
i
i

“thesis” — 2014/4/29 — 19:08 — page i — #1 i
i

i
i

i
i

UNIVERSITÀ DEGLI STUDI

ROMA
TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Morphing and Visiting
Drawings of Graphs

Vincenzo Roselli
Cycle XXVI

Candidate: Vincenzo Roselli

Advisor: Prof. Giuseppe Di Battista

Advisor: Prof. Maurizio Patrignani

Coordinator: Prof. Stefano Panzieri



i
i

“thesis” — 2014/4/29 — 19:08 — page ii — #2 i
i

i
i

i
i



i
i

“thesis” — 2014/4/29 — 19:08 — page iii — #3 i
i

i
i

i
i

Morphing and Visiting Drawings of Graphs

A thesis presented by
Vincenzo Roselli

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Department of Engineering

June 2014



i
i

“thesis” — 2014/4/29 — 19:08 — page iv — #4 i
i

i
i

i
i

COMMITTEE:
Prof. Giuseppe Di Battista
Prof. Maurizio Patrignani

REVIEWERS:
Prof. Sabine Cornelsen
Prof. Alexander Wolff



i
i

“thesis” — 2014/4/29 — 19:08 — page v — #5 i
i

i
i

i
i

La vecchia non voleva morire perché diceva che voleva ancora imparare.

The old lady didn’t want to die because she still had much to learn, she said.

Italian proverb
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Introduction

Among the most widely used data structures to represent pairwise relationships be-
tween entities, graphs play a key role. Graph applications can, indeed, be found in
every field, ranging from maps to circuits, and from networks to interpersonal rela-
tionships. Visualizing a graph is probably one of the most expressive ways to describe
the information encoded in it. Such an issue is addressed in the research field of
Graph Drawing, which inherits techniques from the areas of Graph Theory, Graph
Algorithms, and Computational Geometry. Namely, in a drawing of a graph each
entity -called vertex- is usually represented by a point in the plane and each rela-
tionship -called edge- between two entities as a curve connecting the corresponding
points. Clearly, not every drawing can be considered a good representation of the
graph. Vertices and edges should be drawn in such a way that the human eye is fa-
cilitated in identifying the relationships among the entities at a glance. Namely, the
drawing should be readable. During the years, some topological and geometric fea-
tures that a drawing should satisfy in order to be easily readable have been recognized
and formally characterized. The main goals of Graph Drawings are, then, creating
algorithms that automatically produce drawings respecting such criteria and, possibly,
defining new ones.

Planarity, that is the absence of partial or total overlapping among vertices and
edges, is probably the most natural and desirable characteristic a drawing can have,
as it allows a viewer to easily distinguish the curve used to represent any edge-
relationship and hence to immediately recognize which entities-vertices participate in
that relationship. Unfortunately, due to their topological structure, not all the graphs
admit a planar drawing. In such cases, a natural requirement for the drawing is that
of containing as few crossings as possible. Moreover, especially if the input graph
-and hence the area of the drawing- is large, it is convenient that the points where
two edges cross are easily distinguishable from the points where vertices are placed.
Observe that, while planarity is a property that a drawing may fulfill or not, the area
and the number of crossings are two examples of measure of quality that can be used

1
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to compare two drawings of the same graph.
From the geometric point of view, it would be preferable that edges are drawn

as straight-lines. Edges that bend and repeatedly or abruptly change direction might
sensibly decrease the readability of the drawing. In straight-line drawings, however,
the information of interest for a user might not be sufficiently emphasized. In that
case, edges can be represented as poly-lines bending only a limited number of times
or having a limited number of slopes, so that the negative impact on the readability of
the drawing is limited.

Other required features for a drawing of a graph to describe some meta-information,
we recall the representation of groups (called clusters) of vertices that, aside from the
relationship described by the edges, represent objects that share some properties, as in
the case of clustered graphs. Also, in some contexts it might be required to emphasize
the chains of relationships that indirectly involve pairs of entities. In this case, the
placement of the vertices and the fashion in which edges are drawn should be able to
“lead” the eye of a viewer from an object to another through the chain of relationships
that are of interest.

Of course, some of such desired features can be in contrast with each other and
hence cannot be simultaneously satisfied by a single drawing. It is easy to imagine
contexts in which several drawings of the same graph, which can be substantially
different from each other, are of interest to the same observer. Due to the great differ-
ence between two drawings, a considerable effort might be required to the user, while
switching from one drawing to another, in “updating” the mental map he or she has
of the graph. In order to support the user in this operation, a smooth transformation
of a drawing into another might be desirable. Clearly, since the purpose of this trans-
formation is to support the user in changing the focus from a drawing to another, it
should introduce as few distracting elements, e.g. crossings, bends in the edges, or
non-linear trajectories, as possible.

In this thesis we mainly deal with algorithms that compute planar morphs, i.e.,
transformations, of planar drawings of the same graph in which planarity is preserved
at any time. We also consider the problem of constructing drawings that, at the same
time, emphasize certain properties of a given graph and require small area. We mainly
deal with planar embedded graphs, namely, graphs in which the circular order of the
edges around each vertex is fixed and such that there exists a planar drawing of the
graph in which such an order is maintained. We first recall some preliminary defini-
tions on graphs and on the main data structures used for their decomposition. In Part I
we present an algorithm for the construction of planar linear morphs of series-parallel
graphs with a number of moves that is linear in the size of the graph, prove that such
an algorithm is asymptotically optimal by providing a lower bound on the number of
linear moves that are required to transform a planar drawing of a plane graph, and
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give an algorithm for constructing planar linear morphs of general plane graphs with
a number of moves that is quadratic in the size of the graph. In Part II we consider the
problem of computing drawings of graphs in which some features, namely chains of
relationships between pairs of vertices and the difference between vertices and cross-
ings in drawings of non-planar graphs, are emphasized, thus allowing the user to easily
“visit” the underlying graph. Finally, in Appendix A we describe some further results
on drawings of planar graphs.

In Background & Basics a preliminary definitions on graphs, their drawings, and
their decomposition is given. Namely, in Chapter 1 we provide some preliminary
definitions on graphs, their drawings, and the most commonly accepted aesthetic cri-
teria, while Chapter 2 presents some of the data structures that are commonly used for
decomposing planar graphs.

Part I is devoted to study the problem of computing a planar morph between pairs
of planar straight-line drawings of planar embedded graphs. In Chapter 3 we give a
survey of the main results on this topic that are known in the literature. In the same
chapter, we give a complete description of an algorithm by Cairns that is considered
a cornerstone in computing a planar morph of a graph. In Chapter 4 we provide some
topological and geometric tools that will be useful in the remainder of the thesis.

In Chapter 5 we describe an algorithm for computing planar linear morphs of
drawings of n-vertex series-parallel graphs in O(n) steps. In Chapter 6 we prove that
a linear number of moves is sometimes necessary, thus implying that the algorithm
provided in the previous chapter is asymptotically optimal. In Chapter 7 we address
the problem of constructing a planar morph with a polynomial number of steps for
drawings of planar embedded graphs, the general setting for the problem. Chapter 8
concludes this part discussing some open problems on this topic.

In Part II we consider the problem of “visiting” a drawing of a graph. Namely,
a user might want to “navigate” a drawing of a graph, that is moving the focus from
a vertex to another following edges, and hence some features of the graph should be
stressed in the drawing. In Chapter 9 we deal with the problem of constructing mono-
tone drawings of plane graphs. A drawing of a graph is monotone if, for every pair
of vertices, there exists a path whose vertices are placed in such a way that, walking
through this path from an endpoint to another, the user gets closer (according to some
measures) to the destination at each step. The study of this problem is well moti-
vated by human subject experiments by Huang et al. [HEH09], who showed that the
“geodesic path tendency” (paths following a given direction) is important in compre-
hending the underlying graph. We show that every planar embedded graph admits a
monotone drawing in which each edge is represented by at most three straight-line
segments and prove that such a number of bends is sometimes necessary. We also
prove that outerplane and biconnected planar embedded graphs admit straight-line
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monotone drawings. Chapter 10 deals with non-planar graphs. Namely, we propose
a new model in which edges are drawn as poly-lines composed of vertical, horizon-
tal, and diagonal segments. The aim of such a model is to emphasize the difference
between crossings and vertices in drawings of large graphs by modeling crossings as
intersections of diagonal segments. We prove that every graph with max-degree 4
admits a drawing respecting this model and provide an algorithm to construct such
drawings in polynomial area. We also prove a lower bound on the minimum number
of bends in any drawing of a graph in which the circular order of the edges around
each vertex is fixed, and show that a drawing in which the number of bends is min-
imized might require an area that is exponential in the number of the vertices of the
graph. Chapter 11 concludes this part discussing some open problems on these topics.

In Appendix A we study the problem of drawing a graph on a given set of points
and define the structure of a point set onto which every simply-nested planar graph can
be drawn. We also study the problem of drawings clustered graphs and, by relaxing
some constraints, we give the first non-trivial necessary condition for a clustered graph
to be clustered planar.
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Chapter 1

Preliminaries

In this chapter, we give some preliminary definitions about graphs and their drawings.
A reader who wants to assume more familiarity with the basic concepts about graphs,
algorithms, and geometry, may refer to books on Graph Theory (e.g., [Har69, BM76,
CN88, Die05]), to books on Algorithms (e.g., [Eve79, AHU83, CLRS09, GT09]), and
to books on Computational Geometry (e.g., [PS85, Ede87, dCvO08]). The book of
Di Battista, Eades, Tamassia, and Tollis [DETT99] is usually considered as the book
on Graph Drawing. Other excellent books that specifically deal with Graph Drawing
are [KW01, NR04]. The chapter is structured as follows. In Section 1.1 we give
some preliminary definitions on graphs in general. In Section 1.2 we focus on planar
graphs and, in Section 1.3, characterize some notable classes of planar graphs we deal
with in the remainder of the thesis. Finally, in Section 1.4 we recall some drawing
conventions and æsthetic criteria.

1.1 Basic Definitions

A graph G is a pair (V,E), where V is a set of elements called vertices, and E is a
multiset of unordered pairs of vertices, called edges. The vertices v and w composing
a pair e = (v, w) ∈ E are incident to e, and edge e is incident to v and w. Two
vertices are adjacent if they are incident to the same edge, and two edges are adjacent
if they are incident to the same vertex. The end-vertices of an edge (v, w) are vertices
v and w, which are also said to be neighbors. The degree of a vertex v is the number
of its incident edges (or, equivalently, the number of its neighbors) and is denoted
by deg(v). The (max-)degree of a graph is the maximum among the degrees of its
vertices.

7
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8 CHAPTER 1. PRELIMINARIES

A self-loop in a graph (V,E) is an edge (v, v) ∈ E. A set of multiple edges or
parallel edges in a graph (V,E) is a set of edges connecting the same two vertices
v, w ∈ V . A graph is simple if it does not contain either self-loops or multiple edges,
otherwise it is called multigraph. In the following, unless otherwise specified, we
always refer to simple graphs.

A graph is directed if its edges are ordered pairs of vertices. In a directed graph,
an edge (v, w) is oriented from its tail (or origin) v to its head w; also, the edge is
outgoing from v and incoming to w. The indegree of a vertex v is the number of
its incoming incident edges; analogously, the outdegree is the number of its outgoing
edges. A vertex whose indegree equals 0 is called source; analogously, a vertex whose
outdegree equals 0 is called sink.

A graph G′(V ′, E′) is a subgraph of a graph G(V,E) if V ′ ⊆ V and E′ ⊆ E.
A subgraph G′(V ′, E′) is induced by V ′ if, for each edge (v, w) ∈ E such that
v, w ∈ V ′, (v, w) ∈ E′. A graph G′(V ′, E′) is a spanning subgraph of G(V,E) if
it is a subgraph of G and V ′ = V . A graph G′(V ′, E′) is a supergraph of a graph
G(V,E) if V ⊆ V ′ and E ⊆ E′. A graph H is a proper subgraph (supergraph) of a
graph G if G contains at least a vertex or an edge more (less) than H . A subgraph H
of G is maximal under some condition c if there does not exists a graph H ′ fulfilling
condition C and, at the same time is a subgraph of G and is a proper supergraph of H .

A graph is complete if, for every pair of vertices u, v ∈ V , edge (u, v) ∈ E. The
complete graph on n vertices is denoted by Kn after Kuratowski, who first charac-
terized planar graphs in [Kur30]. A graph is bipartite if it can be divided into two
disjoint sets V1 and V2 such that no edge connects two vertices in the same set. A bi-
partite graph is complete if for each vi ∈ V1 and for each vj ∈ V2, edge (vi, vj) ∈ E.
Complete bipartite graphs are denoted by Ka,b, where a = |V1| and b = |V2|.

A subdivision of a graph G is a graph G′ that can be obtained by replacing each
edge of G with a sequence of new edges and new vertices such that S starts and termi-
nates with an edge and contains an arbitrary number of new vertices. The topological
contraction of an edge (v, w) consists of the replacement of v, w, and (v, w) with a
single vertex u, of each edge (v, z) with an edge (u, z), and of each edge (w, t) with
an edge (u, t). A minor of a graph G is any graph that can be obtained from G by a
sequence of removals of vertices, removals of edges, and topological contractions of
edges.

A graph is connected if for any pair v, w of its vertices there exists a sequence of
edges e1, . . . , ek, with k ≥ 1, such that:

• For each i = 1, . . . , k − 1 edges ei and ei+1 have a common endvertex, and

• v is incident to e1 and w is incident to ek.
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A graph that is not connected is said to be disconnected. In general, a graph that
remains connected after the removal of any set of k − 1 vertices is k-connected; 3-
connected, 2-connected, and 1-connected graphs are also called triconnected, bicon-
nected, and simply connected graphs, respectively. A separating k-set is a set of k ver-
tices whose removal disconnects the graph. Separating 1-sets, separating 2-sets, and
separating 3-sets are also called cutvertices, separation pairs, and separating triples,
respectively. Hence, a connected graph is biconnected if it has no cutvertices, and it
is triconnected if it has no separation pairs. The maximal biconnected subgraphs of
a graph are its blocks, while the maximal triconnected subgraphs of a graph are its
triconnected components. Each edge of G falls into a single block of G and into a
single triconnected component, while cutvertices are shared by different blocks and
the vertices belonging to a separation pair are shared by different separation pairs.
Two blocks are adjacent if they share a cutvertex. Two adjacent blocks B1 and B2

are consecutive if there exists a pair of edges (v, u) ∈ B1 and (v, w) ∈ B2 such that
(v, u) and (v, w) are consecutive in the rotation scheme of their shared cutvertex v,
namely, vertices u and w are consecutive neighbors (see Section 1.2) of v.

1.2 Planar Graphs

A drawing of a graph is a mapping of each vertex to a distinct point of the plane and of
each edge to a simple (namely, with no self-intersections) curve between its endpoints,
i.e., the points to which the end-vertices of the edge have been mapped. It is important
to notice the difference between a graph, that is an abstract structure corresponding to
a relationship among objects, and its drawing, that is a graphical representation of the
graph.

A drawing is planar if no two edges intersect except, possibly, at their common
end-points. A planar graph is a graph admitting a planar drawing. Planar graphs
are probably the most studied class of graphs in Graph Theory, and surely the most
studied class of graphs in Graph Drawing. In fact, a planar drawing of a graph provides
extremely high readability of the combinatorial structure of the graph [PCJ97, Pur00].
See Figure 1.1 for a comparison between a non-planar and a planar drawing of the
same graph.

A planar drawing of a graph induces a circular ordering, called the rotation scheme
(or equivalently combinatorial embedding) of the edges incident to each vertex. A
planar drawing, or equivalently a rotation scheme, of a graph partitions the plane into
topologically connected regions called faces. A vertex (an edge) is incident to a face
f if it belongs to sequence of vertices (edges) delimiting f . All the faces are bounded,
except for one face, that we call outer face (or external face). The other faces are called
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(a)

bt

(b)

Figure 1.1: A non-planar (a) and a planar (b) drawing of the same graph.

internal faces. A vertex that is not incident to the extenral face is an internal vertex.
Two planar drawings of a graph are equivalent if they induce the same rotation scheme
and have the same outer face. A planar embedding of a graph is a class of equivalence
of its drawings. A plane graph is a graph with a fixed planar embedding. All the planar
drawings of a plane graphs are equivalent, while two drawings of the same graph
in two different embeddings are not equivalent (see Figure 1.2). A combinatorial
embedding is a class of equivalence of planar embeddings of a graph. Let G be a
plane graph and let v be a vertex of G. Let also u and w be two neighbors of v in G.
We say that u and w are consecutive neighbors of v in G if edges (v, u) and (v, w)
are consecutive in the rotation scheme of v in G.

A plane graph is maximal (or equivalently is internally triangulated) if all its in-
ternal faces are delimited by cycles of three vertices. A planar graph is maximal (or,
equivavalently, is a triangulation) if all its faces are bounded by cycles of three ver-
tices. A triangulation is maximal in the sense that adding an edge to it yields a non-
planar graph. Maximal planar graphs are an important and deeply studied class of
planar graphs since any planar graph can be augmented to maximal by adding dummy
edges to it and since triangulations, as the triconnected planar graphs, admit exactly
one combinatorial embedding and hence are often easier to deal with.

The dual graph of a combinatorially embedded planar graph G has a vertex for
each face of G and an edge (f, g) for each two faces f and g of G sharing an edge.
Figure 1.3 shows an embedded planar graph and its dual graph. The dual graph of
G only depends on the combinatorial embedding of G and not on the choice of the
external face.

From the combinatorial and topological point of view, the first important result
about planar graphs is the characterization given by Kuratowski [Kur30] in 1930,
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Figure 1.2: Four drawings of the same planar graph G. Drawings (a) and (b) are
equivalent, as in both drawings the graph has the same combinatorial embedding and
the same outer face; (c) has the same combinatorial embedding but a different external
face with respect to the preceding drawings; and (d) depicts the graph in a different
combinatorial embedding.

Figure 1.3: A planar graph, whose vertices are drawn as black disks and whose edges
are drawn as solid segments, and its dual graph, whose vertices are represented by
white circles and whose edges are represented by dashed lines.

stating that a graph is planar if and only if it contains no subdivision of the complete
graph K5 with five vertices and no subdivision of the complete bipartite graph K3,3

with three vertices in each of the sets of the bipartition. Such a characterization has
been extended by Wagner, who stated that a graph is planar if and only if it contains
no K5-minor and no K3,3-minor [Wag37].
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The planarity of a graph can be tested in linear time, as first shown by Hopcroft
and Tarjan [HT74] in 1974. Linear-time algorithms for testing the planarity of a graph
are also presented, e.g., in [BL76, ET76, dR82, BM04, dFOdM12, HT08]. Also, such
testing algorithms can be suitably modified in order to compute planar embeddings
if the test yields a positive result. If an embedding of a graph is fixed, then linear
time still suffices to test if the embedding is planar [Kir88]. The fact that the planarity
testing, so as many other problems on planar graphs, can be solved in linear time
is due to another important mathematical property of planar graphs, stating that the
number of edges of a planar graph is linear in the number of its vertices. Namely, by
the Euler’s formula, we have m ≤ 3n − 6, where m is the number of edges, in any
n-vertex planar graph.

1.3 Families of Planar Graphs

In this section we characterize some notable subclasses of planar graphs we will deal
with in the remainder of this thesis.

A cycle is a connected graph such that each vertex has degree exactly two (see
Figure 1.4(a)). A tree is a connected acyclic (i.e., not containing any cycle) graph (see
Figure 1.4(b)). A path is a tree such that each vertex has degree at most two. A chord
of a cycle (of a path) is an edge connecting two non-consecutive vertices of the cycle
(of the path) (see Figure 1.4(c)). A leaf of a tree is a vertex of degree one. A leaf edge
is an edge incident to a leaf.

A rooted tree is a tree with one distinguished vertex, called root. In a rooted
tree, the depth of a vertex v is the length of the unique path (i.e., the number of
edges composing the path) between v and the root. The depth of a rooted tree is the
maximum depth among all the vertices.

A binary tree (a ternary tree) is a rooted tree such that each vertex has at most two
(three) children. A tree is ordered if an order of the children of each vertex (i.e., a
planar embedding) is specified. In an ordered binary tree we distinguish the left and
the right child of a vertex. The subtrees of a vertex u of a tree T are the subtrees of T
rooted at u and not containing the root of T .

An outerplanar graph is a graph admitting an outerplanar embedding, that is, a
planar embedding in which all the vertices are incident to the outer face. An outer-
planar graph, together with an outerplanar embedding is called an outerplane graph.
An outerplanar graph is maximal if all bounded faces are delimited by cycles of three
vertices. From a combinatorial point of view, an outerplanar graph is a graph that con-
tains no K4-minor and no K2,3-minor (see Figure 1.5(a)). Also, outerplanar graphs
have at most 2n− 3 edges. Note that trees and cycles are outerplane graphs.
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(a)

r

(b)

(c) (d)

Figure 1.4: (a) A cycle. (b) A tree rooted at a vertex r. (c) A path. (d) An outerplane
graph.

A series-parallel graph is inductively defined as follows. An edge (u, v) is a
series-parallel graph with poles u and v. Denote by ui and vi the poles of a series-
parallel graph Gi. A series composition of a sequence G1, . . . , Gk of series-parallel
graphs, with k ≥ 2, is a series-parallel graph with poles u = u1 and v = vk such
that vi and ui+1 have been identified, for each i = 1, . . . , k − 1 (see Figure 1.5(b)).
A parallel composition of a set G1, . . . , Gk of series-parallel graphs, with k ≥ 2, is
a series-parallel graph with poles u = u1 = · · · = uk and v = v1 = · · · = vk
(see Figure 1.5 (c)). From a combinatorial point of view, a series-parallel graph is
a graph that contains no K4-minor. If follows that any (connected) subgraph of a
series-parallel graph is a series-parallel graph. Observe that outerplanar graphs are
series-parallel graphs.

A graph G is a k-tree if it can be generated by a sequential addition of vertices (and
their incident edges) in an order v1, . . . , vn such that, for each i > k, vertex vi has ex-
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u

v

(a)

u = u1

v1 = u2

v2 = u3

v3 = u4

v = v4

(b)

u

v

(c)

Figure 1.5: Figure 1.5(a) A series-parallel graph. Poles u and v are drawn as white cir-
cles. Figure 1.5(b) A series composition of a sequence of four series-parallel graphs.
Figure 1.5(c) A parallel composition of a set G1, G2, . . . , Gk of series-parallel graphs.

actly k predecessors (i.e, neighbors with smaller index) and they form a clique (i.e, the
subgraph of G induced by the predecessors of vi is the complete graph Kk). A partial
k-tree is a subgraph of a k-tree and have treewidth (i.e., the size of the largest clique
in the graph) bounded by a constant. Partial k-trees received large attention since, as
their treewidth is bounded by a constant, they allow for solving in polynomial time
problems that are otherwise NP-hard ([AP89, CR05]). Trees coincide with 1-trees,
while series-parallel graphs coincide with 2-trees. Planar 3-trees, also referred as
stacked triangulations or Apollonian graphs, are special types of planar triangulations
which can be generated from a triangle by a sequential addition of vertices of degree
3 inside faces. Namely, planar 3-trees can be inductively defined as follows:

• The complete graph K3 on three vertices is a planar 3-tree.

• Let G be a planar 3-tree with n vertices and let a, b, and c be three vertices
bounding a face of G. The graph G′ obtained by adding vertex v and edges
(a, v), (b, v), and (c, v) is a planar 3-tree with n+ 1 vertices.

A graph G with n ≥ 4 vertices is a wheel if it consists of a simple cycle C =
(v1, . . . , nn−1) on (n− 1) vertices and the remaining vertex v is connected to all the
vertices of C. Wheels are triconnected graphs. The complete graph on four vertices
K4 is a wheel on four vertices.
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1.4 Drawing Conventions and Æsthetic Criteria

Planarity is commonly accepted as the most important aesthetic criteria a drawing
should satisfy to be nice and readable. In fact, the absence of partial or complete
overlapping among the vertices makes the drawing aesthetically pleasant and easily
readable by the human eye, and provides extremely high readability of the combina-
torial structure of the graph, as confirmed by some cognitive experiments in graph
visualization [PCJ97, Pur00, PCA02, WPCM02].

However, the great importance of planar graphs, so in Graph Drawing as in Graph
Theory and Computational Geometry in general, also comes from the many mathe-
matical, combinatorial, and geometrical properties they exhibit.

In the following, we describe the most used drawing conventions and discuss some
æsthetic criteria that characterize a good drawing of a graph.

1.4.1 Drawing Conventions

When aiming at high readability of a drawing, another important issue that has to
be considered concerns the geometrical representation of the edges and of the faces.
Namely, planar drawings in which edges are represented by straight-line segments
(known as straight-line drawings, see Figures 1.6(a) and 1.6(c)) happen to be more
readable than drawings in which edges are represented by poly-lines (known as poly-
line drawings, see Figure 1.6(b)) or general curves, and drawings in which faces are
drawn as convex polygons (known as convex drawings, see Figure 1.6(c)) are more
readable than drawings in which this is not the case (see Figure 1.6). Among the
more used and studied drawing conventions, we also mention orthogonal drawings,
in which each edge is represented by a sequence of horizontal and vertical segments.

Other drawing conventions that are worth to mention are the grid drawings, in
which vertices and bends have integer coordinates, upward drawings of digraphs, in
which each edge is represented by a curve monotonically-increasing in the upward
direction, and proximity drawings, in which given a definition of proximity, the prox-
imity graph of a set of points is the graph with a vertex for each point of the set, and
with an edge between two vertices if the corresponding points satisfy the proximity
property. Then, a proximity drawing of a graph G is a drawing D of G such that the
proximity graph of the set of points on which the vertices of G are drawn in D co-
incides with G itself. An example of proximity graphs is the Delaunay triangulation
for a set P of points in the plane, that is, a triangulation T such that no point in P is
inside the circumscribed circle of any triangle in T .

The most studied and used drawing convention is the one of straight-line draw-
ings. Of course such a convention is much more restrictive than the one in which
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(a) (b) (c)

Figure 1.6: (a) A straight-line planar drawing of a planar graph G. (b) A poly-line
planar drawing of G. (c) A convex drawing of G.

edges can have bends, and hence many results that hold for poly-line drawings do
not hold for straight-line drawings. However, regarding planarity, this is not the case.
Indeed, a very important result, known as Fary’s theorem and independently proved
by Wagner [Wag36], by Fary [Fár48], and by Stein [Ste51], states that a graph admits
a straight-line planar drawing if and only if it admits a planar drawing. This result
shows that planarity does not depend on the geometry used for representing the edges
but it only depends on the topological properties of the graph.

Other drawing conventions that we consider in this thesis are monotone and or-
thogonal drawings. A drawing of a graph is a monotone drawing if for every pair of
vertices u and v there is a path drawn from u to v that is monotone in some direction.
In other words, a drawing is monotone if, for any given direction d (e.g., from left
to right) and for each pair of vertices u and v, there exists a suitable rotation of the
drawing for which a path from u to v becomes monotone in the direction d. Monotone
drawings will be discussed in depth in Chapter 9. In orthogonal drawing, edges are
represented as poly-lines composed of horizontal and vertical segments. Orthogonal
drawings will be discussed and extended in Chapter 10.

1.4.2 Æsthetic Criteria

Some aesthetic criteria can be defined to measure the quality of a drawing. Among
them, one of the most important is certainly the area occupied by the drawing, that
is, the area of the smallest rectangle with sides parallel to the coordinate axes that
contains all the drawing. Of course, small area drawings can not be obtained by sim-
ply scaling down the drawing, since some resolution rules have to be respected in the
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drawing for maintaining readability. In particular, a minimum distance, say one unit,
between two elements (vertices and edges) of the drawing has to be maintained. In
order to respect some of such rules, when dealing with area minimization problems,
vertices are usually placed on an integer grid, in such a way that the minimum dis-
tance between any two of them is at least one grid unit. In this direction, it has been
shown in several papers that every n-vertex plane graph admits a planar straight-line
drawing on a O(n2) area grid [dPP88, dPP90, Sch90, CN98, ZH03, BFM07]. Fur-
ther, a grid of quadratic size is asymptotically the best possible for straight-line planar
drawings, since there exist planar graphs requiring such an area in any planar grid
drawing [Val81, dPP90, FP08].



i
i

“thesis” — 2014/4/29 — 19:08 — page 18 — #30 i
i

i
i

i
i



i
i

“thesis” — 2014/4/29 — 19:08 — page 19 — #31 i
i

i
i

i
i

Chapter 2

Data Structures for Decomposing
Planar Graphs

In order to describe and efficiently handle the decomposition of a connected graph into
biconnected components and of a biconnected graph into triconnected components,
some efficient data structures have been defined. In this chapter we present two such
data structures, namely block-butvertex trees (bc-trees) (Section 2.1) and SPQR-trees
(Section 2.2).

2.1 Block-Cutvertex Trees

The data structure that can be used to describe the decomposition of a connected
graph into its biconnected components, called block-cutvertex tree (usually referred
to as BC-tree), was introduced by Harary and Prins [HP66]. The BC-tree T of a
connected graph G is a tree containing a B-node for each block of G and a C-node
for each cutvertex of G. Edges in T connect each B-node µ to the C-nodes associated
with the cutvertices belonging to the block of µ. The BC-tree of G may be thought
as rooted at a specific block ν. The number of nodes of T is equal to the number of
blocks plus the number of cutvertices, that is O(n), where n is the number of vertices
of G. Figure 2.1 shows a connected planar graph and its block-cutvertex tree, rooted
at a block B1.

19
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B1 B2
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B8

B9

B10

(b)

Figure 2.1: (a) A connected planar graph and (b) its block-cutvertex tree, rooted at
B1.

2.2 SPQR-trees

The data structure that can be used to describe the decomposition of a biconnected
graph into its triconnected components, called SPQR-tree, was introduced by Di Bat-
tista and Tamassia [DT90, DT96b, DT96a]. In this section we define SPQR-trees, we
give their main properties, and we describe how such trees can be used to represent
and efficiently handle all the embeddings of a planar biconnected graph.

In order to introduce SPQR-trees, we first give some definitions that will be use-
ful in the following. A graph is st-biconnectible if adding edge (s, t) to it yields a
biconnected graph. Let G be an st-biconnectible graph. A split pair {u, v} of G is
either a separation pair or a pair of adjacent vertices. A maximal split component of
G with respect to a split pair {u, v} (or, simply, a maximal split component of {u, v})
is either an edge (u, v) or a maximal subgraph G′ of G such that G′ contains u and v,
and {u, v} is not a split pair of G′. A vertex w ̸= u, v belongs to exactly one maximal
split component of {u, v}. We call split component of {u, v} the union of any number
of maximal split components of {u, v}.

Di Battista and Tamassia [DT96b] introduced SPQR-trees as rooted at one edge
of G, called reference edge. However, SPQR-trees can also be viewed as unrooted
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since a decomposition starting from a different reference edge would yield a tree with
the same structure. Here, in order to simplify the description of the construction of
SPQR-trees, we only describe them as rooted trees.

Rooted SPQR-Trees

The rooted SPQR-tree Te of a biconnected graph G, with respect to a reference edge
e, describes a recursive decomposition of G induced by its split pairs. The nodes of
Te are of four types: S, P, Q, and R. Their connections are called arcs, in order to
distinguish them from the edges of G.

Each node µ of Te has an associated st-biconnectible multigraph, called the skele-
ton of µ and denoted by skel(µ). The skeleton skel(µ) shows how the children of
µ, represented by “virtual edges”, are arranged into µ. The virtual edge in skel(µ)
associated with a child node ν of µ, is called the virtual edge of ν in skel(µ).

For each virtual edge ei of skel(µ), recursively replace ei with the skeleton skel(µi)
of its corresponding child µi. The subgraph of G that is obtained in this way is the
pertinent graph of µ and is denoted by pert(µ).

Given a biconnected graph G and a reference edge e = (u′, v′), tree Te is recur-
sively defined as follows. At each step, a split component G∗, a pair of vertices {u, v},
and a node ν in Te are given. A node µ corresponding to G∗ is introduced in Te and
attached to its parent ν. Vertices u and v are the poles of µ and denoted by u(µ) and
v(µ), respectively. The decomposition possibly recurs on some split components of
G∗. At the beginning of the decomposition G∗ = G − {e}, {u, v} = {u′, v′}, and ν
is a Q-node corresponding to e.

Base Case: If G∗ consists of exactly one edge between u and v, then µ is a Q-node
whose skeleton is G∗ itself.

Parallel Case: If G∗ is composed of at least two maximal split components G1, . . . , Gk

(k ≥ 2) of G with respect to {u, v}, then µ is a P-node. Graph skel(µ)
consists of k parallel virtual edges between u and v, denoted by e1, . . . , ek
and corresponding to G1, . . . , Gk, respectively. The decomposition recurs on
G1, . . . , Gk, with {u, v} as pair of vertices for every graph, and with µ as parent
node.

Series Case: If G∗ is composed of exactly one maximal split component of G with
respect to {u, v} and if G∗ has cutvertices c1, . . . , ck−1 (k ≥ 2), appearing in
this order on a path from u to v, then µ is an S-node. Graph skel(µ) is the path
e1, . . . , ek, where virtual edge ei connects ci−1 with ci (i = 2, . . . , k − 1), e1
connects u with c1, and ek connects ck−1 with v. The decomposition recurs
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on the split components corresponding to each of e1, e2, . . . , ek−1, ek with µ as
parent node, and with {u, c1}, {c1, c2}, . . . , {ck−2, ck−1}, {ck−1, v} as pair of
vertices, respectively.

Rigid Case: If none of the above cases applies, the purpose of the decomposition step
is that of partitioning G∗ into the minimum number of split components and
recurring on each of them. We need some further definition. Given a maximal
split component G′ of a split pair {s, t} of G∗, a vertex w ∈ G′ properly belongs
to G′ if w ̸= s, t. Given a split pair {s, t} of G∗, a maximal split component
G′ of {s, t} is internal if neither u nor v (the poles of G∗) properly belongs
to G′, external otherwise. A maximal split pair {s, t} of G∗ is a split pair of G∗

that is not contained into an internal maximal split component of any other split
pair {s′, t′} of G∗. Let {u1, v1}, . . . , {uk, vk} be the maximal split pairs of G∗

(k ≥ 1) and, for i = 1, . . . , k, let Gi be the union of all the internal maximal
split components of {ui, vi}. Observe that each vertex of G∗ either properly
belongs to exactly one Gi or belongs to some maximal split pair {ui, vi}. Node
µ is an R-node. Graph skel(µ) is the graph obtained from G∗ by replacing each
subgraph Gi with the virtual edge ei between ui and vi. The decomposition
recurs on each Gi with µ as parent node and with {ui, vi} as pair of vertices.

For each node µ of Te, we add to skel(µ) the virtual edge (u, v) representing
the parent of µ in Te. We say that an edge e′ of G projects to a virtual edge e′′ of
skel(µ), for some node µ in Te, if e′ belongs to the pertinent graph of the node of Te
corresponding to e′′. Figure 2.2 depicts a biconnected planar graph and its SPQR-tree.

Property 2.1 Let C be a cycle of G and let µ be any node of Te. Then, either the
edges of C belong to a single virtual edge of skel(µ), or they belong to a set of virtual
edges that induce a cycle in skel(µ).

The SPQR-tree Te of a graph G with n vertices and m edges has m Q-nodes
and O(n) S-, P-, and R-nodes. Also, the total number of vertices of the skeletons
stored at the nodes of Te is O(n). Finally, SPQR-trees can be constructed and handled
efficiently. Namely, given a biconnected planar graph G and an edge e of G, the
SPQR-tree Te of G with respect to e can be computed in linear time [GM01].

2.2.1 Drawing Plane Decomposed Graphs

In the following we give a description of how a straight-line planar drawing Γ, satisfy-
ing certain properties, of a plane (biconnected) graph G can be computed by exploiting
its SPQR-tree Te rooted at edge e.
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Figure 2.2: (a) A biconnected planar graph and (b) its SPQR-tree, rooted at any Q-
node adjacent to the R-node whose internal vertices are black. The skeletons of the
internal R-nodes of the tree are represented inside the boxes. The virtual edge repre-
senting the parent of a node µ in the skeleton of µ is drawn as a dashed line.

The drawing Γ is computed by assigning a region to each node µ of Te and
by suitably drawing the pertinent pert(µ) of µ inside such a region. The regions
assigned to the nodes of Te have been introduced in [ACD+12] and [ADK+13],
and are of three types: Left boomerangs, right boomerangs, and diamonds. A left
boomerang is a quadrilateral with vertices N,E, S, and W such that E is inside tri-
angle △(N,S,W ), where |NE| = |SE| and |NW | = |SW | (see Figure 2.3(a)). A
right boomerang is defined symmetrically, with E playing the role of W , and vice
versa (see Figure 2.3(b)). A diamond is a convex quadrilateral with vertices N,E, S,
and W , where |NW | = |NE| = |SW | = |SE|. Observe that a diamond con-
tains a left boomerang Nl, El, Sl,Wl and a right boomerang Nr, Er, Sr,Wr, where
S = Sl = Sr, N = Nl = Nr, W = Wl, and E = Er (see Figure 2.3(c)).

We assign boomerangs (either left or right, depending on the embedding of G) to
S- and R-nodes, and diamonds to P- and Q-nodes. Drawing Γ is obtained by means
of a top-down traversal of Te (Figures 2.3(d) and 2.3(e)), as follows.

At the first step, consider the unique child µ of the root ρ of Te and observe that,
by construction, µ cannot be a Q-node. If µ is a P-node, assign a diamond to µ.
Otherwise, µ is an R-node or an S-node. In this case, assign a boomerang (either left
or right, depending on the embedding of G) to µ.

At each further step, consider a node µ of Te and the region R (either a left/right
boomerang or a diamond, depending on the type of µ and the embedding of G) as-
signed to it by the previous step of the algorithm. Construct a straight-line planar
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Figure 2.3: (a) A left boomerang. (b) A right boomerang. (c) A diamond. (d) Dia-
monds inside a boomerang. (e) Boomerangs (and a diamond) inside a diamond.

drawing of skel(µ) in a suitable fashion that depends on the required properties of Γ
in the interior of R in such a way that the poles of µ lie on points N and S of R, ac-
cording to the structure of G. Then, for each virtual edge ei = (ui, vi), corresponding
to a child µi of µ in Te, assign a region Ri (either a left/right boomerang or a diamond,
depending on the type of µi and the embedding of G) to µi, in such a way that:

• ui and vi lie on points Ni and Si of Ri;

• Ri is entirely contained in R; and

• Ri does not overlap (except possibly at points Ni and Si) with any region Rj

assigned to a child µj of µ, with j ̸= i.

Then, recursively apply such a procedure to all the children of µ.
At the end of the recursive process, draw the edge e corresponding to the root ρ of

Te as a straight-line segment. Observe that, by construction and by the fact that e is
the unique edge between its endvertices, the resulting drawing Γ is planar.
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Morphing Planar Graph Drawings
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Chapter 3

State of the Art

Given two straight-line planar drawings of a plane graph, a planar morph is a continu-
ous transformation of the first drawing in which vertices move at uniform speed along
straight-line trajectories and planarity is preserved at any time during the transforma-
tion.

In this chapter we give an overview of the main works about morphing planar
graph drawings. We focus on Cairns’s result, since a similar recursive approach is
applied in the algorithms described in Chapters 5 and 7.

3.1 Background

Even before that most of the well-known graph drawing concepts were formalized, the
problem of proving whether two drawings of the same geometric object can be trans-
formed one into the other without introducing any crossings arose among researchers.

To the best of our knowledge, this problem has first been studied by Tietze in 1914,
who proved that two planar drawings of a polygon can be transformed into each other
without introducing any crossings [Tie14]. Three years later, Smith [Smi17] simpli-
fied Tietze’s proof. Also, after Steinitz [Ste16] proved that every convex polyhedron
forms a triconnected planar graph, and every triconnected planar graph can be repre-
sented as the graph of a convex polyhedron, Veblen [Veb17] and Alexander [Ale23]
independently extended Tietze’s result to internally triconnected graphs.

In 1944 Cairns [Cai44a] focused on maximal plane graphs and gave the first al-
gorithm for computing a morph of two straight-line planar drawings of such graphs
by contracting a particular vertex and recursively computing a morph of the obtained
(smaller) graph. Although Cairns’s algorithm requires a number of steps that is expo-

27
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nential in the size of the input graph, it is considered a milestone in the study of this
problem as it had a great impact on the approaches used to tackle the problem in the
years to come. A complete description of Cairns’s algorithm is given in Sections 3.2
and 3.3.

Following this breakthrough, Bing and Starbird [BS78a, BS78b] and Ho [Ho73a,
Ho73b, Ho74, Ho75], independently extended Cairns’s result in several settings in
which the outer face of the graph is delimited by a convex polygon which remains
fixed durign the transformation. The main idea behind these papers is that any two
drawings of the same plane graph can be augmented to represent two drawings of the
same internally triconnected graph.

In 1983, Thomassen [Tho83] adopted a setting defined by Grünbaum and Shep-
ard [GS81], i.e., in both drawings each face is delimited by a convex polygon, and, by
using a contraction argument similar to Cairns’s, he proved the existence of a morph
in which such convexity is maintained at any time.

Unfortunately, both Cairns’s and Thomassen’s approaches require an exponential
number of steps, as they exploit a double-recursion approach and do not take into
account the trajectories of contracted vertices.

In order to find an effective approach for solving the problem in the general
setting, researchers decided then to focus on simpler classes of graphs or to relax
some constraints. Simple polygons and trees represented then a natural input. Kent,
Carlson, and Parent [KCP92], Sederberg and Greenwood [SG92], and Guibas and
Hershberger [GH94], proposed the firsts algorithms for computing morphs of poly-
gon in a polynomial number of steps. These results have been later improved to
O(n log n) in a paper by Hershberger and Suri [HS95], in which the authors prove
that the same number of steps suffices also for binary trees. Other works on mor-
phing simple polygons, some of them taking into account also additional constraints
are [BSW97, NMWB08, AAD+11].

Due to their structural properties, the next natural step was that of proving that a
polynomial number of linear morphing steps suffices to transform drawings of plane
orthogonal graphs, possibly maintaining edge orientations (as conjectured by Robin-
son [Rob81] considering a setting defined by Cairns [Cai44b]). The existence of a
planar morph with such properties was already proved by Thomassen [Tho83]. In this
setting, it has been proven [BLS05, LPS06, Spr07, BLPS13] that if there are more
than two edge directions, then the problem of finding a morph preserving such direc-
tions is NP-hard, while for orthogonal drawings of plane graphs a polynomial number
of steps is sufficient.

By allowing poly-line intermediate drawings, that is, “bending” the edges of the
graph during the transformation, Lubiw and Petrick [LP11] found the first algorithm
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requiring a polynomial number of moves, namely O(n6), coping with general plane
graphs.

Focusing back on the original setting, the first algorithms for computing planar lin-
ear morphs in O(n) moves for simple classes of graphs as paths, outerplane graphs,
and plane 3-trees have been proposed in [Ros10]. Following Cairns’s approach, Alam-
dari et al. [AAC+13] gave the first algorithm for morphing straight-line planar draw-
ings of plane graphs that requires a polynomial number, namely O(n4), of moves. A
few months later, Barrera-Cruz et al. [BHL13] gave a simpler technique for computing
the motion of contracted vertices.

In this thesis we give an algorithm for morphing drawings of plane series-parallel
graphs in a linear number of moves (see Chapter 5), show that Ω(n) moves are some-
times necessary (see Chapter 6), and improve to O(n2) the result by Alamdari et al.
(see Chapter 7). After writing this thesis, we improved the upper bound on the number
of moves to O(n), thus obtaining an asymptotically optimal algorithm [ADD+14].

This problem has been studied by Angelini et al. [ACDP08, ACDP13] also in a
purely topological setting. Namely, the authors study how two planar embeddings of
the same biconnected graph can be morphed one into the other while minimizing the
number of elementary changes.

Due to its strict relation with computer graphics animation, this problem has been
studied also in the setting in which vertices can move along non-linear trajectories.
The most popular approach, in this setting, is based on Tutte’s algorithm to construct
planar drawings of plane triconnected graphs [Tut63], in which the vertices lying on
the outer face induce a convex polygon and internal vertices are placed in the barycen-
ter of the polygon induced by their neighbors. Floater and Gotsman [FG99] and Gots-
man and Surazhsky [GS01] proved, for convex drawings of triconnected graphs, that
expressing the position of each internal vertex as a convex combination of the posi-
tions of its neighbors and linearly interpolating the weights of this combination be-
tween the values computed in the two input drawings yields a planar morph. Surazh-
sky and Gotsman [SG01, SG03] later extended this approach to triangulations and
plane graphs. In this setting the main target consists in minimizing the motion of
vertices having the same position in the two drawings and, when applied in com-
puter graphics, the distortion introduced in intermediate drawings, hence the function
used to compute the weights that are interpolated during the animation has a relevant
role. During the years, many types of coordinates for expressing the positions of in-
ternal vertices have been defined, some examples are [CGC+02, MBLD02, Flo03,
CdVPV03, FKR05, IMH05, JMD+07].

Finally, some tools implementing graph-morphing algorithms have been presented
in [FE02, EKP03, KL08].
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3.2 Overview of Cairns’s Algorithm

The algorithm proposed by Cairns [Cai44a] is a recursive process where the morph of
an n-vertex maximal plane graph is reduced to two morphs of two suitable (n − 1)-
vertex maximal plane graphs, as follows.

O(1)

O(1)

O(1)

in general v′ 6= v
′′

⇒ ⇒

contract v on v
′ contract v on v

′′

recursion recursion

Figure 3.1: Overview of Cairns’s Algorithm

Let Γs and Γt be two drawings of a maximal plane graph G with n vertices such
that each of the three vertices on the outer face has the same position in both drawings,
and let v be an internal vertex of G with at most five neighbors, see Figure 3.1.

First, v is removed from Γs and Γt and the resulting faces, which in general are
not convex, are triangulated in Γs and Γt. This can be done by adding dummy edges
incident to a neighbor vs (vt) of v lying on the boundary of the kernel of v in Γs (in
Γt, respectively). Observe that, in general, vs ̸= vt. Hence, two planar drawings Γσ

and Γτ of two graphs Gσ and Gτ with n− 1 vertices are obtained.
Second, a drawing Γv of G is constructed such that: (i) both vs and vt lie on the

boundary of the kernel of v (for example, the polygon P induced by the neighbors of
v in Γv is convex), and (ii) v lies in the centroid of its kernel. New drawings Γv

σ of Gσ

and Γv
τ of Gτ are constructed from Γv by removing v and adding the missing edges

inside the polygon P , which is always possible since both vs and vt have visibility on
all the vertices of P in Γv, as (by construction) both vs and vt lie on the boundary of
the kernel of v in Γv.

Cairns’s algorithm is based on the observation that, starting from a morph in k
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steps of Gσ from Γσ to Γv
σ and from a morph in h steps of Gτ from Γv

τ to Γτ computed
inductively, it is possible to construct a pseudomorph in k+ h+2 steps of G from Γs

to Γt, as follows.
The first step is used to “contract” v onto vs. The subsequent k steps are the same

as those of the morph of Gσ from Γσ to Γv
σ , with v moving in accordance with its

neighbors.
Since both Γv

σ and Γv
τ have been obtained from the same drawing Γv , the neighbors

of v have the same positions (and hence the cycle they induce is represented by the
same polygon) in both drawings, vertex v can be ideally “uncontracted” from vs and
“contracted” with no additional morphing steps. In Section 3.3, we will show that the
technique used to find a suitable position for v allows to reintroduce v in both Γv

σ and
Γv
τ in such a way that it has the same position in both drawings.

Then, the subsequent h steps are the same as those of the morph of Gτ from Γv
τ

to Γτ , with v moving in accordance to its neighbors. Finally, the last step is used to
“uncontract” v from vt and to place it in its position in Γt.

Actually, in order to avoid vertex overlapping during the morph, Cairns suggests
to place v in the centroid of the kernel of the polygon induced by its neighbors (instead
of collapsing it onto vs and vt) and to keep it in the centroid of such a varying kernel.

However, in Section 3.4 we show that this approach might lead to non-linear mo-
tion of some vertices during a single move, hence requiring several intermediate planar
linear morphing steps.

3.3 Detailed Description of Cairns’s Algorithm

This section is devoted to describe in depth Algorithm Cairns Morph, that is the
algorithm proposed by Cairns for morphing a planar straight-line drawing Γs of a
maximal plane graph G into another planar straight-line drawing of G. We sketch
Algorithm Cairns Morph in the following.

Let Γs and Γt be two drawings of the same maximal plane graph G such that
the vertices incident to the external face have the same positions in both drawings.
Algorithm Cairns Morph recursively computes a morph of Γs into Γt as follows.

Since, by hypothesis, the three vertices incident to the external face have the same
positions in both drawings, if G has no internal vertices, then there is nothing to do.

So assume that G has at least an internal vertex. By Lemma 4.7, G has an internal
vertex v such that deg(v) ≤ 5 (actually, in the lemma it is required that v is a candidate
vertex, that is a stronger condition). Also, by Lemma 4.3, in any drawing Γ of G a
neighbor x of v can be found such that x lies on the boundary of the kernel of v in Γ.
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Algorithm Cairns Morph

Require: Γs and Γt are two planar drawings of a maximal plane graph G;
Γs and Γt have the same bounding polygon

/* Initialize the morphing sequence */

1. M ← ∅
/* --------------------- Base Case ---------------------*/

2. if G has no internal vertices then
3. return M

/* ------------------- Recursive Step -------------------*/

4. v ← internal vertex of G such that deg(v) ≤ 5
5. vs ← neighbor of v on the boundary of the kernel of v in Γs

6. vt ← neighbor of v on the boundary of the kernel of v in Γt

7. Γv ← drawing of G such that:
(i) vs and vt are in the kernel of v, and
(ii) v lies in the centroid of its kernel

/* Apply contractions */

8. Gσ = G/(vs)← contract v onto vs in G
9. Gτ = G/(vt)← contract v onto vt in G

10. Γσ = Γs/(v, vs)← contract v onto vs in Γs /* it’s a drawing of Gσ */

11. Γτ = Γt/(v, vt)← contract v onto vs in Γt /* it’s a drawing of Gτ */

12. Γv
σ = Γv/(v, vs)← contract v onto vs in Γv /* it’s a drawing of Gσ */

13. Γv
τ = Γv/(v, vt)← contract v onto vs in Γv /* it’s a drawing of Gτ */

/* Recursive calls */

14. Mσ ← Cairns Morph(Γσ,Γ
v
σ)

15. Mτ ← Cairns Morph(Γv
τ ,Γτ )

/* Extend morphs Mσ and Mτ to two morphs of G */

16. Ms ← remove contraction edges and reintroduce v in each drawing ofMσ

17. Mt ← remove contraction edges and reintroduce v in each drawing of Mτ /*
Construct the actual morph M = ⟨Γs,Ms,Mt,Γt⟩ */

18. M ← append(M, ⟨Γs⟩) /* M = ⟨Γs⟩ */

19. M ← append(M,Ms) /* M = ⟨Γs, . . . ,Γ
v⟩ */

20. M ← append(M,Mt)
21. M ← append(M, ⟨Γt⟩) /* M = ⟨Γs, . . . ,Γ

v, . . . ,Γt⟩ */

22. return M
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Let then vs and vt be two of the neighbors of v lying on the boundary of the kernel of
v in Γs and Γt, respectively (lines 5 and 6).

Let also Γv (line 7) be a drawing of G such that: (i) both vs and vt lie on the
boundary of the kernel of v at the same time, e.g. the polygon P induced in Γv by the
neighbors of v is convex; and (ii) v lies in the centroid of its kernel. Observe that P
has not necessarily to be convex and that in some cases it cannot be drawn as a convex
polygon, i.e. if an edge connecting two non-consecutive neighbors of v exists in G
(see Figure 3.2).

v

a

b
c

d

e

Figure 3.2: Polygon ⟨a, b, c, d, e⟩ does not admit a convex drawing because of the
external chord (a, d), drawn as a dashed segment.

In such a case, Cairns suggests to draw P “as convex as possible”. Namely, the
polygon obtained from P together with its external chords is drawn convex (see Fig-
ure 3.3). Note that the vertices connected by external chords cannot, in any case, lie
on the boundary of the kernel of v, hence vertex v will never be contracted onto such
vertices.

Since vs lies on the boundary of the kernel of v in both Γs and Γv, it can be
contracted onto vs. Let then Γσ and Γv

σ be the two drawings obtained by contracting
v onto vs in Γs and Γv , respectively. Analogously, let Γτ and Γv

τ be the two drawings
obtained by contracting v onto vt in Γt and Γv , respectively (see Figure 3.4).

Note that both Γσ and Γv
σ are drawings of the same graph Gσ = G/(v, vs), and the

algorithm recursively computes a morphMσ transforming Γσ into Γv
σ . Analogously,

both Γτ and Γv
τ are drawings of the same graph Gτ = G/(v, vt), and the algorithm

recursively computes a morphMτ transforming Γv
τ into Γτ .

In order to obtain the final morph M transforming Γs into Γt, Cairns suggests to
extend morphsMσ andMτ into two morphs Ms and Mt of G by first removing from
each drawing of the two morphs the edges added by the contraction of v onto vs and
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v

a

b

c

d

e

v

a

b

c

d

e

(a) (b)

Figure 3.3: (a) Polygon P = ⟨a, b, c, d, e⟩ has an external chord (a, d). (b) A drawing
“as convex as possible” of P : Polygon P ′ = ⟨a, b, c, d⟩, induced by P and its external
chord (a, d), is convex. Due to the external chord (a, b), P does not admit any drawing
in which a or d lie on the boundary of the kernel of v.

Γs Γt

↓ Γv ↓
↓ ↙ ↘ ↓

Γσ = Γs/(v, vs)
recursion−−−−→ Γv

σ = Γv/(v, vs) Γv
τ = Γv/(v, vt)

recursion−−−−→ Γτ = Γt/(v, vt)

Figure 3.4: Scheme of Algorithm Cairns Morph.

onto vt, respectively, and placing v in the centroid of its kernel in each drawing of the
two morphs.

Recall that each contraction is actually realized by moving the “contracted” vertex
v to the centroid of the polygon induced by its neighbors. By the “extension” tech-
nique described above, it follows that v lies in the centroid of its kernel in any drawing
of both Ms and Mt. Observe that the first drawing of Mt and the last drawing of Ms

are equal to Γv, as they are obtained by contracting v in such drawing. It follows
that no additional morphing step is required to concatenate Ms and Mt in the final
morph M .

Also, the contraction of v onto vt and its subsequent replacement with the motion
of v to the centroid of its kernel is actually used in the opposite sense during the
morph. Namely, in the last drawing of Mt every vertex, with the exception of v, has
the same position as the one it has in Γt. In fact, in the last drawing of Ms vertex v lies
in the centroid of its neighbors. Analogously, Γs and the first drawing of Ms differ
only for the position of v, which lies in the centroid of its kernel in the latter drawing.
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Finally, morph M = ⟨Γs, . . . ,Γt⟩ is obtained by the concatenation of Γs, Ms,
Mt, and Γt.

3.4 Discussion

In this section we show that the morph computed by Algorithm Cairns Morph
needs an exponential number of steps and that some vertices may move along non-
straight-line segments during such a morph.

3.4.1 Total Number of Moves

Let T (n) be the number of steps that compose M . The first and the last step of M
move v from its initial position to the centroid of the kernel of the polygon Ps induced
by its neighbors in Γs and from the centroid of its kernel in Γt to its final position,
respectively. Such operations are realized with a single morphing step each. The
remaining part of the morph is computed recursively on two smaller graphs and then
extended to two morphs Ms and Mt of G with no additional morphing steps. Each
of Ms and Mt needs T (n− 1) steps. The total number of steps needed by M is then
T (n) = 2T (n− 1) + 2, which gives T (n) = Θ(2n).

3.4.2 Possible Non-linear Trajectories

In order to avoid vertex overlapping during the morph, Cairns suggests to place v in
the centroid of its kernel (instead of collapsing it onto vs and vt) and to keep it in the
centroid of such a varying kernel. However, we observe that:

(i) since the corners of the kernel might move along curves that are not straight-
line, this could result in a non-linear movement of v (see Figure 3.5);

(ii) it might happen that the number of the corners of the kernel changes during the
morph (see Figure 3.6 for an example). This implies that, when the number of
corners of the kernel of v changes, the position of the centroid “jumps” (namely,
changes without continuity) from a point to another, thus originating a non-
linear morph.
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d′′ d′ d

ac

φ

φ′

φ′′

b

b′
b′′

s

s′

s′′

t t′ t′′

Figure 3.5: A linear morphing of polygon (a, b, c, d), with kernel a, t, c, s, snapshotted
in three instants. Corner s of a, t, c, s moves along a non-straight-line trajectory. As a
consequence, the centroid ϕ of a, t, c, s does not move along a straight-line.

bt

a

b

c

d
′

e

d

(a)

bt

a

b

c

d
′

e

(b)

Figure 3.6: The number of the vertices bounding the kernel of pentagon ⟨abcde⟩
changes during a single linear morphing step.
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Chapter 4

Geometric and Topological Tools for
Morphing Planar Graphs

In this chapter we give some definitions, tools and techniques that will be used to
compute morphs of planar graph drawings. The chapter is structured as follows. In
Section 4.1 we give some preliminary definitions about morphs and pseudo-morphs of
planar graph drawings. In Section 4.2 we characterize vertices that are “candidate” to
the contraction, which, in some cases, we use for reducing the size of the problem. In
Section 4.3 we describe how a drawing of a simply connected graph can be augmented
to a drawing of a biconnected graph by satisfying certain properties. In Section 4.5 we
describe a simple technique to morph two drawings of a triangle, while in Section 4.4
we introduce convex coordinates, which can be exploited to express the position of
points lying in the interior of a convex polygon with respect to its vertices. Finally, in
Section 4.6 we describe how a pseudo-morph of a plane graph can be extended to an
actual morph of the same graph.

4.1 Definitions

A (planar linear) morphing step ⟨Γ1,Γ2⟩, also referred to as linear morph or step,
of two straight-line planar drawings Γ1 and Γ2 of a plane graph G is a continuous
transformation of Γ1 into Γ2 such that:

• all the vertices simultaneously start moving from their positions in Γ1;

• each vertex moves at constant speed along a straight-line trajectory;

• all the vertices simultaneously stop at their positions in Γ2;

37
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• no crossing occurs between any two edges during the transformation; and

• no two vertices are mapped to the same point during the transformation.

A morph M = ⟨Γs, . . . ,Γt⟩ of two straight-line planar drawings Γs into Γt of a
plane graph G is a finite sequence of morphing steps that transforms Γs into Γt. A
morph is unidirectional if, at each step, all the vertices move along parallel straight-
line trajectories. Let H be any subgraph of G and let Ψs and Ψt be two drawings of
H obtained by restricting Γs and Γt, respectively, to the vertices and the edges of H .
Than a morph MH = ⟨Ψs, . . . ,Ψt⟩ can be obtained by restricting each intermediate
drawing of M to the vertices and the edges of H .

Let Γ be a planar straight-line drawing of a plane graph G. The kernel of a vertex
v of G in Γ is the open convex region of the plane such that: for each point p of the
region, placing v onto p while maintaining unchanged the position of any other vertex
of G yields a planar straight-line drawing of G. See Figure 4.1(a). Note that: (i) the
kernel of v in Γ is non-empty; (ii) v is the unique vertex of G lying in the interior of
its kernel; and (iii) the boundary of the kernel of v might not contain, in general, any
of the neighbors of v.

v

(a)

x ≡ v

(b)

v

x

(c)

Figure 4.1: (a) Kernel of a vertex v in a planar straight-line drawing of G. (b) Uncon-
traction kernel of v in a planar straight-line drawing Γ′ of G′ = G/(v, x). (c) Kernel
of v in a drawing Γ∗ of G obtained by uncontracting v from x in Γ′.

If a neighbor x of v lies on the boundary of the kernel of v in Γ, we say that v is
x-contractible. Further, we define the contraction of v onto x in Γ as the operation
resulting in:

(i) a simple plane graph G′ = G/(v, x) obtained from G by removing v and by re-
placing each edge (v, w), where w ̸= x, with an inherited edge (x,w) (possible
copies of the same edge are removed); and
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(ii) a planar straight-line drawing Γ′ of G′ such that each vertex different from v is
mapped to the same point as in Γ.

Note that, by the convexity of the kernel of v, the straight-line segment represent-
ing edge (v, x) entirely lies in the kernel of v, except for its endpoint x. It follows that
no crossing occurs if v moves towards x along this segment.

Consider a drawing Γ′′ of G′ = G/(v, x). We define the uncontraction of v from x
in Γ′′ as the operation resulting in a planar straight-line drawing Γ∗ of G such that each
vertex of G′ has in Γ∗ the same position as in Γ′′. Further, we define the uncontraction
kernel of v in Γ′′ as the open (convex) region of the plane where v can be placed when
performing the uncontraction from x. See Figure 4.1(b).

In Lemma 4.1 we prove that the uncontraction kernel of v in Γ′′ is always non-
empty and coincides with the kernel of v in Γ∗ (see Figure 4.1(c)).

Let y and z be two vertices of G such that y and v, and z and v are consecutive
neighbors of x in G (see Figure 4.2(a)). In G′ = G/(v, x) the inherited edges (x,w):

• appear between edges (x, y) and (x, z), namely, replace edge (x, v) of G in G′;

• are consecutive in the rotation scheme of x in G′; and

• appear in the same circular order as edges (v, w) appear in G (see Figure 4.2(b)).

x

y

z

v

(a)

x

y

z

(b)

Figure 4.2: (a) Since vertex x lies on the boundary of the kernel of v (grey region),
v is x-contractible. Vertices y, v, and z are consecutive neighbors of x. (b) After the
contraction of v onto x, the inherited edges of x replace edge (v, x) in the rotation
scheme of x.

Also, since vertex x is adjacent in G′ to all the neighbors of v in G, x lies on the
boundary of the uncontraction kernel of v in Γ′′, and hence on the boundary of the
kernel of v in Γ∗ (grey regions in Figure 4.2).
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Lemma 4.1 Let v be a vertex of G and let x be a neighbor of v. Further, let Γ be
a straight-line planar drawing of G such that v is x-contractible. Then x lies on the
boundary of the uncontraction kernel of v in any straight-line planar drawing Γ′ of
G′ = G/(v, x).

Proof: Suppose for a contradiction that x does not lie on the boundary of the uncon-
traction kernel of v in Γ′ and observe that, since Γ′ is planar, the edges that x inherited
from v do not cross any other edge of G′ and appear in the same circular order around
x as they appeared around v, except for the absence of edge (v, x).

As in the proof of Fáry’s Theorem [Fár48], there exists an ϵ > 0 such that the disk
D with radius ϵ centered at x is entirely contained in the kernel of x in Γ′.

Observe that the uncontraction kernel of v in Γ′ must be contained in the face f
obtained by removing the inherited edges of x from G′. Also, note that the intersection
between f and D is non-empty and defines a sector S of D.

It follows that the crossings occurring in the straight-line drawing Γ′′ obtained by
uncontracting v from x to any point of S while maintaining any other vertex at its
position in Γ′ involve only edges incident to v. This is impossible. 2

In order to perform contractions and uncontractions, we focus on low-degree “can-
didate” vertices, leveraging on their topological and geometric properties. Namely, we
say that a vertex v is a candidate to the contraction (or simply a candidate vertex) if:

(i) deg(v) ≤ 5; and

(ii) if two of its neighbors, u and w, are connected by an edge, then (u, v, w) is a
simple face of G.

Let v be a candidate vertex of G (the existence of a candidate vertex in every plane
graph is proved in Section 4.2) and assume that, if v has at least three neighbors, they
induce a cycle C in G. Observe that this is not a loss of generality because for any
two consecutive neighbors u and w of v, there exists a face having v, u, and w on its
boundary and hence the introduction of edge (u,w) yields a planar supergraph of G.

In the following lemmata we prove that, under this assumption, v is contractible
on at least one of its neighbors. Let Γ be a straight-line planar drawing of G and let x
be a vertex of C.

In order to simplify the proofs, we first show that if each xvi, with vi neighbor of
v and vi ̸= x, do not intersect any edge that is not incident to v, then x lies on the
boundary of the kernel of v, i.e., vertex v is x-contractible.

Lemma 4.2 Let v be a candidate vertex of G such that the closed polygonal region
delimited by its neighbors does not contain any vertex other than v and its neighbors.
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Let also Γ be a straight-line planar drawing of G and let x be a neighbor of G such
that, for any neighbor vi of v different from x, if segment xvi crosses an edge in Γ, it
is incident to v. Then, v is x-contractible.

Proof: Augment Γ and G with an edge between any pair of consecutive neighbors
of v. Observe that, after this augmentation, Γ is still planar, since (by hypothesis)
no vertex of G lies along the straight-line segment representing an edge between two
consecutive neighbors of v. By definition, the kernel of v is an open convex region
of the plane. Hence, it suffices to prove that any internal point p of the segment vx
representing edge (v, x) in Γ belongs to the kernel of v in Γ.

Suppose, for a contradiction, that it does not. Let then Γ′ be the non-planar
straight-line drawing of G obtained from Γ by placing v at some point p lying along
vx in Γ and maintaining fixed the positions of all the remaining vertices of G.

If deg(v) = 1, the only possible crossing must involve edge (v, x) as it is the
unique edge whose drawing has changed. Hence, some edges or some vertices lie
along or traverse some point along segment vx in Γ′, implying the fact that Γ is planar.
This is a contradiction.

If deg(v) = 2, denote by u and w be the two neighbors of v and observe that,
by hypothesis, triangle ∆ = uvw delimits a face of G in Γ. Assume x = u. Since
(i) v is the only vertex of G having a position in Γ′ that is different from the one in Γ;
(ii) Γ is planar; and (iii) p lies along the segment representing edge (v, u) = (v, x)
in Γ, the crossings occurring in Γ′ must involve edge (v, w). Also, since the triangle
∆′ delimited by u, v, and w in Γ′ is entirely contained in ∆, the endpoints of the
edges crossed by (v, w) lie inside ∆ in Γ. This is a contradiction to the fact that v is
candidate vertex, as face (uvw) would not be empty. Observe that the same argument
applies to w, hence v can be contracted also onto w.

Analogously, if 3 ≤ deg(v) ≤ 5, the crossings occurring in Γ′ involve at least
an edge incident to v and at least an edge with both endpoints lying inside one of the
faces delimited by v and a pair of its consecutive neighbors. This contradicts the fact
that v is a candidate vertex. 2

In the following we prove that, if v is a candidate vertex and each pair of its
consecutive neighbors are connected by an edge, then v has a neighbor x lying on the
boundary of its kernel, that is, v is x-contractible.

Lemma 4.3 Let G be a plane graph and let Γ any straight-line planar drawing G.
Further, let v be a candidate vertex of G such that each pair of consecutive neighbors
of v is connected by an edge. Then, there exists a neighbor x of v such that v is x-
contractible in Γ. Moreover, (i) if 1 ≤ deg(v) ≤ 3, vertex v can be contracted on any
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of its neighbors, and (ii) if deg(v) = 4, vertex v can be contracted also on its unique
neighbor that is not consecutive to x.

Proof: Augment Γ and G with an edge between any pair of consecutive neighbors
of v. Observe that, after this augmentation, Γ is still planar, since (by hypothesis)
no vertex of G lies along the straight-line segment representing an edge between two
consecutive neighbors of v. If 1 ≤ deg(v) ≤ 3 , let x be any of the neighbors of v.
Since for any neighbor y ̸= x of v edge (y, x) belongs to G, by Lemma 4.2, v is con-
tractible on any of its neighbors. So assume that 4 ≤ deg(v) ≤ 5. Let C be the cycle
induced by the neighbors of v in G. Let also G′ and Γ′ be the graph and its drawing
obtained by removing v and its incident edges from Γ and G, respectively. Consider
the polygon P induced by C in Γ′. Observe that, as a consequence of Meisters’s Two
Ears Theorem [Mei75], polygon P can be subdivided into |P | − 2 = deg(v)− 2 tri-
angles by adding edges only, and that such these triangles have a common vertex, say
x. Finally, observe that, if deg(v) = 4, the two triangles into which P has been sub-
divided have two common vertices, both connected to the two remaining neighbors of
v. By Lemma 4.2, the statement follows. 2

Let Γ1 and Γ2 be two drawings of the same plane graph G in which v is con-
tractible onto the same neighbor x. We define a pseudo-morph of Γ1 into Γ2 as a
sequence of operations composed of:

(i) the contraction of v onto x in Γ1, resulting in a drawing Γ′
1 of G′ = G/(v, x);

(ii) the morph of Γ′
1 into a drawing Γ′

2 of G′; and

(iii) the uncontraction of v in Γ′
2 resulting in Γ2.

4.2 Candidate Vertices in Plane Graphs

In this section1 we prove that any plane graph contains a candidate vertex with certain
properties.

Lemma 4.4 Let Γ be a straight-line planar drawing of a maximal outerplane graph
G with at least three vertices. Then, there exists a face f = (u, v, w) of G such that:
(i) v has degree 2 in G; and (ii) v is both u- and w-contractible in Γ. Moreover,
if G has only two vertices with degree 2, then: (iii) u has degree 3; and (iv) u is
w-contractible in Γ.

1Part of the contents of this section are joint work with Patrizio Angelini, Giuseppe Di Battista, Fabrizio
Frati, and Maurizio Patrignani, and have appeared in [AFPR13].
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Proof: We first prove that v exists in G. Observe that if G has only three vertices, then,
by the maximality of G, all its vertices have degree 2 and cycle (u, v, w) bounds the
unique internal face of G. So, assume that G has more than three vertices and observe
that Γ can be viewed as an internally-triangulated polygon. Since, by Meisters’s Two
Ears Theorem [Mei75], each polygon has at least two ears (i.e., vertices with degree
2), v is an ear of Γ, and hence a degree-2 vertex of G.

Let then u and w be the two neighbors of v in G. Since G is a maximal outerplane
graph, edge (u,w) belongs to G and cycle C = (u, v, w) delimits a face f of G.
By the maximality of G and the planarity of Γ, the triangle ∆ representing C and
bounding f is empty, as no vertex other than u, v, and w, and no edge different from
those in C is incident to f . By Lemma 4.3, v is both u-contractible and w-contractible.

Assume that, of all the at least four vertices of G, only one (say t), other than v
has degree 2. In the following we prove conditions (iii) and (iv). Let G′ and Γ′ be
the graph and its drawings obtained by removing s, t, and their incident edges from
G and Γ, respectively. Note that G′ is a maximal outerplane graph and hence has at
least two vertices with degree 2, say x and y. Since all the vertices of G, different
from the neighbors of v and t, have the same degree in both G and G′, vertices x and
y must be neighbors of v and t in G. Also, since G is a maximal outerplane graph, x
and y cannot be both neighbors of v or both neighbors of t. It follows that one of the
neighbors of v, say u, has degree 3 in G.

Finally, we prove that u is w-contractible. Since G is a maximal outerplanar graph,
vertices u and w have a common neighbor different from v, say z. It follows that w
is connected to all the three neighbors of u. Also, since Γ is planar and no vertex,
other then u, w, and z is incident to face (u,w, z), vertex w lies on the boundary of
the kernel of u. Hence, u is w-contractible. 2

Lemma 4.5 Let Γ be a planar straight-line drawing of a biconnected outerplane
graph G with n vertices. There exists a degree-2 vertex v of G that is contractible
on both its neighbors in Γ and the contraction yields an outerplane graph with n− 1
vertices.

Proof: Observe that Γ can be augmented to a planar straight-line drawing Γ+ of a
maximal outerplane graph G+ by triangulating each internal face, e.g., by applying
Chazelle’s algorithm [Cha91]. Then, by Lemma 4.4, the statement follows. 2

In the following we prove that any plane graph contains a candidate vertex. Also,
if the graph is maximal planar, the candidate vertex can be chosen to be internal.

Lemma 4.6 Let G = (V,E) be a plane graph and let G′ = (V,E′), with E′ ⊆ E,
be any connected subgraph of G. If v is a candidate vertex of G, then it is also a
candidate vertex of G′.
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Proof: We prove the statement for the case in which E \ E′ = {e}. Assume for a
contradiction that v is not a candidate vertex of G′ = G − e. Since the removal of e
does not increase the degree of v, there exists a 3-cycle (u,v,w) that does not bound a
simple face of G′. As the reintroduction of e cannot transform the 3-cycle (u,v,w) into
a simple face, v cannot be a candidate vertex of G, a contradiction. 2

Lemma 4.7 Every plane graph contains a candidate vertex v.

Proof: Let Γ be a planar straight-line drawing of a plane graph G = (V,E). Add
vertices a, b, and c so that the triangle composed by these vertices completely en-
closes Γ. Further, augment the obtained drawing to the straight-line drawing Γ′

of a maximal plane graph G′ by adding dummy edges only [Cha91]. In the fol-
lowing we show that G′ contains a candidate vertex v different from a, b, and c.
Observe that, by Lemma 4.6, it suffices to prove this statement. By the identity∑

p∈V deg(p) = 6n−12, there is at least one non-boundary vertex v′ of G′ whose de-
gree is at most 5. If no edge of G′ connects two non-consecutive neighbors of v′, then
v = v′ is a candidate vertex of G′. Otherwise, let u and w be two non-consecutive
neighbors of v′ connected by an edge in G′. Observe that there exist two neighbors
of v′ such that one of them lies inside triangle ⟨v′, u, w⟩ and the other one lies outside
it. Consider the sub-drawing Γ′′ of Γ′ obtained by removing all the vertices and the
edges of G′ lying outside triangle ⟨v′, u, w⟩. Since G′ is a maximal plane graph, Γ′′ is
a drawing of a maximal plane subgraph G′′ of G′ having at least one vertex less than
G′. Hence, there exists a non-boundary vertex v′′ of G′′ whose degree is at most 5.
By repeatedly applying this argument, we eventually find a candidate vertex v = v∗

of some subgraph G∗ of G′ (and hence, by Lemma 4.6, of G). 2

4.3 Merging Two Consecutive Blocks of a Simply-Connected
Graph

In the following we describe a technique to augment a simply-connected graph G to a
biconnected graph G′ which satisfies certain properties. This technique will be applied
in Chapter 5 in order to compute morphs of plane series-parallel graphs. Namely, we
prove that:

(a) if G is a plane series-parallel graph, then G′ is a plane series-parallel graph;

(b) if G is outerplane, the resulting graph G′ is outerplane; and
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(c) given any straight-line planar drawing Γ of G, there exists a planar straight-line
drawing Γ′ of the resulting graph G′ such that each vertex of G has the same
positions in Γ and in Γ′.

So, le v be a cutvertex of G and let B1 and B2 be two blocks of G such that there
are edges (v, u) ∈ B1 and (v, w) ∈ B2 that are consecutive in the counter-clockwise
order of the edges around v in G, see Figure 4.3(a). Graph G′ is obtained by adding a
new vertex z and edges (u, z) and (w, z). In the following lemma, we prove that G′

satisfies conditions (a), (b), and (c).

block B1

block B2

block B3

v

u

w

(a)

block B1

block B2

block B3

v

u

w

(b)

block B1,2

block B3

v

u

w

z

block B1,2

(c)

Figure 4.3: (a) A cut-vertex v of a connected outerplane graph G. (b) Constructing
disk D centered at v. (c) Drawing Γ′ is obtained by placing z in S (dark grey wedge).

Lemma 4.8 Let v be a cutvertex of a simply-connected graph G and let B1 and B2 be
two consecutive blocks of G around v with edges (v, u) ∈ B1 and (v, w) ∈ B2. The
graph G′ obtained from G by adding a vertex z and edges (u, z) and (w, z) satisfies
conditions (a), (b), and (c).

Proof: We first prove that G′ satisfies condition (a), i.e., if G is a plane series-parallel
graph, then G′ is a plane series-parallel graph.

Suppose, for a contradiction, that G′ is not a plane series-parallel graph. It fol-
lows that G′ contains a subdivision of the complete graph on four vertices K4, i.e.,
there is a set VK4 of four vertices of G′ such that any two of them are joined by
three vertex-disjoint paths. Observe that the vertices in VK4 cannot belong to different
blocks of G′. Further, since G is a plane series-parallel graph, the vertices in VK4

belong to B1,2. Since z has degree two, z /∈ VK4 ; hence, the vertices in VK4 are also
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vertices of G. This gives a contradiction since: (i) The vertices in VK4 cannot all be-
long to B1, as otherwise G would not be series-parallel, contradicting the hypothesis;
(ii) for the same reason, the vertices in vK4 cannot belong to B2; and (iii) the ver-
tices in VK4 cannot belong both to B1 and B2, as otherwise there could not exist three
vertex-disjoint paths joining them in G′, contradicting the hypothesis that G′ contains
a subdivision of K4. Since outerplane graphs are also plane series-parallel graphs, in
order to prove that G′ satisfies condition (b), it suffices to show that all the vertices of
G′ are incident to the external face of G′. Since G is outerplane, v, u, and w lie on
the external face. Also, since edges (v, u) and (v, w) are consecutive in the rotation
scheme of v in G, no vertex of G′ (other than u, v, w, and z) is incident to (and hence
enclosed in) the face formed by the addition of edges (u, z) and (w, z). Then, all the
vertices of G are incident to the external face of G′. Finally, since z can be added to
any face of G shared by u, v, and w, it can be added to the external face of G, that is,
the external face of G′.

We conclude the proof showing that G′ satisfies condition (c), namely that any
planar straight-line drawing of G can be augmented to a planar straight-line drawing
of G′. Let Γ be a planar straight-line drawing of G. As shown in the proof of Fáry’s
Theorem [Fár48], there exists an ϵ > 0 such that the disk D with radius ϵ centered at
v lies entirely in the kernel of v in Γ. Also, moving vertex v to any point of D while
maintaining unchanged the positions of the other vertices of G results in a planar
straight-line drawing of G. Let f be the face of G, shared by u, v, and w, in which z
has to be placed. The set S of feasible points to place z is defined as the set of points
with direct visibility on vertices u and w in the intersection between f and D. Drawing
Γ′ is hence constructed from Γ by placing z at any point of S (see Figure 4.3(c)). 2

4.4 Convex Coordinates

Let P (v1, . . . , vk) be a convex polygon with k vertices. Any point p lying in the
interior of P can be expressed as a convex combination of the vertices of P . Namely,
there exist coefficients λ1, . . . , λk such that 0 < λi < 1, for each 1 ≤ i ≤ k; and∑k

i=1 = 1λi. For each i = 1, . . . , k, denote by (xi, yi) the coordinates of vertex vi.
Let (xi, yi) be the coordinates of the vertices of P . The coordinates xp and yp of

point p can be expressed as:

xp =
k∑

i=1

λixi (4.1)

yp =
k∑

i=1

λiyi. (4.2)
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Coefficients λ1, . . . , λk are called the convex coordinates of p in P .

Lemma 4.9 Let G be a plane graph with n vertices, whose external face is bounded
by cycle S = (v1, . . . , vk). Let also Γ1 and Γ2 be two drawings of G such that:

• cycle S induces convex polygons Σ1 and Σ2 in Γ1 and Γ2, respectively;

• each internal vertex vi, k+1 ≤ i ≤ n has the same convex coordinates in both
Γ1 and Γ2; and

• the planar linear morph MΣ = ⟨Σ1,Σ2⟩ is such that polygon Σ(t), induced by
S at any time instant t, 0 ≤ t ≤ 1, of MΣ is convex.

Then, morph MΣ can be extended to a planar linear morph M = ⟨Γ1,Γ2⟩ of G such
that:

• each external vertex vj , 1 ≤ j ≤ k, moves as in MΣ; and

• the convex coordinates of each internal vertex vi, k + 1 ≤ i ≤ n, with respect
to the positions of the vertices of S remain fixed throughout M .

Proof: For each vertex vj , 1 ≤ j ≤ k, and for each vi, k + 1 ≤ i ≤ n, denote by
vi(t) and vj(t), respectively, the position of vertex vi and vertex vj at any time instant
t, 0 ≤ t ≤ 1, during M .

Observe that, when t = 1 (t = 2), vi(t) and vj(t) identify the initial (final)
position of vi and vj in Γ1 (Γ2). Also, by hypothesis, for each j = 1, . . . , k and for
each t, 0 ≤ t ≤ 1, vj(t) is the same in both M and MΣ, while for each i = k+1, . . . , n
the convex coordinates of vi remain fixed during M .

We first show that morph M is linear. Since, by hypothesis, boundary vertices
move along straight-line trajectories, it suffices to show that each internal vertex vi
moves along the straight-line segment connecting its position in Γ1 to its position in
Γ2, namely, for any 0 ≤ t ≤ 1:

vi(t) = (1− t)vi(0) + t vi(1). (4.3)

By hypothesis, at any time instant, the position vi(t) of any internal vertex vi is
expressed as a fixed convex combination with coefficients λijof the positions of the
vertices vj of S, namely:

vi(t) =
k∑

j=1

λijvj(t). (4.4)
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By expanding the summation in Equation (4.4) we obtain Equation 4.5 and hence
Equation 4.6, which can be rewritten as Equation 4.7, thus proving that vi moves
along the straight-line segment connecting its positions in Γ1 and Γ2.

vi(t) = λi1v1(t) + λi2v2(t) + . . . λikvk(t) (4.5)
vi(t) = λi1 [(1− t)v1(0) + t v1(1)]︸ ︷︷ ︸

v1(t)

+ · · ·+ λik [(1− t)vk(0) + t vk(1)]︸ ︷︷ ︸
vk(t)

(4.6)

vi(t) = (1− t) [λi1v1(0) + · · ·+ λikvk(0)]︸ ︷︷ ︸
vi(0)

+t [λi1v1(1) + · · ·+ λikvk(1)]︸ ︷︷ ︸
vi(1)

(4.7)

It remains to prove that M is planar. Observe that, since Γ1 and Γ2 are planar, no
two vertices lie on the same point and hence no two vertices have the same convex
coordinates. Also, let p be any point on any edge of G in Γ1 (Γ2), since the drawing
is planar, then the convex coordinates of p are distinct from the convex coordinates of
any internal vertex of G in Γ1 (Γ2).

Suppose for a contradiction that M is not planar. Then, there exists a time instant
t during M such that:

(i) either two vertices v and w overlap, or

(ii) some vertex v lies on a point p traversed by an edge of G.

It follows that, the convex coordinates of vertex v must be equal either to the
convex coordinates of vertex w or to those of point p, contradicting the hypothesis
that the convex coordinates of any internal vertex of G remain fixed during the whole
morph. 2

Observe that this technique applies also in the degenerate case in which G has
only two external vertices. Namely, graph G is a path v1, . . . , vk, the external vertices
are v1 and vk and the internal vertices are the intermediate vertices, whose position is
expressed as a convex combination of those of v1 and vk.

Also, if P is a triangle, the convex coordinates of an internal point p of P are
called barycentric coordinates and can be computed as follows.

Let a, b, and c be the three vertices bounding P and let p be an internal point of P .
Denote by Sabc the area of the triangle bounded by a, b, and c. Analogously, denote
by Spab, Spbc, and Spac the areas of the triangles bounded by p and two consecutive
vertices along the boundary of P (see Figure 4.4). Then the barycentric coordinates
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α, β, and γ of p in P , associated with a, b, and c are computed as follows.

α =
Spbc
Sabc

; β =
Spac
Sabc

; γ =
Spab
Sabc

α =

p

a
b

c

Spbc
Sabc

(a)

p

a
b

c

β =
Spac
Sabc

(b)

γ =

p

a
b

c

Spba
Sabc

(c)

Figure 4.4: Computing the barycentric coordinates of a point p inside a triangle.

4.5 Simulating the Rotation of a Triangle

In the following we show how the rotation of a triangle can be simulated in a constant
number of steps. Let ∆1 and ∆2 be two planar straight-line drawings of the cycle
(x, y, z) T . In the following we show that there exists a planar linear morph that
transforms ∆1 into ∆2 in a constant number of steps. Assume that both ∆1 and
∆2 are inscribed in the same circumference C. Otherwise a translation and a scaling
would suffice to achieve. Denote by x1, y1, and z1, and by x2, y2, and z2, the positions
of vertices x, y, and z in ∆1 and ∆2, respectively. Also, for i = 1, 2, denote by x̄iyi,
x̄izi, and z̃iyi the open arcs of C bounded by such vertices and not containing zi, yi,
and xi, respectively.

Observe that, the unique configuration of the two drawings in which none of the
vertices can be directly moved to its final position is shown in Figure 4.5(a). Namely,
x2 lies along z̄1y1, y2 lies along x̄1z1, and z2 lies along z̄1y1. As long as at least one
of the vertices of T has visibility on its final destination, move it.

Otherwise, it suffice to simultaneously move x, y, and z along their incident edges,
thus simulating a rotation. Namely, with a unique planar linear morphing step, we
move x along x1z1, y along y1x1, and z along z1y1. Now, each vertex has direct
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x2

y2

z2

x ≡ x1

y ≡ y1

z ≡ z1

(a)

x2

y2

z2

y ≡ x1

z ≡ y1

x ≡ z1

(b)

Figure 4.5: Morphing ∆1 into ∆2. (a) None of the vertices can be moved to its final
position. (b) Simultaneously moving each vertex to the position occupied by its right
neighbor allows for moving all vertices to their final position with a unique planar
linear morphing step.

visibility on its final position and hence with a unique further planar linear morphing
step the current drawing can be morphed into the final one.

4.6 Obtaining a Morph from a Pseudo-Morph

In this section2 we show how a pseudo-morphM of a plane graph G can be extended
to a morph M of G. Recall that a pseudo-morph ⟨Γs,Γ

′
s = Γ′

1, . . . ,Γ
′
q = Γ′

t,Γt⟩ of a
plane graph G is defined as:

• the contraction of an x-contractible vertex v with deg(v) ≤ 5 onto a neighbor
x in Γs;

• a morph M ′ = ⟨Γ′
s = Γ′

1, . . . ,Γ
′
q = Γ′

t⟩ transforming the obtained drawing
Γ′
s = Γ′

1 of the reduced graph G′ = G/(v, x) into a drawing Γ′
q = Γ′

t of G′;
and

• the uncontraction of v from x in Γ′
q = Γ′

t, resulting in Γt.

In the following we describe how M can be converted into an actual morph by
uncontracting vertex v to a suitable position in each drawing Γ′

i of G′, thus obtainig a
straight-line planar drawing Γi of G.

2The contents of this section are joint work with Patrizio Angelini and Fidel Barrera-Cruz, and are an
extension of [BHL13]
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Denote by Mv the planar unidirectional morph ⟨Γ1, . . . ,Γq⟩ obtained by adding v
to each drawing Γi of M ′. The final morph M is obtained by concatenating:

• a planar linear morphing step moving v from its position in Γs to that in Γ1;

• morph Mv; and

• a planar linear morphing step moving v from its position in Γq to that in Γt.

This strategy of constructing M starting from M by suitably placing v in each
drawing of M ′ is the same that was applied in [AAC+13, AFPR13, BHL13]. It should
be noted that the algorithm for placing v in Γ′

1, . . . ,Γ
′
q differs slightly in those three

papers. We opt here for an extension of the one in [BHL13], as it ensures that M is a
unidirectional morph with the same number of steps asM, that is, O(n). However,
since in [BHL13] G is assumed to be maximal plane, vertex v can always be chosen
to be an internal vertex of G with degree at least 3.

In order to guarantee the planarity of Mv (and hence of M ), when adding back v
to any drawing Γ′

i of M ′, vertex v must lie inside its kernel in Γi, that is, the uncon-
traction kernel of v in Γ′

i.
The algorithm described in [BHL13] finds a suitable point for v in each Γ′

i in a
disk sector Si centered at vertex x and lying in the interior of the polygon induced, in
Γ′
i, by the neighbors of v, that is, delimited by two consecutive edges incident to x, or

by their elongations emanating from x. Since, by Lemma 4.1, x lies on the boundary
of the uncontraction kernel of v, the intersection between Si and the uncontraction
kernel of v is non-empty. Barrera-Cruz et al. [BHL13] prove that each sector Si

contains at least one nice point, defined as follows. All the points of Sq are nice. For
i = 1, . . . , q − 1, a point pi of Si is nice if there exists a nice point pi+1 in Si+1 such
that the line passing through pi and pi+1 is parallel to the trajectory followed by each
vertex during the unidirectional morphing step transforming Γ′

i into Γ′
i+1. The proof

in [BHL13] is completed by showing that placing v on the nice point pi in Γ′
i and on

the corresponding nice point pi+1 in Γ′
i+1 yields two drawings Γi and Γi+1 of G such

that ⟨Γi,Γi+1⟩ is planar and, by construction, unidirectional.
We extend the algorithm of Barrera-Cruz et al. [BHL13] in order to handle the

cases in which v is incident to the external face of G or deg(v) ∈ {1, 2}.
At any time instant t during M ′, there exists an ϵt > 0 such that the disk Dt

centered at x with radius ϵt entirely lies inside the kernel of x [Fár48]. As a conse-
quence, Dt does not contain any vertex of G other than x. Let ϵ be the minimum ϵt
over all time instants t during M ′. Denote by Di the disk with radius ϵ centered at x
in drawing Γ′

i, 1 ≤ i ≤ q. Recall that, by construction, vertex x in G′ is adjacent to
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all the neighbors of v in G and hence, by Lemma 4.1, it lies on the boundary of the
uncontraction kernel of v in any straight-line planar drawing of G′.

In order to cover the cases in which deg(v) ∈ {1, 2}, we give a definition of
sectors Si that is slightly different from the one given in [BHL13]. Namely, in each
drawing Γ′

i of M ′, sector Si is defined as the intersection between disk Di and the
uncontraction kernel of v. Recall that, by Lemma 4.1, vertex x lies on the boudnary
of the uncontraction kernel of v in any straight-line planar drawing of G′. In the
following lemma we prove that each sector Si contains a non-empty set of nice points.

Lemma 4.10 Let M ′ = ⟨Γ′
1, . . . ,Γ

′
q⟩ be a planar unidirectional morph of graph

G′ = G/(v, x). For each i = 1, . . . , q, let Di be a disk centered at vertex x in Γ′
i such

that Di completely lies in the kernel of v in Γ′
i and let Si be the intersection between

Di and the uncontraction kernel of v in Γ′
i. Then, each sector Si contains a non-empty

set of nice points.

Proof: If v and its neighbors induce in G an embedded wheel graph W such that v
does not lie on the outer face of W , then Si coincides with the disk sector defined
in [BHL13]. Hence, it contains a non-empty set of nice points.

Denote by deg′(x) the degree of vertex x in G′. Assume that deg′(x) ≥ 1, as oth-
erwise G would consist of a single edge and there exists a planar unidirectional morph
between any pair of its drawings with a constant number of steps. We distinguish two
cases.

Case 1: deg′(x) ≥ 2. Let y and z be the two neighbors of v such that y and x, and
x and z are consecutive neighbors of v in G. Observe that, as in [BHL13], in
any straight-line planar drawing Γ′ of G′, the two radii of Di delimiting the
boundary of the uncontraction kernel of v completely lie either on the segments
representing edges (x, y) and (x, z) or on their elongations emanating from x,
depending on the position of y and z with respect to x (see Figure 4.6). Hence,
as in [BHL13], for each drawing Γ′

i of M ′, sector Si is defined as the sector of
Di delimited by edge (x, y) and (x, z) (or their elongations) and having a non-
empty intersection with the uncontraction kernel of v. Since the construction of
Si is the same as [BHL13], each sector Si contains at least a nice point at which
v can be placed in order to obtain Γi.

Case 2: deg′(x) = 1. Let y be the unique neighbor of x in G′. In order to simplify
the description, we distinguish two subcases.
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x y
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(a)

x
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z
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(b)

Figure 4.6: Illustration for Case 1. Sector Si is delimited either by edges (x, y) and
(x, z) (a), or by elongations (b).

Case 2a: deg(v) = 1. Let y be the unique neighbor of x in G′. In the fol-
lowing we show how, in each drawing of M ′, vertex v can be placed and
maintained at a point pi of Di lying on the elongation of edge (x, y) ema-
nating from x.
Let di be the direction along the vertices of G′ move during the planar
linear morphing step transforming Γ′

i into Γ′
i+1 and denote by yi and yi+1

the points where vertex y lies in Γ′
i and Γ′

i+1, respectively. Let also pi be
a point on the elongation of edge (x, y) emanating from x in drawing Γ′

i

and let pi+1 be the point at which the straight-line parallel to di passing
through pi and the straight-line passing through x and yi+1 intersect.
Since point pi can always be chosen in Si arbitrarily close to x on the
elongation of edge (x, y) emanating from x in such a way that point pi+1

lies inside Si+1, sector Si contains at least a nice point.

Case 2b: deg(v) = 2. Observe that, since in G′ vertex x has an edge to any
neighbor of v, in G vertex v is adjacent to vertices x and y only. We prove
that Si contains at least a nice point by reducing this case to cases 2a and
1.
Let Gz be the planar graph obtained by adding a new vertex z a new edge
(x, z) to G′. Observe that G′ = Gz/(z, x). By applying the technique
described in the previous case, we can augment M ′ to a planar unidirec-
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v

y

x

(a)

x
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Figure 4.7: Vertex v is placed (a) and maintained (b) inside Di, on the elongation of
edge (x, y) at each step.

tional morph Mz = ⟨Γz
1, . . . ,Γ

z
q⟩ of Gz such that z lies on the elongation

of (x, z) in each drawing of Mz .
Let Gvz be the planar graph, obtained by adding vertex v and edges (v, x)
and (v, y) to Gz , and let G′

vz be the graph obtained by contracting v onto
x in Gvz and observe that in G′

vz vertex x has degree 2. Hence, by Case
1, we can find a nice point for v in each drawing of Mz . Finally, observe
that for each i = 1, . . . , q the uncontraction kernel of v is the same in Γ′

i

and in Γz
i , thus proving the existence of a nice point for v in each Si.

2

In order to prove that placing v at a nice point of Si in each drawing Γ′
i of M ′

yields a planar unidirectional morph Mv , we just need to prove that vertex v does not
introduce any crossings dueing Mv. Recall that, since v lies in Si, it lies between the
two segments r and p incident to x and delimiting the uncontraction kernel of v. Also,
(i) the extrema of such segments move, at each step of M ′, at constant speed along
straight-line parallel trajectories, and (ii) the straight-line l parallel to di and passing
though v in Γi intersects r and p at points a and b, respectively.

Then, we just need to show that vertex v lies on the same side of r and p at any
time during Mv . This can be done by applying Lemma 4 of [BHL13], which we
restate as follows.
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Lemma 4.11 (Lemma 4 of [BHL13]) Let L be a horizontal line, and let x0, x1, y0,
and y1 be points on L. Consider a point x that moves at constant speed from x0 to x1

in one unit of time. If yi is to the right of xi,i = 0, 1, and y is a point that moves at
constant speed from y0 to y1 in one unit of time then y remains to the right of x during
their movements. Note that x0 may lie to the right or to the left of x1 and the same
holds for y0 and y1.
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Chapter 5

Morphing Series-Parallel Graphs

In this chapter1 we show that, for any two planar straight-line drawings Γa and Γb of a
plane series-parallel graph G, a linear number of steps, in the size of G, always suffice
to morph Γa into Γb, as stated in the following theorem.

Theorem 5.1 Let Γa and Γb be two planar straight-line drawings of an n-vertex
plane series-parallel graph G. There exists a morph Mab = ⟨Γa, . . . ,Γb⟩ with O(n)
steps transforming Γa into Γb.

In order to prove the theorem, we first construct a pseudo-morphMab with O(n)
steps by concatenating a pseudo-morph Ma from Γa to a canonical drawing Γ∗ of
G, and a pseudo-morph Mb, transforming Γ∗ into Γb. Observe that Mb is easily
obtained by reverting the pseudo-morphMb that transforms Γb into Γ∗. Finally, by
recursively applying the technique described in Section 4.6, we convert pseudo-morph
Mab = ⟨Γa, . . . ,Γ

∗, . . . ,Γb⟩ into an actual morph Mab = ⟨Γa, . . . ,Γb⟩.
In the remainder of this chapter, we assume that the input graph G is biconnected.

Observe that this is not a loss of generality, as Γa and Γb can be augmented to two
drawings of the same plane biconnected series-parallel graph by repeatedly applying
the technique described in Section 4.3 to add the same vertex and the same edges to
both drawings.

In Section 5.1 we describe canonical drawings of a plane biconnected series-
parallel graphs, while in Section 5.2 we show an algorithm to compute a pseudo-
morph of a planar straight-line drawing Γ of a biconnected series-parallel graph G
into its canonical drawing Γ∗ with a linear number of steps.

1Part of the contents of this chapter are joint work with Patrizio Angelini, Fabrizio Frati, and Maurizio
Patrignani, appeared in [AFPR13], and have been submitted to journal.
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5.1 Canonical Drawings of Series-Parallel Graphs

Let e be an edge of G that is incident to the external face and denote by Te(G) the
SPQ-tree, rooted at edge e (called reference edge), of G. Observe that, since series-
parallel graphs do not have triconnected subgraphs, the SPQR-tree of series-parallel
graphs is also called SPQ-tree, as it does not contain R-nodes. In the following we
describe how to compute the canonical drawing Γ∗ of G with respect to its reference
edge e.

a b
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h

s t

(a)

s t

s t

a b d g g
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b
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(c)

Figure 5.1: (a) A planar drawing of a plane series-parallel graph G. (b) The SPQ-tree
T(s,t), rooted at edge (s, t), of G. Q-nodes, S-nodes, and P-nodes, are drawn as red,
green, and blue regions, respectively. Inside the region representing each node µ is
drawn skel(µ). (c) The canonical drawing Γ∗

G of G with respect to T(s,t).

Tree Te(G) is traversed top-down and, by exploiting the technique described in
Section 2.2.1, a suitable geometric region of the plane (i.e., a diamond or a boomerang)
is assigned to each node µ of Te; such a region will contain the drawing of pertinent
graph pert(µ) of µ. We assign boomerangs (either left or right, depending on the
embedding of G) to S-nodes, and diamonds to P- and Q-nodes, as follows.

First, consider the Q-node ρ corresponding to the root edge e of G. Draw edge
e as a segment between points (0, 1) and (0,−1). Also, if ρ is adjacent to an S-
node µ in Te(G), then assign to µ the left boomerang N = (0, 1), E = (−1, 0), S =
(0,−1),W = (−2, 0) or the right boomerang N = (0, 1), E = (2, 0), S = (0,−1),W =
(1, 0), depending on the embedding of G; if ρ is adjacent to a P-node µ, then assign
to µ the diamond N = (0, 1), E = (+2, 0), S = (0,−1),W = (−2, 0). s Then,
consider each node µ of Te(G) according to a top-down traversal.

If µ is an S-node (see Figure 5.2(a)), let N,E, S,W be the boomerang assigned to
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S

N

EW
C

(a)

E

S

W

N

C

(b)

Figure 5.2: (a) Diamonds inside a boomerang. (a) Boomerangs (and a diamond) inside
a diamond.

it and let α be the angle ŴNE. We assign diamonds to the children µ1, µ2, . . . , µk

of µ as follows. Consider the midpoint C of segment WE. Subdivide NC into ⌈k2 ⌉
segments with the same length and CS into ⌊k2 ⌋ segments with the same length. For
i = 1, . . . , k, enclose segment NiSi into a diamond Ni, Ei, Si,Wi, with ŴiNiEi =
α, and assign this diamond to the child µi of µ.

If µ is a P-node (see Figure 5.2(b)), let N,E, S,W be the diamond assigned to it.
Assign boomerangs and diamonds to the children µ1, µ2, . . . , µk of µ as follows. If
a child µl of µ is a Q-node, then left boomerangs are assigned to µ1, . . . , µl−1, right
boomerangs are assigned to µl+1, . . . , µk, and a diamond is assigned to µl. Otherwise,
right boomerangs are assigned to all of µ1, µ2, . . . , µk. We assume that a child µl of µ
that is a Q-node exists, the description for the case in which no child of µ is a Q-node
being similar and simpler. We describe how to assign left boomerangs to the children
µ1, µ2, . . . , µl−1 of µ. Consider the midpoint C of segment WE and consider 2l
equidistant points W = p1, . . . , p2l = C on segment WC. For i = 1, . . . , l − 1,
assign the quadrilateral Ni = N,Wi = p2i, Si = S,Ei = p2i+1 to the child µi of
µ. Also, assign right boomerangs to µl+1, µl+2, . . . , µk in a symmetric way. Finally,
assign to µl any diamond such that Nl = N,Sl = S, Wl is any point between C and
El−1, and El is any point between C and Wl+1.

If µ is a Q-node, let N,E, S,W be the diamond assigned to it. Draw the edge
corresponding to µ as a straight-line segment between N and S.

We now argue that no two edges of G intersect in the canonical drawing Γ∗
G of G.

Namely, let e1 and e2 be any two edges of G. Consider the lowest common ancestor
ν of the Q-nodes τ1 and τ2 of Te(G) representing e1 and e2, respectively. Also,
consider the children ν1 and ν2 of ν such that the subtree of Te rooted at νi contains
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τi, for i = 1, 2. Note that nodes ν1 and ν2 have been assigned internally-disjoint
regions of the plane. Since the subgraphs G1 and G2 of G corresponding to ν1 and
ν2, respectively, are entirely drawn inside such regions, it follows that e1 and e2 do
not intersect except, possibly, at common endpoints.

5.2 Pseudo-Morphing to Canonical Drawing

In order to construct a pseudo-morph of a straight-line planar drawing ΓG of G into
its canonical drawing Γ∗

G, we do the following:

(i) We perform a contraction of a vertex v of G onto a neighbor of v, hence obtain-
ing a drawing ΓG′ of a graph G′ with n− 1 vertices;

(ii) we inductively construct a pseudo-morph from ΓG′ to the canonical drawing
Γ∗
G′ of G′; and

(iii) we uncontract v and perform a sequence of morphing steps to transform Γ∗
G′

into the canonical drawing Γ∗
G of G.

In the following we describe the three steps in more detail.

5.2.1 Step 1: Contract a vertex v

Let Te(G) be the decomposition tree of G rooted at some edge e incident to the ex-
ternal face of G. Assume that Te(G) contains at least one P-node (the case in which
Te(G) does not contain any P-node is much simpler, hence it will be discussed later).
Consider a P-node ν such that the subtree of Te(G) rooted at ν does not contain any
other P-node. This implies that all the children of ν, with the exception of at most one
Q-node, are S-nodes whose children are Q-nodes. Hence, the pertinent graph pert(ν)
of ν is a series-parallel graph composed of a set of paths connecting its poles s and t,
where at most one of these paths might be composed of a single edge (s, t).

Let p1 and p2 be two paths joining s and t whose union is a cycle C not containing
other vertices in its interior (see Figure 5.3(a)). Such paths exist because the “rest
of the graph” with respect to ν (namely, the graph induced by s, t, and the vertices
of G that do not belong to pert(ν)) lies in the external face of pert(ν), given that
the root e of Te(G) is incident to the external face of G. Internally triangulate C by
inserting dummy edges in its interior (dashed edges of Figure 5.3). Cycle C and the
added dummy edges yield a drawing of a maximal outerplane graph O, which has at
least two vertices of degree 2.
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Figure 5.3: The internally triangulated cycle C formed by paths p1 and p2. Dummy
edges are drawn as dashed lines. (a–b) Vertex v of degree 2 can be contracted onto v1.
(b–c) Vertex u2 of degree 3 can be contracted onto u1.

By Lemma 4.4, graph O contains a degree-2 vertex v that can be contracted onto
any of its neighbors. We distinguish two cases, based on whether v is different from s
and from t.

Case 1: O contains a degree-2 vertex v different from s and from t.
Assume, without loss of generality, that v belongs to p2. Since O is internally
triangulated, both the neighbors v1 and v2 of v belong to p2, and they are joined
by a dummy edge. We obtain Γ′

G from ΓG by contracting v onto one of its
neighbors, while preserving planarity (see Figures 5.3(a) and 5.3(b)). We fur-
ther distinguish three subcases. Either p2 contains more than two edges (Case
1.1) or p2 consists of exactly two edges, namely (v1, v) and (v, v2). If the latter
case holds, either edge (v1, v2) exists in G (Case 1.2) or not (Case 1.3). In the
three cases we do the following.

Case 1.1: Path p2 is replaced in G′ with a path p′2 that contains edge (v1, v2)
and does not contain vertex v.

Case 1.2: Graph G′ is set as G \ {v}.

Case 1.3: Path p2 is replaced in G′ with edge (v1, v2).

Case 2: The only two vertices of degree 2 in O are s and t.
In this case, by Lemma 4.4, one of the two vertices u1 and u2 adjacent to s, say
u2, has degree 3 and is u1-contractible (see Figures 5.3(b) and 5.3(c)). Let u3

be the neighbor of u1 and u2 different from s. Let also p′2 be the path composed
of edge (u1, u3) and of the subpath of p2 between u3 and t, and let p′1 be the
subpath of p1 between u1 and t. Observe that G′ contains edge (u1, u3) and
does not contain vertex u2. We obtain Γ′

G from ΓG by contracting u2 onto u1.



i
i

“thesis” — 2014/4/29 — 19:08 — page 62 — #74 i
i

i
i

i
i

62 CHAPTER 5. MORPHING SERIES-PARALLEL GRAPHS

Tree Te(G
′) is obtained from Te(G) by performing the local changes described

hereunder, with respect to the above cases.

Case 1. Let τ1 and τ2 be the nodes of Te(G) corresponding to paths p1 and p2. Note
that τ2 is an S-node, as v ∈ p2 and v ̸= s, t. The two Q-nodes that are children
of τ2 and that correspond to edges (v, v1) and (v, v2) are removed from Te(G

′).

ν

τ2τ1

(v, v1) (v, v2)

(a)

ν

τ2τ1

(v1, v2)

(b)

ν

τ2τ1

(v, v1) (v, v2)

(c)

ν

τ1

(v1, v2)

(d)

Figure 5.4: Construction of Te(G
′) starting from Te(G) in Case 1. (a–b) Te(G) and

Te(G
′), respectively, in Case 1.1. (c–d) Te(G) and Te(G

′), respectively, in Case 1.3.

Case 1.1: A Q-node corresponding to (v1, v2) is added to Te(G
′) as a child of

τ2 (see Figures 5.4(a) and 5.4(b)).

Case 1.2: τ2 is removed from Te(G
′). Also, if ν has no children other than τ1

and τ2 in Te(G
′), then ν is replaced with τ1 in Te(G

′).

Case 1.3: τ2 is replaced in Te(G
′) with a Q-node corresponding to edge (v1, v2)

(see Figures 5.4(c) and 5.4(d)).

Case 2. Let τ1 and τ2 be the nodes of Te(G) corresponding to paths p1 and p2, and
let µ be the parent of ν. Note that τ1 and τ2 are S-nodes, as u1, u2 ̸= s, t. First,
the Q-nodes corresponding to edges (s, u2) and (u2, u3) are removed from the
children of τ2, and a Q-node νQ (corresponding to edge (u1, u3)) is added to
Te(G

′). We distinguish the cases in which ν has more than two children in
Te(G) (Case 2.1) and when ν has exactly two children in Te(G) (Case 2.2).

Case 2.1: An S-node νS and a P-node νP are introduced in Te(G
′), in such a

way that (i) νS is a child of ν, (ii) the Q-node corresponding to (s, u1)
and νP are children of νS , (iii) τ1 and τ2 are children of νP , and (iv) νQ
is a child of τ2 (see Figures 5.5(a) and 5.5(b)).
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Figure 5.5: Construction of Te(G
′) starting from Te(G) in Case 2. (a–b) Te(G) and

Te(G
′), respectively, in Case 2.1. (c–d) Te(G) and Te(G

′), respectively, in Case 2.2.

Case 2.2: Node ν is removed from the children of µ, and a P-node νP is in-
troduced in Te(G

′) in such a way that (i) the Q-node corresponding to
(s, u1) and νP are children of µ, (ii) τ1 and τ2 are children of νP , and
(iii) νQ is a child of τ2 (see Figures 5.5(c) and 5.5(d)).

5.2.2 Step 2: Apply induction to construct the canonical drawing Γ∗
G′ of

G′

Let Γ′
G be the drawing of the graph G′ = G/(v, x) obtained after the contraction of

vertex v performed in Case 1 or in Case 2.
Inductively construct a morph from ΓG′ to the canonical drawing Γ∗

G′ of G′ in
c · (n− 1) steps, where c is a constant.

Step 3: Uncontract vertex v and construct a canonical drawing of G

We describe how to obtain Γ∗
G from Γ∗

G′ by uncontracting v and performing a constant
number of morphing steps.

Case 1: O contains a degree-2 vertex v different from s and t.

Case 1.1: Drawings Γ∗
G′ and Γ∗

G coincide except for the fact that path p2 in
Γ∗
G contains v, while path p′2 in Γ∗

G′ does not contain v. Paths p′2 and p2
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are drawn inside two equal boomerangs in Γ∗
G′ and in Γ∗

G, respectively;
however, v and some of the vertices of p′2 need to be moved in order to
obtain the drawing of p2 as in Γ∗

G′ . Namely, the drawing Γ∗
p′
2

of p′2 inside
the boomerang N,E, S,W assigned to τ2 in Γ∗

G′ is composed of edges
lying on two straight-line segments NC and SC, where C is the midpoint
of segment EW (see Figure 5.6(a)). The drawing Γ∗

p2
of p2 in Γ∗

G also
lies inside N,E, S,W and is composed of edges lying on NC and SC,
but vertices lie on different points (see Figure 5.6(e)).
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Figure 5.6: Construction of Γ∗
G from Γ∗

G′ when Case 1.1 applied. (a) Γ∗
p′
2
. The

boomerang assigned to τ2 is light-grey. (b) Vertex v is uncontracted and placed on
segment v1v2. (c) Vertices on the path between s and w are placed in their final
position, and vertex w′ is placed arbitrariliy close to C on the elongation of NC. (d)
Vertex w′ is placed on CS. (e) Vertices on the path between w and t are placed in
their final position, hence obtaining Γ∗

G.

With one morphing step, uncontract v from the vertex it had been con-
tracted onto and place it on any point of segment v1v2 (note that edge
(v1, v2) exists in G′ and not in G; see Figure 5.6(b)). Then, in order to
redistribute the vertices of p2 on NC and SC, perform the following op-
eration. Assume without loss of generality that s is on point N and t is
on point S in Γ∗

G′ and in Γ∗
G. Consider the vertices w ∈ p2 and w′ ∈ p′2

that are placed on point C in Γ∗
G and Γ∗

G′ , respectively. Note that either
w = w′ or (w,w′) ∈ p2. If w = w′, either the subpath p2(s, w) of p2
between s and w or the subpath p2(w, t) of p2 between w and t has the
same drawing in Γ∗

G and Γ∗
G′ , say p2(w, t) has such a property. With one

morphing step move the vertices of p2(s, w) on segment NC till reaching



i
i

“thesis” — 2014/4/29 — 19:08 — page 65 — #77 i
i

i
i

i
i

5.2. PSEUDO-MORPHING TO CANONICAL DRAWING 65

their positions in Γ∗
G. If w ̸= w′, assume without loss of generality that

w ∈ p2(s, w
′). With one morphing step, move the vertices of p2(s, w)

and vertex w′ along the line through N and C, so that the vertices of
p2(s, w) reach their positions in Γ∗

G and w′ is placed arbitrarily close to
C on the elongation of NC (see Figure 5.6(c)). With a second morph-
ing step, move w′ to any point of SC between w and its other neighbor
in p2 (see Figure 5.6(d)). Finally, with a third morphing step, move the
vertices of p2(w, t) on segment SC till reaching their positions in Γ∗

G (see
Figure 5.6(e)).

Case 1.2 and Case 1.3: Note that Γ∗
G′ and Γ∗

G coincide, except for the fact that:
(i) Γ∗

G contains one boomerang more than Γ∗
G′ (the one assigned to τ2)

inside the diamond assigned to ν, (ii) Γ∗
G might not contain the diamond

assigned to the Q-node corresponding to edge (s, t) (in Case 1.3), and
(iii) the boomerangs inside the diamond assigned to ν have a different
drawing in Γ∗

G′ and Γ∗
G. Drawing Γ∗

G′ is illustrated in Figure 5.7(a), draw-
ing Γ∗

G in Case 1.2 is illustrated in Figure 5.7(c), and drawing Γ∗
G in Case

1.3 is illustrated in Figure 5.7(d). Since edge (v1, v2) exists in G′, its
drawing in Γ∗

G′ is the straight-line segment between the points N ′ and S′

of a diamond N ′, E′, S′,W ′. Also, the drawing Γ∗
p2

of p2 in Γ∗
G lies inside

a boomerang N,E, S,W with N = N ′ and S = S′.

N
′
= v1

S
′
= v2

W
′

E
′

(a)

N = N
′
= v1

S = S
′
= v2

W
′

E
′

W

Ev

C1=w1 C2=w2

(b)

N = N
′
= v1

S = S
′
= v2

W
′

E
′

v

C1=w1 C2=w2

(c)

N = N
′
= v1

S = S
′
= v2

W
′

E
′

vC1=w1

C2=w2

(d)

Figure 5.7: Construction of Γ∗
G from Γ∗

G′ when either Case 1.2 or Case 1.3 applied.
(a) Γ∗

G′ . The diamond assigned to edge (v1, v2) and the boomerangs assigned to the
children τi of ν are light-grey. (b) Two points W and E are selected on E′W ′, creating
a (dark gray) boomerang assigned to τ2, and vertex v is moved to the midpoint of EW .
(c) Γ∗

G in Case 1.2, where edge (v1, v2) exists in G. (d) Γ∗
G in Case 1.3.

In order to transform Γ∗
G′ into Γ∗

G, initially place points W and E on
segment W ′E′, on the same side with respect to segment N ′S′ (in Case
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1.2, the side depends on the order of the children of ν in Te(G)). With one
morphing step, uncontract v from v1 or v2 and move it to the midpoint of
segment WE (see Figure 5.7(b)). Observe that this morphing step does
not cause crossings and preserves the embedding of G. Namely, the fact
that v was contracted onto v1 or v2 and that edges (v, v1) and (v, v2) exist
in G ensures that path (v1, v, v2) lie either in a face delimited by edge
(v1, v2) (in Case 1.2) or in the face that contains the dummy edge (v1, v2)
(in Case 1.3).
Consider the children τi of ν in Te(G) that are not Q-nodes, with i =
1, . . . , q, and note that the drawing of each τi is composed of two straight-
line segments NCi and SCi. With a second morphing step, move the
vertex wi of τi lying on Ci, for each i = 1, . . . , q, and vertex v along the
line through WE till reaching their positions in Γ∗

G. In the same morphing
step, for each i = 1, . . . , q, the vertices on the path between s and wi

are moved as linear combination of the movements of s and wi, and the
vertices on the path between t and wi are moved as linear combination of
the movements of t and wi. Hence, at the end of the morphing step, also
such vertices reach their positions in Γ∗

G (see Figures 5.7(c) and 5.7(d)).

Case 2: The only two vertices of degree 2 in O are s and t.

Case 2.1: Note that Γ∗
G′ and Γ∗

G coincide, except for the drawing of p1, p2, p′1,
and p′2.
Namely, p1 and p2 are drawn in Γ∗

G in two boomerangs N1,W1, S1,WE1

and N2 = N1,W2, S2 = S1, E2 lying inside the diamond assigned to ν
(see Figure 5.8(d)), while p′1 and p′2 are drawn in Γ∗

G′ in two boomerangs
N ′

1,W
′
1, S

′
1 = S1, E

′
1 and N ′

2 = N ′
1,W

′
2, S

′
2 = S′

1 = S1, E
′
2 lying inside

a diamond assigned to νP , that lies inside a boomerang NS ,WS , SS , ES

assigned to νS (with SS = S′
2 = S′

1 = S1), that lies inside the diamond
assigned to ν (see Figure 5.8(a)).
Note that, since νS has two children in Te(G

′), vertex u1 is placed on the
midpoint CS of segment WSES , that is, CS = N ′

1 = N ′
2.

Let w1 and w2 be the vertices of p′1 and p′2, respectively, placed on the
midpoints C ′

1 and C ′
2 of segments W ′

1E
′
1 and W ′

2E
′
2.

With one morphing step, move w1 to any point C1
S of WSCS , move w2

to any point C2
S of CSES , and move u1 to any point of segment NSC2

S

(see Figure 5.8(b)). In the same morphing step, for each two vertices
a, b ∈ {w1, w2, u1, t}, the vertices lying on segment ab are moved as
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NS
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1
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′

1
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2

w1 w2

(a)

NS

SS
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w1=C1
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u1 = p

(b)
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w2=C
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1
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(c)

N1 = N2

S1 = S2

W1
E2
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Figure 5.8: Construction of Γ∗
G from Γ∗

G′ when Case 2.1 applied. (a) Γ∗
G′ . The

boomerang assigned to νS is light-grey, the diamonds assigned to νP and to the Q-
node corresponding to (s, u2) are dark-grey, and the boomerangs assigned to τ1 and
τ2 are white. (b) Vertices w1 and w2 are moved to points C1

S and C2
S , and u1 is moved

to a point of NSC2
S . (c) Vertex v is uncontracted from u2 and moved to a point of

NSC1
S . (d) Γ∗

G. The boomerangs assigned to τ1 and τ2 are light-grey.

linear combination of the movements of a and b. Hence, at the end of the
morphing step, all these vertices still lie on ab.
Next, with one morphing step, uncontract u2 from u1 and move it to any
internal point of segment NSC1

S (see Figure 5.8(c)). In the same morphing
step, the vertices lying on segment u2w1 are moved as linear combination
of the movements of u2 and w1.
Further, perform the same operation as in Case 1.1 to redistribute the ver-
tices of p1 on NSC1

S and SSC1
S , and the vertices of p2 on NSC2

S and
SSC2

S . After this step, for each child τi of ν, the vertex wi of τi lying on
segment WSES in Γ∗

G lies on WSES also in the current drawing.
Finally, perform the same operation as in Case 1.2 to move the vertex
wi of each child τi of ν to its final position (on segment WSES) in Γ∗

G.
In the same morphing step, the vertices on the path between s and wi

are moved as linear combination of the movements of s and wi, and the
vertices on the path between t and wi are moved as linear combination of
the movements of t and wi. Hence, at the end of the morphing step, also
such vertices reach their positions in Γ∗

G.

Case 2.2: Note that Γ∗
G′ and Γ∗

G coincide, except for the drawing of p1, p2, p′1,
and p′2.
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Namely, p1 and p2 are drawn in Γ∗
G inside two boomerangs (assigned to

τ1 and τ2) lying inside the diamond assigned to ν (see Figure 5.9(b)), that
lies inside the boomerang assigned to µ. Also, p′1 and p′2 are drawn in
Γ∗
G′ inside two boomerangs lying inside a diamond (assigned to νP ) that

lies inside the boomerang assigned to µ (see Figure 5.9(a)). However, the
boomerang assigned to µ in Γ∗

G has one diamond less than in Γ∗
G′ , since

in Γ∗
G′ it also contains the diamond assigned to edge (s, u1). Also, the

vertices in the boomerangs assigned to τ1 and τ2 have different positions
in Γ∗

G′ and in Γ∗
G, since vertex u2 is not present in Γ∗

G′ .
With three morphing steps analogous to those performed in Case 1.1, re-
distribute the vertices inside the boomerang N,W,S,E assigned to µ in
such a way that the vertex lying on the midpoint C of WE is the same in
Γ∗
G′ and in Γ∗

G. Note that, after these steps, the diamonds assigned to νP
and to edge (s, u1) lie on the same segment, either NC or SC, say SC,
and that the vertices lying on segment NC already are at their final posi-
tion in Γ∗

G. Then, with three morphing steps analogous to those performed
in Case 2.1, uncontract u2 and collapse the two diamonds assigned to νP
and to (s, u1) into a single diamond. Then, with one morphing step (anal-
ogous to one of the steps performed in Case 1.1), move the vertices lying
on segment SC till they reach their final position in Γ∗

G.

N

S

p′
2

p′
1

u1

s

(a)

N

S

p2
p1

s

(b)

Figure 5.9: Construction of Γ∗
G from Γ∗

G′ in Case 2.2. (a) Γ∗
G′ . The boomerang

assigned to µ is light-grey, the diamonds assigned to the children of µ, including νP
and the Q-node corresponding to (s, u1) are dark-grey, and the boomerangs assigned
to τ1 and τ2 are white. (b) Γ∗

G.
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To conclude the description of the algorithm, it remains to consider the case in
which Te(G) has no P-node. In such a case, we have that G is a simple cycle and that
Te(G) contains exactly one S-node. If G has exactly three vertices, then a morph from
any drawing ΓG to the canonical drawing Γ∗

G can be easily computed in a constant
number of steps by applying the technique described in Section 4.5. If G has more
than three vertices, then we apply a procedure very similar to the one described in
the case in which Te(G) contains a P-node. That is, we first triangulate the interior
of G, thus obtaining a biconnected outerplane graph O; we then find a vertex v of
degree 2 in O different from s and t, which always exists since s and t are adjacent,
by construction. Then, we contract v on one of its neighbors, thus obtaining a drawing
ΓG′ of a graph G′ with one vertex less than G; since v ̸= s, t, graph G′ is still a simple
cycle. Next, we inductively construct a pseudo-morph from ΓG′ to the canonical
drawing Γ∗

G′ of G′; finally, we uncontract v and construct a morph between Γ∗
G′ and

Γ∗
G. We remark that, since s and t are adjacent in G and in O, a vertex v of degree 2

different from s and t always exists in O.

5.2.3 Total Number of Steps

Consider the pseudo-morph M = ⟨ΓG, . . . ,Γ
∗
G⟩ transforming a planar straight-line

drawing ΓG of plane graph G into the canonical drawing Γ∗
G of G. Denote by M the

actual morph ⟨ΓG, . . . ,Γ
∗
G⟩ obtained fromM by recursively applying the technique

described in Section 4.6. Observe that the conversion ofM into M does not introduce
any further linear morphing step, as the contraction and the uncontraction of a vertex
are replaced, respectively, with a single planar linear morphing step, while the motion
of the contracted vertex during the morph of the resulting graph is computed according
with the motion of the neighbor it has been contracted onto.

Let then v be the vertex of G contracted onto its neighbor u in the first phase of
the algorithm and observe that graph G′ = G/(v, u) and its drawing ΓG′ are obtained
with a single contraction. In the second phase, a pseudo-morphM′ = ⟨ΓG′ , . . . ,Γ∗

G′⟩
is computed with T (n− 1) planar linear morphing steps. In the third phase, drawing
Γ∗
G is obtained from Γ∗

G′ with an uncontraction and a constant number of planar linear
morphing steps. The total number T (n) of planar linear morphing steps required by
M is then T (n) = T (n−1)+k, where k is a constant. Since in the base case, namely
when G′ consists of a single edge, the morph to the canonical drawing is computed in
a constant number of steps, it follows that T (n) ∈ O(n).
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Chapter 6

A Lower Bound

In this chapter1 we show that, for every n > 0, there exist two drawings Γs and Γt

of the same n-vertex plane graph, in fact a path, such that any planar morph between
Γs and Γt consists of Ω(n) morphing steps. To the best of our knowledge, no super-
constant lower bound was previously known.

The idea behind the lower bound is that linear morphs can poorly simulate rota-
tions, that is, a morphing step rotates an edge of an angle whose size is O(1). We then
consider two drawings Γs and Γt of an n-vertex path P , where Γs lies on a straight-
line, whereas Γt has a spiral-like shape, and we prove that in any planar morph be-
tween Γs and Γt there is one edge of P whose total rotation describes an angle whose
size is Ω(n).

The lower bound described in this chapter implies that the algorithms described in
Chapter 5 and in [Ros10] are asymptotically optimal.

The chapter is organized as follows. In Section 6.1 we describe the setting and
give some preliminary definitions; in Section 6.2 we describe the natural constraints
that any morph transforming Γs into Γt should satisfy; and in Section 6.3 we prove
the lower bound.

6.1 Construction of the Drawings

In this section we show how to construct two straight-line planar drawings Γs and
Γt of an n-vertex path P = (v1, . . . , vn), such that, as we will prove in Section 6.3,
any planar morph M between Γs and Γt requires Ω(n) morphing steps. In order to

1The contents of this chapter are joint work with Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di
Battista, Fabrizio Frati, and Maurizio Patrignani.

71
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simplify the description, we consider each edge ei = (vi, vi+1) as oriented from vi to
vi+1, for i = 1, . . . , n− 1.

Drawing Γs (see Figure 6.1(a)) is such that all the vertices of P lie on a horizontal
straight-line with vi to the left of vi+1, for each i = 1, . . . , n− 1.

Drawing Γt (see Figure 6.1(b)) is such that:

• for each i = 1, . . . , n− 1 with i mod 3 ≡ 1, the (green) segment representing
ei is horizontal with vi to the left of vi+1;

• for each i = 1, . . . , n − 1 with i mod 3 ≡ 2, the (blue) segment representing
ei is parallel to line y = tan( 2π3 )x with vi to the right of vi+1; and

• for each i = 1, . . . , n− 1 with i mod 3 ≡ 0, the (red) segment representing ei
is parallel to line y = tan(−2π

3 )x with vi to the right of vi+1.

v1 v2 vnv3

(a)

v3

v2v1

(b)

Figure 6.1: Drawings Γs (a) and Γt (b).

6.2 Definitions and Constraints

Let M = ⟨Γs = Γ1, . . . ,Γm = Γt⟩ be any planar morph transforming Γs into Γt.
For i = 1, . . . , n and j = 1, . . . ,m, we denote by vji the point where vertex vi is

placed in Γj ; also, for i = 1, . . . , n−1 and j = 1, . . . ,m we denote by eji the directed
straight-line segment representing edge ei in Γj .

For 1 ≤ j ≤ m − 1, we define the rotation ρji of ei around vi during the mor-
phing step ⟨Γj ,Γj+1⟩ as follows (see Figure 6.2). Translate ei at any time instant of
⟨Γj ,Γj+1⟩ so that vi stays fixed at a point a during the entire morphing step. After
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this translation, the morph between eji and ej+1
i is a rotation of ei around a (where

ei might vary its length during ⟨Γj ,Γj+1⟩) spanning an angle ρji , where we assume
ρji > 0 if the rotation is counter-clockwise, and ρji < 0 if the rotation is clockwise.

v
j+1

i

v
j+1

i+1

e
j+1

i

v
j
i

v
j
i+1e

j
i

(a)

v
j+1

i+1

v
j
i+1

e
j
i

e
j+1

i

ρ
j
i

v
j
i
= v

j+1

i
= a

(b)

Figure 6.2: Rotation ρji . (a) Morph between eji and ej+1
i . (b) Translation of the

positions of ei during ⟨Γj ,Γj+1⟩, resulting in ei spanning an angle ρji around vi.

With next lemma we prove that, during a single planar linear morphing step the
rotation of an edge is, in modulus, strictly less than π.

Lemma 6.1 For each j = 1, . . . ,m− 1 and i = 1, . . . , n− 1, we have |ρji | < π.

Proof: Suppose, for a contradiction, that, for some 1 ≤ j ≤ m−1 and 1 ≤ i ≤ n−1,
the planar linear morphing step ⟨Γj ,Γj+1⟩ of M is such that for edge ei it holds
ρji ≥ π. Assume, without loss of generality, that:

• vji ≡ vj+1
i , that is, vertex vi does not move during ⟨Γj ,Γj+1⟩. Otherwise we

can consider a drawing Γ′
j+1 obtained by translating Γj+1 in such a way that vi

has the same position both in Γj and in Γ′
j+1. Observe that morph ⟨Γj ,Γj+1⟩

is a planar linear morph if and only if ⟨Γj ,Γ
′
j+1⟩ is. Also, the rotation of edge

ei is the same in both morphs.

• The morphing step ⟨Γj ,Γj+1⟩ happens between time instants t = 0 and t = 1.

For any 0 ≤ t ≤ 1, denote by vi(t), vi+1(t), ei(t), and ρji (t) the position of vi, the
position of vi+1, the drawing of ei, and the rotation of ei around vi at time instant t,
respectively. Note that vi(0) = vji = vj+1

i = vi(1), vi+1(0) = vji+1, vi+1(1) = vj+1
i+1 ,

ei(0) = eji , ei(1) = ej+1
i , ρji (0) = 0, and ρji (1) = ρji . Also, denote by Γt the drawing

of P at time t during ⟨Γj ,Γj+1⟩.
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Recall that, by hypothesis, ⟨Γj ,Γj+1⟩ is a planar linear morphing step. We prove
that there exists an intermediate drawing Γtr of ⟨Γj ,Γj+1⟩ in which vertices vi and
vi+1 overlap, thus contradicting the planarity of ⟨Γj ,Γj+1⟩, and hence of M .

Since a morph is a continuous transformation, we have that for any 0 ≤ t ≤ 1,
the planar linear morphing step ⟨Γj ,Γj+1⟩ can be subdivided into two planar linear
morphing steps ⟨Γi,Γt⟩ and ⟨Γt,Γj+1⟩. Observe that, since Γt is an intermediate
drawing of ⟨Γj ,Γj+1⟩, such a morphing step is planar if and only if both the linear
morphs ⟨Γi,Γt⟩ and ⟨Γt,Γj+1⟩ are planar.

Also, since |ρji | ≥ π, there exists a time instant tπ , with 0 < tπ ≤ 1, such that
|ρji (tπ)| = π.

Consider drawing Γtπ . Since |ρji (tπ)| = π, it follows that ei(tπ) is parallel to
ei(0) and oriented in the opposite way. Also, since by assumption vertex vi does
not move during the morph, vi lies along the straight-line segment vi+1(0)vi+1(tπ),
that is the trajectory of vertex vi+1 during morph ⟨Γi,Γtπ ⟩. It follows that, during
⟨Γi,Γtπ ⟩ there exists a time instant tr, with 0 < tr ≤ tπ , in which vi(tr) and vi+1(tr)
coincide, thus contradicting the fact that ⟨Γi,Γtπ ⟩ is planar, and hence the hypothesis
that ⟨Γj ,Γj+1⟩. 2

For j = 1, . . . ,m − 1, we denote by Mj the subsequence ⟨Γ1, . . . ,Γj+1⟩ of M ;
also, for i = 1, . . . , n − 1, we define the total rotation ρi(Mj) of edge ei around vi
during morph Mj as ρi(Mj) =

∑j
m=1 ρ

m
i .

We will show in Lemma 6.3 that there exists an edge ei, for some 1 ≤ i ≤ n− 1,
whose total rotation ρi(Mm−1) = ρi(M) is Ω(n). In order to do that, we first analyze
the relationship between the total rotation of two consecutive edges of P .

Lemma 6.2 For each j = 1, . . . ,m− 1 and for each i = 1, . . . , n− 2, we have that
|ρi+1(Mj)− ρi(Mj)| < π.

Proof: Suppose, for a contradiction, that |ρi+1(Mj)−ρi(Mj)| ≥ π for some 1 ≤ j ≤
m−1 and 1 ≤ i ≤ n−2. Assume that j is minimal under this hypothesis. Since each
vertex moves continuously during Mj , there exists an intermediate drawing Γ∗ of P ,
occurring during morphing step ⟨Γj ,Γj+1⟩, such that |ρi+1(M

∗) − ρi(M
∗)| = π,

where M∗ = ⟨Γ1, . . . ,Γj ,Γ
∗⟩ is the morph obtained by concatenating Mj−1 with the

morphing step transforming Γj into Γ∗. Recall that in Γ1 edges ei and ei+1 lie on the
same straight line and have the same orientation. Then, since |ρi+1(M

∗)−ρi(M∗)| =
π, in Γ∗ edges ei and ei+1 are parallel and have opposite orientations. Also, since
edges ei and ei+1 share vertex vi+1, they lie on the same line. This implies that such
edges overlap, contradicting the hypothesis that M∗, Mj , and M are planar. 2
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6.3 Proof of the Lower Bound

We are now ready to prove the key lemma for the lower bound.

Lemma 6.3 There exists an index i such that |ρi(M)| ∈ Ω(n).

Proof: Refer to Figure 6.1. For every 1 ≤ i ≤ n − 2, edges ei and ei+1 form
an angle of π radiants in Γs, while they form an angle of π

3 radiants in Γt. Hence,
ρi+1(M) = ρi(M) + 2π

3 + 2ziπ, for some zi ∈ Z.
In order to prove the lemma, it suffices to prove that zi = 0, for every i =

1, . . . , n−2. Namely, in this case ρi+1(M) = ρi(M)+ 2π
3 for every 1 ≤ i ≤ n−2, and

hence ρn−1(M) = ρ1(M) + 2π
3 (n− 2). This implies |ρn−1(M)− ρ1(M)| ∈ Ω(n),

and thus |ρ1(M)| ∈ Ω(n) or |ρn−1(M)| ∈ Ω(n).
Assume, for a contradiction, that zi ̸= 0, for some 1 ≤ i ≤ n− 2. If zi > 0, then

ρi+1(M) ≥ ρi(M) + 8π
3 ; further, if zi < 0, then ρi+1(M) ≤ ρi(M) − 4π

3 . Since
each of these inequalities contradicts Lemma 6.2, the lemma follows. 2

We are now ready to state the main theorem of this section.

Theorem 6.1 There exists two straight-line planar drawings Γs and Γt of an n-vertex
path P such that any planar morph between Γs and Γt requires Ω(n) morphing steps.

Proof: The two drawings Γs and Γt of path P = (v1, . . . , vn) are those illustrated in
Figure 6.1. By Lemma 6.3, there exists an edge ei of P , for some 1 ≤ i ≤ n − 1,
such that |

∑x−1
j=1 ρ

j
i | ∈ Ω(n). Since, by Lemma 6.1, we have that |ρji | < π for each

j = 1, . . . , x− 1, it follows that x ∈ Ω(n). This concludes the proof. 2
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Chapter 7

Morphing Planar Graph Drawings

In this chapter1 we prove that, for any two drawings Γs and Γt of a plane n-vertex
graph G, O(n2) planar linear morphing steps are always sufficient to construct a pla-
nar morph ⟨Γs, . . . ,Γt⟩ transforming Γs into Γt, as stated in the following theorem.

Theorem 7.1 Let Γs and Γt be two drawings of the same plane graph G. There exists
a morph ⟨Γs, . . . ,Γt⟩ with O(n2) steps transforming Γs into Γt .

The chapter is structured as follows. In Section 7.1 we give an overview of the
algorithm, which, as described in Section 7.2, proceeds by contracting a candidate
vertex v onto a specific neighbor, by running two subroutines to handle the polygon
induced by the neighbors of v in the cases in which they induce a quadrilateral (Sec-
tion 7.3) or a pentagon (Section 7.4).

7.1 Overview of the Algorithm

In this section we give an high-level description of Algorithm Morph that recursively
transforms Γs into Γt. Algorithm Morph proceeds as follows.

In the base case, graph G has a unique vertex v. Then, with a single linear morph-
ing step, vertex v is moved from its position in Γs to its position in Γt (lines 1–2).

In each recursive step, a candidate vertex v of G, whose existence is guaranteed by
Lemma 4.7, and a neighbor x of v are selected (lines 4–5), and the aim is to contract v

1The contents of this chapter are joint work with Soroush Alamdari, Patrizio Angelini, Timothy M.
Chan, Giuseppe Di Battista, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani, Sahil Singla, and Bryan T.
Wilkinson, appeared in [AAC+13], and have been submitted to journal.
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Algorithm Morph (G,Γs,Γt)

Require: Γs and Γt are two planar drawings of a connected plane graph G

/* base case */

1. if G has exactly one vertex v then
2. M ← linear morph from the position of v in Γs to the position of v in Γt

3. return M

/* begin of the recursive step */

4. v ← find a candidate vertex (G)
5. x← find neighbor (v,G)

/* morph Γs and Γt into drawings of G where v is

x-contractible */

6. Ms ← make contractible (v, x,Γs)
7. Mt ← make contractible (v, x,Γt)
8. Γx

s ← get last drawing (Ms)
9. Γx

t ← get last drawing (Mt)

/* pseudo-morph Γx
s into Γx

t */

10. Γ′
s ← contract (v, x,Γx

s )
11. Γ′

t ← contract (v, x,Γx
t )

/* G′ is the graph obtained by the above contractions */

12. Mr ← Morph(G′,Γ′
s,Γ

′
t)

/* construct the morph from Γs to Γt */

13. Mr ← extend to actual morph(Γx
s ,Mr,Γ

x
t )

14. M t ← reverse(Mt)
15. M ← concatenate (Ms,Mr,M t)
16. return M

onto x. Note that vertex v might be not x-contractible in Γs or in Γt. Hence, in order
to contract v onto x, drawings Γs and Γt are morphed into two suitable drawings Γx

s

and Γx
t , respectively, in which v is x-contractible (lines 6–9). A detailed description

of how to perform these morphs with O(n) steps is given in Section 7.2. Denote by
Ms and Mt morphs ⟨Γs, . . . ,Γ

x
s ⟩ and ⟨Γt, . . . ,Γ

x
t ⟩, respectively.

Since v is x-contractible in both Γx
s and Γx

t , vertex v is contracted onto x, thus
obtaining two drawings Γ′

s and Γ′
t of a graph G′ = G/(v, x) with n − 1 vertices

(lines 10–11).
Then, by applying a recursive call to the obtained graph and drawings (line 12),
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the algorithm computes a morphMr of G′, transforming Γ′
s into Γ′

t.
Note that, by definition, the morph Mr = ⟨Γ′

s, . . . ,Γ
′
t⟩ of G′ = G/(v, x), to-

gether with the contraction of v onto x in Γx
s and the uncontraction of v from x in Γ′

t

resulting in Γx
t , is a pseudo-morph of G from Γx

s to Γx
t . The uncontraction of v from

x in Γ′
t is always possible, as the two drawings only differ for the position of v and x

lies on the boundary of the kernel of v in Γx
t .

Hence, a planar linear morph Mr of Γx
s into Γx

t can be obtained from such a
pseudo-morph by replacing the contraction and the uncontraction of v each with a
linear morphing step and finding a suitable position for v at each time instant ofMr

with the technique described in Section 4.6 (line 13).
Finally, a morph of Γs into Γt is obtained by concatenating Ms, Mr, and the

reverse morph M t = ⟨Γx
t , . . . ,Γt⟩ of Mt = ⟨Γt, . . . ,Γ

x
t ⟩ (lines 14–15).

7.1.1 Computing the Total Number of Steps

We claim that the algorithm has T (n) ∈ O(n2) steps. Namely, as we will show in
Section 7.2, O(n) steps suffice to construct morphs of Γs and Γt into drawings Γx

s

and Γx
t of G, respectively, such that v is x-contractible onto the same neighbor x in

both Γx
s and Γx

t . Further, two steps are sufficient to contract v onto x in both Γx
s and

Γx
t , obtaining drawings Γ′

s and Γ′
t, respectively. Finally, the recursion on Γ′

s and Γ′
t

takes T (n − 1) steps. Thus, T (n) = T (n − 1) + O(n) ∈ O(n2). As described in
Section 4.6, obtaining a morph from a pseudo-morph does not require any additional
morphing step.

7.2 Making a Candidate Vertex x-Contractible

Let v be a candidate vertex of a plane graph G and let x be any neighbor of v. In
this section we show how to construct a morph M with O(n) steps transforming any
straight-line planar drawing Γ of G into a straight-line planar drawing Γx of G in
which v is x-contractible. Figure 7.1 shows two examples of drawings in which v is
not x-contractible.

Assume that v is not x-contractible in Γ, as otherwise Γx = Γ and no morph is
required. This assumption implies that deg(v) ≥ 2. Namely, if v has degree 1, then it
is always contractible onto its unique neighbor x in Γ.

In order to morph Γ into a straight-line planar drawing Γx of G in which v is
x-contractible, we proceed as follows.

In a first step, which is described in detail in Section 7.2.1, denoting S = G and
Σ = Γ, we process Σ and S with O(n) morphing steps and with a constant number
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(b)

Figure 7.1: Two drawings in which v is not x-contractible.

of edge additions, in order to obtain a planar straight-line drawing Σv of a super-
graph Sv of S with the following properties: (i) there is an edge between each pair
of consecutive neighbors of v, and (ii) v is a candidate vertex of Sv. By definition
of candidate vertex, all the faces incident to v in Sv are simple and empty. As also
observed by Cairns [Cai44a, Lemma 3.1] (and proven in Lemma 4.3), this implies that
at least one of the neighbors of v, say u, lies on the boundary of the kernel of v in Σv.

In a second step, which is described in detail in Section 7.2.2, we exploit the
property that v is u-contractible to compute a morph with O(n) steps transforming
Σv into a drawing Σx in which v is x-contractible. Finally, a morph transforming
Γ into Γx with O(n) steps is obtained by restricting the morph of Σ into Σx to the
vertices and the edges of G.

7.2.1 Connecting Consecutive Neighbors of v

Let u and w be two consecutive neighbors of v and let ∆ = ⟨u, v, w⟩ be the closed
triangular region bounded by these three vertices in the current drawing Σ of S. Our
purpose is to add edge (u,w) while maintaining v a candidate vertex, that is, in such
a way that cycle (u, v, w) bounds a simple face of S.

Assume that adding edge (u,w) to Σ and S results in a non-planar drawing or in a
planar drawing in which v is not a candidate vertex of S. It follows that some vertices
of S, different from u, v, and w lie inside ∆, as depicted in Figure 7.2(a). In order to
“push away” such vertices from ∆, we proceed as follows.

Let Σr be the drawing of a plane graph Sr obtained by adding a new vertex r and
the edges (r, v), (r, u), and (r, w) to Σ and to S, in such a way that Σr is straight-line
planar and cycles (v, r, u) and (v, r, w) bound two simple faces of Sr.
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Figure 7.2: Vertex v and its neighbors. (a) Vertices u and w do not have direct vis-
ibility and the triangle ⟨u,w, v⟩ is not empty. (b) A vertex r is added suitably close
to v and connected to v, u, and w. (c) The output of AlgoQuad on the quadrilateral
⟨u, r, w, v⟩. (d) Vertex r and its incident edges can be removed in order to insert edge
(u,w).

With a technique similar to that described in Section 4.3, based on the proof of
Fáry’s Theorem [Fár48], a position for r with such properties can be found in Σ,
suitably close to v. See Figure 7.2(b) for an example.

Augment Σr to the drawing Θ of a maximal plane graph T by first adding three
vertices a, b, and c to Σr, so that triangle ⟨a, b, c⟩ completely encloses the rest of
the drawing, and then adding dummy edges [Cha91] till a maximal plane graph is
obtained.

It might be the case that edge (u,w) has been added to Sr during this augmen-
tation. Observe that edge (u,w) prevents the existence of a planar morph of Θ to a
drawing of T in which ∆ only contains its delimiting vertices. In this case, we sub-
divide (u,w) in Θ (namely, replace edge (u,w) with edges (s, w) and (s, u), placing
s along the straight-line segment connecting u and w) and triangulate the two faces
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vertex s is incident to. This case is depicted in Figure 7.3.
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Figure 7.3: If edge (u,w) has been added when augmenting Sr to T (a), then we
subdivide (u,w) with the insertion of a vertex s and we triangulate the two faces s is
incident to (b). (c) The output of AlgoQuad on the quadrilateral ⟨u, r, w, v⟩.

By applying algorithm AlgoQuad to Θ and the quadrilateral ⟨u, v, w, r⟩ we
morph Θ with a linear number of steps into a drawing Θ′ of T in which ⟨u, v, w, r⟩
is convex (see Figures 7.2(c) and 7.3(c)). Algorithm AlgoQuad is completely de-
scribed in Section 7.3.

Let Σ′
r be the drawing of Sr obtained by restricting Θ′ to the vertices and the

edges of Sr. Since ⟨u, v, w, r⟩ is a convex polygon containing no vertex of Sr in its
interior, vertex r and its incident edges can be removed and edge (u,w) can be added
to S and to Σ′

r, so that the resulting drawing Σ′ is planar and cycle (u,w, v) bounds a
simple face of S (see Figure 7.2(d)).

Once edge (u,w) has been added to S, if deg(v) = 2 then v is both u-contractible
and w-contractible. Otherwise, apply the same operations described before for every
other pair of consecutive neighbors of v, until all faces incident to v are triangular
while v is a candidate vertex.

7.2.2 Moving x to the Boundary of the Kernel of v

Let Σv be the current drawing of S obtained after applying the procedure described
in Section 7.2.1. If deg(v) ≤ 3, then v is x-contractible for any neighbor x, i.e. every
neighbor x of v lies on the boundary of the kernel of v in Σv. Otherwise, it may be
the case that v is not x-contractible. If that’s the case, add three vertices a, b, and c to
Σv, so that triangle ⟨a, b, c⟩ completely encloses the rest of the drawing, and then add
dummy edges [Cha91] till a drawing Θ of a maximal plane graph T is obtained.
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In the following we show how to construct a morph MΘ transforming, with a
linear number of steps, Θ into a drawing Θx in which v is x-contractible.

If deg(v) = 4, proceed as follows. Let u be a neighbor of v such that v is u-
contractible. We contract v onto u in Θ obtaining a drawing Θ′ of a maximal plane
graph T ′. We apply algorithm AlgoQuad to construct a morph with O(n) steps
transforming Θ′ into a drawing Θ′′ such that the quadrilateral induced by the neigh-
bors of v in T is convex. Then, uncontract v from u, thus obtaining a drawing Θx of
T in which all the neighbors of v (and hence also x) lie on the boundary of its kernel.
Observe that the contraction of v onto u, followed by the morph of Θ′ into Θ′′ and
by the uncontraction of v from u is a pseudo morphMΘ of Θ into Θx. Finally, MΘ

can be obtained fromMΘ by applying the technique described in Section 4.6 with no
additional morphing steps.

If deg(v) = 5, a morph MΘ = ⟨Θ, . . . , Θx⟩ with O(n) steps is obtained by
applying algorithm AlgoPenta, described in Section 7.4, to Θ, v, and x.

This concludes the description of the algorithm, as deg(v) ≤ 5, given that v is a
candidate vertex.

7.3 Algorithm AlgoQuad

The input of algorithm AlgoQuad consists of:

• a planar straight-line drawing Υ of a maximal plane graph Y , and

• a set {x, y, z, w} of vertices of Y inducing a biconnected outerplane graph Q
not containing any other vertex in its interior in Υ.

The output of algorithm AlgoQuad is a planar morph with O(n) linear morphing
steps transforming Υ into a drawing Υ∗ of Y in which the vertices of Q induce a
convex quadrilateral.

Assume that Q is not convex in Υ, as otherwise Υ∗ = Υ. Observe that, since Q
is outerplane, graph Y cannot contain both edge (w, x) and edge (y, z) but, since Y
is maximal plane, it contains exactly one of them. It follows that either vertex y or
vertex z lies in the triangular region delimited by the remaining three vertices. In the
following we assume that edge (y, z) belongs to Y and that vertex y lies in the interior
of the triangle delimited by x, w, and z, as depicted in Figure 7.4.

We follow Cairns’s idea [Cai44a], completely described in Section 3.2, of com-
puting a pseudo-morphM transforming Υ into a drawing Υ∗ (in which the vertices
of Q delimit a convex quadrilateral) by contracting an internal vertex with degree at
most 5 onto one of its neighbors and then recursively compute a pseudo-morph of the
resulting graph.
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y z

w

x

Figure 7.4: Since edge (y, z) belongs to Y , (w, x) /∈ Y , as otherwise Q would not be
outerplane. Vertex v lies in the interior of the triangle delimited by x, w, and z.

However, in order to achieve the convexity of Q in Υ∗, it is important to avoid
introducing edge (w, x) or destroying Q itself when contracting a vertex of Y onto
one of its neighbors. Also, as in Cairns’s approach, we contract internal vertices only.
Denote by a, b, and c the three vertices delimiting the external face of Y and observe
that since edge (w, x) does not belong to Y , at most two vertices among x, w, and z
can be incident to the outer face of Y . We say that a vertex v of Y is problematic if it
is of one of the following three types:

Type 1: v belongs to Q and is not incident to the external face of Y ; or

Type 2: v ∈ {a, b, c}, i.e., it is incident to the external face of Y ; or

Type 3: v is an internal vertex of Y , deg(v) ≤ 5, edges (v, w) and (v, x) belong to
Y , and v is either w- or x-contractible.

We call a vertex v of the third type a xw-inducing vertex, as the contraction of v
onto either of w or x would induce the external chord (w, x) of Q. Also, we define
the deficiency def(v) of a vertex v to be 6 − deg(v). By Euler’s formula for planar
graphs, we have that

∑
v∈Y def(v) = 6n−

∑
v∈Y deg(v) = 12.

If Y contains at least a candidate vertex that is non-problematic, Cairns’s approach
works fine. In the following, we show that either Y contains a problematic vertex that
can be handled, or it contains a non-problematic internal vertex with degree at most
5. Namely, in the first case we can either morph directly to convexify Q, or we can
perform a contraction that reduces the problem size by one, while, in the second case,
we bound the deficiencies of the problematic vertices that cannot be directly handled
by using a counting argument.
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7.3.1 Handleable Problematic Vertices of Type 1

Recall that problematic vertices of type 1 belong to quadrilateral Q and are not in-
cident to the external face of Y . Let v be a problematic vertex of Type 1. In the
following, we show that if deg(v) ≤ 4, it can be directly handled, while the case in
which deg(v) ≥ 5 is considered in Section 7.3.4. We distinguish three cases:

Case 1.1: v = w, or v = x. We only describe the case in which v = w (see Fig-
ure 7.5), being the case v = x symmetric.

y z

w

x

q
p

(a)

y zw

x

p
q

∆

(b)

y zw

x

p

∆

(c)

Figure 7.5: If deg(w) ≤ 4, the problematic vertex w can be handled. (a) Either y
or z lie on the boundary of the kernel of w (grey region). (b) Quadrilateral Q can
be directly convexified by moving w to any point of ∆ (dark grey region). (c) If
deg(w) = 3, the same argument applies.

Observe that since deg(v) ≤ 4, by Lemma 4.3, either y or z, say y, lies on the
boundary of the kernel of w.

Consider the elongation, emanating from vertex y, of edge (x, y) and note that it
traverses the kernel of w. Further, since the kernel of w is partially delimited by
edge (y, z), the intersection ∆ between the kernel of w and the wedge delimited
by the elongation of (x, y) and edge (y, z) is non empty.

Finally, note that any point w′ of ∆ is such that the quadrilateral (x, y, w′, z)
is convex. Then, Q can be directly convexified, with a unique planar linear
morphing step, by moving w to any point w′ of ∆. Note that, if deg(w) = 3,
the same argument applies (see Figure 7.5(c)).

Case 1.2: v = z. Since z has three neighbors in Q and is not incident to the exter-
nal face of Y , it has at least one neighbor not in Q. We show that z can be
handled if deg(v) = 4, while the case in which deg(v) ≥ 5 is considered in
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Section 7.3.4. Let then p be the unique neighbor of z not in Q. Since Y is a
maximal plane graph, edges (p, w) and (p, x) belong to Y . This situation is
depicted in Figure 7.6.

y
z

w

x

p

Figure 7.6: If deg(z) = 4, then it is contractible onto its unique neighbor not in Q.

Analogously to the previous case, since two of the neighbors of z lie on the
boundary of its kernel and since the straight-line segment wx does not lie in the
interior of the quadrilateral induced by x, y, w, and p, vertex z is p-contractible.
Then, we contract z onto p, recursively convexify the quadrilateral induced by
x, y, w, and p and then uncontract z, thus convexifying Q.

Case 1.3: v = y. As above, we consider only the case in which deg(v) = 4. Let
p the unique neighbor of y not in Q. If p does not lie in the interior of the
triangular region delimited by x, w, and z (see Figure 7.7(a)), then Q can be
directly convexified by moving y to any point y′ inside the triangular region
bounded by p, x, and w. Otherwise, namely vertex p lies inside the triangular
region delimited by x, w, and z (see Figure 7.7(b)), as in Case 1.2, we contract
y onto p, recursively convexify the quadrilateral delimited by x, p, w, and z,
and then uncontract y, thus convexifying Q.

y
z

w

x

p

y′

(a)

y z

w

x

p

(b)

Figure 7.7: If deg(y) = 4, either quadrilateral Q can be convexified by moving y to
any point y′ inside triangle xpw (a), or it can be contracted onto p (b).
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We have shown that if the vertices of Q have degree at most 4 and are not inci-
dent to the external face of Y , can be directly handled. So assume that they all have
degree at least 5, i.e., deficiency at most 1, for a total of 4. This case is considered in
Section 7.3.4.

7.3.2 Handleable Problematic Vertices of Type 2

Recall that problematic vertices of type 2 are the vertices, denoted by a, b, and c,
incident to the external face of the graph. We show that such vertices can be handled
if one of them, say a, has degree 3, or if all of them have degree 4. Observe that in the
case in which all the external vertices have degree 3, the graph does not contain any
quadrilateral, as it is the complete graph on four vertices.

Case 2.1: deg(a) = 3. Since Y is a maximal planar graph, (i) vertex a has a neigh-
bor p that is also adjacent to b and c (see Figure 7.8(a)), and (ii) triangles apb
and apc bound two faces of Y .

p

a

b c

(a)

p = y

a = x

b = z
c

w

(b)

Figure 7.8: (a) If deg(a) = 3, then a, b, and c have a common neighbor p. (b) If Q
(grey area) has an edge on the external face, then it has exactly one vertex in triangle
pbc.

If Q lies entirely inside triangle pbc, then we can simply recursively morph the
subgraph Y ′ = Y \ {a}, having p, b, and c on the external face. Otherwise,
some vertices of Q are incident to the external face of Y . Observe that, since
-by hypothesis- edge (w, x) does not belong to Y , they are exactly two. Also,
Q is composed of either apb or acp, say apb, and an adjacent triangle in pbc. It
follows that vertices y and p, a and x, and b and z coincide, while w lies inside
pbc (see Figure 7.8(b)). Let s be a straight-line segment and denote by sl(s) the
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slope of s. We have that sl(pc) < sl(pw) < sl(pb). Denote by Υ the current
drawing of Y .

Observe that, by fixing the barycentric coordinates of the vertices of Y lying
inside triangle pbc with respect to such vertices and applying the technique de-
scribed in Section 4.4, we can morph Υ to any drawing in which p is placed at
any internal point of abc with a unique planar linear morphing step.

As in the proof of Fáry’s Theorem [Fár48], there exists a disk Dx, centered
at vertex x, such that x placing x at any internal point of Dx while maintain-
ing any other vertex of Y at the same position it has in Υ yields a straight-line
planar drawing of Y . Let y′ be any point arbitrarily close to a = x in the inter-
section between Dx and triangle abc and observe that, by fixing the barycentric
coordinates of the vertices of Y lying inside triangle pbc with respect to such
vertices and applying the technique described in Section 4.4, we can morph Υ
to a drawing Υ′ of Y in which p is placed at point y′ with a unique planar linear
morphing step.

Observe that, since in Υ′ a lies on the boundary of the kernel of y and since y
lies inside triangle abc edge (x, c) delimits the boundary of the kernel of y (see
Figure 7.9(a)). Denote by ∆ the triangular region delimited by the elongation of
edge (z, w) emanating from w, edge (x, c), and the straight-line segment xw.

Then, with an additional planar linear morphing step, we directly convexify
Q by moving vertex y only, from its position in Υ′ to any point of ∆ (Fig-
ure 7.9(b)).

a

w

y

Dx

(a)

a

w

Dx

y ∆

(b)

Figure 7.9: Detail of drawing Υ′. (a) Since y lies in Dx, its kernel is delimited by
edge (x, c). (b) Q can be convexified by moving y to any point of ∆.
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Case 2.2: deg(a) = deg(b) = deg(c) = 4. Denote by p, q, and r the neighbors
of a, b, and c and observe that all the remaining vertices of Y lie inside tri-
angle pqr (see Figure 7.10). We distinguish three subcases, depending on the
positions of the vertices of Q.

q

a

p

r

b c

(a)

a

p = x

r = y

b = z c = w

q

(b)

q = s

a = u

r

b c

v

p = t

(c)

Figure 7.10: Possible configurations for the vertices of Q in Case 2.2. (a) No vertex
of Q lies outside triangle pqr. (b) No vertex of Q lies inside pqr. (c) One vertex of Q
lies inside and one outside pqr.

First, if no vertex of Q lies on the external face of Y (see Figure 7.10(a)), then
we simply apply recursion on triangle pqr.

Second, if no vertex of Q lies inside pqr, then Q is composed of two adjacent
internal faces of Y (see Figure 7.10(b)) and can be convexified in a constant
number of steps. Namely, while maintaining fixed the barycentric coordinates
of the vertices lying inside pqr (see Section 4.4), it suffices to simulate the
rotation of triangle pqr (see Section 4.5).

Third, Q is composed of a vertex u incident to the external face of Y , a vertex
v lying inside triangle pqr, and two vertices (denoted by s and t) of pqr (see
Figure 7.10(c)). Observe that, since the sl(vs) and sl(vt) are bounded by the
slopes of the two edges of Q different from (s, t), convexifying the polygon
induced by p, q, r, and u necessarily also convexifies Q. As in the previous
case, we perform this operation by fixing the barycentric coordinates of the
vertices lying inside pqr and simulating the rotation of such a triangle.

We have shown that if one of the external vertices of Y has degree 3, or if all of
them have degree 4, these problematic vertices can be easily handled. So assume that
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each of a, b, and c has degree at least 4 and that one of them has degree at least 5, i.e.
the sum of their deficiencies is at most 5. This case is considered in Section 7.3.4.

7.3.3 Handleable Problematic Vertices of Type 3

Recall that a problematic vertex v of Type 3, called xw-inducing vertex, is an internal
vertex v of Y with degree at most 5 such that edges (v, w) and (v, x) belong to Y , and
v is either w- or x-contractible. See Figure 7.11(a).

y
z

w

x

v

(a)

y
z

w

x

v
u

(b)

y z

w

x

u

v
v′

(c)

Figure 7.11: (a) An xw-inducing vertex v. (b) Illustration for Lemma 7.1. Vertex u
cannot induce chord (x,w) since neither x nor w lie on the boundary of its kernel
(grey region). (c) Moving v to v′ makes u a non-problematic vertex.

We first prove that graph Y can contain at most two xw-inducing vertices.

Lemma 7.1 Graph Y contains at most two xw-inducing vertices.

Proof: We prove the statement by showing that two xw-inducing vertices cannot lie
on the same side of segment xw, thus implying the statement. Let then u and v be two
xw-inducing vertices and assume, for a contradiction, that they lie on the same side of
xw (see Figure 7.11(b)). Consider the quadrilateral K induced by u, w, v, and x in Υ,
and x and observe that segment xw does not lie in its interior. Assume without loss
of generality that v is nearer than u to segment xw. This implies that neither x nor w
can lie on the boundary of the kernel of u, contradicting the necessary condition that
u is either w- or x-contractible for u being a xw-inducing vertex. 2

In the following we show that, if Y contains two xw-inducing vertices u and v, we
can modify the current drawing Υ of Y and contract one of them without introducing
edge (x,w).

Assume, without loss of generality, that v lies inside the triangular region delim-
ited by x, y, and w. Since u and v cannot lie on the same side of segment xw, vertex
u lies outside such a region. Also, since v is an xw-inducing vertex, it is either w- or
x-contractible. Assume the latter.
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Then, by the proof of Fáry’s Theorem [Fár48] and by the fact that the quadrilateral
delimited by u, w, v, and x cannot contain any vertices, there exists a point v′ of the
kernel of v that is arbitrarily close to x and lies inside the triangular region delimited
by u, x, and w (see Figure 7.11(c)). Then with a unique planar linear morphing
step, we move vertex v to point v′, while leaving all the remaining vertices at their
positions. Denote by Υ′ the obtained drawing of Y and observe that, in Υ′, both u
and v lie on the same side of xw. By the proof of Lemma 7.1, it follows that u is not
an xw-inducing vertex any more. Also, since deg(u) ≤ 5, there exists a neighbor p
of u, different from both x and w, that lies on the boundary of the kernel of u. So, we
can contract u onto p and recursively convexify Q.

As we can repeatedly apply such a preocedure, we can assume that Y contains at
most one xw-inducing vertex. Since it has degree at least 4, its deficiency is at most
2. This case is considered in Section 7.3.4.

7.3.4 Existence of a non-problematic vertex

In the following we show that, if none of the cases described in Sections 7.3.1 to 7.3.3
applies, then Y contains a non-problematic vertex.

Denote by di, with i ∈ {1, 2, 3} the sum of the deficiencies of the problematic
vertices of Type i. If none of the cases described in Sections 7.3.1 to 7.3.3, we have
that: d1 ≤ 4, d2 ≤ 5, and d3 ≤ 2. Hence, since by Euler’s formula for planar
graphs the sum dY of the deficiencies of the vertices of Y equals 12, while d1 + d2 +
d3 ≤ 11 < dY = 12, graph Y contains a non-problematic vertex v with degree at
most 5 that, by Lemma 4.3, can be contracted onto some of its neighbors in order to
recursively convexify quadrilateral Q.

7.3.5 Computing the Total Number of Planar Linear Morphing Steps

Let TAQ(n) = TAQ(n − 1) + O(1) be the total number of planar linear morphing
steps required by AlgoQuad. In Sections 7.3.1 to 7.3.4 we have shown that with a
constant number of planar linear morphing steps either the quadrilateral Q is directly
convexified, or the size of the input graph is reduced by one. It follows that TAQ ∈
O(n).

7.4 Algorithm AlgoPenta

The input of algorithm AlgoPenta consists of:

• a planar straight-line drawing Υ of a maximal plane graph Y ;
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• a contractible vertex v of Y ; and

• a neighbor x of v.

The output of algorithm AlgoPenta is a planar morph MΥ of O(n) linear morphing
steps transforming Υ into a drawing Υx of Y in which vertex x lies on the boundary
of the kernel of v, and hence v is x-contractible.

Let x, y, z, u, and w be the neighbors of v, appearing in this order, in Y . Since v
is contractible in Y , at least one of its neighbors, denoted by r, lies on the boundary
of the kernel of v in Υ. We distinguish two cases:

(a) vertices x and r are non-consecutive neighbors of v in Y (see Figure 7.12(a));
and

(b) vertices x and r are consecutive neighbors of v in Y (see Figure 7.12(b)).

v
x

y

u
w

r = z

(a)

y

x
u

w

z

v

(b)

Figure 7.12: Possible input cases for AlgoPenta. (a) Vertices x and r are non-
consecutive neighbors of v. (b) Vertices x and r are consecutive neighbors of v.

In both cases, the idea is that of reducing the problem of making v x-contractible to
the problem of convexifying a quadrilateral, and hence apply algorithm AlgoQuad.
The linear morph MΥ = ⟨Υ, . . . ,Υx⟩ is computed as follows.

Case (a): vertices r and x are non-consecutive neighbors of v in Y

Refer to Figure 7.12(a) and assume without loss of generality that r = z, the case in
which r = u being analogous.

Observe that, since edges (x, y) and (z, y) belong to Y , any planar drawing of Y
in which quadrilateral C = (z, u, w, x) is convex is such that both x and z lie on the
boundary of the kernel of v (see Figure 7.13). Also, the existence of such drawings is
guaranteed by the fact that neither edge (u, x), nor edge (u, y) belong to Y .
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v
x

y

u w

z

C

Figure 7.13: Any planar straight-line drawing of Y in which C = (z, u, w, x) (orange
quadrilateral) is convex is such that both x and z lie on the boundary of the kernel of
v (grey region).

In order to obtain a drawing (that we denote by Υx) fulfilling such a property, we
first contract v onto z in Υ, thus obtaining a drawing Υ′ of graph Y ′ = Y/(v, z), and
then apply algorithm AlgoQuad to Υ′ and C.

Denote by M ′ = ⟨Υ′, . . . ,Υ′
x⟩ the morphing sequence with O(n) steps obtained

by applying algorithm AlgoQuad to Υ′ and C and note that the contraction of v onto
z in Υ, followed by M ′ and by the uncontraction of v from z in Υ′

x yielding drawing
Υx, is a pseudo-morphM of Y transforming Υ into Υx.

The final morph MΥ = ⟨Υ, . . . ,Υx⟩ can be obtained, with no additional morphing
step, by applying the technique described in Section 4.6 toM′.

Case (b): vertices r and x are consecutive neighbors of v in Y

Refer to Figure 7.12(b) and assume without loss of generality that r = w, the case
in which r = y being analogous. We apply algorithm AlgoQuad to reduce to the
previous case, as follows.

Consider the quadrilateral Cwz = (x, y, z, w) and observe that any drawing of Y
in which Cwz is convex is such that both w and z lie on the boundary of the kernel of v
(see Figure 7.14). Also, the existence of such drawings is guaranteed by the fact that
neither edge (u, x), nor edge (u, y) belong to Y .

In order to obtain a drawing, denoted by Υwz , fulfilling such a property, we first
contract v onto w in Υ, thus obtaining a drawing Υ′ of graph Y ′ = Y/(v, w), and
then apply algorithm AlgoQuad to Υ′ and Cwz .

Denote by M ′
wz = ⟨Υ′, . . . ,Υ′

wz⟩ the morphing sequence with O(n) steps ob-
tained by applying algorithm AlgoQuad to Υ′ and Cwz and note that the contraction
of v onto w in Υ, followed by M ′ and by the uncontraction of v from w in Υ′

wz

yielding drawing Υwz , is a pseudo-morph Mwz of Y transforming Υ into Υwz . A
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y

x

u

w

z

v
Cwz

Figure 7.14: Any planar straight-line drawing of Y in which Cwz = (x, y, z, w) (or-
ange quadrilateral) is convex is such that both z and w lie on the boundary of the
kernel of v (grey region).

morph Mwz = ⟨Υ, . . . ,Υwz⟩ can be obtained, with no additional morphing step, by
applying the technique described in Section 4.6 toMwz .

Since vertex z lies on the boundary of the kernel of v in Υwz , the previous case
applies. Let Mzx be the morph with O(n) steps obtained by applying the previous
case to Υwz and quadrilateral Czx = z, u, w, x, and transforming Υwz into a drawing
Υx in which v is x-contractible.

Morph MΥ = ⟨Υ, . . . ,Υx⟩ is finally obtained by concatenating Mwz and Mzx.
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Chapter 8

Conclusions and Open Problems

In Chapter 5 we provided algorithms to compute planar morphs of n-vertex series-
parallel graphs with O(n) steps. Due to the lower bound proved in Chapter 6, such
algorithm is asymptotically optimal. Further, in Chapter 7, we focused on general
plane graphs and provided an algorithm, that is currently the most efficient, to compute
planar morphs with O(n2) steps.

In the following we propose some open problems on this topic.
The first natural problem is motivated by the linear upper bound appeared in [ADD+14].

Open Problem 8.1 Given two planar straight-line drawings Γs and Γt of a plane
graph, can we efficiently compute the minimum number of steps required to morph Γs

into Γt?

The algorithms provided in this part extensively exploits edge contractions, re-
sulting in a poor resolution and large area (i.e, exponential) required by intermediate
drawings during the morph. This is due to the fact that the contraction of an edge is
simulated by keeping its endpoints exponentially close to each other with respect to
their distance in the two input drawings.

Open Problem 8.2 Given any two planar straight-line drawings Γs and Γt on the
n×n grid, does there exists a morph whose intermediate drawings require polynomial
area?

All the known algorithms to morph graph drawings only apply to planar graphs.
A natural generalization would be to study of morphs of non-planar graph drawings.

95
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Open Problem 8.3 Given any two straight-line drawings Γs and Γt in which the
same pairs of edges cross in both drawings, does there exist a morph ⟨Γs, . . . ,Γt⟩
with a polynomial number of steps in which no further crossings are introduced? If
so, what is a lower bound on the number of steps?
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Visiting Drawings of Graphs
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Chapter 9

Monotone Drawings of Graphs with
Fixed Embedding

A drawing of a graph is a monotone drawing if for every pair of vertices u and v
there is a path drawn from u to v that is monotone in some direction. In this chapter1

we investigate planar monotone drawings in the fixed embedding setting, i.e., a planar
embedding of the graph is given as part of the input that must be preserved by the
drawing algorithm. In this setting we prove that every planar graph on n vertices
admits a planar monotone drawing with at most two bends per edge and with at most
4n − 10 bends in total; such a drawing can be computed in linear time and requires
polynomial area. We also show that two bends per edge are sometimes necessary
on a linear number of edges of the graph. Furthermore, we investigate subclasses
of planar graphs that can be realized as embedding-preserving monotone drawings
with straight-line edges. In fact, we prove that biconnected embedded planar graphs
and outerplane graphs always admit such drawings, and describe linear-time drawing
algorithms for these two graph classes.

9.1 Introduction

A drawing of a graph is a monotone drawing if for every pair of vertices u and v there
is a path drawn from u to v that is monotone in some direction. In other words, a
drawing is monotone if, for any given direction d (e.g., from left to right) and for each

1The contents of this chapter are joint work with Patrizio Angelini, Walter Didimo, Stephen Kobourov,
Tamara Mchedlidze, Antonios Symvonis, and Stephen Wismath, and appeared in [ADK+11, ADK+13]

99
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EMBEDDING

pair of vertices u and v, there exists a suitable rotation of the drawing for which a path
from u to v becomes monotone in the direction d.

Monotone drawings have been recently introduced [ACB+12] as a new visualiza-
tion paradigm, which is well motivated by human subject experiments by Huang et
al. [HEH09], who showed that the “geodesic path tendency” (paths following a given
direction) is important in comprehending the underlying graph. Monotone drawings
are related to well-studied drawing conventions, such as upward drawings [DETT99,
GT95], greedy drawings [AFG10, LM10, PR05], and the geometric problem of find-
ing monotone trajectories between two given points in the plane avoiding convex ob-
stacles [ACM89].

Planar monotone drawings with straight-line edges form a natural setting and it
is known that biconnected planar graphs and trees always admit such drawings, for
some combinatorial embedding of the graph [ACB+12]. Recently, Hossain and Rah-
man [HR13] proved that a series-parallel graph of n vertices has a straight-line planar
monotone drawing on a grid of size O(n)×O(n2).

However, the question whether a simply connected planar graph always admits a
planar straight-line monotone drawing or not is still open.

On the other hand, in the fixed embedding setting (i.e., the planar embedding of
the graph is given as part of the input and the drawing algorithm is not allowed to alter
it) it is known [ACB+12] that there exist simply connected planar embedded graphs
that admit no straight-line monotone drawings.

In this chapter we study planar monotone drawings of graphs in the fixed em-
bedding setting, answering the natural question whether monotone drawings with a
given constant number of bends per edge can always be computed, and identifying
some subclasses of planar graphs that always admit planar monotone drawings with
straight-line edges. Our contributions are summarized below:

• We prove that every n-vertex plane graph has an embedding-preserving mono-
tone drawing with curve complexity 2 and with at most 4n− 10 bends in total.
Such a drawing can be computed in linear time and requires polynomial area.
We recall that the curve complexity is the maximum number of bends along an
edge.

• We show that our bound on the curve complexity is tight, i.e., there exist in-
finitely many embedded planar graphs that do not admit any embedding-pre-
serving monotone drawing with at most one bend per edge. More specifically,
we prove that each of these graphs requires two bends on a linear number of
edges.
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• We investigate what subfamilies of embedded planar graphs can be realized as
embedding-preserving monotone drawings with straight-line edges. We prove
that outerplane graphs and biconnected embedded planar graphs always admit
such a drawing, which can be computed in linear time.

The chapter is structured as follows. Basic definitions and results are given in
Section 9.2. An algorithm for computing embedding-preserving monotone drawings
of general embedded planar graphs with curve complexity 2 and with at most 4n− 10
bends in total is described in Section 9.3, together with a proof that such a bound
is tight. Algorithms for computing straight-line monotone drawings of meaningful
subfamilies of embedded planar graphs are given in Section 9.4.

9.2 Preliminaries

Let Γ be a drawing of a graph. A path u = u1, . . . , uk = v between vertices u and v
in Γ is monotone with respect to a direction d if the orthogonal projections of vertices
u1, . . . , uk on d appear in the same order as the vertices appear in the path. Drawing
Γ is monotone if for every pair of vertices u and v there exists a path p(u, v) and a
direction d such that p(u, v) is monotone with respect to d.

In [ACB+12] it has been shown that every tree admits a straight-line monotone
drawing in polynomial area. Namely, the authors provide two algorithms, called
Algorithm BFS-based and Algorithm DFS-based, that construct drawings requiring
O(n1.6) × O(n1.6) and O(n) × O(n2) area, respectively. Both algorithms rely on
the concept of the Stern-Brocot tree [Ste58, Bro60] SB, an infinite tree whose nodes
are in bijective mapping with the irreducible positive rational numbers. The first four
levels of the Stern-Brocot tree are depicted in Figure 9.1(a).

In particular, Algorithm DFS-based assigns slopes 1
1 ,

2
1 , . . . ,

n−1
1 to the edges of

the input tree T according to the order given by a DFS-visit of T . Note that the
assigned slopes correspond to the first n−1 elements of the rightmost path of SB. The
drawing of a tree obtained with Algorithm DFS-based is illustrated in Figure 9.1(b).
The O(n) × O(n2) area bound is due to the fact that the sum of the denominators of
the slopes assigned to the edges, that corresponds to the maximum height of a drawing
constructed with this algorithm, is

∑n−1
i=1 1 = n−1, while the sum of the numerators,

that corresponds to the maximum width, is
∑n−1

i=1 i = n(n−1)
2 .

In [ACB+12] it has also been proved that in any straight-line monotone drawing of
a tree, the length of each edge can be arbitrarily modified without affecting planarity
and monotonicity. This is formalized in the following property.
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Figure 9.1: (a) A drawing Γ of an embedded planar graph Gϕ. (b) An upright spanning
tree of Gϕ. (c) A spanning tree of Gϕ that is not upright.

Property 9.1 [ACB+12] Let Γ be a straight-line monotone drawing of a tree T .
Then, any drawing Γ′ of T such that the slopes of each edge e ∈ T in Γ′ is the same
as the slope of e in Γ is monotone. Also, the slopes of any two leaf-edges e′ and e′′ of
T in Γ are such that e′ and e′′ diverge, which implies that the elongations of e′ and e′′

do not cross each other.

9.3 Poly-line Monotone Drawings of Embedded Planar Graphs

In this section we study monotone drawings of embedded planar graphs. We remark
that it is still unknown whether every planar graph admits a straight-line monotone
drawing in the variable embedding setting, while it is known that straight-line mono-
tone drawings do not always exist if the embedding of the graph is fixed [ACB+12].
We therefore investigate monotone drawings with bends along some edges, and we
show that two bends per edge are always sufficient and sometimes necessary for the
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existence of a monotone drawing in the fixed embedding setting.
We need some preliminary definitions. An upright spanning tree T of an embed-

ded planar graph Gϕ is a rooted ordered spanning tree of Gϕ such that:

(i) T preserves the planar embedding of Gϕ;

(ii) the root of T is a vertex r of the outer face of Gϕ;

(iii) there exists a planar drawing of Gϕ that contains an upward drawing of T such
that no edge of Gϕ \ T passes below r.

Figures 9.2(b) and 9.2(c) show two different ordered spanning trees of the embed-
ded planar graph Gϕ of Figure 9.2(a) rooted at node 1. The first tree is an upright
spanning tree, while the second one is not. Namely, even if the tree in Figure 9.2(c)
preserves the embedding ϕ, edge (7, 3) passes below vertex 1.
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Figure 9.2: (a) A drawing Γ of an embedded planar graph Gϕ. (b) An upright spanning
tree of Gϕ. (c) A spanning tree of Gϕ that is not upright.

Given an embedded planar graph Gϕ, an upright spanning tree T of Gϕ can be
computed as follows. Construct any planar straight-line drawing Γ of Gϕ. Orient the
edges of Gϕ in Γ according to the upward direction, by giving a random orientation
to horizontal edges. Let r be a source on the outer face of Gϕ with the smallest y-
coordinate in Γ. Then, compute any spanning tree T of Gϕ rooted at r such that the
left-to-right order of the children of r in T is consistent with the left-to-right order of
the neighbors of r in Γ and the left-to-right order of the children of each vertex w in T
is consistent with the clockwise order of the neighbors of w in Gϕ, computed starting
from the edge connecting w to its parent in T .
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Let T be an upright spanning tree of Gϕ. The rgbb-coloring C(Gϕ, T ) of Gϕ with
respect to T is a coloring of the edges of Gϕ with four colors such that:

• An edge is colored black if it belongs to T ;

• an edge is colored green if it connects two leaves of T ;

• an edge is colored red if it connects a leaf to an internal vertex of T ;

• an edge is colored blue if it connects two internal vertices of T .

We now describe an algorithm that, given an embedded planar graph Gϕ with n
vertices, an upright spanning tree T of Gϕ, and the rgbb-coloring C(Gϕ, T ) of Gϕ

with respect to T , constructs a monotone drawing Γ of Gϕ such that each black or
green edge is drawn as a straight-line segment, each red edge has one bend, and each
blue edge has two bends. We call this algorithm MONOTONE-FIXED-EMBEDDING;
Lemma 9.1 will prove that it correctly computes a monotone drawing with curve com-
plexity 2 and O(n3) area, in O(n) time.

First, starting from Gϕ and T , algorithm MONOTONE-FIXED-EMBEDDING con-
structs a graph G′

ϕ and an upright spanning tree T ′ of G′
ϕ such that:

(i) G′
ϕ is a 2-subdivision of Gϕ;

(ii) T is a subtree of T ′;

(iii) all the edges of G′
ϕ that are not in T ′ connect two leaves of T ′.

Graphs G′
ϕ and T ′ are constructed as follows. Initialize G′

ϕ = Gϕ and T ′ = T .
Subdivide each red edge (s, t) of G′

ϕ with a dummy vertex k and add edge (t, k) to
T ′, where t is the internal vertex of T ′. Subdivide each blue edge (s, t) of G′

ϕ twice
with two dummy vertices k and z, and add edges (s, k) and (t, z) to T ′. Figures 9.3(a)
and 9.3(b) show a graph Gϕ with an upright spanning tree T and the corresponding
graph G′

ϕ with its upright spanning tree T ′ satisfying (i)–(iii).
Then, a monotone drawing of Gϕ with curve complexity 2 is constructed by first

computing a straight-line monotone drawing of G′
ϕ and then replacing each subdivi-

sion vertex with a bend; see Figure 9.3(c).
The straight-line monotone drawing of G′

ϕ is computed in two steps. First, with
Algorithm DFS-based [ACB+12], construct a straight-line monotone drawing of T ′.
Second, add the remaining (non-tree) edges as straight-line segments by suitably elon-
gating the leaf-edges of T ′, as described in the following. Observe that, this results
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a

b c

d

(a)

a

c

d

b

(b)

d

a

b
c

(c)

Figure 9.3: (a) A graph Gϕ with an upright spanning tree T rooted at vertex b. Solid
edges belong to T , while dashed edges do not. Blue edges are thicker than red edges,
which are thicker than black edges. (b) The corresponding graph G′

ϕ with its upright
spanning tree T ′ constructed by algorithm MONOTONE-FIXED-EMBEDDING. Solid
edges belong to T ′, while dashed edges do not. Subdivision dummy vertices are
drawn as squares. (c) A straight-line monotone drawing of G′

ϕ that corresponds to a
monotone drawing of Gϕ with bent edges.

in using two segments for red edges and three segments for blue edges when dummy
vertices are replaced by bends.

Consider any leaf-edge (u, v), where v is the leaf of T ′. Observe that, as Algorithm
DFS-based assigns slopes 1

1 ,
2
1 , . . . ,

n−1
1 to the edges of T ′, the elongation of (u, v)

intersects at an integer grid point each vertical line x = k, where k is any integer
value greater than the x-coordinate of u. Moreover, as the leaf-edge elongations do
not cross, such intersections appear in the same order on each vertical line x = k′,
where k′ is any integer value greater than the x-coordinate of every internal vertex of
T ′; see Figure 9.4(a).

Another key observation is that the graph induced by the leaves of T ′ is outerplanar
and can be augmented, by adding dummy edges, to a biconnected outerplanar graph
GL such that every internal face of GL is a 3-cycle and the order of the vertices on
the outer face of GL is the same as the left-to-right order of the leaves of T ′; see
Figure 9.4(b).

The vertices of GL are assigned to levels in such a way that the end-vertices of
each edge of GL are either on the same level or on adjacent levels, as follows. The
first and the last vertex in the left-to-right order of the leaves of T ′ have level 1. Note
that these two vertices are adjacent, as GL is a biconnected outerplanar graph and the
order of the vertices on its outer face is the same as the left-to-right order of the leaves
of T ′. Then, starting from this edge, consider any edge (u, v) on the outer face of
the graph induced by the vertices whose level has been already assigned. Consider
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the unique vertex w that is connected to both u and v, and whose level has not been
assigned yet, if any. Note that, either u and v have the same level i or one of them has
level i and the other has level i + 1. In both cases, assign level i + 1 to w, as shown
in Figures 9.4(b) and 9.4(c). Let l be the number of levels of GL. The drawing of G′

ϕ

is completed by placing all the vertices at level i, with i = 1, . . . , l, on a vertical line
x = k + l − i+ 1, where k is the x-coordinate of the rightmost internal vertex of T ′;
see Figure 9.4(c).

(a)

1

2

3

4

5

6
7

8

9

10

11

12

13

14

(b)

1

2
3

4

5

13

11

14

6

12

10

9

7
8

k k + 1 k + 2 k + 3

(c)

Figure 9.4: (a) Leaf-edge elongations have integer intersections with all the vertical
lines in the same order. (b) An augmented graph GL. (c) The drawing of GL, where
the number l of levels is equal to 3.

Lemma 9.1 Given an embedded planar graph Gϕ with n vertices, an upright span-
ning tree T of Gϕ, and the rgbb-coloring C(Gϕ, T ) of Gϕ with respect to T , algo-
rithm MONOTONE-FIXED-EMBEDDING constructs a planar monotone drawing Γ of
Gϕ with curve complexity 2 and O(n)×O(n2) area in O(n) time.

Proof: First, we prove that the drawing of the auxiliary graph G′
ϕ that is a subdivision

of Gϕ is planar and monotone. Namely, by Property 9.1, the slopes assigned to the
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edges of the spanning tree T ′ of G′
ϕ by Algorithm DFS-based [ACB+12] are such that

for any elongation of the edges of T ′, the resulting drawing is planar and monotone.
Further, since T ′ is an upright spanning tree of G′

ϕ, it preserves the planar embed-
ding of G′

ϕ and there are no edges going below the root. Also, recall that algorithm
MONOTONEFIXEDEMBEDDING places all the vertices at level i, with i = 1, . . . , l,
on a vertical line x = k + l − i + 1, where GL is the biconnected outerplanar graph
composed of the edges of G′

ϕ \ T ′ plus the dummy edges needed to make it bicon-
nected, l is the number of levels of GL, and k is the x-coordinate of the rightmost
internal vertex of T ′. This placement, together with the fact that each such vertical
line intersects the elongations of all the leaf-edges in the same order, ensures the pla-
narity of the straight-line drawing of GL. Further, as the order of the vertices on the
outer face of GL is the same as the left-to-right order of the leaves of T ′, the edges of
T ′ do not cross any edge of GL. Hence the drawing of G′

ϕ is planar. Finally, since T ′

is a spanning tree of G′
ϕ, any two vertices of G′

ϕ are connected by a monotone path
composed only of edges of T ′, and hence the drawing of G′

ϕ is also monotone.
The planarity of the drawing Γ of Gϕ comes from the fact that Γ is obtained by

just replacing the dummy vertices in the drawing of G′
ϕ with bends. To see that Γ is

monotone, observe that any monotone path in the drawing of G′
ϕ traversing a leaf-edge

of T ′ has the corresponding leaf as an end-vertex, and if such a leaf is a subdivision
dummy vertex of any non-black edge, then it does not belong to Gϕ. Hence, all the
monotone paths in Gϕ are composed only of edges of T , whose drawing is monotone
since it is a subtree of T ′. Also, Γ is obtained by replacing dummy vertices with
bends in the drawing of G′

ϕ, which is a straight-line drawing; since every edge is
subdivided at most twice (namely, each red edge is subdivided once and each blue
edge is subdivided twice), drawing Γ has curve complexity 2.

The area of Γ can be derived from that required by the drawing of G′
ϕ. Namely, the

elongation of the leaf-edges of T ′, computed by algorithm MONOTONEFIXEDEM-
BEDDING in order to reinsert the edges of G′

ϕ \ T ′ as straight-line segments, does
not asymptotically increase the O(n) × O(n2) area of the drawing of T ′ obtained
with Algorithm DFS-based. Indeed, since the number of vertical lines added to host
the drawing of GL equals the number l of levels assigned to the vertices of GL, and
since l is bounded by the number of leaves (which is O(n)), the area of Γ remains
O(n)×O(n2).

Concerning the time complexity of the algorithm, we analyze the time required
by each individual step. The computation of the graphs T , G′

ϕ, and T ′ can be easily
performed in O(n) time. Also, the slopes of the edges of T ′ can be computed in linear
time with Algorithm DFS-based [ACB+12]. The biconnected planar graph GL can be
constructed in O(n) time by augmenting the outerplanar graph induced by the leaves
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of T ′ [Cha91]. Finally, the assignment of levels to the vertices of GL is performed in
O(n) time, as each vertex is considered just once and its level is assigned only based
on the levels of its two neighbors. Hence, algorithm MONOTONEFIXEDEMBEDDING
runs in linear time. 2

Note that, by Lemma 9.1, there always exists a monotone drawing Γ of Gϕ with
curve complexity 2 and at most 4n − 10 bends in total. Namely, since Gϕ has at
most 3n − 6 edges and every spanning tree of Gϕ has n − 1 edges, and since the
edges of the spanning tree are drawn as straight-line segments, drawing Γ has at most
2(3n− 6− n+ 1) = 4n− 10 bends in total.

In the following we prove that our bound on the maximum number of bends per
edge is tight, i.e., we show infinitely many embedded planar graphs that do not ad-
mit any embedding-preserving monotone drawing with at most one bend per edge.
More interestingly, we prove that every monotone drawing of these graphs contains
Ω(n) edges with two bends, hence its total number of bends is linear in the number
of vertices. This implies that in general it is not possible to improve the drawing al-
gorithm of Lemma 9.1 to achieve a sublinear number of bends in total; therefore, the
4n−10 bound is asymptotically optimal. We first prove in Lemma 9.2 that there exist
embedded planar graphs requiring at least one bend on some edges. Then, based on
this lemma, we prove in Lemma 9.3 that there exist infinitely many embedded planar
graphs whose monotone drawings require two bends on a linear number of edges.

We first introduce a definition that will be useful to prove the claimed lemmata.
The turn angle from the edge (u, v) to the edge (v, w) is the smallest angle between
the half-line from u through v and the edge (v, w); see Figure 9.5. The turn angle is
positive if the rotation defined by this angle is clockwise and negative if it is counter-
clockwise.

+

uv

w

uv

w

−

Figure 9.5: A positive and a negative turn angle from edge (u, v) to edge (v, w).

Lemma 9.2 For every n ≥ 3 there exists an embedded planar graph Gϕ with 3n
vertices and 3n edges that does not admit any straight-line monotone drawing.

Proof: Graph Gϕ consists of a simple cycle C = v1, . . . , v2n of length 2n and of n
degree-1 vertices u1, u3, . . . , u2n−1, called legs, adjacent to vertices v1, v3, . . . , v2n−1
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of C with odd indices, respectively. The embedding of Gϕ is such that all the legs are
inside C, that is, they are incident to the unique internal face of C; see Figure 9.6(a).

vi−2

vi−1

ui−1

vi
vi+1

ui+1

vi+2

v2n−2

v2n−1

u2n−1

v2n v1

u1

v2

(a)

vi

vi+1

ui+1

vi+2 vi−1

ui−1

vi−2

(b)

Figure 9.6: (a) A graph Gϕ with 3n vertices that does not admit any embedding-
preserving straight-line monotone drawing. (b) Path P 2

i cannot be monotone.

We prove that there exists no straight-line monotone drawing of Gϕ. Assume,
for a contradiction, that such a straight-line monotone drawing exists. Consider two
arbitrary consecutive legs ui−1 and ui+1 of Gϕ. Note that there exist only two
paths P 1

i = ui−1, vi−1, vi, vi+1, ui+1 and P 2
i = ui−1, vi−1, vi−2, . . . , v1, v2n, . . . ,

vi+2, vi+1, ui+1 connecting ui−1 and ui+1.
We show that path P 2

i cannot be monotone. Refer to Figure 9.6(b). Namely, if
P 2
i is monotone then, by Property 9.1, edges (vi−1, ui−1) and (vi+1, ui+1) diverge,

as ui−1 and ui+1 are leaves of P 2
i . Hence, in order to connect vi−1 to vi+1 with a

polyline while keeping ui−1 and ui+1 inside the polygon representing C, at least three
straight-line segments are necessary. However, only two edges, namely (vi−1, vi) and
(vi, vi+1), lie between vi−1 and vi+1 in C \ P 2

i , a contradiction.
Thus, for any pair of consecutive legs ui−1 and ui+1 the monotonicity between

them is provided by path P 1
i . We show that this leads to a contradiction.

Let αi, i = 1, . . . , 2n, be the turn angle from edge (vi−1, vi) to edge (vi, vi+1),
where the indices are taken modulo 2n. Let also βi and γi, i = 1, 3, . . . , 2n − 1 be
the turn angles from (vi−1, vi) to (vi, ui), and from (ui, vi) to (vi, vi+1), respectively.
Note that:

2n∑
i=1

αi = 2π. (9.1)
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Also, as shown in Figs. 9.7(a-d), for each i = 1, 3, . . . , 2n − 1, regardless of
whether the internal angle at vi is convex or reflex and of the position of the leg ui,
the following equation holds:

βi + γi = αi + π (9.2)

vi−1vi

uivi+1

γi

βi

αi

(a)

vi−1
vi

ui

vi+1

γi

βi

αi

(b)

vi−1
vi

ui

vi+1

γi

βi

αi

(c)

vi−1
vi

ui

vi+1

γi

βi
αi

(d)

Figure 9.7: The proof that equality βi+γi = αi+180 holds for each i = 1, 3, . . . , 2n−
1. (a) The internal angle at vi is convex. Equality |β| + |γ| = 180 + |α| holds and
α, β, γ ≥ 0. (b) The internal angle at vi is reflex and the leg ui is between the half-line
from vi−1 through vi and the half-line from vi+1 through vi in the circular ordering
around vi. Equality |β|+ |γ| = 180−|α| holds, and α ≤ 0; β, γ ≥ 0. (c) The internal
angle at vi is reflex and the leg ui is between the half-line from vi+1 through vi and
edge (vi−1, vi) in the circular ordering around vi. Equality |β| − |γ| = 180 − |α|
holds, and α, γ ≤ 0; β ≥ 0. (d) The internal angle at vi is reflex and the leg ui is
between the half-line from vi−1 through vi and edge (vi+1, vi) in the circular ordering
around vi. Equality |γ| − |β| = 180− |α| holds, and α, β ≤ 0; γ ≥ 0.

Further, as path P 1
i from ui−1 to ui+1 through vi is monotone, we have that, for

each i = 1, 3, . . . , 2n− 1, the following inequality holds; see Figure 9.8.

γi−1 + αi + βi+1 < π (9.3)
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vi

vi−1vi+1

ui+1 ui−1
vi−2vi+2

δi+1 δi−1

βi+1

γi−1
αi

Figure 9.8: δi−1 + δi+1 + γi−1 + αi + βi+1 = 2π. As legs ui−1 and ui+1 diverge,
δi−1 + δi+1 ≥ π. Hence, γi−1 + αi + βi+1 < π

By summing up inequality 9.3 over i = 1, 3, . . . , 2n− 1, we get:

γ1 + α2 + β3 + γ3 + α4 + β5 + · · ·+ γ2n−1 + αn + β1

= (β1 + γ1) + α2 + (β3 + γ3) + α4 + · · ·+ (β2n−1 + γ2n−1) + αn

< nπ

Applying equation 9.2, we get (α1+π)+α2+(α3+π)+α4+· · ·+(α2n−1+π)+
αn =

∑2n
i=1 αi + nπ < nπ. By equation 9.1, we get (n+2)π < nπ, a contradiction.

2

u v

w

u1

u2

v1

v2

w1 w2

(a)

u v

w

u1

u2

v1

v2

w1 w2

(b)
u v

w

u1

w1

v1

(c)

Figure 9.9: (a) A graph Gϕ with n = 15 vertices, which coincides with a graph G3
ϕ

constructed from G2
ϕ by adding vertices u1, u2, v1, v2, w1, w2 inside the triangular

face u, v, w. (b) A subgraph Gt
ϕ of Gϕ induced by a triangle (u, v, w) and all the

vertices inside it. (c) A subdivision (white circles) of the subgraph Gh
ϕ (solid edges)

of Gt
ϕ induced by u, v, w, u1, v1, w1. By Lemma 9.2, it does not admit a straight-line

monotone drawing.
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Lemma 9.3 For every odd n ≥ 9 there exists an embedded planar graph Gϕ with n
vertices and 3

2 (n−1) edges such that every monotone drawing of Gϕ has at least n−3
6

edges with at least two bends and thus at least n−3
3 bends in total.

Proof: Consider an odd integer n ≥ 9. We construct Gϕ iteratively. Let G1
ϕ be a trian-

gle graph. Graph Gi
ϕ is constructed from Gi−1

ϕ as follows. Initialize Gi
ϕ = Gi−1

ϕ . Let
(u, v, w) be a triangular internal face of Gi

ϕ. Add 6 new vertices u1, u2, v1, v2, w1, w2

and 9 new edges (u, u1), (u, u2), (u1, u2), (v, v1), (v, v2), (v1, v2), (w,w1), (w,w2),
(w1, w2) to Gi

ϕ in such a way that all the new vertices are inside (u, v, w). Note that
the n-vertex graph Gi

ϕ is planar and has 3
2 (n− 1) edges; see Figure 9.9(a).

We prove that any monotone drawing of Gϕ has at least n−3
6 edges with at least

two bends. Let Gt
ϕ be a subgraph of Gϕ induced by a triangle (u, v, z) of Gϕ and by

all the vertices drawn inside it (see Figure 9.9(b)). Let Γ be a drawing of Gϕ and let
Γt be a drawing of Gt

ϕ that coincides with Γ restricted to the edges of Gt
ϕ. We have

the following.

Claim 9.1 Γ is a monotone drawing only if Γt is a monotone drawing.

Proof: If Γt is not monotone there are two vertices a and b of Gt
ϕ that are not connected

by any monotone path in Γt. Assume for contradiction that Γ is monotone. Then, a
and b are connected by a monotone path P in Γ. As P does not lie entirely in Gt

ϕ, it
passes twice through a cut vertex c which is a common vertex of Gt

ϕ and Gϕ. Thus,
the path obtained from P by removing the part between the two occurrences of c is a
monotone path between a and b only composed of edges of Gt

ϕ, a contradiction. 2

Claim 9.2 In any monotone drawing of Gt
ϕ, at least one of the edges (u, v), (v, w),

(w, u) has two bends.

Proof: Consider the subgraph Gh
ϕ of Gt

ϕ induced by vertices u, v, w, u1, v1, and w1;
see Figure 9.9(c). Every monotone drawing of Gt

ϕ restricted to the edges of Gh
ϕ is

a monotone drawing of Gh
ϕ. Thus, if there exists a monotone drawing of Gt

ϕ such
that none of the edges (u, v), (v, w), (w, u) has two bends, then Gh

ϕ also has such a
monotone drawing. However, we show that Gh

ϕ does not admit any such drawing. Let
Gs

ϕ be a 1-subdivision of Gh
ϕ. Note that, Gs

ϕ satisfies the preconditions of Lemma 9.2,
that is, it is composed of a cycle plus a set of internal legs connected to every second
vertex of the cycle, and hence it does not admit a straight-line monotone drawing.
Thus, Gh

ϕ does not admit a monotone drawing with curve complexity 1, as bends on
the edges of Gh

ϕ correspond to the subdivision vertices in Gs
ϕ. 2
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Claim 9.1 implies that the drawing of every subgraph defined as Gt
ϕ is monotone,

and Claim 9.2 implies that in any monotone drawing of such a subgraph one of the
edges of the outer triangle of Gt

ϕ has two bends. As the number of different triangles
that contain a subgraph Gt

ϕ in their interior is n−3
6 , any monotone drawing of Gϕ has

at least n−3
6 edges with two bends, and thus n−3

3 bends in total. 2

Lemmata 9.1 and 9.3 together provide a tight bound on the curve complexity of mono-
tone drawings in the fixed embedding setting. The following theorem summarizes the
main contribution of this section.

Theorem 9.1 Every embedded planar graph with n vertices admits a monotone draw-
ing with curve complexity 2, at most 4n− 10 bends in total, and O(n)×O(n2) area;
such a drawing can be computed in O(n) time. Also, there exist infinitely many em-
bedded planar graphs any monotone drawing of which requires two bends on Ω(n)
edges.

9.4 Straight-line Monotone Drawings of Embedded Planar
Graphs

In this section we prove that there exist meaningful subfamilies of embedded pla-
nar graphs that can be realized as straight-line monotone drawings. In particular, we
prove that the class of outerplane graphs and the class of embedded planar biconnected
graphs have this property.

9.4.1 Outerplane Graphs

An embedded planar graph Gϕ is an outerplane graph if all its vertices are incident to
the outer face. We prove the following result.

Theorem 9.2 Every n-vertex outerplane graph admits a straight-line monotone draw-
ing, which can be computed in O(n) time and requires O(n)×O(n2) area.

Proof: Let T be an upright spanning tree of Gϕ obtained by performing a “rightmost
DFS” visit of Gϕ, that is, a DFS visit in which the neighbors of each vertex are con-
sidered in counterclockwise order; see Figure 9.10(a). Consider a decomposition of
Gϕ into its maximal biconnected components. Observe that, for each maximal bicon-
nected component B that is connected to the root of T through a cut-vertex v, T con-
tains all the edges of B except for its internal chords (dashed edges in Figure 9.10(a))
and for its leftmost edge incident to v (dotted edges in Figure 9.10(a)).
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Figure 9.10: (a) An outerplane graph Gϕ and its upright spanning tree T obtained by
performing a “rightmost DFS” visit. Edges of T are solid segments. (b) A strictly
convex drawing of a maximal biconnected component B of Gϕ.

A straight-line monotone drawing of Gϕ is constructed by first computing a straight-
line monotone drawing of T , with Algorithm DFS-based [ACB+12], and then rein-
serting the edges not in T as straight-line segments.

In order to prove that such edges can be reinserted as straight-line segments with-
out creating crossings, for each maximal biconnected component B consider the path
p = (v, v1, . . . , vk) that is composed of the edges belonging both to B and to T .
According to Algorithm DFS-based [ACB+12], the slopes of the edges of p are all
positive and are increasing with respect to the distance from v in p. Hence, path p is
drawn in T as a polygonal line “convex on the left side”, that is, the straight-line seg-
ment connecting any two non-consecutive vertices of p completely lies to the left of
p; see Figure 9.10(b). Thus, when reinserting edge (v, vk) as the straight-line segment
between v and vk, the boundary of B, namely the cycle composed of the edges of p
plus (v, vk), delimits a strictly-convex region f .

We show that f does not contain any other vertex of T . In particular, it is sufficient
to show that the vertex vk+1 such that edge (v, vk+1) follows (v, v1) in the counter-
clockwise order of the edges around v in T lies outside f .

First, consider a straight line lv through v that is parallel to edge (vk−1, vk). Ac-
cording to Algorithm DFS-based, the slope of (vk−1, vk) is the greatest among the
slopes of the edges of p. Hence, vertex vk is to the right of lv. Thus, the slope of
(vk−1, vk) is greater than or equal to the slope of (v, vk), with the equality being
possible only if v = vk−1. Since the slope of (v, vk+1) is greater than the slope of
(vk−1, vk), it follows that vk+1 lies outside f ; see Figure 9.10(b).
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From the discussion above, it follows that f is an empty strictly-convex region,
and the chords of B can be reinserted as straight-line segments while maintaining
planarity.

The obtained drawing is monotone since every pair of vertices is connected by a
monotone path composed only of edges of T .

The area of the drawing is the same as the area of T computed by Algorithm DFS-
based, namely O(n)×O(n2). The drawing can be computed in O(n) time. Namely,
drawing T by using Algorithm DFS-based takes O(n) time [ACB+12], and the same
holds for reinserting missing edges. 2

9.4.2 Biconnected Graphs

It is known [ACB+12] that straight-line monotone drawings of biconnected planar
graphs in the variable embedding setting can always be computed by means of an
algorithm that, for each component µ of the SPQR-tree of the input graph, draws
the pertinent graph of µ inside a shape, called boomerang, while respecting some
geometrical properties concerning planarity and monotonicity. In Figure 9.11(a) the
drawing of a parallel component inside a boomerang is depicted.

Note that, this algorithm preserves any given embedding of the input graph, except
for the case in which the graph contains a parallel component µP whose poles are
connected by an edge. In fact, in this case, such an edge is always drawn either as
the first or as the last element in the order of the children of µP , as in Figure 9.11(a),
while this might not happen in the given embedding.

On the other hand, when this type of edge exists, an embedding-preserving mono-
tone drawing could be obtained by adding one bend along each such edge in order
to place it in its correct position, as in Figure 9.11(b), hence obtaining a monotone
drawing with curve complexity 1.

In this section we prove that in fact it is possible to compute an embedding-
preserving monotone drawing of every embedded biconnected planar graph with no
bends at all. Intuitively, when dealing with a parallel component µP , we use a shape
called diamond instead of a boomerang to draw the pertinent graph of µP . A dia-
mond is composed of two mirrored copies of a boomerang that are separated by the
line through the poles. Then, the edge between the poles, if it exists, is drawn as a
straight-line segment, the components preceding it in the order of the children of µP

are drawn in one of the copies, and the components following it are drawn in the other
copy. See Figure 9.11(c).

In the following we first give a more detailed description of the algorithm for
the variable embedding setting [ACB+12] and then we describe our algorithm, that
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v

u

(a)
v

u

(b)
v

u

(c)

Figure 9.11: (a) The algorithm in [ACB+12] places an edge between the poles of
a parallel component µP either as the first or as the last element in the order of the
children of µP . (b) An embedding-preserving monotone drawing of µP with curve
complexity 1. (c) An embedding-preserving straight-line monotone drawing of µP

produced with the algorithm described in this section.

we call BICOFIXEDEMBEDDING, to compute an embedding-preserving straight-line
monotone drawing of every embedded biconnected planar graph G.

We start by giving some definitions. A boomerang boom(µ) is a quadrilateral2

(Nµ, Eµ, Sµ, Wµ) such that Wµ is inside triangle △(Nµ, Sµ, Eµ) and 2αµ + βµ <
π
2 , where αµ = ŴµSµEµ = ̂WµNµEµ and βµ = ̂WµSµNµ = ̂WµNµSµ; see
Figure 9.12(a).

A path monotone with respect to a direction d is (α, d)-monotone (with α < π
2 )

if for each edge e it holds that d − α < sl(e) < d + α. A path from a vertex u to a
vertex v is an (α, d1, d2)-path if it is a composition of an (α, d1)-monotone path from
u to a vertex w and of an (α, d2)-monotone path from w to v.

The algorithm described in [ACB+12] inductively constructs a drawing of any
biconnected planar graph G by means of a bottom-up visit of the SPQR-tree of G, as
follows. When a component µ with child components µ1, . . . , µk is visited, a drawing
Γµ of the pertinent graph of µ satisfying the properties (A), (B), (C) hereunder is
constructed by composing the drawings of µ1, . . . , µk which, by induction, satisfy the

2In [ACB+12] points Nµ, Eµ, Sµ, Wµ are denoted as pN (µ), pE(µ), pS(µ), pW (µ), respectively.
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Wµ Eµ

Sµ

Nµ

βµ
αµ

βµ αµ

(a)

=

Sµ = S′

µ = S′′

µ

Nµ = N ′

µ = N ′′

µ

βµ
αµ

W ′

µW ′′

µ

Wµ

E′′

µ

=

Eµ

E′

µ

(b)

Figure 9.12: (a) A boomerang. (b) A diamond.

same properties. The composition is based on whether µ is an S-, a P-, a Q-, or an
R-node.

(A) Γµ is monotone;

(B) Γµ is planar and, with the possible exception of edge (u, v), it is contained inside
boom(µ), with u drawn on Nµ and v on Sµ;

(C) each vertex w ∈ pert(µ) belongs to a (αµ,−dN (µ), dS(µ))-path from u to v,
where dN (µ) (resp., dS(µ)) is the half-line from Eµ through Nµ (resp., Sµ).

Algorithm BICOFIXEDEMBEDDING for the fixed-embedding case also relies on
a bottom-up visit of the SPQR-tree of G. However, in order to cope with the possible
existence of edges connecting the poles of some P-nodes, we defined a new shape,
called diamond and denoted by diam(µ), as a convex quadrilateral (Nµ, Eµ, Sµ,
Wµ) composed of two boomerangs boom′(µ) = (N ′

µ, E
′
µ, S

′
µ, W

′
µ) and boom′′(µ) =

(N ′′
µ , E

′′
µ, S

′′
µ, W

′′
µ ) such that Nµ = N ′

µ = N ′′
µ , Sµ = S′

µ = S′′
µ , Eµ = E′

µ, and
Wµ = E′′

µ . A diamond diam(µ) is depicted in Figure 9.12(b).
Then, when considering a P-node µ having an edge e between its poles, one of

the two boomerangs composing the diamond contains the child components of µ
that come before e in the ordering of the components around the poles, while the
other boomerang contains the other components. In this case, the drawing Γµ of
pert(µ) must still satisfy Properties (A), (B), and (C), but in Property (B) the whole
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drawing (including edge (u, v)) is drawn inside the diamond. On the other hand, S-
and R-nodes, and P-nodes without an edge between the poles are still drawn inside
boomerangs; however, slight modifications are required in their drawing algorithm, as
they could now have child P-nodes drawn inside diamonds to handle.

We describe how algorithm BICOFIXEDEMBEDDING computes the drawing Γµ

for each type of node µ.

Q-node: If µ is a Q-node, pert(µ) consists only of one edge between the poles.
Draw it between points Nµ and Sµ of boom(µ).

S-node: If µ is an S-node, pert(µ) must be drawn inside a boomerang boom(µ).
Recall that each child component µ1, . . . , µk might be inductively drawn either inside
a boomerang or inside a diamond. Apply the same algorithm as for the variable em-
bedding case. Namely, for each child component µi, with i = 1, . . . , k − 1, place
points Nµi and Sµi on the bisector line of ̂WµNµEµ, and place Nµk

and Sµk
on the

bisector line of ŴµSµEµ. Hence, even if µi (1 ≤ i ≤ k) is a parallel node drawn
inside a diamond, it is still possible to choose angles αµi and βµi small enough to fit
diam(µi) inside boom(µ), hence satisfying Property (B); see Figure 9.13(a). Proper-
ties (A) and (C) are easily satisfied by induction, as in the variable embedding case.

Wµ Eµ

Nµ = Nµ1

Sµ1 = Nµ2

p = Sµk−1
= Nµk

Sµ = Sµk
(a)

Sµ

Nµ

EµWµ
=
p1

pa pb
=
p2k

µq

(b)

Figure 9.13: Construction of a drawing of pert(µ) satisfying the inductive hypoth-
esis. (a) µ is an S-node. (b) µ is a P-node. Grey shaded boomerangs contain child
components, while grey tiled boomerangs do not.

More formally, let p be the intersection point between segment WµEµ and the
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bisector line of ̂WµNµEµ. Consider k equidistant points p1, . . . , pk on segment Nµp
such that p1 = Nµ and pk = p. For each µi, with i = 1, . . . , k − 1, consider a
boomerang boom(µi) = (Nµi , Eµi , Sµi , Wµi) such that Nµi = pi, Sµi = pi+1, and
such that Eµi and Wµi determine βµi + 2αµi <

αµ

2 . Also, consider a boomerang
boom(µk) = (Nµk

, Eµk
, Sµk

, Wµk
) such that Nµk

= p, Sµk
= Sµ, and such that

Eµk
and Wµk

determine βµk
+ 2αµk

<
αµ

2 . Further, for each µi (1 ≤ i ≤ k)
that is a P-node, consider a diamond diam(µi) composed of two mirroring copies of
boom(µi). Then, for each i = 1, . . . , k apply the inductive algorithm to µi and either
boom(µi) or diam(µi).

P-node: If µ is a P-node, µ must be drawn inside a diamond diam(µ), while all
its child components µi, with i = 1, . . . , k, are inductively drawn inside boomerangs
boom(µi), as none of them can be a P-node.

First, note that at most one child component µq of µ can be a Q-node representing
an edge between the poles of µ. Draw such an edge, if any, as a straight-line segment
between Nµ and Sµ. Then, in order to respect the given embedding around the poles
of µ, child components µ1, . . . , µq−1 are drawn inside boomerangs that are contained
in the left-hand side of diam(µ), while the child components µq+1, . . . , µk are drawn
inside boomerangs that are contained in the right-hand side of diam(µ). In order to
ensure that the constructed drawings are monotone, we need to fix a total ordering of
the components with respect to the angles they form with the line through Nµ and Sµ.
This ordering is implicitly guaranteed among components that are on the same side
of such a line. In order to obtain it among all the components, we place components
µ1, . . . , µq−1 inside the q − 1 boomerangs that are the closest to the line through Nµ

and Sµ to the left of it, while components µq+1, . . . , µk inside the k − q boomerangs
that are the farthest from the line through Nµ and Sµ to the right of it. Refer to
Figure 9.13(b).

More formally, consider two internal points pa and pb of segment WµEµ such that
pa is to the left of segment NµSµ and pb is to the right of NµSµ.

Further, consider 2(k − 1) points p1, . . . , p2(k−1) on segment Wµpa such that
p1 = Wµ, p2(k−1) = pa, and ̂piNµpi+1 =

αµ

2(k−1)−1 , for each i = 1, . . . , 2(k−1)−1.
For each µi, with i = 1, . . . , q − 1, consider a boomerang boom(µj) = (Nµj , Eµj ,
Sµj , Wµj ), with j = i + k − q, such that Nµj = Nµ, Sµj = Sµ, Eµj = p2i−1, and
Wµj = p2i. Then, apply the inductive algorithm to µi and boom(µj).

Finally, consider 2(k−1) points p′1, . . . , p
′
2(k−1) on segment pbEµ such that p′1 =

pb, p′2(k−1) = Eµ, and ̂p′iNµp′i+1 =
αµ

2(k−1)−1 , for each i = 1, . . . , 2(k − 1)− 1. For
each µi, with i = q + 1, . . . , k, consider a boomerang boom(µi) = (Nµi , Eµi , Sµi ,
Wµi) such that Nµi = Nµ, Sµi = Sµ, Wµi = p2i−1, and Eµi = p2i. Apply the
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inductive algorithm to µi and boom(µi).

Claim 9.3 If µ is a P-node, the drawing Γµ constructed by algorithm BICOFIXEDEM-
BEDDING satisfies Properties (A)–(C).

Proof: Property (B) is satisfied by construction. Property (C) is satisfied by induction.
We prove that Γµ satisfies Property (A). Consider any two vertices wa, wb ∈ pert(µ).
If they belong to the same child component, then there exists a monotone path be-
tween them by induction. If they belong to different components µa and µb, con-
sider the (αµa ,−dN (µa), dS(µa))-path Pa(u, v) from u to v through wa and the
(αµb

, dN (µb),−dS(µb))-path Pb(v, u) from v to u through wb, which exist by induc-
tion (Property C). Suppose that µa lies inside the left boomerang while µb lies inside
the right boomerang, the other cases being analogous. Note that, by construction, this
implies βµa+2βµa < βµb

. Also, suppose that wb lies on the (αµb
, dN (µb))-monotone

subpath of Pb(v, u), the other case being analogous. Refer to Figure 9.14(a).

wb

wa

dN (µb)
dN (µa)

dS(µa)

dS(µb)

u

v
(a)

dN(µb)

−dN(µa) dS(µa)

αµb

αµa

βµb

βµa

αµa

(b)

Figure 9.14: If µ is a P-node, the constructed drawing satisfies Property (A), that is,
it is monotone. (a) Component µa lies inside the left boomerang, µb lies inside the
right boomerang, and wb lies on the (αµb

, dN (µb))-monotone subpath of Pb(v, u). (b)
Since βµa + 2βµa < βµb

, the directions of all the edges of the path between u and v
are inside a wedge whose angle is smaller than π.
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Consider the (αµb
, dN (µb))-monotone path P (wb, u) from wb to u and consider

the (αµa
,−dN (µa), dS(µa))-path P (u,wa) from u to wa that is a subpath of Pa(u, v).

We show that the path P (wb, wa) composed of P (wb, u) and P (u,wa) is monotone.
Refer to Figure 9.14(b). Rotate the coordinate axes in such a way that u and v lie on
the y-axis. Then, when translated to the origin of the axes, dN (µb) is in the second
quadrant, −dN (µa) in the third quadrant, and dS(µa) in the fourth quadrant. Since
βµa + 2βµa < βµb

, the wedge delimited by dN (µb) and dS(µa) and containing the
third quadrant has an angle smaller than π − 2

αµ

2k−1 . Since, by definition, every edge
of P (wb, u) creates an angle with dN (µb) that is smaller than αµb

=
αµ

2k−1 and every
edge of P (u,wa) creates an angle with dS(µa) that is smaller than αµa =

αµ

2k−1 , it
follows that the slopes of all the edges of P (wb, wa) lie inside a wedge having an
angle smaller than π. Hence, P (wb, wa) is monotone. 2

R-node: If µ is an R-node, pert(µ) must be drawn inside a boomerang boom(µ).
Also, each child component µ1, . . . , µk might be inductively drawn either inside a
boomerang or inside a diamond. As in the S-node case, the drawing algorithm is
almost the same as for the variable embedding; see Figure 9.13. We briefly recall this
algorithm and highlight the main differences with our variant for the fixed-embedding
case. The algorithm consists of two steps. In the first step, a monotone drawing of
skel(µ) is constructed satisfying some properties concerning monotonicity and the
slope of the edges, while in the second step angles αµi and βµi are chosen in order to
fit boom(µi) or diam(µi), for each i, inside boom(µ).

The monotone drawing of skel(µ) is constructed as follows. First, consider the
graph G∗ obtained by removing pole v from skel(µ). Note that, since skel(µ) is tri-
connected, G∗ admits a convex drawing whose outer face is represented by any strictly
convex polygon, as it satisfies all the conditions of Chiba and Nishizeki [CON85,
CN88]. Construct a convex drawing Γ∗ of G∗, whose outer face is a convex polygon
entirely lying in the interior of boom(µ), except for pole u which is on Nµ, such that
the neighbors of v in skel(µ) are visible from Sµ. See Figure 9.15(a). As Γ∗ is con-
vex, it is also monotone [ACM89]. We remark that in [ACB+12] one of the neighbors
w of u incident to the outer face of skel(µ) was placed on point Eµ, while in our algo-
rithm this does not happen. Indeed, placing u on Nµ and w on Eµ makes virtual edge
(u,w) be on the boundary of boom(µ). See Figure 9.15(b). However, this implies
that, if the node ν corresponding to (u,w) is a P-node whose pertinent graph has to be
drawn inside a diamond diam(ν), then diam(ν) cannot be drawn completely inside
boom(µ), hence not satisfying Property (B). See Figure 9.15(c). This problem does
not occur in [ACB+12], since pert(ν) is always drawn inside a boomerang, which
can be turned in such a way that it is completely inside boom(µ).

Second, apply an affine transformation to Γ∗, called directional-scale in [ACB+12],
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Wµ Eµ

Sµ

u = Nµ

w

(a)

Wµ
Eµ

Sµ

u = Nµ

w
=

(b)

Wµ
Eµ

Sµ

u = Nµ

w
=

(c)

Figure 9.15: (a) A convex polygon entirely lying in the interior of boom(µ), except
for pole u which is on Nµ, such that the neighbors of v in skel(µ) are visible from Sµ.
(b) The corresponding polygon in [ACB+12], in which w is on Eµ. (c) If the node
ν corresponding to (u,w) has to be drawn inside a diamond, then it is drawn outside
boom(µ).

in order to make the slopes of all the edges of G∗ close enough to −dN (µ). See
Fig 9.16(a). Namely, the directional-scale applies a scaling to the drawing in a direc-
tion that is perpendicular to −dN (µ). As proved in [ACB+12] the resulting drawing
is still monotone and, for each edge e ∈ G∗, it holds sl(−dN (µ)) − αµ

2 < sl(e) <
sl(−dN (µ)) +

αµ

2 .
Third, construct a drawing Γ(skel(µ)) of skel(µ) by placing v on Sµ in Γ∗ and

connecting it to its neighbors. Note that v is connected to each vertex w of skel(µ)
by an (αµ,−dN (µ), dS(µ))-path that is a composition of the (αµ, dS(µ))-monotone
path composed only of edge (v, w′), for some vertex w′ adjacent to v, and of the
(αµ,−dN (µ))-monotone path connecting w′ to w, which exists due to the fact that,
for each edge e ∈ G∗, sl(−dN (µ))− αµ

2 < sl(e) < sl(−dN (µ))+
αµ

2 . This, together
with the fact that every pair of vertices different from v is connected in Γ(skel(µ)) by
the same monotone path as in Γ∗, implies that Γ(skel(µ)) is monotone.

Finally, consider a drawing Γ′(skel(µ)) of a subdivision of skel(µ) obtained from
Γ(skel(µ)) by placing the two edges incident to each subdivision vertex on the same
straight-line segment. As proved in Lemma 3 of [ACB+12], Γ′(skel(µ)) is still a
monotone drawing.

Then, in order to obtain Γµ, each virtual edge of skel(µ) is replaced in Γ′(skel(µ))
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Wµ Eµ

Sµ

Nµ

(a)

Wµ Eµ

Sµ

Nµ

(b)

Figure 9.16: (a) A directional-scale applied to Γ∗ in the direction perpendicular to
−dN (µ). (b) The drawing of pert(µ) obtained with the algorithm described in this
section.

with either a boomerang or a diamond, depending on the type of node it represents, as
follows.

Consider the pair of vertices x, y belonging to the subdivision of skel(µ) such that
the range range(P (x, y)) of the monotone path P (x, y) between them in Γ′(skel(µ))
creates the largest angle ∠(x, y) among all the pairs of vertices. Let γ = π−∠(x, y).
Further, let δ be the smallest angle between two adjacent edges in Γ(skel(µ)). Finally,
let ϵ be the smallest angle between an edge incident to u and segment NµEµ.

For each node µi, with i = 1, . . . , k, represented by virtual edge (ui, vi), let Nµi

and Sµi be the points where ui and vi have been drawn in Γ(skel(µ)), respectively.
Then, consider a boomerang boom(µi) = (Nµi , Eµi , Sµi , Wµi) such that Eµi and
Wµi determine βµi+2αµi < min{ δ2 ,

γ
2 ,

ϵ
2}. If µi is a P-node with an edge between its

poles, consider a diamond diam(µi) composed of two mirrored copies of boom(µi).
Then, apply the inductive algorithm to µi, with poles ui and vi, and to either boom(µi)
or diam(µi). See Figure 9.16(b).

Claim 9.4 If µ is an R-node, the drawing Γµ constructed by algorithm BICOFIXEDEM-
BEDDING satisfies Properties (A)–(C).

Proof: The fact that Γµ satisfies Property (A) depends on the monotonicity of Γ′(skel(µ))
and on the fact that βµi +2αµi <

γ
2 , where γ = π−∠(x, y) and ∠(x, y) is the largest

angle created by the range range(P (x, y)) of the monotone path connecting any two
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vertices x and y. This implies that, for every monotone path between two vertices w1

and w2 in Γ′(skel(µ)) (whose range creates an angle smaller than ∠(x, y), by defini-
tion), it is possible to construct a monotone path in Γµ having range (strictly) smaller
than π − ∠(x, y) + ∠(w1, w2) ≤ π.

Property (B) follows from the planarity of the drawings of the child nodes, which
is guaranteed by induction, and on the fact that the boomerangs and the diamonds
containing such drawings do not overlap, due to the fact that βµi + 2αµi <

δ
2 . Also,

as remarked before, all such boomerangs and diamonds are contained inside boom(µ),
as no vertex has been placed on point Eµ.

Since for each edge e ∈ Γ(skel(µ)) it holds sl(−dN (µ)) − αµ

2 < sl(e) <
sl(−dN (µ))+

αµ

2 , if e is not incident to v, and sl(dS(µ))− αµ

2 < sl(e) < sl(dS(µ))+
αµ

2 , if it is incident to e, and since βµi + 2αµi <
αµ

2 , Property (C) is also satisfied by
Γµ. 2

We state the main theorem of this section.

Theorem 9.3 Algorithm BICOFIXEDEMBEDDING computes a straight-line embedding-
preserving monotone drawing of every n-vertex biconnected embedded planar graph
G in O(n) time.

Proof: The fact that algorithm BICOFIXEDEMBEDDING computes the required draw-
ing follows from the fact that, as proved in the above discussion, Properties (A), (B),
and (C) hold for each node of the SPQR-tree of G.

Concerning the linear bound on the computational complexity, first note that SPQR-
trees can be constructed and handled in linear time [DT96a, DT96b, GM01]. Also,
the computation of angles αµi and βµi at each step of the computation and, in the
case of R-nodes, the construction of a convex drawing of skel(µ) and the operation
directional-scale, can be performed in linear time in the size of the considered node,
and hence in total linear time in the size of the graph. 2
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Chapter 10

Slanted Orthogonal Drawings

In this chapter1 we focus on drawings of non-planar graphs. We introduce a new
model in the context of non-planar orthogonal graph drawing that we call slanted or-
thogonal graph drawing. While in traditional orthogonal drawings each edge is made
of alternating axis-aligned line-segments, in slanted orthogonal drawings intermediate
diagonal segments on the edges are permitted, which allows for: (a) smoothening the
bends of the produced drawing (as they are replaced by pairs of “half-bends”), and,
(b) emphasizing the crossings of the drawing (as they always appear at the intersection
of two diagonal segments). We present an approach to compute bend-optimal slanted
orthogonal representations, an efficient heuristic to compute close-to-optimal slanted
orthogonal drawings with respect to the total number of bends in quadratic area, and
a corresponding LP formulation, when insisting on bend-optimality. On the negative
side, we show that bend-optimal slanted orthogonal drawings may require exponential
area.

The chapter is structured as follows. In Section 10.1 we give some preliminary
definitions and introduce some related works. In Section 10.2 we present an approach
to compute bend-optimal slog representations. Afterwards, we present a heuristic to
compute close-to-optimal slog drawings, that require polynomial drawing area, based
on a given slog representation. To compute the optimal drawing, we give a formulation
as a linear program in Section 10.4. In Section 10.5 we show that the optimal drawing
may require exponential area. In Sections 10.6 and 10.7, we present an experimental
evaluation and some sample drawings of our algorithms, respectively.

1The contents of this chapter are joint work with Michael Bekos, Michael Kaufmann, Robert Krug,
and Stefan Naher, appeared in [BKK+13] and have been submitted to journal.
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10.1 Introduction

In this chapter, we introduce and study a new model in the context of non-planar or-
thogonal graph drawing: Given a graph G of max-degree 4, determine a drawing Γ
of G in which (a) each vertex occupies a point on the integer grid and has four avail-
able ports, as in the ordinary orthogonal graph drawing model; (b) each edge is drawn
as a sequence of alternating horizontal, vertical and diagonal segments; (c) a diago-
nal segment is never incident to a vertex (due to port constraints mentioned above);
(d) crossings always involve diagonal segments; and (e) the minimum of the angles
formed by two consecutive segments of an edge always is 135◦, which suggests that
a bend in Γ is always incident to a diagonal segment and to either a horizontal or a
vertical one. We refer to Γ as the slanted orthogonal drawing of G, or, shortly, slog
drawing. For an example, refer to Figure 10.1(a). The corresponding slog drawing of
this example is illustrated in Figure 10.1(b). This example indicates what we might
expect from the new model: crossings on the diagonals are more visible than the cor-
responding ones in the traditional orthogonal graph drawing model and the use of area
seems to be more effective.

(a) (b)

Figure 10.1: Traditional orthogonal (a) and slanted orthogonal (b) drawings of the
same graph, assuming fixed ports.

Slog drawings generalize orthogonal drawings in the following sense: If the input
graph G is planar, then any planar orthogonal drawing Γ of G can be transformed
into a planar slog drawing Γ′ of G, by replacing each bend of 90◦ of Γ by two “half-
bends” of 135◦ in Γ′, as illustrated in Figure 10.22. The resulting drawings will be of
improved readability and more aesthetic appeal, since bends, which negatively affect

2Potential crossings posed by the presence of half-bends can be avoided, if one scales Γ′ by a factor of
2 and the diagonal segment defined by a pair of half-bends lies in a 1× 1 box.
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the quality of orthogonal drawings (as they interrupt the eye movement and require
sharp changes of direction), are replaced by pairs of half-bends that have a smoother
shape. In addition, slog drawings reveal the presence of crossings and help distin-
guishing them from vertices of the drawing, because crossings are defined by diagonal
segments, while vertices are always incident to rectilinear segments.

(a) (b)

Figure 10.2: Replacing a 90◦ bend (a) by two half-bends of 135◦ (b).

10.1.1 Related Work

Orthogonal graph drawing has a long tradition, dating back to VLSI layouts and floor-
planning applications [Lei80, TT89, Val81]. Formally, an orthogonal drawing of a
graph of max-degree 4 is a drawing in which each edge is drawn as a sequence of
alternating horizontal and vertical line-segments, and which is optimal under a pre-
specified optimization function which measures the niceness of the resulting drawing.
Typical optimization functions include minimizing the used area [PT97, TT89], the
total number of bends [FK95, GT01, Tam87] or the maximum number of bends per
edge [BK94, LMS98]; for an overview see e.g. [EFK01].

For minimizing the total number of bends in orthogonal graph drawing Tamassia
laid important foundations by the topology-shape-metrics (TSM) approach in [Tam87],
that works in three phases. In the first planarization phase a “planar” embedding is
computed for a given (non)planar graph by replacing edge crossings by dummy ver-
tices (referred to as crossing or c-vertices). The output is called planar representation.
In the next orthogonalization phase, angles and bends of the drawing are computed,
producing an orthogonal representation. In the third compaction phase the coordi-
nates for vertices and edges are computed. The core is a min-cost flow algorithm to
minimize the number of bends in the second phase [CK12]. Note that the general
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problem of determining a planar embedding with the minimum number of bends is
NP-hard [GT01].

Our model resembles an octilinear model as it is heavily used for example in the
drawing of metro maps [NW11] but it is closer to the traditional orthogonal style. In
particular, angles of 45◦ do not occur at all. Therefore, the complexity results for the
octilinear model do not apply to our model.

Closely related to the problem we study is also the smooth orthogonal drawing
problem [BKKS12], which asks for a planar drawing of an input planar graph of
maximum degree 4, in which every edge is made of axis-aligned line-segments and
circular-arcs with common horizontal or vertical tangents; the main goal is to de-
termine such drawings with low edge complexity, measured by the number of line-
segments and circular-arc segments forming each edge. Note that both approaches try
to smoothen orthogonal drawings either by the usage of circular arc segments (smooth
orthogonal drawings) or by replacing orthogonal bends by half-bends (slog drawings).

10.1.2 Preliminaries and Notation

For planar slog drawings, observe that the problem of minimizing the number of bends
over all embeddings of an input planar graph of maximum degree 4 is NP-hard. This
directly follows from [GT01], since the bends of a planar orthogonal drawing are
in one to one correspondence with pairs of half-bends of the corresponding slanted
orthogonal drawing. This negative result led us to adopt the TSM approach for our
model. So, in the following, we assume that a planar representation of the input
graph is given. Then, one can easily observe the following requirements: (a) all non-
dummy vertices (referred to as real or r-vertices) use orthogonal ports and, (b) all
c-vertices use diagonal ports. This ensures that the computed drawing will be a valid
slog drawing that corresponds to the initial planar representation. Edges connecting
real (crossing) vertices are referred to as rr-edges (cc-edges), and edges between r-
and c-vertices as rc-edges.

We also use the notion of a left or right turn, which we define in the following.

Definition 10.1 Let e = (u, v) be an edge with at least one bend and let s and s′ be
two consecutive segments of e with b being the common bend of s and s′. Furthermore
let ϕ be the angle formed by s and s′ on their left side when moving along e from u to
v. Edge e has a left turn on b if ϕ ≤ 180◦, otherwise there is a right turn on b.
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10.2 Bend-Optimal Slanted Orthogonal Representations

In this section, we present an algorithm for computing a bend-optimal slog represen-
tation of an input plane graph of maximum degree 4. This algorithm is a modification
of a well-known algorithm by Tamassia [Tam87] for computing bend-optimal orthog-
onal representations of plane graphs of maximum degree 4 by modeling the problem,
as a min-cost flow problem on a flow network derived from the embedding of the
graph. However, before we proceed with the detailed description of our modification,
in Section 10.2.1 we briefly describe the algorithm of Tamassia. In Section 10.2.2,
we describe in detail our modification. Section 10.2.3 presents properties of bend-
minimal slog representations.

10.2.1 Preliminaries

A central notion to the algorithm of Tamassia [Tam87] is the orthogonal represen-
tation, which in a sense captures the “shape” of the resulting drawing, neglecting
the exact geometry underneath. Typically, an orthogonal representation of a plane
graph G = (V,E) is an assignment of four labels to each edge (u, v) ∈ E; two
for each direction. Label α(u, v) · 90◦ corresponds to the angle at vertex u formed
by edge (u, v) and its next incident edge counterclockwise around u. Label β(u, v)
corresponds to the number of left turns of angle 90◦ along (u, v), when traversing
it from u towards v. Clearly, 1 ≤ α(u, v) ≤ 4 and β(u, v) ≥ 0. Since the sum
of angles around a vertex equals to 360◦, it follows that for each vertex u ∈ V ,∑

(u,v)∈N(u) α(u, v) = 4, where N(u) denotes the neighbors of u. Similarly, since
the sum of the angles formed at the vertices and at the bends of a bounded face f
equals to 180◦(p(f)− 2), where p(f) denotes the total number of such angles, it fol-
lows that

∑
(u,v)∈E(f) α(u, v) + β(v, u)− β(u, v) = 2a(f)− 4, where a(f) denotes

the total number of vertex angles in f , and, E(f) the directed arcs of f in its coun-
terclockwise traversal. If f is unbounded, the respective sum is increases by eight. It
is known that two orthogonal drawings with the same number of bends at each edge
have the same orthogonal representation.

There is a nice correspondence between the min-cost network flow formulation
of Tamassia and the underlying orthogonal representation with minimum number of
bends of the input plane graph. In the flow network, one can think that each unit of
flow corresponds to a 90◦ angle. Then, the vertices (vertex-nodes; sources) supply
four units of flow each, which have to be consumed by the faces (face-nodes; sinks).
Each face f demands 2a(f)− 4 units of flow (increased by eight if f is unbounded).
The relation now seems clear. To maintain the properties described above each edge
from a vertex-node to a face-node in the flow network is equipped with a capacity
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of 4 and a minimum flow of 1, while an edge between adjacent faces has infinite
capacity, no lower bound but each unit of flow through it introduces a respective unit
cost. The total cost is actually the total number of bends along the respective edge.
Hence, the min cost flow solution corresponds to a representation of the plane graph
with minimum total number of bends.

10.2.2 Modifying the Flow Network

We are now ready to present how to modify the algorithm of Tamassia, in order to
obtain a slog representation of an input plane graph G with minimum number of half-
bends. Recall that G contains two types of vertices, namely real and crossing vertices.
Real (crossing, respectively) vertices use orthogonal (diagonal, respectively) ports.
Observe that a pair of half-bends on an rr-edge of a slog drawing corresponds to a
bend of an orthogonal drawing. The same holds for half-bends on cc-edges. However,
an rc-edge must switch from an orthogonal port (incident to the r-vertex) to a diagonal
port (incident to the c-vertex). This implies that each rc-edge has at least one half-
bend.

Consider an rc-edge (vr, vc) incident to faces f and g (see Figure 10.3) and as-
sume that the port of real vertex vr is fixed. Depending on the (diagonal) port on the
crossing vertex vc we obtain two different representations with the same total number
of bends. To model this “free-of-cost” choice, we introduce an edge into the flow
network connecting f and g with unit capacity and zero cost, i.e., through this edge
just one unit of flow can be transmitted and this is for free. Hence, the first half-bend
of each rc-edge is free of cost, as desired. For consistency we assume that, if in the
solution of the min cost flow problem there is no flow over (f, g), then there exists a
left turn from the real to the crossing vertex on the bend before the crossing; otherwise
a right turn, as illustrated in Figure 10.3.

10.2.3 Existence and Properties of Bend-Optimal Slanted Orthogonal
Representations

In the following we present properties of optimal slog representations. We prove that,
for a planarized graph G, the computation of a slog representation with minimum
number of half-bends that respects the embedding of G is always feasible. Then, we
present an upper bound for the number of half-bends in optimal slog representations.
In the following we assume that, together with a planarization, the embedding is also
given.
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g

f

vr

vc

0

(a)

1

vr

vc
f

g

(b)

Figure 10.3: Two configurations corresponding to zero (a) or one (b) unit of flow over
an rc-edge; f and g are the two adjacent faces.

Theorem 10.1 Let G be a plane (or planarized) graph with maximum degree 4. A
slog representation of G with the minimum number of half-bends can be computed
efficiently.

Proof: The idea is to use a reduction to Tamassia’s network flow algorithm. In partic-
ular, since the original flow network algorithm computes a (bend-optimal) orthogonal
representation for the input plane graph, our algorithm will also compute a slog rep-
resentation. In the following, we prove that this representation is also bend-optimal.

Assume that we are given an orthogonal representation F . We can uniquely con-
vert F into a slog representation S(F ) by turning all crossing vertices counterclock-
wise by 45◦. More precisely, the last segment of every rc-edge before the crossing
vertex will become a left half-bend. Furthermore, every orthogonal bend is converted
into two half-bends, bending in the same direction as the orthogonal bend (see Fig-
ure 10.2). Note that the left half-bends at the crossings might neutralize with one of
the half-bends originating from an orthogonal bend, if the orthogonal bend is turning
to the right (see Figure 10.4). In this case, only the second one of the right half-bends
remains. Note that this is the only possible saving operation. Therefore, since the
number of rc-edges is fixed from the given embedding, a slog representation with
minimum number of half-bends should minimize the difference between the number
of orthogonal bends of F and the number of first right-bends on rc-edges. However,
this is exactly what is done by our min cost flow network formulation, as the objective
is the minimization of the total number of bends in F without the first right-bends on
rc-edges. 2
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vr

vc

(a)

vr

vc

(b)

vr

vc

(c)

Figure 10.4: Illustration for Theorem 10.1. An orthogonal representation (a) of a bent
rc-edge can be converted into a slog representation (b). (c) Two superfluous half-bends
can be eliminated.

This constructive approach can also be reversed such that for each slog repre-
sentation S, we can construct a unique orthogonal representation F (S). Clearly,
F (S(F )) = F and S(F (S)) = S. Note that this is true only for bend-minimal rep-
resentations. If this is not the case, then one has to deal with staircases of subsequent
bends; a case that cannot occur in min-cost flow computations. From the construction,
we can also derive the following.

Corollary 10.1 Let S(F ) be a slog representation and F a corresponding orthogonal
representation. Let bS , rbS and rcS be the number of half-bends, the number of first
right-bends on rc-edges and the number of rc-edges in S(F ). Let also bF be the
number of orthogonal bends in F . Then, bS = 2 · (bF − rbS) + rcS .

The following theorem gives an upper bound for the number of half-bends in op-
timal slog representations.

Theorem 10.2 The number of half-bends of a bend-minimal slog representation is at
least twice the number of bends of its corresponding bend-minimal orthogonal repre-
sentation.

Proof: Bends of a bend-minimal orthogonal representation correspond to pairs of half-
bends on cc- and rr-edges of a bend-minimal slog representation. So, in this case, the
claim holds with equality. But for rc-edges we need a different argument.

Let C be a maximal component spanned by cc-edges. By definition, all edges
that have exactly one endpoint in C are rc-edges. Now, observe that rc-edges can be
split into several cycles around components of crossings. However, these cycles are
independent. Now, consider such a cycle C of length k. Clearly, there should be k
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first half-bends on the rc-edges in the slanted representation, since each rc-edge has to
bend at least once.

In the corresponding orthogonal representation, the second and third bend of each
rc-edge correspond to pairs of half-bends on the same edge in the slog representation.
Similarly, in the orthogonal representation the first orthogonal left-bend of each rc-
edge corresponds to the second and third left half-bend of the same edge in the slog
representation. So, the only bends that have not been paired (and subsequently have
no correspondence) are the first right-bends on rc-edges.

We now claim that in any bend-minimal orthogonal representation, there exist at
most k

2 first right-bends on the edges of cycle C. For a proof by contradiction, assume
that in a bend-minimal orthogonal representation, there exist r > k

2 first right-bends
on the edges of C. If we send the flow along C in reverse direction, we decrease the
number of right-bends by r and increase the number of left-bends by k−r. Hence, the
total number of bends decreases, which shows that the input orthogonal representation
was not minimal; a contradiction.

From the claim, it follows that the number of first right-bends in the orthogonal
representation is at most half of the number of first half-bends of cycle C (in the
corresponding slog representation), which concludes the proof since all other half-
bends come in pairs and have their correspondences. 2

10.3 A Heuristic to Compute Close-to-Optimal Slanted
Orthogonal Drawings

In this section, we present a heuristic which, given an optimal slog representation,
computes an actual drawing, which is close-to-optimal with respect to the total num-
ber of bends and requires quadratic area. This is a quite reasonable approach, since
insisting on optimal slog drawings may result in exponential area requirements, as
we will shortly see in Section 10.5. The basic steps of our approach are outlined in
Algorithm Spoon Based. In the following, we describe them in detail.

In Step 1 of Algorithm Spoon Based, we compute an orthogonal drawing Γ
based on the input slog representation. If there is flow on an edge e connecting faces
fi and fj that we added, we treat it as if it was flow on the other edge connecting
fi and fj that was part of the flow network of the original algorithm. With this we
get a flow that is still valid and corresponds to an orthogonal representation for which
the algorithm of Tamassia [Tam87] can compute a drawing. In the next step, we
replace all orthogonal bends with pairs of half-bends. In Step 3 of Algorithm Spoon
Based, we connect r-vertices with c-vertices by replacing the segment incident to the
c-vertex of each rc-edge by a gadget, which we call spoon due to its shape (see Figure
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Algorithm Spoon Based

Require: A slog representation S of a given plane graph G.
Ensure: A slog drawing Γs of G.

1. Compute an orthogonal drawing Γ based on S
2. Replace each orthogonal bend by 2 half-bends /* see Figure 10.2 */

3. Fix ports on rc-edges using the spoon gadget /* see Figure 10.5(a) */

4. Apply cuts to fix ports on cc-edges /* see Figures 10.5(b)-(c) */

5. Optimize the number of rc half-bends /* see Figures 10.6(a)-(b) */

6. Optimize the number of cc half-bends /* see Figure 10.7 */

7. Heuristically compact the drawing

vcvc

vr vr

(a)

vc v
′

c

(b)

vc

v
′

c

(c)

Figure 10.5: (a) Illustration of the spoon gadget. (b) The orthogonal input can be trans-
formed into a slog by translating upwards everything above the dashed cut. (c) The
result contains 4 half-bends.

10.5(a)). This gadget allows us to switch between orthogonal and diagonal ports on an
edge. Note that the input slog representation specifies the ports on all vertices, thereby
defining which configuration is used.

In order to fix the ports of cc-edges (which still use orthogonal ports), we em-
ploy appropriate cuts3 (Step 4 of Algorithm Spoon Based). A cut, for us, is either
(i) an x-monotone continuous curve that crosses only vertical segments and divides
the current drawing into a top and a bottom part (horizontal cut), or, (ii) a y-monotone
continuous curve that crosses only horizontal segments and divides the current draw-
ing into a left and a right part (vertical cut). Observe that in order to apply a horizontal
(vertical, respectively) cut, we have to ensure that each edge crossed by the cut has

3A cut is a standard tool to perform stretchings in orthogonal drawings, see e.g. [FHK98].
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vc

vr

(a)

vc

vr

(b)

vc

vr

(c)

vc

vr

(d)

vc

vr

(e)

Figure 10.6: Saving bends on rc-edges: A cut through an rc-edge (vr, vc) leads to two
half-bends reduction; the optimal may require four half-bends reduction.

at least one vertical (horizontal, respectively) segment. This holds before the intro-
duction of the spoons, as Γ is an orthogonal drawing. We claim that this also holds
when all spoons are present. This is because a spoon replacing a horizontal (vertical,
respectively) segment has two horizontal (vertical, respectively) segments. To fix a
horizontal cc-edge (vc, v

′
c) with vc being to the left of v′c in the drawing, we first mo-

mentarily remove this edge from the drawing. Then we use a horizontal cut which
from left to right passes exclusively through vertical segments. It starts in the outer
face and continues either up to the face below (vc, v

′
c), then to the face above and from

there again to the outer face. Or it continues up to the face above (vc, v
′
c), then to the

face below and from there to the outer face (see Figure 10.5(b)).

Our choice depends on the input slog representation that specifies the ports on each
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crossing vertex. The result of such a cut is depicted in Figure 10.5(c) and has a new
horizontal and a new vertical segment that replaces edge (vc, v

′
c). The first (second,

respectively) one is necessary for potential future vertical (horizontal, respectively)
cuts. Similarly, we cope with cc-edges with bends by applying the same technique
only to the first and last segments of the edge.

The resulting slog drawing has three additional half-bends for each rc-edge (the
spoon gadget adds three half-bends; one is required) and four additional half-bends
for each cc-edge (none is required), with respect to the ones suggested by the in-
put representation. With similar cuts as the ones described above, we can save two
half-bends for each rc-edge, by eliminating the diagonal segment of the spoon gadget
(Step 5 of Algorithm Spoon Based). Our approach is illustrated in Figures 10.6(a)
and 10.6(b). Observe that in this case the cut simply requires the removal of the diag-
onal segment that is to be eliminated and not the whole edge. The result is optimal for
bend-less rc-edges (see Figure 10.6(b)). However, for rc-edges with bends (see Fig-
ure 10.6(c)), our approach guarantees two half-bends reduction (see Figure 10.6(d)),
while in the optimal case four half-bends could be removed (see Figure 10.6(e)). Ob-
serve that the rectilinear segments of the edge are not affected, in order to be able to
apply future cuts.

As already stated, each cc-edge admits four additional half-bends (none is re-
quired). It is always possible to remove two of them (Step 6 of Algorithm Spoon
Based) by applying a local modification as depicted in Figure 10.7. If for example
the horizontal part of such an edge is longer than the vertical one, a shortcut like the
one in the left part of Figure 10.7(a) can be applied. Note that this operation does not
require any cuts. If the horizontal and the vertical segments of the cc-edge have the
same length, then all four half-bends can be saved; see Figure 10.7(c).

vc vc

v
′

c
v
′

c

(a)

vc vc

v
′

c
v
′

c

(b)

vc
vc

v
′

c
v
′

c

(c)

Figure 10.7: Saving bends on cc-edges by a local operation.

Once the operations we described above are applied, the drawing will contain zero
additional half-bends on rr-edges and bend-less rc-edges and at most two additional
half-bends on each cc-edge and each rc-edge with bends, with respect to the input
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representation. Note that in order to apply our technique we need to scale up the
initial drawing by a factor of 5 at the beginning of our algorithm, to provide enough
space for additional half-bends. In subsequent steps, the cuts increase the drawing
area. However, since each cut implies a constant factor increment to the drawing area
and each edge yields at most one cut, the total drawing area asymptotically remains
quadratic. Heuristically, we can further reduce it by contracting along horizontal and
vertical cuts as long as no crossings occur (Step 7 of Algorithm Spoon Based);
however, this post-processing does not result into asymptotically smaller area. The
following theorem summarizes our approach.

Theorem 10.3 Given a slog representation of a planarized graph G of maximum de-
gree 4, we can efficiently compute a slog drawing requiring O(n2) area with (i) op-
timal number of half-bends on rr- and bend-less rc-edges and (ii) at most two addi-
tional half-bends on cc edges and rc-edges with bends.

10.4 A Linear Program for Computing Optimal Drawings

In this section, we develop a Linear Program (LP) which, given an optimal slog repre-
sentation S of a plane graph G, computes an actual drawing Γ, which is optimal with
respect to the total number of bends; if one exists. Before we proceed with the de-
scription of our linear program, we mention that despite the fact that every experiment
we made on random and crafted graphs led to a feasible solution, we could not prove
the feasibility of the linear program.

10.4.1 The Core of the Linear Program

Initially, we appropriately augment graph G and obtain a new graph that is a subdi-
vision of G and has at most one half-bend on each edge. More precisely, let (u, v)
be an edge of G with more than two half-bends (as defined by the slog representation
S). Let ⟨b1, b2, . . . , bk⟩, k ≥ 2, be the half-bends of edge (u, v) and assume without
loss of generality that b1, b2, . . . , bk appear in this order along the edge (u, v), when
traversing (u, v) from vertex u towards vertex v. We first consider the case where
vertex u is a real vertex. In this case, we add a new crossing vertex w in G and then
we replace the edge (u, v) of G with the edges (u,w) and (w, v). The first half-bend
b1 of the edge (u, v) is assigned to the edge (u,w), while the remaining half-bends
⟨b2, . . . , bk⟩ of the edge (u, v) are assigned to the edge (w, v). The case where vertex
u is a crossing vertex is treated analogously, with the only exception that in this partic-
ular case vertex w would have been a real vertex. Then, it is clear that if we apply the
procedure that we just described on each edge of G with more than two half-bends (as
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long as there exist such edges), then we will obtain an augmented graph, say Gaug ,
that is clearly a subdivision of G and has at most one half-bend on each edge, as de-
sired. Furthermore, neither the type of each new vertex nor its ports are arbitrarily
chosen, as they depend on the slopes of its incident segments. This implies a new slog
representation, say Saug , for Gaug.

Now observe that each face f of G has a corresponding face f ′ in Gaug such that:
(i) the vertices of Gaug incident to face f ′ are the same as the ones incident to face
f of G, plus the ones from the subdivision; and (ii) the sequence of slopes assigned
to the segments bounding f ′ is the same as the ones of the segments bounding f
in G. Hence, a drawing Γaug of Gaug realizing the slog representation Saug is also a
drawing Γ of G realizing the slog representation S, where subdivided edges are routed
as their corresponding paths in Gaug.

We are now ready to describe our linear program, which computes a drawing
Γaug of Gaug realizing the slog representation Saug . For each vertex u of Gaug, we
introduce a pair of variables xu and yu that corresponds to the coordinates of vertex
u on the plane. Then, for each edge (u, v) of Gaug , we define a pair of constraints,
depending on the type of vertices u and v (i.e., real or crossing vertices). The detailed
list of constraints is given in Figure 10.8.

In order to obtain “compact” drawings, we indirectly minimize the area by min-
imizing the total edge length. In particular, this is our objective function. Note that
the slopes of the segments allow us to express the Euclidean length of each edge as
a linear function. As an example, the length of the edge depicted in the first cell of
Figure 10.8(c) is defined as (

√
2− 1) · (yu − yv) + xv − xu.

10.4.2 Addressing Planarity Issues

The linear program, as described so far, models the shape of the edges (and sub-
sequently the shape of the faces) and the relative positions between pairs of adjacent
vertices. Since there are no constraints among non-adjacent vertices, it is highly possi-
ble that the resulting drawing is non-planar. We provide an example in Figure 10.9(a),
where the relative positions between vertices (i) vr and vc, and, (ii) vr and v′c are
not defined by the liner program, yielding to a (potential) crossing situation. To cope
with this problem, unfortunately, we cannot follow an approach similar to the one that
Tamassia suggests in his original algorithm (i.e., he “splits” all non-rectangular faces
into rectangular ones), since in our case a face is not necessarily rectilinear.

In order to describe our approach to ensure that each face is drawn planar, we
first introduce some necessary terminology. We distinguish two types of corners of
a face in a slog representation; vertex-corners (or simply vertices) and bend-corners
(or simply bends). With respect to a face, a corner is either convex, if the inner angle
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Figure 10.8: The list of constraints used by the linear program for (a) rr-edges, (b)
cc-edges and (c) rc-edges, assuming that the y-axis points downwards.

is ≤ 135◦, or non-convex otherwise4. Hence, there are four possible types of corners
in total: convex vertex-corner, convex bend-corner, non-convex vertex-corner, non-
convex bend-corner. The configuration of a corner describes the shape of the corner
by the pair of orientations of its two incident segments in the order they are visited
by a counterclockwise traversal of the corresponding face. Possible orientations are
horizontal (h), vertical (v), diagonal-up (du), and diagonal-down (dd). For example,
the configuration of the bend-corner incident to segments s′ and s′′ of Figure 10.10(a)
is given by du-h. The type of a configuration describes the corresponding corner in
a more general way by just distinguishing between orthogonal (o) or diagonal (d)
orientations. In the example of Figure 10.10(a), the configuration of the bend-corner
incident to segments s′ and s′′ is of type d-o. We next define the notions of a split-edge
and an almost-convex face, that are both central in our approach.

Definition 10.2 For a given face f , a split-edge is an edge that:

4We ignore vertices and bends on corners that form 180◦ angles, since by construction they are always
aligned with their neighbors.
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v
′

c

vc

vr

(a) (b) (c) (d)

Figure 10.9: (a) A non-planar face. (b) Split-edge (vertex). (c) Split-edge (vertex) with
half-bend. (d) Split-edge (bend). In all figures, real (crossing, respectively) vertices
are drawn as squares (disks, respectively); split-edges are drawn dashed.

• is bend-less and connects a non-convex vertex-corner v with a new vertex that
we introduce by subdividing a side parallel to one of the edges incident to v (see
Figure 10.9(b)).

• or, has a half-bend and connects a non-convex vertex-corner v with a new vertex
that we introduce by subdividing a diagonal side of f (see Figure 10.9(c)).

• or, is a bend-less edge that connects two new vertices that we introduce by
subdividing two parallel edges, when one of them is incident to a non-convex
bend-corner (see Figure 10.9(d)).

Definition 10.3 A face is almost-convex if it does not contain any non-convex vertex-
corners and no split-edge exists that separates the face into two non-convex faces.

First, we make all faces almost-convex (by further augmenting our graph). Later,
we will show that the linear program will always compute a planar drawing if all faces
are almost-convex.

A non-convex vertex-corner is eliminated by introducing a new split-edge (corre-
sponding to new constraints in the linear program) as shown in Figure 10.9(b). When
there is no parallel side to one of the segments incident to the vertex-corner we intro-
duce a split-edge with a half-bend, as illustrated in Figure 10.9(c). It is important to
note that the elimination of a non-convex vertex-corner does not introduce new ones.
Hence, all of them can be eliminated sequentially by appropriately adopting one of
the two approaches described above.

In order to eliminate a non-convex bend-corner of a face that is not almost-convex,
we search for a split-edge (again corresponding to new constraints in the linear pro-
gram) that yields two non-convex faces. Such a split-edge is illustrated in Figure 10.9(d).
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We will appropriately introduce such split-edges until all faces are almost-convex
(without introducing non-convex vertex-corners). To prove that it is always feasible
to make all faces almost-convex, we give the following lemma.

Lemma 10.1 Let s′ and s′′ be two segments of a face f incident to a non-convex
bend-corner. Face f contains a segment s /∈ {s′, s′′} that is parallel to either s′ or
s′′.

Proof: For a proof by contradiction, we assume that there is no segment of face f
parallel to s′ and s′′. Without loss of generality, we further assume that s′ is a hor-
izontal segment and s′′ is a diagonal segment of positive slope; see Figure 10.10(a).
The cases, where s′ is a vertical segment and/or s′′ is a diagonal segment of neg-
ative slope, are analogous (see Figures 10.10(b) to 10.10(d)). Let ps′ and ps′′ be
the end-points of segments s′ and s′′, respectively, which are not identified with the
non-convex bend-corner incident to both s′ and s′′. Since f is a face, there exists a
polygonal chain of segments of f connecting ps′ and ps′′ . In our drawing model, such
a chain consists of horizontal, vertical and diagonal segments. Now observe that a hor-
izontal or a positively-sloped diagonal segment of the chain connecting ps′ and ps′′
is parallel to s′ or s′′, respectively, which contradicts our initial assumption that there
is no segment of face f parallel to s′ and s′′. Hence, the polygonal chain connecting
ps′ and ps′′ consists of vertical and negatively-sloped diagonal segments, which is a
contradiction since ps′ and ps′′ cannot be connected by such a chain, without forming
an angle of 45◦ at a corner of f (a situation that is not allowed by our drawing model).
2

ps′
ps′′

s′
s′′

f

(a)

ps′

ps′′

s′
s′′

f

(b)

ps′

ps′′
s′

s′′ f

(c)

ps′

ps′′

s′ s′′

f

(d)

c1

f

c2

c3

(e)

Figure 10.10: (a)-(d) Different configurations used in the proof of Lemma 10.1.
(e) Configuration used in the proof of Lemma 10.2.
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From Lemma 10.1, it follows that, for a non-convex bend-corner of a face f , there
is a split-edge emanating from one of its incident segments towards to a parallel seg-
ment of face f . If f is not almost-convex (and contains no convex vertex-corners)
and this edge is carefully selected such that it yields exactly two non-convex “sub-
faces”, say f ′ and f ′′, of face f , then it is not difficult to see that both f ′ and f ′′

have fewer non-convex bend-corners than f . In addition, no convex vertex-corners
are introduced. This implies that if one recursively applies this procedure to f ′ and/or
f ′′ (if either of these is not almost-convex), f will eventually be split into a particu-
lar number of “subfaces” that are all almost-convex. In addition, it is not difficult to
see that all additional edges, that are required to make all faces almost-convex can be
expressed by using the original set of constraints of our linear program. So, it now
remains to prove that almost-convex faces are drawn planar. To do so, we give the
following lemmas.

Lemma 10.2 An almost-convex face f has at most two consecutive non-convex bend-
corners.

Proof: Assume to the contrary that f has three consecutive non-convex bend-corners,
say c1, c2 and c3; see Figure 10.10(e). Assume that c1, c2 and c3 appear in this order
in the counterclockwise traversal of face f . By Lemma 10.1, there exists a segment of
f that is parallel to one of the segments incident to c2. This implies that, there exists
a split-edge that partitions f into two non-convex faces; one containing c1 and one
containing c3, which is a contradiction since f is almost-convex. 2

Lemma 10.3 An almost-convex face has at most two non-convex bend-corners.

Proof: In the proof, we use the notion of a configuration. More precisely, we assume
to the contrary that an almost-convex face f contains at least three non-convex bend-
corners c1, c2 and c3 and distinguish four cases. In our case analysis, we denote by
s1ci and s2ci the segments incident to corner ci and assume the s1ci precedes s2ci in the
clockwise traversal of face f , i = 1, 2, 3.

Case 1: Two of these non-convex bend-corners have the same configuration; see Fig-
ures 10.11(a) and 10.11(b) for an illustration. By Lemma 10.1, there exists a
parallel segment to either s1c1 or s2c1 , and thereby to either s1c2 or s2c2 . In both
cases, one of the split-edges separates c1 from c2, so that the resulting faces are
both non-convex. Hence, f is not almost-convex; a contradiction. So, in the
following cases we assume that c1, c2 and c3 are of different configurations.
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Figure 10.11: Different configurations used in the proof of Lemma 10.3.

Case 2: Corners c1 and c2 are consecutive corners of f and the first segment of c3 is
parallel to the second segment of c2; see Figure 10.11(c) for an illustration. We
denote by s the segment that is incident to both c1 and c2 (i.e., s = s2c1 = s1c2 )
and first assume that c1 and c3 are of the same configuration. In order to close
the face there has to be a segment that is parallel to either s or s2c2 that is not s1c3 ,
thereby allowing a split-edge that separates either c1 from c2 and c3, or, c1 and
c2 from c3. The resulting faces are both non-convex. Hence, f is not almost-
convex; a contradiction. The case where c3 has the opposite configuration of c1
is analogous.

Case 3: Corners c1 and c2 are consecutive and the second segment of c3 is parallel
to the second segment of c2; see Figure 10.11(d) for an illustration. Again, we
denote by s the segment that is incident to both c1 and c2 (i.e., s = s2c1 = s1c2 )
and assume that c1 and c3 are of opposite types of configuration. In this case
there is a split-edge between segments s2c2 and s2c3 thereby separating c1 and c2
from c3 and resulting in two non-convex faces. Hence, f is not almost-convex;
a contradiction. The case that c3 has the same type of configuration to c1 is
analogous.

Case 4: Corners c1, c2 and c3 are pairwise non-consecutive; see Figure 10.11(e) for
an illustration. Since there are only two types of diagonals, at least two non-
convex corners, say c1 and c3, are of the same type. Since they are forced
to have opposite configurations (d-o or o-d) a split-edge between those two
parallel diagonals would separate the two respective corners, resulting in two
non-convex faces. Hence, f is not almost-convex; a contradiction.
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The proof is completed by the observation that one of these four cases will always
apply to every almost-convex face with more than two non-convex bend-corners. 2

Lemma 10.4 An almost-convex face is always drawn planar.

Proof: A face that is convex is drawn planar by definition. Let f be an almost-convex
face. By Lemma 10.3, f has at most two non-convex bend corners. In the case where
f has exactly one non-convex bend-corner, f is drawn planar, since it cannot have
an even number of crossings without violating the port constraints. Consider now the
more interesting case where face f has exactly two non-convex bend-corners, say c1
and c2. We denote by s1ci and s2ci the segments incident to corner ci and assume the
s1ci precedes s2ci in the clockwise traversal of face f , i = 1, 2. We distinguish the
following cases:

Case 1: Corners c1 and c2 are consecutive; see Figure 10.12(a) for an illustration.
In this case, there is a segment, say s, that is incident to both c1 and c2 (i.e.,
s = s2c1 = s1c2 ). If there is a segment of f parallel to s, then there exists a split-
edge separating f into two non-convex subfaces; one containing c1 and one
containing c2 (see Figure 10.12(a)). Hence, f is not almost-convex. It follows
that there is no segment of f that is parallel to s. By Lemma 10.1, there exist
parallel segments to the other two segments that are incident to c1 and c2 (see
Figure 10.12(b)). However, since f is almost-convex, a “split-edge” connecting
the respective parallel segments would result in at least one convex face. We
can move these “split-edges” arbitrary close to c1 and c2, so that they separate
f into three convex regions. Since convex regions are drawn convex and hence
planar by definition, no crossing can occur.
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Figure 10.12: Different configurations used in the proof of Lemma 10.4.



i
i

“thesis” — 2014/4/29 — 19:08 — page 145 — #157 i
i

i
i

i
i

10.5. AREA BOUNDS 145

Case 2: Corners c1 and c2 have the same configuration and orientation; see Fig-
ure 10.12(c) for an illustration. This particular case is identical to Case 1 of
Lemma 10.3 and therefore cannot occur.

Case 3: Corners c1 and c2 have opposite configuration (meaning that they are made
of the same orthogonal and diagonal part but in different orders) and orienta-
tion; see Figure 10.12(d) for an illustration. Since the number of crossings that
occur has to be even (otherwise ports would be violated), and the only way to
have two crossings requires that one of the convex regions is drawn non-convex,
this situation cannot introduce any crossings.

Case 4: Corners c1 and c2 have the same configuration but opposite orientations;
see Figure 10.12(e) for an illustration. In this case, it is not difficult to see
that there exists a split-edge between the two orthogonal or the two diagonal
segments incident to c1 and c2, separating them into two non-convex subfaces,
so f cannot be almost-convex.

The proof is completed by the observation that one of these four cases will always
apply to an almost-convex face with exactly two non-convex bend-corners. 2

10.5 Area Bounds

Slog drawings have aesthetic appeal and seem to improve the readability of non-planar
graphs, when compared to traditional orthogonal drawings. However, in this section
we show that such drawings may require increased drawing area. Note that most of
the known orthogonal drawing algorithms require O(n)×O(n) area. The situation is
different if one insists on slog drawings of optimal number of bends. As the following
theorem asserts, the area penalty can be exponential.

Theorem 10.4 There exists a graph G whose slanted orthogonal drawing Γ of mini-
mum number of bends requires exponential area, assuming that a planarized version
σ of the resulting drawing is given.

Proof: The planarized version σ of G is given in Figure 10.13(a) and consists of
n + 1 layers L0, L1, . . . , Ln. Layer L0 is the square grid graph on 9 vertices. Each
layer Li, i = 1, 2, . . . , n, is a cycle on 20 vertices. Consecutive layers Li−1 and Li,
i = 1, 2, . . . , n, are connected by 12 edges which define 12 crossings. Hence, G
consists of 20n+ 9 vertices and 32n+ 13 edges that define 12n crossings.

A slog drawing Γ of G with minimum number of bends derived from σ ideally
introduces (i) no bends on crossing-free edges of σ, and, (ii) two half-bends in total
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L0

L1 Ln−1 Ln

(a)

Li−1

Li

(b)

Figure 10.13: (a) A planarized version σ of a graph G. (b) Edges involved in crossings
in σ contribute two half-bends.

for each rc-edge. Now observe that at each layer there exist four vertices, that have
two ports pointing to the next layer (gray-colored in Figure 10.13(a)). This together
with requirements (a) and (b) suggests that the vertices of each layer Li should reside
along the edges of a rectangle, say Ri, such that the vertices of Li whose ports point
to the next layer coincide with the corners of Ri, i = 0, 1, 2, . . . , n (with the only
exception of the “innermost” vertex of L0; in Figure 10.13(b), Ri is identified with
cycle Li). Hence, the routing of the edges that connect consecutive layers should
be done as illustrated in Figure 10.13(b). Since L0 is always drawable in a 3 × 3
box meeting all requirements mentioned above, and, σ is highly symmetric, we can
assume that each Ri is a square of side length wi, i = 0, 1, 2, . . . , n. Then, it is not
difficult to see that w0 = 3 and wi+1 = 2wi + 8, i = 1, 2, . . . , n. This implies that
the area of Γ is exponential in the number of layers of G and therefore exponential in
the number of vertices of G (recall that G has n+ 1 layers and 20n+ 9 vertices). 2

10.6 Experimental Evaluation

In this section, we present an experimental evaluation of our model. We compare clas-
sic orthogonal drawings obtained with the implementation of the original Tamassia
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algorithm [Tam87] of the yFiles library (http://www.yworks.com) with bend-optimal
slog drawings and drawings computed by the heuristic presented in Section 10.3. As
a test set, we used the Rome graphs (obtained from http://www.graphdrawing.org)
which are approximately 11.500 graphs. We filtered them for connected graphs with
maximal degree 4, which left 1.122 graphs. On those we ran our experiments on a
linux machine with four cores at 2, 5 GHz and 3 GB of RAM. All implementations
were done in Java using the yFiles library. For solving the linear programs to obtain
the optimal solutions we used the scip framework [Ach09]. All results we present
in this section were computed in less than 1 second each. It is notable that even for
graphs with more than 400 vertices the optimal slog drawing could be computed in
less than 2 seconds, which suggests that our LP-formulation can be useful for practi-
cal applications. To obtain an input for our algorithms we applied the Smart Organic
Layouter from the yFiles, which is basically a spring embedder algorithm, and as in-
put to our algorithms we used a planarized version of its output. In all following plots
the curve denoted by orth stands for results for the orthogonal drawings, while the
curves denoted by slog and heur represent the results for bend-optimal and heuristic
slog-drawings.

In Figure 10.14 the required area is plotted against the number of vertices. To
obtain the actual numbers the results for all graphs with the same number of vertices
were averaged. As expected, the area of the slog drawings is larger than that of the
orthogonal drawings. A bit surprising in our experiments was that the heuristic tends
to require even more area than the optimal solution, although we have the exponential
area bound for the optimal case (see Section 10.5). The reason for this is the scaling
needed in the heuristic. In the very beginning the orthogonal drawing, from which the
heuristic constructs the slog drawing, is scaled up by a factor of five (which yields a
factor of 25 in the total area) to gain the space needed for the additional bends. The
minimization of the total edge length by the linear program used to obtain the optimal
drawing seems to be much more effective than the compaction step in the end of the
heuristic algorithm.

As stated in Section 10.2 the number of half-bends in the optimal drawings is at
least twice the number of bends in the optimal orthogonal drawing, so in Figure 10.15
we plotted two times the number of orthogonal bends against the number of half-bends
produced by our algorithms. Clearly the orthogonal drawings require the least amount
of bends. We measured that on average the bend-optimal slog drawings required
4.75 times more half-bends than the orthogonal drawings required bends, while the
heuristic drawings required 1.32 times more half-bends than the bend-optimal slog
drawings. In actual numbers that means (on average) 13 more bends in the bend-
optimal slog drawing and an additional 6 more bends in the drawings produced by the
heuristic.



i
i

“thesis” — 2014/4/29 — 19:08 — page 148 — #160 i
i

i
i

i
i

148 CHAPTER 10. SLANTED ORTHOGONAL DRAWINGS

Figure 10.14: Number of vertices against area.

Figure 10.16 shows the total edge length in relation to the number of vertices. In
our experiments we found that the plots of the total edge length are comparable to the
plots of the area (Figure 10.14). This is exactly as expected, since with larger area the
total edge length also has to increase. When comparing the ratio of the longest to the
shortest edge, again the orthogonal algorithm produced the smallest results, as can be
seen in Figure 10.17. This is because the orthogonal drawings were the most compact
ones. For the bend-optimal slog drawing this ratio got up to 39 in our experiments,
while the heuristic had an even larger ratio between the longest and the shortest edge of
70 in the largest case we measured. This high ratios are caused by the long diagonal
segments required in the slanted model. It seems to us that the heuristic has much
higher ratios than the bend-optimal drawings since for the latter we use the LP which
minimizes the edge length explicitly, while the heuristic uses no such optimization.
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Figure 10.15: Number of vertices against number of bends.
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Figure 10.16: Number of vertices against total edge length.
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Figure 10.17: Number of vertices against ratio of longest to shortest edge.
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10.7 Sample Drawings

Figure 10.18: An orthogonal drawing of minimum number of bends for the graph of
Figure 10.13 establishing the exponential area bound for slog drawings.
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Figure 10.19: The corresponding bend-optimal slog drawing to the one of Fig-
ure 10.18.
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Figure 10.20: The corresponding close-to-optimal slog drawing (to the one of Fig-
ure 10.18) produced by our heuristic algorithm of Section 10.3.

Figure 10.21: A highly symmetric non-planar orthogonal drawing.



i
i

“thesis” — 2014/4/29 — 19:08 — page 155 — #167 i
i

i
i

i
i

10.7. SAMPLE DRAWINGS 155

   

   

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

  

 

  

 

   

   

 

 

  

 

 

 

  

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

   

   

 

 

 

  

  

 

 

 

 

  

 

  

 

 

 

Figure 10.22: The corresponding bend-optimal slog drawing to the one of Fig-
ure 10.21.

Figure 10.23: A non-planar orthogonal drawing
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Figure 10.24: The corresponding bend-optimal slog drawing to the one of Fig-
ure 10.23.
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Chapter 11

Conclusions and Open Problems

In Chapters 9 and 10 we provided algorithms to compute monotone and slanted or-
thogonal drawings of graph, respectively. In the following, we discuss such results
and propose some open problems.

Monotone Drawings of Graphs with Fixed Embedding

In Chapter 9 we studied monotone drawings of graphs in the fixed embedding set-
ting. Since not all embedded planar graphs admit an embedding-preserving monotone
drawing with straight-line edges, we focused on computing embedding-preserving
monotone drawings with low curve complexity. We proved that curve complexity 2
always suffices and that this bound is worst-case optimal. Furthermore, we described
algorithms for computing straight-line monotone drawings for meaningful subfami-
lies of embedded planar graphs. All the algorithms presented in Chapter 9 can be
performed in linear time and most of them produce drawings which require polyno-
mial area.

These results naturally give rise to several interesting open problems; some of
them are listed below.

Open Problem 11.1 Find meaningful subfamilies of embedded planar graphs (other
than outerplane graphs and embedded biconnected graphs) that admit monotone draw-
ings with curve complexity smaller than 2.

Open Problem 11.2 Is it possible to characterize the embedded planar graphs that
admit monotone drawings with curve complexity smaller than 2?

157
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Open Problem 11.3 Given an embedded planar graph Gϕ and an integer k ∈ {0, 1},
what is the complexity of deciding whether Gϕ admits a monotone drawing with curve
complexity k?

Open Problem 11.4 Given a graph G and an integer k ∈ {0, 1}, what is the com-
plexity of deciding whether there exists an embedding ϕ such that Gϕ admits a mono-
tone drawing with curve complexity k?

Open Problem 11.5 Given a graph G and an integer k ∈ {0, 1}, what is the com-
plexity of deciding whether there exists an embedding ϕ such that Gϕ does not admit
any monotone drawing with curve complexity k?

Notice that, although Problems 11.3-11.5 are related, there is no evidence that
answering one of them implies an answer for any other.

Observe that the length of the edges and the angles βµi and αµi in a drawing
produced by the algorithm described in Theorem 9.3 are reduced at each step, which
implies that the area of the drawing is not polynomially bounded.

Open Problem 11.6 Is there any algorithm that computes monotone drawings of em-
bedded biconnected planar graphs in polynomial area?

Open Problem 11.7 Is there any algorithm that computes monotone drawings of out-
erplane graphs in subcubic area?

Another problem, related both to morphing and monotone drawings, is formulated
in the following.

Open Problem 11.8 Given any two monotone drawings Γs and Γt of a plane graph
G, does there exists a morph such that at each time instant the drawing of G is mono-
tone? If so, does it require additional bends?

Slanted Orthogonal Drawings

We introduced a new model for drawing graphs of max-degree four, in which orthog-
onal bends are replaced by pairs of “slanted” bends and crossings occur on diagonal
segments only. The main advantage of this model is that, even in drawings of large
graphs (where vertices might not be clearly visible), it is immediately clear which
pair of edges induce a crossing and where such a crossing is located in the drawing.
We presented an algorithm to construct slog drawings with almost-optimal number
of bends and quadratic area, for general max-degree four graphs. By a modification
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of Tamassia’s min-cost flow approach, we showed that a bend-optimal representation
of the graph can efficiently be computed in polynomial time and we presented an
LP-approach to compute a corresponding drawing.

Open Problem 11.9 Does every max-degree four graph admit such a bend-optimal
drawing?

Our experiments led us to believe that it is possible, although we could not prove
it.

Variants of our basic model may lead to even more flexibility for the drawings.
An extension to support higher degree graphs will be necessary to make the approach
practical.

Another interesting problem concerns the morph of slog drawings.

Open Problem 11.10 Given any two slog drawing Γs and Γt of the same graph such
that crossings appear between the same pairs of edges in both drawings, does there
exists a morph transforming Γs into Γt such that the drawing resulting at the end of
each step is a slog drawing?
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Appendix A: Other Research
Activities

Simultaneously with the research for the development of this thesis, other topics in
the area of Graph Drawing have been dealt with:

Point-set Embedding of Graphs.

A planar straight-line embedding of a graph G into a point set P is a mapping of each
vertex of G to a distinct point of P and of each edge of G to the straight-line segment
between the corresponding endpoints so that no two edges cross. Let G be a class of
n-vertex planar graphs and P be a point set of size m, with m ≥ n. Point set P is
universal for the class G if for every G ∈ G, G has a planar straight-line embedding
into P .

Asymptotically, the smallest universal point set for general planar graphs is known
to have size at least 1.235n [CK89, Kur04], while the best known upper bound is
O(n2) [CN98, dPP90, Sch90]. Characterizing the asymptotic size of the smallest uni-
versal point set is a well-known open problem also referred in [OPG, Cab06, DMO].

A subclass of planar graphs for which a “small” universal point set is known is
the class of outerplanar graphs, that is, the graphs that admit a straight-line planar
embedding with all vertices incident to the outer face. Gritzmann et al. [GMPP91] and
Bose [Bos02] proved that any point set of size n is universal for outerplanar graphs.
In [GMPP91] it is noticed that outerplanar graphs are the largest class of graphs for
which any arbitrary point set is universal.

A generalization of outerplanar graphs are k-outerplanar graphs, k ≥ 2. A planar
embedding of a graph is k-outerplanar if removing the vertices of the outer face yields
a (k − 1)-outerplanar embedding, where 1-outerplanar is an outerplanar embedding.
Vertices removed at the i-th step are at level i. A graph is k-outerplanar if it admits a

163
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k-outerplanar embedding. Note that no (arbitrarily large) convex point set is universal
for k-outerplanar graphs, k ≥ 2.

The decision question of whether a given planar graph admits a planar straight-
line embedding into a given point set of the same size was proved to be NP -hard,
even for 2-outerplanar graphs and 3-level point sets [Cab06].

A k-outerplanar graph is simply-nested [Cim90] if levels 1 to k − 1 are chord-
less cycles and level k is either a cycle or a tree. A planar graph is simply-nested if
it is k-outerplanar simply-nested for some k ≤ n. Simply-nested graphs turned out
to be useful to derive some properties of planar graphs. Cimikowski [Cim90] proved
hamiltonicity of simply-nested planar triangulations. Baker [Bak94] used these graphs
to derive approximation algorithms for various NP -complete problems on planar
graphs. A variant of nested triangulations was explored by Yannakakis in his cele-
brated result on book embeddings of planar graphs [Yan89].

We show a O(n( logn
log logn )

2)-size universal point set for simply-nested n-vertex
graphs. Such result is based on the construction of a 8n + 8-size universal point set
for simply-nested n-vertex graphs for which the number of vertices on each of level
is known in advance.

Our results find applications to another class of graphs, quite popular in Graph
Drawing. In [BBF05] Bachmaier et al. defined a graph to be (proper) k-radial planar
if given a partition of its vertices into k concentric circles, its edges can be drawn as
monotonic curves between (consecutive) circles without crossings and showed that
radial planarity is decidable in linear time. Our results give a small universal point set
for proper k-radial planar graphs, since they can be easily proved to be a subclass of
simply-nested planar graphs.

Clustered Planarity.

Clustered planarity is a classical Graph Drawing topic (see [CD05] for a survey). A
clustered graph C(G,T ) consists of a graph G and of a rooted tree T whose leaves
are the vertices of G. Such a structure is used to enrich the vertices of the graph with
hierarchical information. In fact, each internal node µ of T represents the subset,
called cluster, of the vertices of G that are the leaves of the subtree of T rooted at µ.
Tree T , which defines the inclusion relationships among clusters, is called inclusion
tree, while G is the underlying graph of C(G,T ).

In a drawing of a clustered graph C(G,T ) vertices and edges of G are drawn as
points and open curves, respectively, and each node µ of T is represented by a simple
closed region R(µ) containing exactly the vertices of µ. Also, if µ is a descendant of
a node ν, then R(ν) contains R(µ).
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A drawing of C can have three types of crossings. Edge-edge crossings are cross-
ings between edges of G. Algorithms to produce drawings allowing edge-edge cross-
ings have already been proposed (see, for example, [DDM02] and Figure A.1(a)).
Two kinds of crossings involve regions, instead. Consider an edge e of G and a node
µ of T . If e intersects the boundary of R(µ) only once, this is not considered as a
crossing since there is no way of connecting the endpoints of e without intersecting
the boundary of R(µ). On the contrary, if e intersects the boundary of R(µ) more
than once, we have edge-region crossings. An example of this kind of crossings is
provided by Figure A.1(b), where edge (u,w) traverses R(µ) and edge (u, v) exits
and enters R(µ). Finally, consider two nodes µ and ν of T ; if the boundary of R(µ)
intersects the boundary of R(ν), we have a region-region crossing (see Figure A.1(c)
for an example).

A drawing of a clustered graph is c-planar if it does not have any edge-edge, edge-
region, or region-region crossing. A clustered graph is c-planar if it admits a c-planar
drawing.

In the last decades c-planarity has been deeply studied. While the complexity
of deciding if a clustered graph is c-planar is still an open problem in the general
case, polynomial-time algorithms have been proposed to test c-planarity and produce
c-planar drawings under several kinds of restrictions, such as:

• Assuming that each cluster induces a small number of connected components
([CW06, CDF+08, Dah98, FCE95b, FCE95a, GLS05, GJL+02, JJKL08, JSTV08]).
In particular, the case in which the graph is c-connected, that is, for each node
ν of T the graph induced by the vertices of ν is connected, has been deeply
investigated.

• Considering only flat hierarchies, i.e., the height of T is two, namely no cluster
different from the root contains other clusters ([CDPP05, CBPP09, DF09]).

• Focusing on particular families of underlying graphs ([CDPP05, CBPP09, JKK+07]).

• Fixing the embedding of the underlying graph ([DF09, JJKL08]).

This huge body of research can be read as a collection of polynomial-time testable
sufficient conditions for c-planarity.

In contrast, the planarity of the underlying graph is the only polynomial-time
testable necessary condition that has been found so far for c-planarity in the general
case. Such a condition, however, is not sufficient and the consequences on the prob-
lem due to the requirement of not having edge-region and region-region crossings are
not yet fully understood.
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(a)

ν

µ

w

v

u

(b)

(c)

Figure A.1: Examples of crossings in drawings of clustered graphs. (a) A drawing
obtained with the planarization algorithm described in [DDM02] and containing three
edge-edge crossings. (b) A drawing with two edge-region crossings. (c) A drawing
with a region-region crossing.

Other known necessary conditions are either trivial (i.e., satisfied by all clustered
graphs) or of unknown complexity as the original problem is. An example of the
first kind is the existence of a c-planar clustered graph obtained by splitting some
cluster into sibling clusters [AFP09]. An example of the second kind, which is also a
sufficient condition, is the existence of a set of edges that, if added to the underlying
graph, make the clustered graph c-connected and c-planar [FCE95b].

In our paper we study a relaxed model of c-planarity. Namely, we study ⟨α, β, γ⟩-
drawings of clustered graphs. In an ⟨α, β, γ⟩-drawing the number of edge-edge, edge-
region, and region-region crossings is equal to α, β, and γ, respectively. Figure A.1
shows examples of a ⟨3, 0, 0⟩-drawing, a ⟨0, 2, 0⟩-drawing, and a ⟨0, 0, 1⟩-drawing,
respectively. Notice that this model provides a generalization of c-planarity, as the
traditional c-planar drawing is a special case of an ⟨α, β, γ⟩-drawing where α = β =
γ = 0. Hence, we can say that the existence of an ⟨α, β, γ⟩-drawing, for some values
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planar underlying graph = admits 〈0,∞, 0〉-drawing

c-connectedc-planar

admits 〈0, 0,∞〉-drawing

admits 〈∞, 0, 0〉-drawing

Figure A.2: Containment relationships among instances of clustered planarity. The
existence of a ⟨0, 0,∞⟩-drawing is a necessary condition for c-planarity.

of α, β, and γ, is a necessary condition for c-planarity.
In our study we focus on clustered graphs whose underlying graph is planar. We

mainly concentrate on the existence of drawings in which only one type of crossings
is allowed. We call these drawings ⟨∞, 0, 0⟩-, ⟨0,∞, 0⟩-, and ⟨0, 0,∞⟩-drawings,
respectively. Our investigation uncovers that allowing different types of crossings
has a different impact on the existence of drawings of clustered graphs (see Fig-
ure A.2). In particular, we prove that, while every clustered graph admits an ⟨∞, 0, 0⟩-
drawing (even if its underlying graph is not planar) and a ⟨0,∞, 0⟩-drawing, there
exist clustered graphs not admitting any ⟨0, 0,∞⟩-drawing. Further, we provide a
polynomial-time testing algorithm to decide whether a biconnected clustered graph
admits a ⟨0, 0,∞⟩-drawing. From this fact we conclude that the existence of such
a drawing is the first non-trivial necessary condition for the c-planarity of clustered
graphs that can be tested efficiently. This allows us to further restrict the search for
c-planar instances with respect to the obvious condition that the underlying graph is
planar.

Also, we investigate the relationships among the minimum number of edge-edge,
edge-region, and region-region crossings for drawings of the same clustered graph,
showing that, in most of the cases, the fact that a clustered graph admits a drawing
with few crossings of one type does not imply that such a clustered graph admits a
drawing with few crossings of another type.

Finally, we show that minimizing the sum α + β + γ in a ⟨α, β, γ⟩-drawing of a
clustered graph is an NP-complete problem. Since in our construction it is possible



i
i

“thesis” — 2014/4/29 — 19:08 — page 168 — #180 i
i

i
i

i
i

168 APPENDIX A: OTHER RESEARCH ACTIVITIES

to replace each crossing of any type with a crossing of a different type, this implies
that the problems of minimizing crossings in ⟨∞, 0, 0⟩-, ⟨0,∞, 0⟩-, and ⟨0, 0,∞⟩-
drawings are also NP-complete. However, for the first two types of drawings we can
prove NP-completeness even for simpler classes of clustered graphs.

We remark that drawings of clustered graphs where a few intersections are admit-
ted may meet the requirements of many typical Graph Drawing applications, and that
their employment is encouraged by the fact that the class of c-planar instances might
be too small to be relevant for some application contexts.

More in detail, we present the following results (recall that we assume the neces-
sary condition that the underlying graph is planar to be always satisfied):

(i) We provide algorithms to produce ⟨∞, 0, 0⟩-, ⟨0,∞, 0⟩-, and ⟨0, 0,∞⟩-drawings
of clustered graphs, if they exist. In particular, while ⟨∞, 0, 0⟩- and ⟨0,∞, 0⟩-
drawings always exist, we show that some clustered graphs do not admit any
⟨0, 0,∞⟩-drawing, and we present a polynomial-time algorithm to test whether
a biconnected clustered graph admits a ⟨0, 0,∞⟩-drawing, which is a neces-
sary condition for c-planarity. The algorithm, whose approach is reminiscent
of [ABF+12], is based on a characterization of the planar embeddings that lead
to ⟨0, 0,∞⟩-drawings, and on a subsequent structural characterization of the
existence of a ⟨0, 0,∞⟩-drawing for any biconnected clustered graph C(G,T ),
based on the SPQR-tree decomposition of G.

(ii) The above mentioned algorithms provide upper bounds on the number of cross-
ings for the three kinds of drawings. We show that the majority of these upper
bounds are tight by providing matching lower bounds. These results are sum-
marized in Table A.1.

(iii) We show that there are clustered graphs admitting drawings with one crossing
of a certain type but requiring many crossings in drawings where only different
types of crossings are allowed. For example, there are clustered graphs that
admit a ⟨1, 0, 0⟩-drawing and that require β ∈ Ω(n2) in any ⟨0, β, 0⟩-drawing
and γ ∈ Ω(n2) in any ⟨0, 0, γ⟩-drawing. See Table A.2 for a summary of these
results.

(iv) We present several complexity results. Namely, we show that:

• minimizing α+β+γ in an ⟨α, β, γ⟩-drawing is NP -complete even if the
underlying graph is planar, namely a forest of star graphs;

• minimizing α in an ⟨α, 0, 0⟩-drawing is NP -complete even if the under-
lying graph is a matching;
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c-c flat ⟨α, 0, 0⟩ ⟨0, β, 0⟩ ⟨0, 0, γ⟩
α UB α LB β UB β LB γ UB γ LB

NO NO O(n2) Ω(n2) O(n3) Ω(n2) O(n3)✠ Ω(n3)

NO YES O(n2) Ω(n2) O(n2) Ω(n2) O(n2)✠ Ω(n2)

YES NO O(n2) Ω(n2) O(n2) Ω(n2) 0✠ [FCE95b] 0✠ [FCE95b]
YES YES O(n2) Ω(n2) O(n) Ω(n) 0✠ [FCE95b] 0✠ [FCE95b]

Table A.1: Upper and lower bounds for the number of crossings in ⟨∞, 0, 0⟩-,
⟨0,∞, 0⟩-, and ⟨0, 0,∞⟩-drawings of clustered graphs. Flags c-c and flat mean that
the clustered graph is c-connected and that the cluster hierarchy is flat, respectively.
Results written in gray derive from those in black (proved in [ADD+12]), while a “✠”
means that there exist clustered graphs not admitting the corresponding drawings. A
“0” occurs if the clustered graph is c-planar.

→ ⟨α, 0, 0⟩ ⟨0, β, 0⟩ ⟨0, 0, γ⟩

⟨1, 0, 0⟩ Ω(n2) Ω(n2)

⟨0, 1, 0⟩ Ω(n) Ω(n2)

⟨0, 0, 1⟩ Ω(n2) Ω(n)

Table A.2: Relationships between types of drawings proved in [ADD+12].

• minimizing β in a ⟨0, β, 0⟩-drawing is NP -complete (see also [For05])
even for c-connected flat clustered graphs in which the underlying graph
is a triconnected planar multigraph;
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Journal Publications

• Patrizio Angelini, Walter Didimo, Stephen G. Kobourov, Tamara Mchedlidze,
Vincenzo Roselli, Antonios Symvonis, and Stephen K. Wismath. Monotone
drawings of graphs with fixed embedding. Algorithmica, pages 1–25, 2013.

Conference Publications

• Michael A. Bekos, Michael Kaufmann, Robert Krug, Stefan Naher, and Vin-
cenzo Roselli. Slanted orthogonal drawings. In Stephen Wismath, Alexander
Wolff, Stephen Wismath, and Alexander Wolff, editors, 21st International Sym-
posium on Graph Drawing (GD ’13), volume 8242 of Lecture Notes in Com-
puter Science, pages 428–439, 2013.

• Patrizio Angelini, Giordano Da Lozzo, GiuseppeDi Battista, Fabrizio Frati,
Maurizio Patrignani, and Vincenzo Roselli. Morphing planar graph drawings
optimally. In Proceedings of 41st International Colloquium on Automata, Lan-
guages and Programming (ICALP ’14), 2014. To appear.

• Patrizio Angelini, Fabrizio Frati, Maurizio Patrignani, and Vincenzo Roselli.
Morphing planar graph drawings efficiently. In Stephen Wismath and Alexan-
der Wolff, editors, 21st International Symposium on Graph Drawing (GD ’13),
volume 8242 of Lecture Notes in Computer Science, pages 49–60, 2013.

• Soroush Alamdari, Patrizio Angelini, Timothy M. Chan, Giuseppe Di Bat-
tista, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani, Vincenzo Roselli, Sahil
Singla, and Bryan T. Wilkinson. Morphing planar graph drawings with a
polynomial number of steps. In Sanjeev Khanna, editor, Proceedings of the
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Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1656–1667. SIAM, 2013.

• Patrizio Angelini, Walter Didimo, Stephen Kobourov, Tamara Mchedlidze, Vin-
cenzo Roselli, Antonios Symvonis, and Stephen Wismath. Monotone drawings
of graphs with fixed embedding. In 19th International Symposium on Graph
Drawing (GD ’11), Lecture Notes in Computer Science, pages 379–390, 2011.

• Patrizio Angelini, Giuseppe Di Battista, Michael Kaufmann, Tamara Mchedlidze,
Vincenzo Roselli, and Claudio Squarcella. Small point sets for simply-nested
planar graphs. In 19th International Symposium on Graph Drawing (GD ’11),
Lecture Notes in Computer Science, pages 75–85, 2011.

Technical Reports

• Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, Vincenzo Roselli. Morphing Planar Graph Drawings Op-
timally. Technical Report arXiv:1402.4364, Cornell University, 2014.

• Patrizio Angelini, Fabrizio Frati, Maurizio Patrignani, Vincenzo Roselli. Mor-
phing Planar Graph Drawings Efficiently. Technical Report arXiv:1308.4291,
Cornell University, 2013.

• Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, Vincenzo Roselli. Relaxing the Constraints of Clustered
Planarity . Technical Report arXiv:1207.3934, Cornell University, 2012.

Others

• Vincenzo Roselli. Animazione di grafi: Morphing di strutture planari. Master’s
thesis, Roma Tre University, Rome, Italy, 2010.
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