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Abstract

In this thesis we looked into three different problems which share, as a common factor,
the exstensive use of the Fourier–Mukai transform as a research tool.

In the first Part we investigated the syzygies of Kummer varieties (i.e. the quotient of
an abelian variety X by the Z/2Z induced by the group operation), extending to higher
syzygies results on projective normality and degree of equations of Sasaki ([S1]), Kempf
([K5]) and Khaled ([K6,K7]).

The second Part of is dedicated to the study of pluricanonical linear systems on va-
rieties of maximal Albanese dimension. More precisely, in Chapter 3 we prove that the
4-canonical map of a smooth variety of general type and maximal Albanese dimension
is always birational into its image, the content of this section can also be found in [T2].
Chapter 4 is based on a joint work with Z. Jiang and M. Lahoz ([JLT]) in which we prove
that, in any Kodaira dimension, the 4-canonical map of a smooth variety of maximal
Albanese dimension induces the Iitaka fibration, while, in the case of varieties of general
type, the 3-canonical map is sufficient (and hence the 3-canonical map of these varieties
is always birational). We remark that these last results are both sharp.

Finally, in the last part of this thesis we consider the problem of classification of
varieties with small invariants. The final goal of our investigation is to provide a complete
cohomological charaterization of products of theta divisors by proving that every smooth
projective variety X, of maximal Albanese dimension, with Euler characteristic equal to 1,
and whose Albanese image is not fibered by tori is birational to a product of theta divisors.
Under these hypothesis we show that the Albanese map has degree one. Furthermore, we
present a new characterization of Θ-divisor in principally polarized abelian varieties.
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INTRODUCTION

Abelian varieties are among the most studied objects in algebraic geometry. In 1981
Mukai ([M1]) developed a tool (called Fourier-Mukai transform) in order to study moduli
spaces of deformation of sheaves on abelian varieties. In this thesis we use the Fourier-
Mukai functors in order to investigate geometric objects that are closely related to abelian
varieties: Kummer varieties (i.e. quotients of abelian varieties by the natural Z/2Z action
induced by the group operation) and maximal Albanese dimension varieties (varieties
which admit a generically finite morphism into an abelian variety). In particular we
analyzed three different problems:

- we investigated the syzygies of Kummer varieties unifying and enhancing results of
Sasaki ([S1]), Kempf ([K5]) and Khaled ([K6,K7]);

- we studied pluricanonical system on varieties of maximal Albanese dimension, im-
proving the work of Chen–Hacon ([CH2, CH3]), Pareschi–Popa ([PP1]) and Jiang
([J1]);

- we employed the Fourier-Mukai transform in order the classification problem of ir-
regular varieties with given invariants.

The problem of projective normality and degree of defining equations of a curve C
embedded in the projective space by a very ample linear system |D| is very classical. In
[G1] Green realized that both questions are different faces of a wider problem about the
syzygies of C, and that this issue could be addressed by computing the cohomology of the
Koszul complex of certain vector bundles on C. More precisely the question is to calculate
the minimal degree of generators of the section algebra ROC(D) := ⊕nH0(C,OC(nD)) over
SOC(D) := Sym•(H0(C,OC(D)). The techniques presented in [G1] work in any dimension
and in the last three decades a lot of work has been done to extend Green’s work (see, for
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viii Introduction

example [G2,G3,GL2,GL1,EL1] and the very recent preprint [EL3]). For what it concerns
abelian varieties, the results obtained in the 70s by Koizumi ([K8]) and Mumford ([M3])
were recently generalized to higher syzygies by Kempf ([K2]), Pareschi [P1], Pareschi–Popa
([PP3]) and Lazarsfeld–Pareschi–Popa [LPP].

A Kummer variety KA is quotient of abelian variety A by the action of the involution
(−1)A : A→ A defined by a 7→ −a. Since ample line bundles on Kummer varieties could be
easily described in terms of (even powers of) line bundels on the associate abelian varieties,
Kummer varieties present a deep affinity with abelian varieties. In the second Chapter
of this thesis we use this special kinship in order to extend to higher syzygies the results
on projective normality and degree of defining equations of Kummer varieties obtained in
the 90s by Sasaki, Kempf and Khaled. For a more precise account of these achievements
we invite the reader to look over the introduction to Chapter 2; in fact the statements
are somewhat thechnical and we deemed it better to postpone their presentation after
having explained all the terminology involved. The main ideas behind the proofs is to
“pull back” the problem on the Kummer to a problem on the abelian variety A and then
use the machinery granted by the Fourier-Mukai transform in order to solve it.

While in Chapter 2 we brought in to play integral transforms in order to study a
quotient of an abelian variety, in the second and third Part of this thesis, we considered
the triple given by a smooth complex projective variety X, its Albanese variety Alb(X),
i.e. the dual torus to H1(X,OX)/H1(X,Z), and its Albanese morphism

albX : X → Alb(X).

Thus if previously we used the Fourier-Mukai transform in order to investigate the prop-
erties of sheaves pulled back from a variety KA, now we will concentrate on sheaves pushed
forward to an abelian variety. In both second and third Part of this thesis we focus our
attention on varieties of maximal Albanese dimension (i.e. varieties whose Albanese map
is generically finite into its image), heeding, in particular, to those of general type, whose
canonical line bundle is big by definition. Thus, when m is an integer large enough and
divisible (meaning that H0(X,ω⊗mX ) 6= 0), the rational map induced by the m-canonical
linear system is birational. In this case it is usually said, by a slight abuse, that the
m-canonical linear system itself is birational.

One of the main issues about varieties of general type is an effectiveness problem that
arises every time we have to deal with quantities that are “big enough”. In fact it is very
natural to ask onself if a bound can be found for such numbers. Hacon and McKernan
in [HM], and indipendently Takayama [T1], proved that in any dimension there exists a
bound m0 depending only on the dimension of X, for which the m-pluricanonical map is
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birational for every divisible m ≥ m0. For what it concerns curves this bound is 3, and
this result is an easy consequence of Riemann–Roch Theorem. Bombieri [B3] showed that
m0 = 5 is the optimal bound for surfaces. As the dimension grows, the situation gets
more and more complicated and still there are many open problems. For example, we cite
the work of Chen–Chen who proved that 73 is a bound for threefolds, but it is not know
if this is optimal. Some results on 4-folds were discovered by Di Biagio in his Ph-D thesis
[D2,D1]

The study of m-canonical map of irregular varieties was started by Chen and Hacon
who in [CH3] proved that, in case of varieties of maximal Albanese dimension, the de-
pendecy on the dimension of Hacon–McKernan was linear. However, in a later paper,
[CH2] they realized that it was non existent, that is some bound can be found (3 for
varieties with positive Euler characteristic, 6 for every other varieties) that worked in any
dimension. The same results were later found again by Pareschi and Popa ([PP1]) as a
consequence of the Fourier-Mukai based thecniques ideated in [PP2]. Jiang in [J1] proved
that the 5-canoncial map for varieties of maximal Albanese dimension is always birational,
lowering by one the bound of Chen–Hacon. In addition he demonstrated that, even when
the variety Z is of intermediate Kodaira dimension the pluricanonical linear system |mKZ |
induces the Iitaka fibration for every m ≥ 5, shifting the attention from varieties of general
type to varieties of any Kodaira dimension.

In Chapter 3 we studied the tetracanonical map and showed that, in the case of va-
rieties of general type, it is always birational. However this result is not sharp, and in
Chapter 4 we presents an improvement of its obtained in collaboration with Z. Jiang and
M. Lahoz ([JLT]). Namely we were able to prove that the tricanonical map of varieties of
general type and maximal Albanese dimension is birational; furthermore, indipendently
from the Kodaira dimension, the 4-canonical map of varieties of maximal Albanese di-
mension induces the Iitaka fibration. We remark that both achievements are sharp: infact
the bicanonical map of desingularizations of irreducible principal polarizations is not bira-
tional and, in addition, we were able to produce an example of variety of maximal Albanese
dimension and intermediated Kodaira dimension whose tricanonical map could not induce
the Iitaka fibration.

The second issue related to irregular varieties is the classification problem. It is well
known that the holomorphic Euler characteristic of varieties of maximal Albanese di-
mension is non-negative. Ein–Lazarsfeld ([EL2]) proved that if the Euler characteristic
of X, χ(X), is zero, then the Albanese image of X is fibered in tori. Augmenting the
Euler characteristic by one, we find the first examples of varieties of maximal Albanese
dimension whose Albanese image is not fibered in translates of abelian subvarieties of
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Alb(X): smooth models of (irreducible) theta divisor in principally polarized abelian va-
rieties. An interesting line of research started by Ein–Lazarsfeld ([EL2]) and later pursuit
by Hacon ([H]), Hacon–Pardini ([HP1]), Lazarsfeld–Popa ([LP]), Barja–Lahoz–Naranjo–
Pareschi ([BLNP]) and Pareschi ([P2]), consists in characterizing smooth models of theta
divisors by their birational invariants. The next step along the road of better compre-
hension of varieties of maximal Albanese dimension and Euler characteristic one would be
to provide a similar description for products of irreducible theta divisors. In this setting
Pareschi conjectured the following

A complex smooth projective variety X of maximal Albanese dimension such
that χ(X,ωX) = 1 and its Albanese image is not fibered in tori is birational to
a product of theta divisors.

The above statement holds for surfaces, thank to the work of Beauville ([B1]), who proved
that a surface S with irregularity q(S) = 1 and χ(S) = 1 is a product of genus 2 curves,
Pirola ([P3]) and Hacon–Pardini ([HP2]) who studied surfaces S with χ(S) = 1 and
q(S) = 3. The conjecture is also known to be true for highly irregular varieties thank to
[HP3] where the authors proved that the irregularity q(X) := h1(X,OX) of a varieties as
above satisfies the inequality

q(X) ≤ 2 dimX

and equality holds if and only if X is birational to a product of curves of genus 2. If
Pareschi’s conjecture were proved to be true it will reduce the problem of (birational)
classification of varieties of maximal Albanese dimension and χ = 1 to the study of va-
rieties whose Albanese image is not of general type. Moreover, it could lead to a better
understandig of those varieties whose bicanonical map is not birational, completing the
work of Barja–Lahoz–Naranjo–Pareschi ([BLNP]) and Lahoz ([L1]).

In the last Part of this thesis we study smooth complex projective varieties X of maxi-
mal Albanese dimension with Albanese image not fibered in subtori of Alb(X) and whose
Euler charecteristic is equal to one, proving some partial results that hopefully will lead to
the resolution of Pareschi’s conjecture. In particular, we find that the Albanese morphism
of such varieties is always birational and we used this fact to give a new cohomological
characterization of Θ divisors under the further hypothesis of the Albanese image of X
being normal (again, since this last result is a bit technical we invite the reader to the
introduction to the Chapter 5 for the complete statement).
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Notation:

Through out this thesis we work on an algebraically closed field k; restrictions to the
characteristic or to the field itself will be announced when needed. Unless otherwise stated,
with the word “variety” we will mean a projective variety over k and a “sheaf” F on X

will always stand for a coherent sheaf. The abelian category of coherent sheaf on X will
be denoted with Coh(X), while D(X) will be the bounded derived category of complexes
of coherent sheaves on X, i. e. D(X) := Db(Coh(X)).

Given F a sheaf on X, its cohomology groups will be denoted by H i(X,F ), or simply
H i(F ) when there is no chance of mistaking the variety X. By hi(X,F ) (or simply
hi(F )) we will mean the dimension of H i(X,F ) as k-vector space.

Let x ∈ X, by k(x) we denote the skyscraper sheaf at x. Given F a coherent sheaf on
a variety X, and V a subspace of H0(X,F ), we will denote by Bs(V ) the base locus of V
i.e. the locus of points x ∈ X where the map

V ⊗ k(x)→ F ⊗ k(x)

fails to be surjective. If V ' H0(X,F ) we will call Bs(V ) the base locus of F and we
will denote it by Bs(F ). The reader could find a more accurate list of the symbols used
in this thesis at the end of this document, just before the index.
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CHAPTER 1

GENERIC VANISHING: BACKGROUND MATERIAL

We expose here some basic results in use throughout the thesis. Moreover, at the
beginning of each Chapter, the reader will find more preliminary material.

1.1 Fourier-Mukai Functors

One of the main technical tools applied in this thesis is the Fourier-Mukai functor
introduced by Mukai in [M1] in order to study moduli space of deformations of Picard
sheaves. It is constructed as follows: given A an abelian variety of dimension q and Â

its dual, one can consider PA (or simply P when there is no chance of confusion) the
Poincaré line bundle on the product A× Â and build the exact functor:

(1.1.1) RSA := Rq∗(p∗(·)⊗P) : D(A) −→ D(Â)

where p and q are respectively the left and right projection from A× Â. Mukai’s inversion
thoeorem [M1, Theorem 2.2] tells us that this functor is an equivalence of triangulated
categories with a quasi-inverse given by his twin functor,

RŜA := Rp∗(q∗(·)⊗P),

composed with the exact equivalence (−1A)∗[+q], where the map −1A : A → A is the
“multiplication by -1” in the abelian variety, and [·] stands, as usual, for the shift functor
in a triangulated category. In fact the followings composition formulas hold:

(1.1.2) RSA ◦RŜA ' (−1A)∗ ◦ [−q], RŜA ◦RSA ' (−1 bA)∗ ◦ [−q];

A key point of the proof is the remark that RSA(OA) ' k(0̂)[−q].

1



2 1. Generic Vanishing: Background Material

Often in the sequel, when there is no chance of confusion about the variety A, we will
write just RS or RŜ instead of RSA or RŜA.

Denote with RiS(F ) (respectively RiŜ(F )) the i-th cohomology group of the complex
RS(F ) (respectively RŜ(F )). Then we can define the followings

Definition 1.1.1 ([M1, Definition 2.3]). We say that Weak Index Theorem (in brief
W.I.T.) holds for an object F in D(A) if the RiSA(F ) vanish for all but one i; this i is
denoted by i(F ) and called index of F , the coherent sheaf Ri(F )SA(F ) is denoted by
F̂ and is called the Fourier-Mukai transform of F . By W.I.T.(j) we denote the class of
objects in D(A) that satisfies W.I.T. with index j.

We say that Index Theorem (in brief I.T.) holds for a coherent sheaf F on A if for any
α ∈ Â and all but one i we have

hi(A,F ⊗ α) = 0.

By I.T.(j) we will mean the set of coherent sheaves on A that satisfies I.T. with index j.

It can be proved using base change that a sheaf F satisfies I.T. with index i if and
only if it satisfies W.I.T. with index i and its transform F̂ is a vector bundle.

A very nice example of the use of the Fourier-Mukai functor in order to study sheaves on
abelian varieties is the following cohomological characterization of principal polarizations,
due to Hacon, tha we will be needing afterwards.

Proposition 1.1.2 ([H, Proposition 2.2]). Let A be an abelian variety and F a torsion
free sheaf of rank 1 (i. e. F ' I ⊗ L with L a line bundle and I and ideal sheaf).
Suppose that F satisfies I.T. with index 0 and that its Euler characteristic is 1. Then F

is a line bundle with h0(X,F ) = 1 hence it is a principal polarization.

1.1.1 Relations with Other Functors

In this paragraph we report some results of [M1, Section 3] that show the behavior of
RS and RŜ with respect to other classical functors of algebraic geometry. Before going
further we introduce a piece of notation: from now on, given a topologically trivial line
bundle α on A, the symbol [α] will stand for the point of Â parametrizing α (via P.), i. e.
α 'PA×[α]. Let p ∈ A a point, by tp : A→ A we will denote the morphism “translation
by p” defined by x 7→ x+p. In a similar way we will define the morphism t∗[α] with [α] ∈ Â.
The topologically trivial line bundle P{p}× bA will be denoted by Pp.

Proposition 1.1.3 (Exchange of translation and tensor product). Given p ∈ A, there is
the following isomorphism of functors

RS ◦ t∗p ' (−⊗ P−p) ◦RS.
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Conversely if [α] ∈ Â we get

RS ◦ (−⊗ α) ' t∗[α] ◦RS

1.1.2 Generalized Fourier-Mukai Functors

After the first appearence of the Fourier-Mukai transform in 1981 a lot of work has
been done to study the behavior of this functor and to better understand his usage. The
first step in this investigation has been to extend this tool to a more general setting. In
fact, given two varieties X and Y , any object in E ∈ D(X × Y ) can substitute the role
of the Poincaré bundle P in Definition (1.1.1). What we get is an exact functor RΦE :
D(X) → D(Y ) that is called Integral transform with kernel E . Usually, in literature,
this functors are said to be Fourier-Mukai functors whenever they yield an equivalence of
categories.

In a sequence of articles (see for example [PP1, PP4, PP5, PP6]) Pareschi and Popa
studied a very special integral transform: given a variety X of dimension n with a non
trivial morphism to an abelian variety

a : X −→ A,

dimA = q one can consider the product X × Â. The line bundle Pa := (a × id)∗P on
X × Â is given and we may constuct the functor RΦPa . It is an easy consequence of
projection formula and base change that

(1.1.3) RΦPa ' RSA ◦Ra∗.

In what follows it will be necessary to consider the integral transform with kernel P−1
a .

Since by the “See-saw” Principle (see [M3][Cor. 6, pg. 54]) it is not difficult to show that

P−1 ' (1A ×−1 bA)∗P

we get

(1.1.4) RΦP−1
a
' (−1 bA)∗RΦPa .

Now for any smooth variety Z we may consider the dualizing functor

R∆Z := HomOZ (−, ωZ).

Again, when there will not be any chance of confusion, we will omit the subscript Z.
A key result of Grothendieck and Verdier explains the behaviour of R∆Z with re-

spect with the derived direct image functors. In the sequel, however, when we will refer
to Grothendieck duality we will mean the following statement that explains the mutual
relation between integral transforms and duality functors.
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Theorem 1.1.4 (Grothendieck duality, [PP6, Lemma 2.2]). Let X a smooth variety of
dimension n with a : X → A a non trivial morphism to an abelian variety· There is an
isomorphism of functors from D(X)→ D(Â)

R∆ARΦPa ' (−1 bA)∗RΦPaR∆X [n].

Applying both sides of the equality above to a given object F in D(X) and taking
cohomology sheaves of both complexes, we got the following isomorphisms of sheaves

(1.1.5) E xti(RΦPaF ,O bA) ' Rn+iΦP−1
a

R∆F

1.2 Cohomological Support Loci and GV-sheaves

In the previous Section we introduced integral transforms and explained their realations
with other functors; now we are able to present another fundamental tool we will be using:
sheaves that satisfy generic vanishing.

Definition 1.2.1 (Cohomological support loci). Given a sheaf F on X its i-th cohomo-
logical support locus with respect to a is :

V i
a (X,F ) := {[α] ∈ Â|hi(X,F ⊗ a∗α) > 0}.

As it happens for cohomology groups, when possible we will omit the variety X in the
notation above.

Example 1. If F is a sheaf on an abelian variety satisfying I.T. with index 0, then its
cohomological support loci V i

id(F ) are empty for every i ≥ 1.

An important invariant associated to this cohomological loci is the following:

Definition 1.2.2 ([PP5, Definition 3.1]). Given a coherent sheaf F on X, the generic
vanishing index of F with respect to a is

gva(F ) := min
i>0
{codim bA(V i(F ))− i}.

If the V i’s are empty for i > 0 then we say by definition that the generic vanishing index
of F is +∞. When F = ωX then gva(F ) is called the generic vanishing index of X (with
respect to a) and it is denoted by gva(X).

The class of sheaves whose generic vanishing index is greater or equal k is usually
denoted by GVk. A sheaf F whose generic vanishing index is non-negative is called GV -
sheaf (generic vanishing sheaf ). In literature, when F is a sheaf on an abelian variety A
with gvid(F ) ≥ 1, it is often said that F is Mukai regular or, in biref, M -regular. A well
known result of Green–Lazarsfeld provides us with many examples of generic vanishing
sheaves:
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Theorem 1.2.3 ([GL2]). Given X a smooth variety with a non trivial morphism a : X →
A to an abelian variety, then

gva(X) ≥ dim a(X)− dimX.

In particular, if X has maximal Albanese dimension, then ωX is a GV -sheaf.

The integral transform defined in paragraph 1.1.2 is a perfect instrument to study the
geometry of the generic vanishing loci. An example of such thing is the following result
that relates the “size” of the V i

a (F ) with the vanishing of the cohomology sheaves of the
transform R∆XF .

Theorem 1.2.4 (W.I.T. criterion, [PP6, Theorem A]). Let F be a sheaf on X and suppose
n = dimX. Then the following are equivalent:

(i) gva(F ) ≥ −k for k ≥ 0;

(ii) RiΦPa(R∆F ) = 0 for every i 6= n− k, . . . , n.

Observe that, by the above result, the generic vanishing index of a sheaf F is non-
negative if and only if the complex Ra∗(R∆F ) satisfies W.I.T. with index q. Thus
Theorem 1.2.4 provides us with a criterion (that we will call W. I. T. criterion) that will
help us to understand whether a sheaf satisfies the generic vanishing.

1.2.1 GV-sheaves

Now we focus on some features of generic vanishing sheaves. The second equivalent
condition of Theorem 1.2.4 tells us that the full transform of R∆XF is indeed a sheaf
concentrated in degree n = dim(X). In particular we have that the object Ra∗R∆F

satisfies W.I.T. with index n. Another peculiar property of GV -sheaves is stated in the
following Lemma.

Lemma 1.2.5 ([P2, Corollary 3.2]). Given F a GV -sheaf on X with respect to some map
a. Then

V d
a (F ) ⊆ · · · ⊆ V 1

a (F ) ⊆ V 0
a (F ).

The following Proposition provide two basic properties for its Fourier transform
̂Ra∗R∆F .

Proposition 1.2.6 ([P2, Proposition 1.6]). Let F a GV -sheaf on X with respect to a.
Then

(i) rk ̂Ra∗R∆F = χ(F )
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(ii) R∆ bA( ̂Ra∗R∆XF ) ' (−1 bA)∗RΦPa(F ).

Notation 1.2.1. In literature one may find the notation R̂∆F instead of the more cum-
bersome ̂Ra∗R∆F that we adopted. But in the sequel we will often need to track down
which map to A we are employing, hence we will stick to this heavier notation.

We conclude this section by stating another important property of GV -sheaves. We
recall the following definition

Definition 1.2.7. Let k a non-negative integer. A coherent sheaf F on a smooth projec-
tive variety is called and k-syzygy sheaf if it exists an exact sequence

0→ F → Ek → · · · → E1 → G → 0

with G another coherent sheaf and Ej , j = 1, . . . , k locally free sheaves.

Example 2. a) Any coherent sheaf is a 0-syzygy sheaf.
b) F is 1-syzygy if and only if it is torsion free.
c) F is 2-syzygy if and only if it it reflexive.

In [PP5] Pareschi and Popa used k-syzygy sheaves to describe the classes GVk when k
is positive, proving the following.

Theorem 1.2.8. The following are equivalent

(i) gva(F ) ≥ k;

(ii) ̂Ra∗R∆F is a k-syzygy sheaf.

As an immediate consequence we get

Theorem 1.2.9. Let F a GV sheaf on X. The following are equivalent:

(i) gva(F ) = 0;

(ii) the sheaf ̂Ra∗R∆F is not torsion free.

Thank to Theorem 1.2.8, combined with Evans–Griffith syzygy theorem ([EG]) Pareschi
and Popa were able to prove the following relation between the Euler characteristic of a
sheaf and its generic vanishing index.

Proposition 1.2.10 ([PP4, Corollary 4.1]). Let X a compact Khäler manifold of maximal
Albanese dimension and a : X → A a generically finite morphism whose image generates
A, then

χ(ωX) ≥ gva(ωX).



Part I

Syzygies of Projective Varieties

7





CHAPTER 2

SYZYGIES OF KUMMER VARIETIES

Let X an abelian variety, its associated Kummer variety KX is the quotient of X by
the natural (Z/2Z)-action induced by the morphism −1X : X → X defined by x 7→ −x.
Given a Kummer variety KX and an ample line bundle A on KX , a result of Sasaki ([S1])
states that A⊗m is very ample and the embedding it defines is projectively normal as soon
as m ≥ 2. Later Khaled ([K6]) proved that, under the same conditions, the homogeneus
ideal of KX is generated by elements of degree 2 and 3, while, if m ≥ 3 it is generated
only by quadrics; if, furthermore, we assume the A is a general very ample line bundle on
X, then the homogeneus ideal of KX is generated in degree less or equal 4 (for a complete
exposition of existing results conerning syzygies of Kummer varieties see Section 2.1.2). In
this Chapter we prove that these statements are particular cases of more general results
on the syzygies of the variety KX .

More precisely, let Z an algebraic variety over an algebraically closed field k and let
A an ample invertible sheaf on X, generated by its global sections. With RA we will
indicate the sections ring associated to the sheaf A :

RA :=
⊕
n∈Z

H0(Z,A ⊗n, )

while SA will be the symmetric algebra of H0(ZA ). The ring RA is a finitely generated
graded SA -algebra and as such it admits a minimal free resolution E•, i.e. an exact
complex

(2.0.1) E• = 0→ · · ·
fp+1−−−→ Ep

fp−→ · · · f2−→ E1
f1−→ E0

f0−→ RA → 0

where

(i) E0 = SA ⊕
⊕

j SA (−a0j), a0j ∈ Z, aij ≥ 2 since Z is embedded by a complete linear
system,

9
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(ii) Ei = ⊕jSA (−aij), aij ∈ Z, aij ≥ 0,

(iii) and Im(fp) ⊂ mEp−1 where m is the maximal homogeneus ideal of SA .

This resolution is unique in the sense that given E′• another minimal free resolution it
exists a graded isomorphism of complexes E• → E′• inducing the identity map on RA (see
[E1, Theorem 20.1]).

In order to extend classical results of Castelnuovo, Mattuck, Fujita and Saint-Donat
on the projective embeddings of curves, Green ([G1]) introduced the following

Definition (Property Np ). Let p a given integer. The line bundle A satisfies property
Np if, in the notations above,

E0 = SA

and

Ei = ⊕SA (−i− 1) 1 ≤ i ≤ p.

Pareschi ([P1]) extended the above condition as follows : we say that, given a non negative
integer r property N r

0 holds for A if, in the notation above, a0j ≤ 1 + r for every j (i. e.
the embedded variety is h-normal for every h ≥ 2+r). Inductively we say that A satisfies
property N r

p if N r
p−1 holds for A and apj ≤ p+ 1 + r for every j.

Green in [G1] proved that, if Z is a smooth curve of genus g and A a very ample line
bundle on Z then A satisfies Np if deg A ≥ 2g + 1 + p. He also conjectured that, if C is
a smooth non-hyperelliptic curve and KC is its canonical divisor, then

OC(KC) satisfies Np if and only if p < Cliff(C);

where Cliff(C) is the Clifford index of the curve(cfr. [E2, Section 9A]). Green’s conjecture
was recently proved for the general curve by Voisin ([V1,V2]), and for the general cover by
Aprodu–Farkas ([AF]). Farkas investigated syzygies of curves in order to evince geometrical
properties of the moduli sapces Mg and Mg (see for example [F1,F2]).

Another line of research started by [G1], is to see how to best extend Green’s results in
higher dimension. The case of surfaces has been challenged by Gallego and Purnaprajna
in a long series of articles starting in 1996. For a survey in this matter please see [GP].
The syszygies of the projective space were studied by Green in [G2], where he proved that
OPn(d) satisfies Np for d ≥ p ≥ 1, by Ottaviani–Paoletti ([OP]), who proved that OP2(d)
does not satisfy Np for 3d − 2 < p, and in the recent preprint [EL3], where the authors
studied the asymptoic behaviour of syzygies of projective varieties in general, and those of
Pn in particular, demonstrating some theorems conjectured in [OP]. For arbitrary smooth
varieties there is a general conjecture of Mukai and in [EL1] Ein–Lazarsfeld proved that,
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if Z is of dimension n, denoting by ωZ its canonical line bundle on Z, then for any L

ample on Z the sheaf
A := ωZ ⊗L ⊗(n+1+d)

satisfies Np for every d ≥ p ≥ 1.
Abelian varieties distinguish themselves among other smooth varieties since, at least

for what it concerns their syzygies, they tend to behave in any dimension like elliptic
curves. More precisely, Koizumi ([K8]) proved that, given A ample on an abelian variety
X, then for m ≥ 3, A ⊗m embeds X in the projective space as a projectively normal
variety. Furthermore, a classical theorem of Mumford ([M3]), perfectionated by Kempf
([K2]), states that the homogeneus ideal of X is generated in degree 2 as long as m ≥ 4.
These results inspired Lazarsfeld to conjecture that A ⊗m satisfies Np for every m ≥ p+3.
In [K3] Kempf proved that A ⊗m satisfies condition Np as soon as m ≥ max{3, 2p+ 2}. A
generalized version of Lazarsfeld’s conjecture, involving property N r

p rather than simply
Np, was proved in [P1]; later in [PP3] Pareschi–Popa were able to recover and improve
Pareschi’s statements as a consequence of the powerful, Fourier-Mukai based, theory of
M -regularity that they developed in [PP2].

Given the results on projective normality and degree of defining equations of Sasaki
and Khaled, and the close relationship between abelian varieties and Kummer varieties,
it was natural to conjecture that even for the latter could be found a bound m0(p, r),
independent of the dimension of KX such that A ⊗m satisfies N r

p for every m ≥ m0(p, r).
In this Chapter we present some results in this direction. The main idea behind the proofs
is that ample line bundles on Kummer variety KX have a nice description in terms of
ample line bundles on X. More precisely, denoting by πX : X → KX the quotient map,
then for every A ample on KX it exists A ample on X such that π∗XA ' A ⊗2. Hence we
can use Pareschi–Popa machinery to find some results on A ⊗2m and then study how the
Z/2Z action fits in the frame. Below we list the main achievements we obtained.

Theorem 2.A. Fix two non negative integers p and r such that char(k) does not divide
p+ 1, p+ 2. Let A an ample line bundle on a Kummer variety KX , then

(a) A⊗n satisfies property Np for every n ∈ Z such that n ≥ p+ 2.

(b) More generally A⊗n satisfies property N r
p for every n such that (r + 1)n ≥ p+ 2.

Since it consists in an improvement of existings results on the degree of defining equa-
tions of Kummer varieties it is worth to emphasize individually the case p = 1 of the above
statement. Thank the geometric meaning of property N r

p (Section 2.1.1) one can deduce
the following:

Particular Case 2.B. Let A a very ample line bundle on a Kummer variety KX , then
the ideal of the image ϕA(KX) in P(H0(X, A)) is generated by forms of degree at most 4.
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This result was classically known to be true, thank to the work of Wirthinger,
Andreotti–Mayer and Khaled, just when A was a general very ample line bundle on KX .

Adding one hypothesis about the line bundle A we can get a somewhat better result
improving the work of Kempf and Khaled; namely:

Theorem 2.C. Let p and r be two integers such that p ≥ 1, r ≥ 0 and char(k) does not
divide p + 1, p + 2. Let A an ample line bundle on a Kummer variety KX , such that its
pullback π∗XA ' A ⊗2 with A an ample symmetric invertible sheaf on X which does not
have a base divisor. Then

(a) A⊗n satisfies property Np for every n ∈ Z such that n ≥ p+ 1.

(b) More generally A⊗n satisfies property N r
p for every n such that (r + 1)n ≥ p+ 1.

Again, it is worth of single out the case p = 1 of the above Theorem, concerning the
equations of the Kummer variety KX .

Particular Case 2.D. Suppose that char(k) does not divide 2 or 3 and let A an ample
invertible sheaf on KX such that π∗XA ' A ⊗2 with A without a base divisor. Then

(a) If n ≥ 2 then the ideal IKX ,A⊗n of the embedding ϕA⊗n is generated by quadrics.

(b) IKX ,A is generated by quadrics and cubics.

The key point of the proofs of Theorems 2.A and 2.C will be to reduce the problem
on the Kummer variety KX to a different problem on the abelian variety X. Namely we
will show that property N r

p on the Kummer is implied by the surjectivity of a map of the
type:

(*)
⊕

[α]∈bU
H0(X, F ⊗ α)⊗H0(X, H ⊗ α) mα→ H0(X, F ⊗H ⊗ α)

where F and H are sheaves on X and Û is a non empty open subset of X̂, the abelian
variety dual to X and mα is just the multiplication of global sections. Criteria for the
surjectiviy of such maps are implicit in Kempf’s work ([K3,K4]), for the case F a vector
bundle and H a line bundle (for an explicit argument due to Lazarsfeld see [P1]). These
results had been improved and extended to general coherent sheaves by Pareschi–Popa in
[PP3].

This Chapter is organized in the following manner: in the next section we expone some
background material such us the relationship between proprerty N r

p and the cohomology
of the Koszul complex and a useful criterion for the surjectivity of a map of type (*). In
Section 3 we present some slightly modified version of results of Sasaki and Khaled. The
last section is entirely devoted to the proof of the main theorems.
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2.1 Background Material

2.1.1 Property Nr
p and Koszul Cohomology

In this first section we review some well known relations between property Np, or more
generally property N r

p , and the surjectivity of certain multiplication maps of sections of
vector bundles.

Let Z a projective variety and be L an ample invertible sheaf on Z. We begin by
stating a well known result of homological algebra:

Proposition 2.1.1 ([E2, Proposition I.1.7]). Let S = k[x0, . . . , xn] a polynomial ring and
let E : · · · → E1 → E0 the minimal free resolution of a finitely generated S-module M .
Then if S is any minimal set of homogeneus generators of Ei, then the set

Sj := {s ∈ S | s has degree j} ⊆ S

has cardinality dimk TorSi (k,M)j.

An immediate corollary of this is

Corollary 2.1.2. Fix p and r non negative integers. Given L an a very ample line bundle
on a projective variety Z, it satisfies property Np (N r

p ) if

(i) TorSL0 (k,RL)j = 0 for every j ≥ 1 (for every j ≥ r + 3),

(ii) TorSLp (k,RL)j = 0 for every j ≥ p+ 2 (for every j ≥ r + p+ 2).

Using this fact and computing the above Tor groups via the Koszul resolution of the
field k, Green observed (see for example, [G1, Thm. 1.2], [G3, Thm. 1.2], or [L2, p. 511])
that condition Np is equivalent to te exactness in the middle of the complex

(2.1.1)
p+1∧

H0(L)⊗H0(L⊗h)→
p∧
H0(L)⊗H0(L⊗h+1)→

p−1∧
H0(L)⊗H0(L⊗h+2)

for any h ≥ 1. More generally, condition N r
p is equivalent to exactness in the middle of

(2.1.1) for every h ≥ r + 1. Suppose L generated by its global sections and consider the
following exact sequence:

(2.1.2) 0→ML −→ H0(L)⊗ OZ −→ L→ 0.

Taking wedge product, for any p one gets the following exact sequence

(2.1.3) 0→
p+1∧

ML −→
p+1∧

H0(L)⊗ OZ −→
p∧
ML ⊗ L→ 0.
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It follows (for details cfr. [L2] or [EL3]) that property N r
p is implied by the surjectivity

of

(2.1.4)
p+1∧

H0(L)⊗H0(L⊗h) −→ H0

(
p∧
ML ⊗ L⊗h+1

)

for any h ≥ r + 1, where (2.1.4) was obtained by twisting (2.1.3) by L⊗h and taking
cohomology. Thus from (2.1.3) it follows that if

(2.1.5) H1(Z,
p+1∧

ML ⊗ L⊗h) = 0,

then for any h ≥ r+ 1, then condition Np is satisfied. If char(k) does not divide p,
∧p E is

a direct summands of E ⊗p for any vector bundle E . Therefore we are led to the following
Lemma:

Lemma 2.1.3. Assume that char(k) does not divide p and p+ 1.

(a) If H1(Z, M⊗p+1
L ⊗ L⊗h) = 0 for any h ≥ r + 1 then L satisfies N r

p .

(b) Let W ⊆ H0(Z, L) be a free sublinear system and denote by MW the kernel of
the evaluation map W ⊗ OZ → L. Assume that H1(Z, M⊗pW ⊗ L⊗h) = 0, then
H1(Z, M⊗p+1

W ⊗ L⊗h) = 0 if and only if the multiplication map

W ⊗H0(M⊗pW ⊗ L
⊗h) −→ H0(M⊗pW ⊗ L

⊗h+1)

is surjective.

Proof. The proof of (a) is straightforward, while (b) follows from the following exact
sequence:

0→M⊗p+1
W ⊗ L⊗h −→W ⊗M⊗pW ⊗ L

⊗h −→M⊗pW ⊗ L
⊗h+1 → 0.

Property Nr
p for Small p’s’

By definition , if a variety Z is embedded in a projective space by a very ample line
bundle L satisfying property N r

0 , then the variety Z is h-normal for every h ≥ r. Hence
property N0 is equivalent to projective normality.

For p = 1 property N r
p carries information of geometric nature since it returns intel-

ligence about the equations of the embedding of the variety Z. More specifically, we can
prove the following result that will allow us to deduce Particular Case 2.B and Particular
Case 2.D from the main theorems.
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Proposition 2.1.4. If L is a very ample line bundle on an algebraic variety Z satisfying
N r
p , then the homogeneus ideal of Z is generated by homogeneus elements of degree at most

r + 2.

Proof. Denote by V the vector space H0(Z, L) and let SkV be the component of degree
k of the symmetric algebra of V , S. Consider furthermore the two S-modules

I =
⊕

H0(P(V ), IZ,L(k))

and RL and take a look to the following commutative diagram where the middle column
is given by the Koszul complex.

Sk−1V ⊗
∧2 V

(3) //

��

H0(Z, ML ⊗ L⊗k)

��
0 // Ik ⊗ V

(1)

��

// SkV ⊗ V
(2)

��

// {RL}k ⊗ V //

��

0

0 // Ik+1
// Sk+1V // {RL}k+1

// 0

Our aim is to see that the map (1) is surjective for every k ≥ r + 2. Suppose that L
satisfies property N r

1 , then in particular property N r
0 holds for L and the second and third

row are exact for every k ≥ r + 1. Since (2) is surjective, by the Snake Lemma, for every
k ≥ r + 1 the surjectivity of (1) is implied by the surjectivity of (3) for every k ≥ r + 2.
Now we can factor (3) in the following way:

Sk−1V ⊗
∧2 V

(3) //

g
))SSSSSSSSSSSSSSS

H0(Z, ML ⊗ L⊗k)

H0(Z, L⊗k−1)⊗
∧2 V

f

44jjjjjjjjjjjjjjjj

where g is the canonical mapping H0(P(V ), OP(k − 1)) −→ H0(Z, L⊗k−1) and f is the
map in (2.1.4). For every k ≥ r + 2, g is surjective because L satisfies N r

0 , while the
surjectivity of f is equivalent to property N r

1 ; hence (3) is surjective.

2.1.2 Kummer Varieties: Definition, Projective Normality and Equa-

tions

Let X an abelian variety over a field k, with char(k) 6= 2. As usual we denote by
−1X : X −→ X the morphism given by x 7→ −x. We recall that the Kummer variety
associated to X, denoted with KX , is the quotient variety

KX := X/ < −1X > .

By πX : X −→ KX we will mean the canonical map to the quotient.
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2.1.3 Line Bundles on Kummer Varieties

In this paragraph we recall some basic fact on symmetric sheaves and on line bundles
on Kummer varieties. This part of the thesis, as well as any other passage in this section,
is of expository nature: a complete treaty of the results here presented can be found in
[M2, pp. 303-305].

We recall that an invertible sheaf L on an abelian variety X is called symmetric when

(−1X)∗L ' L

Thus, take L a symmetric line bundle on X and fix ψ an isomorphism

ψ : L
∼−→ (−1X)∗L ;

then for all x ∈ X closed points, ψ induces an isomorphism

ψ(x) : L (x)→ L (−x).

Therefore it is possible to canonically normalize ψ by requesting that the map ψ(0) is the
identity.

Definition 2.1.5. The canonical isomorphism arised from the above consturcion is de-
noted by ψL and it is called Mumford’s normalized isomorphism of L

Remark that for every x ∈ X point of order 2, ψL induce an involution e(x) on L (x).

Definition 2.1.6. The line bundle L is totally symmetric if e(x) is the identity for every
2-torsion point.

Example 3. An even power of a symmetric line bundle is always totally symmetric.

A converse to this example holds for ample line bundles:

Proposition 2.1.7. Let L a totally symmetric ample invertible sheaf on an abelian va-
riety X, then L ' A ⊗2 with A an ample symmetric invertible sheaf on X.

This statement is classical and well known. A proof of its is implicit in [S1, Proof of
Lemma 1.2]. We include our own proof for the reader’s benefit. We will need the following
two statements about totally symmetric line bundles.

Lemma 2.1.8 (Properties of totally symmetric line bundles). (i) Let L an ample to-
tally symmetric invertible sheaf of type δ = (d1, . . . , dg) on an abelian variety X of
dimension g. The group

K(L ) := Ker
(
x 7→ t∗xL ⊗L −1

)
contains all the points of order 2 of X. Hence all the di’s are even.
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(ii) If L1 and L2 are two totally symmetric line bundles such that they are algebraically
equivalent, then L1 ' L2.

Proof. Part (i) is Corollary 4 p. 310 in [M2] while part (ii) is explained at p. 307 of the
same paper.

Proof of Proposition 2.1.7. By the Lemma 2.1.8(i) we have that L ' M⊗2 with M an
ample line bundle on X. If M is already symmetric there is nothing to prove. Thus we
can suppose that M is not symmetric. Now consider α a topologically trivial line bundle
such that α⊗2 ' (−1X)∗M ⊗M⊗−1 (it exists because Pic0(X) is an abelian variety and
therefore a divisible group ([M3, (iv) p. 42])). The invertible sheaf A := M ⊗ α is
symmetric. In fact we have

A ⊗ (−1X)∗A ⊗−1 'M ⊗α⊗ (−1X)∗(M⊗−1⊗α⊗−1) ' α⊗2⊗M ⊗ (−1X)∗M⊗−1 ' OX .

Therefore the sheaf A ⊗2 is totally symmetric and algebraically equivalent to L . Since
also L is totally simmetric the statement follows for Lemma 2.1.8(ii).

Proposition 2.1.9 ([M2, Proposition 1 page 305]). Let L be an invertible sheaf on an
abelian variety X and consider the associated Kummer vairety πX : X → KX . Then L is
of the form π∗XM with M some line bunlde on KX if and only if it is totally symmetric.

Now take L a symmetric invertible sheaf on X. The Z/2Z action on X given by
the involution −1X : X −→ X induces trough ψL a lifting of the action on L . The
composition

H0(X, L )
(−1X)∗ // H0(X, (−1X)∗L )

(−1X)∗(ψL ) // H0(X, L )

is denoted by [−1]L , or simply by [−1] when there is no chance of misinterpretation, and
it is an involution of H0(X, L ) and admits just 1 and -1 as eigenvalues. We define

H0(X, L )± = {s ∈ H0(X, L ) such that [−1]L s = ±s}

If L is totally symmetric, by Proposition 2.1.9 then it exists a line bundle M on the Kum-
mer variety KX such that π∗XM ' L and one can identify H0(KX , M) with H0(X, L )+.

Notation 2.1.1. From now till the end of this chapter, in order to lighten the notation, we
will use the letter i to denote the map (−1)X .
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2.1.4 Projective Normality and Equations

If A is an ample invertible sheaf on KX generated by its global sections, one may
wonder about the “good” properties enjoyed by the morphism

ϕ|A⊗n| : KX −→ P(H0(KX , An))

associated to the complete linear system |An|, n ∈ N∗. In this paragraph we review
some known results on very ampleness, projective normality and bound of the degree of
equations of Kummer varieties.

For example, a well known fact (cfr. [BL, Proposition 4.8.1]) says that, if π∗XA = 2θ
with θ a principal polarization on X, then A is very ample, i.e. ϕ|A| is an embedding. For
what it concerns projective normality, we have the following results.

Theorem (Sasaki, Khaled). In the above notation

(ii) A⊗n is very ample and normally generated, (i. e. the embedding induced by |A⊗n|
is projectively normal) for every n ≥ 2;

(i) If A is very ample, then it is normally generated if and only if, after writing π∗A '
A ⊗2 with A ample and symmetric on X, 0X /∈ Bs(H0(X,A ⊗ α)+) for every
[α] ∈ X̂ of order 2.

Th first part of the above Theorem is due to Sasaki ([S1]), while the second was proved
by Khaled in [K7]. The degree of generators of the homogeneous ideals of KX was studied
by Kempf and Khaled who proved the following statements.

Theorem. In the notation above.

(i) Let θ and A be respectively a principal polarization on the abelian variety X, and a
line bundle on KX such that π∗XA ' 2θ. Then A⊗2 is normally generated and the
homogeneous ideal associated to the embedding ϕA ⊗2 is generated by its components
of degree two and three.

(ii) If n ≥ 3, then the ideal of KX in the embedding given by A⊗n is generated by forms
of degree 2.

(iii) The image homogeneus ideal associated to ϕA⊗2 is generated in degree two and three.

(iv) If A very ample and normally generated, then the ring⊕
n∈N

H0(KX , A⊗n)

is generated by H0(KX , A) modulo quadric, cubic, and quartic relations.
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Proof. The first part of the statement is proved in [K5]. For the others please see [K6].

In [B2] Beauville proved that part (i) of the above Theorem is sharp:

Proposition ([B2, Proposition 3.2]). Let (X,Θ) an indecomposable principally polarized
abelin variety and consider ϕ|2Θ| the morphism associated to the complete linear system
|2Θ|. The ideal I|2Θ| of ϕ|2Θ|(X) in P(H0(X, OX(2Θ)) cannot be genereted by its elements
of degree ≤ 3.

2.1.5 M-regular Sheaves and Multiplication Maps

M -regular sheaves and M -regularity theory, introduced by Pareschi-Popa and reviewed
in the first Chapter of this thesis, are crucial to our purpose thank to their application in
determining whether a map of the form

(2.1.6)
⊕

[α]∈U

H0(X, F ⊗ α)⊗H0(X, H ⊗ α∨) mα−→ H0(X, F ⊗H ),

with F and H sheaves on an abelian variety X and U ⊆ X̂ an open set, is surjective. We
will list below all the results of such kind that we will be using troughout the paper. The
first one is an extension of a theorem that had already appeared in the work of Kempf,
Mumford and Lazarsfeld.

Theorem 2.1.10 ([PP2], Theorem 2.5). Let F and H be sheaves on X such that F is
M -regular and H is locally free satisfying I.T. with index 0. Then (2.1.6) is surjective
for any non empty Zariski open set U ⊆ X̂.

An easy corollary of the above result is stated below.

Corollary 2.1.11. If F and H satisfy the hypothesis of the above Theorem, then there
exists N a positive integer such for the general [α1], . . . , [αN ] ∈ X̂ the map

N⊕
k=1

H0(X, F ⊗ αk)⊗H0(X, H ⊗ α∨k )
mαk // H0(X, F ⊗H )

is surjective.

We conclude this paragraph by presenting two results on multiplication maps of sec-
tions we will be needing afterward.

Proposition 2.1.12. Let A an ample line bundle on an abelian variety X. The map

(2.1.7) m : H0(X, A ⊗2)⊗H0(X, A ⊗2 ⊗ α) −→ H0(X, A ⊗4 ⊗ α).

is surjective for the general [α] ∈ X̂. If furthermore A does not have a base divisor, then
the locus Z ⊆ Pic0(X) in which it fails to be surjective has codimension at least 2.
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Proof. The first part of the statement is classical, for a reference see, for example [BL,
Proposition 7.2.2]. For what it concerns the second part, it was proved by Pareschi–Popa
([PP3]) as a consequence of their M -regularity techniques.

2.2 Multiplication Maps on Abelian Varieties

A well known result by Khaled states that

Proposition 2.2.1 ([K6]). Let A be an ample symmetric vector bundle on an abelian
variety X. Take k = 2n an even positive integer. Thus A ⊗k is totally symmetric and for
every n ≥ 1 and every h ∈ Z, h ≥ 3 the following map is surjective for every [α] ∈ Pic0(X)

m+
α : H0(X,A ⊗k)+ ⊗H0(X, A ⊗h ⊗ α) −→ H0(X, A ⊗k+h ⊗ α).

The main goal of this section is to prove that the same is true for every h = 2 and for
general α ∈ X̂. If furthermore we assume that A does not have a base divisor, then we
will show that the locus of [α] ∈ X̂ where

(2.2.1) m+
α : H0(X,A ⊗2n)+ ⊗H0(X, A ⊗2 ⊗ α) −→ H0(X, A ⊗2(n+1) ⊗ α)

fails to be surjective has codimension at least 2. We will do this by slightly modifying the
methods adopted by Khaled in [K6].

To this end, consider the isogeny

ξ : X ×X −→ X ×X

given by ξ = (p1 + p2, p1 − p2)

Lemma 2.2.2. For any [α] ∈ X̂ we have an isomorphism

ξ∗(p∗1(A ⊗ β))⊗ p∗2(A ⊗ α)
Φβα // p∗1(A ⊗2 ⊗ β ⊗ α)⊗ p∗2(A ⊗2 ⊗ β ⊗ α∨)

Proof. We will use the “See-saw” Principle: for any y ∈ X we have

ξ∗(p∗1(A ⊗ β)⊗ p∗2(A ⊗ α))|X×{y} ' t∗yA ⊗ t∗−yA ⊗ t∗yα∨ ⊗ t∗−yα '

' A ⊗2 ⊗ β ⊗ α.

Now we look at the restirction of ξ∗(p∗1(A ⊗ β)⊗ p∗2(A ⊗ α)) to {0} ×X and we get

ξ∗(p∗1(A ⊗ β)⊗ p∗2(A ⊗ α))|{0}×X ' A ⊗ β ⊗ i∗A ⊗ α) ' A ⊗2 ⊗ β ⊗ α∨;

hence the statement is proved.
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Notation 2.2.1. When [α] = [β∨] we wil denote Φβ
α simply by Φβ

Composing with the Künneth isomorphism we have a map

ξ∗ : H0(X, A ⊗ β)⊗H0(X, A ⊗ α) −→ H0(X, A ⊗2 ⊗ β ⊗ α)⊗H0(X, A ⊗2 ⊗ β ⊗ α∨).

Taking [α] = [β∨] we want to characterize the image ofH0(X,A ⊗ β)⊗H0(X,A ⊗ β∨)
in H0(X, A ⊗2)+ ⊗H0(X, A ⊗2 ⊗ β⊗2) through ξ∗.

In order to achieve this goal, we consider the following two automorphisms of X ×X

� iL = (−p1, p2). It induces the automorphism [−1]A ⊗2 ⊗ id on

H0(X, A ⊗2)+ ⊗H0(X, A ⊗2 ⊗ β⊗2);

for every section s ∈ H0(X, A ⊗2)⊗H0(X, A ⊗2 ⊗ β⊗2), we have that

s ∈ H0(X, A ⊗2)+ ⊗H0(X, A ⊗2 ⊗ β⊗2) ⇔ [−1]A ⊗2 ⊗ id(s) = s.

� τ̂ , the automorphism of X ×X defined by (−p2,−p1).

Now, for every [β] ∈ X̂ let

(2.2.2) ψβ : A ⊗ β −→ i∗A ⊗ β

be the isomorphism given by tensoring the normalized isomorhims of A , ψA , with the
identity of β. We denote by

ν̂ : p∗2i
∗(A ⊗ β)⊗ p∗1i∗(A ⊗ β∨) −→: p∗1(A ⊗ β)⊗ p∗2(A ⊗ β∨)

the isomorphism of sheaves defined by ν̂(p∗2i
∗t⊗ p∗1i∗s) = p∗1i

∗(ψβ)i∗s⊗ p∗2i∗(ψβ∨)i∗t. We
obtain the following diagram

H0(X ×X, p∗1(A ⊗ β)⊗ p∗2(A ⊗ β∨))

bτ
��

Künneth // H0(X, A ⊗ β)⊗H0(X, A ⊗ β∨)

bTA⊗β

��

H0(X ×X, p∗2i∗(A ⊗ β)⊗ p∗1i∗(A ⊗ β∨))

bν
��

H0(X ×X, p∗1(A ⊗ β)⊗ p∗2(A ⊗ β∨)) Künneth // H0(X, A ⊗ β)⊗H0(X, A ⊗ β∨)

Where T̂A⊗β is the involution defined by T̂A⊗β(s ⊗ t) = i∗(ψβ∨)i∗t ⊗ i∗(ψβ)i∗s. Let us
denote by

[H0(X, A ⊗ β)⊗H0(X, A ⊗ β∨)]±

the eigenspaces of
H0(X, A ⊗ β)⊗H0(X, A ⊗ β∨)

under the action of T̂A⊗β.
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Proposition 2.2.3. For every [α] ∈ X̂ we have

ξ∗[H0(X, A ⊗ β)⊗H0(X, A ⊗ β∨)]± ⊆ H0(X, A ⊗2)± ⊗H0(X, A ⊗2 ⊗ β⊗2).

Proof. We shall write H0(A ) instead of H0(X,A ). This proof is just a slight modification
of Khaled’s proof of [K7, Proposition 2.2]. First of all observe that the following diagram
commutes:

p∗1(A ⊗2)⊗ p∗2(A ⊗2 ⊗ β⊗2) p∗1i
∗(A ⊗2)⊗ p∗2(A ⊗2 ⊗ β⊗2)

p∗1(ψA⊗2 )⊗id
oo

ξ∗(p∗1(A ⊗ β)⊗ p∗2(A ⊗ β∨))

Φβ

OO

ξ∗(τ̂∗(p∗1(A ⊗β)⊗ p∗2(A ⊗ β∨)))
ξ∗(bν)oo

i∗L(Φβ)

OO

In fact it certainly commutes up to a costant. By looking at the diagram in the origin of
X ×X this costant can be shown to be 1. Thus we have the commutative diagram

H0(A ⊗2 � (A ⊗2 ⊗ β⊗2)) H0(i∗A ⊗2� (A ⊗2⊗ β⊗2))
p∗1(ψA⊗2 )⊗idoo H0(A ⊗2 � (A ⊗2⊗ β⊗2))

i∗Loo

H0(ξ∗((A ⊗ β)�(A ⊗β∨))

Φβ

OO

H0(ξ∗τ̂∗((A ⊗ β)�(A ⊗β∨))
ξ∗bνoo

i∗LΦβ

OO

H0(ξ∗((A ⊗ β)� (A ⊗β∨))
i∗Loo

Φβ

OO

H0((A ⊗ β)�(A ⊗β∨))

ξ∗

OO

H0(τ̂∗((A ⊗ β)�(A ⊗β))

ξ∗

OO

bνoo H0((A ⊗ β)�(A ⊗β∨))

ξ∗

OO

bτoo

Hence, composing with Künneth isomorphism we obtain another commutative diagram:

H0(A ⊗2)⊗H0(A ⊗2⊗β⊗2) H0(A ⊗ β)⊗H0(A ⊗β∨)
ξ∗oo

H0(A ⊗2)⊗H0(A ⊗2⊗β⊗2)

p∗1(ψA⊗2 )⊗id

OO

H0(A ⊗2)⊗H0(A ⊗2⊗β⊗2)

i∗L

OO

H0(A ⊗ β)⊗H0(A ⊗β∨)
ξ∗oo

bTA⊗β

OO

Therefore we have
ξ∗ ◦ T̂A⊗β = [−1]A ⊗2 ⊗ id ◦ ξ∗.

The statement follows directly.

Theorem 2.2.4. Let A an ample symmetric line bundle on X and take [α] ∈ X̂. Then
the multiplication map

m : H0(X, A ⊗2)⊗H0(X, A ⊗2 ⊗ α) −→ H0(X, A ⊗4 ⊗ α)

is surjective if and only if the following multiplication map is surjective

m+ : H0(X, A ⊗2)+ ⊗H0(X, A ⊗2 ⊗ α) −→ H0(X, A ⊗4 ⊗ α)
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Proof. The “if” part is strightforward. The proof of the “only if” part is a mix of Obuchi’s
proof of his Theorem about normal generation on abelian varieties (cfr. [O, Theorem])
and Khaled’s proof of his result about normal generation on Kummer varieties (cfr. [K7,
Theorem 2.3]).
The multiplication map

m : H0(X, A ⊗2)⊗H0(X, A ⊗2 ⊗ α) −→ H0(X, A ⊗4 ⊗ α)

is (as observed by Khaled) the composition of ξ∗ with the map id ⊗ eA ⊗4⊗α∨ , where
eA ⊗4⊗α∨ is the evaluation in 0 of the sections of A ⊗4 ⊗ α∨. Infact if we denote by
∆ : X → X ×X the diagonal immersion, then m is just ∆∗ composed with the Künneth
isomorphism. Now we can write ∆ = ξ ◦ f where f : X → X ×X is the morphism defined
by x 7→ (x, 0X). Now observe that, modulo Künneth isomorhism,

f∗ : H0(X,A ⊗4)⊗H0(X,A ⊗4 ⊗ α∨)→ H0(X,A ⊗4)

is exactly id⊗ eA ⊗4⊗α∨ . Hence m = ∆∗ = id⊗ eA ⊗4⊗α∨ ◦ ξ∗

Thus we can consider the following commutative diagram⊕
[β⊗2]=[α]

H0(A ⊗ β)⊗H0(A ⊗ β∨) ξ∗ //

2∗X⊗eA⊗β∨ **TTTTTTTTTTTTTTT

H0(A ⊗2)⊗H0(A ⊗2 ⊗ α)

m
uullllllllllllllllll

H0(A ⊗4 ⊗ α)

The upper arrow is an isomorphism by projection formula. In fact we have that

ξ∗OX×X '
⊕

[γ]∈ bX2

p∗1γ ⊗ p∗2γ.

Then we can write

H0(A ⊗2)⊗H0(A ⊗2⊗ α) ' H0(p∗1(A ⊗2)⊗ p∗2(A ⊗2 ⊗ α)) '

' H0(ξ∗(p∗1(A ⊗ β)⊗ p∗2(A ⊗ β∨))) '

' H0(ξ∗ξ∗(p∗1(A ⊗ β)⊗ p∗2(A ⊗ β∨))) '

' H0(p∗1(A ⊗ β)⊗ p∗2(A ⊗ β∨)⊗ ξ∗OX×X) '

'
⊕

[β⊗2]=[α]

H0(A ⊗ β)⊗H0(A ⊗ β∨).

Therefore the surjectivity of m is equivalent to the following

(†) 0 /∈ Bs(A ⊗ β∨) for every β ∈ X̂ such that β2 ' α,
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where, as usual Bs(A ⊗ β∨) stands for the base locus of A ⊗ β∨.
Now we shall prove that if (†) holds, then m+ is surjective. Thank to the Proposition

2.2.3 and the isomorphism

⊕
[β2]'[α]H

0(A ⊗ β)
2∗X // H0(A ⊗4 ⊗ α),

yielded by 2∗X and projection formula, it is enough to check that for every [β] satisfying
[β⊗2] = [α]

2∗X ⊗ eA⊗β∨(H0(A ⊗ β)⊗H0(A ⊗ β∨))+ = 2∗XH
0(A ⊗ β).

To this goal take s ∈ H0(A ⊗ β), we want to provide an element

σ ∈ (H0(A ⊗ β)⊗H0(A ⊗ β∨))+

such that
2∗X ⊗ eA⊗β∨(σ) = 2∗X(s)

Denote by λ the constant eA⊗β∨([i∗ψβ ◦ i∗](s)). If λ 6= 0, take

σ :=
1
λ
· (s⊗ [i∗ψβ ◦ i∗](s)).

Suppose, otherwise, that λ = 0; since (†) holds, it exist a t ∈ H0(A ⊗ β) such that
eA⊗β∨([i∗ψβ ◦ i∗](t)) = 1. Then, take σ to be the section

(s+ t)⊗ [i∗ψβ ◦ i∗] (s+ t)− t⊗ [i∗ψβ ◦ i∗](t) ∈ (H0(A ⊗ β)⊗H0(A ⊗ β∨))+.

Applying 2∗X ⊗ eA⊗β∨ to σ we get

2∗X ⊗ eA⊗β∨(σ) = 2∗X ⊗ eA⊗β∨ ((s+ t)⊗ [i∗ψβ ◦ i∗] (s+ t)− t⊗ [i∗ψβ ◦ i∗](t)) =

= 2∗X(s+ t) · 1− 2∗X(t) · 1 =

= 2∗X(s).

Therefore the statement is true.

Using the above Theorem and a well known facts about multiplication maps on abelian
varieties one is able to prove the following:

Corollary 2.2.5. 1. For every A ample symmetric invertible sheaf on X the multipli-
cation map

(2.2.3) m+ : H0(X, A ⊗2)+ ⊗H0(X, A ⊗2 ⊗ α) −→ H0(X, A ⊗4 ⊗ α)

is surjective for the generic [α] ∈ Pic0(X).
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2. If furthermore A does not have a base divisor, then the locus where (2.2.3) is not
surjective has codimension at least 2.

Proof. The statement follows directly from the Theorem 2.2.4 and the corresponding state-
ments (cfr. Proposition 2.1.12) about the map

m : H0(X, A ⊗2)⊗H0(X, A ⊗2 ⊗ α) −→ H0(X, A ⊗4 ⊗ α).

Now we are ready to challenge the result that is the main point of this paragraph.

Theorem 2.2.6. Let A be an ample symmetric invertible sheaf on X, then

1. there exist a non-empty open subset U ⊆ Pic0(X) such that for every h, n ∈ Z with
n ≥ 1 and and every α ∈ U the following map is surjective

(2.2.4) m+
α : H0(X,A ⊗2n)+ ⊗H0(X, A ⊗2 ⊗ α) −→ H0(X, A ⊗2n+2.⊗ α).

2. If furthermore A does not have a base divisor, then the locus Z in Pic0(X) where
(2.2.4) fails to be surjective has codimension at least 2.

Proof. We will apply pretty much the same techniques used by Khaled in [K6] in order to
prove Proposition 2.2.1. We will procede by induction on n, with base given by Corollary
2.2.5.

Case n > 1. Observe the following commutative diagram:

H0(X, A ⊗2)+⊗H0(X, A ⊗2(n−1))+⊗H0(X, A ⊗2 ⊗ α)
ϕα //

��

H0(X, A ⊗2)+⊗H0(X, A ⊗2(n−1)+2 ⊗ α)

ψα

��
H0(X, A ⊗2n)+⊗H0(X, A ⊗2 ⊗ α) mα

// H0(X, A ⊗2n+2 ⊗ α)

The locus of points in Pic0(X) where mα is not surjective is contained in the following
union

{[α] ∈ Pic0(X) | ϕα is not surjective} ∪ {[α] ∈ Pic0(X) | ψα is not surjective}.

Hence we have

codim{[α] |mα is not surjective} ≥

min{codim{[α] | ϕα is not surjective}, codim{[α] | ψα is not surjective}}

Since 2 + 2(n − 1) ≥ 3, by Proposition 2.2.1, ψα is surjective for every [α] ∈ X̂ and the
latter of the two sets above is empty. By inductive hypothesis,

codim{[α] ∈ Pic0(X) | ϕα is not surjective}
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is greater or equal to one, in the general case, to two, when A has not a base divisor,
therefore the Theorem holds.

2.3 Equations and Syzygies of Kummer Varieties

Putting together the results of the previous paragraphs, in this last Section we will
prove Theorem A and Theorem C.

First of all, observe that the case p = 0 of the Theorem A follows directly as a corollary
of Khaled’s work (cfr. Proposition 2.2.1). Thus, for what it follows we will always consider
p ≥ 1.

Our strategy in proving both Thoerem A and C will be using the part (b) of Lemma
2.1.3 and reduce the problem to checking the surjectvity of

(2.3.1) H0(KX , A⊗n)⊗H0(KX , M⊗pA⊗n ⊗A
⊗nh) −→ H0(KX , M⊗pA⊗n ⊗A

⊗n(h+1))

for every h ≥ r+ 1. Denoting with A an ample symmetric line bundle on X such that
A ⊗2 ' π∗A, we split the proof in several steps.

Step 1: Reduction to the surjectivity of

(2.3.2) H0(X, A ⊗2n)+ ⊗H0(X, π∗(MA⊗n)⊗p ⊗A ⊗2nh) −→ H0(X, π∗(MA⊗n)⊗p ⊗A ⊗2n(h+1))

Our first aim will be to show that if the map (2.3.2) is surjective, then (2.3.1) is too. We
prove this in the next lemma:

Lemma 2.3.1. Let A ∈ Pic(KX) and E a vector bundle on KX . Denote by E the pullback
π∗XE. If the following multiplication map is surjective,

(2.3.3) H0(X,A ⊗2n)+ ⊗H0(X,E ) −→ H0(X,A ⊗2n ⊗ E )

then also

(2.3.4) H0(KX , A⊗n)⊗H0(KX , E) −→ H0(KX , A⊗n ⊗ E)

is surjective.

Proof. The proof is very straightforward. The idea is that the vector space V := H0(X,E )
splits as a direct sum V + ⊕ V −, where V + (respectively V −) is the subspace of invariant
(respectively anti-invariant) sections with respect to the Z/2Z action defined by

s 7→ s ◦ i.
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Therefore, if we denote by f the map in (2.3.3), also f splits as a direct sum f+⊕f− with

f± : H0(X,A ⊗2n)+ ⊗H0(X,E )± −→ H0(X,A ⊗2n ⊗ E ).

If f is surjective, then f+ is surjective. The statement follows from the trivial identification
of f+ with (2.3.4).

The next step in the proof will find us with reducing our problem to the surjectivity of
a map of the type (2.1.6) and hence to an M -regularity problem. Before going any further
we need some remarks.

Remark 2.3.1. Suppose that A is an ample line bundle on KX and let A an invertible
sheaf on X such that π∗XA = A ⊗2. Take n an integer such that A⊗n is globally generated
and consider the following exact sequence of vector bundles:

0→MA⊗n −→ H0(KX , A⊗n)⊗ OKX −→ A⊗n → 0.

By pulling back via the canonical surjection πX we get:

0→ π∗X(MA⊗n) −→ H0(X, A ⊗2n)+ ⊗ OX −→ A ⊗2n → 0.

Hence, after defining
Wn := H0(X, A 2n)+

we have that π∗XMA⊗n 'MWn .

From now on given a sheaf F on X, we will often write H0(F ) instead of H0(X, F ).

Step 2: Reduction to an M -regularity problem
Consider the vanishing locus V 1(MWn ⊗ A ⊗2), we claim that it coincides with the

locus of α ∈ X̂ such that the multiplication map

m+
α : H0(A ⊗2n)+ ⊗H0(A ⊗2 ⊗ α) −→ H0(A ⊗2(n+1) ⊗ α)

is not surjective. Infact consider the short exact sequence

0→MWn −→Wn ⊗A ⊗2 ⊗ α −→ A ⊗2(n+1) ⊗ α→ 0.

Taking cohomology we get

H0(MWn ⊗ α)→ H0(A ⊗2n)+ ⊗H0(A ⊗2 ⊗ α) m+
α−−→ H0(A ⊗2(n+1) ⊗ α)→ · · ·

· · · → H1(MWn ⊗ α)→ H0(A ⊗2n)+ ⊗H1(A ⊗2 ⊗ α)→ · · ·

Since for every topologically trivial line bundle α ∈ Pic0(X) H0(A ⊗2n)+⊗H1(A ⊗2⊗α) =
0, it follows that the surjectivity of m+

α is equivalent to the vanishing of H1(MWn ⊗ α).
Thank of this characterization of the locus on Pic0(X) where m+

α fails to be surjective
and using a technique introduced by Kempf and widely employed we were able to prove
the following
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Lemma 2.3.2. Let A and E be an ample symmetric sheaf on an abelian variety X and a
coherent sheaf on X, respectively. If E ⊗A ⊗−2 is M -regular, then the multiplication map

(2.3.5) H0(X, A ⊗2n)+ ⊗H0(X,E ) −→ H0(X, A ⊗2n ⊗ E )

is surjective for every n ≥ 1.

Before proceeding with the proof we will state an immediate corollary of this Lemma,
that reduce our problem to an M -regularity problem

Corollary 2.3.3. If M⊗pWn
⊗A ⊗2(nh−1) is M -regular, then (2.3.2) is surjective.

Proof of the Lemma. By Proposition 2.2.6(1) we know that V 1(MWn ⊗A ⊗2) is contained
in a Zariski closed subset of X̂. Therefore it exists an open set Û0 ⊆ Pic0(X) such that
Û0 ∩ V 1(MWn ⊗A ⊗2) = ∅. Now observe the following commutative diagram.⊕

α∈bU0

H0(A ⊗2n)+ ⊗H0(A ⊗2 ⊗ α)⊗H0(E ⊗A ⊗−2 ⊗ α∨)

++WWWWWWWWWWWWWWWWWWWW

f

��

H0(A ⊗2n)+ ⊗H0(E )

g

��

⊕
α∈bU0

H0(A ⊗2n+2 ⊗ α)⊗H0(E ⊗A ⊗−2 ⊗ α∨)

h

++WWWWWWWWWWWWWWWWWWWW

H0(E ⊗A ⊗2n)

The map f = ⊕m+
α is surjective by our choice of the set Û0, the map h is surjective by

M -regularity hypothesis together with Theorem 2.1.10. Thus g is necessarily surjective.

Step 3: Solution of the M -regularity problem.
Theorem 2.1.10 and the result in the last paragraph allow us to reduce the problem of

the surjectivity of the map (2.3.5) to an M -regularity problem. In particular we have that,
if M⊗pWn

⊗A ⊗2(nh−1) is M -regular for every h ≥ r, then A⊗n satisfies N r
p . The solution of

the M -regularity problem is presented in the next two statment.

Proposition 2.3.4. Let p a positive integer. Then M⊗pWn
⊗A ⊗m satisfies I.T. with index

0 (and hence it is M -regular) for every m ≥ 2p+ 1

Note that Theorem A follows at once from this Proposition taking m = 2nr − 2.
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Proof. We will procede by induction on p.

Case p = 1. Let us consider the following exact sequence:

0→MWn −→Wn ⊗ OX −→ A ⊗2n → 0.

twistin with A ⊗m ⊗ α with [α] any element X̂ we obtain

(2.3.6) 0→MWn ⊗A ⊗m ⊗ α −→Wn ⊗A ⊗m ⊗ α −→ A ⊗2n+m ⊗ α→ 0.

Hence one can easily see that the vanishing of the higher cohomology of MWn ⊗A ⊗m⊗α
depends upon:

(i) the vanishing of the higher cohomology of A ⊗m ⊗ α and

(ii) the surjectivity of the following multiplication map:

H0(X, A ⊗2n)+ ⊗H0(X, A ⊗m ⊗ α) −→ H0(X, A ⊗2n+m ⊗ α).

Condition (i) holds for every α as long as m ≥ 1, while, thank to Khaled result (cfr Propo-
sition 2.2.1), we know condition (ii) holds for every α as long as m ≥ 3.

Case p > 1. Suppose now that p > 1 and take any α ∈ X̂. By twisting (2.3.6) by M⊗p−1
Wn

we can observe that the vanishing of higher cohomology of M⊗pWn
⊗A ⊗m⊗α is implied by

(i) the vanishing of the higher cohomology of M⊗p−1
Wn

⊗A ⊗m ⊗ α and

(ii) the surjectivity of the following multiplication map:

(2.3.7) H0(X,A ⊗2n)+⊗H0(X,M⊗p−1
Wn

⊗A ⊗m ⊗ α) −→ H0(X,M⊗p−1
Wn

⊗A ⊗2n+m ⊗ α)

By induction (i) holds as long as m ≥ 2p− 1. Thank to Lemma 2.3.3 and Lemma 2.1.10
we know that if M⊗p−1

Wn
⊗A ⊗m−2⊗α satisfies I.T. with index 0, than (2.3.7) is surjective

holds. But we use induction again and we get that M⊗p−1
Wn

⊗ A ⊗m−2 ⊗ α is I.T. with
index 0 whenever m− 2 ≥ 2p− 1, that is whenever m ≥ 2p+ 1 and hence the statement
is proved.

Proposition 2.3.5. In the notations above, take p ≥ 1 an integer. If A does not have a
base divisor, then M⊗pWn

⊗A ⊗m is M -regular for every m ≥ 2p.

Again Theorem C, follows at once after taking m = 2(nr − 1).
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Proof. For m ≥ 2p + 1 the statement is a direct consequence of the Proposition above,
hence we can limit ourselves to the case m = 2p. We will procede by induction on p.

Case p = 1: We want to prove that codim V i(MWn ⊗A ⊗2) > i for every i ≥ 1. From
the vanishing of the higher cohomology of A ⊗2 ⊗ α for every α ∈ Pic0(X) we know that
the loci

V i(MWn ⊗A ⊗2) = ∅ for every i ≥ 2.

Recall that the locus V 1(MWn ⊗A ⊗2) is the locus of points α ∈ X̂ such that the multi-
plication

Wn ⊗H0(A ⊗2 ⊗ α) −→ H0(A⊗2n+2 ⊗ α)

is not surjective. We know from Proposition 2.2.6 that if A has not a base divisor then
this locus has at least codimension 2 and hence the statement is proved.

Case p > 1 Take α ∈ X̂. Consider the following exact sequence

(2.3.8) 0→M⊗pWn
⊗A ⊗2p ⊗ α −→Wn ⊗M⊗p−1

Wn
⊗A ⊗2p ⊗ α −→M⊗p−1

Wn
⊗A ⊗2p+n ⊗ α→ 0

From Proposition 2.3.4(a) we know that for every i ≥ 1 both H i(M⊗p−1
Wn

⊗A ⊗2p⊗α) and
H i(M⊗p−1

Wn
⊗ A ⊗2p+n ⊗ α) vanish. Thus the loci V i(M⊗pWn

⊗ A ⊗2p) are empty for every
i ≥ 2. It remains to show that that

codim V 1(M⊗pWn
⊗A ⊗2p) ≥ 2.

As before one may observe that this locus is exactly the locus in X̂ where the following
multiplication map fails to be surjective:

Wn ⊗H0(M⊗p−1
Wn

⊗A ⊗2p ⊗ α) −→ H0(M⊗p−1
Wn

⊗A ⊗2p+2n ⊗ α).

Infact, taking cohomology in (2.3.8) and observing that for every [α] ∈ X̂, h1(M⊗p−1
Wn

⊗
A ⊗2p ⊗ α) = 0, due to Proposition 2.3.4, we have the conlcusion following the same
argument that in the case p = 0.

Now take [α] ∈ V 1(M⊗pWn
⊗ A ⊗2p). By inductive hypothesis the sheaf M⊗p−1

Wn
⊗

A ⊗2(p−1) is M -regular. Corollary 2.1.11 implies that there exists a positive integer N
and β1, . . . , βN ∈ X̂ such that the following is surjective.

N⊕
k=1

H0(A ⊗2n+2 ⊗ βk ⊗ α)⊗H0(M⊗p−1
Wn

⊗A ⊗2(p−1) ⊗ β∨k )
mβk // H0(M⊗p−1

Wn
⊗A ⊗2p+2n ⊗ α)
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Consider the commutative square

NM
k=1

H0(A ⊗2n)+ ⊗H0(A ⊗2 ⊗ α⊗ βk)⊗H0(M⊗p−1
Wn

⊗A ⊗2p−2 ⊗ β∨k )

++WWWWWWWWWWWWWWWWWWWWW

��

H0(A ⊗2n)+ ⊗H0(M⊗p−1
Wn

⊗A ⊗2p ⊗ α)

��

NM
k=1

H0(A ⊗2n+2 ⊗ α⊗ βk)⊗H0(M⊗p−1
Wn

⊗A ⊗2(p−1) ⊗ β∨k )

++WWWWWWWWWWWWWWWWWWWWW

H0(M⊗p−1
Wn

⊗A ⊗2n+2p)

The right arrow is not surjective by our choice of α. The bottom arrow is surjective,
hence the left arrow could not be surjective. Therefore

α ∈
N⋃
k=1

Zk,

where Zk stands for the locus of [β] ∈ X̂ such that the multiplication map

(2.3.9) H0(A ⊗2n)+ ⊗H0(A ⊗2 ⊗ β ⊗ βk)→ H0(A ⊗2n+2 ⊗ β ⊗ βk)

fails to be surjective. Thus one has that

V 1(M⊗pWn
⊗A ⊗2p) ⊆

N⋃
k=1

Zk.

By Theorem 2.2.6(2) the loci Zk have codimension at least 2, therefore

codim V 1(M⊗pWn
⊗A ⊗2p) ≥ codim

N⋃
k=1

Zk ≥ 2

and the statement is proved.

2.4 Final Remarks

In this section we present some possible further developments of the achievements
presented in this Chapter.

First of all we remark that we do not expect our results to be optimal for p ≥ 2.
Infact we guess, following the analogy with abelian varieties, that for large p, A⊗n should
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satisfies property Np for n ∼ p
2 rather than for n ∼ p. However any result of this kind is

impossible to achieve with the methods employed here. Our hope is that using Ploog’s
equivariant Fourier-Mukai transform ([P4]) instead of classical integral transforms is pos-
sible to develope an M -regularity theory on Kummer varieties and to use it to investigates
their syzygies.

Another possible development is to find an explicit basis for the quartics that cut a
Kummer variety KX associated to a pricipally polarized abelian variety X and embedded
by a divisor 2Θ with Θ a principal polarization in X. In fact Khaled in [K7] found such a
base when 2Θ yields a projectively normal embedding (indeed he was able to prove that
Kummer varieties are defined by quartics equation just in this setting). Unfortunately
the open sets of the moduli space of Kummer varieties of dimension g constitued by pro-
jectively normal varieties is not much interesting from a geometric point of view. For
example, for what it concerns Jacobians J(C), the projective normality of the embedding
2Θ is equivalent to the existence of an even theta-characteristic on C (cfr. [K7]); hence
there are examples of Jacobians with non-projectively normal associated Kummer, as well
ones whose associated Kummer variety satisfies N0. Therefore, finding the equation defin-
ing Kummer varieties in a non projectively normal setting could have many applications
and could lead to a better comprehension of the geometry of the moduli spaces of Kummer
varieties and consequently to a better understanding of the Shottky problem.

Changing Group

One may wonder if the techniques described in this Chapter are adapt to study the
syzygies of other (singular) quotients of abelian varieties. More precisely let G, a finite
group of authomorphisms of an abelian variety X, we can consider the (G.I.T.) quotient
πGX : X → KGX := X/G and investigate the syzygies of an embedding of his.

The first problem that we encounter in this study is that we do not have the nice
characterization of ample line bundles on KGX in terms of line bundles on X we had for
classical Kummer varieties. Namely we do not know if the pullback of any ample line
bundle on KGX can be described as a (fixed) power of an ample line bundle on X. What
we can say is that, for every L G-invariant ample invertible sheaf on X (e.g. a sheaf such
that for every g ∈ G there is an isomorphism ψg : L −→ g∗L), the sheaf L⊗|G| is of the
form πG, ∗X L with L ∈ Pic(KGX). Hence the first step toward the study of syzygies of these
quotient varieties would be restricting onself to the analysis of the embeddings given by
those line bundles L such that pG, ∗X L ' L⊗|G| for some L ∈ Pic(X).

Next we need to check if the proof in the previous Sections are “stable by changing
group”. After substituting the groups H i(X,L⊗n)+ with the equivariant cohomology
groups H i(X,L⊗n)G, there is no problem whatsoever for what it concerns the results of
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Section 2.3. The issues arise when we are looking at the “base” of our induction, namely
at section 2.2. in fact the results we find there are proved using techniques tailor made for
the Z/2Z actions. Thus, in order to study the syzygies of generalized Kummer varieties
it is necessary to give answer to the following problem:

Problem. Let G a finite group acting on an abelian variety X. Take L a G-invariant
ample line bundle on X. Consider VG(n, k) the locus in X̂ where the following is NOT
surjective:

mG
α : H0(X,L⊗n)G ⊗H0(X,L⊗k ⊗ α) −→ H0(X,L⊗n+k ⊗ α).

For which k and n nonegative integers

1. VG(n, k) is empty?

2. VG(n, k) has codimension greater than 1?

3. VG(n, k) has positive codimension?

A possible way to circumvent the problem could be, again, adopting the equivariant
Fourier-Mukai transform and see if it can be used to develope an equivariant M -regularity
theory.





Part II

Pluricanonical Maps of Varieties

of Maximal Albanese Dimension

35





CHAPTER 3

TETRACANONICAL MAPS OF VARIETIES OF

MAXIMAL ALBANESE DIMENSION

An interesting issue in birational geometry is studying the structure of the pluricanon-
ical maps of smooth varieties. In particular, given Z a complex smooth projective variety,
one wants to find explicitly (when it exists) an integer n0 such that for every n ≥ n0

the pluricanonical linear system |nKZ | ' |ω⊗nZ | yields a map birational equivalent to the
Iitaka fibration of X.

For example, in the case of curves and surfaces of general type, the answer to this
question had been long known: if C is a curve of genus g ≥ 2, then an easy application of
Riemann-Roch Theorem tells us that the tricanonical map ϕ|ω⊗3

Z |
is birational. The case

of surfaces was succesfully challenged by Bombieri in [B3], who proved that given S is a
surface of general type, then the pentacanonical, ϕ|ω⊗5

Z |
, is always birational.

Under the further assumption that Z is of maximal Albanese dimension (i.e. the
Albanese map Z −→ Alb(Z) is generically finite), the pluricanonical maps are surprisling
easier to understand. In [CH3] Chen and Hacon proved that if Z is a smoooth complex
projective variety of maximal Albanese dimension, then the image of ϕ|ω⊗nZ | has dimension
κ(X) for any n ≥ 6; if furthermore Z is of general type then this map its birational
onto its image for any n ≥ 6. Moreover if the Albanese image of Z is not ruled by tori)
than the complete linear system |mKZ | induces a birational map for every m ≥ 3. These
statements were later recoverd by Pareschi–Popa ([PP1]) as an application of their Fourier-
Mukai based techniques. More recently it was shown by Jiang [J1], applying ideas from
[PP1], that, if Z is a smoooth projective variety of maximal Albanese dimension, then
ϕ|ω⊗5

Z |
is a model of the Iitaka fibration. The main result of this paper, whose proof uses

M -regularity techniques introduced by Pareschi and Popa in [PP1], is an improvement of
Jiang’s theorem:

37
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Theorem 3.A. If Z is a complex projective smooth variety of maximal Albanese dimen-
sion and general type, then the tetracanonical map ϕ|ω⊗4

Z |
is birational onto its image.

The argument consists in showing that reducible divisors Dα+Dα∨ , with [α] ∈ Pic0(Z),
Dα ∈ |ω⊗2

Z ⊗ α| and Dα∨ ∈ |ω⊗2
Z ⊗ α∨| separate points in a suitable open set of Z. The

crucial point is that, for all [α] ∈ Pic0(Z), the sections of ω⊗2
Z ⊗α passing trough a general

point of Z have good generation properties. In order to achieve this we use Pareschi-
Popa theory of M -regularity and continuous global generation ([PP2, PP1]), joint with a
theorem of Chen-Hacon [CH3] on the fact that the variety V 0(ωZ) spans Pic0(Z).

It is worth mentioning that this achievement is not sharp. In fact in the next Chapter
we will present a proof, obtained in collaboration with Z. Jiang and M. Lahoz, of the
birationality of the tricanonical map for varieties of general type and maximal Albanese
dimension. However tha aforementioned proof, since it relays on induction on dimension,
is less explicit than the one exposed here.

In what follows Z will always be a smooth complex variety of general type and maximal
Albanese dimension while ωZ shall denote its dualizing sheaf. By Alb(Z) we will mean
the Albanese variety of Z.

3.1 Background Material

3.1.1 Asymptotic Multiplier Ideals and Related Vanishing Properties

In this paragraph we briefly recall the basic properties of multiplier ideals and asymp-
totic multiplier ideals. For a complete treatment of this matter we recommend Chapters
9 to 11 of [L3].

Assume that Y is a smooth variety of dimension n and let D be an integral divisor
on Y . Let V ⊆ H0(Y,OY (D)) be a non-zero finite dimensional linear subspece. We recall
that a log resolution of the linear series |V | is a projective birational mapping

µ : Y ′ → Y

with Y ′ non-singular and such that the µ∗|V | = |W | + F where F + exc(µ) is a divisor
with simple normal crossing support and W ⊆ H=(Y ′,OY ′(µ∗D−F )) is a base point free
linear series. (Here exc(µ) stands for the sum of exceptional divisors of µ).

Now, following [L3, Definition 9.2.10 ], given D, V , µ as above and c > 0 a rational
number one can define the multiplier ideal J (c · |V |) corresponding to c and |V | as

J (c · |V |) := µ∗OY ′(KY ′/Y − bc · F c).
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It can be checked that this object does not depend on the choice of the log resolution µ.
If we assume that the linear series |D| has non-negative Iitaka dimension and we take p a
positive integer, we can form the multiplier ideal sheaf associated to the complete linear
series |pD|

J (
c

p
|pD|) ⊆ OY .

We have the following Lemma

Lemma 3.1.1. For every integer k ≥ 1 there is an inclusion

J (
c

p
|pD|) ⊆J (

c

pk
|pkD|)

This result together with the ascending chain condition on ideals tells us that the
family

{J (
c

p
|pD|)}p≥0

admits a unique maximal element J (c||D||), called the asymptotic multiplier ideal as-
sociated to c and |D|. The main reason for the introduction of multiplier ideals is the
possibility to extend classical results, such as Kodaira vanishing for big and nef line bun-
dles. In fact we have the following important achievement that alone is the cause of our
need for multiplier ideals.

Theorem 3.1.2 (Nadel vanishing for asymptotic multiplier ideals [L3, Thm. 11.2.12]).
In the notation above, if D has non-negative Iitaka dimension, we have the following
vanishing:

(i) If A is big and nef integral divisor on Y , then

H i(Y,OY (KY +mD +A)⊗J (||mD||)) = 0 for i > 0

(ii) If D is big then the same statement is true assuming just the nefness of A. In
particular if D is big then

H i(Y,OY (KY +mD)⊗J (||mD||)) = 0 for i > 0

Since multiplier ideals are, in particular, ideal sheaves, it is very natural to ask ourselves
questions about the geometry of their zero locus. We have the following results:

Lemma 3.1.3. Given a L line bundle on Y of non-negative Iitaka dimension

(i) Then
H0(Y,L⊗J (||L||)) = H0(Y,L),

i.e. the zero locus of J (||L||) is contained in the base locus of L.
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(ii) For every non negative integer k,

J (||L⊗(k+1)||) ⊆J (||L⊗k||)

Proof. Both results are exposed in [L3], part (i) is Proposition 11.2.10, while part (ii) is
Theorem 11.1.8.

As an easy corollary we have the following Lemma due to Pareschi and Popa that we
will be needing afterward.

Lemma 3.1.4 ([PP1, Lemma 6.3(b)]). Let Y a smooth complex variety of general type and
denote by KY its canonical divisor. For any m > 1, the zero locus of J (||(m− 1))KY ||)
is contained in the base locus of OY (mKY )⊗ α for every [α] ∈ Pic0(Y ).

For the reader’s benefit we include the short proof.

Proof. Since bigness is a numerical property, all line bundles ωY ⊗ α are big. By Nadel’s
vanishing (Theorem 3.1.2) for any m > 1 we have

hi(Y, ω⊗mY ⊗ β ⊗J (||(ωY ⊗ α)⊗(m−1)||)) = 0

for every i > 0 and every [α], [β] ∈ Pic0(Y ). Since the Euler characteristic is invariant
under smooth deformations, h0(Y, ω⊗mY ⊗ β⊗J (||(ωY ⊗α)⊗(m−1)||)) does not depend on
[β]. Denote this quantity by λ(α). Now, Lemma 3.1.3 implies that for any [β] ∈ Pic0(Y )

h0(Y, ω⊗mY ⊗ β ⊗J (||(ωY ⊗ α)⊗(m−1)||)) ≤ h0(Y, ω⊗mY ⊗ β)

and equality holds for [β] = [α⊗m]. As a consequence we have that, by semicontinuity, for
any [β] in a neighbourhood of [α⊗m], h0(Y, ω⊗mY ⊗ β) = λ(α). Since this holds for every
[α] it follows that h0(Y, ω⊗mY ⊗ β) is constant (and equal to λ(OPic0(Y ))) for any [β] and
m > 1. The statement follows directly.

In what follows we will adopt the following notation. Given L an invertible sheaf on
a smooth projective variety Y such that H0(Y,L ) 6= 0; we will denote by J (||L ||) the
asymptotic multiplier ideal sheaf associated to the complete linear series |D| with D an
effective integral divisor with OY (D) ' L .

3.1.2 Iitaka Fibration

We conclude this section of preliminaries by recalling the definition and the basic prop-
erties of the Iitaka fibration associated to a line bundle. We will discuss Iitaka fibrations
associated to the canonical sheaf of a maximal Albanese dimension variety more throughly
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in Chapter 4, but since we spoke about it in the introduction to this Chapter, we deemed
it best to expose this material in here. We follow [L3, Section 2.1.C].

Let Y be a smooth projective variety and consider L a line bundle such that its Iitaka
dimension κ(Y,L) is non negative. Let

N(Y,L) := {k ∈ N | h0(Y,L⊗k) 6= 0},

and denote by ϕk : Y 99K Zk ⊆ P the rational map associated to the complete linear
system |L⊗k|. As k grows these maps turn out to have a “limit” in the following sense:

Theorem 3.1.5 ([L3, Theorem 2.1.19]). In the notation above if k ∈ N(Y,L) is big enough
then the map ϕk is birational equivalent to a given fiber space

(3.1.1) ϕ∞ : Y∞ → Z∞

of normal varieties and the restriction of L to a general fiber of ϕ∞ has Iitaka dimension
0. In particular it exists a commutative diagram

Y∞
u∞ //

ϕ∞
��

Y

ϕk
���
�
�

Z∞ uk
//______ Zk

where the horizontal maps are birational and u∞ is a morphism. Moreover setting L∞ :=
u∗∞L and taking F to be a very general fiber of ϕ∞ then

κ(F,L∞|F ) = 0.

Observe that dimZ∞ ' κ(Y,L).
The algebraic fiber space (3.1.1) is called the Iitaka fibration associated to L and it is

unique up to birational equivalence. When L = ωY the canonical line bundle on Y , then
we speak about the Iitaka fibration of Y .

Since the issues we will be addressing have a birational nature, we will usually assume
that Y∞ = Y .

It has been proved by Chen and Hacon [CH4] that Y is of maximal Albanese dimension
if and only if Z∞ is. In this case the general fiber of ϕ∞ is again of maximal Albanese
dimension. Since it has Kodaira dimension 0, a result of Kawamata [K1] implies that it
is birational to an abelian variety K and hence ϕ∞.

3.1.3 Generation Properties of M-regular Sheaves

In the first Chapter we recalled the notion of M -regular sheaf on an abelian variety
and we listed some of their main properties. However for what we want to prove here
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these notions are not sufficient: since we will need to work with the generation properties
of M -regular sheaves. Below we recall some basic terminology about generation of sheaves
and we present results of Pareschi and Popa that investigate the generation properties for
Mukai-regular sheaves.

Given F a coherent sheaf on variety Y over an algebraically, closed field k, we say
that it is globally generated (in brief GG) if the evaluation map

H0(Y,F )⊗ OY → F

is surjective. More generally, given T ⊆ Y a proper subvariety, we say that F is globally
generated away from T if for every y /∈ T the map

H0(Y,F )⊗ k(y)→ F ⊗ k(y)

is surjective. The following notion has been introduced to further weaken the concept of
global generation.

Definition 3.1.6 ([PP1, Definition 2.10]). Let Y be a variety

1. A sheaf F on Y is continuosly globally generated (in brief CGG) if the sum of the
evaluation maps

EvU :
⊕
α∈U

H0(F ⊗ α)⊗ α−1 −→ F

is surjective for every U non empty open set of Pic0(Y ).

2. More generally, given T a proper subvariety of Y , F is said to be continuosly globally
generated away from T if Supp(Coker(EvU )) is contained in T for every U non empty
open set of Pic0(Y ).

The following proposition relates the behavior of the CGG property with respect to
the twisting by a line bundle.

Proposition 3.1.7 ([PP2, Proposition 2.12]). In the settings above, assume that F is
CGG away from a subvariety T and let A a line bundle that is CGG away from a subva-
riety W of Y , then for every α ∈ Pic0(Y ) the sheaf F ⊗A ⊗α is globally generated away
from T ∪W .

We conclude this paragraph by recalling a result of Pareschi and Popa that will enable
us to study generation properties of certain sheaves on an abelian variety and derive from
them the generation properties of ω⊗4

Z on Z.

Proposition 3.1.8 ([PP1]). An M -regular sheaf on an abelian variety is continuosly
globally generated.
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3.1.4 On the Geometry of Generic Vanishing Loci

In this subsection we expose some results of Chen–Hacon [CH3, Theorem 1], Green–
Lazarsfeld [GL1, Theorem 0.1] and Simpson [S2, Section 4,6,7] about the geometry of the
generic vanishing loci introduced in the first chapter.

Theorem 3.1.9 (Subtorus Theorem [GL3, S2]). Let Y be a compact Kähler manifold,
and W an irreducible component of V i(ωY ) for some i. Then

(a) There exist a torsion point [β] and a subtorus T of Pic0(Y ) such that W = [β] + T .

(b) There exist a normal analytic variety X of dimension ≤ d− i, such that (any smooth
model of) X has maximal Albanese dimension and a morphism with connected fibres
f : Y −→ X such that T is contained in f∗(Pic0(X)).

We recall that the morphism in (b) arises as the Stein factorization of the composition
π ◦ albY where π : Alb(Y )→ T̂ is the map dual to the inclusion T ↪→ Pic0(Y ).

Theorem 3.1.10 ([CH4]). Let Y be a complex smooth projective variety of maximal
Albanese dimension and let f : Y → Z a model of the Iitaka fibration of Y . Then the
translates through the origin OY of the components of V 0(Y, ωY ) generate Pic0(Z) as a
subabelian variety of Pic0(Y ). In particular of Y is of general type then they generate the
whole Pic0(Y ).

3.2 Proof of Theorem 3.A

We will prove this slightly more general statement:

Theorem 3.2.1. Let Z be a smooth complex projective variety of maximal Albanese di-
mension and of general type, then, for every [α] ∈ Pic0(Z) the linear system |ω⊗4

Z ⊗ α| is
birational.

Note that also in the setting of Jiang and Chen-Hacon what is proved is the birationality
of ω⊗5

Z ⊗ α for all [α] ∈ Pic0(Z).
We will need the following easy lemma.

Lemma 3.2.2. Let E an effective divisor on an abelian variety X. Take T1, . . . , Tk

subtori of X such that they generate X as an abstract group and let γi, i = 1, . . . , k some
points of X. Then E ∩ (γi + Ti) 6= ∅ for at least one i.

Proof. If E is ample, then the statement is easily seen to be true.
Thus we can suppose, without a loss of generality, that E is not ample. Then it exists
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an abelian variety A 6= 0, a surjective homomorphism f : X −→ A and an ample divisor
H on A such that E = f∗H. Suppose now that E does not intersect γi + Ti for every i,
it follows that H does not intersect f(γi + Ti) for every i. Hence, since H is ample, the
image γi + Ti through f is a point, and therefore Ti is contained in the kernel of f for
every i. But this is impossible since the Ti’s generate X.

Proof of Theorem 3.2.1.
Let aZ : Z −→ Alb(Z) Albanese map of Z. Let us state the following claim.

Claim 1: For the generic z ∈ Z the sheaf aZ ∗(Iz ⊗ ω⊗2
Z ⊗J (||ωZ ||)) is M -regular.

Remark 3.2.1. In [PP1] Pareschi and Popa proved this claim to be true in the case of
varieties of Albanese general type, and this was the key point of their proof of the bira-
tionality of tricanonical maps (cf. [PP1, Theorem 6.1]). However, in their argument, the
assumption that the Albanese image of Z is not ruled by subtori enters crucially. The
proof of this claim is, therefore, the point in which our work diverges from [PP1].

Before proceeding with the proof of the Claim 1 let us see how it implies Theorem
A, this argument follows the one Pareschi and Popa in [PP1]. First of all we simplify a
bit the notation by letting F := ω⊗2

Z ⊗J (||ωZ ||). Now observe that, since the Albanese
morphism aZ is generically finite, a well known extension of Grauert-Riemenschneider
vanishing theorem (see, for example [PP1, proof of Proposition 5.4]) yields that, for any
α ∈ Pic0(Z), the higher direct images RiaZ ∗(ω⊗2

Z ⊗α⊗J (||ωZ ⊗α||)) vanish. Therefore,
for every i ≥ 0 we get the equality

V i(Z, ω⊗2
Z ⊗ α⊗J (||ωZ ⊗ α||)) = V i(Alb(Z), aZ ∗(ω⊗2

Z ⊗ α⊗J (||ωZ ⊗ α||)))

By Nadel vanishing for multiplier ideals (Theorem 3.1.2(ii)) the loci at the left hand side
are empty when i > 0. In particular aZ ∗(ω⊗2

Z ⊗α⊗J (||ωZ⊗α||)) is M -regular on Alb(Z)
and hence cgg everywhere (Proposition 3.1.8). Since aZ is generically finite, we get that
ω⊗2
Z ⊗ α⊗J (||ωZ ⊗ α||) is CGG away from W , the exceptional locus of aZ . This means

by definition that the map

(3.2.1)
⊕

[β]∈Ω

H0(ω⊗2
Z ⊗α⊗J (||ωZ ⊗α||)⊗β)⊗β−1 evz−−→ ω⊗2

Z ⊗α⊗J (||ωZ ⊗α||)⊗C(z)

is surjective for every z /∈ W and for every Ω ⊆ Pic0(Z) non-empty open set. Now we
recall that the base locus of J (||ωZ ⊗α||) is contained in the base locus of ω⊗2

Z ⊗α⊗2 for
every [α] ∈ Pic0(Z) (cfr Lemma 3.1.4); hence we can consider the closed set

W ′ = W ∪ {zero locus of J (||ωZ ⊗ α||)}.
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It follows easily from (3.2.1) that, if z /∈W ′ the map⊕
[β]∈Ω

H0(ω⊗2
Z ⊗ α⊗ β)⊗ β−1 evz−−→ ω⊗2

Z ⊗ α⊗ C(z)

is surjective for every Ω open dense set in Pic0(Z) and thus ω⊗2
Z ⊗ α is CGG away from

W ′.
Afterwards, since we are supposing that the claim is true, we can take U a non empty

open set of Z such that for every z ∈ U the sheaf aZ ∗(Iz ⊗F ) is M -regular and hence
CGG. Again, it follows Iz⊗F is CGG away from W . Finally by [PP2, Proposition 2.12]
Iz ⊗F ⊗ ω⊗2

Z ⊗ α is globally generated away from W ′ and therefore Iz ⊗ ⊗ω⊗4
Z ⊗ α is

globally generated away from T = W ′ ∪ {zero locus of J (||ωZ ||)} and we can conclude
that ω⊗4

Z ⊗ α is very ample outside a proper subvariety of Z and hence ϕ|ω⊗4
Y ⊗α|

is bira-
tional for every [α] ∈ Pic0(Z). This prove the Theorem.

Now we proceed with the proof Claim 1. Recall that, by the Subtorus Theorem
(Theorem 3.1.9), we can write

V 0(ωZ) =
k⋃
i=1

([βk] + Tk)

where the [βj ] are torsion points of Pic0(Z) and the Tj ⊆ Pic0(Z) subtori. Hence, for all
i and for all [α] ∈ Ti the line bundle ωZ ⊗α⊗ βi has sections, and therefore its base locus
Bs(ωZ ⊗ α ⊗ βi) is a proper subvariety of Z). We take an non-empty Zariski open set U
contained in the complement of

W ∪
k⋃
i=1

⋂
α∈Ti

Bs(ωZ ⊗ α⊗ βi).

Given z ∈ U we want to prove that for every i ≥ 1

Codim V i(aZ ∗(Iz ⊗F )) ≥ i+ 1.

Consider the following short exact sequence:

(3.2.2) 0→ Iz ⊗F ⊗ γ −→ F ⊗ γ −→ F ⊗ γ ⊗ C(z)→ 0.

Since z does not belong to the exceptional locus of the Albanese map of Z, by pushing
forward for aZ we still get a short exact sequence:

(3.2.3) 0→ aZ ∗(Iz ⊗F ⊗ γ) −→ aZ ∗(F ⊗ γ) −→ aZ ∗(F ⊗ γ ⊗ C(z))→ 0.

In particular R1aZ ∗(Iz⊗F⊗γ) = 0. Since, as already observed, an extension of Grauert-
Riemenschneider vanishing, yields the vanishing the RjaZ ∗(ω⊗2

Z ⊗J (||ωZ ||)⊗γ) for every
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j > 0 and every [γ] ∈ Pic0(Z), we have that RjaZ ∗(Iz ⊗F ⊗ γ) = 0 for every j > 0 and
every γ. Therefore, for every j ≥ 0

(3.2.4) V i(aZ ∗(Iz ⊗F )) = V i(Iz ⊗F )

Now we look at the long cohomology sequence of the short exact sequence (3.2.2). By
Nadel vanishing (Theorem 3.1.2) we have that, for every i ≥ 1 and [γ] ∈ Pic0(Z),

H i(Z, ω⊗2
Z ⊗J (||ωZ ||)⊗ α)=0

and therefore, by (3.2.4) the loci V i(aZ ∗(Iz ⊗F )) are empty for every i ≥ 2.
It remains to see that CodimV 1(aZ ∗(Iz ⊗F )) > 1. Before proceeding further we state
the following:

Claim 2: For every j = 1, . . . , k, V 1(Iz ⊗F ) ∩ (Tj + [β⊗2
j ]) = ∅.

The reader may observe that by Theorem 3.1.10 the Tj ’s generate Pic0(Z), and this,
together with Lemma 3.2.2, implies directly Claim 1. In fact the locus V 1(Iz ⊗F )) is a
proper subvariety of Pic0(Z) that cannot possibly contain a divisor, hence its codimension
shall be greater than 1. By (3.2.4) also CodimV 1(aZ ∗(Iz ⊗F )) > 1.

To prove Claim 2 we reason in the following way. First we remark that there is an
alternative description of the locus V 1(Iz ⊗F ): in fact by (3.2.2) and the vanishing of
H1(Z,F⊗γ) for every [γ] (again due to Nadel vanishing) we have thatH1(Z,Iz⊗F⊗γ) 6=
0 if and only if the map H0(Z,F ⊗ γ) −→ F ⊗ γ ⊗ C(z) is not surjective. Therefore we
can write

V 1(Iz ⊗F ) = {[γ] ∈ Pic0(Z) such that z /∈ Bs(F ⊗ γ)}.

Since we chose z /∈
⋂
α∈Tj Bs(ωZ ⊗α⊗βi) it exists Vj a dense open set of Tj such that, for

every [δ] ∈ Vj , z is not in Bs(ωZ ⊗ βi ⊗ δ). Take [γ] ∈ Tj ; the intersection Vj ∩ ([γ]− Vj)
is still a non-empty open set of Tj . For [δ] ∈ Vj ∩ ([γ]− Vj) we write

ω⊗2
Z ⊗ β

⊗2
j ⊗ γ ' (ωZ ⊗ βj ⊗ δ)⊗ (ωZ ⊗ βj ⊗ γ ⊗ δ−1);

since, thanks to our choice of δ, both ωZ ⊗ βj ⊗ δ and ωZ ⊗ βj ⊗ γ ⊗ δ−1 are generated
in z, also the left hand side is. Therefore z /∈ Bs(ω⊗2

Z ⊗ β⊗2
j ⊗ γ). Now we use again

Lemma 3.1.4: the zero locus of J (||ωZ ||) is contained in the base locus of ω⊗2
Z ⊗ α for

every [α] ∈ Pic0(Z); thus we have the equality Bs(ω⊗2
Z ⊗β

⊗2
j ⊗ δ) = Bs(F ⊗β⊗2

j ⊗ δ) and,
consequently, δ ⊗ β⊗2

j /∈ V 1(Iz ⊗F ) and the claim is proved.



CHAPTER 4

EFFECTIVE IITAKA FIBRATIONS

The results presented in this chapter are joint work with Z. Jiang and M. Lahoz ([JLT])
and are an improvement of the material exposed in the previous Chapter and published
in [T2]. In particular, our main achievement is the following:

Theorem 4.A. Let X be a smooth projective variety of maximal Albanese dimension.
Then,

1. the linear system |4KX | induces the Iitaka fibration of X;

2. if X is of general type, then the linear system |3KX | induces a birational map.

This is clearly the optimal bound for varieties of maximal Albanese dimension. On
one hand, the varieties of general type whose bicanonical map is not birational have been
studied in [BLNP, L1]. On the other hand, we produce varieties of dimension at least 4,
whose tricanonical map does not induce the Iitaka fibration (see Example 4).

We observe that when χ(X,ωX) > 0, the birationality of the tricanonical map was
proved by Chen and Hacon [CH2, Thm. 5.4]. Hence, we restrict ourselves to the case
χ(X,ωX) = 0. In that situation we have a special fibration where the m-th pluricanonical
linear system restricts surjectively to the general fiber for m ≥ 3 (see Lemma 4.3.5). On
the base of this fibration, we construct two positive line bundles (see Lemmas 4.3.3 and
4.3.4). One of them induces a birational map on the base, and the other one is used to
prove the appropiate effectiveness. We use them to apply Lemma 4.2.1, which allows us to
apply induction on the dimension of X. The lack of effectivity is what forces us to consider
the tetracanonical map for non-general type varieties (as we note in Remark 4.5.2).

47



48 4. Effective Iitaka Fibrations

Notation

In the sequel, X will always be a smooth complex variety of maximal Albanese di-
mension. We denote by aX : X → AX the Albanese morphism of a smooth projective
variety.

We will not distinguish in this Chapter between line bundles and divisors on X. Thus
given two line bundles L and M we will denote the twist of M and L either by L⊗M or
by L + M . The dual of an invertible sheaf will be denoted either by L∨ or by −L. The
reason for doing this is that sometimes the notation with tensor products is cumbersome.

Given a smooth variety X, by Pm(X) we will mean the m-th plurigenus of X, i.e.
h0(X,ω⊗mX ).

4.1 Background Material

In this section we present some results we will be needing afterwards.

Vanishing Theorems

We begin with two vanishing results. The first one tells us when certain higher direct
image are zero.

Lemma 4.1.1 ([L3, Lemma 4.3.10]). Let h : X → Z be a morphism of irreducible projec-
tive varieties and let H be a very ample divisor on Z. Suppose that G is a coherent sheaf
on X with the property that

H i(X,G ⊗ h∗(H⊗m)) = 0 for every i ≥ 1 and every m >> 0.

Then Rjh∗(G ) = 0 for every j > 0.

The second is a very important vanishing result of Kawamata-Viehweg that extends
Kodaira vanishing to big and nef Q-divisors.

Theorem 4.1.2 (Kawamata–Viehweg vanishing Theorem[L3, §15]). Let X be a smooth
projective variety of dimension n, and let N be an integral divisor on X. Assume that N
is numerically equivalent to a sum B + ∆ with B a nef and big divisor and ∆ =

∑
i ai∆i

a Q-divisor with simple normal crossing support and fractional coefficents

0 ≤ ai < 1 for every i.

Then for every i > 0

hi(X,OX(KX +N)) = 0
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A result of Barja–Lahoz–Naranjo–Pareschi

In [BLNP] the authors introduced the following:

Hypothesis 4.1.3 ([BLNP, Hypothesis 4.7]). LetX a variety of dimension n and maximal
Albanese dimension equipped with a generically finite morphism to an abelian variety
a : X → A such that the map a∗ : Â→ Pic0(X) is an embedding and

codimV i
a (X,ωX) ≥ i+ 1 for every 0 < i < n

The reason for recalling this setting is the following result of [BLNP]:

Proposition 4.1.4 ([BLNP, Proposition 4.10]). Let X a smooth projective variety satisfy-
ing Hypothesis 4.1.3. Then χ(ωX) = 0 if and only if X is not of general type. Furthermore,
if this is the case, X is birational to an abelian variety.

Some Technical Lemmas of Jiang

We conclude this section by listing some results from [J2] that we will be using.
Given a surjective morphism of smooth projective varieties, f : X → Y , and D a Q-

divisor on X we will say that the Iitaka model of (X,D) dominates Y if it exists a positive
integer N , and an ample divisor H on Y such that ND − f∗H is an effective divisor.

Lemma 4.1.5 ([J2, Lemma 2.1]). Suppose that F : X → Y is as above. Let L be a Q
divisor on X such that the Iitaka model of (X,L) dominates Y , and let D a nef Q-divisor
on Y such that L + f∗D is an integral divisor on X. Then for every i ≥ 1, every j ≥ 0
and every [α] ∈ Pic0(X)

hi(Y,Rjf∗(OX(KX + L+ f∗D))⊗J (||L||)⊗ α)) = 0

Lemma 4.1.6 ([J2, Lemma 2.3]). Suppose that f : X → Y is an algebraic fiber space
between smooth projective varieties and suppose that the m-th plurigenus of X, Pm(X),
in non zero for some m ≥ 2. Assume that H is a big Q-divisor on Y . Then, the Iitaka
model of (X, (m − 1)KX/Y + f∗H) dominates Y , for any m ≥ 2. Furthermore denoting
by F the sheaf

f∗(OX(KX + (m− 1)KX/Y )⊗J (||(m− 1)KX/Y + f∗H||)

we get that F is a non zero sheaf of rank Pm(Xy) with Xy the general fiber of f .

Observe that if Y is of general type, then we can take H = KY and thus we get

1. the Iitaka model of (X,KX + (m− 2)KX/Y ) dominates Y ;
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2. f∗(OX(2KX + (m−2)KX/Y ⊗J (||KX + (m−2)KX/Y ||) is a non zero sheaf of rank
Pm(Xy).

Now let g : X → Z be an algebraic fiber space between smooth projective varieties
such that is not zero for some m ≥ 2. Fix H a big, base point free divisor on Z. Consider
the following ideal sheaves

Jm−1,n := J (||(m− 1)KX/Z +
1
n
g∗H||)

Lemma 4.1.7 ([J2, Lemma 2.4]). The following inclusions hold

Jm−1,n ⊇Jm−1,n+1,

and, in addition, it exists an integer N such that for every n ≥ N there is an equality

Jm−1,n = Jm−1,N .

In the above assumptions introduce the following sheaves:

Fm−1,H := g∗(OX(KX + (m− 1)KX/Z)⊗Jm−1,N .

Lemma 4.1.8 ([J2, Lemma 2.5]). In the above assumptions and notation, suppose fur-
thermore that Z is of maximal Albanese dimension and that H is a big, base point free
divisor pulled back from Alb(Z). Then Fm−1,H is a non zero GV sheaf.

4.2 Preliminaries

We begin with some easy lemmas.

Lemma 4.2.1. Let f : X
g−→ Z

h−→ Y be fibrations between smooth projective varieties. Let
L be an line bundle on X. If the following two conditions hold:

1) The image of H0(X,L) → H0(Xy, L|Xy) induces a map birationally equivalent to
g|Xy : Xy → Zy for a general fiber Xy of f ;

2) There are line bundles Hi, 1 ≤ i ≤M , on Y such that L− f∗Hi is effective and the
multiple evaluation map

ϕY : Y → P(H0(Y,H1)∗)× · · · ×P(H0(Y,HM )∗)

is birational.

Then, the linear system |L| induces a map birationally equivalent to g : X → Z.
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Proof. Since the L− f∗Hi are effective we have a projection π that induces the following
diagram

X

f

��

ϕ|L| //

g

��

P(H0(X,L)∗)

π

��

Z

ϕZ

33

h

��
Y

ϕY // P(H0(Y,H1)∗)× · · · ×P(H0(Y,HM )∗)

Condition 2) guarantees that ϕ|L| separates generic fibres of f and condition 1) shows
that the map ϕ|L| factorizes to ϕZ ◦ g and a general fiber of h is mapped birationally via
ϕZ .

We will need the following lemma to ensure the birationality of ϕY in the previous
lemma.

Lemma 4.2.2. Let π̂ : Ŷ → Y be an abelian cover with Galois group G of smooth
projective varieties of maximal Albanese dimensions. We denote bbY = aY ◦ π̂ : Ŷ → AY .
Assume that V 0

bbY (Ŷ , ωbY ) = Pic0(Y ) and

π̂∗ω
⊗2bY =

⊕
χ∈G∗

Hχ,

where Hχ is the line bundle corresponding to the character χ ∈ G∗.
Then, there exists Hχ0 such that the multiple evaluation map

ϕ[α1]···[αM ] : Y → P(H0(Y,Hχ0 ⊗ [α1])∗)× · · · ×P(H0(Y,Hχ0 ⊗ [αM ])∗)

is birational for some [αi] ∈ Pic0(Y ), 1 ≤ i ≤M .

If π̂ is an isomorphism, then Lemma 4.2.2 is essentially a part of the proof of [CH2,
Thm. 4.4].

Proof. We first write
π̂∗ωbY =

⊕
χ∈G∗

Lχ.

Since V 0(ωbY , bbY ) = Pic0(Y ), we conclude that there exists χ1 such that V 0
aY

(Y,Lχ1) =
Pic0(Y ). Then, for any [α] ∈ Pic0(Y ), the line bundle L⊗2

χ1
⊗ α is globally generated on

the open dense subset
Y \ ∩[α]∈Pic0(Y ) Bs(|Lχ1 ⊗ α|).

Since there is the natural G-map of vector bundles on Y ,

(π̂∗ωbY )⊗2 → π̂∗ω
⊗2bY ,
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if we take χ0 = χ2
1, then we have an inclusion L⊗2

χ1
↪→ Hχ0 . Hence, there is an open

dense subset U of Y such that for any [α] ∈ Pic0(Y ), the line bundle Hχ0 ⊗ α is globally
generated on U , i.e. ϕα|U is a morphism.

On the other hand, we consider π̂∗(ω⊗2bY ⊗ J (||ωbY ||)). Since J (||ωbY ||) ↪→ ObY is
G-invariant, we can write

π̂∗(ω⊗2bY ⊗J (||ωbY ||)) =
⊕
χ∈G∗

Hχ ⊗Iχ,

where Iχ is an ideal sheaf on Y . Moreover, we have

H0(Y,Hχ ⊗Iχ) ' H0(Y,Hχ),

and
H i(Y,Hχ ⊗Iχ ⊗ α) = 0,

for any [α] ∈ Pic0(Y ) and i ≥ 1.
Therefore, Hχ0⊗Iχ0⊗α is globally generated on the open subset U , so Supp(OY /Iχ0)

is contained in Y \U . Now, let V = U\Exc(aY ) and for any point y ∈ V , from the exact
sequence

0→ Iy ⊗Hχ0 ⊗Iχ0 → Hχ0 ⊗Iχ0 → Cy → 0,

we see that aY ∗
(
Iy ⊗Hχ0 ⊗Iχ0

)
is a M -regular sheaf, so it is cgg (see 3.1.7). Hence for

any z ∈ V different from y, there exists [α] ∈ Pic0(Y ) such that Iy ⊗ Hχ0 ⊗ Iχ0 ⊗ α is
globally generated on z.

This shows that for any two different points y, z ∈ V there exists [α] ∈ Pic0(Y ) and a
divisor Dα in |Hχ0 ⊗ α| such that y ∈ Dα but z /∈ Dα. Therefore ϕα(y) 6= ϕα(z).

We take α1, . . . , αM such that ϕα1···αM becomes stable, namely ϕα1···αM is birational
equivalent to ϕα1···αMP for any P ∈ Pic0(Y ). Then, ϕα1···αM is birational.

The following lemma should be compared to [CH1, Lem. 3.1].

Lemma 4.2.3. Let f : X → Y be a surjective morphism between smooth projective
varieties. Assume that X is of maximal Albanese dimension. Then, KX/Y is effective.

Proof. We have the natural inclusion f∗Ω1
Y

i−→ Ω1
X . Denote by F the saturation of

i(f∗Ω1
Y ). Then, det(F ) − f∗KY is an effective divisor on X. We then consider the

exact sequence
0→ F → Ω1

X → Q→ 0.

Since X is of maximal Albanese dimension, Ω1
X is generically globally generated and so is

Q.
Hence det(Q) is also an effective divisor. Hence KX/Y = det(F )− f∗KY + det(Q) is

effective.
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4.3 Positive Bundles on the Base and Surjectivity of the

Restriction Map to a Fiber

We will use the following definition that it is strongly related to Hypotheses 4.1.3.

Definition 4.3.1. Let F be a coherent sheaf on an abelian variety A. We say that F is
almost M -regular if V 0(A,F ) = Â, codim bAV i(A,F ) ≥ i+ 1, for 1 ≤ i ≤ dimA− 1, and
dimV dimA(A,F ) = 0.

Let X be a smooth projective variety of dimension n and maximal Albanese dimension.
We know that the pushforward of the canonical bundle aX∗ωX is a GV -sheaf but it often
fails to be M -regular, which makes the tricanonical map difficult to study. Hence we
consider the set

SX := {0 < j < n | V j
aX

(X,ωX) has a component of codimension j},

which measures how far aX∗ωX is away from being almost M -regular.

Setting 4.3.2. Assume that SX is not empty. We denote by k the maximal number of
SX and [β] + B̂ ⊆ V k

aX
(X,ωX) a codimension-k component, where [β] is zero or a torsion

element of Pic0(X)\B̂. Let the following commutative diagram

X
aX //

f

��

AX

pr

��
Y

aY // B

be a suitable birational modification of the Stein factorization of the composition pr ◦aX ,
such that Y is smooth.

Lemma 4.3.3. Assume SX is not empty, so we are in Setting 4.3.2. Then, in some
birational model of f : X → Y , there exists a line bundle L on Y such that aY ∗L is almost
M -regular, V 0

aY
(Y,L) = B̂, and OX(KX)⊗ β⊗j ⊗ f∗L∨ has a non-trivial section for some

j ∈ Z. Moreover,

1) if β is trivial, we can take L to be ωY and j = 0;

2) if [β] ∈ Pic0(X)\B̂, then we can take L such that aY ∗L is M -regular.

Proof. We know by [GL3, Theorem 0.1] that the dimension of a general fiber of f is k.
Assume first that β is trivial. For [αB] ∈ B̂ − ∪jV 1(Rjf∗ωX)

0 < hk(X,ωX ⊗ a∗XαB) = hk(X,ωX ⊗ f∗αB) = h0(Y,Rkf∗ωX ⊗ αB)

= h0(Y, ωY ⊗ αB).



54 4. Effective Iitaka Fibrations

So χ(Y, ωY ) > 0 by semicontinuity. Hence V 0
aY

(ωY ) = Pic0(Y ).

Moreover, the pull-back by pr of any codimension-j component of V j
aY (Y, ωY ) is a

codimension-(j + k) component of V j+k
aX (X,ωX). Hence by the maximality of k, we know

that codim bBV i(ωY , aY ) ≥ i+ 1 for all 0 < i < dimY and aY ∗ωY is almost M -regular. By
Lemma 4.2.3, OX(KX − f∗KY ) is effective.

Now, assume that [β] ∈ Pic0(X)\B̂. We may choose [β] such that 〈[β]〉∩ B̂ = 0, where
G := 〈[β]〉 is the subgroup generated by [β]. We then consider the étale cover π : X̃ → X

induced by G and, after modifications, we have the following diagram

(4.3.1) X̃
π //

ef
��

b eX   
X

aX //

f

��

AX

pr

��
Ŷ

bπ //

bbY
??Y

aY // B

where all varieties are smooth and the vertical morphisms are fibrations.

The same arguments in the previous case show that V 0
bbY (Ŷ , ωbY ) = B̂ and

codim bBV i
bbY (Ŷ , ωbY ) ≥ i+ 1 for all 0 < i < dim Ŷ .

Since [β] + B̂ ⊂ V k
aX

(X,ωX), Rkf∗(ωX ⊗Q) 6= 0. If we denote by Xy a general fiber of
f , then we know that β|Xy is OXy . Hence

π̂∗ωbY = Rk(f ◦ π)∗ω eX = ⊕i(Rkf∗(ωX ⊗ β⊗i)) = ⊕iLi,

where L0 = ωY and after modifications, we may assume that all Li are line bundles on Y .
Moreover, we have

ker(B̂ → Pic0(Ŷ )) = B̂ ∩ ker(ÂX → Â eX)

= B̂ ∩ 〈[β]〉 = 0.

Hence for i 6= 0, V dimY
aY

(Y,Li) = ∅ and aY ∗Li is M -regular.

We know K eX/bY is effective by Lemma 4.2.3 and we have a nonzero map π̂∗Li → ωbY
for every i. Hence,

0 < h0(X̃, ω eX ⊗ f̃∗ω∨bY ) ≤ h0(X̃, ω eX ⊗ f̃∗π̂∗L∨i )

=
∑
j

h0(X,ωX ⊗ β⊗j ⊗ f∗L∨i ).

So there exists j such that ωX ⊗ β⊗j ⊗ f∗L∨i is effective. Thus in 2), we can take L to be
any Li for i 6= 0.
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Lemma 4.3.4. Assume SX is not empty, so we are in Setting 4.3.2. Let L be the line
bundle obtained in Lemma 4.3.3. Then, after modifying Y , there exists a line bundle H on
Y and i ∈ Z such that H⊗ L⊗−2 and OX(2KX)⊗ β⊗i ⊗ f∗H∨ have non-trivial sections.
Moreover we can take [αi] ∈ Pic0(Y ), 1 ≤ i ≤M such that the multiple evaluation map

ϕY : Y → P(H0(Y,H⊗ α1)∗)× · · · ×P(H0(Y,H⊗ αM )∗)

is birational.

Proof. If β is trivial, we just take H to be ω⊗2
Y . By Lemma 4.2.2, we conclude.

If [β] ∈ Pic0(X)\B̂, then we use the same notations as in the proof of Lemma 4.3.3.
Notice that in diagram (4.3.1) we have β|Xy is the trivial bundle. Hence, a general fiber
of f̃ is birational via π to a general fiber of f . So G is also the Galois group of the field
extension k(Ŷ )/k(Y ). After modifications of f̃ : X̃ → Ŷ , we may assume that G acts also
on Ŷ , f̃ is a G-equivariant morphism, and π̂ : Ŷ → Y is a G-cover of smooth projective
varieties.

Now, we apply Lemma 4.2.2 to π̂. Take H to be the direct summand of π̂∗ω⊗2bY which
contains L2.

As in the proof of Lemma 4.3.3, since π̂∗H ↪→ ω⊗2bY and K eX/bY is effective, we conclude
that there exists i ∈ Z such that OX(2KX)⊗ β⊗i ⊗ f∗H∨ is effective.

Lemma 4.3.5. Assume SX is not empty, so we are in Setting 4.3.2. Let L be the line
bundle obtained in Lemma 4.3.3. Then, for y a general point of Y , the restriction map

H0(X,OX(mKX − (m− 3)f∗L)⊗ α)→ H0(Xy,OXy(mKXy)⊗ α)

is surjective, for any m ≥ 2 and [α] ∈ V 0
aX

(X,ω⊗mX ).

Proof. We just prove the statement for α = OX , the same arguments works for the general
case.

There are two distinguished cases, whether Q is trivial or not, which we deal with
slightly different techniques.

Case A. Assume that β is trivial.
We have seen in the proof of Lemma 4.3.3 that χ(Y, ωY ) > 0, so Y is of general type.

By Lemma 4.1.6, the Iitaka model of (X,KX +(m−2)KX/Y ) dominates Y and by Lemma
4.1.5 there exists an asymptotic multiplier ideal sheaf I := J (||KX + (m−2)KX/Y ||) on
X such that aY ∗f∗(OX(2KX + (m− 2)KX/Y )⊗I ) is a sheaf satisfying I.T. with index 0.
In particular it is M -rgular and hence, by 3.1.7, cgg. It follows that

F := f∗(OX(2KX + (m− 2)KX/Y )⊗I )

is cgg outside the exceptional locus of aY .
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We conclude, similarly to [BLNP, Prop. 4.4. and Cor. 4.11] that, F ⊗ ωY is globally
generated in an open dense subset of Y . Indeed, we first notice that |ωY ⊗α| is not empty
for all [α] ∈ B̂. Take αi, 1 ≤ i ≤ N such that the evaluation map

⊕Ni=1H
0(Y,F ⊗ αi)⊗ α∨i → F

is surjective. Then

⊕Ni=1H
0(Y,F ⊗ αi)⊗H0(Y, ωY ⊗ α∨i )⊗ OY → F ⊗ ωY

is surjective over Y \ ∪1≤i≤N Bs(|ωY ⊗ αi|). Finally this evaluation map factors through
H0(Y,F ⊗ ωY )⊗ OY → F ⊗ ωY .

Moreover, by the second part of Lemma 4.1.6, F is a non-zero sheaf on Y of rank
αm(Xy). Hence, over a general point y ∈ Y , F |y is isomorphic to H0(Xy,OXy(mKXy)).
Since

F ⊗ ωY ⊂ f∗(OX(mKX − (m− 3)f∗KY ))

and they have the same rank αm(Xy), we conclude the proof of the lemma when β is
trivial.

Case B. If β is non-trivial, we use the same commutative diagram as in the proof of
Lemma 4.3.3:

X̃
π //

ef
��

b eX   
X

aX //

f

��

AX

pr

��
Ŷ

bπ //

bbY
??Y

aY // B

We claim that the Iitaka model of (X, (m−1)KX−(m−2)f∗Li) dominates Y . Indeed,
by Lemma 4.1.6, the Iitaka model of (X̃, (m − 1)K eX/bY + f̃∗KbY ) dominates Ŷ . Since

(m − 1)K eX/bY + f̃∗KbY � π∗((m − 1)KX − (m − 2)f∗Li) and π is birational to an étale
cover, the claim is clear.

Then, by Lemma 4.1.5 there is an ideal Ii of X such that

aY ∗(f∗OX(mKX)⊗Ii ⊗ L⊗−(m−2)
i )

is a sheaf satisfying I.T. with index 0, and f∗OX(mKX)⊗Ii⊗L⊗−(m−2)
i has rank αm(Xy)

(see for example [J2, Proof of Lem. 3.9]). We conclude as before, that for i 6= 0,
f∗(OX(mKX − (m− 3)f∗Li)) is globally generated over an open dense subset of Y .
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4.4 General Type Case

In this section X will be a variety of general type.

Theorem 4.4.1. Let X be a smooth projective variety, of maximal Albanese dimension
and general type. Then, the linear system |ω⊗3

X ⊗ α| induces a birational map, for any
[α] ∈ Pic0(X).

Proof. We reason by induction on the dimension of X, that we will denote by n. Note
that for n = 1 the result is well known. So we assume that for any [αY ] ∈ Pic0(Y ), |3KY +
αY | induces birational map for any smooth projective variety Y of maximal Albanese
dimension, general type, and dimY ≤ n− 1.

Observe that SX is empty if and only if aX∗ωX is almost M -regular. Since X is of
general type, if SX is empty, then χ(X,ωX) > 0 by Proposition 4.1.4. Since Chen–Hacon
have proved that |3KX | induces a birational map in this situation from now on, we will
assume SX is not empty.

As in the last section, we are in Setting 4.3.2. So, let k be the maximal number of SX
and let [β] + B̂ be an irreducible component of V k

aX
(X,ωX). Note that we can choose [β]

such that 〈[β]〉 ∩ B̂ = 0. Taking the étale cover induced by G := 〈[β]〉, we get the same
commutative diagram as in the proof of Lemma 4.3.5 (see (4.3.1))

(4.4.1) X̃
π //

ef
��

b eX   
X

aX //

f

��

AX

pr

��
Ŷ

bπ //

bbY
>>Y

aY // B,

where f̃ and g̃ are obtained by taking respectively the Stein factorization of pr ◦b eX and
prZ ◦b eX and after modifications, we may assume π̂ is a G-cover of smooth varieties.

Let y ∈ Y be a general point and denote by Xy a general fiber of f .
By Lemma 4.3.5, the restriction map

(4.4.2) H0(X,OX(3KX)⊗ α)→ H0(Xy,OXy(3KXy)⊗ α)

is surjective for any [α] ∈ Pic0(X) and, by induction hypothesis,

|3KXy + α|Xy |

induces a birational map.
We have also produced interesting line bundles on Y in Lemma 4.3.3 and Lemma 4.3.4.

Let H be the line bundle on Y constructed in Lemma 4.3.4. According to Lemma 4.2.1,
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in order to conclude the proof of the theorem, we just need to prove the following claim.

Claim ‡. For every [α] ∈ ÂX and every [α′] ∈ B̂, the line bundle

3KX + α− f∗(H+ α′)

has a non-trivial section.

Let be J := J (||2KX − f∗H+ 1
N f
∗H||), where N is an integer large enough and H

is an ample divisor on Y . For any [α] ∈ ÂX , we define

Fα := f∗
(
OX(3KX − f∗H)⊗J ⊗ α)

)
.

Observe that to conclude the proof of the claim it is enough to see that V 0
aY

(Y,Fα) = B̂.
For any ample divisor H ′ on Y , we have that

(†) H i(X,OX(3KX − f∗H)⊗J ⊗ α⊗ f∗OY (H ′)) = 0,

for any i > 0. We postpone the proof of (†) to the end of the proof of this theorem. From
(†) we deduce that

Rif∗
(
OX(3KX − f∗H)⊗J ⊗ α)

)
= 0,

for any i > 0 (see Lemma 4.1.1). Therefore,

χ(Y,Fα) = χ(X,OX(3KX − f∗H)⊗J ⊗ α)

is constant for P ∈ ÂX .
By Lemma 4.3.3 and Lemma 4.3.4, there exist integers i and j and effective divisors

D1 ∈ |KX+iβ−f∗L| and D2 ∈ |2KX+jβ−f∗H|. Let m = i+j and write D = D1 +D2 ∈
|3KX +mβ − f∗H− f∗L|, i.e.

H0(X,OX(3KX +mβ − f∗H− f∗L)) = H0(X,OX(D)) 6= 0.

Since

J = J (||2KX − f∗H+
1
N
f∗H||)

⊃J (||2KX − f∗H)||) H is ample on Y

= J (||2KX + jβ − f∗H||) [β] is torsion

⊃ OX(−D2) by Lemma 3.1.3 ,

we have

H0(Y,Fmβ ⊗ L−1) = H0(X,OX(3KX +mβ − f∗H− f∗L)⊗J )

⊃ H0(X,OX(D1)) 6= 0.(4.4.3)
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Therefore, since V 0
aY

(Y,L) = B̂, we have h0(Y,Fmβ ⊗ α′) > 0 for all [α′] ∈ B̂.
On the other hand, we see by Lemma 4.1.8 that Fα is a GV -sheaf for any [α] ∈ ÂX .

Therefore, for [α′] ∈ B̂ general and any [α] ∈ ÂX ,

h0(Y,Fα ⊗ α′) = χ(B,Fα) = χ(B,Fmβ) = h0(B,Fmβ ⊗ α′) > 0.

Hence, by semicontinuity, for any α ∈ ÂX , V 0
aY

(Fα) = B̂.
Proof of (†) Notice that 2K eX/bY � π∗(2KX − f∗H) and K eX/bY + 1

N f̃
∗π̂∗H is a big Q-

divisor on X̃. Hence, 2KX−f∗H+ 1
N f
∗H is a big Q-divisor on X. So (†) is a consequence

of Kawamata-Viehweg vanishing theorem (Theorem 4.1.2).

4.5 Iitaka Fibrations

In this section X will not necessarily be a variety of general type.

Theorem 4.5.1. Let X be a smooth projective variety, of maximal Albanese dimension.
Then, the linear system |4KX + α| induces a model of the Iitaka fibration of X, for any
[α] ∈ V 0

aX
(X,ω⊗2

X ).

Before starting the proof the Theorem 4.5.1, which is parallel to the proof of Theorem
4.4.1, let us fix the notation.

Setting 4.5.2. Consider the following diagram:

X
aX //

g

��

AX

prZ
��

Z
aZ // AZ

where g : X → Z which is a model of the Iitaka fibration of X and Z is smooth. Let
K be the kernel of prZ . We denote by Xz a general fiber of g, which is birational to its
Albanese variety K̃, and the natural map K̃ → K is an isogeny. We know that pr∗Z ÂZ is
an irreducible component of

K := ker(ÂX → Pic0(Xz))

and denote by Q := K / pr∗Z ÂZ . Observe that Q can be also identified with ker(K̂ → ̂̃
K).

Remark 4.5.1. The group Q is often non-trivial and this is exactly the reason why the
tricanonical map can not always induce the Iitaka fibration. In some specific cases, given
information about Q, we could prove that the tricanonical map or some twisted tricanoni-
cal map (the maps induced by |3KX +α| for some [α] ∈ Pic0(X)) would induce the Iitaka
fibration (see Remark 4.5.2).
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Nevertheless we will construct a variety of maximal Albanese dimension (see Example
4), where NONE of the twisted tricanonical maps is birationally equivalent to the Iitaka
fibration.

Before proving the theorem, we start with an easy observation.

Lemma 4.5.3. The kernel K defined in Setting 4.5.2, satisfies

K = V 0
aX

(X,ω⊗mX ) for all m ≥ 2.

Proof. It is clear that V 0
aX

(X,ω⊗mX ) ⊆ K . If [α] ∈ K , then g∗(ω⊗mX ⊗ α) is a nontrivial
torsion-free sheaf. By Lemma 4.1.5, g∗(ω⊗mX ⊗J (‖ω⊗(m−1)

X ‖)⊗α) is a sheaf satisfying I.T.
with index 0 for any m ≥ 2. Hence, we conclude since 0 < h0(Z, g∗(ω⊗mX ⊗J (‖ω⊗(m−1)

X ‖)⊗
α)) ≤ h0(X,ω⊗mX ⊗ α).

Proof of Theorem 4.5.1. We will prove the theorem by induction on the dimension of X.
We suppose the statement is true in dimension ≤ n− 1 and assume dimX = n. If X is of
general type, then we are back to Theorem 4.4.1. Hence we can assume κ(X) = dimZ =
n− l, for some number l > 0. In particular, SX is not empty.

Hence, we are in Setting 4.3.2. Let k be the maximal number of SX and let [β] + B̂

be an irreducible component of V k
aX

(X,ωX). Since Rkf∗(ωX ⊗ β ⊗α) 6= 0, for all [α] ∈ B̂,
we observe that B̂ ↪→ pr∗Z ÂZ . Hence, Setting 4.3.2 and 4.5.2 combine in the following
commutative diagram

X
aX //

g

��
f

  

AX

prZ
��

pr

��

Z
aZ //

h
��

AZ

��
Y aY

// B

Let y ∈ Y be a general point and denote by Xy and Zy general fibers of f and h. By
Easy Addition Formula (e.g. [I, Thm. 10.4]), dimY + κ(Xy) ≥ κ(X) = dimZ. Hence
κ(Xy) ≥ dimZy and then g|Xy : Xy → Zy is the Iitaka fibration of Xy.

By Lemma 4.3.5 and 4.5.3, the restriction map

H0(X,OX(4KX + α))→ H0(Xy,OXy(4KXy + α|Xy))

is surjective, for any [α] ∈ K . Notice that [α|Xy ] ∈ V 0
aXy

(Xy, ω
⊗2
Xy

), so by induction
hypothesis,

|4KXy + α|Xy |
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induces the Iitaka fibration g|Xy : Xy → Zy.
Let H be the line bundle on Y constructed in Lemma 4.3.4. Then, by Lemma 4.2.1,

we just need to prove the following claim to finish the proof of the theorem.

Claim. For every [α] ∈ K and every [α′] ∈ B̂,

4KX + α− f∗(H+ α′)

has a non-trivial section.

Let be J := J (||3KX − f∗H+ 1
N f
∗H||), where N is an integer large enough and H

is an ample divisor on Y . For any α ∈ K , we define

Gα := g∗
(
OX(4KX + α− f∗H)⊗J

)
.

Observe that to conclude the proof of the claim it is enough to see that V 0
aY

(Y, h∗Gα) = B̂.
By Lemma 4.1.5, we have

H i(Z,Gα ⊗ β′′ ⊗ h∗H ′) = 0,

for any i ≥ 1, any ample divisor H ′ on Y , and any [β′′] ∈ ÂZ . Hence, by Lemma 4.1.1

Rih∗(Gα ⊗ β′′) = 0,

for any i > 0. Therefore,

(4.5.1) χ(Y, h∗(Gα ⊗ β′′)) = χ(Z,Gα ⊗ β′′)

is constant for β′′ ∈ ÂZ .
By Lemma 4.3.3 and Lemma 4.3.4, we know there exists m ∈ Z such that

H0(X,OX(3KX +mβ − f∗H− f∗L)) 6= 0.

Observe that [α−mβ] is not necessarily in pr∗Z ÂZ . But, since [α−mβ] ∈ K , we have
that aZ∗g∗OX(KX +α−mβ) is a non-trivial GV -sheaf. In particular, V 0

aZ
(Z, g∗OX(KX +

α−mβ)) 6= ∅. Hence there exists [β0] ∈ pr∗Z ÂZ such that [α−mβ + β0] ∈ V 0
aX

(X,ωX).
Therefore

4KX + α+ β0 − f∗H− f∗L

= (KX + α−mβ + β0) + (3KX +mβ − f∗H− f∗L)

is the sum of two effective divisors. By the same argument as in (4.4.3),

H0(Z,Gα ⊗ h∗L−1 ⊗ β0) 6= 0.
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We know that V 0
aY

(Y,L) = B̂ (see Lemma 4.3.3) and h∗(Gα ⊗ β′) is a GV -sheaf for any
α ∈ K and any β′ ∈ ÂZ (see Lemma 4.1.8). Hence, for α′ ∈ B̂ general,

h0(Y, h∗Gα ⊗ α′) = χ(Y, h∗Gα) = χ(Y, h∗(Gα ⊗ β0)) by (4.5.1)

= h0(Y, h∗(Gα ⊗ β0)⊗ α′) > 0.

By semicontinuity, V 0
aY

(h∗Gα) = B̂ for any [α] ∈ K .

Now, we can make more precise Remark 4.5.1.

Remark 4.5.2. In the previous proof, observe that if [α−mβ] lies in pr∗Z ÂZ , then 3KX +
α + β0 − f∗H − f∗L is effective for some β0 ∈ pr∗ ÂZ . So, we could have improved
the result to the tricanonical map (assuming the induction hypothesis). In particular, if
Q := K / pr∗Z ÂZ is trivial for X and the successive fibers of the induction process, then
the tricanonical map twisted by an element in K induces the Iitaka fibration.

Moreover, if for some [α] ∈ K , [α]+pr∗Z ÂZ is an irreducible component of V 0
aX

(X,ωX),
then we can again prove that the tricanonical map twisted by an element in K induces
the Iitaka fibration. This shows that varieties of maximal Albanese dimension, where
none of the twisted tricanonical map is birational equivalent to the Iitaka fibration, are
closely related to varieties of maximal Albanese dimension, of general type with vanishing
holomorphic Euler characteristic.

We finish with an example of maximal Albanese dimension, whose tricanonical map
does not induce the Iitaka fibration. This example is based on the famous Ein-Lazarsfeld
threefold, which is constructed in [EL2, Ex. 1.13] and further investigated in [CDJ].

Example 4. We take three bielliptic curves Ci of genus 2, i = 1, 2, 3. Let ρi : Ci → Ei be
the double cover over an elliptic curve Ei and denote by τi the involution of fibers of ρi.
We write

ρ∗OCi = OEi ⊕ L
−1
i ,

where Li is a line bundle on Ei of degree 1.
Let Y be the threefold (C1×C2×C3)/(τ1, τ2, τ3), which has only rational singularities.

We know that aY : Y → E1 × E2 × E3 is a (Z/2Z× Z/2Z)-cover.
We then take an abelian variety A and a (Z/2Z × Z/2Z)-étale cover Ã → A. Set

{[OA, ][α1], [α2], [α3]} to be the kernel Â→ ̂̃
A.

Denote H = (Z/2Z × Z/2Z) and let X ′ be the variety (Y × Ã)/H, where H acts
diagonally on Y × Ã. Notice that X ′ has only rational singularities and let X be a
resolution of singularities of X ′. The Albanese morphism

aX : X → E1 × E2 × E3 ×A

is birationally a (Z/2Z× Z/2Z)-cover.
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After permutation of {[αi], i = 1, 2, 3}, we have

aX∗ω
⊗3
X '

(
L⊗2

1 � L
⊗2
2 � L

⊗2
3 � OA

)
⊕
(
L⊗3

1 � L
⊗3
2 � L

⊗2
3 � α1

)
⊕

(
L⊗3

1 � L
⊗2
2 � L

⊗3
3 � α2

)
⊕
(
L⊗2

1 � L
⊗3
2 � L

⊗3
3 � α3

)
It is easy to check that for any [α] ∈ Pic0(X), the linear series |3KX + α| can not

induce the Iitaka fibration X → E1 × E2 × E3.
Using, the notation of Setting 4.5.2, observe that

K = V 0
aX

(X,ω⊗2
X ) =

⋃
[β]∈{[OA][,α1],[α2],[α3]}

E1 × E2 × E3 × {[β]}

and Q = Z/2Z× Z/2Z. Indeed, Q can be identified with {[OA][, α1], [α2], [α3]}.
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CHAPTER 5

BIRATIONALITY OF THE A LBANESE MAP AND

OTHER RESULTS

Smooth models of theta divisors are, after abelian varieties, the simplest and most
important among irregular varieties. An interesting research started by Ein–Lazarsfeld
([EL2]) is to characterize irreducible theta divisors by their birational invariants, in a
similar way to what Kawamata ([K1]) did for abelian varieties. In this setting we recall
the following result of Hacon–Pardini ([HP1]).

Theorem. Let X be a smooth complex variety of dimension n, let A be an abelian variety
of dimension n+ 1, and let aX → A a generically finite morphism. Assume that

a) f∗ : H0(X,Ωn
X)→ H0(A,Ωn

A) is an isomorphism;

b) h1(X,ωX ⊗ a∗α) = 1 for every [α] ∈ Â\{[OA]} and all i > 0. Then f is birational
into its image f(X), A is principally polarized and f(X) is a theta divisor in A.

Not long ago Barja–Lahoz–Naranjo–Pareschi, and independently Lazarsfeld–Popa,
provided this new characterization.

Theorem ([BLNP],[LP]). Let X be a smooth complex variety that admits a : X → A a
generically finite morphism into an abelian variety such that

a) χ(ωX) = 1;

b) dimA > dimX;

c) for every 0 < i ≤ dimX, V i
a (X,ωX) = {OA}.

Then A is principally polarized, dimA = n+ 1, a has generic degree 1 and X is a smooth
model of a principal polarization in A.

67
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This was more recently refined in [P2] (see Theorem 5.3.1).
It is tempting to manage to give similar characterizations for products of smooth irre-

ducible theta divisors. To this aim Pareschi conjectured the following:

Conjecture (Pareschi). If X is a variety of maximal Albanese dimension, whose Albanese
map is not fibered in subtori, and χ(ωX) = 1, then it is birational to a product of irreducible
Θ-divisors in principally polarized abelian varieties.

It is well known that subvarieties of abelian varieties either are fibered in subtori or
(their resolution of singularities) are of general type. Certainly products of theta divisors
belong to the latter of these two categories. If the conjecture were proved to be true, we
would have a partial converse of this fact.

The above conjecture is known to be true for surfaces. In fact Beauville proved in [B1]
that the irregularity of surfaces with χ = 1 is at most 4 and surfaces with irregularity 4
and Euler characteristic equal to one are products of curves of geneus 2 (and therefore
products of irreducible theta divisors). Surface S with χ(ωS) = 1 and irregularity q = 3
were studied in [HP2] and [P3], where was proved that the moduli space of these irregular
surfaces has just two connected components

(a) M6 := {[X] |K2
X = 6}; the elements of this component are symmetric products of

curves of genus 3 (and therefore are birational to Θ-divisors in principally polarized
abelian variety).

(b) M8 := {[X] |K2
X = 8}; in this case X is a quotient of a product C2 × C3 with Ci a

curve of genus i, where C2 has an ellpitic involution σ2 and C3 as a free involution
σ3, and X is the quotient by the diagonal action.

Notice that the Albanese images of surfaces of type (b), contrary to those in (a), are
fibered in subtori. Therefore the surfaces of maximal Albanese dimension with Euler
characteristic equal to one and Albanese image not ruled by subtori are birational to a
product of theta divisors.

Other examples of varieties that satisfy Pareschi’s conjecture are provided by highly
irregular varieties, where the meaning of “highly irregular” is to be taken with respect of
the following statement of Hacon–Pardini which generalize in higer dimension a result of
Beauville ([B1]):

Theorem (Hacon–Pardini [HP3]). The irregularity of smooth complex variety X of di-
mension n, χ(X) = 1 and of maximal Albanese dimension is less or equal 2n and equality
occurs if and only if it is birational to a product of curves of genus 2.

Hence varieties X with χ(X) = 1 and maximal irregularity satisfy Pareschi’s conjec-
ture.
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In this Chapter we study smooth projective varieties with χ(ωX) = 1, whose Albanese
image is not fiberd in tori, in order to challenge Pareschi’s conjecture. We present some
partial results. First of all, in the same setting as in the conjecture above, we were able
to prove the following theorem that could be regarded as a further evidence of trueness of
the conjecture, since the Albanese map of a desingularisation of a product of theta divisor
is obviously birational.

Theorem 5.A. The Albanese map of X has degree 1.

Afterwards we used this fact to further refine the known cohomological characteriza-
tions of (smooth models of) theta divisors recalled at the beginning of this introduction.
In particular we prove

Theorem 5.B. Let X as above and suppose that its Albanese image is normal. Consider
the generic vanishing loci

V i
albX

(ωX) := {[α] ∈ Pic0(X) | hi(ωX ⊗ α) 6= 0}.

If [OX ] is an isolated point of V i
albX

(ωX) for every i > 0 then X is birational to an
irreducible theta divisors in an principally polarized abelian variety.

We remark that the hypothesis about the normality of the Albanese image of X is not
very restrictive thank to a theorem of Ein–Lazarsfeld ([EL2]) that states that irreducible
theta divisors are always normal with at worst rational singularities. Furthermore we
believe that this assumption could eventually be removed.

We would like to remark that Theorem 5.B constitutes a further evidence of the validity
of Pareschi’s conjecture. In fact if this were to be proved, then theta divisors would be
the sole irregular varieties whose generic vanishing loci have an isolated point.

We hope that Theorem 5.B (or a refinements of its), thank to the better understanding
of theta divisors that it allows, would help us to succed in the proof of Pareschi’s conjecture.

This Chapter is organized in the following manner. In section 5.1 we present some
background material and some preliminary lemmas. Section 5.2 is dedicated to the proof
of Theorem 5.A. To this aim we present some results on the Fourier-Mukai transform of
the structure sheaf OX and we expose a birational criterion similar to [HP1, Theorem 3.1].
In the last section we prove Theorem 5.B.

5.1 Preliminaries

In this section we recall some known results which will be needed afterwards. We
begin with two Theorems of Hacon–Pardini tha generalize the work of Kollar and Green–
Lazarsfeld.
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Theorem 5.1.1 ([HP3, Theorem 2.1]). Let X, Y and Z be projective varieties, with
X smooth. Consider f : X → Y and g : Y → Z two surjective morphisms and take
[τ ] ∈ Pic0(X) a torsion point. Then:

(i) Rig∗R
jf∗(ωX ⊗ τ) is torsion free for every i, j ≥ 0;

(ii) Rig∗R
jf∗(ωX ⊗ τ) = 0 for every j ≥ 0, i > dim;Y − dimZ;

(iii) Rk(g ◦ f)∗(ωX ⊗ τ) '
⊕k

i=0R
ig∗R

k−if∗(ωX ⊗ τ).

Theorem 5.1.2 (Generic Vanishing [HP3, Theorem 2.2]). Let f : X → Y and g : Y → Z

be morphisms of smooth projective varieties and let a : Z → A a morphism to an abelian
variety. Take [τ ] ∈ Pic0(X) a torsion point and set F := Rhg∗R

jf∗(ωX ⊗ τ). Then:

(i) set k = dim(Z)−dim a(Z), gva(F ) ≥ −k. In particular if Z is of maximal Albanese
dimension then F is a GV -sheaf.;

(ii) every irreducible component of V i
a (F ) is a translate of a subtorus of Â by a torsion

point.

In [HP3] Hacon and Pardini proved (a more general version the of the) following

Lemma 5.1.3 ([HP3, Lemma 3.3]). Let X be a maximal Albanese dimesnion with a :
X → A a generically finite morphism into an abelian variety. Given W a component of
V k
a (ωX ⊗ τ), denote by g : X → Pic0(W ) the induced map. Then

dim g(X) ≤ dimX − k.

We include the short proof for the reader’s benefit.

Proof. We can write W = [β] + B̂ with [β] ∈ Â a torsion point and B̂ ⊆ Â a subtorus.
Let B := Pic0(B̂) = Pic0(W ). Then by the Theorem 5.1.2 above, for the generic α ∈ B̂
and for every j ≥ 0 and s > 0 one has:

Hs(B,Rjg∗(ωX ⊗ a∗β)⊗ α) = 0.

Therefore the Leray spectral sequence degenrates and, thank to Theorem 5.1.1, we have
the isomorphism

Hk(X,ωX ⊗ a∗β ⊗ g∗α) = H0(B,Rig∗(ωX ⊗ a∗β)⊗ α).

Now assume by contradiction that the relative dimension of g is strictly smaller than k,
by 5.1.1 Rkg∗(ωX ⊗ a∗β) = 0 and Hk(ωX ⊗ a∗(β ⊗ α)) = 0, contradicting the hypothesis
that W ⊆ V k

a (ωX).
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We can evince some more complete information about the dimension of the generic
fiber of g:

Lemma 5.1.4. In the notation of the above Lemma, suppose furthermore that the generic
vanishing index of X (cfr Definition 1.2.2), gva(ωX), is equal to i and let W be a compo-
nent of V k

a (ωX) of codimension k + i. Then

dim g(X) = dimX − k.

Proof. We will show that the general fiber of g, G, has dimension k. The argument we
present is due to Jiang ([J3]).

As before, we can write W = [β] + B̂ with [β] ∈ Â a torsion point and B̂ ⊆ Â a
subtorus. Let B := Pic0(B̂) = Pic0(W ). Now consider π : A → B the dual map to the
inclusion B̂ ↪→ Â. Thus we are in the following situation:

X

f
��

g

&&NNNNNNNNNNNNN
a // A

π
����

Y
b

// B

where f is (a smooth model of) the Stein factorization of g and b is generically finite. Since
dimY = dim g(X), by the above Lemma, the generic fiber F of f has dimension greater
or equal k. We claim that equality holds, the statement would follow at once. Suppose
that equality did not hold and take j ≥ 0 and Z an irreducible component of V j

b (ωY ).
Then π∗Z ⊆ V j+dimF

a (ωX) and we would have, for any j ≥ 0

k + j + i < dimF + j + i ≤ codim bAπ∗Z = codim bBZ + k + i.

Therefore, for any j ≥ 0, codim bBV j
b (ωY ) ≥ j + 1. In particular we have that V 0

b (ωY ) is
a proper subset of B̂ and hence χ(ωY ) = 0, but gvb(ωY ) ≥ 1 contradicting Proposition
1.2.10.

5.2 When the Albanese Map Has Degree 1

Let X a smooth projective variety over the complex numbers of dimension n. From
now on we will work under the following hypothesis:

Hypothesis 5.2.1. The variety X is of maximal Albanese dimension and

(i) χ(ωX) = 1

(ii) q(X) := h1(X,OX) > dimX.
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Furthermore it will be given a : X → A a generically finite map to an abelian variety of
dimension q such that

(iii) the pullback a∗ : Â→ Pic0(X) is an embedding and

(iv) the image of a is not fibered in subtori of A.

Remark 5.2.1. We recall that condition (iv) tells us that gva(ωX) ≥ 1. Infact, suppose
that gva(ωX) = 0 and take [β] + T̂ ⊆ V k

a (ωX) a component of codimension k. Consider,
as before, the following commutative diagram

X
g

&&NNNNNNNNNNNNN
a // A

π
����
T

where T := Pic0(T̂ ), and π : A → T is the map dual to the inclusion T̂ ⊆ Â. By Lemma
5.1.3 the general fiber of g has dimension greater or equal k. This means that, via a|G,
G is mapped surjectively to the k-dimensional general fiber of π, that is a translate of
the subtorus K := Ker(π) ⊆ A. Hence the general fiber of π|a(X) : a(X) → T̂ is still
isomorphic to K, implying that a(X) is ruled by subtori. Therefore gva(ωX) ≥ 1. Now
we combine (i) with proposition 1.2.10 and get that gva(ωX) = 1.

The main purpose of this section is to prove the following statement.

Theorem 5.2.2. Let (X, a) be a pair that satisfies Hypothesis 5.2.1, then the map a is
birational onto its image.

Observe as this would immediately imply Theorem 5.A in the introduction.

5.2.1 The Fourier-Mukai Transform of the Structure Sheaf

We will begin by providing information about the complex RSRa∗OX under the as-
sumption 5.2.1. By Remark 5.2.1 and the W.I.T crieterion (Theorem 1.2.4), we know that
its cohomology is concentrated in degree n = dimX, while Proposition 1.2.6 and Theorem
1.2.9 tell us that its only non vanishing cohomology sheaf R̂a∗OX is a torsion free sheaf
of generic rank χ(ωX) = 1, hence it is an ideal sheaf twisted by some line bundle:

R̂a∗OX ' IZ ⊗ L.

Observe that the codimension of Z is greater than 1. In fact, suppose by contradiction
that exists W ⊆ Z a component of codimension 1, then W is a component of the support
of E xt1(OZ ⊗ L,OA). Now consider the short exact sequence

(5.2.1) 0→ IZ ⊗ L→ L→ OZ ⊗ L→ 0
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Applying RH om(−,OA) and taking cohomology we get

0→ L∨
ϕ−→ L∨

ψ−→ E xt1(OZ ⊗ L,OA)→ 0.

Now ϕ is certainly an isomorphism, therefore ψ is the zero map and E xt1(OZ⊗L,OA) = 0
contradicting the inclusion

W ⊆ Supp E xt1(OZ ⊗ L,OA)

Remark 5.2.2. a)The subscheme Z above is supported on the complement of the union
of the generic vanishing loci V i

a (ωX) for i ≥ 1. In fact let W be a component of Z, for
what observed above we can suppose that codim bAW = i + 1 for some i > 1. Then W is
included in the support of E xti+1(OZ ⊗L,O bA). Applying again RH om(−,O bA) to (5.2.1)
and taking cohomology we get that for every j ≥ 1

E xtj+1(OZ ⊗ L,O bA) ' E xtj(IZ ⊗ L,O bA).

In particular W ⊆ Supp E xti(IZ ⊗ L,O bA). We apply Theorem 1.2.6(b) that tells us

Supp E xti(IZ ⊗ L,O bA) = Supp E xti(R̂a∗OX ,O bA) ' RiS(Ra∗ωX).

In particular we obtain that W ⊆ Supp(RiΦPa(ωX)). By base change we have an inclusion
Supp(RiΦPa(ωX)) ⊆ V i

a (ωX). Therefore W ⊆ V i
a (ωX).

b) The sheaf IZ ⊗ L is a GV sheaf on Â. Infact, applying Proposition 1.2.6 with
F ' ωX , we have the following isomorphisms of objects in D(A)

(5.2.2) R∆(IZ ⊗ L) ' (−1 bA)∗RΦPa(ωX) ' (−1 bA)∗RSRa∗ωX ;

where the last equality is nothing else that equation (1.1.3). Now we apply to both sides
the functor RŜ and we use Mukai’s duality thoerem:

RŜR∆(IZ ⊗ L) ' RŜ(−1 bA)∗RSRa∗ωX ' Ra∗ωX [−q].

Since a is generically finite, Grauert-Riemenshneider implies that the latter is a sheaf in
degree q. It follows from the W.I.T. crieterion (Theorem 1.2.4) that IZ ⊗ L is GV.

c) As in [P2], it is easy to compute the Fourier-Mukai transform of IZ ⊗ L using
Mukai’s theorem and what already proven:

(5.2.3) RŜ(IZ ⊗ L) ' RŜRS(Ra∗OX)[n] ' (−1)∗Ra∗OX [n− q].

Proposition 5.2.3. The sheaf L is ample.
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Proof. Recall that given x ∈ A we denote by Px the topologically trivial line bundle on A
associated to x, P|{x}× bA. Let us suppose that L is not ample. Hence, by some standard
facts about line bundles on abelian varieties, it exists T a subtorus of A such that for every
x /∈ T , h0(Â, L⊗ Px) = 0. In particular, if x /∈ T , then also −x /∈ T and we have:

0 = H0(Â,IZ ⊗ L⊗ P−x) ' Hom
D( bA)

(O bA,IZ ⊗ L⊗ P−x) '

' Hom
D( bA)

(R∆ bA(IZ ⊗ L), P−x).

Now we apply to both P−x and R∆ bA(IZ ⊗ L) the Fourier-Mukai transform. Using that
it is an equivalence (and hence, in particular, it is fully faithful) we get:

0 = Hom
D( bA)

(RŜ ◦R∆ bA(IZ ⊗ L),RŜ(P−x)) '

' Hom
D( bA)

((−1A)∗a∗(ωX)[−q],C(−x)[−q]) '(5.2.4)

' Hom
D( bA)

((−1A)∗a∗(ωX),C(−x)).(5.2.5)

Where, as usual C(−x) stands for the skyscraper sheaf at the point −x, (5.2.4) is a
consequence of Remark 5.2.2(b) and some usual computations with integral transform
(combine Proposition 1.1.3 with the fact that RŜ(O bA = C(0)[−q]) .

From the equality
Hom

D( bA)
((−1A)∗a∗(ωX),C(−x)) = 0

we deduce x is not in the support of a∗ωX and hence it is not contained in a(X). It follows
that a(X) ⊆ T contradicting the fact that it generates A.

5.2.2 A Birationality Criterion

In this paragraph we present a birationality criterion, similar to the one exposed in
[HP1, Theorem 3.1], which we will apply in order to prove Theorem 5.2.2.

Proposition 5.2.4. Let g : X → Y be a generically finite morphism of smooth varieties
of maximal Albanese dimension and let b : Y → A a generically finite morphism into an
abelian variety such that

(i) gvb(g∗ωX) ≥ 1;

(ii) χ(X,ωX) = χ(Y, ωY ).

Then g is birational.

Proof. First of all observe that, since g is generically finite, by Grauert–Riemenshneider
vanishing we have χ(X,ωX) = χ(Y, g∗ωX) and hence, using (ii),

(5.2.6) χ(Y, ωY ) = χ(Y, g∗ωX).
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Now there is a natural inclusion ωY ↪→ g∗(ωX). In fact, we have a natural inclusion of
differential 1-forms:

g∗Ω1
Y ↪→ Ω1

X .

Taking determinants on both sides and observing that exterior powers commute with
pullbacks, we get another inclusion

g∗ωY ↪→ ωX .

Pushing forward we obtain
g∗(g∗ωY ) ↪→ g∗ωX ;

we use projection formula in order to achieve

ωY ⊗ g∗OX ↪→ g∗ωX .

Finally, by tensoring by ωY the natural inclusion OY ↪→ g∗OX we get the seeked inclusion.
Therefore we can construct a short exact sequence

(5.2.7) 0→ ωY −→ g∗ωX −→ Q → 0.

By (5.2.6) and the additivity of the Euler characteristic we have

(5.2.8) χ(Y,Q) = 0.

Now we claim

(5.2.9) gvb(Q) ≥ 1.

Before proceeding further let us see how (5.2.9) implies the statement. By the W.I.T.
criterion (Theorem 1.2.4) we have that RΦPb

(R∆Y (Q)) is a sheaf ̂Rb∗R∆Y (Q) of generic
rank 0 in degree dimY . But Theorem 1.2.9 tells us that ̂Rb∗R∆Y (Q) is torsion free.
Therefore we necessarily have ̂Rb∗R∆Y (Q) = 0 which implies

0 = RΦPb
(R∆Y (Q)).

By applying to (5.2.7) the functor RΦPb
◦ R∆Y we get an isomorphism of objects in

D(Â):
RΦPb

(OY ) ' RΦPb
(R∆Y (g∗ωX)).

Now we use Grauert–Riemenshneider vanishing theorem together with Grothendieck–
Verdier duality to obtain:

RΦPb
R∆(g∗ωX) ' RΦPb

R∆Rg∗ωX ' RΦPb
Rg∗R∆ωX ' RΦPb◦g(OX).
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In particular we get the following isomorphisms
(5.2.10)
RS(Rb∗OY ) ' RΦPb

(OY ) ' RΦPb
(R∆Y (g∗ωX)) ' RΦPb◦g(OX) ' RS(R(b ◦ g)∗OX).

It follows from Mukai’s inversion theorem and (5.2.10) above that Rb∗OY is isomorphic to
R(b ◦ g)∗OX as objects in D(A). In particular we get that b∗OY ' (b ◦ g)∗OX as sheaves
on A. Therefore we have

deg b = rank b∗OY = rank(b ◦ g)∗OX = deg b · deg g.

Necessarily the generic rank of g must be 1, and the statement is proved.
In order to conlude the proof we just have to verify (5.2.9). To this aim, consider again

the short exact sequence (5.2.7) and twist it by b∗α with [α] ∈ Â. Taking cohomology we
get

· · · → H i(Y, g∗ωX ⊗ b∗α)→ H i(Y,Q ⊗ b∗α)→ H i+1(Y, ωY ⊗ b∗α)→ · · ·

Therefore there is an inclusion

V i
b (Q) ⊆ V i

b (ωX) ∪ V i+1
b (ωY ).

Now by Theorem 1.2.3 codimV i+1
b (ωY ) ≥ i+ 1. In addition, by condition (i) in the state-

ment we have that also codimV i+1
b (g∗ωX) ≥ i+1. It follows at once that codimV i+1

b (Q) ≥
i+ 1 too and (5.2.9) holds.

Now we are ready to challenge Theorem 5.2.2. In fact consider (X, a) a pair satisfying
Hypothesis 5.2.1. Denote by Y ′ the image of a and take b : Y −→ Y ′ to be a desingulariza-
tion of its. Then there exists a variety X ′ and a generically finite morphism g : X ′ −→ Y

such that b◦g is birationally equivalent to a : X −→ Y ′. Since the issues we are addressing
are birational in nature, we can and will assume, without loss of generality, that X = X ′

and we have the following commutative diagram:

(5.2.11) X
a // //

g   AAAAAAAA Y
� � // A

Y ′
b

>>}}}}}}}

Given the birationality of b, to ensure the birationality of a it is enough to prove that g is
birational. Let us show that the hypothesis of Proposition 5.2.4 are satisfied.

First of all, observe that, as in the proof of the birationality criterion above, we have

RΦPb
R∆(g∗ωX) ' RΦPb

R∆Rg∗ωX ' RΦPb
Rg∗R∆ωX ' RΦPaR∆ωX .
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Since (X, a) satisfies Hypothesis 5.2.1, by Remark 5.2.1, gva(ωX) ≥ 1. In particular (cfr.
Theorems 1.2.4 and 1.2.9), RΦPaR∆ωX is a torsion free sheaf in degree dimX = dimY .
It follows that also RΦPb

R∆(g∗ωX) is a torsion free sheaf in degree dimY , hence, applying
again Theorems 1.2.4 and 1.2.9, we get that gvb(g∗ωX) ≥ 1.

Thus, in order to conclude, we just need to verify that χ(ωY ) = χ(ωX) = 1. Observe
that, thanks to the natural inclusion j : ωY → g∗(ωX), the generic vanishing properties of
ωY and g∗ωX , and Grauert–Riemenshneider vanishing, if we take [α] ∈ Â general we get

χ(Y, ωY ) = h0(Y, ωY ⊗ b∗α) ≤ h0(Y, g∗ωX ⊗ b∗α) = χ(Y, g∗ωX) = χ(ωX) = 1.

Let us suppose that χ(Y, ωY ) = 0, by Proposition 1.2.10 we would have that gvb(ωY ) = 0.
But then b(Y ) = Y ′ = a(Y ) would be fibered in tori contradicting Hypothesis 5.2.1.

5.3 A Characterization of Theta Divisors

In this section we further refine a cohomological characterization of Θ divisors due to
Pareschi who in [P2] proved the following

Theorem 5.3.1. Let X a smooth projective variety of maximal Albanese dimension with
χ(ωX) = 1 and gv(ωX) = 1. Suppose furthermore that for every 0 < i < dimX the
codimension of V i(ωX) > i+ 1. Then X is birational to a theta-divisor.

We will prove the follwing

Theorem 5.3.2. Let (X, a) be a pair satisfying Hypothesis 5.2.1. Suppose furthermore
that [OA] ∈ Â is an isolated point of V i

a (ωX) for every i > 0 and that a(X) is normal.
Then the abelian variety A is principally polarized and X is birational to a Θ-divisor in
A.

We will begin by proving the preliminary result.

Proposition 5.3.3. Let (X, a) as in the Theorem above. Then the dimension of A is
n+ 1.

Proof. The assumptions on X, namely that both the Euler characteristic of ωX and its
generic vanishing index with respect to the map a are equal to 1, ensure that dimA > n,
Ra∗OX is a W.I.T. object with index q = dimA and that its Fourier-Mukai transform,
R̂a∗OX is a torsion free sheaf of generic rank 1 (crf. Proposition 1.2.6 and Theorem 1.2.9),
i.e. it is an ideal sheaf IZ twisted by some line bundle L. Moreover, thank to the fact
that any codimension i + 1 component of V i

a (X,ωX) does not pass through 0 bA, we can
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write Z = S ∪W with S a scheme supported on 0A and W a scheme not containing 0A.
Then we can look at the short exact sequence

0→ IZ ⊗ L −→ L −→ L|Z → 0

Taking Ext-sheaves and observing the vanishing, we have that for every i ≥ 1

(5.3.1) E xti(IZ ⊗ L,O bA) ' E xti+1(L|Z ,O bA)

Now any component of the support of E xtj(IZ ⊗L,O bA) is a component of the support of
RjS(Ra∗ωX) that is empty for j > n. On the other side S is a component of codimension
q of Z, hence it is a component of E xtq(OZ ⊗ L,O bA). Hence E xtq(L|Z ,O bA) is non-zero.
Equation (5.3.1) yields that E xtq−1(IZ ⊗ L,O bA) 6= 0, and therefore q − 1 ≤ n. Thus we
get that q = n+ 1. Furthermore, since by [BLNP, Proposition 6.1]

k(0̂) ' RnΦPa(ωX) ' E xtn(IZ ⊗ L,O bA) ' E xtq(L|Z ,O bA)

we also get that S is the reduced subscheme supported in 0.

We will also need some Lemmas.

Lemma 5.3.4. Let f : Y → Z is a surjective morphism between varieties with Y normal
and Z smooth, then the general fiber of F is normal.

Proof. A similar argument could be found in [S3]. Since normality is a local property we
can think Y = Spec(B), Z = Spec(A) with, A and B C-algebras with B a normal over C,
and f induced by a morphism ϕ : A→ B. Since f is surjective, then any prime ideal of A
is contracted. In particular (0) is contracted and ϕ is injective. In this setting the general
fiber is just [ϕ(A\{0})−1] · B. Since normality is stable by localization, [ϕ(A\{0})−1] · B
is normal. We get the statement.

Lemma 5.3.5. Let A be an abelian variety of dimension q ≥ 2 and take D an ample
divisor in A. If [α] ∈ Pic0(A) is such that α|D ' OD then α ' OA.

Proof. Consider the standard short exact sequence

0→ OA(−D) −→ OA −→ OD → 0

and tensor it by a topologically trivial line bundle α as in the statement. Suppose that α
is not trivial. Taking cohomology we get

0→ H0(D,OD)→ H1(A,OA(−D)⊗ α)→ · · ·

Since q ≥ 2, then H1(A,OA(−D)⊗ α) = 0 and H0(D,OD) = 0, yielding a contradiction.
Necessarily we must have α ' OA.
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As a corollary we get

Corollary 5.3.6. In the notation of the above Lemma, suppose furthermore that D is
normal and take µ : Y → D a desingularisation. If [α] ∈ Â is such that µ∗β is trivial then
α ' OA.

Proof. By the normality of D combined with projection formulas we have

OD ' µ∗OY ' µ∗(µ∗α) ' α⊗ OD.

Lemma 5.3.5 implies then that α is trivial.

Now we are ready to challenge the Theorem.

Proof of Theorem 5.3.2. Let a be the Albanese map of X. We can suppose that it exists
0 < k < dimX and W a component of V k

a (ωX) of codimension k + 1. Otherwise we
would be in the hypothesis of Theorem 5.3.1 and there would be nothing to prove. By the
Subtorus Theorem (Theorem 3.1.9) W = [α] + B̂ with B̂ a subabelian variety of Â and
[α] ∈ Â a torsion point. We will show that [α] ∈ B̂, contraddicting the assumption that
[OA] is an isolated point of V k

a (ωX).
As usual, call π : A → B the map dual to the inclusion B̂ ↪→ Â. Let g := π ◦ a and

denote by K the kernel of π. We are in the following situation:

G

j

��

a|G // K

i
��

X
g

&&NNNNNNNNNNNNN
a // A

π
����
B

Where G is the general fiber of g and j is the natural inclusion.
By Lemma 5.1.4 combinded with Proposition divisor, we have that

dim g(X) = dimX − k = dimA− k − 1 = dimB,

hence g is surjective. In particular we have that also π|a(X) is surjective and G is of
dimension k, hence via the restirction of a maps to a divisor D (of a translate of) K. This
divisor D is a general fiber of a surjective map from a normal variety into a smooth one
and therefore is normal by Lemma 5.3.4. We recall now that a has generic degree one
(Theorem 5.2.2), therefore we can think of a|F : F → K as a desingularisation of D and

a∗|F (α|K) ' (a∗α)|F ∈ Pic0(F ).



80 5. Birationality of the Albanese Map

Now observe that, by Theorem 5.1.2 with g = a = idB the sheaves Rjf∗(ωX ⊗ a∗α)
satisfy GV. It follows that for [β] ∈ B̂ general

h0(B,Rkf∗(ωX ⊗ a∗α)⊗ β) ' hk(X,ωX ⊗ a∗α⊗ f∗β) 6= 0

where the last inequality depends on the fact that [α] + B̂ ⊆ V k(ωX). We can conclude
that Rkf∗(ωX ⊗ a∗α) 6= 0. Since by Theorem 5.1.1 it is torsion free, for the general b ∈ B
we have

0 6= Rkf∗(ωX ⊗ a∗α)⊗ C(b) ' Hk(F, ωF ⊗ (a∗α)|F ).

We deduce that (a∗α)|F ' a∗|F (α|K) is trivial and Corollary 5.3.6 immediatiely implies
that α|K ' OK dualizing

0→ K −→ A −→ B → 0

we get
0→ B̂ −→ Â −→ K̂ → 0

where the rightmost arrow is the restriction to K. Hence [α] ∈ Ker((−)|K : Â→ K̂) = B̂

and the statement is proved.
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