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Sommario 

 

 
Nel corso degli ultimi decenni lo studio dei cambiamenti nei processi 

geofisici ha riscosso un crescente interesse soprattutto in riferimento alle 

potenziali ripercussioni sulla nostra società. Lo scopo primario è di 

migliorare il processo di previsione di tali cambiamenti per consentire uno 

sviluppo sostenibile delle attività umane in un ambiente mutevole. Le 

variazioni dei processi geofisici sono presenti a tutte le scale temporali e 

sono irregolari a tal punto che la loro descrizione può certamente essere 

migliore in termini stocastici (casuali) che deterministici. Nella statistica 

classica, la casualità viene solitamente rappresentata da processi stocastici 

le cui variabili casuali sono indipendenti ed identicamente distribuite. 

Tuttavia, esiste un’ampia evidenza empirica che spesso confuta tale 

assunzione. Infatti, è stato osservato in più occasioni che la correlazione 

tra campioni sempre più distanti tra loro nel tempo decresce più 

lentamente non solo di quanto ovviamente ci si aspetta per campioni 

indipendenti ma anche rispetto al caso di dipendenza markoviana o dei 

modelli di tipo ARMA. Tutto ciò è coerente con il fenomeno di Hurst, che 

è stato infatti osservato in molte lunghe serie temporali idroclimatiche. 

Esso è stocasticamente equivalente ad un comportamento auto-simile 

della variabilità del processo alle differenti scale temporali. Di 

conseguenza, i cambiamenti persistenti a lungo termine sono molto più 

frequenti ed intensi nei processi geofisici di quanto comunemente 

percepito e, inoltre, gli stati futuri sono molto più incerti ed imprevedibili 

su lunghi orizzonti temporali rispetto alle previsioni ottenute mediante i 

modelli tipicamente utilizzati nella pratica. L’obiettivo della presente tesi 

è la descrizione dell’inferenza e della modellazione delle proprietà 

statistiche relative ai processi naturali che presentano un comportamento 

del tipo scala invariante. Dapprima si indagano le ripercussioni che tale 

comportamento implica in riferimento all’ingente incremento di 

incertezza di stima dei parametri di interesse dalle serie temporali di dati. 

In seguito viene proposto un modello stazionario di disaggregazione 

temporale della precipitazione che rispetta il fenomeno di Hurst. Tale 

modello è caratterizzato da una semplice struttura a cascata simile a 

quella dei più famosi modelli a cascata moltiplicativa di tipo discreto. 

Inoltre mostriamo il grande limite di questi ultimi modelli che simulano 

un processo intrinsecamente non stazionario a causa della loro struttura.  
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Abstract 

 
During recent decades, there has been a growing interest in research 

activities on change in geophysics and its interaction with human society. 

The practical aim is to improve our capability to make predictions of 

geophysical processes to support sustainable societal development in a 

changing environment. Geophysical processes change irregularly on all 

time scales, and then this change is hardly predictable in deterministic 

terms and demands stochastic descriptions, or random. The term 

randomness is usually associated to stochastic processes whose samples 

are regarded as a sequence of independent and identically distributed 

random variables. This is a basic assumption of classical statistics, but 

there is ample practical evidence that this wish does not always become a 

reality. It has been observed empirically that correlations between distant 

samples decay to zero at a slower rate than one would expect from not 

only independent data but also data following classical ARMA- or 

Markov-type models. Indeed, many geophysical changes are closely 

related to the Hurst phenomenon, which has been detected in many long 

hydroclimatic time series and is stochastically equivalent to a simple 

scaling behaviour of process variability over time scale. As a result, long-

term changes are much more frequent and intense than commonly 

perceived and, simultaneously, the future states are much more uncertain 

and unpredictable on long time horizons than implied by typical 

modelling practices. The purpose of this thesis is to describe how to infer 

and model statistical properties of natural processes exhibiting scaling 

behaviours. We explore their statistical consequences with respect to the 

implied dramatic increase of uncertainty, and propose a simple and 

parsimonious model that respects the Hurst phenomenon. In particular, 

we first we highlight the problems in inference from time series of 

geophysical processes, where scaling behaviours in state (sub-exponential 

distribution tails) and in time (strong time dependence) are involved. 

Then, we focus on rainfall downscaling in time, and propose a stationary 

model that respects the Hurst phenomenon. It is characterized by a simple 

cascade structure similar to that of the most popular multiplicative 

random cascade models, but we show that the latter simulate an 

unrealistic non-stationary process simply inherent to the model structure. 
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1. Introduction 
 

 Discipulus est prioris posterior dies. 
      Publilius Syrus 

 

Change in geophysics has been studied since the birth of science and 

philosophy, but in modern times change has been particularly accelerated 

due to radical developments in demography, technology and life 

conditions. Therefore, during recent decades, there has been a growing 

interest in research activities on change in geophysics and its interaction 

with human society. A major example in this respect is given by the 

Intergovernmental Panel on Climate Change (IPCC), which was set up in 

1988 by the World Meteorological Organization (WMO) and United 

Nations Environment Programme (UNEP) to provide policymakers with 

regular assessments of the scientific basis of climate change, its impacts 

and future risks, and options for adaptation and mitigation. Furthermore, 

the new scientific initiative of the International Association of 

Hydrological Sciences (IAHS) for the decade 2013–2022, entitled “Panta 

Rhei – Everything Flows” (Montanari et al., 2013), is dedicated to 

research activities on change in hydrology and society. 

The practical purpose of all these activities is to improve our capability to 

make predictions of geophysical processes to support sustainable societal 

development in a changing environment. In order to describe the 

predictability of change, we adopt herein an interesting hierarchical chart 

by Koutsoyiannis (2013a) reported in Fig. 1.1. Change is regular in 

simple systems (left part of the graph), and therefore it is predictable 

using equations of dynamical systems (periodic or aperiodic). 

Nonetheless, in geophysics we are commonly interested in more complex 

systems with long time horizons (right part of the graph), where change is 

unpredictable in deterministic terms, or random. The term randomness is 

usually associated to stochastic processes whose samples are regarded as 

a sequence of independent and identically distributed random variables 

(pure randomness). This is a basic assumption of classical statistics, but 

there is ample practical evidence that this wish does not always become a 

reality (Beran, 1994). By the way, it has been observed empirically that 

correlations between distant samples decay to zero at a slower rate than 

one would expect from independent data or even data following classical 
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ARMA- or Markov-type models (Box et al., 1994). In these cases, we 

should assume a structured randomness. As will be seen next, the 

structured randomness is enhanced randomness, expressing enhanced 

unpredictability of enhanced multi-scale change. 

 
Figure 1.1 – Hierarchical chart describing the predictability of change 

(Koutsoyiannis, 2013a). 

 

According to the common view, natural processes are composed of two 

different, usually additive, parts or components: deterministic (signal) and 

random (noise). This distinction implies that there is some signal that 

contains information, which is contaminated by a (random) noise. In this 

view, randomness is cancelled out at large time scales and cannot produce 

long-term change. In other words, we usually assume that natural changes 

are just a short-term “noise” superimposed on the daily and annual cycles 

in a scene that is static and invariant in the long run, except when an 

extraordinary forcing produces a long-term change. However, this view 

may not have a meaning in geophysics, as Nature’s signs are “signals” in 

their entirety even though they may look like “noise”. Moreover, change 

occurs on all time scales, from minute to geological, but our limited 
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senses and life span, as well as the short time window of instrumental 

observations, restrict our perception to the most apparent daily to yearly 

variations. As a result, long-term changes are much more frequent and 

intense than commonly perceived and, simultaneously, the future states 

are much more uncertain and unpredictable on long time horizons than 

implied by standard approaches (Markonis and Koutsoyiannis, 2013). 

We endorse herein a different perspective (see also Koutsoyiannis, 2010). 

Randomness is simply viewed as unpredictability and coexists with 

determinism (which, in turn, could be identified with predictability) in the 

same natural process: the two do not imply different types of mechanisms 

or different parts or components in the time evolution, they are not 

separable or additive components. It is a matter of specifying the time 

horizon and scale of prediction to decide which of the two dominates. For 

long time horizons (where the specific length depends on the system), all 

is random – and not static. 

Empirical evidence suggests that long historical hydroclimatic series may 

exhibit a behaviour very different from that implied by pure random 

models. To demonstrate this, two real-world examples are used 

(Koutsoyiannis, 2002). The first is a very long record: the series of 

standardised tree-ring widths from a palaeoclimatology study at 

Mammoth Creek, Utah, for the years 0–1989 (1990 values) (Graybill, 

1990). The second example is the most intensively studied series, which 

also led to the discovery of the Hurst phenomenon (Hurst, 1951): the 

series of the annual minimum water level of the Nile River for the years 

622–1284 A.D. (663 observations), measured at the Roda Nilometer near 

Cairo (Toussoun, 1925; Beran, 1994). The data values are plotted vs time 

for both example data sets in Figs. 1.2 and 1.3, respectively. In addition, 

the 5-year and 25-year averages are shown, which represent the mean 

aggregated processes at time scales Δ = 5 and 25, respectively. For 

comparison, series of white noise with mean and standard deviation 

identical to those of standardized tree rings and annual minimum water 

levels are also shown. It is observed that fluctuations of the aggregated 

processes, especially for Δ = 25, are much greater in the real-world time 

series than in the white noise series. Thus, the existence of fluctuations in 

a time series at large scales distinguishes it from random noise. When one 

looks only at short time periods, then there seem to be cycles or local 

trends. However, looking at the whole series, there is no apparent 

persisting trend or cycle. It rather seems that cycles of (almost) all 

frequencies occur, superimposed and in random sequence. 
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Figure 1.2 – Plot of standardized tree rings at Mammoth Creek, Utah (upper 

panel); white noise with same statistics (lower panel) (Koutsoyiannis, 2002). 

 
Figure 1.3 – Plot of annual minimum water level of the Nile river (upper panel); 

white noise with same statistics (lower panel) (Koutsoyiannis, 2002). 
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From the figures above, it can be noticed that in pure randomness (white 

noise) there are no long-term patterns; rather, the time series appear static 

in the long run. In real-world data, change is evident also at these scales. 

This change is unpredictable in deterministic terms and thus random and, 

more specifically, structured (or enhanced) random rather than purely 

random (Koutsoyiannis, 2013a). 

  

1.1 Joseph effect and Hurst effect 

The data sets in the previous section illustrated that correlations not only 

occur, but they also may persist for a long time. Many prominent applied 

statisticians and scientists recognized this many decades ago. In this 

section, we give a short overview on some of the important early 

references. This will also give rise to some principal considerations on the 

topic of long-range dependence. 

Since ancient times, the Nile River has been known for its characteristic 

long-term behaviour. Long periods of dryness were followed by long 

periods of yearly returning floods. Floods had the effect of fertilising the 

soil so that in flood years the yield of crop was particularly abundant. On 

a speculative basis, one may find an early quantitative account of this in 

the Bible (Genesis 41, 29-30): “Seven years of great abundance are 

coming throughout the land of Egypt, but seven years of famine will 

follow them”. We do not have any records of the water level of the Nile 

from those times. However, there are reasonably reliable historical 

records going as far back as 622 A.D. A data set for the years 622–1284 

was discussed in the previous section (see Fig. 1.3, upper panel). It 

exhibits a long-term behavior that might give an “explanation” of the 

seven “good” years and seven “bad” years described in Genesis. There 

were long periods where the maximal level tended to stay high. On the 

other hand, there were long periods with low levels. Overall, the series 

seems to correspond to a stationary stochastic process, where there is no 

global trend. In reference to the biblical “seven years of great abundance” 

and “seven years of famine”, Mandelbrot called this behaviour the Joseph 

effect (Mandelbrot, 1982; Mandelbrot and Wallis 1968, 1969; Mandelbrot 

and van Ness, 1968). 

The first person to notice this behavior empirically was the British 

hydrologist H. E. Hurst (1951), when he was investigating the question of 

how to regularize the flow of the Nile River. More specifically, his 

discovery can be described as follows. Suppose we want to calculate the 
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capacity of a reservoir such that it is ideal for a given time span; assume 

that time is discrete and that there are no storage losses (caused 

evaporation, leakage, etc.). By ideal capacity, we mean that the outflow is 

uniform, that the water level in the reservoir is constant, and that the 

reservoir never overflows. Let xj denote the inflow at time j (notice that 

we use the so-called Dutch convention according to which random 

variables are underlined; see Hemelrijk, 1966), and the partial sum 

yΔ=x1+x2+…+xΔ is the cumulative inflow up to time Δ, for any integer Δ. 

Then the ideal capacity can be shown to equal the adjusted range 

(Yevjevich, 1972): 




















 ΔjΔjΔjΔj
Δ y

Δ

j
yy

Δ

j
yR

11
minmax:     (1.1) 

In order to study the properties that are independent of the scale Δ, RΔ is 

standardised by the sample standard deviation SΔ of xj. This ratio is called 

the rescaled adjusted range or R/S-statistic. Hurst plotted the logarithm of 

R/S against several values of Δ. He observed that, for large values of Δ, 

log R/S was scattered around a straight line with a slope greater than 0.5. 

This empirical finding was in contradiction to results for Markov 

processes, mixing processes, and other stochastic processes that were 

commonly used at that time. For any stationary process with short-range 

dependence, R/S should be asymptotically proportion al to Δ0.5 (Beran, 

1994). Analogous considerations apply to many other geophysical records 

for which R/S is asymptotically proportional to ΔH for H > 0.5. This is 

known as Hurst effect. Strikingly, the preeminent Soviet mathematician 

and physicist A. N. Kolmogorov had proposed a mathematical process 

that has the properties discovered 10 years later by Hurst in natural 

processes (Kolmogorov, 1940). Although the original name given by 

Kolmogorov was “Wiener’s spiral”, it later became more widely known 

by “fractional Brownian motion” or “fractional Gaussian noise” for the 

stationary increment process (Mandelbrot and van Ness, 1968). The latter 

is what we call hereinafter the Hurst-Kolmogorov (HK) process. The 

Hurst effect can be modelled by HK process with self-similarity (see next 

section) parameter 0.5 < H < 1 (Hurst coefficient). 

The reason why we prefer the term Hurst-Kolmogorov process is simple. 

We wish to associate the process on the one hand to Hurst, who was the 

first to observe and analyze the behaviour signified by this process in 

Nature, and on the other hand, to Kolmogorov, who was the first to point 

out the existence of this mathematical process. For a detailed review and 
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discussion of the names given to the Hurst phenomenon and its 

mathematical modelling, the reader is referred to Koutsoyiannis (2006).   

This Hurst-Kolmogorov process is a model that simulates a stationary 

stochastic process. 

A stochastic process x(t) is called stationary if its statistical properties are 

invariant to a shift of the time origin (Papoulis, 1991). This means that the 

processes x(t) and x(t+τ) have the same statistics for any τ. Conversely, a 

process is non-stationary if some of its statistics are changing through 

time and their change is described as a deterministic function of time. 

From a scientific point of view, it is not always satisfactory to model an 

observed phenomenon by a stationary process. For example, Klemeš 

(1974) showed that the Hurst phenomenon could be caused by non-

stationarity in the mean and by random walks with one absorbing barrier. 

However, we would most likely want to use a stationary model as a null 

hypothesis unless physical considerations determined otherwise. Indeed, 

Koutsoyiannis (2002) offered a similar (from a practical point of view) 

explanation to that given by Klemeš (1974), but in a stationary setting. In 

essence, he assumed that the means are randomly varying on several 

timescales, thus regarding falling or rising trends, commonly traced in 

hydrological time series, as parts of large-scale random fluctuations rather 

than deterministic trends. 

 

1.2 Stochastic modelling of change 

In this section, we introduce stochastic processes that can be used to 

model data with the properties discussed in previous sections. 

A simple way to understand the extreme variability of several geophysical 

processes over a practically important range of scales is offered by the 

idea that the same type of elementary process acts at each relevant scale. 

In a theoretical context, Kolmogorov (1940) introduced these types of 

processes that go under the name of “self-similar processes”, which are 

based on a form of invariance with respect to changes of time scale. 

According to this idea, the part resembles the whole as quantified by so-

called “scaling laws”. Scaling behaviours are typically represented as 

power laws of some statistical properties, and they are applicable either 

on the entire domain of the variable of interest or asymptotically. If this 

random variable represents the state of a system, then we have the scaling 

in state, which refers to marginal distributional properties. This is to 

distinguish from another type of scaling, which deals with time-related 
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random variables: the scaling in time, which refers to the dependence 

structure of a process. Likewise, scaling in space is derived by extending 

the scaling in time in higher dimensions and substituting space for time 

(e.g. Koutsoyiannis et al., 2011). The scaling behaviour widely observed 

in the natural world (e.g. Newman, 2005) has often been interpreted as a 

tendency, driven by the dynamics of a physical system, to increase the 

inherent order of the system (self-organized criticality): this is often 

triggered by random fluctuations that are amplified by positive feedback 

(Bak et al., 1987). In another view, the power laws are a necessity implied 

by the asymptotic behaviour of either the survival or autocovariance 

function, describing, respectively, the marginal and joint distributional 

properties of the stochastic process that models the physical system. The 

main question is whether the two functions decay following an 

exponential (fast decay) or a power-type law (slow decay). We assume 

the latter to hold in the form of scaling in state (heavy-tailed distributions) 

and in time (long-term persistence), which have also been verified in 

geophysical time series (e.g. Markonis and Koutsoyiannis, 2013; 

Papalexiou et al., 2013). According to this view, scaling behaviours are 

just manifestations of enhanced uncertainty and are consistent with the 

principle of maximum entropy (Koutsoyiannis, 2011). The connection of 

scaling with maximum entropy constitutes also a connection of stochastic 

representations of natural processes with statistical physics. The 

emergence of scaling from maximum entropy considerations may thus 

provide theoretical background in modelling complex natural processes 

by scaling laws. 

Since Kolmogorov’s pioneering work, several researchers do not seem to 

have been aware of the existence or statistical relevance of such 

processes, until Mandelbrot and van Ness (1968) introduced them into 

statistics: “By ‘fractional Brownian motions’ (fBm’s), we propose to 

designate a family of Gaussian random functions defined as follows: B(t) 

being ordinary Brownian motion, and H a parameter satisfying 0<H<1, 

fBm of exponent H [denoted as BH(t)] is a moving average of dB(t), in 

which past increments of B(t) are weighted by the kernel (t–s)H–1/2”. As 

usual, t designates time, –∞<t< ∞.  

The increment process, x(t2–t1)=BH(t2)–BH(t1), is stationary and self-

similar with parameter H, it is known as fractional Gaussian noise (i.e. 

Hurst-Kolmogorov process), and it is given by (see Mandelbrot and van 

Ness, 1968, p. 424): 



INTRODUCTION 

 

 

9 

 
 

       




 


  





 12 21

1

21

212
21

1 t Ht H
sBdstsBdst

H
ttx (1.2) 

which is a fractional integral in the sense of Weyl. The gamma function 

Γ(·) as denominator insures that, when H – 0.5 is an integer, a fractional 

integral becomes an ordinary repeated integral. 

The value of the Hurst coefficient H determines three very different 

families of HK processes, corresponding, respectively, to: 0<H<0.5, 

0.5<H<1, and H=0.5. The value 0.5 corresponds to white noise. For 

geophysical processes, we restrict ourselves to a discussion of HK 

processes positively correlated, i.e. 0.5<H<1. Values H<0.5, characteristic 

of anti-persistence, are mathematically feasible (in discrete time) but 

physically unrealistic; specifically, for 0<H<0.5 the autocorrelation for 

any lag is negative, while for small lags a physical process should 

necessarily have positive autocorrelation. High values of H, particularly 

those approaching 1, indicate enhanced change at large scales or strong 

clustering (grouping) of similar values, otherwise known as long-term 

persistence. In other words, in a stochastic framework and in stationary 

terms, change can be characterized by the Hurst coefficient. 

 

1.3 Hurst-Kolmogorov process 

The original Hurst’s mathematical formulation, in terms of the so-called 

rescaled range, involves complexity and estimation problems as shown by 

Koutsoyiannis (2002). Actually, the mathematics to describe the HK 

process may be very simple. No more than the concept of standard 

deviation from probability theory is needed. Because a static system 

whose response is a flat line (no change in time) has zero standard 

deviation, we could recognize that the standard deviation is naturally 

related to change. To study change, however, we need to assess the 

standard deviation at several time scales, i.e. the relationship of the 

process standard deviation with the temporal scale of the process. 

In order to improve understanding of Hurst-Kolmogorov process, we 

should describe the concept of “local average” of a stochastic process. 

Practical interest often revolves around local average or aggregates 

(temporal or spatial) of random variables, because it is seldom useful or 

necessary to describe in detail the local point-to-point variation occurring 

on a microscale in time or space. Even if such information were desired, it 

may be impossible to obtain: there is a basic trade-off between the 
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accuracy of a measurement and the (time or distance) interval within 

which the measurement is made (Vanmarke, 1983). For example, rain 

gauges (owing to size, inertia, and so on) measure some kind of local 

average of rainfall depth over time. Moreover, through information 

processing, "raw data" are often transformed into average or aggregate 

quantities such as, e.g., sub-hourly averages or daily totals. 

Mathematically, let x(t) be a stationary stochastic process in continuous 

time t with mean μ=E[x], and autocovariance c(τ)=Cov[x(t), x(t+τ)], 

where τ is the time lag. Consider now the random process xj
(Δ) obtained by 

local averaging x(t) over the window Δ at discrete time steps j (=1, 2, …), 

defined as: 

   
 

njttx
Δ

x
jΔ

Δj

Δ

j ,,2,1d
1

1
  

    (1.3) 

where n=T/Δ is the number of the sample steps of xj
(Δ) in the observation 

period To, and   ΔΔTT o  is the observation period rounded off to an 

integer multiple of Δ. The relationship between the processes x(t) and xj
(Δ) 

is illustrated in Fig. 1.4. 

 
Figure 1.4 – Sketch of the local average process xj

(Δ) obtained by averaging the 

continuous-time process x(t) locally over intervals of size Δ. 

 

The mean of the process xj
(Δ) is not affected by the averaging operation, 

i.e.:  

     
 

  

jΔ

Δj

Δ

j ttx
Δ

x
1

dE
1

E      (1.4) 

Let us now investigate the climacogram of the process xj
(Δ), which is 

defined to be the variance (or the standard deviation) of the time-averaged 

process xj
(Δ) as a function of the time scale of averaging Δ (Koutsoyiannis, 

2010). The climacogram of xj
(Δ) can be calculated from the autocovariance 
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function c(τ) of the continuous-time process as follows (see e.g. 

Vanmarke, 1983, p. 186; Papoulis, 1991, p. 299): 

             
1

002
d12d

2
Var  ΔccΔ

Δ
Δx

ΔΔ

j   (1.5) 

which shows that the climacogram γ(Δ) generally decreases with Δ and 

fully characterizes the dependence structure of x(t). The climacogram γ(Δ) 

and the c(τ) are fully dependent on each other; thus, the latter can be 

obtained by the former from the inverse transformation (see also 

Koutsoyiannis, 2013b): 

  
2

22

d

d

2

1
)(




 c        (1.6) 

Thus, the dependence structure of x(t) is represented either by the 

climacogram γ(Δ) or the autocovariance function c(τ). In addition, the 

Fourier transform of the latter, the spectral density function s(w), where w 

is the frequency, is of common use. Selection of an analytical model for 

c(τ) or s(w) is usually based on the quality of fit in the range of observed 

(observable) values of τ and w which, for reasons mentioned above, does 

not include the “microscale” (τ→0 or w→∞) or in general the asymptotic 

behaviour. However, asymptotic stochastic properties of the processes are 

crucial for the quantification of future uncertainty, as well as for planning 

and design purposes (Montesarchio et al., 2009; Russo et al., 2006). Any 

model choice does imply an assumption about the nature of random 

variation asymptotically. Therefore, we may want this assumption 

(although fundamentally unverifiable) to be theoretically supported. In 

this context, Koutsoyiannis (2011) connected statistical physics (the 

extremal entropy production concept, in particular) with stochastic 

representations of natural processes, which are otherwise solely data-

driven. He demonstrated that extremization of entropy production of 

stochastic representations of natural systems, performed at asymptotic 

times (zero or infinity) results in the Hurst-Kolmogorov process. 

The HK process for local averages can be defined as a stationary 

stochastic process that, for any integers i and j and any time scales Δ and 

Λ, has the property:  

      











Λ

i

H
d

Δ

j x
Λ

Δ
x

1

      (1.7) 

where 
d

  denotes equality in probability distributions, H is the Hurst 

coefficient, while μ is the mean of the process (cf. Eq. (1.4)). Thus, it can 
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be easily shown that the variance of xj
(Δ) (climacogram), for i = j = Λ = 1, 

is a power law of the timescale Δ with exponent 2H–2, such as:  

   122   HΔΔ       (1.8) 

Consequently, the autocorrelation function of xj
(Δ), for any aggregated 

timescale Δ, is independent of Δ (Koutsoyiannis, 2002):  

     H

HH

Δ z
zz

zz
2

22

2

1

2

1






      (1.9) 

In the discrete-time case, lag z is dimensionless. The instantaneous 

variance of the HK process is infinite. Therefore, HK process can be 

defined in continuous time by the following autocovariance function: 

    15.0
22




Hc
H

     (1.10) 

Thus, the autocovariance function c(τ) is a power law of the time lag τ 

with exponent 2H–2, precisely the same as that of the climacogram γ(Δ). 

Consequently, it can be shown that the spectral density function s(w) is 

also a power law of the frequency w with exponent 1–2H. The three 

nominal parameters of the HK process are λ, α and H: the units of α and λ 

are [τ] and [x]2, respectively, while H, the so-called Hurst coefficient, is 

dimensionless. 

Substituting Eq. (1.10) in Eq. (1.5), we obtain the explicit formulation of 

the climacogram of the HK process as: 

 
 
 12

22






HH

Δ
Δ

H
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        (1.11) 

The climacogram contains the same information as the autocovariance 

function c(τ) or the power spectrum s(w), because they are 

transformations one another. Its relationship with the latter is given by 

(Koutsoyiannis, 2013b): 

   



0 2

2

d
)(π

)(πsin
w

wΔ

wΔ
wsΔ       (1.12) 

It has been observed that, when there is temporal dependence in the 

process of interest, the classical statistical estimation of the climacogram 

involves bias (Koutsoyiannis and Montanari, 2007), which is obviously 

transferred to transformations thereof, e.g. c(τ) or s(w). In Chapter 2, we 

show how the bias in the climacogram estimation can be determined 

analytically and included in the estimation itself. 
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1.4 Climacogram 

The logarithmic plot of standard deviation (or the variance) σ(Δ) vs. scale 

Δ, which has been termed climacogram in the previous section, is a very 

informative tool to study long-term change. Here we provide some 

empirical evidence. Let us take as an example the Nilometer time series 

described in Sect. 1 (the data are available from 

http://lib.stat.cmu.edu/S/beran), x1, …, x663, and calculate the sample 

estimate of standard deviation σ(1), where the argument (1) indicates a 

time scale of 1 year. Then, we form a time series at time scale 2 (years) 

and calculate the sample estimate of standard deviation σ(2): 

       2
2

:,,
2

:,
2

: 6626612

331
432

2
212
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
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x
xx

x
xx

x   (1.13) 

The same procedure is repeated with timescales Δ>2 up to scale 

Δmax=663/10=66, so that sample standard deviation can be estimated 

from at least 10 data values (Koutsoyiannis and Montanari, 2007): 

     66
66

:,,
66

: 66059566

10
66166

1 



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
xx

x
xx

x 


  (1.14) 

If the time series xi represented a purely random process, the climacogram 

would be a straight line with slope –0.5, as implied by classical statistics 

(Beran, 1994). In real-world processes, the slope is different from –0.5, 

designated as H–1, where H is the so-called Hurst coefficient. This slope 

corresponds to the scaling law, which defines the Hurst-Kolmogorov 

(HK) process (see also Eq. (1.8)):  

 
 

HΔ
Δ




1

1
         (1.15) 

It can be seen that if H > 1, then σ(Δ) would be an increasing function of 

Δ, which is absurd (averaging would increase variability, which would 

imply autocorrelation coefficients > 1). Fig. 1.5 below depicts the 

empirical climacogram of the Nilometer time series for time scales of 

averaging Δ ranging from one to 66 (years). It also provides comparison 

of the empirical climacogram with those of a purely random process, a 

Markov process and an HK process fitted to empirical data. 
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Figure 1.5 – Climacogram of Nilometer data and fitted theoretical ones of white 

noise (H=0.5), Markov and HK process (adapted from Koutsoyiannis, 2013a). 

 

It should be noted that the standard statistical estimator of standard 

deviation σ, which is unbiased for independent samples (H = 0.5), 

becomes biased for a time series with HK behavior (0.5 < H < 1). It is 

thus essential that, if the sample statistical estimates are to be compared 

with the model Eq. (1.15), the latter must have been adapted for bias 

before the comparison (we followed the procedure given by 

Koutsoyiannis, 2003). Furthermore, in Fig. 1.5, we plotted also the 

climacogram of another stochastic process commonly used in many 

disciplines, i.e. the AR(1) process (autoregressive process of order 1), 

which is essentially a Markov process in discrete time (Box et al., 1994). 

For this process, the theoretical climacogram is given by (see 

Koutsoyiannis, 2002):  
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     (1.16) 

where the single parameter ρ is the lag-1 autocorrelation coefficient. This 

correlation implies some statistical bias in the estimation of σ from a 

sample, but this is negligible unless ρ is very high (close to 1). It can be 

seen that for large scales Δ, σ(Δ)∼1/Δ0.5 and thus the climacogram of the 

AR(1) process behaves similarly to that of white noise, i.e. it has 

asymptotic slope –0.5. 

In Fig. 1.5, the slope of the empirical climacogram is clearly different 

from –0.5, i.e. that corresponding to a purely random process and a 

Markov process, and is consistent with the HK behaviour with H = 0.85. 
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Essentially, the HK behaviour manifests that long-term changes are much 

more frequent and intense than is commonly perceived, and that the future 

states are much more uncertain and unpredictable on long time horizons 

(because the standard deviation is larger) than implied by pure 

randomness or Markov-type models. 

 

1.5 Outline of the thesis 

The following chapters expand on the approach described in the foregoing 

sections, with an emphasis on procedures for statistical inference and 

modelling. Indeed, the purpose of this thesis is neither to review the state 

of the art of the research related to the Hurst phenomenon, nor to give the 

complete mathematical details of it (see e.g. Beran, 1994). We rather aim 

to describe how to infer and model statistical properties of natural 

processes exhibiting scaling behaviours. Specifically, we investigate the 

dramatic increase of uncertainty in statistical estimations, and propose a 

simple and parsimonious model that respects the Hurst phenomenon. 

Chapter 2 is concerned with the statistical implications of scaling 

behaviours in state (sub-exponential distribution tails) and in time (strong 

time dependence), which have been verified in geophysical time series. In 

statistical terms, this is translated in a departure from the (possibly tacit) 

assumptions underlying classical statistical approaches, which are 

commonly used in inference from time series of geophysical processes 

(see also Lombardo et al., 2014). 

Chapter 3 deals with stochastic modelling of processes exhibiting scaling 

behaviour. In particular, we focus on rainfall downscaling in time. 

Generating finer scale time series of rainfall that are statistically 

consistent with any given coarse-scale totals is, indeed, an important and 

open issue in hydrology. We propose a stationary downscaling model, 

based on the HK process, which is characterized by a cascade structure 

similar to that of the most popular multiplicative random cascade models 

(see also Lombardo et al., 2012). 

Finally, Chapter 4 contains some discussions and conclusions.
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2. Geophysical inference 
 

   Le doute est un hommage rendu à l’espoir. 
           Isidore Ducasse 

 

Due to the complexity of geophysical processes, the conducting of typical 

tasks, such as estimation, prediction and hypothesis testing, heavily rely 

on available data series and their statistical processing. The latter is 

usually based upon classical statistics. The classical statistical approaches, 

in turn, rely on several simplifying assumptions, tacit or explicit, such as 

independence in time and exponentially decaying distribution tails, which 

are invalidated in natural processes thus causing bias and uncertainty in 

statistical estimations. Indeed, as we showed in Chapter 1, the study of 

natural processes reveals scaling behaviours in state (departure from 

exponential distribution tails) and in time (departure from independence). 

Surprisingly, all these differences are commonly unaccounted for in most 

statistical analyses of geophysical processes, which may result in 

inappropriate modelling, wrong inferences and false claims about the 

properties of the processes studied. 

In the literature, natural processes showing scaling behaviour are often 

classified as multifractal systems (i.e. multiscaling) that generalize fractal 

models, in which a single scaling exponent (the fractal dimension) is 

enough to describe the system dynamics. For a detailed review on the 

fundamentals of multifractals, the reader is referred to Schertzer and 

Lovejoy (2011).  

Multifractal models generally provide simple power-law relationships to 

link the statistical distribution of a stochastic process at different scales of 

aggregation. All power laws with a particular scaling exponent are 

equivalent up to constant factors, since each is simply a scaled version of 

the others. Therefore, the multifractal framework provides parsimonious 

models to study the variability of several natural processes in geosciences, 

such as rainfall. Rainfall models of multifractal type have, indeed, for a 

long time been used to reproduce several statistical properties of actual 

rainfall fields, including the power-law behaviour of the moments of 

different orders and spectral densities, rainfall intermittency and extremes 

(see e.g. Koutsoyiannis and Langousis (2011) and references therein). 

However, published results vary widely, calling into question whether 
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rainfall indeed obeys scaling laws, what those laws are, and whether they 

have some degree of universality (Nykanen and Harris, 2003; Veneziano 

et al., 2006; Molnar and Burlando, 2008; Molini et al., 2009; Serinaldi, 

2010; Verrier et al., 2010, 2011; Gires et al., 2012; Veneziano and 

Lepore, 2012; Papalexiou et al. 2013). In fact, significant deviations of 

rainfall from multifractal scale invariance have also been pointed out. 

These deviations include breaks in the power-law behaviour (scaling 

regimes) of the spectral density (Fraedrich and Larnder, 1993; Olsson, 

1995; Verrier et al., 2011; Gires et al., 2012), lack of scaling of the non-

rainy intervals in time series (Veneziano and Lepore, 2012; Mascaro et 

al., 2013), differences in scaling during the intense and moderate phases 

of rainstorms (Venugopal et al., 2006), and more complex deviations 

(Veneziano et al., 2006; Marani, 2003). 

Multifractal signals generally obey a scale invariance that yields power 

law behaviours for multi-resolution quantities depending on their scale Δ. 

These multi-resolution quantities at discrete time steps (j = 1, 2, …), 

denoted by xj
(Δ) in the following, are local time averages in boxes of size 

Δ (see also Sect. 1.3). This is the basis of the fixed-size box-counting 

approach (see e.g. Mach et al., 1995). For multifractal processes, one 

usually observes a power-law scaling of the form: 
     qK

qΔ

j Δx E        (2.1) 

at least in some range of scales Δ and for some range of orders q. The 

function E[·] denotes expectation (ensemble average) and K(q) is the 

moment scaling function. Generally, the multifractal behaviour of a 

physical system is directly characterized by the multiscaling exponents 

K(q), whose estimation relies on the use of the sample q-order moments at 

different scales Δ and their linear regressions in log-log diagrams. 

A fundamental problem in the multifractal analysis of datasets is to 

estimate the moment scaling function K(q) from data (Villarini et al., 

2007; Veneziano and Furcolo, 2009). Considerable literature has been 

dealing with estimation problems in the context of so-called scaling 

multifractal measures for three decades at least (see e.g. Grassberger and 

Procaccia, 1983; Pawelzik and Schuster, 1987; Schertzer and Lovejoy, 

1992; Ashkenazy, 1999; Mandelbrot, 2003; Neuman, 2010). Interestingly, 

Mandelbrot (2003) and Neuman (2010) recognize the crucial role played 

by time dependence in estimating multifractal properties from finite 

length data. Nonetheless, herein we remain strictly within the framework 

of the standard statistical formalism, which is actually a novelty with 
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respect to the literature cited above. In this context, we highlight the 

problematic estimation of moments for geophysical processes, because 

the statistical processing of geophysical data series is usually based upon 

classical statistics. In many studies, it has been a common practice to 

neglect this problem, which is introduced when the process exhibits 

dependence in time and is magnified when the distribution function 

significantly departs from the Gaussian form, which itself is an example 

of an exceptionally light-tailed distribution. In their pioneering work on 

statistical hydrology, Wallis et al. (1974) already provided some insight 

into the sampling properties of moment estimators when varying the 

marginal probability distribution function of the underlying stochastic 

process. The main results of the paper agree well with those found in the 

following sections, but its Monte Carlo experiments were carried out 

under a classical statistical framework assuming independent samples. 

The purpose of this Chapter is to explore, at different timescales, the 

information content in estimates of raw moments of processes exhibiting 

temporal dependence. In order for the true moments to be fully known a 

priori, we use synthetic examples in a Monte Carlo simulation framework. 

We explore processes with both normal and non-normal distributions 

including ones with heavy tails. We show that, even in quantities whose 

estimates are in theory unbiased, the dependence and non-normality affect 

significantly their statistical properties, and sample estimates based on 

classical statistics are characterized by high bias and uncertainty. In 

particular, statistical methods that use high order moments (> 3) are 

questionable (see Sect. 2.1 below). In particular, we suggest that, because 

of estimation problems, the use of moments of order higher than two 

should be avoided, either in justifying or fitting models. Nonetheless, in 

most problems the first two moments provide enough information for the 

most important characteristics of the distribution. Finally, in Sect. 2.2 we 

put the emphasis on autocorrelations and spectra (only involving second-

order moments), and specifically study their estimation problems.  

We believe this process is critical for practitioners and researchers in 

geophysics to gain insights into the ways they can use statistical tools 

reliably. 

 

2.1 Multifractal analysis 

Multifractal analysis has been used in several fields in science to 

characterize various types of datasets, which have been investigated by 
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means of the mathematical basis of multifractal theory. This is the basis 

for a series of calculations that reveal and explore the multiple scaling 

rules, if any, from datasets, in order to calibrate multifractal models. From 

a practical perspective, multifractal analysis is usually based upon the 

following steps (Lopes and Betrouni, 2009). 

 Estimate the sample raw moments of different orders q over a 

range of aggregation scales Δ. 

 Plot the sample q-moments against the scale Δ in a log-log 

diagram. 

 Fit least-squares regression lines (one for each order q) through 

the data points. 

 Estimate the multiscaling exponents K(q) as the slopes of 

regression lines (see Eq. (2.1)). 

The classical estimator of the q-th raw moment of the local average 

process xj
(Δ) is:  

    



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j

qΔ
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Δ

q x
n

m
1

1
       (2.2) 

High moments, i.e. q ≥ 3, mainly depend on the distribution tail of the 

process of interest. If we assume, for reasons mentioned in Sect. 1.2, 

scaling in state, i.e. a power-type (e.g. Pareto, see below) tail, then raw 

moments are theoretically infinite beyond a certain order qmax. However, 

their numerical estimates from a time series by Eq. (2.2) are always finite, 

thus resulting in infinite biases from a practical perspective, because the 

estimate is a finite number while the true value is infinity. Even below 

qmax, where it can be proved that the estimates are unbiased, we show that 

the estimation of moments can be still problematic. It is easily shown, 

indeed, that the expected value of the moment estimator equals its 

theoretical value E[(xj
(Δ))q]=μq

(Δ) for any timescale Δ, such as: 
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which can be used to derive the variance of the moment estimator as 

follows: 
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This quantity can be assumed as a measure of uncertainty in the 

estimation of the q-th moment of the local average process xj
(Δ). 

Therefore, the estimator mq
(Δ) is theoretically unbiased, because of Eq. 

(2.3), but involves uncertainty, quantified by Eq. (2.4), which is expected 

to depend on statistical properties of the instantaneous process x(t) (i.e., 

marginal and joint distributional properties), the averaging scale Δ, the 

sample size n, and the moment order q. In the next sub-sections, we show 

how the problems of uncertainty in statistical estimation may be 

extremely remarkable when using uncontrollable quantities (e.g. high 

order moments) to justify or calibrate stochastic models. 

 

2.1.1 Estimation of the mean 

The (unbiased) estimator of the common mean μ of the local average 

process xj
(Δ) is given by Eq. (2.3) for q=1: 

     




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Δ
xx
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m

1

11
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where T is the largest timescale of averaging multiple of Δ in a given 

observation period To (see e.g. Fig. 1.4). 

Recalling the Eq. (1.5), we can provide an analytical formulation for the 

variance of the time-averaged process x1
(T) as a function of the time scale 

of averaging T, which actually equals the variance of estimator of the 

first-order moment given in Eq. (2.5), such as:  

            
TTΔ

cT
T

Txm
0211 d

2
VarVar     (2.6) 

Therefore, the estimator m1
(Δ) is a function of the dependence structure of 

the continuous-time (autocovariance function c(τ)) process x(t), and the 

rounded observation period T. Note that the uncertainty in the estimation 

of the sample mean is independent of the timescale of averaging Δ while 

it depends on the observation period T. 

Let us now consider the Hurst-Kolmogorov process. Hence, the 

climacogram γ(T) takes the form of equation (1.8), as:  

   122   HTT        (2.7) 

In Fig. 2.1 below, we show how the temporal dependence (governed by 

the Hurst coefficient H for the HK process) influences the reliability of 

moment estimates. For simplicity and without loss of generality, we plot 

the ratio of Var[m1
(Δ)] to Var[xj

(Δ)] for Δ=1 against the scale T, which 
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equals the sample size n=T for Δ=1. As a consequence of Eq. (2.7), the 

ratio is given by:  
  
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Figure 2.1 – Estimator variance of the mean of the local average process xj

(Δ=1) 

standardized by the process variance, i.e. Var[m1
(Δ=1)]/Var[xj

(Δ=1)]=γ(T)/γ(1), 

plotted against the sample size n=T for Δ=1. 

 

Notice that large values of H result in much higher ratio than in the iid 

case (which is given by 1/n), and the convergence to the iid case is 

extremely slow (see Fig. 2.1). In essence, it can be argued that the greater 

the dependence in time, the harder it is to estimate the moment; in the 

sense that larger samples are required in order to obtain estimates of 

similar quality. 

 

2.1.2 Estimation of higher moments 

Let us now investigate the behaviour of estimators of higher order 

moments (q>1) when the underlying random process exhibits dependence 

in time and when changing the process marginal distribution; this can be 

done by Monte Carlo simulation. Specifically, we use the Gaussian 

distribution and three one-sided distributions whose tails are sub-

exponential, i.e. heavier than the former (as observed in several 

geophysical processes). All synthetic time series are generated in a way to 
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have similar dependence structures based on the HK process, which are 

therefore governed by the Hurst coefficient H. 

In this study, we estimate the performance of q-th moment estimators for 

four different common tail types (ordered from heavier to lighter): the 

Pareto, the lognormal, the Weibull and the Gaussian tails (see e.g. El 

Adlouni et al., 2008; Papalexiou et al., 2013). The Pareto and the 

lognormal distributions belong to the sub-exponential class (with a tail 

heavier than the exponential one) and are considered as heavy-tailed 

distributions; the Weibull can belong to both classes, depending on the 

values of its shape parameter (see below), while the Gaussian distribution 

has essentially a tail thinner than the exponential one (hyper-exponential), 

and it is considered as light-tailed distribution. 

The Pareto is the only power-type distribution, while the rest three are of 

exponential type with all their moments finite. Specifically, we use the 

Pareto type II distribution, defined in [0, ∞), with survival function: 

   





1

1













x
xxPxF PII      (2.9) 

where β>0 is the scale parameter, and κ>0 the shape parameter. The latter, 

also known as the tail index, controls the asymptotic behaviour of the tail, 

which is given by x–1/κ; as the value of κ increases the tail becomes 

heavier and consequently extreme values occur more frequently. For κ→0 

the distribution tail degenerates to the exponential tail, while for κ≥0.5 the 

distribution has infinite variance. Indeed, the shape parameter κ 

unequivocally defines the order qmax=1/κ beyond which the q-th moments 

are theoretically infinite, i.e. E[(xj
(Δ))q]=∞ for q≥1/κ; in our study we 

assume κ=0.2, and thus qmax=5. 

The lognormal distribution, also defined in [0, ∞), is very commonly used 

in geosciences and has the survival function: 
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where      



x

ttxx dexp2erf1erfc 2  is the complementary 

error function, β is the scale parameter, and κ>0 is the shape parameter 

that controls the behaviour of the tail (notice some differences from the 

more typical notational convention in the literature; see Forbes et al. 

(2011) p. 131, for further details). Despite all its moments being 
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theoretically finite, the lognormal distribution is very similar in shape to a 

power-type distribution (Pareto), in the sense that the two distributions 

appear almost indistinguishable from each other for a large portion of 

their body (Mitzenmacher, 2004). Therefore, lognormal is regarded as a 

heavy-tailed distribution. 

Another widely used distribution is the Weibull distribution, again 

defined in [0, ∞). Its survival function is a stretched exponential function 

(obtained by inserting a fractional power law into the exponential 

function), i.e.: 
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where β>0 is the scale parameter, and the stretching exponent 0<κ<1 

(shape parameter) actually modifies the shape of the exponential 

distribution so as to obtain a heavier tail. Consequently, the Weibull 

distribution can be regarded as a generalization of the exponential 

distribution, which is recovered with κ=1. The case with κ>1 (compressed 

exponential function, i.e., a tail lighter than the exponential one) has less 

practical importance, with the notable exception of κ=2, which gives the 

Rayleigh distribution, closely related to the Gaussian distribution. 

 

2.1.3 Monte Carlo simulation 

As the lognormal model has been the most common in multifractal 

literature, we start our study from this model. For the Monte Carlo 

simulation we use the model introduced in the next Sect. 3.2, which 

follows a disaggregation approach. In that respect it resembles the 

discrete multifractal cascade models yet it is a fully consistent and fully 

controllable model, not affected by uncontrollable nonstationary issues 

that are typical in multifractal cascades (see Sect. 3.1). The model starts 

the generation from the coarsest scale and then disaggregates into finer 

scales applying a specific scale-dependent exponential transformation to 

the HK process in a way to preserve part of its scaling properties. For the 

Monte Carlo experiment we generate 30000 time series with sample size 

n=210=1024, unit mean, standard deviation σ = 1.29 and H=0.85. Later we 

will compare with the other models in a different setting, i.e. aggregating 

rather than disaggregating, using the same statistical properties (note that 

σ=1.29 is the standard deviation of the Pareto type II with unit mean and 
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tail index κ = 0.2). The results of the Monte Carlo simulation experiment 

are depicted in Figs. 2.2-2.5. Specifically, Fig. 2.2 shows the probability 

distribution of the natural logarithm of the ratio of q-th moment estimates 

to their expected values, i.e. the theoretical values following Eq. (2.3).  
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Figure 2.2 – Empirical cumulative distribution function (ecdf) of the natural 

logarithm of the ratio of q-th moment estimates to their expected values 

E[(xj
(Δ))q]=μq

(Δ) when varying Δ. 
 

It can be noticed that the information content of the sample moments 

strongly decreases when increasing the order q (i.e., the distribution is less 

concentrated around 0): only low moments have reasonably low variation, 

all others vary within several orders of magnitude (notice that the 

horizontal axis is logarithmic and spans more than 10 orders of 

magnitude!). Despite the sample raw moment being an unbiased estimator 

of the true (population) raw moment, the probability distribution of the 

statistical estimator is very broad and skewed. This is particularly the case 

for high moments. Note that the averaging scale Δ has negligible 

influence on the statistical characteristics of low moment estimators, 

while it slightly regularizes the behaviour of higher moment estimators. 

In addition, in Fig. 2.3 below we show the empirical frequency 

distribution of the sample 5-th moment estimated from lognormal time 

series averaged locally over different timescales Δ. Again, here the bias is 

theoretically zero, but the most probable value of the moment estimate 

(the mode) is very different from its expected value. For example when 

Δ=1 (upper-left panel of Fig. 2.3), the mode of the distribution of m5
(Δ=1) 
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(green line) is almost two orders of magnitude less than the expected 

value (red line) and the probability of calculating from a unique sample a 

value equal to the mode is much greater (almost one order of magnitude) 

than the probability of obtaining the expected value itself. Recall that the 

expected value of the sample moment equals the true value of the 

moment, because of unbiasedness, but according to the distributions of 

Fig. 2.3 we can hardly expect the moment estimate from a unique sample 

to be close to this expected value. Increasing the averaging scale Δ 

reduces the difference between the mean and the mode. Nonetheless, this 

difference is still remarkable at large scales (see e.g. lower-right panel of 

Fig. 2.3). 

 
Figure 2.3 – Empirical probability density function (epdf) of the sample 5-th 

moment estimated from lognormal time series averaged locally over different 

timescales Δ. 
 

The large difference between the mode and the expected value of the 

moment estimators is not the only problem. Another problem is the high 

estimation uncertainty. In order to illustrate the uncertainty in the moment 

estimation, Fig. 2.4 shows semi-logarithmic plots of the prediction 

intervals of the sample moments, calculated from the Monte Carlo 

simulations, against the moment order, for various scales Δ. The 

logarithmic scale on the vertical axis highlights the huge variability of 

estimates when the order increases. Note that the mean of raw moments 

(i.e., the true expected value) moves closer to the upper prediction limit 

for orders q>3, thus making the use of high moments unreliable. 
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Figure 2.4 – Semi-logarithmic plots of the prediction intervals of the sample 

moments versus the order q for various timescales Δ, “Q” stands for quantile. 
 

Furthermore, Fig. 2.5 depicts log-log diagrams of the prediction intervals 

of the sample moments against the scale of averaging Δ, for various 

orders q. In addition to the observations made with respect to Fig. 2.4, 

Fig. 2.5 shows that the increase of the averaging scale Δ has little 

influence on the variability of the moments, meaning that the sample size 

reduction is somewhat compensated by the time averaging.  
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Figure 2.5 – Log-log plots of the prediction intervals of the sample moments 

versus the scale Δ for various orders q. 
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Nevertheless, it is clear that larger samples provide better estimates than 

smaller. For example, Meneveau and Sreenivasan (1991) propose a 

criterion of statistical convergence for the moments of local average 

processes, and find that data records of size 10q may be sufficiently long 

to ensure statistical convergence for q-th order moments. However, this is 

not immediately straightforward in case of highly correlated data series, 

as we show in Fig. 2.1. To further investigate this issue accounting for the 

criterion of convergence above, in Fig. 2.6 we show the trend of the 

interquartile range (IQR) of the prediction intervals for the third (q=3) 

moment when increasing the sample size from 210 to 214 (the ensemble 

consists of 10000 lognormal time series for each sample size generated by 

our model described in Sect. 3.2). It can be noticed that the sample size 

should be increased more than one order of magnitude to obtain roughly a 

10% improvement over the results presented in Fig. 2.4 for Δ=1. 
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Figure 2.6 – Semi-logarithmic plot of the interquartile range (IQR) (standardized 

with respect to the IQR for n=210) of the prediction intervals for the third 

moment versus the sample size n for the lognormal series generated by our 

downscaling model (see Sect. 3.2). 
 

In the second part of the Monte Carlo simulation experiment, we use a 

different approach, first generating at the finest scale and then aggregating 

into coarser scales. In this case we generate 30000 synthetic time series 

from the four distributions described in Sect. 2.1.2 above (ordered from 

heavier to lighter tail type: Pareto, lognormal, Weibull with shape 

parameter smaller than one and Gaussian) with characteristics same as 

those in the previous experiment. In this case, we investigate how the 

classical estimators of raw moments behave when varying the tail type of 
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the marginal distribution of the underlying stochastic process. To 

accomplish this aim, in Fig. 2.7 we plot on a semi-logarithmic scale the 

prediction intervals of the sample moments against the moment order 

(assuming Δ=1), for the four distributions. It can be seen that the tail type 

significantly influences the reliability of moment estimators. The heavier 

the distribution tail, the more uncertain the sample moments are. This is 

especially the case for high moments, because they depend enormously 

on the distribution tail and non-normality affects significantly their 

statistical properties. Analogous considerations apply to aggregated series 

(i.e., Δ>1). 
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Figure 2.7 – Semi-logarithmic plots of the prediction intervals of the sample 

moments versus the order q for various marginal probability distributions, 

assuming Δ=1. 
 

It is emphasized that the vertical axes in Fig. 2.7 span more than 10 orders 

of magnitude yet the prediction limits do not necessarily bracket the true 

value of the moment. Particularly for the Pareto distribution the true 

(population) values of the 5-th and 6-th moments are infinite while their 

statistical estimates are finite and the entire graph does not provide any 

hint that these high moments differ so essentially from the lower ones. 

Another important conclusion drawn from Fig. 8 is that the prediction 

limits in the case of the Gaussian distribution are dramatically narrower 

than in all other cases. As the Gaussian distribution has been dominating 

in classical statistical applications and perhaps in statistical thinking, this 

fact may explain why the multifractal applications were misled to neglect 
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the huge uncertainty of high moment estimates and its impact on 

modelling. 

 

2.1.4 Empirical moment scaling function 

Since the ultimate aim of a multifractal analysis is to study the scaling of 

raw moments, we have carried out some additional numerical 

investigations on the generated samples by simply taking an average slope 

of linear regressions of sample moments at different scales Δ in log-log 

diagrams (actually, this is commonly the case when dealing with real 

world data). Despite being not really crucial to the focus of our work (i.e. 

aiming to answer the question about how many raw moments we can 

estimate reliably), we believe it is worth exploring the variability in the 

estimates of the moment scaling function K(q), when using the statistical 

tools which we cautioned against. To accomplish this purpose, we use the 

lognormal synthetic series generated by our downscaling model described 

in Sect. 3.2. 

In order to estimate an empirical exponent function K(q) describing the 

scaling of raw moments over a range of time scales, we should define the 

following non-dimensional quantities commonly used in the literature 

(e.g. de Lima and Grasman, 1999; Serinaldi, 2010). The scale ratio λ so 

that λ=1 for the largest scale of interest Δmax, i.e. λ=Δmax/Δ. In our case, we 

assume that Δmax=n/8=128 where the sample size n=1024, so that 

sample moments can be estimated from at least 8 data values, while the 

generic aggregated scale Δ is bounded in [1, 128]. Similarly, we form the 

non-dimensional process ε(λ) dividing the local average of the 

continuous-time process x(t) by its mean at the largest scale Δmax (or 

equivalently λ=1); then: 
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where m is the temporal mean of the data series. The scaling behaviour of 

the process is characterized by the moment scaling function K(q) as 

follows:  

     qKq
 E        (2.13) 

If K(q) linearly increases with q, then the process is said to be “simple 

scaling”, otherwise it exhibits a “multiple scaling” behaviour. 
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In Fig. 2.8, we graphically show how uncertainty in sample moments is 

reflected in the uncertainty in the estimates of scaling exponents. It can be 

noticed that the function K(q) shows a nonlinear behaviour for the 

lognormal series, thus suggesting a multifractal behaviour. Analogous 

considerations apply to the series generated by the other Monte Carlo 

experiments described in Sect. 2.1.3 above (not reported here).  
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Figure 2.8 – Prediction intervals of the moment scaling function K(q) versus the 

order q for lognormal series generated by our downscaling model (Sect. 3.2). 

 

The prediction intervals in Fig. 2.8 spread out widely while increasing the 

moment order q, which is consistent with an enhancement of uncertainty. 

We clarify that we used the ratios of moment estimates in all calculations 

to compute ε(λ). Nonetheless, recalling that we assumed unit ensemble 

mean μ=E[x(t)]=1 in all our Monte Carlo experiments, we found (not 

shown here) the same numerical results if using raw moments without 

taking any ratios. This is to stress that ratios of moments do not seem to 

play any significant role in the estimation of multiscaling exponents in 

our case. 

It may be useful to add here some theoretical aspects. The theory of 

multifractals depends on the fact that raw moments obey power laws as 

the scale Δ→0 (or equivalently λ→∞) (Falconer, 1990; Gneiting and 

Schlather, 2004), and so it depends on taking limits which cannot be 

achieved in reality.  For most experimental purposes, the multifractal 

behaviour of a process x(t) is usually found by estimating the gradient of a 

graph of log(E[(ε(λ))q]) against logλ over an “appropriate” range of scales, 

where empirical points are closely matched by a straight line of slope 

K(q). Being the latter an asymptotic slope, it is difficult to find the 
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“appropriate” range of scales to estimate K(q), because we could be 

misled by some artificial slopes which do not indicate the multifractal 

behaviour of the underlying process (see e.g. Koutsoyiannis, 2013b). In 

addition, we should emphasize that the empirical moment scaling function 

K(q) varies across scales for ergodic processes. The simple proof for this 

is given below in the special case of q=2. 

According to Eqs. (2.12) and (2.13) we could write: 

        22
2

2

2

max

max

EE  KΔ

j

K

Δ

j xx 


























 








    (2.14) 

where μ is the mean of the process. On the other hand, we know that: 
      2

2

E   Δx
Δ

j        (2.15) 

where γ(Δ) is the variance of the local average process at the scale Δ, see 

Eq. (1.5) in Sect. 1.3. If we assume that the process is ergodic, then we 

must have γ(Δ)→0 as Δ→∞ (Papoulis, 1991, p. 430). 

Recalling that Δ=Δmax/λ, from Eqs. (2.14) and (2.15) we have: 

  2max22 


 









ΔK       (2.16) 

dividing both sides by μ2 and taking the logarithms, we obtain: 

 







log

1log

2

2max





















Δ

K      (2.17) 

Clearly then, as λ→0 (i.e., as the scale grows to infinity Δ→∞), the 

numerator → 0 and the denominator → ∞. So, K(2)=0 asymptotically. 

Note that we have not made any assumption about the dependence 

structure or the marginal probability of the process, the only assumption 

is that the process is ergodic. In summary, for scales tending to infinity 

the K(2) should tend to zero, while for scales tending to zero the K(2) will 

take nonzero values. 

Let us now investigate if empirical results shown in Fig. 2.8 agree well 

with the theoretical formulation of the moment scaling function K(q) of 

our model described in the next Chapter. To this aim, in the following we 

derive the theoretical moment scaling function for our downscaling model 

based on the Hurst-Kolmogorov process. 
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Since the variables generated by our model are log-normally distributed, 

it can be shown that the generic q-order raw moment is given by 

(Kottegoda and Rosso, 2008, p. 216): 

         







 Δ

j
Δ

j xx

qΔ

j qqx
ln

2

ln 2

1
expE      (2.18) 

where the two parameters can be determined in terms of the mean 

μ=E[xj
(Δ)] and the variance γ(Δ)=Var[(xj

(Δ))] of the local average process 

as follows: 

  
 









 1log

2

1
log

2ln 




Δ
Δ

jx
     (2.19)  

  
 









 1log

2ln 




Δ
Δ

jx
      (2.20) 

As our downscaling model is based upon the Hurst-Kolmogorov process, 

the function γ(Δ) obeys the following power law (see also Eq. (1.8)): 

  22  HΔΔ          (2.21) 

where γ ≡ γ(Δ=1) is the variance of the reference local average process 

xj
(Δ=1). 

In order to derive the theoretical moment scaling function KTh(q), we 

should investigate the following limiting behaviour (Falconer, 1990, p. 

257): 

 
    
Δ

x
qK

qΔ

j

Δ log

Elog
lim

0
Th





      (2.22) 

where, according to Eq. (2.18), the numerator of the right-hand side can 

be written as: 

          Δ
j

Δ
j xx

qΔ

j qqx
ln

2

ln 2

1
Elog        (2.23) 

Substituting Eqs. (2.19) and (2.20) in the right-hand side of eq. (2.23), we 

obtain:  

      
 









 1log1

2
logElog

2




Δ
q

q
qx

qΔ

j    (2.24) 

From Eq. (2.21) and using the properties of the logarithm, the Eq. (2.24) 

becomes: 
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    
 































1
2

22

2
1logElog

q
q

Hq
qΔ

j Δx



     (2.25) 

Recalling that the Hurst coefficient is a parameter satisfying 0<H<1, the 

exponent 2H–2<0. Substituting Eq. (2.25) in Eq. (2.22), we easily obtain 

that the theoretical moment scaling function KTh(q) for our downscaling 

model described in Sect. 3.2 is given by: 

    HqqqK  11Th       (2.26) 

Based on these findings, the empirical results in Fig. 2.8 do not seem to 

agree well with their theoretical counterparts. For example, in our case 

H=0.85, for q=4 the theoretical value should be KTh(q)=1.8, while the 

estimated mean value is about K(q)=0.5 in the scale range of our Monte 

Carlo experiments. Hence, not finding the “appropriate” range of scales, 

in addition to estimation problems reported in our work, may lead to 

remarkable underestimation of the moment scaling function. 

 

2.1.5 Overview of key ideas 

During recent decades, there has been a large raise of interest in 

multifractal analyses especially in the study of hydrological processes, 

particularly in rainfall modelling. Indeed, the multifractal framework 

provides parsimonious models to study the variability of several natural 

processes in geosciences, such as rainfall. Models following this approach 

require the scaling of the sample moments of different orders q, which is 

used in model identification and fitting. A common problem with the 

application of multifractal models, which in some cases may have led to 

incorrect results, is their disconnection from stochastic methodology and 

reasoning, and the (unstated) naïve consideration that statistical estimates 

represent the true properties of a process. 

Using theoretical reasoning and Monte Carlo simulations we find that the 

reliability of multifractal methods which use high order moments (> 3) is 

questionable. In particular, we highlight the problems in inference from 

time series of geophysical processes. The classical statistical approaches, 

often used in geophysical modelling, are based upon several simplifying 

assumptions, tacit or explicit, such as independence in time and 

exponential distribution tails, which are invalidated in natural processes. 

Indeed, the study of natural processes reveals scaling behaviours in state 

(departure from exponential distribution tails) and in time (departure from 
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independence). While the multifractal models are based on these scaling 

behaviours per se, they failed to explore their statistical consequences 

with respect to the implied dramatic increase of uncertainty. 

The following list briefly summarizes the main findings of the analyses 

described in previous sections. 

 As natural processes are characterized by dependence in time, 

while classical statistics typically assumes independence, much 

larger samples are required in order to obtain estimates of similar 

reliability with classical statistics. 

 Estimators of high moments whose distribution ranges over 

several orders of magnitude cannot support inference about a 

natural behaviour nor fitting of models. 

 The most probable value of sample high moments (the mode) can 

strongly differ (by orders of magnitude) from its expected value 

(i.e. the true value), thus making the statistical estimate 

problematic even in the case of unbiasedness. 

 The calculation of numerical values of high order moments is 

misleading as the theoretical moments may tend to infinity for 

high orders, while the sample estimates are always finite. Even 

smaller order moments can be very uncertain. 

 Even if the generated process is multifractal, the sample estimates 

of the q-moments from a unique sample can provide misleading 

results. 

Hence, we have shown that distribution tails heavier than the exponential 

one and temporal dependence result in enormously increased uncertainty 

and/or infinite biases from a practical perspective in raw moments. In 

essence, this is a warning against the blind use in geophysical time series 

analyses of classical statistical tools, which neglect dependence and heavy 

tails in distributions. Ossiander and Waymire (2000) already caution 

against using high moments in multifractal estimation, but their particular 

focus is on discrete multiplicative cascade models. Indeed, they 

demonstrate that the estimators of multiscaling exponents converge 

almost surely to the structure function of the cascade generators as the 

sample becomes large for all moment orders within a certain critical 

interval, whose upper bound is consistent with our results. 

Ignorance of increased uncertainty and inattentive use of high order 

moments may result in inappropriate modelling, wrong inferences and 

false claims about the properties of the processes. Evidently, the first two 

moments are necessary to use in all problems as they define the most 
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important characteristics of the distribution, marginal (the first two 

moments) and joint (the second moment). Even for these two lowest 

moments it is important to study always their uncertainties and this only 

can be done in connection with a model fitted for the process of interest 

(as it is not possible to define uncertainty without specifying a model for 

the marginal distribution and dependence). The third moment is often 

useful as a measure of skewness but we should always be aware of its 

uncertainty; however use of third moment is not the only way to identify 

and assess the skewness of a distribution. For example in parameter 

estimation of three-parameter distributions, it is better to avoid the 

method of moments and use other fitting methods such as maximum 

likelihood, L-moments, etc. Moments of order > 3 should be avoided in 

model identification and fitting because their estimation is problematic. If 

we have to use them, then it is imperative to specify their uncertainty and 

involve this uncertainty in any type of modelling and inference. 

 

2.2 Sampling properties of climacogram and power 
spectrum 

The reason for fitting a statistical model to data is to make conclusions 

about some essential characteristics of the natural process which the data 

refer to. Such conclusions can be sensitive to the degree to which the 

datasets reflect the salient features of the process. Natural processes 

evolve in continuous time but their observation is inevitably made at 

discrete time. The observational time series formed are either series of 

instantaneous values of the natural phenomenon at a certain time step or 

aggregated quantities during this time step. In addition, the observation 

period is apparently a finite time period. Both time discretization and 

finite length may strongly affect the stochastic properties inferred from 

the data. In particular, time discretization distorts the stochastic properties 

at small time scales, while the finite length affects the properties at large 

time scales. Modelling of natural processes is typical made assuming 

discrete time and parameter estimation is usually done using classical 

statistical estimators which assume that observations are random samples. 

All these are inadequate practices and result in inappropriate and biased 

models. A different modelling strategy is proposed, in which the 

stochastic model is by definition a continuous-time process and the 

distortion due to discretization and finite-period observation is explicitly 

taken into account in model calibration. An additional benefit of the 
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proposed strategy is that it avoids the too artificial, often non-

parsimonious, families of discrete time stochastic models (like the 

ARIMA(p,d,q) models). 

Here we put the emphasis on autocorrelations and spectra, because they 

are the most extensively used concepts in the applications of stochastic 

processes (Papoulis, 1991). These concepts involve only second-order 

moments. Specifically, we focus on the power spectrum as well as the 

climacogram; the two are fully dependent on each other. 

 

2.2.1 Some theoretical considerations 

It may be useful to include here some theoretical aspects (see also 

Koutsoyiannis, 2013b). 

The power spectrum of the continuous-time (instantaneous) process, 

denoted as s(w), is twice the cosine Fourier transform of the 

autocovariance function of the process, while that of the discrete-time 

process, denoted as sd
(Δ)(ω), is twice the inverse finite cosine Fourier 

transform of the respective autocovariance function. The convention of 

the multiplying factor 2 in the Fourier transforms was adopted so that the 

integral of the spectrum on positive frequencies only equals the variance 

of the process: 

   



  dπ2cos2)( wcws      (2.27) 

      





z

Δ

z

Δ

d zcs  π2cos2      (2.28) 

where c(τ)=Cov[x(t), x(t+τ)] and cz
(Δ)=Cov[xj

(Δ), xj+z
(Δ)] (with c0

(Δ)=γ(Δ)) 

denote the autocovariance functions for the continuous-time and averaged 

processes, respectively; the continuous time is denoted as t and the 

discrete time as j = 0, 1, …; Δ is the time scale in case of averaging, the 

frequency (inverse time) is denoted as w while ω=wΔ is 

nondimensionalized frequency. Both w and ω are real numbers ranging in 

(–∞, ∞) for a continuous-time process, while for a discrete-time process w 

ranges in [–1/2Δ, 1/2Δ] and ω in [–1/2, 1/2]. As both the autocovariance 

function and the power spectrum are even functions, i.e. f(x) = f(–x), we 

make all calculations for a continuous-time process in (0, ∞), and for a 

discrete-time process in [0, 1/2Δ] for w and in [0, 1/2] for ω. In the 

discrete-time case, both the lag z and the frequency ω are dimensionless. 

To make the spectrum equivalent and comparable to the continuous-time 
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spectrum s(w), we introduce the version s(Δ)(w)=Δsd
(Δ)(wΔ) (with w=ω/Δ) 

for the averaged process, which has the same dimensions as s(w). 

Pursuant to the considerations above, the power spectrum of the 

continuous-time process is calculated from autocovariance function as:  

   



0

dπ2cos4)(  wcws      (2.29) 

The inverse transformation is: 

   



0

dπ2cos)( wwwsc        (2.30) 

The power spectrum of a discrete-time process is calculated from the 

autocovariance function as: 
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


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z

Δ

z

Δ
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The inverse transformation is:  

     



0

dπ2cos)( Δ

d

Δ

z sc      (2.32) 

Notice that, even in the discrete case, the inverse transformation is an 

integral, not a sum. s(Δ)(w) is readily derived from its definition using Eq. 

(2.31).  

As both the climacogram and the power spectrum are transformations of 

the autocovariance function, the two are also related to each other by 

simple transformations. Recall that the inverse formula, by which we can 

find the autocovariance if the climacogram is known, is derived by taking 

the second derivative in Eq. (1.5) using Leibniz’s integral rule, which 

gives a formula for differentiation of a definite integral whose limits are 

functions of the differential variable as in Eq. (1.6). Thus, using known 

properties of the Fourier transform, we find: 
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


02

2
2 dπ2cos

d

d
2)(  w

w
wws     (2.33) 

which after algebraic manipulations becomes: 

     

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On the other hand, combining Eqs. (1.5) and (2.30) we find: 
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and after algebraic manipulations, we find the following equation giving 

directly the climacogram from the power spectrum: 

   



0 2

2

d
)(π

)(πsin
w

wΔ

wΔ
wsΔ       (2.36) 

The climacogram γ(Δ) denotes variance and therefore should be 

nonnegative for any time scale Δ. It could be positive finite or even 

infinite for Δ = 0. For (mean) ergodic processes it should necessary tend 

to 0 for Δ→∞ (Papoulis, 1991, p. 429). Thus: 

    0;0   Δ        (2.37) 

As the autocovariance c(τ) equals the variance for τ = 0, it follows that 

c(0) > 0. For τ ≠ 0, c(τ) can take on negative values as well. However, c(τ) 

must be a positive definite function (see e.g. Stewart, 1976), a property 

which among other things makes it bounded from below and above by 

±c(0). Ergodicity also imposes a constraint about its asymptotic behaviour 

(Papoulis, 1991, p. 430); in conclusion: 

        0d
1

;0;00
0

 
 Δ

Δ

c
Δ

ccc     (2.38) 

In order for the function c(τ) to be positive definite, its Fourier transform, 

i.e. the power spectrum s(w) should be nonnegative. Thus: 

  0ws         (2.39) 

Additional properties of s(w) are discussed in next section. 

The autocovariance c(τ) is often a nonnegative and non-increasing 

function. In this case γ(Δ) is non-increasing too. To see this, we take the 

derivative with respect to Δ from Eq. (1.5) and we find: 

       d2
4

'
03  
Δ

cΔ
Δ

Δ      (2.40) 

The term (τ – Δ/2) within the integral is symmetric with respect to Δ/2 

(negative for τ < Δ/2 and positive for τ > Δ/2). As c(τ) is nonincreasing, its 

values for τ < Δ/2 are greater than those for τ > Δ/2. Clearly then the 

negative product prevails over the positive product and thus γ’(Δ) < 0. 

 

2.2.2 Asymptotic properties of the power spectrum 

The asymptotic slopes of the power spectrum s(w) plotted in logarithmic 

axis vs. the logarithm of the frequency w are important properties to 

characterize a stochastic process. Generally, this slope is:  



GEOPHYSICAL INFERENCE 

 

 

39 

 
  

 
 
 

 
 ws

wa

ws

wsw

w

ws
ws 

'

lnd

lnd#
     (2.41) 

where a(w) = ws’(w), and where s’(w) is the derivative of s(w).  

We will find its asymptotic value for w→0, i.e. s#(0). Note that 

continuous time is assumed for the process as well as the spectrum. From 

Eq. (2.29), the derivative is:  

   



0

dπ2sinπ24)('  wcws      (2.42) 

We define:  
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and we observe that:  
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From Eq. (2.43), we obtain:  

)0()0()0( ssa         (2.45) 

If 0 < s(0) < ∞ then Eq. (2.45) simplifies to:   

0)0( a         (2.46) 

and hence: 

0)0()0(0 #  ss       (2.47) 

If s(0) = 0, then Eq. (2.46) is still valid, but the logarithmic slope s#(0) 

given by Eq. (2.41) becomes an indeterminate quantity (0/0). This should 

necessarily be positive, so that s#(w) > 0 for w > 0. Thus:  

0)0(0)0( #  ss        (2.48) 

If s(0) = ∞ (hence s’(0) = –∞, a(0) < 0, while s(w) is continuous), then 

(because s(w) is nonnegative) Eq. (2.45) results in:  
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
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and:  

01
)(

)(
lim

0










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       (2.50) 

Consequently, from Eq. (2.41) we obtain: 

1)0()0( #  ss       (2.51) 

In conclusion, the asymptotic slope in the logarithmic plot of the power 

spectrum for w→0 can never be lower (steeper) than –1 and more 

specifically it ranges as follows:  



GEOPHYSICAL INFERENCE 

 

 

40 







)0(;0)0(1

)0(0;0)0(

0)0(;0)0(

#

#

#

ss

ss

ss

     (2.52) 

The asymptotic slope for w→∞ should necessarily be non-positive, 

without other restrictions, i.e.: 

0)(# s         (2.53) 

We often see publications reporting logarithmic slopes in empirical power 

spectra s# < –1 (e.g. s# = –1.5, etc.), but this should not be in contradiction 

with Eq. (2.51). First, we should point out that a slope s#(w) < –1 is 

mathematically and physically possible for large w. However, it is 

infeasible for w→0. Therefore, reported values s# < –1 for small w are 

spurious and are due to inconsistent estimation algorithms (cf. next 

section). Such results do not put into question the validity of Eq. (2.51) 

but are just invalid results. Let us prove this argument by assuming the 

opposite, i.e., that for frequency range 0≤w≤ε (with ε however small) the 

logarithmic slope of the power spectrum is s#(w) < –β, or else s(w) = αw–β 

where α and β are constants, with β > 1. We notice in Eq. (2.36) that the 

fraction within the integral takes significant values only for w < 1/Δ (cf. 

Papoulis, 1991, p. 433). Hence, assuming a scale Δ≫1/ε, and with 

reference to Eq. (2.36) we may write: 
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On the other hand, it is easy to verify that, for 0 < w < 1/Δ, we have:  

01
π
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 wΔ
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      (2.55) 

and since ε≫1/Δ, while the function in the integral of Eq. (2.54) is 

nonnegative, we can write: 
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Substituing ξ = wΔ in Eq. (2.56), we find: 

     
1

0

21 d1  ΔΔ      (2.57) 

To evaluate the integral in Eq. (2.57) we take the limit for r→0 of the 

integral:  
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Clearly, for β > 1 the first term of the right-hand side of Eq. (2.58)  

diverges for r→0, i.e., B(0) = ∞, and thus, by virtue of the inequality Eq. 

(2.57), γ(Δ)=∞. Therefore, the process is non-ergodic, see Eq. (2.37). It is 

interesting to note that, if |β| < 1, the integral in Eq. (2.54) can be 

evaluated to give:  
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Clearly, for Δ→∞, the last expression gives γ(Δ)→0 and thus for |β| < 1 

the process is mean ergodic. 

This analysis generalizes a result by Papoulis (1991, p. 434) who shows 

that an impulse of the power spectrum at w = 0 corresponds to a non-

ergodic process. 

In a non-ergodic process there is no possibility to infer statistical 

properties from the samples (as temporal averages do not represent true 

statistical properties). In any statistical analysis based on time series, 

ergodicity is necessary for the analysis to be valid. Otherwise the analysis  

is in vain and hence empirical results of this type are not meaningful 

because they contradict the basic condition on which they are based. 

Actually, such contradiction, when emerging from processing of data, 

does not suggest that a process is non-ergodic. Usually it only suggests 

that the algorithm used is inconsistent.  

Sometimes reported slopes s# < –1 are interpreted as indications of non-

stationarity. Such interpretations are equally invalid because even the 

definition of the power spectrum as a function of frequency only (as well 

as those of autocorrelation and climacogram as functions of lag and scale,  

respectively) assumes stationarity.  

 

2.2.3 Power spectrum estimation 

In this section, we focus on uncertainty in statistical estimation of power 

spectrum from correlated data series generated by a synthetic experiment. 

The next section is devoted to the climacogram estimation from the same 

data for comparison. Recall that the climacogram and the power spectrum 

are fully equivalent to each other, as well as to the autocorrelation 

function. We have shown in previous sections that each of these three 
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functions is theoretically derived by any of the other two. Therefore, a 

property in the spectral representation should have a one-to-one 

correspondence with a property in the climacogram representation. 

However their sampling properties may strongly different from each 

other. 

While the power spectrum is a magnificent tool for stochastic processes, 

its estimation from data is problematic. To define uncertainty in statistical 

properties inferred from the data we need to specify a model for the 

underlying stochastic process. As the statistics of a standard normal 

process are completely determined just in terms of its climacogram, we 

restrict ourselves to a discussion of a stationary, standard Gaussian 

stochastic process defined by a Cauchy-type climacogram:  
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22
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H

ΔΔ       (2.60) 

where we have four parameters: units of α and λ are [Δ] and [x]2, 

respectively, while H and κ are dimensionless. This model was derived by 

modifying one proposed by Gneiting and Schlather (2004), and its 

important feature is that it provides power-law correlations 

asymptotically. Hence, it allows explicit control of both asymptotic 

logarithmic slopes of the climacogram γ#(Δ) and the power spectrum 

s#(w): 
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Note that, when taking Fourier transforms, asymptotic relationships at the 

origin turn into statements about the asymptotic behaviour at infinity, and 

vice versa. 

Knowing asymptotic stochastic properties of processes is crucial for the 

quantification of future uncertainty, for planning and design purposes. 

Our primary concern is to study how these properties can be better 

estimated from data. To accomplish this aim, we perform a synthetic 

experiment by generating a time series of 1024 values from the known 

Cauchy-type process, assuming the following parameters: λ=1, α=10, 

H=0.8, κ=1. Hence, we have:  
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   (2.62) 

Then, we compare the empirical power spectrum (see below) and the 

empirical climacogram (see next section) with their known theoretical 

counterparts. 
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We use the classical non-parametric approach (periodogram) because it 

explicitly estimates the power spectrum of the process without assuming 

that the process has any particular structure. In practice, we compute the 

periodogram from a finite-length digital sequence using the fast Fourier 

transform (FFT), that is why we chose n = 210 = 1024. We consider the 

stochastic process defined by Eq. (2.60) with known theoretical 

properties, including its theoretical power spectrum, as shown on the 

graph (Fig. 2.9). The process is characterized by two different scaling 

laws, shown in its theoretical power spectrum as asymptotic slopes for 

frequencies w→0 and w→∞. In Eq. (2.62), we deduced these slopes 

theoretically, but, as we may notice in Fig. 2.9, we can hardly estimate 

them from data. 
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Figure 2.9 – Comparison between theoretical (true) and empirical (estimated) 

power spectra of a time series of 1024 values generated from the Cauchy-type 

process defined by Eq. (2.60). 

 

The raw periodogram is an unbiased estimator of the power spectrum 

only asymptotically (i.e. shorter samples cause higher bias, even when 

windowing the data), and it has extremely poor variance characteristics 

which are not affected by the length of data used (Papoulis, 1991). The 

variance problem can be reduced by smoothing the periodogram. Here we 

show (Fig. 2.9) results for the Bartlett’s method, which provides estimate 

of the spectrum at a given frequency by averaging the estimates from the 

periodograms (at the same frequency) derived from a non-overlapping 
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portions (segments) of the original series (here by averaging from 8 

segments). We also tested the Welch's method (not shown here), which is 

an improvement of the Bartlett’s method, and we obtained similar results. 

Furthermore, it can be shown that we can control the power-spectrum 

estimator variance by averaging more segments, but shorter segments 

mean larger bias; so for a fixed sample size, there is a basic trade-off 

between segment length, which controls the bias, and the number of 

segments, which controls the variance. Both bias and uncertainty in 

estimation may cause problems in estimating either asymptotic slopes or 

statistically significant peaks. In particular, the bias depends on frequency 

and this distorts the estimated slopes (e.g. too steep slopes, s#(0)<–1: 

unfeasible, as we demonstrated in the previous section). In addition, time 

discretization causes folding (i.e. symmetry of empirical power spectrum 

about the Nyquist frequency wN=1/2Δ); therefore the calculated slope 

s#(wN) = 0, and it does not equal the actual asymptotic slope. 

To conclude this analysis, we stress that the power spectrum, despite 

being very powerful in identifying strong periodicities in time series, it 

has some problems in identifying scaling laws and weak periodicities. 

Specifically, time discretization, finite length of data and data correlation 

alter asymptotic slopes of periodograms by introducing biases and 

uncertainties that are uncontrollable. Moreover, the rough shape of the 

periodogram may result both in false periodicities and in misleading, 

inaccurate or even incorrect slopes (e.g. slope > –1 for frequency → 0, 

which is infeasible).  

 

2.2.4 Climacogram estimation 

The procedure to estimate the climacogram from data has been described 

in Sect. 1.4; it is essentially concerned with the estimation of the process 

variance γ(Δ) at various scales of averaging Δ. The most common 

estimator of variance γ(Δ) of the averaged random process xj
(Δ) is the 

sample variance: 

      






n

j

ΔΔ

j mx
n

Δg
1

2

1
1

1
      (2.63) 

where n is the sample size and m1
(Δ) is given by Eq. (2.5). Here we discuss 

about an additional complication for correlated data. Namely, g(Δ) is a 

biased estimator of the variance γ(Δ). The bias depends directly on the 

correlation structure (see Beran, 1994, p. 9). Only if the observations are 



GEOPHYSICAL INFERENCE 

 

 

45 

uncorrelated, then we obtain the well-known result that g(Δ) is unbiased. 

If the data are positively correlated (as in our case, see the explanation in 

Sect. 1.2), then the sample variance tends to underestimate γ(Δ). 

Asymptotically the bias disappears, but the bias term converges to zero 

rather slowly, as n increases (Beran, 1994, p. 156). However, if we are 

able to estimate the correlation structure, then an unbiased estimator of 

γ(Δ) can be obtained by multiplying g(Δ) with the corresponding 

estimated correction factor. Koutsoyiannis (2013b) proposed the 

following general equation to estimate the bias of g(Δ):  
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Being n = T/Δ (see Fig. 1.4) and m1
(Δ) = x1

(T ) (see Eq. (2.5)) then: 

           ΔTΔTΔ
TΔ

Δg  ,
1

1
E 


    (2.65) 

where the bias correction factor η is: 
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It becomes clear from the above equations that direct estimation of the 

variance γ(Δ) is not possible merely from the data. We need to know the 

ratio γ(Δ)/γ(T) and thus we should assume a stochastic model which 

evidently influences the estimation of γ(Δ). Once the model is assumed 

and its parameters estimated based on the data, we can expand our 

calculations to estimate the variance for any time scale Δ. Therefore, the 

important advantage of the climacogram over other common statistical 

tools is that its bias can be determined analytically (usually in a closed 

form) and included in the estimation problem. 

In the case of the synthetic experiment described in previous section, we 

know from Eq. (2.60) the theoretical climacogram of the underlying 

stochastic process, so we can easily derive the bias correction factor 

η(Δ,T) from Eq. (2.66). In Fig. 2.10, we show the results. 
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Figure 2.10 – Comparison between theoretical (true) and empirical (estimated) 

climacograms of a time series of 1024 values generated from the Cauchy-type 

process defined by Eq. (2.60). 

 

The concept of climacogram can be used also in the frequency domain to 

find a substitute for the power spectrum, which has similar properties. In 

this context, Koutsoyiannis (2013b) proposed the climacogram-based 

pseudospectrum (CBPS), which we briefly describe and investigate in the 

following: 
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In processes with infinite variance (γ(0)=c(0)=∞) the CBPS simplifies to: 
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12
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It can be shown that the value of CBPS at w = 0 equals that of the power 

spectrum, therefore ψ(0) = s(0). Furthermore, the asymptotic logarithmic 

slopes ψ#(w) of CBPS at frequencies w→0 and w→∞ follow those of the 

power spectrum s#(w), and in most processes these slopes are precisely 

equal to each other. In our synthetic experiment, we have indeed:  

        2;6.000 ####  ss      (2.69) 

In Fig. 2.11, we show that when the power spectrum and CBPS are 

estimated from data, the latter is much smoother and its bias is a priori 
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known, thus enabling a more direct and accurate estimation of slopes and 

fitting on a model. Also, its calculation only uses the concept of variance 

and does not involve integral transformations (like the Fourier transform).  
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Figure 2.11 – Comparison between empirical and theoretical spectra and 

pseudospectra for the Cauchy-type process defined by Eq. (2.60).  

 

2.2.5 Overview of key ideas 

Geophysical processes typically evolve in continuous time but we observe 

and study them at discrete time. Besides, as we showed in Chapter 1, 

these processes commonly exhibit long-range dependence. Thus, in order 

to make reliable inferences about the stochastic properties of natural 

processes, we should always be aware of the effect of time discretization, 

finite record length as well as data correlation on classical statistical 

estimators. In particular, time discretization distorts the stochastic 

properties at small time scales, the finite length affects the properties at 

large time scales, while data correlation introduces (often uncontrollable) 

biases and uncertainties in statistical estimation. In Sect. 2.2, we mainly 

focus on second-order moments and specifically on climacograms and 

power spectra. Moreover, we analyse a possible substitute of the power 

spectrum, which is based on the concept of climacogram. 



GEOPHYSICAL INFERENCE 

 

 

48 

Based on a synthetic experiment for which all the stochastic properties of 

the underlying process are known, we compare the performances in 

statistical estimation of the statistical tools mentioned above.  

The power spectrum, despite being very powerful in identifying strong 

periodicities in time series, it has some problems in identifying scaling 

laws and weak periodicities. Specifically, time discretization, finite length 

of data and data correlation alter asymptotic slopes of periodograms by 

introducing biases and uncertainties that are uncontrollable (see Sect. 

2.2.3). Moreover, the rough shape of the periodogram may result both in 

false periodicities and in misleading, inaccurate or even incorrect slopes 

(e.g. slope > –1 for frequency → 0, which is infeasible as shown in Sect. 

2.2.2). 

The important advantage of the climacogram over other common 

statistical tools is that its bias caused by the correlation structure of 

datasets can be determined analytically (usually in a closed form) and 

included in the estimation problem. However, direct estimation of 

climacogram is not possible merely from the data. We need to assume a 

stochastic model (see Sect. 2.2.4) which evidently influences the 

estimation of the process variance. Once the model is assumed and its 

parameters estimated based on the data, we can expand our calculations to 

estimate the variance for any time scale Δ. 

The concept of climacogram can be used also in the frequency domain to 

find a substitute for the power spectrum, which has similar properties (e.g. 

the asymptotic behaviours of the two are similar). In Sect. 2.2.4, we 

analyze the climacogram-based pseudospectrum and show that when the 

power spectrum and pseudospectrum are estimated from data, the latter is 

much smoother and its bias is a priori known, thus enabling a more direct 

and accurate estimation of slopes and fitting on a model. 
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3. Rainfall downscaling 
 

             Tous pour un, un pour tous. 
 Alexandre Dumas 

 

In stochastic hydrology, we often need to study natural processes at 

different time scales. The problems associated with the transfer of 

information across scales have been called scale issues (Blöschl and 

Sivapalan, 1995). To adequately address scale issues, we require models 

capable of preserving consistency across scales, i.e. both in a coarser, or 

higher-level, time scale and in a finer, or lower-level, time scale. These 

issues may arise, for instance, when coupling stochastic models of 

different time scales to reproduce simultaneously different important 

statistical properties of a hydrological process (Koutsoyiannis, 2001), e.g. 

the long-term and the short-term stochastic structure of precipitation 

(Langousis and Koutsoyiannis, 2006).  

In other cases, scale issues are encountered in predictions using 

hydrological models, where the modelling scale may be much smaller 

than the observation scale; hence, we need to bridge that gap to calibrate, 

validate and operationally use our models. For example, when the higher-

level process is the output of weather prediction models, which is given at 

a coarse scale, the scale discrepancy between model output and the 

resolution required for hydrological modelling must be resolved (e.g. 

Fowler et al., 2007, Groppelli et al., 2011). Furthermore, the higher-level 

process may be known from measurements. Specifically, when dealing 

with rainfall, long historical records usually come from daily rain gauges, 

but we need hourly or sub-hourly precipitation data in many hydrological 

applications. Also, the satellite rainfall data are available at a spatial scale 

greater than about 30 km at the Equator, and a temporal scale of 3 h, 

while again hydrological applications (e.g. related to flash floods) require 

higher resolutions (Berne et al., 2004; Koutsoyiannis and Langousis, 

2011). In essence, scale issues can potentially be tackled by both 

disaggregation and downscaling techniques, which aim at modelling 

linkages across different temporal and/or spatial scales of a given process.  

A natural process x(t), e.g. rainfall, is usually defined in continuous time t, 

but we observe or study it in discrete time as local averages xj
(Δ), which 

are the averages of x(t) over a fixed time scale Δ at discrete time steps j 
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(=1, 2, …) (see Eq. (1.3)). Furthermore, we may find useful to define here 

the cumulative process X(t) in continuous time:  


t

xtX
0

d)()(         (3.1) 

Its statistical properties depend on time, thus this is a non-stationary 

process, while x(t) is assumed to be stationary. Then, we can define the 

relevant process in discrete time, i.e. the aggregated process Xj
(Δ) on a 

time scale Δ, as follows:  
      ΔjXΔjXX
Δ

j 1       (3.2) 

which are the stationary intervals of Eq. (3.1), the local average process 

given by Eq. (1.3) is recovered with xj
(Δ) = Xj

(Δ)/Δ. 

Both disaggregation and downscaling refer to transferring information 

from a given scale (higher-level) to a smaller scale (lower-level), e.g. they 

generate consistent rainfall time series at a specific scale given a known 

precipitation measured or simulated at a certain coarser scale. The two 

approaches are very similar in nature but not identical to each other. 

Downscaling aims at producing the finer-scale rain field with the required 

statistics, being statistically consistent with the given field at the coarser 

scale. While disaggregation has the additional requirement to produce a 

finer scale rain field that adds up to the given coarse-scale total; thus, in 

this case we introduce an equality constraint to the problem in the form: 
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where fΔ is a time scale larger than Δ and f is a positive integer; for 

convenience Δ will be omitted. Then, for example X1
(f) = X1 + … + Xf and 

X2
(f) = Xf+1 + … + X2f. 

The reader is referred to Koutsoyiannis and Langousis (2011) and the 

references therein for a detailed review on disaggregation and 

downscaling models in the literature. 

This chapter focuses on the analysis of discrete random cascades for 

rainfall downscaling, which are characterized by a very simple structure, 

easy to implement and, consequently, widely applied in the literature. 

Hence, we compare the ensemble behaviour of two simple rainfall 

downscaling models based on two similar approaches: the multifractal 

and the Hurst-Kolmogorov. Both approaches are based on a general class 

of stochastic processes characterized by some invariant properties of their 

multivariate probability distribution under scale change, which illustrate 

the empirically observed scaling properties of rainfall time series. 
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The multifractal approach is based on the empirical detection of 

multifractal scale invariance of rainfall at finite, but practically important, 

ranges of scales (Veneziano et al., 2006). In particular, in Sect. 3.1 we 

focus on multiplicative random cascade (MRC) models to construct 

discrete multifractal fields, which are extensively used in the literature 

(e.g., Gupta and Waymire, 1993; Over and Gupta, 1996; Menabde and 

Sivapalan, 2000; Molnar and Burlando, 2005; Gaume et al., 2007; Rupp 

et al., 2009; Serinaldi, 2010; Licznar et al., 2011). The reason why MRC 

models have been so popular in the literature is that this method can 

parsimoniously generate complex intermittent and spiky patterns typical 

of rainfall time series, irrespective of whether the patterns are multifractal 

or not (Rupp et al., 2009).  

The Hurst-Kolmogorov approach is based on the Hurst-Kolmogorov 

process described in Sect. 1.3. We propose a downscaling model 

following this approach (described in Sect. 3.2), which is a simple method 

to generate time series based on nonlinear transformation of stepwise 

linear relationship from a Gaussian random process. 

 

3.1 Multiplicative random cascade models 

Let x1
(f) be the average rainfall intensity over time scale f (cf. Eq. (3.3)) at 

the time origin (j = 1); x1
(f) is assumed to be a random variable with mean 

μ0 and variance γ0 of a stochastic process, which we wish to be stationary. 

x1
(f) (for convenience x1,0) is then distributed over b sub-scale steps of 

equal size s = f/b (i.e., xj
(s),  j = 1, 2, ..., b). This is accomplished through 

multiplying x1,0 by b different weights (one for each sub-scale step) w 

which are independent and identically distributed (iid) random variables. 

Moreover, their distribution is assumed to be the same for all cascade 

levels with mean μw and variance γw (Mandelbrot, 1974).  

After repeating this procedure k times (k cascade levels; k = 0, 1, 2, …), 

the resulting discrete random process at the scale of aggregation sk = b–kf 

can be expressed as (see Fig. 3.1):  

 
 




k

i

ijigkj

s

j wxxx k

0

,,0,1,       (3.4) 

where j = 1, 2, …, bk is the index of position in the series at level k; i is 

the index of the level of the cascade; g(i, j) denotes a function which 
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defines the position in the series at the level i, i.e.   









ikb

j
jig , , which 

is a ceiling function (Gaume et al., 2007). For k = 0 we have w1,0 = 1. 

For a canonical cascade (another common term to describe a downscaling 

model) the expected value of the mean process at the k-level is equal to 

the expected value of the process at the initial 0-level:  

0,1

1

,

1
xx

b

kb

j

kjk




       (3.5) 

where for convenience we use < > to denote the expected value E[·] (i.e. 

average over the independent realizations of the stochastic process). From 

Eq. (3.4), we can derive the expected value of xj,k as:  
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As a consequence of Eqs. (3.5) and (3.6): 
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Thus, the weights w satisfy the condition μw = 1. 

For a micro-canonical cascade (i.e. a disaggregation model), the mean 

process at the k-level is equal to the process at the 0-level; this means that 

the following relationship (a consequence of Eq. (3.3)) holds for every 

pair of successive aggregation levels (k–1 and k) of the cascade:  

 
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km xx
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       (3.8) 

where j = 1, …, bk–1 with k > 0. For example, if we choose b = 2, then:  
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    (3.9) 

Thus, the weights wj,k satisfy μw = 1 and w < b (e.g. in the case of Eq. 

(3.9), w < 2). An important attribute of the micro-canonical model is that 

the distribution of w can be extracted from the data (Cârsteanu and 

Foufoula-Georgiou, 1996), allowing a direct examination of the 

associations that the weights may have with other properties of rainfall.  
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A graphical example of a dyadic (b = 2) multiplicative cascade for four 

cascade levels (k = 0, 1, 2, 3) is shown in Fig. 3.1. 

x3,3 = w3,3 w2,2 w1,1 x1,0

x1,0

x1,1 x2,1

w1,1 w2,1

x1,2 x2,2

x1,3 x2,3

x3,2 x4,2

x3,3 x4,3 x5,3 x6,3 x7,3 x8,3

w1,2 w2,2 w3,2 w4,2

w1,3 w2,3 w3,3 w4,3 w5,3 w6,3 w7,3 w8,3

k = 0

k = 1

k = 2

k = 3

 
Figure 3.1 – Sketch of a dyadic (b = 2) multiplicative random cascade. 

 

3.1.1 Downscaling model (canonical cascade) 

The summary statistics of the random process xj,k for a canonical cascade 

are derived below. Specifically, we derive the variance, γj,k, the q-th 

moment, 
q

kjx , , and the autocorrelation function for discrete-time lag z, 

ρj,k(z), of the random process at the k-level of the canonical cascade. The 

expected value, kjx , , has been already given in Eq. (3.6). The variance 

can be expressed as follows: 
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where the second moment is given by:  
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   (3.11) 

Likewise, the q-th moment is: 
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k
qqq

kj wxx 0,1,         (3.12) 

Finally, the correlation coefficient for lag z is given by:  
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where the term kzjkj xx ,,   can also be expressed as follows: 

 zh

kzjkj

kj

wxxx
,22

0,1,,        (3.14) 

In Eqs. (3.13) and (3.14), exponent hj,k(z) (at the position j = 1, …, bk – z 

in the cascade at level k) is bounded in   zk 2log1,0   if 0 < z ≤ bk–1, 

where    denotes the floor function, while hj,k(z = 0) = k, for any j and k. 

Assuming the cascade as a binary tree (b = 2), the exponent hj,k(z) denotes 

the number of vertices of the tree (excluding the start vertex x1,0) 

belonging to both simple paths leading to the vertices xj,k and xj+z,k. The 

exponent hj,k(z) is computed as (see an explanatory sketch in Fig. 3.2):  
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where Θ[r] is the discrete form of the Heaviside step function, defined for 

a discrete variable (integer) r as:  

 









0

0

,1

,0

r

r
r        (3.16) 
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Figure 3.2 – Example of computation of the exponent hj,k(z) for a canonical 

MRC. In the computation we use Eq. (3.14) and the arrows indicate the links to 

those variables considered. 

 

Thus, three important considerations can be made. First, the exponent 

hj,k(z) is a function which satisfies a particular symmetry relation with 

respect to the position j = 2k–1 in the dyadic cascade at level k. Second, the 

autocorrelation function of a canonical MRC corresponds to a non-

stationary process, because it depends on the position j in the cascade (i.e. 

the time position) for any level k. Third, we started assuming a stationary 

setting of the entire process at the largest scale, then we concluded with a 

downscaled process that we demonstrated to be non-stationary. 

Consequently, it can be argued that autocorrelograms produced by 

canonical MRC have a physically unrealistic attitude with respect to the 

rainfall process. 

Although the derivation of the theoretical autocorrelation function 

presented in Eqs. (3.13) and (3.15) is new, the problem of non-stationarity 

in processes generated by discrete random cascade models has been 

already discussed by Mandelbrot (1974, p. 356), who considered a 

canonical cascade with log-normal weights and a prescribed grid of 

eddies: “Because the eddies were prescribed, the random function 

[generated through the multiplicative scheme] is non-stationary and 

discontinuous: it varies between an eddy and its neighbors, by jumps that 

may be very large”. 
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Moreover, this problem has been subsequently discussed by Over (1995), 

who highlighted the properties of non-stationarity (non-homogeneity) and 

anisotropy of the cross-moments of a discrete random cascade in a d-

dimensional space, and by Veneziano and Langousis (2010, p. 137, 

Section 4.4.3.2). Hence, an important challenge is that of finding an 

alternative simple method to generate time series with spiky patterns 

typical of rainfall series and consistent with the observation at coarser 

scales, which is stationary. Indeed, as stated by Over (1995): “In 

applications, we may find that we want a random process model that is 

anisotropic and non-homogeneous, but in a way that is controllable using 

model parameters, not simply inherent to the model, and we would most 

likely want to use a homogeneous and isotropic model as a null 

hypothesis unless physical considerations determined otherwise” (p. 62, 

Section 3.4.1.1). 

Thus, in Sect. 3.2 we propose a stationary downscaling model, based on 

the Hust-Kolmogorov process, which is characterized by a cascade 

structure similar to that of MRC models. 

 

3.1.2 Example: numerical simulation 

In this section, numerical simulations of a canonical MRC are carried out. 

For simplicity and without loss of generality, we assume μ0=1 and γ0=0. 

Thus, the summary statistics given in the previous section (Eqs. (3.6) and 

(3.10)-(3.13)) now become: 
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This example refers to weights w log-normally distributed, defined as 

follows (see e.g. Over and Gupta, 1996): 

2

ln
2

b
y N

N

bw


 

        (3.18) 

where y is a normal N(0,1) random variable; as a consequence, the 

variance of the weights is given by: 

   1lnexp
222  bNw        (3.19) 

whereas σN
2 is a parameter defining the normal N(–σN

2 ln(b2/2), σN
2 ln(b2)) 

random variable v = ln w. 
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Monte Carlo simulations (M = 50000) have been applied to explore the 

ensemble behaviour of the random process, assuming e.g. k = 7 and 

σN=0.522, which gives γj,k = 1.5 (from Eq. (3.17)). Figures 3.3 and 3.4 

show respectively the ensemble mean <xj,k> = μj,k and standard deviation 

σj,k of the random processes as a function of the position j along the 

cascade level k, j = 1, 2, …, n (where n = 2k = 128). Figure 3.5 shows how 

the ensemble autocorrelation function ρj,k(z) strongly depends on the 

position j in the cascade at the level k. 
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Figure 3.3 – Ensemble mean of the example MRC process as a function of the 

position j along the cascade level k = 7. 
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Figure 3.4 – Ensemble standard deviation of the example MRC process as a 

function of the position j along the cascade level k = 7. 
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Figure 3.5 – Ensemble autocorrelation function of the example MRC process at 

the cascade level k = 7 with starting point j (for j = 1, n/4 and n/2, respectively, 

from left to right) in the considered cascade level with n = 27 = 128 elements. 

 

In Fig. 3.6 (left), the autocorrelogram with starting point j = n/2 (midpoint 

of the cascade) is zoomed in the lag range [–5, 5] so as to illustrate that 

the lag 1 autocorrelation of the canonical MRC can be about 0.8 with the 

adjacent cell to the left and zero with the adjacent cell to the right. 

Moreover, if we move our simulation window just by two cells to the 

right, i.e. j = n/2+2 (see Fig. 3.6 right), then the lag 1 autocorrelation 

becomes about 0.8 and 0.6 with the adjacent cells to the left and to the 

right, respectively. These simple observations suffice to indicate how 

unrealistic and undesirable the stochastic structure of this model is. 
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Figure 3.6 – ACF of the example MRC process at the cascade level k = 7 with 

starting point j = n/2 (left) and j = n/2+2 (right) zoomed in the lag range [–5, 5]. 
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3.1.3 Disaggregation model (micro-canonical 
cascade) 

In the case of a micro-canonical cascade, the summary statistics of the 

random process xj,k can be expressed accounting for the equality 

constraint given in Eq. (3.8). The expected value <xj,k>, the variance γj,k 

and the q-moments < xj,k
q > remain the same as in the canonical case (Eqs. 

(3.6) and (3.10)-(3.12)), while the autocorrelation function at lag z, ρj,k(z), 

now becomes, for z ≠ 0:  
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where the term kzjkj xx ,,   can also be expressed as follows, if b = 2 (Eq. 

(3.9)): 
  222

0,1,, 2
,

wwxxx
zh

kzjkj

kj

     (3.21) 

Note that, when z = 0, we have hj,k(z = 0) = k, for any j and k, and the term 

(1 – γw) in the numerator of Eq. (3.20) vanishes; consequently, we have 

ρj,k(0) = 1. As in Eqs. (3.13)-(3.14), the exponent hj,k(z) here also denotes 

the number of vertices of a binary tree (excluding the start vertex x1,0) 

belonging to both simple paths leading to the vertices xj,k and xj+z,k. The 

exponent hj,k(z) can still be computed by Eq. (3.15). Thus, the 

autocorrelation function of a micro-canonical MRC again corresponds to 

a non-stationary process, as in the canonical case. 

 

3.1.4 Bounded random cascades 

A special form of multiplicative random cascades is the bounded random 

cascade (Marshak et al., 1994). Bounded cascades allow the 

multiplicative weights w to depend on the cascade level k and converge to 

unity as the cascade proceeds; this implies that the simulated random 

process becomes smoother on smaller scales. In the literature, bounded 

random cascades have been frequently applied to the stochastic fine 

graining of rainfall observations into high resolution data both in the 

canonical and microcanonical form (e.g. Menabde et al., 1997; Menabde 

and Sivapalan, 2000; Rupp et al., 2009; Licznar et al., 2011). 
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Bounded canonical cascades are constructed in the same way as the 

unbounded case, except that the weights w are iid only within a given 

cascade level, not among different levels as in the unbounded case 

(Menabde et al., 1997). Under these hypotheses and using the same 

notation as Eq. (3.14) above, the following holds:  
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where, if hj,k(z) = 0 (no tree vertices in common) we have w1,0 = 1 (see 

Sect. 3.1). Hence, the autocorrelation function of the time series generated 

by bounded canonical cascades still depends on the position j in the 

cascade level k. 

 

3.2 Hurst-Kolmogorov downscaling model 

In this section, we analyse a simple downscaling method to generate 

rainfall time series based on Hurst-Kolmogorov process (defined in Sect. 

1.3). The model disaggregates a fractional Gaussian noise by a dyadic 

additive cascade, which is then exponentially transformed to derive the 

actual rainfall time series that are consequently supposed to be log-

normally distributed (e.g. Over, 1995). 

Let X1
(f) be the cumulative rainfall depth at the time origin (j=1) 

aggregated on the largest time scale f (see Eq. (3.3)) that is to be 

downscaled to a certain scale of interest. X1
(f) is assumed to be a random 

variable with mean μ0 and variance γ0 of a stochastic process, which we 

wish to be stationary. We suppose the actual rainfall to be log-normally 

distributed. 

Let us now introduce an auxiliary Gaussian random variable 
   ff

XX 11 ln
~

  (for convenience 0,1

~
X ) of the aggregated HK process on 

the time scale f with mean 0
~  and variance 0

~ . It is well known that (see 

also Sect. 2.1.4): 
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0,1

~
Z  is to be disaggregated by a dyadic (b=2) additive cascade. Then, 0,1

~
Z  

is partitioned into two (b=2) Gaussian random variables on the time scale 

s=f/2; e.g. at the first cascade level (k=1) we have:  

0,11,21,1

~~~
XXX         (3.25) 

Likewise, at the k-level corresponding to the scale of aggregation sk=2–kf, 

we have:  

1,,2,12

~~~
  kjkjkj XXX       (3.26) 

Thus, it suffices to generate kjX ,12

~
  and then obtain kjX ,2

~
 from Eq. (3.26) 

above. This generic procedure resembles the well-known interpolation 

procedure, which is a point estimation. Thus, we can consider the 

following linear generation scheme (see graphical example in Fig. 3.7):  

vX kj  YθT

,12

~
       (3.27) 

where  T1,11,,22,32

~
,

~
,

~
,

~
 kjkjkjkj XXXXY , θ is a vector of parameters, 

and v is a Gaussian white noise that represents an innovation term. Eq. 

(3.27) allows the generated lower-level variable kjX ,12

~
  to preserve 

autocorrelations with two earlier lower-level variables (level k) and one 

later higher-level variable (level k–1) (see also Koutsoyiannis, 2002). 
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Figure 3.7 – Example of the dyadic additive cascade for four disaggregation 

levels (k = 0, 1, 2, 3), where arrows indicate the links to those variables 

considered in the current generation step (adapted from Koutsoyiannis, 2002). 
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Koutsoyiannis (2001) demonstrated that the vector θ which minimizes 

Var[v] is of the form:  

    kjX ,12

1 ~
,Cov,Cov 


 YYYθ      (3.28) 

Consequently, it can be shown that the least mean square prediction error 

of kjZ ,12

~
  from Y is the following:  
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Hence, in each disaggregation step the two lower-level variables are 

generated by (Eqs. (3.26)-(3.27)): 
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Recalling that for a discrete-time Hurst-Kolmogorov we have:  
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Parameters a2, a1, b0 and b1, and the variance of the innovation term v are 

estimated in terms of the correlation coefficients  z~ , which are 

independent on j and k, and of the variance of the HK process at the level 

k (Koutsoyiannis, 2002), as given by equations (3.32) and (3.33):  
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and:  

              T

1012 ,,,3~2~,1~1,1~,2~1~Var bbaav k    (3.33) 

Recalling the scaling properties of the Hurst-Kolmogorov process (see 

Sect. 1.3), the mean and the variance of the process at the k-level of the 

cascade are:  

k

k
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s
X
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~~~ 0
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where the timescale sk=2–kf . 

The above stepwise disaggregation approach was first introduced by 

Koutsoyiannis (2002), who demonstrated that it effectively generates 

fractional Gaussian noise, but the rainfall process (especially at the 

resolution needed for hydrological applications) is not Gaussian. Indeed, 

we apply the following specific exponentiation to the HK process to make 

it log-normal but preserve its scaling properties (Eqs. (3.34)-(3.35)): 

    kXkX kjkj   ,,

~
exp       (3.36) 

In other words, we assume a unique HK process in the untransformed 

domain, and we change the characteristics of the transformed 

(exponentiated) domain using different characteristics for different 

disaggregation steps by means of the scale-dependent functions α(k) and 

β(k):  
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The proof is given in the following. These expressions of α(k) and β(k) 

are derived to preserve the scaling properties of the process Xj,k at 

different scales of aggregation. The mean and the variance of the 

exponentiated process at the generic k-level of the cascade given in Eq. 

(3.36) are:  

      







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~
~exp 2 k

kk kkk
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     (3.38) 

          1~exp~~22exp 22  kkkk kkkk    (3.39) 

where k
~  and k

~  are respectively the mean and the variance of the 

auxiliary process at the cascade level k, given by Eqs. (3.34) and (3.35). 

Substituting Eqs. (3.34) and (3.35) in (3.38) and (3.39), respectively, we 

obtain:  
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where 0
~  and 0

~  are respectively the mean and the variance of the 

auxiliary normal variable 
 

0,11

~~
XX

f

 .  

To derive the two functions α(k) and β(k) we impose for the kjX ,  process 

the same scaling laws of the relevant HK process ( kjX ,

~
):  
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where μ0 and γ0 are respectively the mean and the variance of the log-

normal variables 
 f

X 1 . Since we assume 
    ff

XX 11

~
exp , we have 

α(0)=1 and β(0)=0 and, thus, Eqs. (3.23) and (3.24) hold. Substituting 

Eqs. (3.23) and (3.24) in (3.42) and (3.43) respectively, we obtain:  
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Equating the right-hand sides of Eqs. (3.40) and (3.41) to (3.44) and 

(3.45), respectively, we obtain:  
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Solving Eqs. (3.46) and (3.47) we obtain Eq. (3.37). Then, the mean and 

variance of the log-normal variables Xj,k (actual downscaled rainfall) are 

given by Eqs. (3.42) and (3.43), respectively, while the autocorrelation 

function is given by:  

 
  
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where k
~  and  z~  are given by Eqs. (3.35) and (3.31), respectively. 

The log-normality hypothesis and our specific exponential transformation 

(Eqs. (3.36) and (3.37)) enable the analytical formulation of the main 

statistics of the actual rainfall process, given in Eqs. (3.42)-(3.43) and 

(3.48), which are a key element for our theoretical analysis. However, 

more elaborate normalizing transformations can be investigated (see, e.g. 

Papalexiou et al., 2011), but this is out of the scope of our analysis. 

The presented model is a disaggregation model only if the random 

variables are Gaussian; indeed, the equality constraint in Eq. (3.26) holds. 

However, under the hypothesis of log-normal rainfall, we have a 

downscaling model, where the lower-level rainfall time series generated 

are only statistically consistent with the given process Xj
(f) at the coarser 

scale. The Hurst coefficient H is the only parameter of our downscaling 

model. 

 

3.2.1 Example: numerical simulation 

To investigate further the goodness of HK downscaling model, we 

explore its numerical simulations (M = 50000) as we did for the MRC 

downscaling model in Sect. 3.1.2. To make the two model simulations 

comparable, we assume the same values of summary statistics as in the 

MRC case, i.e. k=7, μk = 1 and γk = 1.5. Furthermore, we assume H = 0.7. 

Figs. 3.8 and 3.9 show, respectively, the behaviours of the ensemble mean 

<xj,k> = μj,k and standard deviation σj,k of the random processes as a 

function of the position j along the level k, j = 1, 2, …, n (where 

n=2k=128).  
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Figure 3.8 – Ensemble mean of the example HK process as a function of the 

position j along the cascade level k = 7. 
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Figure 3.9 – Ensemble standard deviation of the example HK process as a 

function of the position j along the cascade level k = 7. 

 

Figure 3.10 shows how, unlike the MRC case, the ensemble 

autocorrelation function ρj,k(z) is fully independent of the position in time 

j in the cascade at the level k. Thus, we verified that the process 

corresponding to the time series generated by the HK downscaling model 

is stationary. 
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Figure 3.10 – Ensemble autocorrelation function of the example HK process at 

the cascade level k = 7 with starting point j (for j = 1, n/4 and n/2, respectively, 

from left to right) in the considered cascade level with n = 27 = 128 elements. 

 

3.2.2 Application to an historical observed event 

In this section the HK downscaling model is fitted to an historical 

observed event, i.e. one of the Iowa events at the 10-second timescale 

(event 3); for further details on the observational data, the reader is 

referred to Georgakakos et al. (1994). The historical hyetograph is shown 

in Fig. 3.11 (upper panel). It can be seen that the dataset comprises a 

single storm without intermittence. Thus, intermittence, despite being an 

important characteristic of the rainfall process, can be left out of this 

analysis. We aim at providing further information on the applicability of 

the downscaling approach based on the HK process to reproduce the 

pattern of rainfall time series at the 10-second resolution. 
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Figure 3.11 – Hyetograph of the historical rainfall event (no. 3) measured in 

Iowa on 30 November 1990 (upper panel; Georgakakos et al., 1994) along with 

two synthetic time series of equal length generated by the MRC and HK models 

(middle and lower panels, respectively). 
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We estimated the HK model parameter from the real data, which is 

H=0.92 (see also Koutsoyiannis et al., 2007). Figure 3.12 (upper panel), 

depicts the climacogram (i.e. a double logarithmic plot of the standard 

deviation σ(Δ) of the aggregated process Xj
(Δ) versus scale Δ) for both the 

real and the log-transformed datasets as a tool aiming at a multi-scale 

stochastic representation. It can be noticed that the two climacograms are 

approximately two parallel straight lines with high slopes ( 92.0H ), 

which illustrates that the long-term persistence of the process is virtually 

invariant under a logarithmic transformation. 
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Figure 3.12 – Double logarithmic plot of the standard deviation σ(Δ) of the 

aggregated process Xj
(Δ) vs. scale Δ (climacogram) for both the real and the log-

transformed data of the Iowa rainfall event (upper panel); climacograms of the 

1st and the 99th percentiles for the HK downscaling model (10000 Monte Carlo 

experiments) and for the observed rainfall event (lower panel). 
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We performed 10000 Monte Carlo experiments to downscale the 

aggregated rainfall event at the cascade level k = 13. Figure 3.12 (lower 

panel) shows the 1st and 99th percentiles of climacograms for the HK 

downscaling model to highlight the scaling behaviour of the simulated 

time series, which is practically consistent with the scaling properties of 

the observed rainfall event. Figure 3.13 depicts a comparison between the 

observed autocorrelogram with that simulated by our model; in particular, 

we plot the 1st and 99th percentiles of autocorrelation function. It can be 

noticed that the model on average fits the observed behaviour quite 

satisfactorily. 

 
Figure 3.13 – Empirical autocorrelation function (ACF) of the Iowa rainfall 

event examined and 1st and 99th percentiles of ACF for the HK downscaling 

model. 

 

Finally, the historical hyetograph is compared (see Fig. 3.11) to two 

typical synthetic hyetographs, of equal length, generated by the MRC and 

the HK downscaling models (the MRC model parameters were estimated 

from the real data imposing both the mean and the variance of the lower-

level variables). We can see that both models produce realistic traces 

without apparent visual differences in the general shapes from each other 

and from the real world hyetograph (note that the models provide copies 

with statistical resemblance but not precise reproductions of the historical 

event). Despite being visually similar, the study of the details of the 

statistical behaviour of the two models has revealed that there are 

important differences. 
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3.3 HK disaggregation model 

Generating finer scale time series of rainfall that are fully consistent with 

any given coarse-scale totals is an important issue in hydrology. This is 

commonly accomplished through disaggregation models, which let lower-

level variables satisfy the equality constraint given by Eq. (3.3). In this 

section, we present a disaggregation method that initially retains the 

formalism, the parameter set, and the generation routine of the HK 

downscaling model described in Sect. 3.2. Then it uses an adjusting 

procedure to achieve the full consistency of lower-level and higher-level 

variables.  

Our HK downscaling model is based upon a particular nonlinear 

transformation (see Eq. (3.36)) of the variables obtained by a stepwise 

disaggregation approach (see Eq. (3.30)), which generates time series 

with Hurst-Kolmogorov dependence structure. Unfortunately, nonlinear 

transformations of the variables do not preserve the additive property, 

which is one of the main attributes of the original disaggregation scheme. 

To overcome this problem, we use an empirical adjusting procedure in 

order to restore consistency, but such a procedure may, in turn, introduce 

bias in all statistics that are to be preserved. However, here we apply a 

particular procedure that has been proved, both theoretically and 

empirically, to be accurate in the sense that it preserves certain statistics 

of lower-level variables (Koutsoyiannis and Manetas, 1996). In other 

words, we modify the time series generated by our HK downscaling 

model in a way to be consistent with a given higher-level time series, 

without affecting the stochastic structure implied by our model. 

In practise, we use the same linear generation scheme of Eq. (3.30) in the 

Gaussian auxiliary domain:  








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

kjkjkj

kj

XXX

vX

,121,,2

T

,12

~~~

~
Yθ

      (3.49) 

In order to increase the accuracy of the model in reproducing the main 

statistics of the underlying stochastic process, the sequences of previous 

and past variables that are considered for generating each lower-level 

variable, and the related parameters, are expanded here with respect to the 

original version proposed in Eq. (3.30). 

We assume  T1,21,11,,22,32,42,52

~
,

~
,

~
,

~
,

~
,

~
,

~
 kjkjkjkjkjkjkj XXXXXXXY , 

thus Eq. (3.49) allows the generated lower-level variable kjX ,12

~
  to 
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preserve autocorrelations with four earlier lower-level variables (level k) 

and two later higher-level variable (level k–1). The vector of parameters θ 

is determined from Eq. (3.28) accordingly.  

As stated above, when we apply our specific exponentiation (see Eq. 

(3.36)) to the HK process (auxiliary process) to make it log-normal 

(actual process), we introduce an error in the additive property, i.e., a 

departure of the sum of lower-level variables within a period from the 

corresponding higher-level total. The empirical adjusting procedure is 

introduced in the downscaling model in order to restore consistency, i.e. 

to preserve exactly the rainfall mass at the higher level of the actual 

process X1
(f) = X1,0.We use an accurate adjusting procedure to allocate the 

error in the additive property among the different lower-level variables: 

The power adjusting procedure. It is accurate because it preserves both 

the mean values and the variance-covariance matrix of the lower-level 

variables (Koutsoyiannis and Manetas, 1996). The power adjusting 

procedure modifies the generated lower-level variables Xj,k (j = 1, …, 

n=2k) to get the adjusted ones X’j,k according to:  
kjkjn

j

kjkjkj XXXX

,,
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,0,1,,'
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where:  
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  (3.51) 

This adjusting procedure does not preserve the additive property at once. 

Thus its application must be iterative, until the calculated sum of the 

lower-level variables are equal to the given X1,0. Due to the iterative 

application and the approximations made for its development, the 

procedure is not exact in strict sense, except for special cases 

(Koutsoyiannis and Manetas, 1996). However, we observed that in our 

case iterations converge rapidly. In addition, the power adjusting 

procedure may be a useful approximate generalization of the common 

proportional procedures retaining the advantage of returning positive 

values (as in our case for rainfall). Indeed, the power adjusting procedure 

has no limitations and it works for any type of probability distribution of 

lower-level variables (contrary to what is observed for common 

proportional adjusting procedures, which are often subject to severe 
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limitations). In order to show some preliminary results of our 

disaggregation method based on the Hurst-Kolmogorov process, we 

generate M = 50000 time series, as we did for the MRC and HK 

downscaling models in Sects. 3.1.2 and 3.2.1. To make the two model 

simulations comparable, we assume the same values of summary statistics 

as in the MRC case, i.e. k = 7, μk = 1 and γk = 1.5. Furthermore, we 

assume H = 0.7. Figs. 3.14 and 3.15 show, respectively, the behaviours of 

the ensemble mean <xj,k> = μj,k and standard deviation σj,k of the random 

processes as a function of the position j along the level k, j = 1, 2, …, 2k. 
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Figure 3.14 – Ensemble mean of the example HK disaggregation process as a 

function of the position j along the cascade level k = 7. 

20 40 60 80 100 120
0

0.5

1

1.5

j


j,
k

 

 

empirical

theoretical

adjusted

 
Figure 3.15 – Standard deviation of the example HK disaggregation process. 
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Figure 3.16 – Ensemble autocorrelation function of the example HK process at 

the cascade level k = 7 with starting point j (for j = 1, n/4 and n/2, respectively, 

from left to right) in the considered cascade level with n = 27 = 128 elements. 

 

In Figs 3.14-3.16 the term “empirical” refers to time series generated by 

our downscaling model described in Sect. 3.2, while “adjusted” refers to 

the same time series modified by the power adjusting procedure in Eq. 

(3.50). All figures show that the stochastic structure implied by our 

downscaling model is not affected by the power adjusting procedure. 

However, the additive property is now fulfilled, as shown in Fig. 3.17.  

 
Figure 3.17 – Scatter plot of the calculated sum of the lower-level variables 

(before, blue, and after, green, applying the adjusting procedure) vs. the given 

values of the higher-level variables X1,0 for all Monte Carlo experiments. 
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3.4 Overview of key ideas 

The discrete MRC has been a widely used approach of stochastic 

downscaling for rainfall time series. The usefulness of the discrete MRC 

relies on its simplicity and ability to generate time series characterized by 

both multifractal properties and complex intermittent and spiky patterns 

typical of rainfall time series.  

By means of theoretical reasoning and Monte Carlo experiments, in Sect. 

3.1 we show that the random process underlying the MRC model is not 

stationary, because its autocorrelation function is not a function of lag 

only, as it would be in stationary processes. Indeed, we provide a new 

theoretical formulation for the autocorrelation function of an unbounded 

canonical dyadic cascade, which is dependent on the lag, the position in 

time and the cascade level. As demonstrated, this undesirable violation of 

stationarity also extends to the micro-canonical and the bounded cascades. 

Consequently, MRC models cannot preserve joint statistical properties 

observed in real rainfall. 

Mandelbrot (1974) made it clear that the structure of a discrete 

multiplicative cascade has problems. However, very many researchers 

miss this fact and treat these cascade models as if they were stationary 

(e.g. Menabde et al. 1997, Hingray and Ben Haha 2005, Gaume et al. 

2007, Serinaldi 2010, Groppelli et al. 2011). Although fundamentally 

non-stationary, multiplicative random cascades were efficiently used to 

study the marginal and extreme distribution properties of stationary 

multifractal measures (see e.g. Veneziano et al. 2009 and references 

therein). Moreover, there exist other types of models intended to simulate 

multiscaling properties empirically observed in rainfall processes, which 

have been demonstrated to generate stationary processes, such as scale-

continuous multifractal cascades (e.g., Lovejoy and Schertzer 2010a, b). 

However, this Chapter focuses on the analysis of discrete cascades, which 

are characterized by a very simple structure, easy to implement and, 

consequently, widely applied in the literature. 

We propose and theoretically analyse an alternative downscaling 

approach (Sect. 3.2) based on the Hurst-Kolmogorov process, which is 

characterized by a simple cascade structure similar to that of MRC 

models, but it proves to be stationary. In its original formulation, this 

stepwise disaggregation approach effectively generates fractional 

Gaussian noise. However, the rainfall process (especially at the resolution 

needed for hydrological applications) is not Gaussian. Here we modified 

this approach to make it non-Gaussian by applying an exponential 
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transformation to the time series generated, so as to make it a more 

realistic representation of the actual rainfall process and more comparable 

to the MRC models. However, the logarithmic normalizing 

transformation, which we chose for theoretical simplicity, is not the best 

choice to normalize the dataset (Papalexiou et al., 2011). 

Finally, we show (Sect. 3.3) some preliminary results of a disaggregation 

method that initially retains the formalism, the parameter set, and the 

generation routine of the HK downscaling model. Then it uses an 

adjusting procedure to achieve the full consistency of lower-level and 

higher-level variables. In particular, we use an accurate adjusting 

procedure to restore the additive property without affecting the mean 

values and the variance-covariance matrix of the lower-level variables.
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4. Conclusions and discussion 
 

E quindi uscimmo a riveder le stelle. 
      Dante Alighieri 

 

Geophysical processes change irregularly on all time scales. Therefore, 

this change is hardly predictable in deterministic terms and demands 

stochastic descriptions. Several prominent applied statisticians and 

scientists recognized that many geophysical changes are closely related to 

the Hurst phenomenon, which has been detected in many long 

hydroclimatic time series and is stochastically equivalent to a simple 

scaling behaviour of process variability over time scale. As a result, long-

term changes are much more frequent and intense than commonly 

perceived and, simultaneously, the future states are much more uncertain 

and unpredictable on long time horizons than implied by typical 

modelling practices. In this context, Hurst-Kolmogorov stochastic process 

(described in Sect. 1.3) may be the key to perceive multi-scale change and 

model the implied uncertainty and risk. Indeed, the reason for introducing 

this stationary stochastic process is that the “span of interdependence” 

between its random variables can be said to be infinite, thus resembling 

the strong interdependence between distant samples observed in many 

empirical studies in diverse fields of science, clearly including 

geophysics. The great advantage of the HK process is that it characterizes 

change by a single parameter (the Hurst coefficient) in a stochastic 

framework and in stationary terms.   

The purpose of this thesis is to describe how to infer and model statistical 

properties of natural processes exhibiting scaling behaviours. In 

particular, we explore their statistical consequences with respect to the 

implied dramatic increase of uncertainty (Chapter 2), and propose a 

simple and parsimonious model that respects the Hurst phenomenon 

(Chapter 3). 

In Chapter 2, we highlight the problems in inference from time series of 

geophysical processes. The classical statistical approaches, often used in 

geophysical modelling, are based upon several simplifying assumptions, 

tacit or explicit, such as independence in time and exponential distribution 

tails, which are invalidated in natural processes. Indeed, the study of 

natural processes reveals scaling behaviours in state (departure from 
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exponential distribution tails) and in time (departure from independence). 

We show that dependence in time implies that much larger samples are 

required in order to obtain estimates of similar reliability with classical 

statistics. Furthermore, we highlight the problematic estimation of 

moments for geophysical processes. In many studies, it has been a 

common practice to neglect this problem, which is introduced when the 

process exhibits dependence in time and is magnified when the 

distribution function significantly departs from the Gaussian form, which 

is an example of an exceptionally light-tailed distribution. We show that, 

even in quantities whose estimates are in theory unbiased, the dependence 

and non-normality affect significantly their statistical properties, and 

sample estimates based on classical statistics are characterized by high 

bias and uncertainty (see Sect. 2.1.3). In particular, statistical methods 

that use high order moments (> 3) are questionable. Therefore, we suggest 

that, because of estimation problems, the use of moments of order higher 

than two should be avoided, either in justifying or fitting models. 

Ignorance of increased uncertainty and inattentive use of high order 

moments may result in inappropriate modelling, wrong inferences and 

false claims about the properties of the processes. Evidently, the first two 

moments are necessary to use in all problems as they define the most 

important characteristics of the distribution, marginal (the first two 

moments) and joint (the second moment). Even for these two lowest 

moments it is important to study always their uncertainties and this only 

can be done in connection with a model fitted for the process of interest 

(as it is not possible to define uncertainty without specifying a model for 

the marginal distribution and dependence). The third moment is often 

useful as a measure of skewness but we should always be aware of its 

uncertainty; however, use of third moment is not the only way to identify 

and assess the skewness of a distribution. For example in parameter 

estimation of three-parameter distributions, it is better to avoid the 

method of moments and use other fitting methods such as maximum 

likelihood, L-moments, etc. Moments of order > 3 should be avoided in 

model identification and fitting because their estimation is problematic. If 

we have to use them, then it is imperative to specify their uncertainty and 

involve this uncertainty in any type of modelling and inference. 

Furthermore, we focus on second-order moments and specifically on 

autocorrelations (climacograms) and power spectra, which are the most 

extensively used concepts in the applications of stochastic processes. In 

particular, we study their estimation problems with reference to the effect 
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of time discretization, finite record length as well as data correlation on 

classical statistical estimators. We found that time discretization distorts 

the stochastic properties at small time scales, the finite length affects the 

properties at large time scales, while data correlation introduces (often 

uncontrollable) biases and uncertainties in statistical estimation. Based on 

a synthetic experiment for which all the stochastic properties of the 

underlying process are known, we compare the performances in statistical 

estimation of the climacogram and power spectrum.  The power spectrum, 

despite being very powerful in identifying strong periodicities in time 

series, it has some problems in identifying scaling laws and weak 

periodicities. Specifically, time discretization, finite length of data and 

data correlation alter asymptotic slopes of periodograms by introducing 

biases and uncertainties that are uncontrollable (see Sect. 2.2.3). 

Moreover, the rough shape of the periodogram may result both in false 

periodicities and in misleading, inaccurate or even incorrect slopes (e.g. 

slope > –1 for frequency → 0, which is infeasible as shown in Sect. 

2.2.2). The important advantage of the climacogram over other common 

statistical tools is that its bias caused by the correlation structure of 

datasets can be determined analytically (usually in a closed form) and 

included in the estimation problem. However, direct estimation of 

climacogram is not possible merely from the data. We need to assume a 

stochastic model (see Sect. 2.2.4) which evidently influences the 

estimation of the process variance. Once the model is assumed and its 

parameters estimated based on the data, we can expand our calculations to 

estimate the variance for any time scale Δ. The concept of climacogram 

can be used also in the frequency domain to find a substitute for the 

power spectrum, which has similar properties (e.g. the asymptotic 

behaviours of the two are similar). In Sect. 2.2.4, we analyze the 

climacogram-based pseudospectrum and show that when the power 

spectrum and pseudospectrum are estimated from data, the latter is much 

smoother and its bias is a priori known, thus enabling a more direct and 

accurate estimation of slopes and fitting on a model. 

In Chapter 3, we propose a stationary downscaling model of rainfall time 

series, based on the HK process, which is characterized by a cascade 

structure similar to that of the most popular multiplicative random 

cascade (MRC) models. Indeed, the discrete MRC has been a widely used 

approach of stochastic downscaling for rainfall time series. The 

usefulness of the discrete MRC relies on its simplicity and ability to 

generate time series characterized by both multifractal properties and 
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complex intermittent and spiky patterns typical of rainfall time series. By 

means of theoretical reasoning and Monte Carlo experiments, in Sect. 3.1 

we show that the random process underlying the MRC model is not 

stationary, because its autocorrelation function is not a function of lag 

only, as it would be in stationary processes. Indeed, we provide a new 

theoretical formulation for the autocorrelation function of an unbounded 

canonical dyadic cascade, which is dependent on the lag, the position in 

time and the cascade level (see Sect. 3.1.1). As demonstrated, this 

undesirable violation of stationarity also extends to the micro-canonical 

and the bounded cascades (see Sects. 3.1.3 and 3.1.4). Consequently, 

MRC models cannot preserve joint statistical properties observed in real 

rainfall. We propose and theoretically analyse an alternative downscaling 

approach (Sect. 3.2) based on the Hurst-Kolmogorov process, which is 

characterized by a simple cascade structure similar to that of MRC 

models, but it proves to be stationary. In its original formulation, this 

stepwise disaggregation approach effectively generates fractional 

Gaussian noise. However, the rainfall process (especially at the resolution 

needed for hydrological applications) is not Gaussian. Here we modified 

this approach to make it non-Gaussian by applying an exponential 

transformation to the time series generated, so as to make it a more 

realistic representation of the actual rainfall process and more comparable 

to the MRC models. Finally, we show (Sect. 3.3) some preliminary results 

of a disaggregation method that initially retains the formalism, the 

parameter set, and the generation routine of the HK downscaling model. 

Then it uses an adjusting procedure to achieve the full consistency of 

lower-level and higher-level variables. In particular, we use an accurate 

adjusting procedure to restore the additive property without affecting the 

mean values and the variance-covariance matrix of the lower-level 

variables. 

 

Future work may focus on the problems in estimating the self-similarity 

parameter (Hurst coefficient) of a Hurst-Kolmogorov stochastic process 

from data series. Indeed, for most of the estimation methods existing in 

the literature, it is not easy to obtain simple confidence intervals (see e.g. 

Beran, 1994; Tyralis and Koutsoyiannis, 2011). This makes it difficult to 

interpret results in an objective way. In this light, we should analyse if 

and how the estimation of the Hurst parameter affects the estimation of 

the common statistical tools studied in Chapter 2. Furthermore, we should 

also test the robustness of the results of our rainfall downscaling model 
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described in Chapter 3 in the presence of uncertainty in the estimation of 

the Hurst coefficient from data. 

The concepts expressed in Chapter 3 should be also enriched by 

accounting for rainfall intermittency in the modelling framework. Indeed, 

the rainfall process features an intermittent character at fine timescales, 

and thus the probability that a time interval is dry is generally greater than 

zero. The capability of downscaling models to reproduce rainfall 

intermittency is a fundamental requirement in simulation. Therefore, we 

should investigate how our simple and parsimonious downscaling model 

may account for the variability of intermittency across timescales. 

Generally, the analysis and modelling of rainfall intermittency relate to 

the study of the rainfall occurrence process, which can be described by a 

binary valued stochastic process, with the values 0 and 1 representing dry 

and wet conditions, respectively. On the other hand, the non-zero rainfall 

process can be characterized for example by our disaggregation model 

described in Sect. 3.3. Hence, we need a modelling approach of a mixed 

type, with a discrete description of intermittency (varying across scales) 

and a continuous description of rainfall described by our disaggregation 

model.
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