
i
i

“main” — 2014/4/27 — 19:37 — page i — #1 i
i

i
i

i
i

UNIVERSITÀ DEGLI STUDI

ROMA
TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Dynamic Visualization of Service
Performance and Routing on the

Internet

Claudio Squarcella
XXVI cycle

Candidate: Claudio Squarcella

Advisor: Prof. Giuseppe Di Battista

Coordinator: Prof. Stefano Panzieri

i
i

“main” — 2014/4/27 — 19:37 — page ii — #2 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page iii — #3 i
i

i
i

i
i

Dynamic Visualization of Service Performance and Routing on
the Internet

A thesis presented by
Claudio Squarcella

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Engineering

June 2014

i
i

“main” — 2014/4/27 — 19:37 — page iv — #4 i
i

i
i

i
i

Committee:
Prof. Giuseppe Di Battista

Reviewers:
Prof. Ulrik Brandes
Prof. Antonios Symvonis

i
i

“main” — 2014/4/27 — 19:37 — page v — #5 i
i

i
i

i
i

Les trois quarts du mal des gens intelligents
viennent de leur intelligence.

Marcel Proust

i
i

“main” — 2014/4/27 — 19:37 — page vi — #6 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page vii — #7 i
i

i
i

i
i

Acknowledgments

I would like to thank my advisor, Giuseppe Di Battista, for his continued
support during these years. It all started back in 2009, when he proposed me
to complete the work for my Master’s thesis in Amsterdam. Since then he
inspired me with his brilliance, discipline, patience, clarity, and humility.

I extend my gratitude to Maurizio Patrignani, Maurizio Pizzonia, and all
the past and current members of the Compunet Research Group at Roma Tre
University that I had the pleasure to meet and engage in fruitful research ac-
tivity during the past three years: Patrizio Angelini, Massimo Candela, Marco
Chiesa, Luca Cittadini, Giordano Da Lozzo, Marco Di Bartolomeo, Valentino
Di Donato, Fabrizio Frati, Gabriele Lospoto, Bernardo Palazzi, Marco Pas-
sariello, Massimo Rimondini, Vincenzo Roselli, Giorgio Sadolfo, and Stefano
Vissicchio.

I am grateful to folks at the RIPE NCC in Amsterdam and at the Microsoft
Skype Division in Tallinn for opening their doors and exposing me to challeng-
ing and addictive real-world problems that deeply inspired a big portion of my
research activity and helped me find a balance between theory and practice.

I thank all my co-authors from universities and organizations around the
world for sharing their ideas and supporting mine: Emile Aben, Lukas Barth,
Till Bruckdorfer, Kimberly C. Claffy, Alberto Dainotti, Sara Irina Fabrikant,
Michael Kaufmann, Stephen Kobourov, Anna Lubiw, Tamara Mchedlidze,
Wolfgang Nagele, Martin Nöllenburg, Yoshio Okamoto, Antonio Pescapé, Sergey
Pupyrev, Michele Russo, Torsten Ueckerdt, and Alexander Wolff.

I warmly thank the reviewers of this thesis, Ulrik Brandes and Antonios
Symvonis, for their precious work.

Finally, and most importantly, I thank my loved ones. Thank you for all
you did in good and bad times.

vii

i
i

“main” — 2014/4/27 — 19:37 — page viii — #8 i
i

i
i

i
i

Contents

Contents viii

1 Introduction 1

I Preliminaries 7

2 Visualization of Graphs and Networks 9
2.1 Graph Theory: Basic Definitions 9
2.2 Graph Drawing and Network Visualization 10

3 Our Reference Scenario: Computer Networks 13
3.1 Networks, Protocols, and Tools 13
3.2 Organizations and Datasets . 16

II Visualizing Service Performance 19

4 Exploring Flow Metrics in Dense Geographical Networks 21
4.1 Introduction . 21
4.2 Related Work . 22
4.3 Data Abstraction . 23
4.4 Interface and Interaction Design 25
4.5 Evaluation . 31
4.6 Algorithms and Technical Details 34
4.7 Conclusions and Future Work 35

5 Monitoring the Load of an Anycast Root Name Server 37

viii

i
i

“main” — 2014/4/27 — 19:37 — page ix — #9 i
i

i
i

i
i

CONTENTS ix

5.1 Introduction . 37
5.2 User Requirements . 38
5.3 Defining a Suitable Metaphor 41
5.4 User Feedback . 45
5.5 Algorithms . 48
5.6 Technical Details . 55
5.7 Related Work . 58
5.8 Conclusions and Future Work 59

III Visualizing Internet Routing 61

6 Designing a Web-based Framework for the Visualization of
Inter-domain Routing Events 63
6.1 Introduction . 63
6.2 Related Work . 64
6.3 User Requirements and Interface Design 66
6.4 Visualizing Internet Outages Caused by Censorship 70
6.5 Technical and Algorithmic Details 72
6.6 Conclusions and Future Work 74

7 Dynamic Visualization of Traceroutes at Multiple Abstrac-
tion Levels 75
7.1 Introduction and State of the Art 75
7.2 Metaphor and User Interaction 77
7.3 Algorithms . 82
7.4 Technical Details . 87
7.5 Conclusions and Future Work 88

IV Mixing Up 89

8 Automating the Analysis of the Impact of Routing Changes
on Round-trip Delay 91
8.1 Introduction . 91
8.2 Related Work . 92
8.3 Methodology . 93
8.4 Experimental Results . 97
8.5 Analyses . 101

i
i

“main” — 2014/4/27 — 19:37 — page x — #10 i
i

i
i

i
i

x CONTENTS

8.6 Conclusions and Future Work 106

9 Visualizing the Correlation between Inter-domain Routing
Changes and Active Probing 107
9.1 Introduction and State of the Art 107
9.2 Requirements and Interface Design 109
9.3 Algorithms and Technical Details 113
9.4 Conclusions and Future Work 116

V Publications and Bibliography 117

10 Other Research Activities 119
10.1 Analysis of Country-wide Internet Outages caused by Censorship 119
10.2 Universal Point Sets for Classes of Planar Graphs 120
10.3 Area Requirements of Euclidean Minimum Spanning Trees . . . 120
10.4 Semantic Word Cloud Representations 121

11 Publications 123

Bibliography 127

i
i

“main” — 2014/4/27 — 19:37 — page 1 — #11 i
i

i
i

i
i

Chapter 1

Introduction

The Internet has become a crucial tool in many activities of everyday life.
These range from social and recreational efforts to critical tasks dealing with
health, science, money, and politics. All such activities are supported by In-
ternet services that grow at a fast pace to serve the needs of users from all
over the world. The size of networks and customer bases is indeed exploding
with the help of new technologies, e.g. mobile data connections. Given the
distributed and decentralized nature of the Internet, all services are exposed
to a number of potential technical issues: router disconnections, changes in
routing policies between Internet service providers, network attacks, and other
unexpected events. The goal of guaranteeing an acceptable quality of service
for global users therefore implies the adoption of prompt countermeasures in
case of failing portions of the network, as well as long-term planning for the
progressive improvement of the service.

It is relatively easy to collect huge quantities of data that contain key in-
dicators on the performance and reliability of a distributed system. However,
the real challenge consists in interpreting data and using it for actual decisions.
The visualization of the Internet is therefore becoming a crucial research topic
for many stakeholders. A dynamic, interactive interface can make the differ-
ence and unveil the potential of so called “big data”. We identify three main
actors that help us shape the main requirements to address: network engineers,
managers, and researchers.

First of all, network engineers need powerful tools to support the mainte-
nance and monitoring of complex and heterogeneous networks. In particular,
it is crucial to promptly react to unexpected failures or technical problems, es-

1

i
i

“main” — 2014/4/27 — 19:37 — page 2 — #12 i
i

i
i

i
i

2 CHAPTER 1. INTRODUCTION

pecially when these may result in the disruption of critical, real-time Internet
services. It is therefore essential to build graphical interfaces that can fill the
gap for more efficient network administration and troubleshooting.

Further, the analysis of long-term trends on the Internet is equally impor-
tant at the management level. Managers and policy makers are eager to use
dashboards that simplify the analysis of big quantities of data collected over
extended periods of time. These interfaces should allow to build hypotheses
for major decisions, including architectural redesign and service improvement.
Note that the focus is shifted from near real-time and targeted monitoring to
a multifaceted and intuitive exploration of aggregate, historical data.

Finally, the observation of the Internet phenomenon is relevant from a
purely scientific point of view. New research activity can find inspiration from
the usage of interactive tools that reveal meaningful patterns or unexpected be-
havior. Visualization becomes the bridge for “serendipitous” discoveries that
pave the way for innovation in crucial aspects of the Internet.

The first aspect to take into account when designing network visualiza-
tion tools consists in guaranteeing that the expectations of prospective users
are met. The requirements should be collected at the beginning and verified
throughout the design process. The metaphors used for the interface and the
available interactions should be carefully tested with prospective users, ideally
in real-world scenarios. In case the output of the design process consists of
more than one alternative, a good option is to let the users compare different
alternatives weighting their strengths and weaknesses.

The drawing algorithms that constitute the main building blocks of the
proposed solutions are also a crucial topic to address. Several techniques for
the efficient representation of evolving graphs and networks are available in lit-
erature, as well as results detailing the limited tractability of specific problems.
A mature network visualization framework should strive for a perfect balance
between the beauty of theoretical algorithmic solutions and the constraints
imposed by user requirements. For example, a real-time graph visualization
system should rely on optimized layout algorithms, whereas an interactive in-
terface should be responsive and therefore the computation time needed to
update the visualization should be negligible.

Last but not least, technical issues are equally important when designing
any kind of software. This holds in particular for data-driven visualizations
with a focus on user interaction. The Web is a perfect target platform for the
development of powerful graphical tools. However, it is filled with different
standards, frameworks, and design patterns that evolve at a very fast pace
together with the underlying technologies. Each visualization system should

i
i

“main” — 2014/4/27 — 19:37 — page 3 — #13 i
i

i
i

i
i

3

be designed keeping in mind the different alternatives, in order to meet as
many non-functional requirements as possible. Efficiency is often the most
important of such requirements, especially when dealing with large datasets
or highly responsive interfaces. Cross-browser compatibility is also a recurring
issue that every Web developer needs to take into account. Reliability and
testability are requirements proper of standard software development that are
becoming more and more crucial for Web applications. Finally, it is preferable
to use frameworks that allow to build scalable and reusable components, in
particular when the reference scenario is narrow and well established.

In this thesis we present several approaches to the problem of visualizing
Internet service performance and routing data. We first consider them as two
independent topics, proposing interactive tools for both. In a second phase, we
introduce the possibility to correlate datasets of both types in order to obtain a
combined visualization. All the proposed approaches are preceded by an infor-
mative description of the context in which the visualization is needed and the
tasks that prospective users would need to perform when using the tool. Design
decisions are then illustrated and motivated based on user requirements. The
algorithms used for the visualization and animation of graphs and networks
are described thoroughly, in particular when they clearly improve on alterna-
tives found in the literature. Technological aspects are always mentioned and
highlighted when they represent a key quality of the work. Where available,
user studies and feedback collected during the development are reported and
discussed. Finally, given the interactive and dynamic nature of our work, we
provide the reader with support material (animations, videos, images) accessi-
ble through the Web.

Part I introduces the reader to key definitions and concepts that are essen-
tial to the understanding of the following chapters.

Chapter 2 is focused on the general field of graph drawing and information
visualization applied to networks. We start with preliminary notions on graphs
and related data structures. We follow up with an introduction to the problem
of visualizing graphs under specific constraints and aesthetic criteria. Fur-
ther, we briefly present standard algorithmic approaches for the computation
of graph layouts that are relevant to our work.

Chapter 3 contains a brief introduction to the real-world scenario under
investigation, i.e. the Internet. First, the general notion of “computer network”
is explored, with the main entities composing it and the protocols that regulate
the transmission of information between endpoints. A few network diagnostic
tools that are crucial to our work are briefly mentioned. Finally, the focus is
shifted towards a small number of organizations that have a crucial role in the

i
i

“main” — 2014/4/27 — 19:37 — page 4 — #14 i
i

i
i

i
i

4 CHAPTER 1. INTRODUCTION

analysis of the Internet and publish their datasets on the Web.
Part II deals with visualization metaphors conceived to monitor the perfor-

mance of Internet services. We tackle the question from two different perspec-
tives. First, we observe performance metrics observed in the communication
between pairs of hosts in a dense geographical network. Secondly, we focus
on the traffic load experienced by the servers of a distributed service and its
evolution over time.

In Chapter 4 we tackle the problem of exploring the traffic flow in dense ge-
ographical networks where links between nodes are characterized by multiple,
time-labeled quantitative metrics. We present Flowcliqr, a prototype frame-
work that allows to interactively visualize arbitrarily huge datasets by means
of a dual visualization based on a matrix and a geographical map. Users are
presented with a concise visualization in which all the information is aggregated
at the coarsest level (i.e., macro-regions of the world). By means of intuitive
interaction steps, it is possible to explore the flow between specific geograph-
ical regions, allowing to distinguish patterns and build initial hypotheses on
the underlying data. We evaluate our work with a qualitative study conducted
with prospective users and give details on the algorithmic and technical aspects
of the framework.

Chapter 5 presents Visual-K, a near real-time monitoring system for the
K-root name server, one of 13 root name servers in the world. Given their
crucial importance these name servers are “anycast”, i.e. their service is of-
fered through many identical replicas (or instances) distributed geographically
to cover the needs of millions of clients. Visual-K helps network operators
monitor how the traffic load is distributed amongst all available instances, fo-
cusing on unexpected migrations of clients between instances. We propose
two different visualization metaphors that are well-suited for the scope, both
based on the visualization of a graph in the form of a geographical map. We
let prospective users compare them highlighting strengths and weaknesses of
both. We also insist on the algorithms needed to dynamically update the two
types of visualization. Finally, we report the challenges of dealing with data
coming from a distributed cluster of servers in near real-time.

Part III is focused on the exploration of Internet routing and its effect
on network topology. In particular, this can be achieved by either probing the
Internet with active measurements or directly accessing the control information
available at one or more routers. We show examples of visualization based on
both approaches.

Chapter 6 is dedicated to BGPlay.js, a Web-based framework designed for
the visualization of evolving routing graphs. It improves over its acclaimed pre-

i
i

“main” — 2014/4/27 — 19:37 — page 5 — #15 i
i

i
i

i
i

5

decessor, BGPlay, used by network operators to visualize inter-domain routing
updates concerning the Internet reachability of specific IP prefixes over ex-
tended periods of time. BGPlay.js brings a fresh and renovated implementa-
tion that is based on modern Web technologies. The interface is enhanced with
advanced controls that help users pinpoint individual routing events. Further,
our framework can be easily reused to build new tools for the visualization of
graphs and network that evolve over time. We detail all the new requirements
collected with the help of experienced users of BGPlay, and explain how our
new design addresses them. We also prove the effectiveness of our tool borrow-
ing a use case from a recent research activity on country-wide Internet outages
caused by censorship. Finally, given the nature of the framework, we explain
in detail the technical and algorithmic aspects of our work.

Chapter 7 deals with the visualization of router paths originated with the
traceroute command, i.e. a network utility that allows to discover how a com-
puter connected to the Internet reaches a certain target. We present TPlay, a
tool for the dynamic visualization of traceroutes at multiple abstraction levels.
It gives the user a high-level, hierarchical overview of how a portion of the
Internet is connected to a specified target, and allows to interactively expand
specific subnetworks to reveal greater details on how the traffic is routed inside
them. TPlay is based on BGPlay.js, proving the great degree of abstraction
and reusability of the framework in Chapter 6. We describe in great detail
the algorithms that allow to efficiently compute the initial drawing as well as
the updated views, in response to user interaction. The technical side is also
explored, with a focus on the implementation of the layout algorithms.

Part IV represents a meeting point between Parts II and III. The focus is
on the combined visualization of the correlation between active measurements
(e.g. the output of the ping network diagnostic tool) and routing information.

In Chapter 8 we present a methodology to automatically assess the impact
of inter-domain routing changes on the round-trip delay measured to reach spe-
cific targets on the Internet. Such effort is motivated by the growing number
of Internet services that are characterized by strict performance requirements.
Therefore it becomes crucial to constantly monitor the performance of the
network, as well as to analyze recurring routing behaviors for long-term im-
provements (e.g. changes in the agreements with Internet service providers).
We detail a matching methodology that helps us identify correlations between
routing updates and variations in the measured performance. We also present
experiments to validate our methodology and post-hoc analysis on the quanti-
tative impact of routing changes on round-trip delay.

Chapter 9 details a visualization framework, called Hydra, in which we

i
i

“main” — 2014/4/27 — 19:37 — page 6 — #16 i
i

i
i

i
i

6 CHAPTER 1. INTRODUCTION

exploit the concepts and results presented in Chapter 8. Our goal consists in
graphically exploring the correlation between active Internet measurements and
inter-domain routing information, driven by the same requirements of near real-
time monitoring and long-term strategic planning. We detail the specific user
needs and the corresponding interface design, based on a mixed geographical
and abstract metaphor. Further, we introduce the reader to the algorithmic
challenges that we faced and the adopted solutions. Finally, technical aspects
of the implemented prototype are briefly explored.

Part V contains further research work and a list of articles, papers and
technical reports that were completed during the Doctorate Program.

Chapter 10 focuses on additional research activity that has little or no
overlap with the network visualization topics presented in Parts II, III and IV,
but still gave rise to interesting results and publications.

Chapter 11 concludes our work with a list of journal articles, conference
papers, and technical reports that were published (or accepted for publication)
during the past three years. Each publication is the tangible result of a research
topic explored in one of the previous chapters of the thesis.

i
i

“main” — 2014/4/27 — 19:37 — page 7 — #17 i
i

i
i

i
i

Part I

Preliminaries

7

i
i

“main” — 2014/4/27 — 19:37 — page 8 — #18 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 9 — #19 i
i

i
i

i
i

Chapter 2

Visualization of Graphs and
Networks

We start by giving an overview on basic definitions and entities in graph theory,
followed by an introduction to graph drawing and network visualization. The
reader can refer to more advanced literature (see, e.g., [DETT98]) for further
information.

2.1 Graph Theory: Basic Definitions

A graph G = (V,E) is a structure composed of a set V of vertices (or nodes)
and a multiset E of unordered pairs of vertices called edges (or arcs). A graph
is said to be directed if the pairs of vertices in E are ordered. Given an edge
e = (u, v) ∈ E, we say that u and v are incident to e and that e is incident
to u and v. Two vertices are adjacent if they are incident to a common edge.
Two edges are adjacent if they are incident to the same vertex.

Given a graph G = (V,E), a self loop is an edge (u, u) ∈ E, while a set of
multiple edges is a set of edges incident to the same pair of vertices u, v ∈ V .
A graph without self loops or multiple edges is called simple. Unless otherwise
specified, in the following we assume all given graphs are simple.

A graph G = (V,E) is complete if there is an edge (u, v) ∈ E for each pair
of vertices u, v ∈ V . A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E)
if V ′ ⊆ V and E′ ⊆ E. The degree of a vertex is the number of edges incident
to it. The degree of a graph is the maximum among the degrees of its vertices.

9

i
i

“main” — 2014/4/27 — 19:37 — page 10 — #20 i
i

i
i

i
i

10 CHAPTER 2. VISUALIZATION OF GRAPHS AND NETWORKS

A path in a graph is a sequence of edges connecting a sequence of vertices.
A path with no repeated vertices is called simple; in the following we assume
all paths are simple. In an undirected graph G = (V,E), two vertices u, v ∈ V
are connected if there is a path from u to v. G is said to be connected if every
pair of vertices in V is connected. A connected component of a graph G is a
maximal connected subgraph of G.

Some special classes of graphs are heavily used in this work. A cycle is
a connected graph such that each vertex has degree exactly two. A tree is a
connected acyclic graph. A leaf of a tree is a vertex with degree one, while a
leaf edge is an edge incident to a leaf. A star is a tree such that removing all
the leaves and leaf edges yields an isolated vertex. A rooted tree is a tree with
one distinguished vertex, called root. In a rooted tree, the depth of a vertex v
is the length of the unique path between v and the root. The depth of a rooted
tree is the maximum depth among all the vertices.

2.2 Graph Drawing and Network Visualization

Graph drawing is an area of mathematics and computer science that combines
methods from geometric graph theory and information visualization, with the
goal of deriving useful and informative representations of graphs. Applications
of such discipline traditionally included cartography, circuit design, and biology.
Further, new topics are gaining momentum with the rise of new technologies:
these include, for example, the analysis of social network and the visualization
of computer networks. In this context, the term Network visualization can
be used as a more general definition encompassing different techniques, not
necessarily limited to formal and geometrical approaches.

A drawing of a graph G = (V,E) is a mapping of each vertex in V to a
distinct point of the two-dimensional plane and of each edge (u, v) ∈ E to a
simple open Jordan curve between the points assigned to u and v. A drawing
is planar if no two edges intersect except, possibly, at common endpoints. A
planar graph is a graph admitting a planar drawing. A planar drawing of a
graph determines a rotation scheme for each vertex, i.e. the circular ordering
of the edges incident to that vertex. Two drawings are equivalent if they
determine the same rotation scheme. A combinatorial embedding (or simply
embedding) is an equivalence class of planar drawings.

An embedding partitions the plane into topologically connected regions
called faces. Vertices and edges are incident to a face if they belong to the
cycle that delimits it. All the faces are bounded by a cycle except for one face

i
i

“main” — 2014/4/27 — 19:37 — page 11 — #21 i
i

i
i

i
i

2.2. GRAPH DRAWING AND NETWORK VISUALIZATION 11

called external face (or outer face). The other faces are called internal faces.
A drawing convention for graphs is a set of rules that the drawing must

satisfy. These rules usually depend on the context and the type of usage asso-
ciated with the drawing. For example, UML diagrams in software engineering
represent vertices as boxes and edges as polygonal chains consisting of alternat-
ing horizontal and vertical segments. Some typical drawing conventions follow.
In polyline drawings each edge is drawn as a polygonal chain. Straight-line
drawings and orthogonal drawings are special cases of polyline drawings, with
edges represented respectively as straight line segments and polygonal chains
of alternating horizontal and vertical segments. For acyclic directed graphs,
upward drawings represent edges as curves monotonically non-decreasing in
the vertical direction. In contact representations of planar graphs, each vertex
is pictured as a bounded shape and each edge is implicitly represented by the
contact between pairs of vertex shapes.

The aesthetics in graph drawings are usually measured in terms of specific
properties that we would like to preserve and highlight in the final depiction,
to achieve better readability. The minimization of edge crossings is a standard
example, based on the fact that planar drawings of graphs are easier to follow
and understand. The area of the drawing is also a crucial property: standard
techniques generally allow to minimize the total area occupied by the drawing,
or to assign prescribed areas to elements in the drawing (e.g. faces, shapes rep-
resenting vertices, etc). Edge length can give a visual clue on specific properties
of the graph (e.g. the shortest distance between pairs of vertices), therefore the
minimization of the variance of the lengths of edges is often taken into account.
Many more criteria are available, depending on specific needs.

Like every optimization problem, the computation of a drawing for a graph
usually involves a set of constraints related to specific subgraphs or subdraw-
ings. For example, we may require a specific vertex to be placed at the center
of the drawing, or on the outer boundary. Vertices may also be required to be
drawn close together to form a cluster. Specific subgraphs may be required to
fit a given “shape”. Further constraints apply based on the context.

There are many algorithms and formal approaches to produce drawings of
graphs under different drawing conventions, aesthetic criteria, and constraints.
We focus on two main techniques that are particularly relevant in our work.

Hierarchical approaches are a common choice for drawings of directed graphs
that represent dependency relationships between entities. Examples include
PERT diagrams and organizational charts. The goal in such drawings is to
highlight the ordered structure of the underlying graph, so that viewers can
immediately appreciate dependencies and relationships between vertices. As-

i
i

“main” — 2014/4/27 — 19:37 — page 12 — #22 i
i

i
i

i
i

12 CHAPTER 2. VISUALIZATION OF GRAPHS AND NETWORKS

suming for simplicity that the input graph G = (V,E) is directed and acyclic,
hierarchical drawings are usually computed in four steps: 1. vertices in V are
assigned to layers L1, . . . , Ln such that for each edge (u, v) ∈ E with u ∈ Li
and v ∈ Lj we have i > j; 2. the graph is transformed into a proper layered
graph by inserting dummy vertices along the edges that span more than two
layers; 3. the order of vertices on each layer is determined with a procedure that
minimizes the number of crossings between adjacent layers; 4. the actual coor-
dinates are computed for each vertex. We detail examples of such techniques
in Chapters 7 and 9.

Force-directed algorithms are among the most intuitive methods to create
straight-line drawings of graphs. In its simplest form, a force-directed layout
evolves from an initial configuration in a simulated environment where a system
of forces influences the positions of vertices. The typical example consists of
assigning a positive charge to each vertex and an elastic force to each edge,
then running a fixed number of iterations in which the position of each vertex
is updated based on the forces that interact with it. In Chapters 5 and 6 we
show two examples of algorithms that adapt force-directed layout techniques
to specific and partially constrained scenarios.

Finally, a more general technique not strictly related to graph drawing
is that of matrix visualization. It simply consists of representing a graph in
tabular format, thus using a number of graphical elements that is quadratic
with respect to the number of vertices. Each element can be enriched with
colors and patterns to reveal special properties of the underlying graph. For
this reason, matrix visualization is particularly effective for (almost) complete
graphs with properties assigned to each edge. In Chapter 4 we show how to
combine such technique with standard geographical visualization for very dense
networks.

i
i

“main” — 2014/4/27 — 19:37 — page 13 — #23 i
i

i
i

i
i

Chapter 3

Our Reference Scenario:
Computer Networks

This chapter gives a very high level introduction to the basic concepts of Inter-
net communication and routing. We focus on key topics that are later explored
throughout our work. The reader can refer to one of the many available surveys
and textbooks (see, e.g., [Tan02]) for a more detailed background.

3.1 Networks, Protocols, and Tools

The Internet is a collection of computers that can communicate using different
physical channels, from optical fiber cables to WiFi and mobile connections.
Computers are organized in simple hierarchical networks, and the interaction
between any pair of computers is regulated by a number of routing protocols
that operate at different levels of abstraction. Networks are grouped into in-
dependent domains called Autonomous Systems (ASes), i.e. portions of the
Internet that belong to specific real-world organizations. Typical examples of
AS owners are Internet Service Providers (ISPs), private companies, or pub-
lic organizations (e.g. universities). Neighboring ASes interact each other by
means of a defined set of rules for the transmission of information.

Each computer in a network is identified with an IP address (or simply
IP). IPs can be unique locally (i.e. in the network hosting the computer) or
globally (i.e. in the entire Internet). In its simplest form, a computer transmits
information by splitting it into data packets labeled with the IP address of the
target. Some computers are highly specialized for the transmission of informa-

13

i
i

“main” — 2014/4/27 — 19:37 — page 14 — #24 i
i

i
i

i
i

14
CHAPTER 3. OUR REFERENCE SCENARIO: COMPUTER

NETWORKS

tion between end hosts. In particular, routers are responsible for forwarding
data packets between computer networks. The transmission of a data packet
hence follows a router path starting at the source computer and ending at the
target computer.

Data packets can theoretically come in any format, size, and encoding, as
long as the source and target computers agree beforehand on the rules to fol-
low. In practice, however, most computer applications transmit information
using standard Internet protocols. For the purposes of our work, some proto-
cols deserve to be mentioned. The Internet Control Message Protocol (ICMP)
is a protocol typically used for diagnostic or control purposes, or to generate
packets in response to errors in IP operations. It underlies important net-
work diagnostic tools like ping and traceroute, both used extensively in our
work. The Transmission Control Protocol (TCP) and the User Datagram Pro-
tocol (UDP) are the two protocols used in the vast majority of Internet-based
applications. They allow concurrent streams between pairs of computers by
enriching their IPs with additional numeric identifiers called port. TCP is a
rather structured protocol that provides reliable, ordered, and error-checked
delivery of packets. Example usages include connecting to Web pages, deliver-
ing email, and transferring files between computers. UDP, on the other hand,
is a “barebone” container that does not provide mechanisms to guarantee the
delivery or the ordering of packets. It is preferred for time-sensitive communi-
cations (e.g. real-time video streaming) where losing packets is preferable to
waiting for them. Both protocols are founding blocks of the Internet and thus
they have a role in nearly all the chapters of our work.

The policy by which a router decides what is the next hop (i.e. the router
topologically closer to the target to which packets should be sent) depends
on the adopted routing protocol. Pairs of routers in a network instantiate
sessions to exchange control messages that allow to understand the topology
of the network and to make the best choice in terms of transmission speed and
reliability. Routers therefore operate at two different levels: the control plane is
the stage where control information coming from different routers is evaluated
to compute the best route to reach any possible destination; the forwarding
plane is the stage where packets are simply forwarded to the appropriate router,
based on previous computation.

Border Gateway Protocol (BGP) is the protocol that regulates the routing
of packets traversing networks that belong to different Autonomous Systems.
The routers that “speak” BGP are usually placed at the edge of their net-
work and are therefore called border gateways. BGP is based on TCP sessions
instantiated between pairs of BGP-capable routers, called peers. It allows net-

i
i

“main” — 2014/4/27 — 19:37 — page 15 — #25 i
i

i
i

i
i

3.1. NETWORKS, PROTOCOLS, AND TOOLS 15

work operators to define expressive sets of policies to influence the routing,
based on commercial agreements between ASes and traffic optimization rules.
For example, the owner of an AS that is connected to the rest of the Internet
through two different ISPs can selectively configure either of the two as the
default route provider depending on the target to reach. We take into account
several research topics related to BGP in Chapters 6, 8 and 9.

The traffic inside each AS is regulated with simpler routing protocols called
Interior Gateway Protocols (IGPs), usually based on the computation of the
shortest path between any pair of destinations within the network. In Chapter 7
we show a framework for the visualization of router paths that are the combined
result of IGP and BGP protocols.

One last important mechanism of the Internet is the Domain Name System
(DNS), a hierarchical naming system for computers on a network. Domain
names (e.g. www.uniroma3.it) represent an easier way to identify computers
as opposed to IPs and therefore are heavily used by common users on the Web.
Computers send DNS queries to name servers every time a domain name has to
be mapped to the corresponding IP address. All ISPs provide their customers
with one or more name servers in order to answer their requests. Upon receiving
a query, each name server executes a process called resolution, during which an
answer is computed for the query by iteratively querying other name servers.
This often implies querying special name servers called root name servers (or
simply root servers). Currently there are 13 root servers, each identified by a
letter from A to M and operated by different organizations: e.g. A by VeriSign,
B by USC, and C by Cogent. We explain how to monitor the performance of
a root name server in Chapter 5.

Many standard networking tools are available for researchers, network op-
erators, and common users to get insights on different aspects of the Internet.
The ping command is a simple utility that is used to test the reachability of
a host on a network and to measure the round-trip time (RTT) of messages
sent from the source computer to the selected host. It works by sending ICMP
“Echo Request” packets to the selected destination and waiting for the ICMP
response. We employ ping for our research on the correlation between differ-
ent network data sources in Chapters 8 and 9. A more complex diagnostic
tool, traceroute, is used to display the path and measure round-trip times of
packets across a network. It works by sending ICMP packets with gradually
increasing time-to-live (TTL) value, that determines the number of allowed
intermediate hops before the packet is discarded by the router receiving it. For
example, the first ICMP packet has TTL equal to 1: the first router receives
the packet, decrements the TTL value to zero, drops the packet because it ex-

i
i

“main” — 2014/4/27 — 19:37 — page 16 — #26 i
i

i
i

i
i

16
CHAPTER 3. OUR REFERENCE SCENARIO: COMPUTER

NETWORKS

pired, and sends an ICMP “Time Exceeded” message back to the source. The
process stops when the final target sends a response. Traceroute outputs are
the main data source used in Chapter 7, and they also have a role in Chapter 8.

3.2 Organizations and Datasets

The task of designing compelling visualizations for Internet traffic and topol-
ogy would not make sense without a wide array of datasets and organizations
curating them. Some of these organizations regularly publish their data for a
wide audience of network operators and researchers. This section presents the
main examples that recur often in our work.

The Réseaux IP Européens Network Coordination Centre (RIPE NCC)
is an independent, not-for-profit membership organisation that supports the
infrastructure of the Internet in Europe, the Middle East, and parts of central
Asia. The most prominent activity of the RIPE NCC is to act as the Regional
Internet Registry providing global Internet resources and related services (IPv4,
IPv6 and AS Number resources) to members in the RIPE NCC service region.
Further, the RIPE NCC provides databases and monitoring tools that support
stable, reliable and secure Internet operations.

RIPE Atlas [RIP10] is an Internet measurement network. It consists of
globally distributed probes that measure Internet connectivity and reachabil-
ity with standard networking tools like ping and traceroute. Researchers and
network operators can schedule measurements towards custom Internet targets
to satisfy different use cases, e.g. verifying the reachability of an Internet service
or discovering the different ISPs that route traffic towards a certain destina-
tion. Atlas probes also run default “static” measurements towards interesting
Internet services including all the root name servers. Most measurements are
publicly available for statistical analysis and research. We detail the usage of
RIPE Atlas data in Chapters 7 and 8.

The Routing Information Service [RIP01] (RIS) collects and stores BGP
routing data from several locations around the globe. It is based on Remote
Route Collectors, i.e. software routers typically placed inside Internet Ex-
change Points to collect routing information from other routers. In particular
each route collector instantiates BGP sessions with collector peers, i.e. border
gateways belonging to real world ISPs and organizations, and collect all their
BGP updates. The University of Oregon maintains a similar project worth to
mention, called Route Views [Uni97]. The datasets coming from both projects
are often used in conjunction to perform various studies on the AS-level Inter-

i
i

“main” — 2014/4/27 — 19:37 — page 17 — #27 i
i

i
i

i
i

3.2. ORGANIZATIONS AND DATASETS 17

net topology. We cite numerous examples of previous studies and detail our
own findings in Chapters 6, 8 and 9.

Finally, it is worth to mention RIPEstat [RIP11], a Web toolbox that makes
it easier to access the various datasets maintained by the RIPE NCC. For
example, these include geolocation and registration records that allow to build
a mapping between IP addresses and ASes owning them. We mention RIPEstat
in Chapters 6, 7 and 8.

MaxMind [Max02] is a provider of geolocation and online fraud detection
tools. They regularly update and publish databases containing information
related to IP addresses publicly announced on the Internet. Examples of such
information include the geolocation of IPs and the mapping to the Autonomous
Systems that announce them. MaxMind databases are used by researchers in
many different projects. In Chapter 4 we describe how to use their geolocation
database to aggregate flow data based on the geography of source and target
hosts.

Other organizations collect Internet measurements from various sources and
share their results on the Web. The Cooperative Association for Internet Data
Analysis (CAIDA) investigates practical and theoretical aspects of the Inter-
net, providing insights into its infrastructure, behavior, usage, and evolution.
One of their main projects, Archipelago [CAI07], is an active measurement in-
frastructure composed of geographically distributed monitors that can perform
coordinated Internet probing. CAIDA is also very active in the topic of Internet
visualization; we will detail some examples in Chapter 6. SamKnows [Sam08]
is a company specialized in providing an accurate picture of global broadband
performance. Their goal is accomplished with “whiteboxes” installed in houses
and offices around the world to get an indication of the quality perceived at
the user end. The collected data and related statistics are published online.

i
i

“main” — 2014/4/27 — 19:37 — page 18 — #28 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 19 — #29 i
i

i
i

i
i

Part II

Visualizing Service Performance

19

i
i

“main” — 2014/4/27 — 19:37 — page 20 — #30 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 21 — #31 i
i

i
i

i
i

Chapter 4

Exploring Flow Metrics in Dense
Geographical Networks

The visualization framework described in this chapter was designed and de-
veloped during a three-month internship at the Microsoft Skype Division in
Tallinn, Estonia. Microsoft Corporation owns the original intellectual prop-
erty rights. The datasets used during the development were de-identified before
producing material for this publication.

4.1 Introduction

In recent years there has been a considerable growth in the availability of mas-
sive datasets describing bidirectional flow of information between end hosts in
dense networks. This poses new challenges to researchers and network opera-
tors that are eager to use such information for business intelligence, decision
making, and service optimization. Skype, the popular VoIP service with more
than 300 million active users, makes no exception: the cloud infrastructure
supporting its core services is a potential source of crucial information, but it
cannot turn useful without proper ways to make sense of it. What is needed is
a general purpose tool that allows users to build initial hypotheses by looking
at raw data, discovering the extent of knowledge hidden behind the surface.

The main difficulty lies in the density of the networks under examination.
The elevated number of interconnections makes it practically impossible to
adopt any standard technique for the rendering and interactive exploration of
graphs. Simple tabular visualizations of matrices do not work either, as soon

21

i
i

“main” — 2014/4/27 — 19:37 — page 22 — #32 i
i

i
i

i
i

22
CHAPTER 4. EXPLORING FLOW METRICS IN DENSE

GEOGRAPHICAL NETWORKS

as the size of the input grows beyond few dozens of vertices. On top of that,
the input data becomes more interesting when put in a historical perspective
and enriched with many different facets and key indicators. The combination
of all these elements can be tackled reasonably well for highly specific studies
and analyses. However, it is very challenging to build general purpose tools
aimed at exploring raw data with the naked eye.

In this chapter we present a framework, Flowcliqr, designed for the in-
teractive exploration of time-labeled multivariate flow datasets. Flowcliqr
offers a dual visualization that allows for both quick lookups and general pat-
tern recognition. The input data is automatically aggregated and the user can
navigate forth and back between different levels of detail, while keeping an eye
on the general picture. The design of our framework privileges the execution
of a number of simple tasks: assessing the volume and features of the flow
between pairs of locations, enumerating destinations with poor performance,
sorting flow streams based on their volume, and so on. These tasks can be easily
combined based on user needs, leading to useful insights about the underlying
data. In a broader sense, Flowcliqr can visualize arbitrarily dense directed
graphs with quantitative attributes on the edges between pairs of vertices. Our
work, however, is primarily focused on the visualization of quantitative network
metrics between pairs of geographical locations and their evolution over time.

Section 4.2 presents the latest techniques for the visualization and explo-
ration of flows and dense graphs or matrices. Section 4.3 introduces the reader
to the simple data structures expected as input and some preliminary opera-
tions that we perform on the data. In Section 4.4 we describe the interface of
our framework and explain how users can interact with it. Section 4.5 contains
the details of the qualitative study we performed to validate our user inter-
face. Algorithmic and technical details are presented in Section 4.6. Finally,
conclusions and ideas for future improvements are in Section 4.7.

4.2 Related Work

The visualization of flow in graphs and geographical networks is a recurrent
topic in the field of graph drawing. Edge bundling [Hol06] is a well-known tech-
nique for the visualization of compounds graphs. It applies to any graph and
any mapping of its vertices to arbitrary positions on the plane. The technique
consists of bending adjacent edges to reduce visual clutter and highlight the
implicit structure of the connectivity between vertices. We discarded this op-
tion in our framework because it does not solve clutter in very dense networks

i
i

“main” — 2014/4/27 — 19:37 — page 23 — #33 i
i

i
i

i
i

4.3. DATA ABSTRACTION 23

and drawings of bended edges can be misleading. Buchin et al. [BSV11] build
flow maps using spiral trees to induce a clustering on the targets and smoothly
bundle lines. In a more recent work [NB13] similar maps are obtained with a
new edge bundling technique that avoids ambiguous connections between pairs
of vertices. Both techniques are visually compelling when describing the flow
from a single source to many targets, but are not adequate for dense graphs.

A number of solutions can also be found in the field of information visualiza-
tion. Andrienko et al. [AAD+08] present a taxonomy of the possible approaches
available for the geovisualization of dynamics, movement, and change. They
identify three alternatives: 1. direct depiction of data, which can easily lead to
clutter and slow rendering; 2. use of summaries like aggregation, generalization
and sampling; 3. use of statistical methods to extract patterns before visualizing
them. The authors claim that such visualizations can generally be evaluated
by small numbers of experts, and that usual evaluation tools like error rate
and task completion time are not sufficient. Guo [Guo09] proposes an interface
to render large spacial interaction data, consisting of multiple views: a geo-
graphical map with arrows representing flow between regions, a self-organizing
map, and a parallel coordinate plot. The tool is based on a precomputed hier-
archical regionalization based on the volume of flow between pairs of regions.
Although reasonable, such precondition is too strict for our purposes. Boyandin
et al. [BBBL11] present Flowstrates, a visualization approach in which the ori-
gins and the destinations of the flows are displayed in two separate maps, and
the changes of flow magnitudes over time are represented in a separate heatmap
view in the middle. Wood et al. [WDS10] divide the geographical space with a
grid and draw in each cell a replica of the original map that shows inbound flow
from all the other regions. Their idea is further expanded in [WSD11], where
replicas show approximate flow patterns by means of time series plots. All the
above three approaches, however, can lead to cluttered views when the input
dataset grows in size. Elmqvist et al. [EDG+08] present a matrix visualiza-
tion that features fast reordering of rows and columns, data aggregation with
explicit representation, and GPU acceleration to optimize the rendering on
screen. Their approach inspired part of our work while constructing a dynamic
matrix optimized for pattern recognition.

4.3 Data Abstraction

Our work would not make sense without the availability of great quantities of
flow data. This section presents a formal description of the type of input and

i
i

“main” — 2014/4/27 — 19:37 — page 24 — #34 i
i

i
i

i
i

24
CHAPTER 4. EXPLORING FLOW METRICS IN DENSE

GEOGRAPHICAL NETWORKS

Time
Region Country Network

Packet loss
source target source target source target

17:42 Asia Europe China Spain WiFi 3G 0.37%
18:35 Europe Europe Spain Italy WiFi Cable 1.12%
19:01 Europe Asia Italy Japan 3G 3G 0.69%
22:30 Asia Asia Japan China Cable 3G 4.45%

Table 4.1: Example input records for our visualization framework. Each record
features three dimensions (region, country, and network) and one quantitative
metric (packet loss).

the simple precomputation required to appreciate the power of our framework.

We call record each building block of data in our reference scenario. Each
record is labeled with a timestamp and contains attributes extracted from a
single unit of flow between a source host and a target host (e.g. a stream
of packets between two hosts, an ICMP echo request, etc). A metric is a
feature in the dataset, proper of each record and typically belonging either to a
continuous or discrete domain. In the field of computer networks, for example,
the first group includes percentage of packet loss and round-trip delay, while
the second includes the network protocol used for the connection (e.g. UDP or
TCP). In our work we focus on the analysis and representation of quantitative
metrics with a continuous domain. A dimension is an attribute proper of both
source and target hosts in each record. It is typically characterized by a discrete
domain. Common examples in a networking scenario include the country and
the type of Internet access (e.g. cable, WiFi or 3G). An example list of records
is presented in Table 4.1.

Dimensions are crucial to make sense of data by means of aggregation. Our
visualization metaphor makes heavy use of grouping, allowing the user to inter-
actively explore dimensions on request. More formally, we define a dimension
path to be the rule by which individual records are recursively grouped into
larger sets, from the finest to the coarsest level of aggregation. Figure 4.1
presents an example dimension path based on the records in Table 4.1. Given

Root Region Country Network

Figure 4.1: Example dimension path for the records in Table 4.1.

i
i

“main” — 2014/4/27 — 19:37 — page 25 — #35 i
i

i
i

i
i

4.4. INTERFACE AND INTERACTION DESIGN 25

Root

Asia Europe

China Japan

3G WiFi

Italy Spain

3G Cable 3G Cable 3G WiFi

Figure 4.2: Example navigation hierarchy built with the records in Table 4.1
and the dimension path in Figure 4.1.

a set of records and a compatible dimension path, we define the navigation hi-
erarchy as the tree that is constructed with the actual values of dimensions in
each record, following the structure imposed by the dimension path. Figure 4.2
shows the navigation hierarchy obtained using the records in Table 4.1 and the
dimension path in Figure 4.1. A navigation frontier is a subtree obtained from
a navigation hierarchy, where for each node all its children are either pruned
or kept in the tree. The number of navigation frontiers available for a sin-
gle navigation hierarchy is exponential. Given a navigation frontier, we call
frontier node each of its nodes. We also refer to each leaf as frontier leaf for
convenience. We will use the navigation frontier as an abstraction to describe
the mechanism of interactive exploration that is built into our framework.

4.4 Interface and Interaction Design

The interface of Flowcliqr is presented in Fig. 4.3. It is split into four main
views: the control panel (upper left corner), the timeline (lower right corner),
the dynamic matrix (lower left corner), and the dynamic map (upper right
corner). The example dataset used for this section has three dimensions that
are directly translated into a navigation path, from the coarsest to the finest:
region, sub-region, and country. The two available metrics are round-trip delay
and packet loss.

The control panel contains basic information on the current state of the
visualization and some controls to change the representation of metric values.

i
i

“main” — 2014/4/27 — 19:37 — page 26 — #36 i
i

i
i

i
i

26
CHAPTER 4. EXPLORING FLOW METRICS IN DENSE

GEOGRAPHICAL NETWORKS

Figure 4.3: Overview of the main interface of our framework.

In Fig. 4.3 the focus is on a specific day (5 September 2013) and each view
is highlighting the flow “within each aggregate”, i.e. having both source and
target hosts within any of the current frontier leaves (e.g. flow within Europe,
within Americas, etc). The selected metric is round-trip delay. The three colors
used in the other views (green, yellow, red) identify three different classes of
values for each metric, reported in the metric scale that is visible just below
the metric name. In the above example green means “below 300ms”, yellow
means “between 300ms and 550ms”, and red means “above 550ms”. The right
side of the control panel contains additional controls. The user can choose
between two different types of metric representation for each pair of frontier
leaves: 1. averages, i.e. only one average value; or 2. stacked values, i.e. the
weighted distribution of metric values in the three different classes, identified
with corresponding colors. The two threshold values in the metric scale that
determine the three corresponding classes of values can be dynamically adjusted
by clicking the appropriate button. Finally, a button allows the user to bring
the visualization back to the original state before any interaction.

The timeline contains a time series with aggregate information for each
date available in the data collection. More specifically, a stacked graph shows

i
i

“main” — 2014/4/27 — 19:37 — page 27 — #37 i
i

i
i

i
i

4.4. INTERFACE AND INTERACTION DESIGN 27

the volume of flow over time for each of the three classes of metric values, as
defined in the control panel. Detailed information for the closest date is shown
when the mouse pointer is placed over the graph. The user can either drag the
slider or directly click the timeline to pick a different date. Upon interaction,
all the views are updated accordingly to show the corresponding data.

The dynamic matrix shows metric values for all possible pairs of frontier
leaves on the selected date. It is a square matrix, where rows and columns
respectively represent source and target frontier leaves. Each square in the
matrix represents a pair of frontier leaves, with size logarithmically proportional
to the total volume of flow and colors reflecting the metric values in the current
representation. The trapezoids on the left and bottom sides of the matrix
represent the full navigation frontier. The hierarchy is explicitly represented
by means of side contact between parents and children. All matrix elements are
left intentionally unlabelled, so that the user can focus on discovering patterns
by looking at the colors of the squares. Hovering any element with the mouse
reveals aggregate information for the corresponding entity (either a frontier
node or a pair of frontier leaves).

The dynamic map shows a circle for each frontier leaf in the current naviga-
tion frontier, positioned at a meaningful location (e.g. for regions of the world,
circles are placed at the centroid of corresponding regions). At any time, each
of such circles shows the same volume and metric values as one of the squares
in the matrix. The dynamic map, therefore, only shows a portion of the data
contained in the dynamic matrix: such portion can change based on user in-
teraction. In the initial state, circles in the map are in correspondence with
squares on the diagonal of the matrix, i.e. each of them represents the flow
with both source and target hosts within the corresponding frontier leaf. The
regions with dashed borders that enclose groups of circles represent the same
hierarchy of frontier nodes that is pictured with trapezoids in the dynamic
matrix. The information panel at the bottom right corner shows information
depending on interaction. The user can also hover individual circles and dashed
regions to get related metric and volume information.

We designed our framework with a focus on interactivity and responsive-
ness. The two main operations that the user can perform are the following:
1. data selection, i.e. narrowing the analysis to the flow originating from a fron-
tier node, targeted at a frontier node, or between two frontier nodes; 2. frontier
expansion, i.e. updating the navigation frontier, by either exploring the chil-
dren of frontier leaves or collapsing sibling frontier leaves into their parent
frontier node. Both operations can be achieved by interacting indifferently
with the dynamic matrix, the dynamic map, or a combination of both. Upon

i
i

“main” — 2014/4/27 — 19:37 — page 28 — #38 i
i

i
i

i
i

28
CHAPTER 4. EXPLORING FLOW METRICS IN DENSE

GEOGRAPHICAL NETWORKS

(a)

(b)

Figure 4.4: Sequence of user interactions needed to study the flow from Italy
to Russia. (a) The dynamic map is zoomed on Europe, where two sub-regions
(Southern and Eastern Europe) are expanded to reveal their respective coun-
tries. The size of each circle is proportional to the volume of flow within the
corresponding country. (b) The dynamic map is focused on the flow from Italy
to Russia.

i
i

“main” — 2014/4/27 — 19:37 — page 29 — #39 i
i

i
i

i
i

4.4. INTERFACE AND INTERACTION DESIGN 29

user interaction, all the views in the interface are automatically updated to
reflect the new state of the visualization. The following subsections give some
examples on how to use Flowcliqr to solve specific user needs.

Finding the total volume of flow and the average round-trip delay
from Italy to Russia on 8 September 2013

First of all, we select the correct date on the timeline and we choose to represent
metrics with average values through the control panel. We then locate the circle
that represents Europe in the dynamic map and double-click it. The interaction
has the effect of updating the navigation frontier by adding all the sub-regions
within Europe to the current representation: therefore both the dynamic map
and the dynamic matrix are updated accordingly. We repeat the same step with
the two circles representing Southern Europe and Eastern Europe, with the ef-
fect of enriching the navigation frontier with all associated countries, including
Italy and Russia. The current state of the map is in Fig. 4.4(a). Note that the
circles representing countries lack the semi-transparent “glow” effect, meaning
that they cannot be further expanded to reveal more detailed information (i.e.
we reached leaves in the navigation hierarchy). We click the circle representing
Italy, triggering the following updates: 1. the row representing the flow from
Italy in the dynamic matrix is highlighted; 2. the size and color of each circle in
the dynamic map represents the flow from Italy to the corresponding frontier
node, and the flow itself is pictured with animated concentric circles centered
at the clicked circle; 3. the stacked graph in the timeline shows aggregate data
for the flow from Italy to all other destinations. We can achieve the same result
by looking up Italy with the search box positioned at the upper right corner
of the dynamic map (see Fig. 4.3). Finally, we hold the Shift key and click
the circle representing Russia. New updates are triggered: 1. the square in the
dynamic matrix representing the flow from Italy to Russia is highlighted; 2. the
flow in the dynamic map is represented with “waves” from Italy to Russia, as
shown in Fig. 4.4(b); 3. the stacked graph in the timeline shows aggregate data
for the flow from Italy to Russia. The requested information can be found in
the info panel on the dynamic map.

Counting how many country pairs in Europe have average packet
loss greater than 10% on 6 September 2013

First of all we focus on the control panel, choosing the right metric and updating
the range of values such that flows with packet loss greater than 10% are

i
i

“main” — 2014/4/27 — 19:37 — page 30 — #40 i
i

i
i

i
i

30
CHAPTER 4. EXPLORING FLOW METRICS IN DENSE

GEOGRAPHICAL NETWORKS

Figure 4.5: Dynamic matrix showing country pairs with average packet loss
greater than 10% in red.

identified with the red color. We select the right date and metric representation.
We then proceed to interact with the dynamic map, first double-clicking the
circle representing Europe and then all the circles representing sub-regions in
Europe, until we reach the country level. We can finally focus on the dynamic
matrix and simply count all the occurrences of red squares that fall within the
portion of matrix related to European countries, as visible in Fig. 4.5.

Finding out what European country receives the highest volume of
flow from Spain on 5 September 2013 and which day sees the
highest volume of flow between the same pair of countries

We select the right date on the timeline. Since we focus on the volume, the
selected metric is irrelevant. We interact again with the dynamic map to show
circles for all European countries and click the circle representing Spain. Apart

i
i

“main” — 2014/4/27 — 19:37 — page 31 — #41 i
i

i
i

i
i

4.5. EVALUATION 31

(a)

(b)

Figure 4.6: Views showing details for the third example task. (a) The flow
from Spain is pictured with concentric blue circles. The size of each circle is
proportional to the volume of flow from Spain to the corresponding country.
(b) The stacked graph in the timeline reaches its peak on 6 September 2013.

from Spain itself, the biggest circle in Europe is the one representing United
Kingdom, as visible in Fig. 4.6(a). To answer the second question we hold the
Shift key, click the second circle, and focus on the timeline (see Fig. 4.6(b)):
the day with the highest volume of flow from Spain to United Kingdom is 6
September 2013.

4.5 Evaluation

Flowcliqr was born with the goal of creating a general purpose framework,
targeted at users previously exposed to the underlying data, allowing them to

i
i

“main” — 2014/4/27 — 19:37 — page 32 — #42 i
i

i
i

i
i

32
CHAPTER 4. EXPLORING FLOW METRICS IN DENSE

GEOGRAPHICAL NETWORKS

get quick insights and build initial hypotheses before starting deeper investi-
gations. Since any interaction with the tool can be decomposed into recurring
tasks, it becomes crucial to verify that these can be correctly and quickly
accomplished by prospective users. This section presents the results of the
evaluation study we conducted after implementing the initial prototype.

We initially thought of conducting a comparative study, where participants
would need to solve a list of tasks both with our framework and with standard
tools (e.g. database queries). However, we quickly discarded this option be-
cause even expert users did not have experience with a standard, unified set of
tools for the purpose of accessing and analyzing the same dataset. Therefore
any comparison would have suffered from potential bias, depending on the rel-
ative experience of the participant. We opted instead for a qualitative study,
where participants were given a set of tasks and feedback was collected at the
end of each task.

In preparation for the study we fed our prototype with a precomputed
dataset, structured like the one used for the figures in Section 4.4 and featuring
four days of flow data from 5 September 2013 to 8 September 2013. The study
was conducted with ten participants (nine male, one female) between 25 and
35 years old. They are all domain experts with a background in computer
science, statistics, telecommunications, or electronics. At the time of the study,
they were already familiar with the data collection from which we derived the
dataset used as test input. More than half of the participants had worked with
the same data collection before, accessing its content by means of database
queries or simple time series plots.

Each participant was initially tested for color blindness. A thorough intro-
duction to the framework followed, with a focus on each of the views and all
the available user interactions. A couple of example tasks were illustrated step
by step. After that, each participant was asked to solve the 15 tasks listed in
Table 4.2. The first four were treated as training tasks, i.e. the participant
had the possibility to ask for help. For each task the examiner recorded the
completion time with a stopwatch, gathered feedback afterwards, and showed
a quicker way to achieve the same result in case the strategy adopted by the
participant was clearly suboptimal. General feedback was asked from each par-
ticipant as a final step after the last task. The average time required by each
participant to complete the study was 50 minutes.

All the participants successfully completed the proposed tasks, adopting
different strategies. The statistics on task completion times are reported in
Table 4.2. It is evident that users quickly learned from mistakes done in pre-
vious tasks. For example, 60% of participants had an instinctive preference

i
i

“main” — 2014/4/27 — 19:37 — page 33 — #43 i
i

i
i

i
i

4.5. EVALUATION 33

Task
Time (s)

avg med stdev

1 Find volume of flow from Africa to Europe on 7 September
2013

17.2 15.5 9.13

2 Enumerate regions receiving flow from Africa with average
round-trip delay greater than 550ms on 6 September 2013

42.9 41.5 17.06

3 Enumerate pairs of regions that have more than 50%
of flow with round-trip delay greater than 700ms on 6
September 2013

90.3 96.5 37.29

4 Enumerate continents that receive flow from Italy on 5
September 2013 with average packet loss smaller than
1.2%

82.2 72.5 27.52

5 Find volume of flow from Italy to Spain on 5 September
2013

34.2 30 13.25

6 Find average round-trip delay from Italy to Spain on 7
September 2013

39 33.5 20.66

7 Find day with highest volume of flow from Italy to Spain 27 21 15.23
8 Find which region receiving flow from Americas has high-

est percentage of flow with packet loss higher than 2% on
5 September 2013

54 52 12.21

9 Find pairs of regions with average round-trip delay greater
than 700ms on 5 September 2013

35.9 34 13.31

10 Find pairs of regions with more than 50% of flow with
round-trip delay greater than 700ms on 5 September 2013

26 25.5 7.94

11 Find days in which the average round-trip delay within
Italy is greater than 300ms

49.7 45 14.07

12 Find days in which the average round-trip delay from Italy
to Russia is between 320ms and 330ms

58.6 52.5 16.63

13 Find the European country receiving the highest volume
of flow from Italy on 6 September 2013

124.5 112 45.06

14 Find the European country receiving the highest volume
of flow from Northern Africa on 5 September 2013

46.7 50 8.54

15 Find how many European country pairs have average
round-trip time greater than 1s on 5 September 2013

59.6 57 14.13

Table 4.2: List of tasks and results of our qualitative study. For each task
the average (avg), median (med) and standard deviation (stdev) values for
completion times are listed.

for the dynamic matrix when solving Task #13 (i.e. they updated the nav-
igation frontier and compared the size of different squares without using the
dynamic map). After being shown a faster solution with the dynamic map,
they quickly changed their strategy and performed much better with Task #14
and Task #15. This is confirmed by the relatively small standard deviation for

i
i

“main” — 2014/4/27 — 19:37 — page 34 — #44 i
i

i
i

i
i

34
CHAPTER 4. EXPLORING FLOW METRICS IN DENSE

GEOGRAPHICAL NETWORKS

the completion time of both tasks, which suggests that users knew precisely
what steps where needed to complete them. Note also how the median comple-
tion time is smaller than the average time for most of the tasks, which suggests
that the outliers can be interpreted as occasional difficulties or distractions
experienced by individual users.

The feedback was overall very positive and enthusiastic. All participants
were particularly impressed by the possibility to finally “see” the data they
had only been able to access with database queries and simple two-dimensional
charts. They also appreciated the power of exploring data both on the dynamic
map and the dynamic matrix at the same time, depending on the specific use
case. Many important suggestions for improvement were collected during the
study. 80% of participants found the timeline to be not enough intuitive to
compare the volume of flow on different days. 50% would have appreciated the
possibility to expand frontier nodes straight to the finest level of aggregation,
without intermediate levels (e.g. sub-regions in the specific example). 50%
had trouble to come up with the right sequence of interactions to highlight the
flow within a specific frontier node on the dynamic map (i.e. click followed by
shift-click on the same circle). 50% overlooked smaller squares in the dynamic
matrix at first sight and 20% suggested to add a “full-screen” capability to
each view as a solution. 50% spent a non-negligible amount of time wondering
where to find the actual answer for some tasks, after completing all the right
interactions. 40% suggested to add a smarter search box to programmatically
specify a query in the form “flow from A to B”. 40% complained that the size
of circles in the dynamic map is not a sufficient clue to estimate the volume.
Further minor observations were related to the specific dataset (e.g. 40% were
not sure whether Russia was to be found under Europe or Asia) and to the lack
of experience with the interface (e.g. 70% of users needed some time before
appreciating the distinction between average and stacked metric values).

4.6 Algorithms and Technical Details

The algorithmic background of Flowcliqr is pretty straightforward. The
drawing of circles in the dynamic map is achieved with a force-directed graph
layout algorithm (see Section 2.2 for a general introduction) including collision
detection. Each circle is represented with two vertices connected by one edge:
the first vertex is fixed at the ideal position for the center of the circle, while the
second is subject to forces and represents the actual position of the visualized
circle. The areas with dashed borders that enclose circles in the dynamic map

i
i

“main” — 2014/4/27 — 19:37 — page 35 — #45 i
i

i
i

i
i

4.7. CONCLUSIONS AND FUTURE WORK 35

are obtained with a state-of-the-art algorithm [Rap92] for the computation of
convex hulls of circles. We use the same algorithm to compute a clipping path
for the representation of flow “waves” between any pair of frontier nodes.

Flowcliqr was implemented as a pure JavaScript Web application, using
the popular D3.js framework [BOH11] for the development of highly interactive
data-driven visualizations. All the views are coordinated following the Publish-
subscribe pattern, so that any user interaction is transformed into an event that
triggers appropriate updates in each view. A special effort was made to improve
the performance of the tool, limiting animations and redraws where possible.
That is crucial especially in the dynamic matrix, where the number of graphical
elements grows quadratically with respect to the size of the navigation frontier.

4.7 Conclusions and Future Work

We presented a framework for the interactive exploration of the flow between
pairs of hosts in a dense network. It allows researchers, network engineers and
managers to quickly assess the performance over time of a network at various
levels of detail, while keeping an eye on the general picture.

In the future we will extend the set of features of our prototype, overcoming
its current limitations. First of all we will follow the suggestions that came out
of the qualitative study presented in Section 4.5. Further, we will extend the
representation of metrics, including the display of non-quantitative metrics, the
explicit rendering of the distribution of values for each metric, and the possibil-
ity to filter specific value ranges for a cleaner visualization. The user will have
the possibility to pick pairs of dates on the timeline, in order to compare related
metric values looking for potential drops or improvements in performance. We
will also run experiments with different dimension paths in order to verify that
the dynamic map metaphor is effective even with non-geographical data. Fi-
nally, we will introduce the possibility to specify a dimension hierarchy rather
than a simple dimension path, allowing the user to choose between two or more
dimensions when expanding individual frontier leaves.

i
i

“main” — 2014/4/27 — 19:37 — page 36 — #46 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 37 — #47 i
i

i
i

i
i

Chapter 5

Monitoring the Load of an
Anycast Root Name Server

The visualization framework presented in this chapter was designed in collabo-
ration with the RIPE NCC. The implementation started at Roma Tre Univer-
sity and was completed during a six-month internship at the RIPE NCC. The
latest version of the prototype is currently maintained by the RIPE NCC and
available online at http://k.root-servers.net/visualk. The two scientific
publications based on our work are listed in Chapter 11. The reader can refer
to [DBSN12] for additional material based on our work.

5.1 Introduction

Root name servers are a critical part of the Internet. They receive hundreds of
thousands of queries per second from name servers (as explained in Section 3.1)
and must answer immediately. Each root server is implemented with a number
of computers spread across several locations worldwide, in order to improve
resiliency and efficiency. Each of such locations is called instance. Currently
each root server comprises at most 70 instances: e.g. A, F and K respectively
have 6, 49 and 18 instances.

While a name server can freely select a root server for each of its queries,
it cannot select the specific instance that will answer it. A widely adopted
mechanism called anycast is instead responsible for the decision. It relies on the
current status of the Internet routing to determine the instance which is most
appropriate, i.e. topologically nearest. Therefore it is possible that consecutive

37

i
i

“main” — 2014/4/27 — 19:37 — page 38 — #48 i
i

i
i

i
i

38
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

queries issued by a “client” name server to the same root server are received
by different instances, depending on the current status of the routing. This
has consequences both from the point of view of the client name server and the
root server itself: the first can experience fluctuations in the elapsed service
time, while the latter can suffer from changes in the distribution of workload
among its instances.

We designed and implemented Visual-K, an interface to visualize the sta-
tus of the service provided by one of the most popular root servers, called
K-root, operated by the RIPE NCC (see Section 3.2). Our approach can be
used to either study what happened during a prescribed time interval or to
monitor the status of the service in near real-time. We visualize: 1. how and
when client name servers migrate from one instance to another; 2. how usual
migrations patterns differ from unusual migration patterns; 3. how the work-
load associated with each instance changes over time; and 4. what is the status
of the service offered to specific ISPs. Our framework helps network operators
improve the quality of the service offered by K-root. Further, it can be used to
spot security issues and to investigate unexpected routing changes.

The chapter is organized as follows. In Section 5.2 we explain the user re-
quirements. In Section 5.3 we describe our visualization metaphor. Section 5.4
presents the feedback collected from the users. In Section 5.5 we present the
layout algorithm used in our approach. In Section 5.6 we describe the design
of a prototype tool based on our framework and the technical challenges faced
during implementation. In Section 5.7 we compare our approach with the ex-
isting literature. Concluding remarks and ideas for future improvement of our
framework are in Section 5.8.

5.2 User Requirements

Like many distributed information services, K-root challenges its operators
with several questions. From the point of view of performance, the main goal
is to optimize load balancing between instances. In terms of reliability, it is
important to understand what happens if some of the instances are faulty. It
is also crucial to know what is the best topology for existing instances, and
where should new instances be deployed from a design perspective. Finally,
operators are interested in knowing how the system reacts to external attacks
(for security reasons) and to changes in the inter-domain routing.

A crucial need to tackle all the above questions consists in understanding
how and when client name servers migrate from one instance to another. The

i
i

“main” — 2014/4/27 — 19:37 — page 39 — #49 i
i

i
i

i
i

5.2. USER REQUIREMENTS 39

concept of migration can be defined as follows. Given two instances u, v, we
say that a client migrates from u to v during an interval of time t′, t′′ (t′ < t′′)
if its last query before time t′ is sent to u and its last query before time t′′ is
sent to v. To give an idea of the migration phenomenon, in 24 hours of normal
operation about 50, 000 clients issue service requests to more than one instance.
The length of the time interval t′, t′′ plays an important role: short intervals
lead to a granularity which is too small, while longer intervals can leave behind
short migrations happening between t′ and t′′. We discussed the issue with
the RIPE NCC and agreed upon the fact that a range of few minutes, with an
upper bound of 10 or 15 minutes, is a good empirical choice for two reasons:
1. routing events and dynamics have compatible times and 2. migrations lasting
only a handful of minutes can be generally ignored by operators.

Furthermore, since migrations are not all the same, a second requirement
consists in clearly separating them into classes. The migration between specific
pairs u, v of instances is considered usual by the operators. For example, that
is the case when u and v are placed in network locations that have high con-
nectivity between them, or if it is known that the Internet routing frequently
oscillates moving clients form u to v or vice versa. Other migrations are instead
considered unusual, for example when they involve pairs of instances deployed
in places with very poor connectivity between them. Given a pair of instances
u, v, deciding if u, v is subject to usual or unusual migration is an evaluation
made by K-root operators, based on extensive knowledge of the underlying net-
work. Such information is of course dynamic and subject to change over time,
but the evolution rate is much lower than the frequency of observed migra-
tions and traffic patterns. From the point of view of operators, both kinds of
migrations are important. Unusual migrations can put in evidence suspicious
activities, misconfigurations, or large-scale faults. Timely detection is crucial
in order to take appropriate actions and countermeasures, e.g. repairing wrong
configurations or limiting the damage. On the other hand, showing usual mi-
gration patterns on a regular basis can help for long-term decisions, e.g. to un-
derstand where the routing is more unstable, what instances exchange clients
more frequently between each other, and where the next instance of K-root
should be deployed.

A third important requirement is to monitor the workload of each instance.
This can be expressed in many different ways: we identified two main metrics,
i.e. the number of clients served by each instance and the number of queries
received by each instance. Both metrics are influenced by migration patterns
and therefore subject to change over time. Operators need to get an immediate
perception of the workload of each instance and the effect of migrations on

i
i

“main” — 2014/4/27 — 19:37 — page 40 — #50 i
i

i
i

i
i

40
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

Figure 5.1: Chart showing the query distribution among all the instances of
K-root.

it, i.e. how clients and queries are redistributed between instances and what
patterns arise. For simplicity, throughout the chapter we will use the number
of clients served by each instance as the reference metric to assess the workload.

Finally, as a last requirement it is sometimes important to focus on the
dynamics of a specific subset of clients of K-root. In particular, monitoring
the evolution of all the queries issued by a specific ISP becomes interesting
for a larger group of stakeholders: not only K-root operators, but also people
directly working for the ISP in question. This is mainly motivated by concerns
on security and performance.

All the above requirements are strongly influenced by events over time,
implying the design of a dynamic monitoring tool. More specifically we should
allow for both offline analysis within a prescribed time interval in the past and
near real-time monitoring. We will consider this as an implicit requirement
influencing the design and architecture of the system as a whole.

Fig. 5.1 contains an example chart traditionally used at the RIPE NCC to
visualize the distribution of queries received by the instances of K-root. The

i
i

“main” — 2014/4/27 — 19:37 — page 41 — #51 i
i

i
i

i
i

5.3. DEFINING A SUITABLE METAPHOR 41

chart simply shows the cumulative number of queries per second received by
each instance, stacking all the values on top of each other to give an idea of the
total workload of the system. Note that it does not give any indication about
usual or unusual migrations, nor it allows to visualize the relationship between
different instances. As an example, consider the sudden small peak which is
visible towards the end of the chart. It is not possible to understand whether
it simply implies an increase in the amount of queries on one or more instance,
or rather a migration of clients between different instances.

5.3 Defining a Suitable Metaphor

Our study started with a formalization step, aimed at designing a data struc-
ture to contain the information collected in our interaction with the RIPE NCC.
In particular we tackled the distinction between usual and unusual migrations
and agreed upon a graph, called migration graph. Each vertex represents one
instance, and each edge connects a pair of instances that are subject to usual
migrations. Consequently we consider unusual any migration between pairs of
instances that are not adjacent in the migration graph.

We then designed an interface that supports the requirements listed in
Section 5.2, after an intensive discussion with K-root operators. We decided to
adopt a geographic map metaphor. The service offered by K-root is represented
as a map. Each instance is a bounded region and its size is proportional to
the number of clients that it currently serves. Two regions are adjacent if the
corresponding instances are adjacent in the migration graph. The map changes
over time as follows: 1. regions change their size according to the fluctuations
in the number of served clients, 2. usual migration flows are pictured as bubbles
traversing the boundaries of adjacent regions, and 3. unusual migration flows
are highlighted with impact graphics as bridges across the regions.

We opted for the above metaphor for a number of reasons. First of all,
geography is generally appropriate to describe abstract entities, quantitative
informations and relationships between elements (see Section 5.7 for a more de-
tailed discussion). Further, the multiplicity of potential stakeholders must be
addressed with a simple and unified model, where all the relevant information
is ideally visible at a glance without the need for an extensive technical back-
ground. Finally, given the traditional meaning of the concept of “migration”,
we found the map metaphor to be quite natural and well suited.

We investigated and screened out alternative metaphors for different rea-
sons. As an example, we could visualize the service on a real geographical map,

i
i

“main” — 2014/4/27 — 19:37 — page 42 — #52 i
i

i
i

i
i

42
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

since the actual coordinates of each instance are known. We discard this choice
for several reasons: 1. the dynamics by which a client chooses a specific instance
depend on routing policies defined by ISPs, that usually overlap geographically
and span over more than one country or continent; 2. migration patterns are
also influenced by the status of the routing and largely independent on the
geography; 3. combining the geographical data with migration patterns can
easily lead to information cluttering; finally, 4. network operators are used to
the concept of a logical view as opposed to a geographical view, as long as they
can rely on a new mental map that does not change significantly over time.
Section 5.7 documents a number of additional approaches that are related to
our choice, together with the reasons why we did not follow any of them.

Our metaphor can be implemented in many different ways. We propose
two approaches: the country map and the octopus map.

Country Map

A country map is a contact representation (see Section 2.2) of a migration
graph, where each instance has an identifying color and a shape resembling
a country on a real world map. The adjacency between two instances is im-
plicitly represented with the shared boundary between the two corresponding
countries. Non adjacent instances are instead represented as countries sepa-
rated by oceans, lakes, or other countries. Usual migration flows between two
instances can traverse any shared segment of the boundary between the corre-
sponding countries. They are realized with bubbles that grow on the boundary
with the color of the instance losing clients, and then move into the receiving
instance assuming its color. Unusual migrations are simply represented with
overlaid bridges temporarily connecting non adjacent countries. They are vi-
sually implemented as arrows pointing to the instance that receives the flow,
traversed by bubbles with size proportional to the amount of flow.

One might object that only planar graphs can be represented if 1. vertices
are planar regions with disjoint interiors, 2. vertices are adjacent in the graph
only if they share a point in the map, and 3. no four regions meet at a point.
However, if we ignore the third condition we can represent a much wider class
of migration graphs. These are called planar map graphs in [CGP98] and can
contain up to 27n maximal cliques, where n is the number of vertices.

Fig. 5.2 shows two snapshots from a prototype implementation of a country
map. Fig. 5.2(a) shows the map at a certain instant. The instances are colored
based on the chart in Fig. 5.1. The green, light blue, orange, red, and yellow
countries from a clique and therefore they share a point. The name servers of a

i
i

“main” — 2014/4/27 — 19:37 — page 43 — #53 i
i

i
i

i
i

5.3. DEFINING A SUITABLE METAPHOR 43

(a)

(b)

Figure 5.2: Country map implementation. Each instance is represented as
a country, with an area proportional to its relative weight. The adjacency
between two instances in the migration graph is implicitly represented with
the shared boundary between the two corresponding countries. The ocean
separates the instance at the top right corner from all the others. (a) The map
at a certain instant. Note how for each country the portion of clients belonging
to a specific ISP (if any) is represented with grey circles. (b) A snapshot of
an animation of the same map, where usual and unusual client migrations are
visible.

i
i

“main” — 2014/4/27 — 19:37 — page 44 — #54 i
i

i
i

i
i

44
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

(a)

(b)

Figure 5.3: Octopus map implementation. Each instance is represented as a
circle. The adjacency between two instances in the migration graph is repre-
sented as a “tentacle” connecting the corresponding circles. (a) The map at
a certain instant. For each circle, the portion of clients belonging to a certain
ISP (if any) is represented as a concentric grey circle. (b) A snapshot of an
animation of the same octopus, where usual and unusual client migrations are
visible.

i
i

“main” — 2014/4/27 — 19:37 — page 45 — #55 i
i

i
i

i
i

5.4. USER FEEDBACK 45

well known ISP are also shown as circles of appropriate size, distributed among
different instances. Fig. 5.2(b) shows a step of the animation. Usual flow is
rendered with bubbles traversing the borders of adjacent countries. Unusual
flow is instead represented with an arrow connecting non-adjacent countries.

Octopus Map

An octopus map is an abstract visualization where each instance is represented
as a circle with an identifying color, while each adjacency between two instances
is represented as a “tentacle” of neutral color connecting the corresponding
circles. Usual migration flows between adjacent countries are represented with
two visual effects: 1. the tentacle traversed by the flow changes color and
size, reflecting respectively the instance that releases clients and the amount of
clients flowing to the receiving instance; 2. the flow itself is represented with
bubbles pouring into the receiving instance from the tentacle, starting with the
color of the instance losing clients and progressively assuming the color of the
receiving instance. Unusual migrations are represented again with temporarily
overlaid bridges between non adjacent circles, realized as arrows of appropriate
size pointing to the receiving instance.

Fig. 5.3 shows two snapshots from a prototype implementation of an octopus
map. Fig. 5.3(a) shows the map at a certain instant. The name servers of
a well known ISP are also shown as circles of appropriate size, distributed
among different instances. Note that we used the same colors in Fig. 5.2,
while the underlying migration graph is different and specifically not planar:
an edge crossing can be identified right under the topmost instance. Fig. 5.3(b)
shows a step of the animation with usual and unusual client flows, respectively
represented with bubbles pouring into instance circles and arrows pointing to
the receiving instance.

5.4 User Feedback

This section describes the impact of our visualization framework from the per-
spective of different types of potential users. We also give a comparison be-
tween the two visualization approaches presented in Section 5.3, based on the
feedback collected during the design and implementation phases.

We identify two types of potential users: 1. all the RIPE NCC employees
directly or indirectly involved with the management and improvement of K-
root, and 2. the vast audience of ISP operators that rely on K-root as one of
the foundations for their DNS services. About users of type 2 we observe that

i
i

“main” — 2014/4/27 — 19:37 — page 46 — #56 i
i

i
i

i
i

46
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

the possibility to visualize data specific of a certain ISP is currently inhibited
by the privacy policy adopted by the RIPE NCC. That is motivated by the
strict confidentiality of all the query logs collected by K-root instances. The
policy can be openly discussed and expanded (e.g. introducing anonymization
rules) once the large community of ISPs and network operators shows interest
for the service. The remainder of this section focuses on users of type 1.

The cooperation with the RIPE NCC played a major role throughout the
creation of our visualization framework. Fifteen staff members were periodi-
cally involved in testing and evaluation. Four of them are personally responsible
for the maintenance and development of K-root and also participated in im-
portant discussions on requirements and qualities of the visualization. With
their help we managed to focus on the requirements while looking for a suitable
metaphor. As an example, during our initial interactions the users gave a neg-
ative evaluation of a first version of the migration graph where both usual and
unusual migration patterns were represented using country adjacencies. This
allowed to devise the current version of the graph.

We collected feedback during plenary meetings, presentations, and informal
discussions. All the users were presented with snapshots and example videos of
the two implemented approaches and asked to compare them with respect to
the requirements discussed in Section 5.3. In particular, once a stable prototype
of the two visualization metaphors was ready, the users were asked to provide
at least one preference for each requirement, together with a brief motivation.
The results of the comparison are presented and explained in Table 5.1. Note
that the second requirement in the table (Topology of the migration graph) is
a minor concern, because the topology is a needed input of the framework,
rather than an expected output.

The comparison highlights a slight preference towards the octopus map im-
plementation. The motivations expressed by different users to justify their pref-
erence, together with comments gathered during the early evaluation phases,
are valuable because they allow to determine advantages and disadvantages of
the two implementations. We present a brief list of contributions. Both visual-
izations are appreciated for the new insight they provide on existing data and
in particular for the detection of usual and unusual migrations, which did not
emerge from previous visualizations (see e.g. the one presented in Section 5.3).
That gives a better representation of the dynamics of the system, and can help
both as a validation tool for load distribution and as a system for anomaly de-
tection. The circular shapes of instances in an octopus map are generally more
readable than the complex shapes in a country map, and the corresponding
area can be estimated more precisely. The octopus map conveys information

i
i

“main” — 2014/4/27 — 19:37 — page 47 — #57 i
i

i
i

i
i

5.4. USER FEEDBACK 47

Country map Octopus map

Usual migration patterns X

Topology of the migration graph X

Unusual migration patterns X X

Workload of each instance X

Status of the service offered to an ISP X X

Table 5.1: Results of the comparison between the two available implementa-
tions for our visualization framework. For each requirement, users were re-
quested to choose at least one between the two alternatives. In the above table
we marked every requirement-visualization pair with a total preference equal
or greater than 2

3 , i.e. at least 10 votes out of 15.

on usual flows of clients in a more explicit and static way, by means of tentacles
with appropriate color and width. On the other hand the usual flow of country
maps, although generally considered more appealing, only relies on the size of
flowing bubbles to give an indication on the amount of flow. The representation
of instance adjacency in the country map is preferred because it displays input
information in a simple way, without using overwhelming graphical elements.
The second is instead less preferred because tentacles may intersect each or
present different lengths, resulting sometimes confusing to the users. Unusual
migrations are basically identical in the two approaches, so no preference ap-
plies. The adoption of impact graphics (i.e. arrows overlaid onto the map)
is particularly appreciated because it helps operators to spot anomalies at a
glance, distinguishing them from usual migration patterns, even when they are
not paying attention to the overall animation.

Furthermore, the two approaches present differences that are relevant from
a more theoretical point of view. First of all, the total area needed by a
country map is usually much less than the one needed for an octopus map,
which positively affects the readability of the visualization. On the other hand,
octopus maps can represent any kind of graph, although dense non-planar
graphs can result in poor and confusing visualizations.

The latest version of our prototype runs on a dedicated display in the Global
Information Infrastructure department at the RIPE NCC. The animation con-

i
i

“main” — 2014/4/27 — 19:37 — page 48 — #58 i
i

i
i

i
i

48
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

stantly runs as a background monitoring tool for the operators of K-root. Un-
usual patterns catch the attention of the operators more easily, because of the
way they are visualized, and therefore motivate deeper analysis and appropri-
ate countermeasures when needed. All the other features (usual migrations,
size of instances, etc) are instead always visible, so that operators can appre-
ciate an overview of the system at any time and get inspiration for long-term
improvements.

On a related note, operators find it particularly interesting to use the system
in conjunction with BGPlay [CDM+05], an inter-domain routing diagnostic
tool that we describe extensively in Chapter 6. Once an unusual migration
is spotted, BGPlay can be used to check if there is a correlation with some
routing change or if the event needs a more thorough analysis.

5.5 Algorithms

The algorithms that support our two visualization approaches take as input a
migration graph G = (V,E) and a sequence of time instants t1, . . . , tk, where
t1, tk is the time interval of interest and t2, . . . , tk−1 depend on the adopted
sampling unit. We assume thatG is connected. If not, the algorithm is repeated
independently on each connected component and the results are combined at
the end. Both algorithms construct an animation describing the behavior of
the clients in the sequence of time instants t1, . . . , tk. We denote by ct(v) the
number of clients whose last request of service before time t is received by the
instance v. Given a time interval t′, t′′, the number of migrants associated
with u, v at t′, t′′, denoted mt′,t′′(u, v), is the number of distinct clients that
migrate from u to v during t′, t′′. We denote the flow between u and v as
ft′,t′′(u, v) = max(0,mt′,t′′(u, v)−mt′,t′′(v, u)).

Given the features of our two implementations, the respective algorithms
are quite different. However they share a subdivision in two main phases: the
preprocessing, which is computed when the system starts, and the animation,
that is repeated for each ti. In the following subsections we explain the two
algorithms in detail.

Country Map Algorithm

The preprocessing for country maps is composed of three steps:

1. Check if G is a map graph. If that is the case construct its backbone,
i.e. a planar graph obtained from G by substituting some of its cliques

i
i

“main” — 2014/4/27 — 19:37 — page 49 — #59 i
i

i
i

i
i

5.5. ALGORITHMS 49

with stars. Otherwise, remove edges until G is a map graph. Compute a
planar topology for the backbone.

2. Find a straight-line drawing of the backbone preserving its planar topol-
ogy, such that each vertex v has a surrounding “free area” roughly pro-
portional to the average of the clients that it serves in any t ∈ t1, . . . , tk.

3. Construct the skeleton, i.e. a constrained Delaunay triangulation of the
drawing found in the previous step. The skeleton will be used as the
underlying graph during the entire animation.

The animation is performed for each interval ti, ti+1 and is composed of two
steps:

4. Draw the skeleton: construct a planar straight-line drawing of the skele-
ton preserving its topology, such that for each vertex v its incident faces
can be split to determine an area surrounding v roughly proportional to
cti+1(v).

5. Draw the map: construct a drawing of the country map at time ti+1,
based on the drawing of the skeleton, and compute the animation from
ti to ti+1.

In Step 1 we check if G is a map graph. If that is the case, we construct
a planar embedded backbone. The backbone is obtained from G by removing
the edges of a suitable set of cliques and substituting the edges of each of such
cliques with a star connecting a new vertex to the vertices of the clique. More
formally, let v1, . . . , vk ∈ V be the vertices of a selected clique. We replace the
edges in the clique with a new vertex c and edges (v1, c), . . . , (vk, c). An example
is presented in Fig. 5.4(a) and Fig. 5.4(b), using the map graph of Fig. 5.2(b).
In [Tho98] it is shown that testing if a graph is a map graph can be done in
polynomial time. However, in [CGP06] it is argued that the exponent of the
polynomial bounding the running time from above is about 120. Therefore
we use a much simpler heuristic that works as follows. We first check if G is
planar. If yes, we are done. Otherwise, we look for a maximal clique in G with
the algorithm in [BK73], that is known to be efficient in practice. Then, we
replace the clique with a star and perform again the planarity testing. This is
repeated until either the obtained graph is planar or until no clique is found.
If we are not able to find a backbone for G, then we remove the edge (u, v)
with the smallest number of migrations in the given time interval, i.e. such
that

∑k−1
i=1 fti,ti+1(u, v) + fti,ti+1(v, u) is minimized, and repeat the process.

i
i

“main” — 2014/4/27 — 19:37 — page 50 — #60 i
i

i
i

i
i

50
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

nap

ams-ix

tokyo

denic

linx

apnic

delhi

mix

emix

qtel

grnet

isnic

cern

nskix

tix
ficix

bix

poznan

nap

ams-ix

tokyo

denic

linx

apnic

delhi

mix

emix

qtel

grnet

isnic

cern

nskix

tix
ficix

bix

poznan

(a) (b)

Figure 5.4: (a) Migration graph for K-root. A clique of size 5 is highlighted
with thick edges. (b) Backbone used in Fig. 5.2(b), obtained replacing the
clique with a star centered at the grey vertex.

The removed edges correspond to migration patterns that we can consider less
interesting. It is also possible to involve RIPE NCC experts in this process,
identifying and discarding less interesting migration patterns with their help.

Step 2 is devoted to find a straight-line drawing of the backbone, such that
each vertex has a surrounding free area that is roughly proportional to the
average area it will have during the animation. To perform this step we use a
spring embedder (see Section 2.2) that preserves the given planar topology (see,
e.g., [DLR11]). Charges and spring lengths are assigned so that each vertex is
ideally surrounded by the desired free area. In particular, each vertex v has
a positive charge w(v) equal to the average number of clients in t1, . . . , tk and
each edge (u, v) is a spring with preferred length equal to the sum of the radii
of two circles whose areas are respectively equal to w(u) and w(v).

Step 3 adds an additional set of edges E′ to the drawing of the backbone,
transforming it into a maximally triangulated planar drawing. E′ is needed to
easily morph the geographical map later in Step 5. All edges in the subset A =

i
i

“main” — 2014/4/27 — 19:37 — page 51 — #61 i
i

i
i

i
i

5.5. ALGORITHMS 51

E′ \E are marked as additional. We use a constrained Delaunay triangulation,
in order to maximize the angles between adjacent edges in the resulting graph.
This is useful to give more degrees of freedom to the spring embedder used in
Step 4.

In Step 4 the layout of the skeleton is modified to make it suitable for the
construction of the map at any instant t ∈ t1, . . . , tk. We use a spring embed-
der in which charges and preferred spring lengths change over time (see, e.g.,
[EHK+04]). The initial setting is similar to the one explained for Step 2: each
vertex v has a positive charge w(v) that is equal to ct(v), while each edge (u, v)

is a spring with preferred length equal to

√
w(u)+

√
w(v)√

π
. The layout evolves with

an additional constraint on the convexity of the external face. Consider the an-
gle ûvz that is spanned in the external face by each triplet of vertices u, v, z that
are consecutive on the convex hull. The condition ûvz > π is ensured. More-
over, positive charges (vertices) and springs lengths (edges) are constantly up-
dated to increase the precision of the map. Each triangle ∆(v1, v2, v3) with area
denoted by A(∆(v1, v2, v3)) is split such that each of its vertices vi is assigned

an area denoted by A(∆(v1, v2, v3), vi) = A(∆(v1, v2, v3)) ct(vi)
ct(v1)+ct(v2)+ct(v3) .

Hence, given the set of triangles Fv with a common vertex v, the positive

charge of v is regularly updated as w(v)′ = α
2π

ct(v)2∑
i∈Fv A(i,v) , where α is the an-

gle spanned by Fv (which is smaller than 2π only for the vertices of the external

face). Spring lengths are updated accordingly with

√
w(u)′+

√
w(v)′√

π
. This can

be seen as a simple implementation of a control system that is periodically
updated based on feedback in order to minimize the error on the output, i.e.
the area surrounding each vertex.

In Step 5 the map is computed, based on the skeleton. Each edge (u, v) is
split at a point euv such that ueuv/ct(u) = euvv/ct(v). Then, for each triangle
∆(u, v, z) a point puvz is found such that the polygons (u, euv, puvz, ezu), (v, evz,
puvz, euv) and (z, ezu, puvz, evz) have areas respectively proportional to ct(u),
ct(v) and ct(z). It is easy to prove that puvz always lies inside the triangle
∆(euv, evz, ezu).

For each vertex v that is not on the convex hull, consider the related set
of triangles Fv = ∆(u1, v, u2),∆(u2, v, u3), . . . ,∆(ulast, v, u1) surrounding v in
clockwise order. The country border for v is the closed polygon (eu1v, pu1vu2

,
eu2v, pu2vu3

, . . . , eulastv, pulastvu1
). See Fig. 5.5(a) for details.

Vertices on the convex hull are handled in a different way. Note that for
graphs with at least three vertices, each of such vertices v has two neighbors u
and z on the convex hull. We denote the set of triangles surrounding v as Fv =

i
i

“main” — 2014/4/27 — 19:37 — page 52 — #62 i
i

i
i

i
i

52
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

v

z

u

ezu

evz

euv

puvz

u v

z

euv

evz

euv'

evz'

o

s

r

u

v

dv

du

(a) (b) (c)

Figure 5.5: (a) Construction of the country border for a vertex that is not on
the convex hull. Each white circle represents a vertex of the skeleton. For
each edge (u, v), a small grey circle represents the point euv. For each triangle
∆(u, v, z), a small black circle represents the point puvz. (b) Construction of
the country border for a vertex on the convex hull. (c) Three possible cases of
construction of the country border with additional edges. For each additional
edge (u, v), two small white circles represent the points du and dv.

∆(z, v, u1),∆(u1, v, u2), . . . ,∆(ulast, v, u). The angle ûvz that is spanned in the
external face is always greater than π, as explained in Step 4. As a consequence,
v can get an arbitrary area on the external face that is only bounded by the line
s orthogonal to (u, v) passing through euv and the line r orthogonal to (v, z)
passing through evz. Given the area value R = ct(v)−∑

i∈Fv A(i, v), we build
the polygon (v, euv, e

′
uv, o, e

′
vz, evz) whose area is R, where e′uv lies on line s, e′vz

lies on line r and o lies on the external face. Hence, the country border for v is
the closed polygon (evz, pzvu1

, eu1v, pu1vu2
, . . . , eulastv, pulastvu, euv, e

′
uv, o, e

′
vz).

See Fig. 5.5(b) for an illustration. Finally, connected graphs with less than 3
vertices are easily converted into maps assigning circle-like country borders to
each vertex.

Once all the country borders have been computed, the animation is per-
formed. The country map evolves from its previous state with a linear mor-
phing preserving adjacencies at any time. Usual migrations between countries
are represented as bubbles traversing the border at randomly chosen points.
Unusual migrations are represented as bridges connecting two countries, with
bubbles traversing them. The size of bubbles and bridges reflects the amount
of clients flowing from one country to another.

i
i

“main” — 2014/4/27 — 19:37 — page 53 — #63 i
i

i
i

i
i

5.5. ALGORITHMS 53

Apart from the main algorithm described above, a number of expedients
are implemented to obtain a map that looks better and fully represents the
underlying data. First, country borders are represented with Bézier curves
where possible. This helps to give a natural look to the map. Furthermore, at
the end of Step 3, each vertex v in the skeleton that represents an instance and

has degree δ(v) greater than a threshold Tδ is replaced with a path ofm = d δ(v)
Tδ
e

consecutive vertices. Each of them is assigned ct(v)
m clients and retains a fraction

of the original adjacencies, with degree lower than Tδ. This helps find better
layouts for the skeleton graph in Step 4. The country border for m is computed
as the symmetric difference between the borders of its vertices. Finally, edges
added in Step 3 and marked as additional are later handled in a different way.
In particular, the spring embedder used in Step 4 assigns a fixed additional
length D to springs representing additional edges. During the construction of
the map (Step 5), two points du and dv are found on each additional edge (u, v)
together with euv, such that udu/ct(u) = dvv/ct(v) and udu + dvv + D = uv.
Then the construction of the border is slightly different with respect to the one
explained in Step 5. For each edge (u, v) marked as additional, the two vertices
u and v respectively choose du and dv as boundary points, instead of euv. In
this way countries that are not adjacent in the graph do not share boundary
points in the map. Note that for each triangle ∆(u, v, z) the point puvz is
still shared by country borders for vertices u, v and z. This inconsistency is
removed in practice using Bézier curves. See Fig. 5.5(c) for an illustration.

Octopus Map Algorithm

The algorithm that generates octopus maps is significantly simpler than the
one for country maps. The preprocessing only requires one step:

1. Compute a topology for G such that minimizes crossings between its
edges. Find a straight-line drawing for G respecting such topology.

The animation is performed for each interval ti, ti+1 and is composed of
three steps:

2. Compute the minimum scaling factor for the drawing of G that allows for
an initial drawing of the octopus map, composed of circles and tentacles.
Avoid unnecessary intersections between shapes. Draw the octopus.

3. Find a new drawing for the octopus that minimizes the total amount of
needed area without introducing additional intersections between shapes.

i
i

“main” — 2014/4/27 — 19:37 — page 54 — #64 i
i

i
i

i
i

54
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

4. Draw the map: construct a drawing of the octopus map at time ti+1 and
compute the animation from ti to ti+1.

In Step 1 a straight-line drawing is computed for the migration graph G,
such that the number of crossings between its edges is minimized. We impose
such condition to improve the readability of the octopus maps derived from
the drawing. The crossing minimization problem is known to be NP-hard
[GJ83, MNKF90]; however, heuristics exist to compute an approximate result
in polynomial time (see [GM03] for reference). Moreover, given that Step 1 is
only computed once for every migration graph, we can even assume to use an
exact algorithm if the size of the graph is limited.

Step 2 is devoted to compute the minimum scaling factor for the drawing
of G, such that all the graphical elements of the corresponding octopus map
can be drawn without unnecessary overlap. More formally, the operation is
performed such that 1. for each vertex v it is possible to draw a circle Cv
centered at v with area equal to cti+1

(v) without intersecting any other circle,
and 2. for each edge (u, v) it is possible to draw a rectangle surrounding (u, v)

with width equal to 2 ∗
√

max(fti,ti+1
(u,v),fti,ti+1

(v,u))

π that only intersects Cu,
Cv and all the rectangles surrounding edges that cross (u, v) in the topology, if
any. The algorithm to calculate the scaling factor is fairly easy and consists in
computing an intersection test on each pair of shapes not supposed to intersect
each other, increasing the scaling factor of the migration graph until there is no
overlap. In its simplest form, Step 2 has a quadratical complexity with respect
to the number of shapes. However, optimization is possible to some extent, e.g.
testing each shape for intersection with its sole neighboring shapes. After this
operation the initial drawing for the octopus map can be computed: 1. each
vertex is replaced by a circle with area equal to the number of clients that it
serves, and 2. each edge is replaced by a link with width proportional to the
amount of flow between its two adjacent vertices.

In Step 3 the layout of the octopus is modified in order to reduce the total
area needed to draw it. The goal is to fit the final version of the octopus inside
a predefined rectangle of fixed size, which represents the screen where the
animation is projected. This is achieved with a constrained spring embedder
that not only preserves the given planar topology (see, e.g., the already cited
[DLR11]), but also does not introduce additional intersections between shapes
of the octopus. In order to shrink the input octopus as desired, each edge is
considered as a spring with preferred length equal to the sum of the radii of
Cu and Cv, while vertices are not assigned any charge. Instead, during each
iteration of the spring embedder all the coordinates in the current drawing

i
i

“main” — 2014/4/27 — 19:37 — page 55 — #65 i
i

i
i

i
i

5.6. TECHNICAL DETAILS 55

are subject to a scaling aimed at fitting the whole drawing into a rectangle of
fixed aspect ratio. The additional constraint for the spring embedder regarding
intersection avoidance between shapes is ensured at the end of each iteration.
The implementation follows an approach similar to the one explained in Step 2,
where the coordinate transformation of each shape is limited until it does not
introduce any new intersection with other shapes.

In Step 4 the new octopus map is finally drawn and the animation is per-
formed. The octopus map evolves from its previous state with a linear mor-
phing preserving adjacencies at any time. Instance circles change radius and
position based on computed coordinates. Tentacles between circles vary in
position, width and color based on the new coordinates and on the actual
flow traversing them. Usual migrations between instances are represented as
bubbles pouring from the tentacles into the circles. Unusual migrations are
represented with arrows connecting pairs of circles. The size of bubbles and
arrows reflects the amount of clients flowing from one circle to another.

A number of additional details are implemented also for octopus maps, to
ensure their clarity and simplicity. First of all, Step 3 does not guarantee
that the final drawing will fit the predefined screen size. Therefore, when
this is not the case, the whole drawing is scaled down accordingly. The new
scaling factor is always available together with the new octopus map, so that
the user can be informed of the necessary change: e.g. visualizing a legend
in the bottom right corner with a circle whose size changes accordingly as a
reference. On a related note some of the tentacles in the octopus map are not
straight, but rather present bend points realized as Bézier curve. This is aimed
at allowing more compact and flexible drawings of the map. The refinement
is easily implemented adding dummy vertices to the drawing, represented as
circles whose diameter fits the width of the corresponding tentacle.

5.6 Technical Details

The implementation of Visual-K predictably leads to a number of questions
and challenges, given the technical features of the system under analysis. First
of all K-root is reached by high volumes of queries, in the range between ten and
twenty thousands per second. Original queries are recorded at each location
and regularly sent to a central repository at the RIPE NCC, where they are
permanently stored. This process was recently improved to make use of a
Hadoop [The05] cluster deployed at the RIPE NCC for distributed storage
and analysis of scientific data and network measurements. To give an idea

i
i

“main” — 2014/4/27 — 19:37 — page 56 — #66 i
i

i
i

i
i

56
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

of the volume of data, 5 minutes of query logs correspond to approximately
300 megabytes, with a compression factor oscillating between two and three.
The remainder of this section presents our implementation, together with the
solutions we devised to approach a complex system like K-root.

We implemented our visualization framework as a Web application. The
prototype is currently maintained by the RIPE NCC and available at the ad-
dress http://k.root-servers.org/visualk/, featuring most of the require-
ments described in Section 5.3. More specifically, users can monitor the status
and evolution of K-root in near real-time, while the possibility to perform of-
fline analysis or to focus on a subset of clients of K-root (e.g. those of a specific
ISP) is not yet available. The workload of each instance is measured in terms
of queries per second. The only metaphor available for the online prototype is
the octopus map, given the preference expressed by K-root operators and de-
tailed in Section 5.4. Some example videos of both metaphors are also available
online [DBSN12].

The front-end of Visual-K is written in JavaScript. It has the main re-
sponsibility of visualizing the map of K-root and animating it from time to
time with the new data sent by the server. Apart from the map itself, the Web
application also shows some control information (e.g. the timestamp in which
the map was last updated). The actual visualization has been realized with a
cross-browser JavaScript library for vector graphics called Raphaël, based on
the Scalable Vector Graphics format. This implies that images and snapshots
can be zoomed and exported without loss of quality; see e.g. Figg. 5.2, 5.3.

The Java server contains the core of the application logic. An associative
map is kept in memory to store the current state of each client, including the
instance that answered its last query. The real-time implementation is divided
into four main steps. 1. At regular time intervals MapReduce jobs are sent
to the Hadoop cluster. For each client of K-root we retrieve the total number
of queries and the instance that received its last query. 2. Before updating
the associative map with the retrieved data, we perform a comparison to de-
tect usual and unusual migrations. 3. For each instance the total number of
queries received since the last MapReduce job is computed, along with mi-
grations. 4. The layout algorithm produces a new map with the computed
data and sends it via a messaging service, allowing Web clients to receive it
asynchronously. Note that only one layout is computed for each step of the
animation, independently on the size and aspect ratio of the screen of any con-
nected client. This avoids the need for expensive computation on every client.
The layout itself is sent as a high-level, vectorial description of the drawing.
Web clients can independently adapt it to the screen and, most importantly,

i
i

“main” — 2014/4/27 — 19:37 — page 57 — #67 i
i

i
i

i
i

5.6. TECHNICAL DETAILS 57

render it with any library or graphical tool.
The communication between server and client is implemented with asyn-

chronous messages, in order to guarantee low coupling between them. We used
Apache ActiveMQ as a message broker, which easily allows the client to register
as a listener and asynchronously receive updates as soon as they are published
by the server.

The performance of the system has been constantly tested and improved
during the implementation. The computation of the geographic map of course
plays a crucial role. We ran stress tests on a laptop with a 2.4 GHz Intel Core
2 Duo processor and 4 GB of RAM. We noticed that in our most advanced
implementation octopus maps are generally computed in about one second per
iteration, which makes them suitable for a near real-time tool. On the other
hand, earlier code for country maps takes more time for the computation of
each map (between 10 and 15 seconds). We consider also the latter to be an
acceptable result, given that our framework needs a time interval of comparable
length to perform a smooth animation to morph a map into the next one. Both
results are of course subject to improvement on more powerful hardware.

An additional note is required on data storing and access. As explained
above, all the query logs collected by K-root instances are downloaded and
stored on the Hadoop cluster. The average delay between the instant when a
query is received by an instance and the time when the corresponding data is
actually available on the cluster varies largely. It depends on many factors, e.g.
the latency in the communication between instances and central repository or
the delay in the storage time depending on the load of the clusters. Although
query logs are usually available about five minutes after being generated at var-
ious locations, every now and then the system experiences huge delays imposed
by distant nodes (e.g. Tokyo and Delhi). Therefore our prototype implemen-
tation applies a safe delay interval of one hour, to wait for the data from all
instances to be correctly sent and stored. Note that this delay is completely
independent from our framework, and can be adjusted at any time in case the
storage time is significantly improved.

The default time period between two layout updates in the prototype im-
plementation is set to five minutes. The average time needed to run each
MapReduce job is heavily influenced by the current load on the Hadoop cluster.
Under normal circumstances it usually takes less than one minute to process
all the query logs spanning a time interval of five minutes. That means that
theoretically the system could be improved allowing for a smaller refresh rate.
However, as explained in Section 5.3, the current rate is already acceptable for
common operational needs.

i
i

“main” — 2014/4/27 — 19:37 — page 58 — #68 i
i

i
i

i
i

58
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

5.7 Related Work

The problem of using geographical maps to visualize non-geographical informa-
tion has been extensively studied. In this section we provide a brief overview
of the literature, focusing on similarities and differences with our approach.

A methodological reference is provided by the cognitive study in [FS05]. It
identifies four semantic primitives to be used when representing data with a ge-
ographical metaphor. Boundaries are discontinuities in the information space
that can be represented with borders. Aggregates are homogeneous zones that
preferably represent homogeneous entity types. We use aggregates and bound-
aries to group clients using the same instance and to separate such groups,
respectively. Loci are information items that have a meaningful location in
the information space. We link together or put side-by-side instances that are
expected to share clients. Finally, trajectories are semantic relationships be-
tween information entities at different locations that can be shown with paths
or routes. We exploit different types of trajectories to represent migrations.

There are at least two systems whose features are similar to the ones in our
framework: GMap and BGPlay Island. GMap [MKH11] visualizes clustered
graphs by means of geographical maps. After determining the layout of the
graph with a force directed approach, clusters of nodes are detected according
to their relative distance. A cluster is represented with one or more geographi-
cal regions. GMap produces maps that look very similar to our maps. However,
its target is quite different from ours: 1. if two vertices are connected by an
edge it is not guaranteed that they have a common boundary, 2. if two vertices
have a common boundary is not guaranteed that they are connected by an
edge, and 3. GMap is not meant to visualize maps whose borders evolve over
time. Using the terminology of [FS05] we can say that GMap privileges the
aggregate primitive. BGPlay Island [CDM+06] extends the widely used BG-
Play routing visualization system [CDM+05] and uses a topographic metaphor
to show hierarchies of ISPs. However BGPlay Island uses the metaphor of a
terrain map rather a political map, and the most stressed primitive is the locus.

Other related literature is the one on cartograms. Area cartograms are
drawings derived from standard geographical maps, where each country is de-
formed so that its area is proportional to a variable specific of that country,
e.g. its population. The deformation process should preserve the original
shape as much as possible. The idea behind cartograms is very close to our
map metaphor, which in fact can be seen as an area cartogram derived from an
imaginary world. Many algorithms for computing area cartograms are avail-
able in the literature (see, for example, [GN04, IS06, OR00]). However, their

i
i

“main” — 2014/4/27 — 19:37 — page 59 — #69 i
i

i
i

i
i

5.8. CONCLUSIONS AND FUTURE WORK 59

attempt to preserve the original shape is irrelevant in our setting, since our
countries do not have a prescribed shape. Also, they have high computational
costs, which make them unsuited for a real-time monitoring tool. In [OR00]
the latter issue is tackled with an algorithm that can be parallelized, but un-
fortunately results are exposed to inaccuracy (e.g. overlap between countries).
Recent approaches [vKS07, dBMS06, KN07, RMN09, AJSS11, BV10, BRV11]
for the computation of area cartograms tend to keep the countries in their
original locations but give them a regular shape, like a rectangle or a “T” or
and “L”. However, the more regular the shapes are, the less graphs can be
represented. Further, none of the above results takes into account scenarios
that include planar map graphs. Finally, the computed layouts are sometimes
hard to read and therefore not suitable for an intuitive visualization.

Voronoi diagrams represent an option for partitioning information spaces
into separate regions. In [RT07] the authors introduce an adaptive version
of the multiplicatively weighted Voronoi diagram [OBSC00], where each ver-
tex in a graph is assigned a closed region with prescribed area. Similarly to
Voronoi diagrams, however, region adjacencies depend on geometric proximity.
Therefore the solution is not compatible with the notion of adjacency graph.

In [GHKK10] it is shown that planar graphs can be represented with adja-
cent convex hexagons. Such shapes could be a valid alternative for our scope.
Although it may be possible to modify the proposed algorithm to represent
also planar map graphs (e.g. using polygons with more sides and loosing the
convexity), the problem of assigning prescribed areas to the shapes remains
difficult to address.

A previous attempt at visualizing the activity of Internet services, includ-
ing K-root, is described in [HFc08]. The authors present a visualization called
Influence Map, which renders a compressed representation of geo-spatially dis-
tributed Internet data. Sets of clients sending requests to the same instance
are located on a real geographical map and a coordinate centroid is computed.
Then a circle is displayed, placed at the centroid and composed of wedges that
represent the amount, distribution and latency of clients. Their work differs
from our approach, in that it is meant to visualize static snapshots of the
service, without focusing on the migrations of clients.

5.8 Conclusions and Future Work

We have presented a framework for the visualization of K-root, one of the
13 root name servers in the world. It relies on a map metaphor that uses

i
i

“main” — 2014/4/27 — 19:37 — page 60 — #70 i
i

i
i

i
i

60
CHAPTER 5. MONITORING THE LOAD OF AN ANYCAST ROOT

NAME SERVER

animations to show the migration of clients among the instances that compose
the root name server.

While in [RFF+08] the authors prove that animations are not generally
suitable to convey information on trends in data visualization, they also argue
that animated drawings are quite useful to create a visualization that is ap-
pealing to the user. At the same time, a real-time monitoring tool necessarily
deals with the evolution of the underlying data. In our framework we find a
reasonable balance between the two needs, using graphical elements that are
independent on the animation. A static snapshot of each step of the animation
contains all the information we want to visualize, as Figg. 5.2 and 5.3 clearly
show. The animation is only needed to gracefully link two consecutive steps,
helping the user to focus on the context.

There are several future research directions that can be undertaken. One
would be to deploy our system to other root servers. This is relatively easy from
a technical perspective; however, there are drawbacks from the organizational
point of view, since logs of queries are strictly confidential and dealing with
them requires an adequate agreement. Another interesting possibility would be
to apply the same techniques to other Internet services based on anycast. One
possible example, mostly interesting nowadays, is the IPv6 6to4 Relay Routing
Service, devised to facilitate the transition between IPv4 and IPv6.

i
i

“main” — 2014/4/27 — 19:37 — page 61 — #71 i
i

i
i

i
i

Part III

Visualizing Internet Routing

61

i
i

“main” — 2014/4/27 — 19:37 — page 62 — #72 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 63 — #73 i
i

i
i

i
i

Chapter 6

Designing a Web-based
Framework for the Visualization
of Inter-domain Routing Events

The project described in this chapter was partially supported by the RIPE
NCC. Part of the material in this chapter is based on [Can12]. The latest
version of the tool we developed is currently maintained by the RIPE NCC
and available online at http://stat.ripe.net. Further material is available
at [CDBS13].

6.1 Introduction

The Internet is often described as a “network of networks”. The task of re-
trieving, analyzing and visualizing its complex structure has always been a
hard challenge for researchers and network operators. However, the availabil-
ity of datasets containing routing information can give important indications
on how the Internet topology works and how it evolves over time. Examples
of such data sources include the Routing Information Service and the Route
Views Project, as explained in Section 3.2.

At the same time, the rise of sophisticated frameworks for the development
of rich Web applications opens a new array of possibilities for the exploration
of routing data. Network operators and researchers demand tools to access
network datasets directly through Web pages, with the goal of exploring and
analyzing specific events and features based on their needs. Cross-browser

63

i
i

“main” — 2014/4/27 — 19:37 — page 64 — #74 i
i

i
i

i
i

64
CHAPTER 6. DESIGNING A WEB-BASED FRAMEWORK FOR THE

VISUALIZATION OF INTER-DOMAIN ROUTING EVENTS

compatibility and performance are therefore primary concerns that have to be
addressed when designing new tools for network data analysis.

In this chapter we present BGPlay.js, a framework originally conceived for
the visualization of BGP routing events. It allows the user to select a specific
IP prefix and a time interval of interest, in order to explore the evolution of
the routing policies related to that prefix. The interface is based on a routing
graph that shows how different ASes reach the target prefix. It also features a
timeline that allows the user to focus on specific routing events, while keeping
an eye on the entire routing history.

BGPlay.js builds on an already existing tool called BGPlay [CDM+05].
The design and implementation, however, were renovated from the ground up to
meet new crucial requirements. In particular, since the early design phases, we
opted for cutting edge Web technologies that would allow to build a modern,
scalable and reusable framework. We also redesigned part of the interface,
adding new intuitive tools while keeping all the power of the original design.
The result is a framework that improves on its predecessor and facilitates the
development of more advanced network visualization tools.

The remainder of the chapter is organized as follows. Section 6.2 presents
various references to the state of the art, including the previously existing
version of BGPlay. Section 6.3 presents our new contribution, with a focus
on the interface and user interaction. Technical and algorithmic details are
discussed in Section 6.5. In Section 6.4 we present an interesting use case
for BGPlay.js, related to massive Internet outages caused by censorship over
the past few years. Section 6.6 presents our conclusions and ideas for future
development.

6.2 Related Work

The main reference project for our work is BGPlay [CDM+05], as already
discussed in Section 6.1. BGPlay is a network diagnostic tool that provides
a graphical representation of a portion of the AS topology and its evolution
over time. More specifically, it combines BGP updates that carry information
about a specific IP prefix and shows the AS-paths used from different vantage
points to reach the prefix over time.

The interface of BGPlay is presented in Fig. 6.1. The core of the visual-
ization is the animated graph. Each vertex represents an AS and is labeled
with the AS number. Red vertices identify ASes that originate the selected IP
prefix: there may be more than one (i.e. if the prefix is allocated to different

i
i

“main” — 2014/4/27 — 19:37 — page 65 — #75 i
i

i
i

i
i

6.2. RELATED WORK 65

Figure 6.1: BGPlay applet as found on http://bgplay.routeviews.org/.

ASes over time, or in case of BGP hijacking). Blue labels identify ASes that
contain at least one collector peer, i.e. a source of BGP routing information
(see Section 3.2 for details). Each collector peer is assigned a distinctive color.
At any time the graph shows all the currently active AS-paths reported by each
of the collector peers. AS-paths that do not change during the reference time
window are grouped together to form trees, pictured with dashed lines that
connect pairs of ASes. All remaining AS-paths are pictured with solid lines us-
ing the distinctive colors of the corresponding collector peers. The timeline on
the left shows a time series with the aggregate number of BGP events observed
within the time interval of interest. High peaks indicate periods of intense
activity (e.g. disconnections, routing policy changes, etc). The available user
interaction resembles that of a media player. The user can animate the routing
graph to see how the reachability changes over a prescribed interval of time.

i
i

“main” — 2014/4/27 — 19:37 — page 66 — #76 i
i

i
i

i
i

66
CHAPTER 6. DESIGNING A WEB-BASED FRAMEWORK FOR THE

VISUALIZATION OF INTER-DOMAIN ROUTING EVENTS

The reader can refer to [CDM+05] for a detailed description of the interface
and the way to use it.

An instance of BGPlay is currently available as a Java applet at the address
http://bgplay.routeviews.org/. Note that, although heavily used until few
years ago, such technology is now outdated and even considered potentially
harmful in modern Web browsers. BGPlay was also offered as a service by the
RIPE NCC for many years, using data from the Routing Information Service
(see Section 3.2). The tool gained attention year after year and became very
popular amongst network operators and researchers.

Over the past few years a number of variations of BGPlay were developed
to deal with specific use cases. iBGPlay [Piz07] helps network operators moni-
tor the reachability of specific target prefixes, based on BGP updates collected
by routers in their ISPs. In other words, the original metaphor of BGPlay is
“inverted” to show how a small group of routers inside an ISP is connected to
an arbitrary portion of the Internet. BGPlay Island [CDM+06] enriches the
visualization metaphor of BGPlay by enclosing nodes within concentric regions
that represent the relative importance of the corresponding Autonomous Sys-
tem. In this way the user can immediately perceive how the traffic to reach a
specific prefix traverses the hierarchy of ISPs on the Internet. Historical BG-
Play [Squ10] is optimized for time intervals spanning entire years. It features
a new technique to filter transient BGP updates, allowing the user to focus
on long-term routing states. It is therefore a privileged tool for the historical
analysis of AS-level connectivity.

The visualization of routing events and topology changes has been explored
by other researchers. Cyclops [OCLZ08] is a tool that allows ISPs to verify
how their services are perceived from hundreds of vantage points around the
world. NetViews [oMCSDNRL08] shows the AS topology on a geographical
map. CAIDA (see Section 3.2) regularly updates visualizations of the IPv4
and IPv6 Internet topology [CAI00] where ASes are drawn on a circle with
polar coordinates that represent their relative importance. The same research
group also worked on Walrus [CAI01], a framework for the visualization of large
graphs in three dimensions that can be used to visualize the AS-level topology.

6.3 User Requirements and Interface Design

We started our research activity collecting all the main requirements that
emerged over the past few years following the first release of BGPlay. In this
phase we also interacted with RIPE NCC representatives that showed interest

i
i

“main” — 2014/4/27 — 19:37 — page 67 — #77 i
i

i
i

i
i

6.3. USER REQUIREMENTS AND INTERFACE DESIGN 67

in feeding a renewed version of BGPlay with historical data coming from the
Routing Information Service. Once the requirements were clear, we focused on
the design and implementation of BGPlay.js.

Gathering New Requirements

The new functional requirements for BGPlay.js mostly deal with usability
and are influenced by the rise of Web-based technologies. First of all, BGPlay
only features an aggregate representation of routing events in the timeline.
This is generally sufficient to appreciate trends over time, but very limiting
when the attention is shifted to specific events. The sequence of routing events
collected within the time interval of interest should therefore be accessible at
any time in a more intuitive way. In terms of usability, users should also be
able to embed the interactive visualization of specific IP prefixes in arbitrary
Web pages, e.g. websites reporting news on network events. Any visualization
should be in correspondence with a unique URL, so that users could quickly
use it for sharing and indexing purposes. Further, the layout of the animated
routing graph should be customizable and the tool should allow to export
custom graph layouts for easy reuse.

Non-functional requirements are also heavily influenced by the new tech-
nological challenges. First of all, as already mentioned in Section 6.2, the
current implementation of BGPlay relies on Java, which represents a limita-
tion in modern Web browsers. Our renovated framework should therefore be a
Web application purely based on JavaScript, without the need for third-party
plugins. It should be compatible with all major browsers and platforms, in-
cluding smartphones and tablets. As a consequence, the visualization should
adapt seamlessly to different screen resolutions and computing capabilities.

As a last important requirement, the framework should support data ab-
straction and future development based on different data sources (e.g. tracer-
oute data, as explained in Chapter 7). Fig. 6.2 presents the abstract domain
model that we designed when collecting requirements, mostly inspired to graph
concepts. A node is an entity in the network. Each node may contain zero or
more sources and/or targets. An event is originated by a specific source and
has the effect of updating the path that starts at the node containing the source
and reaches the node containing one of the targets in the network. In the case
of inter-domain routing nodes are ASes, sources are collector peers, targets are
IP prefixes, events are BGP updates, and paths are AS-paths announced in
the updates over time.

i
i

“main” — 2014/4/27 — 19:37 — page 68 — #78 i
i

i
i

i
i

68
CHAPTER 6. DESIGNING A WEB-BASED FRAMEWORK FOR THE

VISUALIZATION OF INTER-DOMAIN ROUTING EVENTS

Source Node
*

Target
*

PathEvent

1

*

«originated by»

«contains»

1*

1

«is directed towards»

*

1..*

Figure 6.2: Abstract domain model describing the main entities of BGPlay.js
and their mutual relationships.

Interface and User Interaction

The main interface is presented in Fig. 6.3. It is composed of four main views:
the controller, the graph panel, the info panel, and the timeline panel. The
interaction with any of the four views causes appropriate updates in the entire
visualization. We detail the main functionalities below.

The controller is a sliding panel located in the upper right corner. It allows
the user to input queries composed of a target and a time interval T . Once
the visualization is ready, the controller can be used to animate the graph with
the AS-paths available during T . The play, repeat-last, step-back, and step-
forward buttons allow for a fine-grained management of the graph animation,
resembling a standard media player.

The graph panel displays the interactive graph, initially centered and fitted
to the window. Given the success of the standard interface of BGPlay, the
graph representation of entities in the domain model is substantially equivalent
to that explained in Section 6.2. The user can pan and zoom the graph with the
mouse. The animation of the graph consists of a sequence of morphing steps.
Each step transform the graph by applying the effects of an event involving one
or more AS-paths. Differently from BGPlay, the animation of events happening
at the same time is simultaneous, instead of following an arbitrary ordering.

The info panel is in the upper part of the window. It shows all the available
information about any selected network component represented in the graph.
In the case of BGP data, the panel shows the owner of any AS in the graph, the
sequence of ASes in any AS-path, the IP of any collector peer. It also displays

i
i

“main” — 2014/4/27 — 19:37 — page 69 — #79 i
i

i
i

i
i

6.3. USER REQUIREMENTS AND INTERFACE DESIGN 69

Figure 6.3: Interface of BGPlay.js as found at http://stat.ripe.net.

i
i

“main” — 2014/4/27 — 19:37 — page 70 — #80 i
i

i
i

i
i

70
CHAPTER 6. DESIGNING A WEB-BASED FRAMEWORK FOR THE

VISUALIZATION OF INTER-DOMAIN ROUTING EVENTS

a textual description of the routing event currently visualized.

The timeline panel is in the lower part of the window and contains two
timelines that allow to accurately navigate the routing information in T . The
first timeline, called control timeline, is equivalent to the one already imple-
mented in BGPlay and provides a fast overview of the trend in the number
of events over time. The second, called selection timeline, is instead devoted
to the visualization of individual events ordered in time and is designed for
fine-grained analysis. Each block in the selection timeline contains a sequence
of events happening at the same time, represented with colored rectangles.
Different colors are used for different types of routing events: for example the
announcement of a new path from a source to a target is green, while the up-
date of an already existing AS-path is yellow. The elapsed time between any
two consecutive blocks is reported in the area between them. Both timelines
feature a red cursor that points at the current time instant and is continuously
updated during the animation. The user can drag the cursors, changing the
current instant and updating the graph accordingly. The selection timeline can
only show a limited number of events due to its constrained area. In case there
are more events, the animation of the graph also affects the visualized portion
of the selection timeline, causing the smooth horizontal translation of involved
events. The user can scroll horizontally to reveal hidden events. Further, the
user can limit the animation to a particularly interesting subinterval within T
by dragging the two green sliders at the top of the control timeline. The sliders
on the selection timeline are updated accordingly.

6.4 Visualizing Internet Outages Caused by Censorship

BGPlay.js can be used in a number of different scenarios involving the evolu-
tion of BGP routing policies over time. This section presents an interesting use
case that we encountered in a recent research project focused on the analysis
of country-wide Internet outages.

In 2011 a wave of protests took place in Northern Africa and the Middle
East, giving rise to the so called “Arab Spring”. In particular, Egypt and
Libya were among the first countries to experience violent demonstrations over
extended periods of time. In both countries there were reports of partial or
complete disconnection from the Internet during the most delicate phases of the
protests. This gave us inspiration to start a research project dealing with the
dynamics and causes of the disconnection. The reader can refer to Chapter 10
for additional details on the project.

i
i

“main” — 2014/4/27 — 19:37 — page 71 — #81 i
i

i
i

i
i

6.4. VISUALIZING INTERNET OUTAGES CAUSED BY CENSORSHIP71

(a)

(b)

Figure 6.4: Two different phases of the BGP reachability of the Egyptian IP
prefix 213.181.237.0/24 between 27 and 28 January 2011. (a) The prefix is
reachable through AS 24835 (RAYA Telecom Egypt). (b) After the disconnec-
tion, the prefix becomes reachable again through AS 20928 (Noor Advanced
Technologies).

i
i

“main” — 2014/4/27 — 19:37 — page 72 — #82 i
i

i
i

i
i

72
CHAPTER 6. DESIGNING A WEB-BASED FRAMEWORK FOR THE

VISUALIZATION OF INTER-DOMAIN ROUTING EVENTS

We made use of different data sources, both related to the control plane
and data plane. On the BGP side, we used data from the already mentioned
Routing Information Service and Route Views projects. We selected the full
set of prefixes announced by Egyptian and Libyan ISPs and downloaded the
corresponding routing data for the days in which there were reports of outages.
Our analysis lead to discover the exact timing of the disconnection, which put
in evidence the fact that the outage was conducted on purpose.

In this context, BGPlay.js helps us visualize the exact dynamics of the
disconnection operated at the BGP level for certain targets. Fig. 6.4 presents
the evolution of the reachability of the IP prefix 213.181.237.0/24, announced
by AS 8524 (American University in Cairo). In Fig. 6.4(a) we see the status
before 27 January 2011, with the prefix reachable through AS 24835 (RAYA
Telecom Egypt). Fig. 6.4(b) shows how the connectivity was restored on 28
January 2011, using a backup link through AS 6762 (Telecom Italia) and AS
20928 (Noor Advanced Technologies). Further, the exact timing of individual
BGP updates is shown, revealing the dynamics of the outage.

6.5 Technical and Algorithmic Details

We made a great effort to design a generic visualization framework, in line with
the most appropriate patterns and standards for Web development. All our
decisions were the result of critical analysis and intense interaction with the
RIPE NCC.

The main architectural style of BGPlay.js is a mixture of two well-known
styles, respectively known as Client-Server and Model-View-Controller (MVC).
The first is based on the distribution of tasks between a provider of resources,
called server, and one or more service requesters, called clients. The second
consists of splitting the application into three interconnected parts, with the
goal of clearly separating the internal data structures from the actual represen-
tation of the information for the end user. The combination of the two styles
has become the de-facto standard for many Web applications. Initially the de-
velopment was focused on the idea of a “thin client”, with most of the business
logic confined to the server. However, in recent years the increased power and
capabilities of user devices have supported a number of intermediate solutions.
In modern Web applications the server only provides raw data structures on
demand, while the client is responsible for adding the logic and converting the
data into a meaningful and interactive representation.

In BGPlay.js the model is the piece of code responsible for retrieving,

i
i

“main” — 2014/4/27 — 19:37 — page 73 — #83 i
i

i
i

i
i

6.5. TECHNICAL AND ALGORITHMIC DETAILS 73

indexing, and processing the routing data available on the server. More specif-
ically, it builds an abstract representation of the sequence of routing events
that can be efficiently queried at runtime for both random and sequential ac-
cess. It also keeps track of the current routing status selected by the user and
the corresponding timestamp. The latter information is of course dynamic and
depends on user interaction: for example, when the user clicks a specific rect-
angle representing an event on the timeline, the model changes the internal
representation to reflect the new routing status to visualize.

Each of the four main components of the interface of BGPlay.js described
in Section 6.3 corresponds to one or more views. Each of them is responsible
for representing at least part of the information managed by the model. For
example the graph panel corresponds to a view that is responsible for displaying
the routing graph, and it does so by initializing in turn one “node view” for
each vertex in the graph and one “path view” for each source-target pair. In
our design strategy views can also be considered as controllers, because they are
responsible for parsing the input of the user and converting it into notifications
for other views or for the model.

The communication between different modules in BGPlay.js is handled
with a widespread messaging pattern called Publish-Subscribe. In this setting
publishers can send updates to a channel (i.e. a queue identified by a unique
label), while subscribers can listen to any number of channels and receive up-
dates when they are available. In BGPlay.js this paradigm is used for the
communication between objects in the model, or from objects in the model to
objects in one or more views. For example, when the timestamp of the event
currently visualized changes, the model publishes a message that is received by
all the views that need to be updated accordingly. The communication between
different views is instead achieved with the Event Aggregator pattern, where a
dedicated object is responsible for subscribing to all the channels used by dif-
ferent views, receiving their messages, and then triggering updates accordingly
in appropriate views.

The implementation of BGPlay.js was completed using two widespread
JavaScript frameworks, called Backbone.js and Raphael. The first is a core
library with a stable implementation of the MVC pattern, used to give structure
to Web applications. The second allows to develop data-driven visualizations
without worrying about the underlying implementation of vector graphics in
different browsers.

BGPlay.js was extensively tested to verify its functionalities on different
browsers and platforms. Its model is accompanied by standard Unit tests to
check the correctness of algorithms and business logic. The overall performance

i
i

“main” — 2014/4/27 — 19:37 — page 74 — #84 i
i

i
i

i
i

74
CHAPTER 6. DESIGNING A WEB-BASED FRAMEWORK FOR THE

VISUALIZATION OF INTER-DOMAIN ROUTING EVENTS

of the framework is acceptable even on mobile platforms with graphs containing
hundreds of nodes.

The algorithms implemented in BGPlay.js mostly resemble those of BG-
Play. Examples include the grouping of “static” paths (i.e. paths from source
to target that never change during the selected interval) into the minimum
number of trees and the actual drawing of the graph, implemented as a stan-
dard force-directed layout (see Section 2.2 for a general introduction).

As a notable exception, we decided to implement a “tree map” in JavaScript,
i.e. a data structure where both the insertion and lookup of an element have
logarithmic time complexity, while it is possible to scan the entire set of ordered
keys in linear time. We use it in the model to accomodate all the routing events,
indexing them with a combination of their timestamp and a unique identifier
to distinguish multiple events happening at the same time. The structure helps
improve the efficiency of specific user interactions. For example, when the user
clicks on the control timeline, the coordinate of the click is converted to a time
instant and the tree is queries for the event closest in time to that instant.

6.6 Conclusions and Future Work

We have presented a framework for the visualization of inter-domain routing
events. It was designed and implemented with a focus on modern Web tech-
nologies. Further, it is very generic and can be reused for more Web application
dealing with the visualization of evolving graph topologies.

There are many possible improvements that could further enrich our work.
We plan to extend the graphical representation to other events, e.g. the ex-
change of BGP “state” messages that detail the establishment of sessions be-
tween routers. It would be interesting to have a real-time visualization of BGP
updates, as opposed to the current historical version. Some of the features
of the variants of BGPlay presented in Section 6.2 would easily find room in
BGPlay.js (e.g. displaying the ranking of ASes or filtering the events on the
timeline to focus on those related to a specific AS). Finally, on the algorithmic
side, we plan to improve the drawing of different paths between the same pair
of nodes using appropriate techniques (see, e.g., [ABKS10]).

i
i

“main” — 2014/4/27 — 19:37 — page 75 — #85 i
i

i
i

i
i

Chapter 7

Dynamic Visualization of
Traceroutes at Multiple
Abstraction Levels

The research project described in the following sections is based on the frame-
work presented in Chapter 6. In Chapter 11 we report a conference publication
based on the outcomes of the project. The reader can refer to [CDBDBS13] for
additional media (videos, pictures) that support the description of our work.

7.1 Introduction and State of the Art

The traceroute command is one of the most popular computer network diagnos-
tic tools. As explained in Section 3.1, it can be used on computers connected to
the Internet to compute the path (route) towards a given IP address, also called
traceroute path. It is probably the simplest tool to gain some knowledge on the
Internet topology. Because of its simplicity and effectiveness, it attracted the
interest of several researchers that developed services for the visualization of
Internet paths discovered by executing one or more traceroute commands.

Broadly speaking, there are two groups of traceroute visualization systems.
The first group includes tools developed for local technical debugging purposes
in networks of limited size. Tools in the second group are instead aimed at
reconstructing and displaying large portions of the Internet topology. Several
examples in the first group visualize a single traceroute on a map, showing the
geo-location of traversed routers. A few examples follow. Xtraceroute [Aug03]

75

i
i

“main” — 2014/4/27 — 19:37 — page 76 — #86 i
i

i
i

i
i

76
CHAPTER 7. DYNAMIC VISUALIZATION OF TRACEROUTES AT

MULTIPLE ABSTRACTION LEVELS

Figure 7.1: Main interface of TPlay.

is a graphical version of the traceroute program. It displays individual routes
on an interactive rotating globe as a series of yellow lines between sites, shown
as small spheres of different colors. GTrace [PN99] and VisualRoute [Vis97]
are traceroute and network diagnostic tools that provide a two-dimensional,
geographical visualization of paths. VisualRoute also explores abstract rep-
resentations taking into account other information, e.g. the round-trip time
between intermediate hops. In the second group of tools there are several ex-
amples (see e.g. [Hok08, Sco11]) that merge the paths generated by multiple
traceroutes into directed graphs and show them in some type of drawing.

In recent years the visualization of Internet measurements has seen a grow-
ing interest. This is mainly due to the existence of several projects that deploy
probes in the Internet. Probes are systems that perform traceroutes and other
measurements (e.g. ping, HTTP queries) towards selected targets. They pro-

i
i

“main” — 2014/4/27 — 19:37 — page 77 — #87 i
i

i
i

i
i

7.2. METAPHOR AND USER INTERACTION 77

duce a huge amount of data that is difficult to explore, especially when dealing
with the network topology. The reader can refer to Section 3.2 for a list of
currently active projects based on geographically distributed probes.

In this paper we present TPlay, a system for the visualization of traceroute
data. It was designed to support ISPs and owners of Autonomous Systems in
the management and maintenance of their networks. The requirements were
gathered interacting with several ISPs within the Leone FP7 EC Project and
with the RIPE NCC. The user of TPlay selects a set S of probes of a certain
Internet measurement project (all the experiments in this paper have been
conducted using RIPE Atlas probes), a target IP address τ , and a time interval
T , and obtains a visualization of how the traceroutes issued by the probes in S
reach τ during T . TPlay can be used to study several properties of traceroute
paths. These include assessing the reachability of τ over time, discovering the
ISPs that provide connectivity to reach it, monitoring the length of traceroute
paths as a performance indicator, and inferring how routing policies affect the
paths of different probes in S.

A snapshot of TPlay is in Fig. 7.1. The routing graph is presented with
a radial drawing. The geometric distance between the target τ in the center
and any object reflects the topological distance of that object in the network.
Also, since traceroutes yield a very fine-grained and detailed understanding of
network topology, the system allows to look at the network at different abstrac-
tion levels. Finally, the evolution of traceroute paths over time is presented by
means of geometric animation.

The chapter is organized as follows. In Section 7.2 we detail the use cases,
describe the adopted visualization metaphor, and introduce some formal ter-
minology. In Section 7.3 we detail the algorithms used to compute the visual-
ization comparing them to the state of the art. Section 7.4 gives some technical
information on our prototype implementation. Section 7.5 contains conclusions
and future directions.

7.2 Metaphor and User Interaction

There are four main tasks that motivate the design and development of TPlay.
They are somewhat reminiscent of the use cases already in place for BGPlay.js
(see Chapter 6), but traceroutes operate at a different level of abstraction that
open different possibilities. The security is a primary concern. Knowing what
ASes provide connectivity to reach any target over time is crucial for privacy
and data protection, because some ASes may be less trusted than others. In

i
i

“main” — 2014/4/27 — 19:37 — page 78 — #88 i
i

i
i

i
i

78
CHAPTER 7. DYNAMIC VISUALIZATION OF TRACEROUTES AT

MULTIPLE ABSTRACTION LEVELS

terms of routing policy , seeing how traffic is routed inside a specific AS over
time helps discover load balancing issues or differences in the routing applied
to different probes. On a simpler level, the network distance of any Internet
service is an important metric. Longer paths are indeed potentially responsible
for instability and inefficiency, therefore it makes sense to monitor the number
of hops traversed by each probe over time. Finally, the dynamics of the routing
are often responsible for performance and reachability issues. Users want to
see how the routing changes at a specific time instant, based on external key
indicators. For example, they may want to check if the routing has changed
after a noticeable drop in the round-trip delay experienced when reaching the
selected target from their network.

The first idea we explored for the representation of traceroute data was
based on the simple representation of hops at their geographical location. How-
ever, we discarded solutions based on geographic representations for many rea-
sons. First of all, the fact that a router belongs to a certain ISP or AS is the
main piece of information for our purposes, whereas geography is only a sec-
ondary feature that further characterizes the nodes in the network. Also, the
geolocation data associated with IP addresses is often wrong or incomplete, and
anycast addresses (i.e., those assigned to more than one physical device) can
not be mapped to a single location. Finally, the use of landmarks on geograph-
ical maps would require special care to avoid geometric cluttering. Motivated
by the above, we focused on a topological representation of the data.

The visualization metaphor we adopted is presented below together with
supporting motivations. Graphs are represented with radial layered drawings,
where vertices are placed on concentric circles and targets are in the center.
This style of drawing is notably effective for visualizing sparse hierarchical
graphs (see, e.g., [YFDH01]). In Section 7.3 we show that our application
domain meets such requirement. The probes originating the traceroutes are
displayed in the periphery of the drawing, in order to effectively represent
topological distances. Moreover, radial drawings have their center as the only
focus point, which avoids giving probes additional importance due to a privi-
leged geometric position. Finally, the drawing looks like an abstract geography
and therefore borrows the typical user experience deriving from cartography
and geographical visualization.

The need of visualizing the network at different abstraction levels is met
by partitioning the set of routers into clusters. In our setting, clusters are in
correspondence with ASes. The user can modify the representation by inter-
acting with any cluster to either contract or expand it. A contraction causes
all the routers in the cluster to be merged into a single object representing

i
i

“main” — 2014/4/27 — 19:37 — page 79 — #89 i
i

i
i

i
i

7.2. METAPHOR AND USER INTERACTION 79

the cluster, while an expansion does the opposite. Collapsing all clusters leads
to a high-level, uncluttered view of the graph, which pretty much resembles
the graphical effect of BGPlay.js (see Chapter 6). On the other hand, the
user can expand the entire set of clusters to see all the routers traversed by at
least one traceroute. In general, the user can arbitrarily expand any subset of
clusters to examine them in detail.

Paths for reaching the target from the probes change over time. A natural
way to show the evolution of traceroutes at different time instants is to present
an animation of the drawing. More precisely, for each instant in a given time
interval we show a different drawing, corresponding to the traceroutes that are
available at that instant. We animate the change from a drawing to a successive
one by means of a geometric morph.

Since the visualization is highly interactive and the graph changes over
time, preserving the mental map is of paramount importance. Indeed, the user
can both animate the drawing in a specific time interval and expand/contract
individual clusters. We require that the same drawing is visualized for any
two sequences of cluster expansions/contractions that produce the same graph.
Also, the graph should be animated smoothly, even at the expense of traversing
drawings that are not aesthetically optimal.

Traceroute paths cannot simply be merged and displayed in an aggregate
fashion, since each of them has its own informative value and can change over
time. For this reason, we represent paths adopting a metro-line metaphor (see
e.g. [Rob12]) and draw them using different colors. Further, paths that never
change in the selected time interval should be easily distinguished. We adopt
the same method described in Chapter 6 to visually separate stable paths by
grouping them into trees.

The objects to be visualized are formally defined as follows. Consider a
time interval T and a set of probes S. During T each probe periodically issues
a traceroute towards a target IP address τ . A traceroute from a probe σ ∈ S
produces a simple directed path on the Internet from σ to τ . If such a path is
available at time t ∈ T (i.e. if the visited hops are actually reachable), then
it is valid at time t. Each vertex of a traceroute originated from σ is either
a router or a computer. Vertices are identified as follows: 1. σ has a unique
identifier selected by the RIPE NCC; 2. vertices with a public IP address are
identified with it; 3. vertices with a private IP address can be identified with
a pair composed of their address and the identifier of σ. The reader can refer
to [RMK+96] for a distinction between public and private IP addresses; 4. the
remaining vertices are labeled with a “*” (i.e. an unknown IP address). For
the sake of simplicity, consecutive vertices in a traceroute labeled with “*”

i
i

“main” — 2014/4/27 — 19:37 — page 80 — #90 i
i

i
i

i
i

80
CHAPTER 7. DYNAMIC VISUALIZATION OF TRACEROUTES AT

MULTIPLE ABSTRACTION LEVELS

are merged into one. A vertex labeled with “*” is then identified with the
identifiers of its neighbors in the traceroute.

A directed graph Gt is defined at each instant t ∈ T as the union of all
the paths valid at t and produced by the traceroutes that are issued by the
probes in S. A directed graph GT is defined as the union of all graphs Gt.
Each vertex of GT is assigned to a cluster as follows. 1. Each probe is assigned
to the cluster that corresponds to the AS where it is hosted. 2. Each vertex
identified by a public IP address is assigned to a cluster that corresponds to
the AS announcing that address on the Internet. Such information is extracted
from the RIPEstat database (see Section 3.2 for details) and may occasionally
be missing. 3. Each vertex v that is not assigned to a cluster after the previous
steps is managed as follows. Consider all traceroute paths P containing v.
For each traceroute p ∈ P let µ (ν) be the cluster assigned to the nearest
predecessor (successor) of v with an assigned cluster. If µ = ν then µ is added
to the set Cv of candidate clusters for v. If |Cv| = 1, v is assigned to the
only candidate cluster. If there is more than one candidate, an inconsistency is
detected and the procedure terminates prematurely. 4. Each remaining vertex
is assigned to a corresponding fictitious cluster. We define Vµ as the set of
vertices assigned to cluster µ.

For any t ∈ T , Gt can be visualized at different abstraction levels. Namely,
the user can select a set E of clusters that should be expanded to reveal the
internal topology of routers, while each cluster that is in the complement Ē of E
is contracted into one vertex. More formally, given the pair Gt, E the visualized
graph Gt,E(V,E) is defined as follows. V is the union of the Vµ for all clusters
µ ∈ E , plus one vertex for each cluster in Ē . E contains the following edges.
Consider edge (u, v) of Gt and clusters µ and ν, with u ∈ µ and v ∈ ν. If
µ 6= ν, µ ∈ E , and ν ∈ E , then add edge (u, v). If both µ and ν are in Ē then
the edge (µ, ν) is added to E. If µ ∈ E (µ ∈ Ē) and ν ∈ Ē (ν ∈ E) then we add
edge (u, ν) ((µ, v)) to E. We define Gµ,t as the subgraph of Gt induced by Vµ.
Analogously, we define Gµ,T as the subgraph of GT induced by Vµ. We define
GT ,E as the union of the Gt,E for each t ∈ T .

Fig. 7.1 shows an overview of our prototype implementation. Let t ∈ T ,
τ and S be respectively the time instant, the target, and the set of probes
selected by the user. Graph Gt,E is represented with a radial drawing centered
at τ . All vertices and clusters that appear in at least one traceroute in T are in
the drawing, including those that are not traversed by any traceroute at time
t. Probes in S are represented as blue circles and labeled with their identifier.
Vertices are represented as white rounded rectangles and labeled with the last
byte of their IP address or with a “*”, based on their unique identifier. Clusters

i
i

“main” — 2014/4/27 — 19:37 — page 81 — #91 i
i

i
i

i
i

7.2. METAPHOR AND USER INTERACTION 81

(a) (b)

(c) (d)

Figure 7.2: Details of the interactive features of our visualization. (a) A graph
GT ′ relative to a target τ , a set of probes S, and a time interval T ′. All paths
in GT ′ are static and all clusters contracted. (b) A graph GT ′′ relative to τ , S,
and T ′′ (|T ′′| > |T ′|). Some paths are dynamic and all clusters are contracted.
(c) GT ′′ with an expanded cluster. (d) GT ′′ at a different time instant.

are represented as annular sectors and labeled with their AS number. Note
that vertices assigned to expanded clusters are enclosed in their sectors, while
sectors of contracted clusters are empty. The light red cluster in the center
contains τ . Clusters containing probes in S are light blue. The remaining
clusters are light yellow. Fictitious clusters (i.e. those containing vertices that
could not be assigned to any proper cluster) are not displayed. Each path from
a probe σ ∈ S to τ is represented with a colored curve from σ to τ passing
through all intermediate vertices. Paths are either solid or dashed, depending
on whether they change or not during the time interval T . Concentric circles
in the background represent the increasing topological distance of vertices.

Fig. 7.2 showcases various details of the user interaction available in TPlay.

i
i

“main” — 2014/4/27 — 19:37 — page 82 — #92 i
i

i
i

i
i

82
CHAPTER 7. DYNAMIC VISUALIZATION OF TRACEROUTES AT

MULTIPLE ABSTRACTION LEVELS

A graph with static paths and no expanded clusters is presented in Fig. 7.2(a).
It is related to a target τ , a set of probes S, and a small time interval T ′. Note
that some vertices are not enclosed in any cluster: they belong to fictitious
clusters. A graph for τ , S and T ′′ (|T ′′| > |T ′|) is presented in Fig. 7.2(b).
Some dynamic paths are visible. The same graph is presented in Fig. 7.2(c)
after the expansion of one cluster. Note how the ordering of clusters and
vertices on the radial layers is preserved. Fig. 7.2(d) shows the same expanded
graph at a different time instant. The intermediate vertices of two traceroute
paths are different.

Fig. 7.2 also helps us explain how the tasks detailed at the beginning
of the section can be accomplished. The task involving security is satisfied
in Fig. 7.2(a): we can see how ASes 1200 and 20965 provide connectivity to
reach the target. The tasks related to policy and distance are instead addressed
in Fig. 7.2(c), where the length and structure of the paths from each of the
three probes 619, 602, 265 is clearly visible. Finally, the dynamics of the rout-
ing are visible in Figg. 7.2(c)-(d), where users can understand how the paths
for probes 619 and 602 change after a routing event.

The user interaction plays a major role in our metaphor. The reader can
refer to [CDBDBS13] for an example video of the interaction with TPlay.

7.3 Algorithms

We started our analysis by computing several statistics on the RIPE Atlas
dataset that we used to test our system. It consists of traceroutes executed in
one month (July 2012) by 200 probes distributed all over the world. Fig. 7.3
presents the main results of our analysis. In Fig. 7.3(a) we plot a cumulative
distribution function of the length of traceroute paths. That gives us a rough
indication on the maximum distance between a probe in S and τ . The plot
shows that traceroutes with more than 15 vertices are rare, which makes the
radial metaphor particularly suitable for the scenario. In Fig. 7.3(b) we plot
the number of vertices and the density (|E|/|V |) of GT as a function of T . It
turns out that GT is quite sparse for time intervals that are compatible with
the application domain. In particular, the density ranges between 1.2 and 1.5
for time intervals within 24 hours. The number of vertices is in the range of
2000. That further motivates the adoption of interactive clusters to limit the
clutter in our visualization.

As a second step, we looked for a satisfying representation of the input
data. We performed preliminary experiments using spring embedders, hierar-

i
i

“main” — 2014/4/27 — 19:37 — page 83 — #93 i
i

i
i

i
i

7.3. ALGORITHMS 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

hops

Traceroute lengths

CDF 1400

 1600

 1800

 2000

 2200

 2400

 2600

 5 10 15 20
 0

 0.5

 1

 1.5

 2

#
 v

e
rt

ic
e
s

#
 e

d
g
e
s
 /
 #

 v
e
rt

ic
e
s

length of the considered time interval (hours)

Graph Size and Density

Graph size
Graph density

(a) (b)

Figure 7.3: Statistics on the data set. (a) Cumulative distribution function
(CDF) of the length of traceroute paths at July, 1st 2012 at 00:00. CDFs
at different instants exhibit similar features. (b) Plot showing the number of
vertices and the density of GT as a function of T . For each day in the month
we set an initial time at 00:00 and grow T from 1 to 24 hours. For each value of
T we plot the average density and number of vertices. We report the standard
deviation with error bars.

chical drawing, and upward drawing algorithms (see Section 2.2 for a general
introduction to different graph drawing techniques). Layouts produced with
spring embedders are unsuitable for our metaphor, because the topological
distance between vertices is not always represented and because the resulting
drawings are characterized by limited regularity. Also, spring embedders tend
to introduce crossings that are avoidable, given the expected density of the
data set. For hierarchical drawing, we experimented both basic algorithms
and variations that allow to represent clustered graphs [San96, San99]. The
experiments put in evidence that crossing-reduction heuristics like those in
[San96, San99] are quite effective. However, in our case most graphs are planar
or quasi-planar and therefore planarity-based methods are more attractive. Fi-
nally, we discarded upward planar drawings. The main reason is that they tend
to use vertical space to resolve crossings, which may result in large geometric
distances between vertices that are topologically close.

A very high level and informal description of our algorithmic framework
is detailed as follows. We precompute a hierarchical drawing Γ0 of GT that
integrates all the traceroutes in T . All clusters in Γ0 are expanded. The
layout is computed limiting the number of crossings that involve connections

i
i

“main” — 2014/4/27 — 19:37 — page 84 — #94 i
i

i
i

i
i

84
CHAPTER 7. DYNAMIC VISUALIZATION OF TRACEROUTES AT

MULTIPLE ABSTRACTION LEVELS

between clusters. The quality of the layout inside the clusters is considered
with lower priority. Moreover, the quality of the drawing of edges that are part
of many traceroutes in T is privileged among the edges of GT . The drawing
computed for each cluster is stored and reused in any drawing where that
cluster is expanded. The hierarchical drawing is mapped to a radial drawing
with a suitable coordinate transformation. Changes in the drawing due to an
expansion or contraction of a cluster or a change in traceroutes are visualized
with an animation. At any instant t ∈ T only the traceroutes that are valid in
t are displayed.

We discarded several algorithms found in literature. An interesting refer-
ence for our purposes is [Bac07], in which the author shows how to construct
radial drawings adapting techniques of the Sugiyama Framework. Unfortu-
nately, his work does not deal with clusters. The algorithm in [FB04], which
extends the one described in [DBN88], inspired part of our work. However, it
proposes a clustered planarity testing algorithm, while we rather need an algo-
rithm for clustered graph planarization. Further, [FB04] is not easily extensible
for this purpose, neither is the algorithm in [BDM02] that is not suitable for
hierarchical drawings. For these reasons we devised a new algorithm to produce
clustered hierarchical drawings, as a planarization-oriented variation of [FB04].
In [Rai05] the authors propose an algorithm for the expansion/contraction of
clusters of hierarchical drawings, building on [SM91]. Unfortunately their tech-
nique uses local layering for vertices, while global layering [San96, San99] is
more suitable for our needs because it produces more compact drawings. In-
deed a very common use case of TPlay is to expand all clusters along one
or more traceroutes (for example when assessing the network distance of a
specific probe). Local layering would visualize far from τ also vertices in unre-
lated paths because of the increased need for vertical space of their layers. For
this reason we devised a new algorithm for expanding/contracting clusters that
is based on global layering. Differently from [Rai05] it is not a local update
scheme, i.e. it computes a new drawing for the whole graph at each interaction.
The lower time efficiency is negligible because the graphs commonly handled
by TPlay are relatively small, as explained early in this section. Finally, the
preservation of the mental map during the expansion/contraction of clusters
is addressed with a geometric morph, implemented as an animation of objects
from their initial position to their final position.

What follows gives more details on our the algorithmic framework. In a
preprocessing step we compute several information based on GT that will be
used for the actual drawings. Given any Gµ,T , a vertex is a source (sink) of
Gµ,T if it is the last (first) vertex of Gµ,T encountered in at least one traceroute

i
i

“main” — 2014/4/27 — 19:37 — page 85 — #95 i
i

i
i

i
i

7.3. ALGORITHMS 85

path. Each graph Gµ,T is augmented with extra vertices and edges so that all
the longest paths from a source to a sink have the same length. The added
vertices are called fictitious vertices of µ and ensure that, given an edge (u, v) ∈
GT , u ∈ µ, v ∈ ν, µ 6= ν, clusters µ and ν do not share a layer in any drawing
of Gt,E . Moreover, in this way the edges that leave a cluster by spanning
several layers are necessarily routed inside that cluster. A µ-drawing is pre-
computed for each Gµ,T in two steps: 1. we assign vertices to layers so that
all edges are between consecutive layers, and 2. we compute a total order for
the vertices of each layer. A partial order ≺ is computed for clusters, such
that for any two clusters µ and ν with µ ≺ ν, the vertices of µ appear to the
left of the vertices of ν for any drawing Γ where µ and ν share one or more
layers. This helps preserve the mental map during expansions/contractions.
The preprocessing step requires to compute a drawing Γ0 of GT with all clusters
expanded. Γ0 gives the information needed to compute a µ-drawing for each
cluster and a partial order ≺ for clusters. The algorithm to compute Γ0 is
similar to that in [FB04], where a PQ-tree [BL76] is used to order vertices along
the layers of the drawing. Our PQ-tree is initialized with a spanning tree of
GT and incrementally updated with the remaining edges that induce ordering
constraints. An edge is added only if it does not produce a crossing, i.e. the PQ-
tree does not return the “null” tree. A rejected edge will produce crossings in
Γ0. Edges are added with priority given by their aesthetic importance: namely,
they are weighted based on the number of traceroutes that traverse them in T .
As an implementation detail, we actually compute a total order for clusters to
represent a partial order ≺. The order is produced with a depth-first traversal
of the spanning tree of GT . The tree has an embedding induced by the layer
orders produced by the PQ-tree algorithm. Children of any vertex are visited
in clockwise order. Intuitively, we preserve the geometric left-to-right order for
clusters from Γ0, and reuse it to produce drawings for any Gt,E .

The computation of any drawing ΓT ,E for GT ,E is detailed below. Before
that, note that once ΓT ,E is computed, for any t ∈ T we display all the vertices
in GT ,E but only the edges in Gt,E . Our choice is motivated by the need to
preserve the mental map of the user, using ΓT ,E as a “frame” where we realize
the drawings for each time instant t. First, a layering of GT ,E is computed
such that for each vertex the distance from τ is minimized. Also, dummy
vertices (called fictitious vertices of GT ,E) are added so that each edge spans
two consecutive layers. Vertices are horizontally ordered on each layer such
that 1. ≺ is enforced, 2. for each cluster µ ∈ E the orders on the layers of
its µ-drawing are enforced, and 3. the fictitious vertices of GT ,E are placed on
the layers in such a way to have few crossings. In particular, fictitious vertices

i
i

“main” — 2014/4/27 — 19:37 — page 86 — #96 i
i

i
i

i
i

86
CHAPTER 7. DYNAMIC VISUALIZATION OF TRACEROUTES AT

MULTIPLE ABSTRACTION LEVELS

must not be interleaved with the vertices of any cluster, so that vertices of each
cluster are consecutive on every layer. For this reason, each fictitious vertex is
assigned to a new fictitious cluster, which is inserted in the partial order ≺ in an
intermediate position between the endpoints of the edge it belongs to. Finally,
the ordered layers are used to assign geometric coordinates to vertices. The
width of each cluster µ is computed as follows. Consider the layer containing
the largest number of vertices assigned to µ. The cluster is assigned a width
proportional to this number. Vertices of µ are assigned horizontal coordinates
such that they can be enclosed by a rectangle with height proportional to
the number of layers assigned to the vertices of µ and width equal to the
width of µ. We avoid intersection between enclosing rectangles by means of
an auxiliary directed acyclic graph where vertices are clusters of GT ,E and
edges are selected from ≺ depending on which pairs of clusters share a layer
in the current layering of GT ,E . Edges are weighted based on the widths of
the clusters they are incident to. The total width of the drawing is given by
the longest path in this graph. The above is applied recursively to compute
the horizontal spacing among all clusters. The vertical coordinate of a vertex
is equal to the one assigned to its layer, which is proportional to the index of
that layer in the total order of layers.

Going back to the state of the art, we consider the restrictions that a planar
clustered hierarchical drawing should obey, as expressed in [FB04]. R1 says
that all the vertices on each layer that belong to the same cluster should be
consecutive. R2 says that clusters should not cross each other.R3 says that
edges should not cross clusters. With respect to these three rules, drawings
produced by our algorithm satisfy R1 and R2. We deliberately ignored R3
because we consider it too restrictive for our application. R1 is satisfied in the
preprocessing step by merging all sources of each cluster into one new vertex.
The PQ-tree is initialized with a spanning tree that contains all these new
vertices, which has the effect of keeping the vertices of each cluster consecutive
on each layer. R2 is automatically satisfied for the initial drawing Γ0, and
consequently in any drawing of Gt,E by exploiting the partial order ≺.

To obtain a radial drawing, the geometric coordinates computed in the
previous steps for each vertex are transformed as follows. Each vertex is placed
on the perimeter of a circle centered at an arbitrary fixed point and having
radius equal to the vertical coordinate of the vertex. Then the horizontal
coordinate of the vertex is mapped to a circular coordinate on the perimeter
of that circle. The perimeters of clusters are mapped with a similar radial
transformation. An edge (u, v) is drawn either as a straight segment or a
curved arc, depending on the angle it must sweep to connect vertices u and v.

i
i

“main” — 2014/4/27 — 19:37 — page 87 — #97 i
i

i
i

i
i

7.4. TECHNICAL DETAILS 87

Note that in our setting each edge connects only vertices in two consecutive
layers, hence a curved edge can be drawn only in the space between these layers.

7.4 Technical Details

The implementation of TPlay is split into three main blocks: a visualization
front-end, a layout engine, and a data back-end.

The visualization front-end is a Web application. It allows the user to
specify input parameters and to visualize and animate interactive graphs. The
implementation of the front-end required to focus on some algorithmic details.
The arrangement of paths in a metro-line fashion is implemented as follows.
First of all, an arbitrary total ordering is computed on the set of visualized
paths. For each edge without bends in the graph, the paths that traverse it
are drawn as parallel segments connecting the two endpoints of the edge. The
order of such segments reflects the total order of paths, in order to promote
consistency between edges. In case the edge contains bends, the drawing is
computed in two steps. First, we split the bended edge in a sequence of in-
termediate edges e1, . . . , en and compute the path segments for each of them.
Second, for each pair of consecutive intermediate edges (ei, ei+1) and for each
path that traverses it, we call (u, v) and (w, z) the two segments computed
respectively for ei and ei+1. If there is an intersection point p between (u, v)
and (w, z), we rewrite the two segments as (u, p) and (p, z). Otherwise, we
add a connection (v, w) between (u, v) and (w, z). Path colors are computed
with the algorithm described in [Kis12] to ensure that they are distinguishable
from each other. The front-end is written in JavaScript and HTML. As already
mentioned, it is based on the BGPlay.js framework described in Chapter 6.

The visualization always starts with an overview of the traceroutes. The
layout engine is invoked at the beginning to produce a drawing of GT ,∅. When
the user expands/contracts a cluster (i.e. a cluster is added or removed from E)
the layout engine is invoked again on GT ,E . In the implementation of the radial
drawing we artificially increase the radius of each layer by an additional offset,
such that vertices on dense layers are not overlapped. For the sake of simplicity,
curved segments are uniformly sampled and drawn as polylines. The layout en-
gine is implemented in Java. We initially designed it to be implemented as part
of the visualization front-end, but later moved to a back-end implementation
in order to make use of already existing libraries. In particular, we adopted
a PQ-tree implementation [Har02] and Apache Commons Graph [Apa12] for
general graph models and algorithms. We optimized the output of the layout

i
i

“main” — 2014/4/27 — 19:37 — page 88 — #98 i
i

i
i

i
i

88
CHAPTER 7. DYNAMIC VISUALIZATION OF TRACEROUTES AT

MULTIPLE ABSTRACTION LEVELS

engine after the initial layout is computed, so that only graph elements with
new drawing coordinates are included.

Finally, the data back-end is mainly responsible for retrieving and prepro-
cessing traceroute data. The results are then used by the front-end to animate
traceroute events and by the layout engine to compute the drawings.

7.5 Conclusions and Future Work

We presented a metaphor for the visualization of traceroute measurements
issued towards specific targets on the Internet. It is based on a radial drawing
of a clustered graph, where vertices are routers or computers and clusters are
administrative authorities (ASes) that control them. Our metaphor allows the
user to interact with the visualization, both exploring the content of individual
clusters and animating the graph to see how traceroute paths change over a
time interval of interest.

In the future we will take into account the DNS resolution of selected tar-
gets in the visualization. That means that some targets may be represented
by more than one vertex, giving rise to an anycast behavior of the target, de-
pending on the policies implemented at the DNS level. We will also explore the
possibility to process streams of incoming data, adding or removing elements
in the visualization incrementally. Finally, from a technical perspective, we
plan to move a significant part of the layout engine to the front-end, including
a brand new implementation of PQ-trees in JavaScript.

i
i

“main” — 2014/4/27 — 19:37 — page 89 — #99 i
i

i
i

i
i

Part IV

Mixing Up

89

i
i

“main” — 2014/4/27 — 19:37 — page 90 — #100 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 91 — #101 i
i

i
i

i
i

Chapter 8

Automating the Analysis of the
Impact of Routing Changes on
Round-trip Delay

This chapter mostly deals with network data analysis, without a specific focus
on visualization. However, our results are at the basis of the visualization
framework reported in Chapter 9. The reader can refer to Chapter 11 for the
details of two scientific publications based on the work in this chapter.

8.1 Introduction

Strict performance requirements characterize an ever-growing base of Internet
services. Keeping certain performance levels is not only critical for the sat-
isfaction of Service Level Agreements (SLAs), but also important to ensure
that the quality perceived by end users is always high. Lots of applications,
including streaming, VoIP conferencing, gaming, and financial transactions,
rely on steady performance levels. However, it is a matter of fact that per-
formance fluctuations may occur, depending on several factors like bandwidth,
congestion, and routing changes.

In this chapter we focus on understanding the relationship between varia-
tions of network performance, measured in terms of round-trip times (RTTs),
and inter-domain routing changes, computed by the Border Gateway Protocol
(BGP). We concentrate on RTTs because they are the most commonly avail-
able measurement, ICMP requests are unlikely to be filtered out, and latency

91

i
i

“main” — 2014/4/27 — 19:37 — page 92 — #102 i
i

i
i

i
i

92
CHAPTER 8. AUTOMATING THE ANALYSIS OF THE IMPACT OF

ROUTING CHANGES ON ROUND-TRIP DELAY

is nowadays regarded as an important performance indicator. Similarly, we
consider BGP routing changes because their impact is significant, as stated
in [PZMH07]. The reader can refer to Section 3.1 for additional details on
network performance and routing.

As a result of our research, we bring three main contributions. First of all,
we describe a matching methodology to determine whether a routing change
caused a significant variation of the RTT, with two key novel aspects: it ex-
ploits state-of-the-art statistical methods and it can compute the matching
automatically. Second, we perform an experimental verification of the effec-
tiveness of our matching methodology in the wild, using publicly available
datasets, i.e. BGP updates from the RIPE Routing Information Service and
RTT measurements from the RIPE Atlas project (see Section 3.2 for details).
Finally, we present a set of a-posteriori analyses based on the results of our
matching methodology, which lead to interesting findings for several practical
applications and motivate the visualization framework presented in Chapter 9.

The first added value brought about by our methodology is clearly the aug-
mented awareness of performance fluctuations. However, we envision several
other applications. For example, learning that BGP routing changes recorded
by certain vantage points affect more significantly the RTT towards a certain
destination can motivate usage of those vantage points to predict the impact
of future routing changes and drive traffic engineering decisions. In princi-
ple, placement of a delay-sensitive service can also benefit from knowing that
routing changes observed at certain network locations are more likely to af-
fect its reachability. Discovering that certain routing changes affect RTTs
towards apparently unrelated destinations can help network administrators in
troubleshooting tasks.

The rest of the chapter is organized as follows. Section 8.2 contains a brief
introduction to the state of the art. In Section 8.3 we describe our methodology
to match BGP routing changes and significant RTT variations. In Section 8.4
we apply the methodology to search for BGP-RTT correlations in the wild,
using data from RIPE RIS and RIPE Atlas. In Section 8.5 we introduce various
analyses based on the results of our matching methodology. Conclusions and
future work are discussed in Section 8.6.

8.2 Related Work

The correlation between between routing and performance has been already
explored as a challenging research topic. However, although many contributions

i
i

“main” — 2014/4/27 — 19:37 — page 93 — #103 i
i

i
i

i
i

8.3. METHODOLOGY 93

bring interesting aspects to take into account, none of them is targeted at a
reproducible, automated methodology. We detail the main examples below.

In a pioneering contribution [PZMH07], the impact of routing changes on
RTTs has been confirmed and shown to be non-negligible. Interesting argu-
ments in that paper strongly motivate our study. Most delay variations are in-
deed caused by routing changes rather than congestion. Further, inter-domain
routing changes are those that impact most on the average delay variation.
However, the problem of automatically associating RTT variations with BGP
path changes is not encompassed.

In [CBD02, WMW+06, ZMW07] the authors study transient network per-
formance degradations due to routing convergence periods, while we concen-
trate on RTT values during stable routing states. Other contributions ex-
ploit statistical tools for the analysis of trends in network data. In [MSG+10,
MGW+11] the authors detect the impact of network upgrades by using statis-
tical rule mining and network configuration information to identify meaningful
patterns in performance changes. A recent work [TG13] applies change detec-
tion algorithms to compute network coordinates, i.e., metrics that help predict
the network delay between pairs of hosts, in a realistic environment.

8.3 Methodology

In the rest of the chapter we assume that the inputs to our methodology are
collected in the following scenario. We consider an AS A that is connected
to several other ASes by means of BGP border routers. As explained in Sec-
tion 3.2 a subset of these routers, called collector peers (CPs), forwards all the
computed inter-domain routes to a central BGP collector that in turn stores
them. AS A also comprises probes that periodically run standard tools (e.g.,
ping, traceroute) to measure RTTs (and, possibly, IP routing paths) towards
a fixed set of targets that are external to AS A. The results of these measure-
ments are stored as well. When leaving AS A, traffic from a probe to a target
traverses a border router that may or may not be a CP. If it is, a correlation
necessarily exists between the measurements performed by the probe and the
BGP updates received by the border router for a prefix comprising the target.
If it is not, a correlation may still exist because the BGP updates recorded by
other CPs for the same prefix may also influence the behavior of the traversed
border router. Our goal is to find such correlations, using CPs and probes
available in the AS under consideration as vantage points.

The main steps of our matching methodology are in Fig. 8.1. The method-

i
i

“main” — 2014/4/27 — 19:37 — page 94 — #104 i
i

i
i

i
i

94
CHAPTER 8. AUTOMATING THE ANALYSIS OF THE IMPACT OF

ROUTING CHANGES ON ROUND-TRIP DELAY

Time window

Time shift Elbow slope threshold

Penalty

Probe ID Target

Prefix Tolerance
window

Collector peer

Time window Preprocessing Matching

Preprocessing
Time

alignment
Changepoint
detection

Changepoint
analysis

Raw RTT
measurements

BGP updates Correlation

Figure 8.1: Main steps in our matching methodology. Thick-border boxes are
inputs and outputs. Thin-border boxes are operations. Arrows indicate data
flows. Tunable parameters are represented without a box.

ology takes as input RTT measurements from a set of probes and BGP updates
from a set of CPs. We assume that all the inputs to our methodology are col-
lected within a Time window. The two datasets taken into account are very
different in nature: RTTs are recorded on a periodical basis and are subject
to lots of fluctuations, whereas BGP updates may arrive in bursts and usually
involve a limited number of different routing paths. To fill this gap, and to
clean up the inputs, we apply several preprocessing steps. We then account for
a possible time difference between the two data sets and use a state-of-the-art
statistical method to detect significant variations in RTT values. The output
of the methodology is an estimate of how much BGP routing changes have an
observable impact on RTT values. No additional information (e.g., network
topology) is required to apply our methodology. Although we are unable to
observe routing changes happening on the reverse path from the target to the
probe and RTT measurements may be affected by some biases (probe clock
synchronization, presence of load balancers, etc.), our methodology is still able
to produce significant results.

Processing of RTT Measurements and BGP Updates

The first input is a sequence of timestamped RTT measurements performed by
a probe towards a destination IP address Target. The probe is identified by a
Probe ID. Being usually performed with standard tools like ping, we assume
each measurement records a fixed number of RTT values (3 in the case of
RIPE Atlas probes) as well as the IP address that was actually reached. In
the Preprocessing step we discard measurements that recorded fewer RTT
values than expected or reached an unintended IP address. That is motivated
by the existence of spurious records in many measurement networks, caused by

i
i

“main” — 2014/4/27 — 19:37 — page 95 — #105 i
i

i
i

i
i

8.3. METHODOLOGY 95

many factors (e.g. misconfigured probes, bugs in the firmware, etc). Further,
we only consider the minimum RTT value in each measurement to better isolate
the effect of propagation and transmission delays, which exhibit low variability
and depend mostly on the length of routing paths and on the physical distance
of devices (see, e.g., [HM07]). RTT timestamps are then shifted by a fixed Time
shift in the Time alignment step, in order to compensate offsets between the
clocks of the probes and those of the CPs, and to consider possible delays in the
propagation of BGP routing changes (depending, e.g., on the relative position
of probes and CPs or on the MRAI timer).

The second input is a sequence of timestamped BGP routing updates ob-
served by a Collector peer for a specific Prefix. Each update describes how,
according to BGP, traffic should be routed from the CP to the range of IP
addresses falling within Prefix. For this reason, an update carries at least
an AS-level path (possibly empty in the case of a withdrawal). During the
Preprocessing step we retain only BGP routing changes that are eligible
for further analysis, based on the outcome of the Time alignment step. In
particular, of all the BGP updates happening between two consecutive RTT
measurements we only retain the most recent one. If the two measurements
are separated by a time lapse longer than a Tolerance window, all the BGP up-
dates in between are discarded. Note that the Tolerance window should always
be longer than the period of RTT measurements. In this way we get rid of
routing changes that can not be “seen” in RTT measurements, preventing any
improper deductions on them.

Detection of Significant Delay Variations

A remarkable challenge in our methodology is that RTT values are highly
variable. In the not-so-extreme case when every value is representative of an
RTT variation, any BGP routing change could in principle be matched with
an RTT measurement that is close in time. Such result would of course have
very little scientific value.

To avoid this, in the Changepoint detection step we seek for time in-
stants at which the mean values of RTT measurements change persistently.
We exploit a technique called Pruned Exact Linear Time (PELT) [KFE12],
one of the most recent contributions in the field of changepoint analysis sta-
tistical methods (for a survey, see [BN93]). PELT uses an efficient algorithm
to detect mean and variance shifts in time series data. The precision of the
analysis can be tuned by an input parameter called penalty. Using low values
considers volatile shifts as valid changes, whereas using high values only de-

i
i

“main” — 2014/4/27 — 19:37 — page 96 — #106 i
i

i
i

i
i

96
CHAPTER 8. AUTOMATING THE ANALYSIS OF THE IMPACT OF

ROUTING CHANGES ON ROUND-TRIP DELAY

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50000 100000 150000 200000 250000

C
ha

ng
ep

oi
nt

s

Penalty

Figure 8.2: Distribution of changepoints as a function of the penalty.

tects shifts that affect a considerable portion of the input. Simpler methods
like moving average would fail in equally detecting long-lasting small changes
as well as short-lasting significant ones with as high precision as PELT did in
our experiments. We processed RTT measurements with PELT and verified
that increasing the penalty results in a hyperbolic-like decay in the number of
detected changepoints. Figure 8.2 shows an example distribution of change-
points as a function of the penalty, measured with data coming from RIPE
Atlas probes.

Choosing the “right” penalty value is not easy and depends on the nature of
the input data. Too high penalties may result in a coarse detection of change-
points, while too low penalties may result in interpreting noise as legitimate
variations. We tackle the challenge by adopting a rule called elbow method
(see, e.g. [KS96]), traditionally used in the field of statistics. Starting from a
base value p0, we run the PELT algorithm for increasing penalties pi, i > 0,
and stop when the ratio − chpti−chpti−1

pi−pi−1
between the decrease in the count of

detected changepoints chpti and the increase of the penalty falls below an El-
bow slope threshold. The highest penalty value reached at this point is selected
as optimal. A further increase of the value for the penalty would discard too
many potentially relevant changepoints. On a side note, PELT operates on
values only and does not consider timestamps. To transform input RTT values
into a step-wise function we preliminarily associate each changepoint with the

i
i

“main” — 2014/4/27 — 19:37 — page 97 — #107 i
i

i
i

i
i

8.4. EXPERIMENTAL RESULTS 97

Path 1

Path 2

A
S

 p
at

h BGP updates

 15
 20
 25
 30

13:00 14:00 15:00 16:00 17:00 18:00

R
T

T
 (

m
s)

Time

RTT measurements
Significant RTT variations

Figure 8.3: BGP path changes (upper plot) and associated significant RTT
variations detected by PELT in RTT values (respectively, dashed line and dots
in the lower plot).

timestamp of the RTT value that caused it, in order to retrieve the original
timestamps once PELT is applied. A sample result of the application of PELT
is in Fig. 8.3 (lower plot).

Matching and Correlation

The actual correlation between the two inputs takes place at the end of the
process. In the Matching step we look for a correspondence between routing
changes and RTT variations. For each BGP update with timestamp t, we
consider a time window starting at t and as wide as the Tolerance window
parameter. We associate RTT changepoints falling within this window with the
current BGP update. Note that in order to mitigate the imprecisions of PELT
we further discard changepoints corresponding to negligible RTT variations
(less than 1 ms). A BGP update is marked as “correlated” if there is at
least one RTT changepoint associated with it. Fig. 8.3 shows a clear example
of correlation, where route flaps in the upper plot are matched with RTT
changes in the lower one. To produce an overall Correlation estimate, we define
the correlation factor as the fraction of preprocessed BGP updates marked as
correlated.

8.4 Experimental Results

In order to apply the methodology in Section 8.3 to real-world data sets, we
considered BGP data collected by hundreds of worldwide spread CPs managed
by the RIPE Routing Information Service (RIS) and RTT data collected by

i
i

“main” — 2014/4/27 — 19:37 — page 98 — #108 i
i

i
i

i
i

98
CHAPTER 8. AUTOMATING THE ANALYSIS OF THE IMPACT OF

ROUTING CHANGES ON ROUND-TRIP DELAY

ID Target IP address BGP prefix α β
1001 193.0.14.129 193.0.14.0/24 (Anycast) 87.5% 99.5%
1003 193.0.0.193 193.0.0.0/21 (Unicast) 87.2% 97.3%
1004 192.5.5.241 192.5.5.0/24 (Anycast) 57.8% 100%
1005 192.36.148.17 192.36.148.0/24 (Anycast) 55.5% 99.1%

Table 8.1: Selected measurement targets. α is the percentage of AS paths of
length ≤ 5 (global average length) towards the given BGP prefix. β is the
percentage of probes for which the average RTT measured towards the target
IP is ≤ 300ms (value recommended by ITU for VoIP).

thousands of probes deployed within the RIPE Atlas project. As explained in
Section 3.2, several other projects collect similar data sets. We selected the
RIPE projects because, being run by the same organization, they are likely to
gather data from ASes where both probes and CPs are available, in accordance
with the scenario described in Section 8.3. As of January 2013 there were 55
such ASes, hosting 126 CPs and 200 probes.

We fixed the Time window to a 2-year period ranging from January 2011 to
December 2012. We kept the window intentionally large to show the potential
of our methodology in finding interesting correlations, even when dealing with
massive amounts of data. For all the 23 targets available in this window, we
downloaded: 1. BGP updates and table dumps collected by all available CPs;
2. RTT measurements performed every 4 minutes and traceroute measurements
performed every 20 minutes, collected by all available Atlas probes. We used
traceroutes in further analyses (see Section 8.5 for details). Considering that
for many targets the amount of measurement information was too small to
identify a significant set of RTT changepoints, we restricted the application of
our methodology to the targets in Table 8.1. Since three of these targets are
name servers advertised as anycast BGP prefixes, they may exhibit less RTT
fluctuations than other more localized targets. Although this made interesting
correlations harder to find, experimental results show that our methodology
was able to effectively cope with this additional challenge.

We started by executing few test runs of the methodology explained in Sec-
tion 8.3, feeding it with the downloaded data. As a second step, we searched
for an assignment of the tunable parameters in Fig. 8.1 that could maximize
the distinction between poorly correlated and well-correlated information. Al-
though we supervised many steps of this search, the obtained parameter values
fit all the Targets and Prefixes we considered, eliminating the need to repeat it.

i
i

“main” — 2014/4/27 — 19:37 — page 99 — #109 i
i

i
i

i
i

8.4. EXPERIMENTAL RESULTS 99

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

95 %

100 %

 0 0.2 0.4 0.6 0.8 1C
u
m

u
la

te
d
 f
ra

c
ti
o
n
 o

f
p
ro

b
e
/C

P
 p

a
ir
s

Correlation factor
(Uncorrelated) (Correlated)

193.0.14.0/24

128.8.0.0/16

192.36.148.0/24

192.5.5.0/24

193.0.0.0/21

199.7.83.0/24

202.12.27.0/24

199.7.83.0/24
192.5.5.0/24

202.12.27.0/24
128.8.0.0/16

192.36.148.0/24
193.0.0.0/21

193.0.14.0/24-3
-2

0
1

3
4

Threshold (log
10) -600 -400 -200 0 200 400 600

Time shift

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

S
c
o
re

(a) (b)

Figure 8.4: (a) CDFs of the correlation factor for fixed Target ID 1001 and
varying Prefixes, relative to the total number of probe/CP pairs. The Elbow
slope threshold was fixed to 0.001, the Time shift to 0, and the Tolerance window
to 5 minutes. (b) Correlation score for Target 1001 for varying Elbow slope
threshold and Time shift. Each surface is relative to a Prefix. The arrow in-
dicates a choice of parameters that maximizes the difference between “good”
(low) and “bad” (high) correlation scores.

At first we arbitrarily fixed the Time shift, the Elbow slope threshold, and the
Tolerance window, picked a single Target and Prefix, and applied the matching
methodology to compute one correlation factor for all the data collected by
each pair consisting of a Collector peer that recorded BGP updates affecting
the Prefix and a Probe in the same AS that measured RTTs towards the Tar-
get. To compare “good” correlations with “bad” ones, we kept the Target fixed
and recomputed the correlation factors for a sample of 7 randomly chosen Pre-
fixes, including one that comprises the Target. Our goal was to prove that the
methodology in Section 8.3 is able to discriminate between arbitrary and legiti-
mate associations of input datasets. For each Prefix we plotted the Cumulative
Distribution Function (CDF) of the values of the correlation factor, relative to
the total number of probe/CP pairs. Fig. 8.4(a) shows such CDFs for Target
193.0.14.129. To compare factors for different Prefixes, in the figure we only
considered CPs that recorded BGP updates for all the 7 Prefixes. As expected,
correlation factors with Prefix 193.0.14.0/24, which comprises the Target, are
higher (the CDF is shifted to the right), whereas the trends of CDF curves for
other correlations are much steeper and similar to each other.

i
i

“main” — 2014/4/27 — 19:37 — page 100 — #110 i
i

i
i

i
i

100
CHAPTER 8. AUTOMATING THE ANALYSIS OF THE IMPACT OF

ROUTING CHANGES ON ROUND-TRIP DELAY

Based on this observation, which recurred in all our experiments with the
four Prefixes in Table 8.1, we introduced a more aggregate measure, called
correlation score. Such measure characterizes in a simpler way the relationship
between a set of RTT measurements towards a Target and a set of BGP routing
changes for a Prefix, regardless of the specific probe and CP. Considering the
CDF of correlation factors for all the probe/CP pairs corresponding to the
Target and Prefix of interest, the correlation score is computed as the area
of the portion of the CDF plot that is under the curve. Note that a lower
correlation score indicates a better correlation: the smaller the area under the
CDF, the higher the correlation factors. For example, the correlation score
for Prefix 193.0.14.0/24 in Fig. 8.4(a) is 0.95, whereas correlation scores for
other prefixes are all higher than 0.99 and therefore imply the almost complete
absence of correlation.

After introducing the correlation score, we could assess and quantify the
impact of the Elbow slope threshold and of the Time shift on the correlation
values. We computed the correlation score for each combination of a Target
from Table 8.1 and a Prefix in the above sample of 7, varying the Elbow slope
threshold and Time shift in a representative set of values. A sample result for
Target 1001 is in Fig. 8.4(b), where each three-dimensional surface refers to a
different Prefix. As it can be seen, higher Elbow slope thresholds result in better
distinction between “good” and “bad” correlation scores. In fact for higher
thresholds the lowest surface, corresponding to the Prefix that comprises the
Target, is more separated from the other surfaces. Indeed, higher thresholds
cause the selection of lower Penalty values in the Changepoint detection
step, which in turn causes more RTT changepoints to be detected and possibly
matched with BGP updates, thus improving the score. For extremely high
thresholds this phenomenon would equally affect all the Prefixes, degrading the
distinction between “good” and “bad” correlation scores. For this reason, we
chose a maximum threshold of 10000. Moreover, the correlation score improves
significantly for specific values of the Time shift. The latter finding is a hint on
the time offset between RTT measurements and BGP updates.

From the results conveyed by plots like the one in Fig. 8.4(b) we could
determine the optimal values for the tunable parameters. In particular, we
found out that picking an Elbow slope threshold equal to 10000 and a Time
shift equal to 60 seconds results in an optimal separation between “good” and
“bad” correlation scores for all the Targets and Prefixes we considered. Finally,
considering the rate of RTT measurements (one every 4 minutes), as well as
occasional irregularities in the measurement period, we fixed the Tolerance
window at 5 minutes.

i
i

“main” — 2014/4/27 — 19:37 — page 101 — #111 i
i

i
i

i
i

8.5. ANALYSES 101

Feature under Analysis 1001 1003 1004 1005
1 consistent sign of ∆RTT 87.5% 78.6% 72.5% 86.4%
2 ∆RTTP1→P2 ∗∆RTTP2→P1 < 0 64.8% 52.1% 43.3% 68.8%
3 ∆pathlen ∗∆RTT > 0 76.4% 57.4% 64% 80.6%

4 σ∆RTT/∆RTT < 0.25 73.6% 75.5% 95.5% 93.1%

Table 8.2: Results of our statistical analyses for the Targets listed in Table 8.1

8.5 Analyses

We now discuss a few analyses based on the outcome of our matching method-
ology. They unveil interesting aspects of the input data sets and support po-
tential applications of our study, one of which is detailed in Chapter 9.

Statistical Analyses

We performed various statistical analyses on the matchings between BGP
changes and RTT variations. Some of our results are reported in Table 8.2.

Let a path-change be any occurrence of a transition from an AS path P1

to an AS path P2 recorded by a Collector peer and matched with an RTT
variation seen by a Probe in the same AS. We first checked whether, in all
its occurrences for a given probe/CP pair, a single path-change was always
consistently matched with an increase, or decrease, of the RTT (analysis #1
in Table 8.2). For the majority (≥72.5%) of the path-changes we collected, we
found this to be true for all probe/CP pairs. At least half of the other path-
changes were consistently matched with an RTT change in at least 70% of
their occurrences. We then considered path-change-pairs, consisting of a path-
change from P1 to P2 and the reversed path-change from P2 to P1, both seen
by the same probe/CP pair. For a good fraction (≥ 43.3%) of path-change-
pairs, a path-change and its reversed counterpart corresponded, in all their
occurrences, to opposite variations of the RTT (analysis #2 in the table). We
then found that at least 57.4% of the path-changes that increased (decreased)
the AS path length were consistently matched, in all their occurrences, with
an RTT increase (decrease). See analysis #3 in the above table for details.

Next, we switched to more quantitative analyses of RTT variations. We
inspected the predictability of the effect of a path-change by computing the
average (∆RTT) and standard deviation (σ∆RTT) of the RTT variations as-
sociated with all the occurrences of the path-change for a probe/CP pair. For

i
i

“main” — 2014/4/27 — 19:37 — page 102 — #112 i
i

i
i

i
i

102
CHAPTER 8. AUTOMATING THE ANALYSIS OF THE IMPACT OF

ROUTING CHANGES ON ROUND-TRIP DELAY

Traceroute
measurements

Validation

Probe ID Target Time shift

Time window
IP→AS
mapping

Time
alignment

MatchingTime window

Labeled BGP
updates

BGP-RTT
Matching

Figure 8.5: Steps of the validation with traceroute data.

most path-changes (≥73.6%) the ratio σ∆RTT/∆RTT was below 0.25, i.e., the
same routing change resulted in fairly similar RTT variations (see analysis #4
in Table 8.2). We also inspected whether the position of the first modified AS
in a path-change influenced the extent of RTT variations. With the exception
of Target 1001, we found that changes happening close to the AS hosting the
probe corresponded to larger average RTT variations, whereas changes hap-
pening far in the AS path were less impactful.

Comparison with Traceroute Data

As specified in Section 8.4, we also collected traceroute measurements from
RIPE Atlas probes, which we used to perform a preliminary validation of the
results of our matching methodology. The reader can refer to Fig. 8.5 for an
outline of the main steps described below.

The validation process applies to a single probe/CP pair, and considers a
specific Target and a specific Prefix. To perform the validation, we consider
as first input a sequence of time-labeled traceroute measurements (performed
with the standard traceroute command that we introduce in Section 3.1).
Each measurement consists of a sequence of IP addresses and possibly includes
“null hops”, i.e., hosts that do not reply to packets sent by the probe.

The second input is a partial result of the methodology in Section 8.3. It
consists of the complete set of BGP updates collected by the selected CP for
the Prefix of interest, where each BGP update is labeled as valid if it has been
retained after the Preprocessing step, invalid otherwise. The last input
consists of the correlation factor for the considered probe/CP pair.

The collected data is subject to an IP→AS Mapping step. The goal is to
determine what ASes are traversed by each traceroute measurement, in order to
match them with BGP routing changes happening at the same time. Methods
for IP-to-AS mapping from the literature [MRWK03, MJR+04, ZOW+11] take
into account many potential issues, e.g., the presence of IP addresses announced
by Internet Exchange Points (IXPs) or peer ASes. In this paper we take a

i
i

“main” — 2014/4/27 — 19:37 — page 103 — #113 i
i

i
i

i
i

8.5. ANALYSES 103

simple approach and retain the assumption supported by the literature that
the IP-to-AS mapping derived from BGP routing tables is mostly correct. The
main steps of our mapping step can be described as follows. First of all, each
private IP address at the beginning of the traceroute path is mapped to the
AS of the probe originating the measurement. Each remaining IP address is
mapped to the most specific IP prefix containing it that is publicly announced
on BGP and seen by RIS collectors. The first information is made available on
the RIPE Atlas homepage, while the latter can be retrieved using RIPEstat
(see Section 3.2 for details). For each prefix, the AS that announces it is
elected as representative for all the IP addresses contained in the prefix. In
case there is more than one AS announcing the same prefix, the one seen as
the prefix originator by the majority of RIS collectors is elected. In case there
is no IP prefix matching the IP address we map the latter to a special number
representing an unknown AS. At this point, given the resulting sequence of
ASes, identical consecutive AS numbers are collapsed. Finally, AS numbers
corresponding to publicly known IXPs are removed from the sequence.

After performing a Time alignment step in the same way as for RTT mea-
surements (see Section 8.3), we put together the traceroute measurements and
the BGP routing changes in the Matching step. We consider the sequence
of all BGP routing changes u1, . . . , un with related timestamps t1, . . . , tn. For
each valid BGP routing change ui (1 < i < n) we consider two time windows
T< = [ti−1, ti] and T> = [ti, ti+1] which are determined as the stability periods
before and after ui. We then obtain M< and M>, i.e. the two sequences of
traceroute measurements respectively falling within T< and T>. We discard
valid BGP updates where either M< or M> are empty. Given the last tracer-
oute measurement in M< with the highest timestamp we call mi−1 the sequence
of ASes obtained by mapping its IP addresses. Similarly, mi is the sequence of
ASes corresponding to the first traceroute measurement in M>. We combine
the above information in a quadruple qi = (mi−1, ui−1,mi, ui) and call Q the
set containing all such quadruples.

Finally, the output of the correlation between RTT measurements and BGP
routing changes is validated as follows. The analysis is applied to each qi ∈ Q
computed in the previous step and makes use of the outcome of the BGP-
RTT Matching step for BGP routing change ui (see Section 8.3). For each
qi ∈ Q we simply check whether ui−1 6= ui and mi−1 6= mi, and mark ui as
“validated” if both conditions hold. Given such information, we can compute
two quality measures for the Validation as follows. We first split Q into two
sets Q+ and Q−: the first contains all the qi ∈ Q such that the BGP routing
change ui is correlated with an RTT measurement, while the second is defined

i
i

“main” — 2014/4/27 — 19:37 — page 104 — #114 i
i

i
i

i
i

104
CHAPTER 8. AUTOMATING THE ANALYSIS OF THE IMPACT OF

ROUTING CHANGES ON ROUND-TRIP DELAY

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

BG
P-

tra
ce

ro
ut

e
co

rre
la

tio
n

fa
ct

or

BGP-RTT correlation factor

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

BG
P-

tra
ce

ro
ut

e
fa

ls
e

ne
ga

tiv
e

fa
ct

or

BGP-RTT correlation factor

(b)

Figure 8.6: Validation with traceroute data for target 1005. Circles represent
probe/CP pairs. (a) Plot showing the BGP-traceroute correlation factors and
the BGP-RTT correlation factors for all the probe/CP pairs with |Q+| > 0.
(b) Plot showing the BGP-traceroute false negative factors and the BGP-RTT
correlation factors for all the probe/CP pairs with |Q−| > 0. The size of each
circle is proportional to |Q+| and |Q−|, respectively.

i
i

“main” — 2014/4/27 — 19:37 — page 105 — #115 i
i

i
i

i
i

8.5. ANALYSES 105

as Q− = Q \Q+. We then define the BGP-traceroute correlation factor as the

ratio |qi∈Q+: ui is validated|
|Q+| and the BGP-traceroute false negative factor as the

ratio |qi∈Q−: ui is validated|
|Q−| . Intuitively, the first factor measures the precision of

our BGP-RTT correlation methodology, while the second gives an indication
of how many correspondences between the data plane and the control plane
are not captured.

The results of the validation for Target 1005 are in Fig. 8.6. Results for other
targets are substantially equivalent. Circles in each plot represent probe/CP
pairs. Other features are described in the figure caption. In the left-side plot
the vast majority of probe/CP pairs with a high BGP-RTT correlation factor
(greater than 0.6) have a high BGP-traceroute correlation factor. That means
that BGP routing changes that are well correlated with RTT changepoints are
also well correlated with traceroutes. The right-side plot help us understand
how many correlations cannot be detected with our methodology. As expected,
we see BGP-RTT false negative factors close to zero for probe/CP pairs whose
BGP-RTT correlation factor is low. Namely, poorly correlated BGP and RTT
data find no evidence of correlation even at the traceroute level.

Clearly, our validation approach is currently limited by the scarce avail-
ability of traceroute data. Further, the comparison of routing states before
and after BGP events could be implemented at a much finer level of detail.
However, our initial positive results motivate further analyses to perform in
the future.

Further Analyses and Applications

There are a few other analyses that can be performed based on the results
of our methodology. We provide here a few examples, which also support
various practical applications. First of all, it is possible to single out equivalence
classes of CPs and probes that exhibit a highly correlated behavior. CPs in
an equivalence class are therefore best candidates to understand, motivate,
and, possibly, predict, delay variations recorded by probes in the same class,
a useful piece of information for traffic engineering decisions. We make use
of equivalence classes in our visualization framework detailed in Chapter 9.
Moreover, quantifying the influence that routing updates for a Prefix recorded
by different CPs had on the delays towards a Target falling in that Prefix could
help determine the network locations where routing changes are less likely to
affect the reachability of a delay-sensitive service. In addition, the presence of
a correlation between routing updates for a Prefix and delays towards a Target

i
i

“main” — 2014/4/27 — 19:37 — page 106 — #116 i
i

i
i

i
i

106
CHAPTER 8. AUTOMATING THE ANALYSIS OF THE IMPACT OF

ROUTING CHANGES ON ROUND-TRIP DELAY

not comprised in this Prefix can be evidence of a network problem and aid
troubleshooting.

8.6 Conclusions and Future Work

In this chapter we describe a methodology to automatically analyze the impact
of BGP routing changes on network delays. We prove its effectiveness using
publicly available data and propose some interesting analyses based on its
outcome.

Lots of facets of our study deserve further investigation. Extending the
analysis to different data sources (e.g. those reported in Section 3.2), van-
tage points, and targets can further validate the effectiveness of our technique.
RTT variations could be analyzed with different statistical methods, in order
to extract further useful information on network behavior from noise, gaps, or
complex patterns in the data. Further, we want to improve our analysis by
studying the impact of intra-domain routing changes even on one-way perfor-
mance indicators, in a controlled scenario where routing events are triggered
on purpose. Finally, we envision an extension of the analyses illustrated in
Section 8.5.

i
i

“main” — 2014/4/27 — 19:37 — page 107 — #117 i
i

i
i

i
i

Chapter 9

Visualizing the Correlation
between Inter-domain Routing
Changes and Active Probing

The visualization project described in this chapter is paired with the research
work presented in Chapter 8. Part of the material is based on [DD13]. The
two scientific publications based on the results of the project are listed in
Chapter 11. The reader can refer to [DDS12] for additional material that
supports the presentation of our work.

9.1 Introduction and State of the Art

Huge quantities of BGP updates and probe-originated active measurements
are nowadays publicly available to researchers in time-labeled collections. Ex-
amples include respectively the RIPE Routing Information Service and RIPE
Atlas, both presented in Section 3.2. As detailed in Chapter 8, the correlation
between these two different types of data is an innovative topic in network data
analysis that can prove useful for a number of tasks involving troubleshooting
and network design.

In terms of visualization, the state of the art flourishes with systems for ex-
ploring either of the two types of information. The BGP routing information
collected by collector peers is the input for a number of tools. Examples include
BGPlay [CDM+05], NetViews [YMMW09], and Cyclops [COZ08]. The reader
can refer to Chapter 6, where we report a more detailed analysis of the state

107

i
i

“main” — 2014/4/27 — 19:37 — page 108 — #118 i
i

i
i

i
i

108
CHAPTER 9. VISUALIZING THE CORRELATION BETWEEN

INTER-DOMAIN ROUTING CHANGES AND ACTIVE PROBING

of the art and present in turn our recent contribution, called BGPlay.js.
Visualization systems for active measurements also appear in the literature.
GTrace [PN99] shows traceroutes enriched with geographical information. The
IP-paths are drawn as line-joined nodes on a world map. Walrus is a tool that
visualizes large graphs in 3-dimensional space and has been used to visualize
round-trip delay [CAI01]. All the active measurement projects listed in Sec-
tion 3.2 publish simple visualizations of their data, such as interactive plots,
graphs, and geographical maps. On the other hand, there is a lack of tools
capable of bringing BGP updates and active measurements together, leading
to an added value which is greater than the “sum of its parts”.

We identify two major features that a visualization framework should ad-
dress to meet such requirement. First of all, it should provide a clear way
to infer the correlation between changes in the inter-domain routing and cor-
responding variations in the performed active measurements. As explained
in Chapter 8, this helps network operators and maintainers accomplish three
main tasks: 1. understanding the impact of different AS-paths on the per-
formance and reliability of routes towards critical Internet targets; 2. finding
specific performance bottlenecks at the AS level; and 3. checking if Service Level
Agreements (SLAs) offered by different upstream ISPs are actually enforced.
Further, the framework should highlight the relationship between intra-domain
and inter-domain routing, proposing a visual partitioning of the probes hosted
by an AS with respect to the border gateways that route their outbound traf-
fic. That is crucial for the purpose of debugging network outages, or to rapidly
understand if a sudden change in performance measured by a probe should be
ascribed to intra-domain or inter-domain dynamics.

The design of such a visualization tool is challenging for many reasons.
First, a purely geographical representation of all the network entities is either
impossible or meaningless, because the needed information can be incomplete.
Some network entities are tagged with their exact geographical location, while
other entities have unknown or approximate coordinates. For example, RIPE
Atlas probes belong to the first group, while RIS border gateways are in the
second group (see Section 3.2 for details). Further, large transit ASes [DD08]
are huge bodies distributed over countries and even continents. Second, both
the datasets and the status of their correlation evolve over time. A visualization
system should therefore deal efficiently with the underlying dynamics, without
affecting the user’s mental map. Finally, due to the overwhelming amount of
BGP routing information and active measurements available for exploration,
the user should be presented with a mechanism to select and navigate between
relevant portions of data.

i
i

“main” — 2014/4/27 — 19:37 — page 109 — #119 i
i

i
i

i
i

9.2. REQUIREMENTS AND INTERFACE DESIGN 109

We present a metaphor that combines geographical and non-geographical
information and displays the interplay between BGP routing and round-trip
delay. We achieve this goal with the following expedients. First of all, we
visually separate entities that are geolocated from those that are not. Further,
we use animation to convey the temporal evolution of the networks under
inspection. Finally, we require the user to focus on a well-defined portion of
the data, by selecting a specific AS that contains both border gateways and
probes that originate active measurements towards an Internet target. This
allows us to cope with the size of the datasets, reducing the complexity of the
visualization.

We implemented our metaphor into a prototype, called Hydra. Its first two
inputs are respectively the BGP routing information of a set of border gateways
in the selected AS, and performance measurements originated by probes in the
same AS. The third input consists of metadata on the correlation between the
two datasets. More specifically, for each pair composed of a probe and a border
gateway, we expect a set of time intervals in which the two are considered as
“matched” (i.e. their data exhibits a clear correlation). For simplicity we
assume that at any time each probe can be matched with at most one border
gateway. The methodology detailed in Chapter 8 is an obvious candidate for
the computation of the third input. However, our visualization metaphor can
be extended to any alternative methodology that computes the same type of
information.

The rest of the chapter is organized as follows. Section 9.2 provides a
detailed description of the user requirements and our visualization metaphor.
Section 9.3 focuses on technical and algorithmic details. Section 9.4 contains
conclusions and ideas for future work.

9.2 Requirements and Interface Design

We started the design of a suitable visualization metaphor by introducing an
abstraction of the main features of our data. A source probe is a probe that
periodically performs round-trip delay measurements against a set of targets.
A source BG is a border gateway that acts as a collector peer. A target is a
service publicly reachable on the Internet, subject to periodic measurements
originated by source probes. A source AS is an AS that hosts at least one
source probe and at least one source BG. A target AS is an AS that hosts at
least one target.

i
i

“main” — 2014/4/27 — 19:37 — page 110 — #120 i
i

i
i

i
i

110
CHAPTER 9. VISUALIZING THE CORRELATION BETWEEN

INTER-DOMAIN ROUTING CHANGES AND ACTIVE PROBING

Main Requirements

We take a simple approach and assume that the user specifies three main
parameters at the beginning of each interaction with the system. The first
input is a source AS (for example an ISP, as detailed in [DD08], or the AS
owned by a specific company or university, etc) that the user would like to
monitor. The second input is a target that is commonly accessed by computers
residing in the specified source AS. The third input is a time interval of interest.

The first requirement consists in having a clear map of both the portion
of AS topology and the set of source probes that are directly related to the
specified source AS and target. This implies the visualization of the AS-graph
induced by the source AS, the target AS, and all the other ASes that appear
in at least one of the AS-paths selected by the source BGs. As for the source
probes, we focus on displaying basic information like their geolocation and IP
prefix.

Once the topology is given, users are interested in studying the evolution
of each of the two datasets. For BGP routing data that means showing how
the AS-paths selected by each source BG change over time. For source probes,
instead, that corresponds to showing fluctuations in the round-trip delay mea-
sured by each source probe to reach the selected target.

The third and most challenging requirement consists in capturing the cor-
relation between the two datasets. In particular, the visual representation of
each dataset should be augmented with further information that derives from
the correlation with the other dataset. For each source BG, that means en-
riching the BGP routing data with a visual indication of the round-trip delay
measured by all the probes that are matched with it. For source probes, in-
stead, that translates to explicitly showing their association to a source BG
and consequently to the AS-path that routes their traffic to the target.

Interface Outline

Given the inputs detailed so far, we propose the following metaphor. The
source AS is a circle that contains a geographical map. Each source probe is a
triangle placed on the map based on its geographic coordinates. Each source
BG is a rectangle with a distinctive color that is placed on the external border
of the source AS. The target AS is a blue circle. The remaining ASes are
dark circles. Peerings between pairs of ASes (i.e. edges of the AS-graph) that
can be inferred from at least one AS-path are pictured as dark rectangular
bridges. The transition zone between the geographical and the topological

i
i

“main” — 2014/4/27 — 19:37 — page 111 — #121 i
i

i
i

i
i

9.2. REQUIREMENTS AND INTERFACE DESIGN 111

representations is a grey rectangle containing the source BGs and the ASes
which have direct peerings with them.

The visualization evolves dynamically, showing the evolution of the two
datasets over time. The round-trip delay measured by each source probe to
reach the target is encoded in a scale of color from red to green, ranging from
large to small round-trip delay values. Each source probe is assigned the appro-
priate color. When the round-trip delay measured by a source probe changes
its color is updated accordingly. The AS-path chosen by each source BG is rep-
resented as a curve connecting the source BG and the target AS by following
the corresponding route in the AS-graph displayed on screen. When a source
BG announces a different AS-path, the corresponding curve is modified with
a simple linear morphing procedure in order to reflect the change. Note that
although animation is not generally seen [RFF+08] as an appropriate tool for
trend visualization, we leverage it to represent changes in the data by means
of smooth transitions.

The correlation between the set of source probes and the set of source
BGs in the source AS is rendered as follows. We rely on the input correla-
tion as detailed in Section 9.1. Given a source AS containing k source BGs
BG1, . . . , BGk, the correlation defines a partitioning of the source probes in at
most k disjoint clusters µ1, . . . , µk. We depict such partitioning by enclosing
probes in each cluster µi by means of a simple closed region, which is also
connected to the corresponding source BG BGi. Whenever a source probe
is no longer associated with a source BG BGi, the boundary of the cluster
µi is recomputed and a linear morphing procedure is applied to animate the
transformation from the old to the new boundary. AS-paths are enhanced with
correlation data. More precisely, each curve originating from a source BG BGi
has a color that reflects the average round-trip delay measured by all the probes
in µi, using the same scale from red to green used for source probes.

The user can interact with the interface by hovering its main elements,
triggering the visualization of a popup enclosing textual information. Note
that most of such information is already conveyed by graphical features in
our metaphor. Popups are needed to show exact numerical values and to put
together data pertaining to the same entities. For each source probe the popup
contains the geographical coordinates, the IP prefix that contains its public IP
address, and the round-trip delay measured to reach the target. For each source
BG the popup shows the IP address and the average round-trip delay.

Figure 9.1 presents two example snapshots of our visualization metaphor.
Fig. 9.1(a) shows an example AS-graph. AS0 is the source AS: it hosts eleven
source probes and three source BGs. Fig. 9.1(b) shows the evolution of the

i
i

“main” — 2014/4/27 — 19:37 — page 112 — #122 i
i

i
i

i
i

112
CHAPTER 9. VISUALIZING THE CORRELATION BETWEEN

INTER-DOMAIN ROUTING CHANGES AND ACTIVE PROBING

(a)

(b)

Figure 9.1: Example visualization using our metaphor. Map images
© OpenStreetMap contributors, CC BY-SA (http://www.openstreetmap.
org/, http://creativecommons.org/licenses/by-sa/2.0/). (a) Initial
state of the visualization. AS0 is the source AS and AS5 is the target AS.
AS1, AS2, AS3 and AS4 complete the AS-graph. BG1, BG2 and BG3 are the
source BGs of AS0. The AS-paths start from the source BGs and end at AS5.
AS0 contains 11 probes, partitioned between the source BGs. Note that probe
n.7 does not belong to any cluster. (b) Visualization after the animation. BG3
follows a different path to reach AS5. The AS-path chosen by BG2, the two
probes in its cluster, and the probe n.1 have new colors, reflecting changes
in the measured round-trip delay. The clusters have changed, with probe n.1
moving from BG1 to BG3.

i
i

“main” — 2014/4/27 — 19:37 — page 113 — #123 i
i

i
i

i
i

9.3. ALGORITHMS AND TECHNICAL DETAILS 113

graph in Fig. 9.1(a), reflecting the state of the underlying data at a different
point in time. In particular one source BG follows a new AS-path, the colors
representing round-trip delays are different, and the clusters representing the
correlation between source probes and source BGs are also subject to updates.
The reader can refer to the captions of the two figures for a more detailed
explanation.

Note that our metaphor presents a mixture of geographical and topological
features. In particular, we do not use real coordinates for transit ASes. Their
geographical distribution can be extremely large and often groups of ASes share
the same location. Therefore a geographical representation would easily lead to
visual cluttering. All the source probes are instead placed at their geographical
location, because the visual footprint is much more limited and it is interesting
to look for patterns when the source probes are divided into clusters. Finally,
we do not show the geographical information of the source BGs, even when
it is known. Instead, we prefer to use them as a visual feature to bridge the
relationship between the geographical and the topological representation.

The expected size of the input data was carefully taken into account while
designing the interface to ensure its readability. In particular the presence of
a large number of ASes and source probes may have a negative impact. With
respect to the number of ASes, previous research shows that both the average
AS-path length [Hus12] and the average number of different AS-paths seen by
a single AS to reach a given prefix [SF02] are usually small. Also, the number
of AS-paths that are visible at the same time in our interface is bounded by
the number of source BGs of the source AS. However, we can safely assume
that the number of border gateways is usually small. For example, about 95%
of the ASes participating in the RIPE Routing Information System have less
than five border gateways peering with route collectors. As for round-trip delay
measurements publicly available, note that the number of source probes per
AS is also generally small. For example, the statistics reported on the RIPE
Atlas homepage show that less than 2% of ASes have more than ten probes.
Hence, any dataset with comparable features is suitable for our metaphor. The
reader can refer to Section 3.2 for a list of projects including the RIPE Routing
Information Service and RIPE Atlas.

9.3 Algorithms and Technical Details

The layout of the AS-graph is obtained by applying a standard graph draw-
ing algorithm suited for layered graphs (see, e.g., the method described by

i
i

“main” — 2014/4/27 — 19:37 — page 114 — #124 i
i

i
i

i
i

114
CHAPTER 9. VISUALIZING THE CORRELATION BETWEEN

INTER-DOMAIN ROUTING CHANGES AND ACTIVE PROBING

Sugiyama et al. [STT81]). Our procedure works as follows. First, vertices
are assigned to vertical layers such that: 1. the source AS and the target AS
are the only vertices assigned to the right-most and to the left-most layers,
respectively; and 2. the other ASes are assigned internal layers according to a
breadth-first visit of the AS-graph starting at the source AS. Second, a per-
mutation of the vertices of the internal layers is performed in an attempt to
reduce the number of edge crossings. The result layout meets the requirements
of the visualization since it conveys the left-to-right flow of the traffic directed
from the source AS to the target AS.

Figure 9.2(a) contains a layered drawing for an example AS-graph. Note
that some dummy vertices have been added to make the graph proper, as
explained in Section 2.2. The drawing is clearly suboptimal, because many
links between pairs of ASes are overlapped (for example, the link between AS0
and AS2 and the one between AS3 and AS5). Figure 9.2(b) shows a different
layout for the same AS-graph, where all crossings between pairs of links are
avoided thanks to the Sugiyama method.

Once the layout for the AS-graph is computed, the drawing of the AS-
path chosen by each source BG is routed from the source AS to the target
AS inside the AS-graph’s edges and vertices. Our approach is very similar
to the drawing of “metro maps”, which gives rise to a number of interesting
optimization problems concerned with the avoidance or reduction of crossings
between different lines (see, e.g., the work of Argyriou et al. [ABKS10]). In our
setting, each edge of the AS-graph is traversed by parallel AS-path segments,
so that no two of them cross inside the edge. Thus, we only allow AS-paths
to cross inside vertices. This produces two positive visual effects. First, the
resulting drawing is more readable, as each AS-path can be easily followed
thanks to its color and to the lack of crossings on the edges. Second, the
animation of each AS-path preserves the user’s mental map, since it appears
as a simple translation of the segments lying in the interior of each edge.

The animation that illustrates each AS-path change is performed as follows.
Let p1 and p2 be the initial and final AS-path, respectively. First, dummy ver-
tices are introduced in the polyline representation of the shortest of the two
AS-paths, so that the number of vertices in p1 and p2 coincides. A bijection is
found that binds together pairs of vertices of p1 and p2 at the same topolog-
ical distance from the source BG. Second, a linear interpolation is computed
between each of such pairs of vertices, transforming the curve for p1 in the one
for p2. See the work of Colitti et al. [CDM+05] and Bespamyatnikh [Bes02] for
known polyline morphing algorithms.

The boundary of each cluster µi of source probes is computed as follows.

i
i

“main” — 2014/4/27 — 19:37 — page 115 — #125 i
i

i
i

i
i

9.3. ALGORITHMS AND TECHNICAL DETAILS 115

(a)

(b)

Figure 9.2: Explanation of the graph layout algorithm with an example AS-
graph. (a) Each AS is assigned a layer and dummy vertices are added to the
graph to make it proper. (b) The layout is modified to avoid crossings between
pairs of edges.

i
i

“main” — 2014/4/27 — 19:37 — page 116 — #126 i
i

i
i

i
i

116
CHAPTER 9. VISUALIZING THE CORRELATION BETWEEN

INTER-DOMAIN ROUTING CHANGES AND ACTIVE PROBING

First, an Euclidean minimum spanning tree (EMST) T (µi) is computed that
connects the source probes in µi and the source BG BGi. Shamos et al. [SH75]
describe an O(n log n) time algorithm for computing an EMST of a set of n
points in the plane. Second, a bottom-up traversal of T (µi) is performed for
determining a polyline cycle B(µi) surrounding T (µi) and arbitrarily close to
it. That is the boundary of the cluster.

We implemented a prototype, which we call Hydra, based on the de-
scribed metaphor. The source code is open and freely accessible online, to-
gether with supplementary material that highlights the main features of the
prototype [DDS12].

9.4 Conclusions and Future Work

This chapter presents a visualization metaphor and implemented a prototype
to analyze the correlation between BGP routing data and round-trip delay
measurements. We deal with huge datasets containing topological, geographi-
cal, and temporal information, often intertwined in complex relationships. To
the best of our knowledge our prototype is the first visual tool that aims at
unveiling the peculiarities of such an interesting scenario.

We plan to extend our approach to round-trip BGP routing data and Atlas
traceroute data, in order to improve our methodology and obtain better and
more prominent correlations. On the visualization side, we will evaluate the
possibility of taking into account two or more source ASes at the same time.
Such an improvement would allow the end user to compare and assess the
quality of the service offered by different upstream ISPs. We will also optimize
the algorithms for the visualization and the animation of data. We plan to
study how to draw AS-paths reducing mutual overlaps and crossings. Finally,
we will focus on different ways to represent clusters of probes, in order to
achieve a smoother animation.

i
i

“main” — 2014/4/27 — 19:37 — page 117 — #127 i
i

i
i

i
i

Part V

Publications and Bibliography

117

i
i

“main” — 2014/4/27 — 19:37 — page 118 — #128 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 119 — #129 i
i

i
i

i
i

Chapter 10

Other Research Activities

This chapter presents additional research activities that took place mostly dur-
ing the first two years of the doctorate program. The following sections are
not part of the previous chapters of this thesis because they have little or no
overlap with the topic of Internet visualization. Each research topic presented
in this chapter lead to at least one scientific publication. The reader can refer
to Chapter 11 for additional details.

10.1 Analysis of Country-wide Internet Outages caused
by Censorship

In the first months of 2011, Internet communications were disrupted in several
North African countries in response to civilian protests and threats of civil war.
As already mentioned in Chapter 6, we analyzed episodes of these disruptions
in Egypt and Libya relying on multiple sources of large-scale data already avail-
able to academic researchers: 1. BGP inter-domain routing control plane data;
2. unsolicited data plane traffic to unassigned address space; 3. active macro-
scopic traceroute measurements; 4. RIR delegation files; and 5. MaxMind’s
geolocation database. We used the latter two data sets to determine which
IP address ranges were allocated to entities within each country. We mapped
these IP addresses of interest to BGP-announced IP prefixes and origin ASes
using publicly available BGP data repositories in the U.S. and Europe. We
then analyzed observable activity related to these sets of prefixes and ASes
throughout the censorship episodes.

Using both control plane and data plane data sets in combination allowed

119

i
i

“main” — 2014/4/27 — 19:37 — page 120 — #130 i
i

i
i

i
i

120 CHAPTER 10. OTHER RESEARCH ACTIVITIES

us to narrow down which forms of Internet access disruption were implemented
in a given region over time. Among other insights, we detected what we believe
were Libya’s attempts to test firewall-based blocking before they executed more
aggressive BGP-based disconnection. Our methodology could be used, and
automated, to detect outages or similar macroscopically disruptive events in
other geographic or topological regions.

10.2 Universal Point Sets for Classes of Planar Graphs

A point set P ⊆ R2 is universal for a class of graphs G if every graph of G has a
planar straight-line embedding into P . The well-known problem of finding the
size of the smallest universal point set for planar graphs is still open. However,
researchers have tackled the problem by finding small point sets for specific
classes of planar graphs: for example, outerplanar graphs (i.e., graphs with all
their vertices on the external face) can be drawn with any point set of size n.

In our research work we focused on the class of simply-nested n-vertex
planar graphs. These graphs are a special kind of graphs with k-outerplanar
embeddings, defined as embeddings in which removing the vertices of the outer
face yields a (k − 1)-outerplanar embedding (where 1-outerplanar is an outer-
planar embedding). Simply-nested graphs are k-outerplanar graphs where all
the levels are chordless cycles.

We proved that there exists a O(n(logn
log logn)2) size universal point set for

simply-nested graphs. Our result is in turn based on the construction of a point
set of size 8n+ 8 for simply-nested graphs for which the number of vertices on
each layer is known in advance. The generalization to all simply-nested graphs
is obtained exploiting combinatorial properties of the relationship between the
number of vertices on each layer and the total number of vertices.

10.3 Area Requirements of Euclidean Minimum
Spanning Trees

A Euclidean minimum spanning tree (MST) of a set P of points in the plane
is a tree with a vertex in each point of P and with minimum total edge length.
Euclidean minimum spanning trees have several applications in computer sci-
ence and hence they have been deeply investigated from a theoretical point of
view.

An MST embedding of a tree T is a plane embedding of T such that the
MST of the points where the vertices of T are drawn coincides with T . Several

i
i

“main” — 2014/4/27 — 19:37 — page 121 — #131 i
i

i
i

i
i

10.4. SEMANTIC WORD CLOUD REPRESENTATIONS 121

results are known related to such a problem. For example, no tree having
a vertex of degree at least 7 admits an MST embedding. Further, deciding
whether a tree with degree 6 admits an MST embedding is computationally
hard.

Monma and Suri [MS92] prove that every tree of maximum degree 5 admits
an MST embedding in the plane that requires exponential area, and conjecture
that their result can be improved to only use polynomial area for the construc-
tion of the tree. In our research activity we proved that there exist n-vertex
trees of maximum degree 5 requiring exponential area in any MST embedding.

10.4 Semantic Word Cloud Representations

Word clouds are popular ways to visualize text. They provide an appealing way
to summarize the content of a webpage, a research paper, or a political speech.
Often such visualizations are used to contrast two documents; for example,
word cloud visualizations of the speeches given by the candidates in the 2008
US Presidential elections were used to draw sharp contrast between them in
the popular media.

While some of the more recent word cloud visualization tools aim at in-
corporating semantics in the layout, none provides any guarantees about the
quality of the layout in terms of semantics. We propose a mathematical model
of the problem, via a simple edge-weighted graph. The vertices in the graph
are the words in the document. The edges in the graph correspond to semantic
relatedness, with weights corresponding to the strength of the relation. Each
vertex must be drawn as a box with fixed dimensions, related to the importance
of the word. The goal is to “realize” as many edges as possible, by contacts
between their corresponding rectangles.

In our research work we proved that the problem of realizing all the edges
in the input graph is computationally hard, even when applied to simple classes
of graphs like trees and stars. We then considered the optimization problem
where each edge has a weight and the task is to maximize the sum of the
weights of the realized edges. We found approximations for several classes of
graphs that improve upon the best existing heuristics.

i
i

“main” — 2014/4/27 — 19:37 — page 122 — #132 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 123 — #133 i
i

i
i

i
i

Chapter 11

Publications

Journal Publications

1. Alberto Dainotti, Claudio Squarcella, Emile Aben, Kimberly C. Claffy,
Marco Chiesa, Michele Russo, Antonio Pescapé. Analysis of Country-
wide Internet Outages Caused by Censorship. IEEE/ACM Transactions
on Networking. To appear, 2014.

2. Patrizio Angelini, Till Bruckdorfer, Marco Chiesa, Fabrizio Frati, Michael
Kaufmann, Claudio Squarcella. On the Area Requirements of Euclidean
Minimum Spanning Trees. Computational Geometry: Theory and Appli-
cations (Special Issue on Selected Papers from WADS ’11), volume 47,
number 2, part B, pages 200-213, 2014.

3. Giordano Da Lozzo, Giuseppe Di Battista, Claudio Squarcella. Visual
Discovery of the Correlation between BGP Routing and Round-Trip De-
lay Active Measurements. Computing, volume 96, issue 1, pages 67-77,
2014.

4. Giuseppe Di Battista, Claudio Squarcella, Wolfgang Nagele. How to
Visualize the K-root Name Server. Journal of Graph Algorithms and
Applications, volume 16, number 3, pages 675-699, 2012.

Conference Publications

1. Lukas Barth, Sara Irina Fabrikant, Stephen Kobourov, Anna Lubiw, Mar-
tin Nöllenburg, Yoshio Okamoto, Sergey Pupyrev, Claudio Squarcella,

123

i
i

“main” — 2014/4/27 — 19:37 — page 124 — #134 i
i

i
i

i
i

124 CHAPTER 11. PUBLICATIONS

Torsten Ueckerdt, Alexander Wolff. Semantic Word Cloud Representa-
tions: Hardness and Approximation Algorithms. In 11th Latin Amer-
ican Theoretical Informatics Symposium (LATIN’14), Springer-Verlag,
Lecture Notes in Computer Science. To appear, 2014.

2. Massimo Rimondini, Claudio Squarcella, Giuseppe Di Battista. Towards
an Automated Investigation of the Impact of BGP Routing Changes on
Network Delay Variations. In 15th Passive and Active Measurement Con-
ference (PAM 2014). To appear, 2014.

3. Massimo Candela, Marco Di Bartolomeo, Giuseppe Di Battista, Claudio
Squarcella. Dynamic Traceroute Visualization at Multiple Abstraction
Levels. In 21st International Symposium on Graph Drawing (GD ’13),
volume 8242 of Lecture Notes in Computer Science, pages 500-511, 2013.

4. Giordano Da Lozzo, Giuseppe Di Battista, Claudio Squarcella. Visual
Discovery of the Correlation between BGP Routing and Round-Trip De-
lay Active Measurements. In 1st IMC Workshop on Internet Visualiza-
tion (WIV 2012), 2012.

5. Alberto Dainotti, Claudio Squarcella, Emile Aben, Kimberly C. Claffy,
Marco Chiesa, Michele Russo, Antonio Pescapé. Analysis of Country-
wide Internet Outages Caused by Censorship. In 2011 Internet Measure-
ment Conference (IMC ’11), ACM, pages 1-18, 2011.

6. Giuseppe Di Battista, Claudio Squarcella, Wolfgang Nagele. How to
Visualize the K-Root Name Server (Demo). In 19th International Sym-
posium on Graph Drawing (GD ’11), volume 7034 of Lecture Notes in
Computer Science, pages 191-202, 2011.

7. Patrizio Angelini, Giuseppe Di Battista, Michael Kaufmann, Tamara
Mchedlidze, Vincenzo Roselli, Claudio Squarcella. Small Point Sets for
Simply-Nested Planar Graphs. In 19th International Symposium on Graph
Drawing (GD ’11), volume 7034 of Lecture Notes in Computer Science,
pages 75-85, 2011.

8. Patrizio Angelini, Till Bruckdorfer, Marco Chiesa, Fabrizio Frati, Michael
Kaufmann, Claudio Squarcella. On the Area Requirements of Euclidean
Minimum Spanning Trees. In 12th Algorithms and Data Structures Sym-
posium (WADS ’11), volume 6844 of Lecture Notes in Computer Science,
pages 25-36, 2011.

i
i

“main” — 2014/4/27 — 19:37 — page 125 — #135 i
i

i
i

i
i

125

Technical Reports

1. Lukas Barth, Sara Irina Fabrikant, Stephen Kobourov, Anna Lubiw,
Martin Nöllenburg, Yoshio Okamoto, Sergey Pupyrev, Claudio Squar-
cella, Torsten Ueckerdt, Alexander Wolff. Semantic Word Cloud Repre-
sentations: Hardness and Approximation Algorithms. Technical Report
arXiv:1311.4778, Cornell University, 2013.

2. Massimo Rimondini, Claudio Squarcella, Giuseppe Di Battista. From
BGP to RTT and Beyond: Matching BGP Routing Changes and Network
Delay Variations with an Eye on Traceroute Paths. Technical Report
arXiv:1309.0632, Cornell University, 2013.

3. Patrizio Angelini, Till Bruckdorfer, Marco Chiesa, Fabrizio Frati, Michael
Kaufmann, Claudio Squarcella. On the Area Requirements of Euclidean
Minimum Spanning Trees. Technical Report RT-DIA-183-2011, Depart-
ment of Computer Science and Automation, Roma Tre University, 2011.

i
i

“main” — 2014/4/27 — 19:37 — page 126 — #136 i
i

i
i

i
i

i
i

“main” — 2014/4/27 — 19:37 — page 127 — #137 i
i

i
i

i
i

Bibliography

[AAD+08] Gennady Andrienko, Natalia Andrienko, Jason Dykes,
Sara Irina Fabrikant, and Monica Wachowicz. Geovisual-
ization of dynamics, movement and change: Key issues and
developing approaches in visualization research. Information
Visualization, 7(3):173–180, June 2008.

[ABKS10] Evmorfia N. Argyriou, Michael A. Bekos, Michael Kaufmann,
and Antonios Symvonis. On Metro-Line Crossing Minimiza-
tion. J. Graph Algorithms Appl., 14(1):75–96, 2010.

[AJSS11] Mohammad Akbari Jokar and Ali Shoja Sangchooli. Con-
structing a Block Layout by Face Area. The International
Journal of Advanced Manufacturing Technology, 54:801–809,
2011.

[Apa12] Apache Software Foundation. Apache Commons Graph.
http://commons.apache.org, 2012.

[Aug03] Bjorn Augustsson. Xtraceroute. http://www.dtek.

chalmers.se/{\texttildelow}d3august/xt/index.html,
2003.

[Bac07] C. Bachmaier. A radial adaptation of the sugiyama frame-
work for visualizing hierarchical information. IEEE Trans. on
Visualization and Computer Graphics, 13(3):583–594, 2007.

[BBBL11] Ilya Boyandin, Enrico Bertini, Peter Bak, and Denis Lalanne.
Flowstrates: An approach for visual exploration of temporal
origin-destination data. In Proceedings of the 13th Eurograph-
ics / IEEE - VGTC Conference on Visualization, EuroVis’11,

127

i
i

“main” — 2014/4/27 — 19:37 — page 128 — #138 i
i

i
i

i
i

128 BIBLIOGRAPHY

pages 971–980, Aire-la-Ville, Switzerland, Switzerland, 2011.
Eurographics Association.

[BDM02] Giuseppe Battista, Walter Didimo, and A. Marcandalli. Pla-
narization of clustered graphs. In Petra Mutzel, Michael
Jünger, and Sebastian Leipert, editors, Graph Drawing, vol-
ume 2265 of LNCS, pages 60–74. Springer Berlin Heidelberg,
2002.

[Bes02] Sergei Bespamyatnikh. An Optimal Morphing Between Poly-
lines. Int. J. Comput. Geometry Appl., 12(3):217–228, 2002.

[BK73] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all
cliques of an undirected graph. Communications of the ACM,
16:575–577, September 1973.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the con-
secutive ones property, interval graphs, and graph planarity
using pq-tree algorithms. JCSS, 13(3):335 – 379, 1976.

[BN93] M. Basseville and I.V. Nikiforov. Detection of Abrupt
Changes: Theory and Application. Prentice-Hall, Inc., 1993.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3:
Data-driven documents. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2011.

[BRV11] Therese Biedl and Lesvia Ruiz Velázquez. Orthogonal Car-
tograms with Few Corners Per Face. In Algorithms and Data
Structures, volume 6844 of Lecture Notes in Computer Sci-
ence, pages 98–109. Springer Berlin / Heidelberg, 2011.

[BSV11] Kevin Buchin, Bettina Speckmann, and Kevin Verbeek. Flow
map layout via spiral trees. IEEE Transactions on Visual-
ization and Computer Graphics, 17(12):2536–2544, December
2011.

[BV10] Therese Biedl and Lesvia Elena Ruiz Velázquez. Drawing
Planar 3-Trees with Given Face-Areas. In David Eppstein and
Emden R. Gansner, editors, Graph Drawing, volume 5849 of
Lecture Notes in Computer Science, pages 316–322. Springer
Berlin / Heidelberg, 2010.

i
i

“main” — 2014/4/27 — 19:37 — page 129 — #139 i
i

i
i

i
i

BIBLIOGRAPHY 129

[CAI00] CAIDA. Ipv4 and ipv6 as core. http://www.caida.org/

research/topology/as_core_network/, 2000.

[CAI01] CAIDA. Round-Trip Time Internet Measurements
from CAIDA’s Macroscopic Internet Topology Moni-
tor. http://www.caida.org/research/performance/rtt/

walrus0202, 2001.

[CAI07] CAIDA. Archipelago. http://www.caida.org/projects/

ark/, 2007.

[Can12] Massimo Candela. Adaptive and responsive web-oriented vi-
sualization of evolving data: The interdomain routing case.
Master’s thesis, Roma Tre University, 2012.

[CBD02] Chen-Nee Chuah, Supratik Bhattacharyya, and Christophe
Diot. Measuring I-BGP updates and their impact on traffic.
Technical Report TR02-ATL-051099, Sprint ATL, 2002.

[CDBDBS13] Massimo Candela, Marco Di Bartolomeo, Giuseppe
Di Battista, and Claudio Squarcella. TPlay Homepage.
http://www.dia.uniroma3.it/~compunet/projects/tplay,
2013.

[CDBS13] Massimo Candela, Giuseppe Di Battista, and Claudio Squar-
cella. BGPlay.js Homepage. http://bgplayjs.com/, 2013.

[CDM+05] Lorenzo Colitti, Giuseppe Di Battista, Federico Mariani,
Maurizio Patrignani, and Maurizio Pizzonia. Visualizing In-
terdomain Routing with BGPlay. Journal of Graph Algo-
rithms and Applications, Special Issue on the 2003 Sympo-
sium on Graph Drawing, GD ’03, 9(1):117–148, 2005.

[CDM+06] Pier Francesco Cortese, Giuseppe Di Battista, Antonello
Moneta, Maurizio Patrignani, and Maurizio Pizzonia. Topo-
graphic Visualization of Prefix Propagation in the Internet.
IEEE Transactions on Visualization and Computer Graphics,
12(5):725–732, 2006.

[CGP98] Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Pa-
padimitriou. Planar Map Graphs. In Proceedings of the thirti-
eth annual ACM symposium on Theory of computing, STOC
’98. ACM, 1998.

i
i

“main” — 2014/4/27 — 19:37 — page 130 — #140 i
i

i
i

i
i

130 BIBLIOGRAPHY

[CGP06] Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Pa-
padimitriou. Recognizing Hole-Free 4-Map Graphs in Cubic
Time. Algorithmica, 45(2):227–262, 2006.

[COZ08] Ying-Ju Chi, Ricardo Oliveira, and Lixia Zhang. Cyclops:
the AS-level Connectivity Observatory. SIGCOMM Comput.
Commun. Rev., 38(5):5–16, September 2008.

[dBMS06] Mark de Berg, Elena Mumford, and Bettina Speckmann. Op-
timal BSPs and Rectilinear Cartograms. In Proceedings of the
14th annual ACM international symposium on Advances in
geographic information systems, GIS ’06, pages 19–26, New
York, NY, USA, 2006. ACM.

[DBN88] G. Di Battista and E. Nardelli. Hierarchies and planarity
theory. Systems, Man and Cybernetics, IEEE Transactions
on, 18(6):1035–1046, 1988.

[DBSN12] Giuseppe Di Battista, Claudio Squarcella,
and Wolfgang Nagele. Visual-K Homepage.
http://www.dia.uniroma3.it/~squarcel/visual-k, 2012.

[DD08] Amogh Dhamdhere and Constantine Dovrolis. Ten Years in
the Evolution of the Internet Ecosystem. In Proceedings of
the 8th ACM SIGCOMM IMC, 2008.

[DD13] Valentino Di Donato. Combined visualization of bgp routing
changes and round-trip delay measurements. Master’s thesis,
Roma Tre University, 2013.

[DDS12] Giordano Da Lozzo, Giuseppe Di Battista, and Claudio
Squarcella. Visual Discovery of the Correlation between BGP
Routing Changes and Round-Trip Delay Active Measure-
ments. http://dia.uniroma3.it/~compunet/projects/

hydra, 2012.

[DETT98] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and
Ioannis G. Tollis. Graph Drawing: Algorithms for the Visu-
alization of Graphs. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 1998.

i
i

“main” — 2014/4/27 — 19:37 — page 131 — #141 i
i

i
i

i
i

BIBLIOGRAPHY 131

[DLR11] Walter Didimo, Giuseppe Liotta, and Salvatore A. Romeo.
Topology-Driven Force-Directed Algorithms. In Proceed-
ings of the 18th international conference on Graph drawing,
GD’10, pages 165–176, Berlin, Heidelberg, 2011. Springer-
Verlag.

[EDG+08] N. Elmqvist, Thanh-Nghi Do, H. Goodell, N. Henry, and
J. Fekete. Zame: Interactive large-scale graph visualization.
In Visualization Symposium, 2008. PacificVIS ’08. IEEE Pa-
cific, pages 215–222, 2008.

[EHK+04] Cesim Erten, Philip Harding, Stephen Kobourov, Kevin
Wampler, and Gary Yee. GraphAEL: Graph Animations with
Evolving Layouts. In Giuseppe Liotta, editor, Graph Draw-
ing, volume 2912 of Lecture Notes in Computer Science, pages
98–110. Springer Berlin / Heidelberg, 2004.

[FB04] Michael Forster and Christian Bachmaier. Clustered level
planarity. In Peter Emde Boas, Jaroslav Pokorný, Mriá
Bieliková, and Július S̆tuller, editors, SOFSEM 2004: The-
ory and Practice of Computer Science, volume 2932 of LNCS,
pages 218–228. Springer Berlin Heidelberg, 2004.

[FS05] Sara Irina Fabrikant and André Skupin. Cognitively Plausible
Information Visualization. Exploring Geovisualization, pages
667–690, 2005.

[GHKK10] E. Gansner, Y. Hu, M. Kaufmann, and S. Kobourov. Opti-
mal Polygonal Representation of Planar Graphs. In LATIN
2010: Theoretical Informatics, volume 6034 of Lecture Notes
in Computer Science, pages 417–432. Springer Berlin / Hei-
delberg, 2010.

[GJ83] Michael R. Garey and David S. Johnson. Crossing Number
is NP-Complete. SIAM Journal on Algebraic and Discrete
Methods, 4(3):312–316, 1983.

[GM03] Carsten Gutwenger and Petra Mutzel. An Experimental
Study of Crossing Minimization Heuristics. In Giuseppe Li-
otta, editor, Graph Drawing, volume 2912 of Lecture Notes in
Computer Science, pages 13–24. Springer, 2003.

i
i

“main” — 2014/4/27 — 19:37 — page 132 — #142 i
i

i
i

i
i

132 BIBLIOGRAPHY

[GN04] M. T. Gastner and M. E. J. Newman. Diffusion-based Method
for Producing Density-equalizing Maps. Proceedings of the
National Academy of Sciences of the United States of Amer-
ica, 101(20):7499–7504, May 2004.

[Guo09] Diansheng Guo. Flow mapping and multivariate visualiza-
tion of large spatial interaction data. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1041–1048,
November 2009.

[Har02] Jon Harris. A graphical Java implementation of PQ-Trees.
http://www.jharris.ca/portfolio/docs/pqtreereport.

pdf, 2002.

[HFc08] Bradley Huffaker, Marina Fomenkov, and kc claffy. Influence
Maps - A Novel 2-D Visualization of Massive Geographically
Distributed Data Sets. Internet Protocol Forum, October
2008.

[HM07] A. Hernandez and E. Magana. One-way delay measurement
and characterization. In Proc. ICNS, ICNS ’07, pages 114–,
Washington, DC, USA, 2007. IEEE Computer Society.

[Hok08] Vidar Hokstad. Traceviz: Visualizing traceroute output with
graphviz. http://www.hokstad.com, 2008.

[Hol06] D. Holten. Hierarchical edge bundles: Visualization of adja-
cency relations in hierarchical data. Visualization and Com-
puter Graphics, IEEE Transactions on, 12(5):741–748, 2006.

[Hus12] Geoff Huston. Potaroo. www.potaroo.net, 2012.

[IS06] Ryo Inoue and Eihan Shimizu. A New Algorithm for Con-
tinuous Area Cartogram Construction with Triangulation of
Regions and Restriction on Bearing Changes of Edges. Car-
tography and Geographic Information Science, 33(2):115–125,
2006.

[KFE12] R. Killick, P. Fearnhead, and I.A. Eckley. Optimal detec-
tion of changepoints with a linear computational cost. Jour.
Amer. Stat. Assoc., 107(500):1590–1598, 2012.

i
i

“main” — 2014/4/27 — 19:37 — page 133 — #143 i
i

i
i

i
i

BIBLIOGRAPHY 133

[Kis12] Gavin Kistner. Generating visually distinct colors.
http://phrogz.net/css/distinct-colors.html, 2012.

[KN07] Akifumi Kawaguchi and Hiroshi Nagamochi. Orthogonal
Drawings for Plane Graphs with Specified Face Areas. In
Proceedings of the 4th international conference on Theory and
applications of models of computation, TAMC’07, pages 584–
594, Berlin, Heidelberg, 2007.

[KS96] D.J. Ketchen and C.L. Shook. The application of cluster
analysis in strategic management research: an analysis and
critique. Strategic Mgmt. Journal, 17(6):441–458, 1996.

[Max02] MaxMind. MaxMind - IP Geolocation and Online Fraud Pre-
vention. http://www.maxmind.com/en/home, 2002.

[MGW+11] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Em-
mons, B. Huntley, and M. Stockert. Rapid detection of main-
tenance induced changes in service performance. In Proc.
CoNEXT, CoNEXT ’11, pages 13:1–13:12, New York, NY,
USA, 2011. ACM.

[MJR+04] Z.M. Mao, D. Johnson, J. Rexford, J. Wang, and R. Katz.
Scalable and accurate identification of AS-level forwarding
paths. In Proc. INFOCOM, volume 3, pages 1605–1615 vol.3,
2004.

[MKH11] Daisuke Mashima, Stephen Kobourov, and Yifan Hu. Visu-
alizing Dynamic Data with Maps. In Proc. 4th IEEE Pacific
Visualization Symposium, March 2011.

[MNKF90] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa.
Crossing Minimization in Linear Embeddings of Graphs.
IEEE Transactions on Computers, 39(1):124 –127, jan 1990.

[MRWK03] Z.M. Mao, J. Rexford, J. Wang, and R.H. Katz. Towards
an accurate AS-level traceroute tool. In Proc. SIGCOMM,
SIGCOMM ’03, pages 365–378, New York, NY, USA, 2003.
ACM.

[MS92] Clyde Monma and Subhash Suri. Transitions in Geometric
Minimum Spanning Trees. Discrete and Computational Ge-
ometry, 8(1):265–293, 1992.

i
i

“main” — 2014/4/27 — 19:37 — page 134 — #144 i
i

i
i

i
i

134 BIBLIOGRAPHY

[MSG+10] A.A. Mahimkar, H.H. Song, Z. Ge, A. Shaikh, J. Wang,
J. Yates, Y. Zhang, and J. Emmons. Detecting the perfor-
mance impact of upgrades in large operational networks. In
Proc. SIGCOMM, SIGCOMM ’10, pages 303–314, New York,
NY, USA, 2010. ACM.

[NB13] Arlind Nocaj and Ulrik Brandes. Stub bundling and con-
fluent spirals for geographic networks. In Stephen Wismath
and Alexander Wolff, editors, Graph Drawing, volume 8242 of
Lecture Notes in Computer Science, pages 388–399. Springer
International Publishing, 2013.

[OBSC00] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and
Sung Nok Chiu. Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Probability and Statistics. Wiley,
NYC, 2nd edition, 2000.

[OCLZ08] Ricardo Oliveira, Ying-Ju Chi, Mohit Lad, and Lixia Zhang.
Cyclops: the internet as-level observatory. NANOG43, June
2008.

[oMCSDNRL08] University of Memphis Computer Science Department’s Net-
working Research Lab. Netviews, 2008.

[OR00] Min Ouyang and Peter Z. Revesz. Algorithms for Cartogram
Animation. In Proceedings of the 2000 International Sym-
posium on Database Engineering & Applications, IDEAS ’00,
pages 231–235, Washington, DC, USA, 2000. IEEE Computer
Society.

[Piz07] Maurizio Pizzonia. From bgplay to ibgplay: Graphical in-
spection of your routing data. In 55th Rseaux IP Europens
Meeting (RIPE 55), 2007.

[PN99] Ram Periakaruppan and Evi Nemeth. Gtrace - a graphical
traceroute tool. In Proc. 13th USENIX conference on System
administration, pages 69–78. USENIX Association, 1999.

[PZMH07] H. Pucha, Y. Zhang, Z.M. Mao, and Y.C. Hu. Understanding
network delay changes caused by routing events. In Proc.
SIGMETRICS, SIGMETRICS ’07, pages 73–84, New York,
NY, USA, 2007. ACM.

i
i

“main” — 2014/4/27 — 19:37 — page 135 — #145 i
i

i
i

i
i

BIBLIOGRAPHY 135

[Rai05] Marcus Raitner. Visual navigation of compound graphs. In
Jnos Pach, editor, Graph Drawing, volume 3383 of LNCS,
pages 403–413. Springer Berlin Heidelberg, 2005.

[Rap92] David Rappaport. A convex hull algorithm for discs, and
applications. Computational Geometry, 1(3):171 – 187, 1992.

[RFF+08] George Robertson, Roland Fernandez, Danyel Fisher, Bong-
shin Lee, and John Stasko. Effectiveness of Animation in
Trend Visualization. IEEE Transactions on Visualization and
Computer Graphics, 14:1325–1332, November 2008.

[RIP01] RIPE NCC. Routing Information Service. http://www.

ripe.net/data-tools/stats/ris/, 2001.

[RIP10] RIPE NCC. RIPE Atlas. http://atlas.ripe.net/, 2010.

[RIP11] RIPE NCC. RIPEstat. https://stat.ripe.net/, 2011.

[RMK+96] Yakov Rekhter, Robert Moskowitz, Daniel Karrenberg,
Geert Jan de Groot, and Eliot Lear. RFC 1918. address al-
location for private internets. http://www.ietf.org/rfc/

rfc1918.txt, 1996.

[RMN09] Md. Saidur Rahman, Kazuyuki Miura, and Takao Nishizeki.
Octagonal Drawings of Plane Graphs with Prescribed Face
Areas. Computational Geometry: Theory and Applications,
42:214–230, April 2009.

[Rob12] Maxwell J. Roberts. Underground Maps Unravelled - Explo-
rations in Information Design. Maxwell J. Roberts, 2012.

[RT07] René Reitsma and Stanislav Trubin. Information Space Par-
titioning using Adaptive Voronoi Diagrams. Information Vi-
sualization, 6:123–138, May 2007.

[Sam08] SamKnows. SamKnows - Accurate broadband performance
information for consumers, governments and ISPs. http:

//www.samknows.com/broadband/, 2008.

[San96] Georg Sander. Layout of compound directed graphs. Techni-
cal report, FB Informatik, Universitat Des Saarlandes, 1996.

i
i

“main” — 2014/4/27 — 19:37 — page 136 — #146 i
i

i
i

i
i

136 BIBLIOGRAPHY

[San99] G. Sander. Graph layout for applications in compiler con-
struction. Theoretical Computer Science, 217(2):175 – 214,
1999.

[Sco11] Monitor Scout. Monitor Scout Traceroute. http://tools.

monitorscout.com/traceroute/, 2011.

[SF02] Georgos Siganos and Michalis Faloutsos. Bgp routing: A
study at large time scale. In in Proc. IEEE Global Internet,
2002.

[SH75] Michael Ian Shamos and Dan Hoey. Closest-point problems.
In FOCS, pages 151–162, 1975.

[SM91] K. Sugiyama and K. Misue. Visualization of structural infor-
mation: automatic drawing of compound digraphs. IEEE
Trans. on Systems, Man and Cybernetics, 21(4):876–892,
1991.

[Squ10] Claudio Squarcella. Historical bgplay, 2010.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual
Understanding of Hierarchical Systems. IEEE Trans. Syst.
Man Cybern., SMC-11(2):109–125, 1981.

[Tan02] Andrew Tanenbaum. Computer Networks. Prentice Hall Pro-
fessional Technical Reference, 4th edition, 2002.

[TG13] Efthymia Tsamoura and Anastasios Gounaris. Incorporating
change detection in network coordinate systems for large data
transfers. In Proc. PCI, PCI ’13, pages 55–62, New York, NY,
USA, 2013. ACM.

[The05] The Apache Software Foundation. Apache Hadoop. http:

//hadoop.apache.org/, 2005.

[Tho98] Mikkel Thorup. Map Graphs In Polynomial Time. In Pro-
ceedings of the 39th Annual Symposium on Foundations of
Computer Science, FOCS ’98, 1998.

[Uni97] University of Oregon. RouteViews Project. http://www.

routeviews.org, 1997.

i
i

“main” — 2014/4/27 — 19:37 — page 137 — #147 i
i

i
i

i
i

BIBLIOGRAPHY 137

[Vis97] Visualware. VisualRoute. http://www.visualroute.com/,
1997.

[vKS07] Marc van Kreveld and Bettina Speckmann. On Rectangular
Cartograms. Computational Geometry: Theory and Applica-
tions, 37:175–187, August 2007.

[WDS10] J. Wood, J. Dykes, and A. Slingsby. Visualisation of ori-
gins, destinations and flows with od maps. The Cartographic
Journal, 47(2):117–129, 2010.

[WMW+06] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and
Randy Bush. A measurement study on the impact of routing
events on end-to-end internet path performance. SIGCOMM
Comput. Commun. Rev., 36(4):375–386, 2006.

[WSD11] Jo Wood, Aidan Slingsby, and Jason Dykes. Visualizing
the dynamics of london’s bicycle-hire scheme. Cartograph-
ica, 46(4):239–251, 2011.

[YFDH01] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti
Hearst. Animated exploration of dynamic graphs with ra-
dial layout. In Proc. INFOVIS’01. IEEE Computer Society,
2001.

[YMMW09] He Yan, Dan Massey, Ernest McCracken, and Lan Wang.
BGPMon and NetViews: Real-Time BGP Monitoring Sys-
tem. IEEE INFOCOM, demo, 2009.

[ZMW07] Ying Zhang, Z.M. Mao, and J. Wang. A framework for mea-
suring and predicting the impact of routing changes. In Proc.
INFOCOM, pages 339–347, New York, NY, USA, August
2007. ACM.

[ZOW+11] Y. Zhang, R. Oliveira, Y. Wang, S. Su, B. Zhang, J. Bi,
H. Zhang, and L. Zhang. A framework to quantify the pitfalls
of using traceroute in AS-level topology measurement. Jour.
Sel. Areas Comm., 29(9):1822–1836, 2011.

