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Abstract 
 

Gravity currents are buoyancy-driven flows due to a density gradient between 

two fluids and frequently occur in both natural and industrial flows. In this 

work two-dimensional and three-dimensional gravity current’s dynamics was 

investigated by laboratory experiments and numerical simulations. A widely 

used experimental technique, called lock exchange release was applied to 

carry out laboratory experiments. In this configuration the tank is divided by 

a vertical gate into two parts, filled with salty and fresh water, respectively. 

As soon as the gate is removed, a non-equilibrium condition occurs and the 

heavier fluid flows under the lighter one, producing the gravity current, 

whose evolution is recorded by a CCD camera. An image analysis technique, 

based on the threshold method is then applied in order to measure the space-

time evolution of the current’s profile.  

Experimental 2D gravity currents were realized in order to study the effect of 

the density difference between the two fluids and both the roughness and the 

slope’s angle of the bed on the current’s dynamics. In particular, one of the 

innovative aspects of this paper is to be focused on gravity currents on 

upsloping bed, while to the author’s knowledge most of the previous studies 

deals with currents flowing on downsloping beds. Moreover, regarding 2D 

configuration, instantaneous velocity measurements were performed by PIV 

technique (Particle Image Velocimetry). Numerical simulations of 2D gravity 

currents were performed by a 1D, two-layer, shallow-water model developed 

by Adduce et al. (2012). The model takes into account the space-time 

evolution of free-surface and the mixing between the two layers. Entrainment 

at the interface between the gravity current and the ambient fluid is modeled 

by a modified Ellison & Turner’s formula (1959). Several tests were run to 

calibrate an entrainment parameter in order to reproduce gravity currents 

moving on both smooth flat and upsloping beds.  

Experimental 3D gravity currents were carried out in order to test different 

values of initial density and height of the current and the length of the gate. A 

single layer, 2D, shallow-water model was used to perform numerical 

simulations for 3D currents. As for the 1D model, the entrainment is taken 

into account in the flow’s dynamics.  

Experimental results and the comparison between experimental data and 

numerical prediction for both 2D and 3D configuration are presented, 

showing that the used models are valid tools to reproduce gravity currents’ 

dynamics. 
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Sommario 
 

Le correnti di gravità sono generate da un gradiente di densità tra due fluidi e 

rappresentano un fenomeno diffuso in ambito naturale e artificiale. Obiettivo 

di questo lavoro è l’analisi di correnti di gravità bidimensionali e 

tridimensionali attraverso esperimenti di laboratorio e simulazioni numeriche. 

Le correnti di gravità sono state realizzate in laboratorio con una tecnica 

sperimentale ampiamente diffusa detta “lock exchange release”. Un canale in 

plexiglass è suddiviso da un setto verticale rimovibile in due volumi distinti, 

uno riempito con una soluzione acquosa salina e l’altro con acque dolce. Non 

appena avviene la rimozione del setto, si verifica una condizione di 

disequilibrio e il fluido più denso scorre al di sotto del fluido ambiente più 

leggero. L’evoluzione della corrente di gravità così generata è acquisita con 

una telecamera digitale e una tecnica di analisi d’immagine è stata poi 

applicata per misurare l’evoluzione spazio-temporale del profilo della 

corrente. 

Le correnti di gravità 2D sono state realizzate allo scopo di studiare l’effetto 

del gradiente di densità tra i due fluidi, della scabrezza e della pendenza del 

fondo sulla dinamica della corrente. In particolar modo, il presente lavoro è 

stato focalizzato sullo studio della dinamica di correnti su fondo acclive, 

mentre la maggior parte degli studi in letteratura riguarda correnti su fondo 

declive. Riguardo alla configurazione 2D, sono state realizzate misure 

istantanee del campo di velocità con la tecnica PIV (Particle Image 

Velocimetry). Per simulare le correnti 2D è stato utilizzato un modello 1D 

shallow-water a due strati sviluppato da Adduce et al. (2012). Il modello 

tiene conto dell’evoluzione spazio-temporale della superficie libera. Il 

mescolamento all’interfaccia tra i due fluidi è modellato attraverso una forma 

modificata della formula di Ellison & Turner (1959). Sono state realizzate 

diverse prove numeriche per calibrare un parametro di mescolamento allo 

scopo di riprodurre correttamente le correnti di gravità su fondo piano e 

acclive. Le correnti 3D sono state realizzate allo scopo di esaminare diversi 

valori di densità iniziale del fluido denso, di altezza iniziale dei due fluidi e di 

lunghezza del setto. Per le simulazioni numeriche delle correnti 3D è stato 

utilizzato un modello 2D shallow-water a uno strato sviluppato da La Rocca 

et al. (2009). Così come il modello 1D, anche il modello 2D tiene conto del 

mescolamento all’interfaccia tra i due fluidi. Il confronto con le simulazioni 

numeriche per le correnti di gravità 2D e 3D mostra che i modelli utilizzati 

sono validi strumenti per la riproduzione della dinamica delle correnti di 

gravità. 
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1. Introduction 

1.1. The nature of gravity currents 
 

Gravity currents, also called density or buoyancy currents, are flows generated 

by a density gradient between two fluids and occur in both natural and industrial 

flows. A large variety of examples of gravity currents can be found in Simpson, 

1997. The basic sketch of a typical gravity current configuration is shown in 

Figure 1.1. The gravity current with density ρ1 propagates into the ambient fluid 

with a different density ρ2. If ρ1>ρ2 the more dense (heavy) fluid flows below the 

upper layer, generating a bottom gravity current, while if ρ2>ρ1 a top current of 

less dense (light) fluid occurs. Gravity currents can also occur as intrusions of 

mixed fluid in a sharply or linearly stratified ambient (Ungarish, 2009). The 

former case of a bottom current is the object of this work. In this configuration 

(i.e. ρ1>ρ2), the current with higher density ρ1 and non-constant depth h* moves 

forward with front’s velocity Uf into the surrounding fluid with lower density ρ2. 

The total depth of the two fluids is H. Behind the head of the current mixing and 

instabilities are concentrated. Underneath this area sedimentation and 

resuspension of particles can occur, if sediments are carried by the current. 

 

 

Figure 1.1: Basic sketch of a gravity current. 

 

Gravity currents frequently develop along the longitudinal direction, so that the 

ratio of the vertical scale of the current to the horizontal length scale is small 

enough to allow the application of the shallow-water theory. 

In the gravity current’s shape a head and a tail can be distinguished. The head is 

located at the leading edge, and it is almost twice as high as the following flow 

(Simpson, 1982), frequently called tail of the current.   In the frontal zone of the 

current (i.e. the head) a nose rising above the following flow can usually be 

observed (Simpson, 1997). 
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In a typical gravity current configuration, hydrostatic balance can be assumed in 

the z-direction. Regarding the horizontal direction the density difference causes a 

pressure difference in the x-direction, which is then balanced by the velocity 

field with a main horizontal component Uf (Ungarish, 2009). Therefore the 

gravity current is driven by the gravity force and the gravity effect related to the 

density gradient is called reduced gravity g' and is defined in this work as: 

 

2

21

2

'
ρ

ρρ
g

ρ

ρ
gg





  (1) 

 

where g is the gravity acceleration. The advantage of using g' is that in its own 

definition a large range of the ratio ρ1/ρ2 are included.  

It’s possible to distinguish Boussinesq and non-Boussinesq gravity currents. The 

former are characterized by a relatively small difference between the densities of 

the two fluids involved in the flow. Hence in this case ρ1ρ2, or ρ1/ρ21. Non- 

Boussinesq gravity currents are the ones for which the above condition is not 

verified. 

Moreover gravity currents can be classified also as compositional or particle-

driven gravity currents. In the case of compositional gravity currents the driving 

force is represented by dissolved solute like salt in the sea or difference of 

temperature, while for particle-driven gravity currents the driving force is 

represented by the suspension of sediments. A combination of the two types can 

also occur. Examples of compositional gravity currents are the sea breeze winds 

and submarine currents; the former are driven by a temperature gradient, while 

the latter are driven by a difference in salinity. Particle driven gravity currents 

are also common phenomena in natural environment, for example sandstorms 

and avalanches. The currents studied in the present work are all of Boussinesq 

type and the density difference between ρ1 and ρ2 is due to a difference in 

concentration of salt dissolved in the fluids (i.e. compositional gravity currents). 

Front speed Uf can be roughly estimated by applying Bernoulli’ law to a 

simplified scheme shown in Figure 1.2. Assuming a frame of reference moving 

with the front, the fluid in the current is at rest and the surrounding fluid moves 

toward the current’s front with propagation velocity -Uf. Assuming a hydrostatic 

pressure distribution, equating the values of potential and kinetic energy between 

points O and N, the following relation can be obtained: 

 

 
222

1
112

2
2

h
gρhHgρ

h
HgρUρ f 








  (2) 

 

From Equation (2) propagation velocity of the current can be obtained: 



3 

Roma Tre University 

hggh
ρ

ρρ
U f '

1

21 


  (3) 

 

Although Equation (3) is estimated on the basis of a very simple energy balance 

assuming some simplifications, it represents a starting value for the speed of 

propagation of the typical gravity current. 

An important dimensionless parameter for a Boussinesq gravity current is the 

Froude number Fr, defined as the ratio of the current speed U and the long wave 

speed hg ' : 

 

hg

U
Fr

'
  (4) 

 

Equation (4) shows that Froude number is a dimensionless representation of the 

speed of the current. 

Another important dimensionless parameter is the Reynolds number Re, defined 

as: 

 

ν

Uh
Re   (5) 

 

where  is the kinematic viscosity. Equation (5) shows that Reynolds number 

measures the importance of viscous dissipation on the current. Simpson (1997) 

suggested that for values of Reynolds numbers greater than 1000 viscous effects 

are unimportant.  

The two main types of instabilities involved in gravity current’s dynamics are 

Kelvin-Helmotz billows and the lobes-and-clefts structure. Kelvin-Helmotz 

billows roll up in the region of velocity shear above the front of the current, 

contributing to the mixing processes behind the current’s head. The complex 

lobes-and-clefts shifting is due to the gravitational instabilities of the less dense 

ambient fluid which is overrun by the nose of the gravity current (Simpson, 

1997). 

Figure 1.3 and Figure 1.4 show two images referred to laboratory experiments 

performed in the Hydraulics Laboratory of University of Rome “Roma Tre”. 

The currents were realized by a lock exchange release, a widely used 

experimental technique that will be fully explained in section 1.2. In Figure 1.3 a 

visualization of the area behind the head of a gravity current is shown. Vortexes 
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are visible at the interface between the two fluids due to the velocity shear 

between the two layers with different densities. 

The frontal region of a typical gravity current can be observed in Figure 1.4. The 

currents in Figure 1.3 and in Figure 1.4 were made visible by adding some white 

colorant to the dense fluid.  

 

 

Figure 1.2: Schematic diagram of a gravity current. 

 

 

Figure 1.3: Visualization of the area behind the head of a gravity current realized in the 

Hydraulics Laboratory of University of Rome “Roma Tre”. Instabilities can be observed 

at the interface between the fluids. 

 

 

Figure 1.4: Front of a gravity current of salty water flowing in fresh surrounding water 

realized in the Hydraulics Laboratory of University of Rome “Roma Tre”.  
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1.2. Lock exchange release 
 

An experimental technique widely used to produce laboratory gravity currents is 

the lock-exchange release. In this configuration a tank is divided in two portions 

separated by a vertical sliding gate, one filled with lighter fluid (e.g. fresh 

water), and the other filled with the heavier one (e.g. salty water). It’s possible to 

distinguish two different initial configurations: a full depth (Figure 1.5a) if the 

initial heights of the two fluids are the same and partial-depth (Figure 1.5b) if the 

initial height of the dense fluid is only a fraction of the whole height. The 

present work deals with full-depth experiments. The experiment begins when the 

gate is suddenly removed and a non-equilibrium condition occurs between the 

two fluids. Hence the heavier fluid flows under the lighter one, producing the 

gravity current. The experiment stops when the current’s front reaches the right 

end wall of the tank. Figure 1.6a-f show the images acquired by a CCD camera 

of a gravity current produced by a full-depth lock exchange experiment in a 

Perspex tank in the Hydraulics Laboratory of University of Rome “Roma Tre”. 

The time step between the images is about 1.68 s. In Figure 1.6a the initial 

configuration is shown, while in Figure 1.6b-f the resulting flow from the release 

of the dense fluid can be observed: the dense gravity current moves to the right 

part of the tank along the bottom boundary, while the buoyant current (i.e. 

ambient fluid) flows to left along the upper boundary.   

 

 

Figure 1.5a-b: Sketch of initial conditions for full-depth (a) and partial-depth (b) 

configuration of lock exchange release experiment. 

 

Huppert & Simpson (1980) and Rottman & Simpson (1983) investigated gravity 

currents performing lock exchange experiments in a channel of rectangular 



6 

Valentina Lombardi 

cross-section and showed that three phases can be distinguished in the dynamics 

of a gravity current produced by an instantaneous release. The first phase, called 

slumping phase, is characterized by a constant speed and a linear variation of the 

front position with time. During the second phase, called self-similar phase, the 

front’s speed depends on time by a power law as t
-1/3

 and the front position 

varies with t
2/3

 (Rottman & Simpson, 1983). The transition between the first and 

the second phase occurs when a bore, caused by the reflection of the lighter fluid 

to the left wall of the tank, reaches the current’s front, which is slower than the 

bore. Rottman & Simpson (1983) found that the first phase stops at a distance 

from the left wall, ls, given by: 

 

010 xlx sf   (6) 

 

where xf is the front position and x0 is a length scale defined as the distance 

between the gate and the left vertical wall of the tank. 

 

 

Figure 1.6a-f: Images acquired by the camera of a released gravity current: initial 

configuration (a), flow of the dense fluid (b-f).  The time step between the frames is 

about 1.68 s. 
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If viscous and inertial forces become comparable, a third viscous phase occurs 

and the current’s speed decreases with a law as t
-4/5

, while the front position 

increases with t
1/5

 (Huppert, 1982). Huppert (1982) also found that the transition 

between the self-similar phase and the viscous phase is reached when xfl* with 

l* defined as: 
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where h0 is the initial height of the heavier fluid, ν is the kinematic viscosity of 

the dense fluid and g0' is the initial reduced gravity, defined as: 

 

2

201
0'

ρ

ρρ
gg


  (8) 

 

in which ρ01 is the initial density of the gravity current and ρ2 is the density of 

the ambient fluid. 

 

1.3. Previous studies 
 

Many studies investigated gravity currents by both laboratory experiments and 

numerical simulations. 

The first quantitative study of gravity currents was an essay, published by von 

Kármán in 1940, proposing a perfect-fluid model for steadily propagating 

gravity currents. The motivation of such a study was an enquiry by the American 

military before the War World II concerning the evaluation of what wind 

conditions would allow to poisonous gas to move forward and reach the enemy 

avoiding the backwards flow towards the troops who released the substance 

(Huppert, 2006). He considered a frame of reference moving with the dense 

fluid (of density ρ1), which is therefore assumed to be at rest, while the ambient 

fluid (of density ρ2) of infinite depth appears to be in stationary motion above the 

interface between the two layers, with propagation velocity c1. On the basis of 

Bernoulli’s theorem von Kármán found that the angle formed between the 

interface and the bottom at the stagnation point is 60°. Moreover, by applying 

the Bernoulli’s theorem between the stagnation point and several points at the 

interface where this is supposed to become horizontal, he obtained a relation for 
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the velocity of the flow along the interface. The dimensionless speed found by 

von Kármán is given by: 

 

Hg

c
FrH

'

1  (9) 

 

where H is the asymptotic height of the interface. The Froude number was 

evaluated by von Kármán to be 2. For gravity flows propagating into a very 

deep ambient at high Reynolds number, the condition proposed by von Kármán 

has been generally applied at the nose of the current. 

Benjamin (1968) argued that von Kármán (1940) used incorrectly the 

Bernoulli’s theorem by applying it along the interface, where dissipation takes 

place. By using a momentum integral, Benjamin obtained the same result as von 

Kármán. 

A simple theory by Prandt (1952) concerns the transient phase following the 

release of dense fluid in a deep surrounding fluid with lower density. Neglecting 

hydrostatic forces and applying the hypothesis that the roll formed at the rear of 

the head of the current does not fall backward, Prandt (1952) obtained the ratio 

of the propagation velocity to the flow velocity by the evaluation of the dynamic 

pressures against the front. Prandt’s theory can only be applied to the transient 

phase, during which the gate between the two fluids is partially opened. In fact, 

as soon as the gate is removed, the roll formed at the rear of the head of the 

currents falls behind and entrained with the lower layer, developing a turbulent 

motion at the front. After this stage of development, a state of stationary 

propagation takes place, in which turbulent motion is confined to the head of the 

current and the ratio of the propagation velocity to the flow velocity must be 1 

(Benjamin, 1968). 

As previously touched on, Benjamin provides an alternative argument leading to 

the same results of von Kármán, by the use of a momentum integral, or flow 

force, as himself called it in Benjamin (1968). Benjamin develops its theory for a 

cavity empty or filled with air, whose weight can be neglected. Shin et al. (2004) 

proposed Benjamin’s theory on the basis of an idealized two-dimensional 

gravity current of density ρ2 which flows with constant velocity U into a 

surrounding fluid with density ρ1. The frame of reference moves with the front. 

The total depth of the two layers is H, while the depth of the current, where the 

interface becomes flat, is h. The velocity of the ambient fluid is supposed to be 

constant and it is denoted as u1. The control volume is delimited by two 

horizontal boundaries and two vertical planes, one downstream and one 

upstream.  As no external forces are involved in the system, the net flux of 

horizontal momentum into the considered control volume is zero. By the use of 

continuity equation and conservation of the horizontal component of the 



9 

Roma Tre University 

momentum flux between the vertical sections, taking into account the 

hydrostatic pressure distribution, the following relation can be obtained: 

 

)(
12

hf
γ

γ

gH

U 
  (10) 

 

where γ is the density ratio ρ1/ ρ2 and f(h) is given by: 
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The Froude number FH is then defined as: 

 

 Hγg

U
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


1
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Benjamin (1968) showed that if dissipation can be neglected, Bernoulli’s 

theorem can be applied along another streamline, which can be the top boundary 

or the interface between the two fluids and the following definition can be 

obtained: 
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Equating relations (10) and (13), two solutions for h/H are provided: 
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h

 (14) 

 

The second solution says that the current must occupy half the distance between 

the horizontal plates if the flow as to be steady and without energy dissipation.  

Considering a Bossinesq current, the density ratio γ=1, hence the Froude number 

FH is defined as: 
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Benjamin (1968) reached the same results of von Kármán, for the case of a 

gravity current moving into an infinitively deep ambient fluid. Hence for the 

case of H, h/H=0 and the Froude number in terms of depth of the current h is 

found to be 2, as von Kármán suggested.  

Rottman & Simpson (1983) proposed a shallow-water model considering the 

current as a two-dimensional two-layer flow bounded at the top and at the 

bottom by horizontal planes. They considered the partial-depth lock release 

(Figure 1.5b), involving two inviscid, incompressible fluids with slightly 

different densities and assumed mixing negligible. They imposed the following 

front condition: 
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where Uf is the front’s speed, hf is the depth at the front and β is a dimensionless 

constant. 

More recently, Shin et al. (2004) considered the case of a partial-depth lock 

exchange experiments. They developed an hydraulic model for unsteady and 

irrotational flow, in which, for high Reynolds number, the energy dissipation is a 

weak component. In contrast with Benjamin’s theory they included in the 

control volume both the current’s front and the wave depression. The fluid is 

assumed to be inviscid and immiscible, and the pressure distribution is assumed 

to hydrostatic. Moreover they supposed an horizontal surface between the 

depression wave and the current’s front. 

By the use of continuity equation and horizontal momentum conservation, and 

applying time-dependent Bernoulli’s theorem and choosing a suitable velocity 

potential, Shin et al. (2004) found the following definition for the speed of the 

current: 
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where D is the lock depth, h is the current’s depth and H is the total depth of the 

two fluids. As for the Benjamin’s theory, in order to specify h, a further 
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condition is needed. Therefore Shin et al. (2004) assumed an energy-conserving 

flow, in order to equate energy gain and energy loss in the control volume and 

obtain a further relation for the current speed: 
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Comparing Equation (17) and Equation (18) the only non-trivial solution is 

given by: 

 

2

D
h   (19) 

 

This results shows that an energy-conserving current produced by a partial-depth 

release has an height which is half of the initial height of the lock. Such result is 

consistent with Benjamin’s result (Equation 14) for a full-depth release. Using 

Equation (19) the speed of the current for a Boussinesq gravity current (i.e. 1) 

is: 
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For a full-depth release Equation (20) leads to the Benjamin’s results FH=1/2, 

while for the case of a partial-depth release the presented theory differs from 

Benjamin’s one. 

Marino et al. (2005), on the basis of their experimental results showed that 

during the slumping phase (i.e. constant-speed phase) the Froude number can be 

defined in terms of lock depth, while during the second similar phase, which is 

no more influenced by the initial conditions, the Froude number is better defined 

on the basis of the maximum height of the current’s head, which corresponds to 

the height at the rear of the head. They also found that Froude number defined in 

such way is dependent on the Reynolds number over the range 400-4500.  

More recently, La Rocca et al. (2008) studied the dynamics of three-dimensional 

gravity currents moving on smooth and rough beds by full-depth lock exchange 

experiments and numerical simulations, using a 2D shallow water model 

together with the single layer approximation. They investigated gravity current’s 

dynamics keeping constant the width of the sliding gate, the initial density of the 

lighter fluid and testing different values of initial density of the dense fluid, 
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initial height of the two fluids and the bed’s roughness. They observed two 

different phases in three-dimensional gravity current’s evolution: the front’s 

velocity increases during the first phase and decreases during the second phase. 

La Rocca et al. (2008) suggested that these phases cannot be interpreted as 

slumping and self-similar phases, typical of two-dimensional and axisymmetric 

gravity currents. In fact as explained in section 1.2, the slumping phase is related 

to the backward flow of the upper layer of lighter fluid and to its reflection on 

the end-wall of the tank. As soon as the reflected wave overtakes the current’s 

front, the gravity current starts to decelerate and the second self-similar phase 

starts. The geometrical configuration used in La Rocca et al. (2008) consists in a 

rectangular tank divided into two square section reservoirs of equal dimension 

by a vertical sliding gate, whose length is only a fraction of the total width of the 

tank. Therefore the backward-forward flow of the depression wave is influenced 

by the length of the gate, which chokes the flow and causes a configuration of 

permanent motion through the gate’s opening; such a behavior does not allow 

the overtaking of the front by the depression wave and consequently the self-

similar phase never starts. They also found that as the bed’s roughness increases, 

the front’s velocity during the second phase decreases. They observed a fairly 

good agreement in the velocity and front position between experimental and 

numerical results, although they observed a systematic discrepancy between 

them during the first instants of motion, which is attributed by the authors to the 

neglecting of the entrainment term in the mathematical model. Adduce et al. 

(2012) performed two-dimensional full-depth lock exchange experiments on a 

flat bed and compared experimental results with numerical simulations obtained 

by a two-layer, 1D shallow water model for miscible fluids. They carried out 

several laboratory experiments varying the lock position, the initial height of the 

two fluids and the initial density of the dense gravity current. Unlike several 

previous studies, Adduce et al. (2012) removed the rigid lid approximation, 

accounting for the free surface effects, and took into account also the 

entrainment between the two fluids. The latter is model by a modified Ellison & 

Turner’s formula. The modeling of the mixing between the two fluids is a 

novelty, as shallow water models rarely presents this features.  They proposed a 

comparison between numerical prediction with and without taking into account 

the entrainment, showing a better agreement with experimental results for the 

simulation performed for miscible fluids. Moreover, they showed the free 

surface effect, by comparing the numerical results obtained with the proposed 

model, accounting for both the free-surface oscillation and the mixing between 

the two layers, and single layer models with a rigid lid assumption. They 

compared experimental front’s velocity, measured during the first slumping 

phase, with the one predicted by their model and previous expressions found in 

literature and they observed that the best agreement with experimental results is 

provided by using their own model. A recent paper by La Rocca et al. (2012) 

investigated the dynamics of a two-layer liquid, made of two immiscible 
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shallow-layers of different density within the framework of the Lattice 

Boltzmann Method (LBM). Results obtained from the LBM are compared with 

numerical results obtained with a two-layer shallow-water model, with 

experimental results and other numerical results published in literature. They 

observed that the prediction obtained by using the LBM and the one obtained 

with the shallow-water model can be considered almost equivalent and agree 

well with experimental results during the initial phase of the flow, when viscous 

forces are not involved in the evolution of the current. They also showed that the 

LBM is a valid tool to simulate gravity currents moving on beds with different 

slopes. 

Several authors studied gravity current by the use of high resolution numerical 

models as LES (Ooi et al., 2007) or DNS (Härtel et al., 2000a-b; Cantero et al. 

2006; Cantero et al. 2007). Such models provide a very detailed description of 

gravity current’s dynamics, producing reliable results. However they are very 

complex and require high computational resources.  

Some works were focused on measuring the velocity field during the slumping 

phase. Thomas & al. (2003) defined the two-dimensional structure of the head of 

inertial gravity currents during the slumping phase by digital Particle Tracking 

Velocimetry (PTV). They considered two-dimensional, high-Reynolds number 

turbulent flows moving on a flat bottom and they extracted the flow field by 

averaging each experiment in a given temporal interval. They observed the 

presence of two counter-rotating cells supplying dense fluid from the center of 

the current’s head to the nose and suggested that both the intensity and the 

positions of these cells depends on the Reynolds number. Zhu & al. (2006) 

provided a detailed instantaneous velocity structure of two-dimensional lock 

release gravity currents in the slumping phase using a Particle Image 

Velocimetry (PIV) technique. They observed an upper positive vorticity strip 

located at the interface between the dense and the ambient fluid and a lower 

negative vorticity strip along the rigid bottom boundary. In a recent work, 

Martin & García (2009) obtained instantaneous and time averaged fields of both 

velocity and density of a steady density current by combining PIV and Planar 

Laser Induced Fluorescence (PLIF). In order to make the fluids optically 

uniform, while maintaining a density difference, they matched the index of 

refraction using, as solutes in water, sodium chloride and ethyl alcohol for the 

dense and the ambient fluid, respectively. They observed the generation of 

persistent billows associated with Kelvin-Helmholtz instabilities. 

Alahyari & Longmire (1994) focused the attention on the problem associated 

with variation in the index of refraction within two fluids. Such problem often 

affects application of PIV. In fact, the direction of the light scattered from seed 

particles within the fluid, depends on the local refractive index and on the angle 

formed at the interface between the two fluids with different densities. Such 

effect can cause a blurred image in which particles cannot be distinguished. 

Therefore they suggested an index matching strategy based on glycerol and 
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potassium dihydrogen phosphate (monobasic) as solutes in water rather than 

sodium chloride and ethyl alcohol as the latter is difficult to use in facilities with 

large free surface, due to its high volatility. They recommend the use of glycerol, 

because it is clear, odorless and miscible in water and it does not evaporate or 

react with air. Alahyari & Longmire (1996) applied the described index 

matching strategy to study axisymmetric laboratory gravity currents by PIV 

technique. Some other details about index matching strategy will be provided in 

section 2.3. 
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2. 2D gravity currents 

2.1. Laboratory experiments 

2.1.1. Experimental set-up 

 

The experiments were performed at the Hydraulics Laboratory of University of 

Rome “Roma Tre”. Gravity currents were generated using a common technique 

widely used in literature, called lock-exchange release: a tank is divided by a 

vertical sliding gate into two reservoirs, filled with the lock fluid (i.e. heavier 

fluid) and with the ambient fluid (i.e. lighter fluid), respectively, as shown in the 

sketch of the experimental apparatus (Figure 2.1) and in the picture of the used 

tank (Figure 2.2).   When the gate is removed, as suddenly as possible, the two 

fluids with different densities come in contact and a non-equilibrium condition 

occurs. Therefore the heavier fluid collapses flowing under the lighter one and 

forming the gravity current. The main features of lock exchange release 

technique are provided in section 1.2. 

In this work compositional gravity currents were performed, using a solution of 

tap water and sodium chloride (NaCl) as lock fluid, and tap water as surrounding 

fluid. Two-dimensional lock release gravity currents were generated in a 

transparent Plexiglas tank of rectangular cross-section, of depth 0.3 m, length 

3.00 m and width 0.20 m. The sliding vertical gate was placed at a distance x0 

from the left end wall of the tank. The right volume of the tank, called lock, was 

filled with fresh water of density ρ2, while the rest of the tank was filled with 

salty water with initial density ρ01>ρ2. As we performed the so-called full-depth 

lock exchange release experiments, both in the right and in the left part of the 

tank the depth of the fluid was h0 and the ratio of the initial gravity current 

height h0 to the total height of the two fluids H, called fractional depth ϕ, is such 

that ϕ=1. A pycnometer was used to perform density measurements. The 

uncertainty in the density measurements was estimated as 0.2 %. Some dye was 

dissolved into the salty water in order to provide the flow visualization during 

the experiment. The experiment starts when the sliding gate is suddenly removed 

and the heavier fluid moves from the left part of the tank to the right part 

forming the gravity current. The experiment stops when the front of the gravity 

current reaches the right end wall of the tank.  

A CCD (Charged Coupled Device) camera, with a frequency of 25 Hz, was used 

to record the experiments and an image analysis technique, based on the 

threshold method, was applied to measure the space-time evolution of the 

gravity currents’ profiles. Each frame of the movie acquired by the camera is a 
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rectangular matrix (576  768 pixels) of integers representing the gray level of 

the corresponding pixel and ranging from 0 (black) to 255 (white). The grey 

level of the interface between the two fluids was chosen as the threshold value. 

Therefore the threshold value is a calibration parameter of the code, which has to 

be chosen in order to obtain as output a current’s profile in agreement with 

acquired images. A program written in MatLab language travelled along the 

columns of the matrix (i.e. the image) until it met the threshold value (i.e. the 

interface between the two fluids) and recorded the coordinates of this pixel as a 

point of the current’s profile. A rule was positioned along both the horizontal 

and vertical walls of the tank in order to obtain the conversion factor pixel/cm. 

The front position xf is determined within an error of 0.2 cm. The experimental 

profiles measured by the threshold method, together with the images captured by 

the camera, at four different time steps for one of the performed runs (Run 

2D_9) are shown in Figure 2.3. 

The tank was placed on an inclinable structure, in order to obtain the desired 

sloping angle ϑ for the experiments performed on upsloping beds. For the 

upsloping configuration the height of the two fluids h0 was measured at the gate 

position x0 as shown in Figure 2.1. 

Regarding the runs performed on rough bed, the desired roughness was obtained 

by gluing sand of a defined mean diameter (D50) on the bottom of the tank. 

 

2.1.2. Experimental parameters 

 

Twenty-six 2D lock release gravity currents were carried out. The experimental 

parameters used for the experiments are shown in Table 1. Among these, 

seventeen experiments (Runs 2D_1-2D_17) were performed on a flat bed: the 

runs 2D_1-2D_5 were realized on a flat smooth bed keeping constant ρ2=1000 

Kg/m
3
, h0=0.15 m, x0=0.10 m and testing five values of initial density of the lock 

fluid ρ011009, 1024, 1039, 1060 and 1090 Kg/m
3
 corresponding to different 

values of the dimensionless ratio r=ρ2/ρ01; the runs 2D_6-2D_17 were performed 

on a flat rough bed keeping constant ρ2=1000 Kg/m
3
, h0=0.15 m, x0=0.10 m and 

testing four values of ρ011009, 1024, 1039 and 1060 Kg/m
3
 and three values of 

the bed’s roughness ε=0.7, 2.2 and 4.5 mm. A dimensionless bed’s roughness 

was defined as the ratio ε*=ε/h0. For the runs performed on rough beds ε* was 

equal to 0.0047, 0.0147 and 0.03.  

Nine experiments (runs 2D_18-2D_26) were performed on a smooth and 

upsloping bed, keeping constant ρ2=1000 kg/m
3
, h0=0.15 m, x0=0.1 m and 

testing three different values of ρ011039, 1060 and 1090 Kg/m
3
 and varying the 

angle ϑ between the bed and the horizontal. For each density value the critical 

bed’s angle was found.  In this work the critical angle is defined as the angle for 

which the gravity current reaches the end of the tank with a front’s speed close 
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to zero. Then subcritical and supercritical bed’s angles for each density were 

found. The subcritical bed’s angle is the angle for which the gravity current 

reaches the end wall with a front’s speed higher than zero, while the subcritical 

bed’s angle is the one for which the current doesn’t reach at all the end of the 

tank 

 

 

Figure 2.1: Sketch of the tank used to perform 2D lock release gravity currents. 

 

 

Figure 2.2: Picture of the tank used to perform 2D lock release gravity currents. 

 

 

Figure 2.3: Measured profiles (white line) overlapping the images captured by the 

camera for the run 2D_9 at 7, 13, 25 and 38 s after the removal of the gate. 
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Run 
x0 

[m] 

h0 

[m] 
01 

[Kg/m
3
] 

 
[mm] 

r =2/01 *= /h0 
ϑ 

[°] 
Angle 

2D_1 0.1 0.15 1009.25 0.0 0.991 0.0000 0.00 - 

2D_2 0.1 0.15 1023.70 0.0 0.977 0.0000 0.00 - 

2D_3 0.1 0.15 1039.54 0.0 0.962 0.0000 0.00 - 

2D_4 0.1 0.15 1059.56 0.0 0.944 0.0000 0.00 - 

2D_5 0.1 0.15 1089.99 0.0 0.917 0.0000 0.00 - 

2D_6 0.1 0.15 1009.15 0.7 0.991 0.0047 0.00 - 

2D_7 0.1 0.15 1009.24 2.2 0.991 0.0147 0.00 - 

2D_8 0.1 0.15 1008.75 4.5 0.991 0.0300 0.00 - 

2D_9 0.1 0.15 1024.06 0.7 0.976 0.0047 0.00 - 

2D_10 0.1 0.15 1024.36 2.2 0.976 0.0147 0.00 - 

2D_11 0.1 0.15 1023.73 4.5 0.977 0.0300 0.00 - 

2D_12 0.1 0.15 1038.90 0.7 0.963 0.0047 0.00 - 

2D_13 0.1 0.15 1038.68 2.2 0.962 0.0147 0.00 - 

2D_14 0.1 0.15 1039.47 4.5 0.962 0.0300 0.00 - 

2D_15 0.1 0.15 1060.56 0.7 0.943 0.0047 0.00 - 

2D_16 0.1 0.15 1060.00 2.2 0.943 0.0147 0.00 - 

2D_17 0.1 0.15 1059.47 4.5 0.944 0.0300 0.00 - 

2D_18 0.1 0.15 1038.59 0.0 0.963 0.0000 0.90 Subcritical 

2D_19 0.1 0.15 1038.59 0.0 0.963 0.0000 1.11 Critical 

2D_20 0.1 0.15 1039.10 0.0 0.962 0.0000 1.39 Supercritical 

2D_21 0.1 0.15 1059.72 0.0 0.944 0.0000 1.14 Subcritical 

2D_22 0.1 0.15 1059.75 0.0 0.944 0.0000 1.39 Critical 

2D_23 0.1 0.15 1059.72 0.0 0.944 0.0000 1.52 Supercritical 

2D_24 0.1 0.15 1089.99 0.0 0.917 0.0000 1.39 Subcritical 

2D_25 0.1 0.15 1090.10 0.0 0.917 0.0000 1.45 Critical 

2D_26 0.1 0.15 1089.88 0.0 0.917 0.0000 1.8 Supercritical 

Table 1: Experimental parameters used to perform 2D gravity currents. 

 

2.1.3. Experimental results 

2.1.3.1. Flat smooth bed 

 

In Figure 2.4a-b experimental front’s positions versus time are shown for all the 

experiments performed on flat smooth bed (i.e. Runs 2D_1-2D_5), in 

dimensional and dimensionless form, respectively. All the runs shown in this 
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section are performed keeping constant h0 and x0 and testing five different values 

of ρ01. The values of the experimental parameters are shown in Table 1. All the 

laboratory measurements starts about two seconds after the removal of the 

sliding gate, because it was difficult to measure the profile of the current during 

its initial stage of development. 

Dimensionless front position xf
* 
is defined as: 
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Dimensionless time T
*
 is defined on the basis of the time scale t0 as: 
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where g'0 is the initial reduced gravity, given by: 
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in which g is the gravity acceleration. Figure 2.4a shows that the speed of the 

current increases as the initial density of released current increases. For a 

constant time, the gravity current with higher initial density covers a longer 

distance than those realized with lower values of initial density. Figure 2.4b 

shows that all the time histories of the front position in dimensionless form of 

relative to the runs performed with different values of the initial density of the 

gravity current and keeping constant the other experimental parameters lye all on 

the same curve. Such a result is in agreement with most of the studies about 

gravity currents, as Marino et al. 2005. Figure 2.5a-c shows the comparisons of 

current profiles for all the runs performed on flat smooth bed, at three different 

time steps after release of the dense fluid, t=12 s (Figure 2.5a), t=20 s (Figure 

2.5b) and t=24 s (Figure 2.5c), respectively. As observed in Figure 2.4a, as the 

initial density of the dense fluid increases, the current’s speed increases. 

As explained in section 1.2, Huppert & Simpson (1980) and Rottman & 

Simpson (1983) showed that three phases can be distinguished in the dynamics 

of a gravity current produced by an instantaneous release. As they investigated 

gravity currents moving on flat and smooth beds, in the present work the length 

of the three phases can be computed only for runs 2D_1-2D_5. The length of the 
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slumping phase ls can be calculated following Rottman & Simpson (1983) by 

Equation (5). The distance at which the viscous phase starts l* is calculated 

following Huppert (1982) by Equation (6). The length of the viscous phase lvis is 

given by the difference between the total length of the tank and the distance at 

which the third phase starts. The length of the self-similar phase lss can be 

obtained by the difference between l* and ls. In Table 2 ls, lss, lvis for runs 2D_1-

2D_5 are shown.  

 

Run 01 [Kg/m
3
] ls [m] lss [m] lvis [m] 

2D_1 1009.25 1.00 0.82 1.18 

2D_2 1023.70 1.00 1.10 0.90 

2D_3 1039.54 1.00 1.25 0.75 

2D_4 1059.56 1.00 1.39 0.61 

2D_5 1089.99 1.00 1.53 0.47 

Table 2 Lengths of slumping phase ls, self-similar phase lss and viscous phase lvis for all 

the runs performed on flat and smooth beds. 

 

 

Figure 2.4a-b: Dimensional and dimensionless plots of front position versus time for the 

runs 2D_1-2D_5, performed on flat smooth bed with different initial densities. 

 

Figure 2.6 show a comparison between experimental front position versus time 

of runs that runs 2D_1-2D-5 and theoretical front evolution for the three phases 

given by previous studies. It can be observed that during the first phase, 

experimental data are placed on a line with slope 1 (solid line), while during the 

second self-similar phase are on the line with slope 2/3 (dashed line). The third 

line (dotted line) has a slope of 1/5 and should be followed by data points 
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corresponding to the third viscous phase. However, although by using laws from 

Rottman & Simpson (1983) and Huppert (1982) it can be predicted that runs 

2D_1-2D_5 develop the three phases during their evolution, the log-log plot 

shows in Figure 2.6 shows that these experimental data are in agreement with 

previous formulae only for the first and the second phase, while the third phase 

seems not to occur in the current’s evolution. It can be supposed that the length 

of the viscous phase should be longer than the ones occurring in the dynamics of 

runs 2D_1-2D_5 in order to be observable in experimental results. Moreover 

Equation (7) was derived by Huppert (1982), on the basis of some hypothesis, 

among which the hypothesis of immiscibility of the two fluids, while 

entrainment phenomena are involved in the gravity currents’ dynamics analyzed 

in this work, as will be fully shown in section 2.3.3.  

 

 

Figure 2.5a-c: Measured gravity current’s profiles at three different time steps for the 

runs 2D_1-2D_5, performed on a flat smooth bed with different initial densities. 

 

 

Figure 2.6: Dimensionless log-log plot of front’s position versus time for the runs 

performed on flat and smooth beds. Dashed line, solid line and dotted line are the 

theoretical front evolution for the slumping, self-similar and viscous phase, respectively. 
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2.1.3.2. Rough flat bed 

 

In Figure 2.7a-h experimental front’s positions versus time are shown for all the 

performed runs on a rough flat bed in both dimensional and dimensionless form. 

Space scale and time scale are the same used for the dimensionless plots shown 

in Figure 2.4a-b.  

Each plot in Figure 2.7a-h shows a comparison between the runs performed with 

the same value of initial density of released current and different values of bed’s 

roughness, including the run realized on smooth bed. Experimental parameters 

are shown in Table 1.  

Figure 2.8a-d shows the measured gravity current’s profiles obtained with the 

threshold’s method for the same runs at three different time steps t=12 s, t=20 s 

and t=30 s. 

The observed general trend is that the speed of the gravity currents decreases as 

the bed roughness increases. In particular as the initial density of the heavier 

fluid increases, a decrease of the decelerating effect due to the bed’s roughness 

can be observed. However a superimposition of some runs in Figure 2.7a-h can 

be observed. Hence the following couples of runs are overlapped: 2D_1-2D_6 

(Figure 2.7a-e), 2D_9-2D_10 (Figure 2.7b-f), 2D_3-2D_12 (Figure 2.7c-g), 

2D_13-2D_14 (Figure 2.7c-g) and 2D_16-2D_17 (Figure 2.7d-h). This behavior 

can be due to the fact that the rough bottom was separately prepared for each 

experiment. In fact, as previously touched on, the bed’s roughness was obtained 

by gluing sediments of defined mean diameter on the bottom of the tank. In 

order to avoid the damage of the rough bottom due to the removal of the colored 

salty water at the end of each experiment, a new rough bed was set up for each 

run. The glue used to obtain a fixed rough bottom could have someway covered 

part of the sediments, leading to values of bed’s roughness smaller than the 

desired one. Hence, as a new rough bed was prepared for each experiment, such 

an effect could be different for each run. In order to verify if the overlapping of 

the curves in Figure 2.7a-h is due to such a procedure of setting up the rough 

bottom, additional laboratory experiments with a fixed rough bed for each set of 

runs should be performed.  
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Figure 2.7a-h: Dimensional and dimensionless plot of front position versus time for all 

the runs performed on rough and smooth flat beds; (a-d) Runs 2D_1-2D_6-2D_7-2D_8: 

ρ011009 Kg/m
3
, ε=0.0, 0.7, 2.2 and 4.5 mm; (b-e) Runs 2D_2-2D_9-2D_10-2D_11: 

ρ011024 Kg/m
3
, ε=0.0, 0.7, 2.2 and 4.5 mm; (c-f) Runs 2D_3-2D_12-2D_13-2D_14: 

ρ011039 Kg/m
3
, ε=0.0, 0.7, 2.2 and 4.5 mm; (d-g) Runs 2D_4-2D_15-2D_16-2D_17: 

ρ011060 Kg/m
3
, ε=0.0, 0.7, 2.2 and 4.5 mm. 
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Figure 2.8a-d: Measured gravity current’s profiles at three different time steps for all 

the runs performed on  rough and smooth flat beds; (a) Runs 2D_1-2D_6-2D_7-2D_8: 

ρ011009 Kg/m
3
, ε=0.0, 0.7, 2.2 and 4.5 mm; (b) Runs 2D_2-2D_9-2D_10-2D_11: 

ρ011024 Kg/m
3
, ε=0.0, 0.7, 2.2 and 4.5 mm; (c) Runs 2D_3-2D_12-2D_13-2D_14: 

ρ011039 Kg/m
3
, ε=0.0, 0.7, 2.2 and 4.5 mm; (d) Runs 2D_4-2D_15-2D_16-2D_17: 

ρ011060 Kg/m
3
, ε=0.0, 0.7, 2.2 and 4.5 mm. 

 

2.1.3.3. Upsloping smooth bed 

 

Figure 2.10a-f show experimental front’s positions versus time for all the runs 

performed on upsloping smooth bed in dimensional and dimensionless form. 
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Space scale and time scale are the same used for dimensionless plots shown in 

Figure 2.4a-b. Each plot in Figure 2.10a-f shows a comparison between the runs 

performed with the same value of initial density of the released current and 

different values of the angle ϑ, including the run realized on flat bed. 

Experimental parameters are shown in Table 1. Figure 2.10a-f shows that the 

current’s speed decrease as the angle ϑ increases. Gravity currents realized with 

critical and subcritical angle ϑ reach the end of the tank, while runs performed 

with supercritical angles stops before the end wall of the tank.   

In Figure 2.9a-c the measured current’s profiles for the same experiments are 

shown and a decrease of the current’s speed can be observed, increasing the 

angle ϑ.  

 

 

Figure 2.9a-c: Measured gravity current’s profiles at three different time steps for all the 

runs performed on flat and upsloping smooth beds; (a) Runs 2D_3-2D_18-2D_19-

2D_20: ρ011039 Kg/m
3
, ϑ=0.0°, 0.90°, 1.11° and 1.39°; (b) Runs 2D_4-2D_21-2D_22-

2D_23: ρ011060 Kg/m
3
, ϑ=0.0°, 1.14°, 1.39° and 1.52°; (c) Runs 2D_5-2D_24-2D_25-

2D_26: ρ011090 Kg/m
3
, ϑ=0.0°, 1.39°, 1.45° and 1.8°. 
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Figure 2.10a-f: Dimensional and dimensionless plots of front position versus time for 

all the runs performed on flat and upsloping smooth beds; (a-d) Runs 2D_3-2D_18-

2D_19-2D_20: ρ011039 Kg/m
3
, ϑ=0.0°, 0.90°, 1.11° and 1.39°; (b-e) Runs 2D_4-

2D_21-2D_22-2D_23: ρ011060 Kg/m
3
, ϑ=0.0°, 1.14°, 1.39° and 1.52°; (c-f) Runs 

2D_5-2D_24-2D_25-2D_26: ρ011090 Kg/m
3
, ϑ=0.0°, 1.39°, 1.45° and 1.8°. 
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2.2. 1D numerical simulations 

2.3.1. Mathematical model 

 

A two-layer, one-dimensional, shallow-water model developed by Adduce et al. 

(2012) was used to simulate gravity currents. Gravity currents frequently 

develop along the longitudinal direction, therefore the ratio between the depth 

and the length of the current is small enough to allow the application of the 

shallow water theory. Several authors investigated gravity currents by shallow 

water equations (Rottman and Simpson, 1983; Sparks et al., 1993; Klemp et al., 

1994; Shin et al., 2004). Such authors used a rigid lid assumption, while in the 

present work the free surface is modeled as a moving impermeable boundary, 

with a constant pressure distribution as a dynamical constraint, following 

Adduce et al. 2012. Previous models are governed by a smaller number of 

equations, but although they are simpler than the present model, they are also 

less similar to the real physical phenomenon. Modeling the space-time evolution 

of the free surface ensures a more realistic simulation of the studied 

phenomenon. Moreover the mathematical model takes into account the 

entrainment between the two fluids. Therefore the interface is modeled as a 

moving permeable boundary, through which a given fluid volume, estimated by 

the entrainment velocity Ve, flows from the upper layer of lighter fluid to the 

lower layer of heavier fluid. Such flow of clear water which crosses the 

boundary between causes a decrease of the density of the gravity current. 

A sketch of the frame of reference used for the mathematical model is shown in 

Figure 2.11. A one-dimensional gravity current moving on a bed forming with 

the horizontal an angle ϑ is considered. For the mathematical model, negative 

values of ϑ are referred to upsloping beds. The heavier current of height h1(x,t) 

and density ρ1 flows below the lighter one of height h2(x,t) and density ρ2 

bounded at the top by a free surface.  

 

 

Figure 2.11: Frame of reference used in the mathematical model. 

 

Applying the principle of mass conservation and projecting along the x-axis the 

momentum equations, the following hyperbolic system of partial differential 

equations is obtained: 
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where the unknown quantities h1, h2, V1 and V2 are the depth and the velocity of 

the lower and the upper layer, respectively, Ve is the entrainment velocity, τ1b and 

τ2b are the shear stress between the two fluids and the bottom. These terms 

include both the shear stress due to the bottom and side walls for the lower layer 

and the shear stress due to side walls for the upper layer. τ12 is the shear stress at 

the interface between the two fluids defined following the relation suggested by 

Supino (1981) as: 
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Several runs were performed to calibrate the friction factor at the interface λint. 

The value λint=0.24 was found as calibration value and it was used for all the 

simulations. Both τ1b and τ2b are modeled by the Darcy-Weisbach’s formula 

(Darcy, 1857; Weisbach, 1845), as in La Rocca et al. (2008): 
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where λ1 and λ2 are the friction factors for the lower and the upper layer 

respectively and b is the width of the tank. The definition of the general λi for the 

ith layer is given by the Colebrook’ relation (Colebrook, 1939) as: 
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where λi∞, Rei and ε/hi are the friction factors for turbulent rough flows, the local 

Reynolds number and the relative roughness of the ith layer, respectively. λi∞ and 

Re are defined as: 
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Equation (27) shows that the term εh ii Re8 adapts the friction factor for 

turbulent rough flows to turbulent transition flows. In the performed experiments 

turbulent transition flows develop. 

On the basis of Ellison & Turner’s (1959) laboratory experiments, Turner (1986) 

defined the entrainment as a function of the Froude number suggesting the 

following relation: 
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in which Ve/|V1| is the entrainment coefficient and Fr is the local densimetric 

Froude number of the dense fluid and is given by: 
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Because Ellison & Turner’s formula was obtained by an experimental apparatus 

different from the lock exchange release experiment used for the present work, 
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some modifications to Ellison & Turner’s relation were adopted as in Adduce et 

al. (2012). First of all, the threshold on squared Froude number was removed, as 

in the gravity currents investigated in this work, squared Froude numbers rarely 

reach values higher than 1.25, and the use of Equation (30) would often provide 

a null result for the term Ve/|V1|. Moreover the coefficient 0.08 was substituted 

by a dimensionless parameter k and the term 0.1 was fixed to zero, in order to 

avoid negative values of the entrainment term in the case in which kFr 1.02  . 

The relation suggested by Adduce et al. (2012) is used in this work to model the 

entrainment coefficient: 
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where k is the dimensionless coefficient to be calibrated. The entrainment 

velocity increases as k increases. The calibration value of k has to balance a 

correct evaluation of the gravity current’s depth and a good simulation of the 

front’s speed of the gravity current. Several tests were performed with different 

values of the dimensionless parameter k, in order to obtain the calibration value. 

The calibration of k is necessary because Equation (32) doesn’t take into account 

that the entrainment coefficient Ve/|V1| depends not only on the densimetric local 

Froude number but also on the Reynolds number of the gravity current 

(Cenedese & Adduce, 2008). Moreover the empirical formula used in this work 

is a first attempt to model the entrainment in the shallow water framework.  

 

2.3.2. Numerical method 

 

The conservation form of the system (24) is obtained by assuming the following 

hypothesis: the density of the ambient fluid ρ2 is considered to be constant; the 

density of the dense fluid depends on time, but not on space. Therefore system 

(24) can be expressed by the following conservation form: 
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where U is the vector of the conserved variables and is given by: 
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 212211 ,,, VVhρhρU  (34) 

 

F(U) and E(U) are vectors, whose components are expressed in terms of U and 

are given by the following expressions: 
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The conservation form given by system (24) imposes energy conservation across 

the front wave, which is a quite realistic assumption for several kinds of gravity 

currents (Benjamin, 1968; Shin et al. 2004). 

The conservation form allows the application of numerical methods, 

characterized by shock fitting and shock capturing features, which are suitable 

for simulating wave propagation with internal discontinuities. By the expression 

of Equation (33) in matrix form, the following relation can be obtained: 
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In which A=dF/dU is the coefficients’ matrix, which shows complex 

eigenvalues only when the variables in U reach extreme values, never observed 

in the regime of interest. Therefore the system can be classified as hyperbolic 

and an explicit Mac-Cormack’ finite difference scheme by predictor-corrector 

method was applied. 

The explicit formulation of the used scheme is the following: 
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In which p and c denote the predictor and corrector steps and j refers to the index 

of spatial grid points. Figure 2.12 shows a sketch of grid points involved in a 

predictor-corrector step. The used method starts with the predictor step, 

corresponding to time t=n+1, in which forward difference and backward 

difference for temporal and spatial derivatives respectively are applied, as shown 

in Figure 2.12 where the red triangle’s vertexes are the points involved in the 

Equation (38). Then the corrector step, corresponding to time t=n+2, applies 

forward difference and backward difference for spatial and temporal derivatives, 

respectively, involving in the computation the grid points indicated in Figure 

2.12 by the orange triangle’s vertexes. Therefore at each time step the sequence 

of backward and forward difference for spatial derivatives is reversed. The final 

result at t=n+1for x=j is given by the average between the values at t=n and 

t=n+2, indicated in Figure 2.12 by the green circle, and expressed by Equation 

(40). 

 

 

Figure 2.12: Sketch of grid points involved in a predictor-corrector step. 

 

The spatial grid size is dx=0.015 m and the time step dt is given by the stability 

condition  dxdt , in which Λ is the maximum absolute value of the 

eigenvalues of the matrix A. 
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2.3.3. Comparison between experimental and numerical 
results 

 

The entrainment coefficient given by Equation (32) depends on the 

dimensionless parameter k, which needs to be calibrated. As k increases, the 

entrainment term also increases, causing two different effects in the miscible 

current’s dynamics. On one hand the increase of k causes a decrease of the 

current’s density, decelerating the flow; on the other hand however, as the effect 

of the entrainment phenomenon is to produce a mass transport form the lighter 

fluid to the heavier one, the height of the current increases causing an 

acceleration of the flow. 

Several preliminary simulations were performed in order to obtain for each run 

the calibration value of k, which should ensure a good evaluation of both the 

current’s height and the front’s speed. 

As previously explained, the calibration of k is necessary because the equation 

used to model the entrainment in this work accounts for the dependence between 

the entrainment coefficient and the densimetric local Froude number, without 

involving in the relation the Reynolds number. Cenedese & Adduce (2008) 

found that the entrainment coefficient is dependent not only on Froude number, 

as assumed in previous studies, but also on Reynolds number. Moreover 

Equation (32) is an empirical formula, which is a first attempt used to model the 

entrainment in the shallow water framework. As a consequence different 

calibration values of k were found. Table 3 shows calibration values obtained for 

all the runs performed on smooth flat and upsloping beds.  

 

Run 01 [Kg/m
3
]  [m] r =2/01 ϑ [°] k Angle 

2D_3 1039.54 0.0 0.962 0.00 0.6 - 

2D_18 1038.59 0.0 0.962 0.90 0.8 Subcritical 

2D_19 1038.59 0.0 0.962 1.11 0.9 Critical 

2D_20 1039.10 0.0 0.962 1.39 1.1 Supercritical 

2D_4 1059.56 0.0 0.943 0.00 0.6 - 

2D_21 1059.72 0.0 0.943 1.14 0.9 Subcritical 

2D_22 1059.75 0.0 0.943 1.39 1.1 Critical 

2D_23 1059.72 0.0 0.943 1.52 1.1 Supercritical 

2D_5 1089.99 0.0 0.917 0.00 0.6 - 

2D_24 1089.99 0.0 0.917 1.39 1.1 Subcritical 

2D_25 1090.10 0.0 0.917 1.45 1.1 Critical 

2D_26 1089.88 0.0 0.917 1.8 1.1 Supercritical 

Table 3: Experimental parameters and calibration values of k for all the runs performed 

on smooth flat and upsloping beds. 
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Figure 2.13a-d shows the comparisons of numerical gravity current’s profiles 

and the images acquired by the camera for the run 2D_4, performed on flat 

smooth bed with initial density of the gravity current ρ011060 Kg/m
3
, at four 

different time steps after release, t=8 s (Figure 2.13a), t=12 s (Figure 2.13b), 

t=18 s (Figure 2.13c) and t=30 s (Figure 2.13d), respectively: yellow solid line 

represents the current’s profile obtained taking into account the entrainment 

phenomenon, therefore considering two miscible fluids and using the calibration 

value of k=0.6; red dashed line show current’s profile obtained neglecting the 

entrainment term in the numerical model, hence considering two immiscible 

fluids (i.e. k=0).  As previously explained, the effect of mixing is to produce a 

mass flow from the lighter fluid to the heavier one, causing an increase of the 

height of the current’s profile. 

As a consequence, in Figure 2.13a-d a reduction of the height of the gravity 

current can be observed in the profiles obtained without taking into account the 

entrainment phenomenon.  

Figure 2.14 shows the space-time evolution in dimensionless form of the same 

run (i.e. Run 2D_4) obtained by laboratory measurement, numerical simulation 

for miscible fluids (i.e. k=0.6) and immiscible fluids (i.e. k=0). This comparison 

shows that if mixing is not taken into account the numerical prediction is in 

agreement with experimental measurement only for the initial stage of gravity 

current’s development. Such an initial stage could be identified with the first 

constant speed phase (i.e. slumping phase) during which the entrainment 

phenomenon is not involved enough in the flow dynamics. The numerical 

simulation obtained for miscible fluids with k=0.6 shows a good agreement with 

the measured front position.  

The same kind of comparison are shown in Figure 2.15a-d and Figure 2.16 for 

the run 2D_21 performed on smooth upsloping bed with initial density of the 

gravity current ρ011060 Kg/m
3
 and ϑ=1.14°. 

Figure 2.15a-d shows the comparisons of numerical gravity current’s profiles 

and the images acquired by the camera,  at four different time steps after release, 

t=5 s (Figure 2.15a), t=10 s (Figure 2.15b), t=15 s (Figure 2.15c) and t=20 s 

(Figure 2.15d), respectively. In this case the calibration value is k=0.9. As for the 

case of the gravity current performed on flat bed (i.e. Run 2D_4), the numerical 

simulation obtained neglecting the entrainment term provides a less high profile 

for the current which not agrees with the interface between the two fluids 

detectable from the images acquired by the camera. Figure 2.15a-d shows that 

the numerical run performed for miscible fluids shows a good agreement with 

laboratory measurements as can be observed also in Figure 2.16, that shows 

front position versus time for the run 2D_21 obtained by laboratory 

measurement, numerical simulation for miscible fluids (i.e. k=0.9) and 

immiscible fluids (i.e. k=0).  

Figures 2.17a-d, 2.18a-d and 2.19a-d show the comparisons between numerical 

and experimental front position versus time in dimensionless form for the runs 
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performed on flat and upsloping smooth bed with initial density of the dense 

fluid ρ011039, 1060 and 1090 Kg/m
3
, respectively . The numerical results are 

obtained for miscible fluids, using the calibration value for k chosen for each 

run. The comparison shows a good agreement between experimental front 

positions and numerical predictions.  

In order to define the ability of the model in simulating gravity currents, an error 

Exf was computed in the following way: 
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Where x
*
nf and x

*
ef are the numerical and experimental dimensionless front 

position, respectively. Table 4 shows the value of Exf for each run. The mean 

error Exf reaches a maximum value of 4.7 % for the runs 2D_19 and 2D_25 and a 

minimum value of 1.0 % for the run 2D_4. Therefore the agreement between the 

results for the numerical and experimental front position is fairly good, being the 

error values reasonable for all the investigated experimental conditions. 

 

 

 

Run 01 [Kg/m
3
] ϑ [°] Exf [%] Angle 

2D_3 1039.54 0.00 2.5 - 

2D_18 1038.59 0.90 2.0 Subcritical 

2D_19 1038.59 1.11 4.7 Critical 

2D_20 1039.10 1.39 2.9 Supercritical 

2D_4 1059.56 0.00 1.0 - 

2D_21 1059.72 1.14 2.3 Subcritical 

2D_22 1059.75 1.39 3.3 Critical 

2D_23 1059.72 1.52 1.9 Supercritical 

2D_5 1089.99 0.00 2.1 - 

2D_24 1089.99 1.39 3.8 Subcritical 

2D_25 1090.10 1.45 4.7 Critical 

2D_26 1089.88 1.80 3.6 Supercritical 

Table 4: Experimental parameters and mean error Exf computed for each run on the basis 

of Equation (41) for all the 2D released currents performed on smooth flat and upsloping 

beds. 
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Figure 2.13a-d: Comparison of numerical gravity current’s profiles for the run 2D_4 

moving on flat and smooth bed and the images acquired by the camera at four different 

time steps: miscible fluid, k=0.6 (solid yellow line) and immiscible fluid, k=0 (red 

dashed line). 

 

 

Figure 2.14: Front position versus time for the run 2D_4 moving on flat and smooth 

bed: measurements (red circles), numerical simulation with k=0.6 (black solid line) and 

numerical simulation with k=0.0 (black dashed line). 
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Figure 2.15a-d: Comparison of numerical gravity current’s profiles for the run 2D_21 

moving on smooth and upsloping bed and the images acquired by the camera at four 

different time steps: miscible fluid, k=0.9 (solid yellow line) and immiscible fluid, k=0 

(red dotted line). 

 

 

Figure 2.16: Front position versus time for the run 2D_21 moving on smooth and 

upsloping bed: measurements (red circles), numerical simulation with k=0.9 (black solid 

line) and numerical simulation with k=0.0 (black dotted line). 
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Figure 2.17a-d: Experimental and numerical front position versus time for all the runs 

performed with ρ011039 Kg/m
3
 on flat and upsloping smooth beds; (a) Run 2D_3: 

ϑ=0.00°; (b) Run 2D_18: ϑ=0.90°; (c) Run 2D_19: ϑ=1.11°; (d) Run 2D_20: ϑ=1.39°. 
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Figure 2.18a-d: Experimental and numerical front position versus time for all the runs 

performed with ρ011060 Kg/m
3
 on flat and upsloping smooth beds; (a) Run 2D_4: 

ϑ=0.00°; (b) Run 2D_21: ϑ=1.14°; (c) Run 2D_22: ϑ=1.39°; (d) Run 2D_23: ϑ=1.52°. 
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Figure 2.19a-d: Experimental and numerical front position versus time for all the runs 

performed with ρ011090 Kg/m
3
 on flat and upsloping smooth beds; (a) Run 2D_5: 

ϑ=0.00°; (b) Run 2D_24: ϑ=1.39°; (c) Run 2D_25: ϑ=1.45°; (d) Run 2D_26: ϑ=1.80°. 
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2.3. Velocity measurements by PIV 
 

Particle Image Velocimetry (PIV) is an optical technique for performing 

measurements of velocity fields in a wide range of flow conditions. As PIV 

technique does not use any probe that can disturb the flow, it can be considered 

as a non-intrusive technique. Moreover an important feature of PIV technique is 

that it can be used to obtain the spatial velocity distribution for a whole field 

simultaneously. The working principle of a PIV system is based on the 

determination of velocity vectors from the displacement of seeding particles and 

the time for the displacement. 

A general PIV system requires four main components: an optical transparent 

tank filled with fluid seeded with tracer particles, a laser source producing a 

laser sheet, a camera acquiring images in the area of interest and a computer 

with suitable software to process the recorded images and calculate velocity 

information on the basis of the particles displacements. 

The velocity of suspended particles is measured by capturing images of the 

whole field of analysis in which seeding particles are illuminated with a sheet of 

laser light. Figure 2.20 shows a sketch of fundamental components of a common 

PIV system. 

Tracer particles should satisfy two main requirements: they should follow the 

streamlines of the flow, without influencing the fluid properties and they should 

be characterized by an high scattering efficiency. Assuming that the settling 

velocity under gravity is governed by Stokes drag, a way to evaluate the first 

requirements is to calculate the particles settling velocity by: 
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In which dp and ρp are the diameter and density of the reflective particle, μ and ρf 

are the dynamic viscosity and the density of the fluid. Particles are suitable if the 

settling velocity u∞ is negligible compared to the flow velocity, therefore they 

are neutrally buoyant in the fluid.  

Once the fluid is seeded with suitable particles a double pulsed laser is used to 

illuminate one plane of the flow. In order to find the displacement of groups of 

particles over a short time interval, two successive images, corresponding to two 

pulses of the laser that illuminate the field of view, are compared. The acquired 

images are divided into several sub-areas, commonly called interrogation areas. 

Each interrogation area is compared with the sub-area corresponding to the same 

location in the second image using a cross-correlation technique, in order to find 

the average motion of a small group of particles contained within the sub-area 
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(Adrian, 1991). This process is repeated for all the interrogation areas of the 

investigated domain, providing one displacement vector per spot. Since the time 

interval between the two laser pulses (i.e. two images) is known, from the 

averaged displacement of the particles it is possible to deduce their velocity. 

Applying this technique to all the couples of images, corresponding to the whole 

duration of the experiment, the complete velocity vector field is obtained. 

In this work PIV technique was applied in order to measure the velocity field of 

gravity currents produced by lock exchange release. One of the main objectives 

of this stage of work was to verify the reliability of the back flow predicted for 

gravity currents moving on upsloping beds by the one-dimensional numerical 

model near the lock of the tank.  

Two experiments were realized: a first preliminary run (PIV1) was carried out in 

order to test the PIV system for gravity current moving on flat and smooth bed 

and a second run (PIV2) was realized on smooth upsloping bed in order to 

compare experimental results with numerical predictions. 

Regarding velocity measurements within the area near the lock of the tank (i.e. 

PIV2) it must be taken into account that during the first stage of development of 

the gravity current, there is a high density gradient between the two fluids, 

because the entrainment is not occurring yet in the flow dynamics. As the index 

of refraction changes with the local value of the density, a high density gradient 

can cause a blurred image in which individual particles cannot be distinguished 

(Alahyari & Longmire, 1994). In order to avoid this problem RIM (Refractive 

Index Matching) method was applied. This method consists in choosing defined 

concentrations of particular solutions which ensure throughout the flow a 

uniform refractive index.  

 

 

Figure 2.20: Sketch of a general PIV system showing the main components: tank with 

transparent wall filled with fluid seeded with tracer particles, laser source producing 

laser sheet, camera acquiring images in the area of interest. 
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2.2.1. Flat smooth bed 

 

The initial condition of a typical lock exchange release experiment is set up 

using a Perspex tank in two-dimensional configuration (Figure 2.21). As widely 

described in previous sections one of the two portion of the tank (i.e. the lock) 

was filled with dense fluid and the other with lighter ambient fluid. In this case 

no dye was added to the dense solution, but both the dense and the ambient fluid 

were seeded with reflective particles. 

In order to test the PIV System, a first lock exchange experiment (PIV1) was 

performed using a solution of sodium chloride (NaCl) and tap water as lock fluid 

and fresh water as surrounding fluid. For the run PIV1 the following 

experimental parameters were used: ρ2=1000 Kg/m
3
, ρ01=1014.84 Kg/m

3
, 

x0=0.10 m and h0=0.20 m.  

A PIV system (Intelligent Laser Applications) with a double pulsed Nd:YAG 

Laser was used. The frequency between the couples of images was 3 Hz and the 

time between pulses was 30 ms. Both the dense fluid and the ambient fluid were 

seeded with polyamide particles with a mean diameter of 100 µm and a density 

of 1016 Kg/m
3
. The laser source was positioned normal to the right end wall of 

the tank, so that the laser sheet was parallel to the sidewalls of the channel and 

directed along the tank’s centerline. A CCD camera was located normal to the 

sidewall and acquired in a field of view 0.33 m long and 0.17 m high, positioned 

at x=2.13 m, as it is shown in Figure 2.21.  

 

 

Figure 2.21: Sketch of the PIV system used for velocity measurements showing the field 

of view analyzed for the run PIV1. 

 

In Figure 2.22a-c vector maps at three different time steps, with ∆t=2.66 s, are 

shown. In order to identify the height of the gravity current for each position on 

the x-axis, the experiment was repeated with the same experimental parameters 
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realizing a colored gravity current and the threshold method was applied to 

detect the interface between the two layers. Figure 2.23a-b shows contour plots 

of the x-velocity component, u, and the vorticity ω of the gravity current for six 

different time steps. Vector maps and contour plots of u show that the ambient 

fluid flows upward and backward as the lower layer moves forward with higher 

velocity. In the region of velocity shear between the two fluids, interfacial 

instabilities take place, as can be seen from the eddies formed at the rear of the 

head of the current’s front (Figure 2.22a-c). A head and a tail in the gravity 

current’s shape can be distinguished in Figure 2.23a. A gradual decrease of u 

from the head to the tail of the gravity current can be observed. Figure 2.22a-c 

shows that the field of u within the tail is relatively uniform, although it results 

influenced by the eddies formed behind the head of the current. In agreement 

with the results of Zhu et al. (2006) the vorticity field (Figure 2.23b) shows an 

area of positive vorticity at the interface between the two fluids and a region of 

negative vorticity along the rigid bottom boundary. The strip of positive vorticity 

is due to the velocity shear between the two layers, while the region of negative 

vorticity results from the no-slip condition at the bottom boundary. The upper 

positive vorticity distributes in a wide region, mainly located at the rear of the 

gravity current, as can be observed in vorticity contour plots for t=33.62 s, 

t=36.28 s and t=38.94 s (Figure 2.23b). The negative vorticity is concentrated in 

a thinner strip near the bottom of the tank.  

Figure 2.24a-c shows u versus x for three different heights y1=3.4 cm, y2=2.6 cm 

and y3=1.4 cm at t=33.62 s. In Figure 2.24a-c the maximum value of u is 

observed at x=13.4 cm, x=14.5 cm and x=15.3 cm at the heights y1, y2 and y3, 

respectively. By a comparison of Figure 2.24a-c with Figure 2.22a, which 

referred to the same time t, it can be seen that the maximum velocity doesn’t 

occur in correspondence of the nose of the current, but at least 5 cm upstream, 

within the head of the gravity current. Vertical profiles of u measured at three 

different positions x1=7.9 cm, x2=13.4 cm and x3=18.1 cm for t=33.62 s are 

shown in Figure 2.25a-c. While x1 and x2 are located in the core of the head of 

the gravity current, x3 is positioned in a zone near the nose of the current. The 

maximum velocity at x3 is 4.6 cm/s, which is smaller than the maximum values 

7.1 cm/s and 7.1 cm/s measured in the gravity current head at x1 and x2, 

respectively. 

Figure 2.26 show the comparison between x-velocity component measured by 

PIV and x-velocity component predicted by numerical simulation by 1D 

numerical model at t=36.28 s, where the head of the current is within the field of 

view. As the numerical model adopts shallow water approximation, in order to 

compare numerical and experimental results, velocity values measured by PIV 

were averaged along the y-direction. A good agreement is observed for velocity 

profiles. The numerical velocity values seem to be slightly lower and this 

behavior could be due to the fact that the numerical current is shallower at the 

nose of the current than the experimental one.  
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Figure 2.22a-c: Vector maps of the gravity currents at three different time steps. The red 

line is the interface between the two fluids, identified as the height of a colored release 

current performed with the same experimental parameters. Threshold method was 

applied to measure the profile of the current acquired by a CCD camera. 
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Figure 2.23a-b: Contour plots of the x-velocity component, u, (a) and vorticity ω (b) at 

six time steps for the run PIV1. 
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Figure 2.24a-c: x-velocity component measured along x-axis for three different heights 

y1, y2 and y3 at t=33.62 s for the run PIV1. The dashed black line corresponds to the x-

velocity component equals to zero. 

 

 

Figure 2.25a-c: Vertical profiles of the x-velocity component measured at three different 

positions x1, x2 and x3 at for t=33.62 s for the run PIV1. The dashed black line 

corresponds to the x-velocity component equals to zero, while with the red dashed line is 

showed the height of the gravity current for each position on the x-axis. 
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Figure 2.26: Comparison for the run PIV1 between x-velocity component measured by 

PIV (red circles) and x-velocity component predicted by numerical simulation by 1D 

numerical model (green line) at t=36.28 s. Velocity values measured by PIV are 

averaged along the y-axis. The dashed black line corresponds to u equal to zero. 

 

2.2.2. Upsloping smooth bed 

 

One of the aims of this stage of work was to verify the reliability of the back 

flow predicted for gravity currents moving on upsloping beds by the 1D 

numerical model near the lock of the tank. On this purpose a second run (PIV2) 

was performed on upsloping smooth bed in order to compare experimental data 

with numerical prediction. The run PIV2 was performed with the following 

parameters: ρ2=1011 Kg/m
3
; ρ1=1038 Kg/m

3
; x0=0.10 m; h0=0.25 m; ϑ=1.36°.  

In order to avoid problems associated with the variations in refractive index with 

the local value of density, for the run PIV2 the index matching strategy was 

applied. Following Alahyari & Longmire (1994) a solution of glycerol and water 

as the less dense fluid and an aqueous solution of potassium dihydrogen 

phosphate (KH2PO4) as the heavier one were used. Such concentrations of these 

fluids provide 3% of density difference and a uniform refractive index within the 

fluids. 

For the run PIV2 the PIV system and PIV settings (i.e. frequency and time 

between pulses) described for the run PIV1 were used. Also in this case both the 

dense fluid and the ambient fluid were seeded with polyamide particles and the 

laser source was placed in the same position seen for the run PIV1. The CCD 

camera was located normal to the sidewall, in order to acquire in a field of view 

0.52 m long and 0.21 m high, starting at x=0.76 m from the left end wall of the 

tank, as it is shown in Figure 2.27.  
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Figure 2.28a-c shows vector maps at three different time steps for the run PIV2. 

As for the run PIV1, in order to identify the interface between the two layers, the 

experiment was repeated with the same experimental parameters realizing a 

colored gravity current and applying the threshold method to height of the 

current.  

 

 

Figure 2.27: Sketch of the PIV system used for velocity measurements showing the field 

of view analyzed with the run PIV2. 

 

Figure 2.28a and figure 2.28b refer to two time steps for which the current’s 

front is still in the field of view, therefore they shows the velocity field of the 

head of the current. Figure 2.28c refers to the vector map of the tail of the 

current for an instant in which the current’s front overtook the right boundary of 

the analysis domain, although it did not reach the right end wall of the tank. 

Figure 2.29a-b shows contour plots of horizontal velocity component and 

vorticity for six different time steps, with ∆t=5.33 s. Figure 2.28a-c and Figure 

2.29a-b show the same features observed for the run performed on flat and 

smooth bed (i.e. PIV1). Dense fluid flows in the positive direction of x-axis, 

while the surrounding fluid flows in the opposite direction with lower velocity. 

Contour plots of vorticity field in Figure 2.29b show a strip of negative vorticity 

near the bottom of the tank and an area of positive vorticity at the interface 

between the two fluids, although the vorticity gradient is less pronounced in 

respect to the vorticity field of the run PIV1. In Figure 2.28c near the bed of the 

tank a strip in which the flow direction is reversed to the gravity current’s 

direction can be observed. Figure 2.30 and Figure 2.31a-b show the velocity 

vector map, the contour plot of x-velocity component and contour plot of 

vorticity respectively, referred to a detailed area of the field of view, 20 cm long 

and 14 cm high. A back flow can be observed in the lower part of the analysis 

domain near the bed of the tank. 
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Figure 2.28a-c: Vector maps of the gravity currents at three different time steps. The red 

line is the interface between the two fluids, identified as the height of a colored release 

current performed with the same experimental parameters. Threshold method was 

applied to measure the profile of the current acquired by a CCD camera. 
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Figure 2.29a-b: Contour plots of the x-velocity component, u, (a) and vorticity ω (b) at 

six time steps for the run PIV2. 
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Figure 2.30: Vector maps of the gravity currents at t=34.33 s. Velocity field is shown 

for a detailed area of the field of view, 20 cm long and 14 cm high. The red line is the 

interface between the two fluids. 

 

Figure 2.32a-c shows u versus x for three different heights y1=3.8 cm, y2=2.6 cm 

and y3=1.7 cm for a defined time step. Figure 2.32a-c refers to the instant 

t=34.33 s at which the tail of the gravity current is observable in the field of 

view. Vertical profiles of u measured at three different positions x1=6.9 cm, 

x2=25.0 cm and x3=42.2 cm for t=34.33 s are shown in Figure 2.33a-c. As can be 

seen from Figure 2.32a-c and Figure 2.33a-c negative values of u are mainly 

located in the region close the right left boundary of the analysis domain near the 

bed of the tank. 

Figure 2.34 and Figure 2.35 show the comparison between x-velocity component 

measured by PIV and x-velocity component predicted by numerical simulation 

by 1D numerical model at t=8.33 s and t=34.33 s, respectively. As for run PIV1, 

in order to compare numerical and experimental results, velocity values 

measured by PIV were averaged along the y-direction. Figure 2.34 shows 

velocity profiles referred to the head of the current while Figure 2.35 is related to 

the tail of the current. A decrease of the mean horizontal velocity, both 

experimental and numerical, can be observed within the tail of the current 

(Figure 2.35), compared to the head of the current (Figure 2.34). Moreover a 

backflow (i.e. negative values of mean horizontal velocity) can be noticed 

observing both numerical and measured values. However, as the backflow is 

experimentally detected only in the area nearest to the lock of the tank (i.e. near 

the right boundary of the analysis domain), while the numerical model predicts 

negative mean horizontal values along the whole field of view, additional 
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laboratory experiments and PIV measurements should be performed in order to 

verify the real extent of the backflow predicted by numerical simulations. In 

Figure 2.34 an overestimation of the x-velocity component can be observed in 

the numerical profile. Such a discrepancy could be justified by taking into 

account that, while for the numerical model the simulation starts with the 

instantaneous contact between the two fluids, as the gate would suddenly 

disappear, for laboratory experiments the removal of the gate is a manual 

operation.  This leads to a non-synchronous dynamics between numerical and 

experimental current whose delay can be taken into account in comparing 

results. However the physics consequences of the manual removal of the gate 

seems to influence in such a way the current’s dynamics, mainly in the first stage 

of development of the current, which is analyzed by run PIV2. 

 

 

Figure 2.31a-b: Contour plots of the x-velocity component, u, (a) and vorticity ω (b) of 

the gravity currents at t=34.33 s for a detailed area of the field of view, 20 cm long and 

14 cm high.  
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Figure 2.32a-c: x-velocity component measured along x-axis for three different heights 

y1, y2 and y3 at t=34.33 s for the run PIV2. The dashed black line corresponds to the x-

velocity component equals to zero. 

 

Figure 2.33a-c: Vertical profiles of the x-velocity component measured at three different 

positions x1, x2 and x3 at for t=34.33 s for the run PIV2. The dashed black line 

corresponds to the x-velocity component equals to zero, while with the red dashed line is 

showed the height of the gravity current for each position on the x-axis. 
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Figure 2.34: Comparison for the run PIV2 between x-velocity component measured by 

PIV (red circles) and x-velocity component predicted by numerical simulation by 1D 

numerical model (green line) at t=8.66 s. Velocity values measured by PIV are averaged 

along the y-axis. The dashed line corresponds to u equal to zero. 

 

 

Figure 2.35: Comparison between x-velocity component measured by PIV (red circles) 

and x-velocity component predicted by numerical simulation by 1D numerical model 

(green line) at t=34.66 s. Velocity values measured by PIV are averaged along the y-

axis. The dashed line corresponds to u equal to zero. 
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3. 3D gravity currents 

3.1. Laboratory experiments 

3.1.1. Experimental set-up 

 

Three-dimensional gravity currents were realized in the Hydraulics Laboratory 

of University of Rome “Roma Tre” using a rectangular Perspex tank, 2.35 m 

long, 1.35 m wide and 0.3 m deep. A sketch and a picture of the channel are 

shown in Figure 3.1a-c. 

The channel was divided into two reservoirs of equal size by a rigid wall 

containing at the center a removable gate of length d. One part of the tank was 

filled with colored salty water with density ρ01 (i.e. lock fluid), while the other 

part was filled with clear tap water with lower density ρ2 (i.e. ambient fluid). As 

the experimental configuration used in this work is the full-depth release 

experiment, both reservoirs have the same height h0 and the ratio ϕ (i.e. 

fractional depth) of the initial gravity current height h0 to the total height H, is 

such that ϕ=1, as for 2D lock exchange experiments.  Once the gate is manually 

opened, the two fluids with different densities come in contact and a non-

equilibrium condition occurs. Indeed the heavier fluid collapses under the lighter 

one, originating the gravity current. For three-dimensional experiments the same 

CCD camera used for the two-dimensional currents was placed on the top of the 

tank and focused on the experimental domain, in order to acquire the current’s 

development on the x-y plane. 

The same image analysis technique, based on a threshold method, used for the 

two-dimensional tests was applied to detect the current shape for each time step. 

After choosing the grey level corresponding to the interface between the two 

fluids a program written in MatLab language travelled through the elements of 

the matrix (i.e. the image) until it met the threshold value (i.e. the interface 

between the two fluids) and recorded the coordinates of this pixel as a point of 

the interface between the two fluids. A rule was positioned along both the x and 

y axis (Figure 3.1a) in order to obtain the conversion factor pixel/cm. Figure 

3.2a-d shows measured profiles of the experimental gravity current for the  run 

3D_1 overlapped to the images corresponding to four different time steps. In 

Figure 3.2a-d the typical mushroom shape of a three-dimensional gravity current 

detectable from a plan view can be observed. Such a form is recognized in each 

experimental condition investigated in this work. As pointed out for 2D 

experiments, the estimation of front position xf is determined with an error equal 

to 0.2 cm, while the error for density measurements is 0.2%.  
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Figure 3.1a-c: Experimental apparatus used to perform the 3D lock-exchange 

experiments: (a) sketch of the top view; (b) sketch of the side view; (c) picture of the 

tank. 
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Figure 3.2a-d: Evolution on the x-y plane of the run 3D_1: measured profiles 

overlapped to the images corresponding to 6 s (a), 12 s (b), 18 s (c) and 24 s (d) after the 

release of the lock fluid. 

 

3.1.2. Experimental parameters 

 

Eighteen experiments were carried out keeping constant the initial density of the 

ambient fluid ρ2=1000 Kg/m
3
 and testing two different values of the initial 

density of the lock fluid ρ011010 and 1030 Kg/m
3
 corresponding to different 

values of the dimensionless ratio r=ρ2/ρ01, three initial height of the two fluids 

h0=0.05, 0.10, 0.15 m corresponding to three values of the dimensionless 

parameter H*=h/L (i.e. H*=0.128, 0.085, 0.042) and three values of the length 

of the sliding gate d=0.135, 0.35, 0.70 m, corresponding to three values of the 

dimensionless ratio =d/B (i.e. =0.100, 0.259, 0.518). Table 5 shows 

experimental parameters in dimensional and dimensionless form used for the 

performed 3D lock releases 
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Run 01 [Kg/m
3
] h0 [m] d [m] r =2/01 H* =h/L  =d/B 

3D_1 1008 0.15 0.135 0.992 0.128 0.100 

3D_2 1010 0.15 0.350 0.990 0.128 0.259 

3D_3 1013 0.15 0.670 0.987 0.128 0.496 

3D_4 1011 0.10 0.135 0.989 0.085 0.100 

3D_5 1010 0.10 0.350 0.990 0.085 0.259 

3D_6 1011 0.10 0.670 0.989 0.085 0.496 

3D_7 1009 0.05 0.135 0.991 0.042 0.100 

3D_8 1008 0.05 0.350 0.992 0.042 0.259 

3D_9 1008 0.05 0.670 0.992 0.042 0.496 

3D_10 1027 0.15 0.135 0.974 0.128 0.100 

3D_11 1024 0.15 0.350 0.977 0.128 0.259 

3D_12 1027 0.15 0.670 0.974 0.128 0.496 

3D_13 1032 0.10 0.135 0.969 0.085 0.100 

3D_14 1029 0.10 0.350 0.972 0.085 0.259 

3D_15 1032 0.10 0.670 0.969 0.085 0.496 

3D_16 1027 0.05 0.135 0.974 0.042 0.100 

3D_17 1027 0.05 0.350 0.974 0.042 0.259 

3D_18 1027 0.05 0.670 0.974 0.042 0.496 

Table 5: Experimental parameters used to perform 3D gravity currents. 

 

3.1.3. Experimental results 

 

In this study three-dimensional gravity current’s evolution was investigated by 

acquiring a movie of the experiment from the top of the tank, in order to 

measure the current’s profile on the x-y plane (Figure 3.2 a-d). In this section 

time histories of front position for all the performed runs are shown. The 

instantaneous position of the experimental current’s front along the x-axis 

direction is detected along the centerline of the tank from the instantaneous 

profile of the gravity current measured by image analysis as explained in details 

in section 3.1.1. All the laboratory measurements starts few seconds after the 

release of the dense fluid, as it was difficult to identify the current’s shape as 

soon as the gate was removed. 

Dimensionless front position xf
*
 is defined as: 
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Dimensionless time T
*
 is scaled on the basis of t0:  
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Figure 3.3a-f and Figure 3.4a-f show experimental front position versus time for 

all the experiments performed with 011010 Kg/m
3
 and 1030 Kg/m

3
, 

respectively. Figure 3.3a-b-c and Figure 3.4a-b-c are in dimensional form, while 

Figure 3.3d-e-f and Figure 3.4d-e-f are in dimensionless form. Each plot shows a 

comparison between the runs performed with the same value of h0 and different 

values of d. During the same time the run performed with the lower value of d 

(i.e. d=0.135 cm) covers a smaller distance than those realized with higher 

values of d (i.e. d=0.35 and 0.67 cm). 

Figure 3.5a-f, 3.6a-f, 3.7a-f are referred to all the runs performed with initial 

height of the gravity current h0=0.15, 0.10, 0.05 cm, respectively. Each plot is 

referred to the runs obtained with the same values of d, so that the only 

experimental parameter varying in each plot is 01, whose effect can be highlight 

by this comparison. In particular the observed trend is that the speed of the 

current increases as the initial density of the heavier fluid increases. The same 

general trend has been observed in 2D gravity currents, fully described in section 

2.1.3.1. For a constant time the gravity currents performed with 011030 Kg/m
3
 

covers a longer distance than those realized with 011010 Kg/m
3
.  

Figure 3.8a-f and Figure 3.9a-f show the time histories of front position for all 

the runs performed with 011010 Kg/m
3
 and 1030 Kg/m

3
, respectively. Each 

plot is a comparison between experiments realized with the same value of d and 

different values of h0, in order to point out the effect of h0 on the current’s 

dynamics. The observed trend is that as the initial height of the current increases 

also the current’s speed increases.  
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Figure 3.3a-f: Dimensional and dimensionless plot of front positions versus time for the 

runs with ρ011010 Kg/m
3
; (a-d) Runs 3D_1-3D_2-3D_3: h0=0.15 m, d=0.135, 0.35, 

0.67 m; (b-e) Runs 3D_4-3D_5-3D_6: h0=0.10 m, d=0.135, 0.35, 0.67 m; (c-f) Runs 

3D_7-3D_8-3D_9: h0=0.05 m, d = 0.135, 0.35, 0.67 m. 
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Figure 3.4a-f: Dimensional and dimensionless plot of front positions versus time for the 

runs with ρ011030 Kg/m
3
; (a-d) Runs 3D_10-3D_11-3D_12: h0=0.15 m, d=0.135, 0.35, 

0.67 m; (b-e) Runs 3D_13-3D_14-3D_15: h0=0.10 m, d=0.135, 0.35, 0.67 m; (c-f) Runs 

3D_16-3D_17-3D_18: h0=0.05 m, d=0.135, 0.35, 0.67 m. 
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Figure 3.5a-f: Dimensional and dimensionless plot of front positions versus time for the 

runs with h0=0.15 m; (a-d) Runs 3D_1-3D_10: d=0.135 m, ρ011010, 1030 Kg/m
3
; (b-e) 

Runs 3D_2-3D_11: d=0.35 m, ρ011010, 1030 Kg/m
3
; (c-f) Runs 3D_3-3D_12: d=0.67 

m, ρ011010, 1030 Kg/m
3
. 
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Figure 3.6a-f: Dimensional and dimensionless plot of front positions versus time for the 

runs h0=0.10 m; (a-d) Runs 3D_4-3D_13: d=0.135 m, ρ011010, 1030 Kg/m
3
; (b-e) Runs 

3D_5-3D_14: d=0.35 m, ρ011010, 1030 Kg/m
3
; (c-f) Runs 3D_6-3D_15: d=0.67 m, 

ρ011010, 1030 Kg/m
3
. 
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Figure 3.7a-f: Dimensional and dimensionless plot of front positions versus time for the 

runs with h0=0.05 m; (a-d) Runs 3D_7-3D_16: d=0.135 m, ρ011010, 1030 Kg/m
3
; (b-e) 

Runs 3D_8-3D_17: d=0.35 m, ρ011010, 1030 Kg/m
3
; (c-f) Runs 3D_9-3D_18: d=0.67 

m, ρ011010, 1030 Kg/m
3
. 
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Figure 3.8a-f: Dimensional and dimensionless plot of front positions versus time for the 

runs with ρ011010 Kg/m
3
; (a-d) Runs 3D_1-3D_4-3D_7: d=0.135 m, h0=0.15, 0.10, 

0.05 m; (b-e) Runs 3D_2-3D_5-3D_8: d=0.35 m, h0=0.15,0.10, 0.05 m;  (c-f) Runs 

3D_3-3D_6-3D_9: d=0.67 m, h0=0.15,0.10, 0.05 m. 
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Figure 3.9a-f: Dimensional and dimensionless plot of front positions versus time for the 

runs with ρ011030 Kg/m
3
; (a-d) Runs 3D_10-3D_13-3D_16: d=0.135 m, h0=0.15,0.10, 

0.05 m; (b-e) Runs 3D_11-3D_14-3D_17: d=0.35 m, h0=0.15,0.10, 0.05 m; (c-f) Runs 

3D_12-3D_15-3D_18: d=0.67 m, h0=0.15,0.10, 0.05 m. 
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3.2. 2D numerical simulations 

3.2.1. Mathematical model 

 

Numerical simulations were performed using a single layer, two dimensional, 

shallow-water model. Figure 3.10 shows the frame of reference used in the 

mathematical model.  

The lower layer (i.e. gravity current) with density ρ1 and height h1, flows below 

the upper layer of quiescent fluid with density ρ2 (ρ1>ρ2) and height h2. The ratio 

h1/h2 is such that: h1/h2<<1. The total height of the two layers is defined as H. 

The density ρ1 can be expressed as: 

 

 cρρρρ s 221   (45) 

 

in which ρs and c are the density and the concentration of the fine uniform 

sediments, in case carried by the gravity current. The dimensionless number c is 

the ratio between the volume of sediments and the volume of water.  

On the basis of the layer-averaged approach of Parker et al. (1986) and Bradford 

et al. (1997) the governing equations have the following form: 
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being U, V and C the depth averaged velocity components along x and y axis and 

the depth averaged concentration, respectively. α is the entrainment coefficient 

and is given by the formula (Kostic & Parker, 2007): 

 

Ri
α




0204.0

00153.0
 (47) 

 

where the Richardson number Ri is defined as: 
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Figure 3.10: Sketch of the frame of reference used for the 2D mathematical model. 

 










 




2

2

22

1

ρ

ρρ

VU

gCh
Ri s  (48) 

  

The velocity modulus Um in the system (46) is given by: 

 

22 VUUm   (49) 

 

Terms es and cb in the system (46) are the resuspension coefficient and the value 

of the local concentration near the bed, respectively. es is assumed to be 

negligible with respect to cb (Hallworth et al., 1998; Maxworthy, 1999; 

Gladstone & Woods, 2000; Kostic & Parker, 2003a, b; Kostic and Parker, 2007) 

which is proportional to the concentration C by means of the dimensionless 

parameter r0 ≥ 1. In agreement with Kostic and Parker (2007) r0 is assumed to be 

a constant. The fall velocity of the suspended sediment us can be considered 

independent of the concentration of the sediment if C≤10
-2

 (Bonnecaze et al., 

1993) and can be given by the formula: 
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in which CR is the drag coefficient of the sphere and ds is the diameter of the 

sediment particles. In this case, compositional gravity currents rather than 

particle-driven gravity currents (i.e. turbidity currents) are performed; hence 

density gradient is exclusively due to a difference of salinity between the two 

fluids. Therefore, as no particles are present, the sedimentation term vanishes. 
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Finally, the last two terms on the right hand side of the momentum equations 

account for the bottom stress effects and can be expressed by: 
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where the friction factor λ for turbulent rough flows is defined by the 

formula (Çengel and Cimbala, 2006): 
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being f a shape factor. 

 

3.2.2. Numerical method 

 

According to the classification criterion of Bradford et al. (1997), the partial 

differential system (46) is hyperbolic because its eigenvalues are all real and 

admits a basis of real right eigenvectors.  

Therefore the differential system can be put in a conservative form and it can be 

numerically solved by a finite-volume-based method, adopting the Godunov 

formulation with Roe’s approximate Riemann solver. Hence systems (46) can be 

written as:  

 

   
 US

UGUFU
















yxt
 (53) 

 

using the following definition for U, the vector of the conserved variables: 

 

 1111 ,,, ChVhUhhU  (54) 

 

The vectors F(U), G(U) and S(U) are expressed in terms of U in the following 

way: 
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Equation (53) can be put in a compact matrix form: 
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where A=dF/dU and B=dG/dU. 

The one layer partial differential system, being in conservative form, can be 

numerically solved with a finite volume numerical method. La Rocca et al. 

(2008) developed the numerical model used in this application, whose details are 

omitted, for the sake of simplicity. The reader can find them in the book of Toro 

(1999) and in the papers of La Rocca et al. (2008) and La Rocca et al. (2009). 

The computational domain is divided into N elements, at the center of which the 

variables h, Uh, Vh and Ch are defined. The boundary condition of no flux 

normal to the sidewalls of the tank is imposed by the introduction of virtual 

elements outside the control volume having an opposite value to the 

corresponding element inside the domain, at the other side of the wall. Boundary 

conditions on h, Ch are imposed by setting the virtual values of h, Ch to the 

same values from the corresponding real element. Following Chippada et al. 

(1998), the CFL stability condition used is the same of La Rocca et al. (2008) 

and assumes the expression: 
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where d is the minimum size of the element, and λmax is the eigenvalue with the 

largest modulus among the eigenvalues of the matrices A, B. 
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3.2.3. Comparison between experimental and numerical 
results 

 

Figure 3.11a-c and Figure 3.12a-c show the comparison between numerical and 

experimental dimensionless front’s position versus dimensionless time for all the 

runs performed with 011010 and 1030 Kg/m
3
, respectively. Dimensionless 

front position and dimensionless time are defined by Equation (43) and Equation 

(44), respectively. By a qualitative analysis of the plots a good agreement 

between experimental and numerical results for the runs performed with 

h0=0.15, 0.10 m (Figure 3.11a-3.12a, Figure 3.11b-3.12b) can be observed, 

while a discrepancies between experimental data and numerical prediction can 

be noticed for the runs performed with the lower value of h0=0.05 m (Figure 

3.11c, Figure 3.12c). In order to quantify such a discrepancy, the mean 

percentage difference of front position between experimental results and 

numerical prediction Exf was evaluated as for the 1D shallow-water model, in the 

following way: 
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being xnf
*
 and  xef

*
 the numerical and experimental dimensionless front position, 

respectively. Table 6 shows the value of Exf for each run. The mean error Exf 

reaches a minimum value of 1.6% for the run 3D_11 and a maximum value of 

49.5 % for the run 3D_16. In particular, reasonable values of Exf are obtained for 

all the runs, except the runs 3D_7-3D_16-3D_17, whose mean percentage error 

is 43.6 %, 49.5%, 31.7%, respectively. Runs 3D_7-3D_16-3D_17 are the 

experiments performed with h0=0.05 m and, as already observed from Figure 

3.11a-c and Figure 3.12a-c, show the maximum discrepancy between 

experimental and numerical front position. 

This fact can be due to the application of the one layer approximation used for 

the numerical model, which seems to be suitable for high initial depth of the 

fluid (i.e. h0=0.15, 0.10 m), when free-surface oscillations do not influence the 

development of the gravity current. On the contrary for the case of lower depth 

of the dense fluid (i.e. h0=0.05 m) maybe the current’s dynamics is influenced by 

the oscillation of the free surface, given the lower thickness of the dense layer, 

and such an oscillation should not be neglected anymore. 

Figure 3.13a-i and Figure 3.14a-i show the comparison of current’s profiles, 

obtained by laboratory measurements and numerical simulations for all the runs 

performed with 011010 and 1030 Kg/m
3
, respectively. The contour of 

experimental gravity currents is obtained from a top view, applying threshold’s 

method to the images acquired by the camera, as fully explained in section 3.1.1. 
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The corresponding numerical top view of the current’s shape is obtained from 

the contour plot of the gravity current numerical surface. Each plot in Figure 

3.13a-i and Figure 3.14a-i show current’s profile at four different time steps. For 

some runs experimental profiles (Figure 3.13f and Figure 3.14d) show a shape 

dissymmetry, probably due to the manual removal of the sliding gate, which 

does not allow a homogeneous flow through the gate.  

The ability of the model in reproducing the gravity current’s shape is fairly good 

for the same runs whose mean error Exf reach reasonable values, while it is not 

acceptable for the runs performed  with h0=0.05 m, whose discrepancy between 

experimental and numerical front’s position was observed.  

La Rocca et al. (2009) was focused on 3D gravity current’s dynamics varying 

bed’s roughness and  initial density of the dense fluid and keeping constant the 

initial height of the two fluids h0=0.15 m. They observed a good agreement 

between experimental results and numerical prediction obtained with the same 

model used in this work. This fact confirm the hypothesis that the discrepancy 

observed between experimental and numerical results  in this work can be 

attributed to the limits of the numerical model in reproducing the dynamics of 

gravity currents with a small depth. 

 

Run 01 [Kg/m
3
] h0 [m] d [m] Exf [%] 

3D_1 1008 0.15 0.135 7.2 

3D_2 1010 0.15 0.350 3.5 

3D_3 1013 0.15 0.670 12.2 

3D_4 1011 0.10 0.135 9.4 

3D_5 1010 0.10 0.350 5.5 

3D_6 1011 0.10 0.670 10.3 

3D_7 1009 0.05 0.135 43.6 

3D_8 1008 0.05 0.350 18.8 

3D_9 1008 0.05 0.670 9.1 

3D_10 1027 0.15 0.135 4.6 

3D_11 1024 0.15 0.350 1.6 

3D_12 1027 0.15 0.670 7.6 

3D_13 1032 0.10 0.135 7.2 

3D_14 1029 0.10 0.350 4.1 

3D_15 1032 0.10 0.670 16.1 

3D_16 1027 0.05 0.135 49.5 

3D_17 1027 0.05 0.350 31.7 

3D_18 1027 0.05 0.670 12.0 

Table 6: Experimental parameters and mean error Exf computed for each run on the basis 

of Equation (60) for all the 3D released currents. 
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Figure 3.11a-c: Dimensionless plot of experimental and numerical front positions 

versus time for the runs performed with ρ011010 Kg/m
3
. (a) Runs 3D_1-3D_2-3D_3 

performed with h0=0.15 m and d=0.135, 0.35, 0.67 m, respectively; (b) Runs 3D_4-

3D_5-3D_6 performed with h0=0.10 m and d=0.135, 0.35, 0. 67 m, respectively; (c) 

Runs 3D_7-3D_8-3D_9 performed with h0=0.05 m and d=0.135, 0.35, 0.67 m, 

respectively. The front position is detected along the centerline of the tank. 
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Figure 3.12a-c: Dimensionless plot of experimental and numerical front positions 

versus time for the runs performed with ρ011030 Kg/m
3
. (a) Runs 3D_10-3D_11-

3D_12 performed with h0=0.15 m and d=0.135, 0.35, 0.67 m, respectively; (b) Runs 

3D_13-3D_14-3D_15 performed with h0=0.10 m and d=0.135, 0.35, 0.67 m, 

respectively; (c) Runs 3D_16-3D_17-3D_18 performed with h0=0.05 m and d=0.135, 

0.35, 0.67 m, respectively. The front position is detected along the centerline of the tank. 



76 

Valentina Lombardi 

 

 

 

 

Figure 3.13a-i: Comparison between experimental and numerical wave front for the 

runs performed with ρ011010 Kg/m
3
. (a) Run 3D_1: h0=0.15 m and d=0.135 m; (b) Run 

3D_2: h0=0.15 m and d=0.35 m; (c) Run 3D_3: h0=0.15 m and d=0.67 m; (d) Run 3D_4: 

h0=0.10 m and d=0.135 m; (e) Run 3D_5: h0=0.10 m and d=0.35 m; (f) Run 3D_6: 

h0=0.10 m and d=0.67 m; (g) Run 3D_7: h0=0.05 m and d=0.135 m; (h) Run 3D_8: 

h0=0.05 m and d=0.35 m; (i) Run 3D_9: h0=0.05 m and d=0.67 m. 
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Figure 3.14a-i: Comparison between experimental and numerical wave front for the 

runs performed with ρ011030 Kg/m
3
. (a) Run 3D_10: h0=0.15 m and d=0.135 m; (b) 

Run 3D_11: h0=0.15 m and d=0.35 m; (c) Run 3D_12: h0=0.15 m and d=0.67 m; (d) 

Run 3D_13: h0=0.10 m and d=0.135 m; (e) Run 3D_14: h0=0.10 m and d=0.35 m; (f) 

Run 3D_15: h0=0.10 m and d=0.67 m; (g) Run 3D_16: h0=0.05 m and d=0.135 m; (h) 

Run 3D_17: h0=0.05 m and d=0.35 m; (i) Run 3D_18: h0=0.05 m and d= .67 m. 
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4. Conclusions and future aims 
 

This work investigates gravity currents by both laboratory experiments and 

numerical simulations. 2D and 3D experimental gravity currents were realized 

by lock exchange release technique. In this configuration a tank is divided by a 

vertical sliding gate into two reservoirs, one filled with salty water and the other 

with fresh water, in order to create a density gradient at the two sides of the gate. 

When the gate is suddenly removed, the heavier fluid collapses flowing under 

the lighter one and the gravity current develops. By applying an image analysis 

technique, based on threshold method, the space-time evolution of the current’s 

profile was measured.  

Regarding 2D gravity currents, several experiments were performed keeping 

constant the gate position, the height of the two fluids and the density of the 

surrounding fluid and testing different values of the initial density of the gravity 

current, bed’s roughness and slope’s angle. Experimental results show that the 

speed of the current increases as the initial density of released current increases. 

Moreover, dimensionless plot of front position versus time for the runs 

performed with different values of the initial density of the gravity current and 

keeping constant the other experimental parameters shows that the time histories 

of front position lye on the same curve. Such a result is in agreement with most 

of the studies about gravity currents. For the runs performed on flat and smooth 

beds a comparison with theoretical front evolution given by previous studies was 

performed. In particular, three distinct phases in the dynamics of gravity currents 

realized on flat and smooth beds by an instantaneous release were distinguished 

by Huppert & Simpson (1980) and Rottman & Simpson (1983). Experimental 

data are in agreement with previous formulae only for the first and the second 

phase, while the third phase seems not to occur in the current’s evolution of the 

performed runs. Such a discrepancy could be due to the fact that viscous phases 

of the realized currents are not long enough to be observable. 

Experimental results of gravity currents moving on flat and rough beds show a 

general trend of decrease of the speed of the currents as the bed roughness 

increases. In particular as the initial density of the heavier fluid increases, a 

decrease of the decelerating effect due to the bed’s roughness can be observed. 

As a superimposition of some runs in the time histories of front positions can be 

observed, additional experiments a fixed rough bed for each set of runs are 

required in order to improve the certainty of the values of the used roughness. 

2D experimental gravity currents moving on upsloping beds were performed. 

While gravity currents realized with critical and subcritical slope’s angle reach 

the end of the tank, runs performed with supercritical angles stops before the end 
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wall of the tank.  As expected, increasing the slope’s angle, a decrease of the 

current’s speed can be observed.  

A 1D, two-layer, shallow-water model developed by Adduce et  al. (2012) was 

used to perform numerical simulations of the gravity currents moving on smooth 

flat and upsloping beds.  The oscillation of the free surface and the mixing 

between the two layers are taken into account in the mathematical model. The 

entrainment at the interface, due to a mass transport from the lighter fluid to the 

heavier one, causes a decrease of the density of the gravity current. The 

entrainment between the two fluids was modeled by a modified Ellison & 

Turner’s formula (1959). Several tests were run to calibrate the dimensionless 

coefficient k in order to have a good simulation of both the front position and the 

profile of the gravity current. The comparison between experimental 

measurements and numerical results for miscible fluids shows a good agreement 

both for the gravity current’s profiles and for the front’s positions. Therefore the 

presented model is able to reproduce gravity current’s dynamics on both 

horizontal and upsloping beds.  

For the 2D configuration PIV technique was applied in order to measure the 

velocity field of gravity currents produced by lock exchange release. One of the 

main objectives of this stage of work was to verify the reliability of the back 

flow predicted for gravity currents moving on upsloping beds by the one-

dimensional numerical model near the lock of the tank. Two experiments were 

realized to perform instantaneous velocity measurements: a first preliminary run 

was carried out in order to test the PIV system for gravity current moving on flat 

and smooth bed and a second run was realized on smooth upsloping bed in order 

to compare experimental results with numerical predictions. In order to avoid the 

problem of local changes of index of refraction between the two fluids near the 

lock where density gradient is high and particle cannot be distinguished RIM 

(Refractive Index Matching) method was applied.  

From the comparison between numerical profiles and velocity values measured 

by PIV along the y-direction, the presence of a backflow can be noticed 

observing both numerical and measured values. However, as the backflow is 

predicted by the numerical model to be wider than the one observed by 

experimental analysis additional laboratory experiments and PIV measurements 

should be performed in order to verify the real extent of this phenomenon.  

Velocity measurements show the main features of a typical gravity current: the 

main direction of the lock fluid is along the x-axis while the surrounding fluid 

moves upward and backward in the opposite direction with a lower velocity. In 

agreement with previous studies the vorticity fields show two main areas of 

positive and negative values at the interface between the two layers and along 

the rigid bottom boundary, respectively.  

3D gravity currents were realized keeping constant the density of the lighter 

fluid and varying the initial density of the heavier one, the height of the two 

fluids and the length of the gate. Experimental results shows that during the 
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same time the runs performed with the smaller value of the gate’s length cover a 

smaller distance than those realized with higher values of this parameter. 

Moreover the speed of the current is observed to be directly proportional to both 

the initial density of the heavier fluid and the initial height of the fluids. 

Numerical simulations of 3D gravity current were performed using a 2D single-

layer, shallow-water model. The entrainment between the two fluids and the 

phenomena of settling and resuspension of particles are taken into account in the 

mathematical model. Indeed the model could reproduce both gravity and 

turbidity currents.  Although in this work only compositional gravity currents 

obtained with a solution of tap water and salt were realized.  

The comparison between experimental results and numerical prediction of the 

front’s position shows a fairly good agreement for all the runs except the ones 

performed with the lower value of initial height of the fluids. This fact can be 

due to the application of the single layer approximation used for the numerical 

model, which seems to be suitable for high initial depth of the fluid, when free-

surface oscillations do not influence the development of the gravity current, 

while for lower depth of the dense fluid the current’s dynamics is influenced by 

the oscillation of the free surface, given the lower thickness of the dense layer, 

and such an oscillation should not be neglected anymore. Anyway the obtained 

results encourage the continuation of the work in order to investigate also 

turbidity current’s dynamics taking into account deposition and resuspension of 

particles. 
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