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Abstract

Wall pressure �uctuations generated by interaction of turbulent jets with

the wall of rectangular partial enclosures (RPEs) are studied experimen-

tally over a broad range of parameters. The scope of the present work is

to characterize the propagation of the pressure perturbations in the RPEs

by means of wall pressure auto-spectra, cross-spectra and cross-correlations

measured through microphones located along the wall. In order to interpret

the pressure measurement, the acoustic and �uid dynamic behaviours are

investigated analytically, numerically and experimentally for several cavity-

neck section ratios. The �ow structures as the vortex formed in the cavity

and the recirculation zone in the neck are studied in details. The acoustic

behaviour of this geometry is investigated with particular emphasis on the

�rst dominant mode analysis. It is pointed out that the �rst mode frequency

scales as an Helmholtz resonator frequency. Taking into account this scaling

a reduced form of the Strouhal number, that leads the spectra to collapse,

is proposed. Furthermore it is found that the mechanism characterizing the

pressure propagation at high frequency close to the bottom wall is strongly

a�ected by the adverse pressure gradient that modi�es the jet-wall inter-

action. The �uid dynamic contribution of the pressure �uctuations at high

frequency is accompanied by a relevant acoustic e�ect characterized by a con-

vection velocity close to the speed of sound at low frequency. The dynamic

of the recirculation zone, characterized using the Proper Orthogonal Decom-

position technique, plays an important role from the aeroacoustic viewpoint

that produces in some conditions an increase of the wall pressure �uctuations

at low frequency.
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Introduction

Rectangular partial enclosures (RPEs), also named rectangular covered cavi-

ties, rectangular mu�ers or rectangular expansion chambers are encountered

in many industrial applications. For these reasons they have been extensively

investigated from an analytical, experimental and numerical, viewpoint in the

past. They are often used to suppress aerodynamic noise, e.g. in heating,

ventilation and air conditioning. Di�erent inlet-outlet con�gurations of RPE

have been realized: o�set or centered inlet-outlet, reverse �ow, end-in and

side-out [see Venkatesham et al., 2009]. Several observations have suggested

that the pressure oscillations induced by aerodynamic noise into RPEs, gen-

erally fall into two categories, depending on whether the incoming jet �ow is

free or bounded on one side [see Keller, 1984, Keller and Escudier, 1983]. The

latter category, most frequently appearing in practice [see Keller, 1982], is

the object of the present investigation. These oscillations are a nuisance not

only for the noise produced, but also for the possibility of inducing mechan-

ical failures in pipe systems [see Ziada, 2010]. The aeroacoustic pulsations,

generated by the coupling of �ow instabilities with acoustic standing waves

occurring in the geometry, are called self-sustained or self-excited oscilla-

tions. Typically this phenomenon was investigated in T-joint, safety valves

and pipes with side branches, where a shear layer has been identi�ed as the

main sound source of aeroacoustic pulsation [see Bruggeman et al., 1991].

A particular category of self-excited oscillations is that related to �ow in-

stabilities that excite a resonant acoustic �eld, in this case the oscillations

are strongly enhanced. In addition since the RPE aeroacoustic behavior is

quite di�erent with respect to rectangular open cavities that were extensively

investigated in aeroacoustics [see Tam, 1976, Tam and Block, 1978, Murray

12
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et al., 2009], the theoretical background available in literature, is not appro-

priate. For this reason experimental and numerical studies in the �eld of

aerodynamic, acoustics and aeroacoustics were conducted by the author.

Recently the interest for this kind of geometries has been renewed thanks

to their application in the �eld of combustion. In particular, RPE is a geom-

etry selected to realize several types of trapped vortex combustors (TVCs)

[see Hendricks et al., 2001, Singhal and Ravikrishna, 2011a,b]. TVC is a

novel combustion strategy that utilizes the vortex trapped in the a cavity to

stabilize the combustion. The main characteristics of this technology are a

reduction in NOx emission and pressure drop across the combustor cham-

ber, high e�ciency and compactness [see Hendricks et al., 2001]. For these

reasons TVC promises to become the next generation of combustors. In the

last years essentially three TVC generations have been developed in order

to improve the performance of this novel technology. It is known that in

the �rst two TVC generations a combustion instability occurred, due to the

vortex's dynamics. This phenomenon is caused by two types of interaction:

vortex-shear layer and vortex-wall interaction. The third generation, based

on a RPE test rig, has been developed just to overcome this issue and to

allow a wider operative range.

Although third generation TVC improves the combustion stability, much

more studies are needed to reach a better comprehension of this phenomenon

in enclosures. As a matter of fact several studies on the TVC have been pro-

vided recently, but no robust experimental studies focused on TVC aeroa-

coustic or thermoacoustic properties are available in literature [see Agarwal

and Ravikrishna, 2011]. Sturgess and Hsu [1998] performed an experimental

study on a �rst generation TVC, showing the presence of a distinct peak in

the noise spectrum associated to the combustion. When this kind of noise oc-

curred, they also observed a coupling between acoustic, heat release and �ow

structures generation. Besides Hsu et al. [1999], working on a �rst generation

TVC, identi�ed even two types of combustion instability: in the �rst one the

�ame blowout was smooth whereas in the second it was abrupt and preceded

by �ame intermittency and noise emission. To the best of our knowledge,

there are only numerical studies on aeroacoustic and thermoacoustic of third
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Figure 1: Picture of trapped vortex combustor based on RPE geometry real-
ized by Italian National Agency for New Tecnologies, Energy and Sustainable
Economic Development (ENEA courtesy).

Figure 2: An example of power spectrum of the pressure �uctuation radiated
from the combustor in reactive condition.
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generation TVC, such as those performed by Agarwal and Ravikrishna [2011],

who pointed out that the acoustic depth-mode is dominant in this kind of

combustor and it in�uences the heat release. An example of TVC based on

a RPE, actually under investigation by the author, is shown in Figure 1.

High intensity tonal noise is radiated by this combustor for di�erent oper-

ative conditions. In Fig. 2 an example of power spectrum computed in a

reactive condition is reported. A considerable tonal component is exhibited

by the combustor. Typically high intensity narrow band noise is related to

thermoacoustic instability of high power combustion chambers, whereas in

this case the power is very low (about 45 kWatt). This behaviour is due

to RPE geometry that on one hand allows a single stable vortex formation

in the cavity, and on the other is a�ected by self-excited oscillation. The

application in TVC systems has driven our research but, as will be shown

below, the results achieved have a more general impact.

The pressure �uctuation measurements in enclosure are quite puzzling be-

cause acoustic mode and hydrodynamic contribution, due to the large highly

energetic structure, are strongly connected. The objective of the present re-

search is to provide a complete description of the pressure �uctuations in this

kind of geometry by the interpretation of the wall microphone measurements.

An aerodynamic overall description is given and the main �ow structures are

identi�ed. Analyses of the acoustic behaviour provided with a modal test and

a numerical simulation are reported and supported by a theoretical model.

Finally �uid dynamic and acoustic information are recalled to interpret the

wall measurements for a wide range of parameters.

This thesis is organised as follows: a description of the theoretical acoustic

model is given in (�1.1). An introduction to the proper orthogonal decom-

position used to process the data are reported in (�1.2). In the next section

(�1) the experimental set-up and the measurement techniques applied are

presented. Subsequently an aerodynamic and acoustic characterization are

illustrated in �4.2 and �4.3 respectively. Finally wall pressure �uctuations

spectra and cross-correlation are reported and discussed in �4.4.



Chapter 1

Background

1.1 Acoustic model

1.1.1 Introduction

A stand-alone Helmholtz resonator (HR) is an acoustic device consisting

of a cavity (volume) and a neck (opening), that are not connected to any

other acoustic system. In the course of time HR has been widely studied,

with vatious revisions to its mathematical description. In fact, since some

discrepancies between experimental and theoretical results have arised, the

classical equation for HR has been modi�ed by several authors. HR was �rst

described in the literature by Hermann Ludwig Ferdinand von Helmholtz .

He proposed the �rst mathematical theory for cavity resonators (volume)

having a circular opening, and introduced a simple equation for calculating

their resonance frequencies. This equation based on the volume of the cavity

and the radius of the opening, is given by:

f =
c̄

2π

√
2r

V
, (1.1)

where, c̄ is the sound speed, r the radius of the opening and V the volume

of the cavity. Later, Rayleigh presented a simpli�ed theory for HRs, accord-

ing to which, the �uid particles in the exterior domain, in close proximity

to the opening, oscillating inside the neck. Therefore, an additional length

16
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should be added to the actual length of the neck in order to include the mass

loading of the �uid. This additional length is more commonly referred to

as an end-correction [Pierce, 1994]. In particular Rayleigh made clear that

two end-correction factors are needed, one for each end : an interior end-

correction factor (δi), which corresponds to the neck-cavity interface, and

an exterior end-correction factor (δe), which corresponds to opening face of

the neck in communication with the environment. Rayleigh derived the ex-

pression for the exterior end-correction factor using the model of a circular

piston radiating from an in�nite ba�e, assuming a constant velocity pro�le

of the �uid over the neck cross-sectional area. The expression for exterior

end-correction factor was also used to calculate the interior end-correction

factor. Rayleigh developed the equation for HR resonance frequencies calcu-

lation, including the e�ective length of the neck, l′, in addition to the other

parameters, i.e. the cavity volume and opening sectional area. The formula,

which is more commonly referred to as the classical formula is based on

the assumption that all the �uid particles in the neck oscillate at the same

velocity and phase, and is given by

f =
c̄

2π

√
πr2

l′
V (1.2)

where l′ is the neck length plus the two end-correction factors. In 1953,

Ingard presented a series of works about resonators investigating there be-

haviour for wide range of parameters. Ingard found that the application of

the Rayleigh's formula for the interior end-correction determination is valid

only for the the neck dimensions small compared to the dimensions of the

cavity. Moreover he demonstrated that the Rayleigh formula can lead to

signi�cant errors when this condition is not satis�ed. In the present work

this condition is not satis�ed. For this reason an acoustic lumped model has

been formulated in order to predict the �rst mode frequency of the geometry

under investigation.
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Figure 1.1: Schematic diagram of the RPE considered in quasi-
monodimensional model.

1.1.2 Lumped model

The analysis of acoustic resonances in the RPE geometry analysed therein

represents a fundamental task of the present investigation. In order to cor-

rectly interpret the data, the frequency of the �rst acoustic mode is predicted

using a simple model. In this acoustic model only the propagation of plane

waves is considered. This assumption is correct only when the oscillation

frequency f is low that is a reasonable hypothesis when the �rst mode is

considered. As a further assumption, the medium in the system is assumed

uniform and at rest. If the Mach number, M = U/c, is su�ciently low, the

convective e�ects on the wave propagation can be neglected. In this case

the error made is of the order of O(M2). An acoustic lumped model can be

established by decomposing the RPE in two regions. The regions, separated

by a surface discontinuity, are herein indicated as cavity and neck.

The general solution of the homogeneous wave equation can be written

in the following form:

p′(x, t) = f(t− x/c) + g(t+ x/c), (1.3)

where the function f(t) and g(t) are arbitrary. From the linearized one-

dimensional momentum equation, the velocity oscillations are obtained in
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the following form:

u′(x, t) =
1

ρ c
[f(t− x/c)− g(t+ x/c)], (1.4)

where ρ and c are respectively the average of the density and the speed

of sound. It is convenient to write Eqs. 1.3 and 1.4 using the complex

formulation:

p̂(x) = f̂ e−ikx + ĝeikx, (1.5)

û(x) =
1

ρ c
[f̂ e−ikx − ĝeikx]. (1.6)

The solution of the homogeneous wave equation in the upstream region

that satis�es the hard wall boundary condition, û1(0) = 0, is:

p̂1(x) = A cos(kx), (1.7)

û1(x) = − iA

ρ c
sin(kx), (1.8)

where A is an arbitrary constant and k the wave number. The solution

of the homogeneous wave equation in the downstream region that satis�es

the open-end boundary condition, p̂2(L+ l) = 0, is:

p̂1(x) = B sin[k(L+ l − x)], (1.9)

û1(x) = − iB

ρ c
cos[k(L+ l − x)], (1.10)

where B is an arbitrary constant, L is the cavity length and l denote neck

length. The matching between the two solutions at the location of the section

discontinuity, x = L, is achieved by the Rankine-Hugoniot jump condition

written as follows:

p̂1(L) = p̂2(L), (1.11)
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ρû1(L)S1 = ρû2(L)S2. (1.12)

Eventually, using the ratio of the jump conditions, the model can be

written as follows:

1

Γ
= tan(kL) tan(kl). (1.13)

Where Γ is the cavity/neck section ratio. A similar procedure has been

indicated by Altay et al. [2009] to formulate a model suitable for backward

facing step geometries in combustors [see Altay et al., 2010]. Eq. 1.13 was

found by Tang and Sirignano [1973] and applied by Poinsot and Veynante

[2005] to predict the frequency of the �rst acoustic mode of so-called double

duct geometries (DD). From Eq. 1.13, we can derive resonant conditions of

di�erent geometries, such as a quarter wave tube and Helmholtz resonator

(HR). Indeed, in the limiting case tan(kL) → ∞ and l → 0, the one quarter

wave situation is achieved:

π

2
= kL. (1.14)

whereas in the case of kL << 1 and kl >> 1, short cavity and long neck,

Eq. 1.13 can be expanded to the �rst order obtaining:

1

Γ
= kL tan(kl). (1.15)

Eq. 1.15 is exactly the transcendental form that was found by Rayleigh

and applied by Nielsen to the Helmholtz Resonator with long neck [Nielsen,

1949]. On the other hand, if kL >> 1 and kl << 1 we can write:

1

Γ
= tan(kL)kl, (1.16)

that is valid for long cavity and short neck. Finally, the conventional HR

expression can be derived from 1.13 by considering kL << 1 and kl << 1

yelding:
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1

Γ
= k2Ll. (1.17)

For all these equations it is clear that the wave number depends on the

neck length, the cavity length and the cavity/neck section ratio, i.e. k =

f(Γ, L, l). Figure. 1.2 summarises the geometries that can be treated by the

equations above derived.

Eqs. 1.13 and 1.16 for important localized section restriction, Γ > 10,

converge to Eq. 1.17, typical of HRs, as reported in Fig. 1.3. This issue

was highlighted by Chanaud [1994] who performed several analytical and

experimental studies on cubical HRs pointing out the small deviation of Eq.

1.16 from Eq. 1.17 in the case of a thin, small and centered ori�ce, in

agreement with our previous considerations.

Present model is based on the open-end boundary condition, p̂2(L+l) = 0,

which is not experimentally satis�ed [Altay et al., 2009]. In order to increase

the accuracy of the model, an end-correction can be introduced as follows:

l′ = l + δe + δi = l + 2δR, (1.18)

where δe and δi are the exterior and interior end correction. Eq. 1.17 can be

modi�ed to obtain Eq. 1.19

1

Γ
= k2Ll′, (1.19)

The empirical procedure to evaluate δR, for the present geometry is de-

scribed and discussed in the following. The results of the model will be

compared with the numerical and experimental results, provided for several

geometrical con�guration, in order to understand if the geometries behave as

HR or DD from acoustic view point.

1.2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a basic statistical tool fre-

quently applied to turbulent �ows [see Berkooz et al., 1993]. The POD is
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Equation kL kl Diagram

Double Duct

1
Γ
= tan(kL) tan(kl) >> 1 >> 1

Single Duct

π
2
= kL −→ ∞ 0

Long neck Helmholtz resonator

1
Γ
= kL tan(kl) << 1 >> 1

Long cavity Helmholtz resonator

1
Γ
= tan(kL)kl >> 1 << 1

Cubic Helmholtz resonator

1
Γ
= k2Ll << 1 << 1

Figure 1.2: Acoustic classi�cation of the RPEs: representative equations,
constrain conditions and sketch of the geometries.
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Figure 1.3: Solutions of Eqs. 1.17 (cubical HR ��),
1.16 (long cavity HR · −) and 1.13 (double duct − − −) yield with
Newton's method.

applied in this context to analyse the statistical properties of the large-scale

rotating structure [see Maurel et al., 2001]. When most of the kinetic energy

in the �ow domain analysed by POD is embedded in a large-scale rotating

structure, a common result is that low-order modes are associated to the

dynamic of these structures. In this work we are interested to understand

the dynamic of the structure formed both in the cavity and in the neck. In

particular the recirculation bubble formed within the neck is a�ected by un-

expected aeroacoustic behavior, as will be clari�ed below. As a consequence

this analysis will be extended only to the neck domain.

1.2.1 The Karhunen-Loeve Decomposition

The POD is performed at the time t in a sub-domain Ωi of the measured �ow

�eld Ω. Assuming here that the quantity u(x, t) represents a scalar �eld, after

the POD procedure application an instantaneous realization at time tk, say

u(x, tk), can be reconstructed in terms of a basis of eigenfunctions ϕj(x),

which represent the modes of the ensemble:

u(x, tk) = a0ϕ0(x) +
∞∑
j=1

aj(tk)ϕj(x), (1.20)

where the coe�cients aj(tk) are referred to as time coe�cients. The basis
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in Eq. 1.28 is provided maximizing the quantity [see Berkooz et al., 1993]:

⟨|(ϕ, u)|2⟩
∥ϕ∥2

. (1.21)

In Eq. 1.21 ⟨·⟩ denotes time average or ensemble average, (·, ·) is the inner
product and ∥·∥ a norm. As a matter of fact maximization of the quantity in

Eq. 1.21 can be reduced to an eigenvalue problem [see Berkooz et al., 1993]:∫
Ωi

⟨u(x, t)u(x′, t)⟩ϕ(x′)dx′ = λϕ(x), (1.22)

1.2.2 Method of Snapshots

In practical applications, the domain of interest, Ωx is discretised in a several

number of points, applying the well-know method of snapshots [Sirovich,

1987]. The eigenvalue problem size is N × N , where N is the number of

instantaneous samples, or snapshots. This eigenvalue problem can be written

as follows:

C̃Aj = λjAj (1.23)

where C̃ is the autocovariance matrix, Aj an eigenvector and λj the

corresponding eigenvalue. The solutions are ordered according to the size of

the eigenvalues:

λ1 > λ2 > · · · > λN = 0. (1.24)

Sirovich, using ergodic theory, proposed that the autocovariance matrix

can be approximated by a summation of snapshots. A clear description of

the procedure adopted to obtain C̃ is reported in Meyer et al. [2007]. The

eigenvector calculated solving eq.1.23 make up a basis for constructing the

POD modes Φj:

Φj =

∑N
n=1A

n
ju

n

∥
∑N

n=1A
n
ju

n∥
, (1.25)
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where Anj is the n-th component of the j-th eigenvector, un is the vector in

which n-th snapshot has been recasted and ∥ · ∥ denotes the discrete 2-norm.

The mode coe�cient denotes anj is the projection of instantaneous real-

ization, un, on mode j-th mode, Φj:

anj = Φj · un. (1.26)

The expansion of the �uctuating part of a snapshot n is:

un = Ψ̃an, (1.27)

where Ψ̃ = [Φ1 · · ·Φn] has been introduced.

The ordering of the eigenvalues and eigenvectors in eq. 1.24 therefore

ensures that the most important modes in terms of energy are the �rst ones.

This usually means that the �rst modes will be associated to large-scale

�ow structures. If a �ow has dominant �ow structures, these are therefore

re�ected in the �rst POD mode. In this work about 1200 snapshots have

been used for the POD computations.

1.2.3 POD limit method: time coe�cients information

and interlink with the statistical behaviour of the

�uid �eld

The spatio-temporal relation between the modes and the instantaneous sam-

ples through the time coe�cients is shown in Eq.1.28. Furthermore the time

coe�cients summarize the temporal variations of the di�erent modes. Then

it is possible to obtain the frequency spectrum of a mode performing a simple

Fourier analysis of the corresponding sequence of time coe�cients. This is

obviously possible only if the temporal resolution is high enough, e.g. in the

case of LES data or time resolved PIV. In all the other cases, when the ap-

plication of the classical double shot PIV is provided, only the instantaneous

realizations can be obtained. That being so in the present work the author

intends to proposed a novel formulation to recast POD information obtain-

ing a clear representation of the e�ect induced by each mode on average
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�eld, as described below. Since POD is a linear expansion of instantaneous

realization, can be evaluated the e�ect of a single mode on instantaneous

velocity �eld superimposing to the mean �eld the i− th mode multiplied to

its coe�cient ai(tj):

ui(x, tj) = ⟨u(x, t)⟩+ ai(tj)ϕi(x), (1.28)

Usually statistical parameters of the �ow �eld, as mean velocity or tur-

bulence kinetic energy, are very interesting, so we can consider ai(t) from

a statistical view point. Assuming a normal distribution for the coe�cient

ai(t), we can expand it as follows:

ui(x, t) = ⟨u(x, t)⟩+ [⟨ai⟩+ kjσai ]ϕi(x), (1.29)

where ⟨ai(t)⟩ and σai are the mean and standard deviation of ai. Com-

puting Eq. 1.29 for kj equal to ±2 we can obtain two limit cases indicated

as u(x)ϕ+1 and u(x)ϕ−1 . Such limit cases de�ne the bound of an interval that

cover all the possible realizations with a probability of occurrence of about

95%. This procedure, herein called POD limit method or PODlm, has been

tested on database numerically provided. The dynamic of the Rankine vor-

tex is induced superimposing di�erent sinusoidal disturbances on radial and

azimuthal component of the velocity to induce a vortex dynamic (e.g. vortex

wandering, �apping, stretching) an example of pertubed Rankine vortex is

de�ned as follows:
uθ = uMθ r[1 +

ε
δ
cos(ωt)] r ≤ rell,

uθ = uMθ
δ2

r
[1− ε δ

r2
cos(ωt)] r > rell.

(1.30)

where uMθ is the maximum velocity occuring at the vortex core edge, ε the

amplitude of the perturbation and δ is the characteristic length of the vortex.

More details about the perturbed formes of the Rankine vortex equation is

reported in 3.4.
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PODlm is applied using the instantaneous realizations numerically simu-

lated by Eq. 1.30. All instantaneous realizations are selected using a random

algorithm in order to obtain the autocovariance matrix with the neighboor

columns time-independent. The statistical reconstruction provided comput-

ing PODlm is quite similar with the instantaneous realizations that occur for

ωt = ±π, namely the opposite phase of the perturbation:

u(x)ϕ+1 =


uMθ r[1 +

ε
δ
cos(πt)] r ≤ rell,

uMθ
δ2

r
[1− ε δ

r2
cos(πt)] r > rell.

, (1.31)

u(x)ϕ−1 =


uMθ r[1 +

ε
δ
cos(πt)] r ≤ rell,

uMθ
δ2

r
[1− ε δ

r2
cos(−πt)] r > rell.

, (1.32)

so this novel approaches can be used to obtain information about the dynamic

of the �ow �eld when the time evolution is not resolved as sometimes occurs

in PIV data.



Chapter 2

Experimental set-up

Several experiments have been performed for obtaining a phenomenological

overview of the self-excited pressure oscillations in RPE. In Fig. 2.6 a sketch

of the test case under di�erent �ow and geometrical conditions is presented.

Particular attention has been given to two geometrical conditions: Γ = 3.8,

also de�ned square cavity and Γ = 2.6, indicated as rectangular cavity. As

illustrated in the following, the cavity aspect ratio plays fundamental role

in terms of �ow-structure, pressure gradient, acoustic and aeroacoustic be-

haviour.

2.1 The experimental test case

Several prototypes have been hand-made by the author in the thermo-�uid

dynamic section of the experimental laboratory of the Engineering Depart-

ment of the University RomaTre of Rome. Most part of the geometry has

been realized in Poly-methyl-methacrylate. Although from optical view point

the performance of this material is not complectly satisfactory, it is easy

handling and processing at low cost, so it is selected to make the wall of the

prototypes. An example of RPE wall designed and then realized is reported

in Fig. 2.1.

The injection system of the RPE has been realized mounting commercial

injectors and connectors (see Fig. 2.2(c) and 2.2(d)) on the RPE walls that

28
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(a) (b)

Figure 2.1: RPE forward wall project (a) and a picture of the component
realized (b).

were drilled an threaded previously. For the cluster of holes, evidenced in

Fig. 2.1(b) a home−made injector has been designed and maked. A picture

of the injection system prototype is reported in Figs. 2.2(a) and 2.2(b). In

Fig. 2.3(a), 2.3(b) and 2.3(c) the pictures of the others of the test case

is displayed. The completed model is obtained by recasting all parts just

mentioned to realize the prototype (Fig. 2.3(d)).

Finally the pictures of two model installed in �uid dynamic laboratory for

PIV measurements and in anechoic chamber for aeroacoustic tests are given

in Fig. 2.4 and 2.5. The �rst model have three wall of black color to increase

the contrast in the Mie scattering images. Such test case is �tted with a

annular pipe to transport the seeding in the exterior of the laboratory. The

second model, all realized in transparent material, is �tted with connectors

to locate the microphones within the geometry.
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(a) (b)

(c) (d)

Figure 2.2: Three part of hand-make multi-whole injector (a), multi-whole
injector installed on RPE (b) , some commercial injectors installed on RPE
(c) and some commercial connectors used to make RPE air supply (d).
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(a) (b)

(c) (d)

Figure 2.3: Three part of the pipes mounted on RPE (a), side wall of RPE
(b), forward and backward wall of the RPE where the injection system is
�tted (c) a prototype of the RPE produced (d).
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Figure 2.4: Picture of the RPE installed in the laboratory.

Figure 2.5: Picture of the RPE installed in the anechoic chamber.
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Γ D (mm) L (mm) W(mm) l(mm) d (mm)

2÷ 7.3 100÷ 220 190 60 50 30÷ 50

Table 2.1: Values of the test case geometrical parameters.

2.2 Test Case

For the RPE under consideration, the cavity length L was kept �xed and the

depth D was made variable. This is accomplished by locating di�erent plates

on the cavity bottom, so that the cavity aspect ratio Γ could be changed from

2.00 to 7.3.

The number of achievable geometrical con�gurations is 72, but the fol-

lowing discussions is restricted to the most interesting cases. In table 4.2 all

values assumed by geometrical parameters of the test case are reported.

The geometry analysed exhibits a width-length ratio equal to 0.33: it is

well-known that, when W/L < 1, the vortex column formed in the TVC

cavity is highly coherent in the spanwise direction so that the �ow dynamics

can be considered two-dimensional. This assumption has been con�rmed

by several RANS simulations that not reported here for brevity. The neck

height, d, was varied as well between 50mm and 30mm.

2.3 Air supply, collector, mu�er

The experimental facility has been designed to carry out experiments at

atmospheric pressure. Air supply is provided by two lines: the �rst one

connects an high pressure plenum chamber to the test rig through a series

of ball valves, pressure regulators and �ow meters. The second one, denoted

as bypass line, is connected to the seeding system of the PIV setup and it is

described in the next paragraph. An air supply system is depicted in Fig.

2.12 by a single-line diagram. The �ow-meter adopted is a Brooks Smart

Mass Flow 5853S, that regulates the mass-�ow between 1 to 15g/s. The

�ow-meter is connected to a home-made mu�er-collector very similar to the

one proposed by Wu et al. [2008]. It is designed in a single-inlet/triple-
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Figure 2.6: Sketch of front view and transversal section of the rectangular
partial enclosure test case, reporting the main symbols using in the text.

Figure 2.7: A conceptual design of a collector.

outlet con�guration, to split the main mass-�ow in three equivalent �ows as

illustrated in Fig.2.7.

The �rst prototype of collector realized shown in Fig. 2.8 is a�ected by

signi�cant pressure drop. In order to clarify this issue a Reynolds average

Navier-Stokes numerical simulation of this device has been performed. A

k−ω viscous model, unstructured mesh (106 of cells) and second order solver

(both continuous and momentum equation) are used to simulate the �ow �eld

developed within the collector.

The simulation has been pointed out that the main source of the pressure

loss in the collector is the toroidal vortex formed that dissipates a part of

the kinetic energy of the �uid (see Fig. 2.9). Reducing the radius of the
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mm

Figure 2.8: Picture of a couple of prototypes of collector.

mm

Figure 2.9: Picture of a couple of prototypes of collector.
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Figure 2.10: Picture of the last prototypes of mu�er-collector.

Figure 2.11: Power spectrum of the noise emitted by collector empty (red
dashed line) and �lled with foam (black line).

collector the pressure drop and vortex strength decrease. For this reason the

last version of the collector reported in Fig. 2.10 have a diameter equal to

1/2′′.

The mu�er-collector is �lled with a foam in order to improve its acoustic

absorbing property, as shown in Fig. 2.13. Several measurements have been

performed to verify the mass-�ow homogeneity at the collector exit and a

satisfactory damping of the narrow band noise emitted by the supply system.

In Fig. 2.11 an aeroacoustic test of the mu�er-collector is reported. It is

shown that in the frequency region from 300 Hz to 10000 Hz some peaks

representative of the tonal noise occurs in red power spectrum. The e�ect

of foam �lling, with reference to black curve, is a damping of that harmonic

components irradiated trough the feedline.
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Figure 2.12: Single-line diagram of the feedline system.

Figure 2.13: Conceptual design of the mu�er-collector.
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2.4 Particle Image Velocimetry

The cavity investigated has three optical accesses through top, bottom and

side walls, suitable for the application of PIV measurements. A scheme of the

set-up is illustrated in Fig. 2.14(a). The PIV system consists of a PCO Sen-

sicam (double shutter camera, 1280×1024 resolution) and a 2mm thick laser

sheet created by a double cavity Nd:YAG laser (200mJ light pulses). Each

pair of acquired images has been processed with PIVdef, a software developed

by the Italian Ship Model Basin [see Stanislas et al., 2008] that uses iterative

adaptive correlation and windows deformation algorithms. The resolution of

the interrogation area has been varied from 64× 64 pixels to 16× 16 pixels

with 50% overlap. After each iteration, the vector map has been �ltered to

remove spurious vectors, identi�ed by median tests and replaced using 2D

interpolations. Eventually peak locking analysis, based on the displacement

probability density function (pdf), has con�rmed the proper setting of the

�nal iteration. The time delay between laser pulses has been adjusted from

50µs to 150µs to provide a mean displacement vector of about 5 pixels and a

velocity uncertainty of 1−2%. This accuracy is referred to all �ow conditions

investigated. A seeding spray of DEHS (DiEthylHexylSebacate) character-

ized by 1µm diameter particles has been produced by a PivTec Laskin nozzle.

The seeding was mixed with the main stream air and subsequently injected

into the mu�er as was shown in Fig. 2.12. Essentially three �elds of view

(FOV) were investigated: the �rst one noted as FOV1 190×190mm covering

almost the whole cavity, the second one named FOV2 90 × 90mm centered

on the neck and the last one FOV3 60 × 60mm centered on the top wall of

the RPE, as reported in Fig. 2.14(b).

2.5 Wall pressure measurements

The symmetry plane of the RPE model was out�tted with 23 static pressure

taps placed along the top wall. Starting at 10mm downstream of the RPE

backward face, all pressure taps, 0.9mm of diameter were spaced 10mm

apart, from center to center, in the streamwise direction, as rendered in
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(a) (b)

Figure 2.14: Three dimensional render of the PIV experimental set-up (a).
Sketch of the three di�erent FOV investigated.

Fig. 2.15. An Air�ow TSI PVM620 series pressure transducer was used to

measure di�erential pressure in the range −3735Pa to 3735Pa. The data are

reported in term of pressure coe�cient Cp∗ = (pw − pe)/
1
2
ρU2

in, where pw is

the time averaged wall pressure, pe is a reference pressure, measured at the

exit of the model, Uin is the mean �ow velocity at the inlet and ρ is the �uid

density. The results are reported, considering as a reference the lenght scale

L+ l.

2.6 Modal Test

In a stand-alone con�guration the acoustic properties of RPE have been

tested in a semi-anechoic chamber. More details about that chamber can be

found in Grizzi and Camussi [2012]. The test case wall has been realized with

10mm thickned plexiglass plates in order to satisfy the hard wall boundary

condition. The test case was supported by a tripod positioned on a sand-box

to damp the weak vibrations induced by the forcing system. A loudspeaker,

preliminarily characterized, is located at 150mm from the outlet section, to

force the acoustic modes of the test case. A sketch of this experimental set-up
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Figure 2.15: Sketch of static pressure taps realized on the top wall of the
RPE.

is shown in Fig. 2.16, while a scheme of the microphone locations are given

in Fig. 2.17. Microtech Gefell M360 microphones were used, four of which

were �ush-mounted on the wall of the cavity and one was installed stand-

alone, 100mm far from the test case outlet section. The microphone outputs

were acquired using a National Instruments A/D board with a sampling rate

of 5000Hz per channel. The modal test has been performed by applying a

swept-sine spanning from 100Hz to 500Hz. The spectral response is given

in terms of the FRFSPL that is computed as follows:

FRFSPL =
Lips
Lops

(2.1)

where Lops is sound-pressure spectrum level [Pierce, 1994] computed from

the signal acquired by microphone 3, outside of the test case, whereas Lips
is referred to microphone 5 located inside the cavity as shown in Fig. 2.17.

Varying D from 100mm to 220mm and d from 50mm to 30mm, 36 di�erent

cavity aspect ratio have been tested to analyse the dependence of the �rst

mode frequency upon Γ.
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Figure 2.16: A conceptual render of the modal test.

Figure 2.17: Sketch of modal test set-up.
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Figure 2.18: Sketch aeroacoustic experimental set-up.

2.6.1 Aeroacoustic measurements

Aeroacoustic measurements were performed for several mass �ow inlet. The

measurement chain is the same adopted for the modal test. The four micro-

phones were �ush mounted at a wall, as illustrated in Fig. 2.18. The data

were sampled at 12kHz for 60s with the antialiasing cuto� frequency �lter

set at 5kHz. The mass �ow inlet was varied between 7g/s and 15g/s and Γ

from 2.0 to 4.4. A total number of 36 con�guration have been tested in this

case.



Chapter 3

A single-vortex model for POD

assessment

3.1 Aim

The spirit of the analysis reported in this chapter is to provide a simple tool

for physical insight into single �ow structure dynamic. Further, although the

simplicity of a two dimensional model developed and its limitations on the ac-

curacy, comparison between experiments and computations gives con�dence

that the model can be a useful representation of many aspects of vortex core

�ows dynamic. This study has been the �rst step to give an interpretation

of the POD modes obtanied perturbing a single Rankine vortex �rstly then

by means of experimental measurements. As matter of fact the physical in-

terpretation of the POD modes is not easy to give, hence a simulation of the

single perturbed vortex allows to correlate the perturbation and the dynamic

of the vortex with the corresponding POD mode.

3.2 Introduction

The study of �uid motions is of obvious importance for several applications

ranging in scale from the microscopic to the atmospheric. Since we live in

a three-dimensional world, it may be less obvious why the understanding of

43
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two-dimensional �uid �ows is of interest. However, in many applications the

�uid domain is much smaller in one direction than in the other two. In the

case of the atmosphere for example, the �ow structures thickness is a few tens

of kilometers and the relative diameter can be several hundreds of kilometers.

Furthermore, in both the atmosphere and the ocean, the applicability of a

two-dimensional approximation is enhanced by two additional e�ects: the

strati�cation of the medium (which reduces the e�ective thickness of the

domain) and the rotation of the earth, which tends to reduce variations in

the vorticity �eld with height, so in any cross-sectional plane the �ow is

e�ectively two-dimensional.

A single two-dimensional vortex is also an interesting feature of many

technological �ows. A well-known example is indeed the vortex formed in

the cavities of the rectangular trapped vortex combustors. The wall-vortex

interaction in a con�ned domain is expected to be signi�cant and would lead

to a large-scale precession even for an isolated vortical structure [Maurel

et al., 2001]. In this situation, as well as in many others (e.g. in a compressor,

pump or duct/neck), the central element is a vortex subjected to a pressure

gradient. The possible consequence of large expansion of the vortex core is a

decreasing of e�ective �ow area, such as the performance of the enclosure. A

two-dimensional approximation to the �uid motion can provide very accurate

insights into the behavior of the physical system.

A particular behaviour of two dimensional �ow is about turbulent kinetic

energy transfer. Typically in three-dimensional �ows the from large-scale is

transferred to small ones until it is dissipated by the viscosity forces. In two

dimensions the phenomenon tends to reverse itself and the energy concen-

trates itself in a few large structures. This phenomenon, known as the inverse

cascade, manifests itself in a striking visual way through the coalescence of

many small vortices into a smaller number of larger vortices.

3.3 Rankine vortex

The �ow that we are going to describe herein is a Rankine vortex core,

surrounded by an irrotational �ow. The Rankine vortex is a �uid �ow having
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Figure 3.1: The cylindrical coordinate system adopted for the description of
the Rankine vortex model. The unit normal vectors set (i, j,k) is reported
in the point identi�ed by coordinates (r, θ, z).

radial symmetry [?]. Its de�nition exhibits a simple form in a cylindrical

coordinate system (r, θ, z), where the symmetry axis is the z coordinate ,

while the r and θ axis lie on the plane normal to the z axis, as shown in Fig.

3.1.

The vortex has the velocity �eld normal to both the symmetry axis z and

the radial vector r. This means that the velocity is parallel to the j unit

vector. The velocity vector modulus is a function of the radial distance only.

The inner part of the vortex is in solid body rotation, then its modulus is

linearly proportional to r, while the outer part is inversely proportional to

the radial distance. The maximum intensity of the �ow is reached at the

characteristic length of the vortex, δ, where there is the change from the

inner linear behavior to the outer hyperbolic one. The vortex core centre is

aligned with the origin of axis. Analytically the velocity in a Rankine vortex

is de�ned as follows:
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V = vri+ vθj+ vzk where


vr = 0

vθ(θ, r) =


Γ∞r
2πδ2

, r ≤ δ

Γ∞
2πr
, r > δ,

vz = 0

 (3.1)

benig the far-�eld circulation, Γ∞, constant. The maximum velocity oc-

curing, at the core edge, is de�ned as

vMθ =
Γ∞

2πδ
. (3.2)

So we can rewrite Eq. 3.13 in term of vMθ obtaining

V = vri+ vθj+ vzk where



vr = 0

vθ(θ, r) =


vMθ

r
δ

r ≤ δ

vMθ
δ
r

r > δ

vz = 0


(3.3)

The vθ vector component behavior is illustrated in Fig. 3.2

One of the main features of the Rankine vortex is its vorticity �eld. In

fact, according to the de�nition of the vortex velocity �eld and the application

of the curl operator in cylindrical coordinates, it is evident that the vortex

presents a vertical vorticity component only. Furthermore in the inner part
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Figure 3.2: The Rankine vortex model is characterized by a �ow that is
always and everywhere parallel to the j unit vector, so the only non null
vector component is vθ which is also the total velocity vector modulus. Note
that at the characteristic length δ, the �ow is continuous, but the �ow regime
changes from a solid rotation to a hyperbolic decrease for increasing distances.

of the vortex the vorticity �eld modulus is constant and positive. In the

outer region of the vortex, the �ow has no vorticity at all (Eq.3.4).

∇×V = ωzk =
1

r

∂(rvθ)

∂r
k = (

vθ
r
+
∂vθ
∂r

)k = k


2
vMθ
δ

if 0 ≤ r < δ

0 if r > δ

(3.4)

It is worth noting that the Rankine vortex is characterized by a continuous

velocity �eld, but with a discontinuity in the vorticity at the characteristic

distance [Batchelor, 1993].

3.4 The vortex perturbations analysis

A Rankine vortex is perturbed superimposing di�erent time-dependent dis-

turbances in order to simulate its actual dynamic. An extensive description

of all perturbations is given below. As illustrated by Lamb [1932], the sim-
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plest case of an elliptical streamline can be constructed by superimposing on

a Rankine vortex a disturbance with a a small amplitude ε and wave number

two (wave number two disturbance WTD).
ψ = −vMθ

2
[(δ2 − r2)− ε r

2

δ
cos(2θ − ωt)] r ≤ rell

ψ = −vMθ
2
[(2δ2 ln δ

r
)− ε δ

3

r2
cos(2θ − ωt)] r > rell

(3.5)

where rell = δ + ε cos(2θ − ωt) is the elliptical boundary of maximum

velocity. This equation represents the general form of the streamfunction for

WTD. In this simple analytic case, the vorticity gradient is zero everywhere

except at δ. It is a straightforward matter to derive the azimuthal and radial

velocities of this system from Eq. 3.5, as shown in the following:
vθ =

∂ψ
∂r

= vMθ r[1 +
ε
δ
cos(2θ − ωt)] r ≤ rell,

vθ =
∂ψ
∂r

= vMθ
δ2

r
[1− ε δ

r2
cos(2θ − ωt)] r > rell,

(3.6)

The magnitude of the tangential velocity of the idealized WTD is con-

tinuous across rell. As a result, the WTD manifests itself as two pairs of

counter-rotating vortices. If one superimposes this disturbance on the Rank-

ine vortex, then the resulting total circulation is an ellipse varying its axis

length in time. In Fig. 3.3(a, b, c) the velocity magnitude of instantaneous

realization obtained for ωt equal to −π, 0 and π are reported. It is noticeable

for ωt = −π a contraction of the vortex along yn − axis and at the same

time a vortex dilatation along xn− axis. By simplifying Eq.3.6, keeping the

wave number of the perturbation equal to zero, it is possible to simulate,a

more simple disturbance, that consists of an isotropic dilatation/contraction.

Such a perturbation can be modeled as follows:
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
vθ =

∂ψ
∂r

= vMθ r[1 +
ε
δ
cos(ωt)] r ≤ rell,

vθ =
∂ψ
∂r

= vMθ
δ2

r
[1− ε δ

r2
cos(ωt)] r > rell.

(3.7)

A pure deformation �eld in cartesian coordinates, is another perturbation

taken into account. This �eld can be constructed as follows [?]:
u = D

2
[x cos(2γ)− y sin(2γ)]

v = D
2
[x sin(2γ)− y cos(2γ)]

(3.8)

where D is the magnitude of the deformation, measured in s−1, γ is the

angle of the axis of dilation, x and y are the distance from the stagnation

point of the deformation �eld. A pure deformation �eld is neither rotational

nor divergent and the magnitude of the velocity increases linearly with the

radius. The similarities between the wavenumber two tangential wind and

the deformation �eld case can be illustrated as follows. Representing vθ

and vr in terms of cartesian variables u and v, it can be shown that the

deformation �eld exhbits a WTD characteristics in cylindrical coordinates:
vθ = v cos θ − u sin θ,

vr = u cos θ + v sin θ,

(3.9)

using the well-known relations x = r cos θ and y = r sin θ in Eq. 3.8,

then substituting the results into Eq. 3.9, and utilizing the trigonometric

identities sin 2ϕ = 2 sinϕ cosϕ and cos 2ϕ = cos2 ϕ− sin2 ϕ, we obtain:
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
vθ = −Dr

2
sin(2θ − 2γ),

vr =
Dr
2
cos(2θ − 2γ).

(3.10)

Hence vθ and vr signatures of a deformation �eld are WTD and are con-

tinuous for any radius value.

The last disturbance de�ned is a perturbation of the Rankine vortex core

position, in order to simulate an oscillation of amplitude η around the axis

center, along x− axis. It is possible to rewrite only the radius expression to

represent this disturbance:

r̂ =
√

(r cos θ + η cos(ωt))2 + (r sin θ)2, (3.11)

by replacing this expression in the Rankine vortex model, an expression

of the perturbed vortex is given:

vθ =


Γ∞r̂
2πδ2

, r̂ ≤ δ

Γ∞
2πr̂
, r̂ > δ,

(3.12)

In Fig. 3.3(d, e, f) the velocity magnitude of the instantaneous realiza-

tions perturbing the Rankine vortex with the disturbance shown in Eq. 3.11

obtained for ωt equal to −π, 0 and π are reported. It is noticeable that for

ωt = −π, π a rigid translation of the vortex along xn − axis occurs.

A novel more general expression of the Rankine perturbed vortex can be

derived including all disturbances illustrated.
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Figure 3.3: Instantaneous pictures of veloctiy realizations for ωt = −π, ωt =
0 and ωt = π (from left to right). The Rankine vortex dynamic is provided
by superimposing WTD on fθ (�gures a, b, c) and perturbing the vortex core
position with the disturbance r̂ (�gures d , e, f).



vr(θ, r) =


−vMθ r̂(

ℑ(ε̃)
δ
), r̂ ≤ δ + ℜ(ε̃)

−vMθ δ2

r̂
(ℑ(ε̃) δ

r̂2
) r̂ > δ + ℜ(ε̃,

vθ(θ, r) =


vMθ r̂(1 +

ℜ(ε̃)
δ
), r̂ ≤ δ + ℜ(ε̃)

vMθ
δ2

r̂
(1 + ℜ(ε̃) δ

r̂2
) r̂ > δ + ℜ(ε̃,

vz = 0


(3.13)

where ε̃ = εe(mθ+nr−ωt) is the complex wave notation of the perturbations,

sometimes called Kelvin waves, m and n are the azimuthal and radial wave

number and ℜ(·), ℑ(·) the real and imaginary part of complex number.
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3.5 Single vortex POD analysis

In this section the vortex dynamic will be simulated superimposing at same

time three di�erent perturbations to the Rankine vortex. The vortex dy-

namic so obtained will be analysed applying the POD technique. Since the

perturbation expression are known the interpretation of the corresponding

modes will be easier. As a matter of fact the main drawback of this processing

technique is the physical interpretation of the modes. Te home-made soft-

ware used to perform such a POD analysis (easyPOD, illustrated in A.4.2)

has been previosly validated.

The amplitude of the perturbations superimposed to the Rankine vortex

satis�es the condition ε1 >> ε2 >> η >> ε3. Where ε1 is the amplitude of

the tangential WTD, η is the amplitude of the disturbance of the vortex core

position, ε2 is the amplitude of a perturbation with zero- wave number and

ε3 is the amplitude of radial and tangential WTD. This condition is given

in order to identify the corresponding mode using the eigenvalue spectrum,

indeed it is expected that λ1, associated to the perturbation ε1, is higher

than λ2 that corresponds to η and so on.

The perturbation de�ned as ε̃1 induces in a vortex a contraction/dilatation

along the x/y − axis, a dynamic also called vortex �apping. The perturba-

tion r̂ induces the variation of the vortex core location, the so called vortex

wandering. Finally the disturbance ε̃2 is a deformation �eld that induces

its maximum e�ect when the vortex is in close proximity to boundaries of

the domain, modeling the wall−vortex interaction. Such a dynamic is also

denoted as vortex bouncing. It is interesting to observe the intrinsic coupling

between the disturbances η̃ and ϵ̃2, indeed the e�ect of the latter perturbation

is a function of the vortex position that is varied by η̃.

In Fig. 3.4 the modes distillated by means of the POD are shown. Mode

0 corresponds to the mean velocity �eld, that is the unperturbed Rankine

vortex (see Fig. 3.4 (b)). In the two dimensional �eld, referred as mode 1,

a couple of counter-rotating coaxial structures with wave number two on vθ

components occurs, in agreement with the e�ect of the perturbation ε̃1 (see

Fig. 3.4 (c)).
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Figure 3.4: Fluctuating energy spectrum of the �rst four modes exctracted by
POD (a);Proper orthogonal decomposition modes identi�ed by decomposi-
tion of the Rankine vortex dynamic simulation: mode 0, 1, 2, 3, 4,respectively
corresponding to mean �eld (a), vortex asymmetric �apping (b), isotropic
�apping, wandering, bouncing.
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Mode 2 is a single azimuthal perturbation rotating in anti−clockwise
direction with a circular stagnation region (see Fig. 3.4 (d)). Mode 3 con-

sists of a vortex dipole that induces a �ow characterized by parallel velocity

vectors in the y direction, that produces a vortex wandering in transversal

direction (see Fig. 3.4 (e)). Mode 4 is a deformation �eld with a stagnation

point located at the origin in agreement with the e�ect of the perturbation

ε̃2 (see Fig. 3.4 (f)). Such a mode represents the vortex bouncing dynamic.

The POD spectrum of the �rst four modes evidences a signi�cant di�erence

between the �uctuating energy of the modes, λi/
∑
λi, in agreement with

the condition on the disturbance amplitude: ε1 >> ε2 >> η >> ε3 (see

Fig. 3.4 (a) ). As a result the equivalence between perturbation linearly

superimposed and mode extracted is veri�ed, although, as said previously,

an intrisinc coupling between ε̃2 and η exists.

The procedure described can be consider an approach to give a physical in-

terpretation of the modes extracted using POD by a single simulated vortex.

In e�ect is not easy to clarify the link between vortical structure contained

in instantaneous two-dimensional �elds and their Proper Orthogonal modes.

In this approache for all perturbation modeled the corresponding mode is

recognized. Moreover the knowledge acquired in this preliminary work it

is demonstrated useful to give an interpretation of modes computed from

experimental database as discussed in the �4.2.1.



Chapter 4

Results

4.1 Introduction

As described above, aerodynamic, acoustic and aeroacoustic measurement

were performed for di�erent test cases. The aerodynamic characterization

provides an overall picture of the main �ow structures forming in the cav-

ity. The results of the acoustic analysis are supported by speci�c numerical

simulations and are of importance for the interpretation of the aeroacoustic

investigations.

4.2 Fluid dynamic characterization

A simpli�ed sketch of the RPE �ow physics is represented in Fig. 4.1. For all

Γ analysed the most important �ow structures have been identi�ed: a jet, a

jet-wall interaction region, a main vortex, a recirculation bubble formed into

the neck, a stagnation point. As described in �2.4, in order to describe with

suitable spatial resolution all these elements, speci�c FOVs are selected for

the PIV measurements.

The �rst result provided is that the �uid dynamic of this kind of geometry

is a�ected by Γ. A variation of the cavity aspect ratio from 2.6 to 3.8 in-

duces a vortex core displacement only in the longitudinal direction, whereas

no e�ects occur in the transversal direction. Indeed the vortex core remains

55
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Figure 4.1: Sketch of the �ow physics.

positioned in the middle of the cavity. For Γ = 2.6 a noticeable e�ect in

the �ow domain is the decrease of the azimuthal component of the velocity,

Vθ (see Fig. 4.2 (a) and (b)), except for the region in the right side of the

cavity. This behaviour is clari�ed by observing Fig.4.2 (c) and (d) where for

x > 85mm and x > 110mm respectively the ∂Vθ/∂x is qualitatively the same

and a non zero radial velocity is induced. This behaviour can be ascribed

to a jet roll-up. On the other hand, for x < 110 and Γ = 2.6, a remarkable

Vθ decrease is noticeable. Moreover for Γ = 3.8 the Vθ has an axisymmet-

ric distribution with respect to the center of the vortex, exhibiting a linear

increase with the distance calculated from the vortex center. It is a proper

approximation to consider this vortex a solid body rotation. The azimuthal

velocity is very important in the trapped vortex combustion strategy, since it

improves the mixing and the main vortex stability into the cavity [Bruno and

Losurdo, 2007]. These observations qualitatively suggest that an optimal ge-

ometry for the experimental investigation in reactive condition is the square

cavity. Singhal and Ravikrishna [2011a] experimentally investigated in reac-

tive condition a geometry very similar to the present one, and indicated high

e�ciency for L/D = 0.88, namely about a square cavity.
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θ θ

Figure 4.2: Averaged velocity �eld measured at Re= 50271 for di�erent values
of cavity aspect ratio: Γ = 2.6 (a), Γ = 3.8 (b). Azimuthal (◦) and radial
(△) velocity pro�les extracted from the PIV data at y = 73mm for Γ = 2.6
(c) and at y = 90mm for Γ = 3.8 (d)
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Figure 4.3: Pressure coe�cient distribution along the top wall of the RPE.

An interesting feature consists in the formation of a recirculation bubble

in the neck. This e�ect is due to the adverse pressure gradient (APG) and it is

observed for all the cases under consideration. The length scale and position

of this structure is a�ected by Γ, on which depends the APG intensity.

With reference to Fig. 4.3, it is shown that the largest pressure gradient

occurs for large Γ, where a wider separation zone is observed as well, as

illustrated in Fig. 4.4. In this Figure it is noticeable that the stagnation

point is weakly displaced upstream for the case with Γ = 2.6. In summary, a

strong connection among the single dominat vortex, the recirculation bubble

properties and Γ is evident. As will be clari�ed below, their complex �ow

behaviour is signi�cant for the wall pressure statistics.

4.2.1 POD analysis

The classical POD method of the snapshot has been applied to characterize

the dynamic of the vortex into the cavity of the RPE wit hsquare cavity. Such

a method has been applied in two di�erent domains, Ω1 and Ω2, rendered

with red and blue rectangles in Fig. 4.2.1. The spirit of the �rst analysis

was to show that the form of the modes is a�ected by the domain size and

the energy of the �ow structures contained within, as was pointed out by

Maurel et al. [2001]. These domains are centered in the vortex center and
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(a) (b)

Figure 4.4: Streamlines of the averaged velocity �eld, corresponding to FOV2
and measured at Re= 50271 for Γ = 2.6 (a), Γ = 3.8 (b).

they are small enough to exclude the jet by analysis. As a matter of fact, for

the case under investigation, the �uctuating kinetic energy of the jet is much

higher than the vortex energy. Further the vortex dynamic may be covered

by the dynamic of the jet. For this reason Maurel et al. [2001] introduced

the concept of extended POD based on an identi�cation of di�erent domains

characterized by �ow structures with a comparable �uctuating energy.

In order to avoid, the procedure of the selection of the domain with com-

parable �uctuating energy as in extended POD, a novel technique to recast

the POD information is proposed. Such technique, formulated in the context

of present work, is called PODlm. The main advantages of PODlm is its

domain and �uctuating energy regardless. So a preliminary section of the

di�erent domain, as in extended POD is not needed. In addiction by means

of PODlm the physical interpretation of the modes can be more simple than

in the classical one.

The results provided by applying the POD in Ω1 are reported in Fig. 4.6.

Modes 1 and 2 exhibit a shape similar to those shown in Fig. 3.4 for the

same analysis computed on the Rankine perturbed vortex. So the physical

interpretation of the modes can be based on the previously experience on

the data numerically simulated. In the experimental case, the �rst mode

is characterized by a sizeable region of vectors with parallel direction as
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Figure 4.5: POD domain, evidenced by red and blue rectangule centered on
the vortex core of the main scale formed in the cavity.

illustrated by Fig. 4.6 (b). As seen previously for the Rankine vortex, such

a behaviour corresponds to the vortex core wandering. This implies that the

vortex oscillates along a direction transversal with respect to the direction

of the vectors. In addition, since this mode is the �rst, that is the most

energetic, the vortex wandering is the dominant dynamic. With reference to

Fig. 4.6 (c), the second mode is a deformation �eld with an angle γ ∼= π/4.

As known, a deformation �eld induces an expansion/contraction of the vortex

along x/y−axis, in other words an asymmetric vortex �apping. Higher order

modes, e.g. mode 3 and 4 (see Fig. 4.6 (d, e)), have an energy content lower

than 5%, as can be seen by observing the eigenvalue spectrum in Fig. 4.6

(f), so they have not been taken into account in the present discussion.

Extending the analysis to domain Ω2 > Ω1, the physical interpretation

of the �rst two modes appears less simple, as the mode shapes are more

complicated indeed. In the �rst mode, reported in in Fig. 4.2.1 (a), a zero

wave number disturbance is distinguishable. As discussed in chapter 3, this

disturbance induces an isotropic �apping of the vortex. Since this distur-

bance exhibits the same rotating direction as the mean �eld, when the POD

coe�cient a1(t) assume positive sign, the vortex becomes expanded, whereas
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Figure 4.6: First four modes: 0 (a), 1(b), 2(c), 3(d), 4 (e) and eigenvalue
spectrum obtained performing POD on Ω1 domain (f).
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(a) (b)

Figure 4.7: Sketch of the dominant dynamic identi�ed: vortex �apping (a)
and vortex wandering (b).

for a1(t) < 0 a vortex contraction occurs, as sketched in Fig. 4.7(a).

With reference to the second mode (Fig.4.7(b)), a region with quasi-

parallel vector is observed. As just discussed, this form of perturbation rep-

resents the vortex wandering dynamic. As a �rst-order description, it is easy

to �gure out that a combination of the mode 2 with the mean �eld leads

to a displacement of the vortex perpendicular to the direction of the second

mode, towards the upper-left corner of the Ω2 domain. Any other analy-

sis, extended to domains bigger than Ω2, are not herein reported since the

physical interpretation of the modes is not clear. Indeed Maurel et al. [2001]

et al., in a velocity �eld similar to that under investigation, have pointed

out that POD is not helpful if one �ow region of interest contains only a

small percentage of the total kinetic energy. For this reason the concept of

extended modes has been introduced by computing POD in both the �ow

domain and in sub-domains (Maurel et al. [2001]).

For the sake of clearly PODlm are applied on a domain higher than Ω2

where the jets are included. The limit cases and the mean �eld are reported

in Fig. 4.9. The x−axis is normalized with the depth of the cavity, whereas

the velocity is divided by a reference velocity. In Fig. 4.9 (a) the mean ve-

locity pro�le, extracted at vortex center, and the limit cases referred to �rst

mode are shown. It is noticeable the vortex expansion/contraction delimited

by limit cases (red dashed line). Moreover any displacment of the vortex core
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Figure 4.8: First two modes: mode 1(a) and mode 2(b) provided computing
POD on Ω2 domain.

does not occur. A similar consideration can be carried out by observing the

iso−velocity lines in Fig. 4.9 (c) referred to the same data. In Fig. 4.9 (b)

and (d) the velocity pro�le and iso−velocity line describe, comparing to the

average �eld, a nearly rigid translation of the vortex core.

For di�erent cavity aspect ratio the �rst two mode exhbit the same struc-

tures of the disturbance, describing the same vortex dynamic: vortex �apping

and vortex wandering (see Fig. 4.10).

In Fig.4.11 are reported the energy associated to modes for di�erent value

of Γ. An expected behaviour occurs for Γ = 3.2 or D = 160 where the energy

associated to �rst mode is higher, this result mean that the vortex �apping

is more evident for this geometry, at same time a noticeable reduction of

energy associated to vortex wandering is highlighted. Concluding the more

unstable geometry from �apping dynamic point of view is identi�ed.

4.3 Acoustic numerical simulation

A three-dimensional �nite element model of RPEs, using the commercial

software COMSOL, has been developed and directly solved in the frequency

domain. The pressure distribution is provided over the frequency range 50-
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Figure 4.9: Average velocity (black solid line) and limit cases (red dashed line)
pro�les referred to the �rst mode(a). Average velocity (black solid line) and
limit cases (red dashed line) pro�les referred to the second mode (b). Average
velocity (black solid line) and limit cases (red dashed line) iso−velocity line
referred to the �rst mode(c). Average velocity (black solid line) and limit
cases (red dashed line) iso−velocity line referred to the second mode(d).
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Figure 4.10: First two modes for di�erent Γ.
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Figure 4.11: Eigenvalue spectrum varying Γ.

2000Hz with 1Hz increment. All sides of the exterior domain realized around

the RPE has been modeled as open radiating into free space. A pressure

�uctuation magnitude equal to 1Pa has been imposed on the vertical face

of the exterior domain in front of the RPE outlet, as a forcing. Dissipative

e�ects due to the viscous losses of the air moving back and forth in the neck,

have been neglected in this model. The region of the exterior domain in

close proximity to the RPE opening exhibits a non-planar sound �eld and a

dependence over the mesh density. Hence a mesh re�nement procedure has

been applied, in order to achieve solutions independent by the mesh and in

agreement with the experimental modal test. A scheme of the mesh adopted

after the re�nement is given in Fig. 4.12. This con�guration corresponds to

105 tetrahedral cells. In order to take into account the e�ect of the ori�ce

geometry, the wall thickness has been also modeled.

The �rst three modes achieved in the case of square and rectangular

cavities are reported in Fig. 4.13 and Fig. 4.14 respectively. In both cases all

the modes reported can be considered as a linear combination of longitudinal

and transversal modes except in the case of the rectangular cavity where the

second mode is split into longitudinal and transversal components. This
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Figure 4.12: Sketch of the mesh realized.
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Γ 1LT (Hz) 2LT 2L (Hz) 2T (Hz) 3LT (Hz)

3.8 185 936 / / 1273
3.2 202 / 935 1083 1378
2.6 225 / 942 1321 1534

Table 4.1: First three mode frequencies varying Γ.

result seems to suggest that a model based on longitudinal propagation of

the �rst mode, as usually adopted for classical combustors [Altay et al.,

2009, 2010, Poinsot and Veynante, 2005] is not appropriate for this kind of

geometry.

The numerically obtained FRFSPL is reported in Fig. 4.15. When Γ raises,

the frequency of the �rst mode decreases, whereas the intensity increases

substantially. Furthermore the splitting of the second mode, indicated in Tab.

4.1. as 2LT, when the cavity becomes rectangular in the longitudinal 2L and

transversal mode 2T is also observed.Finally, focusing our attention on the

acoustic �eld inthe exterior domain frequency of the �rst mode (185Hz)for

the geometry with square cavity, shown in Fig. 4.16, it is noticeable that

the mode it is developed in this region that suggesting the use of an end-

correction to take into account this e�ect.

Finally, focusing our attention on the acoustic �eld into exterior domain

at 185Hz ( frequency of the �rst mode of the geometry with square cavity),

shown in Fig. 4.16, it is noticeable that the �rst mode is developed also into

exterior domain thus suggesting the use of an end-correction in the model.

4.3.1 End-correction

The FRFSPL obtained by means of the experimental modal test is shown

in Fig. 4.17. In agreement with numerical simulation, the frequency and

amplitude of the �rst mode is a�ected by Γ as described in �4.3.

Although the geometry investigated is su�ciently di�erent from a classi-

cal Helmholtz resonator. The �rst mode frequencies exhibit in log-log scale

the typical −1/2 slope of the Helmholtz resonator. Furthermore a weak fre-

quency drifting appears by varying the transversal length of the neck, as
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(a)

(b)

(c)

Figure 4.13: First three modes occurring in the square RPE. Grey levels
represent the SPL in an arbitrary scale.
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(a) (b)

(c) (d)

Figure 4.14: First three modes occurring in the rectangular RPE: (a) �rst
mode, (b) second longitudinal mode, (c) second transversal mode amd (d)
third mode. Grey levels represent the SPL in an arbitrary scale.



4.3. Acoustic numerical simulation 71

10
2

10
3

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frequency (Hz)

FRF
SPL

Figure 4.15: Frequency Response Function for the three di�erent con�gura-
tions: Γ = 3.8 (��) , Γ = 3.2 (−−−), Γ = 2.6 (· · · · · ·).

Figure 4.16: Enlargement of the exterior acoustic �eld simulated at the �rst
mode frequency. The length of the exterior end correction δe is qualitatively
estimated and superimposed on the �gure. The grey levels represent the
sound pressure level in arbitrary scale.
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Figure 4.17: Frequency Response Function for three di�erent con�gurations:
Γ = 3.8 (��), Γ = 3.2 (−−−) and, Γ = 2.6 (· · · · · ·).

reported in Fig. 4.18. This behaviour is due to the development of the �rst

mode in the exterior domain as was shown in Fig. 4.16. For this reason a

theoretical model based on open-end boundary condition does not predict

correctly the �rst mode frequency. In order to improve the accuracy of the

classical expression of HR:

f =
c0
2π

√
1

ΓLl
, (4.1)

the neck length is usually corrected by adding a so called end-correction

term:

l′ = l + δe + δi = l + 2δR = l + α

√
dW

π
, (4.2)

f =
c0
2π

√
1

ΓLl′
, (4.3)

where
√
Wd/π is the hydraulic radius of the neck [Pierce, 1994, p.349].

The end-correction for axisymmetric HR, expressed in dimensionless form,

depends on of the cavity-neck diameters ratio and it ranges between two

well-known values, 0.785 < 2δr/d < 0.848 [see Selamet et al., 1997]. In

the present case it has been checked that the most common end-correction
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Figure 4.18: First mode frequency referred to d = 50mm (◦), d = 40mm
(�), d = 30mm (⋄).

formulations do not lead to a good agreement with the experimental results,

probably due to the length-width ratio of the geometry under investigation.

Hence, a novel end-correction formula is proposed by a linear �tting of the

experimental data in log-scale. Eventually an analytical expression of α is

derived:

α =

[
1

L

( c

2π10q

)2

− l

]√
π

dW
, (4.4)

where q is the intercept of the linear �tting of the experimental data and

its value is close to 2.549 for all cases under investigation. In Fig. 4.3.1

a comparison between frequencies experimentally provided and those calcu-

lated using Eq. 4.3 applying the end-correction here proposed (Eq. 4.4)

is measured showing a good agreement. The bisector of the plot plane is

superimposed to the data.

4.4 Wall pressure �uctuation statistics

The complex �ow �eld depicted in this work (jet-wall interaction, a dominant

macro-scale, separation bubble dynamics, adverse pressure gradient) is the

counterpart of a complex aeroacoustic behaviour. The analysis of the wall

pressure power spectra is �rst focused on the low frequency range, where the
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Figure 4.19: First mode experimental frequency versus frequency predict
applying empirical-end correction. Linear �tting of the data is superimposed.

signature of the acoustic modes is relevant. In the spectra shown in Fig.

4.20(a) a dominant peak appears at about the same frequency as the �rst

acoustic mode, in agreement with the acoustic numerical and experimental

results. More speci�cally it is found that all geometries herein investigated

follow a Helmholtz resonance scaling law. The solutions of Eqs.1.13, 1.16 and

1.17, including the end-correction, are also reported in Fig.??(b) to compare

the experimental results with di�erent formulas to predict the �rst mode

frequency. The solid curve is the solution of the HR equation, whereas the

dashed curve is the solution of eq. 1.13 based on the longitudinal model. The

frequency of the dominant peak in the spectrum varying Γ is superimposed to

the curves. The experimental data follow the HR scaling law demonstrating

that for this kind of geometry a longitudinal model is not suitable to predict

the �rst mode frequency.

f =
c0
2π

√
1

ΓLl′
→ f ∝ Γ−1/2, (4.5)

The solution including the end correction proposed in �4.3.1, represented

by the solid line in Fig. 4.20(b), is superimposed to the experimental data,

showing a good agreement between the phenomenology and the theoretical
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Figure 4.20: Power spectral density referred to microphone 5 obtained vary-
ing Γ and keeping Re constant(a). First mode frequency, provided by means
aeroacoustic test (△), superimposed to solutions of Eq. 1.17 (cubical HR �
�), Eq. 1.16 ( long cavity HR· −) and Eq. 1.13 (double duct −−−)(b).

prediction proposed.

Taking into account the latter consideration, a reduced Strouhal number

can be de�ned as follows:

StΓ =
fdin
Uin

Γ1/2, (4.6)

where Uin is the mean inlet velocity and din the inlet section diameter.

Such a reduced Strouhal number form takes into account the variation of

Γ and, as shown in Fig. 4.21, leads the spectra to collapse. The y-axis is

normalized with respect to the inlet dynamic pressure (qin) using the local

reference time τ = din/Uin. The data collapse is satisfactory except for

StΓ > 0.5 thus con�rming the self-similar structure of the wall pressure

�uctuations spectra. In addition, for normalized PSD, the e�ect of Re is

reported in Fig. 4.21(b). As expected, a collapse of the peaks is no longer

observed whereas the spectra collapse well in the high frequency range. In

order to investigate the high frequency behviour for StΓ > 0.5 the PSD for

Γ = 2.6 and Γ = 3.8 are computed at three di�erent Re. The spectra are

reported in Fig.4.22(a) and Fig. 4.22(b).
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Figure 4.21: Power spectral density of the wall pressure referred to station
1, the pressure is normalized by q2in. The data are taken at Re= 50271 and
Γ = 2.0, 2.6, 3.2, 3.8 (a). The data are computed at Re= 50271, 36865, 30163
and Γ = 3.8 (b).

Two di�erent power law decays, −1 and −2, are observed at high fre-

quency for the rectangular and the square cavity respectively. The power

law is not dependent on Re, but it is related to the �ow dynamic. The slope

equal to −1, measured for Γ = 2.6 is characteristic of equilibrium turbulent

boundary layer (TBL), associated with turbulent activity in the log layer

[see Bradshaw, 1967]. Whereas a power decay equal to −2 has been found

in non-equilibrium TBL. Na and Moin [1998] performed a DNS of a TBL

developing over a �at plate, under mild and strong imposed adverse pressure

gradients (APG). In the latter case a power law decay with exponent close

to −2 was observed for the spectra downstream of the reattachment point.

With reference to Fig. 4.3 the APG at the location of the microphone 1

(x/(L + l) = 0.46) is higher for Γ = 3.8 than Γ = 2.6. For this reason the

shear of vorticity near the wall, referred to the square cavity, appears thick-

ened and more irregular than in the other case, as it is clear by comparing

Fig. 4.22(f) and 4.22(e). This demonstrates a di�erent activity of the vortical

structures close to the wall.

In Fig. 4.22(c) the spectra associated to the transverse microphone (mi-

crophone 5) are reported for di�erent aspect ratio. We focus our attention
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only on two cases Γ = 3.8 and Γ = 2.6. In the �rst case the spectral slope

computed assumed the value −4 and the vortex center is located at the same

position of the microphone, as can be seen in Fig. 4.22(f)). The same power

law decay, f−4, has been found by Na and Moin [1998] in the separation

bubble. In the second case for Γ = 2.6 vortex core appears displaced respect

the position of the microphone 5, at the same time the slope is changed from

f−4 to −2. So the spectral decay variation can be ascribed to vortex core

position.

The coherence time of an eddy is proportional to its scale and the larger

eddies are convected at higher velocity, Uc [see Camussi et al., 2006]. So the

convection velocity is an increasing function of the distance ξ between the

sensors, as pointed out Brooks and Hodgson [1981]. Corcos [1964] de�ned an

average convection velocity Uc based on the cross-spectral phase ϕij between

a couple of sensors, separated by distance ξ, as:

ϕij =
ωξ

Uc(ω, ξ)
, (4.7)

The Uc magnitude is directly dependent upon the nature of the pressure

perturbations. Speci�cally, pseudo-sound pressure in TBL would be primar-

ily driven by vortical structures advected by the mean �ow close to the wall.

Typically the pseudo-sound perturbations are expected to be characterized

by convection velocity which is a fraction of the external inviscid mean veloc-

ity. On the other hand, an acoustic pressure perturbation propagates through

space at the sound speed; thus, in an incompressible TBL, it moves at veloc-

ity much larger than Uc. In equilibrium boundary layers the hydrodynamic

pressure is expected to be dominant as an e�ect of the turbulent structures

advected close to the wall.

The cross-spectral magnitude and phase, for a square cavity, referred

to microphones 1 and 2, is displayed in Fig. 4.4. The phase exhibits two

trends, a plateau at low frequency and a region with negative slope at high

frequency. The �rst one ranges from 10Hz up to the frequency of the �rst

acoustic mode, the second one ranges from the �rst mode frequency up to

2000Hz. The plateau is ascribed to acoustic e�ects since all pressure time
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Figure 4.22: Normalized power spectral density referred to microphone 1 for
Re= 50271 (��), Re= 36865 (−−−) and Re= 30163 (· −) and Γ = 2.6 (a)
and Γ = 3.68 (b). Normalized power spectral densities referred to microphone
5 computed for di�erent Γ, Re= 50271 (c). Normalized PSD computed at
Re= 50271 and di�erent cavity aspect ratio: Γ = 3.8(��), Γ = 3.2 (−−−)
and Γ = 2.6(· −) (d) . Averaged vorticity �eld (contour) and streamlines
(white lines) obtained at Re= 50271 for two values of cavity aspect ratio:
Γ = 2.6 (e) and Γ = 3.8 (f).
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scale propagates at the same velocity. On the other hand, the negative

slope, with reference of eq. 4.7, is a consequence of convective e�ects. This

interpretation is also con�rmed using a procedure for analysing the cross-

correlations between microphone 1 and 2. In particular two signals is derived

by each raw signal applying di�erent frequency �lters:

• low-pass �ltered signal (LPFS)with cuto� frequency equal to �rst acous-

tic mode frequency,

• high-pass �ltered signal (HPFS)with cuton frequency equal to �rst

acoustic mode frequency.

then the couples of signals, referred to microphone 1 and 2, �ltered apply-

ing the same algorithm have been cross-correlated. Eliminating the contri-

bution of the highest harmonic component the information embedded in the

pressure �uctuations, otherwise covered by the amplitude of the �rst acoustic

mode, can be highlighted by the cross-correlation. In Fig. 4.24(a) and 4.24(b)

the cross-correlations of the LPFSs and HPFSs are respectively displayed for

di�erent inlet velocity. For LPFSs the time delays, have low negative values,

regardless of the velocity inlet. Therefore the phenomenon, identi�ed with

low-pass �lter propagates with high velocity in opposite direction of the �ow,

so can be ascribed to acoustic waves. For HPFSs the time delays obtained is

positive, a�ected by velocity inlet and propagates at velocity with the same

order of the velocity inlet, so the pressure �uctuations at high frequency is

convected by the mean �ow. The calculated convective-inlet velocity ratio

of the HPFSs are listed in Table 4.2. These values are close to 0.5 and are

not a�ected by Γ and Re for all the examined con�gurations, that indicates

a �uid dynamic convection of the pressure �uctuation for frequency higher

than the �rst mode frequency in according with the considerations referred

to Fig. 4.4. In conclusion, we can consider the �rst mode frequency as a

boundary between two frequency regions: low frequencies where all pressure

�uctuations are ascribed to acoustic and high frequencies where all pressure

�uctuations are due to convection e�ects, moreover that phenomenologies

propagating in opposite directions.
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Figure 4.23: Magnitude (− − −) and phase (��) of the cross-spectrum
referred to microphones 1 and 2 computed for the square cavity at Re =
50271.
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Figure 4.24: Cross-correlation between microphone 1 and 2 computed after
�ltering the raw signal with low-pass �lter (a) and high-pass �lter (b). The
curves are provided for three di�erent Re numbers: 50271 (��), 36865 (·−)
and 30163 (· · ··).
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Γ Re Uc Uc/Uin
3.8 30163 23.6 0.48
3.8 36865 29.1 0.46
3.8 50271 37.7 0.49
2.6 30163 24.8 0.50
2.6 36865 32.9 0.52
2.6 50271 38.0 0.49

Table 4.2: The convention velocities and convection-inlet velocity ratios for
square and rectangular cavities and di�erent Re numbers.

The overall amplitude of the pressure �uctuations have been characterized

through the computation of the root mean square pressure coe�cient Cprms,

de�ned as follows:

Cprms =
σp

1
2
ρU2

in

, (4.8)

where σp represents the standard deviation of the pressure signal and ρ

is the �uid density. The values assumed by Cprms, as a function of Γ, are

reported in Fig. 4.25 for all microphone locations. In the region upstream

of the neck the largest pressure levels are measured (microphones 1, 2 and

3), whereas an important reduction of Cprms occurs in the neck (microphone

4). A quite similar behaviour occurs for each Re investigated. The relevant

reduction of Cprms is ascribed to the partial re�ection of acoustic waves due

to the section discontinuity that leads to a reduction of the acoustic energy

transmitted from the cavity to the neck. Furthermore we observe that the

pressure �uctuation acquired by microphone 4 is more dispersed than for the

other microphones, since when Γ is 2.6 a considerable increase of the Cprms

occurs in the neck and, as displayed in Fig. 4.22(d), a signi�cant increase of

the energy at low frequency is also observed.

In order to clarify this aspect, the probability density functions, PDFs,

of the wall pressure �uctuations have been computed for all microphone

locations and for di�erent Re. The random variable is represented in its

reduced form in order to have zero mean and unitary standard deviation.

The PDF shapes is weakly dependent on the microphone location, except
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Figure 4.25: Cprms referred to all microphones computed for Re= 50271 and
di�erent Γ: Γ = 3.8 (�), Γ = 3.2 (◦) and Γ = 2.6 (△).

for microphone 4, where a departure from the reference Gaussian curve is

visible. More speci�cally the PDF referred to microphone 4 and Γ = 2.6 is

positive skewed (Skeewness = 1.01 for Γ = 2.6 and Skeewness = 0.06 for

Γ = 3.8). The origin of a such behaviour can be ascribed to the e�ect of

the dynamics of the recirculation bubble as highlighted by the POD results.

In the eigenvalue spectra, reported in Fig. 4.27, we can see that the energy

associated to the �rst mode is for both cases an important part of the total

�uctuating kinetic energy. As a consequence we can consider the �rst mode

as strongly dominant over the others and focus our attention only on it. In

Fig. 4.28 the �rst mode for di�erent Γ is reported. In all cases a considerable

bump marked by a red region, is identi�ed. Despite this similarity, the mode

shape exhibits a dependence on Γ evolving from about a parallel vector for

Γ = 3.8 to an asymmetrical vortical structure for Γ = 2.6. In the latter case

the higher intensity of the bump is close to the wall, above the microphone

4 location, and its shape denotes a dynamic of the recirculation bubble. It is

therefore argued that the increase of Cprms and the wall pressure �uctuations

at low frequencies is due to the recirculation bubble dynamic.
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Figure 4.26: PDF of the wall pressure �uctuations reported in reduced vari-
ables. Di�erent kind of markers correspond to di�erent microphones: micro-
phone 1(⃝), microphone 2 (�), microphone 3 (△) and microphone 4 (♢);
PDFs in (a) are computed at Γ = 2.6, PDFs in (b) are computed at Γ = 3.8
and compared with normal distribution (��).

Figure 4.27: Spectrum of the eigenvalues referred to Γ = 2.6(�) and Γ = 3.8
(△).



4.5. Concluding Remarks 84

Figure 4.28: First mode of the proper orthogonal decomposition obtained
varying Γ from 3.8 (a) to 2.6 (c) (left to right).

4.5 Concluding Remarks

The RPE aeroacoustic has been studied by applying several experimental

techniques and through an acoustic numerical simulation. The �uid dynamic

�eld for di�erent geometrical con�gurations has been characterized. A very

intense vortex is formed in the square cavity for Γ ≃ 3.8, suggesting this

as an optimal geometry for designing a trapped vortex combustor with high

performance in term of mixing dynamic.

In the experimental investigation herein described four experiments have

been planned. PIV, microphones, array of pressure taps, loudspeaker have

been employed to characterize the acoustic, aeroacoustic and �uid dynamic

behaviour of the RPE. The experimental hardware e.g laser, synchronizer,

CCD camera, microphones, �ow-meters have been monitored using home-

made software speci�cally implemented in Labview. Moreover speci�c soft-

wares have been implemented in MATLAB to computing spectral, statisti-

cal, while POD analysis has been performed implementing a Labview soft-

ware. As result, from the acoustic viewpoint, it has been shown that the

RPE behaves like a Helmholtz Resonator, even though its geometry is very

di�erent from classical HR. In particular the frequency of the �rst mode

scales with Γ−1/2. Further in order to improve the accuracy of the �rst

mode frequency prediction a novel end-correction has been derived. This

end-correction demonstrates to be suitable for several geometry types: from

square cavity (Γ = 3.8) to short channel with small contraction (Γ = 2).
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Concluding the acoustic analysis has been shown that the classical model

based on longitudinal propagation (tan(kL) tan(kl) = Γ), commonly applied

to predict the �rst acoustic mode of the combustor chamber, is not adapted

to predict the frequency of the �rst mode for this kind of geometry, some-

times adopted for realizing the trapped vortex combustor, while a model

based on HR formulation has been demonstrated to be more accurate. The

�rst acoustic mode also occurs in the aeroacoustic spectra as dominant tonal

component. This tonal noise con�rms that RPEs are a�ected by self-excited

oscillations and that its application to realize combustion chamber can gener-

ate thermoacoustic phenomena. As a consequence, also in reactive condition,

even though the small power associated to combustor reported in Fig. 1. A

considerable tonal noise is radiated in stable condition.

The �ow dynamic characterization has evidenced the formation in the cavity

of a single vortex in solid rotation for all geometry considered. The vortex

tangential velocity is generally more intense in the case of the square cavity

decreasing with Γ. The POD analysis, in particular the novel method devel-

oped called PODlm, has been highlighted that the dynamic of the vortex are

the vortex �apping and wandering.

In the aeroacoustic spectra the high frequency region is a�ected by the

APG that in�uence the jet-wall interaction inducing a non-equilibrium con-

dition of the �ow close to the wall and changing the high frequency spectra

slope, from −1 to −2. Finally, the recirculation bubble formed into the neck

exhibits a dynamic depending by Γ that induces an increasing of the pressure

�uctuations at low frequencies. Finally a reduced form of Strouhal number

has been proposed by authors, obtaining a well collapsing of the wall pressure

�uctuations spectra in an universal distribution. In the present thesis have

proposed an aeroacoustic overview of rectangular partial enclosures, clarify-

ing the nature of the peaks and the slopes occurring in the spectra and a

theoretical model to predict the frequency of the �rst mode.
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Appendix

A.1 Particle Image Velocimetry

A.1.1 25 years of Particle Image Velocimetry

The initial groundwork for a PIV theory was provided by Adrian [1984] who

described the expectation value of the auto-correlation function for a double-

exposure continuous PIV image. This description provided the framework for

the experimental design of this technique [Keane and Adrian, 1990]. Later,

the theory was generalized to include multiple-exposure recordings [Keane

and Adrian, 1991] and cross-correlation analysis [?]. The theory provided a

description for the analysis of highly resolved PIV photographs, which was

the common mode for a considerable time. However, nowdays PIV uses a

charge-coupled device (CCD) cameras for direct recording of the particle

images [?]. Despite the resolution and image format of CCD cameras are

several orders of magnitude lower than that of a photographic medium, CCDs

are more suitable for research purposes. The theory was further extended

to include digital PIV images using the estimation of the displacement at

sub-pixel level.

87
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Figure A.1: Sketch of the scattering behaviour upon particles size.

A.1.2 Introduction

Particle image velocimetry (PIV) is a technique which enables instantaneous

measurement of the �ow velocity at several positions in a plane. The working

principle is quite simple: the �ow is seeded with light re�ecting particles;

usually smoke is used in air. The particles, used to seed the �ow, should

be small enough to follow the �ow, but large enough to re�ect the required

amount of light and have an high directivity in the scattering signal.

In general PIV needs a high seeding density. A light sheet illuminates

the particles in the measurement plane. Commonly a pulsed Nd:YAG laser

(Neodymium Yttrium Aluminum Garnet) is used as the light source because

of its high light intensity. The laser pulses have a duration time of 5− 10ns

and the energy in one pulse can be up to 400mJ . The light beam coming out

from the laser has an axisymmetric shape and passes through a cylindrical

lens in order to form a planar light sheet. A camera is used to take two

exposures of the illuminated plane. The two exposures should be taken within

a short interval, so that the same particles are caught in both exposures. The

two exposures can be taken either as a double exposure of one image or as

two di�erent images using a camera. The sensitivity of camera sensor such as

a CCD-camera is measured in QE (quantum e�ciency) which is the average

number of electrons that are released from the sensor when it is hit by a

photon. The QE is often wavelength dependent with a maximum e�ciency

in the blue-green part of the visible spectrum. The most sensitive cameras

on the market today have Peltzier cooled (to reduce thermal noise) CCD-
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Figure A.2: Sketch of the PIV experimental set-up.

Figure A.3: Mie scattering image of a rolled-up reactive jet.

sensors. A sketch of the PIV experimental set-up is illustrated in Fig. A.1.2

An example of the result obtained by means of this technique is reported

in Fig. A.1.2.

The method based on two images and cross-correlation is more commonly

used and it will be treated in the remaining part of this chapter. A good

reference book which deals with most of the PIV aspects is Particle Image

Velocimetry, practical guide [Ra�el et al., 1998].

A.1.3 Cross-correlation of images

The aim of the cross-correlation is to avaluate the distance that the particle

pattern has covered during the inter-image time, ∆t, and to convert this
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into a velocity measure, u. The relation between velocities and particle

displacements, d, is:

u =
d

∆t
, (A.1)

The cross-correlation function is calculated between smaller regions of im-

ages called interrogation areas (IAs). One can see a cross-correlation as a way

to �nd the best match between two IAs obtained displacing the �rst IA on

the second one. Clearly the required displacement results to be proportional

to the average velocity of the particles within the IAs. Cross-correlation

functions, denoted herein as RAB(x, y), where A(x, y) and B(x, y) denote a

couple of images, can be calculated in a number of di�erent ways. The direct

method becomes very heavy to apply when huge data-sets have to be anal-

ysed. A more e�cient way to estimate cross-correlation functions is by use

of the fast Fourier transforms (FFTs). This method sensitively reduces the

computation time switching from O[N4] to O[N2log2N ] operations. When

Fourier transforms are used, one can take advantage of the correlation theo-

rem which states that the cross-correlation of two functions is equivalent to

the product of their Fourier transforms, as follows:

RAB ⇐⇒ Â · B̂∗ (A.2)

where Â and B̂ are the Fourier transforms of A and B, respectively and

B̂∗ represents the complex conjugate of B̂. Implicitly the use of FFTs cor-

responds to treat data as periodic. The periodicity can give rise to aliasing

if the particles have moved a distance larger than half the size of the IA. A

possible solution for aliasing problems is increasing the IA size or reducing

the inter-image time ∆t. Maybe a more serious problem concerning the FFTs

is the presence of bias errors due to the �nite size of the IAs. Such a bias

leads to an underestimation of the peak magnitude for all displacements. A

good strategy to avoid this problem can be to compute the convolution be-

tween the cross-correlation function and a weight function. A proper weight

function can be equal to one for all points embedded into the image and

zero elsewhere (zero-padding). Then the bias is removed by dividing the
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correlation function by the weight function so de�ned.

A.1.4 Peak detection and subpixel interpolation

When the cross-correlation has been performed, a measure of the displace-

ment is found by detecting the position of the highest correlation peak. Peak

localization is possible with an uncertainty of ±1/2 pixel. However, the accu-

racy can be substantially increased by cross-correlation �tting and interpola-

tion. The most common way to perform the interpolation using a three-point

estimator. When the maximum correlation peak has been detected at (i, j),

the neighbouring values are �tted. In the case of a Gaussian peak �t, when

the peak is assumed to have the shape f(x) = Cexp[−(x0 − x)2/k], the

displacements (x0, y0) can be described by:

x0 = i+
lnRi−1,j−lnRi+1,j

2 lnRi−1,j−4 lnRi,j+2 lnRi+1,j

y0 = i+
lnRi1,j−1−lnRi,j+1

2 lnRi,j−1−4 lnRi,j+2 lnRi,j+1

(A.3)

Further interpolations can be performed at a subpixel level. In this case,

parabolic �t of the peak and peak detection based on centroid algorithm are

frequently used.

A.2 Acoustic simulation

A.2.1 Introduction to �nite element methods

Finite element method (FEM) have been an active research area for nearly

40 years. In this work FEM for acoustics simulation has been applied on the

reduced form of acoustic wave equation:

∂2p

∂t
− c2∇2p = 0 (A.4)

where p is the pressure �uctuation and c the speed of sound. Eq. A.4,

de�ned in the frequency domain, is well-known as Helmholtz equation and it

is written as follows:.
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∇2p̃+ k2p̃ = 0 (A.5)

In Eq. A.5 k is denotes the wave number and p̃ the complex form of the

pressure �uctuation.

In FEM method the acoustic domain is discretized in 3D element. The

minimum size of the element, h, is mainly evaluated using maximum fre-

quency criterion: {
h = c

Nfmax
for low frequencies

h = c
Nfmax

√
k
for high frequencies

(A.6)

Tipically theN coe�cient assumes values from 6 to 10. The discretization

of the domain reduces the Helomholtz partial di�erential equation A.5 in a

linear algebraic problem:

ÃX = B, (A.7)

where Ã is the matrix of the coe�cients, X the variable vector and B the

constant vector. The inverse matrix of acoustic system, Ã−1, can be found

by its factorization in lower and upper triangular matrices:

L̃Ũx = b ⇒ x = L̃−1Ũ−1b, (A.8)

where the lower and upper triangular matrices are denoted by L̃ and Ũ

respectively, whereas x and b are the new varible and constant vectors of the

system.

Typically, direct computation of a solution of the system requires a lot of

memory. The multi frontal massively parallel sparse direct solver (MUMPS)

splits the factorization operations in non-sparse frontal matrices in order to

solve the system using a iterative algorithm. Newest iterative solver usually

work in a Krylov subspace. It creates a Krylov subspace vectors and allows

to �nd the coe�cients able to obtain the minimum error when entering xk

as trial solution:
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{
xk =

∑k
n=1 αnA

n−1

min∥Ãxk − b∥
(A.9)

This approach requires less memory compared to direct methods. Since

in the present work the test case is small and the wavelength of the mode

under investigation is relatively big, the direct method is selected to realize

the acoustic numerical model of RPE.

A.2.2 Boundary conditions

Initial applications of FEMs for time-harmonic acoustics have focused on

interior problems with complex geometries for calculating the acoustic fre-

quency response of enclosures or waveguides. In recent years, signi�cant

progress in the development of improved FEMs for acoustics, including ex-

terior problems in unbounded domains, have been achieved. The problem

here under investigation is a hybrid problem, as the studied geometry is a

partial enclosure simulated in stand-alone con�guration. So the domain un-

der investigation can be divided into two regions: the �rst one is bounded by

the interior of partial enclosure and its outlet section, while the second is an

exterior domain where the forcing source is located, as rendered in Fig. A.4.

For this reason a particular attention has been given the boundary con-

dition that models an unbounded domain (exterior domain). This exterior

acoustics problem in unbounded domains presents a special challenge for

FEMs. In order to use the FEM for exterior problems, the unbounded

domain is usually truncated by an arti�cial boundary yielding a bounded

computational domain. Reducing the size of the bounded domain the com-

putation cost decreases, but it must be balanced by the ability to minimize

any spurious wave re�ection with a computationally e�cient and geometri-

cally �exible truncation boundary treatment. Recent numerical treatments

including no-re�ecting or absorbing layers conditions have been proposed.

The criterion of choice depends on the shape and complexity of the geom-

etry under investigation, inhomogeneities, frequency range, and resolution

requirements, among other parameters.
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Figure A.4: Sketch of the domain where the acoustic response has been
modeled.
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Figure A.5: Sketch of the wave propagation into a free-�eld outside a open-
duct.

In FEM model a special treatment has been applied at outer FEM bound-

ary, in order to satisfy no-re�ecting condition (or Sommer�eld radiation con-

dition). For modeling the radiation condition with FEM, a large external

domain is needed, although the matrix associated to this model is sparse and

too large to obtain a suitable solving time. Therefore perfectly or automati-

cally matched layer (PML/AML) is used to solve this problem. PML/AML

is the non re�ecting boundary condition applied in FEM that allows to han-

dle the exterior radiation problems very e�ciently. Signi�cantly small FEM

radiation models have been provided as the PML/AML domain has been

built close to the actual physical FEM domain. Thereby the amount of nec-

essary elements can be substantially reduced. A conceptual sketch of PML

is rendered in Fig. A.5.

PML domain absorbs all energy and hence simulates radiating boundary

conditions. PML shows a lower frequency limit below that the traveling wave

are not absorbed. This condition is very useful for modeling the open-end

duct behavior, as done in the present investigation.

A.3 Introduction to Labview

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Work-

bench) is a system design platform and development environment for a visual

programming language by National Instruments. The graphical language is
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named "G" (not to be confused with G-code). Originally released for the

Apple Macintosh in 1986, LabVIEW is commonly used for data acquisition,

instrument control and industrial automation on a variety of platforms. The

programming language used in LabVIEW, also referred to as G, is a data�ow

programming language. Execution is determined by the structure of a graphi-

cal block diagram on which the programmer connects di�erent function-nodes

by drawing wires. These wires propagate variables and any node can execute

as soon as all its input data become available. Since this might be the case

for multiple nodes simultaneously, G is inherently capable of parallel exe-

cution. LabVIEW allows the creation of user interfaces (called front panels

FP) into the development cycle. LabVIEW programs/subroutines are called

virtual instruments (VIs). Each VI has three components: a block diagram,

a front panel and a connector panel. The last is used to represent the VI in

the block diagrams. Controls and indicators on the front panel allow an op-

erator to input data into or extract data from a running virtual instrument.

However, the front panel can also serve as a programmatic interface. Thus a

virtual instrument can either be run as a program, with the front panel serv-

ing as a user interface, or, when dropped as a node onto the block diagram,

the front panel de�nes the inputs and outputs for the given node through

the connector panel. This implies each VI can be easily tested before being

embedded as a subroutine into a larger program. The graphical approach

also allows non-programmers to build programs by dragging and dropping

virtual representations of lab equipment with which they are already famil-

iar. The LabVIEW programming environment, with the included examples

and documentation, makes it simple to create small applications. This is a

bene�t on one side, but there is also a certain danger of underestimating the

expertise needed for high-quality G programming. The image above is an

illustration of a simple LabVIEW program showing the data�ow source code

in the form of the block diagram in the lower left frame and the input and

output variables as graphical objects in the upper right frame. The two are

the essential components of a LabVIEW program referred to as a VI.
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A.4 Implemented softwares

Labview has been used to compute essentially three applications: the �rst

one was devoted to manage the laboratory hardware, the second one to data

post processing applying a POD algorithm, whereas the third simulated the

perturbed dynamic of a Rankine vortex .

A.4.1 SYNCHRO

The hardware employed to investigate the aeroacoustic behaviour of RPE

consisted in a laser, a CCD camera, a synchronizer, a loudspeaker, an ACQ

board, a �owmeter and �ve microphones. All item were managed by means

of the same software named SYNCHRO. SYNCHRO has been designed with

three panels: �ow-meters, laser and microphones.

Using the �rst panel is possible to send an instruction from a PC USB

port to one of the available �ow-meters (see Fig. A.6(a)). This signal is

converted in a signal suitable for RS-485 protocol by a black box device. In

this way very large RS-485 networks can be formed. Digital communications

networks, implemented in RS-485 standard, can be actually used over long

distances and in electrically noisy environments. Multiple receivers can be

connected to such a network in a linear or multi-drop con�guration, making

it useful in industrial environments and similar applications. For the present

experimental setup the linear network has been adopted and a scheme of

wiring is reported in Fig. A.7.

In Fig. A.6(b) the panel which controls the time delay between sub-

sequent openings of the laser Q-switch is rendered. At the same time the

opening of the CCD diaphragm is controlled sending a trigger signal to the

camera. Finally the GUI of the software that acquires simultaneously the

signal associated to the �ve microphones installed is shown in Fig. A.6(c).

A.4.2 easyPOD

easyPOD is a home-made software devoted to the computation of the proper

orthogonal decomposition of two dimensional �elds. The GUI of the software
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(a)

(b)

(c)

Figure A.6: GUI of the Flowmeter (a), Laser (b) and Microphones (c).
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Figure A.7: Scheme of wiring of two di�erent �ow meter in a linear network.
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Figure A.8: Icon of easyPOD.

Figure A.9: GUI of easyPOD.

(see Fig. A.9) displays four graphes: the mean �eld (contour plot on the top-

left side), the i-th mode (contour plot on the top-right side), the eigenvalues

spectrum (on the bottom-left side) and the i-th mode on a quiver graph (on

the bottom-right side).

The algorithm implemented in the main routine of easyPOD is resumed

as follows:

1. reshaping of all velocity �eld in a vector un, where n ∈ [1, N ] and N is

the number of snapshots;

2. recasting the velocity �eld vectors in a matrix Ũ :



A.4. Implemented softwares 101

Ũ = (u1 · · · uN)

3. computing the cross-variance matrix C̃ = Ũ · ŨT ;

4. solving the eigenvalue problem associated to C̃, det(C̃ − λj Ĩ) = 0

5. calculating the eigenvectors, Aj, associated to C̃;

6. �nally computing the modes: Φj =
∑N

n=1 A
n
jun

∥
∑N

n=1 A
n
ju

n∥
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