the water time delay from plant k ∈ S(j)
to the basin feeding plant j.
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(a) Representation of the concept of
ramp-up constraints.

(b) Representation of the concept of ramp-
down constraints.

Figure 2.1: Representation of the concept of ramp-up and ramp-down constraints.

Constraints on discharged water

The amount of discharged water of a hydro unit is limited within a lower and an upper level,
in order to avoid technical damages.

For each hydro unit j ∈ H(h), let qjt be the variables that represent discharged water of hydro
unit j at time period t ∈ T , expressed in m3. Constants qjmax represent the technical maximum of
discharged water of hydro unit j, expressed in m3 (the technical minimum is assumed to be zero
in order to simplify the model). The constraints on discharged water can be expressed as follows:

0 ≤ qjt ≤ qjmax t ∈ T (2.8)

Constraints on reservoir volume

The volume of the reservoir of a hydro unit is limited within a lower and an upper level, in
order to avoid technical damages.

For each hydro unit j ∈ H(h), let vjt be the variables that represent the volume of the reservoir
of hydro unit j at time period t ∈ T , expressed in m3. Constants vjmin and vjmax represent
respectively the minimum and maximum volume of the reservoir of hydro unit j, expressed in m3.
The constraints on reservoir volume can be expressed as follows:

vjmin ≤ v
j
t ≤ vjmax t ∈ T (2.9)

Hydro balance constraints

According to the hydro balance constraints, water that feeds the hydro power plant must
balance water that is used to produce energy and spilled water.

For each hydro unit j ∈ H(h), let wjt be the variables that represent spilled water of hydro
unit j at time period t ∈ T , expressed in m3, while wjt represents the natural inflows to hydro
unit j at time period t ∈ T , expressed in m3. The hydro balance constraints can be expressed as
follows:
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vjt − v
j
t−1 = wjt − wtj − qtj +

∑
k∈S(j)

(
qkt−tkj

+ wkt−tkj

)
t ∈ T (2.10)

In order to properly define the balance equations (2.10), the volume of each reservoir at time
period t = 0 is assumed known, and water discharged and spilled at all time periods before t = 1
for which the water is still arriving to one of the downstream basis (i.e., those k ∈ S(j) such that
t < tkj).

2.1.4 Power balance constraints

According to the power balance constraints, the power produced by thermal and hydro units
must balance the total system load demand. For each time period t ∈ T , let dt be the forecast
energy load demand to be satisfied, expressed in MWh. Then, for each hydro unit j, let αj be
the term that expresses the efficiency of the hydro unit j in generating power from the discharged
water, expressed in MWh/m3 (which is assumed constant). The power balance constraints,
linking the different units among themselves, are expressed as follows:

∑
i∈P

pit +
∑
h∈H

∑
j∈H(h)

αjqjt = dt t ∈ T (2.11)

Additional constraints

The classical UC model can be formulated with additional constraints that are used to model
specific technical and operating characteristic of the units or the whole energy system. For in-
stance, it could be required to respect a certain reliability and security level of the system, satis-
fying system reserve constraints. Some power network characteristics may need to be taken into
account, considering transmission constraints, in order to avoid transmission lines overloading.
Furthermore, other constraints may be considered in order to impose which types of units must
be on or off during the commitment of the whole system.

System reserve constraints

System reserve constraints impose to supply the load throughout the scheduling period with
a certain degree of reliability even during the outage of some committed units. Spinning reserve
requirements are necessary in the operation of a power system if load interruption has to be
minimal. These requirements may be specified in terms of excess of capacity (expressed in MW)
or in some form of reliability measures. This is made considering Spinning Reserve and Non-
Spinning Reserve margins. Spinning Reserve is the on-line reserve capacity that is synchronized
to the grid system and ready to meet electric demand within 10 minutes. Non-Spinning Reserve
is off-line generation capacity that can be synchronized to the grid within 10 minutes, and that is
capable of maintaining that output for at least two hours.

Transmission constraints

Since generating units of a utility company are normally located in different areas intercon-
nected via transmission lines, power flows are subject to thermal limits of transmission lines.
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However, the transmission constraints are usually left out in the UC models, in order to sim-
plify the mathematical formulation of the problem. Nevertheless, if the transmission constraints
are not considered, the schedule obtained might cause some transmission lines to be overloaded.
This could result in rescheduling of some generating units that may produce significant additional
operating costs.

Crew constraints

Certain plants may have limited crew size which prohibits the simultaneous starting up and/or
shutting down of two or more units at the same plant. Such constraints are specified by the times
required to bring a unit on-line and to shut down the unit.

Must run/must out constraints

In order to impose which types of units must be on or off during the commitment of the
whole system must run and must out constraints may be introduced in the UC model. Must run
units include already scheduled units which must be on-line, due to operating reliability and/or
economic considerations. Must out units include already scheduled units which must be off-line
and that are unavailable for commitment, since they are on forced outages and maintenance.

2.2 State of the art on Unit Commitment models

Different models for UC have been developed so far, nevertheless, they present some sort of
approximations and simplifications. For this reason, novel UC models present some characteristics
that have been left out in the literature until now. For instance, UC which involves more generating
areas or a multiple objective function has been recently devoted some attention. Constraints
related to fuel, pollutant emissions and security level are considered too. In this section, a brief
overview on the state of the art on UC models is presented.

2.2.1 Multi-area Unit Commitment

Many utilities and power pools have limits on power flow between different areas or regions.
Each area or region has its own pattern of load variation and generation characteristics. They
also have separate spinning reserve constraints. The units in each area should be selected in such
a way that reserve requirement and transmission constraints will be satisfied. Some works have
addressed multi-area UC problem, such as [LF92] [LHA94], where different generation area for
units are taken into account.

2.2.2 Fuel-constrained Unit Commitment

Many utilities have various fuel-supply constraints that affect the commitment of the units.
Examples of this type of requirements are represented by the limits in fuel and gas supplies or by
take-or pay requirements, which can be constrained over a period much longer than one week. In
the case of multiple fuels supplying a unit, the fuel price could vary over different time intervals
of the planning horizon, making the problem more complex. Cohen and Wan [CW87], Vemuri
and Lemonidis [VL91] and Lee [Lee89] tried to solve this problem, proposing some generalized
methods to solve the fuel-constrained UC problem.
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2.2.3 Emission-constrained Unit Commitment

The process of generating energy from fossil fuel produces several pollutants which are released
into the atmosphere. Kuloor et al. [KHM92] describe a method of solving the UC problem
including all of the emission considerations in the UC objective function. In this case, emissions
are considered as a second objective function and are added to the main objective function with a
weighting factor. Gijengedal [Gij96] suggests an emission-constrained approach using an algorithm
based on Lagrangian Relaxation that identifies the least-cost action in order to achieve daily or
weekly emission targets. The problem formulation includes all standard system constraints, and
addresses variable emission during start-up, operation and shut-down of units.

2.2.4 Security-constrained Unit Commitment

UC problem is frequently solved without taking into account security and transmission con-
straints. Nevertheless, if the resulting schedule ignores these requirements, the utility may over-
load critical transmission lines. Without advanced planning, the utility may have the necessity
to reschedule the production, incurring in significant additional operational costs. Cohen et al.
[CBC99] and Lei et al. [LLX02] presented a security-constrained UC program, while Shaw [Sha95]
developed an algorithm for solving the security-constrained UC problem utilizing a Lagrangian
Relaxation approach. Bertsimas et al. [BLS+13] propose a two-stage adaptive robust model for
the security-constrained UC problem, while in [KS10] transmission switching is introduced in
security-constrained UC in order to avoid transmission violations and to reduce operating costs.
Lotfjou et al. [LSFL10] present a model for the security-constrained UC problem representing also
the characteristics of the high voltage direct current (DC) transmission system. A novel combi-
natorial solution strategy for security-constrained UC problem is presented in [SAS13] where the
unit states are determined by an enhanced harmony search technique.

2.2.5 Multi-objective Unit Commitment

Multi-objective UC problem is modeled in order to take into account different goals in the
objective function. In [SCL94], Srinivasan presented a fast and efficient approach to solve the
multi-objective UC problem. This approach integrates a fuzzy expert system in order to obtain an
optimum generation scheduling and to evaluate security transfer requirements in an interconnected
system. In contrast to the existing UC models, this method considers economy, security, emission
and reliability constraints as competing objectives for optimal UC solution. A preference of
an operator is required in order to find a solution which does not produce a conflict between
the different objectives, since an improvement of one objective may degrade the performance of
another.



Chapter 3

Methods for solving the Unit
Commitment

Traditionally, the UC problem has been solved considering only thermal units to determine
when generators should be on or off and how to dispatch their production output in order to
meet load system demand and spinning reserve requirements. The resultant schedule should sat-
isfy technical operating constraints of units such as production and ramping limits and minimum
up and down time requirements, over a specific short-term time horizon, minimizing the total
operation cost. Currently, the solution of the traditional UC problem is important in the new
competitive power industry, for this reason, more accurate models and more efficient methods to
determine a proper power production scheduling are needed in order to fulfill new requirements in
the current power systems environment. UC has been an active research topic for several decades
(over 30 years) due to the potential savings in operation costs that could be obtained by properly
solving this problem. The UC problem is characterized by a combination of several difficulties like
continuous as well as binary decision variables, very large dimension, nonlinearities (for instance in
hydro modeling, fuel costs) and the uncertainty of problem data (for instance uncertainty of load
forecasts, stream-flows to reservoirs, pricing schemes and generator failures). These characteris-
tics make the UC a large-scale, mixed-integer, combinatorial and nonlinear programming problem
(MINLP), which still cannot be considered a well-solved problem for all practical sizes and operat-
ing environments. Several solution techniques have been proposed such as Dynamic Programming
and Lagrangian Relaxation, heuristics, mixed-integer linear programming approaches, simulated
annealing and evolution-inspired approaches. Recent literature surveys on methods used to solve
the UC problem can be found in [Pad04], [Sal07], [SDSK13], [SM12], [BKS+12], and [BTK12].

The available methods for solving the UC can usually be classified as follows:

� optimization methods: these approaches are represented by the mathematical programming
methods such as Lagrangian Relaxation, Dynamic Programming, and Mixed Integer Pro-
gramming;

� heuristic/meta-heuristic methods: these approaches are represented by the heuristic ap-
proaches such as Tabu Search, Simulated Annealing, and Genetic Algorithms.

In the following sections, the main methods used to solve the UC problem will be briefly
described, in order to show the state of the art and the recent trends in this field.
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3.1 Exhaustive Enumeration and Priority Listing

The Exhaustive Enumeration approach was one of the earliest methods to be applied to solve
the UC problem [Pad04]. The first phase of this approach consists in enumerating all the possible
combinations of the generating units. In the second phase, the combinations of units that are
associated with the least operational cost are chosen as the optimal solution, which is found once
all the system constraints are satisfied [HJW71] [WW84]. This method is not suitable to solve
UC problems in large scale systems, since the computational effort increases when a high number
of units is considered. However in some cases it could provide accurate solutions, as shown by
Kerr et al. [KSF66] and Hara et al. [HKH66] who successfully solved the UC by the Exhaustive
Enumeration method considering Florida Power Corporation system.

Priority Listing approaches are the simplest methods to solve the UC problem. These algo-
rithms are based on priority lists of generating units, which are ordered according to a start-
up/shut-down heuristic with increasing/decreasing order by operational cost characteristics, in-
cluding state transition costs. This initial order is then used to commit the units to obtain the
solution of UC, satisfying the system load demand and the reserve requirements [Lee88]. The
Commitment Utilization Factor (CUF) and the Average Full Load Cost (AFLC) index or a com-
bination of both can be used to determine the priority order of units. For instance, the CUF
algorithm can be applied in the solution of single-area and multi-area UC [HJW71] [LHA94]
[LF92] [Lee91]. Burns et al. [BG75] and Lee [Lee88] solved the UC problem considering a Priority
Listing approach. Shoults et al. [SCHG80] developed an efficient algorithm based on priority
ordering including import/export constraints in the formulation of UC. One of the disadvantages
of the Priority Listing method is related with its sub-optimality in the scheduling solution of the
UC, as it is based on many assumptions. However, this approach is still used by some utilities due
to its ease of application and understanding and its simplicity. Moreover, the resultant schedule
is adequate in many situations.

3.2 Branch and Bound and Benders Decomposition

The Branch and Bound approach is a widely applied method to solve various optimization
problems, such as the UC [Pad04].

Lauer et al. [LJBP82] and Cohen et al. [CY83] developed an enhanced approach to solve the
UC problem based on Branch and Bound algorithm. This method includes all time-dependent
constraints and does not require a priority ordering of units. In order to develop an efficient
approach to solve the UC problem, Huang et al. [HYH98] proposed a Branch and Bound method
integrated with constraint logic programming.

Branch and Bound method is comparable to Dynamic Programming approaches since it is
based on structured searches in the space of feasible solution [DE76] [DEKT78]. Nevertheless,
Branch and Bound algorithms differ from most of the approaches for the solution of the UC
problem since they do not need a priority ordering and they allow to introduce time-dependent
start-up costs in the mathematical formulation.

Benders Decomposition approaches decompose the UC problem into a master problem in-
cluding only discrete commitment variables and a sub problem involving continuous generation
variables [Tur78] [MS98]. This sub problem corresponds to the Economic Dispatch (ED) problem
for a given commitment. The master problem and the ED sub problem are solved iteratively
until the solution converges. The major disadvantage in Benders Decomposition approaches is
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the determination of the solution of the master problem, which is a large scale integer optimiza-
tion problem. In order to overcome this difficulty, Turgeon [Tur78] solved the master problem
considering a Branch and Bound algorithm. Baptistella and Geromel [BG80] solved the master
problem by relaxation in the master level of Benders Decomposition approach. Some of the con-
straints like minimum up and down time constraints, which are difficult to handle, are replaced
by simpler constraints, in order to improve the efficiency of the approach. For example, in [HB86]
minimum up and down time constraints are not considered in the mathematical model, and they
are substituted by a constraint that allows only one commitment per day for each unit. In [AA13]
a novel approach based on Benders Decomposition is presented in order to solve hydrothermal UC
problem with AC power flow and security constraints, decomposing the problem into a master
problem and two sets of sub-problems.

3.3 Dynamic Programming

Dynamic Programming (DP) is a very important optimization approach which is applied in
many areas [BD46]. DP techniques, as well as Lagrangian Relaxation, have been the first opti-
mization techniques to be used extensively to solve the UC problem at industry level.

From a mathematical point of view, the objective of DP approaches is to minimize the following
expression [Pad04]:

FN (x) = min[gN (y) + fN−1(x− y)]

where

� FN (x) is the minimum running cost of carrying a load of x MW on N generating units;

� gN (y) is the cost of carrying a load of y MW on unit N ;

� fN−1(x − y) is the minimum cost of carrying the load of (x − y) MW on the remaining
(N − 1) units.

The assigned UC problem is thus decomposed into more sub problems of smaller dimension.
These sub problems are solved and the optimal solution to the original problem is recursively
developed from these sub problems step-by-step. Usually, in DP approaches for UC, every possible
state in the solution space is examined in each time interval. This search can be carried out in a
forward or a backward direction. The states are combinations of units within a time period. Time
periods are called stages of the problem [HSLH91] [Guy71].

Lowery first analyzed the applicability of DP approaches to solve UC problems, from a practical
point of view [Low66]. The approach developed by Lowery considered the output of the generating
unit as a state variable and the on-line capacity as the stages. The DP approach for UC has been
then improved by Ayoub and Patton [AP71], including also probabilistic methods to determine
reserve requirement. In the literature, a typical DP approach for the UC determines a nominal
commitment which is good for each hour [PC76] [PSA81]. A commitment is good when some
criteria are met, such as the minimum number of units considered in a priority ordering which
is needed to satisfy the reserve requirements. A set of units belonging to this priority list of the
nominal commitment are then chosen, in order to find the optimal solution to the UC. The units
that are below that set are assumed to be committed, while the other units are assumed to be off.
Other DP approaches choose the most promising states from the set of all possible states using
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selection techniques [SPR87] [HHWS88]. In order to reduce computational times, approximate
subroutines for Economic Dispatch are integrated into DP methods.

Nagrath et al. have shown that DP has more advantages than priority list and enumeration
techniques in the solution of UC problems [NK94]. One of the advantages of DP is the possibility
to maintain the feasibility of the solution and to easily allow to add constraints like power balance
constraints [LHA94]. DP also allows to solve problems of various sizes and can be modified to
model specific characteristics of the system and the utilities [NIF86] [SPR87]. Nevertheless, one
of the drawbacks of the DP approaches is the handling of minimum up and down-time constraints
and time-dependent start-up costs which are usually treated in a suboptimal way [LJS+98]. More-
over, the size of the problem, expressed by the number of states, increases with the number of
available units, requiring a large computational effort. For this reason, some simplifications and
approximations to the traditional DP approach are applied [SPR87]. Several approaches have
been developed in order to reduce dimension, search space and running times. Most of these
approaches are based on truncation and fixed priority ordering. They can be classified as follows:

� DP-SC: it is a combination of DP approaches and sequential combination methods [PSA81];

� DP-TC: it is a combination of DP approaches and truncated combination methods [PC76];

� DP-STC: it is a combination of DP-SC and DP-TC approaches [PSA81];

� DP-VW: it is a combination of truncated DP approaches and variable window methods;
in this case, UC planning time window size is variated according to the increment of load
demand reducing running times and obtaining a solution of acceptable quality [OS91].

The solution obtained by the DP approaches mentioned above is suboptimal, in particular when
large-scale systems are considered, since these algorithms are based on priority lists or truncated
combination methods. When the UC problem is decomposed into smaller sub problems which
are solved by these DP approaches, Successive Approximation methods (SA) and Hierarchical
approaches methods (HA) can be used in order to coordinate these sub problems, respectively
either sequentially or in parallel [BH85] [HB86]. In order to reduce the solution space Lagrangian
reduction can be combined with SA approaches considering the dual nature of the UC [NaIG87].

Recent trends on methods to solve the UC have been focused attention on the integration
of fuzzy logic, expert systems and neural networks into DP approaches. Fuzzy logic can be
applied to DP when load demands and generation parameters are known with uncertainty [SH91].
Nevertheless, the fuzzy approach requires a larger computational effort than the conventional DP
method. The utilization of expert systems has been taken into account too, in order to enhance DP
approaches, especially when truncated DP methods are developed. Constraints that are difficult to
implement in a DP algorithm for the UC can be easily managed by this expert system [MSW88]
[SHN91]. Neural networks have been integrated into DP algorithm too to generate economic
dispatch schedules and the whole UC solution [KP07].

3.4 Lagrangian Relaxation

Lagrangian Relaxation (LR) optimization techniques have been used more recently than Dy-
namic Programming (DP) approaches. Currently, some utilities use LR approaches to solve the
UC problem, since the degree of sub optimality of the obtained solution is close to zero when a large
number of units is considered and the characteristics of the specific utilities can be easily modeled,
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adding unit constraints [CW87] [NaIG87] [TS89]. For instance, Merlin et al. proposed a new
method for solving UC based on LR which was validated at Electricite De France [MS83]. Tong
and Shahidehpour [TS90b] developed an algorithm based on Lagrangian Relaxation for solving
UC in large scale systems including different types of units, such as thermal, fuel constrained and
hydro generating units. A similar study was carried on by Aoki et al. who applied a LR approach
to a UC problem taking into account the same set of generating units (thermal, fuel-constrained
and pumped storage hydro units) [AIS+89] [ASI87]. Yan et al. [YLGR93] too developed a LR
approach including hydro units in the UC formulation, in addition to thermal units, in order to
solve UC in a realistic large scale system.

In contrast to DP approaches, LR methods do not need priority lists. LR methods are more
flexible in handling operating constraints of different types of units than other solution approaches.
Moreover, these algorithms present a higher computational efficiency and faster solution times.
Large-scale UC problems can be decomposed in more sub problems easier to solve because of the
dual formulation obtained with LR approaches.

In fact, LR methods decompose the assigned UC problem into a master problem and more
sub problems, which are solved iteratively in order to obtain a solution for the master problem.
Each sub problem is solved independently in order to determine the commitment of a single unit.
Lagrange multipliers, that are used to link the sub problems, are added to the master problem to
determine the dual problem. This dual problem is easier to solve than the primal problem since it
has lower dimensions. The Lagrange multipliers are determined in the master problem and then
passed to the sub problems which are solved by forward DP approach. The solution obtained for
the sub problems is then passed to the master problem in a backward direction, the Lagrange
multipliers are updated and used by the sub problems again. This process is repeated recursively
until a solution for the master problem is obtained.

However, even if LR methods present several advantages than other solution approaches, the
dual nature of the algorithm leads to some difficulty in obtaining solution feasibility. In partic-
ular, an unnecessary commitment of generating units could be determined, resulting in higher
production costs.

In order to overcome these difficulties, recently, a new approach, called Augmented Lagrangian
Relaxation (ALR), has been developed [WSKI95]. In this method, quadratic penalty terms asso-
ciated with energy system demand are added to the objective function, in order to improve the
commonly used LR algorithms.

Some works have focused attention in refining traditional LR methods, in order to obtain
better solutions, requiring less computational effort. Takriti [TB00] and Cheng [CLL00] developed
refined LR approaches with reduced complexity than traditional LR methods. Muckstadt and
Koenig replaced the common linear programming relaxation approach with the LR method with
a significant improvement of computational efficiency in the solution of UC [MK77]. Zhuang et
al. improved LR approach for UC, proposing a three phases LR algorithm [ZG88].

Wang et al. proposed a LR method which takes into account also ramp rate constraints in
UC and rotor fatigue constraints in the Economic Dispatch [WS94], while Ma et al. included
optimal power flow constraints in the formulation of UC, using Bender’s Decomposition approach
[MS99]. A LR method to solve the environmentally constrained thermal UC is shown in [KHM92],
where environmental requirements are considered as a second objective function which is added
to the traditional UC objective function. Furthermore, recently, a Lagrangian algorithm has been
applied to solve the unit schedule problem in an electrical power system, as shown in [TBB13].
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3.5 Mixed Integer Programming and Interior Point Opti-
mization

The UC can be formulated and solved using Linear Programming approaches, as shown in
[Mee84] [WAB81] [FBC95]. However, the main disadvantage of Linear Programming methods
is the large number of variables that are needed to represent the piece-wise linear input-output
curves, which leads to a strong computational effort [BF86].

For these reasons, literature has focused attention on Mixed Integer Programming (MIP) ap-
proaches in order to solve the UC problem. Mixed Integer Programming approach is used to
solve the UC reducing the search in the space of solutions rejecting infeasible states. Bond and
Fox [BF86] developed an algorithm that combines Mixed Integer Linear and Dynamic Program-
ming. Feasible combinations of units are determined by Mixed Integer Linear Programming, while
dynamic programming identifies promising scheduling solutions in the solution space.

Dillon et al. [DEKT78] formulated the UC problem as a linear MIP problem and developed
an Integer Programming method to solve the UC problem, taking into account an extension and
modification of the Branch and Bound method. In [LN84] the proposed MIP method transforms
the linear optimization problems that arise in the search procedure of the Branch and Bound
algorithm into capacitated transshipment problems, which are solved by a network-based solution
procedure.

Recent trends in MIP approaches employ more accurate cost models, like quadratic cost curves,
than the traditional linear cost functions. Currently, literature is focusing attention on improved
modeling of unit input/output characteristics with more detailed non-linear models. The MIP
approaches with non linear models, if applied to a typical generation mix consisting of a large
number of units, may require a major computational effort. However, recent works in literature
have shown that accurate and proper MIP for UC can be developed in order to significantly save
computational time [CA06].

In [OAV12] the UC is formulated as a mixed-integer linear programming (MILP) problem, while
Morales et al. [MELR12] present a MILP formulation of specific constraints of UC such as start-
up and shut-down power trajectories of thermal units. A mixed integer quadratically constrained
program (MIQCP) model to solve the Unit Commitment problem has been also presented in
[lLCMMG12].

The Interior Point method is currently applied to solve combinatorial and non-differentiable
problems, such as the UC. This method is used to determine proper production schedule in
electric power systems. Madrigal et al. [MQ00] applied the interior point method to solve the UC
problem, observing that this approach presents two main advantages such as better convergence
characteristics and fine parameters tuning.

3.6 Tabu Search and Simulated Annealing

Tabu Search is an optimization heuristic procedure that has been successfully applied to various
combinatorial optimization problems. This approach is characterized by avoiding entrapment in
local minima by employing a flexible memory system, called Tabu List [MAMS98]. Mori et al.
[MM00] [MU96] developed an algorithm based on Tabu Search method in order to solve the UC
problem. Rajan et al. [RMM02] improved Tabu Search approaches for UC developing an algorithm
using a neural-based tabu search method. Lin et al. [LCT02] solved Economic Dispatch using
a Tabu Search algorithm. Mantawy et al. [MAMS98] [MAMS99] [MSH02] efficiently solved the
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UC problem with a Tabu Search method, taking into account also hydro generating units, over a
long-term time horizon.

From a physical point of view, annealing refers to the process of heating up a solid to a high
temperature followed by slow cooling achieved by decreasing the temperature of the environment
in steps [WW94] [ANP95]. By making an analogy between the annealing process and the opti-
mization problem, Simulated Annealing was independently introduced by Kirkpatrick, Gela, and
Vecchi in 1982 and Cerny in 1985. A large class of combinatorial optimization problems, like the
UC, can be solved following the same heuristic procedure of transition from equilibrium state to
another, reaching minimum energy of the system. In order to solve the UC with the Simulated
Annealing procedure, the problem is decomposed into two subproblems, a combinatorial opti-
mization problem with variables representing the status of the units, and a nonlinear optimization
problem in the variables indicating the power output of the generators. Mantawy et al. [HAMS98]
developed a Simulated Annealing algorithm to solve the UC problem, concluding that even if this
procedure takes a long computational time, it is independent of the initial solution.

3.7 Expert Systems and Fuzzy Systems

An expert system is an intelligent computer program which, using knowledge and inference
procedures, is able to solve problems that require significant human expertise for their solutions
[CA91]. The expert system knowledge is usually derived from human experts and encoded in a
formal language, in order to emulate their methodology and performance [LC91] [WD91] [PP95].
Expert system approaches have been recently applied to solve the UC problem [GLYA92] [OS91].
The real-time processing capability of these approaches is challenging with those of mathematical
programming methods [LS93] [BS97]. Mokhtari et al. developed an expert system-based approach
to assist power systems operators in the generating units scheduling [MSW88]. Ouyang et al.
proposed an expert system for UC consisting of a commitment schedule database, a dynamic load
pattern matching process, and an interface optimization process [OS90]. Tong et al. developed an
algorithm for solving the UC using priority listing heuristics in the form of interface rules [TS90a].
Salam et al. used a Dynamic Programming approach integrated into an expert system to obtain
a feasible solution to the schedule of the operations of the generating units [SHN91].

UC is a complex decision-making process. When it is solved, the load demand and some other
variables like the outage of the units are uncertain [LDCG83] [CB90]. This raises the question
of how to tackle the UC when these aspects are imprecise [MK95] [Pad99] [PRP99] [PRP95].
Stochastic models have been observed by researchers to perform better than deterministic models
under uncertainty but they present some limitations [TBL96]. For this reason, in order to manage
uncertainty, some other approaches have been recently applied to the UC problem, such as fuzzy
logic, which has been first introduced in the literature by Zadeh in 1965, who presented the concept
of fuzzy sets as a mathematical means to describe vagueness in linguistics. Taking into account
fuzzy logic, Tong et al. developed a rational model in order to consider the outage of thermal
units and the uncertainty of the load demand [TS90a]. Saneifard et al. demonstrated that it is
possible to apply fuzzy logic in order to solve the UC problem, allowing a qualitative description
of the behavior and the characteristics of a system, without the necessity to determine an exact
mathematical formulation [SPS97]. In some recent works enhanced algorithms based on fuzzy
logic have been successfully applied in order to solve the UC problem, as shown in [LG13] [KK13]
[KK12].
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3.8 Artificial Neural Networks and Ant Colony Search Al-
gorithms

Artificial Neural Networks (ANNs) have been developed in order to model the behavior of
biological neural networks. Over the years, several models of ANNs and the associated learning
algorithms have been developed [SWK+91]. ANNs have been recently applied to solve combina-
torial optimization problem such as the UC. Sasaki et al. applied the Hopfield neural network to
solve a UC problem consisting of 30 units over a 24 periods [SWY92]. C. Wang et al. developed a
model based on ANNs to solve the UC with ramp rate constraints [WS93]. Walsh et al. improved
the conventional Hopfield neural network developing an augmented network architecture with a
new form of interconnection between neurons in order to obtain a more general energy function
[WM97]. The UC was also successfully solved by Liang et al. using an extended mean field
annealing neural network approach [LK00]. Artificial neural networks and artificial intelligence
algorithms have been recently applied to solve the UC problem in [JBRF13] and [Hua13].

An ant system has been inspired by the behavior of real ants, which are capable of finding
the shortest path from a food source to their nest without using visual cues, but by exploiting
pheromone information. In an ant system, a set of artificial ants cooperate to the solution of
a problem by exchanging information via pheromone deposited on graph edges. Ant systems
have been applied to solve combinatorial optimization problems like UC. Sisworahardjo and El-
Kaib have applied ant colony search algorithm to solve the UC [SEK02], while Huang has solved
the problem with ant colony approaches considering also hydroelectric generating units [Hua01].
Recently, enhanced ant colony system algorithms have been applied to solve the UC problem, as
shown in [YKCCCL13] [CHSP12] [CCS12].

3.9 Genetic Algorithms and Evolutionary Programming

Over the last 30 years, systems based on the principles of evolution and machine learning
have been devoted a growing interest [OI97] [SPG03]. These systems maintain a population of
potential solutions and they have a selection process based on the fitness of individuals and some
genetic operators. Genetic algorithms which are involved in these systems imitate the evolution
strategies and the principles of natural evolution in order to solve optimization problems, such as
the UC for both small and large size systems [DM94]. Sheble et al. applied a genetic algorithm
to solve the UC in a time horizon from one to seven days [She96]. Maifeld et al. solved the
UC applying a genetic algorithms which considers domain-specific mutation operators [MS96].
Yang et al. proposed a parallel genetic algorithm to solve the UC, using a constraint handling
technique [YYH97]. Rudolf et al. developed a genetic algorithm to solve the UC in a hydrothermal
power system [RB99]. Swarup et al. handled the large-scale UC employing a new strategy for
representing chromosomes and encoding the search space of the problem [SY02].

An evolutionary programming approach to solve the UC problem has been proposed by Yang
et al. [YYH96] and Juste et al. [JKTH99]. In this approach, populations of contending solutions
evolve through random changes, competition and selection. Chen et al. [CW02] extended the
traditional evolutionary programming approach [VGP03] presenting a cooperative co-evolutionary
algorithm for UC, formulating and solving the problem by modeling the co-evolution of cooperating
spices. Recent trends in the application of the evolutionary programming for solving the UC
problem are shown in [LPZ13] and [GR12].
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Chapter 4

Unit Commitment models with
power variables ∗

In the literature, ramp-rate constraints have been usually neglected in the UC models [ZG88],
this has produced mathematical models for UC that overestimate the actual behavior of the units,
obtaining commitment decisions that are not feasible and therefore cannot be implemented from
a practical point of view. Nevertheless, if ramp-rate constraints are considered in the model, the
corresponding optimization problem presents more difficulties, especially if Lagrangian techniques
are applied for the resolution [ZG88] [BLRS01] [BFLN03].

For these reasons, an assumption of the models for the UC is given by the form of the ramp-
rate constraints usually employed, that is an approximated one, assuming that the difference
between the total energy produced by a unit at two consecutive hours must be bounded. This
means that the changes in the power production are represented by a step discontinuous function
and the power produced by a unit is constant in each hour and can be adjusted instantaneously
passing between two consecutive hours, as depicted in Fig. 4.1. In our dissertation, for these
characteristics, we refer to the classical UC model presented in the literature as a ‘discontinuous’
model or energy-based model.

The assumption mentioned above leads to a numerical coincidence (though not physical) be-
tween the energy e produced by the unit in a given hour and the power p (multiplied by one
hour) produced in the same time period. This aspect greatly simplifies the formulation of the UC
model, since, from a mathematical point of view, a smaller number of variables is required (the
same variable is used to represent energy and power at the same time) and computational effort
in the solution is limited, due to the numerical coincidence between energy and power.

Moreover, these simplifications lead to some approximations and several drawbacks that make
these ‘discontinuous’ models not realistic enough. In particular, some technical restrictions of the
generating units are neglected, since in practice power trajectories are continuous along sets of
consecutive time periods for which a generating unit is continuously active. In fact, a generator
usually does not produce a power on a constant level in each time period and it needs a technical
time to change its power output, it cannot instantly pass from a power level into another. These
simplifications may lead the model to either under-estimate or over-estimate the actual amount of

∗Part of the material presented in this chapter is based on the following publication A. Frangioni, C. Gentile,
F. Lacalandra, A. Naimo. Unit Commitment models with power variables. Technical Report R. 11-26, IASI-CNR,
11/2011.
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Figure 4.1: Power trajectories in the classical (discontinuous) UC model.

energy that a generating unit can actually provide depending on the exact shape of its real power
trajectory. Thus we propose a new Mixed-Integer Quadratic Programming (MIQP) model for UC,
based on power instead of energy. We refer to this model as a ‘continuous’ model or power-based
model.

In this chapter we present how we have defined a transition from an energy-based UC model
to a power-based UC model; hence we illustrate the detailed formulation of our power-based UC
model; finally we present simulation results and outline the conclusions.

4.1 Transforming an energy-based model in a power-based
one

To formulate a power-based model, it is necessary to further investigate some aspects related
to the UC discontinuous energy-based model.

In particular, we better explain why the previously mentioned simplifications may lead the
model to either under- or over-estimate the actual amount of energy produced by a generating
unit, using the example depicted in Fig. (4.2).

Figure 4.2: Power generation with instantaneous jump (thick continuous lines) vs. actual power
generation (thin dashed lines).

We assume that the generating unit has uniformly produced 100 MW for one hour, called hour
0, producing 100 MWh of energy. If its production needs to be increased at the following hour
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1, and the ramp-rate is 100 MW/h, the ‘discontinuous’‘ model will assume that the produced
power can be made to instantaneously jump to 200 MW (thick line), producing 200 MWh during
the hour. However, the unit will instead ramp-up during the hour. If we assume continuous
ramping at the maximum rate, the unit will only reach 200 MW of power at the end of the hour
(thin dashed line). Hence, the unit will have produced only 150 MWh, leaving a gap between the
expected energy production and the real one (left yellow triangle). The reverse happens if the
generating unit needs to be ramped down at the subsequent hour 2. If we assume, for instance,
a ramp-down rate equal to the ramp-up rate, while the usual model stipulates that as low as 100
MWh can be generated, the generating unit will produce at least 150 MWh, since it can only
reach 100 MW of power at the end of the hour. Hence a surplus of energy is generated (right
yellow triangle).

This example has shown that this way of modeling ramp-rate limits, even if it is still used in
the literature, is an approximated one. In fact, the crucial point is that ramp-rates are actually
applied to the produced energy rather than, as it should, to the power. We refer to the UC models
employing this simplification as the ‘energy-based ’ (discontinuous) models. The drawbacks related
to this way of modeling ramp-rate limits could be solved by disregarding the problem and limiting
the ramp-rate to lower values than the ones that are technical and economically feasible. Even
if this should limit the practical impact of the issue, studies that provide guidelines about how
this should be done are not currently available in the literature. Furthermore, it can be easily
verified that artificially limiting the dynamic of the generating units beyond what is required
by technical and economical considerations may lead to suboptimal decisions. Indeed, Wang and
Shahidehpour [WS95] have already observed that using ‘energy-based ’ models leads to a nontrivial
trade-off between two opposite problems:

� if the ramp-rates are underestimated, then the total production costs may increase and it
should be necessary to use additional units during peaks hours, even if the optimal solution
does not require them;

� if the ramp-rates are not underestimated, then the total energy produced in one hour can
be significantly higher or lower than the required one. This could lead to uneconomical be-
havior like shedding valuable energy, requiring reserve energy to be consumed and therefore
diminishing the safety margins of the system. Indeed, ramp-rate limits could be disregarded
in peak hours, reducing the life-cycle of the generating units.

Several ways to overcome these difficulties have been proposed in the literature. In [WS93] an
algorithm based on three steps has been developed:

� at first step, artificial intelligence techniques are applied to produce a UC schedule which
satisfies all the constraints of the system and the units operation, except ramp-rate limits;

� at second step, a dynamic procedure is used to consider the ramp limits when units are
started up and shut down;

� at third step, a dynamic dispatch procedure is applied to obtain a feasible solution which
includes the units generating capability information given by the UC, the ramp-rate con-
straints and the economical considerations.

In [WS94] an algorithm based on the Lagrangian Relaxation of demand and spinning reserve
constraints has been proposed. The single UC is solved by Dynamic Programming, where the
power levels are discretized depending on the number of hours needed to reach the maximum
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Figure 4.3: Power trajectories in a power-based (continuous) UC model.

production level. Finally, the solution is adjusted by a heuristic procedure based on Linear Pro-
gramming, in order to satisfy the relaxed constraints. In [WS95] a Mixed-Integer Non Linear
Programming (MINLP) model with non-convex constraints is developed and a heuristic algo-
rithm based on Lagrangian Relaxation and Dynamic Programming is proposed for its solution.
With respect to [WS94], this algorithm also deals with ramping costs depending on the ramp
speed. Finally, in [XGK01] a heuristic algorithm was proposed to adjust the solution of a non-
ramp-constrained UC in order to consider ramp-rate limits.

In our research activities, the aforementioned drawbacks of the UC energy-based discontinuous
models will be overcome, defining more realistic mathematical formulations than the ones proposed
in the literature. In particular, we propose new Mixed-Integer Quadratic Programming (MIQP)
models for UC, where decision variables represent power levels instead of energy. The basic
assumption of these models is that the unit is always ramping linearly during each time period.
This means that the power increases -or decreases- uniformly from pt−1 to pt during all the period,
as shown in Fig. 4.3. If pt−1 = pt the unit is actually not ramping. The energy is computed
by assuming linear ramp-up and ramp-down trajectories, i.e., piecewise-linear continuous power
curves whose integral (the produced energy) can be easily computed. We refer to this model as a
‘power-based ’ (continuous) model.

The advantage of the proposed models is that the physical constraints on power generation,
such as ramp rate requirements, are directly modeled, so the trajectories of power p constructed by
the model and the energy decisions are surely feasible. Moreover, the resulting MIQP problems can
be solved with commercial solvers, possibly using semi-infinite or second-order cone programming
formulations to improve their efficiency. This means that these models, that are relatively easy to
implement, can be solved at optimality, as opposed to all previous approaches which are based on
heuristics. Furthermore, the approach of these formulations is general and can be easily extended
to model more detailed aspects of the behavior of thermal units, like start-up and shut-down
power trajectories [AC04], thermal stress constraints [LS03], combined-cycle units [LS05], and
many others.

In order to simplify further reading, in the following section we recall the classical energy-based
formulation of UC, which has been previously described in section 2 of chapter 1. For the sake of
simplicity, the model is presented considering only thermal units and neglecting the constraints
related with other types of units such as hydro generators.
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4.1.1 Foundations and objectives of the UC power-based model

A set P of thermal generating units, burning some type of fuel (oil, gas, coal,...) is given
upon a time horizon T (e.g., a day or a week) discretized into a finite number of time instants
(e.g., hours or half-hours), i.e., T = {1, . . . , n}. Each unit is characterized by a minimum and
a maximum energy output (typically measured in MWh), eimin and eimax, respectively, for each
of the time instants. If a unit is committed (actively generating power) at time instant t, it is
subject to a convex energy generating cost function f i(eit), typically a convex quadratic function,
where eit is the total amount of energy produced during all the time period. The operation of the
units must satisfy a number of technical constraints, typically the minimum up- and down-time
ones: whenever the unit i is turned on it must remain committed for at least τ i+ consecutive time
instants, and, analogously, whenever the unit i is turned off it must remain uncommitted for at
least τ i− consecutive time instants. Therefore, binary variables uit, indicating the commitment of
the unit i at time instant t (if their value is equal to 1), have to be introduced.

The other set of technical requirements are the ramp-rate constraints. These require that the
maximum increase of the generated energy from time instant t to the next is limited to ∆+

i > 0,
and, analogously, the maximum decrease of generated power from time instant t to the next is
limited to ∆−i > 0. Note that this definition can be applied only if the unit i is committed in
both time periods t and t + 1. Therefore, a general form of ramp-rate constraints is considered

where an upper bound l
i
, eimin ≤ l

i ≤ eimax, is known on the maximum amount of energy that
can be generated if the unit i is turned on in a time period t (that is, it was uncommitted in t−1)
and, analogously, an upper bound ui, eimin ≤ ui ≤ eimax, is known on the maximum amount of
energy that can be generated if the unit is turned off at the end of time period t (that is, it will
be uncommitted in t+ 1).

The classical energy-based formulation of UC is the following

min
∑
i∈P

ci(ui) +
∑
t∈T

f i(eit) (4.1)

∑
i∈P

pit = dt t ∈ T (4.2)

eiminu
i
t ≤ eit ≤ eimaxuit i ∈ P, t ∈ T (4.3)

eit+1 ≤ eit + uit∆
i
+ + (1− uit)l

i
i ∈ P, t = 0, . . . , n− 1 (4.4)

eit ≤ eit+1 + uit+1∆i
− + (1− uit+1)ui i ∈ P, t = 0, . . . , n− 1 (4.5)

uit ≥ uir − uir−1 t ∈ T , r ∈
[
t− τ i+, t− 1

]
(4.6)

uit ≥ 1− uir−1 − uir t ∈ T , r ∈
[
t− τ i−, t− 1

]
(4.7)
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Figure 4.4: Power trajectories in a realistic UC model.

uit ∈ {0, 1} t ∈ T (4.8)

Constraints (4.4) and (4.5) are, respectively, ramp-up and ramp-down requirements, while
constraints (4.6) and (4.7) are minimum up- and down-time requirements, respectively.

In order to transform the energy-based formulation into a power-based one, it is necessary to
examine in details the data of the problem and how they are related with the actual operation of
the units. In particular, it is necessary to study the following problem: given the power ramp-rate
limits (expressed in MW/h), determine the energy ramp-rate limits (expressed in MWh/h) so that
any feasible commitment satisfying the latter always admits a feasible power trajectory satisfying
the former. Even if this problem does not have any obvious optimal solution, conservative esti-
mates can be obtained in order to guarantee the property. Nevertheless, these estimates severely
restrict the dynamic of the generating units.

The numerical coincidence between energy and power makes it possible to consider the main
variables of the energy-based UC model as the total energy output of the given generating unit in
each time period of the planning horizon.

Nevertheless, form a practical point of view, the energy output of a given unit is determined
by the integral of the functions that represent the actual power output of the unit, during each of
the time periods, as indicated in the following expression

eit =

∫ t

t−1

pi(τ)d(τ) (4.9)

where eit represents the total energy output of the unit i during one time period (measured
in MWh), while pi(τ) is a continuous curve that represents the actual power output of the unit i
(measured in MW), as depicted in Fig. 4.4.

It means that there are different actual trajectories p(τ) of the power p that provide the same
amount of energy e, and some of these actual trajectories are not feasible, since they cannot be
realized from a practical point of view, because of the technical restrictions of the units, like the
ramping constraints. In the classical energy-based model, the ramping limits of the units are ∆i

+

and ∆i
−, typically measured in MWh/h, as expressed in (4.4) and in (4.5). Nevertheless, as long

as a unit is active, each pit has to be a continuous curve, and continuity has to be enforced on
the boundaries of each time instant, that is pit−1(1) = pit(0) has to hold for each t ∈ T such that
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uit−1 = uit = 1. Furthermore, it is actually the instantaneous power variation that is bounded; one

typically has pit(τ) ∈
[
δi−, δ

i
+

]
(or, allowing pit to be non-differentiable, ∂p

′i
t (τ) ⊆

[
δi−, δ

i
+

]
) for all

τ ∈ [0, 1] and units i ∈ P. Thus, in a power-based model, the actual data describing the ramping
limits of the units are δi− and δi+, typically measured in MW/h or (MW/min), as expressed in
(4.10) and in (4.11)

pit+1 ≤ pit + uitδ
i
+ + (1− uit)l

i
(4.10)

pit ≤ pit+1 + uit+1δ
i
− + (1− uit+1)ui (4.11)

The main differences between an energy-based model and a power-based model, described
above, are briefly resumed in table (4.1).

According to the assumption that the typical duration of the time interval is one hour, one
could think that it is possible to easily operate a translation between an energy-based model and a
power-based model, considering a proper mathematical relationship between ramp-rates expressed
in energy (∆i

+, ∆i
−) and the respective limits expressed in power (δi+, δi−). Nevertheless, this

transformation is not trivial, as shown in the examples below. The following sections describe
that, making some assumptions, it is possible to mathematically relate the ramp limits, in order
to properly formulate a power-based model.

4.1.2 How to transform the energy ramp-rates into power ones

In order to describe a relationship between ramp-rates expressed in energy (∆i
+, ∆i

−) and ramp
limits expressed in power (δi+, δi−), one could think that it is possible to consider that ∆i = δi.
Nevertheless, this choice does not allow a correct transformation between an energy-based model
and a power-based model. In fact, consider for example a unit with a maximum instantaneous
power output of 450 MW that produces 450 MWh of energy in the typical time period. If the unit
can ramp up or down its power at 100 MW/h, one could at first assume that ∆i

+ = ∆i
− = 100

MWh. But, this is not the case, because if the unit keeps up ramping up (or down) for an entire
hour at its maximum speed, the corresponding increase (decrease) of the generated energy will be
the integral of the extra (missing) power produced, that is only 50 MWh, as depicted in Fig. 4.5.

The example described above shows that translating the bounds δi+ and δi− over power varia-
tions into bounds ∆i

+ and ∆i
− over energy is not immediate. We could assume that ∆i = 1

2δ
i, but

also this choice does not always allow a correct transformation between the two models for UC. In
fact, let us consider a unit with the same characteristics mentioned above, such as δi = 100 MW/h,
that is committed at the beginning of the time horizon (t = 1) and that produced 200 MWh (= e0)
of energy in the previous time period (t− 1). Based on the previous assumption we have, in the
first period, e0 −∆i ≤ e1 ≤ e0 + ∆i, this leads to 150 ≤ e1 ≤ 250. If we assume that e1 = 200
MWh, to keep the same energy output, in the second period we have again 150 ≤ e2 ≤ 250. Nev-
ertheless, this result is not realistic, because there are different actual trajectories p that provide
the same amount of energy, as shown in Fig. 4.6:

� a1 is the trajectory corresponding to a continuous output of 200 MW for all the period;

� b1 is the trajectory corresponding to starting at 250 MW and continuously ramping down
at full rate to 150 MW;
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UC energy-based model UC power-based model

Balance constraints

eit = pit eit =
∫ t
t−1

pi(τ)d(τ)

Ramp-up constraints

eit+1 ≤ eit + uit∆
i
+ + (1− uit)l

i
pit+1 ≤ pit + uitδ

i
+ + (1− uit)l

i

Ramp-down constraints

eit ≤ eit+1 + uit+1∆i
− + (1− uit+1)ui pit ≤ pit+1 + uit+1δ

i
− + (1− uit+1)ui

Table 4.1: Main differences between an energy-based model and a power-based model
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Figure 4.5: Transformation between ramp rates: ∆i = δi.

� c1 is the symmetric trajectory corresponding to starting at 150 MW and continuously ramp-
ing up at full rate to 250 MW.

This means that the maximum and minimum amount of energy e2 that can be produced in the
second period is different according to the ‘scenario’ realized in the first period, as shown in Fig.
4.7. In fact, the trajectory a1 : a2 corresponds to a production of e2 = 200 MWh, the trajectory
b1 : b2 corresponds to a production of e2 = 100 MWh, while the trajectory c1 : c2 corresponds to
a production of e2 = 300 MWh. In particular, if we consider the scenario c1 : c2, it is possible to
observe that the power produced at the end of the second period is 350 MW. This means that the
minimum amount of energy that can be produced in the third period is 300 MWh (corresponding
to a scenario c1 : c2 : b3 where the unit is ramping down at full rate during all the third period),
while the estimate based on energy gives 300 − 100 = 200 MWh. All this leads to the following
observation.

Observation 1 The maximum and minimum amounts of energy that can be produced in a period
t do not have the form et−1 + ∆i

+ and et−1 −∆i
−, respectively, for fixed ∆i

+ and ∆i
−.

It is thus necessary to understand if the knowledge of the power level of the unit at the
beginning of a period could help in the definition of the values of ∆i

+ and ∆i
−. In particular,

it could be useful to know if it is possible to have ∆i = f(δi) for particular trajectories of p(t),
that is to say, if there exists a particular trajectory of p(t) for which the total energy produced
by the unit is numerically equal to the instantaneous power at the end of the period (even if it is
expressed in a different unit of measure).

In order to further investigate this aspect, assume that the unit was producing 200 MW at the
beginning of the first period (end of period 0), and that has produced 200 MWh of energy during
all the first period. It is easy to observe that this makes scenarios b1 and c1 unfeasible, as shown
in Fig. 4.6.

However, there exist many different ways in which a unit that starts at 200 MW can produce
200 MWh of energy. This means that there are many different feasible curves p(τ) such that
their integral is 200 MWh and p1(0) = 200 MW. For instance, consider the scenario d1, as
shown in Fig. 4.8, corresponding to the unit ramping down at full rate α for the first fraction
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Figure 4.6: Different possibilities for trajectories p.

(a) Scenario 1: trajectory b1 : b2. (b) Scenario 2: trajectory c1 : c2.

Figure 4.7: Different possibilities for trajectories p in the second period.

of 1 − 1√
2
≈ 0.293 ≈ 0.3 of the time period, and, after that, ramping up at full rate α for the

remaining 1√
2
≈ 0.7 of the time period.

It is easy to observe that the integral of the curve d1 is the same as that of a1. In fact, the
triangle ‘below’ curve a1, of basis 2v and height αv (v = 1 − 1√

2
), has the same area as the

triangle ‘above’ the curve, of basis 1− 2v and height α(1− 2v). This result does not depend on α,
but on the fact that the maximum ramp-up and ramp-down rates are equal. The final power is
α(
√

2−1) ≈ α ·0.414 ≈ α ·0.4 larger than that of a1 (for the instance at hand, this makes roughly
240 MW).

Obviously, there exists an external curve f1, symmetric to d1 with respect to a1, which gives
the minimal possible final power (≈ 160 MW) compatible with the initial conditions and the value
of e1.

Then, the conditions p1(0) = 200 MW and e1 = 200 MWh are compatible with a final power
ranging between 240 and 160 MW. This means that the two ‘extreme’ scenarios for time period 1,
coupled with the corresponding extreme scenarios for time period 2 (see Fig. 4.8), give a maximum
and minimum energy output for the unit respectively of about 290 and 110 MWh.
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Figure 4.8: Another trajectory p1.

Again, this is far beyond what the initial estimates gave. And again, one cannot simply enlarge
the estimates at about 90 MWh. For scenario d1 : c2 : b3 the estimate gives the minimal energy
production at period 3 of 290 MWh, while the estimate from the 290 MWh produced at period 2
(under this scenario) is 200 MWh. All this gives:

Observation 2 The maximum and minimum amounts of energy that can be produced in a period
t do not have the form et−1 + ∆i

+(pt−1(0)) and et−1 −∆i
−(pt−1(0)), respectively.

The previous examples have shown that under the assumption that δi+ = δi−, after one period t
where the unit has been ramping up (down) at full rate, the minimum (maximum) energy produced
in period t+ 1 will be at least (at most) equal to that produced in period t. This means that for
every sequence of energy decisions et which cannot rule out the possibility of the unit ramping up
or down at full rate for a whole period, no positive value of ∆i

+ and ∆i
− can be chosen. So, one

may wonder whether small values of ∆i
+ and ∆i

− may solve the problem, by ensuring that the
unit will never be forced to ramp up (or down) at full rate for one entire period. This is indeed
the case, as shown below.

Lemma 3 If the unit starts a period at power p, it can end the same period at any power p ∈[
p−

(√
δi+
(
δi+ + δi−

)
− δi+

)
, p+

(√
δi−
(
δi+ + δi−

)
− δi−

)]
, having produced exactly p (that is, p

times the duration of the period) energy.

Proof. Consider the generic trajectory where the unit ramps up at full rate δi+ for a fraction
τ ∈ [0, 1] of the period, then starts ramping down, again at full rate δi−, for the remaining fraction
1−τ of the period. By trivial calculations one has that the power reached at the end of the period
is

p(τ) = p+ δi+τ − δi−(1− τ)
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Figure 4.9: Extremal trajectories for Lemma 3 when δi+ = δi−.

while the total energy produced during the period is

e(τ) = p+ δi+

(
τ − τ2

2

)
− δi−

(1− τ)2

2

By solving the simple equation e(τ) = p(τ), one shows that for τ =

√
δi−

δi++δi−
the total en-

ergy produced by the unit is numerically equal (though in a different unit of measure) to the
instantaneous power at the end of period, both at

p+

(√
δi−
(
δi+ + δi−

)
− δi−

)
This corresponds to trajectory g1 in Fig. 4.9; clearly, there exists the symmetric extremal

trajectory h1 with the unit ramping down for τ and up for the rest of the period that gives power

and energy both at p−
(√

δi+
(
δi+ + δi−

)
− δi+

)
. Note that, as depicted in figure, these trajectories

are ‘reverse’ of the previously described extremal ones giving maximal power variation for fixed
energy output.

Now, fix some ε > 0 and consider the following modification of trajectory g1:

� for the first ε
δi+

fraction of the period, keep producing at the initial power level p;

� then, start ramping up at full rate δi+ until instant τ
(

1− ε
δi+

)
;

� then, keep the attained power level stable until instant τ
(

1 + ε
δi−

)
;
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� finally, ramp down at full rate δi− until the end of the period.

It is easy to verify that the final power level attained by this trajectory g(ε) is just the final

power level of g1

(
= p+

(√
δi−
(
δi+ + δi−

)
− δi−

))
minus ε, and it is numerically identical to the

total energy produced by the unit during the period.

In order to prove that the trajectory produces g1−ε energy, where g1 is the energy produced by
the trajectory with maximum ramp-up speed in the interval [0, τ ] and with maximum ramp-down
speed in the interval [τ , 1], the area between the two trajectories is computed.

This area can be divided into four regions. The first one is a parallelogram with base from

t = 0 and t = ε
δi+

and height from p to p+ δi+

(
τ
(

1− ε
δi+

)
− ε

δi+

)
. Its area is denoted by A1 and

it is equal to:

A1 =
ε

δi+
δi+

(
τ

(
1− ε

δi+

)
− ε

δi+

)
= ετ − ε2

δi+
(τ + 1)

The second region is a triangle with base from t = τ
(

1− ε
δi+

)
− ε

δi+
to τ and height from

p+ δi+

(
τ
(

1− ε
δi+

)
− ε

δi+

)
to p+ δi+τ . Its area is denoted by A2 and it is equal to:

A2 =

(
τ −

(
τ − ε

δi+
τ

)
+

ε

δi+

)2 δi+
2

=
ε2

2δi+
(1 + τ)2

The third region is a trapezium (rotated by 90◦) with height from τ to τ
(

1 + ε
δi−

)
, first base

from p + δi+

(
τ
(

1− ε
δi+

)
− ε

δi+

)
to p + δi+τ , and second base from p + δi+

(
τ
(

1− ε
δi+

)
− ε

δi+

)
to

p+ δi+τ − δi−
(
τ
(

1 + ε
δi−

)
− τ
)

. It can be checked that the second base is large exactly ε. Its area

is denoted by A3 and it is equal to:

A3 =
1

2
τ
ε

δi−

(
ε+ δi+τ − δi+

(
τ

(
1− ε

δi+

)
− ε

δi+

))
=

1

2
τ
ε

δi−
(ε+ ετ + ε) =

1

2

ε2

δi−
τ (2 + τ)

The fourth region is a parallelogram with base of length ε (see second base of the previous

trapezium) and height equal from τ
(

1 + ε
δi−

)
to 1. Its area is denoted by A4 and it is equal to:

A4 = ε

(
1− τ

(
1 +

ε

δi−

))
= ε− ετ − ε2

δi−
τ

The sum of the four areas is easily computed and it is equal to ε:
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4∑
i=1

Ai = ε (τ + 1− τ) + ε2
(
− 1

δi+
τ − 1

δi+
+

1

2δi+

(
1 + τ2 + 2τ

)
+

1

2δi−

(
2τ + τ2

)
− 1

δi−
τ

)
=

= ε+ ε2
(
− 1

δi+
τ +

1

δi+
τ − 1

δi+
+

1

2δi+

(
1 + τ2

)
+

1

2δi−
τ2 +

1

δi−
τ − 1

δi−
τ

)
=

= ε+ ε2

(
− 1

2δi+
+

δ−

2δi+
(
δi+ + δi−

) +
1

2
(
δi+ + δi−

)) =

= ε+
ε2

2

(
− 1

δi+
+

δi−
δi+
(
δi+ + δi−

) +
δi+

δi+
(
δi+ + δi−

)) = ε

Finally, we should see that if ε =
δi+τ

1+τ then the trajectory is constant. Indeed, the trajectory

producing g1−ε energy has two constant pieces. The first one starts at zero and ends at ε
δi+

= τ
1+τ .

The second one starts at τ
(

1− ε
δi+

)
= τ

(
1− τ

1+τ

)
= τ

1+τ and ends at τ
(

1 + ε
δi−

)
= 1. The last

relation can be easily obtained by substituting the value of τ =

√
δi−

δi++δi−
and multiplying both

numerator and denominator by 1− τ . We have thus shown that the two constant pieces cover all
the interval [0, 1].

All this is possible as long as ε
δi+
≤ τ

(
1− ε

δi+

)
, which gives ε ≤ δi+ τ

1+τ =
√
δi−
(
δi+ + δi−

)
− δi−

(and, as expected, the ‘flat’ trajectory a1 for the largest value of ε). Repeating similar arguments
for the symmetrical trajectory h1, the Lemma is proved.

Theorem 4 Let e0 be chosen as the numerical value of the power p0 of the unit at the beginning
of the first period; then, for each energy vector e = [e1, . . . , en] satisfying the ramping constraints

with ∆i
+ =

√
δi−
(
δi+ + δi−

)
− δi− and ∆i

− =
√
δi+
(
δi+ + δi−

)
− δi+, there exists a feasible trajectory

attaining exactly those energy production levels.

Proof. From the previous Lemma, it is easy to prove by recursion that one can always build
a trajectory where at the end of period t the power level of the unit is exactly et.

For instance, if α = δi+ = δi−, choosing ∆i
+ = ∆i

− =
√

2α2 − α = α
(√

2− 1
)
≈ 0.4α ensures

that there exist technically feasible trajectories p(t) that satisfy the stipulated energy decisions e(t).
Clearly, the estimate is conservative, and energy decisions respecting ramp constraints with larger
values of ∆i

± need not necessarily result in unfeasible trajectories. However, it is easily proved
with the only slightly larger ‘conservative’ estimate ∆i

+ = ∆i
− = 0.5δ that one cannot always get

feasible power trajectories corresponding to feasible energy levels according to constraints (4.4)
and (4.5).

Proposition 5 Let α = δi+ = δi−; then, there exists one energy vector e = [e1, . . . , en] satisfying
the ramping constraints with ∆i = ∆i

+ = ∆i
− = α

2 such that no feasible trajectory attaining exactly
those energy production levels exists.

Proof. We have basically already seen this in the initial examples, so let us use the data of the
unit: α = 100 MW, p0 = 200 MW, ∆ = α

2 = 50 MWh. Clearly, one should choose e0 = p0 = 200
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(MWh); in fact, choosing, say, e0 = 201 MWh results in a feasible energy decision e1 = 251 MWh
that is unattainable by the unit even if ramping up at full rate for all the first period, and an
analogous effect occurs with ramp downs for e0 = 199 MWh. So, let e0 = 200 MWh and consider
the feasible energy decision vector [e1, e2] = [250, 200]; as already seen, no feasible trajectory exists
that produces those energies, since in order to have e1 = 250 MWh the unit has to be ramping
up at full rate for all period 1, hence in period 2 it cannot produce less than 250 MWh.

Thus, already the choice ∆ = α
2 is ‘unsafe’, while of course not necessarily resulting in techni-

cally unfeasible decisions. No choice for the values of ∆i
+ and ∆i

− can entirely reflect the actual
flexibility of the ramping of one unit and at the same time be entirely safe. Therefore, a modeler
should:

� use larger values than those suggested by the Theorem 4, incurring the risk that no feasible
trajectory can be found to actually instantiate the energy decisions;

� use smaller values, unnecessarily restricting the flexibility of the unit in the decision model,
which may possibly force to fire up some units that could have been left uncommitted by
fully exploiting the dynamic range of those already producing, thus paying the corresponding
additional start-up costs.

This is even more striking if we consider that, as shown in the previous examples, the maximal
energy that can eventually be produced in time instant 2 by a unit starting at power p0 is p0+1.5α.
Thus, in order to allow this - technically feasible - ramping rate to be exploited by the mathematical
model, one would need to choose ∆i = 0.75α, a full 50% larger than the already ‘unsafe’ estimate
∆i = 0.5α, and a whopping 81% larger than the ‘safe’ estimate ∆i = 0.4α suggested by the
Theorem 4.

4.1.3 Analysis of the relationships between the ramp-rate limits

In order to analyze how the choice of ∆i influences the decisions in an energy-based model,
different simulations over realistic instances have been made. The energy-based model and the
power-based model described in section 4.1.1 (table (4.1)) have been implemented in a C++
programming language code, and they have been solved with the CPLEX 11.0 commercial solver,
over a machine with standard computational characteristics. A typical realistic instance consisting
of 10 thermal units has been used as input to the two models. In order to study the behavior of
the models to the different values of ∆i, various choices for the amount of the energy-ramp rate
have been selected, while the value of δi has been left unaltered during all simulations. In this

way, we could analyze how the value of ∆i

δi may affect the solution of the energy-based model,
specially in feasibility terms. The main results obtained in the simulation phase have been briefly
resumed in table (4.2), where the values of the objective functions obtained for the two models,

with respect to ∆i

δi , are shown. The form of the objective function (expressed in ¿) of the two

models with respect to ∆i

δi is depicted in Fig. 4.10.

It is thus possible to observe the following interesting aspects:

� even if choosing larger values for ∆i

δi of than those suggested by the Theorem 4 is ‘unsafe’,
not necessarily technically unfeasible decisions could be found to actually instantiate the
energy decisions;
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∆i

δi O.F. (power-based) O.F. (energy-based)

0.015 1870995.240 n.a.
0.020 1870995.240 2193925.296
0.025 1870995.240 2117702.497
0.030 1870995.240 2100790.505
0.040 1870995.240 2071474.034
0.050 1870995.240 2042716.357
0.100 1870995.240 1946469.994
0.200 1870995.240 1874453.927
0.300 1870995.240 1860405.253
0.400 1870995.240 1853614.646
0.500 1870995.240 1848661.142
0.600 1870995.240 1848104.181

Table 4.2: Comparison between objective functions with respect to the ramp rates values

Figure 4.10: Power and energy based models: comparison between objective functions.
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� large values of ∆i

δi could lead to the advantage in increasing the flexibility of the units,
since ramping constraints are well satisfied, making possible to use a small set of units,
consequently reducing the operational costs (this means that the value of the objective
function decreases);

� using smaller values for ∆i

δi of than those suggested by the Theorem 4, could restrict the
flexibility of the units, since it is more difficult to satisfy the ramping constraints; in this
case it could be necessary to switch on other units that could have been left off, utilizing the
units already producing at their maximum power, consequently increasing the operational
costs (this means that the value of the objective function increases);

� using too small values for ∆i

δi could severely limit the operation of the units, such that the
solution of the respective problem is unfeasible;

� from a global point of view, the objective function of the power-based model presents smaller

values than those of the energy-based model, for values of ∆i

δi < 0.2; this means that the
power-based model ensures more flexibility to the units, since the ramping-constraints, with
ramp-rate expressed in power, are alway satisfied, in contrast with what happens in a typical
energy-based model.

4.2 Unit Commitment power-based models formulation

In the UC models with power variables, the decisional variables represent the power output of
each generator instead of energy, in contrast with what happens in the classical model for UC, as
described previously in section 2 of chapter 1.

For each time period t, a variable called pit is introduced, in order to represent the power
generated by the thermal unit i at the end of the time period t. The binary variables uit represent
the status (on or off) of the thermal unit i at time t, with uit ∈ {0, 1}.

The model is based on the assumption that the power output increases - or decreases - uniformly
from pit−1 to pit during all the time period t; if pit−1 = pit, then the unit is not ramping at all.

The main difference with respect to the classical model for UC concerns the computation of
the energy in the demand constraints, as described in the following sections. In fact, the energy
balance constraints must be modified in order to compute the total energy produced by all the
thermal units in each time period, since the units are always ramping linearly.

Various models for UC with power variables are proposed below, each model is different from
the others, according to the way in which the demand constraints are calculated.

4.2.1 A simple continuous power-based model

The first power-based model that we propose is the ‘simple continuous’ model. This model is
called ‘simple continuous’ because it represents the standard simplest formulation of the power-
based model, which all the other models that we will propose in the following sections are based
on. The simple continuous power-based model is based on the aforementioned assumption that
all the generating units are always ramping linearly during each time period. This means that
the power output increases - or decreases - uniformly from pit−1 to pit during all the time period t.
If pit−1 = pit, then the unit is not ramping. Moreover, another assumption is that the generating
units are all always committed during time periods.
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Figure 4.11: Standard case of the demand constraints in the simple continuous model.

In this standard case, the demand constraints, which estimate the energy produced by a
thermal unit i, are expressed as follows [WS93] [WS94] [WS95]:

ds
2

(pit−1 + pit) (4.12)

where ds is the duration of the time interval starting at t− 1 and ending at t, which is normally
equal to 1 hour. According to the expression (4.12), the energy produced during the time period
t is calculated as the area of the trapezium with base from pit−1 to pit and height equal to the time
duration ds, as depicted in Fig. 4.11.

Thus, the standard formulation of the ‘simple continuous’ power-based model is the following

min
∑
i∈P

ci(ui) +
∑
t∈T

f i(pit) (4.13)

∑
i∈P

ds
2

(pit−1 + pit) = dt t ∈ T (4.14)

piminu
i
t ≤ pit ≤ pimaxuit i ∈ P, t ∈ T (4.15)

pit+1 ≤ pit + uitδ
i
+ + (1− uit)l

i
i ∈ P, t = 0, . . . , n− 1 (4.16)

pit ≤ pit+1 + uit+1δ
i
− + (1− uit+1)ui i ∈ P, t = 0, . . . , n− 1 (4.17)
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Figure 4.12: Case when uit−1 = 0 and uit = 0.

uit ≥ uir − uir−1 t ∈ T , r ∈
[
t− τ i+, t− 1

]
(4.18)

uit ≥ 1− uir−1 − uir t ∈ T , r ∈
[
t− τ i−, t− 1

]
(4.19)

uit ∈ {0, 1} t ∈ T (4.20)

Nevertheless, the standard formulation of the simple continuous power-based model presents
some drawbacks, that cannot be neglected. In fact, the expression (4.12) provides exactly the
amount of energy generated by a thermal unit i during time period t, if no start-ups or shut-
downs occur at the beginning/end of the period. This means that the model works correctly only
in the cases when uit−1 = 1 and uit = 1 or uit−1 = 0 and uit = 0, respectively shown in figures 4.11
and 4.12.

In the other cases, e.g., when the unit changes its status passing from t − 1 to t, (this means
that uit−1 = 0 and uit = 1; or that uit−1 = 1 and uit = 0), the expression (4.12) is incorrect.

In order to explain this concept, consider the case when uit−1 = 0 and uit = 1. In this case,
the thermal unit i is off at time period t− 1 (uit−1 = 0) and it is on at time period t (uit = 1), as
shown in Fig. 4.13.

At time interval t− 1, we have pit−1 = 0, nevertheless pit > 0 from t− 1 + ε to t; in particular,
at time interval t − 1 + ε a discontinuity is generated due to the fact that the unit is turned on.
The problem with start-ups is that (4.12) is incorrect when pit−1 = 0, because the unit begins to
feed energy in the electrical network only after having reached a power level that belongs to a

specific subinterval
[
pimin, l

i
]

of the production range
[
pimin, p

i
max

]
. If we assume that l

i
= pimin,

the energy produced by the thermal unit i in the first period t following a start-up is actually
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Figure 4.13: Case when uit−1 = 0 and uit = 1.

ds
2

(pimin + pit) (4.21)

that is more than what predicted by the term (4.12). In fact, the energy determined by the
power curve is given by the area of the trapezium with base from pimin to pit and height ds.

Consider now the case when uit−1 = 1 and uit = 0. In this case, the thermal unit i is on at
time t− 1 (uit−1 = 1) and it is off at time t (uit = 0), as shown in Fig. 4.14.

If we consider the time interval t− 1, we have pit−1 > 0, nevertheless pit = 0 in the time period
between t − 1 + ε and t; in particular, at time instant ε a discontinuity is generated due to the
fact that the unit is off. For this reason, a symmetric problem occurs with respect to what shown
in the previous case. In fact, a shut-down occurs in period t, after period t− 1: the term (4.12),
having pit−1 > 0 (and pit = 0), seems to provide a fictitious amount of energy during period t while
in fact none is produced.

All the cases shown above have demonstrated that the expression (4.12) must be properly
modified in order to model also the special cases in which the unit is not running, either in time
period t− 1 or in time period t.

In particular, the UC formulation with power variables should be able to model the special
cases shown in figures 4.13 and 4.14.

A more formal modification of the model requires a quite reasonable assumption: the exact
amount of power produced at the beginning of start-up period and at the end of a shut-down period

is exactly known, i.e. it is a constant. This can be simply obtained by requiring ui = l
i

= pimin,
i.e., that each unit exactly reaches its thermal minimum before being put on/off line, thereby
ensuring the exact computation of the ‘correction terms’ between (4.12) and the true amount of
energy that is going to be produced. Then, consider the following modified expression for the
amount of energy produced in period t by the thermal unit i:

ds
2

(pit−1 + pit) + ds
pimin

2
(uit − uit−1) (4.22)
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Figure 4.14: Case when uit−1 = 1 and uit = 0.

The form (4.22) coincides with (4.12) if unit i is continuously off (uit−1 = uit = 0) or on
(uit−1 = uit = 1) in the two consecutive time periods t− 1 and t. If start-up occurs at time period

t, i.e., uit−1 = 0 (→ pit−1 = 0) and uit = 1, then an extra correction term ds
pimin

2 is added to the
amount of energy produced in period t, as justified by the fact that the unit is already producing
pimin power at the beginning of the period. Conversely, if a shut down occurs at the end of time

period t−1, i.e., uit−1 = 1 and uit = 0 (→ pit = 0), then an extra correction term −ds p
i
min

2 is added
to the amount of energy produced in period t, balancing the fictitious production due to the fact
that pit−1 = pimin > 0 while pit = 0.

With these stipulations, the model is as follows:

min
∑
i∈P

ci(ui) +
∑
t∈T

f i(pit) (4.23)

∑
i∈P

ds
2

(pit−1 + pit) + ds
pimin

2
(uit − uit−1) = dt t ∈ T (4.24)

(4.15)(4.16)(4.17)(4.18)(4.19)(4.20)

In section 4.3.1, the simulations results obtained with the simple continuous power-based model
are described and commented.

4.2.2 A semi-continuous power-based model

In a ‘pure’ continuous power-based model, that is to say, a model in which all the units are
always on, the power at the beginning of the current time interval t is equal to the power at the
end of the previous time interval t−1, e.g., it is expressed by pit−1. Nevertheless, it is necessary to
consider all the scenarios analyzed in section 4.2.1, with particular attention to the cases in which
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the unit changes its status, being turned on or off, as depicted in figures 4.13 and 4.14. In fact,
in these cases, a discontinuity is determined, due to a variation of the power in the time interval
t−1 + ε; from a practical point of view, ε it is not represented by an instant, but it is a finite time
interval.

The simple continuous power-based model for UC proposed in section 4.2.1 modeled these
discontinuity cases making some simplifications, as previously described. Nevertheless, for the
issues mentioned above, it is necessary to formulate a more accurate power-based model, that we
call ‘semi-continuous’, in which the power at the beginning of the current time interval t is defined
in a different way than it happens in the ‘pure’ continuous formulation.

In fact, if the assumption ui = l
i

= pimin for each i ∈ P is not verified we have to directly
model the power levels at the beginning of each period by adding a proper vector of auxiliary
variables called γit for i ∈ P, t ∈ T .

This variable, subjected to proper constraints, as described below, guarantees that the value of
the energy, in the current time interval where the power curve is individuated, is coherent with the
status of the unit, from a practical point of view. In particular, the new variable γit will assume
different values, according to the status of the unit i at time t − 1 and at time t. In fact, the
variable γit must be equal to pit−1 if unit i is on in both periods t and t − 1 and the same holds
when unit i is off in both t and t − 1. When the unit i is switched off in period t then γit = 0,

while if the unit i is switched on in period t then γit must be in the interval
[
pimin, l

i
]
.

All these conditions can be summarized in the following constraints

piminu
i
t ≤ γit ≤ pimaxuit i ∈ P, t ∈ T (4.25)

0 ≤ γit ≤ pit−1 + pimin(1− uit−1) i ∈ P, t ∈ T (4.26)

γit ≥ pit−1 − ui(1− uit) i ∈ P, t ∈ T (4.27)

Constraints (4.25) express the unit capability limits, according to which a unit can produce a
power that is limited between a minimum and a maximum level. Constraints (4.26) and (4.27)
make it possible that the variable γit is equal to pit−1 if the unit i is on in both periods t and t− 1
and when is off in both t and t− 1. When the unit i is switched off in period t then γit = 0, while

if the unit i is switched on in period t then γit must be in the interval
[
pimin, l

i
]
.

All this means that the demand constraints expressed in (4.12) should be properly modified,
in order to satisfy all the cases described before. These constraints could be written so that the
power associated with the time instants t − 1 and t depend on uit−1 and on uit, nevertheless, in
this way we obtain a bilinear form in the terms of pit−1u

i
t−1 and pitu

i
t, or with quadratic terms

in the variables uit−1 and uit, which are not easily solvable with the available MILP solvers. In
order to obtain a constraint in a linear form, it is possible to use the auxiliary variable γit , whose
meaning has been described before, in order to express the energy produced by a thermal unit i
in the demand constraints as follows

ds
2

(γit + pit) (4.28)
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The ‘semi-continuous’ power-based model for UC is thus the following

min
∑
i∈P

ci(ui) +
∑
t∈T

f i(pit) (4.29)

∑
i∈P

ds
2

(γit + pit) = dt t ∈ T (4.30)

piminu
i
t ≤ γit ≤ pimaxuit i ∈ P, t ∈ T (4.31)

0 ≤ γit ≤ pit−1 + pimin(1− uit−1) i ∈ P, t ∈ T (4.32)

γit ≥ pit−1 − ui(1− uit) i ∈ P, t ∈ T (4.33)

(4.15)(4.16)(4.17)(4.18)(4.19)(4.20)

The advantage of this model is that the physical constraints on power generation are directly
modeled so that the trajectories of the power p constructed are surely feasible. Nevertheless, the
formulation requires to use more constraints and more variables and the structure of the demand
constraints, that link the variables of different units, is more complicated.

In section 4.3.2, the simulations results obtained with the semi-continuous power-based model
are described and commented.

4.2.3 A two-sloped continuous power-based model

The simple-continuous model presents some aspects that do not proper reflect the operating
behavior of the units, from a practical point of view. In order to overcome this difficulty, an
extension of this model, called ‘two-sloped’ continuous power-based model, is proposed. This
model is based on the assumptions that a generating unit could reach its maximum (minimum)
power output in a given time period during its ramp-up (ramp-down) phase; furthermore, power
trajectories are characterized by different ramp rates into the same time period.

In order to formulate this model, it is assumed that the value of the energy eit of the thermal
unit i associated with a given power trajectory is limited between a minimum and a maximum
function, as depicted in Fig. 4.15. In the picture, two power curves f i1(γit , p

i
t) (red curve) and

f i2(γit , p
i
t) (blue curve) are shown, that respectively represent the lower and the upper bounding

functions on the energy eit.
According to this, the two-sloped power-based model can be formulated as follows

min
∑
i∈P

ci(ui) +
∑
t∈T

f i(pit) (4.34)

f i1(γit , p
i
t) ≤ eit ≤ f i2(γit , p

i
t) (4.35)
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Figure 4.15: Upper and lower bounding functions on the energy eit.

∑
i∈P

eit = dt (4.36)

(4.15)(4.16)(4.17)(4.18)(4.19)(4.20)(4.31)(4.32)(4.33)

If the assumption that a generating unit could reach its maximum (minimum) power output
in a given time period during its ramp-up (ramp-down) phase is neglected and it is only assumed
that power trajectories are characterized by different ramp rates into the same time period, it
is possible to calculate the expression of f i1(γit , p

i
t) and f i2(γit , p

i
t), considering the case shown in

picture (4.15). In fact, it is easy to verify that the functions f i1(γit , p
i
t) and f i2(γit , p

i
t) are described

by the following expressions:

f i1(γit , p
i
t) =

1

2(δi+ + δi−)
(γit

2
+ pit

2 − 2γitp
i
t + 2δi+γ

i
t + 2δi−p

i
t − δi+δi−) (4.37)

f i2(γit , p
i
t) =

1

2(δi+ + δi−)
(−γit

2 − pit
2

+ 2γitp
i
t + 2δi−γ

i
t + 2δi+p

i
t + δi+δ

i
−) (4.38)

Nevertheless, the model should take into account also the case in which a generating unit
could reach its maximum (minimum) power output in a given time period during its ramp-up
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Figure 4.16: Upper and lower bounding functions on the energy eit when the maximum (or mini-
mum) power are reached.

(ramp-down) phase. These cases are shown in Fig. 4.16. Observing this picture, it is possible to
notice that the power curves f i1(γit , p

i
t) and f i2(γit , p

i
t) are ‘cut’, this means that they are limited

since the minimum (or the maximum) power is reached in the current time period.
In the following sections, we describe how the expression of f i1(γit , p

i
t) and f i2(γit , p

i
t) can be

determined, taking into account the assumptions previously mentioned.

Determination of the lower bounding function

In order to calculate the expression of the function f i1(γit , p
i
t), consider Fig. 4.17, where, for

the sake of simplicity, only the curve f i1(γit , p
i
t) has been drawn (in the figure, for simplicity, δi+

and δi− have been substituted with δ1 and δ2). It is easy to observe that the area determined by
the curve f i1(γit , p

i
t) consists of the sum of two trapeziums (ABCD and EGHF ) and a rectangle

(BEFC).

Since the value of the time duration x is given by x =
γi
t−p

i
min

δ1
, the area of the trapezium

ABCD can be expressed as follows

AABCD =
(γit + pimin) · x

2
=
γit

2 − pimin
2

2δ1
(4.39)

Moreover, considering that the value of the time duration y is given by y =
pit−p

i
min

δ2
, the area

of the trapezium EGHF can be expressed as follows

AEGHF =
(pit + pimin) · y

2
=
pit

2 − pimin
2

2δ2
(4.40)
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Figure 4.17: Lower bounding function of the energy eit when the minimum power is reached.

The area of rectangle BEFC can be easily determined considering that the value of the time
duration BE is given by BE = 1− (x+ y):

ABEFC = pimin[1− (x+ y)] (4.41)

Substituting the values of x and y into (4.41), the following expression of the area of the
rectangle BEFC is obtained

ABEFC = pimin

[
δ1δ2 − γitδ2 + piminδ2 − pitδ1 + piminδ1

δ1δ2

]
(4.42)

The area that represents the energy determined by the power curve f i1(γit , p
i
t) is given by the

sum of the areas previously determined:

f i1(γ
i
t , p

i
t) =

pit
2
δ1 + γit

2
δ2 + pimin

2
δ1 + pimin

2
δ2 − 2δ1p

i
tp
i
min − 2δ2γ

i
tp
i
min + 2δ1δ2p

i
min

2δ1δ2
(4.43)

Determination of the upper bounding function

In order to calculate the expression of the function f i2(γit , p
i
t), consider Fig. 4.18, where, for

the sake of simplicity, only the curve f i2(γit , p
i
t) has been drawn (in the figure, for simplicity, δi+

and δi− have been substituted with δ1 and δ2). It is easy to observe that the area determined by
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Figure 4.18: Upper bounding function of the energy eit when the maximum power is reached.

the curve f i2(γit , p
i
t) consists of the sum of two trapeziums (ABCD and EGHF ) and a rectangle

(BEFC).

Since the value of the time duration x is given by x =
pimax−γ

i
t

δ1
, the area of the trapezium

ABCD can be expressed as follows

AABCD =
(γit + pimax) · x

2
=
pimax

2 − γit
2

2δ1
(4.44)

Moreover, considering that the value of the time duration y is given by y =
pimax−p

i
t

δ2
, the area

of the trapezium EGHF can be expressed as follows

AEGHF =
(pimax + pit) · y

2
=
pimax

2 − pit
2

2δ2
(4.45)

The area of rectangle BEFC can be easily determined considering that the value of the time
duration BE is given by BE = 1− (x+ y):

ABEFC = pimax[1− (x+ y)] (4.46)

Substituting the values of x and y into (4.46), the following expression of the area of the
rectangle BEFC is thus obtained

ABEFC = pimax

[
δ1δ2 + γitδ2 − pimaxδ2 + pitδ1 − pimaxδ1

δ1δ2

]
(4.47)
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The area that represents the energy determined by the power curve f i2(γit , p
i
t) is given by the

sum of the areas previously determined:

f i2(γ
i
t , p

i
t) =

−pit
2
δ1−γit

2
δ2−pimax

2
δ1 − pimax

2
δ2 + 2δ1p

i
tp
i
max + 2δ2γ

i
tp
i
max + 2δ1δ2p

i
max

2δ1δ2
(4.48)

A special case: bounding functions when the unit is off

When the unit i is off (e.g., uit = 0), we should have that the total energy produced is equal
to zero (e.g., eit = 0). In order to obtain this result, the functions (4.43) e (4.48) must be written
as follows, introducing the variable uit:

f i1(γ
i
t , p

i
t) =

pit
2
δ1 + γit

2
δ2 + pimin

2
δ1u

i
t + pimin

2
δ2u

i
t − 2δ1p

i
tp
i
min − 2δ2γ

i
tp
i
min + 2δ1δ2p

i
minu

i
t

2δ1δ2
(4.49)

f i2(γ
i
t , p

i
t) =

−pit
2
δ1−γit

2
δ2−pimax

2
δ1u

i
t − pimax

2
δ2u

i
t + 2δ1p

i
tp
i
max + 2δ2γ

i
tp
i
max + 2δ1δ2p

i
maxu

i
t

2δ1δ2
(4.50)

The constant terms of the constraints have been multiplied for the variable uit, in order to
consider them only when the unit is on, that is to say uit = 1.

4.3 Results and discussion

In this section we describe and discuss the main results obtained with the new continuous
models presented previously.

4.3.1 Simple continuous model

In order to analyze the behavior of the simple continuous model, different simulations over
realistic instances have been made. The energy-based model described in section 4.1.1 (table (4.1))
and the simple continuous power-based model have been implemented in a C++ programming
language code, and they have been solved with the CPLEX 11.0 commercial solver, using the
perspective-cuts algorithm presented in [FG06]. A typical realistic instance consisting of 2 thermal
units has been used as input to the two models. The results obtained in the simulation phase are
shown in the figures 4.19 and 4.20. In the pictures, the blue and the red lines indicate the power
produced by each thermal unit.

It is thus possible to observe the following interesting aspects:

� Fig. 4.19 shows that in a typical energy-based model power is constant in each time period
and follows a step function; this is due to the basic assumptions of the model itself, as
previously described in the initial part of this chapter;
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Figure 4.19: Standard energy-based model: simulation results.

Figure 4.20: Simple continuous power-based model: simulation results.
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� Fig. 4.20 shows that the simple continuous power based model is completely different from an
energy-based model, because it models the operating behavior of the units from a realistic
point of view. Furthermore, the figure demonstrates that the model has been correctly
formulated, since it respects all the assumptions which is based on, that is to say, that all
the generating units are always ramping linearly during each time period (the power output
increases - or decreases - uniformly from pit−1 to pit during all the time period t; if pit−1 = pit,
then the unit is not ramping);

� the simple continuous formulation presents some drawbacks, because, in some cases, the

assumption that ui = l
i

= pimin it is not always verified, as shown in the green box of
picture (4.20). In fact, a thermal unit does not always reaches pimin as its minimum power,
but in some cases its power reaches 0 when it is shut down. For this reason, the simple
continuous model, as it is formulated, does not cover this situation.

The issues previously mentioned motivate the necessity to formulate a more accurate power-
based model, as described in the section 4.2.2.

4.3.2 Semi-continuous model

In order to analyze the behavior of the semi-continuous model, different simulations over
realistic instances have been made. The semi-continuous power-based model described in section
4.2.2 has been implemented in a C++ programming language code, and it has been solved with
the CPLEX 11.0 commercial solver, over a machine with standard computational characteristics.
A typical realistic instance consisting of 2 thermal units has been used as input to the model. The
results obtained in the simulation phase are shown in Fig. 4.21. In the picture, the blue and the
red lines indicate the power produced by each thermal unit.

It is thus possible to observe the following interesting aspects:

� Fig. 4.21 shows that the semi-continuous power based formulation properly models the
operating behavior of the units from a realistic point of view, since the cases in which the
unit changes its status are correctly managed by using the auxiliary variable γit . Furthermore,
the figure demonstrates that the model has been correctly formulated, since it respects the
main assumption which is based on, that is to say, that all the generating units are always
ramping linearly during each time period;

� however, it could be possible that the model forces the power trajectory to reach the max-
imum power output of the unit at the end of the current time period using a lower ramp
rate than required, as shown in the green box of the picture (4.21);

� furthermore, even if the semi-continuous model realistically reflects the technical behavior
of the generating units, it does not take into account the case when power trajectories are
characterized by different ramp rates into the same time period.

These issues motivate the necessity to formulate a more accurate power-based model, that is
an extension of the semi-continuous model, and that considers also the aspects mentioned above,
as described in section 4.2.3.
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Figure 4.21: Semi-continuous power-based model: simulation results.

4.3.3 Two-sloped continuous model

The formulation of the two-sloped continuous model, previously described, presents some im-
portant aspects that make it a very interesting model from a mathematical point of view. This
important results demonstrate that the model has been correctly formulated. This formulation is
suitable to be easily solved by a MILP available commercial solver like CPLEX, due to its math-
ematical characteristics related with the convexity of the energy bounding functions. In fact, it is
possible to notice that the bounding functions f i1(γit , p

i
t) and f i2(γit , p

i
t) of the energy eit previously

determined, represent respectively convex and concave functions, as expected.

Proposition 6 The function f i1(γit , p
i
t) is convex.

Proof. In order to study the convexity of the function f i1(γit , p
i
t), expressed by the (4.49), the

first and second derivative functions have been calculated. For the sake of simplicity, the constant
factor 1

δ1δ2
has been neglected.

The first derivative function, determined according to γit is expressed as follows

2γitδ2 − 2δ2p
i
min (4.51)

which, derived again, is equal to 2δ2.
The first derivative function, determined according to pit is expressed as follows

2pitδ1 − 2δ1p
i
min (4.52)
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which, derived again, is equal to 2δ1.
The second derivative function, determined according to γit and pit, is equal to zero.
The Hessian matrix of the function is expressed as follows

H(f i1(γit , p
i
t)) =

 2δ2 0 0
0 2δ1 0
0 0 0


The determinant of H(f i1(γit , p

i
t)) is equal to 0. The eigenvalues of the matrix are λ1 = 2δ1,

λ2 = 2δ2, λ3 = 0, that are not negative. For this reason, the Hessian matrix H(f i1(γit , p
i
t)) is

positive semidefinite, so it is possible to affirm that the function f i1(γit , p
i
t) is convex.

Proposition 7 The function f i2(γit , p
i
t) is concave.

Proof. In order to study the convexity of the function f i2(γit , p
i
t), expressed by (4.50), the

first and second derivative functions have been calculated. For the sake of simplicity, the constant
factor 1

δ1δ2
has been neglected.

The first derivative function, calculated according to γit is expressed as follows

− 2γitδ2 + 2δ2p
i
max (4.53)

which, derived again, is equal to −2δ2.
The first derivative function, calculated according to pit is expressed as follows

− 2pitδ1 + 2δ1p
i
max (4.54)

which, derived again, is equal to −2δ1.
The second derivative function, calculated according to γit and pit, is equal to zero.
The Hessian matrix of the function is expressed as follows

H(f i2(γit , p
i
t)) =

 −2δ2 0 0
0 −2δ1 0
0 0 0


The determinant of H(f i2(γit , p

i
t)) is equal to 0. The eigenvalues of the matrix are λ1 = −2δ1,

λ2 = −2δ2, λ3 = 0, which are less or equal to zero. For this reason, the Hessian matrixH(f i2(γit , p
i
t))

is negative semidefinite, so it is possible to affirm that the function f i2(γit , p
i
t) is concave.

4.4 Conclusions

In this chapter, new power-based continuous models for the UC problem have been proposed,
in order to overcome the drawbacks of the energy-based discontinuous models, defining more
realistic mathematical formulations than the ones proposed in the literature. In particular, new
Mixed-Integer Quadratic Programming (MIQP) models for UC have been proposed, where decision
variables represent the power levels instead of energy.

Different types of power-based models have been proposed, like simple continuous, semi-
continuous and two-sloped continuous models. The basic assumption of these models is that
the unit is always ramping linearly during each time period. This means that the power increases
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-or decreases- uniformly from pt−1 to pt during all the period. These assumptions make it pos-
sible that these new formulations properly reflect the actual technical and operating behavior of
the generating units, in contrast to what happens in the energy-based models presented in the
literature.

Simulations results have shown that in the proposed models the trajectories of power p con-
structed by the model and the energy decisions are surely feasible, since the physical constraints
on power are directly modeled. Furthermore, even if these formulations require to use more con-
straints and more variables, the resulting MIQP problems can be easily solved at optimality with
commercial solvers, like CPLEX, exploiting their mathematical characteristics.

As far as future work is concerned, it could be very interesting to compare the solutions
obtained with an energy-based discontinuous UC model integrated with the RED formulation
(presented in chapter 5) and the new continuous power-based models proposed in our research
activities, in order to demonstrate that the continuous models better reflect the real behavior of
the generating units, since they are based on novel assumptions that have been neglected in the
literature so far.





Chapter 5

Unit Commitment models
integrated with Economic
Dispatch

As described in the previous chapters, electrical energy production is a complex activity, which
requires to co-ordinate the operations of many geographically distributed generating units in order
to satisfy a continuously varying power demand. Furthermore, the introduction of deregulated
energy markets has deeply changed the form of the problem, introducing the trading of power
energy in the day-ahead market between several independent and competing generation companies
(Gencos). Some years ago there was a single centralized system coordinating all the generating
units, now we have a distributed decision process: each Genco offers specific quantities of energy
at some definite prices for each hour of the next day. An Independent Market Operator (IMO) acts
as clearing house to reconcile all the transactions, minimizing the total user cost for the satisfied
power demand while taking into account technical and security constraints, mostly regarding the
interconnection network. Thus, a Genco must be able to optimize the use of its generating units to
be competitive in that market, this requires to solve a sequence of complex optimization problems
at various stages of this process.

Gencos have to schedule their generating units based on IMO inputs at the end of the bidding
process, in this stage Unit Commitment (UC) problem is applied. As described previously, the
objective of the (UC) is to optimally schedule a set of generating units over a given time horizon
(typically one day or one week), in order to satisfy a forecast energy demand at minimum total
operational cost or at the maximum total profit, satisfying the technical restrictions of the gen-
erating units, that depend on their type and characteristics. In the adjustment market Gencos
can modify the programs defined in the day-ahead market, performing other transactions of elec-
trical energy, in this stage Economic Dispatch (ED) is applied. The scope of ED is to properly
determine the amount of power that each scheduled unit has to produce in order to satisfy the
real-time demand, in the short-term period (minutes or hours).

In the day-ahead market UC solves a problem where demand and power are continuous only
in the time interval, this means that the power variation is concentrated passing from a time
interval to the following (see Chapter 2). Given the UC solution, we know the units that will be
committed in the day-after and the energy that each unit must generate in each time interval, but
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the power trajectory of each time interval is not defined.
For these reasons, we have defined a novel mathematical formulation for the UC integrated

with the ED, called Reduced Economic Dispatch (RED), in order to obtain more realistic solutions
for this problem. The objective of the RED problem is to refine the UC solution, individuating
the power trajectory that each unit must generate in a given time sub-interval belonging to an
assigned time interval. RED solves a problem where demand has been processed to be continuous
in all time horizon, using a power demand as input instead of energy demand. Units that are
committed are known, while the variable to be considered is the power generated in a given time
sub-interval, instead of the power-mean-value in a given time interval.

In this chapter we present a sampling technique to reduce energy demand profile in a finer
grid; hence we illustrate the detailed formulation of our RED models; finally we present simulation
results of the various RED models we have defined and we outline the conclusions.

5.1 Sampling the energy demand profile over a finer time
grid

Generally, the actual energy demand profile that the ED problem has to resolve is different
from the forecast demand one, which is utilized to solve the UC problem in the day-ahead-market.
In the RED model, the actual demand is generated applying a casual perturbation of the load
distribution to the forecast demand. This is a simulation technique that will allow us to better
compare the accuracy of the different RED models proposed.

In this section, the problem of sampling the energy demand profile and its correct formulation
is treated. This will be made considering the following three steps:

1. the subdivision of the energy demand into regular time intervals;

2. the transformation of the energy demand into power demand;

3. the transformation of the power demand into energy demand over a finer time grid (sam-
pling).

In order to define the RED model, the energy demand profile has been divided into regular time
intervals, then energy demand has been transformed into power demand which has been processed
to sample an energy demand profile over a finer time grid (generally 15 minutes). Finally, the
RED problem has been solved considering this energy demand profile, for given input data whose
UC solution is known. The algorithm utilized to properly solve the RED problem can be described
by the following steps:

1. given input data with i thermal units and j hydro units and given a forecast energy demand
profile (dt) in the time horizon T , the corresponding UC problem is solved;

2. the given forecast energy demand profile (dt) in a time interval t is divided into Λ demands
1 in the time interval t, applying a quadratic interpolation between dt−1 and dt+1;

3. each λ energy demand profile is processed into a continuous power demand profile, utilizing
a division into K intervals 2;

1In our simulations, we assume Λ = 2, if we consider t = 1 hour we have two demand profiles in a 30 minutes
time horizon.

2In our simulations, we assume K = 30, if we consider t = 1 hour and Λ = 2 we have power demands in each
minute.
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4. time interval t is divided into M time sub-intervals 3, so that power demand obtained at the
previous step can be divided in order to have a corresponding energy demand for each time
sub-interval m;

5. given this energy demand profile, and knowing the characteristics of each unit (unit state
and ramping constraints), the RED problem is solved. In that way, we can individuate the
power that each (thermal and hydro) unit must generate at the end of each time sub-interval
m, assuming a linear variation in m.

The RED problem has been solved considering a finer time grid, since our objective is to
determine the power that has to be generated by the units during the time interval t. For this
reason, it’s necessary to determine an energy demand profile over a finer time grid, where the
time sub-interval m < t, considering an actual demand profile generated with a casual variation
of forecast demand.

The new demand profile is thus determined considering the following steps:

1. division of the energy demand dt of time interval t into Λ energy demands dλt ;

2. transformation of the energy demand dλt into power demand dλt,k in K time intervals;

3. transformation of the power demand dλt,k into energy demand dt,m in M time sub-intervals.

5.1.1 Step 1: division of the energy demand over a finer time grid

For each time interval t, the energy demand dt is divided into Λ demands dλt considering a
quadratic interpolation algorithm, with the condition:∑

λ

dλt = dt con 1 ≤ λ ≤ Λ (5.1)

In particular, given the energy demand profile, in which we assume power to be constant in
time interval t, we can use a parabolic function of type y(x) = ax2 + bx+ c which passes through
the three points A,B,C as depicted in picture 5.1 (in the case Λ = 2):

A : (−1, dt−1) 1 < t < T (5.2)

B : (0, dt) (5.3)

C : (+1, dt+1) (5.4)

if t = 1→ dt−1 = dt,0 (5.5)

if t = T → dt+1 = dt (5.6)

In this way, powers which are constant in time interval t are associated with the values of the
parabolic function corresponding to the central coordinate of the interval, so we have:

a =
1

2
(dt+1 + dt−1)− dt (5.7)

b =
1

2
(dt+1 − dt−1) (5.8)

c = dt (5.9)

3In our simulations, we assume M = 4, if we consider t = 1 hour we can have a 15 minutes energy demand
profile.
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Figure 5.1: Demand quadratical approximation using a parabolic function.

Demand to be divided, in this representation, is related to an energy associated to a power
which is constant in the interval −1/2 < x < 1/2. The values of the heights of the Λ rectangles
in which the demand is divided are equal to the values of the parabolic function corresponding to
particular coordinates x. These coordinates can be chosen in an arbitrary way; in our model, we
individuate them as the mean point of the basis of the λ rectangle, considering the value −1/2.

With these assumptions, the energy demand to be divided can be represented by Λ rectangles
with a height equal to y(x) and a basis equal to 1/Λ, i.e.:

x = x0 + (λ− 1)
1

Λ
con − 1

2 < x < 1
2 (5.10)

x0 = −1

2
+

1

2Λ
(5.11)

d̃λt =
y(x)

Λ
con 1 ≤ λ ≤ Λ (5.12)

For instance, if Λ = 2 (standard case) we have

d̃1
t =

y(− 1
4 )

Λ
(5.13)

d̃2
t =

y( 1
4 )

Λ
(5.14)

To respect the condition
∑
λ d

λ
t = dt we calculate the difference S between the sum of the

values determined by the parabolic approximation and the demand to be divided. Then, the
difference S is divided in a uniform way:



5.1 Sampling the energy demand profile over a finer time grid 71

S = dt −
∑
λ

d̃λt (5.15)

dλt = d̃λt + S/Λ =
y(x) + S

Λ
(5.16)

With this formulation the parabolic function always exists even if dt−1 = dt, dt = dt+1 and
Λ = 1.

5.1.2 Step 2: transformation of the energy demand into power demand

It’s possible to process the energy demand dλt , determined at the previous step, into a power
demand profile dλt,k considering K intervals. This can be made considering a first order approxima-
tion, with two modalities with a different physical meaning, but with an equivalent mathematical
formulation:

1. approximation of the demand profile considering trapezoidal shapes;

2. approximation of the demand profile considering rectangles.

Determining the power demand: case of trapezoidal shapes Consider a generic power

distribution dt,k [MW] in the time interval of duration f̂h = fh
Λ (measured in hours), in which is

admitted only a point of variation of the slope at time x (Figure 5.2). The power distribution can
be discretized into K intervals of trapezoidal shape so that energy dt [MWh] can be expressed as
follows: 4

dt =
(dt,0 + dt,x)

2
x
fh

ΛK
+

(dt,x + dt,K)

2
(K − x)

fh
ΛK

(5.17)

Considered

dt,0 =
∑
i

pi0 i ∈ P pi0 initial power generated by thermal unit i (5.18)

dt,x = dt,0 + xΓ+ (5.19)

dt,K = dt,x + (K − x)Γ− = dt,0 + xΓ+ + (K − x)Γ− (5.20)

By the substitution of the previous equations in (5.17), we obtain the generic expression from
which it’s possible to calculate the values Γ− and Γ+, given x, dt and the initial power condition
dt,0:

Γ−
(
x2 − 2Kx+K2

)
− Γ+

(
x2 − 2Kx

)
+ 2K

(
dt,0 − dt

Λ

fh

)
= 0 (5.21)

4For the sake of simplicity in the notation we consider dt instead of the generic demand dλt to which the algorithm
is actually applied.
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Figure 5.2: Power distribution using trapezoidal intervals.

Determining the power demand: case of rectangles Consider a generic power distribution

dt,k [MW] in the time interval of duration f̂h = fh
Λ (measured in hours), in which only a point of

variation of the slope is admitted in time x (Figure 5.3). The power distribution can be discretized
into K intervals with rectangular shape so that the energy dt [MWh] can be expressed as follows:
5

dt =

K∑
k=1

dt,k
fh

ΛK
t ∈ T (5.22)

Considering the case shown in the picture, generally we can have two time intervals:

d+
t =

x∑
k=1

dt,k
fh

ΛK
time interval to the left of x (5.23)

d−t =

K−x∑
k=1

dt,x+k
fh

ΛK
time interval to the right of x (5.24)

dt = d+
t + d−t (5.25)

5For the sake of simplicity in the notation we consider dt instead of the generic demand dλt , to which the
algorithm is actually applied.
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Figure 5.3: Power distribution using centered intervals.

Considered

dt,0 =
∑
i

pi0 i ∈ P pi0 initial power generated by thermal unit i (5.26)

dt,1 = dt,0 +
Γ+

2
(5.27)

dt,x = dt,1 + (x− 1)Γ+ = d0 + xΓ+ − Γ+

2
(5.28)

dt,x+1 = dt,x +
Γ+

2
+

Γ−

2
= dt,0 + xΓ+ +

Γ−

2
(5.29)

By the substitution of the previous equations respectively in (5.23) and in (5.24), we have:

d+
t =

fh
ΛK

[
dt,1x+ Γ+

x−1∑
k=1

(x− k)

]
=

fh
ΛK

[
dt,0x+

Γ+

2
x2

]
(5.30)

d−t =
fh

ΛK

[
dt,x+1(K − x) + Γ−

K−x−1∑
k=1

(K − x− n)

]
= (5.31)

=
fh

ΛK

[
dt,x+1(K − x) +

Γ−

2

[
(K − x)2 − (K − x)

]]
(5.32)

By the substitution of the previous expressions in the balance condition (5.25), we obtain the
generic expression by which it’s possible to calculate the values Γ− and Γ+, given x, dt and the
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initial condition dt,0:

Γ−
(
x2 − 2Kx+K2

)
− Γ+

(
x2 − 2Kx

)
+ 2K

(
dt,0 − dt

Λ

fh

)
= 0 (5.33)

Note that (5.33) is equal to (5.21).

Analysis of the possible profiles of power demand As we explained above, an energy
demand profile can be divided in a generic way by (5.21) or (5.33), regardless to the type of
processing chosen (with trapezoidal shapes or rectangles), given:

� a possible point of variation of the slope x;

� the energy demand to be satisfied dt;

� the initial power condition dt,0.

To analyze the possible demand profiles we define:

δ =
Γ−

Γ+

By the substitution of δ in (5.21) or (5.33) we obtain the definitive expression

Γ+
[
(δ − 1)

(
x2 − 2Kx

)
+K2δ

]
+ 2K

(
dt,0 − dt

Λ

fh

)
= 0 (5.34)

Chosen arbitrarily a coordinate of variation of slope x and a value of δ, we can have

Γ+ = 2K

(
d0 − dt Λ

fh

)
(δ − 1) (x2 − 2Kx) +K2δ

= 0 (5.35)

For both formulations (with trapezoidal shapes or rectangles), considering δ, we obtain the
cases shown in Fig. 5.4 and 5.5 and explained below:

1. δ = 1→ Γ− = Γ+: increasing/decreasing power demand profile slope:

Γ+ =
2

K

(
dt

Λ

fh
− dt,0

)
(a) If dt

Λ
fh
− dt,0 > 0→ Γ+ > 0 increasing power demand profile slope (Figure 5.6)

(b) If dt
Λ
fh
− dt,0 < 0→ Γ+ < 0 decreasing power demand profile slope (Figure 5.7)

2. δ = 0→ Γ− = 0: increasing/decreasing and then constant power demand profile slope

Γ+ = 2K
dt

Λ
fh
− dt,0

(2Kx− x2)

The sign of Γ+ depends only on dt
Λ
fh
− dt,0 because denominator is always positive for

0 < x < K
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Figure 5.4: Representation of cases when Γ+ ≥ 0.

Figure 5.5: Representation of cases when Γ+ ≤ 0.
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(a) if dt
Λ
fh
− dt,0 > 0→ Γ+ > 0 increasing and then constant power demand profile slope;

(Figure 5.8)

(b) if dt
Λ
fh
− dt,0 < 0→ Γ+ < 0 decreasing and then constant power demand profile slope;

(Figure 5.9)

3. δ < 0: increasing (decreasing) and then decreasing (increasing) power demand profile slope:

(a) δ < 0 → Γ+ > 0; Γ− < 0 increasing and then decreasing power demand profile slope
(Figure 5.10);

(b) δ < 0 → Γ+ < 0; Γ− > 0 decreasing and then increasing power demand profile slope
(Figure 5.11);

4. 1
δ = 0 → δ = ∞ → Γ+ = 0: constant and then increasing (or decreasing) power demand
profile slope

Γ− = 2K
dt

Λ
fh
− dt,0

(x−K)2

The sign of Γ− depends only on dt
Λ
fh
− dt,0 since denominator is always positive.

(a) if dt
Λ
fh
− dt,0 > 0 → Γ− > 0 constant and then increasing power demand profile slope

(Figure 5.12);

(b) if dt
Λ
fh
− dt,0 < 0→ Γ− < 0 constant and then decreasing power demand profile slope

(Figure 5.13);

5. 0 < δ < 1 o δ > 1: increasing (or decreasing) power demand profile with two slopes

(a) If dt
Λ
fh
− dt,0 > 0

i. 0 < δ < 1 → Γ+ > 0; Γ+ > Γ− increasing power demand profile slope with
decreasing slope in the second part (Figure 5.14);

ii. δ > 1 → Γ+ > 0; Γ+ < Γ− increasing power demand profile slope with increasing
slope in the second part (Figure 5.15);

(b) If dt
Λ
fh
− dt,0 < 0

i. 0 < δ < 1 → Γ+ < 0; Γ+ < Γ− decreasing power demand profile slope with
decreasing slope in the second part (Figure 5.16);

ii. δ > 1 → Γ+ < 0; Γ+ > Γ− decreasing power demand profile slope with increasing
slope in the second part (Figure 5.17);

5.1.3 Step 3: transformation of the power demand into energy demand
over a finer time grid

As explained above, RED problem works on a finer time grid, characterized by a time sub-
interval m. Summarizing:

� a time interval t has a duration fh (measured as a fraction of hour);
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Figure 5.6: Case 1a.

Figure 5.7: Case 1b.
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Figure 5.8: Case 2a.

Figure 5.9: Case 2b.
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Figure 5.10: Case 3a.

Figure 5.11: Case 3b.
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Figure 5.12: Case 4a.

Figure 5.13: Case 4b.
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Figure 5.14: Case 5ai.

Figure 5.15: Case 5aii.
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Figure 5.16: Case 5bi.

Figure 5.17: Case 5bii.
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� at step 1, each time interval t is divided into Λ sub-intervals of duration fh
Λ (measured as a

fraction of hour) to which an energy demand dλt is associated;

� at step 2, each time interval λ is divided into K sub-intervals of duration fh
ΛK (measured as

a fraction of hour) to which a power demand dλt,k is associated;

� at step 3, each time interval t is divided into M time sub-intervals of duration fh
M (measured

as a fraction of hour) to which an energy demand dt,m is associated. The m time sub-interval

has a duration of fh
M ΛK, expressed as a number of k intervals.

In order to determine the energy demand dt,m at time m it’s necessary to consider the R = fh
M ΛK

power demand dλt,k into which the demand dλt has been divided. According to the different method
adopted (with trapezoidal shapes or with rectangles) we obtain the following formulations:

dt,m =

mR∑
k=(m−1)R+1

dt,k
fh

ΛK
1 ≤ k ≤ K, 1 ≤ m ≤M (5.36)

dt,m =

mR∑
k=(m−1)R+1

dt,k−1 + dt,k
2

fh
ΛK

1 ≤ k ≤ K, 1 ≤ m ≤M (5.37)

5.2 Reduced Economic Dispatch problem for thermal units
with ramping constraints

In this section we will explain the Reduced Economic Dispatch (RED) problem formulation for
thermal units considering ramping constraints. Given the solution of the UC problem, we know
the units that are on in each time interval t and the mean values of powers to be generated by
each unit in t.

Consider a set P of thermal units in T = {1, . . . , T}, set of time periods which define the
time horizon. We indicate with dt the energy demand to be satisfied in each time interval t.
M = {1, . . . ,M} is the set of time intervals into which time interval t is discretized. 6 We denote
with dt,m the energy demand to be satisfied in each time sub-interval m.

With these assumptions, it’s possible to formulate the RED problem considering analogous
characteristics of the UC problem. In fact, RED problem and UC problem are similar, we can
think to RED problem as an on-line UC, since in each time sub-interval m a smaller problem
is solved, knowing the status of the units. In the time horizon T , M × T problems are solved,
considering the complete RED formulation.

In order to make our simulations to compare the different formulations of the RED problem, we
have implemented an object called ‘simulator ’ in C++ programing language. This object allows
to compare the flexibility, efficiency and effectiveness of UC solutions in the adaptation to actual
electricity demand (load) in an electrical system, real time. We developed 4 types of simulators,
as described below:

� greedy continuous simulator;

� greedy discontinuous simulator;

6Usually M = 4, since t = 1 hour and t is divided into quarters of hour.
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� not greedy continuous simulator;

� not greedy discontinuous simulator.

The greedy type simulator is greedy (according to the meaning of this word in Operations
Research) since the actual demand (load) is known in each time interval, but the same is not
possible for demands related to the future. As far as future is concerned, only forecast demand is
known.

The not greedy type simulator is not greedy since it considers a predictive part that allows to
know some aspect of the future (such as load).

The continuity or discontinuity aspect of the model is related to the way of considering power
and consequently system wide constraints. The model (simulator) is defined continuous if the
power is continuous by passing from a time sub-interval m to the following, but it is not necessarily
derivable. The model (simulator) is defined discontinuous if the power is constant in each time
sub-interval m and it is discontinuous passing from a time sub-interval m to the following.

5.2.1 Objective Function

As previously explained in Chapter 2 (section 2.1.1), the objective function of the UC is defined
as follows:

∑
i∈P

ci(pi, ui) =
∑
i∈P

(
si(ui) +

∑
t∈T

(
ait(p

i
t)

2 + bitp
i
t + citu

i
t

))
(5.38)

This objective function is posed in classical form, representing the total power production cost
to be minimized. It’s possible to consider different objective functions, in order to maximize the
expected value of electricity market profit or taking into account environmental impacts. We have
chosen to consider the classical form for two main reasons: to pose the accent on the peculiarity
of the proposed model and to better compare results with standard UC formulation.

Status variables uit (with i ∈ P and t ∈ T ) indicate if the thermal unit i is on (value 1) or if
it is off (value 0) in time period t. Variables pit (with i ∈ P and t ∈ T ) represent power generated
by the thermal unit i at the end of the time period t and they are expressed in MW . Coefficients
ait, b

i
t, c

i
t represent respectively the quadratic, linear and constant term of the cost function of the

thermal unit i in period t. In RED problem, cost coefficients are expressed as follows:

âit,m = ait,mfm (5.39)

b̂it,m = bit,mfm (5.40)

ĉit,m = cit,mfm (5.41)

with fm = fh
M where fh is the duration of time interval t and fm is the duration of time sub-interval

m.
In RED, variables uit are fixed, knowing the UC solution. If we consider the discretization of

time interval t into m time sub-intervals, as explained above, the power variables are expressed as
follows:

pit,m i ∈ P t ∈ T 1 ≤ m ≤M (5.42)

In picture 5.18 a representation of power variables considered in the RED problem is given.
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Figure 5.18: Correspondence between UC and RED power variables.

In our model, we considered 3 types of slack variables θ (expressed in MWh) which are used
to relax the system wide constraints on energy balance, as described below:

� slack variables θ+
t,m

and θ−
t,m

are related to slacks obtainted in the time sub-interval m for

the current hour t;

� slack variables θ+,suc
t,m and θ−,suct,m are related to slacks obtained in the following hours (hours

that follow the current hour t); these slack variables exist only if we consider not greedy
simulators (both continuous and discontinuous), since these simulators are taken into account
when a prediction over the energy demand is required;

� slack variables θ+,res

t,m
and θ−,res

t,m
are related to slacks obtainted in the remaining part of the

current hour t; these slack variables exist only if we consider not greedy simulators (both
continuous and discontinuous).

With these assumptions, the objective function for the generic RED problem considering the
t,m time interval will read

f(pit,m, θ
+
t,m
, θ−
t,m

) + f(pit,M , θ
+,res

t,m
, θ−,res
t,m

) + f(pit, θ
+,suc
t,m , θ−,suct,m ) (5.43)

which is equal to

f(pit,m) + f(pit,M ) + f(pit) + f(θ+
t,m
, θ−
t,m
, θ+,res

t,m
, θ−,res
t,m

, θ+,suc
t,m , θ−,suct,m ) (5.44)
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with t ≤ t+ 1 ≤ T . The terms concerning the remaining part of the current hour are considered
in the part f(pit) since we have pi

t,M
= pi

t
. So the objective function becomes:

f(pit,m) + f(pit) + f(θ+
t,m
, θ−
t,m
, θ+,res

t,m
, θ−,res
t,m

, θ+,suc
t,m , θ−,suct,m ) (5.45)

with t ≤ t+ 1 ≤ T .
The objective function of the generic RED problem consists of three parts:

1. f(pi
t,m

) is the objective function for the m time interval in the current hour t and it is

expressed as follows:

� Continuous case

∑
i∈P

ci(pi) =
∑
i∈P

âit,m
(
pi
t,m−1

+ pi
t,m

)2

3
+ b̂it,m

(
pi
t,m−1

+ pi
t,m

)
2

+ ĉit,mu
i
t

 (5.46)

� Discontinuous case∑
i∈P

ci(pi) =
∑
i∈P

(
âit,m(pit,m)2 + b̂it,m + pit,m + ĉit,mu

i
t

)
(5.47)

2. f(pit) is the objective function of the UC problem for t ≤ t ≤ T (considering also t) and it
is expressed as follows:

∑
i∈P

ci(pi, ui) =
∑
i∈P

(
si(ui) +

∑
t∈T

(
ait(p

i
t)

2 + bitp
i
t + citu

i
t

))
(5.48)

3. f(θ+
t,m
, θ−
t,m
, θ+,res

t,m
, θ−,res
t,m

, θ+,suc
t,m , θ−,suct,m ) is the objective function of slack variables.

As far as point 1 is concerned, given the time interval t, the demand variation is expressed as
follows

p(s) = pit−1 + αs (5.49)

with 0 < s < fm and α = pt−pt−1

fm
.

The objective function can be obtained by the integral

fm∫
0

a [p(s)]
2

+ bp(s) + c ds (5.50)

which is composed by three parts:

� part considering ci

cifm (5.51)

� part considering bi, the primitive is

bi(pit−1s+ α
s2

2
) (5.52)
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so the integral is

bi(pit−1fm +
1

2
αf2

m) = bifm(pit−1 + α
fm
2

) (5.53)

which, by substituting the value of α, becomes

bifm(pit−1 +
pit − pit−1

2
) = bifm

pit−1 + pit
2

(5.54)

� part considering ai, the primitive is

ai(pit−1)2s+ αpit−1s
2 + α2 s

3

3
(5.55)

so the integral is

ai(pit−1)2fm + αpit−1f
2
m + α2 f

3
m

3
(5.56)

which, by substituting the value of α, is equal to the following expression

aifm
(pit

2
+ (pit−1)2 + pit−1p

i
t)

3
(5.57)

5.2.2 Constraints of the RED model

We can assume, without loss of generality, that âit,m, b̂it,m, ĉit,m are constant for 1 ≤ m ≤ M ,
since t is constant in this time interval. We have two types of RED constraints:

� local constraints for thermal units;

� system wide constraints.

We consider also a continuity constraint for power variables passing from a time interval t into
the following.

Local constraints for thermal units

These constraints represent technical restrictions for thermal units, they are:

� power limit constraints;

� ramping constraints.

Power limit constraints imply that power must be limited between a minimum and maximum
power as shown below:

piminu
i
t ≤ pit,m ≤ pimaxuit t ∈ T m ∈M uit ∈ {1} (5.58)

where pimax and pimin are respectively the maximum and minimum power generated when the
thermal unit i operates in a steady state and they are expressed in MW . These constraints are
considered only for uit = 1 in RED, since we know that if uit = 0 the thermal unit i is off and
pit,m = 0 ∀m.

As far as not greedy RED simulations are concerned, power limit constraints are expressed as
follows:
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� Power limit constraints for thermal units considering time sub-intervals m

pimin ≤ pit,m ≤ p
i
max (5.59)

� Power limit constraints for thermal units considering remaining parts of the current hour t

pimin ≤ pit,M ≤ p
i
max (5.60)

� Power limit constraints for thermal units considering the following hours

pimin ≤ pti ≤ pimax t+ 1 ≤ t ≤ T (5.61)

Ramping constraints limit the maximum increase or decrease in power generated from a
time period to the following and reflect the thermal and mechanical inertia of thermal units.
These constraints require that the maximum increase of power generated from a time period to
the following is limited to ∆i

+ > 0 (∆i
+ is called maximum ramp-up rate and it is expressed in

MW/h), and, analogously, the maximum decrease of power generated from time period t to the
following is limited to ∆i

− > 0 (∆i
− is called maximum ramp-down rate and it is expressed in

MW/h).
This definition can be applied only if the thermal unit is on in both periods t and t+ 1.
For RED problem, it’s necessary to modify the ramp rates considering the discretization of

time interval t into M time sub-intervals, so the ramp rate between m− 1 and m is expressed as

∆i

M

With these assumptions, ramping constraints in RED problem are expressed as follows, the
terms • are known form the solution at time m− 1:

� Ramp-up constraints

for m = 1 pit,m ≤ pit−1,M + uit−1

∆i
+

M
+ (1− uit−1)l

i
(5.62)

for m > 1 pit,m ≤ pit,m−1 + uit−1

∆i
+

M
(5.63)

� Ramp-down constraints

∀m pit,m−1 ≤ pit,m + uit
∆i
−
M

+ (1− uit)ui (5.64)

for
t ∈ T m ∈M i ∈ P uit ∈ {1}

Ramping constraints are considered only if uit = 1 in RED, since it’s known that if uit = 0 the
thermal unit i is off and pit,m = 0 ∀m.

As far as not greedy RED simulations are concerned, ramping constraints are expressed as
follows:
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� Ramping constraints for thermal units considering time sub-intervals m Variables uit are
known from the UC solution. Ramping constraints are considered only if ui

t
6= 0.

– Ramp-up constraints

1. for m = 1

pit,m ≤ p
i
t−1,M + uit−1

∆i
+

M
+ (1− uit−1)l

i
(5.65)

2. for m > 1

pit,m ≤ p
i
t,m−1 +

∆i
+

M
(5.66)

– Ramp-down constraints

pit,m−1 ≤ p
i
t,m +

∆i
−
M

∀m (5.67)

The values of pi
t,m−1

are known from the initial conditions at time t = 0 or from the m− 1

RED problem results.

� Ramping constraints for thermal units considering remaining parts of the current hour t In
order to write ramping constraints we consider power variables in the same time interval t.
Ramping constraints are considered only if ui

t
6= 0.

– Ramp-up constraints

pit,M ≤ p
i
t,m + ∆i

+

(M −m)

M
(5.68)

– Ramp-down constraints

pit,m ≤ p
i
t,M + ∆i

−
(M −m)

M
(5.69)

� Ramping constraints for thermal units considering the following hours Ramping constraints
are considered only if uit 6= 0. We have:

– Ramp-up constraints

pit ≤ pit−1 + uit−1∆i
+ + (1− uit−1)l

i
t+ 1 ≤ t ≤ T (5.70)

1. uit = 1

uit−1 = 0 → pit ≤ l
i

uit−1 = 1 → pit − pit−1 ≤ ∆i
+

(5.71)

2. uit = 0

uit−1 = 0→ 0 ≤ li always satisfied (5.72)

uit−1 = 1→ pit−1 ≤ ∆i
+ always satisfied (5.73)
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– Ramp-down constraints

pit−1 ≤ pit + uit∆
i
− + (1− uit)ui t+ 1 ≤ t ≤ T (5.74)

1. uit = 1

uit−1 = 0 → pit ≥ −∆i
− always satisfied

uit−1 = 1 → pit−1 − pit ≤ ∆i
−

(5.75)

2. uit = 0

uit−1 = 0 → 0 ≥ −∆i
−always satisfied

uit−1 = 1 → pit−1 ≤ ui
(5.76)

System wide constraints

System wide constraints are necessary to respect the balance condition between the energy
demand at time m and the energy generated by each unit at time m. For each time period t ∈ T
of duration fh (measured as a fraction of hour) the forecast energy demand dt (MWh) can be
divided into M time subintervals, as indicated in section 5.1.3 , so that we can obtain a constant
energy demand dt,m in the time sub-interval m .

The energy demand at time sub-interval m must be balanced by the generated energy, that is
equal to the sum of the energies generated by the thermal units i in the time sub-interval m, with
the assumption that power pt,m at time (t,m) must satisfy ramping constraints.

As far as RED simulations are concerned, system wide constraints are expressed as follows:

� System wide constraints for thermal units considering time sub-intervals m

– Continuous case

∑
i∈P

1

2

(
pi
t,m−1

+ pi
t,m

)
M

+ θ+
t,m

+ θ−
t,m

= dt,m (5.77)

– Discontinuous case ∑
i∈P

1

M
pit,m + θ+

t,m
+ θ−

t,m
= dt,m (5.78)

with 1 ≤ m ≤M
t indicates the current hour

m indicates the current quarter of the current hour t

M indicates the number of the time sub-intervals m in the current hour t, so 1
M represents

a fraction of the current hour t, in our case M = 4

θ+
t,m
≥ 0 and θ−

t,m
≤ 0 are slack variables in order to relax the system wide constraints for

energy balance.

� System wide constraints for thermal units considering remaining parts of the current hour t
We have remaining parts of the current hour t only if m < M and ui

t
6= 0



5.2 Reduced Economic Dispatch problem for thermal units with ramping constraints 91

– Continuous Case∑
i∈P

1

2

(
pit,m + pit,M

) (M −m)

M
+ θ+,res

t,m
+ θ−,res

t,m
= dt,m −

m∑
k=1

Dt,k (5.79)

– Discontinuous Case∑
i∈P

pit,m
(M −m)

M
+ θ+,res

t,m
+ θ−,res

t,m
= dt,m −

m∑
k=1

Dt,k (5.80)

dt,m indicates the actual energy demand in the time interval t− 1, t

Dt,k indicates the actual energy demand in the current time interval k with 1 ≤ k ≤M

pi
t,M

= pi
t

indicates the power at the end of the hour t

θ+,res

t,m
≥ 0 and θ−,res

t,m
≤ 0 are slack variables in order to relax the system wide constraints

for energy balance.

(M−m)
M indicates the remaining part of the current time interval

� System wide constraints for thermal units considering the following hours

– Continuous Case∑
i∈P

1

2

(
pit−1 + pit

)
+ θ−,suct + θ−,suct = dt t+ 1 ≤ t ≤ T (5.81)

– Discontinuous Case∑
i∈P

pit + θ−,suct + θ−,suct = dt t+ 1 ≤ t ≤ T (5.82)

θ+,suc
t ≥ 0 and θ−,suct ≤ 0 are slack variables in order to relax the system wide constraints

for energy balance. Variables uit are known from the UC solution.

Continuity constraints

Continuity constraints are necessary in order to have a continuous power in time period T , as
shown in picture 5.18. Considering that power and ramping constraints exist only if uit = 1, we
have the following assumptions:

� For uit = 1

pi1,0 = P i0 i ∈ P t = 1 (5.83)

pit−1,M = pit,0 i ∈ P t > 1 (5.84)

� For uit = 0:

pit,M = 0 i ∈ P t > 1 (5.85)
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The (5.83) is necessary to the ramp up constraint at time t = 1 where the value of power pi1,0
is considered. The (5.84) is the condition of coincidence between m = M at time t and m = 0
at time t+ 1, necessary to ramp-up/down constraints. The (5.85) is necessary to ramp-up/down
constraints, in fact, for uit+1 = 1 and m = 1 we have pit+1,0 = pit,M , if the thermal unit i is off at

time t then pit,M = 0→ pit+1,0 = 0.

As far as not greedy RED simulations are concerned, variables pit are subject to the following
continuity constraints:

pit,M = pit (5.86)

The constraints on the UC solution are expressed as follows:

uit = 0→ pit = 0 (5.87)

5.3 Results and discussion

In order to test our simulators, we considered 4 input data instances, (2 instances with 10
thermal units and 2 instances with 20 thermal units). The UC problem was solved for each input
data instance. The actual demand profile is assumed to be identical to the forecast demand profile,
used to solve the UC problem. For each simulator type, tests have been made considering the 4
input data instances mentioned above. To process the actual demand profile into energy demand
profile we used a piece-wise approximation, as described in section 5.1. In particular, the actual
demand profile has been obtained setting ad hoc parameters involving the slope discretization
type in order to make this profile as smooth as possible. These parameters settings are the same
for all simulations regardless to the instance since the demand profile characteristics are similar:
lower power demand in times 3− 4 and higher power demand in times 12− 13.

Table 5.1) and Table 5.2) summarize the results that we have obtained in our simulations. The
tables present the following columns:

� ID (column 1): represents the simulation ID;

� Thermal units number (column 2): represents the thermal units number considered in
the simulation;

� Simulator type (column 3): represents the simulator type (greedy, not greedy, continuous,
discontinuous);

� Number of θ+
t,m

(column 4): represents the number of positive slack variables in the time

sub-interval m;

� Number of θ−
t,m

(column 5): represents the number of negative slack variables in the time

sub-interval m;

� Total number of θ+
t,m

and θ−
t,m

(column 6): represents the total number of slack variables

in the time sub-interval m;

� Total value of θ+
t,m

and θ−
t,m

(column 7): represents the total value of slack variables in

the time sub-interval m expressed in [MWh];
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� Number of θ+,suc
t,m (column 8): represents the number of positive slack variables in the

following hours (the hours that follow the current hour t considered);

� Number of θ−,suct,m (column 9): represents the number of negative slack variables in the
following hours (the hours that follow the current hour t considered);

� Total number of θ+,suc
t,m and θ−,suct,m (column 10): represents the total number of slack

variables in the following hours (the hours that follow the current hour t considered);

� Total value of θ+,suc
t,m and θ−,suct,m (column 11): represents the total value of slack variables

in the following hours (the hours that follow the current hour t considered) expressed in
[MWh];

� Number of θ+,res

t,m
(column 12): represents the number of positive slack variables in the

remaining part of the current hour t;

� Number of θ−,res
t,m

(column 13): represents the number of negative slack variables in the

remaining part of the current hour t;

� Total number of θ+,res

t,m
and θ−,res

t,m
(column 14): represents the total number of slack

variables in the remaining part of the current hour t;

� Total value of θ+,res

t,m
and θ−,res

t,m
(column 15): represents the total value of slack variables

in the remaining part of the current hour t expressed in [MWh].

If we analyze tables 5.1 and 5.2 we observe that:

� greedy simulators (both continuous and discontinuous) present only slack variables for time
sub-interval m;

� generally, greedy discontinuous simulators are more efficient than greedy continuous simula-
tors, since they present a lower number of slack variables in a lower value;

� in not greedy discontinuous simulators slacks over balance constraints for the following hours
are equal to zero, that’s why constraints have been already satisfied by the UC problem
solution; this means that slack variables number and values are lower than these present in
greedy continuous simulators;

� generally, not greedy discontinuous simulators work better than the continuous ones, since
they consider UC discontinuous solution from a power point of view. Not greedy simulators
are more efficient than the greedy ones, since they present a predictive part which allows to
reduce the number of slack variables and to satisfy constraints in RED problems.

To analyze the difference between the performances of the simulators developed, we carried
on a statistical results analysis. The term ‘performances’ stands for the ‘good behavior’ of the
model in the adaptation to the load profile and it is not related with the computational efficiency
of the model itself. In particular, we studied the statistical correlation between the actual demand
profile and the demand profile obtained with the simulators (considering simulation 3). Table 5.3
summarizes the results obtained. We analyze the result looking at the ability of the simulator
in following the input demand profile: less slack variables different from zero value mean a lower
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number of not satisfied constraints, hence the model that has this behavior and the higher cor-
relation of the output profile with the demand profile is to be preferred. If we analyze table 5.3,
we notice that not greedy discontinuous simulators present the greatest value of correlation, while
the standard deviation is the lowest.

ID Units Type No No Tot No Tot Val No No

θ+
t,m

θ−
t,m

θ+
t,m

, θ−
t,m

θ+
t,m

, θ−
t,m

θ+,suc
t,m θ−,suct,m

1 10 19 3 22 223.70 - -
2 10 Greedy 27 4 31 258.16 - -
3 20 Cont. 23 0 23 82.61 - -
4 20 30 2 32 232.27 - -

1 10 14 1 15 148.86 - -
2 10 Greedy 22 3 25 222.35 - -
3 20 Discont. 18 1 19 70.46 - -
4 20 17 2 19 150.07 - -

1 10 Not 34 28 62 259.00 200 119
2 10 Greedy 40 29 69 130.42 336 191
3 20 Cont. 39 31 70 205.41 380 227
4 20 38 31 69 259.95 334 217

1 10 Not 12 1 13 124.2 0 0
2 10 Greedy 18 3 21 112.4 0 0
3 20 Discont. 12 0 12 46.27 0 0
4 20 13 2 15 128.68 0 0

Table 5.1: Results obtained in simulations - table 1.



5.3 Results and discussion 95

ID Units Type Tot No Tot Val No No Tot No Tot Val

θ+,suc
t,m , θ−,suc

t,m θ+,suc
t,m , θ−,suc

t,m θ+,res

t,m
θ−,res

t,m
θ+,res

t,m
, θ−,res

t,m
θ+,res

t,m
, θ−,res

t,m

1 10 - − - - - −
2 10 Greedy - − - - - −
3 20 Cont. - − - - - −
4 20 - − - - - −

1 10 - − - - - −
2 10 Greedy - − - - - −
3 20 Discont. - − - - - −
4 20 - − - - - −

1 10 Not 319 4678 17 6 23 308.23
2 10 Greedy 527 2098.31 18 7 25 153.84
3 20 Cont. 607 10879.41 15 8 23 185.37
4 20 551 5347.7 19 7 26 263.04

1 10 Not 0 0 6 0 6 24.83
2 10 Greedy 0 0 4 0 4 34.43
3 20 Discont. 0 0 4 0 4 19.48
4 20 0 0 6 0 6 29.42

Table 5.2: Results obtained in simulations - table 2.

Simulator Type Correlation Standard Deviation %Pdemmin %Pdemmax

Greedy Disc. 99.89 19.12 1.76 0.81
Not Greedy Disc. 99.92 22.49 1.56 0.72

Table 5.3: Statistical analysis of the simulations results.

5.3.1 RED Greedy model

As far as greedy simulations are concerned (both continuous and discontinuous) they present
difficulties in the adaptation to the actual demand profile, since the predictive part is totally
absent. Greedy continuous simulator presents more difficulties than the greedy discontinuous one,
since the UC problem is discontinuous as far as power is concerned. In fact, in UC power is not
continuous, since we have a discontinuity in the power between a time interval and the following.

Both greedy and not greedy simulators present some difficulties at time t = 1 since there’s a
marked difference between pi0 and the demand to be satisfied; this is a structural characteristic
of the input data instances utilized in simulations. However, these difficulties can be partially
overcome if we consider ‘ad hoc’ load profiles in our simulations, for instance, profiles without
marked asperities, as we can observe in simulation 3.

The images depicted below represent the behavior of greedy (both continuous and discontinu-
ous) simulators for each test that has been made. In figures which represent power demand profile,
black line indicates actual demand profile while green line indicates forecast demand profile.
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5.3.2 RED Not-Greedy model

As far as not greedy discontinuous simulations are concerned they present a better behav-
ior than greedy simulators (both continuous and discontinuous) in the adaptation to the actual
demand profile, since the predictive part allows to know some future aspects (like loads in the
following hours). In particular, since UC problem is discontinuous as far as power is concerned,
not greedy discontinuous simulators implement global constraints for the following hours (not
greedy component) as UC problem does. This comes up to our expectations and it results the
best simulator among the 4 developed. As we can see, not greedy continuous simulations present
the worst behavior due just to continuous global constraints for the following hours.

The images depicted below represent the behavior of not greedy (both continuous and discon-
tinuous) simulators for each test that has been made. In figures which represent power demand
profile, black lines indicate actual demand profile while green lines indicate forecast demand profile.

5.4 Conclusions

In this chapter a new model, called ‘Reduced Economic Dispatch’ (RED), has been presented.
The objective of this model is to refine the UC solution, individuating the power that each unit
must generate in a given time sub-interval of an assigned time interval. The various simulators
that have been developed, based on this new model, are effective to compare the flexibility, the
efficiency and the effectiveness of different UC solutions in the adaptation to the actual electricity
demand (load) in a real time electrical system. In the simulation phase, we observed that the best
simulator, among the four developed, is the not greedy discontinuous one, because it gives the
better results, since the lowest number of slack variables is obtained. It came up to our expecta-
tions, since, as explained previously, the UC is discontinuous from a power point of view. Besides,
simulations results show that it is very important to correctly set the parameters which determine
the transformation of the power-demand profile used in the UC problem into the energy-demand
profile used in the simulator. These parameters have to take into account the characteristics of the
power-demand profile in order to avoid marked asperities of the load. In these cases, simulators
generally work properly since they consider the status of the units obtained in the solution of the
UC.

As far as future work is concerned, it could be very interesting to use the simulator developed
in order to analyze the differences between the various UC formulations, in terms of the quality of
the solution obtained, considering more input data instances with more generating units. Besides,
simulations could be made considering also hydro units and more different load profiles. In order to
study these differences, it could be necessary to perform several simulations on real time problems.
The aim of these simulations is to compare the flexibility, the efficiency and the effectiveness of
the UC solutions in the adaptation to the actual load. The formulations that could be taken
into account in this analysis could be represented by the models for UC with spinning reserve
constraints and by the robust models which are based on Robust Optimization considerations.

As far as spinning reserve UC models are concerned, Spinning Reserve constraints are taken
into account in the formulation. Energy operators in the electricity market are required to store
an energy reserve for different reasons, such as load peaks, units’ failures or bad power scheduling.
This reserve is defined operating reserve and consists of a Spinning Reserve and a Non-spinning
Reserve. Spinning Reserve is defined as the available additional synchronized electricity to satisfy
demand immediately. Non-spinning Reserve is not connected to the system but it can be useful to
satisfy the load for about ten minutes. The Spinning Reserve quantity is estimated by technicians;
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in most of UC applications, Spinning Reserve requirement is assumed deterministic. For example,
in some applications, it is considered as a percentage of the load peak. Energy operators store
Spinning Reserve in case of unexpected problems, however storing too much reserve is costly and
so extra quantities of Spinning Reserve must be avoided.

Since only small quantities of energy can be stored, the electricity production has to follow
the demand exactly and real-time. However, this is very difficult, since, even if demand forecasts
are developed, demand that must be satisfied effectively (load) is different from forecast demand.
That’s why uncertainty of the load level must be considered in order to obtain a more realistic
model for UC. A new approach that considers Robust Optimization can represent a useful way
to formulate such model for UC, so that it’s possible to manage load variations in a flexible
way. Robust Optimization is an approach for optimization under input data uncertainty. It does
not rely on a stochastic model to model the distribution of data. Despite of immunize solution
from stochastic uncertainty in a probabilistic sense, according to Robust Optimization approach,
decisions maker chooses the worst feasible solutions in a given uncertainty set, then these solutions
are minimized considering uncertain parameters. In that way, solutions that are insensitive to
uncertain parameters variations and models more useful from a computational point of view are
obtained [Nai08].

In a future work, the main differences, expressed in terms of solution, between the spinning
reserve and the robust UC models will be analyzed, considering the simulator model presented
in this chapter, useful to make simulations on real time Reduced Economic Dispatch (RED)
problems. Our final objective will be to show the main differences between the robust model and
the spinning reserve model. The first difference is that the robust model guarantees the ramping
constraints feasibility both in the case of an increasing load and in the case of a decreasing load.
Furthermore, the robust model considers thermal and hydro units in the same way, while spinning
reserve model is asymmetrical from this point of view. In fact, the spinning reserve model works
well only if we have increasing load peak, while if we have decreasing load peaks the model presents
several difficulties; the robust model instead is more flexible in the adaptation to the load profile.

(a) Power distribution for continuous greedy simu-
lators in sim 1.

(b) Power demand profile for continuous greedy
simulators in sim 1.

Figure 5.19: Greedy continuous simulation results - sim 1.
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(a) Power distribution for discontinuous greedy sim-
ulators in sim 1.

(b) Power demand profile for discontinuous greedy
simulators in sim 1.

Figure 5.20: Greedy discontinuous simulation results - sim 1.

(a) Power distribution for continuous greedy simu-
lators in sim 2.

(b) Power demand profile for continuous greedy
simulators in sim 2.

Figure 5.21: Greedy continuous simulation results - sim 2.

(a) Power distribution for discontinuous greedy sim-
ulators in sim 2.

(b) Power demand profile for discontinuous greedy
simulators in sim 2.

Figure 5.22: Greedy discontinuous simulation results - sim 2.
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(a) Power distribution for continuous greedy simu-
lators in sim 3.

(b) Power demand profile for continuous greedy
simulators in sim 3.

Figure 5.23: Greedy continuous simulation results - sim 3.

(a) Power distribution for discontinuous greedy sim-
ulators in sim 3.

(b) Power demand profile for discontinuous greedy
simulators in sim 3.

Figure 5.24: Greedy discontinuous simulation results - sim 3.

(a) Power distribution for continuous greedy simu-
lators in sim 4.

(b) Power demand profile for continuous greedy
simulators in sim 4.

Figure 5.25: Greedy continuous simulation results - sim 4.
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(a) Power distribution for discontinuous greedy sim-
ulators in sim 4.

(b) Power demand profile for discontinuous greedy
simulators in sim 4.

Figure 5.26: Greedy discontinuous simulation results - sim 4.

(a) Power distribution for continuous not greedy
simulators in sim 1.

(b) Power demand profile for continuous not greedy
simulators in sim 1.

Figure 5.27: Not-Greedy continuous simulation results - sim 1.

(a) Power distribution for discontinuous not greedy
simulators in sim 1.

(b) Power demand profile for discontinuous not
greedy simulators in sim 1.

Figure 5.28: Not-Greedy discontinuous simulation results - sim 1.
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(a) Power distribution for continuous not greedy
simulators in sim 2.

(b) Power demand profile for continuous not greedy
simulators in sim 2.

Figure 5.29: Not-Greedy continuous simulation results - sim 2.

(a) Power distribution for discontinuous not greedy
simulators in sim 2.

(b) Power demand profile for discontinuous not
greedy simulators in sim 2.

Figure 5.30: Not-Greedy discontinuous simulation results - sim 2.

(a) Power distribution for continuous not greedy
simulators in sim 3.

(b) Power demand profile for continuous not greedy
simulators in sim 3.

Figure 5.31: Not-Greedy continuous simulation results - sim 3.
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(a) Power distribution for discontinuous not greedy
simulators in sim 3.

(b) Power demand profile for discontinuous not
greedy simulators in sim 3.

Figure 5.32: Not-Greedy discontinuous simulation results - sim 3.

(a) Power distribution for continuous not greedy
simulators in sim 4.

(b) Power demand profile for continuous not greedy
simulators in sim 4.

Figure 5.33: Not-Greedy continuous simulation results - sim 4.

(a) Power distribution for discontinuous not greedy
simulators in sim 4.

(b) Power demand profile for discontinuous not
greedy simulators in sim 4.

Figure 5.34: Not-Greedy discontinuous simulation results - sim 4.
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Chapter 6

Improved Unit Commitment
models in presence of wind energy
sources ∗

Conventional electrical systems are highly fossil fuel dependent, being the major contributors
to greenhouse gas emissions and depletion of global fossil fuel resources which are characterized
by more volatile prices [EIA04]. Several world countries actively support the growing use of
renewable energy sources, such as wind, in order to meet Kyoto Protocol targets for reducing
greenhouse gas emissions, provide energy security and promote economic development [Hel05].
Wind energy contributes to this target with a significant percentage. In particular, wind has
been the most exploited renewable energy source in the United States and in Europe in the past
decade [WWE11]. In order to promote the use of renewable energy sources, the European Union
Parliament adopted the ‘Renewables Directive’ in 2001. This directive obliges all the member
states to produce a certain amount of electricity from renewable energy sources [Com97] [Par01].

By the end of 2004, 2% of the European Union’s electricity was produced by wind turbines;
this percentage reached about 6% at the end of 2010 [Sta04]. In some world and European
countries wind is an important part of the electricity supply, for instance, in Europe, countries
like Spain, Germany and Denmark already produce over 20% of their electricity utilizing wind
sources [dEn03] [dPdERA05] [End05] [Aut04]. The amount of electricity produced from wind in
Europe will increase in the next years, especially in most of the northern European countries.
Also the United States is currently characterized by a strong growth in wind energy production
[SDPM04]. Figures (6.1) and (6.2) show how wind energy represents a high portion of world
electricity.

In this chapter we present the state of the art on the integration of wind energy sources into
conventional electrical systems; hence we illustrate the basic idea of our model and its detailed
formulation; thus we set-up a suitable dataset based on realistic data (based on the Italian electrical
system); finally we present the simulation results and outline the conclusions.

∗Part of the material presented in this chapter is based on the following publication A. Naimo. A novel model
for power Unit Commitment in presence of wind energy sources. Technical Report R. 12-14, IASI-CNR, 10/2012.
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Figure 6.1: World Total Wind Installed Capacity (source: WWEA - World Wind Energy Report
2010).

Figure 6.2: Wind Capacity per capita [KW/cap] in some world countries (source: WWEA - World
Wind Energy Report 2010).
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6.1 State of the art on use of wind into electrical systems

The integration of wind energy into the electrical systems is complex and significantly chal-
lenging, especially when large amounts of variable wind generation are introduced [BDO04]. Even
if there exist positive aspects related with the utilization of wind energy, there is a current debate
on the advantages and disadvantages associated with this type of energy source; some researchers
are convinced that the use of wind energy sources leads to high operational costs and influences
the stability of the system, resulting in increased prices [Eth06]. When wind power plants are
connected to the electrical network, it is necessary to improve transmission lines, in order to avoid
grid stability problems, needing additional operational costs. Furthermore, when the uncertainty
associated with the electricity produced by wind energy sources becomes greater than the uncer-
tainty of the demand, it is no longer possible to maintain the same power system reliability with
the conventional power plant scheduling techniques.

Moreover, the ongoing integration and deregulation of electricity markets in Europe and in
the world requires that part of the electricity production is traded daily on power pools where
producers state how much electricity they will provide up to 36 hours in advance. This market
structure induces additional costs for wind power producers due to the greater unpredictability of
wind power at these time horizons. These issues motivate the importance of wind power forecasting
techniques that are fundamental to provide accurate forecasts on wind production. Furthermore,
power system operators, producers, and energy authorities must know the wind power plants
costs, like it happens for conventional generating units, in order to make correct investments and
decisions. Evaluating the costs associated with the utilization of wind energy sources is not trivial,
since they depend on many factors like the availability of fuels and the capacities of the existing
power plants and transmission lines. Finally, wind power plants influence the operational costs of
the whole power system, especially if large amounts of wind power are installed.

However, according to some researchers, the development of wind generation should by widely
supported in order to avoid the depletion of fossil fuel resources, and to save fuel costs by deallocat-
ing conventional generating units, consequently reducing gas emissions [Bro06]. For these reasons,
even if the integration of wind energy sources into conventional electrical system is growing in
importance, due to its economical and environmental development benefits, particular attention
must be devoted to the related practical operational aspects.

As described in the previous chapters, in any power system, power plants should adapt their
production to the variations of load, ensuring their output during planned and unplanned outages.
As far as this aspect is concerned, conventional power systems that own thermal power plants
do not present difficulties in their scheduling dispatch, since daily loads are easily predictable.
Statistical distributions are often taken into account to manage the uncertainty in the load and in
the variable costs of each power plant. For this reason, stochastic optimization techniques [KW94]
are generally used by utilities to schedule power plants in order to minimize the total variable
operational and maintenance costs. Furthermore, when power systems with significant amounts
of hydro and wind power are considered, the uncertainty in the power production is greater,
because the output of wind and hydro generators depends on the varying weather conditions
[NGH+04]. Stochastic optimization techniques are also used in such types of systems, since the
probability that hydro and wind power plants will not be able to produce electricity at a given
time in the future is greater, with respect to thermal power plants.

In order to overcome the drawbacks of the statistical approaches, Gardiner et al. [GHSHG03]
and DETI [otETD07] presented a simpler approach to operate a power system with wind gener-
ation, called ‘fuel-saver ’ approach. According to the ‘fuel-saver ’ system operation approach, the
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utilities vary the output of their conventional power plants in order to compensate the uncertain
output of the wind power plants, resulting in greater fuel and operational costs. In particular,
this approach assumes that ‘the conventional generation that would run if there was no wind gen-
eration on the system will also run when wind generation is connected ’. As the output of wind
generation is increased, the output of the conventional generators will be reduced accordingly, but
no conventional generation will be shut down [Den07]. This method consists of three steps. At
first step, wind generation is not considered in the power scheduling and the UC decisions are
made ignoring any installed wind capacity. At second step, once the commitment decision has
been made, the wind generation is taken into account. At third step, if wind generation is avail-
able, it is used and the conventional plants which have been previously dispatched are de-loaded
at their minimum power (but not switched off) to take into account wind generation. If wind
production reaches a level such that no more conventional generation can be de-loaded, then any
further wind production is curtailed.

Even if this approach is simple, it presents several drawbacks. In fact, it assumes that wind
generation has a capacity equal to zero and it is available at real time. Furthermore, this strategy
ignores forecasting and reliability issues of wind production and it results in an over commitment
of conventional units, making these units running at much lower levels of efficiency than under the
approach adopting wind power forecasts. For this reason, the fuel-saver approach results in large
amounts of wind energy curtailment, of up to 30% of the annual output at high levels of installed
wind power [Den07], and it is a highly inefficient method since the costs of wind generation exceed
the benefits at all levels of installed wind generation.

The integration of wind energy sources into conventional electrical system is becoming funda-
mental due to all the benefits that it leads, nevertheless, this integration must be carried out with
particular attention and accuracy, taking into account all the aspects that could conflict with the
operational characteristics of the already existing conventional electrical systems.

The large integration of wind energy resources into electrical systems poses important chal-
lenges to the power operators in the scheduling of the production and in the management of the
network. This leads to the necessity to modify the current industry procedures, such as the UC
and the ED, to take into account large amounts of wind power production. Even if an exhaustive
literature exists on the general UC problem, devoted on how improve its mathematical formulation
and its solution algorithm [Pad04], the research that considers the UC problem in presence of wind
energy resources is limited. Some researchers have focused their attention on the improvement
of the Security-Constrained Unit Commitment (SCUC) formulation, taking into account wind
energy resources, while others have developed novel methods for solving the UC problem. Bart et
al. presented the first stage of the WILMAR model (Wind Power Integration in the Liberalised
Electricity Markets) [WIL05]; later, a more refined UC algorithm based on MILP approaches has
been introduced in WILMAR. Tuohy et al. [TMDM09] studied the effects of stochastic wind on
UC using the WILMAR model and extending their previous studies in [TDM07] and [TMM08].
Ummels et al. analyzed the impacts of wind on the UC in the Dutch system, utilizing an ARMA
model to consider the forecasting error [UGP+07]. Bouffard and Galiana [BG08] developed a
stochastic UC model to take into account wind power generation and system security. Ruiz et al.
[RPS09] used a stochastic framework, already presented in [RPZ+09], to consider the uncertainty
and the variability of wind power in the UC problem. Wang et al. [WS08] presented a SCUC
algorithm that considers also wind generation, capturing the uncertainty of wind in a number of
scenarios.

When we consider a UC problem in presence of wind power plants, it is fundamental to study
how the characteristics of the solution are influenced by the introduction or the substitution of
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power plants in the set of the available generating units. In particular, it is necessary to:

� analyze how the UC solution is affected by the substitution of conventional generating units
with wind turbines and vice versa, within a given set of available generators, in terms of
adaptation to the given demand profile;

� analyze how the UC solution is affected by the introduction of new generating units (con-
ventional and wind power plants), within a given set of available generators, in terms of
adaptation to the given demand profile;

� determining the best configuration (optimal mix) of available generating units to be utilized,
choosing them within a given set of available units, in terms of a fraction of the total energy
produced.

In our research activities, a new UC model in presence of wind energy sources has been defined
and analyzed, in order to formulate and solve the problem of determining the best configuration
(optimal mix) of available thermal, hydro and wind power plants. The proposed model is a
generalized form of the UC problem, which takes into account conventional generating units (like
thermal and hydro power plants) and wind turbines; we call this model Generalized Wind Unit
Commitment Problem - (GWUCP). The objective of the new proposed model is to integrate the
renewable energy sources, like wind, into a conventional electrical system, taking into account
emission considerations and the risk associated with the utilization of wind turbines.

6.2 Basic ideas of the Generalized Wind Unit Commitment
Problem

The Generalized Wind Unit Commitment - (GWUC) model is based on the concept of sub-
sets of units: it is possible to choose only a part of the available generators, making a dynamic
modification of the given set of generating units, in order to determine the best configuration of
generators (optimal mix), minimizing the total production cost and satisfying the energy demand.
The main difference between this novel model and a classical UC one is that in the classical UC
all the available units (conventional and not) are considered committable for each time interval,
satisfying the constraints of the model. On the other hand, additional constraints are introduced
in the GWUC model, these constraints are taken into account during all the optimization sce-
nario and individuate a subset of units that can be committed: the units that the solution of
the model chooses to not belong to these subsets will be never committed. In this way, subset
constraints can be used as external requirements, for instance related to regulatory laws, such as
limited number of units of a particular type, risk limits associated with not programmable sources,
emissions constraints, geographical distribution requirements, reliability and security constraints,
transmission constraints. In all these cases we do not know a priori which is the single unit that
is not committed, hence the classical UC model is not applicable, while the GWUC model could
represent a valid approach because, as we will show in the following sections, the additional con-
straints are general purpose; in this thesis, we have specialized them to geographical distribution
requirements, emission control, and risk limit.

The GWUC model is defined as follows. Consider a set of thermal generating units P, a set of
hydro generating units H and a set of wind turbines W. Thermal generating units belonging to
the set P can be grouped into subsets called Ss, with respect to similar technical and operating
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characteristics. The same idea can be applied to the case of wind turbines belonging to the setW.
These units can be grouped into subsets called Ee, with respect to similar technical and operating
characteristics. On the other hand, we assume that hydro generating units belonging to the set H
are not grouped into subsets. In fact, the optimal mix depends on the status of the units, as we
will describe in the following sections, and no binary variables are necessary to model the status
of hydro units, since these power plants are not subjected to on/off constraints. For this reason,
we assume that hydro units are always available in the set H.

Thermal units and wind turbines could be grouped into subsets as depicted in the example
of Fig. 6.3. For the issues described above, the representation of the set H of hydro units is not
considered.

Figure 6.3: Assigned data structure for the GWUC problem.

In this example, thermal units subsets Ss are defined as follows:

S0 = {0, 2, 5}

S1 = {0, 1, 3}

S2 = {1, 4, 7}

S3 = {4, 6, 7}

S4 = {5, 6, 8, 9}

Indeed, wind turbines subsets Ee are shown below:

E0 = {2, 5}

E1 = {2, 3}

E2 = {6, 7}
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E3 = {1, 4}

E4 = {0, 1}
Assigned this data structure for thermal units and wind turbines, the objective of the GWUC

model is to analyze all the given subsets Ss and Ee and to determine the optimal mix of thermal,
hydro and wind generating units, in order to satisfy the energy demand, minimizing the total
production cost and respecting the operating and technical constraints of the generating units.

The optimal mix of generating units MOPT has the following properties:

� it is a subset of the available thermal and wind generating units set, this means that all the
available units could be chosen in the optimal mix. In other words, we have:

MOPT ⊆ P ∪W

� generating units which constitutes the optimal mix MOPT belong to subsets Ss and Ee which
satisfy certain relationship criteria; this concept is better described in the sections 6.3.7 and
6.3.8.

Given the assigned data structure depicted in Fig. 6.3, an example of optimal mix of thermal
and wind units is shown in Fig. 6.4. MT represents the optimal mix of thermal units, while ME

is the optimal mix of wind turbines.

Figure 6.4: Optimal mix of thermal and wind units.

Subsets Ss and Ee have some structural properties, as described below:

�
⋃nS−1
s=0 Ss = P (

⋃nE−1
e=0 Ee = W) → the union of subsets Ss (Ee) is equal to the given set

of thermal (wind) units P (W) (where nS (nE) is the number of subsets Ss (Ee) of thermal
(wind) units);

� Ss ∩ Ss′ 6= ∅ ∀s 6= s′ s, s′ = {0, . . . , nS − 1} (Ee ∩ Ee′ 6= ∅ ∀e 6= e′ e, e′ = {0, . . . , nE − 1})
→ subsets Ss (Ee) could be not disjoint: a thermal (wind) unit could belong to different
subsets Ss (Ee) at the same time, with respect to its technical and operating characteristics.

In the following section, a mathematical model for the GWUC is proposed and described.



112 Improved Unit Commitment models in presence of wind energy sources

6.3 Mathematical formulation of the GWUC

In this section, the mathematical formulation of the GWUC is presented. In particular, the
objective function, the variables and the constraints considered for the formulation are shown.

6.3.1 Objective function

As described previously in chapter 1, the objective of the UC decision process is to select the
generating units that have to be on or off, the type of fuel that has to be utilized, the power
generation level for each unit and the spinning reserve margins. The objective function of the
UC problem consists in minimizing the total operational cost, subjected to the system operating
constraints. In the case of the GWUC, the objective function includes also the operational costs
related with the utilization of wind energy sources, and the penalty terms associated with the
maximum and minimum energy deficit or surplus produced by thermal and wind units. In our
model, we assume that the objective function has a quadratic form with respect to the power pit
produced by the thermal unit i at time period t, as explained in [HRNC01].

Consider a set P of thermal units, a setH of hydro cascades, each comprising one or more basin
units, and a set W of wind turbines. T = {1, . . . , n} is the set of time periods defining the time
horizon (the time period “0” will be used to indicate the initial conditions of the power system).
Introducing status and power production variables of the thermal units, uit (binary variable) and
pit (continuous variable), respectively, with i ∈ P, t ∈ T , and introducing status, start-up, shut-
down variables of the wind units, xwt , ywt , zwt (binary variables), respectively, with w ∈ W, t ∈ T ,
the objective function of the UC, representing the total power production cost to be minimized,
has the following form

∑
i∈P

(
si(ui) +

∑
t∈T

(
ait(p

i
t)

2 + bitp
i
t + citu

i
t

))
+
∑
w∈W

∑
t∈T

(ewt x
w
t + fwt y

w
t + gwt z

w
t )

+Mθup +Mθdown

(6.1)

where

� si(ui) is the start-up costs function of unit i, possibly time-dependent;

� ait is the quadratic term of power cost function of thermal unit i at period t, expressed in
¿/MW 2;

� bit is the linear term of power cost function of thermal unit i at period t, expressed in ¿/MW ;

� cit is the constant term of power cost function of thermal unit i at period t, expressed in ¿;

� ewt is the power production cost of wind turbine w at period t, expressed in ¿;

� fwt is the start-up cost of wind turbine w at period t, expressed in ¿;

� gwt is the shut-down cost of wind turbine w at period t, expressed in ¿;
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� M is a sufficiently high constant value (big M) for slack variables θdown and θup, expressed
in MWh;

� θdown is a slack variable that represents the minimum energy deficit (negative) or surplus
(positive) produced by thermal and wind units, required to satisfy the exchange constraints
for dmin, expressed in MWh;

� θup is a slack variable that represents the maximum energy deficit (negative) or surplus
(positive) produced by thermal and wind units, required to satisfy the exchange constraints
for dmax, expressed in MWh.

As shown previously in chapter 1, power plants are subjected to technical constraints, de-
pending on their type and characteristics. The constraints of GWUC can be grouped in four
categories:

� operating constraints for thermal units;

� operating constraints for hydro units;

� operating constraints for wind turbines;

� power balance constraints.

6.3.2 Operating constraints for thermal units

The operating requirements of thermal generating units are usually expressed by inequality
constraints, which are used to model the technical characteristics of the units. As far as minimum
up and down time constraints, unit generation capability limits and ramp rate constraints, we
considered the constraints presented in chapter 2, section 2.1.2, which are the typical thermal
requirements of the classical UC problem. Nevertheless, in order to properly model the concept
of subsets and optimal mix, new additional constraints are required. In particular, we introduce
a binary variable, called vth, which indicates if a thermal unit belongs to the optimal mix (value
1) or not (value 0). As far as thermal units are concerned, a thermal unit i should belong to the
optimal mix MOPT in order to be utilized. In other terms uit → vith. A thermal unit i belongs to
the optimal mix MOPT if all the other constraints on vith are satisfied. Constraints on uit and vith
variables are thus defined as follows

uit − vith ≤ 0 t ∈ T (6.2)

The constraints presented above represent the following logical implication

uit → vith

according to the truth table depicted below
If a thermal unit i does not belong to the optimal mix MOPT (vith = 0), it can’t be turned on

(uit = 0) (first row of the truth table).
A thermal unit i belongs to the optimal mix MOPT (vith = 1), but it is turned off (uit = 0)

(second row of the truth table).
If a thermal unit i does not belong to the optimal mix MOPT (vith = 0), it can’t be turned on

(it must be necessarily uit = 0) (third row of the truth table).
A thermal unit i belongs to the optimal mix MOPT (vith = 1) and it is turned on (uit = 1)

(fourth row of the truth table).
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uit vith
0 0 T
0 1 T
1 0 F
1 1 T

6.3.3 Operating constraints for hydro units

As it happens for the thermal generating units, the operating requirements of hydro generat-
ing units are usually expressed by inequality constraints, which are used to model the technical
characteristics of the generators themselves. As far as constraints on discharged water, on reser-
voir volume and hydro balance constraints, we considered the constraints presented in chapter 2,
section 2.1.3, which are the typical hydro requirements of the classical UC problem. We did not
require additional constraints, since we made the assumption that hydro units are not grouped
into subset and for this reason other binary variables such as vth are not needed.

6.3.4 Operating constraints for wind turbines

In order to represent the technical restrictions of wind turbines, new constraints to model the
operating characteristics of this type of generating units are required. As it happens for thermal
units, minimum up and down time constraints, and unit generation capability limits are required.
Furthermore, in order to properly model the concept of subsets and optimal mix, new additional
constraints are needed. In particular, we introduce a binary variable, called vwind, which indicates
if a wind unit belongs to the optimal mix (value 1) or not (value 0). As far as wind units are
concerned, a wind unit w should belong to the optimal mix MOPT in order to be utilized. In other
terms xwt → vwwind. A wind unit w belongs to the optimal mix MOPT if all the other constraints
on vwwind are satisfied. Constraints on xwt and vwwind variables are thus defined as follows

xwt − vwwind ≤ 0 t ∈ T (6.3)

The constraints presented above represent the following logical implication

xwt → vwwind

whose meaning is analogous to that explained above in section 6.3.2, regarding thermal units.
Moreover, other constraints which are related to wind power output forecasts and curtailment

are needed. In the following sections, these operating constraints for wind turbines are presented.

Minimum up and down time constraints

These constraints are related with wind turbines start-up and shut-down and are useful to
determine if a wind turbine is going to be turned on or off at time t. In general, these transition
phases can represent additional costs related to wind power plants maintenance.

xwt − xwt−1 − ywt ≤ 0 t ∈ T (6.4)

ywt ≥ 0 t ∈ T (6.5)



6.3 Mathematical formulation of the GWUC 115

xwt+1 − xwt − zwt ≤ 0 t ∈ T (6.6)

zwt ≥ 0 t ∈ T (6.7)

In the previous expressions:

� xwt is the status of the wind turbine w at time t (0/1);

� ywt is the start-up variable for wind turbine w at time t (0/1);

� zwt is the shut-down variable for wind turbine w at time t (0/1).

Unit generation capability limits

The power output pwW,t of a wind turbine must vary between a minimum and a maximum
power, as expressed below:

pwW,minx
w
t ≤ pwW,t ≤ pwW,txwt t ∈ T (6.8)

where

� pW,min is the minimum power output of wind turbine w, expressed in MW;

� pW,max is the maximum power output of wind turbine w, expressed in MW;

� pwW,t is the forecast power output of wind turbine w, at time t, expressed in MW.

The upper bound on power is determined by the forecast power output of the wind turbine,
assuming that it represents the maximum power output produced by the generating unit.

Constraints on forecasts and curtailment

In wind production, in a given time period t, part of the power produced by the wind turbine
w (pwW,t) is actually utilized to satisfy the required demand, while the remaining part is curtailed
(cwW,t); the sum of these quantities (power actually utilized and curtailment) must balance the
forecast power output, as expressed by the following constraint

pwW,t + cwW,t − pwW,txwt = 0 t ∈ T (6.9)

Furthermore, the power curtailed must not be greater than the forecast power output, as
expressed by the following constraint

cwW,t − pwW,txwt ≤ 0 t ∈ T (6.10)

and it must not be greater than the maximum power output of the wind turbine w at time t,
as described below

cwW,t ≤ pW,max t ∈ T (6.11)
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6.3.5 Power balance constraints

Global constraints represent the fundamental constraints for the UC problem: at each time
period t ∈ T forecast energy demand to be satisfied must be balanced by the output energy
produced by thermal, hydro and wind power plants. In the real world, the demand to be satisfied
is the result of the trading in the day-ahead-market and in the intra-day market, we have already
discussed about this aspect in the previous chapter when we formulated the Reduced Economic
Dispatch model. In this dissertation we focus on stressing the novel aspects of the formulation
of GWUC model (such as subset constraints and wind constraints) instead of well-known balance
constraints. Uncertainty aspects related with forecast energy demand are deeply investigated in
[Nai08] where Robust Optimization models for UC are proposed.

As we have seen in the previous chapter it’s possible to formulate a power-based UC model,
nevertheless for sake of clarity and without loss of generality, in this formulation we assume that
power is constant in each time interval t (which is equal to one hour), so that energy and power
produced at time t are equivalent from a numerical point of view.

Let dt be the forecast demand to be satisfied (measured in MWh) in each time period t ∈ T ,
and let αj be the power-to-discharged-water efficiency coefficient (measured in MWh/m3) which
represents the efficiency of hydro unit j (qjt represents the discharged water of hydro unit j at
time period t and it is measured in m3).

Global constraints are expressed as follows:∑
i∈P

pit +
∑
h∈H

∑
j∈H(h)

αjqjt

+
∑
w∈W

pwW,t = dt t ∈ T
(6.12)

6.3.6 Exchange constraints for thermal and wind power plants

A thermal power plant (wind turbine) can be substituted by a wind turbine (thermal power
plant). The total output power produced by thermal and wind power plants which belong to the
optimal mix must be greater than a given minimum value and must be less than a given maximum
value. There can be different reasons why a conventional unit could or should be replaced by a wind
turbine and vice versa: unit scheduled or not scheduled maintenance, mid/long-term replacement
plan, regulatory laws such as incentive compensation.

The exchange constraints for thermal and wind power plants are expressed as follows

∑
i∈P

pimaxv
i
th +

∑
w∈W

pwW,maxv
w
wind − θup ≤ dmax (6.13)

∑
i∈P

piminv
i
th + θdown ≥ dmin (6.14)

where

� dmin is the minimum energy demand that has to be satisfied by the system in security and
it is expressed in MWh;
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� dmax is the maximum energy demand that has to be satisfied by the system in security and
it is expressed in MWh.

Variables vith and vwwind do not depend on time period t, but only on the units i and w, because
the optimal mix must be valid for all the planning horizon T . When the constraint with dmin is
considered, we assume that pwW,min = 0 since in this case the risk associated with the utilization
of wind energy sources is equal to zero.

dmin and dmax do not represent the minimum and maximum demand of the profile curve,
but they refer to a lower bound and an upper bound for the production system. In other words,
they are useful to dimension the minimum and maximum capacity of the production system. In
general, this is necessary in order to guarantee some required parameters like primary, secondary
and tertiary reserves and in order to make the system more tolerant to eventual failures.

It is very difficult to satisfy the relationship constraints for thermal and wind power plants,
since thermal and wind power plants are not comparable in terms of power output.

For these reasons, we introduce slack variables in order to relax these constraints. A very
high cost in the objective function (big M) is associated to these slack variables. In particular, θup
represents a power surplus over dmax that system can produce. Even if it is an acceptable situation
from an operating and a security point of view, it leads to high costs which are considered in the
objective function. θdown represents a power deficit which must be overcome buying energy from
external sources; this could be a dangerous scenario from a system security point of view and it
could lead to high costs which should be considered in the objective function. The big M value
should be big enough to penalize the slack variables utilization. It could be assumed equal to the
highest cost of the available thermal units.

6.3.7 Constraints on thermal generating units subsets

The main assumption of the GWUC model is that the thermal and wind units are grouped into
different subsets according to the geographical site where they are located and to their operating
characteristics such as the type of fuel utilized, and the CO2 emissions rate (for thermal units
only). Based on these assumptions, the first constraint introduced is related to the number of
thermal units belonging to the optimal mix. In particular, the number of thermal units belonging
to subset Ss and to the optimal mix must be less or equal than an assigned number nmaxS for the
given subset Ss: ∑

i∈P
χisv

i
th ≤ nmaxS

s = {0, . . . , nS − 1}
nmaxS ≤ |Ss|

(6.15)

The term nS represents the number of subsets Ss of thermal generating units. The term χis is
equal to 1 if the thermal unit i belongs to the subset Ss, it is equal to 0 otherwise. All the terms
χis for all the thermal units i available constitute the Q matrix which describes the topology of
the given subset Ss. An example which describes how the Q matrix is utilized is presented in
section 6.3.9. Based on what described above, it is easy to observe that the quantity

∑
i∈P χ

i
sv
i
th

represents the number of thermal units of subset Ss which also belong to thermal optimal mix
MT . The following property holds: ∑

i∈P
χisv

i
th ≤ |Ss| (6.16)
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The costs of thermal units belonging to subset Ss and to the optimal mix must be less or equal
than an assigned cost of the units cmaxS for the given subset Ss:

∑
i∈P

χisv
i
thγ

i ≤ cmaxS s = {0, . . . , nS − 1} (6.17)

The term γi represents the cost associated to the thermal unit i. In our model, this cost has
been determined considering the specific value of the CO2 emissions of the generating unit i. We
have decided to limit this type of cost in order to lead the model to choose for the optimal mix the
units that posses the lowest value of emissions, e.g., the units that are more ‘virtuous’ from this
point of view, regardless the absolute value of CO2 that they will emit after producing a certain
amount of energy. This aspect differentiates the GWUC model with subset constraints from a
classical UC model with ‘emission control’, where the emissions are considered as a cost in the
objective function.

6.3.8 Constraints on wind turbines subsets

As far as wind units are concerned, the same assumptions on subsets are made. In particular,
these units are grouped into different subsets according to the geographical site where they are
located and to their operating characteristics. Based on these assumptions, the first constraint
introduced is related to the number of wind units belonging to the optimal mix. In particular,
the number of wind turbines belonging to subset Ee and to the optimal mix must be less or equal
than an assigned number nmaxE for the given subset Ee:

∑
w∈W

rwe v
w
wind ≤ nmaxE

e = {0, . . . , nE − 1}
nmaxE ≤ |Ee|

(6.18)

The term nE represents the number of subsets Ee of wind generating units. The term rwe is
equal to 1 if the wind unit w belongs to the subset Ee, it is equal to 0 otherwise. All the terms
rwe for all the wind units w available constitute the R matrix which describes the topology of the
given subset Ee. An example which describes how the R matrix is utilized is presented in section
6.3.9. Based on what described above, it is easy to observe that the quantity

∑
w∈W rwe v

w
wind

represents the number of wind units of subset Ee which also belong to thermal optimal mix ME .
The following property holds:

∑
w∈W

rwe v
w
wind ≤ |Ee| (6.19)

The costs of wind turbines belonging to subset Ee and to the optimal mix must be less or
equal than an assigned cost of the units cmaxE for the given subset Ee:

∑
w∈W

rwe v
w
windβ

w ≤ cmaxE s = {0, . . . , nE − 1} (6.20)

The term βw represents the cost associated to the wind unit w.



6.3 An example of thermal and wind power plants subsets 119

6.3.9 An example of thermal and wind power plants subsets

Consider the example depicted in Fig. 6.5 (in this case, subsets are disjoint, in order to simplify
the example).

Figure 6.5: Thermal and wind power plants optimal mix.

In this example, subsets Ss of thermal units are defined as follows:

S0 = {0, 2, 5}

S1 = {1, 3}

S2 = {4, 6}

Subsets Ee of wind turbines are defined as follows:

E0 = {2, 3, 4}

E1 = {0, 1}

E2 = {6, 7}

E3 = {5}

Q matrix is given by

 1 0 1 0 0 1 0
0 1 0 1 0 0 0
0 0 0 0 1 0 1
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R matrix is given by 
0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0


If we suppose that the thermal optimal mix is given by (variables vith)



1
0
1
1
1
0
1


and that the wind optimal mix is given by (variables vwwind)



1
0
1
1
0
0
1
0


we obtain the following result

� 2 thermal units of subset S0 belong to optimal mix;

� 1 thermal unit of subset S1 belongs to optimal mix;

� 2 thermal units of subset S2 belong to optimal mix;

� 2 thermal units of subset E0 belong to optimal mix;

� 1 wind turbine of subset E1 belongs to optimal mix;

� 1 wind turbine of subset E2 belongs to optimal mix;

� 0 wind turbines of subset E3 belong to optimal mix.
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6.3.10 Risk constraints correlated to the use of wind turbines

In order to complete the formulation described above, it is very useful to investigate the
possibility of introducing a measure of the expected risk, expressed in probability terms, correlated
to the utilization of wind power plants in an electrical system. The probability risk Pbwt is the
probability associated to the happening of a given event, which, in our case, is represented by the
deficit of a part of energy (the power pwW,t produced in 1 hour is numerically equal to the energy)
that wind turbines w ∈ W have not produced in the time interval t with respect to the total
energy demand to satisfy (dt).

For each wind unit w ∈ W and each time interval t ∈ T we have

Pbwt = rwt ·
pwW,t

dt
(6.21)

where

� rwt is the ‘risk coefficient ’ which is calculated as follows

rwt =

(
1 + log

(
1 +

εwt
pwW,t

))

�
pwW,t

dt
is the amount of wind energy with respect to the total demand, which represents the

usage of wind energy.

Figure 6.6: Risk coefficient and wind forecast.

Based on these calculations, the risk coefficient takes into account the wind forecast error εwt
(for each time interval t and each wind turbine w) with respect to the average forecast power



122 Improved Unit Commitment models in presence of wind energy sources

pwW,t. The risk is calculated as the amount of the real wind power used pwW,t (e.g., that has been
calculated by the UC model) actually associated with the risk coefficient. The shape of the risk
coefficient is depicted in Fig. 6.6. The risk coefficient could be calculated as the simple percentage
of the forecast error with respect to the forecast wind power, e.g.:

rwt =
εwt
pwW,t

This way, when the forecast error is zero, the risk will be zero regardless of the amount of wind
energy used to satisfy the demand. Moreover, when the forecast error is equal to wind nominal
power output, the risk coefficient will be equal to 1, and the risk will be only correlated with
the amount of wind energy used. These scenarios are not realistic from a practical point of view.
Using a logarithmic form allows us to obtain a partially smoother curve of the risk coefficient
making it move in a limited range: when the forecast error is zero, the risk coefficient will be
equal to 1, and the risk overall will be only correlated to the amount of wind energy used; on the
other hand, when the forecast error is greater than zero, the risk coefficient has only the ability
to amplify the risk.

The risk probability for each Pbwt could be bounded as follows

Pbwt ≤ Pb
w

t

where Pb
w

t is a constant given in input, expressed in probability terms, which represents an
upper limit on the risk allowed by the system.

It is possible to determine a global risk associated to the planning horizon T for all the wind
turbines w ∈ W, as follows

Pb =
∑

t,w∈T ,W
rwt ·

pwW,t

dt
(6.22)

and it could be bounded as follows
Pb ≤ Pbmax
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6.4 How to generate realistic input data for the GWUC

As described in the previous sections, the GWUC has been defined and implemented taking
into account risk and subset constraints which are related to emissions considerations. In order
to analyze the performances of the new model, we have to set a suitable and realistic instance
as input of the UC problem. This instance should have at least three types of generating units,
such as conventional thermal, hydro, and wind units. Each type of unit should be different with
respect to the class of power, the ramp-rate limits, the type of fuel utilized, the emission rate, the
geographical area, the reservoir limits, and wind forecast speed and wind forecast error. In order
to set this instance, we have considered the following steps:

� studying the topology of the Italian energy production system, in terms of type and number
of units utilized, taking into account the statistical data reported by Terna S.p.A. [ST10];

� performing an accurate analysis of this data in order to realize a data instance which realis-
tically represents the topology of the Italian electrical system, with dimensions scaled about
1:5 with respect to the real system power capacity.

Unit Type Inst. Power (MW) %

Thermal 75704 71.08%
Hydro 21520 20.21%
Renewable - Solar 3469 3.26%
Renewable - Wind 5814 5.46%
Total 106507 100.00%

Table 6.1: Total power production per type of unit.

Area Inst. Power (MW) %

North 52428 49.23%
Central area 15391 14.45%
South+Islands 38669 36.31%
Total 106488 100.00%

Table 6.2: Total power production per geographical area.

6.4.1 Analysis of the Italian energy production system

In order to set the data instance, we have first analyzed the topology of the Italian electrical
system, taking into account the aspects described below regarding thermal, hydro, and wind units,
based on 2010 Terna’s statistics. In our analysis, we have neglected the other renewable energy
sources, to focus our attention on the analysis of the behavior of wind units in a realistic electrical
system. The following aspects have thus been taken into account:

� the total power production (expressed in MW) generated by each type of unit (thermal,
hydro and renewable) (table 6.1);
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� the total power production (expressed in MW) generated by each geographical area (north-
ern, southern and central geographical area) (table 6.2).

Thermal units

As far as thermal units are concerned, they have been classified with respect to their:

� class of power (table 6.3);

� geographical area (table 6.4);

� type of fuel used (table 6.5).

To reduce the number of generating units considered in our instance, we assumed to neglect
the thermal units with a power less than 25 MW, thus, we consider the repartition of the classes
of power depicted in table 6.6.

Class Type (MW) # Units % Inst. Power (MW) % Average Power (MW)

≥ 500 33 1.90% 23581 34% 714
200-500 86 4.95% 29644 43% 344
100200 41 2.36% 7532 11% 183
50100 53 3.05% 3944 6% 74
2550 35 2.02% 1349 2% 38
≤ 25 1488 85.71% 2928 4% 2
Total 1736 100.00% 68978 100% 40

Table 6.3: Thermal power production per class of power.

Area # Units % Inst. Power (MW) %

North 1626 63.24% 35122 46.39%
Central area 429 16.69% 13236 17.48%
South+Islands 516 20.07% 27345 36.12%
Total 2571 100.00% 75703 100.00%

Table 6.4: Thermal power production per geographical area.

Fuel Type # Units % Inst. Power (MW) % Average Power (MW)

Other Fuels(NGL/Coal/etc) 915 36.60% 1762 2% 1.9
Natural Gas 998 39.92% 32950 45% 33.0
Crude Oil 296 11.84% 8180 11% 27.6
Two Fuels (Oil+Gas) 244 9.76% 25400 34% 104.1
Three Fuels (Oil+Gas+Others) 47 1.88% 5600 8% 119.1
Total 2500 100.00% 73892 100% 29.6

Table 6.5: Thermal power production per fuel type.
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Class Type (MW) # Units % Inst. Power (MW) % Average Power (MW)

≥ 500 33 13.31% 23581 36% 714
200-500 86 34.68% 29644 45% 344
100-200 41 16.53% 7532 11% 183
50-100 53 21.37% 3944 6% 74
25-50 35 14.11% 1349 2% 38
Total 248 100.00% 68978 100% 278

Table 6.6: Thermal power production per class of power (thermal units with power < 25MW
have been neglected).

Hydro units

As far as hydro units are concerned, they have been classified with respect to their:

� class of power (table 6.7);

� geographical area (table 6.8).

To reduce the number of generating units considered in our instance, we assumed to neglect
the hydro units with a power less than 10 MW, thus, we consider the repartition of the classes of
power depicted in table 6.9.

Class Type (MW) # Units % Inst. Power (MW) % Average Power (MW)

≥ 200 17 0.62% 8251 38% 485
100-200 25 0.91% 3368 15% 134
50-100 29 1.06% 1964 9% 67
30-50 62 2.27% 2439 11% 39
20-30 55 2.01% 1402 6% 25
10-20 121 4.42% 1733 8% 14
5-10 135 4.93% 958 4% 7
1-5 565 20.65% 1252 6% 2
≤ 1 1727 63.12% 523 2% 1
Total 2736 100.00% 21890 100% 8

Table 6.7: Hydro power production per class of power.

Area # Units % Inst. Power (MW) %

North 2190 80.04% 15636 72.66%
Central area 339 12.39% 1460 6.78%
South+Islands 207 7.57% 4423 20.55%
Total 2736 100.00% 21519 100.00%

Table 6.8: Hydro power production per geographical area.
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Class Type (MW) # Units % Inst. Power (MW) % Average Power (MW)

≥ 200 17 5.50% 8251 43% 485
100-200 25 8.09% 3368 18% 134
50-100 29 9.39% 1964 10% 67
30-50 62 20.06% 2439 13% 39
20-30 55 17.80% 1402 7% 25
10-20 121 39.16% 1733 9% 14
Total 309 100.00% 19157 100% 62

Table 6.9: Hydro power production per class of power (hydro units with power < 10MW have
been neglected).

Wind units

As far as wind units are concerned, they have been classified with respect to their geographical
area and sub-area (in this case, sub-areas are represented by the Italian regions). This classification
is very useful since wind units cannot be considered as stand-alone units to be given in input to
the UC problem, but they should be grouped into a single ‘wind farm’, in order to obtain a data
instance characterized by a lower dimension. Without loss of generality it is possible to consider
a wind farm as a single unit assuming that all the wind turbines that compose this wind farm are
subjected to the same behavior. This is an acceptable simplification if the wind farm considered
as a single unit is relative small and it is not so widespread over a given geographical area. For
these reasons, as we will also see in the next section, we will consider the distributions depicted
in tables 6.10 and 6.11.

Area # Units % Inst. Power (MW) %

North 49 10.06% 56 0.96%
Central area 28 5.75% 56 0.96%
South+Islands 410 84.19% 5702 98.07%

Total 487 100.00% 5814 100.00%

Table 6.10: Wind power production per geographical area.
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Sub-Area (Region) # Units Inst. Power (MW)

Piemonte 7 14
Valle D’Aosta 1 0
Lombardia 1 0
Trentino Alto Adige 5 3
Veneto 5 2
Friuli Venezia Giulia 0 0
Liguria 15 19
Emilia Romagna 15 18
Toscana 17 45
Umbria 1 2
Marche 3 0
Lazio 7 9
Abruzzi 25 218
Molise 23 367
Campania 76 803
Puglia 134 1288
Basilicata 28 280
Calabria 31 672
Sicilia 62 1436
Sardegna 31 639

Total 487 5815

Table 6.11: Wind power production per geographical sub-area.

6.4.2 Generating a scaled instance for the GWUC problem

Our objective is to realize an instance scaled about 1:5 with respect to the Italian electrical
system, which takes into account with a good approximation the analyses of the data previously
performed considering the Terna’s statistics. For this reason, we have considered some basic
assumptions for each type of units, described in the following sections.

Thermal units

Regarding thermal units, we have considered 65 units. We have used one of the instances
considered in the simulation phase performed for the analysis of the new UC models described in
chapters 5 and 4. Then, we have adjusted some parameters in order to respect the statistics we
have seen above. In particular, the following sections explain how this adjustment has been made.

Maximum and minimum power output We have assigned a class of power to each unit,
based on the percentage distribution indicated in table 6.6. For each class of power, we have
generated a random number, bounded between the extremal values of the class and rounded to
5 MW; this value has been assumed as the maximum power (i.e., for class 200 − 500 a suitable
maximum power could be 350 MW). Minimum power has been generated as a random percentage
bounded between 20%−50% of the maximum power. In this way, we have obtained the distribution
depicted in table 6.12, that well reflects the real set of data previuosly described.
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Class Type (MW) # Units % Inst. Power (MW) % Average Power (MW)

≥ 500 8 12.31% 4770 30% 596
200-500 22 33.85% 8100 52% 368
100-200 10 15.38% 1520 10% 152
50-100 15 23.08% 985 6% 66
25-50 10 15.38% 355 2% 35

Total 65 100.00% 157308 100% 242

Table 6.12: Thermal power production per class of power: scaled instance.

Fuel cost coefficient We have assigned a fuel type class to each unit, based on the percentage
distribution indicated in table 6.3. We have used a pseudo-random algorithm to assign higher
costs to the smallest units and higher costs to oil-fuel based units. In this way, we have obtained
the distribution depicted in table 6.13. This distribution well reflects the percentage values of the
real set of data, and it widely overestimates the average power, because in the real world there
exist more units than in the scaled instance.

Fuel Type # Units % Inst. Power (MW) % Average Power (MW)

Other Fuels (NGL/Coal/etc) 15 23.08% 715 5% 48
Natural Gas 26 40.00% 6135 39% 236
Crude Oil 10 15.38% 2500 16% 250
Two Fuels (Oil+Gas) 13 20.00% 5920 38% 455
Three Fuels (Oil+Gas+Others) 1 1.54% 460 3% 460

Total 65 100.00% 15730 100% 242

Table 6.13: Thermal power production per fuel type: scaled instance.

Geographical distribution We have assigned a geographical label to each unit, based on the
percentage distribution indicated in table 6.4, reflecting the number of the units and the nominal
power for each area. In this way, we have obtained the distribution depicted in table 6.14.

Emission rate The different types of fuels (oil, gas, etc) have been classified with respect to
the emissions of CO2 produced (g CO2/KWh); we obtained this classification analyzing the data
reported by IEA [IEA12], which is briefly resumed in table 6.15. Based on this data, we have
aggregated the values and extrapolated an average value for each class of fuel considered, reported
in table 6.16. In the real world each power unit has its own specific emission rate, hence, in order to
generalize our approximation, we have calculated a corrective coefficient assuming a dependence
of the emission rate with respect to the installed power (expressed in MW). According to our
assumption, the emission rate is higher for smaller power units. The emission coefficient, called

Area # Units % Inst. Power (MW) %

North 36 55.38% 7730 49.14%
Central area 11 16.92% 2675 17.01%
South+Islands 18 27.69% 5325 33.85%
Total 65 100.00% 15730 100.00%

Table 6.14: Thermal power production per geographical area: scaled instance.
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Ki, is related with each thermal unit i and it has been calculated as follows

Ki = 1− log(
pimax
p

) (6.23)

where pimax is the maximum power of the unit i of the scaled instance, and p is the average
power calculated taking into account all the units of the scaled instance. In this way, the generating
units that present a higher power are associated with a lower CO2 coefficient and vice versa, since,
from a practical point of view, the units with smaller dimensions are usually characterized by
greater emissions; this concept is depicted in the Fig. 6.7.

Figure 6.7: CO2 emissions coefficient.

The distribution of the average-emission coefficient is depicted in table 6.17.
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Fuel Class Fuel Type Emission: gCO2/kWh
Other Fuels (NGL/Coal/etc) Anthracite 835
Other Fuels (NGL/Coal/etc) Coking coal 715
Other Fuels (NGL/Coal/etc) Other bituminous coal 830
Other Fuels (NGL/Coal/etc) Sub-bituminous coal 920
Other Fuels (NGL/Coal/etc) Lignite 940
Other Fuels (NGL/Coal/etc) Natural gas liquids 500
Other Fuels (NGL/Coal/etc) Liquefied petroleum gases 600
Other Fuels (NGL/Coal/etc) Petroleum coke 970
Natural Gas Natural gas 370
Crude Oil Crude oil 610
Crude Oil Kerosene 650
Crude Oil Gas/diesel oil 650
Crude Oil Fuel oil 620
Not considered Peat 560
Not considered Industrial waste 450− 1300
Not considered Municipal waste (non-renewable) 450− 2500
Not considered Patent fuel 890
Not considered Coke oven coke 510
Not considered BKB/peat briquettes 500− 1100
Not considered Gas works gas 380
Not considered Coke oven gas 390
Not considered Blast furnace gas 2100
Not considered Oxygen steel furnace gas 1900

Table 6.15: Emission rates (source: IEA statistics).

Fuel Class Emission: gCO2/kWh
Other Fuels (NGL/Coal/etc) 788
Natural Gas 370
Crude Oil 632
Two Fuels (Oil+Gas) 501
Three Fuels (Oil+Gas+Others) 597

Table 6.16: Average emission rate values calculated considering IEA statistics.

Fuel Class Average Emission Rate: gCO2/kWh Min Emission Rate Max Emission Rate

Other Fuels (NGL/Coal/etc) 1372 1108 1564
Natural Gas 434 208 623
Crude Oil 654 464 874
Two Fuels (Oil+Gas) 373 278 498
Three Fuels (Oil+Gas+Others) 430 430 430

Total 671 208 1564

Table 6.17: Average emission rate values calculated considering IEA statistics
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Hydro units

Regarding hydro units, we have considered 55 units. We have used one of the instances
considered in the simulation phase performed for the analysis of the new UC models described in
chapters 5 and 4. Then, we have adjusted some parameters in order to respect the statistics we
have seen above. In particular, the following sections explain how this adjustment has been made.

Maximum power output We have assigned a class of power to each unit, based on the per-
centage distribution indicated in table 6.9. For each class of power we have generated a random
number, bounded between the extremal values of the class and rounded to 5 MW, this value has
been assumed as the maximum power (i.e. for class 100−200 a suitable maximum power could be
130 MW). In this way, we have obtained the distribution depicted in table 6.18. This distribution
is very similar to the real one extrapolated from the Terna’s statistics.

Class Type (MW) # Units % Inst. Power (MW) % Average Power (MW)

≥ 200 4 7.27% 1445 37.34% 361
100-200 6 10.91% 895 23.13% 149
50-100 7 12.73% 485 12.53% 69
25-50 16 29.09% 640 16.54% 40
10-25 22 40.00% 405 10.47% 18

Total 55 100.00% 3870 100% 70

Table 6.18: Hydro power production per class of power: scaled instance.

Geographical distribution We have assigned a geographical label to each unit, based on the
percentage distribution indicated in table 6.8, reflecting the number of the units and the nominal
power for each area. In this way, we have obtained the distribution depicted in table 6.19.

Area # Units % Inst. Power (MW) %

North 39 70.91% 2800 72.35%
Central area 10 18.18% 370 9.56%
South+Islands 6 10.91% 700 18.09%
Total 55 100.00% 3870 100.00%

Table 6.19: Hydro power production per geographical area: scaled instance.

Wind units

Regarding wind units, we have considered 32 units. We realized the wind data instance re-
specting the statistics we have seen above. In particular, the following sections explain how this
data instance has been defined.

Geographical distribution The 32 units we have considered in our instance represent a ‘wind
farm’. To determine the wind turbines maximum power output, we have first considered the
geographical distribution depicted in table 6.11. Then, for each region, we have scaled the nominal
power by a factor of 15%, hence we have subdivided the regions with more than 10 MW of installed
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power in n different wind farms. This type of distribution is depicted in table 6.20. For example,
the ‘Puglia’ region has a real nominal installed power of 1288 MW, its scaled nominal power is
194 MW; we have divided this region into 4 wind farms of different nominal power, as described
below:

� ”‘Puglia1”’, of 15 MW;

� ”‘Puglia2”’, of 33 MW;

� ”‘Puglia3”’, of 56 MW;

� ”‘Puglia4”’, of 88 MW.

Finally, we have marked each wind farm with the correct geographical area, in order to realize
the distribution shown in table 6.10; we have thus obtained the distribution depicted in table 6.21
for the scaled instance.

Production costs To determine the production average costs for each wind farm, we have
assumed as main indicators two mean values confirmed in the literature [EWE12]:

1. the cost based on the wind turbine energy output is about 75 ¿/MWh;

2. the cost based on the wind turbine Operation and Maintenance (OM) activities is about 15
¿/MWh.

Estimating the OM costs is a very complex activity and it is beyond the scope of this thesis;
nevertheless, without loss of generality, it is possible to assume that:

� OM costs based on installed nominal power strongly depend on the wind farm scale factor:
a wind farm with only 1 turbine, and with only 1 MW of installed power, has a very high
cost with respect to a wind farm with dozen of turbines;

� OM costs depend on the age of the wind turbine: older turbines are subjected to failures
more frequently, and repair services are more expensive.

For these reasons, in our model we consider the following three types of costs, which are
properly included in the objective function:

� ewt is the power production cost of wind turbine w at period t, expressed in ¿;

� fwt is the start-up cost of wind turbine w at period t, expressed in ¿;

� gwt is the shut-down cost of wind turbine w at period t, expressed in ¿.

To take into account these considerations, we have formulated a simple model to assign the
costs to each wind farm. We have used a pseudo-random algorithm that assign higher costs
to smaller wind farms. Fig. 6.8 shows the trend of the costs generated by the pseudo-random
algorithm.

Finally, in our model, as input of the wind farms we considered the forecast power generated
taking into account the wind speed. In order to produce a realistic average forecast power profile,
we have used the synthetic wind data generator proposed in chapter 7.
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Area Wind Farm Inst. Power (MW) %

North Emilia Romagna 3 0.34%
Liguria 3 0.34%
Piemonte 3 0.34%
Trentino A. A. 1 0.11%
Veneto 1 0.11%
Total 11 1.26%

Central area Lazio 2 0.23%
Toscana 7 0.80%
Umbria 1 0.11%
Totale 10 1.15%

South+Islands Abruzzi1 20 2.29%
Abruzzi2 12 1.38%
Basilicata1 10 1.15%
Basilicata2 30 3.44%
Calabria1 16 1.83%
Calabria2 32 3.67%
Calabria3 54 6.19%
Campania1 60 6.88%
Campania2 40 4.59%
Campania3 20 2.29%
Molise1 36 4.13%
Molise2 20 2.29%
Puglia1 15 1.72%
Puglia2 33 3.78%
Puglia3 56 6.42%
Puglia4 88 10.09%
Sardegna1 12 1.38%
Sardegna2 34 3.90%
Sardegna3 48 5.50%
Sicilia1 11 1.26%
Sicilia2 22 2.52%
Sicilia3 44 5.05%
Sicilia4 88 10.09%
Sicilia5 50 5.73%
Total 851 97.59%

Grand Total 872 100.00%

Table 6.20: Wind farms distribution: scaled instance.
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Area # Units % Inst. Power (MW) %

North 5 15.63% 11 1.26%
Central area 3 9.38% 10 1.15%
South+Islands 24 75.00% 851 97.59%
Total 32 100.00% 872 100.00%

Table 6.21: Wind power production per geographical area: scaled instance.

Figure 6.8: Wind farms cost coefficient included in the GWUC objective function.
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Load

A typical load, that represents the forecast energy demand, has been extracted from the Terna’s
statistical data. In particular, we have chosen the actual demand depicted in Fig. 6.9, then this
load has been scaled with a 1:5 factor in order to generate the simulated load shown in Fig. 6.10.

Figure 6.9: Actual load reported in Italy on 15th December 2010.

Figure 6.10: Scaled load used in the simulation phase.
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Final Instance

The main characteristics of the units chosen in the scaled instance are resumed in table 6.22.

Id Type Area Inst. Power (MW)

0 Hydro North 280
1 Hydro North 465
2 Hydro North 490
3 Hydro North 210
4 Hydro North 140
5 Hydro North 155
6 Hydro Central area 100
7 Hydro South+Islands 165
8 Hydro South+Islands 180
9 Hydro South+Islands 155
10 Hydro North 90
11 Hydro North 55
12 Hydro North 60
13 Hydro North 80
14 Hydro South+Islands 60
15 Hydro South+Islands 80
16 Hydro South+Islands 60
17 Hydro North 40
18 Hydro North 40
19 Hydro North 40
20 Hydro North 40
21 Hydro North 45
22 Hydro North 40
23 Hydro North 40
24 Hydro North 45
25 Hydro North 40
26 Hydro Central area 35
27 Hydro Central area 40
28 Hydro Central area 40
29 Hydro Central area 40
30 Hydro Central area 35
31 Hydro North 45
32 Hydro North 35
33 Hydro North 15
34 Hydro North 25
35 Hydro North 25
36 Hydro North 15
37 Hydro North 15
38 Hydro North 15
39 Hydro North 20
40 Hydro North 20
41 Hydro North 20
42 Hydro North 25
43 Hydro North 15
44 Hydro North 15
45 Hydro North 20
46 Hydro Central area 25
47 Hydro Central area 20
48 Hydro Central area 25
49 Hydro Central area 10
50 Hydro North 20
51 Hydro North 15
52 Hydro North 15
53 Hydro North 15
54 Hydro North 15

Table 6.22: Scaled instance: hydro units main parameters.
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Id Type Area Inst. Power (MW) Fuel Type Emission Rate

0 Thermal North 565 Natural Gas 234
1 Thermal North 665 Natural Gas 208
2 Thermal North 595 Natural Gas 225
3 Thermal North 525 Natural Gas 246
4 Thermal North 525 Two Fuels 332
5 Thermal South+Islands 565 Two Fuels 317
6 Thermal Central area 655 Two Fuels 284
7 Thermal South+Islands 675 Two Fuels 278
8 Thermal South+Islands 215 Natural Gas 389
9 Thermal North 385 Natural Gas 295
10 Thermal North 210 Natural Gas 393
11 Thermal North 245 Two Fuels 498
12 Thermal North 450 Two Fuels 366
13 Thermal North 480 Two Fuels 352
14 Thermal North 320 Two Fuels 440
15 Thermal North 450 Two Fuels 366
16 Thermal South+Islands 325 Two Fuels 437
17 Thermal Central area 470 Two Fuels 357
18 Thermal Central area 495 Two Fuels 345
19 Thermal Central area 265 Two Fuels 481
20 Thermal Central area 300 Natural Gas 335
21 Thermal South+Islands 475 Natural Gas 262
22 Thermal North 400 Natural Gas 289
23 Thermal North 405 Natural Gas 287
24 Thermal South+Islands 460 Three Fuels 430
25 Thermal South+Islands 225 Crude Oil 652
26 Thermal South+Islands 395 Crude Oil 498
27 Thermal South+Islands 305 Crude Oil 568
28 Thermal South+Islands 445 Crude Oil 465
29 Thermal South+Islands 380 Crude Oil 508
30 Thermal North 100 Crude Oil 875
31 Thermal North 155 Crude Oil 754
32 Thermal North 135 Crude Oil 792
33 Thermal North 200 Crude Oil 684
34 Thermal South+Islands 160 Natural Gas 436
35 Thermal South+Islands 160 Natural Gas 436
36 Thermal South+Islands 180 Natural Gas 418
37 Thermal South+Islands 135 Natural Gas 464
38 Thermal Central area 135 Natural Gas 464
39 Thermal Central area 160 Crude Oil 746
40 Thermal North 65 Natural Gas 581
41 Thermal North 60 Natural Gas 594
42 Thermal North 80 Natural Gas 548
43 Thermal North 65 Natural Gas 581
44 Thermal North 65 Natural Gas 581
45 Thermal North 50 Natural Gas 623
46 Thermal North 55 Natural Gas 608
47 Thermal North 65 Natural Gas 581
48 Thermal North 50 Natural Gas 623
49 Thermal North 70 Natural Gas 569
50 Thermal South+Islands 60 Other Fuels 1265
51 Thermal South+Islands 70 Other Fuels 1213
52 Thermal South+Islands 95 Other Fuels 1108
53 Thermal Central area 80 Other Fuels 1167
54 Thermal Central area 55 Other Fuels 1295
55 Thermal North 35 Other Fuels 1450
56 Thermal North 40 Other Fuels 1404
57 Thermal North 30 Other Fuels 1502
58 Thermal North 50 Other Fuels 1328
59 Thermal North 45 Other Fuels 1364
60 Thermal North 40 Other Fuels 1404
61 Thermal North 25 Other Fuels 1565
62 Thermal North 30 Other Fuels 1502
63 Thermal Central area 35 Other Fuels 1450
64 Thermal Central area 25 Other Fuels 1565

Table 6.23: Scaled instance: thermal units main parameters.
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Id Type Area Inst. Power (MW) Wind Farm

0 Wind North 3 Piemonte
1 Wind North 1 Trentino Alto Adige
2 Wind North 1 Veneto
3 Wind North 3 Liguria
4 Wind North 3 Emilia Romagna
5 Wind Central area 7 Toscana
6 Wind Central area 1 Umbria
7 Wind Central area 2 Lazio
8 Wind South+Islands 20 Abruzzi1
9 Wind South+Islands 12 Abruzzi2
10 Wind South+Islands 36 Molise1
11 Wind South+Islands 20 Molise2
12 Wind South+Islands 60 Campania1
13 Wind South+Islands 40 Campania2
14 Wind South+Islands 20 Campania3
15 Wind South+Islands 15 Puglia1
16 Wind South+Islands 33 Puglia2
17 Wind South+Islands 56 Puglia3
18 Wind South+Islands 88 Puglia4
19 Wind South+Islands 10 Basilicata1
20 Wind South+Islands 30 Basilicata2
21 Wind South+Islands 16 Calabria1
22 Wind South+Islands 32 Calabria2
23 Wind South+Islands 54 Calabria3
24 Wind South+Islands 11 Sicilia1
25 Wind South+Islands 22 Sicilia2
26 Wind South+Islands 44 Sicilia3
27 Wind South+Islands 88 Sicilia4
28 Wind South+Islands 50 Sicilia5
29 Wind South+Islands 12 Sardegna1
30 Wind South+Islands 34 Sardegna2
31 Wind South+Islands 48 Sardegna3

Table 6.24: Scaled instance: wind units main parameters.
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6.5 Results and discussion

We performed different simulations (about 50) in order to verify with a significant data set
the behavior of the model with respect to the risk, the variability of the subsets, the limits
on the minimum and maximum capacity of the system, the restrictions on the CO2 emissions
used as a cost in the subset constraints. The GWUC model has been implemented in a C++
programming language code, and is has been solved with the CPLEX 11.0 commercial solver, using
the perspective-cuts algorithm presented in [FG06]. The results obtained with these simulations
are presented in the following sections.

6.5.1 Analysis of the UC models

In order to compare the different types of UC models present in the literature, we analyzed
the shape of the objective function with respect to the use of wind energy sources, considering:

� the average use of wind over a 24 hours time horizon (Fig. 6.11);

� the maximum hourly use of wind over a 24 hours time horizon (Fig. 6.12).

Fig. 6.11 and Fig. 6.12 compare four different types of UC models:

1. standard UC: this formulation does not take into account wind generating units;

2. wind UC: this formulation considers also wind generating units that are integrated in the
solution of the UC problem, but that are not associated with risk considerations;

3. fuel saver UC: in this formulation the energy demand that has to be satisfied does not take
into account the amount of forecast energy that should be produced by wind units;

4. GWUC: as it happens for wind UC, in this formulation wind generating units are integrated
in the solution of the UC problem and they are associated with risk considerations, correlated
with the forecast error which can be controlled (limited).

Based on the Wind UC model, the graphs depicted in Fig. 6.11 and Fig. 6.12, which show
the objective function with respect to the use of wind energy, can be divided in four areas, where
the models can be placed in theory. In the first area, we can find the UC models which are
characterized by a high objective function and a high risk. This type of model is not interesting
at all from a practical point of view. In the second area, we can find the UC models which are
characterized by a lower objective function associated with a higher risk. Placed in this area,
we can find the fuel saver UC model. In the third area, we can find the UC models which are
characterized by a lower objective function associated with a lower risk. Placed in this area, we
can find the wind UC model, which is characterized by the lowest objective function without risk
control, but integrating wind production scheduling in the solution of the UC problem. In theory,
the models belonging to this area should be further investigated, but they are not realizable from
a practical point of view, since it is not possible to reduce the objective function reducing at the
same time the use of an energy source at a lower cost (in this case wind) and consequently the
risk with respect to a conventional energy source. In the extreme side of the fourth area, we can
find the standard UC models which are characterized by the highest objective function correlated
with a risk and a wind use equal to zero. Within the fourth area, we can find the GWUC model
which is characterized by a control of the risk. Thus, this model ‘moves’ from the standard UC
model to the wind UC model and vice versa.
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Figure 6.11: Objective function vs average wind usage (risk).

Figure 6.12: Objective function vs maximum wind usage (risk).
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6.5.2 Analysis of the risk correlated with the use of wind energy sources

In order to analyze the risk correlated with the use of wind energy sources, we limited the
percentage of the global risk Pb, which has been defined as described in section 6.3.10.

Fig. 6.13 shows that the objective function decreases when the use of wind energy increases.
The objective function becomes stable when all wind farms are used (in this case, the risk is the
highest and the model corresponds to the wind UC one).

The value of the percentage depends on the instance and on the demand that has to be satisfied,
for this reason, the result is typical of the instance itself. Fig. 6.14 shows the variation of the use
of wind (average and hourly maximum) with respect to the limit imposed on the risk (Pbmax).

It is very interesting to observe that the average use tends to increase when the global risk
increases (Pb), while the value of the maximum risk (calculated as the maximum value between
the risk (Pbwt ) of each wind unit in a single time interval) rapidly reaches the limit. It is possible
to explain this behavior analyzing the data of the instance, since when the risk increases, wind
farms with higher dimensions are preferred, in order to un-commit the thermal power plants,
determining a higher hourly risk (Pbwt ).

Figure 6.13: Objective function vs wind hour constraint risk limit.
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Figure 6.14: Percentage of wind usage vs wind hour constraint risk limit.

6.5.3 Analysis of the influences of the maximum system capacity on the
UC solution

The lower bound constraint over the maximum nominal capacity of the system can be applied
for market restrictions (for instance, to reduce the monopolistic component), and it influences
the exchange constraints between thermal and wind generating units. In general, it imposes
a constraint on the use of the generating units (number/type). In a typical instance as the one
utilized, the generating units with higher maximum nominal power are associated with lower costs,
but also with stronger ramp-up/ramp-down constraints, and consequently they are characterized
by a lower flexibility while satisfying the demand. Furthermore, in the UC model that takes into
account also hydro generating units, the load variability is satisfied more or less by the variable
use of hydro units not subjected to ramp-up/ramp-down constraints. This behavior is easily
observable in the graph that shows the hourly production associated with each type of generating
unit (thermal, hydro) obtained solving the classical UC problem (Fig. 6.15).

Even if the reduction of the maximum nominal capacity of the system does not affect the
feasibility of the solution, it determines a strong increase of the objective function when a certain
limit is overcome. This limit is typical of the given instance and depends on the demand to be
satisfied; in our case it is about 8000 MW, e.g., 70% of the maximum demand. Furthermore, the
reduction of the maximum nominal capacity of the system reduces the number of thermal and
wind generating units that belong to the optimal mix. Observing Fig. 6.16 and Fig. 6.17, it is
possible to individuate three zones:

1. in the first zone the maximum capacity is greater than 130% of the maximum demand;
a reduction of the maximum capacity does not produces effects on the number of units
belonging to the optimal mix and on the objective function. This behavior can be explained
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Figure 6.15: Thermal and hydro hourly production.

analyzing the solution in detail: the variability of the available generating units leads the
model to choose a different solution, but still optimal;

2. in the second zone the maximum capacity is reduced up to 75% of the maximum demand;
in this zone the reduction of the maximum capacity influences thermal production, in fact,
a strong reduction of the number of thermal units belonging to the optimal mix is observed;
nevertheless wind production is still well employed and consequently the increase of the
objective function is limited;

3. in the third zone the reduction of the maximum capacity is greater than 75% of the maximum
demand; in this zone it is no longer possible to reduce the number of thermal units, in fact
the solution is infeasible otherwise, for this reason, a strong reduction of the use of wind
units with a consequent great increase of the objective function is observed.

This type of behavior is visible also in Fig. 6.18 and Fig. 6.19 which show the use of wind
energy with respect of the maximum capacity of the system.

At first, imposing constraints on the maximum capacity of the system does not necessarily
determines a strong worsening of the solution and consequently an increase in the objective func-
tion, nevertheless a significant restriction negatively affects the use of wind generating units. This
behavior can be explained considering that the substitution of the thermal power with the wind
one is performed with a highly unbalanced rate with respect to the number of units. In fact, if a
thermal unit is excluded from the optimal mix in order to satisfy the constraints on the maximum
capacity, it should be replaced by an appropriate wind farm, but, normally, this is not available,
for this reason the constraints on the maximum capacity will be satisfied more easily reducing the
use of wind units when the solution is close to the not feasibility.
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Figure 6.16: Number of units in the optimal mix vs max power capacity.

Figure 6.17: Number of units in the optimal mix vs max power capacity/maximum load.
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Figure 6.18: Usage of wind power vs max power capacity.

Figure 6.19: Usage of wind power vs max power capacity/maximum load.
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Figure 6.20: Objective function vs max power capacity.

Figure 6.21: Objective function vs max power capacity/maximum load.
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6.5.4 Analysis of the influences of the minimum system capacity on the
UC solution

The upper bound constraint over the minimum nominal capacity of the system can be applied
for market restrictions (for instance, in order to guarantee that certain security requirements are
satisfied). This constraint takes into account only the thermal generating units, since only the
”known” minimum capacity is considered, when all the thermal units of the assigned instance are
on at their minimum power. If the minimum capacity is equal to zero, it actually does not impose
any constraint; in theory, it is possible to satisfy the demand without using the thermal units.
We analyzed the influence of the increase of the maximum capacity on the UC solution in two
different scenarios:

1. no constraints are imposed on the maximum system capacity;

2. specific constraints are applied on the maximum system capacity.

In the first case, it is possible to observe that the increase of the minimum capacity does not
influence the number of thermal and wind units belonging to the optimal mix (Fig. 6.22 and Fig.
6.23). This influence is slightly visible only when 100% of the total thermal capacity is required,
determining a small increase of the active thermal units. In general, if a higher minimum thermal
capacity is required, a higher number of units are started up, even if it is unnecessary to satisfy
the demand.

In the second case, a constraint on the maximum capacity has been imposed. This constraint
tends to limit the number of units belonging to the optimal mix, for the reasons previously
explained. It is possible to observe that in this case an increase of the minimum capacity at first
requires a higher number of units, and then it determines a strong reduction of the use of wind
units, due to the constraint on the maximum capacity that is now satisfied, with a consequent
increase of the objective function (Fig. 6.24 and Fig. 6.25).
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Figure 6.22: Number of units in the optimal mix vs min power capacity.

Figure 6.23: Number of units in the optimal mix vs % min power capacity.
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Figure 6.24: Number of units in the optimal mix vs min power capacity (with capacity limit).

Figure 6.25: Number of units in the optimal mix vs % min power capacity (with capacity limit).
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6.5.5 Analysis of the influences of the subset constraints on the UC
solution

In order to analyze the influences of the subset constraints on the UC solution, we:

1. studied the influences on the UC solution of the constraints that limit the number of thermal
units belonging to assigned subsets, in particular the sets regarding the type of fuel;

2. studied the influences on the UC solution of the constraints that limit the total value that
characterizes the rate of CO2 emissions (g of CO2/KWh).

In the first case we performed 6 different simulations, limiting the maximum number of one
or more groups of units in the optimal mix, with respect to the fuel used. The objective of these
simulations is to verify the effectiveness of the subset constraints in the modification of the optimal
mix and how these constraints affect the objective function, making it increase. It is possible to
demonstrate the expected result observing Fig. 6.26: if the number of available units in the
optimal mix is overall constrained, a consequent reduction of the units utilized is determined.
Nevertheless, the increase of the objective function with respect to the not constrained case is not
so high (less than 1%); for instance, when a 37% reduction of the units belonging to the optimal
mix is obtained, the objective function increases only 0.2%.

Fig. 6.27 shows the constrained sets and the distribution of the optimal mix after the appli-
cation of the constraints (which are marked with a red hexagon), with respect to the variation
of the objective function, represented on the abscissa axis. It is interesting to observe that, for
this particular instance, if the constraints are applied on 3

5 of the subsets a strong reduction of
the number of the units belonging to the optimal mix is obtained, but the quality of the solution
and the objective function are not affected. Furthermore, the constraints on the subsets of the
thermal units do not affect wind units, which are still used, while they influence the distribution
of the hourly load between the thermal and the hydro components.

In the second case, we performed 9 simulations, limiting the constraints on the ‘cost’ of the
n-th subset. We considered the geographical subset, while the specific value of the CO2 emissions
has been used to determine the cost of the generating unit i. As explained previously, we have
decided to limit this type of cost in order to lead the model to choose for the optimal mix the
units that posses the lowest value of emissions, e.g., the units that are more ‘virtuous’ from this
point of view, regardless the absolute value of CO2 that they will emit after producing a certain
amount of energy. This aspect differentiates the GWUC model with subset constraints from a
classical UC model with ‘emission control’, where the emissions are considered as a cost in the
objective function. If we analyze Fig. 6.28, it is possible to observe that when the reduction of
the CO2 emission increases, e.g., the constraints become stronger:

� the number of thermal units belonging to the optimal mix decreases; when a reduction of
70% of the value of the specific emission is required, a reduction of 50% of thermal units
used is obtained (from 52 to 27);

� the objective function increases, even if this increase is not so high, in fact it is about 1%.

We do not observe a modification of the use of the wind units, since as it happens when the
other constraints are considered, the smaller variability of thermal production is absorbed by the
hydro component. Fig. 6.29 shows the reduction of the average value of CO2 emissions of the
thermal units belonging to the optimal mix.
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Figure 6.26: Number of thermal units in the optimal mix vs max number of thermal units allowed.

Figure 6.27: Number of thermal units in the optimal mix vs delta % O.F.
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Figure 6.28: Number of units in the optimal mix vs % CO2 reduction.

Figure 6.29: g CO2/KWh vs % CO2 reduction.
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6.6 Conclusions

In this chapter, a new UC model in presence of wind energy sources has been defined and
analyzed in order to formulate and solve the problem of determining the best configuration (opti-
mal mix) of available thermal, hydro and wind power plants. The objective of the new proposed
model is to integrate renewable energy sources, like wind, in a conventional electrical system. In
particular, a generalized form of the UC problem, called Generalized Wind Unit Commitment
Problem - (GWUC), which takes into account conventional generating units (like thermal and
hydro power plants) and wind turbines, has been proposed. The new model allows to analyze
how the characteristics of the UC solution are influenced by the introduction or the substitution
of power plants in the set of the available generating units. In particular, it has been possible to:

� analyze how the UC solution is affected by the introduction of new generating units (con-
ventional and wind power plants), or by the substitution of conventional generating units
with wind turbines and vice versa, within a given set of available generators, in terms of
adaptation to the given demand profile;

� determine the best configuration (optimal mix) of available generating units to be utilized,
choosing them within a given set of available units, in terms of a fraction of the total energy
produced.

The most important results obtained show that, in contrast to the classical UC models and
the typical wind UC models, in the GWUC formulation wind generating units are integrated in
the solution of the UC problem and furthermore they are also associated with risk considerations,
correlated with the forecast error which can be controlled (limited). Moreover, as far as emissions
considerations are concerned, the GWUC model chooses for the optimal mix the units that posses
the lowest value of emissions, e.g., the units that are more ‘virtuous’ from this point of view,
regardless the absolute value of CO2 that they will emit after producing a certain amount of
energy. This aspect differentiates the GWUC model with subset constraints from a classical
UC model with ‘emission control’, where the emissions are considered as a cost in the objective
function.

As far as future work is concerned, it could be very interesting to consider a larger number of
subsets of generating units in the GWUC formulation, in order to analyze the behavior of the model
in terms of the quality of the solution obtained and in terms of computational times. Furthermore,
we could consider a higher number of wind turbines in our model in order to analyze how the
solution is influenced by the use of wind sources. Moreover, other additional constraints on wind
turbines could be considered in the formulation in order to improve the modeling of the realistic
behavior of the wind units, from a practical and an operational point of view. Interconnections,
security, and reliability aspects could be also taken into account in order to improve the GWUC
formulation; furthermore, the model of the risk correlated with the utilization of wind energy
sources could be refined, considering also detailed economical considerations. It could be also
very interesting to formulate the GWUC as a power-based continuous model, taking into account
the assumptions explained in chapter 4, in order to analyze how the solution obtained is effective
for the efficient operation and planning of a real time electrical system. The GWUC could be
also modeled taking into account Robust Optimization considerations: it could represent a very
interesting aspect since robust optimization techniques could be easily applied to model the risk
correlated with the utilization of wind energy sources.





Chapter 7

A novel model to generate
synthetic wind data ∗

The output of wind generation is variable, like other forms of renewable energy sources which
are influenced by weather conditions that cannot be controlled by the electrical system operator.
Wind generation is also relatively unpredictable, since the amount of wind energy fluctuates as
wind speed changes, being a ‘non-dispatchable’ source. As discussed in the previous chapters,
the objective of power system operators is to supply electricity ensuring that generation meets
the demand in all time periods, maintaining the integrity and the reliability of the system at an
acceptable operational cost [KS04]. In particular, the reliability associated with a power system
is defined as ‘the ability to supply adequate electric service on a nearly continuous basis with
few interruptions over an extended period of time’ [IoLES04]. Generally, generating units are
scheduled to meet the forecast demand and may alter their output levels to follow the load that
fluctuates throughout the day. For this reason, the balancing between demand and supply becomes
challenging if wind generation is considered, since the output of wind units cannot be directly
controlled, but it can only be reduced by the system operators [GHA+06], resulting in increasing
operational costs. The operation of conventional systems is thus altered, to take into account the
variability of wind generators [GSHG03] [HCP+00]. In particular, conventional generators may be
induced to operate at lower levels, increasing the number of start-ups and shut-downs [GHA+06],
[Hol04] [Eir04]. Nevertheless, an increase in the ramping and in start-ups and shut-downs can
shorten the life of thermal units [LBG97], since they are designed to run at a stable load [Fly03]
and are optimized for continuous rather than cyclical operation, ensuring a longer life and a lower
risk of failure over a long period. Furthermore, since wind generation is relatively unpredictable
and ‘non-dispatchable’, the uncertainty in the electrical system increases as wind capacity utilized
grows large, resulting in the requirement of an additional reserve capacity in order to maintain
system security [Sod93b]. Thus, when renewable sources, like wind, are considered, forecasts of
weather conditions are fundamental.

Since the use of wind energy sources and its integration into power generation systems is as-
suming increasing importance, new generation models for synthetic wind data are needed, in order
to properly generate forecasts of wind speed and power. This data is fundamental in simulations

∗Part of the material presented in this chapter is based on the following publication A. Naimo. A new synthetic
wind forecast data generation model. Technical Report R. 11-32, IASI-CNR, 12/2011.
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carried out to analyze and improve the performances of wind generating units, individuating the
technical parameters of wind turbines that directly affect power production. During our research
activities, we developed a new model in order to generate realistic synthetic wind data, which is
presented in this chapter. In this model, wind speed is assumed to behave as a Weibull distribution,
while wind speed forecast error is simulated using First-Order Auto-Regressive Moving Average -
ARMA time-series models. Mathematical Operations Research formulations for the Assignment
Problem are used to model wind speed persistence features, which, as shown by simulation results,
are essential to properly obtain wind speed and power output forecasts.

In this chapter we present the state of the art on wind speed forecasting techniques; hence we
illustrate the basic idea of our synthetic wind data generation model and its detailed formulation;
finally we present the simulation results and outline the conclusions.

7.1 The importance of forecasts: wind speed and power
prediction models

Wind generation requires complex forecasting techniques which take into account wind speed,
wind direction, hub height, geographical conditions, wind farm size, wind turbine technical and
operational characteristics and so on. Wind speed and power forecasting techniques are used to
support the integration of wind energy sources into the existing power systems. Different research
groups and private companies have developed several forecasting systems [GBK03], like WILMAR
and ANEMOS European research projects, with the aim to predict how much wind power will
be produced in a short-term period, typically up to 48 hours, from a single wind farm or from a
region that includes many wind farms.

The WILMAR Project (Wind Power Integration in Liberalized Electricity Markets) has been
funded by the European Commission [WIL05]. The objective of this project is to quantify the
additional costs associated with the integration of large amounts of wind power into European
power systems, when wind energy is used to increase the contribution of renewable energy to
the power supply, meeting the European stated goals and the Kyoto Protocol emissions targets.
This leads to an accurate analysis to reduce as much as possible these additional costs, the costs
related with the investments in new thermal power plants, in new transmission lines, and in
the improvement of wind power forecasting systems. Furthermore, power market structures are
analyzed in order to better exploit wind power resources. In order to carry on this analysis on
wind power integration, a suitable planning tool has been developed for the project, taking into
account the Nordic and German power systems [PP03]. This tool is able to simulate the operation
(hour per hour) of the existing power systems and of the power systems with large amounts of
wind power, as they will exist in the near future. Another objective of this project is to estimate
the value of potential improvements of wind power prediction tools themselves, developing models
to simulate realistic wind speed predictions with a certain accuracy.

The ANEMOS Project (Advanced Tools for the Management of Electricity Grids with Large-
Scale Wind Generation) has been funded by the ANEMOS Consortium [ANE11]. The objective
of this project is to manage at optimality electricity systems with large-scale wind power gen-
eration. In order to achieve this goal, new intelligent management tools are developed for the
project to study and analyze the variability of wind power. Particular attention is devoted to
the integration of wind power forecasts into conventional power systems, taking into account the
related uncertainty, in order to trade wind power generation in electricity markets.

The results obtained with these research projects have shown that, in order to operate a power



7.1 The importance of forecasts: wind speed and power prediction models 157

system with wind generation in a proper way, the short-term (1 to 48 hours) forecasts of wind
power production is fundamental. Advanced wind power prediction tools, based on time-series
and numerical weather prediction models and designed for power system operators, are being
developed and continuously improved.

Nevertheless, no forecast is perfectly accurate and results in some error, that increases and
becomes significant as the time horizon lengthens, since wind speed is unpredictable and wind
generation forecasts need a large number of factors to be considered [GLKB03]. Usually, only
wind speed forecast errors are used to generate synthetic wind data that are useful to carry out
simulations over wind generation systems. In fact, it is simpler to work with wind speeds since
they have been measured for many more years and in many more locations than wind power and
for this reason, it is easier to obtain wind forecasts. Moreover, wind power forecast errors should
be normalized taking into account the capacity of each wind farm, while wind speed forecast
errors are easily expressed in m/s. Furthermore, wind power is a function of the cube of the wind
speed. This non-linearity of the power curve makes it more difficult to simulate correlated time-
series of wind power than of wind speed, since correlations between wind power forecasts errors
are much more dependent on the wind speed than the correlations between wind speed forecast
errors. Moreover, the final step of a wind power prediction system is to convert predicted wind
speeds into wind power using a power curve. All wind power measurements, however, do not lie
on the power curve since they must be average over a finite time period. Therefore wind power
forecast errors will show a greater variance than wind speed forecast errors, making it difficult to
identify what the errors depend on. For all these reasons, usually, wind speed forecast errors are
considered to properly predict and simulate wind speed and wind power output.

Short-term wind power prediction models have been used by power plant owners and power
systems operators for 20 years in order to predict how much wind power will be produced in the
short-term (usually up to 48 hours ahead). Wind power prediction models can be classified with
respect to the input data they require. The two main types are Time-Series Models and Numerical
Weather Prediction-Based Models (NWP-based models), which are represented by physical and
statistical models, as shown in Fig. 7.1.

Time-Series models consider only on-line wind speed or wind power measurements and time-
series analysis methods to predict wind power production in a short-term period which consists
of a few hours.

NWP-based models outperform time series models for forecasts longer than 4 up to 6 hours,
and can be classified into physical or statistical models.

Statistical models calculate wind power production directly, ignoring physical considerations.
They use NWP output and past measurements of both NWP output and wind power production.
Statistical NWP-based models generally outperform physical models, even if they require more
input data, but the difference between the two becomes insignificant at longer forecast lengths.

Physical NWP-based models estimate the local wind speed for a wind farm using only the
output of a NWP model and then convert it to local wind power production. Some past mea-
surements of NWP output and wind power are required, however, to calculate the model output
statistics parameters used to reduce systematic errors.

Generally, wind prediction models use a combination of all three types mentioned above to
make the most accurate wind forecasts possible. For instance, more advanced time-series models
with the inclusion of statistical models can usually deliver better results, but the errors shown here
are still typical for state-of-the-art on wind power prediction systems. The main characteristics of
the models used for wind speed and power prediction are described in the following sections.



158 A novel model to generate synthetic wind data

Figure 7.1: Short-term wind speed and power prediction models.

7.1.1 Time-series models

Given a certain wind speed forecast, it is necessary to simulate the associated forecast wind
speed error. A realistic measure of this error can be obtained with the 1st-order Auto-Regressive
Moving Average - ARMA - time-series model, as proposed by Soder [Sod93b] [Sod93a] [Sod04].
These models are based on time-series, which are sequences of observations; each observation is
recorded in a specified time interval. ARMA time-series models have been explained in detail
in [DMN03]. There exist different types of time-series models, according to the type of time-
series which are based on. Time-series can be discrete, parametric, uni-variate and multi-variate.
Discrete time-series are characterized by observations recorded at discrete points in time with a
constant time interval between the points. Time-series are parametric if their characteristics are
described by constant parameters. Uni-variate time-series are composed of observations of a single
variable, while multi-variate time-series are composed of more than one variable. When it is needed
to simulate wind speed forecast errors at multiple sites at the same time, the time-series used must
be multi-variate. The most appropriate time-series model to use is determined according to the
type of time-series wind speed forecast error considered. Time-Series models are the simplest and
therefore least expensive type of wind prediction models. They require only the most recent (a few
hours) wind speed or wind power measurements from the wind farm or from a few representative
wind farms in the region where wind power production has to be forecast. More advanced time-
series models require more input data (past wind speed or wind power measurements) [GBK03].
These models use time-series analysis techniques such as recursive least-squares algorithms, auto-
regressive models, or artificial neural networks to find trends in the wind speed measurements
and then extrapolate these trends a few hours into the future. Many types of time-series models
have been investigated, and there is no single best one, since different models result in varying
degrees of error for different locations due to the differences in weather conditions and terrain.
Time-Series models are the most accurate models up to 4 to 6 hours ahead: this forecast length
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is sufficient for some applications, even if it is the most critical for power systems with many
thermal power plants, which are not able to vary their production rapidly. This concept is shown
in picture (7.2), where it is possible to observe that the forecast error tends to increase when the
time horizon considered lengthens.

Figure 7.2: Wind speed forecast error curve simulated with time-series models (ARMA).

Uni-variate ARMA time-series models

Soder [Sod93a] first developed a method based on a uni-variate ARMA time-series model to
simulate wind speed for the operation planning of a power system by a stochastic optimization
approach. The ARMA time-series has been defined as follows:

X(0) = 0 (7.1)

Z(0) = 0 (7.2)

X(t) = αX(t− 1) + βZ(t− 1) + Z(t) (7.3)

where X(t) is the wind speed forecast error at time t, α and β are constant parameters,
and Z(t) is a random Gaussian variable with average equal to zero and standard deviation σZ
at time t. The Auto-Regressive parameter α determines to which degree the previous value in
the time-series influences the current value. The Moving-Average parameter α determines to
which degree the random Gaussian variable of the previous parameter in the time-series influences
the current value. A unique set of the three parameters α, β, σZ describes an ARMA time-
series. Determining the values of the ARMA parameters is fundamental, because if wind speed
forecast errors are properly estimated, the power system operational additional cost generated
by wind in a given region under certain average weather conditions is correctly individuated. In
particular, appropriate ARMA parameters should be properly calculated in order to model also
special situations in which extreme weather conditions, such as storms, can result in extreme
costs for the operation of the power system, that can be limited if the average forecast errors are
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correctly estimated with proper parameters. Furthermore, even the choice of different initial values
for α, β, and σZ in the minimization algorithms that implement the ARMA model is fundamental,
since it can give different results for these parameters themselves because of the presence of local
minimums.

The ARMA parameters depend on different factors [Boo05]. The most important are related
with the precision of forecast wind speed estimation (this is associated to the simplicity and the
accuracy of the prediction system), the terrain complexity of the given site and the average wind
speed level where wind turbines are located.

The following table shows the possible values that α, β and σz parameters can assume (S.T.
means Simple Terrain, C.T. means Complex Terrain, S.P.S. means Simple Prediction System,
A.P.S. means Advanced Prediction System, f(w) means that parameters depends on average wind
speed w).

α β σz
S.T. S.P.S. 0.98 −0.7 1.0÷ 2.5 f(w)
S.T. A.P.S. > 0.98 −0.8÷−0.4 f(w) 0.75÷ 1.5 f(w)
C.T. S.P.S. 0.8 −0.1 2.5÷ 3 f(w)
C.T. A.P.S. 0.8 −0.1 0.50÷ 2.0 f(w)

Table 7.1: Possible values for the parameters α, β and σz.

The most complete study on the value of the parameters considered is [Boo05], where it is
suggested that proper values for the parameters are α = 0.95, β = −0.6, σz = 0.5.

Multi-variate ARMA time-series models

In his later studies, Soder [Sod04] developed a multi-variate ARMA time-series model in order
to simulate wind speed forecast errors for the simulation of the stochastic optimization operation
of power systems. The Soder’s idea was to develop a simple and practical model to produce
realistic wind speed forecast errors for power system simulation. The model is based on two main
assumptions. The first is that the variance of wind speed forecast errors does not depend on the
level of wind speed. The second is that the correlation between forecast errors at different sites
does not depend on the forecast length. Actually, neither assumption is true, since the correlations
increase when the forecast length grows large, but they greatly simplify the model and do not
result in significant simulation errors.

Nielsen and Madsen [NM02] also produced a model based on multi-variate ARMA time-series.
In particular, they developed a 1st order multi-variate Moving-Average time-series model MA(1).
In their work, they found that a Moving-Average model results in about the same simulation accu-
racy as the more complex Auto-Regressive (AR) and Auto-Regressive Moving-Average (ARMA)
models. Nevertheless, in another paper [NNM02], they recommend the use of an ARMA model.

Multi-variate ARMA time-series models can be used to simulate correlated forecast errors at
multiple locations. This should not be done for each location separately based on the ARMA time-
series model described above because actually, wind speed forecast errors at different locations are
correlated with each other. In order to create wind speed forecast errors that are representative
of different locations in the power system, various forecast error scenario trees must be created,
according to the different locations themselves, so that wind speed is under forecast for wind
farms that are near each other. Moreover, the simulated wind speed forecast errors must also be
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correlated. If this correlation were not be present, the aggregate simulated wind power error for
the given entire region would be near zero, since wind speeds would be over-predicted in some
locations and under-predicted in other locations, and these deviations would be uncorrelated. For
these reasons, another formulation of the ARMA time-series model, that is represented by the
multi-variate ARMA time-series one, is required.

Multi-variate ARMA time-series model is thus created by adding a correlated random variable
to each time-series, formulated in the case of two locations as follows (observe that the model can
be defined for more than two locations)

X1(0) = 0 (7.4)

Z1(0) = 0 (7.5)

X1(t) = α1X1(t− 1) + β1Z1(t− 1) + Z1(t) (7.6)

X2(0) = 0 (7.7)

Z2(0) = 0 (7.8)

X2(t) = α2X2(t− 1) + β2Z2(t− 1) + Z2(t) (7.9)

where Z1 and Z2 are correlated random Gaussian variables given by the following expression

Z1(t) = c11Za(t) + c12Zb(t) (7.10)

Z2(t) = c21Za(t) + c22Zb(t) (7.11)

σ2
Za

= c211 + c212 (7.12)

σ2
Zb

= c221 + c222 (7.13)

Za(t) and Zb(t) are independent random Gaussian variables with standard deviations σZa
and

σZb
, both equal to 1.
These standard deviations are related by the 2 by 2 c-matrix. The parameters whose values

must be correctly found are α1,α2, σ1, σ2, c11, c12, c21, c22. It is easier to observe these parameters
when the 2-dimensional ARMA model is written in a matrix form, as presented below:[

X1(0)
X2(0)

]
=

[
0
0

]
[
Z1(0)
Z2(0)

]
=

[
0
0

]
[
X1(t)
X2(t)

]
=

[
α1 0
0 α2

] [
X1(t− 1)
X2(t− 1)

]
+

[
Z1(t)
Z2(t)

] [
β1 0
0 β2

] [
Z1(t− 1)
Z2(t− 1)

]
[
Z1(t)
Z2(t)

]
=

[
c11 c12

c21 c22

] [
Za(t)
Zb(t)

]
As mentioned above, the model can be extended to include any number of locations. Also in

this case, the parameter matrices that describe the time series are always represented by α, β, c.
The correct α and β matrices are found using the previous expressions, as done before, while the
proper c-matrix is found minimizing the difference between the correlations of the forecast errors
and the correlations of the simulated forecast errors at the different locations.
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7.1.2 Numerical Weather Prediction Models (NWPs)

Numerical Weather Prediction Models (NWPs) have been studied for decades in order to
obtain weather forecasts in several applications [Boo05]. These models use computer simulations
of the state of the Earth’s atmosphere at a given point in time, in order to make weather forecasts,
using physical laws. These physical laws describe how the state variables (represented by pressure,
humidity, temperature, wind speed) change over the time period of observation. A set of non-
linear partial differential equations, which cannot be solved analytically, is considered, in order to
represent the relationship between these state variables. NWPs are used to numerically solve this
system of equations at each point of a 3-dimensional grid that covers part or the whole Earth’s
atmosphere. The most advanced NWPs are run on dedicated super-computers at national weather
centers, though even small private companies are currently using these models to obtain weather
forecasts, due to the improvement in parallel computing. In fact, NWPs are gradually increasing
in importance due to the improvement in the studies about the behavior of the atmosphere and
due to the increasing capabilities and speed of computers. Nevertheless, NWPs present some
limitations in their accuracy when the state of the atmosphere has to be predicted at very short
forecast time horizons (less than about 4 hours), due to the imperfect measurement of the initial
state variables that have to be integrated into the model itself. Furthermore, these models are
strongly limited when predictions at longer forecast time horizons (more than a few days) are
needed, due to the intrinsic nature of weather conditions. Generally, the output of NWPs is used
by wind power prediction systems, in order to obtain wind power forecasts. The most important
variables output of NWPs that are used are wind speed, wind direction, pressure, and thermal
stability. Wind power prediction models can be classified into two main categories: physical and
statistical models. The following sections describe the main characteristics of each model.

Physical models

Physical models are usually based on different steps in order to produce wind power forecasts
[Boo05].

The first step consists in obtaining the output of the NWP models, which, as mentioned before,
attempt to predict the future state of the atmosphere taking into account information about the
current state of the atmosphere itself and physical laws that describe the changes of the state
variables (pressure, humidity, temperature, wind speed) over a given time horizon.

In the second step, called Local Refinement, the outputs of the NWPs (wind speeds and
directions) are translated into the wind speed and direction at the wind farm geographical site
where power production has to be forecast, considering the hub height of the wind turbines. The
simplest method to obtain these values consists in using the wind speed and direction at the
NWPs grid point that is nearest to the given wind farm, considering the vertical level where the
lowest forecast errors are obtained. This method can be improved by interpolating wind speed
and direction from the four NWPs grid points that circumscribe the wind farm.

The third step, called Model Output Statistics (MOS), is used to reduce the significant sys-
tematic errors caused by the resolution of the NWPs as much as possible. In order to obtain
this result, a simple linear model is used, taking into account on-line measurements of the NWPs
parameters. MOS can be applied before the conversion of wind speed into wind power, after the
conversion, or in both of these cases.

The fourth step is based on a physical model that is used to translate the wind speed forecast
into a wind power forecast, taking into account either the manufacturer’s wind turbines power
curve or the actual power curve obtained with the past wind speed and power measurements.
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Figure 7.3: Typical steps of a physical NWP-based model.

The steps that physical NWP-based models use to create wind power forecasts are shown in
Fig. 7.3.

Statistical models

Statistical models take into account measured wind power output of a wind farm or a geograph-
ical region and the corresponding numerical weather predictions to find statistical parameters that
describe the relationship between the two [Boo05]. The values of these parameters can change
over the time horizon due to the weather conditions, the aging of the wind turbines, and the
changes in the terrain site characteristics. For this reason, the parameters are usually updated
with algorithms that properly weight the data. With respect to the physical models, the statistical
models present the advantage that all physical considerations are implicitly taken into account.
This means that all the effects of orography, roughness, and wind turbines are automatically
considered. However, the main disadvantage consists in the reduced accuracy at longer forecast
time horizons. Moreover, past wind power measurements and NWPs results are needed to find
the statistical parameters, and these parameters have to be typically updated in order to obtain
accurate forecasts.

7.2 The synthetic wind data generation model

As mentioned above, the integration of wind energy into electrical systems is acquiring global
relevance [CSGTXB10] [WWE11]. Knowing the main characteristics of wind is fundamental to
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Figure 7.4: Synthetic wind data generation model.

obtain proper wind speed and power output forecasts. Wind persistence is one of the most
important factors to be studied to understand the dynamic and intermittent behavior of wind. In
order to generate forecasts for wind speed and power, it is also necessary to know how wind speed
can be modeled from a statistical point of view. Many authors in the literature show that the
statistical distribution of wind speed is modeled with the Two-Parameters Weibull distribution
([CSK78], [Hen77], [JHY76], [SS79], [RdMC89], [RHH94], [GTPdF98], [Gup86], [JHMG78]). A
correct estimation of wind speed forecast error is also fundamental. First-Order Auto-Regressive
Moving Average - ARMA time-series models - are widely applied to simulate the error associated
with wind speed forecasts [Boo05]. Other models to simulate this error exist, such as GARCH
models [LKPvdS10], but the comparison of the performances of these different models is beyond
the scope of this thesis. The studies carried out for the WILMAR project have shown that the
properties of the ARMA well reproduce the behavior of the wind speed forecast error [Boo05]. For
these reasons, we have chosen the ARMA model to represent the wind speed forecast error and the
Weibull distribution to represent the wind speed in our generation model. The main aim of this
study is to define a new model to generate realistic synthetic data for wind speed and power. In
this model, wind speed is assumed to behave as a Weibull distribution, while ARMA models are
used to estimate wind speed forecast error. The novel approach introduced is represented by the
enhanced way to model the wind speed persistence features using a mathematical formulation of
the Assignment Problem. The novel generation model proposed in this thesis is compared with a
pure random model in which synthetic wind speed is generated applying a casual perturbation to
a wind speed fixed curve. The objective of the new generator is to produce realistic data for wind
speed and power (Fig. 7.4). The inputs are the Weibull distribution parameters (representing wind
speed features), the ARMA model parameters and the wind turbine technical characteristics. The
generator is based on three main models. The first is the Optimization model for the Assignment
Problem, used to re-sequence wind generated data to fulfill persistence requirements. The second
is the ARMA model for wind speed forecast error. The third is the polynomial interpolation
algorithm, applied to wind power data to model wind turbine technical characteristics. The main
output parameters of the generator are the forecast wind speed, the forecast wind speed error and
the forecast wind power.
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Figure 7.5: Random wind speed data generated with respect to a Weibull distribution.

7.2.1 Synthetic wind speed curve generation

Synthetic wind speed data is typically generated respecting a Weibull distribution [BBL03],
that is defined as follows

f(v) =

(
k

λ

)( v
λ

)k−1

exp

[
−
( v
λ

)k]
(7.14)

where:

� f(v) is the probability to observe wind speed v;

� k is the shape parameter, which is used to determine the shape of the Weibull distribution
and usually varies from 1.2 to 2.75 ([CSK78], [Hen77], [JHY76], [SS79], [RdMC89], [RHH94],
[GTPdF98], [Gup86], [JHMG78]);

� λ is the scale parameter, which represents a scale factor for the Weibull distribution.

It is possible to observe that, even if wind speed seems to have a random behavior, statistical
wind speed properties of the Weibull distribution are maintained (Fig. 7.5). Nevertheless, the
generated wind speed data does not reflect persistence characteristics of the given average observed
wind speed, due to the random generation process itself. This means that the average value of the
generated wind speed is constant and the autocorrelation tends to zero as far as the time horizon
increases. For this reason, and for the apparent random behavior of wind speed, enhanced models
that properly consider wind speed characteristics, such as persistence, are needed.

7.2.2 Modeling wind speed persistence with Assignment Problem for-
mulations

To obtain a proper wind speed forecast, it is necessary to consider that wind speed is distributed
respecting the Weibull distribution. Furthermore, wind speed autocorrelation reflects synoptic and
seasonal wind speed behavior; this aspect is represented by the persistence feature that is measured
as the average duration of wind speed in a given time interval for a certain site. Many models for
wind speed persistence have been proposed in the literature [CSGTXB10]. The most applied ones
are ARMA, Markov, and Wavelet models [BK09]. Nevertheless, these models do not guarantee
at the same time that wind speed autocorrelation reflects synoptic cycles and that wind speed
persistence and Weibull statistical characteristics are not altered. In order to overcome some of the
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Figure 7.6: An example for the Assignment Problem, used to model wind speed persistence
features.

drawbacks of these models, in this work wind speed persistence features are modeled considering
mathematical formulations for the Assignment Problem. The Assignment Problem is one of the
most studied Optimization problems in the Operations Research literature [BDM09]. Given two
disjoint sets of equal size and a cost associated with each element of the cross product of the two
sets, it is required to assign exactly one element belonging to the first set to one element belonging
to the second set, so that all the elements belonging to the sets have been assigned and the total
cost of the assignment is minimized. In our study:

� the elements of the first set are the average wind speed points, which are individuated on
an hourly average observed wind speed curve (left part of Fig. 7.6);

� the elements of the second set are the wind speed points generated in a random way, respect-
ing a Weibull distribution, and that have to be sequenced, to consider wind speed persistence
features (right part of Fig. 7.6);

� assignment costs are represented by a function of the distances between average observed
wind speed points and random wind speed points.

In this study, the Assignment Problem has been solved considering a well known Operations
Research algorithm, called Hungarian Algorithm [BDM09]. The correct re-assignment of the
random wind speed points to the average wind speed points is obtained solving the Assignment
Problem with the Hungarian Algorithm and minimizing the total distance between the random
points and the average points. It is fundamental to observe that the Assignment Problem is
solved considering the hourly observed average wind speed curve. This could lead to think that
an alternative way to model wind speed features could be based only on a casual perturbation
of the observed average wind speed, but we will show that this is not the case, comparing this
alternative model with the new proposed one.
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Figure 7.7: Wind turbine power technical curve.

7.2.3 Synthetic wind speed error and wind turbine power curve gener-
ation

A realistic measure of the forecast wind speed error can be obtained with ARMA models, as
proposed by Soder [Sod93b] [Boo05].These models are based on time-series, which are sequences
of observations recorded in specified time intervals. An ARMA time-series is described by the
parameters α, β and σz [Boo05]. An example of wind speed forecast error curve simulated with the
ARMA model is shown in Fig. 7.2. To obtain proper wind power output forecasts, it is necessary
to analyze the power technical curve of a wind turbine, shown in the technical manufacturer’s
data-sheet. A typical wind turbine usually works in four modalities which depend on the wind
speed given in input (no wind speed, cut-in, rated, and cut-out wind speed), as shown in Fig. 7.7.

In particular, the following areas are considered

� area 1: wind speed values are lower than cut-in wind speed;

� area 2: wind speed values are comprised between cut-in wind speed and rated wind speed;

� area 3: wind speed values are comprised between rated wind speed and cut-out wind speed;

� area 4: wind speed values are greater than cut-out wind speed.

where

� cut-in speed: minimum speed which guarantees that wind turbine works properly;

� rated speed: minimum speed which guarantees that wind turbine works at nominal power;

� cut-out speed: wind turbine must be blocked if wind speed assumes values greater than the
cut-out speed, in order to avoid structural damages.
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Figure 7.8: CP power coefficient curve and its polynomial interpolation.

In the area 2, power output is calculated as follows

P = 0.5ρCPπR
2(vij)

3 (7.15)

where

� ρ is the air density factor;

� CP is the wind turbine power coefficient, which is a direct measure of its efficiency;

� 2R is the wind turbine diameter, given in technical manufacturer’s data-sheet;

� vij is the average wind speed for wind turbine i at time j.

CP power coefficient depends on the technical characteristics of the wind turbine. A typical
CP power coefficient curve is shown in Fig. 7.8.

Based on Betz’s Theory [Bet66], it is possible to calculate only the maximum value of CP , which
is about 0.59. The power curve cannot be easily reproduced, since it is determined considering
the power coefficient curve. It is thus necessary to use the technical manufacturer’s data-sheet
power curve as an input for our wind data generator. This is a discrete power curve, where the
correspondence wind speed-power is given. However, the input forecast wind speed value could
not be found in the data-sheet.

For this reason, in our model we have introduced a novel and effective but not so complex
approach to well approximate the power curve in all the four areas. We use a polynomial data
interpolation algorithm to determine the power output associated with a given wind speed, ac-
cording to the following steps:

1. CP is determined for all the given data-sheet wind speeds and an assigned air density factor;
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2. CP is approximated with a polynomial curve;

3. CP is re-calculated for all wind speeds and air densities, according to the interpolation
equation;

4. the power associated with the input wind speed is determined, by substituting the value of
CP , calculated at step 3, in the power equation.

Fig. 7.8 shows the result of our polynomial interpolation algorithm for the power coefficient
CP applied on a real technical data-sheet (Vestas V82 wind turbine).

7.3 Results and discussion

In this section we analyze how different Assignment formulations affect the quality of the
solution and we present the most important simulation results obtained with the new generator.

7.3.1 Tuning the Assignment model

We analyze how different choices of the distance functions in the Assignment affect the quality
of the solution, expressed by fitting properties. Fitting is defined as the measure of the difference
between the average hourly observed wind speed curve and the re-assigned wind speed curve
obtained with the Assignment algorithm. To carry out our analysis, we considered different types
of Weibull distributions, for a fixed value of the scale parameter λ (= 12) and different values of
the shape parameter k (Fig. 7.9):

� Weibull distribution A: k = 1.95;

� Weibull distribution B: k = 1;

� Weibull distribution C: k = 3;

� Weibull distribution D: k = 1.2.

These parameters have been chosen to take into account different aspects:

� λ parameter does not affect the shape of the Weibull distribution, but only its scale; for this
reason, it is trivial to prove that λ does not affect the behavior of the Assignment algorithm.
We have chosen λ = 12 as an average value in order to obtain a suitable average wind speed
at the wind turbine’s hub height;

� k = 1 and k = 3 represent the extremal values for the shape of the Weibull distribution,
while k = 1.2 and k = 1.95 are two typical k parameters which represent a realistic wind
speed Weibull distribution [BBL03].

Based on each of these Weibull distributions, we derived different types of hourly observed
average wind speed curves (Fig. 7.10).

We performed 1000 simulations over a 24 hours time horizon with the new generator, consid-
ering all these curves in input. We did not modify the technical parameters of the wind turbine
and the ARMA parameters, while we considered different functions of the assignment distances,
as described below:
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Figure 7.9: Weibull distributions considered in the simulation phase.

1. distance 1: dt = |vt − vrand,t|;

2. distance 2: dt =
|vt−vrand,t|

2 ;

3. distance 3: dt = |v2
t − v2

rand,t|;

4. distance 4: dt = (vt − vrand,t)2;

5. distance 5: dt =
|vt−vrand,t|

4 .

where vt represents the average observed wind speed at time t, and vrand,t is the re-assigned
wind speed at time t. The results obtained in the simulation phase are presented in the following
sections.

Quality of the fitting and assignment distances

We study how the quality of the fitting is influenced by the function of the assignment distance.

To calculate the quality of the fitting η we considered the formula η =
∑T
i
|vt−vrand,t|

v , where v
is the average value of wind speed, observed in the given time horizon. Table 7.2 shows that η
is influenced by the assignment distance. Smaller values of η correspond to a better quality of
the fitting. Fig. 7.11, 7.12, 7.13, 7.14, and 7.15 show an example of how the fitting is subjected
to variations, when different types of distances are considered. Fig. 7.16 shows the shape of
the average of η, for all the types of distributions and curves (on the columns of the table 7.2).
Distances 1 and 3 minimize the average value of η for each type of curve. Fig. 7.17 shows how
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Figure 7.10: Average wind speed curves considered in the simulation phase.
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Weibull Curve η (dist. 1) η (dist. 2) η (dist. 3) η (dist. 4) η (dist. 5)
A 1 7.67% 7.66% 7.97% 7.85% 8.94%
A 2 8.12% 8.01% 7.91% 7.94% 9.40%
A 3 7.58% 7.63% 8.15% 7.68% 9.93%
A 4 8.12% 7.80% 8.08% 7.87% 10.17%
A 5 9.96% 10.10% 10.03% 9.50% 10.87%
A 6 7.92% 8.00% 7.69% 7.94% 10.56%
B 1 7.40% 7.38% 7.48% 7.32% 8.98%
B 2 6.97% 7.26% 6.43% 10.91% 9.92%
B 3 6.74% 8.08% 6.57% 10.49% 8.72%
B 4 7.53% 7.55% 7.29% 10.47% 8.68%
B 5 6.89% 7.73% 7.24% 11.02% 9.40%
B 6 6.68% 7.28% 6.50% 10.95% 9.58%
C 1 8.45% 9.19% 8.50% 12.88% 11.73%
C 2 8.12% 8.84% 7.97% 12.52% 10.88%
C 3 4.03% 4.66% 4.50% 4.09% 12.42%
C 4 3.89% 4.03% 4.31% 4.28% 8.85%
C 5 3.87% 4.78% 4.12% 4.05% 11.95%
C 6 4.28% 4.19% 4.42% 4.24% 8.79%
D 1 4.10% 4.01% 3.83% 3.63% 6.91%
D 2 3.95% 4.16% 3.71% 3.63% 11.05%
D 3 3.79% 4.06% 3.90% 3.75% 9.40%
D 4 12.33% 12.60% 12.12% 16.80% 13.92%
D 5 11.34% 12.00% 11.17% 15.50% 13.46%
D 6 10.97% 12.02% 10.53% 15.71% 12.77%

Table 7.2: Values of η obtained with respect to the chosen assignment distance.

many times a given distance minimizes η for a certain distribution and curve (on the rows of the
table 7.2). The larger probability to have the minimum η is given by the distance 3. Based on the
results obtained, we observe that distance 3 ensures the best fitting for all the curves considered.

Quality of the fitting and shape of the average wind speed curves

We study how the quality of the fitting is influenced by the shape of the average curve. The
results show that (Fig. 7.18) the quality of the fitting η is constant (Weibull A and B); the
quality of the fitting η is influenced by the variation of the shape of the average wind speed curve
(Weibull C and D). This result depends on the Weibull distribution; the distributions A and B
and the shapes 1, 2, and 3 are characterized by a stronger persistence, which makes the operation
of re-assignment simpler with random data. Since the parameter λ has been left unaltered during
the simulations, the results show that the quality of the fitting is mildly dependent on the factor
k of the Weibull distribution.

7.3.2 Simulating wind speed with the Assignment model

The simulation results described in this section have been obtained with the Assignment algo-
rithm considering the distance 2. We have chosen this type of distance to simplify our calculations,
even if it is not the best one, as shown previously. If wind speed values are random generated,
considering only the Weibull distribution and neglecting wind speed persistence features, the ran-
dom wind speed curve does not reflect the observed wind speed curve (Fig. 7.19). If wind speed
values are generated solving the Assignment Problem, and considering both Weibull distribution
and wind speed persistence features, the re-assigned wind speed curve reflects the observed wind
speed realistically (Fig. 7.20).
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Figure 7.11: Fitting with distance 1.

Figure 7.12: Fitting with distance 2.
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Figure 7.13: Fitting with distance 3.

Figure 7.14: Fitting with distance 4.
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Figure 7.15: Fitting with distance 5.

Figure 7.16: Quality of the fitting η for all the Weibull distributions and curves.
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Figure 7.17: Quality of the fitting η for an assigned Weibull distribution and a given curve.

Figure 7.18: Quality of the fitting η with respect to the variation of the shape of the average
curve.
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Figure 7.19: Wind speed results obtained with random generation.

Figure 7.20: Wind speed results obtained with re-assignment.
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Figure 7.21: Simulation results obtained with random generation.

Figure 7.22: Simulation results obtained with re-assignment.
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Figure 7.23: Nominal, random and re-assigned Weibull distributions.

If wind speed values are random generated, random wind speed average is constant and its
auto-correlation tends to zero (Fig. 7.21). Thus, random wind speed does not reflect synoptic wind
speed cycles and persistence features. If wind speed values are generated solving the Assignment
Problem, re-assigned wind speed average is comparable to the observed wind speed average and
re-assigned wind speed auto-correlation differs from zero (Fig. 7.22).

This means that re-assigned wind speed reflects synoptic wind speed cycles and persistence fea-
tures. Fig. 7.23 compares the distributions of the observed hourly average, random, and reassigned
wind speed. These distributions reflect a typical Weibull. Thus, performing the re-assignment
considering wind speed persistence features does not alter the statistical characteristics of wind
speed. Simulations results thereby show that formulations for the Assignment Problem represent
a useful instrument to correctly model wind speed persistence features, which are fundamental to
obtain proper wind speed and power forecasts.

7.3.3 Simulation results of the new synthetic wind data generator

In the simulation phase, the new generation model has been compared with a random one.
The random model generates the synthetic wind speed curve applying a casual disturb to the
observed average wind speed curve. In this operation, a normal distribution with amplitude equal
to 60% of the average value of the observed wind speed curve is considered. For our simulations, we
considered the hourly average wind speed curves observed in Catania, Italy, subject of the analysis
shown in [BBL03]. To obtain realistic values of wind speed, this data has been normalized at the
wind turbine hub height h, considering the following formula [Hei05]

v(h) = v10 ·
(
h

h10

)a
(7.16)

where
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Figure 7.24: Wind speed curves obtained with random generation.

Figure 7.25: Wind speed curves obtained with re-assignment.
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Figure 7.26: Weibull wind speed distributions obtained with random generation.

Figure 7.27: Weibull wind speed distributions obtained with re-assignment.
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� v(h) is wind speed at hub height h (m/s);

� v10 is wind speed at height h10 = 10 m (m/s);

� a is the Hellman exponent which depends on the coastal location, on the terrain complexity
where wind turbines are located and on the stability of the air [KSW07].

We considered a time horizon consisting of one year, which has been divided into 4 slots, each
comprising 90 days (3 months). Each slot is associated with a given observed hourly average wind
speed curve, which respects a certain Weibull distribution with assigned λ and k parameters.
This curve is the same in a given slot, while it changes when a different slot is considered. We
performed 1000 simulations for each slot, taking in input a real wind turbine (Enercon E82 82m
2MW). For the ARMA parameters we considered α = 0.95, β = −0.60, and σz = 0.50.

The random model perfectly approximates the hourly average observed wind speed curve
(Fig. 7.24). This result is not surprising, as the casual disturb is almost annulled when the
average operation is applied to the average curve itself. However, the distribution of the wind
speed frequencies is degenerated at the extreme points (Fig. 7.26). The new model properly
approximates the hourly average observed wind speed curve (Fig. 7.25). It guarantees an optimal
distribution of the wind speed frequencies: re-assigned wind speed Weibull distribution is not
altered (Fig. 7.27).

The random model produces a smoother average wind speed curve (Fig. 7.28). This model
tends to underestimate the effect of the forecast error on wind power (Fig. 7.30). Nevertheless,
at a local level, when a simulation slot is considered, wind speed has more peaks than the new
proposed model (Fig. 7.34, 7.36, and 7.38). In fact, when the casual disturb is applied, wind
speed tends to reach values near cut-out or below cut-in speed as effect of the degeneration of the
Weibull distribution. This determines a wind power frequency distribution with higher probability
on the extreme values (Fig. 7.32).

The new proposed model produces an average wind speed curve with marked peaks (Fig.
7.29). This model tends to overestimate the effect of the forecast error on wind power (Fig. 7.31).
Nevertheless, at a local level, when a simulation slot is considered, wind speed presents better
persistence characteristics (Fig. 7.35, 7.37, and 7.39). This is confirmed by the results on average
forecast wind power, calculated as the average between the upper and the lower bound on power.
In the case of the upper bound (lower bound), wind speed forecast error leads to an increase
(reduction) in wind speed. These results are more realistic than those obtained with the random
model (Fig. 7.40, 7.41, 7.42, 7.43, 7.44, and 7.45). In fact, even if power is strongly variable
between a 24 hours time horizon and the following, it is cyclical in a single 24 hours time horizon.
This is expected when we consider the same average wind speed curve in a limited time period
(e.g. a week, a month, a season).

In the average power distribution, we observe that the value of 1 MW is associated with higher
frequencies (Fig. 7.32 and 7.33). In fact, if wind speed is next cut-out and the forecast error
is sufficiently high, the upper bound on wind speed is higher than cut-out, causing the block of
the wind turbine (0 MW power), while the lower bound on wind speed is comprised in the rated
range and produces the rated power (2 MW). If we do not consider this effect in our statistics on
frequencies, the peak at 1 MW disappears; thus, it represents the statistical effect of wind speeds
next cut-out associated with high forecast errors.

Based on the experiments conducted, we conclude that the new model:

� better approximates wind speed characteristics: Weibull distribution and autocorrelation
are respected, average wind speed curve is approximated at optimality;
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Figure 7.28: Wind speed forecast results obtained with random generation.

Figure 7.29: Wind speed forecast results obtained with re-assignment.
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Figure 7.30: Wind power forecast results obtained with random generation.

Figure 7.31: Wind power forecast results obtained with re-assignment.
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Figure 7.32: Wind power distributions obtained with random generation.

Figure 7.33: Wind power distributions obtained with re-assignment.
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� generates synthetic wind speed data with better persistence features: the hourly average
wind speed curve presents casual variations like the typical wind phenomena, but these
variations are not uncorrelated, thus, wind memory effect is maintained (Fig. 7.35, 7.37,
and 7.39);

� is more conservative in the generation of the synthetic wind power data: we can confirm
this behavior of the model making a comparison between the hourly wind power curves and
the estimation of the average hourly energy over all the simulations performed (Fig. 7.41,
7.43, and 7.45); this aspect is fundamental when this data is used as input to the generating
units within a power production scheduling process such as UC.

Figure 7.34: Wind speed obtained with random generation.

Figure 7.35: Wind speed obtained with re-assignment.
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Figure 7.36: Wind speed shifting obtained with random generation.

Figure 7.37: Wind speed shifting obtained with re-assignment.

Figure 7.38: Wind speed autocorrelation obtained with random generation.

Figure 7.39: Wind speed autocorrelation obtained with re-assignment.
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Figure 7.40: Wind power obtained with random generation.

Figure 7.41: Wind power obtained with re-assignment.

Figure 7.42: Wind power shifting obtained with random generation.

Figure 7.43: Wind power shifting obtained with re-assignment.
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Figure 7.44: Wind power autocorrelation obtained with random generation.

Figure 7.45: Wind power autocorrelation obtained with re-assignment.

7.4 Conclusions

In this chapter, a new model to generate synthetic wind data has been developed. Wind speed
has been modeled as a Weibull distribution, while wind speed forecast error has been simulated
using an ARMA time-series model. A mathematical formulation of the Assignment Problem
has been used to model wind speed persistence features. Simulations results have shown that
generating wind synthetic data in a pure random way is not sufficient to produce complete wind
speed and power output forecasts, but an accurate generation model which considers all the wind
characteristics, such as persistence features, is fundamental.

In the next chapter, wind synthetic data, generated with the proposed model, will be used
to carry out simulations studies to individuate wind turbines operational parameters that mainly
affect wind generators performances. An experimental function which expresses the average energy
produced by a wind turbine in a 24 hours time horizon in a typical day will be determined,
considering the main simulation parameters related with Weibull distribution and wind turbines.

As far as future work is concerned, the ARMA model used to determine the wind forecast error
could be refined in order to take into account both the variability in space and in time. Regarding
the solution of the Assignment Problem, we could consider a variable average curve, determined
with an ARMA model, in order to simulate also the scenarios in which the persistence at long
term decays.





Chapter 8

An enhanced approach to compute
the average energy produced by a
typical wind turbine

This chapter explains how the synthetic wind data, generated with the new model proposed
in our research activities and presented in chapter 7, has been used to carry out simulations
studies in order to individuate the wind turbines operational parameters that mainly affect the
performances of the typical wind generators. In particular, we describe how to determine an
experimental function which expresses the average energy produced by a wind turbine in a 24
hours time horizon in a typical day, considering the main simulation parameters related with the
Weibull distribution and the technical characteristics of the wind turbines. In order to determine
this function of the energy, we analyze first how the average energy produced by a wind turbine
in a 24 hours time horizon of a typical day is influenced by the simulations parameters (and
a combination of them), such as the Weibull distribution parameters (λ and k), the shape of
the observed hourly average wind speed curve and the technical parameters of the wind turbine
(rated speed vr, cut-in speed vin, cut-out speed vout). In order to carry out our analysis, we
have considered a set of Weibull distributions, with λ and k assigned parameters, and we have
derived different average wind speed curves, analogously to what has been described in section
7.3.1 of chapter 7. For each of these curves, we have performed 1000 simulations with the proposed
synthetic wind data generator, considering the values of the parameters λ and k of the Weibull
distribution related with the average curve itself. For each type of curve, we have determined the
value of the expression E

Er
, where:

� E is the energy produced by the wind turbine in a 24 hours time horizon;

� Er = Pr · 24 is the rated energy (Pr represents the rated power).

Er represents the maximum energy that a wind turbine can produce, working at a rated power
for 24 hours. In this case, the value of E

Er
, which represents the efficiency of the wind turbine,

is equal to 1. This value is based on the assumption that the energy is constant in a given time
period (usually equal to one hour), even if this is not proper realistic from a practical point of
view. In fact, wind speed (and thus energy) can be subjected to variations in this time interval.

191
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As mentioned before, the objective of this set of simulations is to find an experimental function
of E

Er
, related with the main simulations parameters, such as λ, k and the rated speed vr. The

objective is thus to individuate a proper expression for E
Er

= f( λvr , k). In the function, we consider
λ
vr

, because λ represents a wind speed from a dimensional point of view, since it is the scale factor
of the Weibull distribution. For this reason, this representation of the energy is correct, since
the average value of wind speed and the technical behavior of the wind turbine depend on the
parameter λ.

8.1 Dependencies of the energy on wind speed and wind
turbine parameters

In order to determine the function of the energy, we devoted our attention to:

� study the function of E
Er

, with respect to the variation of the shape of the observed hourly
average wind speed curve (assuming that the parameters λ and k are constant);

� study the function of E
Er

, with respect to the variation of the assigned Weibull distribution

(parameter k), considering different values of λ
vr

(assuming that the parameter λ and the
shape of the average curve are constant);

� study the function of E
Er

, with respect to the variation of λ
vr

, considering different values of
the parameter k of the Weibull distribution (assuming that the parameter k and the shape
of the average curve are constant);

� study the function of E
Er

, with respect to the variation of vin
vr

(assuming that the parameter
k and the shape of the average curve are constant);

� study the function of E
Er

, with respect to the variation of vout

vr
(assuming that the parameter

k and the shape of the average curve are constant).

The following sections describe the results obtained with the analysis of the aspects previously
described.

8.1.1 How the energy depends on the shape of the average wind speed
curve

For each Weibull distribution, we have analyzed how the function of the energy E
Er

is influenced
by the variation of the shape of the observed hourly average wind speed curve. It is possible to
observe that the value of the energy does not depend on the shape of the average curve, as
shown in Fig. 8.1. Nevertheless, the value of E

Er
depends on the parameter k of the Weibull

distribution. In fact, the amount of energy produced by the wind turbine tends to be larger for
Weibull distributions of type A and C associated with a higher value of k.
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Figure 8.1: Form of E
Er

with respect to the variation of the form of the average curve.

8.1.2 How the energy depends on the Weibull distribution parameters

In the previous section we have demonstrated that the value of the energy E
Er

does not depend
on the shape of the average curve. For this reason, we considered only one curve with a maximum
peak, in order to perform our simulations to study the influences of the Weibull parameters on
the energy. In particular, we considered:

� 2 assigned wind turbines with the following technical characteristics:
pr = 2 MW, vr = 16, vin = 3.5 vout = 25;
pr = 3 MW, vr = 15, vin = 3.5 vout = 25;

� the Weibull parameter λ varying within the set {1.6, 4.8, 12, 16, 20, 24};

� the Weibull parameter k varying within the set {1, 1.2, 1.95, 3}.

With these parameters, we have performed 1000 simulations with the proposed synthetic wind
data generator, obtaining 24 scenarios of 1000 iterations for each wind turbine. The values of the
energy obtained in the simulation phase, respectively for the wind turbine of 2 MW and 3 MW,
are shown in tables 8.1 and 8.2. We have thus analyzed how the function E

Er
is influenced by the

variation of the parameter k of the Weibull distribution, considering different values of λ
vr

and
vice versa. In particular, as mentioned above, we have analyzed the following two aspects:

� study the function of E
Er

, with respect to the variation of the assigned Weibull distribution

(parameter k), considering different values of λ
vr

and assuming that the parameter λ and
the shape of the average curve are constant (figures 8.2 and 8.4);
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� study the function of E
Er

, with respect to the variation of λ
vr

, considering different values
of the parameter k of the Weibull distribution and assuming that the parameter k and the
shape of the average curve are constant (figures 8.3 and 8.5).

The figures 8.2 and 8.4 show that the function E
Er

for different values of λ
vr

consists of a set

of curves, of a logarithmic shape, which are dependent on the factor λ
vr

. The figures 8.3 and 8.5

show that the form of the function E
Er

for different values of the parameter k consists of a set of
several polynomial curves of fourth grade, which are dependent on the factor k. For this reason,
it is possible to consider E

Er
as a function of λ

vr
and k, e.g., E

Er
= f( λvr , k), and determine it in a

closed form, as described in section 8.2.

( λ
vr

= 0.1) ( λ
vr

= 0.3) ( λ
vr

= 0.75) ( λ
vr

= 1) ( λ
vr

= 1.25) ( λ
vr

= 1.5)

k = 1 0.01 0.16 0.28 0.28 0.27 0.25

k = 1.2 0.01 0.14 0.33 0.33 0.3 0.28

k = 1.95 0 0.09 0.47 0.49 0.42 0.35

k = 3 0 0.07 0.59 0.64 0.52 0.37

Table 8.1: Values of the energy E
Er

obtained for a wind turbine of 2 MW.

( λ
vr

= 0.11) ( λ
vr

= 0.32) ( λ
vr

= 0.80) ( λ
vr

= 1.07) ( λ
vr

= 1.33) ( λ
vr

= 1.5)

k = 1 0.01 0.16 0.29 0.28 0.26 0.25

k = 1.2 0.01 0.14 0.33 0.33 0.31 0.28

k = 1.95 0 0.09 0.47 0.48 0.42 0.34

k = 3 0 0.07 0.59 0.64 0.52 0.37

Table 8.2: Values of the energy E
Er

obtained for a wind turbine of 3 MW.

8.1.3 How the energy depends on cut-in and cut-out wind speeds

In order to study the function of the energy E
Er

with respect to vin and vout, we have modified
the technical curve of the wind turbine as shown in the figures 8.7 and 8.9, while the other
simulation parameters have been left unaltered. Thus, we have analyzed how E

Er
is influenced

by the variation of the wind turbine technical parameters, such as the cut-in speed vin and the
cut-out speed vout. In particular, the following two aspects have been considered:

� study the function of E
Er

, with respect to the variation of vinvr and assuming that the param-
eter k and the shape of the average curve are constant (Fig. 8.6);

� study the function of E
Er

, with respect to the variation of vout

vr
and assuming that the pa-

rameter k and the shape of the average curve are constant (Fig. 8.8).
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Figure 8.2: Function of the energy E
Er

and Weibull distribution parameters (2 MW wind turbine).

Fig. 8.6 shows that when vin
vr

increases the value of the term E
Er

decreases, e.g., the wind
turbine does not produce a large amount of energy. This is due to the fact that when vin

vr
increases

the range where the wind turbine works decreases, in terms of the area determined by the power

Figure 8.3: Function of the energy E
Er

and parameter λ
vr

(2 MW wind turbine).
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Figure 8.4: Function of the energy E
Er

and Weibull distribution parameters (3 MW wind turbine).

Figure 8.5: Function of the energy E
Er

and parameter λ
vr

(3 MW wind turbine).
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Figure 8.6: Function of the energy E
Er

and parameter vin
vr

.

Figure 8.7: Power curve and parameter vin
vr

.
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Figure 8.8: Function of the energy E
Er

and parameter vout

vr
.

Figure 8.9: Power curve and parameter vout

vr
.
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curve, as shown in Fig. 8.7.
Fig. 8.8 shows that when vout

vr
increases then E

Er
increases, e.g., the wind turbine produces

more energy. This is due to the fact that when vout

vr
increases, the range where the wind turbine

works increases, in terms of the area determined by the power curve, as shown in Fig. 8.9.

8.2 A novel model to compute the energy function

In section 8.1.2 we have analyzed how the function of the energy E
Er

is influenced by the
technical parameters of the wind turbine and the parameters of the assigned Weibull distribution.
Figures 8.2, 8.3, 8.4 and 8.5 show that the function E

Er
consists of a set of curves which depend on

the parameter k of the assigned Weibull distribution and on the factor λ
vr

. It is thus possible to

determine the function E
Er

= f
(
λ
vr
, k
)

in a closed form and to demonstrate that this expression

is valid for each type of wind turbine, if its technical parameters are known. Figures 8.3 and 8.5
show that

E

Er
= E

(
λ

vr
, k

)
= a

(
λ

vr

)
ln (k) + b

(
λ

vr

)
(8.1)

where a
(
λ
vr

)
and b

(
λ
vr

)
are the values of the coefficients of the fourth grade polynomial

function which approximates the energy curve E
Er

, which depend on the parameter λ
vr

related
with the assigned Weibull distribution. In the case in which k = 1, the expression (8.1) becomes

E

Er
= E

(
λ

vr
, k

)
= b

(
λ

vr

)
(8.2)

since ln(k) = 0 for k = 1. In the case in which k = k′, the expression (8.2) becomes

E

Er
= E

(
λ

vr
, k′
)

= a

(
λ

vr

)
ln (k′) + b

(
λ

vr

)
(8.3)

By equaling the expression (8.2) with the (8.3), it is possible to calculate the value of a
(
λ
vr

)
,

as follows

a

(
λ

vr

)
=
E
(
λ
vr
, k′
)
− b

(
λ
vr

)
ln (k′)

(8.4)

where b
(
λ
vr

)
is expressed in a closed form by the (8.2).

Since we have obtained the forms of a
(
λ
vr

)
and b

(
λ
vr

)
, it is thus possible to determine the

value of E
Er

, by substituting these forms in (8.1). The expression (8.1) allows to determine the

value of E
Er

knowing the wind turbine technical parameters and the assigned Weibull distribution
parameters. The following figures show that the functions of the energy calculated with the
formula previously described are similar to the simulated functions shown in the figures 8.2, 8.3,
8.4 and 8.5. In particular, the figures 8.14 and 8.15 show the differences, in terms of percentages,
between the function of the energy calculated with the formula and the simulated one. These
differences are about 4%.
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Figure 8.10: Calculated function of E
Er

and Weibull parameters (2 MW wind turbine).

Figure 8.11: Calculated function of E
Er

and parameter λ
vr

(2 MW wind turbine).
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Figure 8.12: Calculated function of E
Er

and Weibull parameters (3 MW wind turbine).

Figure 8.13: Calculated function of E
Er

and parameter λ
vr

(3 MW wind turbine).
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Figure 8.14: Differences between the calculated function of E
Er

and the simulated function (2 MW
wind turbine).

Figure 8.15: Differences between the calculated function of E
Er

and the simulated function (3 MW
wind turbine).
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( λvr = 0.1) ( λvr = 0.3) ( λvr = 0.75) ( λvr = 1) ( λvr = 1.25) ( λvr = 1.5)

k = 1 0.01 0.16 0.28 0.28 0.27 0.25
k = 1.2 0.01 0.14 0.33 0.33 0.3 0.28
k = 1.95 0 0.09 0.47 0.49 0.42 0.35

k = 3 0 0.07 0.59 0.64 0.52 0.37

Table 8.3: Values of E
Er

simulated for a wind turbine of 2 MW.

( λvr = 0.1) ( λvr = 0.3) ( λvr = 0.75) ( λvr = 1) ( λvr = 1.25) ( λvr = 1.5)

k = 1 0.01 0.16 0.28 0.28 0.26 0.25
k = 1.2 0.01 0.14 0.33 0.34 0.31 0.27
k = 1.95 0.01 0.11 0.46 0.5 0.42 0.32

k = 3 0 0.08 0.58 0.65 0.51 0.37

Table 8.4: Values of E
Er

calculated with the formula for a wind turbine of 2 MW.

The following tables show, as an example, the values of E
Er

simulated and calculated with the
formula previously indicated, taking into account a wind turbine of 2 MW. We can observe that
the values of the energy simulated and calculated with the formula are similar; this demonstrates
that this formula well approximates the form of the energy.

8.3 Statistical analysis of the energy function

In the previous sections, we derived an experimental function which expresses the average
energy produced by a wind turbine in a 24 hours time horizon in a typical day, considering the main
simulation parameters related with Weibull distribution and wind turbines. Nevertheless, it has
been necessary to verify the correctness and the effectiveness of the estimation of the experimental
function E

Er
. In particular, it has been verified how the assigned simulation parameters influence

this function, utilizing a proper statistical test. At the end, various correlation and regression
analyses have been performed in order to individuate a normalized form of the function E

Er
which

can be applied to all the types of wind turbines. The following sections describe:

� the main characteristics of a statistical test and the motivations that lead to the choice of a
particular statistical test, called ANOVA test;

� the analyses that have been performed in order to verify that the formula of the energy
previously individuated is correctly expressed.

8.3.1 Choosing the most suitable statistical test

In order to verify the main parameters on which the wind turbine energy function E
Er

depends,
it is possible to utilize statistical tests. The objective of these tests is to verify if the values of
the energy obtained in the simulation phase are different among themselves for casual reasons, or
they are dependent on factors like Weibull distribution parameters (λ and k) and the wind turbine
technical parameters (vin, vout, vr).
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Generally, a statistical test is an instrument used to analyze if groups of data obtained after
some measurements are different among themselves for causal reasons or because they are depen-
dent on some parameters. A statistical test is based on the hypothesis zero, according to which
no differences exist between the groups of data with respect to the given parameter. According
to the hypothesis zero, the group of data are equal and the difference that we observe is due to
casual factors. The hypothesis zero can be true or false, so it is necessary to decide if we want to
accept or refuse it, analyzing the data with the statistical test. If the result of the test is to refuse
the hypothesis zero, then the observed difference is declared significant from a statistical point of
view. If otherwise the result of the test is to accept the hypothesis zero, then the difference is not
significant from a statistical point of view, because it is due to casual factors.

The results of a statistical test have a probability value. For this reason, the decision to refuse
the hypothesis zero is probably correct, but it could be wrong. The measure of the risk to be
wrong is the level of significance of the test. The level of significance of a test can be chosen by
who performs the experiments. Nevertheless, usually, a level of probability equal to 0.05 (5%) or
to 0.01 (1%) is chosen. This probability represents a quantitative estimation of the probability
that the observed differences are due to casual factors. Different types of statistical tests exist; in
our case, we applied the ANOVA test in order to verify if the energy E

Er
is dependent on some

given parameters, or if the differences between these values are due to casual factors, because:

� in our case, we have a large amount of data. Statistical test are suitable to analyze small
amount of data, since the probability that the differences between the values obtained are
due to causal factors decreases when we consider many data. Nevertheless, in our case, it is
preferable to use an ANOVA test since it is suitable to verify the correctness of measurements
obtained for a large amount of data;

� usually, statistical tests are used for two or three groups of data, since a great computational
effort is required when the number of groups increase. In our case we prefer to use the
ANOVA test, since we consider more than three groups of data and we consider also a large
number of possible combinations of parameters (λ, k, vr, vin, vout).

8.3.2 Applying the ANOVA test

In order to compare the values of the energy produced by various types of wind turbines,
different values of E

Er
have been considered, with respect to λ and k, obtaining the dependency on

the rated speed vr. These values have been organized into two series with rows that correspond
to the couples of parameters and columns which are related with the different wind turbines.
Then, the ANOVA test has been applied in order to verify that the difference of the values of the
energy obtained in the different simulation is not due to casual factors, but it is caused by the
dependencies on some parameters, such as λ, k, vr, vin, vout. Then, the analysis of the variance of
the matrix λ, k, vr has been carried out. By applying the ANOVA test to the different groups of
values obtained for the assigned wind turbines, we obtain a level of significance less than 5%, this
demonstrates that the differences between the values of the energies are not due to causal factors.
In particular, it has been possible to verify the following two aspects:

� the variations of the function E
Er

are well described by the parameters λ, k for an assigned
wind turbine generator, in fact, the significance test has given a positive result, since the
level of significance is less than 5% with respect to the rows of the matrix on which the
ANOVA test has been applied. For this reason, it is possible to affirm that E

Er
= f(λ, k).
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Figure 8.16: Results obtained applying the ANOVA test to the values of the energies.

� the variations of the function E
Er

are well described by the wind turbine technical parameters,
such as vr, vin, vout, for assigned λ, k, in fact the significance test has given a positive result,
since the level of significance is less than 5% with respect to the columns of the matrix on
which the ANOVA test has been applied. For this reason, it is possible to affirm that
E
Er

= f(λ, k, vr, vin, vout).

Table 8.16 resumes all the results obtained by applying the ANOVA test on the values of the
energy obtained in the simulation phase for each of the 6 wind turbines considered.

Analysis of the coefficients of the polynomial functions

As described previously, the ANOVA test has demonstrated that the energy depends not only
on the parameters of the Weibull distribution (λ e k), but it depends also on the wind turbine
technical characteristics (vr, vin, vout). Furthermore, the shape of the function of the energy, for
all the wind turbines, is logarithmic with respect to the factor k and it is a fourth grade polynomial
function with respect to the variation of λ

vr
.

It is thus necessary to study how the energy depends on the wind turbines technical param-
eters and on a combination of them. In particular, the dependencies of the polynomial function
coefficients a( λvr ) and b( λvr ) on the wind turbine technical parameters have been analyzed.

As far as the coefficients a are concerned, a correlation analysis has been performed for each
coefficient of the polynomial curve, with respect to the following wind turbine technical parameters
and their possible combination: vr, vin, vout, vr − vin, vr − vout, vout− vin. Figures 8.17 and 8.18
resume the correlation analysis of each coefficient of the polynomial curve, with respect to the
wind turbine technical parameters and their possible combinations, according to the grade of the
approximating curve. It is possible to observe that the coefficients present a dependency on the
parameter vr or on a combination of the wind turbine technical parameters that always includes
the term vr, while dependencies on the coefficients of the parameter vout are not present.

As far as the coefficients b are concerned, a correlation analysis has been performed for each
coefficient of the polynomial curve, with respect to the following wind turbine technical parameters
and their possible combinations: vr, vin, vout, vr − vin, vr − vout, vout − vin. Figures 8.19 and
8.20 resume the correlation analysis of each coefficient of the polynomial curve, with respect to
the wind turbines technical parameters and their possible combinations, according to the grade
of the approximating curve. It is possible to observe that the coefficients present dependencies on
different combination of wind turbine technical parameters which include the terms vr, vin e vout.
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Figure 8.17: Correlation analysis of the coefficients a with fourth grade approximating curve.

Figure 8.18: Correlation analysis of the coefficients a with third grade approximating curve.

Figure 8.19: Correlation analysis of the coefficients b with fourth grade approximating curve.

Figure 8.20: Correlation analysis of the coefficients b with third grade approximating curve.

8.4 Results and discussion

Since we have individuated the dependencies of the coefficients of the polynomial functions
a( λvr ) and b( λvr ) on the wind turbine technical parameters, it is possible to estimate their values.
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Thus, it is possible to calculate the form of the energy function by the formula:

E

Er
= E

(
λ

vr
, k

)
= a

(
λ

vr

)
ln (k) + b

(
λ

vr

)
(8.5)

and compare these values of the energy with the measured ones obtained in the simulation
phase. By analyzing the resulting data, it is possible to verify that:

� the curves of the energy present the same logarithmic form (with respect to k) and poly-
nomial form (with respect to λ

vr
), this derives from the definition of the function itself, as

shown in the example of Fig. 8.21;

� utilizing the different combinations of the fourth and third grade polynomial functions a
and b, it is possible to verify that the best estimations are obtained considering the fourth
grade polynomial function for a( λvr ) and the third grade polynomial function for b( λvr ). This

reflects the form of the measured functions of E
Er

for each wind turbine;

� the values of the energy that have been calculated considering the estimated parameters
differ from the values of the simulated values according to the wind turbine chosen. In
particular, normalizing the form of the power curve with respect to the Pr, as shown in Fig.
8.22, we obtain three sets of wind turbines:

1. a set containing wind turbines 1,2,6. For these turbines the estimation model which uses
the fourth grade polynomial function a( λvr ) and the third grade polynomial function

b( λvr ) works correctly: the forms of the function E
Er

are well separated with respect to
k and λ and the approximation is acceptable for a large range. An example is shown
in Fig. 8.23;

2. a set containing wind turbines 3,5. For these turbines the estimation model which uses
the fourth grade polynomial function a( λvr ) and the third grade polynomial function

b( λvr ) sometimes does not work correctly. The form of the function E
Er

is individuated
only if the values of the Weibull distribution for k less than 2 and λ less than 1 are
considered, however these are the ranges where wind turbines are more frequently
utilized. An example is shown in Fig. 8.24;

3. a set containing wind turbine 4. For this turbine the estimation model is not adequate.
In fact, the normalized form of the power curve is different from the others and for this
reason it represents an exception which is not properly managed. An example is shown
in Fig. 8.25.

According to these considerations, probably there exists a strong dependence of the coefficients
of the polynomial functions a( λvr ) and b( λvr ) on the form of the power curve in the non linear part
(between vin and vr) which is mainly represented by linear combinations of the characteristic
wind speeds (in order to express their dependency on the shape coefficient of the linear curve that
approximates this part), but, in order to have a more accurate estimation model, more complex
combinations of the parameters of the wind turbine should be considered.
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Figure 8.21: Form of the function E
Er

for wind turbine 1 (with respect to λ).

Figure 8.22: Form of the power curve normalized with respect to Pr.
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Figure 8.23: Form of the function E
Er

for wind turbine 1 (with respect to k).

Figure 8.24: Form of the function E
Er

for wind turbine 3 (with respect to k).
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Figure 8.25: Form of the function E
Er

for wind turbine 4 (with respect to k).

8.5 Conclusions

In this chapter, the wind synthetic data, generated with the new generation model proposed
in chapter 7, has been used to carry out simulations studies to individuate the wind turbines
operational parameters that mainly affect the wind generators performances. An experimental
function which expresses the average energy produced by a wind turbine in a 24 hours time
horizon in a typical day has been determined, considering the main simulation parameters related
with Weibull distribution and wind turbines. This function represents a very useful instrument,
since, when the energy production of a wind park is scheduled, it is fundamental to have proper
methodologies to determine the average energy that a site will produce, in order to obtain an
economical return of the investment. In our case, we have studied how the energy depends
on some key parameters. This analysis has been summarized with an analytical expression to
determine the value of the average energy considering only a few data easy to retrieve from the
geographical site where wind turbines are located. Moreover, this type of expression allows to
simplify the models of energy production planning when systems consisting of conventional units
and wind generators are considered.

As far as future work is concerned, we will exploit the new synthetic wind data generation
model to study the dependencies of the energy function on more wind turbine technical parameters
that we have not considered so far in order to simplify the analysis. Furthermore, the data set
used in the simulation phase could be extended in order to perform a larger number of simulations.
This could be very interesting and useful, since it could be easy to determine a function of the
energy that realistically reflects the behavior of the wind turbines and that takes into account all
their technical parameters. Furthermore, this new model to compute the energy could be used to
determine the input data for the GWUC model, to perform proper simulations on realistic data.
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Conclusions and directions for
future work

For many years, researchers from mathematics, operations research and engineering have fo-
cused their attention on applying mathematical modeling and optimization techniques to solve
the optimization problems related to the efficient operating and planning of energy generation
systems. Optimizing the scheduling of electric energy production is a fundamental process, which
gives to the energy utilities the possibility to control the total production costs and maximize
the expected net profit from the market, taking into account both the uncertainty related to the
forecast energy demand load and the uncertainty related to not conventional energy sources, such
as wind or solar power plants [Nai08].

Different types of optimization problems are considered and solved for the efficient scheduling
of the energy production. The problem solved in the medium-term period (days and weeks) is
known as Unit Commitment Problem (UC). Its objective is to determine the best combination of
generating units in terms of their status (committed or uncommitted) and their output (power).
This schedule has to satisfy the forecast demand at minimum total production cost, under the
operating, technical and environmental system constraints.

Models for UC are usually characterized by a combination of several difficulties like the presence
of continuous and binary decision variables at the same time, very large-scale problem dimension,
non-linearities (for instance, in fuel costs modeling) and uncertainty of problem data (for example,
in load demand forecasts, fuel pricing models, stream flows to reservoirs and generating units
failures). For this reason, the literature has proposed numerous simplified variants of models and
algorithms for UC so far.

Part of our research activities focused mainly on modeling aspects related with the production
and the scheduling of electrical systems. In particular, we have analyzed the limits and the
simplifications mainly used in the classical UC models presented in the literature. Traditional
UC models (energy-based models) make two main hypotheses: the power can be instantaneously
adjusted; the power output is constant in a assigned interval (i.e. of 1 hour), so energy produced
in each hour is equal to the power level multiplied by 1 hour. These assumptions greatly simplify
the model, because energy and power can be represented by the same variable, but they do not
realistically reflect the actual behavior of the generating units.

In our research activities, we have defined more realistic mathematical formulations than the
ones proposed in the literature, overcoming the drawbacks of the UC energy-based models. In
particular, we have proposed new Mixed-Integer Quadratic Programming (MIQP) models for UC,
where decision variables represent power levels instead of energy. The basic assumption of these
models is that the unit is always ramping linearly during each time period. This means that the
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power increases - or decreases - uniformly from a given time instant to the following during all
the period. The energy is computed by assuming linear ramp-up and ramp-down trajectories,
i.e., piecewise-linear continuous power curves whose integral (the produced energy) can be easily
computed.

Simulations results have shown that in the proposed models the trajectories of power con-
structed by the model and the energy decisions are surely feasible, since the physical constraints
on power are directly modeled. Furthermore, even if these formulations require to use more con-
straints and more variables, the resulting MIQP problems can be easily solved at optimality with
commercial solvers, exploiting their mathematical characteristics.

In our research activities we have proposed also new UC models integrated with the Economic
Dispatch Problem (ED), where the variables are associated with the power levels, that are assumed
to change linearly in each time period, while the energy levels are then computed accordingly.
This has enabled us to derive a more realistic model that can represent more effectively the
constraints imposed on the units in order, for example, to avoid mechanical stresses to the rotors
for conventional units, or to avoid the use of more units in peak hours. The results obtained
have shown that a simulator based on this new model can be effective to compare the flexibility,
efficiency and effectiveness of different UC solutions in the adaptation to actual electricity demand
(load) in an electrical system, real time. The results have also shown that in the simulation phase
it’s important to correctly set the parameters which determine the transformation of the power-
demand profile used in UC problem into the energy-demand profile used in the simulator. These
parameters have to take into account the characteristics of the power-demand profile in order to
avoid marked asperities of the load curve itself. In these cases, simulators generally work better
since they use the units status of the UC solution.

As far as future work is concerned, we will test the behavior of the new proposed UC models,
both from a computational and an operational point of view, with the new Reduced Economic
Dispatch (RED) simulator developed, in order to analyze the differences between the various
formulations, in terms of the quality of the solution, in a real-time electrical system. In the sim-
ulation phase, more input data instances with more generating units and different load profiles
will be considered. In order to study these differences, it could be necessary to perform several
simulations on real time problems. The aim of these simulations is to compare the flexibility,
the efficiency and the effectiveness of the UC solutions in the adaptation to the actual load in a
real time electrical system. The formulations that could be taken into account in this analysis
could be represented not only by the new models for UC proposed in this dissertation, but also by
the models for UC with spinning reserve constraints and robust optimization considerations. The
objective, for instance, could be to demonstrate that robust UC formulations are more flexible
in the adaptation to the load profile with respect to the UC formulations with spinning reserve
constraints. Furthermore, the RED simulator developed could be used to compare the solutions
obtained with an energy-based discontinuous UC model integrated with RED and the new con-
tinuous power-based models proposed in this thesis, demonstrating that the continuous models
better reflect the real behavior of the generating units.

The integration of wind energy sources into conventional electrical system is growing in im-
portance, due to its economical and environmental development benefits; nevertheless, particular
attention must be devoted to the related practical operational aspects. This leads to the necessity
to modify the current procedures, such as the UC and the ED, to take into account large amounts
of wind power production.

Part of our research activities focused on the development of a new UC model in presence of
wind energy sources. In particular, a generalized form of the UC problem, called Generalized Wind
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Unit Commitment Problem - (GWUC), which takes into account conventional generating units
(like thermal and hydro power plants) and wind turbines, has been proposed. The model is based
on the concept of subsets of units: it is possible to choose only a part of the available generators,
making a dynamic modification of the given set of generating units, in order to determine the best
configuration of generators (optimal mix), minimizing the total production cost and satisfying
the energy demand. In this way, subset constraints can be used as external requirements, for
instance related to regulatory laws, such as limited number of units of a particular type, risk
limits associated with not programmable sources, emissions constraints, geographical distribution
requirements, reliability and security constraints, transmission constraints. In all these cases we
do not know a priori which is the single unit that is not committed, hence the classical UC model
is not applicable, while the GWUC model could represent a valid approach.

The most important results obtained show that, in contrast to the classical UC models and
the typical wind UC models, in the GWUC formulation wind generating units are integrated in
the solution of the UC problem and furthermore they are also associated with risk considerations,
correlated with the forecast error which can be controlled (limited). Moreover, as far as emissions
considerations are concerned, the GWUC model chooses for the optimal mix the units that posses
the lowest value of emissions, e.g., the units that are more ‘virtuous’ from this point of view,
regardless the absolute value of CO2 that they will emit after producing a certain amount of
energy. This aspect differentiates the GWUC model with subset constraints from a classical
UC model with ‘emission control’, where the emissions are considered as a cost in the objective
function.

As far as future work is concerned, it could be very interesting to consider a larger number
of subsets of generating units in the GWUC formulation, in order to analyze the behavior of the
model in terms of the quality of the solution obtained and in terms of computational times. Fur-
thermore, we could consider a higher number of wind turbines in our model in order to analyze
how the solution is influenced by the use of wind sources. Moreover, other additional constraints
on wind turbines could be considered in the formulation in order to improve the modeling of the
realistic behavior of the wind units, from a practical and an operational point of view. Inter-
connections, security, and reliability aspects could be also taken into account in order to improve
the GWUC formulation; furthermore, the model of the risk related with the utilization of wind
energy sources could be refined, considering also detailed economical considerations. It could be
also very interesting to formulate the GWUC as a power-based continuous model, taking into
account the assumptions explained in chapter 4, in order to analyze how the solution obtained
is effective for the efficient operation and planning of a real time electrical system. The GWUC
could be also modeled taking into account robust optimization considerations: it could represent
a very interesting aspect since robust optimization techniques could be easily applied to model
the risk correlated with the utilization of wind energy sources.

Furthermore, wind generation requires complex forecasting techniques which take into account
wind speed, wind direction, hub height, geographical conditions, wind farm size, wind turbine
technical and operational characteristics and others, in order to provide accurate forecasts on wind
production. For these reasons, new generation models for synthetic wind data are needed, in order
to properly generate forecasts of wind speed and power. This data is fundamental in simulations
carried out to analyze and improve the performances of wind generating units, individuating the
technical parameters of wind turbines that directly affect power production.

For these reasons, part of our research activities focused also on developing a new model to
generate realistic synthetic wind data. In this model, wind speed is assumed to behave as a Weibull
distribution, while wind speed forecast error is simulated using First-Order Auto-Regressive Mov-
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ing Average - ARMA time-series models. A formulation of the Assignment Problem is used to
model wind speed persistence features, which, as shown by simulation results, are essential to
properly obtain wind speed and power output forecasts. Simulations results have shown that
generating wind synthetic data in pure random way is not sufficient to produce complete wind
speed and power output forecasts, but an accurate generation model which considers all the wind
characteristics, such as persistence features, is fundamental. Wind synthetic data, generated with
the new generation model proposed, has been used to carry out simulations studies to individuate
wind turbines operational parameters that mainly affect wind generators performances.

An experimental function which expresses the average energy produced by a wind turbine in
a 24 hours time horizon in a typical day has been determined, considering the main simulation
parameters related with Weibull distribution and wind turbines. This function represents a very
useful tool, since, when the energy production of a wind park is scheduled, it is fundamental to have
proper methodologies to determine the average energy that a site will produce, in order to obtain
an economical return of the investment. In our case, we have studied how the energy depends
on some key parameters. This analysis has been summarized with an analytical expression to
determine the value of the average energy considering only a few data easy to retrieve from the
geographical site where wind turbines are located. Moreover, this type of expression allows to
simplify the models of energy production planning when systems consisting of conventional units
and wind generators are considered.

As far as future work is concerned, in the new synthetic wind data generator, the ARMA
model used to determine the wind forecast error could be refined in order to take into account
both the variability in space and in time. Regarding the solution of the Assignment Problem, we
could consider a variable average curve, determined with an ARMA model, in order to simulate
also the scenarios in which the persistence at long term decays.

We will exploit the new synthetic wind data generation model to study the dependencies of
the energy function on more wind turbine technical parameters that we have not considered so
far in order to simplify the analysis. Furthermore, the data set used in the simulation phase could
be extended in order to perform a larger number of simulations. This could be very interesting
and useful, since it could be easy to determine a function of the energy that realistically reflects
the behavior of the wind turbines and that takes into account all their technical parameters.
Furthermore, this new model to compute the energy could be used to determine the input data
for the GWUC model, and perform proper simulations on realistic data.
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