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Abstract

This thesis addresses identification and analysis of frameworks for

optimizing medium-term maintenance planning and rolling stock

rostering.

Rolling Stock Management (RSM) is the main cost factor for Rail

Undertakings. For example, for high-speed trains, more than 30%

of the lifecycle costs is spent for maintenance operations. In or-

der to reduce the costs due to railway operations, every company

should address the joint problem of rolling stock rostering and

maintenance scheduling since they are strongly related parts of

the same problem. Maintenance optimization can be a key factor

to increase the productivity of railway companies. At the same time,

in a competitive globalized and multimodal market, RSM is one of

the competitiveness key factors because services quality level de-

pends on it. The strategic relevance of RSM, in particular of main-

tenance scheduling, is thus due to the reduction of needs (such as

platforms and human resources) and to the enhancement of qua-

lity standards (such as vehicle reliability and cleaning). From our

point of view the literature is focused on manufacturing setting in

order to reduce the occurrence of a failure while unfortunately the

coordination of maintenance and rolling stock scheduling is still

underinvestigated.

A key problem in railway planning process requires to cover a given

set of services and maintenance works with a minimum amount of

rolling stock units. Additional objectives are to minimize the num-

ber of empty runs and to maximize the kilometres travelled by each

train between two maintenance operations of the same type. First,
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the rostering and maintenance optimization problems are formu-

lated by graph theoretical approaches that involve medium-term

maintenance operations, the scheduling tasks related to train ser-

vices and empty rides. The constraints of the maintenance opti-

mization problem require that the different types of maintenance

operations must be carried out for each train periodically. The var-

ious maintenance tasks can only be done at a limited number of

dedicated sites. Starting from the solutions of the rostering and

maintenance optimization problems, we developed another graph

theoretical approach to optimize workshop management and in

particular to minimize the number of drivers involved and to verify

the feasibility of the maintenance plan at each site. For a set of

timetables and rolling stock categories, we compare flexible versus

rigid plans regarding the number of empty rides and maintenance

kilometres.

For different feasible frameworks and different kinds of timetables,

we provide new mixed-integer linear-programming formulations for

train rostering and maintenance scheduling problems and we also

show how the proposed scheduling formulations could be used as

effective tools to absorb real-time timetable perturbations while re-

specting the agreed level of service.

The specific objective of our research is to related to the following

questions: “How can the timetable be executed by an efficient use

of resources such that the overall railway company costs are re-

duced? Which is the maximal improvement that can be achieved?

At which cost?".

In this thesis, we give an answer to these questions by performing

an assessment of key performance indicators.

The computational evaluation presents the efficiency of the new

solutions compared to the practical solutions. Experimental re-

sults on real-world scenarios from Trenitalia show that these in-

tegrated approaches can reduce significantly the number of trains

and empty rides when compared with the current plan. We use a

commercial MIP solver for developing a decision support tool that
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computes efficient solutions in a short time.
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Introduction

In the second half of twentieth century, the role played by railway

in the transport market has been in constant decline (see Figure

1 taken from [36]). The foremost reason is dissatisfaction with the

price and quality of rail transport. In other words, railroad does

not respond to market changes or customers’ needs such as other

modes. The rise of other more flexible and less expensive trans-

port (such as buses, lorries and the private cars) has motivated

increasingly people and businesses to road transport.

The railways did not find new freight and passengers markets to

compensate for this loss even in the sectors where they could be

competitive. Moreover railroads costs are often too high and there-

fore the conditions of competition favor road and other more envi-

ronmentally friendly modes [73]. These changes urge the railway

undertakings to attract their customers by raising their service

level and to cut their costs by improving their planning process.

A main challenge of railway undertakings is to reduce the overall

cost of operations by means of a more efficient use of rolling stock

and crew resources. The basic wishes of the modern railway cus-

tomer are fairly simple: he wants to travel fast and comfortably for

a reasonable price. Often the rail networks are not very adapted to

new patterns of economic activity and urbanization and to the con-

sequent changes in traffic flows. To turn the decline, the European

commission increased focus on the general area of European rail-

way transportation in the middle of the nineties. Exactly in 1996

the “Strategy for Revitalizing the Community’s Railways” was com-

posed with the aim to encourage development of railway as much
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Figure 1: Railway market trend

as possible. The goal was to establish the concept of free competi-

tion and of free access to railway infrastructure.

In Italy the process of improving of free competition began in 1998

with specification that the infrastructure management should be a

responsibility of the governments, but operating trains should be

carried out by independent Train Operators on a commercial basis.

In particular this break has lead some interesting advantages but

on the other hand has lead a lot of losses too. The railway planning

process should be managed together by Manager of Infrastructure

and Train Operators with the aim of a global optimum. In fact Train

Timetabling, Train Platforming, Rolling Stock Circulation, Train

Maintenance Planning and Rolling Stock Scheduling are just some

examples of activities that should be managed by both jointly.

Many European Projects have focused on modelling and solving

problems arising in this field to reduce losses, to lead to an im-
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provement of performance and to increase the flexibility of the rail-

way system. The concept is that OR can help Railway industry to

adapt in a faster way to changes in the environment.

The operating design process of a national railroad is an enor-

mously complicated task. Often a huge set of variables must be

taken into account to determine the lines to serve, to generate a

timetable, to plan the movements of the rolling stock, to manage

the crew, etc. The use of Operations Research models and solu-

tion techniques allows one to obtain fast, close to optimality and

effective solutions to the problems with a consequent better use of

the Railway resources.



Chapter 1

Operations Research in
Railway Planning

The railway industry is a huge source of problems that can be mo-

delled and solved by using Operations Research techniques (see

[76] and [94]).

Many of these are still handled without automation and optimisa-

tion. Such problems exist in several forms and arise at different

levels in the planning process for a railway company. The com-

plete railway system managing is highly complex and it is often

divided into a lot of sub-problems which are interconnected. Given

an objective to achieve, a very difficult task is to understand what

problems are involved and how they are related.

Very interesting surveys on Operations Research and Railway plan-

ning are by Cordeau et al. [29], Assad [9], Huisman et al. [52], Oum

et al. [70] and Zhou [92].

We will report interesting publications found in literature addres-

sing the main transportation planning problems.
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1.1 Train Timetabling

One of the most important process planning steps for a train ope-

rator company is called Network Planning. The aim of this step is to

coordinate different kinds of transports to achieve a network effect

in order to maximize efficiency of services provided. Planning mul-

timodal transport systems as seamless integrated networks rather

than as a series of individual routes is a very critical task. Network
Planning, that could be classified as long-term task, is followed by a

mid-term task called Train Timetabling Problem (TTP) that consists

in finding a train schedule on a given railway network maximizing

company goals. Train Timetabling is often a manual process based

on experienced planners. The general aim of the Train Timetabling

Problem is to determine an optimal timetable satisfying a set of

customers’ needs and a set of operational constraints due firstly

to safety rules. To increase services quality, timetables are also

required to be robust against delays/disturbances along the net-

work. In the literature appear a cyclic version of the problem and

a non-cyclic version too. In a cyclic timetable, train arrival and de-

parture at station are operated regularly with respect to a cycle

time. In 1931, the Dutch company NS presented the cyclic Railway

timetable concept, with a cycle time of one hour. Since the intro-

duction of cyclic timetables in the Netherlands, many other Euro-

pean countries have adopted this concept in long distance trains

too. So, each train leaves at the same time every cycle time (e.g. one

day or one hour). Cyclic timetables are mainly used for passenger

Railways (in fact cargo rail schedules are often non-cyclic). This is

a great advantage for the passengers (in particular for commuters)

who have not to remember difficult timetables because the cyclic

timetables can be represented compactly. From a planning point

of view, cyclic timetables have the advantage that we have to focus

on only one cycle period. However, it produces higher costs and

wastes. Moreover in a cyclic timetable, a Railway operator does not

fine-tune the timetable to the demand for transportation. Serafini
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and Ukovich in [77] introduced in 1989 the Periodic Event Schedul-

ing Problem (PESP). The PESP considers the problem of scheduling

a set of periodically recurring events under periodic time window

constraints. More specifically, the PESP aims at determining the

time instants at which the periodic events have to take place. Un-

fortunately, the basic PESP only finds a feasible schedule. In fact, it

does not use an objective function. Nachtigall [68] also used PESP

constraints to model the cyclic behaviour of Railway timetables. He

introduced an objective function based on

• cost of infrastructure;

• benefit of improving the synchronization in the timetable;

• passenger waiting time.

Nachtigall and Voget [68] also considered the problem of minimiz-

ing passenger waiting times in a cyclic Railway timetable but they

started from an initial timetable that improved using a genetic algo-

rithm. In 1997 they also used a bi-criteria approach taking into ac-

count the infrastructure investments and passenger waiting time.

Weigand [90] did not use a PESP model. His solution method picks

a spanning tree of the graph induced by the arrival and depar-

ture times of the trains, and computes an optimal timetable for

that tree. Then, the algorithm iteratively moves to a new spanning

tree in order to improve the best found timetable. Lichtenegger [59]

considered the problem of the integrated fixed interval timetable

as a special type of cyclic timetable. The idea was that at these

time instants passengers can change trains, since most trains are

present at a station. Lichtenegger would to minimize the infras-

tructure investments. The final result is a mixed integer program.

Sherali [79] presented a non proportional assignment linear pro-

gramming model for estimating origin-destination (O-D) trip tables

from available data. The formulation is made to determine a traffic

equilibrium network flow solution.

Goverde and Koelemeijer [47] considered the problem of evaluat-

ing the performance of a cyclic Railway timetable. They made some
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performance indicators such as the critical circuits in the Rail-

way network, the stability margin of the timetable, and the prop-

agation of delays in case of a disruption. Kroon, Maróti et al. [56]

have described a Stochastic Optimization Model that can be used

to allocate the time supplements and the buffer times in a given

timetable in such a way that the timetable becomes maximally ro-

bust against stochastic disturbances of cyclic Railway timetables.

The non-cyclic timetabling is relevant for scenarios with a compet-

itive environment among Train Operators. Wendler presented [91]

an approach predicting the scheduled waiting time by means of a

semi-Markovian queueing model. The process of timetable compi-

lation in a Railway network with open access is shortly explained

and described by means of queueing theory. The arrival process

is determined by the requested train-paths. The description of the

service process is based on an application of the theory of block-

ing times and minimum headway times. The approach is useful for

predicting a quality measure for bottlenecks with mainly non-cyclic

timetable structures. Ralf Borndörfer [13] discussed an auctioning

approach to establish a rail track market, in which different train

operating companies compete for tracks and timeslots on the same

network. Cacchiani, Caprara and Toth [18] considered a new for-

mulation of non-cyclic train timetabling with the goal of maximiza-

tion of the profit of a collection of compatible paths in a suitable

graph. Khan and Zhou [54] studied possible decompositions for

robust timetabling problem into a series of sub problems that op-

timize the slack-time allocation for individual trains.
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1.2 Train Platforming

The Train Platforming deals with the decision of the routes that

each scheduled train must follow when entering, stopping and then

leaving a station. In particular, each train has to perform a path

from the point where it enters the station to the point where it

leaves the station. This path passes through a platform. Given

the rail network, a set of trains, with the corresponding timetable,

and a set of platforms where each train can stop, the problem de-

termines the optimal routing of the trains, avoiding incompatible

routes (overlaps). This train platforming problem is a key prob-

lem in Railway station operations, and for a large station, many

working days are required for an expert planner to construct the

train-platforming.

Carey and Carville [25] considered this problem for complex train

stations. They developed the constraints and objectives for plat-

forming problem without finding a way to solve it by standard

combinatorial search or integer programming methods. They also

developed a scheduling heuristics analogous to those successfully

adopted by train planners.

Caprara, Galli and Toth [21] have studied a general formulation of

the train platforming problem. They consider a general quadratic

objective function, and propose a new way to linearize it by using a

small number of new variables along with a set of constraints that

can be separated efficiently by solving an appropriate linear pro-

gram. The resulting integer linear programming formulation has a

continuous relaxation that leads to strong bounds on the optimal

value. De Luca Cardillo and Mione [33] formulated a graph-coloring

problem. These authors proposed to solve it by an efficient heuris-

tic algorithm combined with reduction techniques. Billionnet [11]

proposed an integer programming technique to solve the coloring

problem. This technique can provide an exact solution of the prob-

lem and it is easy to implement and to adapt to take into account

additional constraints and different measure criteria.
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1.3 Rolling Stock Rostering

Given the departure and arrival times as well as the expected num-

bers of passengers, Rolling Stock Circulation deals with the as-

signment of locomotives and carriages to the timetable services.

We could consider several objective criteria that are related to ope-

rational costs, service quality and reliability of the Railway system.

The extended model can also handle combining and splitting of

trains. The problem calls for determining for each trip the locomo-

tive types and their number, and the carriage types and their num-

ber. These numbers depend on the locomotives power. This prob-

lem is related with the maintenance problem. In fact in a sparse

network it is necessary to take into account the maintenance ope-

rations and build a schedule for them; on the contrary, in a dense

network, the maintenance operations can be handled easily. Ra-

mani and Mandal [74] developed an optimization-based decision

support system that aims at minimizing fleet size. Locomotives and

cars are treated separately and equipment switching is not consid-

ered. Bussieck et al. (1997) [17] surveyed mathematical program-

ming methods for public rail transport planning. The authors state

that the problem of assigning rolling stock to a set of scheduled

trains can be formulated as a multi-depot vehicle scheduling prob-

lem and present a review of several papers on that subject. Cordeau

et al. [29] developed an optimization system to solve the equip-

ment cycling problem. This model is solved by a column generation

approach embedded in a branch-and-bound search. Schrijver et

al. [39] focused on to determine the rolling stock circulation for a

generic week. They deal with an extension of the problem described

by Peeters and Kroon [71] who used a branch-and-price approach.

Fu et al.[41] proposed some models and algorithms to optimize pas-

senger train departure and arrival time windows in scheduling. The

main objectives to be optimized include minimizing the total pas-

senger inconvenience and the number of passenger cars needed to

operate trains.
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1.4 Train Maintenance Planning

Train Maintenance Planning is the biggest cost factor for Rail Un-

dertakings. For example, for high-speed trains, more than 30% of

the lifecycle costs is spent for maintenance operations. To increase

the productivity, railway companies are putting a great deal of ef-

fort into maintenance optimization.

The literature is too focused on manufacturing setting in order to

reduce the occurrence of a failure while unfortunately the coordi-

nation of maintenance and rolling stock scheduling is still under

investigated.

In view to the literature reviews by Ahuja et al. [2], Cordeau et

al. [29], Garg et al. [42], Higgins [50], Sriskandarajah et al. [83],

Waeyenbergh [87], Anily et al. [6], Anily et al. [7] and Silver et al.

[80], we limit ourselves to review the following recent papers.

Penicka et al. [72] introduced a formal model of the train mainte-

nance routing problem. However, the rostering problem with main-

tenance constraints and the maintenance routing are not addressed

in this paper. Furthermore, in their case study rostering and rolling

stock maintenance are considered as an appropriate method for

long-distance trains only. Mároti et al. [65] presented a mixed inte-

ger formulation for the maintenance routing problem in which the

shunting process is considered the process bottleneck.

Budai et al. [16] discussed the preventive maintenance sche-duling

problem and the minimization of the time required for performing

maintenance operations. The heuristic algorithms compute nearly

optimal solutions by combining maintenance tasks on each track.

Wang [88] proposed a multiple criteria decision-making problem

and evaluated maintenance strategies for different equipments.

The Maintenance Management is a very important function of in-

dustries and service organizations. Preventive maintenance is un-

dertaken to keep equipment in a specified condition. Therefore, the

scheduling of maintenance activities is an important topic since

smart scheduling will reduce the overall maintenance budget. Main-
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tenance is the activities required to conserve as nearly and as long

as possible the original condition or resource while compensating

for normal wear and tear of the rolling stock asset or of the railroad

infrastructure. Maintenance is necessary in order to assure Safety

Comfort Cleaning

Management optimizing could be helpful to increase productivity

and product or service quality to be competitive in the global mar-

ket place. The problem is formulated as an integer program and

a branch and bound algorithm is used for its resolution. Sriskan-

darajah et al. [83] developed a Genetic algorithm (GA) for the opti-

mization of maintenance overhaul scheduling of rolling stock.
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1.5 Train Unit Shunting

Outside the rush hours there is a surplus of rolling stock. This

idle rolling stock is parked at a shunt yard (for example during

the night). Shunting of passenger train units is a highly combina-

torial optimization problem, in which the resources time, infras-

tructure, and crews have to be utilized as efficiently as possible.

So besides the rolling stock circulation, which determines the ope-

rating phase during the rush hours, the train unit shunting de-

termines the parking phase of the rolling stock during the night

hours. Train Unit Shunting Problem (TUSP) concerns the routing

of the rolling stock between the station area and the shunting area,

the short term maintenance and the inside and outside cleaning.

It determines a matching of the arriving train units that have to be

parked on a shunt yard with the departing train units, such that

the overall cost is minimized. Generally we have some foremost

subproblems:

• Routing: train units have to be routed from their arrival track

to a shunt track and vice versa.

• Parking: train units have to be parked at a shunt track in such

a way that they do not block each other’s arrival or departure.

• Crew Scheduling: each shunting movement must be carried

out by a train driver.

The objective is to make sure that the Railway processes can start

up while the total number of shunting movements is as small as

possible. Schrijver [57] described a new model for the Train Unit

Shunting Problem. This model is capable of solving the matching

and parking subproblems in an integrated manner, requiring a rea-

sonable amount of computation time. Nonner and Souza [69], de-

rived polynomial time algorithms for Train Shunting by reducing

the problem to finding independent sets in bipartite graph but the

computation time was not very good. Cordeau et al. [29] provided a

recent overview of the use of Operations Research in Railway sys-

tems focusing on train routing and scheduling problems. Freling et
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al. [40] solved separately the matching and parking subproblems,

nevertheless resulting in solutions with high quality. Some special

cases of the TUSP were dealt by Blasum et al. [12] for dispatch-

ing trams in a depot. Other authors theoretically extended this

approach with length restrictions and mixed arrivals and depar-

tures. Moreover, he also discussed an application to a bus depot,

including computational results. Di Stefano [28] studied the com-

putational complexity of several variants of sub-problems of the

TUSP. Furthermore, he also presented algorithms for solving some

of these subproblems, including bounds on the objectives and on

the complexity of the algorithms. Hamdouni et al. [34] described a

solution for buses TUSP. They had little different types of buses as

possible in one lane, and within one lane they grouped together the

buses of the same type as much as possible. Tomii et al. [85] and

Tomii and Zhou [86] proposed a genetic algorithm that takes into

account some related processes of TUSP. However, their parking

problem was of a less complex nature, since in their context at most

one train unit could be parked on a shunt track at the same time.

Lubbecke and Zimmermann [62] discussed a related problem that

arises at an in-plant private freight railroad. In this problem, one

assigns transportation requests to certain regions of the in-plant

railroad and selects cars of specific types from a shunt track in

this region for servicing a specific request. He et al. [78] discussed

the problem TUSP with the separation of train units from arriv-

ing freight trains, sorting these according to their destination and

finally combining them to form new departing trains, which resem-

bles the matching of arriving and departing shunt units without

parking. Dahlhaus et al. [31] showed that this problem is NP-hard.

However, the authors only discussed LIFO tracks and assumed

that there was no prescribed order of different types of cars in a

train and assumed that there were no limitations for the tempo-

rary parking of cars, when these were not servicing a request.
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1.6 Integrated approaches

The tasks discussed above are mainly solved separately. So all re-

lations and integrations between them are often ignored. We would

like to focus on this integration. In particular we would like to

optimize rail resource in according with train overhauls, timeta-

bles, station layout and Railway network. Assigning locomotives

and cars to a set of scheduled trains is a complex but impor-

tant problem for passenger Railways. But we have to take into

account that each asset unit requires a preventive maintenance

check after a certain number of kilometers or hour. This limit de-

pends on rolling stock type. Lingaya and Cordeau [60] described

a model and solution methodology for the car assignment prob-

lem that satisfy all operational constraints. Ziarati et al. [93] set

up a large-scale integer programming model for locomotive assign-

ment where maintenance routing plays an important role. Lingaya

et al. described a model for supporting the operational manage-

ment of locomotive-hauled Railway cars. They seeked for a max-

imum expected profit schedule that satisfies various constraints,

among them also maintenance requirements. Anderegg et al. [5]

addressed a realistic rolling stock rostering problem with mainte-

nance constraints based on cyclic timetable assumption with the

goal to minimize the general costs. These models consider main-

tenance routing as a part of the medium and long term vehicle

scheduling problem. Small safety inspections form an important

part of the problem specification and also the larger-scale main-

tenance checks were taken into account. These models compute

the vehicle circulation for the forthcoming month such that each

vehicle is scheduled for maintenance exactly once. Also, the vehi-

cle schedules were created without taking shunting into account.

Therefore, in a Railway application there is just a small probability

that the output of the models in the literature can be carried out in

practice.



Chapter 2

Railway in Europe

The majority of Europeans (71%) support opening the national rail

to competition. The gradual liberalization of the railway market

in the 1990s led a huge change in the organizational structure

of some railways. Separation of railway infrastructure and opera-

tions laid the foundations for introduction of competition to rail-

ways as well as for their economic rationalization. European Direc-

tives 91/440/EEC, 95/18/EC, 95/19/EC specify the necessity for

separate accounting of infrastructure and operations. The legisla-

tion is focused on the distinction between infrastructure managers

who run the network and the railway companies that use it for

transporting passengers or goods.

These directives do not specify how the infrastructure and opera-

tions must be separated. For this reason, Member States have

adopted two different methods to achieve the required separation:

• Institutional separation

• Organizational separation

Institutional separation is the split of infrastructure manager and

railway undertaking into autonomous entities (capitalization, staff

and asset are separated). The infrastructure owner can be pub-

licly owned as in Portugal (Portuguese Rail Infrastructure Autho-

rity (REFER)) and Sweden (Banverket (BV)) or privately owned as in

the UK (Railtrack). However, a series of fatal accidents and serious
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infrastructure problems in the UK suggest that private ownership

of railway infrastructure could be not a good idea. In France the

infrastructure manager (RFF) and operator (SNCF) are completely

separate legal entities with separate staff, but the relationship is

closest because SNCF is a train operator and maintains the in-

frastructure based on contracts awarded from RFF. In Finland, the

infrastructure manager is the Finnish Rail Administration (RHK), a

department of the Ministry of Transport and Communications.

Organizational separation splits business units with a large de-

gree of operational freedom. There are two basic patterns:

• Business units operating as part of railway operator:

This method is used by Belgian National Railways ( SNCB/

NMBS ). The units have an independent management and a

separate balance sheet but no legal autonomy.

• Autonomous business units organized within framework of

holding firm:

This method is used in Italy (Trenitalia, RFI, Italferr, . . . ) un-

der the holding company FS Holding and in Germany (DB

Reise & Touristik, DB Regio, DB Cargo, DB Netz, DB Station

& Service) under the holding company DB AG.
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2.1 Ferrovie dello Stato Italiane

A very important milestone in Italy unification process was the es-

tablishment of “Ferrovie dello Stato" on April, 21, 1905. This com-

pany has contributed to Italy’s social and cultural development.

Due to the changing economic and political conditions of the last

twenty years, there has been a real revolution in the organizational

structure of Railways. Companies must meet the customers’ needs

(such as safe, punctuality and price) but on the other hand have to

follow the directives.

In 2000, in accordance with the dictates of the Community Direc-

tives on liberalization of rail transport is kicked off a new profound

change.

On June, 7, 2000 was formed Trenitalia SpA, which was entrusted

with the transport of goods and passengers. On April, 9, 2001 "Rete

Ferroviaria Italiana" was established with the task of manage the

main italian railway network and stations.

Today FS Group is the biggest company in Italy. About 72.000 peo-

ple work hardly to operate more than 8.000 trains every day, to

manage a network of 16.700 kilometres, to transport about 600

million passengers and 50 million tons of freight every year.

The current organisation is that of an industrial Group with an

holding company, “Ferrovie dello Stato Italiane SpA", which heads

the Operating Companies having their own specific corporate cha-

racter and benefit from managerial independence in achieving busi-

ness objectives.

Trenitalia is the main italian train operator that manages railway

transport of passengers and freight in Italy and abroad. This com-

pany manages mainly railway transport services for its customers

while contributing to the development of a great project of mobility

and logistics for Europe.

“Ferrovie dello Stato Italiane SpA" creates and manages for its own

clients works and services in railway transport, helping to develop

a great project for Italy mobility and logistics. At the same time,
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technological innovation and safety are this group’s distinctive cha-

racters, attested by two excellent international awards.

These companies are not resting on the italian edge. Mediterranean,

Middle East, Eastern Europe, the Balkans, Latin America, United

States, India and Australia are the main areas in which they ope-

rate, exporting the excellence of Made in Italy for the development

of rail networks in those countries. The main services offered on the

international market comprises engineering, management of pas-

senger transportation and logistics, infrastructure and stations.



Chapter 3

The Problem

In this thesis we describe how we have solved the Rolling Stock

Management problem (RSM) by using Operations Research tech-

niques. RSM is the main cost factor for Rail Undertakings. For

example, for high-speed trains, more than 30% of the lifecycle costs

is spent for maintenance operations (a very important part of RSM).

In order to reduce the costs due to railway operations, every com-

pany should address the joint problem of rolling stock rostering

and maintenance scheduling since they are strongly related parts

of the same problem. Rolling Stock Management, and in particular

maintenance optimization, is a very important key factor to in-

crease the productivity of railway companies. At the same time, in

a competitive globalized and multimodal market, RSM is one of the

competitiveness key factors because services quality level depends

on it. The strategic relevance of RSM is thus due to the reduc-

tion of needs (such as platforms and human resources) and to the

enhancement of quality standards (such as vehicle reliability and

cleaning).

The problem addressed in this thesis can be defined as follows:

given timetables, rolling stock assets, maintenance workshops and

maintenance operations, a rolling stock circulation solution has

to be computed with minimum cost, that is expressed in terms of

the number of used rolling stock units, the number of used empty

runs, the number of train movements between platforms at sta-
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tions and within workshops.

This problem involves generally different organizational units and

different companies that try to solve their own problem partly ma-

nually and using the experience of experts. Very often the solutions

carried out are not completely feasible because the task to find a

feasible solution could be very hard (there are too many constraints

to take into account). In practice, to control the huge complexity of

the problem, even if fragmented, a resources priority list is made.

This list is used to divide further the problem in a lot of smaller

problems. Rail companies tend to solve firstly sub-problems af-

fecting resources with a long time of acquisition (e.g. rail tracks or

rolling stock) and secondly sub-problems involving resources with

higher degree of flexibility (e.g. human resources). This decompo-

sition on one hand can help to solve a part of problem but on the

other hand leads to big wastes.

Figure 3.1: Maintenance Time Window vs Maintenance Minimum

Duration
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For example, Figure 3.1 compares the results of rolling stock ros-

tering with the result of maintenance management for a given work-

day.

Above the diagonal (red triangle) there are trains, represented by

circles, with maintenance minimum duration greater than allo-

cated (by roster) maintenance time window while below the diag-

onal (white triangle) there are trains with maintenance minimum

duration shorter than maintenance time window. In the first case

workshop can not provide all maintenance activities because there

is no enough time.

Can we say that the roster is not feasible?

Let’s decompose, as shown in the Figure 3.2, the time given by

roster between two train services in

• waiting time at the passenger station before the train is brought

to workshop

• time to provide empty run to workshop

• maintenance processing time window (including recovery time)

• time to provide empty run to passenger station

• waiting time at the passenger station after the train leaves the

workshop

Figure 3.2: RSM process

Therefore, the maintenance time window could not be enough for

instance because the Infrastructure Manager (IM) takes the train

long time in the station (IM could have an important role in the

rolling stock management) and a short time is consequentially al-

lowed to maintenance tasks. In this case we have a feasible roster, a
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feasible station capacity allocation but an unfeasible maintenance

plan.

These problems are often overcome enforcing some element of so-

lution but the resulting wastes are not neglectable. Integrated ap-

proaches do not have problems like this.

Figures 3.3 and 3.4 represent waiting time in the passenger station

before/after the train is moved to/from workshop (waiting times on

x-axis and number of trains with that time leg on the y-axis).

Let’ s see the case of the yellow train in the Figure 3.1. In this

case it is not possible to complete the maintenance process but the

Figures 3.3 and 3.4 (see yellow bars) suggest we could try to reduce

the waiting times in the station and increase maintenance time.

This is a typical kind of waste due to overall problem fragmentation.

Figure 3.3: Waiting Time in the passenger station before the train

is moved to workshop

Another typical example of waste happens when a passenger sta-

tion can not recover a rolling stock and the time windows is not

enough to move it to the workshop. In this case a big amount of

money is spent to take the train running on the network until its

departure time. This case is very frequent when the time leg in

the passenger station is not very long (see Figure 3.5 representing

waiting time on passenger station track and the number of train

involved) and if there is no coordination between roster and station

plans.
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Figure 3.4: Waiting Time in the passenger station after the train is

moved from workshop

Figure 3.5: Waiting Time in the passenger station without mainte-

nance

The importance of integrated approaches is shown in the Figure

3.7 in which is represented on the x-axis the difference between

minimum time required to perform maintenance operations and

the time available to the maintenance while on the y-axis is repre-

sented the waiting time in the passenger station. In the Figure 3.7

are plotted two red lines that identify four quadrants. The vertical

line is on the 0 of x-axis while the horizontal line is close to 70

minutes (mean time spent at the station before and after mainte-

nance operations).

• the area 1 contains cases in which it would be possible to

reduce the time spent at the station to allow more time in
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maintenance

• the area 2 contains cases in which time is not a critical factor

• the area 3 contains cases in which it would be possible to

reduce the time at workshop to increase the time spent at the

station. Generally the cases of this area improvable are above

the dotted red curve

• the area 4 contains cases in which time is a very critical factor

and it is not possible to improve the solution quality

From our point of view, to minimize wastes, RSM should include:

• Rolling Stock Rostering

• Maintenance Optimization

• Passenger Station Optimization

and therefore the documents carry out by these planning steps

must be coherent and integrated each other.

Figure 3.6: Documents involved

Figure 3.6 represents the main documents involved in our process:
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1. Station Capacity Management Plan

2. Train Roster

3. Maintenance Programs.
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3.1 Rolling Stock Rostering

The current practice of rolling stock rostering is focused on imple-

menting slight modifications to the previous plan in presence of

new requests. This is mainly due to the difficulty faced by manual

planners when computing network-wide solutions. The computa-

tion of a globally feasible solution is already very complex task and

the planners know the gap between their solutions and the optimal

solutions related to specific performance indicators. Scientific re-

search in this context is therefore worth to search for better quality

solutions of practical interest.

Most of the scientific research considers the management of train

rostering, empty rides balancing and cycles of rolling stock main-

tenance separately, even if these are parts of the same problem. A

number of recent literature surveys are given in [1, 2, 22, 49, 63].

In view of their extensive reviews, we limit our discussion of the

literature to recent analytical approaches quite related to this work.

Mároti and Kroon [65] developed a multicommodity flow model for

preventive maintenance routing. They tried to improve the practical

solutions by implementing a limited number of changes to a macro-

scopic rolling stock plan in which rolling stock units move on lines

between aggregate stations. The objective function was related to

the minimization of shunting plan deviations. Alfieri et al. [4] also

proposed a multicommodity flow model for efficient rolling stock

circulation on a single line of the Dutch railway network. Their ob-

jective was to minimize the kilometers travelled by train units of

various types. Maintenance requirements were not considered in

their formulation.

Budai et al. [16] provided a mathematical formulation for the long-

term planning of railway maintenance works. The objective func-

tion was the minimization of the time required for maintenance,

expressed as a cost function. Heuristic algorithms compute nearly

optimal solutions by combining maintenance activities on each pos-

sible track.
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Caprara et al. [23] studied the train timetabling problem from an

infrastructure manager point of view: the objective is to improve

the use of infrastructure resources. Maintenance operations were

modelled as fixed constraints. An integer linear programming for-

mulation was proposed and solved by a Lagrangian heuristic. Tests

on a Italian test bed with different train types showed that main-

tenance constraint may seriously effect the quality of the overall

timetabling process.

Recently, Borndörfer et al. [14] studied the problem to assign rolling

stock to timetable services. A hypergraph based integer program-

ming formulation was proposed for a cyclic planning horizon of one

week.

In Cadarso and Marín [20], a more general rolling stock and train

routing problem was addressed. The rolling stock subtask was to

assign material to satisfy the timetable of a railway network, while

the train routing subtask was to determine the best sequence for

each material. Since the combined problem was not solved by com-

mercial solvers, they proposed a new heuristic based on Benders

decomposition. The objective function of this approach was to mini-

mize a cost-based function related to commercial train services,

empty movements, shunting and passengers in excess. Both the

latter analytical approaches did not model medium-term mainte-

nance operations and do not evaluate their cost impact.
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3.2 Maintenance and Passenger Station Op-

timization

This thesis presents also some integer programming formulations

for optimizing maintenance management at workshop. This is a key

problem in railway industry that requires to provide maintenance

with a minimum number of movement within workshop. The ob-

jective to achieve is a formulation able to schedule maintenance

operations in order to find a minimum number of train movements

in the workshop with constraints on the maintenance activities to

be performed by each train and on the time windows defined by the

rolling stock rostering and passenger station solutions. A workshop

must manage some rolling stock units simultaneously and must

be able to absorb small perturbations of the circulation. A time

window for the maintenance operations between two commercial

services is thus considered. Generally, the time windows are bigger

than the sum of all activities and the workshop has some recovery

time. Also, the workshop could be considered as a space buffer to

store trains and to avoid unnecessary movements due to too busy

traffic in passenger station areas.

We think that literature is too focused on manufacturing setting in

order to reduce the occurrence of a failure (e.g. [89]) while unfortu-

nately the coordination of maintenance and rolling stock schedul-

ing is still under investigated.

In view to the literature reviews in [2], [29], [42], [50], [83], [87], we

limit ourselves to review the following recent papers.

Penicka et al. in [72] introduced a formal model of the train mainte-

nance routing problem. However, the rostering problem with main-

tenance constraints and the maintenance routing are not addressed

in this paper. Furthermore, in their case study rostering and rolling

stock maintenance are considered as an appropriate method for

long distance trains only.

Mároti in [65] presented a mixed integer formulation for the main-

tenance routing problem in which the shunting process is consi-
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dered the process bottleneck.

Budai in [16] discussed the preventive maintenance scheduling

problem and the minimization of the time required for performing

maintenance operations. Heuristic algorithms compute nearly op-

timal solutions by combining maintenance activities on each track.

Wang in [88] proposed a multiple criteria decision-making problem

and evaluated maintenance strategies for different equipments.

Our results are based on real instances taken from a Trenitalia’s

maintenance site located in Naples (see Figure 5.1). We analyze 100

working days and we compare the programs used in real life with

our model solutions. We consider all train units types and all main-

tenance types. Waiting time longer than one day is considered not

as a variable but as a constraint on resources availability. A pre-

processing was also performed in order to reduce the problem size

to a sequence of one day problems, so we generated 100 one-day

cases. A robustness analysis is provided in order to evaluate the

schedule quality in case of medium-term traffic disturbances that

alter the off-line plan of operations. The objective is to re-balance

the use of workshop resources to compute of a feasible schedule,

i.e. a schedule of all workshop operations within the time windows

given by the rolling stock rostering planner and perturbed by traffic

disturbances



The Problem 36

3.3 Preliminary Notions

Let’s define

• a train route as a path between two given stations, with a given

travel time;

• a train service i as a route from a departure station di at de-

parture time tdi to an arrival station ai at arrival time tai that

must be covered by a specific train;

• a roster as a cycle spanning over several working days that

covers all the services and the required maintenance tasks.

Train Timetabling Problem (TTP) consists in finding a train schedu-

le on a given railway network maximizing train operator company

goals. This process is made by two steps:

• generation of various alternative network plans based on dif-

ferent infrastructure’s scenarios and on passengers’ demand;

• choice of the network model after evaluation of the effective-

ness and efficiency of each alternative.

The network plan is a document that describes the main train ser-

vices to be provided. This document is made by a set of superposed

layers. Generally, the network plan (see Figure 3.8) describes the

main stations to serve (gray boxes), frequencies of trains (type of

line), number of couples (labels) and type of rolling stock to be used

(color of line).

A timetable is a detailed network plan showing also information on

departure and arrival times and the days in which trains will be

provided.

Timetable is made by some overcast layers. These are:

• full patterns that are sets of transports with the same charac-

teristics (stops and travel distances) and repeated daily with a

fixed frequency for a given time window;

• partial patterns that are patterns with little exceptions;

• spot train that are trains not belonging to any pattern (full or

partial).
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Figure 3.9 shows three different patterns highlighted with red, blue

and green. These patterns have a frequency of two hours. The

timetable has also a "spot train" highlighted in black around the

middle of the second hour.

Cadences are generally the basic elements for a network plan and

are often very important for railway company for industrial aims

(cadences can help to reduce maintenance costs and improve opera-

tions management) and for commercial purpose (for example is

simpler remember a cadence than a lot spot trains timetables). A

very important aspect of the timetable is the periodicity. The com-

mercial services (and therefore cadences) may take place only on

certain days or at particular times of the year. We will denote by

the term Cyclic the timetable with the same train services every

day. Often timetables are not cyclic because the demand seasona-

lity.

In general, the process of timetabling can not be separated from

feasibility studies related to reliability and maintenance of rolling

stock and infrastructure.

Reliability is the main key factor to running a successful railway.

If the rolling stock, is not reliable, the railway is not workable. The

performance of rolling stock’s maintenance has a very big influence

on passengers’ safety and comfort. We understand maintenance as

all activities which must be done with rolling stock, according to

law, aiming to maintain it in good working order, prevent opera-

tional disturbance and/or uphold a given technical standard. We

also consider belonging to maintenance tasks outside and inside

cleaning of carriages, refuelling diesel engines, refilling supplies

into restaurant carriages, water and oil refilling.

Rolling stock is the most maintenance intensive part of the railway

system and is the most vulnerable if maintenance is neglected.

We could categorize maintenance of rolling stock in two types:

• failure based maintenance (often named Corrective Mainte-
nance) that can not be avoided when a random failure occors;
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• life based maintenance (often named Preventive Maintenance)

that is provided at given time interval;

• life based on conditioning monitoring achieved by checking

rolling stock units equipment.

Corrective Maintenance can be conveniently adopted if:

• possible preventive measures are too expensive, so it becomes

more economical to repair the component when it breaks;

• the number of faults which may occur is so low that it is

preferable to establish other priorities;

• the fault does not significantly affect production.

With reference to Preventive Maintenance, asset units need a regu-

lar preventive maintenance checks after a certain number of kilo-

metres or working days. This limit depends on the rolling stock

type and on its on board equipment. Train units must undergo dif-

ferent types of maintenance tasks. These tasks can take place at

many workshops even if maintenance station are specialized on a

subset of maintenance operations and of rolling stock types.

The layout of a workshop (see Figure 3.10) or depot consists of

terminal tracks, inspection and light maintenance sheds (MAV1/2),

wheel lathe, washing and cleaning areas and heavy maintenance

shops (MAV1/2).

A very important aspect of maintenance is the kind of approach

used in practise. In some cases (see Figure 3.11), a workshop must

provide maintenance on a specific train unit in a given time win-

dow [Twi, Twf ] defined by operating unit. In this case, workshop

can not switch rolling stock units if accidents or failures did not

happen. We will name this approach Non-buffered Maintenance.

In other cases (see Figure 3.12), the workshop receives a list of

operating unit needs in terms only of number of rolling stock units
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to recover and carry out day by day. In this case, workshop can

manage rolling stock asset as it prefers but assuring respect of

maintenance expiry dates. We will name this approach Buffered
Maintenance.
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Figure 3.7: Integrated Approach
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Figure 3.8: Network Plan Sample
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Figure 3.9: Pattern Sample

Figure 3.10: IDP Naples Layout
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Figure 3.11: Non-buffered Maintenance

Figure 3.12: Buffered Maintenance
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Main Framework

The problem addressed in this work can be defined as follows:

Given timetables, rolling stock assets, maintenance workshops and

maintenance operations, a rolling stock circulation solution has to

be computed with minimum costs, that are expressed in terms of

the number of used rolling stock units, the number of used empty

runs, the number of train movements between platforms at sta-

tions and within workshops. Figure 4.1 represents the framework

proposed to solve the overall problem. Each coloured module (i.e.

rostering, station and maintenance station) represents a specific

sub-problem, and includes a set of timing constraints with the

other modules. Each module is divided in inputs and outputs ele-

ments that are featured with a label representing if the element

depends on external factors or on the solution provided by other

modules. For each module, we intend to use a mathematical model

that takes into account the solution provided by the other models.

A sequential approach is proposed in order to integrate the solu-

tions provided by each block. Our approach is to solve firstly the

rostering problem for each asset unit type and then to solve the

other two modules involving passenger stations and workshop ope-

rations. An automatic procedure is under development to manage

the interaction between the modules and a feedback information is

returned in case an infeasibility is provided by some modules. In

the following, we briefly describe each module and the models we
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developed to solve it.

Figure 4.1: Interaction between the rostering, station and work-

shop modules
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Rolling stock rostering The rostering module of our framework

is to define a rolling stock roster that covers a set of commercial

services and minimizes the costs related to number of asset units,

the number of empty runs and the number of kilometers performed

by the rolling stock between consecutive maintenance operations.

We suppose the timetable is cyclic and the assignment of com-

mercial services per asset kind follows brand promise principles. As

described in [43], this problem corresponds to find an Hamiltonian

path on a graph made by commercial services (nodes) and by fea-

sible pairs (edges), representing time legs or maintenance activities

to be provided. The basic idea is to treat this problem as a kind of

travelling salesman problem with additional constraints and vari-

ables to guarantee the respect of maintenance expiry and a mini-

mal maintenance efficiency. The output is a cyclic roster including

the schedule of maintenance activities as time windows [twi, twf]

to provide the required maintenance and an assigned workshop

location.

Workshop scheduling The purpose of this module is to find a

minimum number of train movements in the workshop with con-

straints on the maintenance activities to be performed by each

train and on the time windows defined by the rolling stock roste-

ring and passenger station solutions. A workshop must manage

some rolling stock units simultaneously and must be able to ab-

sorb small perturbations of the circulation. A time window for the

maintenance operations between two commercial services is thus

considered. Generally, the time windows are bigger than the sum

of all activities and the workshop has some recovery time. So, the

workshop could also be considered as a space buffer to store trains

and to avoid unnecessary movements due to too busy traffic in pas-

senger station areas. In the following section, we will present a new

formulation for the workshop maintenance problem with minimum

number of train movements within a workshop. This new model

outperforms the one we proposed in [44], both in terms of solution
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quality and computing speed. We will also study the system robust-

ness, i.e. the ability of the workshop schedule to remain feasible in

the presence of disturbances.

Passenger station scheduling This module of the framework is

still under investigation. In principle, a modelling approach similar

to the workshop scheduling can be suitable, even if different ser-

vices are provided. In fact, a passenger station could be viewed as

a workshop where the trains must be routed and wait in order to

perform passenger related operations.

4.1 Rostering

This work is the first attempt to combine rolling stock and mainte-

nance operational aspects of the rostering problem in an efficient

way. We present a new mixed integer linear programming formula-

tion that models in detail short-term maintenance operations. The

general goal is to execute a given timetable and to minimize the

use of rolling stock units and their maintenance. Given the depar-

ture and arrival times of each scheduled train service, the rostering

problem is composed by three main tasks: (a) assign rolling stock

units (i.e., trains) to the services, (b) schedule the maintenance

tasks, (c) limit the number of empty rides.

The specific objective of our research is related to the following

questions:

• "How can the timetable be executed by an efficient use of re-

sources such that the overall railway company costs are re-

duced?"

• "Which is the maximal improvement that can be achieved? At

which cost?".

In this work, we give an answer to these questions by perform-

ing an assessment of the main key performance indicators. The
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computation experiments are obtained by implementing and solv-

ing the proposed model with a commercial MIP solver. We tested

on a number of practical instances based on timetable examples

from Trenitalia (the main Italian passenger company for passenger

services) for year 2011. The real-life solutions are compared with

those obtained by our solution method, in terms of the number of

trains and empty rides needed to realize the given timetables.

The next sections define the integrated problem of train rostering

and maintenance scheduling, describe the mathematical formula-

tion of this problem, present computational experiments on real-

world scenarios, discuss the obtained results and provide a de-

scription of further research directions. We consider a macroscopic

description of the railway traffic flow. The network is composed by

a number of tracks and stations.

4.1.1 Cyclic timetable

In this section we assume that the same timetable is repeated eve-

ry day. In other words, we consider a cyclic timetable and do not

study its variability e.g. in case of high/low demand days. With this

assumption, finding a roster spanning over k days allows to cover

all services in a day with k trains.

Problem description

A maintenance site is where maintenance work is performed and

can coincide with a passenger station or not. Each maintenance

site is dedicated to specific types of maintenance work, such as:

interior or exterior cleaning, refuel (only for diesel units), regular

inspection, repair (scheduled or not) and technical check-up. Each

type of maintenance task must be performed regularly, i.e. within a

maximum time limit or a maximum number of kilometres from the

last maintenance of the same type. Since performing some mainte-

nance task too often would cause an unnecessary cost for the com-

pany, each type of maintenance task should be performed in the
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proximity of its maximum limit. In fact, maintenance tasks impose

severe constraints and their effect on the line capacity is difficult

to analyze [23].

Figure 4.2 presents a roster for a cyclic timetable with 14 train ser-

vices (S1–S14). Each row shows the daily route to be covered by a

specific train. The different colors identify the train services (red),

the maintenance tasks (blue) and the empty rides (black). This ros-

ter can be considered as an example of daily cycle with 6 trains.

Specifically, Figure 4.2 (up) shows a roster without empty rides

while Figure 4.2 (down) shows a roster with two empty rides (E1–

E2). The two schedules also differ in the number of maintenance

tasks (3 in the first case and 2 in the second one).

More specifically this comparison shows how it is possible to re-

duce the number of maintenance tasks by using empty rides. It

follows that we have reduced the maintenance costs but, on the

other hand, we have increased the cost of empty rides too. The

problem is to find the minimum global cost solution including the

balancing of empty rides.

The problem addressed in this paper consists of finding a short-

est roster, i.e. a sequence of all services spanning over the mini-

mum number of days, such that all required maintenance tasks

are inserted in the roster. Empty rides can be added to the ros-

ter in order to connect train services and/or to visit maintenance

sites. Although empty rides cause a relevant cost (e.g. related to ad-

ditional energy consumption, rolling stock and crew resources) for

the company and increase the traffic in the network, their inclusion

may help to reduce the maintenance cost and the roster length.

For the above reasons, optimizing the scheduling of maintenance

tasks, trains services and empty rides is an important contribution

to reduce the overall company costs.

Figure 4.3 shows a kilometers cumulative line which is 0 when a

maintenance activity is provided and increases when the rolling

unit runs. The vehicle must comes back to workshop before the

maintenance expiry. Very often vehicles come back in the work-
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Figure 4.2: Rolling stock roster with and without empty rides
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shop too early. The difference between kilometers run and main-

tenance expiry (horizontal blue line) is a waste. Our roster must

respect a constraint of kilometers covered at moment of entrance

in the workshop for a maintenance activity. Figure 4.4 shows how

Figure 4.3: Rostering maintenance waste

empty runs can help to optimize maintenance management. In fact

an empty run can help to find new opportunities to come back to

workshop.

Figure 4.4: Maintenance Costs Reduction

In our approach, the input data are: rolling stock asset, timetable,

infrastructure and train services. Alternative solutions are ana-

lyzed in terms of the number of required trains, empty rides and

maintenance kilometres. The objective function is the minimiza-

tion of the number of trains needed to perform all services while

the latter two factors will be considered both as fixed or flexible

values. Strict values are replaced by time windows of [minimum,

maximum] values. A large time window corresponds to having more



Main Framework 52

flexibility during railway planning that would allow a greater pos-

sibility to design cost effective solutions [23, 30, 32].

We use the following data as problem input: the timetable with the

scheduled train services; the maintenance sites; the maintenance

tasks; the maximum number of kilometres and the planned time of

an empty ride; the minimum and maximum number of kilometres

for each type of maintenance task.

Problem formulation

The RSR problem is represented by a graph G = (V,A) in which the

set of nodes V contains all the train services to be included in the

roster, while the set of arcs A is associated to a feasible sequencing

of train services in a roster, plus the possible inclusions of empty

rides and maintenance tasks. There can be several types of arcs

between any two nodes i and j, and we denote by z the type of arc

(i, j, z) and by Z the set of arc types.

If the arrival station ai of service i is equal to the departure station

dj of service j, we add to A a first arc of type z =waiting between

i and j plus an arc of type z =maintenance for each type of main-

tenance task m that can be executed in the proximity of station ai,

i.e., such that the distance between ai and the closest maintenance

site enabled to perform m is smaller than a pre-defined value.

If ai 6= dj, we add to A a first arc (i, j, z) of type z =empty ride plus

an arc for each maintenance task that can be processed in a main-

tenance site close to ai, dj or along the route from ai to dj.

Each arc (i, j, z) has a cost cijz that is the number of days required

to process j after the completion of i, i.e., zero if i and j can be per-

formed consecutively in the same day. The rostering problem can

be viewed as the problem of finding a minimum cost Hamiltonian

cycle in G with additional constraints related to the implementation

of maintenance tasks.

For each arc (i, j, z), we consider two types of service pairings: the

departure station of the first service is equal or not to the arrival

station of the second service. In case of equality, the time lag bet-
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ween the two services can be spent in one of the following cases: (i)

a slack time is considered between the two services or (ii) a mainte-

nance window is added in order to execute maintenance works for

the rolling stock involved, eventually a slack time can still be added

to the schedule. The decision depends on a number of factors: the

maintenance status of the rolling stock involved in the two ser-

vices, the distance from the station and the maintenance location,

the size of the time lag available to perform the works. In case de-

parture and arrival stations are different, the waiting time between

the two services must be spent in one of the following cases: (i)

an empty ride is added between the two services, (ii) in addition to

the empty ride of case (i) a maintenance window is added in order

to execute maintenance works for the rolling stock involved. The

maintenance works can be either executed at a workshop nearby

the arrival station of the first service or nearby the departure sta-

tion of the second service.

To formulate the maintenance constraints, for each arc (i, j, z) and

for each maintenance type m, we introduce a real variable gmijz that

counts the kilometres covered by each train since the last mainte-

nance task of type m was performed. A lower bound βm and an up-

per bound γm on the kilometres are specified for each maintenance

task m and constraints βm ≥ gmijz ≥ γm are added to the formulation

to force each train to visit a maintenance site between βm and γm

kilometres.

Illustrative example

Figure 4.5 shows a small graph to illustrate the problem formula-

tion.

For each train service, there is a (red) node with labels indica-

ting departure and arrival stations, plus the associated times. The

green arcs indicate paired services, the (solid) black arcs the empty

rides without maintenance, the (dotted) black arcs the empty rides

with maintenance tasks, the blue arcs the maintenance tasks with-

out empty rides. The numerical labels show arc costs, while non-
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Figure 4.5: A graph formulation for three train services
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numerical labels indicate maintenance types (M1, M2 and their

combination). For simplicity, the maintenance costs are not shown

in the graph. In Figure 4.5, we have three services (Napoli-Udine,

Udine-Roma and Roma-Napoli) that require a number of trains,

maintenance works and empty rides. A solution is an Hamiltonian

path with one or more maintenance arcs to guarantee the main-

tenance expiry. In the solution the empty rides (black arcs) are

optional.

List of notations

We now list the notation used in this section.

• V is the set of train services (i.e., the set of nodes)

• n is the cardinality of the set V

• A1 is the set of empty ride arcs without maintenance tasks

(i.e., the set of solid black arcs)

• A2 is the set of empty ride arcs with maintenance tasks (i.e.,

the set of dotted black arcs)

• A3 is the set of maintenance arcs without empty rides (i.e., the

set of blue arcs)

• A4 is the set of service pairings (i.e., the set of green arcs)

• A is the set of all arcs: service pairings, empty rides and main-

tenance tasks (A = A1

⋃
A2

⋃
A3

⋃
A4)

• Am̄ is the set of service pairings, empty rides and maintenance

tasks that do not include maintenance task m

• Am
I (Am̄

I ) is the set of empty ride arcs with maintenance tasks

that (do not) include task m in a maintenance site at the be-

ginning of their route

• Am
II (Am̄

II ) is the set of empty ride arcs with maintenance tasks

that (do not) include task m in a maintenance site at the end

of their route

• Am
III (Am̄

III ) is the set of empty ride arcs with maintenance tasks

that (do not) include task m in a maintenance site in the mid-

dle of their route
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• Zi,j is the set of arc types between nodes i and j

• (i, j, z) is an arc between start node i and end node j of type

z ∈ Z
• Ki are the kilometres of train service i

• K1
ijz are the kilometres to be performed by a train (associated

to arc (i, j, z)) from ai to a maintenance site in case of empty

ride

• K2
ijz are the kilometres to be performed by a train (associated

to arc (i, j, z)) from a maintenance site to dj in case of empty

ride

• K3
ijz are the kilometres to be performed by a train (associated

to arc (i, j, z)) from ai to dj in case of empty ride

• α is a bound related to the maximum number of empty rides

allowed in a solution

• βm is a lower bound on the kilometres travelled by a train

between consecutive executions of task m

• γm is an upper bound on the kilometres travelled by a train

between consecutive executions of task m

Problem variables

The proposed formulation considers three types of variables: X is a

set of binary variables such that xijz ∈ X is equal to 1 if arc (i, j, z)

belongs to the Hamiltonian cycle and zero otherwise, Y is a set of

integer variables that are used for sub-tour elimination, G is a set

of real variables. Variable gmijz ∈ G is used to force that if xijz = 1

then the kilometres travelled by a train between two consecutive

executions of task m is always between βm and γm. In a solution,

the variables in Y and G can be derived from the variables in X.

Objective function

The objective function of the problem is the minimization of the

number of days included in the roster, i.e., the number of trains

required to perform all services in a day:
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∑
(i,j,z)∈A

cijzxijz

where cijz is the cost of arc (i, j, z) ∈ A.

Path constraints

The first set of constraints is:

∑
i∈V

∑
z:(i,h,z)∈A

xihz = 1

∑
j∈V

∑
z:(h,j,z)∈A

xhjz = 1
(4.1)

The satisfaction of Equation (4.1) forces exactly a predecessor and

a successor for each node h ∈ V .

Sub-tour elimination constraints

This set of constraints are introduced for modelling the roster so-

lution as an Hamiltonian cycle.

Figure 4.6 shows an infeasible situation in which there is subtour

in the graph. This situation is infeasible since the rolling stock

would not return to their original location at the end of the day.

The basic idea to avoid sub-tours in the roster is to use node labels

that count the order of nodes in the solution, beginning from a first

node n0 randomly chosen.

Along the path the label of each visited node is increased of one

unit compared with the previous node (but not for the first node).

So we have that the value of labels is from 1 to n and two nodes

cannot have the same label.

In the example of Figure 4.6 we can observe that if we have a sub-

loop we can’t respect the previous conditions. In fact in case of a

sub-loop, we can’t have a progressing counting of the nodes(see for
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Figure 4.6: Example of sub-tour situation

instance the interior labels of the node [Rm 20:00 - Na 21:15] and

of the node [Mi 15:00 - Na 19:30]).

An integer variable ykj ∈ Y is associated to each pair of nodes k, j ∈
V , with k 6= j, such that:

∑
i∈V

yji =
∑
k∈V

ykj + 1 ∀j ∈ V \ {n0} (4.2)

0 ≤ yij ≤ n
∑

(ijz)∈A

xijz ∀yij ∈ Y (4.3)

∑
i∈V

yn0i = 1 (4.4)

Equation (4.2) constrains the sum of the arcs entering each node,

but n0, to be equal to the sum of the arcs leaving the same node

plus 1. Inequality (4.3) constrains the arc label values to be greater
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than 0 if and only if a variable xijz ∈ X of type z exists between

nodes i and j with value greater than 0. With these equations,

there is just one arc leaving and one arc entering each node with

yij > 0. If two services i and j are executed consecutively (i.e., if

there is a variable xijz = 1), the label of j is equal to the one of i

plus 1. Equation (4.4) forces node n0 to be numbered 1.

Sub-tour elimination constraints should be used when mainte-

nance could be provided in workshops with different features. Gene-

rally one workshop is able to provide maintenance and to check

rolling stock status. So, to avoid very long empty runs, we choose

an Hamiltonian path to bring each rolling stock unit in the main

workshop. In this case a new equation must be added to assure

that the main workshop is involved in the roster.

∑
(i,j,m)∈A

xi,j,k = 1 where m is provided in the main workshop (4.5)

Obviously, in case of one workshop we don’t use this onerous set of

constraints. We have also to consider that sometimes rolling stock

is used to cover an entire roster in order to spread evenly the stress

related to covered services (different lines have different stress) and

in order to assure the same service level to passengers. Even in

case we need to use sub-tour elimination constraints. Other possi-

ble formulations are shown in [82],[81] and [24].

Maintenance constraints

Maintenance tasks need to be performed within a given time win-

dow of maintenance. However, the intention is to prevent the exe-

cution of an excessive number of maintenance tasks. The less are

the maintenance tasks the more cost effective is the overall solu-

tion.

Figure 4.7 shows a simple example with two services, a mainte-

nance site and two empty ride possibilities: including (see dotted
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black arcs K1 and K2) or not including the maintenance work (see

black arc K3). In this case, travelling from origin station (Naples) to

destination station (Udine) would be more costly if passing through

a workshop. However, maintenance tasks must be taken if the kilo-

metres travelled by the current train would exceed γm for at least a

task m at the destination station.

Figure 4.7: Example of empty ride and maintenance tasks

The formulation of maintenance tasks requires to the introduction

of a new variable gmijz for each maintenance task m and for each arc

(i, j, z) ∈ A. This variable is increased at each train service and at

each empty ride, and is set to 0 when the maintenance task m is

performed. The set of maintenance constraints is as follows:

∑
l∈V

∑
z∈Zj,l

gmjlz = Kj +
∑
i∈V

∑
z∈Zi,j :(i,j,z)∈Am̄

gmijz+∑
(i,j,z)∈Am

III

K2
ijzxijz +

∑
(i,j,z)∈Am

I

K3
ijzxijz+∑

(j,l,z)∈Am
III

K1
jlzxjlz +

∑
(j,l,z)∈Am̄

I ∪A
m̄
II∪A

m̄
III∪A

m
II∪A1

K3
jlzxjlz

∀j ∈ V, ∀m

(4.6)

gmijz ≤ γmxijz ∀(i, j, z) ∈ A, ∀m (4.7)
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gmijz ≥ βmxijz ∀(i, j, z) ∈ A2 ∪ A3 : m ∈ Zi,j (4.8)

Equation (4.6) counts the kilometres performed by each train, in-

cluding the empty rides. The terms represent the kilometres run

by a train for a commercial service and empty ride. In case of a

maintenance task along an empty ride, the kilometres run must be

considered partially (before or after a maintenance task). Inequality

(4.7) constrains the kilometres to be performed after a task of type

m to be smaller than the upper bound, while inequality (4.8) con-

strains the kilometres to be performed before a task of type m to be

at least equal to the lower bound. The real important reference is

the expiry of each basic maintenance task even if it is possible to

perform a combination of more than one basic maintenance task

in a specific site.

Empty ride bound constraints

This type of constraints defines the maximum number of empty

rides permitted in a solution:

∑
(i,j,z)∈A1∪A2

xijz ≤ α (4.9)

where the bound α is an input parameter.

Computational experiments

This section presents a set of computational experiments on real-

world cases from the Trenitalia timetable of year 2011. We consider

practical rosters and solve the proposed model with CPLEX MIP

solver 12.0 (see [66] and [53]).
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Description of the instances

Table 5.3 presents five practical timetables (Column 1). The first

four timetables (T1–T4) are based on real cases, and will be com-

pared with the practical solutions, while the fifth(T5) is hypothetical,

and has been created to test the computational limits of our ap-

proach.

Table 4.1: Description of the train services for each timetable
Timetable Rolling Stock Num Train Railway Total Maintenance

Scenario Categories Services Cars Length [m] Deadline [km]

T1 Loco E444 46 1 17 >>1500

T2 ETR 485 20 9 237 1500

T3 ETR 600 26 7 237 1500

T4 ETR 500 78 11 328 1500

T5 ETR 600+500 104 18 237/328 1500

For each timetable scenario in Table 5.3, Column 2 shows the

rolling stock categories. Specifically, T1 uses locomotives only while

the other four (T2-T5) use different types of high speed trains.

For each category, Columns 3 shows the number of train services

scheduled in the timetable, Column 4 the number of railway cars,

Column 5 the total length of each car (in meters), Column 6 the

deadline of its maintenance works (in kilometres).

Comparison of CPLEX versus real-life rosters

Table 4.2 presents results on the five timetables (Column 1). Co-

lumn 2–3 describe the practical solutions in terms of the number of

empty rides and train services defined in each timetable. To com-

pare our solutions with the practical ones, Column 4 shows the

results when the maximum number of empty rides α is fixed to the

same value used in practice. Differently, Column 5 shows our so-

lutions when the empty rides are additional variables that can be

selected in a range of [0, 10] values.

Computational results in Table 4.2 show relevant potential appli-

cation of the proposed formulation for improving the current prac-
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Table 4.2: Assessment of practical and CPLEX solutions
Timetable Practical CPLEX Solution: CPLEX Solution:

Scenario Solution Fixed Empty Rides Flexible Empty Rides

Empty Rides Trains Trains Trains

T1 0 26 25 20

T2 0 9 8 8

T3 0 10 10 10

T4 8 40 38 35

T5 8 - 48 42

tical solutions. For timetables T1, T2 and T4, our model solution

also compares favorably with the practical roster. a total reduction

of up to 4 trains needed to cover all services.

Another observation from Table 4.2 is that the model with a fixed

number of empty rides performs worst than the model with a win-

dow of min-max values for the empty rides. This is due to the addi-

tional flexibility added in the latter model that is able to reduce the

necessary rolling stock. When relaxing the constraint on the empty

rides, the maximum gain is obtained for timetable T1 for which our

model solution with flexible empty rides presents a 23% reduction

in the number of trains needed to cover all services.

For the set of experiments with fixed empty rides, the average com-

putation time of CPLEX is around 10 seconds. In case of flexible

empty rides, the average computation time of CPLEX solutions is

around 1 minute for T1, T2, T3 and T4, while T5 requires around

7.5 minutes.

Maintenance optimization
We can compare the real life solution with our model solution a-

round the maintenance efficiency. The real life solution presents a

least efficiency value that we can increase of 53%. In other words, if

we consider the timetable T4, we can reduce not only the number of

rolling stocks needed to cover the timetable but we can have a real

reduction of the maintenance cost. This result could be achieved
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using the minimum efficiency admitted as a parameter. We have

tested the instance, called T4, to find the maximum feasible value

for the minimum efficiency (βm) with a fixed rolling stock units

available. The minimum value of efficiency was increased of 1000

km for each step till we found an infeasible solution. The results

are shown in the Table 4.3.

Table 4.3: Minimization of maintenance cost

Instance Min Efficiency Max Efficiency Improvement Maintenance

[Km] [Km] [%] tasks

Real 5688 13040 - 6

Mod2 6688 13040 18 5

Mod3 7688 13040 35 5

Mod4 8688 13040 53 5

Evaluating the impact of empty ride flexibility

Figure 4.8 shows a second set of experiments in which we con-

sider the empty rides as additional problem variables that can be

selected in a range of min-max values. The experiments are based

on the five timetables and use different settings of the maximum

number of empty rides. We show on y-axis the number of trains

needed for the roster and on the x-axis the maximum number of

empty rides.

From the results of Figure 4.8, we have the following observations.

For T2 and T3, increasing the empty rides has no effect on the

rolling stock required to run all services, while for T1, T4 and T5

the rolling stock used is progressively reduced.

Considering T4, the practical solution (with 40 trains and 8 empty

rides) can be improved by two actions: reducing the number of

trains and/or reducing the number of empty rides. When compa-

ring the practical solution versus the optimal solution of our model,
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Figure 4.8: Measuring the compromise between rolling stock units

and empty rides

there is a trade-off between the two actions for the two cases with

9 and 10 empty rides. For smaller values of empty rides, our model

gives always better solutions than the practical one for both objecti-

ves. In the solution with 8 empty rides, the number of trains can

be reduced up to 10%.

Furthermore, with reference on the results of the maintenance

costs minimization, we can find a special solution with just 6 empty

rides versus 8 of the real life solution. Is it possible to reduce the

train units needed, to increase the maintenance efficiency and to

reduce the number of empty rides? If we use an integrated ap-

proach our tests proof that is possible. In other words our inte-

grated model can reduce the operational costs reducing one by one

the terms of the overall cost equation.
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Numerical example

Let’s consider the timetable shown in the Table 4.4 and suppose it

is cyclic.

Table 4.4: Example Timetable
Train From To Departure DateTime Arrival DateTime Km

A Milan Naples 08:00 12:00 600

B Milan Naples 19:00 23:00 600

C Naples Milan 07:00 11:00 600

D Rome Milan 09:00 12:00 380

For empty runs let’s suppose that

• the maximum number of empty runs in the roster is 1;

• the maximum empty run kilometres are 300 (so only between

Rome and Naples);

• empty runs speed average 50 Km/h.

For maintenance let’s suppose that

• only one workshop (located in Naples);

• only one kind of maintenance (named MC);

• the MC duration is 600 minutes;

• minimum number of km to cover between two maintenance

operations = 1200;

• maximum number of km to cover between two maintenance

operations = 3000 (maintenance expiry).

Furthermore, providing maintenance after/before/in the middle of

an empty run is allowed.

For pairing let’s suppose that

• the minimum pairing time is 120 minutes;

• no maximum pairing time.
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Figure 4.9: Initial example graph

Firstly we have to generate the graph using train services to cover

(nodes of Figure 4.9).

Now we have to complete the graph adding all feasible pairs (edges).

Table 4.10 shows the feasible pairing and the different types of

edges for each couple of trains. The number of edges, given by the

number of green checks, will be 12.

The final graph is shown in the Figure 4.11.

Now we can convert the graph in a Cplex linear programming file.

Cplex response is shown in the Figure 4.12.

The solution could be represented in form of a graph shown in the

Figure 4.13.

Note that the variable G between node D and B includes also km of

an empty run from Naples to Rome.
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Figure 4.10: Feasible pairs

Further possible decomposition

Sometimes, for computational troubles, it could be better treat the

problem using a decomposition. To simplify the problem we will

suppose we have only one maintenance level. In a first problem we

neglect maintenance constraints and we find a lower bound LW

on original objective function (Figure 4.14 - check A). Note that

if this reduced problem, a kind Traveller Salesman Problem TSP,

is unfeasible then our rostering problem is unfeasible. After this

step we can try to solve a new problem with a constraint on the

number of train asset units (that must be equal to the lower bound

LW ) and a new objective function given by counting the number

of couples of services (i, j) with possible maintenance tasks in the

path (Figure 4.14 - check B). Given a solution for this problem, we

can formulate a short model to find the final solution (Figure 4.14 -

check C). For each edge of the solution with a possible maintenance

task we generate a node of a new graph. We call V the set of these

nodes. For each couple of nodes of this new graph we calculate the

km between them (this is possible because we have the path) and

if these km are greater than βMC and lower than γMC we will add to

the graph a new edge (i, j).

We will call A the set of these edges. The final problem will be to
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Figure 4.11: Final graph

find a loop on the graph. Therefore we will have a set of variables

xij indicating the edges belonging to the solution. The formulation

of this problem will be

∑
(i,j)∈A

xij =
∑

(j,z)∈A

xjz ≤ 1 ∀ j ∈ V (4.10)

Equation (4.10) is useful for the path construction.

∑
(i,j)∈A

cijxij = TOTKM (4.11)

Equation (4.11) avoids solutions without nodes or with sub-loops

(in this case we will have more maintenance tasks than we need).
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Figure 4.12: solution example

Decomposition numerical example

Let’s consider the previous example problem with some little changes

• the MC duration is 600 minutes;

• we have a new maintenance edge between nodes D and A;

• minimum number of km to cover between two maintenance

operations = 700.

Our graph is shown in the Figure 4.15.

Solving this problem we will have a LW = 3. Let’s use this input

data to solve the original problem

• without maintenance constraints;

• with the number of asset units = LW ;

• with maximum number of pairs in the solution with mainte-

nance tasks.
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Figure 4.13: Solution Graph

We have a new graph with 3 nodes. For each couple of nodes we

can calculate their distance (see Table 4.5).

Erasing edges with km not in the range [700,3000] we will have the

new graph shown in the Figure 4.17.

The maintenance solution is represented in the Figure 4.18.

Note that we have to verify the correct position of empty runs to

guarantee the respect of initial solution.

Further research

Future research will be dedicated to develop even more sophis-

ticated formulations. We are studying how to extend our model

by including scheduling maintenance and platforming operations.



Main Framework 72

Figure 4.14: Decomposition process

Another issue is the definition of objective functions directly related

to the monetary costs of circulation, maintenance and empty rides.

Open issues are related to balance the use of resources when rou-

ting trains in wide-networks and to the limit the workload for the

maintenance operators. Additional research directions should also

be focused on developing methods for acyclic timetables and ad-

vanced algorithms for complex and large instances. For instance,

relaxing the sub-tour elimination constraints could be used to com-

pute lower bounds to the optimal solution of the rostering problem.
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Figure 4.15: Initial graph

Train From

Train To

- 380 980

1800 - 600

1200 1580 -

Table 4.5: Nodes distances

4.1.2 Non-cyclic timetable

Hypothesis of cyclic timetable is often not verified in the real world.

For this reason it is necessary to find different and efficient formu-

lations. For non-cyclic timetables it is necessary to use formula-

tions based on objects “train-day" (a single train service running in

a day) which implies obvious troubles of complexity. In other words

in case of cyclic timetable a train service has the same characte-

ristics every day. Therefore we could solve the problem by working

only on one virtual day. Unfortunately, in the case of non-cyclic

timetable, we can not work on smaller problems because we have

to take into account the different versioning of each train service.

A cyclic timetable solution is useful up to the occurrence of si-

gnificant changes of timetable which make it unfeasible, while in

the case of non-cyclic timetable the solution is feasible only for a

range of days. This is not a real problem because train operators
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Figure 4.16: Second problem solution

Figure 4.17: third problem graph
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Figure 4.18: Solution

Figure 4.19: Global solution
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change their timetables very frequently (in Italy for instance twice

in a month). The basic logic of the “Hamiltonian path" used for

cyclic timetable formulation is not acceptable and at same time the

aspect of initial conditions for each rolling stock asset unit (kilo-

metres run and history of maintenance provided) becomes crucial.

The study of this problem has been addressed mainly looking for

efficiency in order to carry out a tool to use in practice. A great ef-

fort has been made in the search for formulations gradually more

efficient. The result is certainly very interesting in relation to the

complexity of the problem.

We suppose we have a different timetable for each day in a given

time period. The number of objects train-day therefore depends on

the mean number of trains in the timetable and on the extension

of the reference period. For instance, with reference to high speed

trains named “FRECCIAROSSA" provided by Trenitalia, the mean

number of services is more than 100 units. In this case, the num-

ber of objects train-days to be taken into account will be given

approximately by the number of days of the period of validity of the

roster multiplied by 100. Assuming we have a reference period of

three months we will have more than 9000 objects to be analyzed.

We will try to adapt the model used to solve cyclic timetable to

non-cyclic schedules. To understand the problem, let’s construct a

graph by using the reference train-days objects as nodes. We will

also insert in the graph a new node for each asset unit (a virtual

source) and at last a sink node sn. Therefore, the number of nodes

nn will be given using the following equation.

nn = number of train− day objects+ number of asset units+ 1

To complete the graph we need to identify possible links between

nodes (graph edges). In order to find all the directed edges of the

graph we have firstly to find all possible pairs between train-days.

An ordered couple of objects train-days (i,j) is connectible if and

only if the following conditions are all true
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1. the departure time of j is greater than arrival time of i;

2. the difference of arrival time of i and departure time of j is

included in the interval [Minimum connection time , Maximum
connection time];

3. the arrival station of i is the same of departure station of j.

Another set of edges is made connecting each source node with all

train-day nodes.

We should also add other edges (to take into account empty runs)

between couple of nodes that respect the following conditions

1. the departure time of j is greater than arrival time of i;

2. the difference of arrival time of i and departure time of j is

included in the interval [Minimum time to cover the path from

arrival station of i and departure station of j by an empty run

, Maximum time to cover the path from arrival station of i and

departure station of j by an empty run];

3. The arrival station of i is not the same of departure station of

j and the distance between them is less than maximum empty
runs kilometres allowed.

A typical two days example of this kind of graph is shown in the

Figure 4.20.

To solve our problem of minimization of the number of train units

needed, we need to find the minimum number of paths, starting

from a source node, such that all nodes are visited once and only

once. Given a path, the initial node indicates which unit was cho-

sen to cover the services represented by the other nodes in the

path. In this kind of graph it is not possible to create subloops

during the search of paths.

Other constraints to take into account are:

• maintenance deadlines;

• minimum maintenance efficiency;

• maximum number of empty runs allowed.
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Figure 4.20: Non-Cyclic Timetable Graph 1

From the mathematical point of view, we need to solve a large mixed

integer problem.

We provide a list of notation before to go so far.

• So is the set of source nodes,

• V is the set of nodes related to train-day services,

• V + is the set of nodes given by V
⋃
So,

• V p is the set of nodes given by V
⋃

{sn},

• A is the set of edges of the graph,

• A− is the set of empty runs edges,

• M is the set of maintenance tasks,

• L is the set of maintenance levels,

• sn is the sink node,

• l is number of maintenance levels,

• m 7→ l means that the task m delete kilometres of level l,

• Ress,l are initial kilometres related to maintenance level l for

the asset unit s,
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• timelegi,j is the timeleg between the services i and j,

• Kmi are the kilometres of train service i,

• βl is the lower bound on the kilometres traveled by a train bet-

ween consecutive executions of maintenance task including

the level l,

• γl is the upper bound on the kilometres traveled by a train be-

tween consecutive executions of maintenance task including

the level l,

• BM is a BIG integer (i.e. a sufficiently large number),

• α is a bound related to the maximum number of empty rides

allowed in a solution.
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Formulation 1

Problem variables
This formulation considers two types of variables:

• X is a set of binary variables such that xijz ∈ X is equal to 1 if

arc (i, j, z) belongs to the solution (0 otherwise);

• G is a set of real variables related to kilometres performed.

Accordingly with the cyclic formulation, the variable gmijz ∈ G is used

to assure that the kilometres traveled by an asset unit between two

consecutive executions of tasks involving the same maintenance

level l is always between βl and γl. In this formulation we will use

an edge for each maintenance task allowed, for empty runs and

for waiting times. We will have a variable g for each edge and for

each maintenance level (we have seen the same thing in the cyclic

timetable formulation). In the next formulations we neglect the case

of empty runs with also maintenance operations.

Objective function
The target to achieve is the minimization of train units required to

cover all train services for all days in the period of interest. There-

fore, the objective function to minimize, is expressed as the number

of paths found on the graph.

∑
(i,j,m)∈SoxV xM

xijm

Path constraints
For each train-day node we have to add the set of Constraints 4.12

in order to build paths on the graph involving all nodes related to

train services. A node must appears in one and only one path.
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∑
(j,m)∈V xM

xijm = 1

∑
(j,m)∈V xM

xjim =
∑

(k,z)∈V xM

xikz

∀ i ∈ V (4.12)

The set of Equatione 4.12 can not be applied to source nodes. For

each source node we have to add the simpler set of Constraints

4.13 because sources have no incoming edges and they can not

belong to solution.

∑
(j,m)∈V xM

xijm ≤ 1 ∀ i ∈ So (4.13)

Bound on maximum number of empty runs
We have also to impose the upper bound on number of expensive

empty runs in the solution.

∑
(i,j,m)∈A−

xijm ≤ α (4.14)

Maintenance constraints
To control efficiency of maintenance programming, we use vari-

ables g as in the model shown for cyclic timetable to store the kilo-

metres cover by an asset unit during its path. Maintenance con-

straints could be written in the follow manner
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glijm ≤ γl xijm ∀ (i, j,m, l) ∈ V xV pxMxL (4.15)

Constraints 4.15 impose a limit to maximum number of kilometres

run by an asset unit between two maintenance tasks involving the

level l. Variables gi,j,m will be 0 if the edge (i, j,m) does not belong to

the solution.

glijm ≥ βl xijm ∀ (i, j,m, l) ∈ V xV pxMxL : m 7→ l (4.16)

Constraints 4.16 impose a limit to minimum number of kilometres

run by an asset unit between two maintenance tasks involving the

level l. We can not provide maintenance involving the level l before

the unit has run the minimum number of kilometres βl.

∑
(j,a) ∈ V pxM

glija = Kmi +
∑

(k,b) ∈ V +xM : not b 7→l

glkib ∀ i ∈ V (4.17)

Constraints 4.17 are used to increase the kilometers covered by a

train unit asset after a train service i.

glsim = Ress,l xsim ∀ (s, l) ∈ So x L (4.18)

We have also to consider initial status for each train asset unit in

terms of kilometres covered for each maintenance level. So we will

add the set of Equations 4.18.
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Formulation 2

Formulation 1 can be improved from the point of view of efficiency.

We can use variables g as node variables instead of edge variables.

Generally the number of edges is very much greater than the num-

ber of nodes and therefore we can decrease the number of variables

by this change. In this case there will be a drastic reduction of real

variables. In the Formulation 1 real variables were ∝ V xV while

in this case they are ∝ V . This change could have a very big im-

pact on lp model writing and solving time. On the other hand we

will add a new set of binary variables. We can also neglect the sink

node because variables g measuring the kilometres performed after

a service i are now represented on a node i. In this case we do not

need any final path edge to report the final condition of the asset

units (see Figure 4.21).

Problem variables
This formulation considers a new type of variables hli (with i ∈ V

and l ∈ L) that are equal to 0 if a maintenance task m : m 7→ l is

provided in the node preceding i in the path (otherwise 0). We will

define H as a set of real variables hli.

Objective function
We will use the same target to aim and the same objective function

to minimize of the Formulation 1.

∑
(i,j,m)∈SoxV xM

xijm

Path constraints
These equations are quite similar to path constraints we have seen

in the previous formulation. For each train-day node we must as-

sure it belongs to one and only one path of the solution.
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Figure 4.21: Non-Cyclic Timetable Graph 2

∑
(j,m)∈V xM

xijm ≤ 1

∑
(j,m)∈V xM

xjim = 1 ∀ i ∈ V

 ∀ i ∈ V (4.19)

A first difference with the previous model is on the first part of

Constraints array 4.19. In this case we do not need to close the

path with the sink node. In other words the final node for a path

has not any outcoming edge.

∑
(j,m)∈(V xM)

xijm ≤ 1 ∀ i ∈ So (4.20)

Accordingly with Formulation 1, we will add for each source node



Main Framework 85

the set of Constraints 4.20 to avoid using the same unit asset in

more paths.

Bound on maximum number of empty runs
We use again the following inequalities to check the respect of up-

per bound on empty runs

∑
(i,j,m)∈A−

xijm ≤ α (4.21)

Maintenance constraints
These constraints are very different with respect previous formu-

lation. The new real variables h are used to calculate kilometres

performed after a provided service i. These variables are related to

maintenance operations provided before the service i.

Figure 4.22: Relationship between variables g and h

The constraints sets 4.22 to 4.25 are used to assure that vli is 0

if the solution edge incoming in the node i provides maintenance

m 7→ l (otherwise vli must be equal to variable glj where node j pre-

cedes node i).

gli = Kmi + hli ∀ i ∈ V (4.22)
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Equation 4.22 shows how variables g and h are linked. We can

calculate the value of gli by the sum of kilometres of train service i

(Kmi) and vli (see Figure 4.22).

hlj ≤ (1− xijm) γl ∀ (i, j,m, l) ∈ V +x V x Mx L : m 7→ l (4.23)

Equation 4.23 gives an upper bound to the value of variable hlj.

hlj ≥ gli−BM(1−xijm) ∀ (i, j,m, l) ∈ V +x V x Mx L : not m 7→ l (4.24)

hlj ≤ gli+BM(1−xijm) ∀ (i, j,m, l) ∈ V +x V x Mx L : not m 7→ l (4.25)

Equations 4.24 and 4.25 impose that hlj is equal to value of gli
(where node i precedes the node j) if they are linked by a main-

tenance edge in the solution (otherwise hlj = 0).

gli ≥ βl
∑

(i,j,m)∈(V +∪V ∪M): m 7→l

xijm ∀ (i, l) ∈ V + x L 7→ l 7→ l (4.26)

We use the Equations 4.26 to verify the respect of the minimum

maintenance efficiency when a train unit come to workshop.
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gls = Ress,l ∀ (s, l) ∈ So x L (4.27)

We have at last to consider initial status for each train asset unit.

So we will add the equations 4.27.
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Formulation 3

Formulation 2 and Formulation 1 have too many binary variables.

For this reason sometimes commercial tools could not be able to

solve quickly this kind of problem. We can improve these formu-

lations trying to reduce as much as possible the number of deci-

sional variables. In the previous formulations we have had a binary

variable xijm for each edge of the graph representing the problem.

Generally for each couple of linkable nodes we have more edges.

The number of binary variables was ∝ (number of couple of nodes) ∗
(number of maintenance tasks).

We can reduce the problem using just one edge for each linkable

nodes pairs. We can also use, accordingly with the Formulation 2,

the variables g as node variables.

Problem variables
This formulation considers a new type of variables: P l

j is a set of

binary variables that are equal to zero if the level of maintenance

l is provided on the edge solution incoming in the node j. In this

case variables xi,j,m become xi,j because the maintenance tasks are

not edges features.

Objective function
Our goal is the minimization of train units required to cover all

train services for all days in the period of interest. Similarly to For-

mulation1 and Formulation 2 we would use less train unit we can.

∑
(i,j)∈SoxV

xij
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Path constraints

∑
j∈V

xij ≤ 1∑
j∈V

xji = 1

 ∀ i ∈ V (4.28)

For each train-day node we have to add the next set of constraints

in order to build paths on the graph. Each train-day node must

appear in one and only one path of the solution. To do this we in-

troduce the constraints array 4.28.

∑
j∈V

xij ≤ 1 ∀ i ∈ So (4.29)

To assure that each asset unit could run at most on one path, we

add the constraints set 4.29.

Bound on maximum number of empty runs
We have to add the constraint on the maximum number of empty

runs.

∑
(i,j)∈A−

xij ≤ α ∀ i ∈ So (4.30)

Maintenance constraints
Following constraints sets 4.31 to 4.35 are used to assure that hli
is 0 if the solution edge incoming in node i provide maintenance
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m 7→ l (otherwise hli must be equal to variable glj).

gli = Kmi + hli ∀ i ∈ V (4.31)

Equation 4.31 are the same we have used in th Formulation 2.

The value of gli is given by the sum of kilometres of train service i

(Kmi) and vli (see Figure 4.22).

hlj ≥ gli − (1− xij) ∗BM − plj ∗BM ∀ (i, j, l) ∈ V + x V x L (4.32)

hlj ≤ gli + (1− xij) ∗BM + plj ∗BM ∀ (i, j, l) ∈ V + x V x L (4.33)

hlj ≤ (1− plj) γl ∀ (j, l) ∈ V x L (4.34)

Constraints 4.32 to 4.34 impose that variable hlj is equal to gli if on

the edge (i, j) there is not any maintenance task involving the level

l. These constraints use a BIGM approach to active themselves only

if some conditions are true.

plj ≤
gli
βl

+ (1− xij)BM (4.35)

We use the Equations 4.35 to verify the respect the minimum main-

tenance efficiency when a train unit come to workshop.

gli = Resi,l ∀ (i, l) ∈ So x L (4.36)
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We have also to consider initial status for each train asset unit as

we have seen in the Formulation 1 and Formulation 2. For this

reason we will add the set of equations 4.36.

We have worked only on maintenance level and never on mainte-

nance tasks. This is a very important statement to improve this

complex formulation. Probably we can not be sure that a specific

combination could be provided within the time between two fol-

lowing train services. In the formulations we have seen before we

added a maintenance edge if and only if there was enough time to

provide it. But in this model we have just one edge for all mainte-

nance tasks. For this reason we have to add another constraints

set. The possible alternatives are:

• if the duration of a maintenance job can be calculated by the

sum of the durations tl of maintenance levels involved, we can

use the inequality 4.37 to verify the feasibility of the solution

∑
l∈L

plj ∗ tl ≤
∑
i∈V +

xij ∗ timelegi,j ∀ j ∈ V (4.37)

• If the larger maintenance levels include the smaller, we can

opt for the following set of constraints checking that the time

window at our disposal is enough to provide the most expen-

sive level

timelegi,j ≥ −(1−plj)BM+tl−(1−xij)BM ∀ (i, j) ∈ V +xV (4.38)

We will use these constraints set in next tests.
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Models comparison

We try to give a short comparison on efficiency of the three models

we have seen so far. Let’s consider the following instance

• non-cyclic timetable with 100 trains per day;

• the reference period has 30 days;

• feasible interval for pairing is from 60’ to 4320’;

• three maintenance levels;

• the maximum number of empty runs in the roster is 1;

• the maximum empty run kilometres are 300 (so only between

Rome and Naples);

• only one workshop (located in Naples);

• empty runs speed average 50 Km/h.

We have compared the three models using number of constraints,

number of binary variables and real variables. It appears (see Table

4.6) that the third model is the best because the number of deci-

sional variables and of constraints is smaller than the others.

Table 4.6: Comparison between models part1
Formulation Num Constraints Num Binary Variables Num Real Variables

Model 1 963014 194000 582000

Model 2 647037 194000 3600

Model 3 542418 54200 3600

We have solved the same instance using Cplex 12 and the results

are shown in the Table 4.7. As we can observe, the writing model

time and solving time are very short using Formulation 3. We will

use the formulation 3 to solve a workshop optimization in the new

parts of this thesis.
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Table 4.7: Comparison between models part 2
Formulations Writing Model Time (sec) Solve Time (sec) Total

Model 1 603 26 629

Model 2 535 9 544

Model 3 146 4 150



Chapter 5

Workshop Optimization

This chapter describes new mixed-integer linear-programming for-

mulations for the maintenance scheduling problem faced by Tre-

nitalia (train operating company) managers, with input data taken

from the rolling stock rostering plan. The computational results are

carried out on a Trenitalia’s maintenance site located in Naples.

The solutions computed via a commercial MILP solver are com-

pared with practical solutions. A relevant cost reduction is pos-

sible by using the proposed formulations. We also show how the

proposed method can be used as an effective tool to absorb real-

time timetable perturbations while respecting the agreed level of

service. The strategic relevance of maintenance scheduling, is due

to the reduction of needs (such as platforms) and to the enhance-

ment of quality standards (such as vehicle reliability and cleaning).

This section studies how to manage the maintenance operations in

order to increase availability and reliability of railway services.

The Naples workshop is one of the key points of the Italian railway

system for several maintenance services. The layout of the studied

workshop consists of various indoor/outdoor tracks for light main-

tenance, wheel profiling, washing, cleaning, inspection and other

services (see Figure 5.1).

Each row of Table 5.1 indicates a typical maintenance activity at

the workshop with its identifier (Column 1), description (Column

2) and expiry (Column 3) while in the Table 5.2 are shown mainte-
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Figure 5.1: Naples workshop layout

nance activities mean durations (Column 2). The activities named

I, II, and III are similar in terms of maintenance operations and du-

ration, but have three different expiries. The activities named IV, V

and VI have expiries that are multiples of 60.000 km. Specifically,

Activity V incorporates Activity IV and extends it with an addition

of ultrasonic flaw detection. Similarly, Activity VI extends Activity

V by adding the turning of wheel flanges.

Table 5.1: Typical maintenance activities
ID Short Description Expiry

I Pantograph and Bogies Check Each return to workshop

II Pantograph and Bogies Check 7.500 Km (+/- 10%)

III Pantograph and Bogies Check 30.000 Km (+/- 10%)

IV Pantograph, Bogies and Wheel Flanges Check 60.000 Km (+/- 10%)

V Ultrasonic Flaw Detection 180.000 Km (+/- 10%)

VI Wheel Truing 360.000 Km (+/- 10%)

Figure 5.2 shows two different routes in the workshop, named

Routes #1 and #2.

Both routes visit parts of the workshop where it is possible to

provide maintenance operations (indoor terminal tracks for both

routes), washing (washing tunnel) and cleaning (outdoor terminal

tracks for Route #1 and terminal Gianturco tracks in Route #2).
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Table 5.2: Typical maintenance activities durations
ID Duration [h]

I 8

II 8

III 8

IV 24

V 72

VI 108

Note that Route #1 has two movements between workshop sites,

while Route #2 has three movements.

Figure 5.2: Typical routes in the workshop

In practice, the high complexity of the workshop problem requires

to divide it into smaller sub-problems. Since rail companies tend to

schedule first the resources with a long time of acquisition (e.g. rail

tracks or asset units) and then the resources with higher degree

of flexibility (e.g. human resources), this work is focused on the

former type of resources.

We have considered also parallel tasks (see Figure 5.3). So we can

manage the slack time of the shortest activities in a maintenance

package. Generally a maintenance project solution is a sequence of

more than one maintenance packages.
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Figure 5.3: Parallel tasks

The general problem addressed here can be defined as follows:

Given timetables, rolling stock assets, maintenance operations, a

rolling stock circulation solution has to be computed with mini-

mum costs, that are expressed in terms of the number of used as-

set units, empty runs, and train movements between station plat-

forms and the workshop.

Figure 5.4 shows the framework proposed to solve the problem.

Each coloured module (i.e. roster, station and workshop) repre-

sents a specific sub-problem and is divided in input and outputs

data, that are exchanged with the other modules. A sequential

method is developed in order to integrate the solutions provided

by each module. Our approach is to first solve the rostering prob-

lem for each asset unit type and then solve the other two modules

involving passenger stations and workshop operations. An auto-

matic procedure is under development to manage the interaction

between the modules and a feedback information is returned in

case an infeasibility is provided by some modules. In the following,

we briefly describe each module and the models we developed to

solve it.

5.1 Rolling stock rostering

The rostering module computes a rolling stock roster that covers a

set of commercial services and minimizes the costs related to the
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Figure 5.4: Interaction between the roster, station and workshop

modules

asset units, including the empty runs. Specifically, this module

optimizes the distance run by asset units of various types between

consecutive maintenance operations. We suppose the timetable is

cyclic and the assignment of commercial services per asset kind

follows brand promise principles. As described in Giacco et al. [7]

and in the previous section, the rolling stock rostering problem

corresponds to find a Hamiltonian path on a graph made by com-

mercial services (nodes) and by feasible pairs (edges), representing

service or maintenance activities to be provided. This problem is

treated as a kind of traveling salesman problem with additional
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constraints and variables to guarantee the respect of maintenance

expiry and to guarantee maintenance efficiency. The output is a

cyclic roster including the schedule of maintenance activities, as

time windows [tiniu , tfinu ] to provide the required maintenance, and

an assigned workshop location.

5.2 Station and workshop scheduling

Maintenance operations have to be scheduled in passenger stations

and workshops. There are constraints on the maintenance activi-

ties that have to be performed by each train and on the time win-

dows that are defined in the rolling stock rostering plan. A work-

shop must manage some asset units simultaneously and must be

able to absorb small perturbations of the circulation. A time win-

dow for the maintenance operations between two commercial ser-

vices is thus considered. Generally, the time windows are bigger

than the sum of all activities and the workshop has some recovery

time. Also, the workshop could be considered as a space buffer to

store trains. An objective function of practical interest is the mini-

mization of the number of train movements in the workshop area.

The following section will present a new formulation for the work-

shop maintenance problem with minimization of train movements

within the workshop. The system robustness will be investigated,

i.e. the feasibility of the workshop schedule in presence of distur-

bances.
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5.3 First approach

This section describes a big M formulation for the workshop sche-

duling module. We call job a sequence of scheduled waiting times

and maintenance operations. The problem variables are the initial

and final times for each maintenance activity. We also model alter-
native jobs as additional variables.

List of notations

• A = [a1, a2, . . . aa] is the activities set that the workshop can

provide,

• a is the number of the activities belonging to A,

• U = [u1, u2, . . . , uu] is the set of asset units we have to analyze,

• u is the number of asset units belonging to U,

• R = [r1, r2, . . . , rr] is a feasible route (or sequence) in the work-

shop,

• r is the number of feasible routes in the workshop,

• tiniu is the time in which the rolling stock u arrives at the work-

shop,

• tfinu is the time in which the rolling stock u should leave the

workshop,

• jru = [r, (tiniu , tfinu )] is the job on route r for the asset unit u with

time window ( tiniu , tfinu ),

• J = [j1, j2, . . . , jj] is the set of feasible jobs,

• n is the number of feasible jobs,

• B = [b1, b2, . . . , bb] is the set of workshop resources (platforms),

• b is the number of resources of the workshop,

• xruob is a binary variable that assumes value 1 if the o-th task

in route r of asset unit u is assigned to resource b,

• omax
r is the maximum number of elements in the sequence of

route r,

• yru is a binary variable that assumes value 1 if route r is cho-

sen for asset unit u,
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• BM is a BIG integer (i.e. a sufficiently large number),

• sac is a binary variable that assumes value 1 if activity a if

scheduled before c, in which a and c do not belong to the

same asset unit,

• wac is the binary variable that assumes value 1 if the end of

activity a precedes the start of activity c by more than 1440

minutes (i.e. 1 day),

• wca is the binary variable that assumes value 1 if the end of

activity c precedes the start of activity a by more than 1440

minutes (i.e. 1 day),

• kr is the number of movements within the route r,

• tiruo(tfruo) is a non-negative variable that represents the start

(end) time of the o-th task in route r of unit u begins (ends),

• ar(o) is the o-th task of route r,

• pr(a) is the position of activity a in the route r,

• dar(o) is the maximum allowed duration of activity ar(o).

Constraints

Model constraints are of four types:

• one and only one alternative job is chosen for each asset unit,

• no overlap between activities is allowed on each resource,

• only one assignment is possible for each maintenance activity,

• time windows and maximum allowed duration of activities are

respected.

We next show the inequalities that model the various types of con-

straints.

∑
r∈R

yru = 1 ∀ u ∈ U (5.1)
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Inequality (5.1) imposes that one and only one route must be cho-

sen for each train.

∑
b∈B

xruob = yru ∀ (r, u, o) ∈ R× U ×O (5.2)

Inequality (5.2) constrains all the activities of a chosen route to be

assigned to workshop resources

tfruo − tiruo ≥ dar(o)
∑
b∈B

xruob with dar(o) = max(dj)

∀ (r, u, o) ∈ R× U ×O with j parallel tasks on the route r
and in the position o

(5.3)

for parallel activities in route r and position o.

Inequality (5.3) is to check whether a sufficient processing time is

given to each maintenance activity. The duration of activities is 0

if route r is not chosen for asset unit u, otherwise it represents the

processing time for unit u on the platform b.

tiruo = tiniu with o = 1 (5.4)

In Constraint (5.4), workshop must manage the rolling stock con-

straints delivered by the rostering optimizer on the time window

start, including scheduled waiting times.

tfruo = tfinu with o = omax
r (5.5)
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In onstraints (5.5), the workshop must manage the rolling stock

constraints delivered by the rostering optimizer on the time window

end.

tir1u1c
≥ tfr2u2a

−BM(1− sac)−BM(1− xr2u2pr(a)b)−BM(1− xr1u1pr(c)b)

∀ b, r1, r2, u1, u2 with u1 6= u2

(5.6)

tir2u2a
≥ tfr1u1c

−BMsac −BM(1− xr2u2pr(a)b)−BM(1− xr1u1pr(c)b)

∀ b, r1, r2, u1, u2 with u1 6= u2

(5.7)

Inequalities (5.6) and (5.7) are used to avoid overlaps on each re-

source. If two activities are scheduled on the same resource and

activity a precedes activity c, the start of c must be scheduled after

the end of a. For this reason, given a resource b, Constraint (5.6)

guarantees that tir1u1c
≥ tfr2u2a

if a is scheduled before c (sac = 1),

a is assigned to resource b (xr2u2pr(a)b = 1) and c is assigned to re-

source b (xr1u1pr(c)b = 1). Similarly, Constraint (5.7) guarantees that

tir2u2a
≥ tfr1u1c

if c is scheduled before a (sac = 0), a is assigned to re-

source b (xr2u2pr(a)b = 1) and c is assigned to resource b (xr1u1pr(c)b = 1).

Let’s now suppose that overlaps of activities beyond the end of a

work day should be avoided. For modelling this situation, Inequa-

lities (5.8) and (5.9) are necessary:

tfr1u1c
− 1440 ≤ tir2u2a

+BM(1− sac) +BM(1− xr2u2pr(a)b)

+BM(1− xr1u1pr(c)b) ∀ b, r1, r2, u1, u2 with u1 6= u2

(5.8)
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tfr2u2a
− 1440 ≤ tir1u1c

+BMsac +BM(1− xr2u2pr(a)b) +BM(1− xr1u1pr(c)b)

∀ b, r1, r2, u1, u2 with u1 6= u2

(5.9)

If activity a precedes c, both activities are scheduled on resource b

and c ends after midnight (tfr1u1c
≥ 1440), we have to check that the

end of c and the start of a do not overlap. To this aim, Inequality

(5.8) checks if the completion of c minus 1440 is scheduled before

the start of a. This constraints set is valid even if tfr1u1c
< 1440.

Inequalities (5.9) are used when activity c is scheduled before ac-

tivity a. These constraints only work if two consecutive activities

on the same resource are separated by less than 1440 minutes.

Alternatively, Inequalities (5.8) and (5.9) have to be replaced by In-

equalities (5.10) – (5.15):

wac > (tir1u1c
− tfr2u2a

− 1440)/2880 ∀ r1, r2, u1, u2, a, c (5.10)

wac ≤ 1 + (tir1u1c
− tfr2u2a

− 1440)/2880 ∀ r1, r2, u1, u2, a, c (5.11)

With Inequalities (5.10) and (5.11), the variable wac is set to 1 if the

end of activity a and the start of activity c are separated by more

than 1440 minutes.

wca > (tir2u2a
− tfr1u1c

− 1440)/2880 ∀ r1, r2, u1, u2, a, c (5.12)
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wca ≤ 1 + (tir2u2a
− tfr1u1c

− 1440)/2880 ∀ r1, r2, u1, u2, a, c (5.13)

Similarly, with Inequalities (5.12) and (5.13), the variables wac are

set to 1 if the end of activity c and the begin of activity a are sepa-

rated by more than 1440 minutes.

tfr1u1c
− 1440 ≤ tir2u2a

+BM(1− sac) +BM(1− xr2u2pr(a)b)

+BM(1− xr1u1pr(c)b) +BMwac ∀ b, r1, r2, u1, u2

(5.14)

tfr1u1a
− 1440 ≤ tir2u2c

+BMsac +BM(1− xr2u2pr(a)b) +BM(1− xr1u1pr(c)b)

+BMwca ∀ b, r1, r2, u1, u2

(5.15)

To avoid overlaps of activities on a same resource, we use Inequal-

ities (5.14) and (5.15). If activities a and c are both scheduled on

resource b, a is scheduled before c and there are more than 1440

minutes between the end of a and the start of c, then the end of a -

1440 must be previous of the start of c.

Objective functions

The objective function is expressed in terms of the minimization of

the number of train movements. The number of train movements

is computed as the number of changes of resources during main-

tenance routing in the workshop. Since this objective function can

be formulated by using either the variables xruob or the variables

yru, in our test experiments both options will be evaluated:
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• Approach1 Min :
∑
xruob where ar(o) is a movement

• Approach2 Min :
∑
kryru

5.3.1 Computational experiments

The results are based on real instances taken from a Trenitalia’s

maintenance site located in Naples. We analyze 100 working days

and we compare the programs used in real life with our model solu-

tions. We consider all asset units types and all maintenance types.

Waiting time longer than one day is considered not as a variable

but as a constraint on resources availability. A pre-processing was

also performed in order to reduce the problem size to a sequence

of one-day problems, so we generated 100 one-day cases. For each

train, we consider all possible routes in the workshop. These in-

stances are solved by CPLEX 12 on a PC with 2.27 GHz and 4 GB

of RAM. Ten minutes of computation are allowed for the branch

and bound (see [58], [84] and [10]) code of CPLEX.

5.3.2 Practical versus model solutions

This section compares the solutions found by our maintenance

scheduling formulation with the practical solutions at Naples work-

shop. Table 5.3 reports the average results on the 100 instances

obtained for the two approaches (i.e. the two definitions of the same

objective function) of Section 3.3: the percentage of solutions that

have been improved via optimization compared to the practical so-

lutions, the percentage of optimal solutions, the average saving in

terms of train movements reduction and the total computation time

of CPLEX (in seconds).

From the results of table 5.3, Approach1 offers the best percenta-

ge of improved solutions with a large computation time. However,

Approach2 guarantees the best average gain, good percentage of im-

proved solutions and a considerable smaller computation time. So,
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the former approach gives the largest % improvement while the lat-

ter approach can be better used for real-time maintenance control

applications.

Table 5.3: Comparison between models
Approach 1 2

Improved Solutions 60 43

Optimal Solutions 65 48

Average Train Movements Saving 1.8 2.6

Total Computation Time (sec) 531.2 152.9

Furthermore, the initial problem could be also divided in two sim-

pler sub-problems put in sequence. The first sub-problem is to find

the minimum number of movements choosing a set of alternative

routing/processes in the workshop while the second one is to make

a schedule for routing/processes chosen.

∑
r∈R

yra = 1 ∀ a ∈ U (5.16)

The formulation for the first sub-problem is based on the set of

constraints (5.16) to select one and only one route/process for each

train unit.

∑
r∈R

yra ∀ a ∈ U (5.17)

To exclude feasible solutions from the solutions found by the solver

in a previous step, we add a set of constraints (5.17). For each

run i, if the second sub-problem does not give an optimal solution,

we append constraints (5.17) to the first model. Note that if the

problem one is unfeasible then the global problem is unfeasible.
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The objective function of the first sub-problem to minimize could

be expressed as

∑
r∈R

kryra < u ∀ a ∈ U (5.18)

The second sub-problem is the global maintenance problem with

variables y set from the first sub-problem. While the second prob-

lem is feasible we solve an instance of first problem with some

added constraints that avoid to find solutions already found. When

we solve the second problem we are sure to have found the optimal

solution for our global problem. We add a time limit on computa-

tion time to avoid to lock the process. The commercial solver often

has big troubles to proof the unfeasibility of an instance. This ap-

proach is very quick (14 seconds to find an optimal solution) when

the optimal solution has few movements. Unfortunately in most of

cases (84%) this condition in not true and therefore the solver is

not able to solve the problem.

The remaining experiments of this paper are dedicated to a fur-

ther evaluation of the potential impact of Approach1. We use the

same set of instances but with a reduced set of routes available

for each train. Figure 5.5 shows a deeper average comparison be-

tween the real world solutions and our model solutions in terms of

the percentage of saving between 0 and 5 train movements. In the

95.8% of the 100 one-day cases a better solution is obtained by our

model, while in 4.2% of cases the practical solutions are identical

to the model solutions. This result can be considered as remarka-

ble since a better solution is very often achieved via optimization.

Specifically, the number of savings is often between 2 and 3 train

movements. We observe that this analysis is done only for unsche-

duled train movements between workshop and passenger stations,

that are required for the computation of a feasible train schedule.
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Figure 5.5: Savings of our model solutions compared to the practi-

cal solutions

5.3.3 Assessment of the computation time

Figure 5.6 shows the CPLEX performance when varying the num-

ber of jobs. The time to compute the CPLEX solution is up to

around 1 minute, so we can conclude that the formulation can

be quickly solved by CPLEX for real-world instances. Practical use

of the proposed method can be envisaged both during maintenance

planning and operational phases.

5.3.4 Robustness analysis

A robustness analysis is provided in order to evaluate the schedule

quality in case of medium-term traffic disturbances that alter the

off-line plan of operations. The objective is to re-balance the use of

workshop resources to compute of a feasible schedule, i.e. a sche-

dule of all workshop operations within the time windows given by
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Figure 5.6: Computation time for an increasing number of jobs in

the workshop

the rolling stock rostering planner and perturbed by traffic distur-

bances.

Figure 5.7 and 5.8 represent a sample job, made by three activi-

ties, to be scheduled in the workshop. We distinguish between a

not compressed schedule, i.e. a schedule with some recovery time,

and compressed schedule, i.e. a schedule with less recovery time

or without recovery time. Specifically, we analyze the case in which

the time window start is delayed by unforeseen events and the

schedule needs to be compressed accordingly, without reducing

the duration of the maintenance activities, in order to schedule all

activities within the given time window.

Let’s now define a compression factor

CF =
recovery time to be compressed

total available recovery time
(5.19)

where total available recovery time = (tfinu − tiniu )−
∑
di (30 minutes

in the case of Figure 5.7) and recovery time to be compressed is a
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Figure 5.7: Time window not compressed

Figure 5.8: Time window compressed

reduction of time at workshop disposal due to traffic disturbances

(20 minutes in the example case of Figure 5.8).

Figure 5.9 reports results on a subset of 63 instances for 9 different

values of compressed time windows (0.1, 0.2, . . . , 0.9), obtained

by delaying the start time of the time windows. For compression

values equal to 0.1 – 0.4 we always obtain a feasible solution, while

for 0.5 and upper values the number of feasible solutions decreases

with the increase of the compression factor.

However, we did not find, as we expected, an exact correlation be-

tween the computation time and the compression factor, i.e. a sys-

tematic increase of computation time when increasing the com-

pression factor (see Figure 5.10). Surprisingly, for some practical

cases we have that compressed instances are easier to solve by

CPLEX than uncompressed instances.
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Figure 5.9: Study of the compression factor (feasible instances)

5.4 Second approach

Different approaches could be used to solve maintenance schedu-

ling problem. In this section we will consider this problem as an

implementation of standard open shop scheduling formulation (see

[35], [15],[48], [8] and [61]). To explain this approach we will use

three graphs.

The first graph, named train maintenance site graph, models the

maintenance tasks (or operations) to be scheduled for all asset

units. Each node of this graph represents a maintenance operation

to be performed at the workshop on a specific resource. For each

train unit we can have more alternative jobs because more dif-

ferent maintenance processes could satisfy maintenance needed.

That means we could have also different routes in the workshops.

We will have a node for each train unit, maintenance activity (oper-
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Figure 5.10: Study of the compression factor (computation time)

ation of a possible job) and resource. We will note this set of nodes

MSN . The edges of graph, made only between nodes belonging

to the same job, represent a possible sequence for the connected

nodes (maintenance tasks). A path on this graph corresponds to

a maintenance schedule for a given job and asset unit. Obviously

not all nodes will belong to the path. We also add to the graph two

virtual nodes for each train unit in order to link all its alternative

jobs. These virtual nodes will be called start and end nodes.

The second graph, named maintenance graph, models the mainte-

nance operations with reference to workshop resources. This graph

is made by the set of nodes MSN used in the train maintenance site
graph and a different set of edges. The edges of graph, made only

between nodes referred to the same workshop resource, represent

a possible sequence for the connected nodes. Each path on this

graph represents a possible schedule on a specific resource. We
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also add two virtual nodes, called start and end nodes but different

from those used before, for each workshop resource in order to link

all possible nodes referred to this resource. Note that the paths on

train maintenance graph and maintenance graph must involve the

same subset of nodes.

The third graph, named movements graph, models the train move-

ments to be performed on the infrastructure resources. Each node

(movement) is a train occupation of a specific infrastructure re-

source. For each edge of train maintenance site graph involving

different resources we add a node to movements graph. We are

making a graph similar to maintenance graph but based on un-

real resources to avoid having more movements in parallel in the

workshop than allowed. For example if are at least allowed two

movements in parallel, the movements graph will based on two un-

real resources. Each edge, allowed between nodes referred to the

same unreal resources, describes the order between two consec-

utive movements. Also in this case we will add two virtual nodes,

start and end nodes, are created for each possible infrastructure

resource in order link all nodes of the graph referred to the same

unreal resource. Each path corresponds to a schedule for occu-

pation of infrastructure resources due to the movements between

two consecutive maintenance operations on different workshop re-

sources or between the entrance/exit into/from the maintenance

station and the first/last maintenance operations. A maintenance

scheduling solution is a schedule of the maintenance tasks of each

train (path on train maintenance graph), of the maintenance tasks

at each workshop resource (path on maintenance site graph), and

of the occupation time on the infrastructure resources (path on

movements graph). A maintenance scheduling solution thus corre-

sponds to a subset of paths for each graph.
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List of notations

We now list the notation used for the MS problem.

• R is the set of maintenance resources,

• J is the set of train maintenance jobs,

• MV is the set of train movements on the infrastructure re-

sources,

• RG is the maintenance site graph nodes set,

• RGA is the maintenance site graph edges set,

• rg is the cardinality of the set RG,

• JG is the train maintenance nodes set,

• JGA is the train maintenance edges set,

• jg is the cardinality of the set JG,

• MG is the movements graph nodes set,

• MGA is the movements graph edges set,

• mg is the cardinality of the set MG,

• dti is the duration of the task i,

• rs is the virtual start node for the maintenance resource r,

• rf is the virtual end node for the maintenance resource r,

• jobs is the virtual start node for the train maintenance job job,

• jobf is the virtual end node for the train maintenance job job,

• movs is the virtual start node for the movement mov,

• movf is the virtual end node for the movement mov,

• twsj is the start time for the maintenance window of the train

j,

• twfj is the end time for the maintenance window of the train

j,

• mm is maximum number of train movements at the same

time,

• (i, j) is the edge between node (operation, movement or waiting

time) i and node (operation, movement or waiting time) j,

• u(i,j) is a binary variable that is 1 if edge (i, j) belongs to a

maintenance graph path, 0 otherwise,
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• v(i,j) is a binary variable that is 1 if edge (i, j) belongs to a train

maintenance graph path, 0 otherwise,

• z(i,j) is a binary variable that is 1 if edge (i, j) belongs to a

movements graph path, 0 otherwise,

• ul(i,j) is an integer variable for edge (i, j) to avoid sub-loops on

maintenance graph,

• vl(i,j) is an integer variable for edge (i, j) to avoid sub-loops on

train maintenance graph,

• zl(i,j) is an integer variable for edge (i, j) to avoid sub-loops on

movements graph,

• utI(i,j) is the start time of the node j on the maintenance site if

(i, j) belongs to a path,

• utF(i,j) is the end time of the node i on the maintenance site if

(i, j) belongs to a path,

• vtI(i,j) is the start time of the node j on the train maintenance

if (i, j) belongs to a path,

• vtF(i,j) is the end time of the node i on the train maintenance if

(i, j) belongs to a path,

• ztI(i,j) is the start time of the node j on an infrastructure re-

source if (i, j) belongs to a path,

• ztF(i,j) is the end time of the node i on an infrastructure re-

source if (i, j) belongs to a path,

• Tmr is the minimum setup time between consecutive opera-

tions performed at the same maintenance resource,

• Tmj is the minimum setup time between consecutive opera-

tions performed on the same train at different maintenance

resources,

• Tmm is the minimum setup time between consecutive opera-

tions performed at different maintenance resources.
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Numerical example

We present a numerical example to illustrate our MS problem for-

mulation. The RSR solution provides two trains named J1 and J2.

The train J1 has two tasks (J11 and J12). The time window in which

we have to process J1 is from 8:00 AM till 6:00 AM of the next day.

The train J2 has only one task (J21). The time window for J2 is from

8:00 AM to 12:00 AM. The tasks J11 and J21 must be processed on

a maintenance resource of the type 1 (R1) while J12 on a mainte-

nance site of the type 2 (R2). Our maintenance station has only one

maintenance resource of type 1 and only one of type 2.

Table 5.4: Tasks duration
Train Task Duration (min)

J1 J11 100

J1 J12 100

J2 J21 100

Table 5.5: Parameters
Setup Value Description

Tmj 25 Setup time between two operations at the same site

Tmm 25 Setup time between consecutive operations on a resource

Table 5.6: Time for train movements between two maintenance

sites
From maintenance site To maintenance site Time (min)

R1 R2 100

V irtual start / end node R1 25

V irtual start / end node R2 25

Table 5.4 shows the duration (in minutes) of all tasks and for each

job. We assume that all tasks have the same duration. In Table

5.5, we present the values of parameters Tmj and Tmm. Table 5.6

gives the time to move a rolling stock unit between two different

resources.
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Figure 5.11 shows the maintenance graph for this example. For

each resource, we have two virtual nodes (R1s, R1f for R1 and R2s,

R2f for R2). A first maintenance resource operates both trains (i.e.,

nodes J21, J11), while the other resource operates only J1 (i.e., node

J12). In our case we will use two resources (because we have two

paths) to provide the maintenance coming from RSR. On the first

track we will provide the operation J11 and J21 while on the sec-

ond track we will provide the activity J12. Also the start and end

times of each task are shown on the left and right sides of the

corresponding node.

Figure 5.11: Maintenance graph

Figure 5.12 shows the train maintenance graph for this example.

For each train maintenance, we have two virtual nodes (J1s, J1f
for J1 and J2s, J2f for J2). The tasks of the first train maintenance

are represented by nodes J12 and J11, while the task of the second

train maintenance by node J21. The start and end times of each
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task are shown in the figure, including the start time of virtual

nodes.

Figure 5.12: Train maintenance graph

Figure 5.13 shows the movements graph for this example. For each

resource, we have two virtual nodes (M1s, M1f for M1 and M2s, M2f

for M2). The tasks of the first resource are represented by nodes d,

b and c, while the tasks of the second resource by nodes a and e.

The start and end times of each task are shown in the figure.

Figure 5.13: Movements graph
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A comparison between Figures 5.11 and 5.12 shows that the train

maintenance and maintenance site graphs are based on the same

node sets. The idea is that each node represents a task (job part)

on a specific resource. Obviously, with reference to maintenance

graph and train maintenance graph, we will have two schedules

with the same time for each node.

Problem variables

For each edge of maintenance graph we have the following va-

riables:

• a binary variable u to define if an edge belongs to a solution

path (u = 1),

• an integer variable ul with a value greater then 0 if the edge

belongs to a solution path, showing the position of the edge in

path,

• a real variable utI(i,j) showing the start time of the task, repre-

sented by the node in which the edge enters,

• a real variable utF(i,j) showing the end time of the task, repre-

sented by the node in which the edge exits.

Similar situation arises for the variables of the train maintenance

graph (i.e., a binary variable v and an integer variable vl for each

edge; vtI(i,j) and vtF(i,j) for each edge) and of the movements graph

(i.e., a binary variable z and an integer variable zl for each edge;

ztI(i,j) and ztF(i,j) for each edge).
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Objective function

min
∑

(i,k)∈MGA

z(i,k)

The main objective of the MS problem is the minimization of the

train movements in the maintenance area. This objective function

corresponds to the number of paths in the movements graph.

Maintenance site constraints

∑
h∈RG

u(h,i) =
∑
k∈RG

u(i,k) ∀ i ∈ RG (5.20)

∑
h∈RG

u(i,h) = 1 ∀ i ∈ RG (5.21)

∑
i∈RG

u(i,rf ) <= 1 ∀ r ∈ R (5.22)

Equations (5.20),(5.21) and (5.22) are used to define a schedule of

all needed tasks at the workshop. Equation (5.20) is to model a

path in the maintenance graph, while Equation (5.22) is to avoid

conflicting train paths starting from the same node. Equation (5.21)

is to manage alternative nodes. In the MS solution, a task must be

processed only on a maintenance resource. That means we must

have just one node belongs to solution.
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∑
h∈RG

ul(i,h) =
∑
k∈RG

ul(k,i) +
∑
r∈R

u(rs,i) +
∑
t∈RG

u(i,t) ∀ i ∈ RG (5.23)

ul(i,h) <= rg ∗ u(i,h) ∀ (i, h) ∈ RGxRG (5.24)

Equations (5.23) and (5.24) are mandatory to avoid sub-loops in

the solution. The variable ul ( if greater than 0) reports the order

of edge in the solution path. These variables have an upper bound

that is the number of nodes of the maintenance site graph.

u(i,j) binary (5.25)

Variable u(i,j) is 1 if edge (i, j) belongs to a maintenance path, 0

otherwise.

Train maintenance constraints

In this section we will describe the main constraints to build paths

on train maintenance graph.

∑
h∈JG

v(h,i) =
∑
k∈JG

v(i,k) ∀ i ∈ JG (5.26)
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∑
i∈JG

v(i,jf ) <= 1 ∀ j ∈ J (5.27)

∑
h∈JG

v(i,h) =
∑
k∈RG

u(i,k) ∀ i ∈ (JG
⋂

RG) (5.28)

Equations (5.26),(5.27),(5.28) are mandatory to control the inte-

grated jobs schedule. Equation (5.26) defines the basic rule to gene-

rate a path in the train maintenance graph, while Equation (5.27)

avoids potential conflicting train paths starting in the same node.

Among alternative nodes, we need to insert into a maintenance site

path just one node. Equation (5.28) pairs maintenance resource

variables with train maintenance variables. That means the main-

tenance site and train maintenance paths must include the same

nodes set.

∑
h∈JG

vl(i,h) =
∑
k∈JG

vl(k,i) +
∑
j∈J

v(js,i) +
∑
t∈JG

v(i,t) ∀ i ∈ JG (5.29)

vl(i,h) <= jg v(i,h) ∀ (i, h) ∈ JGA (5.30)
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Equations (5.29) and (5.30) work similarly to Equations (5.23) and

(5.24). The variable vl ( if greater than 0) represents the edge order

for each node. These variables have an upper bound that is the

number of nodes of the train maintenance graph.

v(i,h) binary (5.31)

Variable v(i,h) is 1 if (i, h) belongs to a train maintenance path, 0

otherwise.

Movements constraints

∑
h∈MG

z(h,i) =
∑

k∈MG

z(i,k) ∀ i ∈ MG (5.32)

∑
i∈MG

z(i,mf ) <= 1 ∀ m ∈MG (5.33)

Similarly to the other types of paths, Equations (5.32) and (5.33)

define the infrastructure paths.

∑
h∈MG

z(i,h) = v(p,q)∗ ∀ i ∈MG (5.34)



Workshop Optimization 125

where (p,q)* belongs to JGA and corresponds to node i that belongs

to MG.

Equation (5.34) combines the train maintenance variables with the

movements variables. The basic idea is that each node of the move-

ments graph is an edge for the train maintenance graph. Conse-

quently, a specific node of the movements graph could belong to

an movements path only if the train maintenance edge associated

belongs to a train maintenance path.

∑
h∈MG

zl(i,h) =
∑

k∈MG

zl(k,i) +
∑
m∈M

z(ms,i) +
∑
t∈MG

z(i,t) ∀ i ∈MG (5.35)

zl(i,h) <= mg z(i,h) ∀ (i, h) ∈MGA (5.36)

In the movements graph, sub-loops are not permitted. This is achieved

in our formulation by adding Equations (5.35) and (5.36).

z(i,j) binary (5.37)

Variable z(i,j) is 1 if (i, j) belongs to a infrastructure path, 0 other-

wise.
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Constraints on utI(i,j) and utF(i,j)

We next describe the equations for the variables ut:

∑
j∈RG

utI(i,j) =
∑
k∈JG

vtI(i,k) ∀ i ∈ (JG
⋂

RG) (5.38)

∑
j∈RG

utF(i,j) =
∑
k∈JG

vtF(i,k) ∀ i ∈ (JG
⋂

RG) (5.39)

Equations (5.38) and (5.39) guarantee that start time and end time

are scheduled accordingly on maintenance and on train mainte-

nance graph.

∑
k∈RG

utFj,k >=
∑
i∈RG

utI(i,j) + dtj
∑
t∈RG

u(t,j) ∀ j ∈ R (5.40)

Equation (5.40) imposes that the end of each task (node) must be

greater than its start time plus its duration.

utI(i,j) <= 2880 u(i,j) (5.41)

utF(i,j) <= 2880 u(i,j) (5.42)
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From Equations (5.41) and (5.42), the start and end times of each

task have an upper bound that is 2880 (minutes) times u(i,j), due

to the cyclic timetable hypothesis.

utF(i,j) + Tmr u(i,j) <= utI(i,j) ∀ (i, j) ∈ RGA (5.43)

From Equation (5.43), given two consecutive tasks, the second task

must start only after a specific setup time from the completion of

the first task. This setup time must include the movement of rolling

stock units. Note that Tmr > 0 if two consecutive tasks are related

to different trains (Tmr < 1440).

∑
i∈RG

utF(i,rf ) − 1440 + Tmr <=
∑
k∈RG

utI(rs,k) ∀ r ∈ R (5.44)

Equation (5.44) is very important to avoid overlaps between opera-

tions when a scheduled job exceeds the midnight.

Figure 5.14 shows that the overlap between operations is avoided if

utF (that could be greater than 1440 minutes) minus 1440 minutes

is lower than utI.

Figure 5.14: Example of an overlap-free job schedule on a mainte-

nance site

Constraints on vtI(i,j) and vtF(i,j)

We next describe the equations for the variables vt.
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∑
k∈MG

vtF(jobs,k) = twsjob ∀ job ∈ J (5.45)

∑
k∈MG

vtI(i,jobf ) = twfjob ∀ job ∈ J (5.46)

From Equations (5.45) and (5.46), the start and end times of each

node of path must be included in the time window defined by the

RSR solution. This represents a strong correlation between the ros-

tering and maintenance scheduling problems.

vtI(i,j) >= vtF(i,j) + Tmj v(i,j) ∀ (i, j) ∈ JGA (5.47)

From Equation (5.47), two consecutive tasks of a job on different

maintenance resources must be separated by more Tmj minutes.

vtI(i,j) <= 2880 v(i,j) (5.48)

vtF(i,j) <= 2880 v(i,j) (5.49)

From Equations (5.48) and (5.49) the start and end times of each

task have an upper bound equal to 2880 (minutes) v(i,j).

Constraints on ztI(i,j) and ztF(i,j)

We now describe a set of constraints for the variables zt and the

relationship with the variables ut and vt.
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∑
j∈MG

ztI(p,q)∗ = utFi ∀ i ∈MG (5.50)

∑
j∈MG

ztF(p,q)∗ = utIi ∀ i ∈MG (5.51)

From Equations (5.50) and (5.51), the variables ztI(i,j) represent the

beginning of a train movement, while ztF(i,j) the end of a train move-

ment. It is compulsory that the timing of these train movements is

strong related to the value of variables utI(i,j) and utF(i,j), or vtI(i,j) and

vtF(i,j).

ztI(i,j) <= 2880 z(i,j) (5.52)

ztF(i,j) <= 2880 z(i,j) (5.53)

From Equations (5.52) and (5.53), the variables ztI(i,j) and ztF(i,j) have

also an upper bound equal to 2880 minutes.

ztI(i,j) >= ztF(i,j) + Tmm z(i,j) ∀ (i, j) ∈MGA (5.54)

From Equation (5.54), a minimum setup time, called Tmm, must

be respected between consecutive movements of different rolling

stock units.

∑
i∈MG

ztF(i,mf ) − 1440 + Tmm <=
∑

k∈MG

ztI(ms,k) ∀ m ∈MV (5.55)



Workshop Optimization 130

From Equation (5.55), the train movements on infrastructure re-

sources must have no overlap when a scheduled movement ex-

ceeds the midnight.

We note that the maximum number of parallel movements mm is

imposed building the movements graph.

5.4.1 Computational experiments

The Table 5.7 shows the results obtained using the second ap-

proach for the problem of maintenance optimization on several

(but partial) real instances. The tested instances involve only clean-

ing and standard maintenance tasks. The workshop is reduced to

a very limitated number of resources (tracks). First column rep-

resents the number of trains involved. In the second and third

columns we report the number of resources of workshop (main-

tenance and cleaning platforms). The fourth column shows the

computation time and the value of objective function. We impose

a computation time limit (4400 seconds) to avoid to lock the com-

mercial solver.

Table 5.7: Outcomes
Trains Num. Num. Time

mainten. Cleaning (sec)

resources resources

2 2 2 0,09

2 2 3 0,08

2 2 4 0,08

2 2 5 1,37

2 2 6 1,53

2 2 7 1,98

2 2 8 7,35

2 2 9 234

2 2 10 2470

2 2 11 not solved in 4400

3 3 11 4392

3 3 12 not solved in 4400
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The results are definitely good but unfortunately the performance

of the solver does not allow us to use in practice this formulation

despite the number of resources used are considerably lower than

those of the practice. Cplex has not been able to solve compete real

instances.
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5.5 Third Approach

This approach assumes that the sequencing of the tasks of a job is

already assigned. Each job is a sequence of maintenance operation

(real) and waiting time/movements (virtual) (see Figure 5.15). If two

following activities of the job are scheduled on the same resource

then there will be no movements.

Figure 5.15: Job representation

We would schedule the real activities on the workshop resource

minimizing the number of movements (virtual activities).

The following notations will be used in the model:

• A is the set of maintenance tasks to provide,

• ai,j,r is the task i of the job j to provide on the resource r,

• di,j is the duration of the i of the job j,

• Twij is the initial time window of the job j,

• Twfj is the final time window of the job j,

• R is the set of resources available,

• KR is a set of binary variables such that kri,j,r is equal to 1 if

the task i of the job j is provided on the resource r and zero

otherwise,

• tinii,j is a real variable representing the initial time of the task

i of the job j,

• tfini,j is a real variable representing the final time of the task

i of the job j,

• tiniI,j is a real variable representing the initial time for the first

task of the job j,
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• tfinF,j is a real variable representing the final time for the last

task of the job j,

• KF is a set of binary variables such that kf(i,v),j,r is equal to

1 if the virtual task (just waiting time) between the activity i

and the activity v of the job j is provided on the resource r

and 0 otherwise. This set includes variables such as kf(I,v),j,r

for virtual tasks before the first task of the job (and kf(v,U),j,r

for virtual tasks after the last task of the job),

• S is a set of binary variables such that si,j is equal to 1 if i is

scheduled earlier than v on the resource r and zero otherwise,

• BM is a BIG integer (i.e. a sufficiently large number).

∑
r∈R

kri,j,r = 1 ∀ real activity i and job j (5.56)

Equation (5.56) assures that each maintenance operation is sched-

uled on one and only one resource.

∑
r∈R

kf(i,v),j,r <= 1 ∀ job j and couple of real activities (i, v) (5.57)

Equation (5.57) says that virtual activities are not mandatory.

tfini,j − tinii,j >= di,j ∀ activity i and job j (5.58)

Equation (5.58) checks that the duration of activities as not under-

stimated.

tiniI,j >= Twij ∀ job j (5.59)
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tfinU,j <= Twfj ∀ job j (5.60)

Equations (5.59) and (5.60) set the start/end time respecting time

windows.

∑
r∈R

kf(i,v),j,r ∗ 2880 >= (tiniv,j− tfini,j) ∀ virtual activity between (i, v)

(5.61)

∑
r∈R

kf(i,v),j,r <= (tiniv,j− tfini,j) ∀ virtual activity between (i, v) (5.62)

Equations (5.61) and (5.62) assure that virtual activities are active

only and only if tiniv,j is greater than tfini,j.

tiniv,j >= tfini,j

∀ couple of real activities i and v of the same job j : v follows i

(5.63)

Given a couple of activities (i, v) with v following i, Equations (5.63)

guarantees that the start time of v happens after the end time of i.
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tiniv,j − tfini,g >= −BM ∗ (1− kr(i,g,r))

−BM ∗ (1− kr(v,j,r))−BM ∗ (1− si,v)

∀ resource r and couple of real activities we could schedule on r

(5.64)

Constraints (5.64) avoids overlaps on each resource. If two real

activities v and i are on the same resource r ( (1 − kr(i,g,r)) = 0 and

(1−kr(v,j,r) = 0)) and i precedes v then this constraints are activated

(otherwise this equations are always respected).

tinii,g − tfinv,j >= −BM ∗ (1− kr(i,g,r))

−BM ∗ (1− kr(v,j,r))−BM ∗ si,v
∀ resource r and couple of real activities we could schedule on r

(5.65)

Constraints (5.65) work as Constraints (5.64) if v precedes i.

tfinl,g − tiniv,j >= −BM ∗ (1− kf(i,v),j,r)

−BM ∗ (1− kf(l,m),g,r)−BM ∗ (1− s((i,v),(l,m)))

∀ resource r and couple of virtual activities we could schedule on r
(5.66)

tfini,g − tinim,j >= −BM ∗ (1− kf(i,v),j,r)

−BM ∗ (1− kf(l,m),g,r)−BM ∗ s((i,v),(l,m))

∀ resource r and couple of virtual activities we could schedule on r
(5.67)
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Constraints (5.66) and (5.67) work, at the same way of (5.64) and

(5.65),for the virtual activities. In this case we have to take into

account start and end time of activities l,m,i and v enclosing real

activities.

tinil,g − tfini,j >= −BM ∗ (1− kr(i,j,r))

−BM ∗ (1− kf(l,m),g,r)−BM ∗ (1− s(i,(l,m)))

∀ resource r and couple of a real activity and a virtual activity.

(5.68)

tinii,j − tinim,g >= −BM ∗ (1− kr(i,j,r))

−BM ∗ (1− kf(l,m),g,r)−BM ∗ s(i,(l,m))

∀ resource r and couple of a real activity and a virtual activity.

(5.69)

Constraints (5.68) and (5.69) work for couples of activities made by

a virtual and a real activity.

hi,v >= (tiniv,j − tfini,g − 1440)/1440

∀ couple of activities (i, v)
(5.70)

hi,v <= (tiniv,j − tfini,g)/1440

∀ couple of activities (i, v)
(5.71)

To assure that there are no overlaps due to activities passing the

midnight we define new binary variables hi,v that take the value of

1 if between the beginning of v and the end of the activity i there

are more than 1440 minutes (0 otherwise). These variables and re-

lated Constraints (5.70) and (5.71) should be used also for virtual

activities.
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tfinv,j − 1440−BM ∗ (1− kr(i,g,r))−BM ∗ (1− kr(v,j,r))

−BM ∗ (1− si,v)−BM ∗ hi,v <= tinii,g

∀ resource r and couple of real activities

(5.72)

tinim,g − 1440−BM ∗ (1− kf(i,v),j,r)−BM ∗ (1− kf(l,m),g,r)

−BM ∗ (1− s((i,v),(l,m)))−BM ∗ h((i,v),(l,m)) <= tfini,v

∀ resource r and couple of virtual activities

(5.73)

tinim,g − 1440 <= tinii,j −BM ∗ (1− kr(i,j,r))

−BM ∗ (1− kf(l,m),g,r)−BM ∗ (1− s(i,(l,m)))−BM ∗ h(i,(l,m))

∀ resource r and couple of a real activity and a virtual activity

(5.74)

tfini,g − 1440−BM ∗ (1− kr(i,g,r))−BM ∗ (1− kr(v,j,r))

−BMsi,v −BM ∗ hi,v <= tiniv,j

∀ resource r and couple of real activities

(5.75)

tiniv,j − 1440−BM ∗ (1− kf(i,v),j,r)−BM ∗ (1− kf(l,m),g,r)

−BMs((i,v),(l,m)) −BM ∗ h((i,v),(l,m)) <= tfinl,g

∀ resource r and couple of virtual activities

(5.76)

tfini,j − 1440 <= tfinl,g −BM ∗ (1− kr(i,j,r))

−BM ∗ (1− kf(l,m),g,r)−BMs(i,(l,m)) −BM ∗ h(i,(l,m))

∀ resource r and couple of a real activity and a virtual activity

(5.77)

Constraints (5.72), (5.73) , (5.74) ,(5.75), (5.76) and (5.77) check

that the last and the first task assigned to the resource r are not

overlapped.

Note that Tfin (Tini) becomes Twij (Twfj) in case of initial (final)
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virtual activity.

For each couple of real activities (i, n) of job j we define a new

binary variable y(i,n,j,r) that will be 0 if i and n are assigned to the

same resource (otherwise y(i,n,j,r) will be 1).

y(i,n,j,r) <= (kr(i,j,r) + kr(n,j,r))/2 (5.78)

y(i,n,j,r) >= kr(i,j,r) + kr(n,j,r) − 1 (5.79)

Therefore variables y are linked to variables k by Constraints (5.78)

and (5.79).

If we impose that virtual activity, between real activities i and n,

is not provided on the same resource of i and n, the number of

movements for each job is given by Equation (5.80).

nj =
∑
r∈R

kf(I,v),j,r +
∑
r∈R

kf(v,U),j,r +
∑

r∈R and i,n∈J

(2 ∗ kf(i,n,j,r)) +
∑

w(i,n,j)

(5.80)

where variable w(i,n,j), calculated by Constraints (5.81), says if real

activities i e n need a movement (w(i,n,j) = 1).

w(i,n,j) <= 1−
∑
r∈R

kf(i,n),j,r

w(i,n,j) <= 1−
∑
r∈R

y(i,n,j,r)

w(i,n,j) >= (1−
∑
r∈R

kf(i,n),j,r) + (1−
∑
r∈R

y(i,n,j,r))− 1

(5.81)

Objective function to minimize could be written as sum of nj (see
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Equation (5.82)).

∑
j∈J

nj (5.82)

kf(i,v),j,r + kr(i,j,r) <= 1 ∀ r ∈ R and ∀ consecutive (i, v) ∈ J (5.83)

kf(i,v),j,r + kr(v,j,r) <= 1 ∀ r ∈ R and ∀ consecutive (i, v) following ∈ J

(5.84)

We would avoid that a virtual task, between the real activities i and

n, is scheduled on the same resource of i or n. To do that we add

Constraints (5.83) and (5.84).

We can observe also in the Figure 5.16 different value for objective

function for two cases represented. Furthermore feasibility of the

case in top of the Figure 5.16 implies the feasibility of the case in

bottom.

We note that, differently from the first approach, this model does

not treat alternative jobs and calculates the movements at run

time.

5.5.1 Computational experiments

In this section we present results obtained using the third ap-

proach for the problem of maintenance optimization. First column

represents the number of trains involved. The second one shows

the number of operations to be provided. In the third and fourth

we report the number of resources of workshop (maintenance and

cleaning platforms). The fifth and the sixth columns show the com-

putation time and the value of objective function.
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Figure 5.16: Objective Function

The results show a very good computation time despite the reduced

complexity of instances. We tried to solve unfeasible instances but

the solver was unable to stop the calculation in accordance with

the time limits of 4400 seconds. Future research will be dedicated

to develop a custom algorithm to check the feasibility of instances.
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Table 5.8: Outcomes
Number of Number of Number of Number of Time obj

trains Tasks maintenance Cleaning (sec) function

resources resources

4 10 5 5 0,17 5

4 10 4 4 0,13 5

4 10 3 3 0,08 5

4 10 2 2 0,67 7

4 10 1 2 -

4 10 2 1 -

5 11 5 5 0,22 6

5 11 4 4 0,18 6

5 11 3 3 0,16 6

5 11 2 2 0,16 6

5 11 1 2 -

5 11 2 1 -

3 6 5 5 0,09 3

3 6 4 4 0,08 3

3 6 3 3 0,05 3

3 6 2 2 0,09 3

3 6 1 2 0,03 4

3 6 2 1 0,08 3

3 6 2 1 -

6 10 5 5 0,22 3

6 10 4 4 0,14 3

6 10 3 3 0,13 3

6 10 2 2 0,13 3

6 10 1 2 -

6 10 2 1 -
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Alternative Framework

Sometimes, in case of a big workshop, a “Buffered" maintenance

management could be suitable. However, we can still use the tools

introduced in the previous chapters of this PhD thesis. The frame-

work presented before is not totally able to solve the “Buffered"

maintenance scheduling problem but likely we can adapt it. The

question is : "How do we do that"?

Firstly, we could break in two the problem of rolling stock rostering.

In a first step we could solve this problem neglecting maintenance

constraints. In this formulation sub-loops elimination constraints

are compulsory to avoid rosters involving only passenger station

not close to the workshop. Therefore, this formulation will be fo-

cused only on the minimization of the number of train asset units

needed to cover the given timetable and on the minimization of

empty runs. In a second step we could find an optimal/feasible set

of maintenance tasks to provide. At last we could find an optimal

schedule for maintenance tasks selected in the previous formula-

tion.

That means, we can solve the problem using for the step 1 a short

formulation of rolling stock rostering and for the step 3 the first

approach for the maintenance scheduling problem.

So, given a roster, we need to find a formulation that is able to an-

swer, for each asset unit with end of its journey in a passenger sta-

tion close to the maintenance footprint, if maintenance operations
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must be provided and if the train must come back to workshop

or not. For the step two we could use successfully the formula-

tion used for rolling stock rostering problem in case of non-cyclic

timetable (for instance we could use the most efficient model). In

fact, if we consider roster blocks between successive stops in pas-

senger stations close to workshop as commercial services to be de-

livered, the step two becomes a rolling stock rostering problem in

which the objective function is the minimization of train units.

Figure 6.1: Alternative framework

Let’s try to explain the Figure 6.1 with an example. Given a cyclic or

non-cyclic timetable and an upper-bound on the number of empty

runs allowed, we solve the rostering problem using the formula-

tions we have shown so far. Our solution will be a train roster

minimizing costs related to asset usage and costs to provide empty

runs (see Figure 6.2).

We can brake the roster for each stop in Naples station (if the work-

shop in analysis is the IDP of Naples) obtaining the parts as shown
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Figure 6.2: Roster example

in the Figure 6.3.

Each roster part will become a node for a new virtual non-cyclic

rolling stock rostering problem and its kilometres are given by the

sum of kilometres of services involved. In this problem we also can

add on a function objective for example on the costs of mainte-

nance operations. The solution of this sub-problem will be a set of

maintenance jobs to scheduled in the workshop. At last we need

to schedule these maintenance jobs at the workshop exactly as we

have seen before.

It is not possible to say in advance if a “Buffered" maintenance

management is better than “Non-Buffered" approach. We can ob-

serve that “Non-Buffered" approach is very efficient but not very

flexible. When this approach is chosen, we need to remake rolling

stock roster and maintenance scheduling in case of changes of

timetables (very frequent event) or in case of delay due to work-

shop. If a “Buffered" approach is chosen maintenance management

has less constraints and often delays not imply remaking of rolling

stock rosters. In real word we observe that big workshop very often

adopt a “Buffered" kind of maintenance management.
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Figure 6.3: Roster decomposition example



Chapter 7

Conclusions

This PhD thesis presents a new framework for rolling stock roste-

ring and maintenance scheduling problems. New formulations are

proposed for integrating medium-term maintenance planning in

the network-wide railway rolling stock circulation problem. These

are key problems in railway planning that require to cover a given

set of services and maintenance works with a minimum amount of

rolling stock units and with a minimum efficiency of maintenance

management. Additional objectives are to minimize the number

of empty rides and to maximize the kilometres travelled by each

train between two maintenance operations of the same type. The

constraints of the rolling stock rostering problem require that the

different types of maintenance operations must be carried out for

each train periodically. The various maintenance tasks can only

be done at a limited number of dedicated sites. The rostering and

maintenance scheduling problems are formulated by a graph the-

oretical approaches.

New formulations are also proposed for the workshop maintenance

sub-problem, that is to find feasible schedules with a minimum

number of movements within the workshop. Experimental results

on real-world scenarios from Trenitalia show that this integrated

approach can reduce significantly the number of trains, empty

runs and movements within workshop when compared with the

current rolling stock circulation and maintenance plans. For a set
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of timetables and rolling stock categories, we compare flexible ver-

sus rigid plans regarding the number of empty rides and mainte-

nance kilometres. The computational evaluation presents the ef-

ficiency of the new solutions compared to the practical solutions.

Our model solution with flexible empty rides presents up to 23%

reduction in the number of trains needed to cover all services.

Furthermore experimental results show an interesting reduction

of movements at workshop during maintenance routing and also a

very good quality of maintenance schedule in case of medium-term

traffic disturbances that alter the off-line plan of operations.

A commercial solver is able to solve practical-size instances of this

problem in a few minutes, so the proposed formulation can also

be adopted to compute good quality solutions in real-time. Future

research will be dedicated to the improvement of the framework,

the analysis of its sensitivity to uncertainty, and the investigation

of global formulations and algorithmic approaches.

We use a commercial a MIP solver in order to compute optimal

solutions in a short computation time.
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Appendix A

Glossary

We provide here a short explanation of main terminologies used in

the previous chapters.

Buffered Maintenance:

A specific kind of maintenance management in which workshop

manager could decide the train asset units to process without con-

straints.

Corrective Maintenance:

Maintenance work intended to correct an existing problem.

Cyclic Timetable:

A timetable not changing day by day for all period for which it is in

force.

Duty:

The workload of an asset unit for a certain period.

Empty Run:

Train without commercial aims.

Infrastructure Manager (IM):
Any body or undertaking responsible for establishing and main-
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taining railway infrastructure. This may also include the manage-

ment of infrastructure control and safety systems. The functions of

the Infrastructure Manager on a network may be assigned to dif-

ferent bodies or undertakings.

Maintenance:

Activity aiming to maintain something in good working order, pre-

vent operational disturbance and/or uphold a given technical stan-

dard.

MIP Solver:
Software able to solve mixed integer programming problems.

Non-buffered Maintenance:

A specific kind of maintenance management in which workshop

manager provide maintenance task accordingly to the rolling ros-

ter.

Pattern:

Sets of transports with the same characteristics (stops and travel

distances) and repeated daily with a fixed frequency for a given time

window.

Periodicity:

It’s a description of the days in which a train service is provided.

Predictive Maintenance:

This kind of maintenance is based upon the actual condition of the

equipment and a determination of when maintenance should be

performed to minimize costs. New technology techniques such as

ultrasound, infrared and vibration online testing make predictive

maintenance a viable alternative in certain circumstances. How-

ever, for most equipment the complex metrics for making edu-

cated guesses (predictive) is provided by preventive maintenance
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programs.

Preventive Maintenance:

The care of equipment and facilities in satisfactory operating con-

dition by providing for systematic inspection, detection, and cor-

rection of incipient failures either before they occur or before they

develop into major defects.

Railway undertaking (RU):
In the context of licensing, any private or public undertaking the

principal business of which is to provide rail transport services for

goods and/or passengers, with a requirement that the undertaking

must ensure traction.

Rolling stock:

The collective term for the rail fleet; sometimes it is used for one ve-

hicle. It describes all the vehicles that are used on a railway track.

It usually includes both powered and unpowered vehicles, for ex-

ample locomotives, hauled passenger vehicles and freight vehicles

(coaches and wagons), diesel units, electric units and service stock.

The term is sometimes used to refer only to non-powered vehicles,

thus excluding locomotives. The term contrasts with fixed stock

(infrastructure), which is a collective term for the track, signals,

stations and buildings etc. necessary to operate a railway.

Rolling stock circulation:

The collection of the rolling stock duties for a certain period.

Route:

A (railway) route can be seen on a map and has a physical exis-

tence, unlike a (railway) path, which is part of a timetable.

Spot train:

Train not belonging to any pattern.
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Station:

A place where trains stop, or where loading and unloading occurs,

and where assistance may be available. Also a place where there

can be points (facing or trailing) that make it possible for the train

to use different routes.

Timetable:

A schedule listing the times at which certain events, such as ar-

rivals and departures at a transport station, are expected to take

place. The timetable defines all planned train and rolling-stock

movements which will take place on the relevant infrastructure

during the period for which it is in force.

Timetable changeover / timetable change:

The date on which the old timetable ceases to be valid, and the

new timetable starts to take effect. The timetable change is regu-

lated by the EU and has taken place in December every year since

2004 across Europe.

Timetable drafting:

The period of timetable development during which a draft timetable

is prepared.

Timetable period:

A timetable period means the period of operation of a Working

Timetable; it starts on the day of a timetable change (change date).

Timetable planning process / timetabling process:

A complex process of consultation and planning which defines the

data relating to all train and rolling-stock movements that are ex-

pected to take place on the relevant infrastructure during the pe-

riod of validity of the timetable. Detailed train timings are agreed

by IMs and RUs.



Glossary 162

Train:

One or more railway vehicles capable of being moved. It may con-

sist of a locomotive (sometimes more than one) to provide power

with various unpowered vehicles attached to it. It may consist of

a multiple unit, i.e. several vehicles formed into a fixed formation

or set, which carry their own power and do not require a locomo-

tive. A train may be only a locomotive running light (deadheading)

to a point elsewhere on the railway. A train may carry passengers,

freight or, rarely nowadays, both.

Train-day:

It’s a single train service running in a day.

Vehicle (railway):
Railway vehicle that runs on its own wheels on railway lines, with

or without traction. A vehicle is composed of one or more structural

and functional subsystems or parts of such subsystems.
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List of abbreviations

CM Corrective Maintenance

GA Genetic Algorithm

IM Infrastructure Manager

LP Linear Programming

MIP Mixed Integer Programming

MS Maintenance Scheduling

OR Operations Research

PESP Periodic Event Scheduling Problem

PM Predictive Maintenance

PSS Passenger Station Scheduling

RSM Rolling Stock Management

RSR Rolling Stock Rostering

RU Railway Undertaking

TTP Train Timetabling Problem

TUSP Train Unit Shunting Problem
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Rostering numerical example
lp file

Minimize obj : X_A_C_s+X_A_C_MC_NA_IMC +X_A_D_v

+X_A_D_vi_MC_NA_IMC +X_B_C_s+ 2X_B_C_MC_NA_IMCv

+X_B_D_v + 2X_B_D_vi_MC_NA_IMC +X_C_A_s+X_D_A_s

Subject To

Path constraints

vh1 : X_A_C_s+X_A_C_MC_NA_IMC +X_A_D_v

+X_A_D_vi_MC_NA_IMC = 1

vh2 : X_B_C_s+X_B_C_MC_NA_IMC +X_B_D_v

+X_B_D_vi_MC_NA_IMC = 1

vh3 : X_C_A_s+X_C_B_s = 1

vh4 : X_D_A_s+X_D_B_s = 1

vh5 : X_C_A_s+X_D_A_s = 1

vh6 : X_C_B_s+X_D_B_s = 1

vh7 : X_A_C_s+X_A_C_MC_NA_IMC +X_B_C_s

+X_B_C_MC_NA_IMC = 1

vh8 : X_A_D_v +X_A_D_vi_MC_NA_IMC +X_B_D_v

+X_B_D_vi_MC_NA_IMC = 1

Optional subloops elemination constraints
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vl1 : Y _A_C + Y _A_D = 1

vl2 : Y _B_C + Y _B_D − Y _C_B − Y _D_B = 1

vl3 : −Y _A_C − Y _B_C + Y _C_B + Y _C_A = 1

vl4 : −Y _A_D − Y _B_D + Y _D_B + Y _D_A = 1

vl5 : −4X_A_C_s− 4X_A_C_MC_NA_IMC+

Y _A_C ≤ 0

vl6 : −4X_A_D_v − 4X_A_D_vi_MC_NA_IMC

+Y _A_D ≤ 0

vl7 : −4X_B_C_s− 4X_B_C_MC_NA_IMC

+Y _B_C ≤ 0

vl8 : −4X_B_D_v − 4X_B_D_vi_MC_NA_IMC + Y _B_D ≤ 0

vl9 : −4X_C_A_s+ Y _C_A ≤ 0

vl10 : −4X_C_B_s+ Y _C_B ≤ 0

vl11 : −4X_D_A_s+ Y _D_A ≤ 0

vl12 : −4X_D_B_s+ Y _D_B ≤ 0

Maintenance constraints

man1 : −220X_A_D_v +G_A_C_s_MC +G_A_C_MC_NA_IMC_MC

+G_A_D_v_MC +G_A_D_vi_MC_NA_IMC_MC

−G_C_A_s_MC −G_D_A_s_MC = 600

man2 : −220X_B_D_v +G_B_C_s_MC

+G_B_C_MC_NA_IMC_MC +G_B_D_v_MC

+G_B_D_vi_MC_NA_IMC_MC −G_C_B_s_MC

−G_D_B_s_MC = 600

man3 : −G_A_C_s_MC +G_C_A_s_MC −G_B_C_s_MC

+G_C_B_s_MC = 600

man4 : −220X_A_D_vi_MC_NA_IMC − 220X_B_D_vi_MC_NA_IMC

−G_A_D_v_MC +G_D_A_s_MC −G_B_D_v_MC

+G_D_B_s_MC = 480

man5 : −3000X_A_C_s+G_A_C_s_MC ≤ 0

man6 : −3000X_A_C_MC_NA_IMC
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+G_A_C_MC_NA_IMC_MC ≤ 0

man7 : −3000X_A_D_v +G_A_D_v_MC ≤ 0

man8 : −3000X_A_D_vi_MC_NA_IMC

+G_A_D_vi_MC_NA_IMC_MC ≤ 0

man9 : −3000X_B_C_s+G_B_C_s_MC ≤ 0

man10 : −3000X_B_C_MC_NA_IMC+

G_B_C_MC_NA_IMC_MC ≤ 0

man11 : −3000X_B_D_v +G_B_D_v_MC ≤ 0

man12 : −3000X_B_D_vi_MC_NA_IMC

+G_B_D_vi_MC_NA_IMC_MC ≤ 0

man13 : −3000X_C_A_s+G_C_A_s_MC ≤ 0

man14 : −3000X_C_B_s+G_C_B_s_MC ≤ 0

man15 : −3000X_D_A_s+G_D_A_s_MC ≤ 0

man16 : −3000X_D_B_s+G_D_B_s_MC ≤ 0

man17 : −1200X_A_C_MC_NA_IMC

+G_A_C_MC_NA_IMC_MC ≥ 0

man18 : −1200X_A_D_vi_MC_NA_IMC

+G_A_D_vi_MC_NA_IMC_MC ≥ 0

man19 : −1200X_B_C_MC_NA_IMC

+G_B_C_MC_NA_IMC_MC ≥ 0

man20 : −1200X_B_D_vi_MC_NA_IMC

+G_B_D_vi_MC_NA_IMC_MC ≥ 0

maximum number of empty runs constraint allowed

er : X_A_D_v +X_A_D_vi_MC_NA_IMC +X_B_D_v

+X_B_D_vi_MC_NA_IMC ≤ 1

Bounds

0 ≤ X_A_C_s ≤ 1

0 ≤ X_A_C_MC_NA_IMC ≤ 1

0 ≤ X_A_D_v ≤ 1
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0 ≤ X_A_D_vi_MC_NA_IMC ≤ 1

0 ≤ X_B_C_s ≤ 1

0 ≤ X_B_C_MC_NA_IMC ≤ 1

0 ≤ X_B_D_v ≤ 1

0 ≤ X_B_D_vi_MC_NA_IMC ≤ 1

0 ≤ X_C_A_s ≤ 1

0 ≤ X_C_B_s ≤ 1

0 ≤ X_D_A_s ≤ 1

0 ≤ X_D_B_s ≤ 1

0 ≤ Y _A_C ≤ 4

0 ≤ Y _A_D ≤ 4

0 ≤ Y _B_C ≤ 4

0 ≤ Y _B_D ≤ 4

0 ≤ Y _C_B ≤ 4

0 ≤ Y _D_B ≤ 4

0 ≤ Y _C_A ≤ 4

0 ≤ Y _D_A ≤ 4

0 ≤ G_A_C_s_MC ≤ 3000

0 ≤ G_A_C_MC_NA_IMC_MC ≤ 3000

0 ≤ G_A_D_v_MC ≤ 3000

0 ≤ G_A_D_vi_MC_NA_IMC_MC ≤ 3000

0 ≤ G_C_A_s_MC ≤ 30008

0 ≤ G_D_A_s_MC ≤ 3000

0 ≤ G_B_C_s_MC ≤ 3000

0 ≤ G_B_C_MC_NA_IMC_MC ≤ 3000

0 ≤ G_B_D_v_MC ≤ 3000

0 ≤ G_B_D_vi_MC_NA_IMC_MC ≤ 3000

0 ≤ G_C_B_s_MC ≤ 3000

0 ≤ G_D_B_s_MC ≤ 3000

Binaries

X_A_C_s X_A_C_MC_NA_IMC X_A_D_v X_A_D_vi_MC_NA_IMC

X_B_C_s X_B_C_MC_NA_IMC X_B_D_v X_B_D_vi_MC_NA_IMC
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X_C_A_s X_C_B_s X_D_A_s X_D_B_s

End
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