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Sommario

Nel corso degli ultimi decenni lo studio dei cambiamenti nei processi
geofisici ha riscosso un crescente interesse soprattutto in riferimento alle
potenziali ripercussioni sulla nostra societa. Lo scopo primario e di
migliorare il processo di previsione di tali cambiamenti per consentire uno
sviluppo sostenibile delle attivita umane in un ambiente mutevole. Le
variazioni dei processi geofisici sono presenti a tutte le scale temporali e
sono irregolari a tal punto che la loro descrizione puo certamente essere
migliore in termini stocastici (casuali) che deterministici. Nella statistica
classica, la casualita viene solitamente rappresentata da processi stocastici
le cui variabili casuali sono indipendenti ed identicamente distribuite.
Tuttavia, esiste un’ampia evidenza empirica che spesso confuta tale
assunzione. Infatti, € stato osservato in piu occasioni che la correlazione
tra campioni sempre piu distanti tra loro nel tempo decresce piu
lentamente non solo di quanto ovviamente ci si aspetta per campioni
indipendenti ma anche rispetto al caso di dipendenza markoviana o dei
modelli di tipo ARMA. Tutto cio e coerente con il fenomeno di Hurst, che
e stato infatti osservato in molte lunghe serie temporali idroclimatiche.
Esso é stocasticamente equivalente ad un comportamento auto-simile
della variabilita del processo alle differenti scale temporali. Di
conseguenza, i cambiamenti persistenti a lungo termine sono molto piu
frequenti ed intensi nei processi geofisici di quanto comunemente
percepito e, inoltre, gli stati futuri sono molto piu incerti ed imprevedibili
su lunghi orizzonti temporali rispetto alle previsioni ottenute mediante i
modelli tipicamente utilizzati nella pratica. L’obiettivo della presente tesi
¢ la descrizione dell’inferenza e della modellazione delle proprieta
statistiche relative ai processi naturali che presentano un comportamento
del tipo scala invariante. Dapprima si indagano le ripercussioni che tale
comportamento implica in riferimento all’ingente incremento di
incertezza di stima dei parametri di interesse dalle serie temporali di dati.
In seguito viene proposto un modello stazionario di disaggregazione
temporale della precipitazione che rispetta il fenomeno di Hurst. Tale
modello é caratterizzato da una semplice struttura a cascata simile a
quella dei piu famosi modelli a cascata moltiplicativa di tipo discreto.
Inoltre mostriamo il grande limite di questi ultimi modelli che simulano
un processo intrinsecamente non stazionario a causa della loro struttura.



Abstract

During recent decades, there has been a growing interest in research
activities on change in geophysics and its interaction with human society.
The practical aim is to improve our capability to make predictions of
geophysical processes to support sustainable societal development in a
changing environment. Geophysical processes change irregularly on all
time scales, and then this change is hardly predictable in deterministic
terms and demands stochastic descriptions, or random. The term
randomness is usually associated to stochastic processes whose samples
are regarded as a sequence of independent and identically distributed
random variables. This is a basic assumption of classical statistics, but
there is ample practical evidence that this wish does not always become a
reality. It has been observed empirically that correlations between distant
samples decay to zero at a slower rate than one would expect from not
only independent data but also data following classical ARMA- or
Markov-type models. Indeed, many geophysical changes are closely
related to the Hurst phenomenon, which has been detected in many long
hydroclimatic time series and is stochastically equivalent to a simple
scaling behaviour of process variability over time scale. As a result, long-
term changes are much more frequent and intense than commonly
perceived and, simultaneously, the future states are much more uncertain
and unpredictable on long time horizons than implied by typical
modelling practices. The purpose of this thesis is to describe how to infer
and model statistical properties of natural processes exhibiting scaling
behaviours. We explore their statistical consequences with respect to the
implied dramatic increase of uncertainty, and propose a simple and
parsimonious model that respects the Hurst phenomenon. In particular,
we first we highlight the problems in inference from time series of
geophysical processes, where scaling behaviours in state (sub-exponential
distribution tails) and in time (strong time dependence) are involved.
Then, we focus on rainfall downscaling in time, and propose a stationary
model that respects the Hurst phenomenon. It is characterized by a simple
cascade structure similar to that of the most popular multiplicative
random cascade models, but we show that the latter simulate an
unrealistic non-stationary process simply inherent to the model structure.
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1. Introduction

Discipulus est prioris posterior dies.
Publilius Syrus

Change in geophysics has been studied since the birth of science and
philosophy, but in modern times change has been particularly accelerated
due to radical developments in demography, technology and life
conditions. Therefore, during recent decades, there has been a growing
interest in research activities on change in geophysics and its interaction
with human society. A major example in this respect is given by the
Intergovernmental Panel on Climate Change (IPCC), which was set up in
1988 by the World Meteorological Organization (WMQ) and United
Nations Environment Programme (UNEP) to provide policymakers with
regular assessments of the scientific basis of climate change, its impacts
and future risks, and options for adaptation and mitigation. Furthermore,
the new scientific initiative of the International Association of
Hydrological Sciences (IAHS) for the decade 2013-2022, entitled “Panta
Rhei — Everything Flows” (Montanari et al., 2013), is dedicated to
research activities on change in hydrology and society.

The practical purpose of all these activities is to improve our capability to
make predictions of geophysical processes to support sustainable societal
development in a changing environment. In order to describe the
predictability of change, we adopt herein an interesting hierarchical chart
by Koutsoyiannis (2013a) reported in Fig. 1.1. Change is regular in
simple systems (left part of the graph), and therefore it is predictable
using equations of dynamical systems (periodic or aperiodic).
Nonetheless, in geophysics we are commonly interested in more complex
systems with long time horizons (right part of the graph), where change is
unpredictable in deterministic terms, or random. The term randomness is
usually associated to stochastic processes whose samples are regarded as
a sequence of independent and identically distributed random variables
(pure randomness). This is a basic assumption of classical statistics, but
there is ample practical evidence that this wish does not always become a
reality (Beran, 1994). By the way, it has been observed empirically that
correlations between distant samples decay to zero at a slower rate than
one would expect from independent data or even data following classical
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ARMA- or Markov-type models (Box et al., 1994). In these cases, we
should assume a structured randomness. As will be seen next, the
structured randomness is enhanced randomness, expressing enhanced
unpredictability of enhanced multi-scale change.

Change

Predictable Unpredictable

(regular) (random)

]
Non-periodic Periodic Purely random S"“C‘tj“md
e.g. acceleration of e.g. daily and e.g. consecutive random

; e.g. climatic
a falling body annual cycles outcomes of dice flugctuations
Simple systems—Short time horizons Complex systems—Long time horizons
Important but trivial Most interesting

Figure 1.1 — Hierarchical chart describing the predictability of change
(Koutsoyiannis, 2013a).

According to the common view, natural processes are composed of two
different, usually additive, parts or components: deterministic (signal) and
random (noise). This distinction implies that there is some signal that
contains information, which is contaminated by a (random) noise. In this
view, randomness is cancelled out at large time scales and cannot produce
long-term change. In other words, we usually assume that natural changes
are just a short-term “noise” superimposed on the daily and annual cycles
in a scene that is static and invariant in the long run, except when an
extraordinary forcing produces a long-term change. However, this view
may not have a meaning in geophysics, as Nature’s signs are “signals” in
their entirety even though they may look like “noise”. Moreover, change
occurs on all time scales, from minute to geological, but our limited
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senses and life span, as well as the short time window of instrumental
observations, restrict our perception to the most apparent daily to yearly
variations. As a result, long-term changes are much more frequent and
intense than commonly perceived and, simultaneously, the future states
are much more uncertain and unpredictable on long time horizons than
implied by standard approaches (Markonis and Koutsoyiannis, 2013).

We endorse herein a different perspective (see also Koutsoyiannis, 2010).
Randomness is simply viewed as unpredictability and coexists with
determinism (which, in turn, could be identified with predictability) in the
same natural process: the two do not imply different types of mechanisms
or different parts or components in the time evolution, they are not
separable or additive components. It is a matter of specifying the time
horizon and scale of prediction to decide which of the two dominates. For
long time horizons (where the specific length depends on the system), all
is random — and not static.

Empirical evidence suggests that long historical hydroclimatic series may
exhibit a behaviour very different from that implied by pure random
models. To demonstrate this, two real-world examples are used
(Koutsoyiannis, 2002). The first is a very long record: the series of
standardised tree-ring widths from a palaeoclimatology study at
Mammoth Creek, Utah, for the years 0-1989 (1990 values) (Graybill,
1990). The second example is the most intensively studied series, which
also led to the discovery of the Hurst phenomenon (Hurst, 1951): the
series of the annual minimum water level of the Nile River for the years
622-1284 A.D. (663 observations), measured at the Roda Nilometer near
Cairo (Toussoun, 1925; Beran, 1994). The data values are plotted vs time
for both example data sets in Figs. 1.2 and 1.3, respectively. In addition,
the 5-year and 25-year averages are shown, which represent the mean
aggregated processes at time scales 4 = 5 and 25, respectively. For
comparison, series of white noise with mean and standard deviation
identical to those of standardized tree rings and annual minimum water
levels are also shown. It is observed that fluctuations of the aggregated
processes, especially for 4 = 25, are much greater in the real-world time
series than in the white noise series. Thus, the existence of fluctuations in
a time series at large scales distinguishes it from random noise. When one
looks only at short time periods, then there seem to be cycles or local
trends. However, looking at the whole series, there is no apparent
persisting trend or cycle. It rather seems that cycles of (almost) all
frequencies occur, superimposed and in random sequence.
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Figure 1.2 — Plot of standardized tree rings at Mammoth Creek, Utah (upper
panel); white noise with same statistics (lower panel) (Koutsoyiannis, 2002).
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From the figures above, it can be noticed that in pure randomness (white
noise) there are no long-term patterns; rather, the time series appear static
in the long run. In real-world data, change is evident also at these scales.
This change is unpredictable in deterministic terms and thus random and,
more specifically, structured (or enhanced) random rather than purely
random (Koutsoyiannis, 2013a).

1.1 Joseph effect and Hurst effect

The data sets in the previous section illustrated that correlations not only
occur, but they also may persist for a long time. Many prominent applied
statisticians and scientists recognized this many decades ago. In this
section, we give a short overview on some of the important early
references. This will also give rise to some principal considerations on the
topic of long-range dependence.

Since ancient times, the Nile River has been known for its characteristic
long-term behaviour. Long periods of dryness were followed by long
periods of yearly returning floods. Floods had the effect of fertilising the
soil so that in flood years the yield of crop was particularly abundant. On
a speculative basis, one may find an early quantitative account of this in
the Bible (Genesis 41, 29-30): “Seven years of great abundance are
coming throughout the land of Egypt, but seven years of famine will
follow them”. We do not have any records of the water level of the Nile
from those times. However, there are reasonably reliable historical
records going as far back as 622 A.D. A data set for the years 622-1284
was discussed in the previous section (see Fig. 1.3, upper panel). It
exhibits a long-term behavior that might give an “explanation” of the
seven “good” years and seven “bad” years described in Genesis. There
were long periods where the maximal level tended to stay high. On the
other hand, there were long periods with low levels. Overall, the series
seems to correspond to a stationary stochastic process, where there is no
global trend. In reference to the biblical “seven years of great abundance”
and “seven years of famine”, Mandelbrot called this behaviour the Joseph
effect (Mandelbrot, 1982; Mandelbrot and Wallis 1968, 1969; Mandelbrot
and van Ness, 1968).

The first person to notice this behavior empirically was the British
hydrologist H. E. Hurst (1951), when he was investigating the question of
how to regularize the flow of the Nile River. More specifically, his
discovery can be described as follows. Suppose we want to calculate the
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capacity of a reservoir such that it is ideal for a given time span; assume
that time is discrete and that there are no storage losses (caused
evaporation, leakage, etc.). By ideal capacity, we mean that the outflow is
uniform, that the water level in the reservoir is constant, and that the
reservoir never overflows. Let x; denote the inflow at time j (notice that
we use the so-called Dutch convention according to which random
variables are underlined; see Hemelrijk, 1966), and the partial sum
Yy =X1+X2+...+X4 is the cumulative inflow up to time 4, for any integer 4.
Then the ideal capacity can be shown to equal the adjusted range
(Yevjevich, 1972):

R,= LD,%(X,- —M—QLQ(L —M D)

In order to study the properties that are independent of the scale 4, R4 is
standardised by the sample standard deviation S, of xj. This ratio is called
the rescaled adjusted range or R/S-statistic. Hurst plotted the logarithm of
R/S against several values of 4. He observed that, for large values of 4,
log R/S was scattered around a straight line with a slope greater than 0.5.
This empirical finding was in contradiction to results for Markov
processes, mixing processes, and other stochastic processes that were
commonly used at that time. For any stationary process with short-range
dependence, R/S should be asymptotically proportion al to 4%° (Beran,
1994). Analogous considerations apply to many other geophysical records
for which R/S is asymptotically proportional to 4" for H > 0.5. This is
known as Hurst effect. Strikingly, the preeminent Soviet mathematician
and physicist A. N. Kolmogorov had proposed a mathematical process
that has the properties discovered 10 years later by Hurst in natural
processes (Kolmogorov, 1940). Although the original name given by
Kolmogorov was “Wiener’s spiral”, it later became more widely known
by “fractional Brownian motion” or “fractional Gaussian noise” for the
stationary increment process (Mandelbrot and van Ness, 1968). The latter
is what we call hereinafter the Hurst-Kolmogorov (HK) process. The
Hurst effect can be modelled by HK process with self-similarity (see next
section) parameter 0.5 < H < 1 (Hurst coefficient).

The reason why we prefer the term Hurst-Kolmogorov process is simple.
We wish to associate the process on the one hand to Hurst, who was the
first to observe and analyze the behaviour signified by this process in
Nature, and on the other hand, to Kolmogorov, who was the first to point
out the existence of this mathematical process. For a detailed review and
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discussion of the names given to the Hurst phenomenon and its
mathematical modelling, the reader is referred to Koutsoyiannis (2006).
This Hurst-Kolmogorov process is a model that simulates a stationary
stochastic process.

A stochastic process x(t) is called stationary if its statistical properties are
invariant to a shift of the time origin (Papoulis, 1991). This means that the
processes x(t) and x(t+z) have the same statistics for any z. Conversely, a
process is non-stationary if some of its statistics are changing through
time and their change is described as a deterministic function of time.
From a scientific point of view, it is not always satisfactory to model an
observed phenomenon by a stationary process. For example, Klemes
(1974) showed that the Hurst phenomenon could be caused by non-
stationarity in the mean and by random walks with one absorbing barrier.
However, we would most likely want to use a stationary model as a null
hypothesis unless physical considerations determined otherwise. Indeed,
Koutsoyiannis (2002) offered a similar (from a practical point of view)
explanation to that given by Klemes (1974), but in a stationary setting. In
essence, he assumed that the means are randomly varying on several
timescales, thus regarding falling or rising trends, commonly traced in
hydrological time series, as parts of large-scale random fluctuations rather
than deterministic trends.

1.2 Stochastic modelling of change

In this section, we introduce stochastic processes that can be used to
model data with the properties discussed in previous sections.

A simple way to understand the extreme variability of several geophysical
processes over a practically important range of scales is offered by the
idea that the same type of elementary process acts at each relevant scale.
In a theoretical context, Kolmogorov (1940) introduced these types of
processes that go under the name of “self-similar processes”, which are
based on a form of invariance with respect to changes of time scale.
According to this idea, the part resembles the whole as quantified by so-
called “scaling laws”. Scaling behaviours are typically represented as
power laws of some statistical properties, and they are applicable either
on the entire domain of the variable of interest or asymptotically. If this
random variable represents the state of a system, then we have the scaling
in state, which refers to marginal distributional properties. This is to
distinguish from another type of scaling, which deals with time-related
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random variables: the scaling in time, which refers to the dependence
structure of a process. Likewise, scaling in space is derived by extending
the scaling in time in higher dimensions and substituting space for time
(e.g. Koutsoyiannis et al., 2011). The scaling behaviour widely observed
in the natural world (e.g. Newman, 2005) has often been interpreted as a
tendency, driven by the dynamics of a physical system, to increase the
inherent order of the system (self-organized criticality): this is often
triggered by random fluctuations that are amplified by positive feedback
(Bak et al., 1987). In another view, the power laws are a necessity implied
by the asymptotic behaviour of either the survival or autocovariance
function, describing, respectively, the marginal and joint distributional
properties of the stochastic process that models the physical system. The
main question is whether the two functions decay following an
exponential (fast decay) or a power-type law (slow decay). We assume
the latter to hold in the form of scaling in state (heavy-tailed distributions)
and in time (long-term persistence), which have also been verified in
geophysical time series (e.g. Markonis and Koutsoyiannis, 2013;
Papalexiou et al., 2013). According to this view, scaling behaviours are
just manifestations of enhanced uncertainty and are consistent with the
principle of maximum entropy (Koutsoyiannis, 2011). The connection of
scaling with maximum entropy constitutes also a connection of stochastic
representations of natural processes with statistical physics. The
emergence of scaling from maximum entropy considerations may thus
provide theoretical background in modelling complex natural processes
by scaling laws.

Since Kolmogorov’s pioneering work, several researchers do not seem to
have been aware of the existence or statistical relevance of such
processes, until Mandelbrot and van Ness (1968) introduced them into
statistics: “By ‘fractional Brownian motions’ (fBm’s), we propose to
designate a family of Gaussian random functions defined as follows: B(t)
being ordinary Brownian motion, and H a parameter satisfying 0<H<1,
fBm of exponent H [denoted as Bu(t)] is @ moving average of dB(t), in
which past increments of B(t) are weighted by the kernel (t-s)"%2”. As
usual, t designates time, —oo<t< o,

The increment process, X(t—t1)=Br(t2)-Bn(t1), is stationary and self-
similar with parameter H, it is known as fractional Gaussian noise (i.e.
Hurst-Kolmogorov process), and it is given by (see Mandelbrot and van
Ness, 1968, p. 424):
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which is a fractional integral in the sense of Weyl. The gamma function
I'(-) as denominator insures that, when H — 0.5 is an integer, a fractional
integral becomes an ordinary repeated integral.

The value of the Hurst coefficient H determines three very different
families of HK processes, corresponding, respectively, to: 0<H<O0.5,
0.5<H<1, and H=0.5. The value 0.5 corresponds to white noise. For
geophysical processes, we restrict ourselves to a discussion of HK
processes positively correlated, i.e. 0.5<H<1. Values H<0.5, characteristic
of anti-persistence, are mathematically feasible (in discrete time) but
physically unrealistic; specifically, for 0<H<0.5 the autocorrelation for
any lag is negative, while for small lags a physical process should
necessarily have positive autocorrelation. High values of H, particularly
those approaching 1, indicate enhanced change at large scales or strong
clustering (grouping) of similar values, otherwise known as long-term
persistence. In other words, in a stochastic framework and in stationary
terms, change can be characterized by the Hurst coefficient.

1.3 Hurst-Kolmogorov process

The original Hurst’s mathematical formulation, in terms of the so-called
rescaled range, involves complexity and estimation problems as shown by
Koutsoyiannis (2002). Actually, the mathematics to describe the HK
process may be very simple. No more than the concept of standard
deviation from probability theory is needed. Because a static System
whose response is a flat line (no change in time) has zero standard
deviation, we could recognize that the standard deviation is naturally
related to change. To study change, however, we need to assess the
standard deviation at several time scales, i.e. the relationship of the
process standard deviation with the temporal scale of the process.

In order to improve understanding of Hurst-Kolmogorov process, we
should describe the concept of “local average” of a stochastic process.
Practical interest often revolves around local average or aggregates
(temporal or spatial) of random variables, because it is seldom useful or
necessary to describe in detail the local point-to-point variation occurring
on a microscale in time or space. Even if such information were desired, it
may be impossible to obtain: there is a basic trade-off between the
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accuracy of a measurement and the (time or distance) interval within
which the measurement is made (Vanmarke, 1983). For example, rain
gauges (owing to size, inertia, and so on) measure some kind of local
average of rainfall depth over time. Moreover, through information
processing, "raw data" are often transformed into average or aggregate
guantities such as, e.g., sub-hourly averages or daily totals.
Mathematically, let x(t) be a stationary stochastic process in continuous
time t with mean u=E[X], and autocovariance c(z)=Cov[x(t), x(t+7)],
where 7 is the time lag. Consider now the random process x;“) obtained by
local averaging x(t) over the window 4 at discrete time steps j (=1, 2, ...),
defined as:

(A)_l j4 .
x! _ZJ.(j—l)A)_((t)dt i=12,...,n (1.3)

where n=T/4 is the number of the sample steps of x;) in the observation
period To, and T =|T,/4 4 is the observation period rounded off to an

integer multiple of 4. The relationship between the processes x(t) and x4
is illustrated in Fig. 1.4.

local average
process at scale A
continuous-time process

0 G-DA jA 200 300

Figure 1.4 — Sketch of the local average process x” obtained by averaging the
continuous-time process x(t) locally over intervals of size 4.

The mean of the process x is not affected by the averaging operation,

1.
Elx|"]- %IM E[x(t)]dt = 4 (1.4)

(i-1)4
Let us now investigate the climacogram of the process xj“), which is
defined to be the variance (or the standard deviation) of the time-averaged
process xj“) as a function of the time scale of averaging 4 (Koutsoyiannis,
2010). The climacogram of xj> can be calculated from the autocovariance
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function c¢(z) of the continuous-time process as follows (see e.g.
Vanmarke, 1983, p. 186; Papoulis, 1991, p. 299):

2 4 1
Var[x\)]= ()= = [ a=r)ele)dr =2[ @1-£)elea)a (L.5)
which shows that the climacogram y(4) generally decreases with 4 and
fully characterizes the dependence structure of x(t). The climacogram y(A)
and the c(z) are fully dependent on each other; thus, the latter can be
obtained by the former from the inverse transformation (see also
Koutsoyiannis, 2013b):

1 d*(c*(0))
c(z) 2 4. (1.6)
Thus, the dependence structure of x(t) is represented either by the
climacogram y(4) or the autocovariance function c(z). In addition, the
Fourier transform of the latter, the spectral density function s(w), where w
is the frequency, is of common use. Selection of an analytical model for
c(z) or s(w) is usually based on the quality of fit in the range of observed
(observable) values of z and w which, for reasons mentioned above, does
not include the “microscale” (z—0 or w—o0) or in general the asymptotic
behaviour. However, asymptotic stochastic properties of the processes are
crucial for the quantification of future uncertainty, as well as for planning
and design purposes (Montesarchio et al., 2009; Russo et al., 2006). Any
model choice does imply an assumption about the nature of random
variation asymptotically. Therefore, we may want this assumption
(although fundamentally unverifiable) to be theoretically supported. In
this context, Koutsoyiannis (2011) connected statistical physics (the
extremal entropy production concept, in particular) with stochastic
representations of natural processes, which are otherwise solely data-
driven. He demonstrated that extremization of entropy production of
stochastic representations of natural systems, performed at asymptotic
times (zero or infinity) results in the Hurst-Kolmogorov process.
The HK process for local averages can be defined as a stationary
stochastic process that, for any integers i and j and any time scales 4 and
A, has the property:

(x‘f')—ﬂ)i@ - ) (L7)

d
where = denotes equality in probability distributions, H is the Hurst

coefficient, while x is the mean of the process (cf. Eq. (1.4)). Thus, it can
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be easily shown that the variance of xj (climacogram), fori=j=4 =1,
is a power law of the timescale 4 with exponent 2H-2, such as:

y(4)=472y(1) (1.8)
Consequently, the autocorrelation function of x4, for any aggregated
timescale 4, is independent of 4 (Koutsoyiannis, 2002):

() 2+ -
p'N2)=pl(z)= ;S 7] (1.9)
In the discrete-time case, lag z is dimensionless. The instantaneous

variance of the HK process is infinite. Therefore, HK process can be
defined in continuous time by the following autocovariance function:
c(r)= Ae/z) " 05<H<1 (1.10)
Thus, the autocovariance function c(z) is a power law of the time lag
with exponent 2H-2, precisely the same as that of the climacogram y(4).
Consequently, it can be shown that the spectral density function s(w) is
also a power law of the frequency w with exponent 1-2H. The three
nominal parameters of the HK process are 4, a and H: the units of a and A
are [7] and [x]? respectively, while H, the so-called Hurst coefficient, is
dimensionless.

Substituting Eq. (1.10) in Eq. (1.5), we obtain the explicit formulation of
the climacogram of the HK process as:

2-2H
(A):égﬁél—— (1.12)
H(2H -1)
The climacogram contains the same information as the autocovariance
function c(z) or the power spectrum s(w), because they are
transformations one another. Its relationship with the latter is given by
(Koutsoyiannis, 2013b):

o sin®(mwJ)
¥(4) J.O s(w) _— dw (1.12)
It has been observed that, when there is temporal dependence in the
process of interest, the classical statistical estimation of the climacogram
involves bias (Koutsoyiannis and Montanari, 2007), which is obviously
transferred to transformations thereof, e.g. c(z) or s(w). In Chapter 2, we
show how the bias in the climacogram estimation can be determined
analytically and included in the estimation itself.
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1.4 Climacogram

The logarithmic plot of standard deviation (or the variance) o(4) vs. scale
A4, which has been termed climacogram in the previous section, is a very
informative tool to study long-term change. Here we provide some
empirical evidence. Let us take as an example the Nilometer time series
described in  Sect. 1 (the data are available from
http://lib.stat.cmu.edu/S/beran), xi, ..., Xes3, and calculate the sample
estimate of standard deviation o(1), where the argument (1) indicates a
time scale of 1 year. Then, we form a time series at time scale 2 (years)
and calculate the sample estimate of standard deviation ¢(2):

x2 =2t %e ; X2 xo =X Th ; Yo ox@) o Te T (o) (1.13)
The same procedure is repeated with timescales A4>2 up to scale
Amax=.663/10]=66, so that sample standard deviation can be estimated
from at least 10 data values (Koutsoyiannis and Montanari, 2007):

(o= B ) = R o (6) (1.14)

If the time series xi represented a purely random process, the climacogram
would be a straight line with slope —0.5, as implied by classical statistics
(Beran, 1994). In real-world processes, the slope is different from —0.5,
designated as H-1, where H is the so-called Hurst coefficient. This slope
corresponds to the scaling law, which defines the Hurst-Kolmogorov
(HK) process (see also Eq. (1.8)):

o(4)= Zl—(lH) (1.15)

It can be seen that if H > 1, then o(4) would be an increasing function of
A, which is absurd (averaging would increase variability, which would
imply autocorrelation coefficients > 1). Fig. 1.5 below depicts the
empirical climacogram of the Nilometer time series for time scales of
averaging 4 ranging from one to 66 (years). It also provides comparison
of the empirical climacogram with those of a purely random process, a
Markov process and an HK process fitted to empirical data.
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— — Hurst-Kolmogorov, theoretical (H = 0.85) S~ =~
e Hurst-Kolmogorov adapted for bias S~
2.70 +  Empirical (from data) S~ -
— — =Purely random (H=0.5) S..
290 — — Markov
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
log A

Figure 1.5 — Climacogram of Nilometer data and fitted theoretical ones of white
noise (H=0.5), Markov and HK process (adapted from Koutsoyiannis, 2013a).

It should be noted that the standard statistical estimator of standard
deviation o, which is unbiased for independent samples (H = 0.5),
becomes biased for a time series with HK behavior (0.5 < H < 1). It is
thus essential that, if the sample statistical estimates are to be compared
with the model Eq. (1.15), the latter must have been adapted for bias
before the comparison (we followed the procedure given by
Koutsoyiannis, 2003). Furthermore, in Fig. 1.5, we plotted also the
climacogram of another stochastic process commonly used in many
disciplines, i.e. the AR(1) process (autoregressive process of order 1),
which is essentially a Markov process in discrete time (Box et al., 1994).
For this process, the theoretical climacogram is given by (see
Koutsoyiannis, 2002):

A
G(A)za(l)\/l+p_2p(l—p2) (1.16)
JaN1-p  4(1-p)

where the single parameter p is the lag-1 autocorrelation coefficient. This
correlation implies some statistical bias in the estimation of & from a
sample, but this is negligible unless p is very high (close to 1). It can be
seen that for large scales 4, o(4)~1/4%° and thus the climacogram of the
AR(1) process behaves similarly to that of white noise, i.e. it has
asymptotic slope —0.5.

In Fig. 1.5, the slope of the empirical climacogram is clearly different
from -0.5, i.e. that corresponding to a purely random process and a
Markov process, and is consistent with the HK behaviour with H = 0.85.
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Essentially, the HK behaviour manifests that long-term changes are much
more frequent and intense than is commonly perceived, and that the future
states are much more uncertain and unpredictable on long time horizons
(because the standard deviation is larger) than implied by pure
randomness or Markov-type models.

1.5 Outline of the thesis

The following chapters expand on the approach described in the foregoing
sections, with an emphasis on procedures for statistical inference and
modelling. Indeed, the purpose of this thesis is neither to review the state
of the art of the research related to the Hurst phenomenon, nor to give the
complete mathematical details of it (see e.g. Beran, 1994). We rather aim
to describe how to infer and model statistical properties of natural
processes exhibiting scaling behaviours. Specifically, we investigate the
dramatic increase of uncertainty in statistical estimations, and propose a
simple and parsimonious model that respects the Hurst phenomenon.
Chapter 2 is concerned with the statistical implications of scaling
behaviours in state (sub-exponential distribution tails) and in time (strong
time dependence), which have been verified in geophysical time series. In
statistical terms, this is translated in a departure from the (possibly tacit)
assumptions underlying classical statistical approaches, which are
commonly used in inference from time series of geophysical processes
(see also Lombardo et al., 2014).

Chapter 3 deals with stochastic modelling of processes exhibiting scaling
behaviour. In particular, we focus on rainfall downscaling in time.
Generating finer scale time series of rainfall that are statistically
consistent with any given coarse-scale totals is, indeed, an important and
open issue in hydrology. We propose a stationary downscaling model,
based on the HK process, which is characterized by a cascade structure
similar to that of the most popular multiplicative random cascade models
(see also Lombardo et al., 2012).

Finally, Chapter 4 contains some discussions and conclusions.
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2. Geophysical inference

Le doute est un hommage rendu a /'espoir.
Isidore Ducasse

Due to the complexity of geophysical processes, the conducting of typical
tasks, such as estimation, prediction and hypothesis testing, heavily rely
on available data series and their statistical processing. The latter is
usually based upon classical statistics. The classical statistical approaches,
in turn, rely on several simplifying assumptions, tacit or explicit, such as
independence in time and exponentially decaying distribution tails, which
are invalidated in natural processes thus causing bias and uncertainty in
statistical estimations. Indeed, as we showed in Chapter 1, the study of
natural processes reveals scaling behaviours in state (departure from
exponential distribution tails) and in time (departure from independence).
Surprisingly, all these differences are commonly unaccounted for in most
statistical analyses of geophysical processes, which may result in
inappropriate modelling, wrong inferences and false claims about the
properties of the processes studied.

In the literature, natural processes showing scaling behaviour are often
classified as multifractal systems (i.e. multiscaling) that generalize fractal
models, in which a single scaling exponent (the fractal dimension) is
enough to describe the system dynamics. For a detailed review on the
fundamentals of multifractals, the reader is referred to Schertzer and
Lovejoy (2011).

Multifractal models generally provide simple power-law relationships to
link the statistical distribution of a stochastic process at different scales of
aggregation. All power laws with a particular scaling exponent are
equivalent up to constant factors, since each is simply a scaled version of
the others. Therefore, the multifractal framework provides parsimonious
models to study the variability of several natural processes in geosciences,
such as rainfall. Rainfall models of multifractal type have, indeed, for a
long time been used to reproduce several statistical properties of actual
rainfall fields, including the power-law behaviour of the moments of
different orders and spectral densities, rainfall intermittency and extremes
(see e.g. Koutsoyiannis and Langousis (2011) and references therein).
However, published results vary widely, calling into question whether
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rainfall indeed obeys scaling laws, what those laws are, and whether they
have some degree of universality (Nykanen and Harris, 2003; Veneziano
et al., 2006; Molnar and Burlando, 2008; Molini et al., 2009; Serinaldi,
2010; Verrier et al., 2010, 2011; Gires et al., 2012; Veneziano and
Lepore, 2012; Papalexiou et al. 2013). In fact, significant deviations of
rainfall from multifractal scale invariance have also been pointed out.
These deviations include breaks in the power-law behaviour (scaling
regimes) of the spectral density (Fraedrich and Larnder, 1993; Olsson,
1995; Verrier et al., 2011; Gires et al., 2012), lack of scaling of the non-
rainy intervals in time series (Veneziano and Lepore, 2012; Mascaro et
al., 2013), differences in scaling during the intense and moderate phases
of rainstorms (Venugopal et al., 2006), and more complex deviations
(Veneziano et al., 2006; Marani, 2003).

Multifractal signals generally obey a scale invariance that yields power
law behaviours for multi-resolution quantities depending on their scale 4.
These multi-resolution quantities at discrete time steps (j = 1, 2, ...),
denoted by xi in the following, are local time averages in boxes of size
A (see also Sect. 1.3). This is the basis of the fixed-size box-counting
approach (see e.g. Mach et al., 1995). For multifractal processes, one
usually observes a power-law scaling of the form:

E[lx)" |ec a0 2.1)

at least in some range of scales 4 and for some range of orders g. The
function E[-] denotes expectation (ensemble average) and K(q) is the
moment scaling function. Generally, the multifractal behaviour of a
physical system is directly characterized by the multiscaling exponents
K(q), whose estimation relies on the use of the sample g-order moments at
different scales 4 and their linear regressions in log-log diagrams.

A fundamental problem in the multifractal analysis of datasets is to
estimate the moment scaling function K(q) from data (Villarini et al.,
2007; Veneziano and Furcolo, 2009). Considerable literature has been
dealing with estimation problems in the context of so-called scaling
multifractal measures for three decades at least (see e.g. Grassberger and
Procaccia, 1983; Pawelzik and Schuster, 1987; Schertzer and Lovejoy,
1992; Ashkenazy, 1999; Mandelbrot, 2003; Neuman, 2010). Interestingly,
Mandelbrot (2003) and Neuman (2010) recognize the crucial role played
by time dependence in estimating multifractal properties from finite
length data. Nonetheless, herein we remain strictly within the framework
of the standard statistical formalism, which is actually a novelty with
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respect to the literature cited above. In this context, we highlight the
problematic estimation of moments for geophysical processes, because
the statistical processing of geophysical data series is usually based upon
classical statistics. In many studies, it has been a common practice to
neglect this problem, which is introduced when the process exhibits
dependence in time and is magnified when the distribution function
significantly departs from the Gaussian form, which itself is an example
of an exceptionally light-tailed distribution. In their pioneering work on
statistical hydrology, Wallis et al. (1974) already provided some insight
into the sampling properties of moment estimators when varying the
marginal probability distribution function of the underlying stochastic
process. The main results of the paper agree well with those found in the
following sections, but its Monte Carlo experiments were carried out
under a classical statistical framework assuming independent samples.
The purpose of this Chapter is to explore, at different timescales, the
information content in estimates of raw moments of processes exhibiting
temporal dependence. In order for the true moments to be fully known a
priori, we use synthetic examples in a Monte Carlo simulation framework.
We explore processes with both normal and non-normal distributions
including ones with heavy tails. We show that, even in quantities whose
estimates are in theory unbiased, the dependence and non-normality affect
significantly their statistical properties, and sample estimates based on
classical statistics are characterized by high bias and uncertainty. In
particular, statistical methods that use high order moments (> 3) are
questionable (see Sect. 2.1 below). In particular, we suggest that, because
of estimation problems, the use of moments of order higher than two
should be avoided, either in justifying or fitting models. Nonetheless, in
most problems the first two moments provide enough information for the
most important characteristics of the distribution. Finally, in Sect. 2.2 we
put the emphasis on autocorrelations and spectra (only involving second-
order moments), and specifically study their estimation problems.

We believe this process is critical for practitioners and researchers in
geophysics to gain insights into the ways they can use statistical tools
reliably.

2.1 Multifractal analysis

Multifractal analysis has been used in several fields in science to
characterize various types of datasets, which have been investigated by
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means of the mathematical basis of multifractal theory. This is the basis
for a series of calculations that reveal and explore the multiple scaling
rules, if any, from datasets, in order to calibrate multifractal models. From
a practical perspective, multifractal analysis is usually based upon the
following steps (Lopes and Betrouni, 2009).
— Estimate the sample raw moments of different orders q over a
range of aggregation scales 4.
— Plot the sample g-moments against the scale 4 in a log-log
diagram.
— Fit least-squares regression lines (one for each order q) through
the data points.
— Estimate the multiscaling exponents K(q) as the slopes of
regression lines (see Eq. (2.1)).
The classical estimator of the g-th raw moment of the local average
process xi is:
A 1 . 4)\4
my’ =22 0) 2.2
High moments, i.e. g > 3, mainly depend on the distribution tail of the
process of interest. If we assume, for reasons mentioned in Sect. 1.2,
scaling in state, i.e. a power-type (e.g. Pareto, see below) tail, then raw
moments are theoretically infinite beyond a certain order gmax. However,
their numerical estimates from a time series by Eq. (2.2) are always finite,
thus resulting in infinite biases from a practical perspective, because the
estimate is a finite number while the true value is infinity. Even below
gmax, Where it can be proved that the estimates are unbiased, we show that
the estimation of moments can be still problematic. It is easily shown,
indeed, that the expected value of the moment estimator equals its
theoretical value E[(x{@)%)=“ for any timescale 4, such as:

ent]-2 3 el |- 23)

which can be used to derive the variance of the moment estimator as
follows:

vl -l | e}

-3 Sel ) ) )

i=1 j=1

(2.4)
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This quantity can be assumed as a measure of uncertainty in the
estimation of the g-th moment of the local average process x4
Therefore, the estimator mq“ is theoretically unbiased, because of Eq.
(2.3), but involves uncertainty, quantified by Eq. (2.4), which is expected
to depend on statistical properties of the instantaneous process x(t) (i.e.,
marginal and joint distributional properties), the averaging scale 4, the
sample size n, and the moment order g. In the next sub-sections, we show
how the problems of uncertainty in statistical estimation may be
extremely remarkable when using uncontrollable quantities (e.g. high
order moments) to justify or calibrate stochastic models.

2.1.1 Estimation of the mean

The (unbiased) estimator of the common mean u of the local average
process x“ is given by Eq. (2.3) for g=1:

m;" = %Zxﬂ-") =x") (2.5)
=1

where T is the largest timescale of averaging multiple of 4 in a given
observation period To (See e.g. Fig. 1.4).
Recalling the Eq. (1.5), we can provide an analytical formulation for the
variance of the time-averaged process x1(” as a function of the time scale
of averaging T, which actually equals the variance of estimator of the
first-order moment given in Eq. (2.5), such as:

T
Var [mi")]: Var [xf)]: y(T)= T% (T —z)k(e)de (2.6)
Therefore, the estimator m1“ is a function of the dependence structure of
the continuous-time (autocovariance function c(z)) process x(t), and the
rounded observation period T. Note that the uncertainty in the estimation
of the sample mean is independent of the timescale of averaging 4 while
it depends on the observation period T.
Let us now consider the Hurst-Kolmogorov process. Hence, the
climacogram y(T) takes the form of equation (1.8), as:
y(T)=T"""y1) (2.7)
In Fig. 2.1 below, we show how the temporal dependence (governed by
the Hurst coefficient H for the HK process) influences the reliability of
moment estimates. For simplicity and without loss of generality, we plot
the ratio of Var[m:“)] to Var[x?] for 4=1 against the scale T, which
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equals the sample size n=T for 4=1. As a consequence of Eq. (2.7), the
ratio is given by:
Var [r_gi":l)] y(T)
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Figure 2.1 — Estimator variance of the mean of the local average process x;“=

standardized by the process variance, i.e. Var[m,“=2]/Var[x“=Y]=p(T)/y(1),
plotted against the sample size n=T for 4=1.

Notice that large values of H result in much higher ratio than in the iid
case (which is given by 1/n), and the convergence to the iid case is
extremely slow (see Fig. 2.1). In essence, it can be argued that the greater
the dependence in time, the harder it is to estimate the moment; in the
sense that larger samples are required in order to obtain estimates of
similar quality.

2.1.2 Estimation of higher moments

Let us now investigate the behaviour of estimators of higher order
moments (g>1) when the underlying random process exhibits dependence
in time and when changing the process marginal distribution; this can be
done by Monte Carlo simulation. Specifically, we use the Gaussian
distribution and three one-sided distributions whose tails are sub-
exponential, i.e. heavier than the former (as observed in several
geophysical processes). All synthetic time series are generated in a way to
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have similar dependence structures based on the HK process, which are
therefore governed by the Hurst coefficient H.

In this study, we estimate the performance of g-th moment estimators for
four different common tail types (ordered from heavier to lighter): the
Pareto, the lognormal, the Weibull and the Gaussian tails (see e.g. El
Adlouni et al., 2008; Papalexiou et al., 2013). The Pareto and the
lognormal distributions belong to the sub-exponential class (with a tail
heavier than the exponential one) and are considered as heavy-tailed
distributions; the Weibull can belong to both classes, depending on the
values of its shape parameter (see below), while the Gaussian distribution
has essentially a tail thinner than the exponential one (hyper-exponential),
and it is considered as light-tailed distribution.

The Pareto is the only power-type distribution, while the rest three are of
exponential type with all their moments finite. Specifically, we use the
Pareto type Il distribution, defined in [0, o), with survival function:

Uk
Fon (¥)= Plx> x) = (1+ K%j 29)

where >0 is the scale parameter, and x>0 the shape parameter. The latter,
also known as the tail index, controls the asymptotic behaviour of the tail,
which is given by x ¥, as the value of x increases the tail becomes
heavier and consequently extreme values occur more frequently. For k—0
the distribution tail degenerates to the exponential tail, while for x>0.5 the
distribution has infinite variance. Indeed, the shape parameter x
unequivocally defines the order gmax=1/x beyond which the g-th moments
are theoretically infinite, i.e. E[(x{))9]=c0 for gq>1/x; in our study we
assume x=0.2, and thus max=5.

The lognormal distribution, also defined in [0, «), is very commonly used
in geosciences and has the survival function:

— 1 X %
FLN(x)zierf In [E] (2.10)

where erfo(x):l—erf(x):Z/J;J':Oexp(—tz)dt is the complementary

error function, g is the scale parameter, and x>0 is the shape parameter
that controls the behaviour of the tail (notice some differences from the
more typical notational convention in the literature; see Forbes et al.
(2011) p. 131, for further details). Despite all its moments being
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theoretically finite, the lognormal distribution is very similar in shape to a
power-type distribution (Pareto), in the sense that the two distributions
appear almost indistinguishable from each other for a large portion of
their body (Mitzenmacher, 2004). Therefore, lognormal is regarded as a
heavy-tailed distribution.

Another widely used distribution is the Weibull distribution, again
defined in [0, o). Its survival function is a stretched exponential function
(obtained by inserting a fractional power law into the exponential
function), i.e.:

Fu(x)= exp(— (%n (2.11)

where >0 is the scale parameter, and the stretching exponent 0<xk<1
(shape parameter) actually modifies the shape of the exponential
distribution so as to obtain a heavier tail. Consequently, the Weibull
distribution can be regarded as a generalization of the exponential
distribution, which is recovered with x=1. The case with x>1 (compressed
exponential function, i.e., a tail lighter than the exponential one) has less
practical importance, with the notable exception of x=2, which gives the
Rayleigh distribution, closely related to the Gaussian distribution.

2.1.3 Monte Carlo simulation

As the lognormal model has been the most common in multifractal
literature, we start our study from this model. For the Monte Carlo
simulation we use the model introduced in the next Sect. 3.2, which
follows a disaggregation approach. In that respect it resembles the
discrete multifractal cascade models yet it is a fully consistent and fully
controllable model, not affected by uncontrollable nonstationary issues
that are typical in multifractal cascades (see Sect. 3.1). The model starts
the generation from the coarsest scale and then disaggregates into finer
scales applying a specific scale-dependent exponential transformation to
the HK process in a way to preserve part of its scaling properties. For the
Monte Carlo experiment we generate 30000 time series with sample size
n=219=1024, unit mean, standard deviation ¢ = 1.29 and H=0.85. Later we
will compare with the other models in a different setting, i.e. aggregating
rather than disaggregating, using the same statistical properties (note that
0=1.29 is the standard deviation of the Pareto type Il with unit mean and
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tail index x = 0.2). The results of the Monte Carlo simulation experiment
are depicted in Figs. 2.2-2.5. Specifically, Fig. 2.2 shows the probability
distribution of the natural logarithm of the ratio of g-th moment estimates
to their expected values, i.e. the theoretical values following Eqg. (2.3).
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Figure 2.2 — Empirical cumulative distribution function (ecdf) of the natural
logarithm of the ratio of g-th moment estimates to their expected values
E[(x“)"=uq“ when varying 4.

It can be noticed that the information content of the sample moments
strongly decreases when increasing the order q (i.e., the distribution is less
concentrated around 0): only low moments have reasonably low variation,
all others vary within several orders of magnitude (notice that the
horizontal axis is logarithmic and spans more than 10 orders of
magnitude!). Despite the sample raw moment being an unbiased estimator
of the true (population) raw moment, the probability distribution of the
statistical estimator is very broad and skewed. This is particularly the case
for high moments. Note that the averaging scale 4 has negligible
influence on the statistical characteristics of low moment estimators,
while it slightly regularizes the behaviour of higher moment estimators.

In addition, in Fig. 2.3 below we show the empirical frequency
distribution of the sample 5-th moment estimated from lognormal time
series averaged locally over different timescales 4. Again, here the bias is
theoretically zero, but the most probable value of the moment estimate
(the mode) is very different from its expected value. For example when
A=1 (upper-left panel of Fig. 2.3), the mode of the distribution of ms“=1
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(green line) is almost two orders of magnitude less than the expected
value (red line) and the probability of calculating from a unique sample a
value equal to the mode is much greater (almost one order of magnitude)
than the probability of obtaining the expected value itself. Recall that the
expected value of the sample moment equals the true value of the
moment, because of unbiasedness, but according to the distributions of
Fig. 2.3 we can hardly expect the moment estimate from a unique sample
to be close to this expected value. Increasing the averaging scale 4
reduces the difference between the mean and the mode. Nonetheless, this
difference is still remarkable at large scales (see e.g. lower-right panel of
Fig. 2.3).
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Figure 2.3 — Empirical probability density function (epdf) of the sample 5-th
moment estimated from lognormal time series averaged locally over different
timescales 4.

The large difference between the mode and the expected value of the
moment estimators is not the only problem. Another problem is the high
estimation uncertainty. In order to illustrate the uncertainty in the moment
estimation, Fig. 2.4 shows semi-logarithmic plots of the prediction
intervals of the sample moments, calculated from the Monte Carlo
simulations, against the moment order, for various scales 4. The
logarithmic scale on the vertical axis highlights the huge variability of
estimates when the order increases. Note that the mean of raw moments
(i.e., the true expected value) moves closer to the upper prediction limit
for orders >3, thus making the use of high moments unreliable.
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[— mean —— mode —s— min —— max 2.5% Q 97.5% Q {

Figure 2.4 — Semi-logarithmic plots of the prediction intervals of the sample
moments versus the order q for various timescales 4, “Q” stands for quantile.

Furthermore, Fig. 2.5 depicts log-log diagrams of the prediction intervals
of the sample moments against the scale of averaging 4, for various
orders g. In addition to the observations made with respect to Fig. 2.4,
Fig. 2.5 shows that the increase of the averaging scale 4 has little
influence on the variability of the moments, meaning that the sample size
reduction is somewhat compensated by the time averaging.
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Figure 2.5 — Log-log plots of the prediction intervals of the sample moments
versus the scale 4 for various orders q.
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Nevertheless, it is clear that larger samples provide better estimates than
smaller. For example, Meneveau and Sreenivasan (1991) propose a
criterion of statistical convergence for the moments of local average
processes, and find that data records of size 109 may be sufficiently long
to ensure statistical convergence for g-th order moments. However, this is
not immediately straightforward in case of highly correlated data series,
as we show in Fig. 2.1. To further investigate this issue accounting for the
criterion of convergence above, in Fig. 2.6 we show the trend of the
interquartile range (IQR) of the prediction intervals for the third (g=3)
moment when increasing the sample size from 2'° to 2'* (the ensemble
consists of 10000 lognormal time series for each sample size generated by
our model described in Sect. 3.2). It can be noticed that the sample size
should be increased more than one order of magnitude to obtain roughly a
10% improvement over the results presented in Fig. 2.4 for A=1.
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Figure 2.6 — Semi-logarithmic plot of the interquartile range (IQR) (standardized
with respect to the IQR for n=2'°) of the prediction intervals for the third
moment versus the sample size n for the lognormal series generated by our

downscaling model (see Sect. 3.2).

4

In the second part of the Monte Carlo simulation experiment, we use a
different approach, first generating at the finest scale and then aggregating
into coarser scales. In this case we generate 30000 synthetic time series
from the four distributions described in Sect. 2.1.2 above (ordered from
heavier to lighter tail type: Pareto, lognormal, Weibull with shape
parameter smaller than one and Gaussian) with characteristics same as
those in the previous experiment. In this case, we investigate how the
classical estimators of raw moments behave when varying the tail type of
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the marginal distribution of the underlying stochastic process. To
accomplish this aim, in Fig. 2.7 we plot on a semi-logarithmic scale the
prediction intervals of the sample moments against the moment order
(assuming 4=1), for the four distributions. It can be seen that the tail type
significantly influences the reliability of moment estimators. The heavier
the distribution tail, the more uncertain the sample moments are. This is
especially the case for high moments, because they depend enormously
on the distribution tail and non-normality affects significantly their
statistical properties. Analogous considerations apply to aggregated series
(i.e., 4>1).

Pareto Lognormal

Weibull " Gaussian

'\.—./4'/'7;‘

1 2 3 4 5 6 I 2 3 4 5 6
q [—mean —— mode —— min —— max 2.5% Q 97.5% Q{ a
Figure 2.7 — Semi-logarithmic plots of the prediction intervals of the sample
moments versus the order g for various marginal probability distributions,
assuming 4=1.

It is emphasized that the vertical axes in Fig. 2.7 span more than 10 orders
of magnitude yet the prediction limits do not necessarily bracket the true
value of the moment. Particularly for the Pareto distribution the true
(population) values of the 5-th and 6-th moments are infinite while their
statistical estimates are finite and the entire graph does not provide any
hint that these high moments differ so essentially from the lower ones.
Another important conclusion drawn from Fig. 8 is that the prediction
limits in the case of the Gaussian distribution are dramatically narrower
than in all other cases. As the Gaussian distribution has been dominating
in classical statistical applications and perhaps in statistical thinking, this
fact may explain why the multifractal applications were misled to neglect
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the huge uncertainty of high moment estimates and its impact on
modelling.

2.1.4 Empirical moment scaling function

Since the ultimate aim of a multifractal analysis is to study the scaling of
raw moments, we have carried out some additional numerical
investigations on the generated samples by simply taking an average slope
of linear regressions of sample moments at different scales 4 in log-log
diagrams (actually, this is commonly the case when dealing with real
world data). Despite being not really crucial to the focus of our work (i.e.
aiming to answer the question about how many raw moments we can
estimate reliably), we believe it is worth exploring the variability in the
estimates of the moment scaling function K(q), when using the statistical
tools which we cautioned against. To accomplish this purpose, we use the
lognormal synthetic series generated by our downscaling model described
in Sect. 3.2.

In order to estimate an empirical exponent function K(q) describing the
scaling of raw moments over a range of time scales, we should define the
following non-dimensional quantities commonly used in the literature
(e.g. de Lima and Grasman, 1999; Serinaldi, 2010). The scale ratio 4 so
that 2=1 for the largest scale of interest Amax, i.e. A=4max/4. In our case, we
assume that Ama=[.n/8]=128 where the sample size n=1024, so that
sample moments can be estimated from at least 8 data values, while the
generic aggregated scale 4 is bounded in [1, 128]. Similarly, we form the
non-dimensional process &(4) dividing the local average of the
continuous-time process x(t) by its mean at the largest scale Amax (Or
equivalently 1=1); then:

STINGY

x; * X, * A
ed)== 1~ = ;o A= 2.12
&(4) b y (2.12)
where m is the temporal mean of the data series. The scaling behaviour of
the process is characterized by the moment scaling function K(q) as
follows:

El(e(a)) |~ 2@ (2.13)
If K(q) linearly increases with ¢, then the process is said to be “simple
scaling”, otherwise it exhibits a “multiple scaling” behaviour.
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In Fig. 2.8, we graphically show how uncertainty in sample moments is
reflected in the uncertainty in the estimates of scaling exponents. It can be
noticed that the function K(g) shows a nonlinear behaviour for the
lognormal series, thus suggesting a multifractal behaviour. Analogous
considerations apply to the series generated by the other Monte Carlo
experiments described in Sect. 2.1.3 above (not reported here).
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Figure 2.8 — Prediction intervals of the moment scaling function K(q) versus the
order g for lognormal series generated by our downscaling model (Sect. 3.2).

The prediction intervals in Fig. 2.8 spread out widely while increasing the
moment order g, which is consistent with an enhancement of uncertainty.
We clarify that we used the ratios of moment estimates in all calculations
to compute g(1). Nonetheless, recalling that we assumed unit ensemble
mean wu=E[x(t)]=1 in all our Monte Carlo experiments, we found (not
shown here) the same numerical results if using raw moments without
taking any ratios. This is to stress that ratios of moments do not seem to
play any significant role in the estimation of multiscaling exponents in
our case.

It may be useful to add here some theoretical aspects. The theory of
multifractals depends on the fact that raw moments obey power laws as
the scale 4—0 (or equivalently /—o) (Falconer, 1990; Gneiting and
Schlather, 2004), and so it depends on taking limits which cannot be
achieved in reality. For most experimental purposes, the multifractal
behaviour of a process x(t) is usually found by estimating the gradient of a
graph of log(E[(¢(4))%]) against log over an “appropriate” range of scales,
where empirical points are closely matched by a straight line of slope
K(g). Being the latter an asymptotic slope, it is difficult to find the
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“appropriate” range of scales to estimate K(qg), because we could be
misled by some artificial slopes which do not indicate the multifractal
behaviour of the underlying process (see e.g. Koutsoyiannis, 2013b). In
addition, we should emphasize that the empirical moment scaling function
K(q) varies across scales for ergodic processes. The simple proof for this
is given below in the special case of g=2.

According to Egs. (2.12) and (2.13) we could write:

4

2
E [ZEMJ ~ XO(E[xUm | = 2@, (2.14)

where u is the mean of the process. On the other hand, we know that:

el F |= A(a)+ 4 (215)
where y(4) is the variance of the local average process at the scale 4, see
Eqg. (1.5) in Sect. 1.3. If we assume that the process is ergodic, then we
must have y(4)—0 as 4—o (Papoulis, 1991, p. 430).

Recalling that 4=Amax/A, from Eqgs. (2.14) and (2.15) we have:

K@ 2 = y("ﬂj+ 1’ (2.16)

A
dividing both sides by 2 and taking the logarithms, we obtain:

K(2)= |Og(}/[4;xj/y2 +1j

log4
Clearly then, as A—0 (i.e., as the scale grows to infinity 4—wo), the
numerator — 0 and the denominator — oo. So, K(2)=0 asymptotically.
Note that we have not made any assumption about the dependence
structure or the marginal probability of the process, the only assumption
is that the process is ergodic. In summary, for scales tending to infinity
the K(2) should tend to zero, while for scales tending to zero the K(2) will
take nonzero values.
Let us now investigate if empirical results shown in Fig. 2.8 agree well
with the theoretical formulation of the moment scaling function K(q) of
our model described in the next Chapter. To this aim, in the following we
derive the theoretical moment scaling function for our downscaling model
based on the Hurst-Kolmogorov process.

(2.17)
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Since the variables generated by our model are log-normally distributed,
it can be shown that the generic g-order raw moment is given by
(Kottegoda and Rosso, 2008, p. 216):

E[(Z(jd))q ]: exp(Qﬂm(x(jA)) + % qzﬂfm(x(jd))) (2.18)

where the two parameters can be determined in terms of the mean
u=E[xi] and the variance y(4)=Var[(x{)] of the local average process
as follows:

7 :Iog,u—llog MH (2.19)
in(x() 2 1

T oo

As our downscaling model is based upon the Hurst-Kolmogorov process,
the function y(4) obeys the following power law (see also Eq. (1.8)):
HA)=ya7" (2.21)
where y = y(4=1) is the variance of the reference local average process
X

In order to derive the theoretical moment scaling function Krn(q), we
should investigate the following limiting behaviour (Falconer, 1990, p.
257):

2.22
40 —log4 (2.22)

where, according to Eq. (2.18), the numerator of the right-hand side can
be written as:

1
ool )= a2 (2.23)

Substituting Egs. (2.19) and (2.20) in the right-hand side of eq. (2.23), we
obtain:

Iog(E[(g(jA))qD: qlogu +%(q —1)Iog(Lf) +1j (2.24)
U

From Eq. (2.21) and using the properties of the logarithm, the Eq. (2.24)

becomes:
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2(a)
|09(E[()—((jﬁ))q]): log ﬂq[ﬁﬁm_z +1j (2.25)

Recalling that the Hurst coefficient is a parameter satisfying 0<H<1, the
exponent 2H-2<0. Substituting Eq. (2.25) in Eq. (2.22), we easily obtain
that the theoretical moment scaling function Krn(q) for our downscaling
model described in Sect. 3.2 is given by:

Krn(@)=a(q-1)1-H) (2.26)
Based on these findings, the empirical results in Fig. 2.8 do not seem to
agree well with their theoretical counterparts. For example, in our case
H=0.85, for q=4 the theoretical value should be Krn(g)=1.8, while the
estimated mean value is about K(q)=0.5 in the scale range of our Monte
Carlo experiments. Hence, not finding the “appropriate” range of scales,
in addition to estimation problems reported in our work, may lead to
remarkable underestimation of the moment scaling function.

2.1.5 Overview of key ideas

During recent decades, there has been a large raise of interest in
multifractal analyses especially in the study of hydrological processes,
particularly in rainfall modelling. Indeed, the multifractal framework
provides parsimonious models to study the variability of several natural
processes in geosciences, such as rainfall. Models following this approach
require the scaling of the sample moments of different orders g, which is
used in model identification and fitting. A common problem with the
application of multifractal models, which in some cases may have led to
incorrect results, is their disconnection from stochastic methodology and
reasoning, and the (unstated) naive consideration that statistical estimates
represent the true properties of a process.

Using theoretical reasoning and Monte Carlo simulations we find that the
reliability of multifractal methods which use high order moments (> 3) is
questionable. In particular, we highlight the problems in inference from
time series of geophysical processes. The classical statistical approaches,
often used in geophysical modelling, are based upon several simplifying
assumptions, tacit or explicit, such as independence in time and
exponential distribution tails, which are invalidated in natural processes.
Indeed, the study of natural processes reveals scaling behaviours in state
(departure from exponential distribution tails) and in time (departure from
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independence). While the multifractal models are based on these scaling
behaviours per se, they failed to explore their statistical consequences
with respect to the implied dramatic increase of uncertainty.

The following list briefly summarizes the main findings of the analyses
described in previous sections.

— As natural processes are characterized by dependence in time,
while classical statistics typically assumes independence, much
larger samples are required in order to obtain estimates of similar
reliability with classical statistics.

— Estimators of high moments whose distribution ranges over
several orders of magnitude cannot support inference about a
natural behaviour nor fitting of models.

— The most probable value of sample high moments (the mode) can
strongly differ (by orders of magnitude) from its expected value
(i.e. the true wvalue), thus making the statistical estimate
problematic even in the case of unbiasedness.

— The calculation of numerical values of high order moments is
misleading as the theoretical moments may tend to infinity for
high orders, while the sample estimates are always finite. Even
smaller order moments can be very uncertain.

— Even if the generated process is multifractal, the sample estimates
of the g-moments from a unique sample can provide misleading
results.

Hence, we have shown that distribution tails heavier than the exponential
one and temporal dependence result in enormously increased uncertainty
and/or infinite biases from a practical perspective in raw moments. In
essence, this is a warning against the blind use in geophysical time series
analyses of classical statistical tools, which neglect dependence and heavy
tails in distributions. Ossiander and Waymire (2000) already caution
against using high moments in multifractal estimation, but their particular
focus is on discrete multiplicative cascade models. Indeed, they
demonstrate that the estimators of multiscaling exponents converge
almost surely to the structure function of the cascade generators as the
sample becomes large for all moment orders within a certain critical
interval, whose upper bound is consistent with our results.

Ignorance of increased uncertainty and inattentive use of high order
moments may result in inappropriate modelling, wrong inferences and
false claims about the properties of the processes. Evidently, the first two
moments are necessary to use in all problems as they define the most
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important characteristics of the distribution, marginal (the first two
moments) and joint (the second moment). Even for these two lowest
moments it is important to study always their uncertainties and this only
can be done in connection with a model fitted for the process of interest
(as it is not possible to define uncertainty without specifying a model for
the marginal distribution and dependence). The third moment is often
useful as a measure of skewness but we should always be aware of its
uncertainty; however use of third moment is not the only way to identify
and assess the skewness of a distribution. For example in parameter
estimation of three-parameter distributions, it is better to avoid the
method of moments and use other fitting methods such as maximum
likelihood, L-moments, etc. Moments of order > 3 should be avoided in
model identification and fitting because their estimation is problematic. If
we have to use them, then it is imperative to specify their uncertainty and
involve this uncertainty in any type of modelling and inference.

2.2 Sampling properties of climacogram and power
spectrum

The reason for fitting a statistical model to data is to make conclusions
about some essential characteristics of the natural process which the data
refer to. Such conclusions can be sensitive to the degree to which the
datasets reflect the salient features of the process. Natural processes
evolve in continuous time but their observation is inevitably made at
discrete time. The observational time series formed are either series of
instantaneous values of the natural phenomenon at a certain time step or
aggregated quantities during this time step. In addition, the observation
period is apparently a finite time period. Both time discretization and
finite length may strongly affect the stochastic properties inferred from
the data. In particular, time discretization distorts the stochastic properties
at small time scales, while the finite length affects the properties at large
time scales. Modelling of natural processes is typical made assuming
discrete time and parameter estimation is usually done using classical
statistical estimators which assume that observations are random samples.
All these are inadequate practices and result in inappropriate and biased
models. A different modelling strategy is proposed, in which the
stochastic model is by definition a continuous-time process and the
distortion due to discretization and finite-period observation is explicitly
taken into account in model calibration. An additional benefit of the
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proposed strategy is that it avoids the too artificial, often non-
parsimonious, families of discrete time stochastic models (like the
ARIMA(p,d,q) models).

Here we put the emphasis on autocorrelations and spectra, because they
are the most extensively used concepts in the applications of stochastic
processes (Papoulis, 1991). These concepts involve only second-order
moments. Specifically, we focus on the power spectrum as well as the
climacogram; the two are fully dependent on each other.

2.2.1 Some theoretical considerations

It may be useful to include here some theoretical aspects (see also
Koutsoyiannis, 2013b).

The power spectrum of the continuous-time (instantaneous) process,
denoted as s(w), is twice the cosine Fourier transform of the
autocovariance function of the process, while that of the discrete-time
process, denoted as sd“)(w), is twice the inverse finite cosine Fourier
transform of the respective autocovariance function. The convention of
the multiplying factor 2 in the Fourier transforms was adopted so that the
integral of the spectrum on positive frequencies only equals the variance
of the process:

s(W) = ZJ:C(T)COS(ZRWT)d r (2.27)
s\ (w)=2 ici") cos2nwz) (2.28)

where c(z)=Cov[x(t), x(t+7)] and c:9=Cov[xi¥, xj+:9] (with co=y(A))
denote the autocovariance functions for the continuous-time and averaged
processes, respectively; the continuous time is denoted as t and the
discrete time as j = 0, 1, ...; 4 is the time scale in case of averaging, the
frequency (inverse time) is denoted as w while w=wa is
nondimensionalized frequency. Both w and w are real numbers ranging in
(—o0, o) for a continuous-time process, while for a discrete-time process w
ranges in [-1/24, 1/24] and w in [-1/2, 1/2]. As both the autocovariance
function and the power spectrum are even functions, i.e. f(x) = f(—x), we
make all calculations for a continuous-time process in (0, ), and for a
discrete-time process in [0, 1/24] for w and in [0, 1/2] for w. In the
discrete-time case, both the lag z and the frequency w are dimensionless.
To make the spectrum equivalent and comparable to the continuous-time
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spectrum s(w), we introduce the version s“(w)=Asd“®(wA) (with w=c/A)
for the averaged process, which has the same dimensions as s(w).
Pursuant to the considerations above, the power spectrum of the
continuous- time process is calculated from autocovariance function as:

s(w) = 4[ r)cos(2nwr)dr (2.29)
The inverse transformation is:
c(r)= j:s(w) cos(2nwrz)dw (2.30)

The power spectrum of a discrete-time process is calculated from the
autocovariance function as:

s\(w)=2y(4)+ 4i ¢ cos(2nwz) (2.31)

z=1
The inverse transformation is:

9 = jo‘” si(w)cos2nwr)dw (2.32)

Notice that, even in the discrete case, the inverse transformation is an
integral, not a sum. s@(w) is readily derived from its definition using Eq.
(2.31).

As both the climacogram and the power spectrum are transformations of
the autocovariance function, the two are also related to each other by
simple transformations. Recall that the inverse formula, by which we can
find the autocovariance if the climacogram is known, is derived by taking
the second derivative in Eq. (1.5) using Leibniz’s integral rule, which
gives a formula for differentiation of a definite integral whose limits are
functions of the differential variable as in Eq. (1.6). Thus, using known
properties of the Fourier transform, we find:

d> =
2
S b }/(T)COS(ZTCWT)dT (2.33)
which after algebraic manipulations becomes:
s(w) = —ZJ‘: 2wz ) y(r)cos(2nwr)dz (2.34)

On the other hand, combining Egs. (1.5) and (2.30) we find:
=2 (1-&)[ s(w)cos(2nwea)dwd &

(2.35)
—2_[ _[ (1-&)cos(2nwed)d Edw
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and after algebraic manipulations, we find the following equation giving
directly the climacogram from the power spectrum:

0 sin®(nwA)
y(4)= [ s(w) o dw (2.36)
The climacogram y(4) denotes variance and therefore should be
nonnegative for any time scale 4. It could be positive finite or even
infinite for 4 = 0. For (mean) ergodic processes it should necessary tend
to 0 for 4—oo (Papoulis, 1991, p. 429). Thus:

#(4)>0; y(0)=0 (2.37)
As the autocovariance c(z) equals the variance for z = 0, it follows that
¢(0) > 0. For 7 # 0, c(z) can take on negative values as well. However, c(z)
must be a positive definite function (see e.g. Stewart, 1976), a property
which among other things makes it bounded from below and above by
+¢(0). Ergodicity also imposes a constraint about its asymptotic behaviour
(Papoulis, 1991, p. 430); in conclusion:

c(0)>0; |c(z)<¢c(0) —j 7)dr ——0 (2.38)

In order for the function c(z) to be positive definite, its Fourier transform,
i.e. the power spectrum s(w) should be nonnegative. Thus:

s(w)>0 (2.39)
Additional properties of s(w) are discussed in next section.

The autocovariance c(z) is often a nonnegative and non-increasing
function. In this case y(4) is non-increasing too. To see this, we take the
derivative with respect to 4 from Eq. (1.5) and we find:

== j — 4/2)c( (2.40)

The term (r — 4/2) within the integral is symmetric with respect to 4/2
(negative for 7 < 4/2 and positive for > 4/2). As c(z) is honincreasing, its
values for 7z < A/2 are greater than those for z > 4/2. Clearly then the
negative product prevails over the positive product and thus y’(4) < 0.

2.2.2 Asymptotic properties of the power spectrum

The asymptotic slopes of the power spectrum s(w) plotted in logarithmic
axis vs. the logarithm of the frequency w are important properties to
characterize a stochastic process. Generally, this slope is:
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(W)= d(ins(w)) _ ws'(w) _a(w) (2.41)
diinw)  s(w)  s(w)

where a(w) = ws’(w), and where s’(w) is the derivative of s(w).

We will find its asymptotic value for w—0, ie. s*(0). Note that

continuous time is assumed for the process as well as the spectrum. From

Eq. (2.29), the derivative is:

s'(w) = —4.[:2nrc(r)sin(27tWr)dr (2.42)
We define:

A(w) = a(w) + s(w) = 4ch(r)(cos(2 nwz)-2nwzsin(2rwr))dr (2.43)
and we observe that:

A(0) = 4 jo “¢(z)dz =5(0) (2.44)
From Eq. (2.43), we obtain:

a(0) +s(0) =s(0) (2.45)
If 0 < s(0) <o then Eq. (2.45) simplifies to:

a(0)=0 (2.46)
and hence:

0<s(0)<oo=s(0)=0 (2.47)

If s(0) = 0, then Eq. (2.46) is still valid, but the logarithmic slope s*(0)
given by Eqg. (2.41) becomes an indeterminate quantity (0/0). This should
necessarily be positive, so that s*(w) > 0 for w > 0. Thus:
s(0)=0=s"(0)>0 (2.48)
If s(0) = oo (hence s°(0) = —0, a(0) < 0, while s(w) is continuous), then
(because s(w) is nonnegative) Eq. (2.45) results in:

Lirrol(a(w) +s(w))>0 (2.49)
and:

Iim(M +1J>0 (2.50)
w—0 S(W)

Consequently, from Eqg. (2.41) we obtain:

$(0) =00 = s*(0) > -1 (2.51)

In conclusion, the asymptotic slope in the logarithmic plot of the power
spectrum for w—0 can never be lower (steeper) than —1 and more
specifically it ranges as follows:
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s*(0) > 0; s(0)=0

s*(0)=0; 0<s(0)<o (2.52)
~1<s*(0)<0; s(0)=w

The asymptotic slope for w—oo should necessarily be non-positive,
without other restrictions, i.e.:

s*(0) <0 (2.53)
We often see publications reporting logarithmic slopes in empirical power
spectra s* < —1 (e.g. s* = —1.5, etc.), but this should not be in contradiction
with Eq. (2.51). First, we should point out that a slope s*(w) < —1 is
mathematically and physically possible for large w. However, it is
infeasible for w—0. Therefore, reported values s* < —1 for small w are
spurious and are due to inconsistent estimation algorithms (cf. next
section). Such results do not put into question the validity of Eq. (2.51)
but are just invalid results. Let us prove this argument by assuming the
opposite, i.c., that for frequency range 0<w<e (with & however small) the
logarithmic slope of the power spectrum is s*(w) < -8, or else s(w) = aw™
where o and g are constants, with g > 1. We notice in Eq. (2.36) that the
fraction within the integral takes significant values only for w < 1/4 (cf.
Papoulis, 1991, p. 433). Hence, assuming a scale A>1/g, and with
reference to Eq. (2 36) we may write:

y(A): J.oos(w)sm (nWA) dw~ J- W sin®(mwJ) sin“(mwd) (2.54)
(mwA)? (mwA)?
On the other hand, it is easy to verify that, for 0 <w < 1/4, we have:
SINEWA) 51 was0 (2.55)
nTwAa

and since &>»1/4, while the function in the integral of Eq. (2.54) is
nonnegative, we can write:

R N s
ZJ;MaW’ (1—WA) dw

Substituing &= w4 in Eq. (2.56), we find:

y(A)zad™ [ e 0-cf dé (257)

To evaluate the integral in Eq. (2.57) we take the limit for r—0 of the
integral:
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-8 2-p 3-p
B(I’)zrg_ﬂ(l—f)zdfzr —1_2I’ —1+I‘ -1
' p-1 p-2  p-3
Clearly, for g > 1 the first term of the right-hand side of Eq. (2.58)
diverges for r—0, i.e., B(0) = oo, and thus, by virtue of the inequality Eq.
(2.57), y(4)=o0. Therefore, the process is non-ergodic, see Eq. (2.37). It is
interesting to note that, if |f| < 1, the integral in Eq. (2.54) can be
evaluated to give:

)= aro W sin?(mw4) dy = Sn@p/2) (2 n)ﬂal"(ljﬂ) (2.59)
07 (mwa)’ (wp/2)  2Ap+14
Clearly, for 4—, the last expression gives y(4)—0 and thus for || < 1
the process is mean ergodic.
This analysis generalizes a result by Papoulis (1991, p. 434) who shows
that an impulse of the power spectrum at w = 0 corresponds to a non-
ergodic process.
In a non-ergodic process there is no possibility to infer statistical
properties from the samples (as temporal averages do not represent true
statistical properties). In any statistical analysis based on time series,
ergodicity is necessary for the analysis to be valid. Otherwise the analysis
is in vain and hence empirical results of this type are not meaningful
because they contradict the basic condition on which they are based.
Actually, such contradiction, when emerging from processing of data,
does not suggest that a process is non-ergodic. Usually it only suggests
that the algorithm used is inconsistent.
Sometimes reported slopes s* < —1 are interpreted as indications of non-
stationarity. Such interpretations are equally invalid because even the
definition of the power spectrum as a function of frequency only (as well
as those of autocorrelation and climacogram as functions of lag and scale,
respectively) assumes stationarity.

(2.58)

2.2.3 Power spectrum estimation

In this section, we focus on uncertainty in statistical estimation of power
spectrum from correlated data series generated by a synthetic experiment.
The next section is devoted to the climacogram estimation from the same
data for comparison. Recall that the climacogram and the power spectrum
are fully equivalent to each other, as well as to the autocorrelation
function. We have shown in previous sections that each of these three
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functions is theoretically derived by any of the other two. Therefore, a
property in the spectral representation should have a one-to-one
correspondence with a property in the climacogram representation.
However their sampling properties may strongly different from each
other.

While the power spectrum is a magnificent tool for stochastic processes,
its estimation from data is problematic. To define uncertainty in statistical
properties inferred from the data we need to specify a model for the
underlying stochastic process. As the statistics of a standard normal
process are completely determined just in terms of its climacogram, we
restrict ourselves to a discussion of a stationary, standard Gaussian
stochastic process defined by a Cauchy-type climacogram:

2H-2
W (4)= 2+ (ga)) * (2.60)
where we have four parameters: units of « and A are [4] and [x]?
respectively, while H and « are dimensionless. This model was derived by
modifying one proposed by Gneiting and Schlather (2004), and its
important feature is that it provides power-law correlations
asymptotically. Hence, it allows explicit control of both asymptotic
logarithmic slopes of the climacogram y#(4) and the power spectrum
s*(w):

s*(0)=—x-1; »*(0)=0
s(0)=1-2H; y*(0)=2H -2
Note that, when taking Fourier transforms, asymptotic relationships at the
origin turn into statements about the asymptotic behaviour at infinity, and
vice versa.

Knowing asymptotic stochastic properties of processes is crucial for the
quantification of future uncertainty, for planning and design purposes.
Our primary concern is to study how these properties can be better
estimated from data. To accomplish this aim, we perform a synthetic
experiment by generating a time series of 1024 values from the known
Cauchy-type process, assuming the following parameters: 1=1, 0=10,
H=0.8, x=1. Hence, we have:

s*(0)=—x-1=-2; *(0)=0
s*(0)=1-2H =-0.6; y*(:0)=2H -2=-0.4
Then, we compare the empirical power spectrum (see below) and the

empirical climacogram (see next section) with their known theoretical
counterparts.

(2.61)

(2.62)
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We use the classical non-parametric approach (periodogram) because it
explicitly estimates the power spectrum of the process without assuming
that the process has any particular structure. In practice, we compute the
periodogram from a finite-length digital sequence using the fast Fourier
transform (FFT), that is why we chose n = 21° = 1024. We consider the
stochastic process defined by Eq. (2.60) with known theoretical
properties, including its theoretical power spectrum, as shown on the
graph (Fig. 2.9). The process is characterized by two different scaling
laws, shown in its theoretical power spectrum as asymptotic slopes for
frequencies w—0 and w—oo. In Eq. (2.62), we deduced these slopes
theoretically, but, as we may notice in Fig. 2.9, we can hardly estimate
them from data.

1000
B Average|slope -1.5
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o 10 /SH A s
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Power spectrum, theoretical
0.01 Power spectrum, empirical
= Power spectrum, empirical smoothecl
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Figure 2.9 — Comparison between theoretical (true) and empirical (estimated)
power spectra of a time series of 1024 values generated from the Cauchy-type
process defined by Eqg. (2.60).

The raw periodogram is an unbiased estimator of the power spectrum
only asymptotically (i.e. shorter samples cause higher bias, even when
windowing the data), and it has extremely poor variance characteristics
which are not affected by the length of data used (Papoulis, 1991). The
variance problem can be reduced by smoothing the periodogram. Here we
show (Fig. 2.9) results for the Bartlett’s method, which provides estimate
of the spectrum at a given frequency by averaging the estimates from the
periodograms (at the same frequency) derived from a non-overlapping
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portions (segments) of the original series (here by averaging from 8
segments). We also tested the Welch's method (not shown here), which is
an improvement of the Bartlett’s method, and we obtained similar results.
Furthermore, it can be shown that we can control the power-spectrum
estimator variance by averaging more segments, but shorter segments
mean larger bias; so for a fixed sample size, there is a basic trade-off
between segment length, which controls the bias, and the number of
segments, which controls the variance. Both bias and uncertainty in
estimation may cause problems in estimating either asymptotic slopes or
statistically significant peaks. In particular, the bias depends on frequency
and this distorts the estimated slopes (e.g. too steep slopes, s*(0)<-1:
unfeasible, as we demonstrated in the previous section). In addition, time
discretization causes folding (i.e. symmetry of empirical power spectrum
about the Nyquist frequency wn=1/24); therefore the calculated slope
s*(wn) = 0, and it does not equal the actual asymptotic slope.

To conclude this analysis, we stress that the power spectrum, despite
being very powerful in identifying strong periodicities in time series, it
has some problems in identifying scaling laws and weak periodicities.
Specifically, time discretization, finite length of data and data correlation
alter asymptotic slopes of periodograms by introducing biases and
uncertainties that are uncontrollable. Moreover, the rough shape of the
periodogram may result both in false periodicities and in misleading,
inaccurate or even incorrect slopes (e.g. slope > —1 for frequency — 0,
which is infeasible).

2.2.4 Climacogram estimation

The procedure to estimate the climacogram from data has been described
in Sect. 1.4; it is essentially concerned with the estimation of the process
variance y(4) at various scales of averaging 4. The most common
estimator of variance y(4) of the averaged random process ¥ is the
sample variance:

1 < 2
o)== (" ~m}") (2.69)
~14
where n is the sample size and m:“ is given by Eq. (2.5). Here we discuss
about an additional complication for correlated data. Namely, g(4) is a
biased estimator of the variance y(4). The bias depends directly on the
correlation structure (see Beran, 1994, p. 9). Only if the observations are
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uncorrelated, then we obtain the well-known result that g(4) is unbiased.
If the data are positively correlated (as in our case, see the explanation in
Sect. 1.2), then the sample variance tends to underestimate y(4).
Asymptotically the bias disappears, but the bias term converges to zero
rather slowly, as n increases (Beran, 1994, p. 156). However, if we are
able to estimate the correlation structure, then an unbiased estimator of
y(4) can be obtained by multiplying g(4) with the corresponding
estimated correction factor. Koutsoyiannis (2013b) proposed the
following general equation to estimate the bias of g(4):

E[g ]_ 1—1n (Var[ ] Var [m ]) (2.64)
Being n = T/4 (see Fig. 1.4) and mi“ = x1(T) (see Eq. (2.5)) then:
elo(]- ;S )T e T 269
where the bias correction factor # is:

7(4,T)= %jﬁ(ﬁ) (2.66)

It becomes clear from the above equations that direct estimation of the
variance y(4) is not possible merely from the data. We need to know the
ratio y(4)/y(T) and thus we should assume a stochastic model which
evidently influences the estimation of y(4). Once the model is assumed
and its parameters estimated based on the data, we can expand our
calculations to estimate the variance for any time scale 4. Therefore, the
important advantage of the climacogram over other common statistical
tools is that its bias can be determined analytically (usually in a closed
form) and included in the estimation problem.

In the case of the synthetic experiment described in previous section, we
know from Eq. (2.60) the theoretical climacogram of the underlying
stochastic process, so we can easily derive the bias correction factor
n(4,T) from Eq. (2.66). In Fig. 2.10, we show the results.
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Figure 2.10 — Comparison between theoretical (true) and empirical (estimated)
climacograms of a time series of 1024 values generated from the Cauchy-type
process defined by Eq. (2.60).

The concept of climacogram can be used also in the frequency domain to
find a substitute for the power spectrum, which has similar properties. In
this context, Koutsoyiannis (2013b) proposed the climacogram-based
pseudospectrum (CBPS), which we briefly describe and investigate in the
following:

w(w)=22 ( W)(l— 7 W)j (2.67)
w 7(0)
In processes with infinite variance (y(0)=c(0)=«) the CBPS simplifies to:

ylw)= 28 (2.68)

It can be shown that the value of CBPS at w = 0 equals that of the power
spectrum, therefore w(0) = s(0). Furthermore, the asymptotic logarithmic
slopes w#(w) of CBPS at frequencies w—0 and w—oo follow those of the
power spectrum s#(w), and in most processes these slopes are precisely
equal to each other. In our synthetic experiment, we have indeed:
w*(0)=5"(0)=-0.6; y*(0)=5"(c0)=-2 (2.69)
In Fig. 2.11, we show that when the power spectrum and CBPS are
estimated from data, the latter is much smoother and its bias is a priori
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known, thus enabling a more direct and accurate estimation of slopes and
fitting on a model. Also, its calculation only uses the concept of variance
and does not involve integral transformations (like the Fourier transform).
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Figure 2.11 — Comparison between empirical and theoretical spectra and
pseudospectra for the Cauchy-type process defined by Eq. (2.60).

2.2.5 Overview of key ideas

Geophysical processes typically evolve in continuous time but we observe
and study them at discrete time. Besides, as we showed in Chapter 1,
these processes commonly exhibit long-range dependence. Thus, in order
to make reliable inferences about the stochastic properties of natural
processes, we should always be aware of the effect of time discretization,
finite record length as well as data correlation on classical statistical
estimators. In particular, time discretization distorts the stochastic
properties at small time scales, the finite length affects the properties at
large time scales, while data correlation introduces (often uncontrollable)
biases and uncertainties in statistical estimation. In Sect. 2.2, we mainly
focus on second-order moments and specifically on climacograms and
power spectra. Moreover, we analyse a possible substitute of the power
spectrum, which is based on the concept of climacogram.
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Based on a synthetic experiment for which all the stochastic properties of
the underlying process are known, we compare the performances in
statistical estimation of the statistical tools mentioned above.

The power spectrum, despite being very powerful in identifying strong
periodicities in time series, it has some problems in identifying scaling
laws and weak periodicities. Specifically, time discretization, finite length
of data and data correlation alter asymptotic slopes of periodograms by
introducing biases and uncertainties that are uncontrollable (see Sect.
2.2.3). Moreover, the rough shape of the periodogram may result both in
false periodicities and in misleading, inaccurate or even incorrect slopes
(e.g. slope > —1 for frequency — 0, which is infeasible as shown in Sect.
2.2.2).

The important advantage of the climacogram over other common
statistical tools is that its bias caused by the correlation structure of
datasets can be determined analytically (usually in a closed form) and
included in the estimation problem. However, direct estimation of
climacogram is not possible merely from the data. We need to assume a
stochastic model (see Sect. 2.2.4) which evidently influences the
estimation of the process variance. Once the model is assumed and its
parameters estimated based on the data, we can expand our calculations to
estimate the variance for any time scale 4.

The concept of climacogram can be used also in the frequency domain to
find a substitute for the power spectrum, which has similar properties (e.g.
the asymptotic behaviours of the two are similar). In Sect. 2.2.4, we
analyze the climacogram-based pseudospectrum and show that when the
power spectrum and pseudospectrum are estimated from data, the latter is
much smoother and its bias is a priori known, thus enabling a more direct
and accurate estimation of slopes and fitting on a model.
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3. Rainfall downscaling

Tous pour un, un pour tous.
Alexandre Dumas

In stochastic hydrology, we often need to study natural processes at
different time scales. The problems associated with the transfer of
information across scales have been called scale issues (Bléschl and
Sivapalan, 1995). To adequately address scale issues, we require models
capable of preserving consistency across scales, i.e. both in a coarser, or
higher-level, time scale and in a finer, or lower-level, time scale. These
issues may arise, for instance, when coupling stochastic models of
different time scales to reproduce simultaneously different important
statistical properties of a hydrological process (Koutsoyiannis, 2001), e.g.
the long-term and the short-term stochastic structure of precipitation
(Langousis and Koutsoyiannis, 2006).

In other cases, scale issues are encountered in predictions using
hydrological models, where the modelling scale may be much smaller
than the observation scale; hence, we need to bridge that gap to calibrate,
validate and operationally use our models. For example, when the higher-
level process is the output of weather prediction models, which is given at
a coarse scale, the scale discrepancy between model output and the
resolution required for hydrological modelling must be resolved (e.g.
Fowler et al., 2007, Groppelli et al., 2011). Furthermore, the higher-level
process may be known from measurements. Specifically, when dealing
with rainfall, long historical records usually come from daily rain gauges,
but we need hourly or sub-hourly precipitation data in many hydrological
applications. Also, the satellite rainfall data are available at a spatial scale
greater than about 30 km at the Equator, and a temporal scale of 3 h,
while again hydrological applications (e.g. related to flash floods) require
higher resolutions (Berne et al., 2004; Koutsoyiannis and Langousis,
2011). In essence, scale issues can potentially be tackled by both
disaggregation and downscaling techniques, which aim at modelling
linkages across different temporal and/or spatial scales of a given process.
A natural process x(t), e.g. rainfall, is usually defined in continuous time t,
but we observe or study it in discrete time as local averages xj), which
are the averages of x(t) over a fixed time scale 4 at discrete time steps j
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(=1, 2, ...) (see Eq. (1.3)). Furthermore, we may find useful to define here
the cumulative process X(t) in continuous time:

X(0) = [ x()d¢ (3.1)

Its statistical properties depend on time, thus this is a non-stationary
process, while x(t) is assumed to be stationary. Then, we can define the
relevant process in discrete time, i.e. the aggregated process X on a
time scale 4, as follows:

X" = x(j4)-x(i-1)4) (3.2)
which are the stationary intervals of Eq. (3.1), the local average process
given by Eq. (1.3) is recovered with xj®) = X;{@/4.

Both disaggregation and downscaling refer to transferring information
from a given scale (higher-level) to a smaller scale (lower-level), e.g. they
generate consistent rainfall time series at a specific scale given a known
precipitation measured or simulated at a certain coarser scale. The two
approaches are very similar in nature but not identical to each other.
Downscaling aims at producing the finer-scale rain field with the required
statistics, being statistically consistent with the given field at the coarser
scale. While disaggregation has the additional requirement to produce a
finer scale rain field that adds up to the given coarse-scale total; thus, in
this case we introduce an equality constraint to the problem in the form:

() _ oy () _ g ()

X = 3 X = fax (33)
m=(j-1)f+1

where f4 is a time scale larger than 4 and f is a positive integer; for
convenience 4 will be omitted. Then, for example Xa = X1+ ... + Xrand
Xo® = Xpe1 + ... + Xor.
The reader is referred to Koutsoyiannis and Langousis (2011) and the
references therein for a detailed review on disaggregation and
downscaling models in the literature.
This chapter focuses on the analysis of discrete random cascades for
rainfall downscaling, which are characterized by a very simple structure,
easy to implement and, consequently, widely applied in the literature.
Hence, we compare the ensemble behaviour of two simple rainfall
downscaling models based on two similar approaches: the multifractal
and the Hurst-Kolmogorov. Both approaches are based on a general class
of stochastic processes characterized by some invariant properties of their
multivariate probability distribution under scale change, which illustrate
the empirically observed scaling properties of rainfall time series.
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The multifractal approach is based on the empirical detection of
multifractal scale invariance of rainfall at finite, but practically important,
ranges of scales (Veneziano et al., 2006). In particular, in Sect. 3.1 we
focus on multiplicative random cascade (MRC) models to construct
discrete multifractal fields, which are extensively used in the literature
(e.g., Gupta and Waymire, 1993; Over and Gupta, 1996; Menabde and
Sivapalan, 2000; Molnar and Burlando, 2005; Gaume et al., 2007; Rupp
et al., 2009; Serinaldi, 2010; Licznar et al., 2011). The reason why MRC
models have been so popular in the literature is that this method can
parsimoniously generate complex intermittent and spiky patterns typical
of rainfall time series, irrespective of whether the patterns are multifractal
or not (Rupp et al., 2009).

The Hurst-Kolmogorov approach is based on the Hurst-Kolmogorov
process described in Sect. 1.3. We propose a downscaling model
following this approach (described in Sect. 3.2), which is a simple method
to generate time series based on nonlinear transformation of stepwise
linear relationship from a Gaussian random process.

3.1 Multiplicative random cascade models

Let x1¥ be the average rainfall intensity over time scale f (cf. Eq. (3.3)) at
the time origin (j = 1); x1? is assumed to be a random variable with mean
o and variance yo of a stochastic process, which we wish to be stationary.
x1® (for convenience x1,0) is then distributed over b sub-scale steps of
equal size s = f/b (i.e., x{®, j =1, 2, ..., b). This is accomplished through
multiplying x10 by b different weights (one for each sub-scale step) w
which are independent and identically distributed (iid) random variables.
Moreover, their distribution is assumed to be the same for all cascade
levels with mean uw and variance yw (Mandelbrot, 1974).

After repeating this procedure k times (k cascade levels; k=10, 1, 2, ...),
the resulting discrete random process at the scale of aggregation sk = b™f
can be expressed as (see Fig. 3.1):

K
)_(('Sk) =Xjk = )_(l,OH\LVg(i,j),i (3.4)
i=0

where j = 1, 2, ..., b is the index of position in the series at level k; i is
the index of the level of the cascade; g(i, j) denotes a function which
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defines the position in the series at the level i, i.e. g(i, 1)2[%} which
b 1

is a ceiling function (Gaume et al., 2007). For k = 0 we have wio = 1.

For a canonical cascade (another common term to describe a downscaling

model) the expected value of the mean process at the k-level is equal to

the expected value of the process at the initial 0-level:

<b—]LjZ_1:)_(j,k> = <51,0> (3:5)

where for convenience we use < > to denote the expected value E[-] (i.e.
average over the independent realizations of the stochastic process). From
Eq. (3.4), we can derive the expected value of x;« as:

k k
<)_(j,k> = <)_(1,oli:JIV_Vg(i,j),i> = <)_(1,0>]i;[<v_vg(i,j),i> (3.6)
= <)_(1,o><\LV>k = Hothy
As a consequence of Egs. (3.5) and (3.6):

bk
bikz<)_(j,k> = <)_(1,o>; <)_(j,k> = My, ,Uoluvb =My, M, =1 (3.7)
=1

Thus, the weights w satisfy the condition pw = 1.

For a micro-canonical cascade (i.e. a disaggregation model), the mean
process at the k-level is equal to the process at the 0-level; this means that
the following relationship (a consequence of Eq. (3.3)) holds for every
pair of successive aggregation levels (k-1 and k) of the cascade:

1 U
b Z)_(m,k = Xjka (3.8)
m=b(j-1)}+1

where j =1, ..., b“! with k > 0. For example, if we choose b = 2, then:

)

— Xmk = Xi s

2,5 T (3.9)
Xojak T Xojk = 2Xjkar Wajax =2— W,y

Thus, the weights w;jk satisfy uw = 1 and w < b (e.g. in the case of Eq.
(3.9), w < 2). An important attribute of the micro-canonical model is that
the distribution of w can be extracted from the data (Cérsteanu and
Foufoula-Georgiou, 1996), allowing a direct examination of the
associations that the weights may have with other properties of rainfall.
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A graphical example of a dyadic (b = 2) multiplicative cascade for four
cascade levels (k =0, 1, 2, 3) is shown in Fig. 3.1.

k=0 X1,0
Wi g Wo 1
k=1 X11 X1
Wio W, o Ws, Wy
k=2 X1,2 X35 X532 Xa2
Wl,e/ W, 3 Ws 3 Wy 3 Ws,% We 3 W?,s/ Wg 3
k=31 X3 Xo3 X33 X433 X53 X633 X73 X33

X33 = W33 W5,W; 1 X9
Figure 3.1 — Sketch of a dyadic (b = 2) multiplicative random cascade.

3.1.1 Downscaling model (canonical cascade)

The summary statistics of the random process xjx for a canonical cascade
are derived below. Specifically, we derive the variance, yjk, the g-th

moment, <>_<‘J‘k> and the autocorrelation function for discrete-time lag z,
pik(z), of the random process at the k-level of the canonical cascade. The
expected value, <>_<j]k>, has been already given in Eqg. (3.6). The variance

can be expressed as follows:
2

Vik = <)_(j,k> - <)_(j,k >2 = (/Jg + 70)(1+ 7/w)k - /ug (3.10)
where the second moment is given by:
<X?,k> = <)_(12,01L[\va(i,j),i> = <)_(120>ﬁ <V_V§](i,j),i>

i=0 i=0 (3.11)

= (o )W) = (a2 + 70 )t 7,
Likewise, the g-th moment is:
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(x0,) = (o Ywe)’ (312)
Finally, the correlation coefficient for lag z is given by:
(X5 )—(i+zvk>_<l(i,k>2 (42 + 70 )0+ 7)) = g2
, = = w 3.13
pisld) Vik 45 + 70 )@+ 1) — 1 N
where the term <>_<j]k >_<j+z,k> can also be expressed as follows:
Xy X = (3 )™ (3.14)

In Egs. (3.13) and (3.14), exponent hj(z) (at the position j=1, ..., bX -z
in the cascade at level k) is bounded in [0, k —1—[log, z || if 0 < z < b*-1,
where |_ j denotes the floor function, while hjk(z = 0) = k, for any j and k.

Assuming the cascade as a binary tree (b = 2), the exponent hjx(z) denotes
the number of vertices of the tree (excluding the start vertex Xxi0)
belonging to both simple paths leading to the vertices xjkx and Xj+zk. The
exponent h;jk(z) is computed as (see an explanatory sketch in Fig. 3.2):

(hikal(z)“)@ 27— - z], j<2vt z>0
M) = P 2) j>27%2>0 (3.15)

hzk—j+1,qu|)’ 2<0

where O[r] is the discrete form of the Heaviside step function, defined for
a discrete variable (integer) r as:

0, r<0
olr]= {1 : ; . (3.16)
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<XJ,|< Xj+z,k> = <512,o><V7V2>hj'k(Z) X1.0

Wi 1 W51
K1,1 Xz,l
h,3(z=1)=0
) ) Wo2 Ws 5
<X4,3 55,3> = <W4,3W2,2 Wy 1 Ws s W3, W2,1§1,o> = <X1,o>
X22 X32
hys(z=-1)=2
2 w w w
2 2 2 2 2 W3 Wz Ws,3
<54,353,3> = <W4,3W2,2 Wy 1 Wss X1,0> = <X1,o ><W >
X33 X43 X53
A " _A

X33 = W33 Woo Wy 1 X109  X43= WysWooWy1Xy9 Xg3= Wg3W3, W9 X;0

Figure 3.2 — Example of computation of the exponent h;x(z) for a canonical
MRC. In the computation we use Eq. (3.14) and the arrows indicate the links to
those variables considered.

Thus, three important considerations can be made. First, the exponent
hjk(z) is a function which satisfies a particular symmetry relation with
respect to the position j = 21 in the dyadic cascade at level k. Second, the
autocorrelation function of a canonical MRC corresponds to a non-
stationary process, because it depends on the position j in the cascade (i.e.
the time position) for any level k. Third, we started assuming a stationary
setting of the entire process at the largest scale, then we concluded with a
downscaled process that we demonstrated to be non-stationary.
Consequently, it can be argued that autocorrelograms produced by
canonical MRC have a physically unrealistic attitude with respect to the
rainfall process.

Although the derivation of the theoretical autocorrelation function
presented in Egs. (3.13) and (3.15) is new, the problem of non-stationarity
in processes generated by discrete random cascade models has been
already discussed by Mandelbrot (1974, p. 356), who considered a
canonical cascade with log-normal weights and a prescribed grid of
eddies: “Because the eddies were prescribed, the random function
[generated through the multiplicative scheme] is non-stationary and
discontinuous: it varies between an eddy and its neighbors, by jumps that
may be very large”.
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Moreover, this problem has been subsequently discussed by Over (1995),
who highlighted the properties of non-stationarity (non-homogeneity) and
anisotropy of the cross-moments of a discrete random cascade in a d-
dimensional space, and by Veneziano and Langousis (2010, p. 137,
Section 4.4.3.2). Hence, an important challenge is that of finding an
alternative simple method to generate time series with spiky patterns
typical of rainfall series and consistent with the observation at coarser
scales, which is stationary. Indeed, as stated by Over (1995): “In
applications, we may find that we want a random process model that is
anisotropic and non-homogeneous, but in a way that is controllable using
model parameters, not simply inherent to the model, and we would most
likely want to use a homogeneous and isotropic model as a null
hypothesis unless physical considerations determined otherwise” (p. 62,
Section 3.4.1.1).

Thus, in Sect. 3.2 we propose a stationary downscaling model, based on
the Hust-Kolmogorov process, which is characterized by a cascade
structure similar to that of MRC models.

3.1.2 Example: numerical simulation

In this section, numerical simulations of a canonical MRC are carried out.
For simplicity and without loss of generality, we assume uo=1 and y0=0.
Thus, the summary statistics given in the previous section (Egs. (3.6) and
(3.10)-(3.13)) now become:

(%) =1 (%) :<V—Vq>k
g )

7j,k:(1+7w)k_1; pj,k(z)_ (1_’_}/ )k_l

This example refers to weights w log-normally distributed, defined as
follows (see e.g. Over and Gupta, 1996):

_ay’Inb
w=b"" 2 (3.18)
where y is a normal N(0,1) random variable; as a consequence, the
variance of the weights is given by:
ol = exp(af, (In b)z)—l (3.19)
whereas on? is a parameter defining the normal N(—on? In(0%/2), on? In(b?))
random variable v = In w.

(3.17)
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Monte Carlo simulations (M = 50000) have been applied to explore the
ensemble behaviour of the random process, assuming e.g. k = 7 and
on=0.522, which gives yjx = 1.5 (from Eq. (3.17)). Figures 3.3 and 3.4
show respectively the ensemble mean <xjx> = ujk and standard deviation
ojx of the random processes as a function of the position j along the
cascade level k, j=1, 2, ..., n (where n = 2k = 128). Figure 3.5 shows how
the ensemble autocorrelation function pjk(z) strongly depends on the
position j in the cascade at the level k.

15

ik

0.5

— empirical
—theoretical

1
r
20 40 60 80 100 120
j
Figure 3.3 — Ensemble mean of the example MRC process as a function of the
position j along the cascade level k = 7.
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j
Figure 3.4 — Ensemble standard deviation of the example MRC process as a
function of the position j along the cascade level k = 7.
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1 1 1
0.9 0.9 0.9
0.8 —— empirical |1 08 0.8
07 — theoretical | | 07 07
0.6 0.6 0.6
~
~=% 05 0.5 0.5
=20
04 04 J 0.4 J
03 03 , 03 J"
0.2 0.2 0.2
0.1 - 0.1 0.1 ~
0 0 Q o=
0 20 40 60 80 100 120 140 -40 -20 O 20 40 60 80 100-70 -50 -30 -10 10 30 50 70
lagz lagz lagz

Figure 3.5 — Ensemble autocorrelation function of the example MRC process at
the cascade level k = 7 with starting point j (for j = 1, n/4 and n/2, respectively,
from left to right) in the considered cascade level with n = 27 = 128 elements.

In Fig. 3.6 (left), the autocorrelogram with starting point j = n/2 (midpoint
of the cascade) is zoomed in the lag range [-5, 5] so as to illustrate that
the lag 1 autocorrelation of the canonical MRC can be about 0.8 with the
adjacent cell to the left and zero with the adjacent cell to the right.
Moreover, if we move our simulation window just by two cells to the
right, i.e. j = n/2+2 (see Fig. 3.6 right), then the lag 1 autocorrelation
becomes about 0.8 and 0.6 with the adjacent cells to the left and to the
right, respectively. These simple observations suffice to indicate how
unrealistic and undesirable the stochastic structure of this model is.

1 1

0.9 \ 0.9 \
08 \ 08 \ —— empirical [
0.7 // \ 07 l — theoretical ||
0.6 — 0.6
g 0.5 / \ 0.5 I
= | | /
0.4 \ 0.4 I
0.3 \ 0.3 l
0.2 \ 0.2 l
0.1 0.1
0 0
5 4 3 -2 -1 0 1 2 3 4 5 5 4 -3 -2 -1 0 1 2 3 4 5

lag z lag z
Figure 3.6 — ACF of the example MRC process at the cascade level k = 7 with
starting point j = n/2 (left) and j = n/2+2 (right) zoomed in the lag range [-5, 5].
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3.1.3 Disaggregation model (micro-canonical
cascade)

In the case of a micro-canonical cascade, the summary statistics of the
random process Xjk can be expressed accounting for the equality
constraint given in Eq. (3.8). The expected value <xj«>, the variance yjk
and the g-moments < x4 > remain the same as in the canonical case (Egs.
(3.6) and (3.10)-(3.12)), while the autocorrelation function at lag z, pj«(z),
now becomes, for z # 0:

pi(r)= <)_(j’k )_(j”'k>_<)—(ivk>

Vik (3.20)
(122 + 7o)+ 7)™ 0= 1) - 12
(g + 70 )+ 7,) - 1
where the term <)—(j,k )_(j+z,k> can also be expressed as follows, if b = 2 (Eq.

(3.9)): -
<Zj,k )_(j+z,k> = <)_(i2,0><V_V2> " (2 - <V_V2>) (3.21)

Note that, when z = 0, we have hjk(z = 0) = k, for any j and k, and the term
(1 — yw) in the numerator of Eg. (3.20) vanishes; consequently, we have
pik(0) = 1. As in Egs. (3.13)-(3.14), the exponent hjx(z) here also denotes
the number of vertices of a binary tree (excluding the start vertex xio)
belonging to both simple paths leading to the vertices xjk and Xj+zx. The
exponent hjk(z) can still be computed by Eq. (3.15). Thus, the
autocorrelation function of a micro-canonical MRC again corresponds to
a non-stationary process, as in the canonical case.

3.1.4 Bounded random cascades

A special form of multiplicative random cascades is the bounded random
cascade (Marshak et al., 1994). Bounded cascades allow the
multiplicative weights w to depend on the cascade level k and converge to
unity as the cascade proceeds; this implies that the simulated random
process becomes smoother on smaller scales. In the literature, bounded
random cascades have been frequently applied to the stochastic fine
graining of rainfall observations into high resolution data both in the
canonical and microcanonical form (e.g. Menabde et al., 1997; Menabde
and Sivapalan, 2000; Rupp et al., 2009; Licznar et al., 2011).
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Bounded canonical cascades are constructed in the same way as the
unbounded case, except that the weights w are iid only within a given
cascade level, not among different levels as in the unbounded case
(Menabde et al., 1997). Under these hypotheses and using the same
notation as Eq. (3.14) above, the following holds:
hj‘k(z)
<)_(j,k )_(j+z,k> = <)_(f,o> H <V_V3(i,j),i> (3.22)
i=0

where, if hjk(z) = 0 (no tree vertices in common) we have wio = 1 (see
Sect. 3.1). Hence, the autocorrelation function of the time series generated
by bounded canonical cascades still depends on the position j in the
cascade level k.

3.2 Hurst-Kolmogorov downscaling model

In this section, we analyse a simple downscaling method to generate
rainfall time series based on Hurst-Kolmogorov process (defined in Sect.
1.3). The model disaggregates a fractional Gaussian noise by a dyadic
additive cascade, which is then exponentially transformed to derive the
actual rainfall time series that are consequently supposed to be log-
normally distributed (e.g. Over, 1995).

Let X1® be the cumulative rainfall depth at the time origin (j=1)
aggregated on the largest time scale f (see Eq. (3.3)) that is to be
downscaled to a certain scale of interest. X1 is assumed to be a random
variable with mean uo and variance yo of a stochastic process, which we
wish to be stationary. We suppose the actual rainfall to be log-normally
distributed.

Let us now introduce an auxiliary Gaussian random variable

Xif) =In ﬁ” (for convenience leo) of the aggregated HK process on
the time scale f with mean z, and variance y,. It is well known that (see
also Sect. 2.1.4):

Ty = In = |n(7—°2 +1j (3.23)
2\t

7, = |n(7—°2 +1j (3.24)
Hy
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Z~1,0 is to be disaggregated by a dyadic (b=2) additive cascade. Then, Z~1‘0
is partitioned into two (b=2) Gaussian random variables on the time scale
s=f/2; e.g. at the first cascade level (k=1) we have:

X+ X5 =Xqo (3.25)
Likewise, at the k-level corresponding to the scale of aggregation sk=2"*f,
we have:

Xojak + Xojx = Xjxa (3.26)

Thus, it suffices to generate X 2j1x and then obtain Xz ix from Eq. (3.26)

above. This generic procedure resembles the well-known interpolation
procedure, which is a point estimation. Thus, we can consider the
following linear generation scheme (see graphical example in Fig. 3.7):

Xojak =0"Y +v (3.27)

where Y = [ij_&k,sz_zyk,Lj,k_l,ﬁjﬂ,k_lr, @ is a vector of parameters,
and v is a Gaussian white noise that represents an innovation term. Eq.
(3.27) allows the generated lower-level variable X,;,, to preserve

autocorrelations with two earlier lower-level variables (level k) and one
later higher-level variable (level k1) (see also Koutsoyiannis, 2002).

k=0 X o
k=1 Xy X,
k=2 X, X,, X, X
——T N\
k=3 Xog || Xoa || Xaa || Xas || Xos || Xoa || Xos || Xes
4\

Current step

Figure 3.7 — Example of the dyadic additive cascade for four disaggregation
levels (k =0, 1, 2, 3), where arrows indicate the links to those variables
considered in the current generation step (adapted from Koutsoyiannis, 2002).
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Koutsoyiannis (2001) demonstrated that the vector # which minimizes
Var[v] is of the form:

0 = {CovlY, Y]/ CovlY, X, 1] (3.28)
Consequently, it can be shown that the least mean square prediction error
of Z,,,, fromY is the following:

Var|v]= Var [ij_l’k ]— Cov[ij_Lk : 1]0 (3.29)

Hence, in each disaggregation step the two lower-level variables are
generated by (Egs. (3.26)-(3.27)):

%2j_1,k =~a2A2j—3Lk +ay Xy th X+ X5 +V (3.30)
Azj,k = lj,k—l _lzj—l,k
Recalling that for a discrete-time Hurst-Kolmogorov we have:
2H 2H
~ - Z+ z— oH
F0)- pla)- L 3:31)

Parameters az, ai, bo2 and by, aﬁd the variance of the innovation term v are
estimated in terms of the correlation coefficients p(z), which are
independent on j and k, and of the variance of the HK process at the level
k (Koutsoyiannis, 2002), as given by equations (3.32) and (3.33):

a, 1 p(1) p(2)+p(3) p(4)+5(5)

3 p(1) 1 p)+5(2) p(3)+p(4)
by | |A(2)+5(B) pM)+A(2)  2L+pM)]  p)+25(2)+5(3)

b | [ 5(4)+p(6) p(3)+p(4) pM)+2p(2)+p(B)  2h+p)
p) (3.32)

and:

Varv]=7,(1-[3(2), 5(1), 1+ 5(1), 5(2)+ 53] 2z, . by, b]T)  (333)
Recalling the scaling properties of the Hurst-Kolmogorov process (see
Sect. 1.3), the mean and the variance of the process at the k-level of the
cascade are:

~

~ ~ S, ~
Hy :<Xj,k>:Tkﬂo :% (3.34)

-1



RAINFALL DOWNSCALING 63

2H ~
- ~ s, ) ~
Yk =Var[Ajyk]=(Tk] Yo =272/ﬁ (3.35)

where the timescale sk=27%f .

The above stepwise disaggregation approach was first introduced by
Koutsoyiannis (2002), who demonstrated that it effectively generates
fractional Gaussian noise, but the rainfall process (especially at the
resolution needed for hydrological applications) is not Gaussian. Indeed,
we apply the following specific exponentiation to the HK process to make
it log-normal but preserve its scaling properties (Egs. (3.34)-(3.35)):

X = explak)X ;, + A(K) (3.36)
In other words, we assume a unique HK process in the untransformed
domain, and we change the characteristics of the transformed

(exponentiated) domain using different characteristics for different
disaggregation steps by means of the scale-dependent functions a(k) and

BK):
)2 J e exp(7,)-1)+1)

Yo (3.37)

p(k)=—kIn2 —ﬁo(“(k) —1j —@(0;99 —1}

2 2
The proof is given in the following. These expressions of a(k) and £(k)
are derived to preserve the scaling properties of the process Xjk at
different scales of aggregation. The mean and the variance of the

exponentiated process at the generic k-level of the cascade given in Eq.
(3.36) are:

n =exp(ﬂ(k)+a(k)ﬁk +a2(k)7—2kj (3.38)

7 =exp(28(k)+ 2a(k )iz, +a? ()7, Nlexple (k)7 )-1) (3.39)
where g, and y, are respectively the mean and the variance of the

auxiliary process at the cascade level k, given by Egs. (3.34) and (3.35).
Substituting Egs. (3.34) and (3.35) in (3.38) and (3.39), respectively, we
obtain:

4 =exp(ﬁ(k)+a(k)%Jraz(k)zZOmj (3.40)
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Vi = exp(zﬁ(k)+ 2a(k)% +a?(k) zf&k ](exp(az(k) Zfﬂk j —1j (3.41)

where g, and y, are respectively the mean and the variance of the

- . ~(f) &
auxiliary normal variable X, "= X, ,.

To derive the two functions a(k) and (k) we impose for the X ;, process

the same scaling laws of the relevant HK process (ijk ):

S
=X i) =m0 =57 (3.42)
S 2H
Yk zvar[Lj,k]:[Tkj Yo =272/ﬁ (3.43)

where uo and yo are respectively the mean and the variance of the log-

normal variables X!". Since we assume ﬁf):exp(ﬁf)), we have

a(0)=1 and £(0)=0 and, thus, Egs. (3.23) and (3.24) hold. Substituting
Egs. (3.23) and (3.24) in (3.42) and (3.43) respectively, we obtain:

1 -
Fe =5k eXP(ﬂo + %} (3.44)
1 - o~ -
Vv = o2k EXp(Zﬂo + 70)(exp(7o)_ l) (3.45)

Equating the right-hand sides of Egs. (3.40) and (3.41) to (3.44) and
(3.45), respectively, we obtain:

L L
o 1K)+ all) 2 a7 (0) 75 |- o0 7+ 7 (3.46)

exp(Zﬁ’(k)+2a(k)ﬁ—f+a2(k) %o j[exp[az(k) Z&kj—ljz
2 2 2 (3.47)

1 - _ ~
= 22Texp(Zﬂo +7o)(exp(7,)-1)

Solving Egs. (3.46) and (3.47) we obtain Eq. (3.37). Then, the mean and
variance of the log-normal variables Xjk (actual downscaled rainfall) are
given by Egs. (3.42) and (3.43), respectively, while the autocorrelation
function is given by:
(z)= 2PUip(2) -1 (348
exp(7; ) -1
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where 7, and p(z) are given by Egs. (3.35) and (3.31), respectively.

The log-normality hypothesis and our specific exponential transformation
(Egs. (3.36) and (3.37)) enable the analytical formulation of the main
statistics of the actual rainfall process, given in Egs. (3.42)-(3.43) and
(3.48), which are a key element for our theoretical analysis. However,
more elaborate normalizing transformations can be investigated (see, e.g.
Papalexiou et al., 2011), but this is out of the scope of our analysis.

The presented model is a disaggregation model only if the random
variables are Gaussian; indeed, the equality constraint in Eq. (3.26) holds.
However, under the hypothesis of log-normal rainfall, we have a
downscaling model, where the lower-level rainfall time series generated
are only statistically consistent with the given process X at the coarser
scale. The Hurst coefficient H is the only parameter of our downscaling
model.

3.2.1 Example: numerical simulation

To investigate further the goodness of HK downscaling model, we
explore its numerical simulations (M = 50000) as we did for the MRC
downscaling model in Sect. 3.1.2. To make the two model simulations
comparable, we assume the same values of summary statistics as in the
MRC case, i.e. k=7, ux = 1 and y = 1.5. Furthermore, we assume H = 0.7.
Figs. 3.8 and 3.9 show, respectively, the behaviours of the ensemble mean
<xjk> = wjk and standard deviation ojk of the random processes as a
function of the position j along the level k, j = 1, 2, ..., n (where
n=2%=128).
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Figure 3.8 — Ensemble mean of the example HK process as a function of the
position j along the cascade level k = 7.
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Figure 3.9 — Ensemble standard deviation of the example HK process as a
function of the position j along the cascade level k = 7.

Figure 3.10 shows how, unlike the MRC case, the ensemble
autocorrelation function pj«(z) is fully independent of the position in time
j in the cascade at the level k. Thus, we verified that the process
corresponding to the time series generated by the HK downscaling model
is stationary.
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Figure 3.10 — Ensemble autocorrelation function of the example HK process at
the cascade level k = 7 with starting point j (for j = 1, n/4 and n/2, respectively,
from left to right) in the considered cascade level with n = 27 = 128 elements.

3.2.2 Application to an historical observed event

In this section the HK downscaling model is fitted to an historical
observed event, i.e. one of the lowa events at the 10-second timescale
(event 3); for further details on the observational data, the reader is
referred to Georgakakos et al. (1994). The historical hyetograph is shown
in Fig. 3.11 (upper panel). It can be seen that the dataset comprises a
single storm without intermittence. Thus, intermittence, despite being an
important characteristic of the rainfall process, can be left out of this
analysis. We aim at providing further information on the applicability of
the downscaling approach based on the HK process to reproduce the
pattern of rainfall time series at the 10-second resolution.
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Figure 3.11 — Hyetograph of the historical rainfall event (no. 3) measured in
lowa on 30 November 1990 (upper panel; Georgakakos et al., 1994) along with
two synthetic time series of equal length generated by the MRC and HK models

(middle and lower panels, respectively).
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We estimated the HK model parameter from the real data, which is
H=0.92 (see also Koutsoyiannis et al., 2007). Figure 3.12 (upper panel),
depicts the climacogram (i.e. a double logarithmic plot of the standard
deviation o(4) of the aggregated process X;“) versus scale 4) for both the
real and the log-transformed datasets as a tool aiming at a multi-scale
stochastic representation. It can be noticed that the two climacograms are
approximately two parallel straight lines with high slopes (H =0.92),
which illustrates that the long-term persistence of the process is virtually
invariant under a logarithmic transformation.
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Figure 3.12 — Double logarithmic plot of the standard deviation o(4) of the
aggregated process X;“ vs. scale 4 (climacogram) for both the real and the log-
transformed data of the lowa rainfall event (upper panel); climacograms of the
1st and the 99th percentiles for the HK downscaling model (10000 Monte Carlo

experiments) and for the observed rainfall event (lower panel).
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We performed 10000 Monte Carlo experiments to downscale the
aggregated rainfall event at the cascade level k = 13. Figure 3.12 (lower
panel) shows the 1st and 99th percentiles of climacograms for the HK
downscaling model to highlight the scaling behaviour of the simulated
time series, which is practically consistent with the scaling properties of
the observed rainfall event. Figure 3.13 depicts a comparison between the
observed autocorrelogram with that simulated by our model; in particular,
we plot the 1st and 99th percentiles of autocorrelation function. It can be
noticed that the model on average fits the observed behaviour quite

satisfactorily.
1 ; !

0.8 : ‘ : -

—99% model
— 1% model 4
* observed

. i i i i i i i
"0 500 1000 1500 2000 2500 3000 3500 4000
lag time (steps of 10 sec.)

Figure 3.13 — Empirical autocorrelation function (ACF) of the lowa rainfall
event examined and 1st and 99th percentiles of ACF for the HK downscaling
model.

Finally, the historical hyetograph is compared (see Fig. 3.11) to two
typical synthetic hyetographs, of equal length, generated by the MRC and
the HK downscaling models (the MRC model parameters were estimated
from the real data imposing both the mean and the variance of the lower-
level variables). We can see that both models produce realistic traces
without apparent visual differences in the general shapes from each other
and from the real world hyetograph (note that the models provide copies
with statistical resemblance but not precise reproductions of the historical
event). Despite being visually similar, the study of the details of the
statistical behaviour of the two models has revealed that there are
important differences.
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3.3 HK disaggregation model

Generating finer scale time series of rainfall that are fully consistent with
any given coarse-scale totals is an important issue in hydrology. This is
commonly accomplished through disaggregation models, which let lower-
level variables satisfy the equality constraint given by Eq. (3.3). In this
section, we present a disaggregation method that initially retains the
formalism, the parameter set, and the generation routine of the HK
downscaling model described in Sect. 3.2. Then it uses an adjusting
procedure to achieve the full consistency of lower-level and higher-level
variables.

Our HK downscaling model is based upon a particular nonlinear
transformation (see Eq. (3.36)) of the variables obtained by a stepwise
disaggregation approach (see Eqg. (3.30)), which generates time series
with Hurst-Kolmogorov dependence structure. Unfortunately, nonlinear
transformations of the variables do not preserve the additive property,
which is one of the main attributes of the original disaggregation scheme.
To overcome this problem, we use an empirical adjusting procedure in
order to restore consistency, but such a procedure may, in turn, introduce
bias in all statistics that are to be preserved. However, here we apply a
particular procedure that has been proved, both theoretically and
empirically, to be accurate in the sense that it preserves certain statistics
of lower-level variables (Koutsoyiannis and Manetas, 1996). In other
words, we modify the time series generated by our HK downscaling
model in a way to be consistent with a given higher-level time series,
without affecting the stochastic structure implied by our model.

In practise, we use the same linear generation scheme of Eq. (3.30) in the
Gaussian auxiliary domain:

X, .. =0"Y +v
{tz‘ e T (3.49)

ij,k = Xj,k—l —ij—l,k
In order to increase the accuracy of the model in reproducing the main
statistics of the underlying stochastic process, the sequences of previous
and past variables that are considered for generating each lower-level
variable, and the related parameters, are expanded here with respect to the
original version proposed in Eq. (3.30).
We assume Y = I:Azj—s,k1Azj—4,k’Azj—S,k’sz—z,k’lj,k—liAjﬂ,k—liljﬂ,k—l]-r!

thus Eqg. (3.49) allows the generated lower-level variable X 2jax 1O
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preserve autocorrelations with four earlier lower-level variables (level k)
and two later higher-level variable (level k—1). The vector of parameters &
is determined from Eq. (3.28) accordingly.

As stated above, when we apply our specific exponentiation (see Eq.
(3.36)) to the HK process (auxiliary process) to make it log-normal
(actual process), we introduce an error in the additive property, i.e., a
departure of the sum of lower-level variables within a period from the
corresponding higher-level total. The empirical adjusting procedure is
introduced in the downscaling model in order to restore consistency, i.e.
to preserve exactly the rainfall mass at the higher level of the actual
process X1 = X10.We use an accurate adjusting procedure to allocate the
error in the additive property among the different lower-level variables:
The power adjusting procedure. It is accurate because it preserves both
the mean values and the variance-covariance matrix of the lower-level
variables (Koutsoyiannis and Manetas, 1996). The power adjusting
procedure modifies the generated lower-level variables Xjx (j = 1, ...,
n=2) to get the adjusted ones X ’jx according to:

n i/ Mk

K'j,k :lj,k[ll,o Zl],kj (3.50)
j=1

where:

ﬂm( = ancov[lj,k , li,k] anzn:Cov[Lj]k Xk ]%,k/m,k
i=1

j=1 =L

= () 5%,

This adjusting procedure does not preserve the additive property at once.
Thus its application must be iterative, until the calculated sum of the
lower-level variables are equal to the given Xio. Due to the iterative
application and the approximations made for its development, the
procedure is not exact in strict sense, except for special cases
(Koutsoyiannis and Manetas, 1996). However, we observed that in our
case iterations converge rapidly. In addition, the power adjusting
procedure may be a useful approximate generalization of the common
proportional procedures retaining the advantage of returning positive
values (as in our case for rainfall). Indeed, the power adjusting procedure
has no limitations and it works for any type of probability distribution of
lower-level variables (contrary to what is observed for common
proportional adjusting procedures, which are often subject to severe

(3.51)
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limitations). In order to show some preliminary results of our
disaggregation method based on the Hurst-Kolmogorov process, we
generate M = 50000 time series, as we did for the MRC and HK
downscaling models in Sects. 3.1.2 and 3.2.1. To make the two model
simulations comparable, we assume the same values of summary statistics
as in the MRC case, i.e. K =7, ux = 1 and y = 1.5. Furthermore, we
assume H = 0.7. Figs. 3.14 and 3.15 show, respectively, the behaviours of
the ensemble mean <xjk> = wujk and standard deviation ojk of the random
processes as a function of the position j along the level k, j=1, 2, ..., 2%,
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Figure 3.14 — Ensemble mean of the example HK disaggregation process as a
function of the position j along the cascade level k = 7.
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Figure 3.15 — Standard deviation of the example HK disaggregation process.
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Figure 3.16 — Ensemble autocorrelation function of the example HK process at
the cascade level k = 7 with starting point j (for j = 1, n/4 and n/2, respectively,
from left to right) in the considered cascade level with n = 27 = 128 elements.

In Figs 3.14-3.16 the term “empirical” refers to time series generated by
our downscaling model described in Sect. 3.2, while “adjusted” refers to
the same time series modified by the power adjusting procedure in Eq.
(3.50). All figures show that the stochastic structure implied by our
downscaling model is not affected by the power adjusting procedure.
However, the additive property is now fulfilled, as shown in Fig. 3.17.
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Figure 3.17 — Scatter plot of the calculated sum of the lower-level variables
(before, blue, and after, green, applying the adjusting procedure) vs. the given

values of the higher-level variables X1, for all Monte Carlo experiments.
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3.4 Overview of key ideas

The discrete MRC has been a widely used approach of stochastic
downscaling for rainfall time series. The usefulness of the discrete MRC
relies on its simplicity and ability to generate time series characterized by
both multifractal properties and complex intermittent and spiky patterns
typical of rainfall time series.

By means of theoretical reasoning and Monte Carlo experiments, in Sect.
3.1 we show that the random process underlying the MRC model is not
stationary, because its autocorrelation function is not a function of lag
only, as it would be in stationary processes. Indeed, we provide a new
theoretical formulation for the autocorrelation function of an unbounded
canonical dyadic cascade, which is dependent on the lag, the position in
time and the cascade level. As demonstrated, this undesirable violation of
stationarity also extends to the micro-canonical and the bounded cascades.
Consequently, MRC models cannot preserve joint statistical properties
observed in real rainfall.

Mandelbrot (1974) made it clear that the structure of a discrete
multiplicative cascade has problems. However, very many researchers
miss this fact and treat these cascade models as if they were stationary
(e.g. Menabde et al. 1997, Hingray and Ben Haha 2005, Gaume et al.
2007, Serinaldi 2010, Groppelli et al. 2011). Although fundamentally
non-stationary, multiplicative random cascades were efficiently used to
study the marginal and extreme distribution properties of stationary
multifractal measures (see e.g. Veneziano et al. 2009 and references
therein). Moreover, there exist other types of models intended to simulate
multiscaling properties empirically observed in rainfall processes, which
have been demonstrated to generate stationary processes, such as scale-
continuous multifractal cascades (e.g., Lovejoy and Schertzer 2010a, b).
However, this Chapter focuses on the analysis of discrete cascades, which
are characterized by a very simple structure, easy to implement and,
consequently, widely applied in the literature.

We propose and theoretically analyse an alternative downscaling
approach (Sect. 3.2) based on the Hurst-Kolmogorov process, which is
characterized by a simple cascade structure similar to that of MRC
models, but it proves to be stationary. In its original formulation, this
stepwise disaggregation approach effectively generates fractional
Gaussian noise. However, the rainfall process (especially at the resolution
needed for hydrological applications) is not Gaussian. Here we modified
this approach to make it non-Gaussian by applying an exponential
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transformation to the time series generated, so as to make it a more
realistic representation of the actual rainfall process and more comparable
to the MRC models. However, the logarithmic normalizing
transformation, which we chose for theoretical simplicity, is not the best
choice to normalize the dataset (Papalexiou et al., 2011).

Finally, we show (Sect. 3.3) some preliminary results of a disaggregation
method that initially retains the formalism, the parameter set, and the
generation routine of the HK downscaling model. Then it uses an
adjusting procedure to achieve the full consistency of lower-level and
higher-level variables. In particular, we use an accurate adjusting
procedure to restore the additive property without affecting the mean
values and the variance-covariance matrix of the lower-level variables.
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4. Conclusions and discussion

E quindi uscimmo a riveder le stelle.
Dante Alighieri

Geophysical processes change irregularly on all time scales. Therefore,
this change is hardly predictable in deterministic terms and demands
stochastic descriptions. Several prominent applied statisticians and
scientists recognized that many geophysical changes are closely related to
the Hurst phenomenon, which has been detected in many long
hydroclimatic time series and is stochastically equivalent to a simple
scaling behaviour of process variability over time scale. As a result, long-
term changes are much more frequent and intense than commonly
perceived and, simultaneously, the future states are much more uncertain
and unpredictable on long time horizons than implied by typical
modelling practices. In this context, Hurst-Kolmogorov stochastic process
(described in Sect. 1.3) may be the key to perceive multi-scale change and
model the implied uncertainty and risk. Indeed, the reason for introducing
this stationary stochastic process is that the “span of interdependence”
between its random variables can be said to be infinite, thus resembling
the strong interdependence between distant samples observed in many
empirical studies in diverse fields of science, clearly including
geophysics. The great advantage of the HK process is that it characterizes
change by a single parameter (the Hurst coefficient) in a stochastic
framework and in stationary terms.

The purpose of this thesis is to describe how to infer and model statistical
properties of natural processes exhibiting scaling behaviours. In
particular, we explore their statistical consequences with respect to the
implied dramatic increase of uncertainty (Chapter 2), and propose a
simple and parsimonious model that respects the Hurst phenomenon
(Chapter 3).

In Chapter 2, we highlight the problems in inference from time series of
geophysical processes. The classical statistical approaches, often used in
geophysical modelling, are based upon several simplifying assumptions,
tacit or explicit, such as independence in time and exponential distribution
tails, which are invalidated in natural processes. Indeed, the study of
natural processes reveals scaling behaviours in state (departure from
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exponential distribution tails) and in time (departure from independence).
We show that dependence in time implies that much larger samples are
required in order to obtain estimates of similar reliability with classical
statistics. Furthermore, we highlight the problematic estimation of
moments for geophysical processes. In many studies, it has been a
common practice to neglect this problem, which is introduced when the
process exhibits dependence in time and is magnified when the
distribution function significantly departs from the Gaussian form, which
is an example of an exceptionally light-tailed distribution. We show that,
even in quantities whose estimates are in theory unbiased, the dependence
and non-normality affect significantly their statistical properties, and
sample estimates based on classical statistics are characterized by high
bias and uncertainty (see Sect. 2.1.3). In particular, statistical methods
that use high order moments (> 3) are questionable. Therefore, we suggest
that, because of estimation problems, the use of moments of order higher
than two should be avoided, either in justifying or fitting models.
Ignorance of increased uncertainty and inattentive use of high order
moments may result in inappropriate modelling, wrong inferences and
false claims about the properties of the processes. Evidently, the first two
moments are necessary to use in all problems as they define the most
important characteristics of the distribution, marginal (the first two
moments) and joint (the second moment). Even for these two lowest
moments it is important to study always their uncertainties and this only
can be done in connection with a model fitted for the process of interest
(as it is not possible to define uncertainty without specifying a model for
the marginal distribution and dependence). The third moment is often
useful as a measure of skewness but we should always be aware of its
uncertainty; however, use of third moment is not the only way to identify
and assess the skewness of a distribution. For example in parameter
estimation of three-parameter distributions, it is better to avoid the
method of moments and use other fitting methods such as maximum
likelihood, L-moments, etc. Moments of order > 3 should be avoided in
model identification and fitting because their estimation is problematic. If
we have to use them, then it is imperative to specify their uncertainty and
involve this uncertainty in any type of modelling and inference.
Furthermore, we focus on second-order moments and specifically on
autocorrelations (climacograms) and power spectra, which are the most
extensive