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fluctuating term in λ2/ω0 units, (D̄ = D/(λ2/ω0)). Vbias values are expressed
in ~Γ/e units, where e is the electron charge. The dimensionless position
variable x̄ is defined as x̄ = x/x0 with x0 = λ

mω2
0
. . . . . . . . . . . . . . . . . 34

2.2 Panel A: Solution of the Langevin equation Eq. 2.25 in the extremely strong
coupling regime Ep >> ~Γ >> ~ω0 (ω0/Γ = 10−3) for ~Γ/2Ep = 0.08,
Eg = Ep and eVBias = 0.1. Panel B: Current (eΓ units) voltage (eVbias in
2Ep units) characteristic for the same value of ~Γ/2Ep as above. Solid (red)
curve is drown from Ref[28], square line indicates my dynamic simulation and
dashed line indicates static I-V. Panel C: Dimensionless position distribution
probability for the same values of parameters as in Panel A. The dimensionless
position x̄, time t̄ and distribution function P̄ are defined as x̄ = x/x0, t̄ =
t/t0, P̄ = P/(1/x0), with x0 = λ

mω2
0

and t0 = 1/ω0, respectively. . . . . . . . . 40

4



2.3 Panel A: log-plot of dimensionless velocity probability distribution function
vs. v2, at different adiabatic ratios (the values of ω0 shown in the figure are
in Γ units), fixed bias voltage Vbias = 0.1 and different gate voltages and
EOC strengths (not shown in the graph). The dotted (red) lines indicate that
curves have a good linear fit. Panels B−C−D: log-plot of velocity probability
distribution function vs.v2 for Vbias = 0.1, Vbias = 1.1, Vbias = 2.1, respectively.
The dashed (red) line indicates linear fitting. Dotted (green) and dash dotted
(blue) lines indicate polynomial fitting of 2nd and 4th degree. Vbias values are
expressed in ~Γ/e units. The dimensionless distribution function is defined as
P̄ = P/(mω0/λ), while v2 is expressed in (λ/mω0)2 units. . . . . . . . . . . . 41

2.4 Main: plot of average kinetic energy 〈EKin〉 as function of the bias voltage
at fixed adiabatic ratio ω0/Γ = 0.1 and gate voltage Eg = 0, for different
interaction strengths Ep: Ep = 0.1 square (black) curve, Ep = 1.0 circle
(red) curve, Ep = 2.0 triangle (green) curve, Ep = 3.0 star (blue) curve. Two
constant energy lines E = ~ω0/2~Γ = 0.05 (dashed) and E = ~Γ = 1 (dotted)
are also plotted. Inset: Average kinetic energy 〈EKin〉 for low bias voltages
for the same parameter values of the main plot. The dotted (magenta) line
indicates the linear approximation eVbias/8 derived in Ref.[27] (I choose a
broadening ~Γ half than used in Ref.[27]). All the quantities (〈EKin〉, Ep, Eg
and eVbias) are in unit ~Γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Phase diagram at fixed adiabatic ratio ω0/Γ = 0.05 (the value of ω0 shown in
the figure is in Γ units). The dashed (black) line indicates the QR boundary
for Eg = 0 and Eg = 1. The dotted (red) and dashed dotted (green) lines
refer to the CAR boundary for Eg = 0 and Eg = 1, respectively. Ep, Eg and
eVbias are expressed in unit ~Γ. . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Phase diagram at fixed gate voltage Eg = 0 (asymmetric static potential) for
different adiabatic ratios ω0/Γ = 0.01 − 0.05 − 0.1 − 0.25 (the values of ω0

shown in the figure are in Γ units). Ep, Eg and eVbias are in ~Γ units. . . . 43

2.7 Panel A: Conductance (in units G0 = e2

h
) in the static approximation as

function of bias voltages, for ω0/Γ = 0.05, Eg = 0 at different interaction
strengths Ep = 0.05, 0.5, 1.0, 2.0, 3.0. Panel B: Dynamical correction to the
conductance for the same parameter values of panel A. The value of ω0 shown
in the figure is in Γ units while all other quantities (Eg, Ep and eVbias) are
expressed in ~Γ units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Panel A: Electronic occupation as function of bias voltages, for Eg = 0, Ep =
2 at different adiabatic ratios ω0/Γ = 0.05, 0.25, 0.5, 1.0. Panel B: Current
voltage characteristic for the same value of the parameters of panel A. The
values of ω0 shown in the figure are in Γ units while all other quantities (Eg,
Ep and eVbias) are expressed in ~Γ units. . . . . . . . . . . . . . . . . . . . . 45

2.9 Panel A: Current as function of gate voltages, for ω0/Γ = 0.05, Ep = 0.25 at
different bias voltages Vbias = 0.1, 1.0, 2.0. Panel B: Plot of average kinetic
energy as function of the gate for Vbias = 0.1, 1.0, 2.0. The value of ω0 shown
in the figure is in Γ units, while Eg and Ep are expressed in ~Γ units. Vbias is
expressed in ~Γ/e units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 Sketch of junction within the SSH model in an energy scale. . . . . . . . . . 47

5



2.11 Panel A:Spatial dependence of the dimensionless generalized static potential
V̄SSH(x̄) at ω0/Γ = 0.1, Ep = 0.2, gate voltage Eg = 0, intermolecular hopping
t = 2.0, for different values of the bias voltage: Vbias = 0.0 (solid (black)
curve), Vbias = 3.5 (dashed (red) curve), Vbias = 4.0 (dotted (green) curve),
Vbias = 6.0 (dashed dotted (blue) curve). The vertical lines indicate the
position of the minima of the potential. Panel B: Same as above for ω0/Γ =
0.1, Ep = 1.4, t = 0.2, gate voltage Eg = 2 and different values of the
bias voltage: Vbias = 0 (solid (black) curve), Vbias = 4 (dashed (red) curve),
Vbias = 8 (dotted (green) curve). The potential is expressed in ~Γ units
(V̄SSH = VSSH/~Γ). Vbias values are expressed in ~Γ/e units, where e is the
electron charge. Eg, Ep and t are expressed in ~Γ units. The dimensionless
position variable x̄ is defined as x̄ = x/x0 with x0 = λ

mω2
0
. . . . . . . . . . . . 50

2.12 Panels A-B: Spatial dependence of the dimensionless friction coefficient Ā(x̄)
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Abstract
The emerging field of molecular electronics, in which individual molecules play the role of

active devices, is receiving great amount of attention due to its possible technological impact.
Recent advances in nanoscale fabrication and engineering techniques have made possible to
study the transport properties of devices on the molecular scale. At this level, one inherently
probes the quantum mechanical nature of matter which manifests a number of effects not
well understood yet. One such effect is the mutual interaction between electrical current and
molecular vibrations. The coupling between mechanical and electronic degrees of freedom in
nanoscale devices is also at the heart of NanoElectroMechanical Systems (NEMS) physics.
Potential applications of these systems include ultrasensitive motion detection, mass sensing,
bio-molecular studies and quantum enabled technologies.

In the first part of thesis, I focused my investigation on electronic transport properties of
very short molecules connected between metallic leads taking into account electron-vibration
interaction inside the device with a single vibrational mode. Within two models widely used
in the literature, I implemented a computational scheme for the dynamics of the oscillator
mode coupled with an out-of-equilibrium molecular junction providing also a novel and
more physically sounding derivation. I concentrated my attention on the physical regime
where the vibrational motion of the oscillator is ’slow’ with respect to all electronic energy
scales and can be considered ”classical”. I exploited the Keldysh formalism within Non
Equilibrium Green’s Function theory (NEGF) for the electronic subsystem together with
stochastic dynamics for the vibrational degrees of freedom. As main result, the inclusion
of dynamical effects of the oscillator motion strongly modifies the physical scenario which
would be obtained by a static description, even if the oscillator dynamics is much slower
than the electron tunneling rate.

Motivated by recent experiments on single-electron-transistor made of a single suspended
carbon nanotubes, I have further investigated the renormalization effects of the bending
mode oscillation frequency of the nanotube as function of the external charge injection
(due to the applied bias and gate voltages). I also included in the model the effects of an
external antenna driving the oscillations of the nanotube. Interestingly, simulations of the
stochastic Langevin equation for the vibrational degree of freedom developed in the first part
of the thesis, including the effect of the external antenna, reproduce semi-quantitatively the
experimental results. I have also shown that, even in the presence of a magnetic field applied
perpendicular to the nanotube device, the nanotube dynamics can be fruitful described by
a Langevin equation. In this case, the main result is that the magnetic field provides an
additional damping mechanism to the resonator mechanical motion.

In the last part of the thesis, I studied electron transport through molecular systems
at high injected carrier densities, where the presence of the electron-electron interactions is
not negligible. I have also considered the effect of the interaction with an high frequency
molecular mode (center of mass motion of the molecule) inside the device, which cannot be
treated semiclassically anymore. In order to investigate systems with strong electron-phonon
and electron-electron interactions, I have used an approximation-free numerical technique,
suitable for non-equilibrium quantum many-body systems: the Density Matrix Renormal-
ization Group (DMRG). I numerically investigated with DMRG the electronic transport
properties of a nanomechanical shuttling device in the Kondo regime. Nanomechanical shut-
tling systems (NMSS) and NEMS in general offer a unique platform for design of an electron
transistor in which spin and charge transfer can be controlled mechanically. My study is
motivated by recent contrasting experimental results found in the conductance measured
through C60 junctions in the low temperature and low bias regime, where very small or rel-
atively large conductance values are detected. I focused on the effects of tunneling barrier

10



modulation on the electronic conductance and on the static and dynamical properties of the
center of mass phononic mode, clarifying the nature of a dip found in the conductance at
particle-hole symmetric point.
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Chapter 1

Introduction

The rapid progress of nanotechnology has been of the utmost importance in modern Physics.
Nanotechnology has an important role in the development of new electronic devices able
to perform difficult tasks in increasingly short time, making it possible to realize faster
and more sensitive detectors at larger scales. Additionally, the high quality of the nano-
fabricated samples together with modern cooling techniques allows us to realize setups in
which quantum mechanics can be used as a resource for performing specific tasks, therefore
opening the field of quantum technology. In this latter spirit, nanodevices can also be
regarded as a test-bed for quantum physics.

In probing the physics of nanodevices, an important role is played by transport measure-
ments. Electric currents can now be generated and detected with very high accuracy and
sensitivity. Moreover, fluctuations due to finite temperature can be reduced enough so that
current and voltage fluctuations across a nanodevice can be used as a probe of the phys-
ical mechanisms controlling the device. Beside dc signals, alternate currents and voltages
can be used to drive a device so that with transport one can also perform spectroscopic
measurements.

In view of such new possibilities, in the present thesis I have studied two different types
of nanodevices that have been attracting a great amount of attention in the research com-
munity in the last few years because of their importance in both quantum technologies and
fundamental physics: molecular[1] and NanoElectroMechanical systems[2] (referred to as
NEMS). The probe employed in this study are currents, namely I study properties that
can be inferred by measuring current-voltage characteristic curves or their derivatives in
particular circumstances, giving a physical interpretation of the results.

1.1 Towards molecular electronics

The first class of nanodevices focused on is that of molecular systems. The possibility of
producing such devices is due to progress witnessed in nanolithographic technologies that
dates back to the 1980’s. Conventional lithography based semiconductor electronics has over
the last decades rapidly evolved towards increasingly smaller and faster devices. This de-
velopment is characterized in Moore’s Law [3] which states that semiconductor performance
doubles roughly every two years while the cost to manufacture semiconductors increases at
an even greater rate. Today’s microelectronic devices have a minimum feature size of about
100nm but this is in fact not very far away from fundamental limits of optical lithography,
i.e. such as related to the wavelength of the light. Although the semiconductor industry
sees a way for at least the next decade for making ever-smaller solid-state silicon devices
by introducing new short wavelength lithography techniques, the cost of the manufacturing

12



systems needed to make the chips is enormous and will grow worse with each new generation
[4].

Just as the transistor replaced the vacuum tube during the 1950s, and as integrated
circuits superseded individual transistors during the 1960s, one promising candidate to take
the place of the semiconductor technology is the so-called molecular electronics in which
individual molecules play the role of the active devices. The obvious advantage is the pos-
sibility of ultra-dense electronics since individual molecules are hundreds of times smaller
than the smallest features conceivably attainable by semiconductor technology. Where op-
tical lithography based circuits are fundamentally limited to designs on the submicron level,
single molecules may take us even as far as to the nanometer scale. Such chips could be
extremely more powerful than today’s state-of-the-art. Moreover, individual molecules are
easily made exactly the same in incomprehensibly huge numbers >> 1023 in the chemist’s
laboratory. The dramatic reduction in size and the enormity of numbers in manufacture are
the fundamental potentials of molecular electronics.

Molecular electronics was effectively founded by Aviram and Ratner [5] in 1974 when
they suggested a molecular structure that could act as a diode, and further described the
theory that explained why this was reasonable. But at that time with the given experimental
techniques available it was not possible to realize. It was not until the 1990s where the first
measurements on single molecules were performed, that the field of molecular electronics
received a great amount of attention. In 1997 Reed et al. [6] succeeded to measure the
conductance of a molecular junction of gold-sulphur-aryl-sulphur-gold at room temperature
using a mechanically controllable break junction (MCBJ), and they argued that the number
of active molecules in the junction might have been as few as one. This demonstration
towards single molecule measurements was for sure an important achievement, but without
knowledge of the actual microscopic configuration the level of interpretation was rather
limited.

Today a number of novel nanoscale devices and circuits based on the intricate effects
of quantum mechanics have been proposed, including resonant tunneling diodes and tran-
sistors, quantum dots and single electron devices, devices displaying negative differential
resistance (NDR)[7], atomic switches [8], logic and memory circuits. Some of these have also
been experimentally demonstrated, e.g.[9]. But still many issues have to be resolved if real
applications are to be built, for instance the organization and interconnection of individual
molecules, room temperature functionality, and stability of the metal-molecule contacts.

The challenges associated with building electronics using molecules will not be overcome
without a detailed understanding of the individual components. At the present moment
this bottom-up approach is therefore focus for a broad range of scientists around the world.
Besides the perspectives of the field it is also stimulating in itself because the discoveries on
the molecular level raise many fundamental physical questions as well.

The interest and reported results within the field are too vast and comprehensive to
give a complete account of here. For instance, the electrical properties of carbon nanotubes
[10] (which could be considered as extremely long molecules) have been extensively studied
during the last decade. In section 1.2 of this chapter and in chapter 3, I will show that
they could act as very sensitive self-detecting single-electron transistors [11, 12]. Below I
will limit myself to mention a number of transport experiments related to inelastic effects on
the molecular level which is the topic of this thesis, i.e. to the situation where the interplay
between electrical current and the vibrational excitations of the molecular conductors has
been found to be essential part of the understanding of the observations.

The construction and operation of molecular devices will certainly rely upon control of
inelastic effects. As the current flows through such devices energy of the charge carriers may
be transferred into the molecules that form the microscopic structures, or vice versa. This
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Figure 1.1: Simple picture of elastic and inelastic tunneling processes.

effect is of course always present when a current flows but it is of particular relevance for
such minute systems as molecular devices. The consequences of inelastic effects are many:
Most important of all is probably that they affect the stability of devices since the energy
transfer results in mechanical motion of the atoms which ultimately leads to malfunction or
breakdown. On the other hand one can also think of exploiting the influence in a controlled
manner to provide certain device properties. One of the main objectives of the present
thesis is the study of inelastic effects in electron transport through nanosystems, e.g. single
molecules and Nanoelectromechanical systems. A simple picture of elastic and inelastic
transport is shown in Fig. 1.1 where scattering of electrons is considered to take place inside
a tunneling barrier across which a voltage Vbias is applied.

As indicated, the elastic electron tunneling involves transfer of an electron from filled
states on one side of the barrier to adjacent empty states on the other. The incoming
electron is accelerated in the electric field and potential energy is thus turned into kinetic
energy of the particle. The energy between initial and final states balances, even though the
electron may have scattered elastically against static defects and impurities or against other
electrons in between. This is in contrast to inelastic tunneling where electrons lose (gain)
energy by emission (absorption) of vibrational quanta, i.e. phonons, during the transfer by
scattering against lattice vibrations. The inelastic tunneling process is shown on the figure
1.1, where the finite energy drop between initial and final state of the electron indicate that
energy has been transferred to the molecular modes of the lattice[13]. The picture given
is valid as long as it is reasonable to think in terms of noninteracting (quasi) particles and
in the full quantum regime. For sufficiently strong electron-phonon interaction the problem
is a true many-particle one in which one cannot conceptually separate elastic and inelastic
processes.

In this thesis I will be concerned with interaction of electrons with very low frequency
vibrational modes (which can be considered as a ”continuum” of phonon excitations) so
that multiple scattering processes can take place. I will see that interaction between an
incoming electron and a very low frequency vibrational mode can be fruitfully described
in a semiclassical way. In this case, the molecular mode can be described as a classical
harmonic oscillator whose deformation is coupled to the average electron density on the
molecule. In chapter 2, I will show that the inelastic tunneling of the electrons can be
viewed as a dissipative contribution to the oscillator harmonic motion. Eventually, the
non-equilibrium quantum flow of discrete electrons through the junction can be seen as a
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Figure 1.2: Conductance measurement with STM. The current and its higher derivatives
are recorded while sweeping the bias voltage for (1) tip over molecule and (2) tip over
bare substrate. The relevant signal is the background subtracted difference (1-2). Data
are shown for an acetylene molecule C2H2 (adapted from [15] ). The minute conductance
increase around 358mV indicates the opening of an inelastic channel.

stochastic perturbation to the oscillator dynamics, which acquires a diffusive character. If
the vibrational motion of the mechanical mode is ’slow’ with respect to all electronic energy
scales, the molecular junction can be described (from the point of view of the mode) as a
mass attached to a classical spring in embedded viscous fluid. Indeed, if the bias voltage
applied to the junction is not too large, the electronic non-equilibrium quantum environment
behaves as conventional thermal bath at an effective temperature (proportional to the bias
voltage).

1.1.1 Conductance of single molecules

The main experimental difficulty of measuring the transport properties of single molecules
is to establish the situation where one for sure has only one molecule bridging the contacts
in a two-terminal configuration. Since the late 1990s a number of different techniques have
been demonstrated.

Scanning tunneling microscope

One way to probe the conducting properties is to use a scanning tunneling microscope (STM)
which can create images of surfaces with atomic resolution utilizing tunneling currents.
By positioning the STM tip over an adsorbed molecule on a conducting surface one can
directly measure various properties of the molecule by sweeping the bias voltage, e.g. the
local density of states. The standard setup is illustrated in Fig. 1.2. Measuring detailed
conductance spectra with the STM requires extreme mechanical stability because even the
slightest variations of the tunneling gap change the current exponentially. For example, a
stability of 0.01Å is required to keep the conductance stable to within 2% [15]. In Ref.
[15], the authors successfully demonstrated for the first time the use of STM for inelastic
spectroscopy (IETS-STM inelastic electron tunneling spectroscopy with STM). With their
STM they studied an isolated acetylene C2H2 molecule adsorbed on a copper (100) surface.
They found the signature of a single vibrational excitation by the tunneling electrons, and
measured a conductance increase of the order of several percent at the threshold voltage
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Figure 1.3: I(V) characteristics taken on two different parts of an octanethiolate molecule
adsorbed on a Pt chain, as indicated by the blue dot and the red triangle in the STM image
of panel A (Figure taken from Ref.[16]). Panel B shows a detailed view of the voltage window
from 0 to 0.4V where current against voltage curve is linear.

corresponding to the C −H stretch mode. Their measurements are shown in Fig. 1.2.
As example of STM application, one can cite a beautiful experiment conducted recently

by Kockmann et al. [16], where Octanethiol molecules adsorbed on Pt chains are studied at
77K. As shown in Fig.1.3, current-voltage shapes depend on tip position onto the molecule
(in Panel A of Fig. 1.3, red curve refers to head position while blue refers to tail) while for
small bias voltage applied (Panel B) a linear current-voltage characteristic is observed.

Even though conductance experiments on single molecules through tunneling gaps yield
valuable information as in the IETS-STM, it is also desirable to study the situation in which
a molecule is directly connected to two terminals.

Break junctions

Single molecules may also be contacted with the use of mechanically controllable break
junctions (MCBJ) or break junctions formed by electromigration (BJE). In the first method
an adjustable tunneling gap is formed by breaking a conducting layer on a flexible substrate
in two [17]. In the latter method the gap is formed by applying a large voltage over the
terminals, thereby initiating a burn off, until only a tunneling current is monitored [18]. In
2000 Park et al. [19] measured the transport via a single C60-molecule by a BJE technique
at cryogenic temperatures. A current-voltage (I-V) curve from their paper is shown in Fig.
1.4. The general pattern observed here is understood within a Coulomb blockade model for
quantum dot transport, where the conductance gap is a consequence of the finite energy
associated with either adding or removing one electron on C60. The fine structures reveal
information about a quantized excitation with an energy of approximately 5meV, which
in turn provide evidence for a coupling between the center-of-mass motion of the fullerene
and the transfer of single electrons. The strong correlation between electron transfer and
oscillator motion in Park et al.’s experiment has also been considered a possible realization of
shuttling transport in which an integer number of electrons are transferred per center-of-mass
oscillation. This issue will be dealt with thoroughly in the last chapter of this thesis.

However, it seems to be an unresolved issue whether or not a true shuttling regime exists
for the C60 in this setup, see e.g. [21]. In 2002 Smit et al. [22] measured the conductance
of a hydrogen molecule using a MCBJ with Pt contacts at cryogenic temperatures. Only
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Figure 1.4: I-V characteristic of the C60 molecule (adapted from [19]). The device is clearly
acting as a transistor where the gate voltage controls the current between source and drain.
The series of steps in the current are known as Frank Condon steps caused by vibrational
excitations.

with a small quantity of hydrogen gas in the vacuum chamber they found a frequently
occurring stable configuration with a conductance very close to the quantum unit. The
differential conductance observed for this configuration is shown in Fig. 1.5 and exhibits
a single dominant resonance around 63.5mV that was interpreted as an excitation of the
center-of-mass motion of the H2-molecule.

1.1.2 NDR and Hysteresis in molecular junctions

Here I address the possible consequences of a strong electron-phonon coupling, where charg-
ing of the molecular bridge (stabilized by this interaction) can lead to non linear transport
behavior. Indeed, ”stabilization of molecular charging” may often appear as modification of
molecular geometry and can therefore give rise to substantial and sometimes striking effects
of negative differential resistance, multistability and hysteresis phenomena. Such structural
changes are characteristic of molecular entities, and will therefore be of major importance
in the ongoing investigation of molecular, as opposed to solid state or mesoscopic, transport
structures.

Examples of such behaviors are shown in Figures 1.6-1.7. Figure 1.6 shows negative
differential resistance[23], while in Fig. 1.7 one can observe hysteresis in different molecu-
lar junctions [7]. The molecules involved in these junctions are characterized by the pres-
ence of redox centers, i.e. centers that support long-living excess electron states. Such
”redox molecules” have been implicated in several other observations of multiple conduc-
tion states and non-linear response in molecular junctions operating in a polar (aqueous)
environment.[24, 25] This suggests the possibility of polaron formation on the molecule as a
possible factor. Indeed, as I will see in chapter 2, the Anderson-Holstein model has a pos-
itive feedback character: the energy of the resonant level shifts by polaron formation that
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Figure 1.5: Conductance measurement of the hydrogen molecule between platinum contacts
adapted from [22]. The symmetric decrease seen around 63.5mV was interpreted as related
to excitation of the center-of-mass motion of the H2-molecule shown in the inset.

Figure 1.6: NDR of a junction based on monolayer of 2’-amino-4-ethynylphenyl-4’-
ethynylphenyl-5’-nitro-1-benzenethiolate embedded between gold wires at 60K. Shown on
the left is the reported I-V characteristic with NDR peak to valley ratio 1030 : 1. The
temperature dependence of the current and voltage values at the peak is shown on the right.
(From Ref [23]).
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Figure 1.7: Current-voltage measurements on individual BPDN molecules by STM with
BPDN embedded into C11 alkane matrix (a) and cross-wire tunneling junction (c) are pre-
sented in Figs. (b) and (d) respectively. (From Ref [7]).

depends on the electronic occupation of that level. The latter, in turn, depends on the level
energy. Ref.[26] is a study of the nature and possible consequences of this feedback character
on the conduction behavior of such junctions, using the reduced one bridge level/ one bridge
(primary) oscillator version of the Anderson-Holstein model. This study invokes a mean
field approximation akin to the Born-Oppenheimer approximation, which is based on the
assumption that the primary vibrational mode is slow relative to the rate at which electrons
enter and leave the bridge. In this case the oscillator responds only to the average bridge
occupation. This approach predicts multistability and even hysteresis in the I-V curves [26].

The dynamical consequences of this multistability are still under discussion. Whether
they can lead to hysteresis behavior and memory effect as suggested in [26] or to intermittent
noise associated with transitions between two locally stable states as discussed in [27, 28]
is an issue of relative timescales, the observation time vs. the rate of transitions between
locally stable states. An interesting possibility that such a mechanism can be the cause of
observed negative differential conduction phenomena has also been pointed out,[26] and may
again depend on relative timescales [27]. Interestingly, in chapter 2, I will show that the
inclusion of dynamical effects of oscillator motion at lowest order, rules out any possibility
of having hysteresis in molecular junctions if one considers a single site Anderson-Holstein
model [29].

On the other hand, a recent experimental study of hysteretic conductance in gated molec-
ular junctions based on the redox molecule bipyridyl-dinitro oligophenylene-ethynylene dithi-
ols (BPDN-DT)[30] indicates that the observed behavior is not sensitive to the gate potential
(in contrast to the ε0 dependence in [31]), suggesting that at least in this system the actual
mechanism may go beyond the simple picture described above.

1.1.3 Incoherent vs coherent transport

Two very important consequences of the electron interaction with mechanical degrees of
freedom in molecular junctions are the crossovers from tunneling to activated transport and
from coherent to incoherent transmission under appropriate conditions. While these effects
are not identical (e.g. thermal electron transfer from lead to molecule can be followed by
coherent propagation along the molecule), energy and timescale considerations indicate that
they occur under similar conditions: when activated transport dominates it is likely that
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Figure 1.8: Mechanistic turnover from tunneling to hopping in short strand duplex DNA.
The curve on the left shows tunneling through the AT segment, resulting in exponential
decay of conductance with length. The segment on the right is for poly GC where transport
occurs by hopping and the conductance scales like the inverse length (as it must for diffusion).
From Ref. [25].

decoherence within the molecular bridge will be effective. The predicted experimental mani-
festations of these changes in the nature of the conduction process are, first, a transition from
temperature independent to activated transport upon temperature increase, and second, an
exponential drop with molecular chain length in the tunneling regime becoming an ohmic
1/length dependence for activated hopping conduction.

In Fig.1.8, one can observe the transition between an exponential length dependence of
tunneling through a DNA segment with a large injection gap and an inverse length depen-
dence in the small gap regime, near resonance case [25].

Temperature-dependent transport measurements[32, 33, 34] form a useful tool to dis-
tinguish between different transport mechanisms. For example, experiments on ensembles
of alkanethiols[32] have shown temperature-independent electron transport indicative of a
tunneling mechanism. Selzer et al.[33] report on a crossover from temperature-independent
transport at low temperature to an exponential dependence at temperatures above 100K.
They attribute this crossover to a change of conduction mechanism from tunneling at low
temperatures to incoherent hopping transport at high temperatures induced by a coupling
to vibrational states. In another interesting paper, Poot et al.[35] report on the temperature
dependence of three-terminal molecular junctions based on sulfur end-functionalized tercy-
clohexylidenes (see Fig. 1.9). For low bias voltages, they observe temperature-independent
transport at low temperatures and above a crossover temperature of about 150K the current
increases exponentially with the inverse temperature. They suggest that a toy model based
on transport through one non-interacting molecular level provides a good fit to the data at
all bias and gate voltages. With some variation in details, similar predictions are reached by
invoking the finite temperature Fermi distribution of electrons in the leads without adhering
to dynamical relaxation effects, see e.g. Ref. [36].

Anyway, a further investigation on the effects of electron-phonon interaction on temper-
ature dependence of transport properties of molecular junctions is highly demanded.
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Figure 1.9: Onset of activated transport in a non-conjugated molecule. At low temperatures,
quantum mechanical tunneling is seen, and the current is independent of temperature. As
room temperature is approached, the transport becomes activated. The argument made by
the authors is that the small activation energies describe the overlap of the Gaussian spectral
density tail with the Fermi occupation tail. From Ref. [35].

1.2 Nanoelectromechanical Systems

The second class of nanodevices studied in this thesis is that of nanoelectromechanical sys-
tems (NEMS). NEMS comprise nanometer to micrometer scale mechanical oscillators cou-
pled to electronic devices of comparable dimensions. The motion of such an oscillator leaves
its signature on the current characteristics of the electronic device and hence the latter may
be used as a measurement device for the motion characteristics of the oscillator. The typical
dimensions of a NEMS oscillator is a few microns or less and frequencies in the range of a
few MHz to a GHz have been achieved [37]. Indeed, potential applications of these systems
include ultrasensitive motion detection, mass sensing, bio-molecular studies and quantum
enabled technologies.

NEMS have witnessed an enormous amount of research activity in recent times. In a
fundamental sense, the unique feature of these systems is the coupling achieved between
mechanical and electronic degrees of freedom. There exists a vast literature on NEMS. In
2000, Craighead [38] published a review that surveyed the field at that time. The book of
Cleland[39] provides a comprehensive introduction to various aspects of the subject. Blick
and co-workers [40] review experimental methods in NEMS while Blencowe[2] presents a
more recent survey. I now turn to some specific applications of NEMS in the next section.

1.2.1 Applications of NEMS

Among the most spectacular applications of NEMS is motion sensing. For instance, in 2003,
Knobel and Cleland[41] reported nanometer scale displacement sensing using an electronic
device known as the single electron transistor (SET). The resonator in their experiment was
a 3µm long × 250nm wide × 200 nm thick doubly clamped beam of single-crystal GaAs,
capacitively coupled to an aluminum SET, located 250nm from the beam. A displacement
sensitivity of 2.0×10−15mHz−1/2 at 116.7MHz resonant frequency of the beam was reported.
In another remarkable experiment in 2004, LaHaye and coworkers [42] reported an experi-
ment in which they used a vibrating nanobeam about a hundredth of a millimeter long as a
displacement sensor. The beam had a frequency of 20 million cycles per second (20 MHz),
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was cooled in the experiment to about 60 millikelvins and had a measured displacement
sensitivity of 10−5 nanometers. This displacement sensitivity corresponds to about 1/1000
the diameter of a single hydrogen atom.

Another area of application is mass sensing. Ekinci and coworkers [43] reported an exper-
iment in which a modulated flux of atoms was adsorbed onto the surface of a nanomechanical
resonator in an ultrahigh-vacuum environment. The mass-induced resonance frequency shifts
of the resonator due to the adsorption process was measured to report a mass sensitivity
of 2.53 × 10−18g. In the area of charge sensing, Cleland and Roukes [44] reported a NEMS
based charge detector that achieved a charge sensitivity of 0.1e, where e is the unit electron
charge.

It is clear from my discussion thus far that NEMS have revolutionized sensing technology.
However, the utility of these devices is not restricted to practical applications and NEMS
have implications for fundamental physics. I now turn to a discussion of those implications.

From a theoretical point of view, NEMS straddle the classical and the quantum worlds
since while the oscillator is a macroscopic object, the processes that take place in the elec-
tronic device are essentially quantum mechanical [45]. On the one hand, despite quantum
mechanics having been formulated almost 75 years ago, fundamental questions regarding the
interface between the classical and quantum regimes of mechanics remain yet unanswered.
On the other hand, questions in quantum measurement (the interaction of a microscopic
system with a macroscopic measurement apparatus) and quantum control (could one con-
trol the evolution of a quantum system from a given state to a desired one?) have profound
implications for futuristic technologies such as the design of truly nanodevices and, on fur-
ther extrapolation, for the fantastic possibilities perceived by quantum computation. The
point of all this is that, owing to the scale at which they function, NEMS provide a rich
arena for research in all of the above areas both as a test bed for the validation of practical
ideas as well as to lead theoretical efforts. If classical physics is a faithful approximation of
quantum physics at the macroscopic scale, then, in principle, one should be able to observe
quantum phenomena in the motion of macroscopic objects. Precisely, one should be able to
validate the Heisenberg uncertainty principle in the macroscopic domain. Let us consider
the motion of a nanomechanical oscillator. Due to its extremely small size, the oscillator
is to be considered as executing thermal Brownian motion under the influence of stochastic
atmospheric forces and defects in its own structure. This motion is dictated by the laws of
statistical mechanics and it follows that, if cooled sufficiently under controlled conditions,
the amplitude of this motion will tend to vanish. The temperature that defines this threshold
is determined by the resonant frequency of the oscillator. If the laws of quantum physics
are valid, what remains when the Brownian motion subsides is the quantum zero point fluc-
tuation of the oscillator in its lowest energy state. The key point is that, as a consequence
of the uncertainty principle, this zero point state is not the state of absolute rest. In other
words, the laws of quantum physics prohibit the oscillator from being in a state of total rest.
It is now straightforward to see how NEMS experiments can play a crucial role in validating
the uncertainty principle for macroscopic systems. If displacement measurements can be
made on the beam, at temperatures that guarantee the absence of Brownian motion, then
those measurements can be compared to the zero point displacements predicted by quantum
physics. It is important to note here that in their experiment with the 20 MHz beam, LaHaye
and co-workers [42] reported a measured displacement sensitivity within an astonishing fac-
tor of 10 of the zero point amplitude predicted by the uncertainty principle for their system.
Hence it is fair to conclude that the state-of-the-art in this enterprise stands on the threshold
of actually testing the laws of quantum mechanics in a macroscopic system. In this context,
I also note here that the quantum measurement aspect is a significant contributor to the
importance of cooling effects in NEMS [47].
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Recent research has led to the development of high-frequency top-down fabricated me-
chanical resonators with high quality factors Q. Indeed, high Q-values combined with high
resonance frequencies are an important prerequisite for applications such as single-atom mass
sensing and fundamental studies of the quantum limit of mechanical motion[42]. However,
when miniaturizing mechanical resonators to make them lighter and to increase their res-
onance frequency, the quality factor tends to decreases significantly from surface effects.
Interestingly, it has been recently demonstrated that single-wall carbon nanotubes present
a potentially defect-free nanomechanical system with extraordinary mechanical properties
which should result in quality factors of the order of 2 × 105. Below I describe two exper-
iments [11, 12] where the authors were able to detect carbon nanotube mechanical motion
with extremely high quality factors.

1.2.2 Carbon nanotubes: Nonlinear high-Q nanomechanical res-
onators

A carbon nanotube (CNT) is a remarkable material, which consists of only carbon atoms
and can be thought of as a graphene sheet rolled up into a cylinder with the ends capped
off with a buckyball sliced in half. This is called a singlewalled CNT and, depending on how
the graphene sheet is rolled up, CNTs are either semiconducting or metallic. At low tem-
peratures, CNTs contacted by two electrodes become quantum dots, and Coulomb blockade
and single-electron tunneling occurs. When more graphene sheets are wrapped up concentri-
cally a multiwalled CNT is formed. A suspended CNT resonator can be fabricated without
defects, thus reducing damping which results in quality factors for the flexural modes above
100,000. Having a radius that can be as small as a nanometer and lengths of several mi-
crometers, CNTs have aspect ratios in the thousands, on a scale and purity that is difficult
to achieve in resonators fabricated top-down from silicon, SiN, or other materials. The enor-
mous aspect ratio makes it easy to excite the CNT such that the displacement of the flexural
mode is similar in magnitude to the radius; the CNT thus behaves as a thin, narrow beam
resonator. The combination of low damping and high aspect ratio paves the way for non-
linear effects. There are two other remarkable properties of CNTs: Their Young’s modulus
of 1.3TPa makes them an incredibly stiff material, and combining this with a density of
only 1350kg/m3, CNT resonators reach frequencies of several hundreds of megahertz and
even gigahertz. At millikelvin temperatures, with ~ω0 >> kBT , thermal phonons can no
longer excite the flexural motion. This makes CNTs perfect candidates to observe quantum
(nonlinear) effects in mechanical resonators. In this thesis I’m interested in the opposite
regime ~ω0 << kBT where the nanotube’s motion can be fruitful described in a classical
way. In the next subsection I will describe different ways of detecting the motion of CNT
resonators. Next, I show how single-electron tunneling gives rise to frequency softening and
damping as well as Duffing-like nonlinearities. Table 1.10 gives an overview of the symbols
used in this section for variables and constants along with typical values and example device
parameters.

Detecting the motion of single walled Carbon Nanotubes

In this subsection, I discuss different ways to detect the flexural motion of CNT resonators
suspended between two macroscopic electrodes. Other vibrational modes such as breathing
and stretching modes are also present in CNT resonators, but non-flexural modes are difficult
to actuate and detect. They are therefore not discussed in this thesis. Because a CNT
is easily perturbed, detection has a large influence on its motion. When discussing the
nonlinear dynamics of CNT resonators, it is therefore important to have an overview of
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Figure 1.10: General properties and device parameters for a single-walled CNT. This Table
was taken from Ref. [48].

the different detection methods. Optical detection, which is used frequently in top-down
devices, is not an option because of the small cross-section of a CNT. Until now, detection
has therefore been done through microscopy or electronically. I summarize five different
methods to observe its motion: scanning force microscopy, transmission electron microscopy,
field emission microscopy, the mixing technique, which involves frequency down-mixing the
flexural motion from several hundreds of megahertz to several kilohertz, and the rectification
technique, where the amplitude of the flexural motion is obtained by measuring the dc current
flowing through the CNT. The last two (electronic) methods are self-detecting because the
CNT is both the object studied and the detector.

In the mixing technique, a frequency-modulated voltage is applied to the source electrode.
The frequency modulation of the source voltage causes sidebands in the spectrum around
the drive frequency. They both mix with the mechanical resonance and result in a signal
at the modulation frequency. In this case no signal needs to be applied to the gate as the
CNT is actuated by setting the carrier frequency of the source voltage to the mechanical
resonance frequency.

In this thesis I’m concerned with the rectification technique used in a beautiful experiment
described in [11, 12]. The advantage of this technique is that the amplitude of the mechanical
motion is given by a change in the dc current flowing through the CNT. As with the mixing
technique, the use of the rectification technique avoids the difficulty of getting small, high-
frequency signals out of a setup at millikelvin temperatures and minimizing the cross-talk
from the actuation onto the measurement signal. With the rectification technique, the
working principle is as follows. The CNT is suspended between source and drain electrodes
above a gate electrode. At low temperatures, the CNT acts as a suspended quantum dot
in which charging effects dominate transport. It is actuated using a nearby antenna, which
sends out an oscillating electric field. When the CNT oscillates, the distance to the gate
changes, and therefore the capacitance changes as well due to CNT motion (see Fig. 1.11).
This variation can be measured in the average dc electronic current flowing through the
three-terminal device and can induce very interesting features. Indeed, because of their
high quality factor and therefore narrow linewidths, ultraclean CNT resonators allow for
the detection of small changes in resonance frequency. In this sense, the electronic current
through the device can be used as a very sensitive spectroscopic measurement.

Figure 1.12 shows Coulomb oscillations (top), and the change in resonance frequency
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Figure 1.11: Detecting the CNT’s motion using the rectification technique. A CNT is doubly
clamped between a source and a drain electrode suspended above a gate electrode. The CNT
is driven by a high-frequency signal applied to an antenna at approximately 2 cm from the
CNT. The single-electron tunnel current through the CNT quantum dot contains information
on the oscillation of the CNT at DC due to a rectification effect from Coulomb blockade.

with gate voltage (bottom) at small bias voltages. Three features are worth mentioning: i)
in Coulomb blockade, there is a fixed charge on the CNT and the resonance frequency-gate
voltage curve approaches a linear dependence, denoted by the dashed lines; ii) from one
charge state to the next, there is an offset between the sloped lines; and iii) at the position
of Coulomb peaks corresponding to a transition between charge states, there are resonance
frequency dips arising from a softening-spring behavior. The slope in resonance frequency is
explained as follows: in Coulomb blockade the charge on the CNT quantum dot is constant.
If a more negative gate voltage is applied, the force acting on the CNT increases, which
pulls the CNT more towards the gate. The tension caused by this pulling leads to the first
feature: the resonance frequency increases with gate voltage. As the gate voltage becomes
more negative, more and more electrons are extracted from the CNT quantum dot, leaving
behind holes. From one charge state to the next, there is a difference in charge of one electron.
The tension arising from an extra electron causes the resonance frequency to change in a
discrete manner, leading to the second feature: an offset in resonance frequency between two
charge states. Figure 1.12 shows a frequency offset of 0.5MHz, which is more than 100 times
the linewidth. As I will show in chapter 3, the frequency dips arise from tunneling of single
electrons through the device. Figure 1.12 shows that single-electron tunneling can lead to a
dip in the resonance frequency by as much as 2MHz. The change in resonant frequency due
to single-electron tunneling over this small gate range is an order of magnitude larger than
that from the gate induced mechanical tension [48]. Recent experiment performed on the
same setup has found a double dip structure in the mechanical resonance-frequency curves
as one increase the bias voltages. As I will see in chapter 3, my model has correctly predicted
this feature [49].

1.2.3 Nonlinear effects in Carbon Nanotube resonators

In this section I describe how the measured lineshape in the electronic current vs. antenna
frequency curves changes as the drive power is increased considering also the effect of the
temperature. In right panel of Fig. 1.13 one can see that, as the antenna power is increased,
the current-frequency curves turn from a Lorentzian to a characteristic triangular shape.
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Figure 1.12: Top: Coulomb oscillations of the current through a CNT quantum dot; in
Coulomb blockade current is zero and the indicated (negative) number of electrons on the
CNT is fixed. Between charge states a single-electron tunneling current is visible as Coulomb
peaks. Bottom: Gate dependence of resonance frequency (from [11]); the features are indi-
cated by the encircled numbers: (1) a slope caused by tension at fixed charge, (2) a frequency
offset caused by a tension difference between charge states, and (3) frequency dips caused
by single-electron tunneling. This Fig. was taken from Ref. [11].

This behavior can be interpreted in terms of the nonlinear correction terms to the force
acting on the nanotube induced by the current flow. Indeed, when an elastic object is
brought out of its equilibrium position, the restoring force is usually linearly dependent on
the displacement. As the applied force and resulting displacement increase (in my case due
to application of the antenna), Hooke’s Law is no longer valid and nonlinear effects become
important. As I will see in chapter 3, this nonlinear terms are due to the intrinsic electron-
oscillator interaction. In Ref.[11], they have also studied the nonlinear regime as a function
of the temperature. In left panel of Fig.1.13 one can see that, increasing the temperature, the
current-frequency curves turn from a triangular to a Lorentzian shape characteristic of the
linear response regime. This could be interpreted in terms of a decrease of the quality factor
as function of temperature. I will show, in chapter 3, that these features can be qualitatively
reproduced using a single site Anderson-Holstein model.

1.3 Electronic correlation in transport through Nanos-

tructures

1.3.1 The Kondo Effect in Nanostructures

In many nanostructures, such as single-molecule conductors and quantum dots, the system
consists basically of a central interacting region, usually the dot or molecule, weakly coupled
to ideal noninteracting leads. Due to the confined nature of the nanostructures, the energy
spectrum is discrete with several energy levels or quasilocal states. The hybridization of
these levels with the continuum states of the leads gives the levels a finite width which is
proportional to the rate of electron escape to the leads. A rough model of the dot, for
example, is a quantum well separated from the leads by two tunnel barriers. The position
of the dot energy levels can be controlled by applying a voltage in the gate electrode. The
conductance of the dot is suppressed except when one of the levels crosses the Fermi level of
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Figure 1.13: Left: Electronic current vs. antenna frequency at high antenna amplitude for
increasing temperature from top to bottom. Right: Electronic current vs. antenna frequency
at low temperature for increasing antenna amplitudes from top to bottom. This Fig. was
taken from Ref. [12].

the leads. In other words, the conductance versus gate voltage shows a collection of peaks
each corresponding to a state on the dot crossing the Fermi level. The width of these peaks
is proportional to the width of the levels. This is known as resonant tunneling. In this thesis,
only one energy level is assumed to be relevant. The other levels are assumed to be of either
too high or too low energy to contribute to transport. In addition to the discrete spectrum,
in many nanosystems, the Coulombic interaction is dominant. This causes the dot to have a
well defined number of electrons. Adding an electron to the dot is prevented by this strong
interaction. By changing the gate voltage, the energy of the dot with N electrons changes.
At specific degeneracy points, the dot states having N and N + 1 electrons are degenerate.
This allows for charge fluctuations and, thus, electron transport. The conductance versus
gate voltage shows a very low conductance except at charge degeneracy points. This is
known as the Coulomb blockade.

Molecules or quantum dots (QDs) can act as local magnetic moments and exhibit also
the Kondo effect. The Kondo problem originates back in 1930s where it was discovered that
the resistivity of metal with dilute concentration of magnetic impurities starts to increase
at low temperatures if the temperature is further decreased. A hand waving explanation
of the effect is that magnetic moments have spin degrees of freedom which must be frozen
at low temperatures in order that the entropy at zero temperature vanishes. As described
in Chapter 4 within the Anderson impurity model, this so called screening proceeds by
binding the impurity spin into singlet with the spin density of the conduction electrons and
is efficient only at temperatures below a certain low-energy scale of the problem, called the
Kondo temperature. Because of this binding the impurity density of states at the Fermi
energy increases. The conduction electrons, which would pass if the impurity was not there,
thus scatter and the resistivity is increased. The Kondo effect is involved also in the formation
of heavy fermions in intermetallic compounds based especially upon rare earth elements like
Ce, Pr, and Yt and actinide elements like uranium [51]. In these materials, the Kondo effect
leads to quasi-electrons with masses up to thousands times the free electron mass, i.e., the
electrons are dramatically slowed by the interactions. Another manifestation of the Kondo
effect is the unusual metallic δ-phase of plutonium [52, 53].

In the nanoscopics the impurity can be imitated by a QD or a molecule embedded in
the bath of noninteracting electrons originating from the metallic electrodes. The Coulomb
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Figure 1.14: The main results of two important experiments reporting the observation of the
Kondo effect in QDs: Left panel taken from Ref. [66] and right panel taken from Ref. [55]

interaction which is negligible in the contacts due to the screening by electron-hole pairs
is large in the molecular orbital. The spin of the electron there acts as the local moment.
Somewhat counterintuitively, in nanoscopic systems the Kondo effect produces the opposite
behavior to that of a bulk metal: it increased the conductance. This is because the electrons
have to travel through the device, as there is no electrical path around it [54]. The transfer
of electrons and thereby the conductance is enhanced at low temperatures when the density
of states at the device is increased due to the Kondo effect. Such behavior has been observed
in measurements of transport through QDs [55, 56] and molecules [57, 58, 59, 60, 61]. The
Kondo effect can be probed also by observing magnetic adatoms at the metallic surfaces using
the STM (scanning-tunneling microscope) [64, 65] and could account for the 0.7 anomaly
[67] observed in quantum point contacts [68].

1.3.2 Key experiments on correlated nanotransport

In this section I review some recent experimental results about Kondo effect in QDs and
molecular junctions.

The left panel of Fig. 1.14 shows the conductance through a quantum dot as function
of gate voltage at different temperatures. At high temperature, the results show Coulomb
blockade behavior (orange line). As temperature is decreased, the conductance in the even
occupation regimes is suppressed (due to the suppression of thermal fluctuations), while in
the odd occupation regimes, the conductance is enhanced due to the Kondo effect until it
reaches the unitary limit 2e2/h for low enough temperatures (in this thesis I will consider
G0 = e2/h). This was the first experiment to report the unitary conductance limit in the
Kondo regime [66]. The right panel shows the differential conductance versus bias voltage for
different temperatures and magnetic fields. As the temperature is lowered, a peak is observed
at zero bias (zero-bias anomaly). This peak is split upon the application of a magnetic field
due to Zeeman effect confirming the prediction of Meir et al. [69]. This experiment was the
first observation of the Kondo effect in a QD [55].

As already outlined above, Kondo effect has been observed in several molecular junctions[57,
58, 59, 60, 61, 62]. Recent experiments[19, 63] have shown that conduction through molec-
ular systems in this regime is strongly dependent on the the molecule-electrode coupling.
In Fig. 1.15 the authors of Ref.[63] have shown that both the Kondo temperature TK and
the magnitude of the zero-bias conductance signal associated with the Kondo resonance are
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modified by varying the electrode spacing. The same devices can also exhibit finite-bias
inelastic Kondo features at an energy that corresponds to the lowest-energy intracage vibra-
tional mode of C60 (see Fig. 1.15). This study suggests that the motion of the molecule
between the leads can modify the relative coupling of the molecule to the two electrodes.

In Ref.[19], the authors report transport measurements of single-C60 molecular transistors
providing evidence for coupling between the center-of-mass motion of C60 and single-electron
hopping, a novel conduction mechanism that has not been observed in previous quantum-dot
studies. When an electron hops onto the C60, the ”spring” is compressed as the charge of
the additional electron draws the molecule closer to the, say, left contact lead. When the
electron hops off the C60, the spring is released. In this manner, electron-hopping causes the
molecule to oscillate between the two contacts as a ”shuttle” for electrons.

Recently, several efforts have focused on the ”shuttle effect”, both in the classical[70]
and quantum regimes [71, 72, 73, 74, 75, 76, 77]. Indeed, the first successful experimental
implementation of a NMSS[70] was reported in [76, 77] and was most focused on the large
bias non-equilibrium regime.

In this thesis I want to address the low temperature low bias regime regime where a
strong interplay between the Kondo physics and vibrational degrees of freedom is expected
[156, 159]. Indeed, there are contrasting experimental results in this regime: Park et al.[19]
performed measurements in Au − C60 − Au junctions where the conductance at low bias
was found to be largely suppressed and the current-voltage characteristics were dominated
by the Coulomb blockade phenomenon. A related transport experiment through a single
C60 molecule[63] showed a much higher low-bias conductance (of the order of 0.1G0 with
G0 = e2/h), which was attributed to the appearance of Kondo physics.

I believe that for the interpretation of the experimental results a better understanding
of the interaction effects of the center of mass motion of the molecule onto the electronic
hopping by means of a simple theoretical model is necessary.

In Chap.4, I numerically investigate with Density Matrix Renormalization Group (DMRG)
the electronic transport properties of a nanomechanical shuttling device in the Kondo regime.
I model the system by means of the Anderson impurity model with noninteracting (tight-
binding) leads. The molecule (impurity site of the chain) is allowed to oscillate between the
two metallic contacts. I focus on the effects of tunneling barrier modulation (encoded in a
coupling constant α) on the electronic conductance and on the static and dynamical prop-
erties of the phononic mode. The results show an interesting and unexpected conductance
cancellation for a sufficiently large value of α when an odd number of electrons occupy the
molecule. This results agree with the conductance suppression in the low temperature and
bias regime observed in Ref. [19].

At the end of this section I want to give an approximate estimate of the parameter α using
experimental parameters given in Ref. [19]. The dependence of the hopping integral t on
the electrode-C60 distance z can be modeled as t(z) = t0e

−z/l0 , where l0 is the distance from
the center of C60 to the electrode. Moreover, the experiment indicates that an additional
electron on C60 results in the shortening of the C60-lead distance by δ ' 4 pm, but it does not
significantly change the vibrational frequency. Using the formula t′ = t(δ) = t(0)(1−αδ), is
easy to show that α ' 0.99/δ ' 0.249pm−1. Using a simple theoretical estimate based on van
der Waals and electrostatic interactions between C60 and the leads, the authors in Ref.[19]
estimate k ' 70N/m and ω0 ' 1.2Thz, corresponding to the characteristic energy of 5meV
describing the step-like jumps measured in the electronic current for large bias voltages.
Expressing lengths in terms of the zero-point motion x0 =

√
~ω0/2k of the oscillating C60

molecule x0 ' 2.4pm, one has approximatively α ' 0.6.
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Figure 1.15: Panel(a): dI/dV for a device investigate in [63] at T = 1.6K showing satellite
peaks near ±33mV . Left inset: Schematic of the Hg(1) intracage vibrational mode. Right
inset: dI/dV for another device at T = 1.6K. Panels(b),(c): d2I/dV 2 as a function of bias
voltage and electrode spacing for devices investigate in panel (a) at T = 1.6K. Panel (d):
dI/dV traces of a device at various electrode spacings for T = 1.6K. x0 ' 1nm is the initial
gap between the leads. This figure is taken from Ref. [63].

1.4 Theoretical methods

The previous sections discussed a number of recent transport experiments on various nanoscale
systems. It was found that electron-vibration interaction played an essential part for under-
standing the properties of the systems scrutinized.

From an analytical stand point, in order to build a transport theory that include these
effects it is necessary to go beyond the Landauer-Buttiker[78] and Kubo[79] formalisms.
The former approach is limited to non-interacting cases, that is electrons in the central
system (molecule) and in the leads are free particles in their quantum states. Within Kubo
formalism, also known as linear response theory, one allows for the presence of interactions
but one extracts information about electron transport by solving the equilibrium problem
by standard many-particle theory. Since the method is limited to the linear regime it cannot
be used to model the highly nonlinear device characteristics usually observed.

A complete quantum kinetic description of electron transport under any bias condition
can be constructed by the use of nonequilibrium Green’s functions (NEGF)[80, 81]. This
method has proven to be very successful for a wide range of systems and the generality makes
it a strong analytical technique. For these reasons it has also been chosen as the framework
for the first part of the present work.

In the last part of the thesis I investigate low-dimensional highly correlated molecular
systems, where the strength of the interactions prevents for analytical techniques based on
perturbation theory of being used. In particular, I will use an approximation-free numerical
technique, suitable for non-equilibrium quantum many-body systems: the Density Matrix
Renormalization Group (DMRG)[83, 85]. DMRG is one of the most accurate numerical
approaches for treating strongly correlated systems described by lattice Hamiltonians in one
spatial dimension. The method consists of a very efficient iterative procedure and allows
for the investigation of ground-state (equilibrium) properties of strongly correlated systems
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with several hundred to several thousand lattice sites with low computational cost (for an
introduction to the DMRG see Appendix D).

DMRG can be considered as a variational method, even if relies heavily on exact diago-
nalization and numerical renormalization group (NRG [82]) ideas. It was introduced by S.
White in 1992 as a development of Wilson NRG’s. It is variational because the proposed
solution has the very peculiar form of a ”matrix-product state”[86]. However, no a priori
assumptions are made about the form of the coefficients, or the underlying physics. The
power of the method is precisely that it is smart enough to be able to find for us the best
possible wave function of that form, without any external bias. Even though the accuracy
is finite, it is totally under control, and one can obtain results that are essentially exact.
Another ingredient is the block decimation process, similar to the one introduced by Wil-
son. Recently [87, 88], the algorithm has been extended to time dependent cases, allowing
to calculate time-dependent correlation functions of out-of-equilibrium systems with high
accuracy. Moreover, the method has been mostly applied to study non-equilibrium quantum
transport for electronic systems [89, 90].

In Chap. 4, I will extend the application of this technique to the case where also
electron-phonon interaction is present within a Quantum Shuttle model in the low bias
quasi-equilibrium regime.

1.5 Outline of the thesis

The present thesis is organized as follows. This chapter provided an introduction to the
field of molecular electronics and NEMS. I have discussed a number of recent experiments
on transport through single molecules in which inelastic effects were observed and on NEMS
application of carbon nanotubes as self-detecting single-electron transistors.

In Chap. 2, I develop a very accurate computational scheme for the dynamics of single
oscillator mode coupled with an out-of-equilibrium molecular junction. I concentrate my
attention on the physical regime where the vibrational motion of the oscillator is ’slow’ with
respect to all electronic energy scales and can be considered ”classical”. I exploit the Keldysh
formalism within Non Equilibrium Green’s Function theory (NEGF) for the electronic sub-
system together with stochastic dynamics for the vibrational degrees of freedom.

In Chap. 3, I further investigate the renormalization effects of the bending mode fre-
quency of a suspended nanotube NEMS as a function of the external charge injection (due
to the applied bias and gate voltages). I also include in the model the effects of an external
antenna driving the oscillations of the nanotube. At the end of the Chap., I show that my
approach can be extended to the case where an external magnetic field perpendicular to the
oscillator motion is introduced.

In Chap. 4, I numerically investigate with DMRG the electronic transport properties of
a nanomechanical shuttling device in the Kondo regime.

Finally, I provide a summary of the thesis and an outlook for future work.
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Chapter 2

Electronic transport through an
interacting molecular junction:
coupling to a low frequency
vibrational mode

In this chapter I propose a very accurate computational scheme for the dynamics of a classical
oscillator coupled to a molecular junction driven by a finite bias, including the finite mass
effect. I focus on two models widely used in the literature for the molecular junction:
Anderson-Holstein (AH) and two-site Su-Schrieffer-Heeger (SSH) models. As concerns the
oscillator dynamics, I’m able to recover a Langevin equation confirming what found by
other authors with different approaches and assessing that quantum effects come from the
electronic subsystem only. Solving numerically the stochastic equation, I study the position
and velocity distribution probabilities of the oscillator and the electronic transport properties
at arbitrary values of electron-oscillator interaction, gate and bias voltages. The range of
validity of the adiabatic approximation is established in a systematic way by analyzing
the behavior of the kinetic energy of the oscillator. Due to the dynamical fluctuations, at
intermediate bias voltages, the velocity distributions deviate from a gaussian shape and the
average kinetic energy shows a non monotonic behavior. In this same regime of parameters,
the dynamical effects favor the conduction far from electronic resonances where small currents
are observed in the infinite mass approximation. These effects are enhanced in the two-site
SSH model due to the presence of the intermolecular hopping t. Remarkably, for sufficiently
large hopping with respect to tunneling on the molecule, small interaction strengths and at
intermediate bias (non gaussian regime), I point out a correspondence between the minima
of the kinetic energy and the maxima of the dynamical conductance.

2.1 The Anderson-Holstein (AH) model

The spinless Anderson-Holstein model is the simplest model of a molecular junction including
the effect of electron-phonon interaction. The molecule is modeled as a single electronic level
interacting locally with a single vibrational mode. The electronic system is described by the
standard junction Hamiltonian Ĥel = Ĥmol + Ĥtun + Ĥleads, with

Ĥmol = Egd̂
†d̂, (2.1)

Ĥtun =
∑
k,α

(Vk,αĉ
†
k,αd̂+ h.c.), (2.2)
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Ĥleads =
∑
k,α

εk,αĉ
†
k,αĉk,α. (2.3)

The molecular electronic level has energy Eg and creation (annihilation) operators d̂†(d̂).

The operators ĉ†k,α(ĉk,α) create (annihilate) electrons with momentum k and energy εk,α =
ξk,α − µα in the left (α = L) or right (α = R) free metallic leads. The chemical potentials
in the leads µL and µR are assumed to be biased by an external voltage eVbias = µL − µR.
Electronic tunneling between the molecular dot and a state in the lead has amplitude Vk,α. I
consider the oscillator dynamics `classical´ from the beginning and described by the position
and momentum variables x, p.

The Hamiltonian of the oscillator is given by

Hosc =
p2

2m
+

1

2
mω2

0x
2, (2.4)

characterized by the frequency ω0 and the effective mass m. The interaction (typically of
electrostatic origin, see Appendix B) is provided by a simple linear coupling between the
electron occupation on the molecule, d̂†d̂, and the displacement of the oscillator

Ĥint = λxd̂†d̂, (2.5)

where λ is the electron-oscillator coupling (EOC) strength. The overall Hamiltonian is
therefore given by Ĥ = Ĥel +Hosc + Ĥint.

In the following, the coupling between the electron and the vibrational mode will be often
described in terms of the electron-phonon coupling energy Ep = λ2/(2mω2

0) and the coupling
to the leads by the tunneling rate Γk,α = 2πρα|Vk,α|2/~ (the full hybridization width of the
molecular orbital is then ~Γk = ~Γk,L + ~Γk,R), where ρα is the density of states in the lead
α. For the sake of simplicity, I will suppose flat density of states for the leads within the
wide-band approximation (Γk,α 7→ Γα). In this chapter we will measure length in units of
x0 = λ

mω2
0

and energy in units of ~Γ. Finally, the leads will be considered as zero temperature

thermostats.
In the next subsections, I will first analyze the coupled electron-oscillator problem in the

limit of infinite mass for the oscillator (sec. 2.1.1). I will then indicate (sec. 2.1.2) how to
construct the stochastic Langevin equation for the dynamics of the oscillator including the
finite mass effect. In the subsection (2.1.3) I will solve numerically the stochastic equation
and analyze the effects of the oscillator dynamics on the electronic observables inherent to
the transport problem (I-V characteristic and conductance).

2.1.1 Out of equilibrium Born-Oppenheimer approximation: infi-
nite mass (static) case

When the vibrational motion of the oscillator is slow with respect to all electronic energy
scales, it is possible to decouple oscillator and electronic dynamics. In the spirit of Born-
Oppenheimer approximation, I consider the limit m 7→ ∞ in the full Hamiltonian disregard-
ing the kinetic energy of the oscillator. The electronic dynamics is therefore equivalent to
a non-interacting resonant single level problem with energy level renormalized by the `po-
laronic´ shift Eg 7→ Eg + λx. The retarded (advanced) Green functions Gr(a)(ω, x) and the
lesser (greater) Green functions G<(>)(ω, x) in stationary non-equilibrium conditions (see
Appendix A for a definition of these Green’s functions) can be derived within the Keldysh
formalism (through the Dyson and Keldysh equations)[81, 80] and depend parametrically
on the displacement coordinate x. Starting from the force exerted on the oscillator

F = −mω2
0x+ λ〈n̂el〉(x), (2.6)
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Figure 2.1: Spatial dependence of the dimensionless generalized static potential Ū(x̄) (panels
A,B), friction coefficient Ā(x̄) (panels C,D), fluctuating term D̄(x̄) (panels E,F) for sym-
metric Eg ∼ Ep and asymmetric Eg < Ep minima for different values of bias, Vbias = 0
(solid (black) curve), Vbias = 2 (dashed (red) curve), Vbias = 4 (dashed dot (green) curve).
The potential is expressed in ~Γ units (Ū = U/~Γ), the friction coefficient in mω0 units
(Ā = A/mω0), the fluctuating term in λ2/ω0 units, (D̄ = D/(λ2/ω0)). Vbias values are ex-
pressed in ~Γ/e units, where e is the electron charge. The dimensionless position variable x̄
is defined as x̄ = x/x0 with x0 = λ

mω2
0
.

where (see Eq. of Appendix A for a definition of density)

〈n̂el〉(x) =
∑
α=L,R

~2Γα

∫
dω

2π
fα(ω)|Gr(ω, x)|2, (2.7)

with fα(ω) Fermi function of the lead α = R,L, one can therefore straightforwardly compute
the expression of the generalized potential in non-equilibrium conditions (obtained applying
symmetric bias unbalance µR = −eVbias/2, µL = eVbias/2)

U(x) =
1

2
mω2

0x
2 +

λx

2
−
∑
α=L,R

[
µα − Eg − λx

2π
arctan

(µα − Eg − λx
~Γ/2

)
− ~Γ

8π
ln[4(µα − Eg − λx)2 + (~Γ)2]

]
. (2.8)

This generalized oscillator potential depends parametrically by the spring constantmω2
0 =

k, the EOC strength λ, the energy of the electron level Eg (which can be considered a gate
potential), the coupling to the leads Γ and finally by the bias Vbias. In Fig.2.1 (panels
A,B), I present some features of the generalized potential U(x) in the strong coupling regime
(Ep > ~Γ), where the potential shows several minima. For Eg ∼ Ep and not too high bias
(panel A, Fig.2.1), the potential develops two symmetric minima near x ' 0 (corresponding
to 〈n̂el〉 ' 0) and x ' −1 (corresponding to 〈n̂el〉 ' 1) separated by a barrier whose height
is roughly proportional to Ep. This bistable regime corresponds to the physical situation
where the bare electron level Eg is above the chemical potential of both leads, while the
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renormalized charged level Eg − 2Ep is below them. The molecule can stay in one minimum
or in the other. If one increases the bias Vbias, the potential U(x) shows a third minimum
corresponding to average electron occupation on the molecule 〈n̂el〉 ' 1/2 and, for sufficiently
large Vbias, only this minimum remains. If Eg < Ep the potential also shows two or more
minima but they are asymmetric (panel B, Fig.2.1). For sufficiently high bias, the common
feature is the existence of a single minimum corresponding to occupation 〈n̂el〉 ' 1/2.

In the above analysis the displacement x has been used as a free parameter. Actually,
the only x values relevant for the electronic properties in the static approximation are those
which solve the Eq. F (x) = 0. These solutions depend parametrically by all the parameters
of the theory (in particular by the bias Vbias). This may yield transitions between different
local minima in the potential, determining in the electronic current-voltage characteristic the
onset of interesting non linear phenomena like hysteresis, switching and Negative Differential
Resistance (NDR).[26] Indeed, the authors of Ref. [26] proposed a polaron mechanism within
the AH model to explain such phenomena, effectively observed in transport experiments
on molecular devices. However, the results of the static approximation can be strongly
modified by dynamical effects. Indeed, corrections due to the finite (though large) mass of
the oscillator are expected to be important.[27, 28, 123] As I shall see in the next sections, the
inclusion of the finite mass effect on the oscillator dynamics gives rise to a stochastic Langevin
equation with a position dependent dissipation term and white noise force. The stochastic
fluctuations of the oscillator motion will strongly modify the current-voltage characteristics
obtained in the infinite mass approximation.

2.1.2 Dynamical (finite mass) corrections to static case: setting
Langevin equation for the oscillator

Within the static approximation (infinite mass), the main effect of the non-equilibrium fast
electronic environment is the modification of the force (Eq. 2.6) experienced by the mechan-
ical oscillator. In this section I show how to include the finite mass effects on the oscillator
dynamics.

First of all, one should include the effect of time dependence of the oscillator dynamics on
the Hamiltonian of the electronic problem, which results therefore explicitly time dependent
(Ĥ 7→ Ĥ(x(t))). Using the extension of the Keldysh formalism to time dependent cases,[80]
one can solve the Dyson and Keldysh equations for the electron Green functions which now
depends on times t and t′ separately. In absence of electron-electron interactions, the retarded
molecular Green function can be nevertheless obtained analitically (with Eg(t) = Eg+λx(t))

Gr(t, t′) = − ı
~
θ(t− t′)e−ı

∫ t
t′ dt1(

Eg(t1)

~ −ıΓ/2), (2.9)

and depends in non linear way by the entire dynamics x(t) of the oscillator. In order
to overcome this difficulty, I resort to an adiabatic approximation of the electronic Green
function. One assumes a slow time dependence of x(t) and calculates a truncated electron
Green function which acquires a `slow´ time dependence and a linear correction in the
oscillator velocity.

Abiabatic Approximation

In this section, I show how the adiabatic approximation on the electronic Green function
works.
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Before implementing the adiabatic approximation, it is convenient to rewrite the Dyson
equation for the molecular retarded Green function Eq. 2.9

Gr(t, t′) = gr(t, t′) +

∫
dt1

∫
dt2G

r(t, t1)Σr
el−ph(t1, t2)gr(t2, t

′), (2.10)

where the Green function gr(t, t′) already takes into account the coupling with the leads,

gr(t, t′) = − ı
~
θ(t− t′)e−ı(

ε0
~ −ıΓ/2)(t−t′). (2.11)

Now, I reparametrize the retarded electron-oscillator self-energy separating slow and fast
times scales (in the following, for sake of simplicity, I drop the label el−ph from the self-
energy)

Σr(t1, t2) 7→ Σr
(t1 + t2

2
, t1 − t2

)
. (2.12)

According to the approach used in Ref.[105], I expand Eq. 2.12 with respect to the slow
mean time t1+t2

2
about a generic time t0 belonging to the interval [t, t′]

Σr
(t1 + t2

2
, t1 − t2

)
' Σr

0(t0, t1 − t2) + Σr
1(t0,

t1 + t2
2

, t1 − t2), (2.13)

with

Σr
0(t0, t1 − t2) = λx(t0)δ(t1 − t2) (2.14)

Σr
1(t0,

t1 + t2
2

, t1 − t2) =
(t1 + t2

2
− t0

)
λẋ(t0)δ(t1 − t2). (2.15)

The adiabatic expansion Gr(t, t′) 7→ Gr
0(t0, t − t′) + Gr

1(t0, t − t′) for the Green function
follows from that for the self-energy via the Dyson equation Eq. 2.10. I can now introduce
the Fourier transforms Gr

0/1(t0, ω) =
∫
d(t − t′)eıω(t−t′)/~Gr

0/1(t0, t − t′). Since my goal is an
adiabatic expansion of the electronic observables at time t, from now on I choose t0 = t.
One can easily show that t0 = t is the only choice able to recover the fluctuation-dissipation
theorem at vanishing bias voltage (equilibrium condition) for the Langevin equation I will
derive below. From the Dyson equation Eq. 2.10, taking into account Eq. 2.14 and Eq.
2.15, I thus find

Gr
0(t, ω) =

1

~ω − Eg(t) + ı~Γ/2
, (2.16)

Gr
1(t, ω) = ı~

∂Eg
∂t

∂Gr
0(t, ω)

∂~ω
Gr

0(t, ω). (2.17)

obtaining a correction which is linear in the velocity of the oscillator ∂Eg
∂t

= λ∂x
∂t

.

Abiabatic Approximation: calculation of damping and fluctuating term

Both in equilibrium and in out-of equilibrium conditions, the interaction with the leads
introduces a dissipative correction term to the force (Eq. 2.6) exerted on the oscillator.
Actually, in order to estimate such a dissipative term, I have to calculate the adiabatic
corrections to the lesser-Green function that is directly related to the occupation

〈n̂〉(t) = −ı~G<(t, t) =
∑
α=L,R

~Γα

∫
d~ω
2π

fα(ω)|Gr(ω, t)|2, (2.18)
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where Gr(ω, t) is given by

Gr(ω, t) =

∫
dτGr(t, τ)eıωτ . (2.19)

From Eq. 2.16, one obtains for the occupation at zero-order an expression of the same
form of the static limit (Eq. 2.7) with the substitution Eg ↔ Eg(t), acquiring a weak time
dependence through the slow variable t. Adding the first order correction Eq. 2.17 into the
Eq. 2.18, and neglecting terms proportional the square velocity of the oscillator, I obtain
for the occupation

〈n̂〉(t) '
∑
α=L,R

~Γα

∫
d~ω
2π

fα(ω)

(
1 +

~Γ

2

∂Eg
∂t
|Gr

0(ω, t)|2 ∂
∂ω

)
|Gr

0(ω, t)|2. (2.20)

Therefore, the force Eq. 2.6 modifies to

F (x) 7→ F ′(x, v) = F (x)− A(x)v, (2.21)

where v = ẋ is the velocity of the oscillator.
In order to include the effect of a `fast´ electronic environment on the oscillator motion, I

propose to take into account the fluctuations of the force[112] acting on the oscillator. These
are induced by the intrinsic `quantum´ fluctuations of the electronic subsystem. I add to
the average force contribution Eq.2.6, suitable corrected by the damping term, Eq.2.21,
a stochastic fluctuating term that is able to take into account the effect of the electronic
quantum fluctuations on the classical dynamics of the oscillator. I estimate the noise strength
evaluating the average of the square fluctuation of the force over the electronic steady state.
This fluctuating term is directly related to the fluctuation of the electron occupation

〈δF̂ (t)δF̂ (t′)〉 = λ2〈δn̂(t)δn̂(t′)〉 = λ2
(
〈n̂(t)n̂(t′)〉 − 〈n̂(t)〉〈n̂(t′)〉

)
. (2.22)

Decoupling the term 〈n̂(t)n̂(t′)〉 with the Wick theorem, one obtains

〈δF̂ (t)δF̂ (t′)〉 = λ2~2G<(t′ − t)G>(t− t′) = λ2~2G<
0 (t′ − t)G>

0 (t− t′), (2.23)

where I have used zero-order time-dependent Green functions (as in Eq. 2.16) in order to
take only first order corrections in the adiabatic ratio ω0

Γ
. At this level of approximation,

I have obtained a multiplicative colored noise. According to the adiabatic approximation,
I can further simplify the fluctuating term retaining only the zero-frequency component of
the noise

〈δF̂ (t)δF̂ (t′)〉 = λ2~2

∫
dεeıε(t−t

′)

∫
dω

2π
G<

0 (ω + ε)G>
0 (ω) ' D(x)δ(t− t′), (2.24)

corresponding to electronic times scales comparable with that of the oscillator. I have there-
fore obtained a multiplicative white noise in the equation of motion of the oscillator. The
resulting Langevin equation for the oscillator dynamics becomes

mẍ + A(x)ẋ = F (x) +
√
D(x)ξ(t), (2.25)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′),

where ξ(t) is a standard white noise term. Explicitly, the damping term A(x) is given by
(from Eq. 2.20)

A(x) =
4mω0

π

~ω0

~Γ

Ep
~Γ

∑
α=R,L

(
1

[(µα−Eg−λx~Γ
)2 + 1]2

)
, (2.26)
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while the fluctuating term is (from Eq. 2.24)

D(x) =
mω0Ep
π

~ω0

~Γ

∑
α=L,−R

(
arctan(

µα − Eg − λx
~Γ

) +
µα−Eg−λx

~Γ

[(µα−Eg−λx~Γ
)2 + 1]

)
,

(2.27)

where it is understood that
∑

α=L,−RK(α) = K(L)−K(R), for a generic function K(α). I
note that Eqs. 2.25, 2.26 and 2.27 are identical to that obtained in Ref.[27, 28]. Introducing
a natural temporal unit t0 = 1/ω0, the dimensionless damping Ā(x̄) and fluctuating D̄(x̄)
coefficients result proportional to the adiabatic ratio ω0/Γ. Regarding the spatial dependence
of the damping term, one can note in Fig. 2.1 (panels C-D) that it is almost localized on the
position of the local minima of the static potential. The fluctuating coefficient, as shown in
Fig. 2.1 (solid (black) line in panels E-F), vanishes at equilibrium (bias voltage Vbias = 0).
Only applying finite bias it becomes different from zero. In Fig. 2.1 (dashed (red) and
dashed dotted (green) lines in panels E-F), I show that its spatial extension increases as the
bias increases.

2.1.3 Numerical solution of Langevin equation: electronic observ-
ables and limits of the stochastic approach

From the Langevin equation Eq. 2.25 it is possible to derive the distribution probabilities
P (x) and P (v) of the position and velocities variables of the oscillator. I have evaluated
them solving the second order stochastic differential equation with the 4-order stochastic
Runge-Kutta algorithm developed by R. L. Honeycutt.[113, 114] First of all, as suggested in
Ref.[115], in order to solve my second order ordinary differential equation with multiplicative
white noise, I decompose the problem in a set of three first order differential equations

ẋ = v

mv̇ = F (x)− A(x)v +
√
D(x)ξ(t),

ξ̇(t) = −ζξ(t) + η(t), (2.28)

where the auxiliary variable ξ(t) is able to mimic a white noise uncorrelated variable1. The
third equation takes into account the effect of spatial dependence of the noise involving a
non multiplicative noise term η(t). For my simulations I have fixed a time step ts = 0.1τ
(τ = 1/ω0) and set long simulation times up to T = 109ts. Within this settings, the algorithm
shows an excellent stability in the whole range of model parameters. In order to construct
my histograms, I have sampled the values of x(t) and v(t) every 100 time steps. I have
therefore obtained the distribution probabilities of the stationary state of the oscillator.

Given the assumption about the separation between the slow ionic (vibrational) and fast
electronic (tunneling) timescales, the problem of evaluating a generic observable (electronic
or not) of the system reduces to the evaluation of that quantity for a fixed position x and
velocity v of the oscillator, with the consequent averaging over the stationary probability
distributions, P (x) and P (v). Therefore, for a generic observable which depends only by
position, O(x), the averaged quantity is

〈O(x)〉 =

∫
dxP (x)O(x), (2.29)

1In order to be sure of simulate a standard white noise with the variable ξ(t), I’ve chosen ζ such that its
reciprocal is much smaller than the time step used to simulate dynamics 1/ζ << τ .
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while, for an observable which depends on velocity variable only, one has

〈O(v)〉 =

∫
dvP (v)O(v). (2.30)

The current, the spectral function and the electronic occupation depend only on the position
variable

I(x) =
e~
2π

∫ µL

µR

dω
ΓLΓR

Γ
A(ω, x), (2.31)

A(ω, x) =
~Γ

(~ω − Eg − λx)2 + ~2Γ2/4
, (2.32)

〈n̂〉(x) =
1

2
+

1

2π

∑
α=R,L

arctan

[
µα − Eg − λx

~Γ/2

]
.

(2.33)

The position distribution probabilities P (x) have been already discussed by authors of
Ref.[28] in the extremely strong coupling regime Ep >> ~Γ >> ~ω0. They analyze the
case where the static potential shows two symmetric or asymmetric wells separated by a
very high barrier. In this regime, solving numerically the Fokker-Plank equation of the
problem, they estimate the switching-rates by evaluating the escape times from each well of
the generalized potential. Indeed, this point is interesting for clarifying the role of electron-
phonon interaction in the appearance of a bistable behavior in single molecule tunneling
devices. One of the results of this thesis is that the multistability and hysteretic behavior
in the current-voltage characteristic disappear if the dynamical effects of the oscillator mo-
tion are taken into account. To clarify this point, I focus here the case (already considered
in Ref.[28]) where the switching times between different oscillator potential wells are very
long, and the oscillator jumps between two states (see panel A of Fig. 2.2) corresponding
to very small electronic currents. In order to explore the same regime of parameters, very
long simulation times as T = 109ts are necessary for sampling the entire phase space ex-
perienced during the dynamics. Nevertheless, as shown in Panel B of Fig. 2.2, I get an
excellent agreement with Pistolesi et al.[28] results. It is interesting to note that in Ref.[28],
the authors consider a broadening Γ which is twice the values I consider in this thesis (I
show in the caption of Fig. 2.2 the comparison between the simulations taking correctly into
account of this factor). In the small bias regime, a strong suppression of the current can be
observed. The oscillator spends a long time in each potential well, suddenly jumps into the
other and then come back in the same way (see panel A in Fig. 2.2). For clarity I show in
panel C of Fig. 2.2 the corresponding position distribution probability P (x). The maxima
of P (x) correspond to two low current carrying states: the position of the molecular energy
level is far above (Eg ∼ Ep) or below (Eg ∼ −Ep) the chemical potential of the leads. For
sufficiently high bias voltage, as discussed in subsection 2.1.1, appears a third minimum in
the static potential. This minimum corresponds to a high-current carrying state determining
a continuous enhancement of the current, against the abrupt discontinuity (or hysteresis)
which would been obtained in the static approximation (dashed line in panel B of Fig. 2.2).

Non gaussian features of P(v) and study of the average kinetic energy of the
oscillator

In this section I focus my attention on the oscillator observables O(v) which depend on the
velocity v. I remark that the oscillator is coupled to the electronic bath only through the
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Figure 2.2: Panel A: Solution of the Langevin equation Eq. 2.25 in the extremely strong
coupling regime Ep >> ~Γ >> ~ω0 (ω0/Γ = 10−3) for ~Γ/2Ep = 0.08, Eg = Ep and
eVBias = 0.1. Panel B: Current (eΓ units) voltage (eVbias in 2Ep units) characteristic for the
same value of ~Γ/2Ep as above. Solid (red) curve is drown from Ref[28], square line indicates
my dynamic simulation and dashed line indicates static I-V. Panel C: Dimensionless position
distribution probability for the same values of parameters as in Panel A. The dimensionless
position x̄, time t̄ and distribution function P̄ are defined as x̄ = x/x0, t̄ = t/t0, P̄ =
P/(1/x0), with x0 = λ

mω2
0

and t0 = 1/ω0, respectively.

interaction term Ĥint, Eq. 2.5. As the bias voltage increases, this bath is strongly driven out
of equilibrium. It is therefore important to analyze the effect of the electronic subsystem on
the oscillator distribution probability P (v) as a function of the bias voltage. In the small
bias regime, regardless the value of the gate voltages Eg and the coupling Ep, as shown in
Fig. 2.3 (panel A) for different adiabatic ratios (from ω0 = 10−3 to ω0 = 0.25), the velocity
distribution probabilities P (v) are gaussian. In this regime, the non-equilibrium electronic
bath behaves like a conventional bath for the oscillator with an `effective´ temperature
linearly proportional to the bias voltage. As described in the inset of Fig. 2.4, at arbitrary
Ep and gate voltages the kinetic energy curves show a common linear trend at low bias with a
slope Vbias/4 in agreement with Mozyrsky et al. (I get Vbias/8 because I choose a broadening
~Γ half than used in Ref.[27]). As one increases the bias voltage, the (logP (v) vs. v2) plot
starts to deviate from a linear trend, as shown in Fig. 2.3, panels B−C−D. This behavior
indicates that the oscillator dynamics cannot be simply reduced to an effective temperature
in this regime, pointing to a very significant role of the dynamical effects.

In the adiabatic approximation, the average kinetic energy of the oscillator has an impor-
tant role. It describes the effect of the `back-action´ of the non-equilibrium electronic bath
on the oscillator dynamics and can be used, as shown below, as a tool to assess the validity
of the adiabatic approximation. I show in Fig. 2.4 the behavior of the kinetic energy 〈EKin〉
for different interaction strengths Ep as function of the bias voltage. First of all, I note that,
regardless the values of Ep, for Vbias = 0 all kinetic energy curves show 〈Ekin〉 = 0. At
equilibrium, the oscillator `thermalizes´ to the temperature of the electronic bath (Tel = 0).
I have also plotted two constant energy lines that specify the range of validity of my ap-
proximation, E = ~ω0/2 ∼ kBTD/2 and E = ~Γ. At intermediate bias values, the curves
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Figure 2.3: Panel A: log-plot of dimensionless velocity probability distribution function vs.
v2, at different adiabatic ratios (the values of ω0 shown in the figure are in Γ units), fixed bias
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The dotted (red) lines indicate that curves have a good linear fit. Panels B−C−D: log-plot
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respectively. The dashed (red) line indicates linear fitting. Dotted (green) and dash dotted
(blue) lines indicate polynomial fitting of 2nd and 4th degree. Vbias values are expressed in
~Γ/e units. The dimensionless distribution function is defined as P̄ = P/(mω0/λ), while v2

is expressed in (λ/mω0)2 units.

show a departure from the common linear behavior observed in the small bias regime, more
evident as the interaction strength increases. The kinetic energy curves corresponding to
Ep = 2.0 and Ep = 3.0 show an interesting plateau at intermediate bias where increasing the
bias does not produce an increase of the average kinetic energy. Actually, at Ep = 3.0, I find
even a very slight decrease. I also note, in the same regime, that the distribution velocity
probabilities are not gaussian.

Limits of the adiabatic approach

As mentioned, I can use the average kinetic energy of the oscillator to fix the range of
validity of the adiabatic approximation. If this energy is lower than the characteristic Debye
temperature of the oscillator 〈EKin〉 < ~ω0/2 ∼ kBTD/2, I actually explore a region, as
discussed in Ref.[116], where quantum correlation effects can not be disregarded. I call this
region Non Classical or Quantum Region (QR). If kBTD/2 < 〈EKin〉 < ~Γ, that is the kinetic
energy is lesser than the characteristic energy scale of the electronic degrees of freedom and
simultaneously greater than characteristic Debye temperature, a huge number of vibrational
quanta (phonons) are present in the system. I call this region Classical Adiabatic (CAR).
When the dynamical kinetic energy of the oscillator exceeds the characteristic energy scale
of the electron dynamics 〈EKin〉 > ~Γ, I’m clearly going beyond the limit of adiabatic
approximation I start with. I define this region Classical Non Adiabatic (CNAR). I expect
that in the CAR my approximation is very accurate. By using this data, I’m now able to
build up a phase diagram in the plane (Ep-Vbias) for different values of gate voltages (Fig.
2.5) and different adiabatic ratios (Fig. 2.6). It is interesting to note that, in Fig. 2.5,
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Figure 2.4: Main: plot of average kinetic energy 〈EKin〉 as function of the bias voltage at
fixed adiabatic ratio ω0/Γ = 0.1 and gate voltage Eg = 0, for different interaction strengths
Ep: Ep = 0.1 square (black) curve, Ep = 1.0 circle (red) curve, Ep = 2.0 triangle (green)
curve, Ep = 3.0 star (blue) curve. Two constant energy lines E = ~ω0/2~Γ = 0.05 (dashed)
and E = ~Γ = 1 (dotted) are also plotted. Inset: Average kinetic energy 〈EKin〉 for low
bias voltages for the same parameter values of the main plot. The dotted (magenta) line
indicates the linear approximation eVbias/8 derived in Ref.[27] (I choose a broadening ~Γ half
than used in Ref.[27]). All the quantities (〈EKin〉, Ep, Eg and eVbias) are in unit ~Γ.
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Figure 2.5: Phase diagram at fixed adiabatic ratio ω0/Γ = 0.05 (the value of ω0 shown in
the figure is in Γ units). The dashed (black) line indicates the QR boundary for Eg = 0 and
Eg = 1. The dotted (red) and dashed dotted (green) lines refer to the CAR boundary for
Eg = 0 and Eg = 1, respectively. Ep, Eg and eVbias are expressed in unit ~Γ.
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are in Γ units). Ep, Eg and eVbias are in ~Γ units.

the QR-CAR boundary is almost independent from the gate voltage in the limit of small
adiabatic ratio. The CAR-CNAR boundary is slightly dependent from the gate voltage
showing an enlargement of the CAR with Eg. Globally, one can note that, apart for the QR
(small bias), the CAR enlarges as one increases the electron oscillator coupling.

As expected, as I increase the adiabatic ratio, the QR expands reaching great values of
bias voltage Vbias, Fig. 2.6. In particular, in the down-triangle (blue) curve (adiabatic ratio
ω0/Γ = 0.25) one notes that the QR-CAR boundary reach a ``maximum´´ in correspondence
of Ep ' 2 and Vbias ' 2.8. For Ep < 2, the bias values identifying the QR-CAR boundary
increase as the voltage increases. For couplings Ep > 2, one can note an inversion of this
behavior: the CAR starts to extend for a very large area of the phase diagram except for
a narrow region at small bias (QR) and for a region at bigger bias values (CNAR). This
means that, even for intermediate adiabatic ratios, I need sufficiently strong couplings Ep in
order to obtain a predominant CAR in the phase diagram. Moreover, this is due to the fact
that the node between kinetic energy curves and the Debye line occurs in the non monotonic
intermediate bias region (see Fig. 2.4). On the other hand, the CAR-CNAR boundary is
almost independent from the adiabatic ratio (for not too high interaction strength). This
is what is expected from physical grounds and constitutes a self-consistent check of the
approximation used.

Electronic transport properties

I can now analyze the electronic transport properties resulting from the average over the
dynamical fluctuations of the oscillator motion. I first study the conductance-voltage curves
as function of the EOC strength (Fig.2.7), then I show how the dynamical fluctuations
strongly renormalize the infinite mass approximation results studying the I-V curves for
different adiabatic ratios (Fig. 2.8). Finally, I investigate the dependence of the kinetic
energy and of the I-V characteristic as function of gate voltage studying the properties of
the junction as function of a transversal electric field (Fig. 2.9).

In Fig. 2.7 I show several conductance curves for different interaction strength, Ep =
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Figure 2.7: Panel A: Conductance (in units G0 = e2

h
) in the static approximation as

function of bias voltages, for ω0/Γ = 0.05, Eg = 0 at different interaction strengths
Ep = 0.05, 0.5, 1.0, 2.0, 3.0. Panel B: Dynamical correction to the conductance for the same
parameter values of panel A. The value of ω0 shown in the figure is in Γ units while all other
quantities (Eg, Ep and eVbias) are expressed in ~Γ units.

0.05 − 3, for ω0/Γ = 0.05 and Eg = 0. The comparison between static (panel A) and
dynamical (panel B) approximation is very interesting. The static solution shifts the non
interacting resonance by a quantity proportional to the polaronic energy Ep (panel A). As
one can see, this effect strongly reduces the low bias conductance. The dynamical correc-
tion, on the other hand, reduces the polaronic shift compared to the static curves and also
broadens (as a result of the very broad non-equilibrium distribution probabilities P (x)) the
electronic resonance. In the intermediate bias regime, I note a strong enhancement of the
conduction far from the electronic resonance where a very small current is observed in the
static approximation. Moreover, including the dynamical fluctuations, the reduction of the
small bias conductance is less pronounced. I note also that my dynamical approximation
is close to the static solution in the small bias regime, while is substantially different in
intermediate one. The dynamical correction strongly renormalizes the static results even for
small adiabatic ratios.

I analyze in Fig.2.8 the behavior of the electronic occupation (panel A) and current
voltage characteristic (panel B) at strong coupling Ep = 2, for different adiabatic ratios
ω0/Γ = 0.01, 0.1, 0.25 and at Eg = 0. In the low bias regime, as a result of strong electron-
oscillator interaction, the molecular level renormalizes itself far below the chemical potential
of the leads. I note a large difference between the non interacting occupation value (〈n̂〉 '
0.5) and the interacting one (〈n̂〉 ' 1). As one increases the bias voltage, many charges are
pumped out the molecular `dot´. In the large bias regime the stationary charge quantity
in the molecular `dot´ reduces approaching the non interacting value (〈n̂〉 ' 0.5). The
non-equilibrium broadening of the distribution probabilities P (x), then, induces a strong
reduction of the conduction threshold with respect to the static solution (solid magenta
curve in Fig. 2.8 panel B). I note a small variation of physical properties with respect to the
adiabatic ratio at intermediate voltages, in the CAR in correspondence to non Non-Gaussian
regime of the distribution probabilities.

In many molecular transport experiments, one records the current or the conductance
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varying the transverse electric field on the molecule at fixed source-drain voltage. For this
reason, in the panel A of Fig. 2.9, it is shown the current for different bias voltages at
moderately low electron-oscillator coupling (Ep = 0.25) as function of gate voltage. In this
regime no bistability is observed (Ep < ~Γ). The static and dynamical approximations agree
in the small bias regime (solid and square lines in panel A of Fig.2.9). Increasing the bias
voltage, the dynamical correction becomes more important showing a suppression of the
current at low Eg. This is caused by the spectral weight broadening due to the average over
the position distribution probabilities P (x). From panel B of Fig. 2.9 (square (red) line),
one can learn that, in the small bias regime, the kinetic energy is independent of the gate
voltage, while, as the voltage increases, it shows a symmetric drop with respect to polaronic
energy Eg = Ep, corresponding to the symmetric regime. The I-V curve also shares this
symmetry. This effect can be explained observing that, when the `bare´ molecular level and
the renormalized one are both in the bias window, the energy associated to the electronic
current flow is more efficiently transferred to the oscillator. When the electronic resonance
is far above or below the chemical potential of the leads there is a less effective coupling
between the oscillator and the electronic subsystem.

2.2 The two-site SSH model

The first step towards a more realistic description of a molecular junction is to consider a
model Hamiltonian composed by two sites connected by an internal hopping t. In particular
dimer molecules[59], this hopping can be controlled by a vibrational mode which assists the
electron tunneling through the two molecular sites. In this case, a guess for the molecular
Hamiltonian is given by

ĤSSH
Mol = Eg(d̂

†
1d̂1 + d̂†2d̂2)− t(x)(d̂†1d̂2 + h.c.),

(2.34)

where I consider, as in the SSH model, an electron hopping

t(x) = t− αx (2.35)

depending linearly on the lattice displacement x associated with the intermolecular vibra-
tional mode. The molecular sites have a common energy Eg and are described in terms

of creation (annihilation) operators d̂†i (d̂i) , i = 1, 2. The SSH model was indroduced to
describe the transport properties of conducting polymers (e.g. polyacetylene [108]) and the
two site case represents the shortest version of a molecular wire[109]. A generalization of
this two site model was proposed in Ref.[111] for the study the electron transport of dimer
molecules interacting with a single internal vibrational mode.

Most of the molecular devices studied experimentally so far[95, 96, 59] have been weakly
coupled to the leads. This corresponds to the bare tunnel broadening ~Γ of molecular elec-
tronic levels smaller that the energy required to excite one oscillator quantum (phonon) ~ω0.
In the strong-coupling regime, when the electron-oscillator interaction energy Ep exceeds
~ω0, the physics is governed by the Franck-Condon effect[101, 102, 103], i.e. the tunneling
of an electron onto the molecule with the simultaneous emission or absorption of several
phonons is more probable than elastic tunneling. The current as the function of voltage
exhibits steps separated by ~ω0/e,[20] and the conductance show phonon sidebands[111].

As in the AH model, I study here the case of slow phonons at strong coupling, ω0 << Γ
and eVbias > ~ω0, considering the dynamics of the vibrational mode ``classical´´. Moreover,
because of the direct coupling of the electron-oscillator interaction to the inter-molecular
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Figure 2.10: Sketch of junction within the SSH model in an energy scale.

hopping t, one expects that the role of the dynamical fluctuations becomes crucial to deter-
mine the physical scenario described by the model. The total Hamiltonian is

ĤTOT = Ĥel−SSH +Hosc, (2.36)

where
Ĥel−SSH = ĤSSH

Mol + ĤTun + Ĥleads, (2.37)

with Ĥleads and Ĥosc given by Eq. 2.3 and Eq. 2.4, respectively. The tunneling Hamiltonian
ĤTun is given by

ĤTun =
∑
k,L

(Vk,Lĉ
†
k,Ld̂1 + h.c.) +

∑
k,R

(Vk,Rĉ
†
k,Rd̂2 + h.c.), (2.38)

indicating that the left (right) lead is coupled only to the molecular site 1(2). In real space,
the molecular Hamiltonian ĤSSH

Mol is not diagonal. I therefore perform a transformation which
diagonalizes the molecular isolated problem

ĉ†γ1 =
d̂†1 + d̂†2√

2
,

ĉ†γ2 =
d̂†1 − d̂

†
2√

2
, (2.39)

with the same transformation for corresponding annihilation operators. This transformation
leaves invariant Ĥleads but changes ĤSSH

Mol and ĤTun. Explicitly I have

ĤSSH
Mol = εγ1(x)ĉ†γ1 ĉγ1 + εγ2(x)ĉ†γ2 ĉγ2 (2.40)

ĤTun =
∑
i=1,2

[∑
k

(
Vk,L√

2
ĉ†k,Lĉγi + h.c.) + (−1)i−1

∑
k

(
Vk,R√

2
ĉ†k,Rĉγi + h.c.)

]
,

(2.41)
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where

εγ1(x) = ε+ (t− αx),

εγ2(x) = ε− (t− αx). (2.42)

As one can see, the above transformation allows us to take into account exactly of the
intermolecular hopping’s effect. The molecular Hamiltonian ĤSSH

Mol (Eq. 2.40) is equivalent
to that of a non interacting two level system. In Fig. 2.10 a schematic picture of the junction
in an energy representation is shown. I observe that there are two electronic resonances,
corresponding to a `bonding´ and `anti-bonding´ states whose position is renormalized by
the electron-oscillator interaction. From now on I work in the energy space for convenience.

In the following, I will (subsection 2.2.1) first analyze the coupled electron-oscillator
problem within the SSH model in the limit of infinite mass for the oscillator. Then, I will
construct, as done in AH model, the stochastic Langevin equation for the dynamics of the
oscillator (sec. 2.2.2). In the subsection 2.2.3 I will describe the numerical results.

2.2.1 Out of equilibrium Born-Oppenheimer approximation: infi-
nite mass (static) case

As in AH model, performing the limit m 7→ ∞, at zero-order static approximation, I neglect
the kinetic energy of the oscillator. The electronic dynamics, with the oscillator displacement
x as a free parameter, is therefore equivalent in the energy space to a non-interacting two level
problem with energy levels renormalized by the `polaronic´ shift −αx, Eq. 2.42. In what
follows, I consider the case of symmetric coupling of the molecule to the leads ~ΓL = ~ΓR in
the wide-band approximation. Here, I briefly show how calculate the generalized potential
of the oscillator coupled to the double `dot´ molecular junction.

Within the Keldysh formalism, I use the equation of motion approach to calculate the
molecular Green functions in stationary non-equilibrium conditions. In the zero order static
approximation, I have the following equation of motion for the molecular retarded Green
function (

ı~ ∂
∂t
− εγ1(x) + ı~ΓL+~ΓR

4
ı~ΓL−~ΓR

4

ı~ΓL−~ΓR
4

ı~ ∂
∂t
− εγ2(x) + ı~ΓL+~ΓR

4

)

×
(
Gr

1,1(t, t′) Gr
1,2(t, t′)

Gr
2,1(t, t′) Gr

2,2(t, t′)

)
= δ(t− t′)

(
1 0
0 1

)
, (2.43)

which acquires a 2 × 2 matrix structure. A similar equation is valid also for the advanced
Green function. In the hypothesis of symmetric coupling with the leads, one obtains two sep-
arate problems for the molecular energy levels εγ1(x) and εγ1(x), respectively. The diagonal
elements of the retarded (advanced) Green function in Fourier space are

G
r(a)
j,j (ω, x) =

1

~ω − εγj(x) + (−)ı
(

~ΓL+~ΓR

4

) , j = 1, 2

(2.44)

while the non diagonal terms are zero.
The lesser matrix Green function is instead given by

G<(ω, x) = ı
~Γ

4

(
(nL + nR)|Gr

1,1|2 (nL − nR)Gr
1,1G

a
2,2

(nL − nR)Gr
2,2G

a
1,1 (nL + nR)|Gr

2,2|2
)
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where, for sake of simplicity, I have dropped the frequency ω and the displacement x depen-
dence. The diagonal terms of the lesser Green function are directly related to the electron
``densities´´ (these obviously not correspond to the densities in real space)

〈n̂γi〉(x) =
1

2
+

1

2π

∑
α=R,L

arctan

[
µα − εγi(x)

~Γ/4

]
, i = 1, 2.

For sake of clarity, I show here that the population in real space of the left and right molecular
sites are expressed in terms of lesser Green functions (Eq. 2.45)

〈n̂i〉(x) =
1

2

∫
dω

2πı

(
G<

1,1 +G<
2,2 + (−1)i+1

(
G<

1,2 +G<
2,1

))
, (2.45)

where i = 1, 2.
The force exerted on the oscillator is given by

FSSH = −kx+ α(〈n̂γ1〉 − 〈n̂γ2〉)(x). (2.46)

Taking care of Eq. 2.45 and Eq. 2.46, one can straightforwardly compute the expression of
the generalized potential in non-equilibrium conditions (µR = −eVbias/2, µL = eVbias/2)

VSSH(x) =
1

2
kx2 −

∑
α=L,R

∑
i=1,2

[
µα − εγi(x)

2π
arctan

(µα − εγi(x)

~Γ/4

)
− ~Γ

16π
ln[16(µα − εγi(x))2 + (~Γ)2]

]
. (2.47)

This generalized oscillator potential depends parametrically on the new electronic energy
scale introduced in the problem: the intermolecular hopping t ``hidden´´ in εγi(x), see Eq.
2.42. Furthermore, it depends on the polaron energy, Ep, the gate voltage Eg, and the bias
Vbias.

In Fig. 2.11 I present some features of the generalized potential VSSH(x) which will
allow us to understand the effect of the non-equilibrium electronic system on the ``static´´
stretching of the oscillator (solutions of the equation FSSH = 0). Moreover, this will help us
to clarify the role of the dynamical effects in the transport properties that I will show later.

I focus here on the weak coupling (Ep/~Γ << 1) regime where moreover the intermolec-
ular hopping t is larger than the coupling ~Γ of the molecule with the leads. In the panel
A, I show the generalized potential of the SSH model at fixed EOC strength, Ep = 0.2, in-
termolecular hopping t = 2.0, as function of the bias voltage Vbias. One can observe that, as
the bias increases, the position of generalized potential minimum goes from x ' −1 (corre-
sponding to 〈nγ1〉−〈nγ2〉 ' −1) to x ' 0 (corresponding to 〈nγ1〉−〈nγ2〉 ' 0). The oscillator
switches from a full stretching configuration (x ' −1) to a no-stretching one (x ' 0). At
equilibrium, I have a physical situation where the renormalized anti-bonding electron level
εγ1(x) is above the chemical potential of both leads, while the bonding one εγ2(x) is below
them. The classical ``spring´´ is fully compressed (x ' −1) and this corresponds in real
space to molecular sites half-filled (〈n1〉 ' 〈n2〉 ' 0.5). Studying the electronic populations
of left (1) and right (2) molecular sites (Eq. 2.45 ), one can observe that, if one increases
the bias voltage, the left site starts to empty, while the right one populates, reaching, for
eV ∗bias/2 ' t − αx(V ∗bias) (hopping value properly renormalized), a small difference of popu-
lation roughly equal to 〈n1〉 − 〈n2〉 ' −0.1. For sufficiently high bias, the molecular level
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Figure 2.11: Panel A:Spatial dependence of the dimensionless generalized static potential
V̄SSH(x̄) at ω0/Γ = 0.1, Ep = 0.2, gate voltage Eg = 0, intermolecular hopping t = 2.0, for
different values of the bias voltage: Vbias = 0.0 (solid (black) curve), Vbias = 3.5 (dashed
(red) curve), Vbias = 4.0 (dotted (green) curve), Vbias = 6.0 (dashed dotted (blue) curve).
The vertical lines indicate the position of the minima of the potential. Panel B: Same as
above for ω0/Γ = 0.1, Ep = 1.4, t = 0.2, gate voltage Eg = 2 and different values of the bias
voltage: Vbias = 0 (solid (black) curve), Vbias = 4 (dashed (red) curve), Vbias = 8 (dotted
(green) curve). The potential is expressed in ~Γ units (V̄SSH = VSSH/~Γ). Vbias values are
expressed in ~Γ/e units, where e is the electron charge. Eg, Ep and t are expressed in ~Γ
units. The dimensionless position variable x̄ is defined as x̄ = x/x0 with x0 = λ

mω2
0
.

populations tend again to the common value 0.5. As I shall see in next section, the inclu-
sion of the dynamical effects allows to clarify the physical picture arising from the above
description, in terms of an energy balance between the electronic and oscillator subsystems.

At static level, it is also interesting to discuss the extremely strong coupling regime
Ep > ~Γ > t, for gate voltage Eg = 2.0 (panel B). In this case, at equilibrium, I’m describing
a physical situation where the renormalized bonding and anti-bonding electron levels are
both above the chemical potential (Vbias = 0). The molecular sites in real space are both
almost empty (〈n1〉 ' 〈n2〉 ' 0), and the oscillator is in a no-stretching configuration
x ' 0 (solid (black) curve). Increasing the bias voltage, the generalized potential develops
different minima. At intermediate bias, the minimum corresponding to x ' −0.5 prevails
(dashed (red) curve). In this regime, the non-interacting real space populations 〈n1〉 and 〈n2〉
starts to increases asymmetrically going to the asymptotic values 〈n1〉 ' 0.8, 〈n1〉 ' 0.2.
Instead, the interacting real space populations go to the same value 〈n1〉 ' 〈n2〉 ' 0.25,
corresponding to a very high current-carrying configuration. In this regime, the generalized
potential develops two asymmetric minima near x ' −0.5 and x ' 0.5 separated by a barrier.
For sufficiently large bias voltage only the minimum x ' 0 corresponding to a low-current-
carrying configuration survives. In this case, including the interaction effects, the left site is
almost filled 〈n1〉 ' 0.9, while the right one is almost empty 〈n1〉 ' 0.1, showing that, as
result of the strong electron-phonon interaction, the bias voltage does not manage to deplete
both molecular sites. As I shall see later, the features of the static potential obtained in this
case determine the possibility to observe in the I-V a strong Negative Differential Resistance,
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Figure 2.12: Panels A-B: Spatial dependence of the dimensionless friction coefficient Ā(x̄)
and fluctuating term D̄(x̄) at ω0/Γ = 0.1, Ep = 0.2, gate voltage Eg = 0, intermolecular
hopping t = 2.0, for different values of the bias voltage: Vbias = 0.0 (solid (black) curve),
Vbias = 3.5 (dashed (red) curve), Vbias = 4.0 (dotted (green) curve), Vbias = 6.0 (dashed
dotted (blue) curve). Panels C-D: Same as above for ω0/Γ = 0.1, Ep = 1.4, t = 0.2, gate
voltage Eg = 2 and different values of the bias voltage: Vbias = 0 (solid (black) curve),
Vbias = 4 (dashed (red) curve), Vbias = 8 (dotted (green) curve). The friction coefficient in
mω0 units (Ā = A/mω0) and the fluctuating term in λ2/ω0 units, (D̄ = D/(λ2/ω0)). Vbias
values are expressed in ~Γ/e units, where e is the electron charge. Eg, Ep and t are expressed
in ~Γ units. The dimensionless position variable x̄ is defined as x̄ = x/x0 with x0 = λ

mω2
0
.

when the dynamical effects of the oscillator are neglected.

2.2.2 Abiabatic Approximation: calculation of damping and fluc-
tuating term

As I have discussed after the Eq. 2.43, the assumption of symmetric coupling to the leads
allows to disentangle in the energy space the problem for the molecular bonding and anti-
bonding levels εγi(x). Repeating site-by-site the construction introduced in the previous
section for AH model, I can straightforwardly set for my two site SSH model a Langevin
equation for the oscillator dynamics, very similar to that derived in AH model. The new
coefficients, F (x), A(x) and D(x) are given by

F (x) = −kx+ λ
1

2π

∑
α=R,L

∑
i=1,2

arctan

[
µα − εγi(x)

~Γ/4

]
, (2.48)

A(x) =
16~kEp
π~2Γ2

∑
α=R,L

∑
i=1,2

(
1

[(
µα−εγi (x)

~Γ/4
)2 + 1]2

)
, (2.49)
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D(x) =
kEp
π

∫
dω
[
G<

1,1G
>
1,1 +G<

2,2G
>
2,2 + 2G<

1,2G
>
2,1

]
=

=
2kEp
πΓ

∑
α=L,−R

∑
i=1,2

{(
arctan(

µα − εγi(x)

~Γ/4
)

+

µα−εγi (x)

~Γ/4

[(
µα−εγi (x)

~Γ/4
)2 + 1]

)
+ 4

(
1(

εγ1(x)−εγ2(x)

~Γ/4

)2

+ 4

)
×

[
arctan

(µα − εγi(x)

~Γ/4

)
+

(−1)i(
εγ1(x)−εγ2(x)

~Γ/4

) ×
ln
(

1 +
(µα − εγi(x)

~Γ/4

)2)]}
, (2.50)

where in the last expression I have dropped the frequency ω and the displacement x depen-
dence in the Green functions. I end this section briefly discussing some of the peculiarities
of the damping function A(x) and of the fluctuating term D(x). As regards the damping
term (panel A and C in Fig. 2.12), one can observe that is located in suitable points and is
strongly space dependent. It is interesting to note that, as in the AH model case, it survives
also for Vbias = 0 (solid (black) curves in Panels A-C). In this case, one can also note that
for Ep << t (panel A), A(x) is almost zero in the interval mostly explored in the dynamics
(−2 < x < 2), while, for Ep >> t (panel C), shows two pronounced peaks in that interval.
As one can see, the position of A(x)’s maxima is strongly bias dependent.

As concerns the fluctuating term (Panels B and D in Fig. 2.12), one can note that, as in
the AH model, is identically zero at equilibrium. When the bias increases, it becomes almost
different from zero in the region mostly explored in the dynamics (−2 < x < 2). In Panel B
of Fig. 2.12 one can observe that the spatial extension of the fluctuating term increases as
the bias increases, while, in Panel D, in the interesting strong coupling regime (Ep >> t),
it shows a maximum for x = 0, the no-stretching equilibrium state of the oscillator. It is
important to re-stress here that the space dependence of these terms determines the non-
gaussian character of the distribution probabilities P (x) and P (v) of the oscillator.

2.2.3 Analysis of Numerical results

As done for the AH model, I here show the results arising from the numerical simulation
of the Langevin equation of the SSH model. I evaluate the fundamental ingredients of the
Adiabatic approximation: the distribution probabilities of the oscillator. These allows us to
calculate the dynamical properties of the oscillator (average kinetic and potential energy) as
well as the electronic transport properties of the molecular junction.

Study of the average kinetic energy of the oscillator and limits of the Adiabatic
approach

First of all, I study the behavior of velocity distribution probabilities P (v) resulting from
the solution of the Langevin equation associated to the SSH model. As in AH model, I
have verified that in the small bias regime, regardless the value of the gate voltages Eg, the
polaronic coupling Ep and the hopping t, the dimensionless velocity distribution probabilities
P (v) are gaussian. The introduction of a new energy scale in the problem does not much
modifies the physical picture I obtained in AH model in the small bias regime: the non-
equilibrium electronic bath behaves like a conventional bath for the oscillator with an effective
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Figure 2.13: Phase diagram at fixed adiabatic ratio ω0/Γ = 0.1, Eg = 0, for different
intermolecular hopping t = 0.2− 0.6− 1.0− 2.0. The value of ω0 shown in the figure is in Γ
units, while all other quantities (Eg, Ep, t and eVbias) are expressed in ~Γ units.

temperature linearly proportional to the bias voltage. In particular, in the SSH model case,
it is worth noticing that the average kinetic energy exhibits a slope twice that found in the
AH model. This is a consequence of the transformation Eq. 2.39 I have applied on the total
Hamiltonian, that renormalized the tunneling amplitudes with the leads, Vk,α 7→ Vk,α/

√
2.

From the physical point of view, I find that the two electronic channels independently
contribute to the oscillator effective temperature, showing that the problem is equivalent to
the sum of two single-site junctions.

As one increases the bias voltage, the (log(P (v)) vs. v2) plot starts to deviate from a
linear trend, so that, even in SSH case, the oscillator dynamics cannot be simply reduced to
an effective temperature in the intermediate bias regime.

I also find that, up to very large values of the bias voltage, the average kinetic energy
shows a behavior qualitatively similar to that of AH model (Fig. 2.4) for moderate values
of the ratio 0 < t/Ep < 1. In this regime, I can conclude that the dynamical fluctuations of
the oscillator motion does not `see´ the double `dot´ structure of the electronic molecular
junction. If t/Ep >> 1, as I will discuss later, the average kinetic energy show an interesting
non monotonic behavior in the intermediate bias regime (see below, Fig. 2.14).

The systematic analysis of the average kinetic energy allows us to build up a phase di-
agram in the plane (Ep-Vbias) for different intermolecular hoppings t and at fixed adiabatic
ratio and gate voltage, assessing the range of validity of the adiabatic approximation as
done for AH model (Fig. 2.13). It is interesting to note that QR-CAR boundary is almost
independent from the intermolecular hopping in the limit of small adiabatic ratio. Joining
together the results obtained for the AH phase diagrams (Fig. 2.5 and Fig. 2.6), I can
conclude that, in the limit of very small adiabatic ratios, the QR-CAR boundary is com-
pletely independent by the other energy scales considered in the problem. The CAR-CNAR
boundary is instead slightly dependent on t showing the expansion of the CAR. As the
intermolecular hopping t increases, bigger values of bias voltage are needed to get average
kinetic energy values greater than energy coupling to the leads, 〈EKin〉 > ~Γ. In this case,
the intermolecular hopping t plays the same role as the gate in AH model (see, Fig. 2.5).

A new feature which was not observed in the AH model is the appearance of small QR for
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Figure 2.14: Panel A: Average potential energy as function of the bias for different inter-
molecular hopping t = 0.2 − 0.6 − 1.0 − 2.0. Panel B: Average kinetic energy as function
of the bias for values of intermolecular hopping as in Panel A. I note that the introduction
of new energy scale makes the overall energy 〈E〉 a decreasing function of the voltage the
for intermediate values. The value of ω0 shown in the figure is in Γ units, while all other
quantities (Eg, Ep, 〈EKin〉, 〈Epot〉, kBT , t and eVbias) are expressed in ~Γ units.

sufficiently small coupling Ep, at intermediate bias voltages (Fig. 2.13). For strong enough
electron-phonon coupling Ep, these regions disappear. This feature can be understood an-
alyzing the behavior the average kinetic energy 〈EKin〉 for the parameters characterizing
the QR observed at intermediate bias. As it is clear form Fig. 2.14, 〈EKin〉 can decrease
significantly at intermediate Vbias. The effect becomes less and less evident decreasing the
intermolecular hopping and disappears at t = 0.2. It is interesting to note that the potential
energy curves show almost the same trend (see Fig. 2.14, panel A). Therefore, for sufficiently
high t and low Ep, the oscillator overall energy decreases as a function of bias voltage.

The behavior of the average energy of the oscillator as function of bias voltage is deter-
mined by net balance of energy exchanged by the junction: after an increasing trend in the
low bias regime, where the energy pumped by the bias exceeds that ceased to the electrons by
the oscillator, the decreasing behavior in the intermediate bias regime is due to the opposite
physical mechanism: the energy ceased to the electron system by the oscillator exceeds that
pumped by the bias.

This ``transition´´ occurs for that particular range of bias voltages where the molecular
energy levels are going through the bias window, with a resulting strong current enhancement
(electronic resonance). In particular, when the electron molecular levels enter the bias
window completely, in the case of symmetric bias unbalance and for Eg = 0, I expect that
the electronic conductance reaches its maximum. Remarkably, comparing Fig. 2.15 and Fig.
2.14, one can observe that the conductance maxima corresponds to kinetic energy minima,
shifted by a quantity close to the EOC strength α. Physically, as a consequence of the
SSH coupling with the oscillator, the current enhancement is followed by a strong effective
absorption of energy of the electron system from the oscillator.
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Electronic transport properties

In order to evaluate the current through the molecular system in SSH model, I use the
Meir-Wingreen formula[91] for non interacting molecular levels, specialized to a two-level
system

I(x) =
e

~

∫
dω

2π
(fL(ω)− fR(ω))Tr

{
GaΓLGrΓR

}
, (2.51)

where the matrices ΓL/R are given by

ΓL =
~Γ

4

(
1 1
1 1

)
, ΓR =

~Γ

4

(
1 −1
−1 1

)
, (2.52)

and bold Gr,a indicate retarded (advanced) matrix green functions (Eq. 2.44). I have
explicitly indicated that the current depends on the deformation x of the oscillator, so that
it has to be averaged over the probability distribution function P (x).

Here, I focus on two particular physical regimes, previously discussed in the analysis of the
static approximation: the weak coupling (Ep << ~Γ) and the strong coupling (~Γ << Ep)
limits, varying arbitrarily the intermolecular energy scale t. As I shall see, in both regimes,
the direct coupling of the electron-oscillator interaction to the inter-molecular hopping makes
the role of the dynamical fluctuations so much important to determine correct results.

In the weak coupling regime, it is interesting to observe that, as in the AH model,
the dynamical corrections renormalize and broaden the electronic resonances (Fig. 2.15)
with respect to the static solution. In particular, in panel A of Fig. 2.15, I note that
the static approximation exceeds the maximum value of non interacting conductance and
shows a region of negative conductance at intermediate bias. However, when the dynamical
contributions are included (square (green) curve), the effect on the conductance is dramatic
washing out all the structures observed in the static approximation. More interesting are the
cases of panels B-C-D of Fig. 2.15, where again the static approximation shows the spurious
result of conductance greater than 2G0, while the dynamical approximation renormalizes
and broadens the peak of conductance to bias values where the static approximation shows
small electric conduction. Even in the weak coupling regime, the inclusion of the dynamical
fluctuations is crucial to obtain correct results for the electronic conduction.

Finally, I examine the electronic transport properties in the strong coupling regime,
where moreover ~Γ >> t. In this case, I expect strongly non linear behavior of I-Vs in
the infinite mass (static) limit for the oscillator. In Fig. 2.16 I show the current voltage
characteristic for strong interaction, Ep = 1.4, at fixed adiabatic ratio ω0/Γ = 0.1, gate
voltage Eg = 2.0 and for different small intermolecular hoppings t << ~Γ (t = 0.15 (black)
dashed, t = 0.2 (red) dashed dotted, t = 0.25 (blue) short dashed dotted line). In panel
A, I show a comparison between the non interacting and static approximation. The static
approximation shows an interesting region of Negative Differential Resistance (NDR), as a
consequence of the rich structure of the minima of the generalized potential described in
the previous subsection (see also Fig. 2.11, Panel B). At intermediate bias voltage, a strong
current currying region appears. This corresponds to x ∼ 〈nγ1〉 − 〈nγ2〉 ' −0.5 for which
the electronic levels renormalize in the bias window with an effective energy larger than the
`bare´ value. Then, for sufficiently large bias, the minimum corresponding to x ' 0 prevails,
determining a strong current reduction due the drop of the hoppings to their non interacting
`bare´ values. As in the case described above, one can note (panel B) that the dynamical
corrections wash out almost all the features of the static approximation. There is a very low
conduction threshold after which one can not observe NDR features. Again, I observe that
the inclusion of dynamical corrections are crucial for a correct description of the SSH model
while the static approximation can easily lead to erroneous conclusions.
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Figure 2.16: Panel A: Current-Voltage characteristic in the static approximation for ω0/Γ =
0.1, Eg = 2 and strong coupling Ep = 1.4 for different values of intermolecular hopping
(t = 0.15 dashed (black), t = 0.2 dashed dotted (red), t = 0.25 short dashed dotted (blue)).
The non interacting quantities (t = 0.15 solid (black), t = 0.2 dotted (red), t = 0.25 short
dotted (blue)) are also shown. Panel B: Current-Voltage characteristic in the dynamical
approximation for the same value of panel A. The value of ω0 shown in the figure is in Γ
units, while all other quantities (Eg, Ep, t and eVbias) are expressed in ~Γ units.

56



Chapter 3

Electronic transport through a
nanomechanical resonator acting as
electronic transistor in the presence of
nearby antenna

In this chapter, I study a general model describing a self-detecting single electron transistor
realized by a suspended carbon nanotube (CNT) actuated by a nearby antenna. The main
features of the device, recently observed in a number of experiments, are accurately repro-
duced. When the device is in a low current-carrying state, a peak in the current signals
a mechanical resonance. On the contrary, a dip in the current is found in high current-
carrying states. In the nonlinear vibration regime of the resonator, I’m able to reproduce
quantitatively the characteristic asymmetric shape of the current-frequency curves. I show
that the nonlinear effects coming out at high values of the antenna amplitude are related to
the effective nonlinear force induced by the electronic flow. The interplay between electronic
and mechanical degrees of freedom is understood in terms of an unifying model including
in an intrinsic way the nonlinear effects driven by the external probe. I also include in the
model the presence of a transverse magnetic field applied to the device. As a main result,
the magnetic field modifies the bending mode CNT dynamics giving an enhanced damping
as well as a noise term originating from the electronic phase fluctuations induced by the
CNT displacements. In particular, a quadratic dependence of the device quality factor Q on
external magnetic field strength, in quantitative agreement with recent experiments, emerges
as a result of a back-action of quantum electronic current-flow fluctuations on the bending
mode dynamics. I also show that, when the device is driven far from equilibrium, one can
tune with the external magnetic field the mechanical properties of the resonator such as
quality factors and resonance frequencies.

3.1 Introduction

It has been recently shown that carbon nanotubes can act simultaneusly as single electron
transistors [138] (SET) and as nanoeletromechanical systems (NEMS) [38, 43]. The idea is to
use a single carbon nanotube placed between two metal contacts in a suspended configuration
as a self-detecting SET. Due to the extreme properties of carbon nanotubes (ideal for NEMS
applications, because they have a low mass and a high Young’s modulus), the electronic
current flowing through the device results very sensitive to the dynamics of the nanotube
itself.
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Although the main effort has been focused on detecting the quantum regime of mechanical
resonators [42, 44, 118], recently, G. A. Steele et al.[11] and A. K. Huttel et al.[12] were able
to fabricate a carbon nanotube electromechanical device working in the semiclassical regime
(resonator frequencies in MHz range compared to an electronic hopping frequency of the order
of tens of GHz) with an extremely large quality factor (Q > 105). By measuring the variations
of the electronic current flowing through the nanotube as function of the frequency of a
nearby antenna actuating its motion, they were able to detect very well defined resonances
corresponding to the bending mode of the nanotube itself. The possibility of using currents
to probe nanomechanical resonances is strongly related to the extremely large quality factor
obtained. In particular, when the SET is in a low current-carrying state (far from electronic
resonance), a peak in the current signals a mechanical resonance, while a dip is observed
in a high current-carrying state (SET in electronic resonance). Moreover, by adjusting the
antenna power, the nanotube resonator can easily be tuned into the nonlinear vibration
regime. For small antenna amplitudes, the current-frequency curves are very well fitted by
a Lorentzian, while a characteristic triangular shape or even hysteresis for large antenna
amplitudes is obtained. Interestingly, the operating temperature can affect the nonlinearity
and the quality factor of the resonator in a non expected way: the nonlinear effects in current-
frequency curves are washed out increasing the temperature 1. A detailed analysis of a single
frequency resonance dip has also shown that a broadening can be obtained increasing the
source-drain voltage [11]. In Ref. [11], the authors were able to provide an explanation
of some of the observed effects in terms of a model in which the gate voltage acquires an
assigned time dependence. Within this phenomenological model, the back-action of the
nanotube motion on detected current is understood neglecting completely the dynamics of
the resonator and analyzing the problem directly at mechanical resonance conditions only
in the limit of small external antenna amplitudes (linear response regime).

In my approach, I do not consider a priori assumptions on the resonator (nanotube)
dynamics. Actually, in the device investigated in Ref. [11, 12], the chemical potentials of
the leads, to which the nanotube is anchored, differ by the value of the applied transport
voltage eVbias (where e is the electron charge), and thus the environment that the nanotube
experiences cannot be considered at equilibrium since the voltages applied in the experiment
are typically greater than the temperature, eVbias >> kBT (kB being Boltzmann constant).
Therefore, in order to understand the behavior of the device under such conditions, one needs
to determine self-consistently the influence of electrical current and of the external antenna
on the resonator dynamics, and vice versa, the influence of nonthermal nanotube vibrations
driven by the antenna on the electronic current 2. As rigorously demonstrated by Mozyrsky
et al. [27], and reobtained by us in a different way in the previous Chap.[29], in absence of
the external antenna, the vibrational dynamics of the nanotube can be described, employing
a separation between slow vibrational and fast electronic time scales [29, 105, 119, 120], by a
Langevin equation [28, 123, 122, 119, 120, 121]. This equation is ruled by an effective force
as well as a damping and diffusive terms stemming from the interaction of the resonator with
the electronic bath consisting of both the nanotube itself (that can be described by a single
electronic level [121]) and the out-of-equilibrium environment given by the macroscopic leads.
By including the external antenna effects through a forcing term in the Langevin equation,
I provide such a self-consistent description of vibrational and electronic dynamics as argued
above.

A theoretical treatment of the nanotube based device investigated in [11, 12], including

1Usually, increasing the temperature, one would expect to access the region far away the potential mini-
mum, where nonlinear effects could be present.

2For the sake of simplicity, back-actions effects of the vibrating resonator on the electromagnetic field of
the antenna are disregarded.
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the external antenna effects, has been already considered by G. Labadze and Ya. M. Blanter
[124]. In Ref. [124], the authors use a Fokker-Plank equation for the resonator distribution
probability based on master equations[128, 126, 127, 125, 129]. This approach implicitely
assumes that the energy scale of the applied voltages is much larger than the electronic
tunneling energy scale ~Γ, eVbias >> ~Γ. Moreover, tunneling is considered in the sequential
regime and quantum effects in the electronic dynamics such as cotunneling are disregarded
3. I point out that these effects can be important to interpret the experimental results
obtained by G. A. Steele et al. [11] and A. K. Huttel et al. [12] since, as already emphasized
by G. Weick et al.[121], the temperature is much smaller than ~Γ and the bias voltage
effectively applied to the electronic level of the nanotube can be less than or of the same
order of magnitude of the electronic tunneling energy, kBT << eV eff

bias ≤ ~Γ. My approach,
based on an adiabatic expansion of the time-dependent electronic Green function on the
Keldysh contour in the small parameter ω0/Γ [29, 105, 119, 120], takes into account from
the beginning of all higher order terms in the tunneling matrix element between the leads
and the nanotube (so sequential tunneling and cotunneling regimes are described in a unified
way).

The inclusion of the external antenna effects in the effective Langevin equation for the
resonator has allowed us to explore also the nonlinear renspose regime in a nonperturbative
way. I point out that, even describing the vibrational dynamics of the nanotube as a single
harmonic vibrational mode, I’m able to reproduce all the main features observed in Ref. [11,
12] including the nonlinear effects. Indeed, in the nonlinear vibration regime of the resonator,
I’m able to reproduce quantitatively the characteristic asymmetric shape of the current-
frequency curves. The observed nonlinearity is due to the intrinsic nonlinear terms of the
effective force stemming from the strong interaction between electron and resonator dynamics
[27, 28, 123, 122, 29]. These terms are completely neglected in Ref. [124], loosing any
possibility to describe renormalization frequency effects and to explore the nonlinear response
regime for the resonator. I show that nonlinear effects can be highlighted only dynamically
by applying large external antenna amplitudes. In this sense, my approach is different
from other theoretical studies where nonlinear terms are discussed only statically [11] or
are added from the beginning assuming that the resonator is characterized by anharmonic
terms.[129, 121, 130]

Within my approach, the experimental results obtained in Ref. [11, 12] in the linear
response regime are also reproduced, as well as the broadening of the mechanical resonance
dip as function of the applied bias voltage. Furthermore, I’m able to predict, in the limit
of large bias, the onset of a fine double dip structure that could be experimentally observed
(these features were effectively found in Ref.[139] and I will discuss them in detail in Sec.
3.5).

The chapter is organized as follows: In Sec. 3.2, I present the model able to describe the
electronic transistor consisting of the vibrating nanotube. Then (Sec. 3.3), the equation of
motion describing the resonator dynamics including the external antenna effects is discussed.
In Sec. 3.4, I present numerical results. In Sec. 3.5, I show that my approach can be
extended to the case where an external magnetic field perpendicular to the nanotube device
is introduced.

3In sequential tunneling regime, ~Γ << min[eVbias, kBT ], the tunneling events between the leads and
the molecule are energy-conserving, with the rates determined by Fermi’s golden rule at the lowest order in
perturbation theory in the tunneling Hamiltonian Ĥtun =

∑
k,α(Vk,αĉ

†
k,αd̂+h.c.). In the cotunneling regime,

eVbias < ~Γ < kBT or kBT < ~Γ < eVbias or max[eVbias, kBT ] < ~Γ, higher-order tunneling events become
dominant.
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3.2 Model and method

I describe the suspended carbon nanotube with a single impurity Holstein model [131],
which was already studied in the previous chapter. As I show below, this model is able to
catch the main physical ingredients of the experiments in Ref. [11, 12]. For the sake of
clarity, I here point out that the model used in [11, 12] and in other papers in the literature
[124, 126, 127, 125, 129, 132], based on on a capacitive coupling of the nanotube (dot) to
the gate electrode, is equivalent to a Holstein-like coupling between the occupation on the
dot and the vibrational degree of freedom (see Appendix B).

As suggested by Weick et al. [129], in the small energy window of interest for a single
dip feature, the electronic part of the device is modeled as a single electronic level coupled
to the leads through standard tunneling terms. The electronic Hamiltonian is given by
Ĥel = Ĥmol + Ĥtun + Ĥleads, where Ĥmol, Ĥtun and Ĥlaeds were given in Eqs. 2.1, 2.2 and 2.3
of previous Chap., respectively. Nanotube’s electronic level has energy V eff

gate with creation

(annihilation) operators d̂†(d̂) (Eq. 2.1). The operators ĉ†k,α(ĉk,α) create (annihilate) electrons
with momentum k and energy εk,α = Ek,α − µα in the left (α = L) or right (α = R) free
metallic leads (Eq. 2.3), while the electronic tunneling between the molecular level and a
state in the lead has amplitude Vk,α (Eq. 2.2). The chemical potentials in the leads µL and

µR are assumed to be biased by an external voltage eV eff
bias = µL − µR. The coupling to

the leads is described by the tunneling rate Γα,k = 2πρα|Vk,α|2/~, where ρα is the density of
states in the lead α. I will suppose symmetric coupling (ΓL,k = ΓR,k) and a flat density of
states for the leads, considered as thermostats at finite temperature, within the wide-band
approximation (Γα,k 7→ Γα, α = L,R) [129, 121].

The Hamiltonian of the mechanical degree of freedom is given by Ĥosc = p̂2

2m
+ 1

2
mω2

0x̂
2,

characterized by the frequency ω0 and the effective mass m (k = mω2
0). The interaction

is provided by Ĥint = λx̂N̂el [129, 128], where λ is the electron-oscillator coupling strength
and N̂el = d̂†d represents the electronic occupation on the nanotube (see also Appendix B).
Definitely, the overall Hamiltonian is

Ĥ = Ĥel + Ĥosc + Ĥint. (3.1)

In this chapter, I will measure lengths in units of x0 = λ
k

and energies in units of ~Γ.
The experimental values of the resonance frequencies of the vibrating nanotube (120-300

MHz range) suggest that the vibrational motion is very slow compared to the electronic
tunneling rate on the nanotube itself (adiabatic limit): ω0/Γ << 1. Moreover, it was
estimated in Ref.[129] that for the experiment in consideration the coupling energy describing
electron-phonon interaction, Ep = λ2

2k
' 5µeV , implying a strong coupling between the

electronic and vibrational degrees of freedom (Ep/~ω0 = 10). Summarizing, the regime of

the relevant parameters is ~ω0 << Ep(∼ kBT ) << eV eff
bias ≤ ~Γ 4.

3.3 Langevin equation for the oscillator

As discussed in the previous Chap.[29] and in Ref.[116], when eV eff
bias >> ~ω0 and kBT >

~ω0, the semi-classical treatment of the oscillator dynamics is well justified. Within a non-
equilibrium adiabatic approximation [27, 28, 123, 29, 105], the vibrational dynamics of the

4It is very difficult to infer the actual values of the effective source-drain bias eV effbias and the gate voltage

V effgate applied to the device from the experimental setup. Due to the capacitive coupling between the carbon
nanotube and the surrounding electrodes and to the length (400 − 1100nm) of the nanotube itself, only
a fraction of the applied bias and gate voltage acts effectively onto the nanotube level interested in the
transport [11, 12].
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nanotube can be described by a nonstandard Langevin equation controlled by a self-consistent
effective anharmonic force as well as by damping and diffusive terms depending explicitely
on the resonator displacement x. In the presence of the antenna, I here propose that the
oscillator dynamics can be obtained by solving numerically the following equation

mẍ + A(x)ẋ = F (x) + ξ(t) + Aext cos(ωextt), (3.2)

where Aext and ωext represent the amplitude and the external antenna frequency, respectively.
Furthermore, in Eq. 3.2, the position-dependent force F (x), damping A(x), and the intensity
of the noise D(x), 〈ξ(t)ξ(t′)〉 = D(x)δ(t − t′) (where ξ(t) is a standard white noise term),
are related to the electronic Green’s functions on the Keldysh contour [27, 28, 123, 29]. For
the sake of exposition clarity, I here list some of the results of the previous Chap.

F (x) = −kx+ λ〈N̂el〉(x), (3.3)

〈N̂el〉(x) =

∫
d~ω
2πı

G<(ω, x) (3.4)

A(x) = λ2~
∫
d~ω
2π

G<(ω, x)∂~ωG
>(ω, x), (3.5)

D(x) = λ2~
∫
d~ω
2π

G<(ω, x)G>(ω, x). (3.6)

The lesser G< and greater G> Green’s functions at finite temperature are given by

G<(ω, x) =
ı~Γ

2

fL(ω) + fR(ω)

(~ω − V eff
gate − λx)2 + (~Γ/2)2

, (3.7)

G>(ω, x) =
−ı~Γ

2

2− fL(ω)− fR(ω)

(~ω − V eff
gate − λx)2 + (~Γ/2)2

, (3.8)

where fL,R(ω) are the Fermi functions of the leads and I have assumed that ~ΓL = ~ΓR =
~Γ/2. At low temperatures, kBT << ~Γ, the Fermi function fα(ω) can be replaced by the
step function Θ(~ω − µα) (α = L,R), obtaining

〈Nel〉(x) =
1

2π

∑
α=L,R

(
arctan

(µα − V eff
gate − λx

~Γ/2

)
+
π

2

)
, (3.9)

A(x) =
4mω0

π

~ω0

~Γ

Ep
~Γ

∑
α=R,L

1[(
µα−V effgate−λx

~Γ/2

)2

+ 1
]2 , (3.10)

D(x) =
mω0Ep
π

~ω0

~Γ

{
arctan

(µα − V eff
gate − λx

~Γ/2

)

+

µα−V effgate−λx
~Γ/2[(

µα−V effgate−λx
~Γ/2

)2

+ 1
]}α=L

α=R

. (3.11)

As also stressed in the previous Chap., the linear elastic force exerted on the oscillator is
modified by a relevant nonlinear correction term proportional to the electronic occupation
Eq. 3.9. The strength of the damping A(x) and diffusive D(x) terms result proportional
to the adiabatic ratio ω0/Γ and therefore one can safely neglect their spatial dependence.
Anyway, I point out that the diffusive term D(x) vanishes at equilibrium (bias voltage
V eff
bias = 0). Only on application of finite bias it becomes different from zero. In the regime
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Figure 3.1: (Color online) Panel(a): Normalized current change (∆I/I0) in a low current-
carrying state (V eff

gate = −4~Γ) as function of the external frequency (ωext/ω0) for different
antenna amplitudes: Aext = 10−5 solid thin line (red online), Aext = 10−4.5 normal thickness
line (green online), Aext = 10−3.5 thick line (blue online). Panel (b): ∆I/I0 against ωext/ω0

in a high current-carrying state (V eff
gate = Ep) for different antenna amplitudes: Aext =

10−3.5 solid thin line (red online), Aext = 10−3 normal thickness line (green online), Aext =
10−2.5 thick line (blue online). Insets: solid line (black online) is a distribution P (x) out
of mechanical resonance. Dotted line (blue online) is a distribution obtained at mechanical
resonance for the larger value of antenna amplitude considered in main plots of panels (a,b).
Short-dashed line (magenta online) represents current as function of position I(x). In this
plot eV eff

bias = 0.5~Γ, ω0/Γ = 0.004 and Ep/~Γ = kBT/~Γ = 0.04.

of experimental parameters explored in Refs. [11, 12], ~ω0 << Ep(∼ kBT ) << eV eff
bias ≤ ~Γ,

the effect of the electronic bath on the resonator dynamics can be described by an effective
temperature proportional to the bias voltage kBTeff ' eV eff

bias /8 [27, 29].
In Eq. 3.2, I consider the parameter Aext expressed in terms of the natural force unit

λ = ω0

√
(2mEp). Assuming a nanotube mass of m ∼ 10−23kg, an oscillation frequency of

120 MHz, λ is of the order of 10−16N , while the effective spring constant is k = 10−6N/m.
By solving the second order stochastic differential equation 3.2 with the procedure out-
lined in the previous Chap.[29], I’m able to obtain the distribution probabilities of the
displacement P (x). This allows us to calculate any system property as an average over the
distribution probability P (x). In particular, in order to make contact with experimental
results, I have calculated the average electronic current 〈I〉 flowing through the nanotube as
〈I〉 =

∫ +∞
−∞ dxI(x)P (x), where I(x) is the current at a particular resonator displacement.

3.4 Results

One of the main results of Ref. [11, 12] is the observation of the electronic current changes at
fixed gate voltage as function of the external antenna frequency and amplitude. My model
accurately reproduces the experimental results both in a low current-carrying state, where a
peak in the current signals a mechanical resonance (Fig.3.1a), and in a high current-carrying
state, where a dip is observed (Fig.3.1b).
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These two behaviors (peak and dip) can be understood considering that the oscillator
explores wider regions in configuration space when the external antenna amplitude increases
(see the distribution probabilities P (x) shown in the insets of Fig. 3.1). When the electronic
device is in a low current-carrying state (Fig.3.1a), P (x) is concentrated at x values far form
the configurations where the device carries the maximum current (inset of Fig.3.1a). By
increasing the external antenna amplitude, the resonator is able to explore larger regions
which carry more and more current obtaining a positive contribution in the normalized
electronic current change ∆I/I0 with respect to the background value I0. On the contrary,
when the device is in a high current-carrying state, the distribution probabilities and the
current are centered at the same position (inset of Fig.3.1b). In this case, the effect of
the external antenna is to give a negative contribution in the normalized electronic current
change ∆I/I0 (Fig 3.1b) since, the resonator explores regions of phase space which carry less
and less current (inset of Fig. 3.1b).

3.4.1 Nonlinear regime of oscillator’s dynamics

The results shown in Fig.3.1 allow also to characterize the behavior of the resonator in
the nonlinear regime. Interestingly, (see Fig.3.1a), increasing the amplitude of the external
forcing, the shape of the current-frequency curves changes. For small antenna amplitudes,
a characteristic Lorentzian shape is observed. This is expected for an harmonic oscillator
driven by a periodic forcing in the absence of external noise. In fact, even if in mechanical
resonance, the oscillator explores only small regions around the stationary point and non-
linear corrections terms of the force F (x) (eq. (3.3)) do not come into play. At mechanical
resonance, only when the amplitude of the external antenna increases, the oscillator explores
a larger region in phase space, where the nonlinear terms of the force acting on the oscillator
cannot be neglected.

Within my approach, for large antenna amplitudes and in the presence of noise, the
current-frequency profiles assume the experimentally observed characteristic triangular shape
[12]. Furthermore, a softening is observed when the device is in a low current-carrying state
(Fig. 3.1a), while an hardening in a high current-carrying state is obtained (Fig. 3.1b). This
nonlinear behavior can be understood by analyzing the properties of the force F (x) (eq. 3.3)
around the stationary point. Softening and hardening behavior of the resonance frequency
are usually related to the sign of the cubic nonlinear term [135]. When the device is in a low
current-carrying state, indeed, the sign of this term is positive, giving a net softening effect.
In a high current-carrying state (V eff

gate = Ep) and for bias values sufficiently small, the sign
of the cubic nonlinear term is negative providing an hardening.

The temperature dependence of the current-frequency profiles, observed in the experi-
ments, exhibits a nontrivial behavior that supports my model. As shown in Fig.3.2a, for
very small temperatures, a triangular shape is found as discussed above. On the other hand,
for sufficiently large temperatures, the current-frequency profile turns into Lorentzian shape,
characteristic of the linear response regime (Fig.3.2c). This counterintuitive behavior is de-
termined by a significative reduction of the intrinsic nonlinear terms in the effective force
F (x) on the resonator as function of the temperature. Actually, the correction term due
the average electronic occupation (eq. (3.9)) tends to become independent of the resonator
displacement x. Furthermore, the broadening of the current-frequency profiles as function
of the temperature is produced not only by this effect but also by the growth of the intrinsic
damping coefficient A(x) in the Langevin equation Eq.(3.2). Indeed, with increasing tem-
peratures, A(x) increases where resonator dynamics occurs. The temperature dependence of
the intrinsic damping A(x) is also responsible for the behavior of the resonator quality factor
Q, defined as I0/∆Ihalf−high. In the regime where the current-frequency profiles exhibit a
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Figure 3.2: (Color online) ∆I/I0 against ωext/ω0 in a low current-carrying state (V eff
gate =

−1.75~Γ) when the resonator is driven by a strong external antenna amplitude Aext = 10−3.5:
panel (a) kBT = 0.05~Γ, panel (b) kBT = 0.375~Γ, panel (c) kBT = ~Γ. In panel (c) a
Lorentzian fit is also drown with Q = 104 (Q is defined in the main text). Inset of panel (a):
intrinsic quality factor Q as function of temperature. I use as energy unit ~Γ = 125µeV . In
this plot eV eff

bias = 0.5~Γ, ω0/Γ = 0.005 and Ep/~Γ = 0.05.
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Figure 3.3: (Color online) Resonator frequency at resonance against effective gate voltage
(shifted of Ep) for different bias voltages: eVbias = 0.1~Γ curve (1), eVbias = 0.5~Γ curve (2),
eVbias = 1.0~Γ curve (3), eVbias = 1.5~Γ curve (4). Solid (red online) and short-dashed (blue
online) portions of each curve indicate resonance frequency values with positive and negative
current change ∆I, respectively. Inset: electronic occupation at resonance frequency against
effective gate voltage (shifted of Ep) for eVbias = 0.1~Γ (curve (1)) and eVbias = 1.5~Γ (curve
(4)). In this plot Aext = 10−3, ω0/Γ = 0.01 and Ep/~Γ = kBT/~Γ = 0.1.
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Lorentzian shape, I find a power-law of the kind T−0.40 5 that is quite close to that found in
the experiment (T−0.36). However, it is important to point out that this exponent depends
on the gate voltage effectively applied to the device.

Finally, I have analyzed all the traces of current variations as function of the antenna
frequency, obtained tuning the effective gate voltage. Going from a low to a high current-
carrying state, the characteristic dip of the resonance frequency as function of the effective
gate voltage is obtained in excellent agreement with experiments (curve (1) of Fig.3.3). The
observed renormalization of the resonance frequency can be related to strong variations of
the electronic occupation eq.(3.9) as function of the gate voltage (see solid line in the inset
of Fig.3.3). When the device is in a low current-carrying state (|V eff

gate − Ep| > 1.5~Γ),
the average electronic occupation is not sensitive to gate voltage variations. Instead, in a
high current-carrying state (|V eff

gate − Ep| < 1.5~Γ), the electronic occupation shows a strong
variation, providing the softening of the resonance frequencies. Increasing the bias voltage
to values closer to ~Γ or larger (line (3) and (4) of Fig. 3.3), one obtains a broadening of the
resonance frequency dip, owing to a wider conduction window with respect to the broadening
(∼ ~Γ) of the electronic energy level. Actually, with increasing the bias, the electronic
contribution to the effective spring constant increases, producing a nontrivial renormalization
of the resonance frequency as function of the gate. I note that for eV eff

bias = 1.5~Γ (line (4) of
Fig. 3.3), a fine structure represented by two very small dips appears. When the bias window,
whose extension is proportional to eV eff

bias , becomes larger than the broadening of the level,
one could tune the electronic device into a region of conducting states where the variations
of the occupation are smaller than that obtained at the boundary of the conduction window
itself (see dashed line in the inset of Fig.3.3). When the electronic device goes through
states with different conducting character, the maximum renormalization of the resonance
frequency occurs, providing two dips in the resonance frequency of the nanotube. This
feature could be experimentally observed[139] with a larger resolution in the applied gate
voltage, when a very large bias is applied to the nanotube.

3.5 Introduction of a transverse Magnetic field

In this section I introduce, in the same model investigated above, the presence of an external
magnetic field perpendicular to the suspended carbon-nanotube device[50]. As a main result,
I find that the magnetic field provides an additional damping mechanism to the resonator
mechanical motion. In particular, a quadratic decrease of the quality factor Q as a func-
tion of the external magnetic field strength, in quantitative agreement with the experiment
performed in Ref.[136], emerges.

As concerns the physical mechanism triggered by the magnetic field, I show that the
application of a field perpendicular to the current flux modifies all the terms describing
the CNT-resonator dynamics. Actually, the coupling with a transverse magnetic field in-
troduces an electronic tunneling phase which depends on the mechanical displacement of
the CNT-resonator itself. This modifies the effective force acting on the resonator by a pure
nonequilibrium correction term proportional to the magnetic field as well as to the electronic
current flowing through the CNT. Moreover, even at zero bias voltage, damping and diffusive
terms are both modified by quantum electronic current-current and density-current fluctu-
ations corrections whose strengths are quadratic and linear in magnetic field, respectively.
Finally, I further show that, at zero bias, displacement-charge and magnetic field mediated

5I have verified that, in the range of temperature investigated (0.05 < kBT/~Γ < 1 → 60mK < T <
1.2K), the the widths of current frequency profiles are independent on the external antenna amplitude
applied to tune the resonator in the linear response regime.
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electron-oscillator couplings cooperate behaving as a whole as a standard thermal bath at
leads’ temperature.

As concerns the mechanical properties of the CNT-resonator, I’m able to reproduce,
in the absence of magnetic field, all results experimentally observed[139] on a similar CNT-
resonator device: when bias voltages are smaller than the broadening due to tunnel coupling,
the resonance frequency and quality factor show a single dip as a function of gate voltage.
At bias voltages that exceed the broadening due to tunnel coupling, the resonance frequency
and quality factor show a double dip structure. Actually, in this regime, the onset of a double
dip structure in the resonance frequency against gate voltage curve was already predicted
by us in the previous Sec. (Ref.[49]).

Introducing the external magnetic field, the scenario outlined above modifies as follows.
At low bias, the single dip feature in the CNT-resonator resonance frequency gets distorted
and acquires, in the limit of large magnetic field, a dip-peak structure that could be experi-
mentally observed. As concerns the quality factor against gate voltage, it preserves a single
dip feature but with a global reduction with respect to zero magnetic field. Remarkably,
when the device is in a low-conducting state, I find a Q against magnetic field curve in
quantitative agreement to the experiment performed in Ref.[136]. At large bias voltages,
the double dip feature in both CNT-resonator resonance frequency and in quality factor get
distorted with the introduction of the field. The former acquires a dip-peak structure while
the latter becomes single-dip shaped in the limit of large magnetic field.

The chapter ends with a study of the device response when the CNT-resonator motion
is actuated by an external antenna at fixed frequency and amplitude. In this case, the
device current-gate voltage characteristic is modified by fine structure features any time
the mechanical resonance with the proper nanotube oscillation frequency occurs. These
structures can be tuned as a function of the external field and could be experimentally
observed.

The following subsections are organized as follows: In sec.3.5.1 I present the model able
to describe the electronic transistor consisting of the vibrating CNT including the effect
of a transverse magnetic field. In sec.3.5.2 I will construct, by means of the adiabatic
approximation, the stochastic Langevin equation for the dynamics of the oscillator including
magnetic field and, eventually, the external antenna effects. In sec.3.5.3 I present numerical
results.

3.5.1 Model

I consider the system sketched in Fig.3.4, which shows a single-wall carbon nanotube (CNT)
suspended between two normal metal leads. An external magnetic field H is applied perpen-
dicular to the nanotube. As in the previous section, I also restrict the nanotube mechanical
degrees of freedom to the fundamental bending mode and model it as a harmonic oscillator
with frequency ω0.

The electronic part of the device is modeled as in the previous section (see section 3.2).
In the presence of an external transverse magnetic field, the electronic tunneling between

the CNT level and a state in the lead has a time dependent amplitude V H
k,α(x), where x is the

mechanical CNT displacement from its equilibrium configuration. When the external mag-
netic field values are sufficiently small, such as the Zeeman splitting is negligible compared
to broadening due to tunnel coupling, I can neglect the effect of the electronic spin degrees of
freedom (this issue will be considered elsewhere [150]). In the presence of a magnetic field,
the phases of the tunneling amplitudes with the leads depend on the CNT displacement
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Figure 3.4: A carbon nanotube (CNT) subject to an external magnetic field H suspended
between two normal metal leads biased by a voltage eVbias.

x,[148, 149]

V H
k,L = Vk,Le

−ıpx,

V H
k,R = Vk,Re

ıpx, (3.12)

where p = δeHL/2~ gives the CNT momentum change induced by the Lorentz force when
an electron tunnels from the CNT to a lead, and δ ' 1 is a numerical factor determined by
the spacial profile of the fundamental mode [151]. Above, e is the modulus of the electron
charge, ~ is the Plank constant and L is the CNT length.

For the sake of simplicity, I will suppose symmetric coupling Vk,L = Vk,R and a flat density
of states for the leads ρk,α 7→ ρα, considered as thermostats at finite temperature T , within
the wide-band approximation (Vk,α 7→ Vα, α = L,R) [129, 121].

Definitely, the total tunneling rate is ~Γ =
∑

α=L,R ~Γα, with Γα = 2πρα|Vk,α|2/~.
The Hamiltonian of the mechanical degree of freedom is given by

Ĥosc =
p̂2

2m
+

1

2
mω2

0x̂
2, (3.13)

characterized by the frequency ω0 and the effective mass m (k = mω2
0). The electron-

oscillator interaction is provided by[129, 128]

Ĥint = λx̂n̂, (3.14)

where λ is the electron-oscillator coupling strength and n̂ = d̂†d represents the electronic
occupation on the CNT. Definitely, the overall Hamiltonian is

Ĥ = Ĥel + Ĥosc + Ĥint. (3.15)

For the experiment discussed in Ref.[136], one has a strong separation between vibrational
(ω0 ' 500 MHz' 2µeV) and electronic time scales (Γ ' 50Ghz) so that I can solve the model
in the adiabatic limit, ω0/Γ << 1. The experimental values of bias voltages and temperatures
allow also a semi-classical treatment of the oscillator dynamics[29, 27, 28]. In this Sec., I will
measure lengths in units of x0 = r, where r is a small fraction of CNT radius (r = 60pm)
appropriate to resolve the CNT bending dynamics at relatively small temperatures (T '
25mK). For the sake of simplicity, I will indicate dimensionless displacement variable with
x. Energies are measured in units of ~Γ = 200µeV , and times in units of t0 = 1/ω0. In terms
of these units, the dimensionless spring constant is k/mω2

0 ' 1, since, following Ref.[136],
the effective mass of the nanotube is m = 1.3 × 10−21kg. Definitely, the adiabatic ratio is
ω0/Γ = 0.01, while the dimensionless temperature kBT = 0.01. Magnetic fields are measured
in terms of the quantity B = H

H0
where the magnetic field unit is H0 = 2~/eLr ' 16.6T ,

since the CNT length is L ' 700nm. Throughout this Sec., I keep fixed the dimensionless
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electron-oscillator coupling λ = 0.1 (the force unit is ~Γ/r), corresponding to an estimate
Ep = λ2/2k ' 1µeV , implying a moderate coupling between the electronic and vibrational
degrees of freedom (Ep/~ω0 = 0.5). Summarizing, the regime of the parameters relevant for

the experiment in Ref.[136] is ~ω0 ' Ep ' kBT << eV eff
bias ≤ ~Γ.

In the next section, I show how adiabatic approximation works on the coupled electron-
oscillator problem in the presence of a transverse magnetic field.

3.5.2 Adiabatic approximation

As analyzed in the previous section, I work in the physical regime where the vibrational
motion of the CNT-resonator is ’slow’ with respect to all electronic energy scales and can
be considered ”classical”: ω0 << Γ. This regime of the parameters leads to the adiabatic
approximation for the electronic problem. In contrast to previous works that treated the
adiabatic approximation in the absence of a magnetic field[29, 105, 119], I here investi-
gate the effect of a transverse magnetic field on the electronic problem described by the
Hamiltonian Eq.3.15. I remark that the adiabatic approximation has been used to de-
scribe larger systems[144, 145] for the study of spectral and transport properties of organic
semiconductors[144, 145, 146, 147].

Adiabatic approximation for the electron problem in the presence of a magnetic
field

In this subsection, I show how the adiabatic approximation on the electronic CNT level
Green function works in the presence of a transverse magnetic field.

Assuming a slow time dependence of electronic Green functions on the resonator dis-
placement x, I’m able to calculate truncated expressions for the CNT level Green fucntions
which acquire a `slow´ time dependence and, at first order, a linear correction in the oscil-
lator velocity. As a result of the adiabatic approximation, the truncated CNT level Green
functions will depend on the instantaneous value of the position and velocity of the resonator
Gr,a,<,>(ω, x, v).

The adiabatic expansion of the Fourier transformed retarded CNT level Green function
is

Gr(ω, x, v) = Gr
(0)(ω, x) +Gr

(1)(ω, x, v), (3.16)

where the expression of Gr
(0)(ω, x) is

Gr
(0)(ω, x) =

1

~ω − Vgate(x) + ıΓ/2
, (3.17)

and that of Gr
(1)(ω, x, v) is

Gr
(1)(ω, x, v) = −ı~V̇gate(x)Gr

(0)(ω, x)
∂Gr

(0)(ω, x)

∂~ω
. (3.18)

Above, Vgate(x) = Vgate + λx and the dot indicates the time derivative V̇gate = λ∂x
∂t

= λv.
Using the adiabatic approximation[149] x(t1) − x(t2) ' ẋ(t0)(t1 − t2), I obtain for the

lesser and greater components in Fourier space

Σ<
leads(ω, v) ' Σ<

leads,(0)(ω) + Σleads,(1)(ω, v) (3.19)

where the expression of Σ<
leads,(0)(ω) is

Σ<
leads,(0)(ω) = ı[~ΓLfL(ω) + ~ΓRfR(ω)], (3.20)
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and that of Σleads,(1)(ω, v) is

Σleads,(1)(ω, v) = −ıeH̃

(
∂[~ΓLfL(ω) + ~ΓRfR(ω)]

∂[eVbias]

)
v. (3.21)

Above, I have defined H̃ = 2p~/e. Definitely, for the CNT level occupation I get

〈n̂〉(x, v) ' 〈n̂〉(0)(x) + 〈n̂〉(1)(x, v), (3.22)

where

〈n̂〉(0)(x) =

∫
d~ω
2πı
|Gr

(0)(ω, x)|2Σ<
leads,(0)(ω)

=

∫
d~ω
2π

~ΓLfL(ω) + ~ΓRfR(ω)

(~ω − Vgate(x))2 + [~Γ]2/4
, (3.23)

with linear corrections in the oscillator velocity

〈n̂〉(1)(x, v) = v[R(1)(x) +R(2)(x)], (3.24)

R(1)(x) =

∫
d~ω
2πıv

2<[Gr
(0)(ω, x)Ga

(1)(ω, x, v)]Σ<
leads,(0)(ω)

=
~λ
2

∫
d~ω
2π

g(0)(ω)
~ΓL + ~ΓR

[(~ω − Vgate(x))2 + [~Γ]2/4]2
,

(3.25)

R(2)(x) =

∫
d~ω
2πıv

|Gr
(0)(ω, x)|2Σleads,(1)(ω, v)

= eH̃

∫
d~ω
2π

g(1)(ω)
1

(~ω − Vgate(x))2 + [~Γ]2/4
,

(3.26)

where

g(0)(ω) = −∂[~ΓLfL(ω) + ~ΓRfR(ω)]

∂~ω
, (3.27)

g(1)(ω) = −∂[~ΓLfL(ω) + ~ΓRfR(ω)]

∂[eVbias]
. (3.28)

Finally, in the hypothesis of symmetric coupling to the leads ΓL = ΓR, one can calculate
the adiabatic expansion for the symmetrized current 〈Î〉 = [〈ÎL〉 − 〈ÎR〉]/2

〈Î〉(x, v) =
e

~

∫
d~ω
2π
|Gr(ω, x)|2(ΣR,>(ω, v)ΣL,<(ω, v)

− ΣL,>(ω, v)ΣR,<(ω, v)). (3.29)

Using Eqs 3.16, 3.19, I get

〈Î〉(x, v) ' 〈Î〉(0)(x) + 〈Î〉(1)(x, v), (3.30)
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where

〈Î〉(0)(x) =
e

~

∫
d~ω
2π
|Gr

(0)(ω, x)|2(ΣR,>
(0) (ω)ΣL,<

(0) (ω)

− ΣL,>
(0) (ω)ΣR,<

(0) (ω))

=
e

~

∫
d~ω
2π

~ΓL~ΓR(fL(ω)− fR(ω))

(~ω − Vgate(x))2 + [~Γ]2/4
, (3.31)

with linear corrections in the oscillator velocity

〈Î〉(1)(x, v) = v[U(1)(x) + U(2)(x)], (3.32)

U(1)(x) =
e

~v

∫
d~ω
2π

2<[Gr
(0)(ω, x)Ga

(1)(ω, x, v)]×

×(ΣR,>
(0) (ω)ΣL,<

(0) (ω)− ΣL,>
(0) (ω)ΣR,<

(0) (ω))

= −eλ~Γ

2

∫
d~ω
2π

~ΓL~ΓR
[(~ω − Vgate(x))2 + [~Γ]2/4]2

×

∂(fL(ω)− fR(ω))

∂~ω
,

(3.33)

U(2)(x) =
e

~v

∫
d~ω
2π
|Gr

(0)(ω, x)|2[ΣL,(1)(ω, v)(ΣR,>
(0) (ω) +

−ΣR,<
(0) (ω)) + ΣR,(1)(ω, v)(ΣL,<

(0) (ω)− ΣL,>
(0) (ω))]

=
e2

~
H̃

∫
d~ω
2π

~ΓL~ΓR
(~ω − Vgate(x))2 + [~Γ]2/4

×

∂[fR(ω)− fL(ω)]

∂[eVbias]
.

(3.34)

In next subsection, I show that, even in the presence of a transverse magnetic field,
the dynamics of the CNT-resonator can be accurately described by a stochastic Langevin
equation.

Langevin equation for the oscillator

In the absence of a magnetic field, as seen in the previous Chap., the effect of the electron
bath and the electron-resonator coupling on the oscillator dynamics gives rise to a stochastic
Langevin equation with a position dependent dissipation term and white noise force [29]. As
in Ref.[49], the equation for the oscillator dynamics can be written as follows

mẍ + A(x)ẋ = F(0)(x) +
√
D(x)ξ(t) + Aext cos(ωextt),

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′), (3.35)

where ξ(t) is a standard white noise term. I have included in the schematization the effect of
an external antenna exciting the motion of the CNT, where Aext,ωext represent the amplitude
and the external antenna frequency, respectively. In this section, I describe how all the terms
appearing in above equation modify in the presence of an external transverse magnetic field.
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Figure 3.5: (Color online) Panel(a): minimum of the effective potential (coming from the
force Eq.3.38) affecting the CNT-resonator as a function of the magnetic field at low bias
eVbias = 0.1~Γ (Vbias = 20µV in my units). Solid (black) line indicates Vg = 0, dashed (red)
line Vg = 0.45 (Vbias = 90µV in my units), dotted (green) line Vg = 1.0 (Vbias = 200µV in my
units). Panel(b): same as above at large bias eVbias = 1.5~Γ (Vbias = 300µV in my units).
Solid (black) line indicates Vg = 0, dashed (red) line Vg = 0.75 (Vbias = 150µV in my units),
dotted (green) line Vg = 1.5 (Vbias = 300µV in my units).

The total force acting on the CNT-resonator is

F = −kx− λ〈n̂〉(x, v) + H̃〈Î〉(x, v). (3.36)

The linear elastic force exerted on the oscillator is modified by two relevant nonlinear correc-
tion terms: the former is proportional to the electronic density on the CNT level Eq.(3.23),
while the latter to the electronic current Eq.(3.31). The first term, due to the density-
displacement interaction on CNT-resonator and proportional to λ was already discussed in
Refs.[49, 11]. Far from equilibrium and in the presence of a magnetic field, a magnetomotive
coupling between the CNT-resonator displacement and the electronic flow through the device
comes into play. Actually, the transverse magnetic field introduces a phase in the electronic
tunneling that is proportional to the displacement of the CNT resonator as well as on the
field strength. This originates a Lorentz-like additive correction, linear in the magnetic field
strength and in the electronic current, to the average force acting on the resonator.

In the limit of the adiabatic approximation, the force Eq.3.36 can be decomposed in dif-
ferent expansion terms. It explicitly depends on the oscillator position x through Vgate(x) =
Vgate + λx and velocity v. The force is

F (x, v) = F(0)(x) + F(1)(x, v), (3.37)

where
F(0)(x) = −kx− λ〈n̂〉(0)(x) + H̃〈Î〉(0)(x), (3.38)
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and

F(1)(x, v) = −λ〈n̂〉(1)(x, v) + H̃〈Î〉(1)(x, v)

= −A(x)v. (3.39)

The total damping term A(x) is given by three contributions

A(x) = Aλ(x) + AH(x) + AH,λ(x), (3.40)

where both
Aλ(x) = λR(1)(x), (3.41)

coming from the electron-oscillator coupling, and

AH(x) = −H̃U(2)(x), (3.42)

due to magnetic field coupling, are positive definite. The function AH,λ(x) is proportional
to both electron-oscillator coupling λ and magnetic field H

AH,λ(x) = λR(2)(x)− H̃U(1)(x), (3.43)

and is not positive definite. Remarkably, I have verified that the whole sum appearing in
Eq.3.40 is positive definite in all parameter regime of the model. This shows that, using
a spinless fermionic model in the presence of normal (not ferromagnetic) electronic leads,
the CNT-resonator experiences no negative damping regions. This is in contrast to results
of Ref.[149], where the authors use a normal and a ferromagnetic lead and observe nega-
tive damping and consequent nano-electromechanical self-excitations of the CNT-resonator
system.

A fluctuating term has to be be included to take correctly into account the effect of the
bath degrees of freedom. When a magnetic field is present, the force-force fluctuations are
given by three contributions (see appendix A)

〈δF̂ (t)δF̂ (t′)〉 = λ2〈δn̂(t)δn̂(t′)〉+

− H̃λ[〈δn̂(t)δÎ(t′)〉+ 〈δÎ(t)δn̂(t′)〉] +

+ H̃2〈δÎ(t)δÎ(t′)〉, (3.44)

where I get a mixed current-density fluctuation contribution [〈δn̂(t)δÎ(t′)〉 + 〈δÎ(t)δn̂(t′)〉],
and a current-current fluctuation contribution 〈δIα(t)δI(t′)〉 to the noise.

In the adiabatic limit, exploiting the effect of the ’fast’ electronic environment on the
oscillator motion, one derives

〈δF̂ (t)δF̂ (t′)〉 = D(x)δ(t− t′), (3.45)

where in the presence of a magnetic field I have

D(x) = Dλ(x) +DH(x) +DH,λ(x), (3.46)

with

Dλ(x) = λ2~
∫
d~ω
2π

G<
(0)(ω, x)G>

(0)(ω, x) =

= λ2~
∫
d~ω
2π

~ΓLfL(ω) + ~ΓRfR(ω)

((~ω − Vgate(x))2 + [~Γ]2/4)2
×

× (~ΓL(1− fL(ω)) + ~ΓR(1− fR(ω))) (3.47)
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Figure 3.6: (Color online) Spatial dependence of the dimensionless damping coefficient A(x)
at low bias (Panels(a-b-c)) and at large bias voltage applied (Panels(d-e-f)). See main text
for discussion.

and

DHλ(x) =
eH̃

2
λ

∫
d~ω
2π
|Gr

(0)(ω, x)|2B(ω, x)×

×(ΣL,>
(0) (ω)ΣL,<

(0) (ω)− ΣR,<
(0) (ω)ΣR,>

(0) (ω)) =

= eλH̃

∫
dω

2π

~ΓL + ~ΓR
[(~ω − Vgate(x))2 + [~Γ]2/4]2

×

×
{

[~ΓL]2fL(ω)(1− fL(ω))− [~ΓR]2fR(ω)(1− fR(ω))
}

(3.48)

where B(ω, x) = −2=Gr
(0)(ω, x) is the electronic spectral function of the electronic level.

The noise strength contribution coming from current-current fluctuations is

DH(x) = H̃2~
∫
d~ω
2π

[
fL(ω)− fR(ω)

]2

T (ω, x)×

×(1− T (ω, x)) +
{
fL(ω)(1− fL(ω)) +

+fR(ω)(1− fR(ω))
}
T (ω, x), (3.49)

where

T (ω, x) =
~ΓL~ΓR

[(~ω − Vgate(x))2 + [~Γ]2/4]
. (3.50)

In the absence of electron bias voltage, one has D(x) = 2kBTA(x), that is the fluctuation-
dissipation condition is verified for each fixed position x. Moreover, it is possible to show
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Figure 3.7: (Color online) Spatial dependence of the dimensionless diffusive coefficient D(x)
at large bias voltage applied (Panels(a-b-c)). See main text for discussion.

that in the units chosen, the dimensionless damping A(x) (Eq.3.40) and diffusive term D(x)
(Eq.3.46) result proportional to the adiabatic ratio ω0/Γ.

It is important to point out that, when there is no intrinsic electron-oscillator coupling
λ = 0, in the absence of the antenna effects and at zero bias (Vbias = 0), the oscillator is still
governed by a Langevin equation

mẍ + AH(x)ẋ = kx+
√
DH(x)ξ(t), (3.51)

with a harmonic force F(0)(x) = kx, an intrinsic positive-definite dissipative term AH(x),
and a diffusive term DH(x) proportional to the thermal current-current noise. Looking at
Eqs. 3.42 and 3.49, one can clearly see that a natural quadratic dependence of damping and
diffusive strength on the magnetic field emerges. This can be explained observing that, even
at zero bias voltage, the electronic tunneling events, whose phase is dependent linearly on the
CNT displacements as well as on the magnetic field strength, perturb the CNT mechanical
motion with a force with zero average (due to 〈Î〉 = 0, H̃ can be also different from zero) and
square mean proportional to the magnetic field square. Definitely, even in the absence of
external bias voltage Vbias, the magnetic field applied perpendicular to the CNT couples to
the bending mode dynamics behaving as a surrounding thermal bath at leads temperature
kBT .

I end this section with a systematic study of the spatial dependence of the total force,
the damping (see Fig.3.6) and diffusive terms (see Fig.3.7) as a function of the bias voltage
as well as on the magnetic field.

As concerns the total force acting on the CNT resonator, I point out that, for the mag-
netic field strengths investigated in this Sec., the effective potential preserves its parabolic
shape with a displaced minimum and renormalized curvature. For instance, when a left-
to-right current flows through the device (see the sketch in Fig.3.4) in the presence of a
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positive magnetic field (outgoing from the sketch reported in Fig.3.4), the CNT-resonator
effective potential minimum is displaced towards positive displacements x with respect to
the minimum set by the density-displacement interaction (see Panel (a-b) of Fig.3.5). In
Fig.3.5, one can observe that, the minimum of the effective potential acting on the resonator
depends linearly on the magnetic field strength. This comes from the linear dependence on
the magnetic field of the Lorentz-like correction term to the force Eq.3.38. In particular, as
shown in Panel(a) in Fig.3.5, in the low bias regime for the device (small compared to the
broadening of the CNT level), the larger is the gate voltage, the smaller is the displacement
of the potential minimum as a function of the external magnetic field with respect to the shift
produced by the charge-displacement interaction on the CNT (whose position is indicated
by a (black) square for Vg = 0, a (red) circle for Vg = 0.45 (Vbias = 90µV in my units), and
a (green) triangle Vg = 1.0 (Vbias = 200µV in my units)). This can be explained observing
that in the low conducting regime of the device the resonator is less effectively coupled with
the electronic subsystem. In the large bias regime (Panel(b) of Fig.3.5), a smaller magnetic
field is sufficient to displace the potential minimum of the same quantity produced by the
sole charge-displacement interaction on the CNT. Again, the larger is the gate voltage, the
smaller is the displacement of the potential minimum as a function of the external magnetic
field with respect to the shift produced by the charge-displacement interaction on the CNT.

The renormalization of the effective potential curvature, that is of the resonance frequency
of the resonator, will be discussed in subsection B of next section.

In this section, I limit myself to discuss the damping termA(x), since for the diffusive term
D(x), unless explicitly stated, a similar analysis can be done. As shown above (see Eq.3.40),
I can distinguish between three contributions to the friction affected by the oscillator: a pure
electron-oscillator contribution Aλ(x), depicted in Fig.3.6 with a solid (black) line, already
discussed in Ref.[29, 123]; a damping contribution due to current-current fluctuations AH(x),
depicted in Fig.3.6 with a dotted (blue) line; a mixed damping term due to current-density
fluctuations (not positive definite), indicated by AλH(x) and depicted in Fig.3.6 with a short-
dashed (red) line. The total damping A(x) is depicted with a dashed (pink) line. As one can
observe in Panel(a), at low bias voltage, when the external magnetic field strength is smaller
than electron-oscillator coupling λ, the damping contributions coming from the current-
current AH(x) and current-density AλH(x) fluctuations are negligible with respect to that
generated by the pure electron-oscillator contribution Aλ(x). In Panel (a), Aλ(x) and AH(x)
have a single peak structure centered at x−2Vgate/λ ' 0, while AλH(x) is an odd symmetric
function with respect to this point. I point out that these peculiar structures emerge only
at larger values of magnetic field (Panels(b-c) of Fig.3.6). The total damping affecting the
resonator is peaked at configurations where large density variations take place |x−2Vgate/λ| <
~Γ/λ. Indeed, the density of the CNT level goes from a region x − 2Vgate/λ < −~Γ/λ
corresponding to almost completely filled states (〈n〉 ∼ 1) to a region x − 2Vgate/λ > ~Γ/λ
corresponding to completely empty states (〈n̂〉 ∼ 0). Definitely, the CNT level experiences
an unit charge variation across the |x− 2Vgate/λ| < ~Γ/λ region[49, 139].

At large bias voltages applied (Panel (b)), Aλ(x) has two peaks centered at x−2Vgate/λ '
eVbias/2λ and x − 2Vgate/λ ' −eVbias/2λ, respectively. AH(x) shows the same behavior,
while AλH(x) is an odd symmetric function with respect to these two points. As in Panel
(a), AH(x) and AλH(x) are negligible with respect to Aλ(x). The total damping affecting
the resonator is peaked at configurations where the CNT level experiences a half-unit charge
variation across the |x− 2Vgate/λ± eVbias/2λ| < ~Γ/λ regions[49, 139].

When the external magnetic field is turned on, an enhanced damping as well as as noise
strength emerges with a quadratic dependence on the magnetic field intensity Eqs.3.40-3.46.
In Panels(b-e) of Fig.3.6, one can observe that, as the dimensionless ratio B/λ is equal to
one, the total damping affecting the resonator is only slightly perturbed by the application
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of the magnetic field. At low bias, A(x) preserves its single peak structure with an enhanced
strength (dashed (pink) curve in Panel (b) of Fig.3.6). At large bias, the strength of the
two peaks becomes asymmetric, with an enhanced damping of the peak at x − 2Vgate/λ '
−eVbias/2. This effect can be explained as follows: when a magnetic field is applied to
the device, the resonator starts to feel even the variations of the electronic current flowing
through the CNT as a function of the gate voltage (see Eq.3.38). These current variations
are positive for x− 2Vgate/λ < 0 and negative otherwise. At x− 2Vgate/λ ' −eVbias/2, large
negative variations of the electronic density and positive variations of the electronic current
cooperate giving an enhanced damping.

I intend now to study the regime realized when the external magnetic field strength is
larger than electron-oscillator coupling λ. In this case, the contribution to the damping
coming from the current-current fluctuations AH(x) are dominant with respect to those
corresponding to density-density Aλ(x) and density-current AλH(x) fluctuations. In the low
bias regime, the total damping term preserves its single peak structure which, due to the
intrinsic asymmetry of the current-density term AλH(x), is slightly distorted. For the same
reason, in the large bias regime, the double dip structure of the total damping term is
preserved with an enhanced asymmetry. In the large magnetic field regime, it is important
to point out the particular spatial dependence of the noise strength D(x) (Panels (c-f)
of Fig.3.7). Here, the noise contribution due to the current-current fluctuations (DH(x))
emerges with the characteristic double peak structure even at low bias regime (dotted (blue
curve in Panel (c) of Fig.3.7)). Comparing the dashed (pink) curves in Panel (c) of Figs.3.6-
3.7, one can observe that, even at low bias voltage, the application of a large magnetic field
drive the CNT-resonator far out of equilibrium, breaking the validity of the Einstein relation
D(x) = 2kBTeffA(x) with an effective temperature. Far from equilibrium, this relation is
strictly valid only at very low bias voltages[29, 27].

In the next section, I study numerical results of the model concerning mechanical prop-
erties of CNT-resonator (resonance frequency and quality factor) as well as the electronic
observables inherent to the transport problem (I-V characteristic).

3.5.3 Mechanical and electronic characteristics of the device

Given the assumption about the separation between the slow vibrational and fast electronic
(tunneling) timescales, the problem of evaluating a generic observable (electronic or not)
of the system reduces to the evaluation of that quantity for a fixed position x and velocity
v of the oscillator, with the consequent averaging over the stationary probability distribu-
tion P (x, v). From the solution of the Langevin equation Eq.3.35, one can determine the
distribution P (x, v) which allows to calculate all the electronic observables O:

〈O〉 =

∫
dxdvP (x, v)O(x, v). (3.52)

I analyze in the next section the effects of the magnetic field on the mechanical as well as
electronic properties of the device.

Device Quality factors

One of the main results of Ref.[136] is the observation of a quadratic dependence of the device
quality factor Q on external magnetic field strength. Within my model, as also stressed in the
previous sections, such a quadratic dependence on B emerges naturally. In this Sec., in order
to include back-actions effects of the out of equilibrium electronic bath on the resonator, I
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Figure 3.8: (Color online) Device quality factor as a function the gate voltage Vgate for
different magnetic field strengths at low (Panel (a)) and large (Panel (b)) bias voltage.
Panels(c-d) Same as above for the average total damping 〈A(x)〉 of the system. Panel(a-c):
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have calculated the average device quality factor as

Q =

∫ ∞
−∞

dx
1

A(x)
P (x), (3.53)

where A(x) is the total damping at a particular resonator displacement x and P (x) is the
reduced displacement distribution probability of the CNT-resonator. I have verified that this
particular way of extracting quality factors is completely equivalent to measure the width
at half-high in the current-frequency curves obtained in the linear response to an external
antenna exciting the nanotube motion[49].

Motivated by the experiment performed in Ref.[136] and by recent experimental study
on a similar CNT device[139], I here performed a systematic study of the quality calculated
from my model as a function of the bias, gate voltage as well as on the magnetic field. In
Panels (a-b) of Fig.3.8, I investigate the device quality factor Q as a function of gate volt-
age in the low and large bias voltage regime, respectively. In the absence of a transverse
magnetic field, I reproduce the qualitative behavior obtained in the experiment of Ref.[139].
When bias voltages are smaller than the broadening due to tunnel coupling, the quality
factor shows a single dip as a function of gate voltage (solid (black) thick line in Panel (a)
of Fig.3.8). At bias voltages that exceed (or are equal to) the broadening due to tunnel
coupling, the quality factor shows a double dip structure (solid (black) thick line in Panel
(b) of Fig.3.8). This behavior, already addressed in Refs. [49, 139], can be easily explained
looking at the average charge and dissipation of the CNT-resonator through the system.
As also discussed referring to total damping affecting the CNT-resonator in the previous
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section, at low bias voltage and in the absence of magnetic field, the total average damping
affecting the resonator is peaked at electronic configurations where the the CNT level ex-
periences an unit charge variation across the region where the small conduction window is
placed |Vgate| < ~Γ (solid (black) thick line in Panel (c) of Fig.3.8). At large bias voltages,
the conduction window, whose extension is proportional to eVbias, becomes larger than the
broadening of the CNT level, so that the total average damping affecting the resonator is
peaked at electronic configurations where the CNT level experiences a half-unit charge vari-
ation, that is at |Vgate − eVbias/2| < ~Γ and |Vgate + eVbias/2| < ~Γ. When the transverse
magnetic field is turned on, the above scenario modifies as follows. At low bias voltages, the
total damping affected by the CNT-resonator increases quadratically with the field at every
point in the configuration space of the oscillator. Moreover, the CNT-resonator distribution
probabilities P (x) depend slightly on the magnetic field as well as on the gate voltages and
are actually centered at configurations close to the harmonic potential minimum x ' 0 in
the absence of electron-oscillator interaction. The overall result is an enhanced average total
damping as one increases the magnetic field (solid normal (B = 1.5) and thin (B = 3.0)
(black) lines in Panel (c) of Fig.3.8) and a corresponding decrease of the quality factor in all
the gate voltage range investigated (solid normal (B = 1.5) and thin (B = 3.0) (black) lines
in Panel (a) of Fig.3.8). At large bias voltage, the P (x) continues to depend only slightly
on the magnetic field but now are very spread on the configuration space. Therefore, the
average in Eq.3.53 reproduce the spatial dependence structure of the total damping coeffi-
cient reciprocal 1/A(x). The double peak structure of the average total damping term (solid
thick (black) line in Panel (d) of Fig.3.8) is canceled by the magnetic field, giving a single
peak at Vgate = eVbias/2 where a cooperation between negative density and positive current
variations take place (solid normal (B = 0.2) and thin (B = 0.4) (black) lines in Panel (d) of
Fig.3.8). As a consequence, the quality factor loses its double dip structure getting a single
dip at Vgate = −eVbias/2 (solid normal (B = 0.2) and thin (B = 0.4) (black) lines in Panel
(b) of Fig.3.8).

I intend now to study the device quality factors as a function of the transverse magnetic
field B comparing different conducting states of the device. In Panel (a) of Fig.3.9, one
can observe calculated device quality factors as a function of the magnetic field at a low
conducting state of the device (Vgate = 0.45). Different curves, from the thicker to the
thinner, refer to increasing bias voltages applied to the device eVbias = 0.1− 0.75− 1.5. At
every fixed bias voltage, a clear quadratic dependence of the total average damping on the
magnetic field strength is observed (not shown in Fig.3.9), with a Lorentzian shape of the
quality factor curves (see Panel (a) of Fig.3.9). It is important to point out that the range of
magnetic field strengths experimentally investigated in Ref.[136], B = 0 − 3T , corresponds
to small magnetic fields in my units (I recall that H0 = 16.6T ). Remarkably, at low bias
and small magnetic fields, a quadratic decrease of the Q against magnetic field is observed
(see solid thick (black) line in Panel (a) of Fig.3.9). In Fig.3.10, I show the quantitative
agreement between experimental and calculated quality factors against magnetic field when
the device is in a low conducting state, with eVbias = 0.1 and Vgate = −0.45. The slight
increase of the quality factor Q as a function of the field for small magnetic fields, is due
to asymmetry introduced by the gate voltage Vgate = 0.45 applied to the device (see also
Panel (a) of Fig.3.9). For gate voltage equal to zero, that in the high conducting state of the
device, the calculated Q against B curve is a parabola with a maximum at zero magnetic
field applied.

Coming back to Panel (a) of Fig.3.9, one can observe an interesting increase of the quality
factor peak as a function of the bias voltage. In particular, for eVbias = 1.5 (thinner line
in Panel (a) of Fig.3.9) a quality factor peak at B ' Vgate/2 = 0.225 occurs. This can be
directly related to the average total damping dip, not shown in Fig.3.9. This effect can be
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Figure 3.9: (Color online) Device quality factor as a function the magnetic field strengthB for
different bias voltages (Solid thick line eVbias = 0.1, solid normal-thickness line eVbias = 0.75,
and solid thin line eVbias = 1.5) at low (Panel (a)) and high (Panel (b)) conducting states.
Panels(c-d) Device quality factor as a function the bias voltage eVbias for different magnetic
field strengths at low (Panel (c)) and high (Panel (d)) conducting states. Panel(c): solid
thick line B = 0.0, solid normal-thickness line B = 0.05, and solid thin line B = 0.1.
Panel(d): solid thick line B = 0.0, solid normal-thickness line B = 0.25, and solid thin line
B = 0.5.

explained noting that, when the bias voltage applied to the electronic device is increased,
a transition from a single peak to a double peak structure in the spatial dependence total
damping affected by the CNT-resonator con be observed (compare Panel(a) and (d) of
Fig.3.6), while at the same time, the displacement distribution probabilities P (x) spread on
the configuration space remaining centered at configurations close to the harmonic potential
minimum x ' 0 characteristic of the low bias regime. The overall result is a reduction of
the average total damping affecting the CNT-resonator whose minimum is translated by a
quantity proportional to the gate voltage applied to the device. This argument becomes
even more clear when no gate voltage is applied to the device which is therefore placed in a
high conducting state. In this case a perfect symmetry with respect to zero magnetic field
is obtained (see Panel (b) of Fig.3.9).

I end this section with a study of the device quality factors as function of the bias
voltages and magnetic fields comparing low and high conducting states of the device. In
Panel (c) of Fig.3.9, one can observe calculated device quality factors as a function of the
bias voltages at a low conducting state of the device (Vgate = 0.45). Different curves, from
the thicker to the thinner, refer to increasing magnetic field applied to the device B =
0.0− 0.05− 0.1. At zero magnetic field, a clear double dip feature in the quality factor Q, as
experimentally observed in Ref.[139], is visible. This can be explained looking at the average
total damping and in terms of the average charge in the CNT level. The total average
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Figure 3.10: (Color online) Device quality factor as a function the magnetic field strength.
Squares represent experimental values obtained in Ref.[136] at T = 25mK, Vbias = 0.3mV
and distance from the current peak Vgate = −90mV . Solid (red) line is calculated Q at
kBT = 0.01, eVbias = 0.1 and Vgate = 0.45.

damping, in the absence of magnetic field, has two peaks at eVbias = −2Vgate = −0.9 and
at eVbias = 2Vgate = 0.9. Indeed, as also discussed previously, the total average damping
is peaked at electronic configurations where the CNT level experiences a half-unit charge
variation, that is at |Vgate − eVbias/2| < ~Γ and |Vgate + eVbias/2| < ~Γ. Therefore, when
the edges of the conduction window (whose width is proportional to eVbias) meet the CNT
level energy (given by Vgate), a maximum total average damping (minimum quality factor) is
observed. As also discussed in reference of Fig.3.8, the double peak structure of the average
total damping term is canceled by the magnetic field, giving a single peak at eVbias = −2Vgate
where a cooperation between negative density and positive current variations take place.
As a consequence, the quality factor loses its double dip structure getting a single dip at
eVbias = −2Vgate (solid normal (B = 0.05) and thin (B = 0.1) (black) lines in Panel (c) of
Fig.3.9).

In Panel (d) of Fig.3.9, I show calculated device quality factors as a function of the
bias voltages at a high conducting state of the device (Vgate = 0.0). Different curves, from
the thicker to the thinner, refer to increasing magnetic field applied to the device B =
0.0− 0.25− 0.5. As above, at zero magnetic field, a single dip feature in the quality factor
Q, as experimentally observed in Ref.[139], is visible. This behavior can be discussed with
the same argument given for discussing the Panels(a-b) of Fig.3.9, where a reduction of the
total average damping as a function of the bias voltage applied to the device was observed.
Again, a decrease of the quality factor in all the gate voltage range investigated as a function
of the magnetic field is observed (see Panel (d) of Fig.3.9).
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Figure 3.11: (Color online) Panel (a): Resonator frequency against effective gate voltage
calculated as minimum of the effective potential in the static approximation at small bias
eVbias = 0.1~Γ for different magnetic field values: Solid thick line B = 0.0, solid normal line
B = 1.5, solid thin line B = 3.0. Panel (c): same as Panel (a) at large bias eVbias = 1.5~Γ for
different magnetic field values: From thicker to thinner line B = 0.0− 0.1− 0.2− 0.3− 0.4.
Panel (b-d): Resonator frequency calculated using an external antenna (with Aext = 10−3)
at mechanical resonance against effective gate voltage for same parameters of Panel (a-c),
respectively. Dashed (red online) and solid (blue online) portions of each curve indicate
resonance frequency values with positive and negative current change ∆I, respectively. In
Panel (d), only curves referring to magnetic field strengths B = 0.0− 0.2− 0.4 are reported.

Resonance frequency renormalization and current-voltage curves

In this section, I address the magnetic field effects on the renormalization of the CNT-
resonator resonance frequencies and its back-action effects on the current voltages curves
of the device. In order to study the CNT resonance frequency renormalization as function
of the gate voltage, I have compared results coming from two ways of evaluation of the
resonance frequencies. In the first method, referred to as Static, I evaluate the position of
the minima of the static potential arising from the generalized force acting on the resonator
(Eq.3.38). In the second method, referred to as Dynamic+antenna, I have analyzed, at
every fixed value of the gate voltage, all the traces of electronic current as a function of
the antenna frequency reporting with a red (blue) dot the resonance frequency values with
positive (negative) current change ∆I = I−I0 with respect to background value I0 obtained
in the absence of the antenna.

In Fig.3.11, I report the resonance frequencies of the CNT-resonator as a function of the
electronic gate voltage comparing the two methods outlined above. I address the low bias
regime in Panels (a-b), while the large bias regime is investigated in Panels(c-d). In Panel
(a) of Fig.3.11, different curves, from the thicker to the thinner, refer to increasing magnetic
field applied to the device B = 0.0− 1.5− 3.0. The same description was done in Panel (c),
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Figure 3.12: (Color online) Panel (a) Average electronic current flowing through the CNT
level at low bias (eVbias = 0.1) as function of the gate voltage for different values of the
magnetic field and in the presence of a external antenna applied to the device at fixed
frequency ωext = 0.9975 and amplitude: solid (black) line Aext = 10−3, (dashed (red) line
B = 1.0 Aext = 10−2.5, dotted (green) line B = 1.5 Aext = 10−2.0, dashed-dotted (blue) line
B = 1.0 Aext = 10−2.5). Panel (b) Average electronic density on the CNT level for the same
parameter values as in Panel(a). See the main text for detailed discussion.

where different curves refer to increasing magnetic field in the range B = 0.0 − 0.2 − 0.4.
The thicker (black) lines in Panels (a) and (c), corresponding to the absence of magnetic
field, reproduce qualitatively all results experimentally observed[139] on a similar CNT-
resonator device: when bias voltages are smaller than the broadening due to tunnel coupling
(Panel (a)), the resonance frequency shows a single dip as a function of gate voltage. At
bias voltages that exceed the broadening due to tunnel coupling (Panel (c)), the resonance
frequency shows a double dip structure. Actually, in this regime, the onset of a double dip
structure was already predicted by us in Ref.[49]. It is important to point out that the
resonance frequency renormalization curves obtained in the presence of the external antenna
(Panel (b-d) of Fig.3.11) have the same qualitative behavior (as a function of the gate) of
those obtained in the static approach. In the presence of an external antenna with a finite
amplitude, renormalization effects in the resonance frequencies are less pronounced due to
nonlinear softening[11, 49].

As already analyzed in Ref.[11, 49], when the device is in a low current-carrying state,
a peak in the current-frequency curve signals the mechanical resonance (whose position is
indicated by thin (red) lines in Panels (b-d) of Fig.3.11), while in a high current-carrying
state, a dip in the current-frequency curves is observed (whose position is indicated by thick
(blue) lines in Panels (b-d) of Fig.3.11). In the presence of a transverse magnetic field,
the different character of low and high conducting states, signaled by a peak or a dip in
current-frequency curves is preserved (curves (2) and (3) in Panels (b-d) of Fig.3.11).

82



The peculiar features of CNT-resonator frequency renormalization as a function of the
gate can be explained with the same argument used to describe the quality factors behavior
in the previous section. Indeed, in the absence of magnetic field, the resonator frequency
renormalization is maximum at electronic configurations where the the CNT level experiences
the largest density variations against the gate voltage,

keff = k + λ
∂〈n̂〉
∂Vgate

∣∣∣∣∣
x=xmin

. (3.54)

Actually, at low bias voltages, an unit charge density variation across the region where the
small conduction window is placed |Vgate| < ~Γ (solid (black) thick line in Panel (a) of
Fig.3.11) occurs. At large bias voltages, the CNT frequency renormalization is larger at
electronic configurations where the CNT level experiences a half-unit charge variation, that
is at |Vgate − eVbias/2| < ~Γ and at |Vgate + eVbias/2| < ~Γ.

When the transverse magnetic field is turned on, the above scenario modifies as follows.
The resonator frequency renormalization is larger at electronic configurations where the CNT
level experiences the largest density and current variations against the gate voltage,

keff = k + λ
∂〈n̂〉
∂Vgate

∣∣∣∣∣
x=xmin

− λH̃ ∂〈Î〉
∂Vgate

∣∣∣∣∣
x=xmin

. (3.55)

At low bias voltage, the single dip feature in the CNT-resonator resonance frequency gets
distorted (solid normal-thickness line in Panel(a) of Fig.3.11) and acquires, in the limit of
large magnetic field (solid thin line in Panel(a) of Fig.3.11), a dip-peak structure that could
be experimentally observed. Actually, the peak observed at Vgate ' 0.3 corresponds to
an hardening of the CNT-resonator resonance frequency. This effect can be explained as
follows: when a magnetic field is applied to the device, the resonator starts to feel even the
variations of the electronic current flowing through the CNT as a function of the gate voltage
(see Eq.3.55). These current variations are positive for Vgate < 0 and negative otherwise.
At Vgate ' 0.3, the positive (due to the positive sign of the magnetic field) variations of
the electronic current overcome the negative variation of the electronic density giving a
hardening in the CNT resonance frequency. At Vgate ' −0.25, one has negative variations of
both density and current, obtaining a more pronounced softening in the resonance frequency.
The effect outlined above is more pronounced in the large bias regime (see Panel (c) of
Fig.3.11). Here, the magnetic field gives an enhanced softening dip at Vgate ' −eVbias/2
and an hardening peak at Vgate ' eVbias/2, where positive variations of the electronic current
cooperate with negative variation of the electronic density. In both low and high bias regime,
the hardening effect outlined above could be experimentally observed.

The peculiar renormalization frequency effects discussed above have a nontrivial back-
action effects on the electronic density and current-gate voltage characteristic of the device.
In Fig.3.12, I study the electronic CNT level density and current as a function of the gate
voltage in the presence of an external antenna at fixed amplitude and frequency ωext = 0.9975
(corresponding to the horizontal line in Panel (b) of Fig.3.11) in the low bias regime of
the device6. When the external antenna frequency becomes equal to the proper frequency

6In the large bias regime, features of different origin of those investigated in this thesis can appear in
the current-voltages characteristic of the device. These switching effects are experimentally observed in
dc-current through the device investigated in Ref.[136], and have been identified as nano-electromechanical
self-excitations of the system, where positive feedback from single electron tunneling drives mechanical
motion. These features, smeared by the external magnetic field, were predicted by a model introduced in
Ref. [126, 127] where energy dependence of electronic tunneling amplitudes was also considered.
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of the resonator, I observe a dip structure in both density and current at a gate voltage
corresponding to high conducting states of the device (solid (black) line in Panels (a-b) of
Fig.3.12). This feature, that could be experimentally observed, is considered as a ”dip” with
respect to corresponding curves in the absence of antenna or with an antenna frequency far
from the range of the proper frequencies of the CNT-resonator (not shown in Fig.3.12).

When a transverse magnetic field is applied to the device, the CNT frequency renor-
malization profile as a function of the gate voltage changes (see Fig.3.11). Therefore, the
mechanical resonance condition between the external antenna frequency and the proper fre-
quency of the resonator occurs at different electronic gate voltages. For sufficiently large
magnetic fields, the resonance can occur in correspondence of a low conducting state of the
device. As one can observe in Panels (a-b) of Fig.3.12, a dip structure in the electronic
density at a more negative gate voltage and corresponding current peak (dotted (green) and
dashed-dotted (blue) lines in Panel (a-b) of Fig.3.12) is visible. Actually, the above struc-
tures are broadened due the reduction of the quality factor as a function of the magnetic
field. In the limit of very large magnetic fields, if I keep fixed the amplitude of the external
antenna, the fine structures outlined above are completely washed out due to the decrease
of the device quality factors.

3.5.4 Discussion

In conclusion, I have studied a CNT-based electronic transistor in the presence of an external
magnetic field perpendicular to the current flux[50]. I was able to show that the application
of a transverse magnetic field modifies the bending mode CNT dynamics giving an enhanced
damping as well as a noise term originating from the electronic phase fluctuations induced
by the displacements of CNT itself.

The effective force acting on the resonator is modified by a pure nonequilibrium correction
term proportional to the magnetic field as well as to the electronic current flowing through
the CNT. Even at zero bias voltage, damping and diffusive terms are both modified by
quantum electronic current-current as well as density-current fluctuations corrections whose
strengths are quadratic and linear in the magnetic field, respectively.

Within my model, a quadratic dependence of the device quality factor Q on external mag-
netic field strength, experimentally observed in Ref.[136], emerges naturally. This behavior
is understood in terms of a back-action of quantum electronic current flow fluctuations on
the bending mode dynamics. A systematic study of device quality factor as a function of
gate and bias voltage in the presence of the magnetic field has also been performed. All
results are discussed observing the average charge and electronic current variations with re-
spect to gate voltage applied to the device and can be summarized as follows. At a fixed
electronic conducting regime, if negative charge variations and positive current variations
occur, one has an enhanced damping reducing the quality factor of the device. Vice-versa,
negative charge variations and negative current variations reduce damping with a consequent
increase of quality factors.

I also show that, when the device is driven far from equilibrium, one can tune CNT-
resonator frequencies by varying the external magnetic field: the peculiar (single or double
dip) features in the CNT-resonator resonance frequency, obtained in different conducting
regimes for the device, get distorted and acquire, in the limit of large magnetic field, a
peculiar dip-peak structure that could be experimentally observed.

Finally, when the device is actuated by an external antenna at fixed frequency and
amplitude, the device current-gate voltage response is modified by fine structure features
any time the mechanical resonance with the proper nanotube oscillation frequency occurs.
These structures can be tuned as a function of the external field and could be experimentally
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observed. In this sense, I have shown that, only exciting the CNT motion with application
of an external rf-antenna, one can observe a magnetic field dependence of the electronic
current.

I point out that throughout this Chap. I do not take into account of a magnetic field with
a component longitudinal to the CNT-resonator. This issue has been recently addressed in
Ref.[139] and explained in terms of a more sophisticated theoretical schematization of the
CNT-resonator electronic structure which has a cylindrical quasi-one dimensional shape.

I end this section noting that it could be of outstanding interest to study the possibility to
include quantum corrections as well as electron-electron interaction effects to the oscillator
dynamics in the low bias regime. These corrections becomes important when the resonator
and electronic time scales are of the same order on magnitude. In this direction, it was
shown in Ref.[148] that a magnetic field applied perpendicular to the CNT results in negative
magnetoconductance due to quantum vibrations of the tube inducing an Aharonov-Bohm-
like effect on the electrons crossing the device. Work in this direction is in progress.
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Chapter 4

Electronic transport through a
strongly correlated molecular
junction: coupling with a high
frequency vibrational mode

4.1 Introduction

In recent years there has been an increasing interest in the study of transport phenomena
in nanoscale systems motivated by their potential as electronic devices. Due to their small
size, electronic correlations are dominant and lead to interesting many-body effects, such
as the Coulomb blockade and Kondo resonance[154]. These effects have been observed
experimentally in transport experiments through molecular conductors [19, 63] and other
nanostructures[55]. Another interesting property of molecules is their flexible nature. They
have an intrinsic spectrum of internal vibrational modes and, when coupled to the electrodes,
molecules acquire ”external” vibrational modes as well. An important example is the center
of mass motion of the molecule coupled between the two leads. The excitation of this mode
can modulate the electronic energy levels and tunneling barriers between the electrodes and
the molecule itself, thus changing the molecular transport properties. For example, the
effects of the interaction between electron tunneling and the center of mass motion of the
whole molecule have been observed in a number of recent transport experiments[19, 63,
62, 58] and have been the subject of considerable theoretical investigation[155, 156, 157,
158, 159]. In a different way, studying the interplay of mechanical motion and electronic
conduction in nanoscale systems establishes a strong link to the physics of Nanomechanical
shuttling systems (NMSS) and NEMS. The shuttle devices are a particular kind of NEMS.
The characteristic component that gives the name to these devices is an oscillating object of
nanometer size (molecule) that transfers electrons one-by-one between a source and a drain
lead.

In this Chap., I want to address the transport properties of a nanomechanical shuttling
system in the low temperature low bias regime regime where a strong interplay between
the Kondo physics and vibrational degrees of freedom is expected [156, 159]. Indeed, as
already emphasized in Chap. 1, there are contrasting experimental results in this regime:
Park et al.[19] performed measurements in Au−C60 −Au junctions where the conductance
at low bias was found to be largely suppressed and the current-voltage characteristics were
dominated by the Coulomb blockade phenomenon. A related transport experiment through
a single C60 molecule[63] showed a much higher low-bias conductance (of the order of 0.1G0
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with G0 = e2/h), which was attributed to the appearance of Kondo physics.
I believe that for the interpretation of the experimental results a better understanding

of the interaction effects of the center of mass motion of the molecule onto the electronic
hopping by means of a simple theoretical model is necessary. 1

In the following, I numerically investigate with Density Matrix Renormalization Group
(DMRG) the electronic transport properties of a nanomechanical shuttling device in the
Kondo regime. I model the system by means of the Anderson impurity model with noninter-
acting (tight-binding) leads. The molecule (impurity site of the chain) is allowed to oscillate
between the two metallic contacts. I focus on the effects of tunneling barrier modulation
(encoded in the coupling constant α) on the electronic conductance and on the static and
dynamical properties of the phononic mode.

I use an alternative method for calculating the conductance through nanoscopic corre-
lated systems based on the calculation of the persistent current of a fictitious auxiliary system
threaded by a magnetic flux.[160, 161] As shown in Ref. [162], a DMRG calculation of the
ground state energy of this auxiliary system turns out sufficient for calculate the conduc-
tance in linear response. A dip in the electronic conductance at the particle-hole symmetric
point for a finite value of α is obtained. This result is different from that obtained in the
literature[156] where the same dip was found for any value of α different from zero. K. A.
Al-Hassanieh et al.[156] justify the dip as due to the destructive interference between the
purely electronic and phonon-assisted tunneling channels, which are found to carry opposite
phases. In [156], conductance is calculated by means of Green functions, within Keldysh
formalism, using exact diagonalization supplemented by a Dyson equation embedding pro-
cedure (ED + DE)[163]. The cancellation effect cited above is also found by other authors
using different numerical techniques.[159] I justify the presence of the dip for a finite α value
by means of a Janh-Teller distorsion, where a natural breaking of the inversion symmetry is
obtained. The distribution probability of the phononic mode in real space becomes bimodal
for α equal to the critical value, even if it retains its symmetry with respect to zero dis-
placement configuration. Correspondingly, the average quadratic displacement increases up
to the limit physical value t′/α where the effective hopping between the molecule and one of
the leads is equal to zero, giving the conductance cancellation and in particular no current
flow through the device. In order to assess even-odd effects, I have further verified that the
physical properties of the system (for finite system size) don’t depend on the total number
of sites of the chain, Ltot, if this quantity is sufficiently large.

4.2 Hamiltonian of a Quantum Shuttle

The physical system analyzed in this Chap. is schematically depicted in Figure 4.1. The
center-of-mass (c.m.) vibrational mode is treated quantum mechanically and leads to an
asymmetric modulation of the molecule-leads tunneling barriers. The vibrational excitation
is also coupled to the excess charge on the molecule (Holstein interaction). In fact, an
important feature of molecules is that they generally distort upon the addition or the removal
of electrons. Moreover, the molecule-electrode bonds can depend in general on the molecule’s
charge and on the molecule-electrode distance. The electronic part of the system is modeled
using the Anderson impurity Hamiltonian. The total Hamiltonian can be written as

Ĥ = ĤM + Ĥleads + ĤM−leads, (4.1)

1The molecular internal vibrational modes have been proposed to account for the side peaks in the
nonlinear conductance. Indeed, in Ref. [63], the authors were also able to tune finite-bias Kondo features
which appear at the energy of the first C60 intracage vibrational mode (see Fig. 1.15 of Chap. 1).
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Figure 4.1: A schematic of the system studied in this Chap.. The molecule can oscillate
between the two leads, thus modulating the tunneling barriers.

where ĤM is the Hamiltonian of the molecule,

ĤM = VGn̂d + Un̂d↑n̂d↓ + λ(1− n̂d)(â+ â†) + ω0â
†â. (4.2)

In the above Hamiltonian, the first term represents the energy of the relevant molecular
orbital controlled by the gate voltage VG, the second term represents the Coulomb repulsion
between the electrons of opposite spins occupying the molecular orbital, the third term
couples the vibrational excitation to the net charge on the molecule (â and â† are the phonon
operators) and the fourth term represents the vibrational energy. Ĥleads describes the two
leads, modeled here as semi-infinite ideal chains

Ĥleads = −t
+∞∑
σ,i=1

[
ĉ†L,i,σ ĉL,i+1,σ + ĉ†R,i,σ ĉR,i+1,σ + h.c.

]
, (4.3)

where ĉ†Liσ (ĉ†Riσ) creates an electron with spin σ at site i in the left (right) lead and t is the

hopping amplitude. ĤM−leads connects the molecule to the leads,

ĤM−leads = −t′[1−α(â+ â†)]
∑
σ

(d̂†σ ĉL,1,σ +h.c.)− t′[1+α(â+ â†)]
∑
σ

(d̂†σ ĉR,1,σ +h.c.). (4.4)

where d†σ creates an electron with spin σ in the molecule, t′ is the hopping parameter between
the molecule and the first site of each lead, and α is a parameter that carries the dependence
of t′ on the molecule displacement x̂ from its equilibrium position (note the opposite signs
in this dependence for the two leads). This displacement can be written in terms of the
phonon operators as x̂ = â + â†. For future convenience, it is useful to split the above
Hamiltonian term ĤM−leads in two parts: one independent and the other dependent on the
shuttle interaction α

ĤD
M−leads = −t′

∑
σ

(d̂†σ ĉL,1,σ + h.c.)− t′
∑
σ

(d̂†σ ĉR,1,σ + h.c.), (4.5)

Ĥα
M−leads = t′α(â+ â†)

∑
σ

(d̂†σ ĉL,1,σ + h.c.)− t′α(â+ â†)
∑
σ

(d̂†σ ĉR,1,σ + h.c.), (4.6)
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representing the tunneling terms not assisted (HD
M−leads, ``direct´´ channel) and assisted

(Hα
M−leads, ``phonon´´ channel) by emission or absorption of phonons.

If both λ = 0 and α = 0, the full Hamiltonian Ĥ is symmetric with respect to particle-
hole (p-h) transformation with VG = −U/2, while in the general case with λ and α different
from zero, the Hamiltonian is symmetric with respect to p-h and space inversion (x̂→ −x̂).

4.3 Alternative method for calculating conductance

through a region with interaction

In this chapter I employ an alternative method for calculating the conductance through
nanoscopic correlated systems. The method is applicable only to a certain class of systems,
namely to those exhibiting Fermi liquid properties, at zero temperature and in the linear
response regime. However, even if its quite restrictive domain of validity, I will see that the
method is easier to use than the methods based on the calculation of the impurity Green’s
function (Kubo [79] and Keldysh [81] formalism). I can summarize this new approach as
follows: as shown by Rejec et al.,[160] one can obtain analytically the conductance of a non
interacting region by calculating the ground-state energy of an auxiliary system, formed by
connecting the leads of the original system into a ring which is threaded by a magnetic flux
φ. The persistent electronic current flowing through the system I = − e

~
∂E(φ)
∂φ

obtained in this
way is proportional to the conductance in the limit of very large systems. This method has
been verified only numerically for interacting central regions by comparing with respect to
numerically exact results.[160, 161] The main advantage of this new approach is the fact that
it is often much easier to calculate the ground-state energy for example, using variational
methods than the Green’s function, which is needed in the Kubo and Keldysh approaches.
Moreover, from a numerical point of view, Quantum Monte Carlo[167] and Numerical Renor-
malization Group (NRG)[168] cannot be applied to the case of a (complex) magnetic flux
threading the ring, making highly desirable to count with a reliable numerical technique
to treat this problem. As shown in Ref.[162], the density matrix renormalization group
(DMRG) method could overcome these limitations. However, its efficiency with periodic
boundary conditions (PBC) is undermined by the structure of the quantum entanglement
in a ring geometry, and its application has been limited to the case of spinless fermions,[161]
or to small rings. In order to overcome this difficulty, I revisit a well known canonical trans-
formation that was originally introduced in the context of quantum impurity problems,[169]
and referred to as a ``folding´´ transformation,[170] mapping a Hamiltonian with periodic
boundary conditions onto an equivalent model with open boundary conditions. This has two
important implications: (i) it reduces the entanglement by half, allowing for a more efficient
representation in terms of Matrix Product State[171] and (ii) the OBC enable the DMRG
algorithm to simulate the problem optimally.

Therefore, in order to calculate the conductance of a system Hamiltonian with OBC, I
calculate the persistent current of an auxiliary system with PBC (just ground state calcula-
tion with DMRG). In order to reduce the entanglement afflicting DMRG applied to a system
with PBC, the ring is further ``folded´´ in a system with OBC.

4.3.1 Folding Transformation: ``even´´ and ``odd´´ cases

Let’s apply to the total Hamiltonian Ĥ of my model the folding transformation described
above. I introduce a symmetric (+) and antisymmetric (−) combination of operators acting
on the left and right leads. This is nothing else but an application of the reflection symmetry,
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Figure 4.2: A schematic illustration of the folding transformation applied to the Ntot =
”even” and Ntot = ”odd” cases.

yielding new even(+) and odd(−) operators

c±,j,σ =
1√
2

(
cL,j,σ ± cR,j,σ

)
. (4.7)

I assume that the left and right leads have a finite length Lleft and Lright, respectively.
Obviously, the total length of the chain is given by Ltot = Lleft +Lright + 1. It is well known
that in the Anderson Impurity model with tight binding leads the physical properties of
the system for finite system size are different if the total number of sites of the chain Ltot
(sum of the number of sites of each lead plus the molecular site) is even or odd. This is
easily understood at half-filling and in the case where the Holstein interaction λ and the
shuttle interaction coupling constant α are zero. In fact, if Ltot is even, in the ground state
of the system the total spin of the odd electrons in the leads (Stot = 1/2) screen the spin
of the electron of the molecule (Smol = 1/2) and one obtains the standard Kondo physics.
Otherwise, if Ltot is odd, the previous description is not applicable anymore (the total spin of
the even electrons in the leads is integer). Anyway, I expect that in thermodynamical limit
(Ltot →∞) the physical properties of the model should be independent on Ltot showing the
standard Kondo effect.

The folding transformation is schematically shown in both cases in Figure 4.2. The effect
of a magnetic flux φ threading the ring is introduced by adding a phase in the hopping matrix
element t→ te−ıφ/Ltot of all the links of the ring. By performing a gauge transformation on
the fermionic operators, one has the freedom to move the phase to any link along the ring.
In particular, I’m going to move it in between the first site of each lead and the molecular
site. The new, transformed Hamiltonians of the ``direct´´ and ``α´´ channel coupling the
leads to the molecular site will now read

Ĥ
′,D
M−leads = −

√
2t′ cos(φ)

∑
σ

(d̂†σ ĉ+,1,σ + h.c.) + ı
√

2t′ sin(φ)
∑
σ

(d̂†σ ĉ−,1,σ + h.c.), (4.8)

Ĥ
′,α
M−leads = −ı

√
2t′ sin(φ)α(â+ â†)

∑
σ

(d̂†σ ĉ+,1,σ + h.c.)

+
√

2t′ cos(φ)α(â+ â†)
∑
σ

(d̂†σ ĉ−,1,σ + h.c.). (4.9)

90



As one can observe in the upper and lower left panel of Fig. 4.2, the folding transformation
is applied between couples the sites of the same numeration of the left and right lead. For
example, in the Ltot ``even´´ case, the transformation is applied to all couples of sites up
to the second last of the ``left´´ lead coupled with the last site of the ``right´´ lead. In
this way, one can fold the ring cutting the link joining the last sites of each lead obtaining a
rinormalized link with hopping

√
2t between the last and the second last site of the ``+´´

lead
Ĥ
′,Lleft,Lleft−1

Leads = −
√

2t
∑
σ

(ĉ†(+,Lleft,σ)ĉ(+,Lleft−1,σ) + h.c.). (4.10)

In the Ltot ``odd´´ case, the leads have the same number of sites and one can fold the ring
obtaining chemical potential terms in each term of the last sites of the transformed ``+´´
and ``−´´ leads

Ĥ
′,Lleft,Lright
Leads = −t

∑
σ

(n̂(+,Lleft,σ) − n̂(−,Lright,σ)). (4.11)

4.4 Numerical Results

In this section, I present the numerical solution of the ``folded´´ Hamiltonian (4.1) ob-
tained in the previous section using the density-matrix renormalization-group (DMRG)
technique[83, 85] on finite-size clusters of length Ltot with open boundary conditions (OBCs).
This algorithm provides numerically exact results for static properties at zero temperature
with a precision which depends on the number m of states retained. Most of the results here
reported were obtained for m = 500, except otherwise stated, asserting that the integrated
weight of discarded states are of order 10−6 in the worst case. In order to assess even-odd
effects most of the results reported below were obtained by using even and odd chain lengths.
Throughout all this chapter, the impurity is located in one of two central sites of the chain
when Ltot is even (in the central site when Ltot is odd). I focus on the effects of tunneling
barrier modulation (encoded in the coupling constant α) on the electronic conductance and
on the static and dynamical properties of the phononic mode. In my numerical calculations
I use the hopping in the leads t as the unit of energy. Unless otherwise stated, I will keep
the following parameter values: U = 1, t′ = 0.45 and ω0 = 0.2. The gate voltage VG, the
Holstein coupling constant λ and the shuttling coupling constant α were varied.

4.4.1 Scaling analysis of the current in absence of electron-phonon
interaction

In this section, I neglect the effect of the electron-phonon interaction coupling constants α
and λ. In Fig.4.3 panel (a), I analyze the behavior of the persistent current flowing through
the auxiliary system as function of the flux threading the ring. I have considered a ring of
length Ltot = 96 looking at different density of states for the leads. As shown in [172], in
order to obtain the conductance, the values of the full-interacting current IU(π/2) should be
normalized by the value of non interacting current for VG = 0, IVG=0(π/2). For this reason

in panels (b,c,d) of Fig. 4.3 I show on the `y´ axis the quantity
[
IU(π/2)/IVG=0(π/2)

]2 ∝ G,
which is directly proportional to the conductance[172].

I have called ``Normal´´ the density of states obtained from the Hamiltonian (4.3). The
``Cosine´´ and ``Wilson´´ density of states are obtained by the following ansatz on the
hopping matrix elements in the leads’ Hamiltonian for a finite size chain

Cosine : t→ tn−1,n = 0.45t cos(π(n− 1)/(Llead − 1)) + 0.55t,

Wilson : t→ tn−1,n = t(0.1)(n−1)/(Llead−1).
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Figure 4.3: Panel (a): Persistent current as function of the flux for different leads’ density
of states at Ltot = 96. Scaling analysis (square line (black on line) Ltot = 48, circle line
(red on line) Ltot = 72, up-triangle line (green on line) Ltot = 96, rumbles line (blue on line)
Ltot = 120) of the current as function of VG for Normal (panel (b)), Cosine (panel (c)) and
Wilson (panel (d)) density of states.

For justifying the introduction of Cosine and Wilson modulation of the hopping in the
leads, I need to briefly recapitulate the key idea introduced by Wilson for solving the Kondo
problem (Wilson’s numerical renormalization-group method (NRG)[82]). In the original
NRG formulation, Wilson showed that the contribution from band states exponentially close
to the Fermi energy needs to be taken into account in order to capture the correct properties
of the ground state of the system. For this reason, standard tight-binding numerical ap-
proaches (based on a normal modulation of the leads’ hopping) face a formidable challenge
in addressing this problem: finite-size effects set a minimum energy scale, the level spacing,
below which the calculation cannot capture the crossover to the Kondo state. Wilson pro-
posed a combination of two elements to handle this problem: (i) A discretization procedure
of the metallic band, leading to a mapping into a impurity connected to a one-dimensional
tight-binding chain with exponentially decaying hoppings. (ii) A non-perturbative renor-
malization procedure that probes successive energy scales by recursively diagonalizing the
Hamiltonian and keeping the relevant states at each scale. In this thesis I borrow the first
Wilson’s idea considering, in real space, a molecule connected to two tight-binding chains
with exponentially decaying hoppings (as done in Ref.[89]). I refer to this as Wilson modu-
lation for the leads’ hopping. Another possibility is to consider a smoother decrease of the
leads’ hopping as one gets farther from the molecule (Cosine modulation).

The current profiles (red circles and green triangles in panel (a)) show that for Cosine
and Wilson leads’ density of states, for each value for the magnetic flux, a smaller current
flows through the system. The panels (b,c,d) of Fig. 4.3 show a scaling analysis of the
persistent current in the three cases cited above as function of the gate voltage. In each
case, a beautiful Kondo resonance is obtained for VG = −1/2 as expected. The scaling
analysis in the Normal case (panel (b)) shows a convergence of the results for the current
for Ltot = 120. In Cosine (panel (c)) and Wilson (panel (d)) cases, the numerical results for
the persistent current converge faster (for lower system size) than for Normal leads’ density
of states. Actually, using Cosine-like and Wilson-like modulation increases the density of
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Figure 4.4: Persistent current flowing through the ring (length Ltot = 96) as function of VG
for different values of α (here λ = 0).

states of the leads close to the fermi level and this helps the DMRG convergence to the
Kondo ground state. From now on, in all the successive results I will consider simulations
with Wilson-like modulation of the leads.

4.5 Behavior of the electronic current including the

phonon effects

Before starting to analyze the transport properties of the system in presence of the phonons,
I recall that the inclusion of the magnetic flux φ threading the auxiliary ring should be
carefully carried out because of the dependence of the hopping t′(x̂) connecting the molecule
to the leads on the phonon displacement. Actually, as a result of the application of the
magnetic flux, it is possible to show (Appendix E) that the shuttling coupling constant
α modifies to a complex constant α∗ = α + ıφ/Ltot. With this in mind, I can start to
consider the effect of the shuttle interacting coupling constant α∗ analyzing the behavior of
the persistent current as function of VG for different α∗ values. Actually I have changed the
real part α of the complex constant α∗. It has also been verified that the imaginary part of
α∗ (being proportional to Ltot) has no effect on the observables of the system, if the length
of the chain Ltot is sufficiently large.

In the following analysis, I will assume that the Holstein coupling constant λ is zero. As
one can see in Fig. 4.4 the application of DMRG has shown different results with respect
to those present in the literature: while K.A. Al-Hassanieh et al.[156] obtained a dip at
VG = −1/2 for any small value of α, now this dip is seen only for α larger than a critical
value αc. In order to confirm the presence of the dip, I performed a careful analysis of
the numerical results at the p-h symmetric point (VG = −1/2) looking at the current as
function of α for different number of phonon states kept to describe the phonon Hilbert
space. Actually, in Fig. 4.5 I have compared results of simulations where the phonon
Hilbert space is considered in the bare number basis with respect to a simulation based
on an optimized phonon basis.[166] I found that the current values obtained increasing the
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number basis dimension converge for Nph ∼ 8 to the results obtained with the optimized
phonon Hilbert space approach[173] (see next subsection).

Optimized Phonon Basis

In an electron-phonon lattice model, the number of phonons is not conserved and the Hilbert
space is infinite, even for a finite number of sites. Of course, the number of phonons can
be artificially constrained, but for strongly coupled systems the number of phonons needed
for an accurate treatment may be quite large. This often severely constrains the size of the
chains which may be studied. In case of this thesis, I deal with the very simple case of one
phonon mode coupled locally on the central site of a tight-binding chain. This is coupled
only with the first site of each lead through shuttle-like terms, while the other sites of the
leads are not coupled with phonons.

In this section, I present a technique for generating a controlled truncation of the Hilbert
space for the molecular site (being the tensor product of the four-dimensional electronic
Hilbert space times the truncated Hilbert space for the phonon mode), which allows the use
of a very small and optimized local basis without significant loss of accuracy.

The key idea of this approach is identical to the key idea of DMRG: in order to eliminate
states from a part of a system without loss of accuracy, one should transform to the basis
of eigenvectors of the reduced density matrix, and discard states with low probability. The
key difference is that here the subsystem is a single site, rather than varying fractions of the
entire system.

Actually I perform a set of DMRG sweeps (in order to get an almost exact result) on
a small cluster of sites including the molecular site at the center (typically, three sites on
the left, the molecular site and two sites to the right). All of the phonon states are ”bare”
(I keep tipically a lot of phonon states Nph 40-50): they are eigenstates of the single site
phonon Hamiltonian, characterized by the frequency ω0. At the end of a couple of DMRG
sweeps, I extract the density matrix for the phonon mode of the molecular site tracing out
the electronic degrees of freedom. The most probable m eigenstates of this matrix are the
new optimal phonon states. These optimal states are used to construct the basis for the
molecular site when applying the DMRG on the main system.

4.6 Static and dynamical properties of the shuttle mode

for λ = 0

I have further analyzed the origin of the dip looking at the static and dynamical spectral
properties of the phonon mode for λ = 0 and λ 6= 0. I started analyzing the case λ = 0. In
this case one can readily observe that the average position of the oscillator < x > should
be zero for inversion symmetry. However, as described in Fig. 4.6 panel (a), I obtain
that for α larger than αc, < x > starts to increase assuming values different from zero. I
interpret this result as the onset of a Jahn-Teller distortion. In fact, the average square
displacement < ∆x >=< (x̂− < x >)2 >1/2 multiplied by α increases monotonically with α
reaching a the critical value 1 value for α ' αc (Fig. 4.6 panel (b)). I have further studied
the renormalization of the phonon propagator by the electron-phonon coupling α. The
dynamical information about oscillator is contained in the displacement Green’s function.
In Fig. 4.8, I have plotted the phonon displacement spectral function for different values
of the shuttling coupling constant α. For moderate α values, I observe a softening of the
frequency of the oscillator, where the spectral weight is concentred on a single peak. For α
larger than the αc, a peak at very low frequency appears, corresponding to the onset of the
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Janh-Teller distortion. The behavior of the displacement spectral function, calculated with
a correction vector method[164] (See also Appendix D)

A(ω) = − 1

π
Im << x, x >>ω, (4.12)

can be understood in terms of the evolution of the probability density function of the oscil-
lator in real space. This latter function was obtained using the reduced density matrix of
the phonon in the bare phonon Hilbert space

P (x) = 〈x|ρ̂ph|x〉 =
∑
n,m

Ψ∗m(x)ρm,nph Ψn(x), (4.13)

where Ψn(x) are the eigenfunctions (Hermite polynomials) of the noninteracting harmonic
oscillator. As one can observe in Fig. 4.7, for α lesser than αc the probability density
function has a Gaussian shape centered at x = 0 and the phonon displacement spectral
function presents a single peak for a frequency close (lesser) than the bare frequency ω0. For
α larger than αc = 0.38 the probability density function becomes bimodal and symmetric
with respect x = 0 where the spectral function (Fig. 4.8) develops two peaks corresponding
to the inter-well (very low frequency mode) and intra-well oscillation frequency. In order
to clarify the nature of the Janh-Teller distortion, I have evaluated the static quantities in
simulations where the density matrix was shaken by a little perturbation [174]. As one can
observe in Fig. 4.6 panel (c,d), shaking the density matrix allows the oscillator to better
explore its configuration space where positive and negative average displacements are equally
probable. This results in an average displacement < x > that is zero for all α values (panel
(c) in Fig. 4.6). Anyway, the average square displacement < ∆x > increase monotonically
with α reaching a maximum value for α ' αc as before (panel (d) in Fig. 4.6).

The investigation of this model with the introduction of an Holstein coupling λ is under
investigation.
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Chapter 5

Conclusions

The interaction between electronic and vibrational degrees of freedom is the most important
microscopic mechanism at the heart of molecular systems and NEMS physics. In this the-
sis, I have studied electronic transport though molecular systems and NEMS under typical
experimentally investigated conditions: low temperatures, large bias voltages applied and
forcing antennas.

I have investigated these devices within Hamiltonian models widely used in the literature,
using both semi-analytical (first part of the thesis) and numerical (second part of the thesis)
techniques.

In the first part of the thesis, I have derived and studied the stochastic Langevin equation
for the dynamics of a single oscillator mode coupled to a voltage-biased molecular junction in
the adiabatic limit[29]. Using the generalization of the Keldysh formalism to time dependent
cases, I was able to show, in agreement with other approaches, that the oscillator dynamics
is controlled by an effective potential as well as by damping and fluctuating terms coming
from the time depending electron Green function. Interestingly, I have established the range
of validity of the adiabatic approximation underlying the stochastic approach distinguishing
between Quantum, Classical-Adiabatic and Classical non Adiabatic regimes studying the
average kinetic energy of the oscillator.

I applied my analysis to two simple models of molecules.
For the single site Holstein model, the analysis of the validity of the adiabatic approxi-

mation has allowed me to build up a phase diagram showing that the quantum effects are
relevant only in a very narrow region if the vibrational energy of the molecular mode is
smaller than all other energy scales. Moreover, I have studied the current-voltage character-
istic and the conductance, observing a dynamical reduction of the polaronic shift and the
broadening of the electronic resonance due to the average on the non-equilibrium position
distribution probability of the oscillator. In the Non-Gaussian intermediate bias regime and
for sufficiently high interaction strength, the kinetic energy shows an interesting non mono-
tonic behavior. Correspondingly, I observe in the transport properties a strong enhancement
of conduction with respect to the infinite mass approximation (static limit).

I have also studied the case of a molecular Hamiltonian composed by a couple of sites
interacting with a single vibrational mode in the SSH model. In this case, because of the
direct coupling of the electron-oscillator interaction to the inter-molecular hopping, the role
of the dynamical fluctuations becomes crucial to determine the physical scenario described by
the model. The new inter-molecular electronic hopping energy scale t introduces a reduction
of the Classical adiabatic region in the phase diagram. The new feature is the occurrence
of small Quantum regions for sufficiently small electron-oscillator coupling, at intermediate
bias voltages. For strong enough electron-oscillator coupling (Ep), these regions disappear.
In this region of parameters the average dynamical kinetic energy decreases as the bias
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voltage increases. Also the potential energy curves show this behavior. Therefore, the
oscillator energy decreases as a function of bias voltage. This loss of energy occurs for that
particular range of bias voltages where the molecular energy levels enter in the bias window.
Correspondingly, as in the single site model case, I have observed in the transport properties
an enhancement of conduction with respect to the infinite mass approximation. Remarkably,
in the case of small electron-oscillator interaction and in absence of gate voltage, I found
that the maxima of conductance correspond to the minima of the kinetic energy, shifted
by the electron-oscillator coupling strength α. Finally, within this model, the dynamical
corrections on the transport properties cancel out completely the `detailed´ features (like
NDR) present in the static case. As main result, I can conclude observing that the inclusion
of dynamical effects of the oscillator motion strongly modifies the physical scenario which
would be obtained by a static description, even if the oscillator dynamics is much slower
than the electron tunneling rate.

I end this discussion regarding semi-analytical approaches noting that it could be of out-
standing interest to study the possibility to include the quantum correction to the oscillator
dynamics in the low bias regime classified as Quantum Region (QR). In this direction, Millis
et al.[116] find in the quasi-equilibrium regime Ep >> ω0 >> Vbias a quantum contribution
to the effective temperature of the oscillator in addition to the diffusive one. At finite mass
m, nearby the `gaussian fluctuation´ paths involving small excursions (characteristic fre-
quency ω0) from the minima of the static potential, quantum tunneling processes become
important. The inclusion of the quantum corrections in my approach, within the minimal
models considered, is under investigation.

I here point out that the technique developed and used in Chap. 2 for the single molecular
mode (single mechanical degree of freedom) in interaction with voltage biased molecular
junction, has been extended to 3-D systems with N mechanical degrees of freedom allowing
to calculate the spectral, optical, and transport properties of single crystal Organic Field-
Effect Transistors (OFET) in the low bias quasi-equilibrium regime [144]. In this thesis I
have focused my attention to the case of a single mechanical degree of freedom.

In chapter 3, I have studied a self-detecting electron-transistor realized by a suspended
carbon nanotube including, in a non-perturbative way, the effect of the antenna driving
the nanotube toward a nonlinear regime. All the qualitative features of the NEMS device,
experimentally observed, are accurately reproduced clarifying the origin of the nonlinear
effects. The nonlinear behavior is understood without adding by hand nonlinear terms to
the effective force exerted on the resonator [11, 129, 121, 130], but stems out naturally
from the nontrivial non-equilibrium time-dependent electronic occupation controlled by the
coupling with the leads. I have shown that, increasing the temperature, the nonlinear effects
in the current-frequency response are washed out as a result of the increase of the intrinsic
damping of the resonator and of the reduction of the intrinsic nonlinear terms of the effective
self-consistent force. Within my approach, a broadening of the frequency dip as function of
the bias voltage is reproduced, predicting in the limit of large bias a double dip structure.
This double dip feature has found very recently an experimental confirmation [48]. At the
end of Chap. 3, I’ve investigated the inclusion of a transverse magnetic field applied to
the carbon nanotube-device[136]. As a main result, the magnetic field modifies the bending
mode CNT dynamics giving an enhanced damping as well as a noise term originating from
the electronic phase fluctuations induced by the CNT displacements[50]. In particular, a
quadratic dependence of the device quality factor Q on external magnetic field strength,
in quantitative agreement with recent experiments, emerges as a result of a back-action of
quantum electronic current-flow fluctuations on the bending mode dynamics[50]. I’ve also
shown that, when the device is driven far from equilibrium, one can tune the mechanical
properties of the resonator by varying the external magnetic field: CNT-resonator resonance
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frequencies as a function of gate voltage acquire, in the limit of a large magnetic field, a
peculiar dip-peak structure that could be experimentally observed. Finally, at a fixed gate,
bias voltage and temperature, if charge and current variations of the opposite sign occur,
one has an enhanced damping reducing the quality factor of the device. Vice-versa, charge
and current variations of the same sign reduce damping with a consequent increase of quality
factors.

As possible outlook, it could very interesting to introduce in my description the effects
of electron-electron interactions within a model that includes the spin degrees of freedom.
In this case and in the presence of a large magnetic field, the Zeeman effect could modify
qualitatively the numerical results.

In the last part of the thesis, I analyzed the electronic transport properties of a molecule
oscillating between two electrodes in the Kondo regime, within the Anderson-Impurity model.
It is well known that in this regime, the strong electron-electron correlations prevent from
using any analytical approach to the problem. I therefore use a approximation-free numerical
technique: the DMRG. DMRG is one of the most accurate numerical approaches for treating
strongly correlated systems described by lattice Hamiltonians in one spatial dimension. The
method consists of a very efficient iterative procedure and allows for the investigation of
ground-state (equilibrium) properties of strongly correlated systems with several hundred to
several thousand lattice sites with low computational cost.

I have used an alternative method for calculating the conductance through nanoscopic
correlated systems based on the calculation of the persistent current of a fictitious auxiliary
system threaded by a magnetic flux. I focused on the effects of tunneling barrier modulation
(encoded in a coupling constant α) on the electronic conductance and on the static and
dynamical properties of the phononic mode. The results show an interesting and unexpected
conductance cancellation (dip) for a sufficiently large value of α when an odd number of
electrons occupy the molecule. I justify the presence of the dip for a finite α value by means
of a Janh-Teller distorsion, where a natural breaking of the inversion symmetry is obtained.
Correspondingly, the average quadratic fluctuations of the displacement increase up to the
limit physical value t′/α where the effective hopping between the molecule and one of the
leads is equal to zero, giving the conductance cancellation. Additionally, I found that the
electron-phonon coupling modifies the shape of the distribution probability in real space
affecting the static and dynamic properties of the oscillator. In the absence of Holstein
interaction and for moderate αs, the Gaussian distribution is softened and the frequency
of oscillations decreases. For α > αc, the phononic distribution becomes bimodal even if it
retains its symmetry with respect to zero displacement configuration. In this regime, the
phonon propagator consists of a part corresponding to high-frequency oscillations within the
peak (well) and another part corresponding to slow tunneling between the degenerate peaks
(wells).

The investigation of this model with the introduction of an Holstein coupling is under
investigation. I anticipate that in this case the occurrence of the dip in the conductance
is suppressed. Indeed, with an Holstein coupling the inversion symmetry of the system is
broken from the beginning. For finite λ the degeneracy between the peaks in the distribution
probabilities is broken and, again, the average quadratic fluctuations of the displacement
increase significantly while the average < x > starts to increase assuming values different
from zero. I argue that an even small Holstein interaction could account for the asymmetric
configurations of the molecule between the electrodes typically observed experimentally [63].

My study suggests that a careful estimate of the parameter α of the model, owing to the
modification of the electronic hopping integral due to the center of mass motion of a molecule
placed between the two leads, is necessary. For a C60 molecular junction investigated in [19]
a relatively large value of α (α ' 0.6 < 1) can be extracted and this could justify the conduc-
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tance suppression in the low temperature and bias regime. Nevertheless, recent experimental
studies [63] have shown that relatively large conductance values can be measured through
C60 molecular junctions. I believe that more realistic theoretical models taking account of
a more complicated molecular level structure and of other internal vibrational modes of the
molecule are necessary for a correct interpretation of experimental results.

As a future application of the DMRG, I intend to apply the time-dependent extension
of the algorithm[191] to investigate the non-equilibrium response within the minimal model
cited above. This will allow to calculate the current-voltage response of the device and a
possible comparison with experimental results[63]. As a future project, I’m going to analyze a
more realistic two-site two mechanical mode model allowing for the analysis of the interaction
between breathing and center of motion modes of the diatomic molecule analyzed.
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Appendix A

Non-Equilibrium contour-ordered
Green Functions

A.1 Introduction

In many-particle problems the systems are usually described by Hamiltonians which can
not be solved exactly, and one has to rely on perturbative methods. In these situations
the introduction of second quantization operators and Green’s functions prove to be very
important techniques. In this chapter, I define equilibrium and nonequilibrium Green’s
functions limiting to list the key equations used in the main text. I derive Dyson and
Keldysh equations describing behavior of nanoscale system in stationary non-equilibrium
conditions.

A.2 Equilibrium Green’s functions

In this section, I describe very briefly equilibrium Green functions (there are many excellent
treatises on the topic such as [92, 93]).

Let us consider an isolated physical system (at zero temperature) described by an Hamil-
tonian operator Ĥ = Ĥ0 + V̂ . One can start by defining a time-ordered (also called causal)
zero-temperature single-particle Green function

GT (x, t;x′, t′) = −ı〈Ψ0|T ψ̂Ĥ(x, t)ψ̂†
Ĥ

(x′, t′)|Ψ0〉, (A.1)

where one can introduce field operators ψ̂Ĥ(x, t) in Heisenberg picture: ψ̂H(t) = eıĤtψ̂Ĥ(t =

0)e−ıĤt. They are defined introducing a convenient basis in one-particle sector of the Hilbert
space (Fock space) as linear combination of creation and annihilation operators

Ψ̂H(x, t, σ) ≡
∑
k

ψk(x)ĉkσ(t),

Ψ̂†H(x, t, σ) ≡
∑
k

ψ∗k(x)ĉ†kσ(t), (A.2)

where ψk(x) and ψ∗k(x) are one-particle wave functions, and ĉkσ (ĉ†kσ) destroys (creates) a
particle in the Fock-state |kσ〉. The sum above extends over a complete set of quantum
numbers in the one-particle Hilbert space. In the Eq. A.1, the quantum state |Ψ0〉 is the
ground state of the interacting system, while T{...} is the time-ordering operator.
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The definition of the Green function can be generalized to describe an equilibrium system
at a finite temperature T with a chemical potential µ (GrangCanonical ensemble):

G(x, t;x′, t′) = −ıT r
{
ρ̂T ψ̂Ĥ(x, t)ψ̂†

Ĥ
(x′, t′)

}
, (A.3)

Here ρ̂ is the density matrix operator

ρ̂ =
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]
, β ≡ (kBT )−1, (A.4)

where N̂ is the occupation operator and the trace Tr is the sum over all diagonal elements
of a complete set in the Fock-space. One can also define in an analogous fashion two- and
many-particle Green functions.

There are two main reasons to study Green’s functions: (1) Experimentally relevant
quantities can be extracted from the knowledge of the Green function. (2) The definition
A.1 allows the construction of a systematic perturbation theory.

Examples of Measurable Quantities

The particle density of a many-body system is given by 〈n̂(x)〉 = 〈ψ̂†(x)ψ̂(x)〉, but this
object is directly related to the Green function

〈n̂(x)〉 = −ıGT (x, t;x, t+), (A.5)

where t+(= limε→0(t + ε)) is infinitesimally larger than t in order to get the correct time
ordering. Note that in equilibrium, and for uniform systems Green functions depend only
on differences of variables, G(x, t;x′, t′) = G(x − x′, t − t′), and it is advantageous to work
in Fourier space

G(k, ω) =

∫
d3x

∫
dteıω(t−t′)e−ık(x−x′)G(x− x′, t− t′).

For future use I also define retarded, advanced, and the `̀ lesser thań ´ (or just `̀ lesseŕ )́ and
`̀ greater thań ´ (or just `̀ greateŕ )́ Green functions (Furthermore, to lighten the notation I
set ~ = 1):

Gr(x, t;x′, t′) ≡ −ıθ(t− t′)〈{ψ̂(x, t), ψ̂†(x′, t′)}〉,
Ga(x, t;x′, t′) ≡ ıθ(t′ − t)〈{ψ̂(x, t), ψ̂†(x′, t′)}〉,
G<(x, t;x′, t′) ≡ ı〈ψ̂†(x′, t′)ψ̂(x, t)〉,
G>(x, t;x′, t′) ≡ −ı〈ψ̂(x, t)ψ̂†(x′, t′)〉. (A.6)

The retarded Green function Gr differs from zero only for times t ≥ t′, thus this function can
be used to calculate the response at time t to an earlier perturbation of the system at time t′.
The advanced Green function Ga is only finite for t ≤ t′. Due to the (anti)commutator struc-
ture, these two functions again obey an inhomogeneous differential equation as the originally
defined time-ordered Green function GT . The lesser Green function is also called the particle
propagator, while the greater Green function, in which the order of the creation and anni-
hilation operators are reversed, is called the hole propagator. Importantly, their differential
equations do not have the singular inhomogeneous terms. This observation is the precursor
of a more fundamental difference between the lesser/greater and retarded/advanced func-
tions; this difference will be accentuated under non-equilibrium conditions. I note that the

103



time-ordered, the retarded, and the advanced Green functions can be expressed in terms of
G> and G<:

GT (t, t′) = θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′) (A.7)

Gr(t, t′) = θ(t− t′)[G>(t, t′)−G<(t, t′)] = GT −G< = G> −GT̃ , (A.8)

Ga(t, t′) = θ(t′ − t)[G<(t, t′)−G>(t, t′)] = GT −G> = G< −GT̃ . (A.9)

From the above relations it seems that there are only two independent Green functions G>,<.
The observables can also be expressed in terms of G>,<; for example

ρ(x, x′, t) = [G<(x, t;x′, t′)]t=t′ . (A.10)

Anyway, one can show that in equilibrium all the above Green’s functions can be expressed
in terms of each other. Indeed one has the following relations

• Gr −Ga = G> −G<;

• Gr(x, t;x′, t′) = [Ga(x′, t′;x, t)]∗;

• G>(ω) = −eβ(ω−µ)G<(ω), Fluctuation-Dissipation theorem.

It is easy to show that the first property comes directly from the definition of the Green’s
function, while the second (that is trivial to check in equilibrium) can be proved to be valid
even in stationary non-equilibrium conditions[94]. A proof of the Fluctuation-Dissipation
theorem can be found in Haug[80].

Contour ordered Green’s function and perturbation theory

Let us consider a physical system described by a time independent Hamiltonian Ĥ = Ĥ0 +
Ĥ i, where Ĥ0 is an exactly solvable non-interacting Hamiltonian (at most quadratic in the
operators) while Ĥ i describe the interactions among the particles of the system. I suppose
that the system is in thermodynamic equilibrium with a heath bath at temperature T and in
contact with a particle reservoir at chemical potential µ until a time t0, when the system is
disconnected from the reservoirs and a time dependent perturbation described by an operator
Ĥ ′(t) is applied to it. The total Hamiltonian is now time-dependent (for sake of simplicity
I omit the ˆ symbol)

H = Ĥ + Ĥ ′(t), Ĥ ′(t) = 0, t ≤ t0.

For a molecular junction, the external perturbation is usually represented by the coupling
with two reservoirs with different electro-chemical potentials. In non-equilibrium theory one
can define a contour-ordered Green’s function defined as

G(1, 1′) ≡ −ı〈Tc{ψ̂H(1)ψ̂†H(1′)}〉 (A.11)

where ψ̂H(1) is the field operator in the Heisenberg picture and where the short-hand notation
1 ≡ (~r1, σ1, τ1) has been introduced. Here the average is evaluated with respect to the
unknown non-equilibrium density matrix ρ̂(H). The above definition trivially extends the
equilibrium definition of Green’s function to a generic two-time function on a contour c. As
discussed in the previous paragraph, I introduced also a time-ordering operator Tc along the
contour

Tc{ψ̂H(1)ψ̂†H(1′)} =

{
ψ̂H(1)ψ̂†H(1′) τ1 >c τ1′

−ψ̂†H(1′)ψ̂H(1) τ1′ >c τ1.
(A.12)
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with an obvious notation. For instance, if τ1 >c τ1′ , this means that τ1 follows on the contour
the variable τ1′ , independently on the actual numerical value assumed on the contour. As
in equilibrium, I can define other Green’s functions. For example, for the G-lesser and
G-greater I get

G(1, 1′) =

{
G<(1, 1′) τ1 <c τ1′

G>(1, 1′) τ1′ <c τ1,
(A.13)

where the equality is independent on the actual values assumed by τ1 and τ1′ on the real
axis. If contour time-position are on the real axis, I recover the correspondent equilibrium
Green’s functions. One should be careful on the relative positions of the times τ1 and τ1′ on
the two branches of the contour c, c1 (−∞→ +∞) and c2 (+∞→ −∞). Observing that on
c2 the time-ordering means anti-time-ordering, I point out that the contour ordered Green
function G(1, 1′) contains four real Green’s functions ((τ1, τ1′)→ (t1, t1′))

G(1, 1′) =


GT (1, 1′), t1, t1′ ∈ c1

G<(1, 1′), t1 ∈ c1 t1′ ∈ c2,
G>(1, 1′), t1 ∈ c2 t1′ ∈ c1,

GT̃ (1, 1′), t1, t1′ ∈ c2,

(A.14)

where GT and GT̃ are time-ordered and anti-time-ordered Green’s functions, respectively.
Applying the couple of unitary transformations described in the previous sections to field
operator ψ̂H(1) and ψ̂H(1′) in Eq. A.11, I can easily prove that [94]

G(1, 1′) = −ı〈Tc{S ′cSicψ̂Ĥ0
(1)ψ̂†

Ĥ0
(1′)}〉0

= −ı〈Tc{e
−ı

∫
c dτ
′[Ĥ′

Ĥ0
(τ ′)+Hi

Ĥ0
(τ ′)]

ψ̂Ĥ0
(1)ψ̂†

Ĥ0
(1′)}〉0, (A.15)

where I have used the notation 〈..〉0 = Tr(ρ̂Ĥ0
...). This is the starting point of a perturbation

theory for non-equilibrium Green’s functions. I can observe that this approach is not plagued
of the denominator problem which characterizes the equilibrium theory. The main difference
between equilibrium and non-equilibrium theory is the presence of an integration along a
contour in the latter. They have the same formal structure: expanding the exponential in
the Eq. one obtains at zero-order the noninteracting contour-ordered Green’s function

G(0)(1, 1′) = −ı〈Tc{ψ̂Ĥ0
(1)ψ̂†

Ĥ0
(1′)}〉0,

while at higher orders one gets statistical averages of operators over the noninteracting
density matrix ρ̂Ĥ0

. One can show that for this average a generalized Wick theorem is
valid [94]. Moreover, in the presence of a classical one-particle external field U and of a
two-particle interaction term, the contour-ordered green’s function G(1, 1′) satisfies a Dyson
equation

G(1, 1′) = G(0)(1, 1′) +

∫
c

d2G(0)(1, 2)U(2)G(2, 1′)

+

∫
c

d2

∫
c

d3G(0)(1, 2)Σ(2, 3)G(3, 1′), (A.16)

where Σ[G] is the self-energy term describing the particle-particle interaction. I have again
introduced a short-end notation ∫

c

d1 ≡
∑
σ1

∫
d~r1

∫
c

dτ1. (A.17)

The contour integrations are mostly a formal tool since in practical calculations one replaces
them by real-time integrations. The procedures for such replacements are known as the
Langreth’s rules.
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Observation

In non-equilibrium, I can define also retarded and advanced Green’s functions and verify
that they satisfy properties Eqs. (2.14) (2.15). It is easy to show that they verify also

Gr(1, 1′)−Ga(1, 1′) = G>(1, 1′)−G<(1, 1′), (A.18)

so that even in non-equilibrium situations I have just three independent Green’s functions.
Moreover, in non-equilibrium stationary conditions, one can show that contour-ordered
Green’s functions depend only on contour time differences obtaining

Gr(1, 1′) = [Ga(1′, 1)]∗, (A.19)

reducing to two independent Green’s functions. In stationary conditions one can also work
in the frequency domain using Fourier transform, but is not possible to show a fluctuation-
dissipation theorem as in equilibrium conditions.

Finally, I point out that in stationary non-equilibrium conditions one just needs two
Green’s function ( I will be typically concerned with Gr and G<). In the next section I will
show that these two Green’s function cannot be determined separately but they satisfy two
coupled equations (Dyson’s and Keldysh’s equations) which are nonlinear algebraic equation
in the frequency domain.

A.2.1 Dyson’s and Keldysh’s equations

As already discussed in previous section, in steady state the non-equilibrium problem is
thus reduced to working with two independent Green’s functions. This is what I do in the
non-equilibrium situations considered in the present work.

Applying Langreth’s theorem[80] to the Dyson’s equation A.16 I extract

Gr(a)(1, 1′) = G
r(a)
(0) (1, 1′) +

∫
t

d2

∫
t

d3G
r(a)
(0) (1, 2)Σr(a)(2, 3)Gr(a)(3, 1′),

(A.20)

G≶(1, 1′) = G≶
(0)(1, 1

′) +

∫
t

d2

∫
t

d3
[
Gr

(0)(1, 2)Σr(2, 3)G≶(3, 1′),

Gr
(0)(1, 2)Σ≶(2, 3)Ga(3, 1′) +G≶

(0)(1, 2)Σa(2, 3)Ga(3, 1′)
]
,

(A.21)

where integrals are evaluated on the real axis with a compact notation∫
t

d1 ≡
∑
σ1

∫
d~r1

∫ +∞

−∞
dt1 (A.22)

and I’ve ignored the one-body potential U which can be absorbed in G0 by a suitable
redefinition G−1

0 − U → G−1
0 . The lesser Green’s function A.21 can be rewritten in the

following way (this can be carried out similarly for the greater component G>)

G< = G<
0 +Gr

0ΣrG< +Gr
0Σ<Ga +G<

0 ΣaGa. (A.23)

I will solve Eq. (2.78) by iteration. At first step I get

G< = (1 +Gr
0Σr)G<

0 (1 + ΣaGa) + (Gr
0 +Gr

0ΣrGr
0)Σ<Ga

+Gr
0ΣrGr

0ΣrG<. (A.24)
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It is easy to convince oneself that iterating the procedure the prefactor of Σ<Ga reproduces
the expansion of the retarded Green’s function Gr, obtaining

G< = (1 +GrΣr)G<
0 (1 + ΣaGa) +GrΣ<Ga. (A.25)

Finally, reintroducing explicitly the time integrations

G<(1, 1′) =

∫
t

d2...

∫
t

d5[δ(1− 2)δ(2− 3) +Gr(1, 2)Σr(2, 3)]

×G<
0 (3, 4)[δ(4− 5)δ(5− 1′) + Σa(4, 5)Ga(5, 1′)]

+

∫
t

d2

∫
t

d3Gr(1, 2)Σ<(2, 3)Ga(3, 1′), (A.26)

where
δ(1− 2) ≡ δ(~r1 − ~r2)δ(t1 − t2)δσ1,σ2 . (A.27)

Introducing the inverse operator ~G−1
0 defined as∫

c

d2~G−1
0 (1, 2)G0(2, 1′) = δ(1− 1′),

~G−1
0 (1, 2) ≡ (ı∂t1 −H0(1))δ(1− 2), (A.28)

where the arrow indicate which way the operator acts, and using the noninteracting proper-
ties ∫

c

d2~G−1
0 (1, 2)Gr(a)(2, 1′) = δ(1− 1′) +

∫
c

d2Σr(a)(1, 2)Gr(a)(2, 1′),

(A.29)∫
c

d2Gr(a)(1, 2)
←−
G−1

0 (2, 1′) = δ(1− 1′) +

∫
c

d2Gr(a)(1, 2)Σr(a)(2, 1′),

(A.30)

where I have applied the operator ~G−1
0 to the Dyson equation A.16 and to its left-iterated

version. Substituting Eqs. (2.84) and (2.85) in Eq. (2.81), I get

G<(1, 1′) =

∫
t

d2

∫
t

d3Gr(1, 2)[
←−
G−1

0 (2)G<
0 (2, 3)~G−1

0 (3)]Ga(3, 1′)

+

∫
t

d2

∫
t

d3Gr(1, 2)Σ<(2, 3)Ga(3, 1′). (A.31)

One can show that in steady state, where one can use Fourier transform the first line term
in Eq. (2.86) is zero. Indeed, this latter contains G<

0 which has a memory of the correlation
of the initial (before introducing interactions and non-equilibrium perturbations) state of
the system. One implicitly assumes that the non-equilibrium steady state, if it exists, loses
any information of the initial state of the system due to unavoidable irreversible processes
in the transient. I will thus consider the stationary Keldysh equation

G<(1, 1′) =

∫
t

d2

∫
t

d3Gr(1, 2)Σ<(2, 3)Ga(3, 1′), (A.32)

where the one asks for the unknown lesser Green’s function G< (G>). From this Green’s
function one can extract the particle density in the presence of interactions in the non-
equilibrium steady state.

107



In equilibrium, G< is proportional to the Fermi distribution if one assumes a time in-
dependent Hamiltonian and interactions such that the system can be considered a Fermi
liquid.

Ultimately, in order to solve for the system dynamics one must be able to solve simulta-
neously the Dyson’s equation A.20 for the retarded component and the Keldysh’s equation
A.32 for the lesser Green’s function. Here, the biggest difficulty is given by the functional
dependence of the self-energies Σ(r,<) on the unknown Green’s functions G(r,<).
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Appendix B

Capacitive coupling vs
Anderson-Holstein model

Here, I briefly show that the model Hamiltonian for the vibrating nanotube encapsulated
in the eq.(3.15) is equivalent to that used in [11, 12] and in other papers in the literature
[124, 126, 127, 125, 129, 132]. Indeed, as clearly discussed in Ref. [133], a single electronic
transistor (SET) consists of a metallic dot (represented by a nanotube in the case considered
in Ref. [11, 12]) with a large Coulomb-charging energy EC = e2/2Ctot (Ctot is the total
capacitance of the dot) coupled via tunnel junctions to both a source and a drain metal
electrode. The Hamiltonian for the electronic and vibrational degrees of freedom of the dot
is given by

Hdot = EC(Nel −Ngate)
2 +

1

2
kx2, (B.1)

comprising a charging-energy term and the harmonic vibrational energy. In eq.(B.1), Nel is
the charge on the SET dot and Ngate = CgateVgate/e is the dimensionless electron number
associated with a gate voltage Vgate which is coupled to the dot via a capacitance Cgate.
In addition, a voltage Vbias is applied between source and drain which drives the tunneling
of electrons across the SET. Here, Ctot = Cgate + Cleads, where Cleads is the sum of the
capacitances resulting from the coupling to the leads. When the nanotube is allowed to
vibrate, the gate capacitance Cgate assumes a spatial dependence Cgate(h(x)), where h is the
distance between the nanotube and the gate electrode when the nanotube is displaced by a
distance x from its equilibrium position (h(x) = h0 +x). In the limit of small displacements,
one can expand Ĥdot(x) around x = 0 obtaining a Holstein-like linear correction term in x:

Hint = λNelx, (B.2)

where λ = −2(ECVg/e)(dCg/dx). In the small energy window of interest for a single dip
feature investigated in Ref. [11, 12], I can neglect the weak gate and bias voltage dependence
of λ that is assumed constant [125, 133, 134]. Moreover, if I choose x = 0 as the position
where the Coulomb force for Nel = 0 electrons in the island equals the elastic force, λ
can be then interpreted as the net force acting on the nanotube when one excess electron
is populating the nanotube itself. The terms independent on Nel in the above expansion
are usually neglected [133, 134]. One further assumes that the gate voltage is such that
only charge states with Nel = 0 and 1 are accessible. In this case, N2

el = Nel and one
can incorporate remaining constant terms (independent on x) in the above expansion in an
effective gate voltage obtaining

Hdot ' V eff
gateNel + λNelx+

1

2
kx2. (B.3)
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If I quantize the electronic and vibrational degrees of freedom, eq.(B.2) gives the Holstein
coupling discussed in the Chap. 3.
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Appendix C

Current-current and Current-density
fluctuation

Here I illustrate how the calculation of the force fluctuation (Eq. 3.44 of Chap. 3) can be
performed with the nonequilibrium Green function approach. I follow faithfully Haug [80].

I recall the expression for the current operator (through the left barrier) [80]

IL =
ıe

~
∑
k

k[VL,kc
†
kd− V

∗
L,kd

†ck], (C.1)

where I simplify the notation somewhat by suppressing indices which are not relevant to the
structure of the theory. I define δIL(t) = IL(t) − 〈IL〉, and plan to evaluate the correlation
function (I set VL,k = Vk)

S(t, t′) =
1

2
〈{δIL(t), δIL(t′)}〉

=
1

2
〈{IL(t), IL(t′)}〉 − 〈IL〉2

=
1

2

( ıe
~

)2∑
k,k′

[
VkVk′〈c†k(t)d(t)c†k′(t

′)d(t′)〉

− VkV
∗
k′〈c

†
k(t)d(t)d†(t′)ck′(t

′)〉+

− V ∗k Vk′〈d†(t)ck(t)c
†
k′(t
′)d(t′)〉+

+ V ∗k V
∗
k′〈d†(t)ck(t)d†(t′)ck′(t′)〉

]
+ h.c.− 〈IL〉2,

(C.2)

where {A,B} = AB + BA is an anti-commutator. The Fourier transform of S is called
the noise spectrum; in what follows I shall be particularly concerned with its zero-frequency
component, S(0) =

∫
d(t−t′)S(t−t′) that is the relevant quantity in the adiabatic expansion.

In order to evaluate the (nonequilibrium) expectation values occurring in Eq. C.2 in a
systematic way, I first define the following contour-ordered two-particle Green functions

Gcd
1 (τ, τ ′) = ı2〈TCc†k(τ)d(τ)c†k′(τ

′)d(τ ′)〉
Gcd

2 (τ, τ ′) = ı2〈TCc†k(τ)d(τ)d†(τ ′)ck′(τ
′)〉

Gcd
3 (τ, τ ′) = ı2〈TCd†(τ)ck(τ)c†k′(τ

′)d(τ ′)〉
Gcd

4 (τ, τ ′) = ı2〈TCd†(τ)ck(τ)d†(τ ′)ck′(τ
′)〉 (C.3)
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The nonequilibrium noise correlator is then given by

S(t, t′) =
1

2

( e
~

)2∑
k,k′

[
VkVk′G

cd,>
1 (t, t′) +

− VkV
∗
k′G

cd,>
2 (t, t′)− V ∗k Vk′G

cd,>
3 (t, t′) +

+ V ∗k V
∗
k′G

cd,>
4 (t, t′)

]
+ h.c.− 〈IL〉2, (C.4)

where Gcd,>
i (t, t′) are the greater than components of the contour-ordered counterparts

Gcd
i (τ, τ ′) defined in Eq. C.3. As the first step, I express the Green functions Eq. C.3

in terms of two-particle Green functions which only involve the central region operators.
Following Ref. [80], here I use the S-matrix expansion because it appears more systematic.
Consider then, as an example, the nonequilibrium Green function Gcd

2 (τ, τ ′), which I treat
as follows (the other components are similar, or simpler than the chosen example)

Gcd
2 (τ, τ ′) = ı2〈TCc†k(τ)d(τ)d†(τ ′)ck′(τ

′)〉
= ı2〈TC c̃†k(τ)d̃(τ)d̃†(τ ′)c̃k′(τ

′)S〉, (C.5)

where tildes denote interaction picture with respect to the tunneling coupling, and the S-
matrix is

S =
∞∑
j=0

(−ı)j

j!

∫
C

dτ1 ...

∫
C

dτj〈TCH̃T (τ1)...H̃T (τj)〉 (C.6)

with the tunneling Hamiltonian

HT =
∑
k

[
Vkc

†
kd+ V ∗k d

†ck

]
. (C.7)

Up to second order in HT , the Green function Eq. C.5 becomes

Gcd
2 (τ, τ ′) = ı2〈TC c̃†k(τ)d̃(τ)d̃†(τ ′)c̃k′(τ

′)〉+

ı2
(−ı)2

2!

〈
TC c̃

†
k(τ)d̃(τ)d̃†(τ ′)c̃k′(τ

′)×

×
∫
dτ1

∫
dτ2

∑
k1,k2

[
Vk1c

†
k1

(τ1)d(τ1) + V ∗k1d
†(τ1)ck1(τ1)

]
×

[
Vk2c

†
k2

(τ2)d(τ2) + V ∗k2d
†(τ2)ck2(τ2)

]〉
+ ... (C.8)

where the dots represent higher order terms. The expectation values in Eq. C.8 can now
be factorized, because in the interaction picture the c̃ and d̃ operators are independent. I
find (by a change of dummy variables, I see that Eq. C.8 gives rise to two identical terms,
thereby canceling the factor 1/2)1

Gcd
2 (τ, τ ′) = −δk,k′gk(τ ′, τ)G0(τ, τ ′)−∫
dτ1

∫
dτ2

∑
k1,k2

Vk1V
∗
k2
〈TC c̃†k(τ)c̃k′(τ

′)c̃†k1(τ1)c̃k2(τ2)〉 ×

ı2〈TC d̃(τ)d̃†(τ ′)d̃(τ1)d̃†(τ2)〉. (C.9)

1The overall sign of the second term in Eq. C.9 is determined as follows. One requires an even number
of permutations (in fact, eight) to bring all c̃’s and d̃’s adjacent to each other. The minus sign comes from
the (−ı)2 of the second-order expansion.
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I must next consider the expectation values involving four c̃’s and four d̃’s. Since the central
region may contain interactions, the d̃-terms cannot be simplified, while the noninteracting
nature of the contacts allows a further factorization:

〈TC c̃†k(τ)c̃k′(τ
′)c̃†k1(τ1)c̃k2(τ2)〉 =

= 〈TC c̃†k(τ)c̃k′(τ
′)〉〈TC c̃†k1(τ1)c̃k2(τ2)〉+

+〈TC c̃†k(τ)c̃k2(τ2)〉〈TC c̃k′(τ ′)c̃†k1(τ1)〉
= −δk,k′δk1,k2gk(τ ′, τ)gk1(τ2, τ1) +

+δk,k2δk′,k1gk(τ2, τ)gk′(τ
′, τ1). (C.10)

The first term of Eq. C.9 and the fourth line of Eq. C.10 can be combined:

−δk,k′gk(τ ′, τ)
[
G0(τ, τ ′) +

∑
k1

∫
dτ1

∫
dτ2|Vk1|2 ×

gk1(τ2, τ1)ı2〈TC d̃(τ)d̃†(τ ′)d̃(τ1)d̃†(τ2)〉
]
.

(C.11)

The quantity in square brackets is recognized as the beginning of the series expansion of the
full central region Green function,

G(τ, τ ′) = −ı〈TCd(τ)d†(τ ′)〉 = −ı〈TC d̃(τ)d̃†(τ ′)S〉. (C.12)

It is straightforward to see that the higher order terms in HT , which have gk(τ
′, τ) as a

common factor, term by term reprouce the series expansion for G(τ, τ ′). I thus conclude
that all these terms sum up to −δk,k′gk(τ ′, τ)G(τ, τ ′). A similar analysis can be applied
to the second line Eq. C.9. Qualitatively, the term obtained thus far can be written as
(suppressing all variables) V V ∗g2〈dd†dd†〉, which is nothing but the zeroth order term of the
series expansion of an interacting two-particle Green function Gcd

2 (τ, τ ′) for the central region.
Higher order terms in the S-matrix expansion generate the full series for the interacting two-
particle Green function, in full analogy of what was found in Eq C.11 (though with slightly
more involved combinatorics). Combining the results I have thus obtained

Gcd
2 (τ, τ ′) = −δk,k′gk(τ ′, τ)G(τ, τ ′)−∫
dτ1

∫
dτ2V

∗
k Vk′gk(τ2, τ)gk(τ

′, τ1)Gdd
2 (τ, τ ′, τ1, τ2),

(C.13)

where
Gdd

2 (τ, τ ′, τ1, τ2) = ı2〈Td(τ)d†(τ ′)d(τ1)d†(τ2)〉. (C.14)

Similar calculations for the remaining Green functions in Eq. C.4 yield

Gcd
1 (τ, τ ′) = −V ∗k V ∗k′

∫
dτ1

∫
dτ2gk(τ1, τ)gk′(τ2, τ

′)×

× Gdd
1 (τ, τ ′, τ1, τ2),

(C.15)

Gcd
3 (τ, τ ′) = −δk,k′gk(τ, τ ′)G(τ ′, τ)−∫
dτ1

∫
dτ2VkV

∗
k′gk(τ, τ1)gk′(τ2, τ

′)Gdd
3 (τ, τ ′, τ1, τ2),

(C.16)
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Gcd
4 (τ, τ ′) = −VkVk′

∫
dτ1

∫
dτ2gk(τ, τ1)gk′(τ

′, τ2)×

× Gdd
4 (τ, τ ′, τ1, τ2), (C.17)

where

Gdd
1 (τ, τ ′, τ1, τ2) = ı2〈Td(τ)d†(τ ′)d(τ1)d†(τ2)〉,

Gdd
3 (τ, τ ′, τ1, τ2) = ı2〈Td(τ)d†(τ ′)d(τ1)d†(τ2)〉,

Gdd
4 (τ, τ ′, τ1, τ2) = ı2〈Td(τ)d†(τ ′)d(τ1)d†(τ2)〉,

(C.18)

respectively. I have thus far obtained

S(τ, τ ′) =
1

2

( e
~

)2
{∑

k

|Vk|2
[
gk(τ

′, τ)G(τ, τ ′) +

+gk(τ, τ
′)G(τ ′, τ)

]
+
∑
k,k′

|Vk|2|Vk′ |2
∫
dτ1

∫
dτ2 ×

×
[
− gk(τ1, τ)gk′(τ2, τ

′)Gdd
1 (τ, τ ′, τ1, τ2)

+gk(τ2, τ)gk′(τ
′, τ1)Gdd

2 (τ, τ ′, τ1, τ2)

−gk(τ, τ1)gk′(τ2, τ
′)Gdd

3 (τ, τ ′, τ1, τ2)

−gk(τ, τ1)gk′(τ
′, τ2)Gdd

4 (τ, τ ′, τ1, τ2)
]}

+ h.c.− 〈IL〉2

(C.19)

No approximations have been employed in arriving at Eq. C.19, and it forms an entirely
general starting point for noise calculations for a large variety of systems. The next task
in the general program is to extract the greater (τ > τ ′) part from Eq. C.19. This is
straightforward for the first line, but appears complicated for the remaining terms because
of the two-particle Green functions. Here, I make a Hartree-Fock level approximation to the
two-particle Green functions performing the following approximation

Gdd
1 (τ, τ ′, τ1, τ2) ≈ G(τ, τ2)G(τ ′, τ1)−G(τ, τ1)G(τ ′, τ2)

Gdd
2 (τ, τ ′, τ1, τ2) ≈ G(τ, τ ′)G(τ1, τ2)−G(τ, τ2)G(τ1, τ

′)

Gdd
3 (τ, τ ′, τ1, τ2) ≈ G(τ1, τ)G(τ ′, τ2)−G(τ ′, τ)G(τ1, τ2)

Gdd
4 (τ, τ ′, τ1, τ2) ≈ G(τ2, τ)G(τ1, τ

′)−G(τ1, τ)G(τ2, τ
′).

(C.20)

When substituting these expressions to Eq. C.19, I observe that the two kinds of terms
are generated: terms where the τ1 and τ1-integrals can be done separately, and terms where
the two integrals are intertwined. The terms of the first kind, which I call ”disconnected”
terms can be shown to be perfectly canceled by the −〈IL〉2 in the Eq. C.4. This cancellation
was desirable, because otherwise the zero-frequency component S(ω = 0) would acquire an
anomalous zero-frequency delta-peak. The remaining ”connected” terms, which give the
noise spectrum within Hartree-Fock approximation (or in any other mean-field approxima-

114



tion), read

S(τ, τ ′) =
1

2

( e
~

)2
{∑

k

|Vk|2
[
gk(τ

′, τ)G(τ, τ ′)

+gk(τ, τ
′)G(τ ′, τ)

]
+
∑
k,k′

|Vk|2|Vk′ |2
∫
dτ1

∫
dτ2 ×

×
[
− gk(τ1, τ)gk′(τ2, τ

′)G(τ, τ2)G(τ ′, τ1)

+gk(τ2, τ)gk′(τ
′, τ1)G(τ, τ ′)G(τ1, τ2)

+gk(τ, τ1)gk′(τ2, τ
′)G(τ ′, τ)G(τ1, τ2)

−gk(τ, τ1)gk′(τ
′, τ2)G(τ2, τ)G(τ1, τ

′)
]}

+ h.c. (C.21)

I consider now the greater component of the various terms in Eq. C.21. For the first two
terms the result is obtained readily:[

gk(τ
′, τ)G(τ, τ ′) + gk(τ, τ

′)G(τ ′, τ)
]>

= g<k (t′, t)G>(t, t′) + g>k (t, t′)G<(t′, t). (C.22)

The terms with the double integrations come in two different types. The first one is, which
I rearrange slightly, [∫

dτ1G(τ ′, τ1)gk(τ1, τ)

∫
dτ1G(τ, τ1)gk′(τ2, τ

′)

]>
=

∫
dt1

[
Gr(t′, t1)g<k (t1, t) +G<(t′, t1)gak(t1, t)

]
×

×
∫
dt2

[
Gr(t, t2)g>k (t2, t

′) +G>(t, t2)gak(t2, t
′)
]
. (C.23)

Analogously, the second type of term is written as[
G(τ, τ ′)

∫
dτ1gk(τ

′, τ1)G(τ1, τ2)gk′(τ2, τ)

]>
= G>(t, t′)

∫
dt1

∫
dt2

[
grk(t

′, t1)Gr(t1, t2)g<k (t2, t) +

+grk(t
′, t1)G<(t1, t2)g<k (t2, t) +

+ g<k (t′, t1)Ga(t1, t2)gak(t2, t)
]
. (C.24)

The remaining terms in Eq. C.21 are treated in the same way. The resulting expression
contains thirty terms, and there is no need to present it here, because its structure is obvious
from the terms discussed above. I here simply consider the zero-frequency component of the
noise under stationary conditions. Then, all the time integrals are convolutions, and the zero-
frequency noise is simply the frequency integral: S(0) =

∫
d(t−t′)S(t−t′) =

∫
dε/(2π)S(ε) ≡

S. After lengthly but straightforward calculations, I get the equation written in Eq. 3.49
of the main text. Equation 3.49 is a well-known, and important result. The first term
accounts for thermal noise (i.e., it vanishes at zero temperature), while the second term is a
nonequilibrium term, which vanishes at zero bias.
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Current-density fluctuation

For the mixed current-density contribution in the second line of Eq. 3.44 of the main text,
I have (for the lead α)

Mα(t, t′) = 〈{δIα(t), δn(t′)}〉 =

= 〈{Iα(t), n(t′)}〉 − 2〈Iα〉2〈n〉2

=
ıe

~
∑
kα

[
Vkα〈c

†
kα

(t)d(t)d†(t′)d(t′)〉

− V ∗kα〈d
†(t)ckα(t)d†(t′)d(t′)〉

]
+ h.c.− 〈Iα〉2〈n〉2.

(C.25)

As for the the current noise spectrum S of the previous section, in what follows I shall
be particularly concerned with the zero-frequency component of Mα(t, t′), Mα(ω = 0) =∫
d(t − t′)Mα(t − t′) that is the relevant quantity in the adiabatic expansion. In order to

evaluate the (nonequilibrium) expectation values occurring in Eq. C.25 in a systematic way,
I first define the following contour-ordered two-particle Green functions

GMcd
1,α (τ, τ ′) = ı2〈TCc†kα(τ)d(τ)d†(τ ′)d(τ ′)〉,

GMcd
2,α (τ, τ ′) = ı2〈TCd†(τ)ckα(τ)d†(τ ′)d(τ ′)〉.

(C.26)

In terms of the previous Greens function in Eq. C.26, The nonequilibrium current-density
noise correlator M is then given by

Mα(t, t′) =
ıe

~
∑
kα

[
VkαG

Mcd,>
1,α (t, t′) +

− V ∗kαG
Mcd,>
2,α (t, t′)

]
+ h.c.− 〈Iα〉2〈n〉2,

(C.27)

where GMcd,>
i,α (t, t′) are the greater than components of the contour-ordered counterparts

GMcd
i,α (τ, τ ′) defined in Eq. C.26. Following the same reasoning as previous section, i.e.

performing an S-matrix expansion of the above Green functions and making Hartree-Fock
approximation, one can show that

Mα(t, t′) ' e

~

{
G>(t, t′)

[∫
C

dτ1G(t, τ1)Σα(τ1, t
′)

]<

− G<(t′, t)

[∫
C

dτ1Σα(t, τ1)G(τ1, t
′)

]>
+,

+G<(t, t′)

[∫
C

dτ1G(t, t1)Σα(τ1, t
′)

]>

− G>(t′, t)

[∫
C

dτ1Σα(t, τ1)G(τ1, t
′)

]<}
. (C.28)
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where Σα is the self-energy contribution due to the coupling to lead α and the integration is
extended along the Keldysh contour. The function,

f(t, t′) =

[∫
C

dτ1G(t, τ1)Σα(τ1, t
′)

]<
(C.29)

can be calculated using Langreth’s rules [80], giving

f(t, t′) =

∫
dt1G

r(t, t1)Σ<
α (t1, t

′)

+ G<(t, t1)Σa
α(t1, t

′), (C.30)

where Σa
α is the advanced component of the α-lead self-energy. In the adiabatic approx-

imation, I consider the zero-order terms of all functions G and Σ. After lengthly but
straightforward calculations, starting from Eq. C.28 and taking into account that DHλ =
[ML(0)−MR(0)]/2, I get the first line expression in Eq. 3.48 of the main text.
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Appendix D

The Density Matrix Renormalization
Group

The simulation of a quantum mechanical system is generally a very hard task: one of the
reasons is related to the number of parameters required to represent a quantum state, which
usually grows exponentially with the number of constituents of the system. However, if
one is interested in the ground state properties of a one-dimensional system, the number of
parameters is limited for non critical systems, or grows polynomially for a critical one [175].
This means that it is possible to simulate them by considering only a relevant smaller portion
of the entire Hilbert space. This is the key idea on which all the numerical renormalization
algorithms rely. Starting from some microscopic Hamiltonian in a Hilbert space of dimension
d, degrees of freedom are iteratively integrated out and accounted for by modifying the
original Hamiltonian. The new Hamiltonian will thus exhibit modified, as well as new
couplings; renormalization group approximations typically consist in physically motivated
truncations of the set of couplings newly generated by the elimination of degrees of freedom.
In this way one obtains a simplified effective Hamiltonian that should catch the essential
physics of the system under study. The key for the success of these techniques rests on scale
separation: in continuous phase transitions, for example, the diverging correlation length sets
a natural low-energy scale which dominates the physical properties; fluctuations on shorter
length scales may be integrated out and summed up into quantitative modifications of the
long-wavelength behavior [82].

The Density Matrix Renormalization Group (DMRG) in its first formulation given by
White [83, 84] is a numerical technique for finding accurate approximations to the ground
state and the low-lying excited states of strongly interacting one-dimensional quantum lattice
systems, such as the Heisenberg model or Bose-Hubbard models. In this Appendix, I will
describe the basics of the DMRG numerical method (for a more detailed exposition, I refer
the reader to Ref. [176]). In Sec. D.1, DMRG truncation idea as well as infinite and finite
DMRG algorithms will be explained. I section D.2, I will discuss a method to calculate
dynamical correlation functions with DMRG.

D.1 The DMRG algorithm

As already pointed out in the introduction, the tensorial structure of the Hilbert space of a
composite system leads to an exponential growth of the resources needed for the simulation
with the number of the system constituents. However, if one is interested in the ground
state properties of a one-dimensional system, the number of parameters is limited for non
critical systems or grows polynomially for a critical one [175]. This implies that it is possible

118



Figure D.1: Schematic plot of the real-space renormalization.

to rewrite the state of the system in a more efficient way, i.e., it can be described by using
a number of coefficients which is much smaller than the dimension of the Hilbert space.
Equivalently, a strategy to simulate ground state properties of a system is to consider only
a relevant subset of states of the full Hilbert space. This idea is at the heart of the so
called real-space blocking renormalization group, which I briefly describe below discussing
the DMRG algorithm, and is reminiscent of the renormalization group (RG) introduced by
Wilson [82].

The DMRG-algorithm starts with a quantum chain (also called block) of length l, that
is sufficiently small to be represented numerically on a computer (Fig. D.1). Then, the
chain is enlarged sequentially by one site to increase the system size. In order to reduce
the exponentially growing dimension of the Hilbert space, after each enlargement step the
system is projected onto a fixed number m of relevant Hilbert space states as sketched in
Fig.D.1. All remaining states are cut off and neglected for the next iteration step. Obviously
the crucial question arises which states are in that sense ”relevant”.

White and Noack[85] found that keeping only the lowest lying energy eigenstates, gener-
ally does not give a good decimation procedure. This can be understood considering the toy
model of a single non-interacting particle hopping on a discrete one-dimensional lattice. If
one starts with a small system, say block A in Fig.D.2, the lowest lying eigenstates (dashed
curves in Fig.D.2) for the single particle in the box have nodes at the lattice end of block A.
If the system is enlarged by doubling the system to obtain the compound block AA, the new
lowest lying eigenstates have a maximum amplitude at the compound block center. There-
fore it cannot be approximated well by a restricted number of block states, i.e. eigenstates
of the two blocks which have nodes at the center of the compound block. To avoid imposing
the wrong boundary conditions by considering separate blocks A, White[83] had the idea to
embed the block A in some environment to mimic a larger system from the beginning.

The DMRG algorithm follows this idea using the so called density-matrix projection
described in the next section as a procedure to select the relevant states [83, 84].

D.1.1 DMRG-projection

The idea of the density-matrix projection is to embed a small system into a larger one to
mimic a large system. Using the information given by the reduced density-matrix of the
small system (S), the information of the ‘environment’ (E) is implicitly included to decide
which are the relevant states to be chosen when enlarging the small system up to the desired
length L. Let us describe this procedure in more detail. Assume that one has reached

119



Figure D.2: Two blocks A are connected to form the compound block AA. The dashed lines
are the lowest energy eigenstates of the separate blocks A, the solid line sketches the lowest
energy eigenstate of the compound block AA.

a chain of length l with an m-dimensional Hilbert space with states {|wSml〉}. To grow
the system one new site is added, i.e. the basis of the new Hilbert space HS is given by
{|wSmlσ

S〉} = {|wSml〉|σ
S〉}, where {|σS〉} are the Nsite local states of the new site. In order to

avoid strong boundary effects the system (S) is embedded into an ‘environment’ (E) which
was constructed in the same way. I denote its basis states by {|wEmlσ

E〉}. I call the two
parts the system and the environment block, and both together the ’superblock’. The aim
of the density-matrix projection is to determine a small set of mS < k := dimHS states
{|wSml+1

〉} ∈ HS (ml+1 = 1 ... mS)which are important to represent a certain state |ψ〉, e.g.
the ground state, (also called target state) of the superblock

|ψ〉 =
mS∑
ml=1

Nsite∑
σS=1

mE∑
m
′
l=1

Nsite∑
σE=1

ψmlσSm′lσE
|wSmlσ

S〉|wE
m
′
l

σE〉

≡
∑
i,j

ψij|i〉S ⊗ |j〉E. (D.1)

Here, I expanded |ψ〉 into the orthonormal bases |i〉S (i = 1...k) and |j〉E (j = 1...k) of the
system HS and environment HE, respectively. The relevant states |wSml+1

〉 are the states

which span the mS-dimensional subspace Υ ⊂ HS such that the vector

|ψ̃〉 =
∑
ml+1j

ψ̃ml+1j|wSml+1
〉 ⊗ |j〉E, (D.2)

minimizes the functional of the quadratic deviation

S(|ψ̃〉) := ‖|ψ̃〉 − |ψ〉‖2. (D.3)

In the following it is shown that the ’relevant’ states |wSml+1
〉 are given by the eigenvectors

corresponding to the larger eigenvalues of the reduced density-matrix

ρS := TrE|ψ〉〈ψ| , (D.4)

where TrE := idS ⊗ TrE labels the partial trace over the environment block. I interpret the
coefficients ψij = ψ and ψ̃ij = ψ̃ as k × k matrices. Then, the density-matrix ρS can be
written as ρS = ψψ† and the functional S(|ψ〉) can be expressed as

S(ψ̃) = tr(ψ̃ − ψ)†(ψ̃ − ψ). (D.5)
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The functional S can be related to the eigenvalues of the reduced density-matrix by
using the singular value decomposition theorem. According to this theorem there exist two
orthogonal matrices U and V of dimension k × k such that

ψ = UDV † , where D = diag(λ1...λk). (D.6)

The so-called singular values λi are the square roots of the eigenvalues of ρS, since I can
write

ρS = UDD†U † = UD2U †. (D.7)

Inserting Eq. D.6 into Eq. D.5 and using the cyclic invariance of the trace, I obtain

S(ψ̃) = Tr(D̃ −D)†(D̃ −D), (D.8)

with D̃ = Uψ̃V †. In this form it can be seen that S is minimized, if D̃ is a diagonal matrix
of rank mS, whose diagonal elements are given by the leading singular values, i.e.

D̃ = diag(λ1, ..., λmS , 0, ...0). (D.9)

Without loss of generality the λi were assumed to be sorted: λ1 ≥ λ2 ≥ ... ≥ λk. I can
now explicitly construct |ψ̃〉 which minimizes S using eigenvectors |wSml+1

〉 to leading m
eigenvalues of ρS:

|ψ̃〉 =
∑
ij

(UD̃V †)|i〉S ⊗ |j〉E

=
∑
ml+1

D̃ml+1,ml+1
(
∑
i

Uiml+1
|i〉S)︸ ︷︷ ︸⊗ (

∑
j

V ∗jml+1
|j〉E)︸ ︷︷ ︸

|wSml+1
〉 |wEml+1

〉

=
m∑

ml+1=1

λml+1
|wSml+1

〉 ⊗ |wEml+1
〉. (D.10)

Note, that the same number of states has to be kept for the system and the environment
block, i.e. m := mS = mE. If the same projection is performed interchanging the system
and environment block, one finds that both reduced density-matrices have the same non-
zero eigenvalues even if system and environment were different. This is also reflected in the
guaranteed existence of the so-called Schmidt decomposition of the wave function [177],

|ψ〉 =
∑
α

λα|wSα〉|wEα 〉, λα = 0. (D.11)

The number of positive λα is bounded by the dimension of the smaller of the bases of system
and environment. To summarize, I have proven that the relevant states of the system block
to represent the target state, e.g. the ground state, of a larger quantum chain including the
environment are optimally given by the leading m eigenvectors of the reduced density-matrix
ρS. The performance of the method depends critically on the decay of the eigenvalues of
the reduced density-matrix. Some insight into the quality of the truncation approximation
made by the projection can be gained by the so-called truncated weight

P := 1−
m∑
i=1

λ2
i , (D.12)
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which measures how much of the norm of |ψ〉 is lost. However, due to the additional sources
of ’environmental’ (errors errors by the only approximate similarity of the environment block
to the ’real’ environment) the total error in the observables calculated are often much larger
than the truncated weight. A good control over the total error can in most cases be obtained
by a careful convergence analysis in the number m of states kept.

More information about the limits of the DMRG was obtained by [178, 179, 180, 181, 182,
183] by studying the ability of the DMRG decimation procedure to preserve the entanglement
of ψ between system and environment in the context of quantum information science [177,
184]. By this a better understanding of the reasons of the breakdown of the DMRG in two-
dimensional systems has been obtained in terms of the growth of bipartite entanglement in
such systems [181, 183].

In the next two subsections the two DMRG algorithms, the so-called infinite-system and
the finite-system algorithm[84] are introduced. Often, a combination of both algorithms is
applied to obtain an increased accuracy of the numerical results.

D.1.2 Infinite-system DMRG

The infinite-system algorithm is designed for computing the ground state (or low-energy
spectrum) of a quantum chain in the thermodynamic limit (L→∞, where L is the desired
length of the system). The main idea consists in growing the left and right blocks by adding
one site at a time. As I add sites, the basis of the blocks will grow, until I reach the desired
maximum number of states m. At this point I need to start applying the density matrix
truncation on both blocks. This process is repeated until I reach a desired system-size, or
the energy is below a pre-defined tolerance. The algorithm illustrated in Fig.D.3 could be
outlined as below:

1. Construct a system of size l with the Hilbert space HS = {|wSml〉} with dimension
mS which is small enough to be treated exactly. The operators used, including the
Hamiltonian, are known in this basis. In the same way construct the environment
block.

2. Enlarge the system block by one site, i.e. the Hilbert space becomes of dimension
NS = mSNsite and is formed by the states |wSmlσ

S〉. The environment block is enlarged,
similarly. The added sites are often called ’free’ or ’active’ sites.

3. Join the two blocks to form the superblock of length 2l+ 2 (Fig. D.3). The dimension
of the Hilbert space of the superblock is given by NSNE.

4. Determine the target state. If the target state is the ground state this is done by
determining the ground state of the Hamiltonian of the superblock for example by the
Lanczos algorithm .

5. Perform the density-matrix projection for the system, i.e. determine from the reduced
density-matrix ρS as in Eq. D.4, the eigenvalues, ordered by their values, and the
corresponding eigenstates. Form a new reduced basis by taking only the mS eigenstates
|wSml+1

〉 corresponding to the largest eigenvalues. Repeat this step to construct the
reduced basis and the projection matrix for the environment.

6. Project the operators of interest acting on the system and the environment block,
including the Hamiltonian, onto the new basis of the system and the environment
block, respectively. The projection matrix T S/E of dimension NS/E × mS/E is given
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Figure D.3: Step-by-step illustration of the block-growing scheme in the infinite-size DMRG
algorithm:After obtaining the new blocks from the previous step (a), I add a new site to
each block (b), I build the superblock and obtain the ground-state (c), and I calculate the
reduced density-matrix, and rotate to the basis of the eigenvectors with m largest eigenvalues
to build the new blocks for the next step (d).

by taking the eigenvectors as columns. Repeat step (2) to (6) until the desired final
length L of the system is reached.

7. Calculate the physical quantities of interest, like expectation values for the ground
state energy, from the effective state obtained.

Obviously, the chain length l grows successively by each iteration step until it reaches the
desired length, whereas the dimensions m of the system and the environment block stay
constant. By this infinite-system analysis, highly precise estimates of various properties of
the infinitely large quantum chain are possible.

The scheme given above is only a rough sketch of the DMRG algorithm. An implemen-
tation of a DMRG program generally facilitates various numerical know-how to increase the
performance and to save computer memory. E.g. if some quantum numbers are conserved,
the fact can be utilized to reduce operators to a block structure, such that vanishing matrix
elements do not have to be stored. The most time consuming part of the algorithm is found
in the computation of the ground state, step (4). Here, the Lanczos [192] or Davidson[193]
algorithm are typically used due to their high performance.

D.1.3 Finite-system DMRG

The infinite-system algorithm does not give satisfactory results in all cases of interest. Prob-
lems arise if the environment in the early growing of the chain does not resemble the system
of final length closely enough, for example, if the system is inhomogeneous. Then the states
retained in the early stage do not have to be important for the desired final state. Here
the finite-system algorithm helps out. The idea is to optimize the chosen basis for a system
of fixed length L by shifting the ’free’ sites through the system. To do this the system is
built up to a desired length L with the infinite-system algorithm, but in subsequent steps
one of the blocks grows to the cost of the other block shrinking (see Fig. D.1.3). In each
step the reduced basis transformation is only performed for the growing block. Assume the
system block grows and the environment block shrinks. Then as before in the infinite-system
algorithm one site is added to the system block, but at the same time one site is removed
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Figure D.4: Schematic illustration of the finite-size DMRG algorithm: The infinite-size
iteration stops when I reach the desired system size. Then, I start sweeping from left to
right, and right to left. During the sweeping iterations, one block grows, and the other one
”shrinks”. The shrinking block is retrieved from the blocks obtained in the previous sweep
in the opposite direction, which are stored in memory or disk.

from the environment block, i.e. one has to use the previously stored basis of the smaller
block. When the environment block approaches the end of the chain it becomes at some step
exactly describable and the role of the shrinking and growing blocks are interchanged. A
complete shrinkage and growth sequence for both blocks is called a ’sweep’. The advantage
of this algorithm is that the system has reached its final length L and the chosen basis states
can be optimized taking its full length into account. Usually the finite-system algorithm
finds the best approximation to the ground state, and only very rarely it is trapped into
some metastable state.

D.2 Dynamical correlation functions using DMRG

Since its development, the DMRG has been successfully used to calculate static properties
of ground states and low-lying excited states in various low dimensional strongly interacting
systems. Energies can be determined with highest precision, and the calculation of time-
independent correlation functions is easy and high accuracy can be achieved. The calculation
of dynamical properties is more difficult.

Typically, the zero-temperature dynamic response of a quantum system is given by a
dynamical correlation function (with ~ = 1)

GX(ω + ıη) = − 1

π

〈
ψ0

∣∣∣∣∣X† 1

E0 + ω + ıη −H
X

∣∣∣∣∣ψ0

〉
, (D.13)

where H is the time-independent Hamiltonian of the system, E0 and |ψ0〉 are its ground-
state energy and wavefunction, X is the quantum operator corresponding to the physical
quantity which is analyzed, and X† is the Hermitian conjugate of X. A small real number
η > 0 is used to shift the poles of the correlation function into the complex plane. The
spectral function GX(ω + ıη) is also the Laplace transform (up to a constant prefactor) of
the zero-temperature time-dependent correlation function

GX(t ≥ 0) = 〈ψ0|X†(t)X(0)|ψ0〉, (D.14)
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where X(t) is the Heisenberg representation of the operator X. In general, one is interested
in the imaginary part of the correlation function for η → 0

I(ω + ıη) = =GX(ω + ıη) =
1

π

〈
ψ0

∣∣∣∣∣X† η

(E0 + ω −H)2 + η2
X

∣∣∣∣∣ψ0

〉
. (D.15)

Let {|n〉, n = 0, 1, 2, ...} be the complete set of eigenstates of H with eigenenergies En (|0〉
corresponds to the ground state |ψ0〉). The spectrum D.15 can be written

I(ω + ıη) =
1

π

∑
n

|〈n|X|0〉|2 η

(E0 + ω −H)2 + η2
. (D.16)

En−E0 is the excitation energy and |〈n|X|0〉|2 the spectral weight of the n-th excited state.
Obviously, only states with a finite spectral weight contribute to the dynamical correlation
function. Typically, the number of contributing excited states scales as a power of the system
size N (while the Hilbert space dimension increases exponentially with N). In principle, one
can calculate the contributing excited states only and reconstruct the spectrum from the
sum over these states D.16.

The simplest method for computing excited states within DMRG is to target the lowest
M eigenstates |ψs〉 instead of the sole ground state using the standard algorithm. In that
case, the density matrix is formed as the sum

ρ =
M∑
s=1

csρs (D.17)

of the density matrices ρs = |ψs〈〉ψs| for each target state [188]. As a result, the DMRG
algorithm produces an effective Hamiltonian describing these M states accurately. Here
the coefficients cs > 0 are normalized weighting factors (

∑
s cs = 1), which allows to vary

the influence of each target state in the formation of the density matrix. This approach
yields accurate results for some problems such as the Holstein polaron [189]. In most cases,
however, this approach is limited to a small number M of excited states (of the order of
ten) because DMRG truncation errors grow rapidly with the number of targeted states (for
a fixed number of density-matrix eigenstates kept). This is not sufficient for calculating a
complete spectrum for a large system and often does not even allow for the calculation of
low-energy excitations.

In the following section, I will discuss a more sophisticated technique for calculating
dynamical properties expressed by Eq. D.15 and used in the last Chap. of this thesis: the
Correction Vector method.

D.2.1 Correction Vector

A very accurate approach for generating dynamical spectra is the correction vector method[186].
This method has been successfully applied in the DMRG context[187].

The correction vector method allows a very accurate calculation of a dynamical correla-
tion function targeting a correction vector at a particular frequency. The spectrum can be
calculated directly (without targeting a lot of excited states of the Hamiltonian) for a given
z = ω + ıη including the following states must be included as target states:

|0〉 the ground state (D.18)

|X〉 = X|0〉, the first ”Lanczos” vector (D.19)

|x(z)〉 =
1

ω − z
|X〉. the correction vector (D.20)
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Since a finite broadening factor η is used, the correction vector becomes complex. To avoid
the use of complex numbers, I split the correction vector into real and imaginary part, both
used as target states:

|x(z)〉 = |xRE(z)〉+ ı|xIM(z)〉. (D.21)

The equation for the correction vector is split into real and imaginary parts |xRE(z)〉 and
|xIM(z)〉, and the imaginary part is found by solving

[(H − ω)2 + η2]|xIM(z)〉 = −η|X〉 (D.22)

using the conjugate gradient method[190]. Note that this equation system gets more singular
as ω gets closer to an eigenenergy of the Hamiltonian, and as the broadening factor η gets
smaller. For large η the Hamiltonian is close to a diagonal matrix, and the conjugate gradient
method converges much faster than for small η. This means that a large η results in short
calculation times, but it also limits the resolution of the spectrum. The convergence is also
slowed down because energy gaps in H − ω are squared in Eq.D.22, and the convergence
rate of the conjugate gradient method depends on the gap between the lowest and the next
lowest eigenvector.

The real part of the correction vector is calculated directly:

|xRE(z)〉 =
1

η
(H − ω)|xIM(z)〉. (D.23)

Using the correction vector, the Green’s function can be calculated directly:

G(z) = 〈X|x(z)〉. (D.24)

Taking these states (|0〉, |X〉, and |x(z)〉) as target states and optimizing the DMRG basis
to represent them allows for a very precise calculation of the Green’s function for a given
frequency ω and broadening factor η . Unfortunately, the correction vector has to be calcu-
lated separately for every ω. If the correction vector does not change very rapidly with ω,
the DMRG basis that is optimized to represent the correction vector at a certain ω, should
also be able to represent correction vectors for nearby frequencies.
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Appendix E

Magnetic field correction to the
hopping matrix element for a particle
in a tight-binding ring

Let us consider the Schrodinger equation for a single particle in a ring given by a tight-binding
chain in absence of a magnetic flux threading the ring (I use ~ = e = c = 1)[(

− ı ∂
∂x

)2

+
∑
i=1,L

V (x−Rn)

]
f(x) = Ef(x), (E.1)

It can be shown that a general solution of this equation can be written as a superposition
of Wannier orbitals (Ashcroft and Mermin),

f(x) =
∑
i=1,L

aiφ(x−Ri), (E.2)

which automatically satisfies the periodic boundary condition imposed by the ring geometry

f(x+ L) = f(x). (E.3)

With second quantization ai (a∗i ) are promoted to annihilation (creation) operators and the
Hamiltonian is given by

Ĥ =

∫
dxf̂ †(x)H(x)f̂(x), (E.4)

expliticily

Ĥ =
∑
l=1,L

t(Rl+1 −Rl)(â
†
l+1âl + â†l âl+1), (E.5)

where the tight binding matrix element can be written in terms of 1st quantized Wannier
orbitals φ(x−Ri) and the periodic potential V (x)

t(Rl+1 −Rl) =

∫
dxφ∗(x−Rl)V (x−Rl+1)φ(x−Rl+1). (E.6)

Let us suppose to consider that l = L is the first site of the left lead and that l+ 1 = mol is
the central molecular site of my Hamiltonian. Changing variables in the integral described
above to x′ = x−RL I obtain

t(Rmol −RL) =

∫
dx′φ∗(x′)V (x′ − (Rmol −RL))φ(x′ − (Rmol −RL)). (E.7)
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Considering now the possibility that Rmol can change by a quantity δ due to molecule
oscillation Rmol ' R

(0)
mol − δ, I get

t(Rmol −RL) =

∫
dx′φ∗(x′)V (x′ − d(0) + δ)φ(x′ − d(0) + δ), (E.8)

where I have defined R
(0)
mol − RL = d(0) as the distance between the first site of the left

lead and the molecule when this latter is in its equilibrium position. Changing again the
integration variables in Eq. (E.8) to x = x′ − d(0) + δ I have,

t(Rmol −RL) =

∫
dxφ∗(x+ d(0) − δ)V (x)φ(x), (E.9)

and finally, if δ/R
(0)
mol << 1, expanding to the first order in δ I get

t(Rmol −RL) = t(0) − αδ, (E.10)

where,

t(0) =

∫
dxφ∗(x+ d(0))V (x)φ(x), (E.11)

and

α =

∫
dx∂xφ

∗(x+ d(0))V (x)φ(x). (E.12)

Let us now introduce a magnetic flux threading the ring. The Eq. (E.1) modifies according
to the ’minimal substitution’

∂x = ∂x − ıA(x), (E.13)

obtaining [(
− ı ∂

∂x
− A(x)

)2

+
∑
i=1,L

V (x−Rn)

]
F (x) = EF (x), (E.14)

where now the solution can be expressed in terms of the old solution (Eq. (E.2)) obtained
in absence of magnetic field

F (x) =
∑
i=1,L

aiΨ(x−Ri), (E.15)

where
Ψ(x−Ri) = e−ı

∫ x−Ri
0 A(x′)dx′φ(x−Ri). (E.16)

I suppose that the vector potential is independent on x and such that
∮
Adl = φ, where φ is

the magnetic flux threading the ring. This in turn implies that A = φ/L where L is the ring
length. If the molecule is motionless and kept in its equilibrium position, from equation Eq.
(E.7) I get that the hopping matrix element t(Rmol −RL) modifies into

tB(Rmol −RL) = t(Rmol −RL)e
−ı

∫Rmol
RL

Adx′
= t(Rmol −RL)e−ıφ/N , (E.17)

where N is the number of sites of the chain (L/d(0) = N).
Now I consider the magnetic flux corrections to coefficients t0 and α given by Eqs.

(E.11,E.12). t(0) is modified trivially as in Eq. (E.17), because does not involve spatial
derivatives of Wannier functions. α deserves a careful observation: if one consider

α =

∫
dx∂xΨ

∗(x+ d(0))V (x)Ψ(x), (E.18)

trasforming only the wave function one obtain an imaginary correction term (taking into
account Eq. (E.16))

α = α(0) + ıφ/L, (E.19)

and α gets a non trivial correction term due to magnetic flux.
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mazione. Un ringraziamento speciale è rivolto al Prof. Marigliano per i suoi consigli sia
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che in quelli di difficoltà, senza di loro non avrei mai raggiunto questo traguardo.
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