
Università degli Studi
Roma Tre
Dipartimento di Filosofia

Tesi di dottorato in
Filosofia e Teoria delle
Scienze Umane

Université Paris Diderot
– Paris 7

U.F.R. d’Informatique –
Laboratoire PPS

Thèse de doctorat en
Sciences Mathématiques

de Paris Centre –
specialité Informatique

Differential nets, experiments and
reduction

Giulio Guerrieri

Supervisors: Lorenzo Tortora de Falco (Roma Tre)
Thoams Ehrhard (Paris 7)

Referees: Laurent Regnier
Marcelo Fiore

Jury: Vito Michele Abrusci
Thomas Ehrhard
Damianao Mazza
Lorenzo Tortora de Falco

20th June 2013

2

Contents

Introduction 5

I Linear Logic 13

1 A non inductive syntax 15
1.1 Cells and ports . 16
1.2 Pre-pre-proof-structures . 19
1.3 Paths . 28
1.4 Pre-proof-structures . 30
1.5 Boxes and (non-inductive) proof-structures 34
1.6 Indexed ((pre-)pre-)proof-structures 45
1.7 A non-inductive correctness criterion 46
1.8 Taylor expansion . 48

2 Relational semantics 51
2.1 Relational spaces . 51
2.2 Experiments . 54
2.3 The relationship between Taylor expansion and relational se-

mantics . 56
2.4 The connected case . 58

II Call-by-value lambda calculus 61

3 About a call-by-value λ-calculus 63
3.1 A call-by-value λ-calculus . 64

3.1.1 The syntax of ΛCBV 64
3.1.2 Some call-by-value β-reductions 70
3.1.3 Some problems with η-reduction 81

3.2 A “completion” of βv-reduction 82
3.3 Simulation of Accattoli and Paolini’s calculus and solvability . 89
3.4 From terms to trees . 98

3.4.1 Syntax of applicative trees 98

3

4 CONTENTS

3.4.2 Some reductions on applicative trees 101
3.5 Value Böhm trees . 101

4 Two symmetrical call-by-value Krivine abstract machines 105
4.1 The versions without environments 105
4.2 The versions with environments 111

5 Translations 115
5.1 The typed ΛCBV and boring translations in Linear Logic . . . 115
5.2 σv-equivalence . 116
5.3 CPS . 117

Introduction

Linear Logic

Starting from semantical investigations about λ-calculus, Girard introduced
in 1986 ([Gir87]) Linear Logic (LL), a refinement of intuitionistic and classical
logic allowing a fine analysis of the use of resources during the cut-elimination
(i.e. execution via Curry-Howard isomorphism) process of proofs (i.e. programs
via Curry-Howard correspondence: by means of the introduction of the new
connectives ! and ?, LL gives a logical status to duplication and erasure
operations (corresponding to structural rules of intuitionistic and classical
logic). One of the novelties of LL is its representation of proof by means
of some particular graphs, the nets, giving a more geometrical account of
the cut-elimination/execution process. Of course, not all the elements of
this particular class of graphs, the proof-structures, are nets, i.e. correspond
to proofs of LL’s sequent calculus, but there exists a correctness criterion
([DR89], among others) characterizing all (and only in certain frameworks of
LL) the proof-structures which are nets. So, proof-structures become some
interesting objects in themselves from a computational point of view, in
virtue of their geometrical aspect. Actually, proof structures still display
some sequentialized aspects because of the presence of boxes, which define
erasable or duplicable resources during the cut-elimination process. A box,
indeed, must contain a proof structure that satisfies some constrains: all its
conclusions, called auxiliary port, except one, called principle port, must be
conclusion of a ?-link. This provides a deeply inductive character to proof
structures.

Revisiting the syntax of nets. A first contribution of my thesis is revis-
iting the syntax of LL nets. Inspired by the presentation of nets developed in
[dCT12] according to the formalism of interaction nets introduced by Lafont
in [Laf95], I defined a syntax for the multiplicative and exponential framework
of LL proof structures, in which there is not an explicit constructor for boxes;
so, it’s possible to recover boxes by means of some functions (the arrows) in
a “purely geometrical” way under suitable conditions: these arrows associate
with every !-link its auxiliary doors and the cuts contained in it at depth
0. Such a geometrical approach allows to define proof structures in a non

5

6 CONTENTS

inductive way, bringing out the Girard’s original inner meaning of Linear
Logic ([Gir87]). Differently from [dCT12], my definition allows to define also
the cut-elimination procedure for proof structures: the exponential reduction
step involves the composition of arrows. In these proof structures I defined
also a correctness criterion (connection and acyclicity) in a completely non
inductive (that is “purely geometric”) way. The syntax introduced in this
thesis turns out to be compatible also with the cut-elimination procedure
for differential nets of DiLL0 (see below), but not those of DiLL, where a box
might contain a sum of nets.

Differential nets and Taylor expansion. In [Ehr05] Ehrhard defines a
denotational semantics for λ-calculus and LL proof nets: the finiteness spaces,
in which types (formulas) are interpreted by vectorial spaces and λ-terms
(LL nets) by infinitely differentiable functions defined as power series (i.e.
Taylor expansions) on these spaces. Differentiation can be internalized at
a syntactical level thanks to an extension of the λ-calculus with differential
operators: the differential λ-calculus, introduced by Ehrhard and Regnier
in [ER03]. The authors have then extended the differential operators to LL
nets, obtaining the differential nets (DiLL, [ER06b]), where the differential
constructors assume an interesting form: they correspond to “symmetrizing”
the exponential connectives. This means that the rules related to the two
modalities ! and ? are perfectly symmetric, apart from the promotion rule.
The differential versions of λ-calculus and LL allow a finer analysis of the
use of resources during the computation process. We call Λres (resp. DiLL0)
the fragment of differential λ-calculus (resp. DiLL) characterized by the fact
that only linear applications are possible (resp. by the fact that there are
no boxes). Linearity, that is the absence of a promotion rule, entails that
every term of Λres (resp. every net of DiLL0) is trivially strongly normalizable
(their sizes strictly decrease under reduction). Furthermore, linearity also
causes that a term in Λres (resp. a DiLL0 net) reduces to a sum of terms in
Λres (resp. a sum of DiLL0 nets), because a linear resource (it can be used
exactly once), required from several parts, determines a plurality of possible
choices. Hence, for every term in Λres (resp. DiLL0 net) t, its normal form
NF(t) exists and it is a finite linear combination of λ-terms in Λres (resp.
DiLL0 nets). Λres (resp. DiLL0) can be seen as an analysis tool for λ-calculus
(resp. LL nets), thanks to the Taylor expansion ()∗, which associates with
every λ-term (resp. LL net) a (potentially infinite) sum of terms in Λres (resp.
DiLL0 nets). In [ER08] it is proved that, given a every ordinary λ-term M ,
one can sum up all the normal forms of the resource λ-terms in M∗. Thus
one obtains the normal form NF(M∗) of M∗, a (in general) infinite linear
combination of terms in Λres with relational coefficients. In [ER06a] it is
showed that NF(M∗) is the Taylor expansion of the Böhm tree BT(M) of M

CONTENTS 7

(the notion of Taylor expansion is naturally extended to Böhm trees), that is

NF(M∗) = (BT(M))∗ (1)

In other words, the Taylor expansion commutes with normalization, where
normalizing an ordinary λ-term means here computing its Böhm tree. The
Böhm tree of a ordinary lambda term can be seen as the normal form of the
head linear reduction which is the call-by-name reduction implemented by (a
version of) the Krivine’s abstract machine ([Kri07]) .

Taking advantage of a separation theorem for differential nets ([MP07]),
I have demonstrated that the Taylor expansion (without taking into account
the coefficients) commutes with the cut-elimination process. This means that,
for every LL net π, one has NF(π∗) = (NF(π))∗ (the analogous of equation (1)
for LL nets). At the same time Mazza and Pagani have shown two distinct
DiLL0 nets ρ and ρ′ in the Taylor expansion π∗ of a LL net π whose respective
normal forms NF(ρ) and NF(ρ′) are not disjoint. This example shows the
difference of the case of λ-calculus with respect to LL: indeed, a crucial
passage in the proof of the equation (1) in [ER08, ER06a] (for the λ-calculus)
consists in defining a coherence relation among the λ-terms with sources such
that:

• for every ordinary λ-term M , all the elements of M∗ are coherent two
by two among them

• if t and t′ are coherent λ-terms with sources, then NF(t) and NF(t′) are
disjoint.

The Mazza and Pagani’s example shows that it is impossible to define such a
relation on LL nets.

Differential nets and experiments of relational semantics. In my
thesis I tried to understand precisely and rigorously the strict relationship be-
tween differential nets without boxes (i.e. resources λ-terms) and experiments
of LL nets. An experiment (notion introduced in [Gir87] and studied in detail
in [Tor00, Tor03]) is a function which permits to associate with every LL net
π a point of the interpretation of π in the relational model, the interpretation
of π being the set of points resulting from all the possible experiments of π.
Experiments, hence, act as a bridge between syntax and semantics. Among
all the points of relational semantics of a LL net π, some of them are "more
important": the injective points, that is those in which every their atom
occurs exactly twice. If π is without cuts, the injective points are the results
of experiments that associates with every axiom a different element of the
web. From the injective points it is possible to reconstruct every other point
by substitution. Furthermore two injective points of the interpretation of
π can uniquely differ for the atom names, showing the "same structure".

8 CONTENTS

Then, we say that the two injective points are equivalent and that the one
can be transformed in the other by a suitable substitution of atoms with
atoms. Given a net π of LL, we denote by JπK the subset of the relational
interpretation of π, formed by the injective points quotiented modulo the
injective substitutions. In collaboration with Tortora de Falco and Pellissier,
I have demonstrated that the Taylor expansion of a cut-free η-expansed LL
net π coincides with JπK. In other words, a differential net in the Taylor
expansion of a cut-free η-expansed LL net π is a canonical representative of
an equivalence class of injective points of the relational interpretation of π.
It remains to be investigated the meaning of a differential net in the Taylor
expansion of a LL net π with cuts. In this case the difficulty is that it can
reduce itself in several differential nets without cuts.

In collaboration with Tortora de Falco and Pellissier I have characterized
the relations of the relational model corresponding to interpretations of some
acyclic and connected LL net. In fact, if two cut-free η-expansed LL nets π1

and π2, acyclic and connected have the same 2-point in the Taylor expansion
(i.e. the the differential net obtained recursively taking for every box two
copies of its contents), then π1 = π2. In other words, a cut-free, η-expanded,
acyclic and connected LL net is completely characterized by the 2-point in its
Taylor expansion. This result simplifies the proof of injectivity of relational
semantics with respect to LL (see [dCT12]) in the acyclic and connected case.
Moreover thanks to this result it is possible to define an algorithm that, given
a relation of the relational model, takes its 2-point α (if it exists) and tries to
recover a cut-free, η-expansed, acyclic and connected LL net. If this procedure
ends successfully, then one has found the only cut-free and η-expansed LL net
that has α in its relational interpretation; otherwise, no acyclic and connected
LL net has α in its interpretation. This result of surjectivity is based on the
fundamental hypothesis of connection, pointing out the importance of this
notion.

Call-by-value lambda-calculus

In the ordinary (also called “call-by-name”) λ-calculus, the prototype of
any functional programming language, the values are either variables or
abstractions (λ-terms of the shape λxM). So, the λ-terms are either values
or applications (λ-terms of the shape MN). The “call-by-value” λ-calculus is
the version of λ-calculus allowing to reduce only the βv-redexes, i.e. β-redexes
of the shape (λxM)V where V is a value. The call-by-value λ-calculus was
introduced by Plotkin in ’70 ([Plo75]) in order to give a version of λ-calculus
closer to the real implementation of functional programming languages. The
relationship between call-by-value λ-calculus and Linear Logic was widely
studied for the first time by Maraist, Wadler et al. in [MOTW95] in ’90.

Recently in [Ehr12] Ehrhard introduced a version (called ΛCBV) of the
call-by-value λ-calculus such that values and terms are disjoint sets defined

CONTENTS 9

by mutual induction: a value is either a variable or an abstraction λxM
where M is a term, a term is either an application (M)N where M and N
are terms, or a “promoted” value V ! where V is a value. This distinction
can be explained from the Linear Logic point of view: in [Ehr12] Ehrhard
presented a general notion of denotational model for ΛCBV corresponding to
the translation ()b defined as “boring” by Girard ([Gir87]) of the intuitionistic
logic into LL, whereby (A⇒ B)b = !Ab(!Bb (thus in the untyped case, the
intuitionistic isomorphism o ' (o⇒ o) becomes o ' (!o(!o)). In my thesis
I studied the relationship between ΛCBV and LL from a syntactical point of
view (already implicit in [Ehr12]). I defined the translation of terms and
values of ΛCBV into LL nets: the idea is that a “promoted” value corresponds
to a box in the LL nets, therefore a βv-redex (λxM)!V ! corresponds to a
cut between the box representing (λxM)! and a dereliction (the application
is linear on the left); this allows the box representing V ! to get in the net
representing M and duplicate at will. In general, one step of βv-reduction in
ΛCBV corresponds to several steps of cut-elimination in LL-nets.

Reduction and call-by-value Krivine’s machine. Trees. In [Ehr12]
Ehrhard proved that the interpretation of a term M in ΛCBV is empty if
and only if M is strongly normalizable for the β̂v-reduction, where the β̂v-
reduction (or weak βv-reduction) is a restriction of the βv-reduction obtained
by forbidding reductions under abstractions. This result is the analogous
of the well-known theorem for the ordinary (i.e. call-by-name) λ-calculus
whereby a term is head normalizable if and only if its interpretation in the
Engler’s denotational model is not empty. In my thesis I developed a survey
about β̂v-reduction, in order to see to what extent the β̂v-reduction can be
considered in ΛCBV as a analogue of the head reduction in ordinary λ-calculus.
A first difference is obvious: in the ordinary λ-calculus the head redex of
any term, if any, is unique, whereas a term in ΛCBV might have several

ˆbetav-redexes (in LL-nets they correspond to cuts at depth 0), but these
β̂v-redexes are not overlapping, hence the β̂v-reduction is strongly confluent.
Therefore, one can define a parallel β̂v-reduction reducing in one step all the
β̂v-redexes: if a term M is β̂v-normalizable, then the parallel β̂v-reduction
reduces M to its β̂v-normal form. So, the fact of having several β̂v-redxes is
not a substantial difference with respect to the head reduction of ordinary
λ-calculus.

The structure of a term M can be represented by a binary tree, called the
applicative tree of M : it breaks up the applications in M until to “promoted”
values which are subterms of M (they are the leaves of the applicative tree of
M). So, the β̂v-redexes of any term are characterizable as the nodes whose
left (resp. right) child is a “promoted” abstraction (resp. “promoted” value).
The notions of applicative tree and parallel β̂v-reduction suggest the definition
of a tree-like structure which is similar to a Böhm tree for the “call-by-value”

10 CONTENTS

λ-calculus. Nowadays for the “call-by-value” λ-calculus there does not yet
exist a notion of Böhm tree (see for example the recent [NGP12]).

In my thesis I also defined an abstract machine for ΛCBV similar to the
Krivine’s abstract machine for the ordinary (i.e. call-by-name) λ-calculus
define in [Kri07, DR04]. The abstract machines play an important role in
implementing programming languages because on the one hand they are
“sufficiently abstract” to relate easily to the notion of reduction of λ-calculus,
on the other hand they are closer to executions of a real machine, by imposing
among other things a precise reduction strategy. I introduced two call-by-
value Krivine’s machines Kl and Kr: I showed that the Kl (resp. Kr) machine
with an input term M will search for the leftmost (resp. rightmost) β̂v-redex
in the applicative tree of M and then reduce it. By the good proprieties of
the β̂v-reduction, if a closed term M is β̂v-normalizable then its β̂v-normal
form computed by Kl and Kr; actually this result holds more generally for
any “random” call-by-value Krivine’s machine at each execution step chooses
whether to apply the left or right reduction strategy.

Translations, σ-equivalence and σ-reduction. There exists two con-
tinuation passing style (CPS) translations of ΛCBV into the ordinary (i.e.
call-by-name) λ-calculus: ()l (already defined in [Plo75, Sel01]) and ()r (intro-
duced in my thesis), whose only difference is in the translation of application,
more precisely in the choice of putting the function (in case of ()l) or the
argument (in case of ()r). I showed that, modulo these CPS translations,
the βv-reduction corresponds to the β-reduction of ordinary λ-calculus. The
following result is more interesting: the call-by-value Krivine’s machine Kl

(resp. Kr) is simulated by the call-by-name Krivine’s machine modulo the
CPS translation ()l (risp. ()r).

In the ordinary λ-calculus, σ-equivalence ([Reg92, Reg94]) equates terms
differing only in their sequential structure but behaving the same. The σ-
equivalence can be characterized by encoding λ-terms into LL nets by means of
the Girard’s “call-by-name” translation (A⇒ B) (!A(B): two λ-terms
are σ-equivalents if and only if their translations into LL nets are the same. I
proved an analogous result for ΛCBV by means of the “boring” translation of
the intuitionistic arrow (A⇒ B) (!A(!B) into LL. The σv-equivalence
relation thus obtained on terms and values in ΛCBVis not included in βv-
equivalence, differently from what happens in ordinary λ-calculus, where
σ-equivalence is included in β-equivalence.

Even more surprisingly, I showed that it is possible to give an orientation
to two of the three rules generating σv-equivalence, in such a way to get
a “completion” of βv-reduction: the add of the σ-reduction rules allows to
simulate the Accattoli and Paolini’s call-by-value λ-calculus with explicit
substitutions (λvsub, introduced in [AP12]). One of the novelties of λvsub is
that it allows to characterize the solvable terms by means of internal (i.e.

CONTENTS 11

call-by-value) reduction rules. Thanks to the simulation, it is reasonable to
expect that the solvability is characterizable in ΛCBV by means of internal
(i.e. call-by-value) reduction rules without using explicit substitutions.

12 CONTENTS

Part I

Linear Logic

13

Chapter 1

A non inductive syntax

This section is devoted to present in full details the syntactical object for
which we prove our main result: proof-structure (definition 44). We adopt the
interaction nets point of view (see for example [Laf95, ER06b, Pag09, Tra11,
dCT12]) and pass through intermediate objects: cell-bases (definition 1),
pre-pre-proof-structures (definition 12), pre-proof-structures (definition 35).
Our approach, definitions and notations are those of [dCT12] (in particular,
our syntactical objects are untyped as in [LT06, PT10, dCPT11]) up to some
differences that will be explained in the following. Essentially the principal
novelties with respect to the syntax of [dCT12] are:

• our framework can represent DiLL-proof-structures, which are the dif-
ferential generalization (where boxes and duals of ?-links are allowed,
see for example [ER06b, MP07, Pag09, Tra11]) of the MELL-proof-
structures (the multiplicative-exponential framework of Linear Logic,
see for example [Gir87, DR95, Tor03, dCPT11, dCT12]);

• our objects are not necessarily cut-free; moreover it is possible to
define the cut-elimination in two frameworks of our syntax, the DiLL0-
proof-structures (the DiLL-proof-structures without boxes) and the
MELL-proof-structures; this fact answers positively to the difficulties
raised in [dCT12] about the definition of cut-elimination on untyped
proof-structures;

• our definition of proof-structure is completely non-inductive, so a proof-
structure is precisely a labeled hyper-graph; the boxes are computed by
starting from its principal door and by using only some “geometrical
informations” in this hyper-graph; our geometrical point of view is
strengthen by our choice of untyped syntactical objects.

Notation. We set T = {1,⊥,⊗,`, !, ?} whose elements are the connectives
of the multiplicative and exponential framework of Linear Logic. We say that
1, ⊥, ⊗, ` (resp. !, ?) are the multiplicative (resp. exponential) connectives,
and 1, ⊥ are the units.

15

16 CHAPTER 1. A NON INDUCTIVE SYNTAX

1.1 Cells and ports

In the following definition of cell-base, we introduce cells and ports. This
definition differs from that one in [dCT12] only because in our cell-base there
is not the function #: this means that the word “linear” used in [dCT12]
makes no sense in our syntax.

Definition 1 (Module-base, (pseudo-)cell-base). A module-base is a 5-tuple
C = (t,P,C,Ppri,Pleft) such that:

• t is a function such that dom(t) is a finite set and codom(t) = T ∪
{ax}; we set C(C) = dom(t) whose elements are the cells of C; for
every l ∈ C(C), t(l) is the label of l; for every t, t′ ∈ T , we set
Ct(C) = {l ∈ C(C) | t(l) = t} (whose elements are the t-cells of C),
Ct,t′(C) = Ct(C) ∪ Ct′(C) and C⊗,`2 (C) = {l ∈ C⊗,`(C) | aC(l) = 2};

• P is a finite set whose elements are the ports of C; we set P(C) = P;

• C : P(C)→ C(C) is a surjection such that for every l ∈ C(C),

– if t(l) ∈ {1,⊥, ax} then card({p ∈ P(C) | C(p) = l}) = 1,

– if t(l) ∈ {⊗,`} then 1 ≤ card({p ∈ P(C) | C(p) = l}) ≤ 3;

for every l ∈ C(C), we set Pl(C) = {p ∈ P(C) | C(p) = l} whose
elements are the ports of l;

• Ppri : C(C)→ P(C) is a function such that C ◦ Ppri = idC(C); for every
l ∈ C(C), Ppri(l) is the principal port (or conclusion) of l, moreover we
set Paux

l (C) = Pl(C) r {Ppri(l)} whose elements are the auxiliary ports
(or premises) of l, and aC(l) = card(Paux

l (C)) which is the arity of l;
we set Ppri(C) = im(Ppri) whose elements are the principal ports of C,
and Paux(C) =

⋃
l∈C(C) Paux

l (C) whose elements are the auxiliary ports
of C;

• Pleft : C⊗,`2 (C)→ Paux(C) is a function such that, for every l ∈ C⊗,`2 (C),
one has Pleft(l) ∈ Paux

l (C).

A pseudo-cell-base is a module-base such that C⊗,`(C) = C⊗,`2 (C).
A cell-base is a pseudo-cell-base such that Cax(C) = ∅.
We denote by ModuleBases (resp. PseudoCells; Cells) the set of

module-bases (resp. pseudo-cell-bases; cell-bases).

Intuitively, a module-base corresponds to a set of “links with their premises
and conclusions” in the standard theory of linear logic proof-nets (see for
example [Gir87, DR95, Tor03, Pag09, dCPT11]). More precisely, cells cor-
respond to links, the principal port of a cell corresponds to the conclusion
of a link and an auxiliary port of a cell corresponds to a premise of a link.

1.1. CELLS AND PORTS 17

Note that our presentation reformulates the linear logic “nouvelle syntaxe” of
[Reg92, DR95] (where the ?-links have any arity) in the style of (differential)
interaction nets (see [Laf95, ER06b]).

Notation. Let C = (t,P,C,Ppri,Pleft) be a module-base. We set tC = t,
CC = C, Ppri

C = Ppri, Pleft
C = Pleft. We recall the notations P(C) = P and

C(C) = dom(tC).

For C ∈ModuleBases, the function Ppri
C allows to distinguish the princi-

pal port from the auxiliary ones of any cell of C. As expected, for the binary
⊗- and `-cells of C, the function Pleft

C allows to distinguish the left auxiliary
port from the right one, whereas for the other kinds of cells a similar function
is not defined because their auxiliary ports (if any) are not ordered.

Typically a cell l in a module-base C is graphically depicted as a triangle
with its label tC(l) inside, the principal port being on a vertex and the
auxiliary ones on the opposed side (in such a way that when the principal
port is downwards the left auxiliary ports of a binary ⊗- or `-cell is placed
on the left).

Remark 2. Let C ∈ModuleBases.
The functions Ppri

C and Pleft
C induce the functions:

• Paux
C : C(C)→P(Paux(C)) defined by Paux

C (l) = Paux
l for every l ∈ C(C);

thus im(Paux
C) = Paux(C);

• Pright
C : C⊗,`2 (C)→ Paux(C) defined by {Pright

C (l)} = Paux
l r {Pleft

C (l)} for
every l ∈ C⊗,`2 (C); note that Pright

C is well-defined since the binary ⊗-
and `-cells have exactly two auxiliary ports.

Notice that P(C) = Ppri(C)]Paux(C) and Pl(C) = Ppri
l (C)]Paux

l (C) for
every l ∈ C(C).

Furthermore, if C ∈ PseudoCells, then dom(Pleft
C) = C⊗,`(C) = dom(Pright

C).
Among the cell-bases, there is the empty cell-base C defined by P(C) = ∅

and tC, CC, Ppri
C and Pleft

C are empty functions.

The following notion will be used in definitions 4 and 6

Definition 3 (Completeness). Let C ∈ModuleBases and let Q ⊆ P(C):
Q is C-complete when, for every l ∈ C(C), if Ppri

C (l) ∈ Q, then Paux
l (C) ⊆ Q.

The following definitions 4, 6 and 8 formalize some intuitive notions of:

• erasure of some cells and ports in a module-base;

• submodule-base of a module-base;

• disjoint union of module-bases.

18 CHAPTER 1. A NON INDUCTIVE SYNTAX

Definition 4 (Erasure of cells and ports). Let C ∈ ModuleBases and
n ∈ N.

Let l1, . . . , ln ∈ C(C), let Q ⊆ P(C) be C-complete and let LQ = {l ∈
C(C) | Pl(C) ⊆ Q}. The erasure of l1, . . . , ln andQ in C is C′ = (t′,P ′,C′,P′pri,P′left)
where:

• t′ = tC�C(C)r(LQ∪{l1,...,ln});

• P ′ = P(C) r (Q ∪
⋃n
i=1 Pli(C));

• C′ = CC�P ′ ;

• P′pri = Ppri
C �C(C)r(LQ∪{l1,...,ln});

• P′left = Pleft
C �C⊗,`2 (C)r(LQ∪{l1,...,ln})

.

We say then that “C′ is obtained from C by erasing l1, . . . , ln and Q”.

Remark 5. For every C ∈ ModuleBases (resp. C ∈ PseudoCells; C ∈
Cells) and l1, . . . , ln ∈ C(C), if C′ is obtained from C by erasing l1, . . . , ln,
then C′ ∈ModulesBases (resp. C′ ∈ PseudoCells; C′ ∈ Cells); moreover,
if Q ⊆ P(C) is C-complete and C′ is obtained from C by erasing l1, . . . , ln
and Q, then C′ ∈ModulesBases.

Definition 6 (Submodule-base). Let C ∈ModuleBases. Let Q ⊆ P(C) be
C-complete and such that, for every l ∈ C(C) and p ∈ Q, if p ∈ Paux

l (C) then
Pl(C) ⊆ Q;1 let LQ = {l ∈ C(C) | Pl(C) ⊆ Q}. The submodule-base of C
generated by Q is moduleC(Q) = (t′,P ′,C′,P′pri,P′left) where:

• t′ = tC�LQ ;

• P ′ = Q;

• C′ = CC�Q;

• P′pri = Ppri
C �LQ;

• P′left = Pleft
C �C⊗,`2 (C)∩LQ

.

Remark 7. Let C ∈ModuleBases (resp. C ∈ PseudoCells; C ∈ Cells).
Let Q ⊆ P(C) be C-complete and such that, for every l ∈ C(C) and p ∈ Q,
if p ∈ Paux

l (C) then Pl(C) ⊆ Q. Then moduleC(Q) ∈ Modules (resp.
moduleC(Q) ∈ PseudoCells; moduleC(Q) ∈ Cells).

1According to definition 3, this entails that, for every l ∈ C(C), either Pl(Φ) ∩Q = ∅ or
Pl(Φ) ⊆ Q.

1.2. PRE-PRE-PROOF-STRUCTURES 19

Definition 8 (Disjoint union of module-bases). Let C and C′ ∈ModuleBases:
C and C′ are disjoint if C(C) ∩ C(C′) = ∅ and P(C) ∩ P(C′) = ∅.

Let n ∈ N and let C1, . . . ,Cn ∈ModuleBases be pairwise disjoint: the
disjoint union of C1, . . . ,Cn is

n⊎
i=1

Ci =
(n⋃
i=1

tCi ,
n⋃
i=1

P(Ci),
n⋃
i=1

CCi ,
n⋃
i=1

Ppri
Ci ,

n⋃
i=1

Pleft
Ci
)
.

If n = 2, the disjoint union of C1 and C2 is denoted by C1] C2.

Remark 9. For every n ∈ N, if C1, . . . ,Cn ∈ModuleBases (resp. C1, . . . ,Cn ∈
PseudoCells; C1, . . . ,Cn ∈ Cells) are pairwise disjoint and C =

⊎n
i=1 Ci,

then C ∈ModuleBases (resp. C ∈ PseudoCells; C ∈ Cells).

We introduce the notion of “identity” (or better said isomorphism) between
two module-bases. The idea is that two module-bases are isomorphic iff they
are identical up to the names of their cells and ports (in particular, they have
the same graphical representation).

Definition 10 (Isomorphism on module-bases). Let C,C′ ∈ModuleBases.
An isomorphism from C to C′ is a pair ϕ = (ϕC , ϕP) of bijections ϕC :

C(C) → C(C′) and ϕP : P(C) → P(C′) such that the following diagrams
commute:

C(C)
Ppri
C //

ϕC
��

P(C)
CC //

ϕP
��

C(C)
tC //

ϕC
��

T

C(C′)
Ppri

C′ // P(C′)
CC′ // C(C′)

tC′

== C⊗,`2 (C)
Pleft
C //

ϕC
��

P(C)

ϕP

��
C⊗,`2 (C′)

Pleft
C′ // P(C′)

We write then ϕ : C ' C′.
If there exists an isomorphism from C to C, then we say that C and C′

are isomorphic and we write C ' C′.

Remark 11. Let C,C′ ∈ModuleBases. If ϕ is an isomorphism from C to
C′ then:

1. im(ϕP�Paux(C)) = Paux(C′) and im(ϕP�Paux
l (C)) = Paux

ϕC(l)(C
′) (in particu-

lar, aC(l) = aC′(ϕC(l))) for every l ∈ C(C);

2. if C ∈ PseudoCells (resp. C ∈ Cells) then C′ ∈ PseudoCells (resp.
C′ ∈ Cells).

1.2 Pre-pre-proof-structures

A pre-pre-proof-structure (see also the analogous definition in [dCT12]) is
morally a (hyper-)graph consisting of a cell-base, isolated ports (not belonging
to any cell of the cell-base), wires connecting the ports of its cells and the
isolated ones, and arrows to add some informations.

20 CHAPTER 1. A NON INDUCTIVE SYNTAX

Definition 12 (Module, (pseudo-)pre-pre-proof-structure). A module is a
6-tuple Φ = (C, I,D,W, auxd, bc) where:

• C ∈ ModuleBases is the module-base of Φ; we set C(Φ) = C(C)
whose elements are the cells of Φ;

• I and D are finite sets (whose elements are respectively the isolated ports
of Φ and the deadlocks of Φ), satisfying I ∩ P(C) = ∅, D ∩ P(C) = ∅
and I ∩ D = ∅; we set P(Φ) = P(C) ∪ I ∪ D whose elements are the
ports of Φ; Φ is deadlock-free if D(Φ) = ∅;

• W ⊆P2(P(Φ) rD) such that:

1. for every w,w′ ∈ W, if w ∩ w′ 6= ∅ then w = w′,

2. Paux(C) ∪ I ⊆
⋃
W,

the elements of W are the wires of Φ; we set Cuts(Φ) = {{p, q} ∈ W |
p, q ∈ Ppri(C)} whose elements are the cuts of Φ; any p ∈

⋃
Cuts(Φ) is

a cut port of Φ; Φ is cut-free if Cuts(Φ) = ∅;

• auxd is a partial function from C!(C) to P(Paux(C)) such that for every
l ∈ C(C), if auxd is defined in l then:

– aC(l) = 1,

– if p ∈ auxd(l), then p ∈ Paux
l′ (C) for some l′ ∈ C?(C); we say that

p is an auxiliary door of l;

we set Cprom(Φ) = dom(auxd) (resp. Auxdoors(Φ) =
⋃

im(auxd)) whose
elements are the promotions cells (resp. auxiliary doors) of Φ; if l ∈
Cprom(Φ) and p is the premise of l, we set doorsΦ(l) = {p} ∪ auxd(l)
and we say that p is the principal door of l in Φ and any q ∈ auxd(l) is
an auxiliary door of l in Φ;

• bc is a function from Cprom(Φ) to P(
⋃
Cuts(Φ) ∪ D) such that:

– if bc(l) ∩ bc(l′) 6= ∅ for some l, l′ ∈ Cprom(Φ), then l = l′,2

– if {p, q} ∈ Cuts(Φ) and p ∈ bc(l) ∩
⋃
Cuts(Φ) for some l ∈

Cprom(Φ), then q ∈ bc(l);3

we set cutportsΦ(l) = bc(l) ∩
⋃
Cuts(Φ) and deadlocksΦ(l) = bc(l) ∩D

for every l ∈ Cprom(Φ).

2This conditions means that for every cut or deadlock, there exists at most one !-cell
pointing to it.

3This conditions means that, for every cut w of Φ, the function bc either points to both
ports of w or does not point to any port of w. Therefore, we are entitled to talk about a
cut associated with a promotion cell by the function bc.

1.2. PRE-PRE-PROOF-STRUCTURES 21

A pseudo-structure is a module Φ = (C, I,D,W, auxd, bc) such that C
is a pseudo-cell-base, {{p, p′} ∈ W | ∃ l, l′ ∈ Cax(C) : p = Ppri

C (l) and p′ =

Ppri
C (l′)} = ∅4 and

3. for every w ∈ W, if w ∩ I 6= ∅ then w ∩ Ppri(C) = ∅;

we say then that C is the pseudo-cell-base of Φ.
A pre-pre-proof-structure (or ppps for short) is a pseudo-structure Φ

such that the pseudo-cell-base C of Φ is a cell-base; we say then that C is the
cell-base of Φ.

We denote by Modules (resp. PseudoPPPS; PPPS) the set of modules
(resp. pseudo-structures; pre-pre-proof-structures).

In a module, an isolated port is depicted as a dot, a wire {p, q} is
graphically depicted as a line connecting the ports p and q, a deadlock is
graphically depicted as a circle. If l is a promotion cell then its label is
depicted as !p, furthermore the fact that an auxiliary port q of a ?-cell is an
auxiliary door of l is represented graphically by a dotted arrow from l to q;
likewise, if q is a deadlock or cut port in bc(l), this is represented graphically
by a dotted arrow from l to q or to the cut w such that q ∈ w.

A promotion cell of a ppps Φ has to be seen as a “candidate for a box”, i.e.
a cell which is the starting point to attempt to compute the box (a particular
sub-graph of Φ) associated with it (in general, it is not always possible, see
definition 38).

Our definition of pre-pre-proof-structure differs from that one in [dCT12]
by the following points:

• in our pre-pre-proof-structures, cuts (wires connecting the principal
ports of two different cells) are allowed;

• in order to be closed under cut-elimination, in our definition of ppps
we add the set D of deadlocks; a deadlock has to be seen as a sort of
degenerate cut (morally, it is an axiom whose conclusions are connected
by a cut, but our syntax cannot express that explicitly);

• in order to handle differential nets with our syntax, the !-cells’ arity
does not need to be 1; furthermore, not all unary !-cells are “candidates
for a box”;

• with respect to the definition in [dCT12], in our ppps we add the
“arrow” functions auxd and bc which associate with every promotion
cell l respectively the set of its auxiliary doors and the set of cut ports
and deadlocks of depth5 0 in the “box-candidate” associated with l;

4This means that in a pseudo-structure there is no cut connecting the principal ports
of two ax-cells.

5See definition 51 and proposition 54 for the notion of depth.

22 CHAPTER 1. A NON INDUCTIVE SYNTAX

a promotion cell l might have no auxiliary doors (resp. no cuts nor
deadlocks) associated with it, this is the case when auxd(l) = ∅ (resp.
bc(l) = ∅).

Definition 13 (Free port, axiom, arrow). Let Φ = (C, I,D,W, auxd, bc) ∈
Modules. We set:

• C(Φ) = C, I(Φ) = I, W(Φ) = W, D(Φ) = D, auxdΦ = auxd, bcΦ =
bc; Ct(Φ) = Ct(C(Φ)) and Ct,t′(Φ) = Ct,t′(C(Φ)) for every t, t′ ∈ T ;
C⊗,`2 (Φ) = C⊗,`2 (C(Φ)); Ppri(Φ) = Ppri(C(Φ)), Paux(Φ) = Paux(C(Φ));
Paux
l (Φ) = Paux

l (C(Φ)) and Pl(Φ) = Pl(C(Φ)) for every l ∈ C(Φ);
Ppri

Φ = Ppri
C(Φ), Pleft

Φ = Pleft
C(Φ), Paux

Φ = Paux
C(Φ); tΦ = tC(Φ), CΦ = CC(Φ),

aΦ = aC(Φ);

• P free(Φ) = I(Φ) ∪ (Ppri(Φ) r
⋃
W(Φ)) whose elements are the free

ports (or conclusions) of Φ; Cterm(Φ) = {l ∈ C(Φ) | Ppri
Φ (l) ∈ P free(Φ)}

whose elements are the terminal cells of Φ;

• Ax(Φ) = {{p, q} ∈ W(Φ) | p, q /∈ Ppri(Φ)} whose elements are the
axioms of Φ; any p ∈

⋃
Ax(Φ) is an axiom port of Φ; Axterm(Φ) =

{w ∈ Ax(Φ) | ∃ p ∈ w : p ∈ I(Φ)} (resp. Axisol(Φ) = {w ∈ Ax(Φ) |
∀p ∈ w : p ∈ I(Φ)}) whose elements are the terminal (resp. isolated)
axioms of Φ;

• Arrows(Φ) = {{p, q} ∈ P2(P(Φ)) | ∃ l ∈ Cprom(Φ) : p ∈ Paux
l (Φ), q ∈

auxdΦ(l) ∪ bcΦ(l)}, whose elements are the arrows of Φ;

• Cuts0(Φ) = Cuts(Φ) r P2(
⋃

im(bcΦ)) (whose elements are the cuts at
depth 0 of Φ) and D0(Φ) = D(Φ)r

⋃
im(bcΦ) (whose elements are the

deadlocks at depth 0 of Φ) .

For a module Φ, p is an isolated port of Φ when p is a port of some axiom
and a conclusion of Φ. The meaning of the conditions on the set of wires in
definition 12 is the following:

• condition 1 implies that three ports cannot be connected by two wires,

• condition 2 entails that auxiliary ports can never be conclusions of a
ppps,

• condition 3 (only for pseudo-structures) implies that when the principal
port of some cell is connected to another port this is necessarily a port
of some cell, hence “hanging” wires (i.e. connecting a principal port and
an isolated one) are not allowed in pseudo-structures.

Intuitively, a module Φ can be seen as:

1.2. PRE-PRE-PROOF-STRUCTURES 23

• a finite undirected graph whose labeled nodes are the cells, deadlocks
and free ports of Φ, and whose edges are the wires of Φ and the arrows
connecting each promotion cell of Φ with its auxiliary doors, its cut
ports and its deadlocks;

• a finite undirected hyper-graph whose nodes are the ports and deadlocks
of Φ, whose labeled hyper-edges are the cells (connecting all its ports)
of Φ, and whose edges are the wires of Φ and arrows connecting each
promotion cell of Φ with its auxiliary doors, its cut ports and its
deadlocks.

Remark 14. Let Φ ∈Modules. P(Φ) = Ppri(Φ)] Paux(Φ)] I(Φ)] D(Φ)
and P(Φ) r

⋃
W(Φ) = {Ppri

Φ (l) | l ∈ Cterm(Φ)}] D(Φ), thus any port of Φ is
a conclusion of Φ iff it is either the principal port of a terminal cell of Φ or
an axiom port of Φ. In particular, I(Φ) ⊆

⋃
Ax(Φ).

Among the ppps, the empty ppps Φ is defined by:

• C(Φ)

The following notion defines how to transform two different ax-cells of a
pseudo-structure in an axiom: it will be used to associate with every point of
D<ω a DiLL0-proof-structure (see definitions 35, 69 and 83).

Definition 15 (Connecting pairs of ax-cells). Let Φ ∈ PseudoPPPS.
Let l1, l2 ∈ Cax(Φ) with l1 6= l2. We say that Φ′ is obtained from Φ

by connecting l1 and l2 if Φ′ = (C′, I ′,D′,W ′, auxd′, bc′) where D′ = D(Φ),
auxd′ = auxdΦ, bc′ = bcΦ, C′ is obtained by C(Φ) by erasing l1 and l2, and
furthermore:

• if l1 and l2 are not terminal cells of Φ and p1 and p2 are the auxiliary
port of Φ such that {Ppri

Φ (li), pi} ∈ W(Φ) for i ∈ {1, 2}, then W ′ =

(W(Φ) r {{Ppri
Φ (l1), p1}, {Ppri

Φ (l2), p2}}) ∪ {{p1, p2}} and I ′ = I(Φ);

• if l1 is a terminal cell of Φ and l2 is not and p2 is the auxiliary port
of Φ such that {Ppri

Φ (l2), p2} ∈ W(Φ), then I ′ = I(Φ) ∪ {Ppri
Φ (l1)} and

W ′ = (W(Φ) r {{Ppri
Φ (l2), p2}}) ∪ {{Ppri

Φ (l1), p2}};

• if l2 is a terminal cell of Φ and l1 is not and p1 is the auxiliary port
of Φ such that {Ppri

Φ (l1), p1} ∈ W(Φ), then I ′ = I(Φ) ∪ {Ppri
Φ (l2)} and

W ′ = (W(Φ) r {{Ppri
Φ (l1), p1}}) ∪ {{Ppri

Φ (l2), p1}};

• if l1 and l2 are terminal cells of Φ, then I ′ = I(Φ) ∪ {Ppri
Φ (l1),Ppri

Φ (l2)}
and W ′ =W(Φ) ∪ {{Ppri

Φ (l2),Ppri
Φ (l1)}}.

Let n ∈ N and let l1, l′1, . . . , ln, l
′
n be pairwise distinct ax-cells of Φ. We

say that Φ′ is obtained from Φ by connecting (l1, l
′
1), . . . , (ln, l

′
n) when:

• if n = 0 then Φ′ = Φ;

24 CHAPTER 1. A NON INDUCTIVE SYNTAX

• if n > 0 then Φ′ is obtained from Φ′′ by connecting ln and l′n, where Φ′′

is obtained from Φ by connecting (l1, l
′
1), . . . , (ln−1, l

′
n−1).

Remark 16. For every Φ ∈ PseudoPPPS and pairwise distinct ax-cells
l1, l
′
1, . . . , ln, l

′
n (for some n ∈ N), if Φ′ is obtained from Φ by connecting

(l1, l
′
1), . . . , (ln, l

′
n) then Φ′ ∈ PseudoPPPS; moreover, if {l1, l′1, . . . , ln, l′n} =

Cax(Φ), then Φ ∈ PPPS.

The following notion will be used in ??.WHY?

Definition 17 (Erasure of terminal cells, erasure of a cut at depth 0, erasure
of hanging wires). Let Φ ∈Modules and let n ∈ N.

Let l1, . . . , ln ∈ Cterm(Φ) be such that, for every v ∈ Cprom(Φ) and 1 ≤
i ≤ n, one has Paux

li
(Φ) ∩ auxdΦ(v) = ∅. The erasure of l1, . . . , ln in Φ is

Φ′ = (C′, I ′,D′,W ′, auxd′, bc′) where:

• C′ is obtained from C(Φ) by erasing l1, . . . , ln;

• I ′ = I(Φ)∪{p ∈
⋃n
i=1 Paux

li
(Φ) | ∃ q ∈ P(Φ)rPpri(Φ) : {p, q} ∈ W(Φ)};

• D′ = D(Φ);

• W ′ = {{p, q} ∈ W(Φ) | p /∈ Ppri(Φ) or q /∈
⋃n
i=1 Paux

li
(Φ)};

• auxd′ = auxdΦ�Cprom(Φ)r{l1,...,ln};

• bc′ = bcΦ�Cprom(Φ)r{l1,...,ln}.

We say then that “Φ′ is obtained from Φ by erasing l1, . . . , ln”.
Let w1, . . . , wn ∈ Cuts0(Φ). The erasure of w1, . . . , wn in Φ is Φ′ =

(C′, I ′,D′,W ′, auxd′, bc′) where:

• C′ = C(Φ), I ′ = I(Φ) and D′ = D(Φ);

• W ′ =W(Φ) r {w1, . . . , wn};

• auxd′ = auxdΦ and bc′ = bcΦ.

We say then that “Φ′ is obtained from Φ by erasing w1, . . . , wn”.
Let H = {p ∈ P free(Φ) | ∃ q ∈ Ppri(Φ) : {p, q} ∈ W(Φ)}. The erasure of

the hanging wires in Φ is nohang(Φ) = (C′, I ′,D′,W ′, auxd′, bc′) where:

• C′ = C(Φ);

• I ′ = I(Φ) rH;

• D′ = D(Φ);

• W ′ =W(Φ) r {w ∈ W(Φ) | ∃ p ∈ w ∩H};

• auxd′ = auxdΦ and bc′ = bcΦ.

1.2. PRE-PRE-PROOF-STRUCTURES 25

Let T be a set such that T ∩ (P free(Φ) ∩ Ppri(Φ)) = ∅ and p : P free(Φ) ∩
Ppri(Φ)→ T be a bijection. The add of the hanging wires in Φ is hang(Φ) =
(C′, I ′,D′,W ′, auxd′, bc′) where:

• C′ = C(Φ);

• I ′ = I(Φ) ∪ T ;

• D′ = D(Φ);

• W ′ =W(Φ) ∪ {{q, p(q)} | q ∈ P free(Φ) ∩ Ppri(Φ)};

• auxd′ = auxdΦ and bc′ = bcΦ.

Remark 18. Let Φ ∈ Modules (resp. Φ ∈ PseudoPPPS; Φ ∈ PPPS)
and let n ∈ N.

Let l1, . . . , ln ∈ Cterm(Φ) be such that, for every v ∈ Cprom(Φ) and 1 ≤
i ≤ n, one has Paux

li
(Φ) ∩ auxdΦ(v) = ∅. If Φ′ is the erasure of l1, . . . , ln in Φ

then Φ′ ∈Modules (resp. Φ′ ∈ PseudoPPPS; Φ′ ∈ PPPS).
Let w1, . . . , wn ∈ Cuts0(Φ). If Φ′ is the erasure of w1, . . . , wn in Φ then

Φ′ ∈Modules (resp. Φ′ ∈ PseudoPPPS; Φ′ ∈ PPPS).
One has nohang(Φ), hang(Φ) ∈Modules. Furthermore, if Φ ∈ PseduoPPPS

then nohang(Φ) = Φ.

Roughly speaking, the erasure of a terminal cell l in a module Φ is the
module obtained from Φ by erasing l, its principal port, any hanging wire
created by this erasure and the auxiliary ports of l which are not axiom ports
in Φ. This operation might create new isolated ports: the auxiliary ports
of l which are axiom ports of Φ. The request that no auxiliary port of l is
pointed by an arrow of any promotion cell of Φ is mandatory to make sure
that the erasure of l in Φ is a module.

The following notions will be used in definitions 20 and 22.

Definition 19 (Completeness and erasability of a set of ports). Let Φ ∈
Modules.

Let Q ⊆ P(Φ): Q is Φ-complete (resp. Φ-erasable) if Q is C(Φ)-complete
and such that, for every {p, q} ∈ W(Φ), if p ∈ Qr Ppri(Φ) (resp. if p ∈ Q)
then q ∈ Q.

The following definitions 20, 22 and 24 formalize some intuitive notions
of:

• erasure of some ports, cells and wires in a module;

• submodule of a module;

• disjoint union of modules (it will be used in definition 83).

26 CHAPTER 1. A NON INDUCTIVE SYNTAX

They are generalizations to modules of the corresponding operations seen in
definition 4, 6 and 8.

Definition 20 (Erasure of ports, cells and wires). Let Φ ∈Modules and
let Q ⊆ P(Φ) be Φ-erasable.

The erasure of Q in Φ is Φ′ = (C′, I ′,D′,W ′, auxd′, bc′) where:

• C′ is the erasure of Q in Φ;

• I ′ = I(Φ) rQ;

• D′ = D(Φ) rQ;

• W ′ = {w ∈ W(Φ) | ∀ p ∈ w : p /∈ Q};6

• auxd′ : (Cprom(Φ) r LQ) → P(Paux(Φ)) is a function such that, for
every l ∈ Cprom(Φ) r LQ, one has auxd′(l) = auxdΦ(l) rQ;

• bc′ : (Cprom(Φ)rLQ)→P(
⋃
Cuts(Φ)∪D) is a function such that, for

every l ∈ Cprom(Φ) r LQ, one has bc′(l) = bcΦ(l) rQ.

We say then that “Φ′ is obtained from Φ by erasing Q”.

Remark 21. Let Φ ∈Modules. If Q ⊆ P(Φ) is Φ-erasable and Φ′ is the
erasure of Q in Φ, then Φ′ ∈Modules.

Definition 22 (Submodule). Let Φ ∈Modules.
Let Q ⊆ P(Φ) be Φ-complete, let LQ = {l ∈ C(Φ) | Pl(Φ) ⊆ Q} and let

Q′ = {p ∈ Q | ∃ l ∈ LQ : p ∈ Pl(Φ)}. The submodule of Φ generated by Q is
moduleΦ(Q) = (C′, I ′,D′,W ′, auxd′, bc′) where:

• C′ = moduleC(Φ)(Q
′);

• I ′ = Qr (Q′ ∪ D(Φ));

• D′ = D(Φ) ∩Q;

• W ′ = {w ∈ W(Φ) | ∀ p ∈ w : p ∈ Q};

• auxd′ : (Cprom(Φ) ∩ LQ) → P(Paux(Φ)) is a function such that, for
every l ∈ Cprom(Φ) ∩ LQ, one has auxd′(l) = auxdΦ(l) ∩Q;

• bc′ : (Cprom(Φ)∩LQ)→P(
⋃
Cuts(Φ)∪D) is a function such that, for

every l ∈ Cprom(Φ) ∩ LQ, one has bc′(l) = bcΦ(l) ∩Q.

With reference to notation used in definition 22, Q′ is C(Φ)-complete and
such that, for every l ∈ C(Φ) and p ∈ Q, if p ∈ Paux

l (Φ) then Pl(Φ) ⊆ Q,
therefore moduleC(Φ)(Q

′) is well-defined.

6According to definition 19, this is equivalent to W ′ = {w ∈ W(Φ) | ∃ p ∈ w : p /∈ Q}.

1.2. PRE-PRE-PROOF-STRUCTURES 27

Remark 23. If Φ ∈Modules andQ ⊆ P(Φ) is Φ-complete, then moduleΦ(Q) ∈
Modules. Furthermore, if Φ ∈ PseduoPPPS (resp. Φ ∈ PPPS) then
nohang(moduleΦ(Q)) ∈ PseduoPPPS (resp. nohang(moduleΦ(Q)) ∈ PPPS).

Definition 24 (Disjoint union of modules). Let Φ,Φ′ ∈Modules: Φ and
Φ′ are disjoint if C(Φ) and C(Φ′) are disjoint, I(Φ) ∩ I(Φ′) = ∅ and D(Φ) ∩
D(Φ′) = ∅.7

Let n ∈ N and let Φ1, . . . ,Φn ∈ Modules be pairwise disjoint. The
disjoint union of Φ1, . . . ,Φn is

n⊎
i=1

Φi =
(n⊎
i=1

C(Φi),
n⋃
i=1

I(Φi),
n⋃
i=1

D(Φi),
n⋃
i=1

W(Φi),
n⋃
i=1

auxdΦi ,
n⋃
i=1

bcΦi

)
.

If n = 2, the disjoint union of Φ1 and Φ2 is denoted by Φ1] Φ2.

Remark 25. For every n ∈ N, if Φ1, . . . ,Φn ∈Modules (resp. Φ1, . . . ,Φn ∈
PseudoPPPS; Φ1, . . . ,Φn ∈ PPPS) are pairwise disjoint and Φ =

⊎n
i=1 Φi,

then Φ ∈Modules (resp. Φ ∈ PseudoPPPS; Φ ∈ PPPS).

We introduce the notion of “identity” (or better said isomorphism) between
two modules. The idea is that two modules are isomorphic iff they are identical
up to the names of their cells and ports (in particular, they have the same
graphical representation).

Definition 26 (Isomorphism on modules). Let Φ,Φ′ ∈ PPPS.
An isomorphism from Φ to Φ′ is a pair ϕ = (ϕC , ϕP) such that:

• ϕP : P(Φ) → P(Φ′) is a bijection where im(ϕP �I(Φ)) = I(Φ′) and
im(ϕP�D(Φ)) = D(Φ′);

• (ϕC , ϕP�P(C(Φ))) : C(Φ) ' C(Φ′);

• for every {p, q} ∈P2(P(Φ)), we have {p, q} ∈ W(Φ) iff {ϕP(p), ϕP(q)} ∈
W(Φ′);

• im(ϕC�Cprom(Φ)) = Cprom(Φ′);

• the following diagrams commute:

Cprom(Φ)
auxdΦ //

ϕC
��

P(Auxdoors(Φ))

P(ϕP)
��

Cprom(Φ′)
auxdΦ′ //P(Auxdoors(Φ′))

Cprom(Φ)
bcΦ //

ϕC
��

im(bcΦ)

P(ϕP)

��
Cprom(Φ′)

bcΦ′ // im(bcΦ′)

We write then ϕ : Φ ' Φ′.
If there exists an isomorphism from Φ to Φ′, then we say that Φ and Φ′

are isomorphic and we write Φ ' Φ′.
7This implies that W(Φ) ∩W(Φ′) = ∅ and Cprom(Φ) ∩ Cprom(Φ′) = ∅.

28 CHAPTER 1. A NON INDUCTIVE SYNTAX

Remark 27. Let Φ,Φ′ ∈Modules. If ϕ is an isomorphism from Φ to Φ′

then:

1. im(ϕP�P free(Φ)= P free(Φ′));

2. if Φ ∈ PseudoPPPS (resp. Φ ∈ PPPS) then Φ′ ∈ PseduoPPPS
(resp. Φ′ ∈ PPPS).

1.3 Paths

In this section we introduce some usual notions of graph theory, merely
adapted to our syntax. The only originality in our definition is that we
consider the arrows (i.e. the pairs of ports connected by functions auxdΦ or
bcΦ) as edges in our undirected (hyper-)graphs.

Definition 28 (Path, connection, acyclicity). Let Φ ∈Modules.
A path in Φ is a sequence (pi)i∈I of ports of Φ where I is an initial

segment of N and such that, for every i, i+ 1 ∈ I:

• pi 6= pi+1;

• one of the following conditions holds

– either {pi, pi+1} ∈ W(Φ) ∪ Arrows(Φ),

– or pi and pi+1 are ports of a same cell of Φ,

• if i+ 2 ∈ I and pi = pi+2 then pi and pi+1 are ports of a same cell of
Φ and {pi, pi+1} ∈ W(Φ).8

Let ϕ = (pi)i∈I be a path in Φ. For every i ∈ I, ϕ crosses pi, moreover
if i 6= 0 and i + 1 ∈ I then ϕ crosses internally pi. For every c ∈ W(Φ) ∪
Arrows(Φ) (resp. c ∈ C(Φ)), ϕ crosses c if there exist i, i+ 1 ∈ I such that
{pi, pi+1} = c (resp. pi, pi+1 ∈ Pc(Φ)). If I = ∅ then ϕ is the empty path. If
I 6= ∅ then p0 is the start port of ϕ (or ϕ starts from p0). If I = {0, . . . , n} for
some n ∈ N, then the path ϕ is said finite and from p0 to pn (or connecting
p0 and pn), furthermore n is the length of ϕ (denoted by length(ϕ)) and pn
is the end port of ϕ (or ϕ ends in pn). If I = N, then the path ϕ is said
infinite. The terminal ports of ϕ are the start and end (if any) ports of ϕ.

A cycle in Φ is a finite path (pi)0≤i≤n in Φ such that p0 = pn and n 6= 0.
Φ is acyclic if there is no deadlock nor cycle in Φ.
Let p, q be ports of ρ: p and q are connected if there exists a path in Φ

from p to q.
Φ is connected if all ports p, q of Φ are connected.

8This condition is imposed to facilitate the definition of cycle.

1.3. PATHS 29

Remark 29. Let Φ ∈Modules. If p ∈ I(Φ) ∪ D(Φ) or p ∈ Pl(Φ) for some
0-ary cell l (and so p = Ppri

Φ (l)) and if ϕ is a path in Φ crossing p, then p is a
terminal port of ϕ.

Notice that a finite path on a module is not empty and it might have
length 0 (i.e. it consists of only one port), whereas an empty path has no
length. A path on a module can crosses arrows.

Notation. If a path in Φ ∈Modules is finite, it is often denoted by a finite
sequence (pi)i∈I of ports of Φ where I is not an initial segment of N but only
a finite set.

The following notions will be used to compute the box associated with a
promotion cell (definitions 38 and 40) in a ppps.

Definition 30 (Ascending path, path above a promotion cell, box-crossing
path). Let Φ ∈ PPPS.

A path (pi)i∈I in Φ (where I is an initial segment of N) is ascending if,
for every i, i+ 1 ∈ I, one of the following conditions holds:

• if pi = Ppri
Φ (l) for some l ∈ C(Φ) then pi+1 ∈ Paux

l (Φ);

• if pi ∈ Paux(Φ) then:

– either pi+1 ∈ Ppri(Φ) with {pi, pi+1} ∈ W(Φ),

– or pi+1 ∈ bcΦ(l) ∪ auxdΦ(l) for some l ∈ Cprom(Φ) such that
pi ∈ Paux

l (Φ).

We define a binary relation 4Φ on P(Φ) by: p 4Φ q if there exists an
ascending path in Φ from p to q. For every n ∈ N, we write p 4nΦ q if there
exists an ascending path of length n from p to q.

Let l ∈ Cprom(Φ), let pl be the (unique) auxiliary port of l. A path above9

l in Φ is an ascending path in Φ starting from pl. We set cdaboveΦ(l) = {q ∈⋃
Cuts(Φ) ∪ D(Φ) | ∃ path above l ending in q}.
For every l, l′ ∈ C(Φ), we say that l′ is 4-above9 l if there exists an

ascending path from Ppri
Φ (l) to Ppri

Φ (l′).
A path (pi)i∈I in Φ (where I is an initial segment of N) is box-crossing

if it is ascending and, for every i + 1 ∈ I, if pi+1 ∈ Auxdoors(Φ) then
pi = Ppri

Φ (l) for the l ∈ C?(Φ) such that pi+1 ∈ Paux
l (Φ).

We define a binary relation �Φ on P(Φ) by: p �Φ q if there exists a
box-crossing path from p to q. For every n ∈ N, we write p �nΦ q if there
exists a box-crossing path of length n from p to q.

9The use of the term “above” will be justified in the case of proof-structures by proposition
47.1

30 CHAPTER 1. A NON INDUCTIVE SYNTAX

Roughly speaking, a box-crossing path in a ppps is an ascending path
that cannot cross an arrow from a promotion cell to one of the auxiliary
doors associated with it (but it can cross an arrow from a promotion cell to
a cut port or a deadlock associated with it).

Remark 31. Let Φ ∈ PPPS.

1. Clearly, �1
Φ⊆41

Φ and �Φ⊆4Φ, furthermore 4Φ =
⋃
n∈N 4

n
Φ and

�Φ =
⋃
n∈N �nΦ.

2. An ascending path in Φ starting from or ending in p ∈ I(Φ)∪D0(Φ) is
necessarily of length 0. More generally, if ϕ = (pi)i∈I is an ascending
path in Φ and pj ∈

⋃
Ax(Φ)∪D(Φ) for some j ∈ I then I = {0, . . . , j}

i.e. pj is the end port of ϕ.

3. �Φ,4Φ⊆ P(Φ)2 are pre-order relations, but in general they are not
order relations because they are not antisymmetric. Some examples of
a ppps Φ such that �Φ or 4Φ is not antisymmetric are given in remarks
33.2-3.

4. An ascending path (pi)i∈I in Φ is necessarily such that if i+ 1 ∈ I and
pi+1 ∈ bcΦ(l) for some l ∈ Cprom(Φ) then pi is the unique auxiliary port
of l.

1.4 Pre-proof-structures

Given a ppps, one might expect that there is an intuitive notion of “above/below”
for its ports as done in the following definition 32, and that an axiom port is
“above” a unique conclusion or cut port. But for general ppps this is wrong,
because a ppps might have a “vicious cycle”, i.e. two ports which are “above”
each other.

Definition 32. For every Φ ∈ PPPS, we define a the binary relation <1
Φ

on P(Φ) as follows: p <1
Φ p′ if one of the following conditions holds:

• there exists a cell l of Φ such that p is the principal port of l and p′ is
an auxiliary port of l,

• p′ is the principal port of some cell l′ of Φ, p is an auxiliary port of
some cell l of Φ and {p, p′} is a wire of Φ.

The binary relation ≤Φ (resp. <Φ) on P(Φ) is the reflexive-transitive
(resp. transitive) closure of <1

Φ. For every n ∈ N and p, p′ ∈ P(Φ), we write
that p ≤nΦ p′ if there exists a finite sequence (pi)0≤i≤n of ports of Φ such that
p0 = p, pn = p′ and pi <1

Φ pi+1 for every 0 ≤ i ≤ n− 1.

Our definition of ≤Φ for a ppps Φ is identical to that one in [dCT12],
where we consider cut ports as minimal elements (i.e. as conclusions of Φ).

1.4. PRE-PROOF-STRUCTURES 31

Remark 33. Let Φ ∈ PPPS.

1. If p, q ∈ P(Φ) are such that p ≤Φ q then there exists a (box-crossing)
path in Φ from p to q crossing no cuts nor axioms nor arrows. In
particular, if q ∈ I(Φ) ∪ D(Φ) then there is no p ∈ P(Φ) such that
p <1

Φ q.

2. ≤Φ⊆ P(Φ)2 is a pre-order relation by definition, but in general, ≤Φ

is not an order relation because it is not antisymmetric. For instance,
take Φ ∈ PPPS consisting of a cell l such that aΦ(l) > 0 and a wire
{p, q} where p is the principal port of l and q is an auxiliary port of l:
p ≤Φ q (by the first condition) and q ≤Φ p (by the second condition),
but p 6= q. This is an example of “vicious cycle”. A more general
example of Φ ∈ PPPS with a “vicious cycle” is a finite sequence of
cells l0, . . . , ln and a finite sequence of wires w0, . . . , wn with n ∈ N
such that aΦ(li) > 0 (where pi and qi are respectively the principal and
an auxiliary port of li) for every 0 ≤ i ≤ n, wi = {pi, qi+1} for every
0 ≤ i ≤ n− 1 and wn = {pn, q0}.
The non-antisymmetry of ≤Φ means that if p, q ∈ P(Φ) are such that
p ≤nΦ q with n > 1, not necessarily p 6= q.

3. It is immediate to verify that <1
Φ⊆�1

Φ⊆41
Φ and so ≤Φ⊆�Φ⊆4Φ.

Therefore:

• if 4Φ is antisymmetric then �Φ is so;

• if �Φ is antisymmetric then ≤Φ is so.

The converses fail to hold: take for instance a ppps Φ consisting of a
1-cell whose principal port is connected by a wire to the auxiliary port
of a promotion cell l whose principal port is connected to the auxiliary
port p of an unary terminal ?-cell and such that auxdΦ(l) = {p}, then
≤Φ and �Φ are antisymmetric but 4Φ is not.

Another example is a ppps Φ consisting of two 1-cells whose principal
ports are connected by two wires to the auxiliary ports of respectively
an unary ?-cell l′ and a promotion cell l such that the principal ports
of l and l′ are connected by a cut and bcΦ(l) = {Ppri

Φ (l),Ppri
Φ (l′)}: thus

≤Φ is antisymmetric but �Φ and 4Φ are not.

The following lemmas 34 and 37 about the relation ≤Φ are reformulations
of lemmas 10 and 14 in [dCT12] to the case of ppps with cuts.

Lemma 34. Let Φ ∈ PPPS, let p, q1, q2 ∈ P(Φ), let c, c′ ∈ P free(Φ) ∪⋃
Cuts(Φ)∪D(Φ) and let a ∈

⋃
Ax(Φ)∪

⋃
l∈C(Φ){P

pri
Φ (l) | aΦ(l) = 0}∪D(Φ).

1. If q1 <
1
Φ p and q2 <

1
Φ p then q1 = q2.

32 CHAPTER 1. A NON INDUCTIVE SYNTAX

2. If q1 ≤Φ p and q2 ≤Φ p then q1 ≤ q2 or q2 ≤ q1.

3. If p ≤Φ c (resp. a ≤Φ p) then p = c (resp. a = p).

4. If c ≤Φ p and c′ ≤Φ p then c = c′.

5. If there is no q ∈ P(Φ) such that q <1
Φ p (resp. p <1

Φ q), then p ∈
P free(Φ) ∪

⋃
Cuts(Φ) ∪ D(Φ) (resp. p ∈

⋃
Ax(Φ) ∪

⋃
l∈C(Φ){P

pri
Φ (l) |

aΦ(l) = 0} ∪ D(Φ)).

Proof.

1. Since every cell has exactly one principal port and because three ports
cannot be connected by two wires.

2. Proof by induction on n ∈ N where n is such that q1 ≤nΦ p. If n = 0
then q1 = p and so q2 ≤ q1. If n > 0 then there exists p1 ∈ P(Φ)
such that q1 ≤n−1

Φ p1 <
1
Φ p: if q2 = p then q1 ≤ q2; otherwise there

exists p2 ∈ P(Φ) such that q2 ≤nΦ p2 <
1
Φ p, so p1 = p2 by lemma 34.1,

therefore q1 ≤Φ q2 or q2 ≤Φ q1 by induction hypothesis applied to p1.

3. If c ∈ P free(Φ)∪
⋃
Cuts(Φ)∪D(Φ) (resp. a ∈

⋃
Ax(Φ)∪

⋃
l∈C(Φ){P

pri
Φ (l) |

aΦ(l) = 0} ∪ D(Φ)), then p 6<1
Φ c (resp. a 6<1

Φ p) for every p ∈ P(Φ).

4. By lemma 34.2, c ≤ c′ or c′ ≤ c; in any case, c = c′ by lemma 34.3.

5. If p /∈ P free(Φ)∪
⋃
Cuts(Φ)∪D(Φ) (resp. p /∈

⋃
Ax(Φ)∪

⋃
l∈C(Φ){P

pri
Φ (l) |

aΦ(l) = 0} ∪ D(Φ)), then there are only two cases:

• either p ∈ Ppri(Φ) (resp. p ∈ Paux(Φ)) and there exists q ∈ Paux(Φ)
(resp. q ∈ Ppri(Φ)) such that {p, q} ∈ W(Φ), so q <1

Φ p (resp.
p <1

Φ q);

• or p ∈ Paux
l (Φ) (resp. p = Ppri

Φ (l)) for some cell l of Φ such that
Paux
l (Φ) 6= ∅, so Ppri

Φ (l) <1
Φ p (resp. there exists q ∈ Paux

l (Φ) such
that p <1

Φ q).
�

Lemma 34.3 means that conclusions, cuts ports and deadlocks (resp.
axiom ports, principal ports of 0-ary cells and deadlocks) of a ppps Φ are the
minimal (resp. maximal) elements of the pre-order relation ≤Φ. Lemma 34.4
implies that in a ppps Φ, an axiom port cannot be “above” (in the sense of
definition 32) two different conclusions or cut ports of Φ.

Definition 35 (Pre-proof-structure). A pre-proof-structure (or pps for short)
is a Φ ∈ PPPS such that ≤Φ is antisymmetric.

We denote by PPS the set of pre-proof-structures.
We denote by PPSDiLL0 the set of Φ ∈ PPS such that Cprom(Φ) = ∅,

whose elements are the DiLL0-proof-structures10 (or DiLL0-ps for short).
10We have deliberately forgotten a “pre-”. The reason will explained in remark 45.

1.4. PRE-PROOF-STRUCTURES 33

We remind that in a pps Φ, antisymmetry of the relation ≤Φ entails
that ≤Φ is an order: this prevents from creating in Φ the “vicious cycles”
seen in remark 33.2. Therefore, we can see ≤Φ as a definition of a relation
“above/below” for the ports of a pps Φ. We will see that �Φ and 4Φ extend
this relation in the case of a proof-structure Φ (see proposition 47.1).

Remark 36. Let Φ ∈ PPS and Φ′ ∈ PPPS. If Φ ' Φ′ then Φ′ ∈ PPS.

Lemma 37. Let Φ ∈ PPS and let p ∈ P(Φ):

1. there exists exactly one c ∈ P free(Φ) ∪
⋃
Cuts(Φ) ∪ D(Φ) such that

c ≤Φ p.

2. there exists at least one a ∈
⋃
Ax(Φ) ∪

⋃
l∈C(Φ){P

pri
Φ (l) | aΦ(l) =

0} ∪ D(Φ) such that p ≤Φ a.

Proof.

1. For the unicity, apply lemma 34.4. For the existence, we build an
initial segment I of N and a non-empty “downward” path (pi)i∈I in Φ
as follows:

• 0 ∈ I and p0 = p;

• if i ∈ I then:

– if pi ∈ P free(Φ) ∪
⋃
Cuts(Φ) ∪ D(Φ) then I = {0, . . . , i},

– otherwise, by lemma 34.5, there exists q ∈ P(Φ) such that
q <1

Φ p, and then i+ 1 ∈ I and pi+1 = q.

By construction, pi+1 <
1
Φ pi for every i, i+ 1 ∈ I. By antisymmetry of

≤Φ, I is finite (otherwise there would be a “vicious cycle” as P(Φ) is
a finite set, i.e. there would exist i, j ∈ I such that i < j and pi = pj ,
so pi <1

Φ pj−1 and pj−1 ≤Φ pi, that is impossible by antisymmetry
of ≤Φ), hence there exists n ∈ N such that I = {0, . . . , n} and pn ∈
P free(Φ) ∪

⋃
Cuts(Φ) ∪ D(Φ), with pn ≤Φ p.

2. We build an initial segment I of N and a non-empty “upward” path
(pi)i∈I in Φ as follows:

• 0 ∈ I and p0 = p;

• if i ∈ I then:

– if pi ∈
⋃
Ax(Φ) ∪

⋃
l∈C(Φ){P

pri
Φ (l) | aΦ(l) = 0} ∪ D(Φ) then

I = {0, . . . , i},
– otherwise, by lemma 34.5, there exists q ∈ P(Φ) such that
p <1

Φ q, and then i+ 1 ∈ I and pi+1 = q.

34 CHAPTER 1. A NON INDUCTIVE SYNTAX

By construction, pi <1
Φ pi+1 for every i, i+ 1 ∈ I. By antisymmetry of

≤Φ, I is finite (otherwise there would be a “vicious cycle” as P(Φ) is
a finite set, i.e. there would exist i, j ∈ I such that i < j and pi = pj ,
so pj−1 <

1
Φ pi and pi ≤Φ pj−1, that is impossible by antisymmetry

of ≤Φ), hence there exists n ∈ N such that I = {0, . . . , n} and pn ∈⋃
Ax(Φ) ∪

⋃
l∈C(Φ){P

pri
Φ (l) | aΦ(l) = 0} ∪ D(Φ), with p ≤Φ pn.

�

Lemma 37.1 entails that in a pps Φ, any axiom port is above a unique
conclusion or cut port of Φ. Lemmas 37.1-2 means that if Φ is a pps then
the order relation ≤Φ defines a natural “top-down” orientation on ports from
axiom ports and principal ports of 0-ary cells to conclusions and cut ports of
Φ, where by lemma 34.3 deadlocks of Φ have no ports above or below them
(in the sense of definition 32).

1.5 Boxes and (non-inductive) proof-structures

Similarly to [dCT12], the main difference of our syntax from the usual
syntaxes of linear logic (or differential linear logic with boxes) proof-nets
(see for example [Gir87, Lau03, Pag09, dCPT11, Tra11]) is the absence of an
explicit (inductive) constructor for boxes: this leads to define a box as a sort
of sub-graph satisfying some conditions. This more “geometrical” approach
was followed for example in [DR95, Tor03, MP07, dCT12]. In our syntax
we have to reconstruct the boxes of a pps Φ by using some “geometrical”
informations coming from Φ, in particular the arrow functions auxdΦ and bcΦ

play a crucial role. Each promotion cell in a pre-proof-structure corresponds
to the so-called “principal ports of a box” in the usual syntaxes of linear logic
proof-nets. More delicate is the issue of marking out the other boundaries
of a box, which are called “auxiliary ports of a box” in the usual syntax
(corresponding to auxiliary doors in our syntax), and the content of a box:
in order to do that, some conditions are to be fulfilled.

Definition 38 (Box). Let Φ ∈ PPS.
Let l ∈ Cprom(Φ) and let pl be the unique auxiliary port of l.11 We say

that “the box of l is defined in Φ” or “l has a box in Φ” when, for every
q, q′ ∈ P(Φ):

1. if q ∈ auxdΦ(l) then q 6≤Φ pl and pl 6≤Φ q;

2. if q, q′ ∈ auxdΦ(l) with q 6= q′ then q 6≤Φ q′ and q′ 6≤Φ q;

3. for every l′ ∈ Cprom(Φ) 4-above l, if q′ ∈ cutportsΦ(l′) and q ∈ doorsΦ(l),
then q′ 6<Φ q;

11Remind that aΦ(l) = 1 and tΦ(l) = ! since l is a promotion cell.

1.5. BOXES AND (NON-INDUCTIVE) PROOF-STRUCTURES 35

4. if q is the end port of a path above l in Φ and if q′ = q or {q, q′} ∈ Ax(Φ),
then there exists r ∈ doorsΦ(l) ∪ cdaboveΦ(l) such that r ≤Φ q′.12

We denote by Cbox(Φ) the set of l ∈ Cprom(Φ) having a box in Φ, whose
elements are the box cells of Φ .

Remark 39. Cbox(Φ) = ∅ for every Φ ∈ PPSDiLL0 , as Cprom(Φ) = ∅. Hence
≤Φ = �Φ = 4Φ for every Φ ∈ PPSDiLL0

When a promotion cell l satisfies conditions 1, 2, 3 and 4 in definition 38,
we are able to compute the box associated with l, by taking into account only
the “geometrical” informations available in a pps. The following definition of
how to compute a box is quite delicate and it is inspired by the analogous
definition in [dCT12], with two further complications: our definition is
completely non-inductive and our boxes might contain cuts. Intuitively, for
every l ∈ Cbox(Φ), auxdΦ(l) gives the auxiliary doors of the box boxΦ(l)
associated with l (i.e. the boundaries of this box as well as l), bcΦ(l) gives
the cut ports and deadlocks belonging to boxΦ(l) and not belonging to more
inner boxes, the content of boxΦ(l) is “all that is above” the doors of boxΦ(l)
and the cut ports pointed by bcΦ(l).

Definition 40 (Computation of a box). Let Φ ∈ PPS, let v ∈ Cbox(Φ) and
let rv be the unique auxiliary port of v. We set:

inboxΦ(v) = {p ∈ P(Φ) | ∃ path above v in Φ ending in p}
B′v = inboxΦ(v) r {rv}

Bv =

{
inboxΦ(v) if rv ∈

⋃
Ax(Φ)

B′v otherwise.

inboxΦ(v) is the content of the box of v in Φ.
Let L0 and P0 be two sets such that there exist two bijections p1 : L0 →

auxdΦ(v) and p0 : L0 → P0, moreover L0∩(P(CΦ)(B′v)rP(CΦ)(auxdΦ(v))) =
∅ and P0 ∩Bv = ∅. We set Cv = (tv,Pv,Cv,Ppri

v ,Pleft
v) where:

• tv is a function from C(Cv) = L0∪(P(CΦ)(B′v)rP(CΦ)(auxdΦ(v))) to
T such that tv(l) = ? for every l ∈ L0 and tv�P(CΦ)(B′v)rP(CΦ)(auxdΦ(v))=
tΦ�P(CΦ)(B′v)rP(CΦ)(auxdΦ(v));13

• Pv = P0 ∪B′v;14

12Because of the definition of auxdΦ and cdaboveΦ, this condition means that if l has a
box in Φ then either r = pl or auxdΦ has to point from l to r or bcΦ has to point from l′

to r, where l′ ∈ Cprom(Φ) is “above” l (in the sense of definition 30). In particular, there
exists a path above l ending in q′.

13Notice that v = CΦ(rv) /∈ C(Cv).
14Note that rv /∈ Pv.

36 CHAPTER 1. A NON INDUCTIVE SYNTAX

• Cv : Pv → C(Cv) is such that, for every p ∈ Pv,

Cv(p) =

{
CΦ(p) if p ∈ B′v r auxdΦ(v)

l if p = p0(l) or p = p1(l) for some l ∈ L0

• Ppri
v : C(Cv)→ Pv is such that, for every l ∈ C(Cv),

Ppri
v (l) =

{
p0(l) if l ∈ L0

Ppri
Φ (l) otherwise

• Pleft
v = Pleft

Φ �C⊗,`(Φ)∩C(Cv).

The box of v in Φ is boxΦ(v) = (Cv, Iv,Dv,Wv, auxdv, bcv) where:

•

Iv =

{
{rv} if rv ∈ Bv
∅ otherwise;

• Wv = {w ∈ W(Φ) | w ⊆ Bv};

• Dv = D(Φ) ∩ inboxΦ(v);

• auxdv = auxdΦ�Cprom(Φ)∩C(Cv) ;

• bcv = bcΦ�Cprom(Φ)∩C(Cv) .

The idea in definition 40 is that, given Φ ∈ PPS, we build the box
boxΦ(v) of v ∈ Cbox(Φ) by starting from v by means of the paths above v
(to get inboxΦ(v)) and then by reconstructing boxΦ(v) as the (in some sense)
“smallest sub-pps” of Φ containing inboxΦ(v): nevertheless even if we give
a precise definition of sub-pps, it is not correct to say that boxΦ(v) is the
smallest sub-pps of Φ containing inboxΦ(v) because inboxΦ(v) ⊆ P(Φ) but
in general Pv 6⊆ P(Φ). Some syntactical complications in the definition of
boxΦ(v) are due to get that propositions 41 and 46 hold, for example the
issue whether the auxiliary port of v belongs or not to boxΦ(v), and the add
of the sets L0 and P0: every l ∈ L0 is a unary ?-cell, where p0(l) (resp. p1(l))
is its principal (resp. unique auxiliary) port. Note that auxdv is like auxdΦ

but it forgets all the arrows associated with the promotion cells of Φ that are
not in C(Cv), including v. Similarly for bcv.

Proposition 41. Let Φ ∈ PPS and let v ∈ Cbox(Φ). With reference to
notation of definition 40.

1. Cv ∈ Cells and l ∈ C(Φ) for every l ∈ C(Cv) r L0.

2. boxΦ(v) ∈ PPS with C(boxΦ(v)) = Cv.

1.5. BOXES AND (NON-INDUCTIVE) PROOF-STRUCTURES 37

Proof. Intuitive? �WHY?

Remark 42. Let Φ ∈ PPS.

1. Given v ∈ Cbox(Φ) whose unique auxiliary port is rv, one has rv ∈
inboxΦ(v) and {rv, pv} ∈ W(Φ) for some pv ∈ inboxΦ(v)∩P(boxΦ(v)). If
{rv, pv} ∈ Ax(Φ) (resp. {rv, pv} /∈ Ax(Φ)) then inboxΦ(v) ⊆ P(boxΦ(v))
(resp. inboxΦ(v) r {rv} ⊆ P(boxΦ(v))), {rv, pv} ∈ W(boxΦ(v)) (resp.
{rv, pv} /∈ W(boxΦ(v))) and rv (resp. pv) is the unique q ∈ P free(boxΦ(v))
such that Ppri

Φ (v) <Φ q.

2. Let v, v′ ∈ Cbox(Φ): there exists a path above v in Φ ending in the
unique auxiliary port pv′ of v′ iff inboxR(v′) ⊆ inboxR(v). Indeed, for
the left-to-right direction, for every p ∈ P(Φ), if p ∈ inboxR(v′) then
there exists a path ϕ′ above v′ in Φ ending in p; by hypothesis and
definition of ascending path, there exists a path ϕ above v in Φ ending
in Ppri

Φ (v′), hence ϕ · ϕ′ is a path above v in Φ ending in p, hence
p ∈ inboxR(v). Conversely, pv′ ∈ inboxR(v′) ⊆ inboxR(v), so there
exists a path above v in Φ ending in pv′ .

The following lemma shows an expected property of boxes in a pps: all
that is below (in the sense of definition 32) the doors of a box cannot be
inside this box, i.e. the doors of the box associated with a promotion cell are
the boundaries of this box. The proof of this lemma uses all the conditions
mentioned in definition 38, so it reveals indirectly their importance.

Lemma 43. Let Φ ∈ PPS and v ∈ Cbox(Φ). For every p, q ∈ P(Φ), if
p <Φ q and q ∈ doorsΦ(v) then p /∈ inboxΦ(v).

Proof. Let q ∈ doorsΦ(v). If p ∈ inboxΦ(v) then there exists a path
above v ending in p. By condition 4 in definition 38, there exists r ∈
doorsΦ(v) ∪ cdaboveΦ(v) such that r ≤Φ p. If r ∈ doorsΦ(v) then p 6<Φ q by
conditions 1-2 of definition 38. Otherwise r ∈ cdaboveΦ(v) and then there
exists v′ ∈ Cprom(Φ) 4-above v such that r ∈ bcΦ(v′); there are only two
cases: either r ∈ deadlocksΦ(v′) and so r = p and p 6<Φ q by lemma 34.3, or
r ∈ cutportsΦ(v′) and so p 6<Φ q otherwise r ≤Φ p <Φ q that is impossible by
condition 3 in definition 38. �

We can introduce now the syntactical objects for which we prove our
main result: proof-structures.

Definition 44 (Proof-structure). A proof-structure (or ps for short) is a
R ∈ PPS such that:

• Cbox(R) = Cprom(R);15

15This means that every promotion cell of R has a box in R (in the sense of definition
38).

38 CHAPTER 1. A NON INDUCTIVE SYNTAX

• (nesting condition) for every l, l′ ∈ Cbox(R) either inboxR(l) ⊆ inboxR(l′)
or inboxR(l′) ⊆ inboxR(l) or inboxR(l) ∩ inboxR(l′) = ∅;

We denote by PS the set of proof-structures.
We denote by PSMELL the set of R ∈ PS such that C!(R) = Cbox(R),

whose elements are the MELL-proof-structures (or MELL-ps for short).

We point out that our definition of proof-structure is completely non-
inductive, as in [DR95, Tor03, MP07], differently from the usual definitions
of proof-structure in the literature on linear logic and its differential version
(see for example [Gir87, Lau03, Pag09, dCPT11, Tra11, dCT12]). This leads
to consider the linear logic proof-structures as “really geometrical” objects, in
accordance with the Girard’s original spirit. This definition allows also to
define the cut-elimination directly on these “geometrical” objects. Actually
the definition of cut-free proof-structure given in [dCT12] can be reformulated
in a non-inductive way (this remark was our starting point).

Remark 45. PPSDiLL0 ⊆ PS, since Cbox(Φ) ⊆ Cprom(Φ) = ∅ for every
Φ ∈ PPSDiLL0 .

Proposition 46. Let R ∈ PS and let l ∈ Cbox(Φ).

1. boxR(l) ∈ PS.

2. If ϕ : R ' R′ then ϕP(l) ∈ Cbox(R′) and boxR(l) ' boxR′(ϕC(l)).

Proof. Intuitive? �WHY?

The following proposition says that in a ps R, �R and 4R are order
relations. In a certain sense, in the case of a ps R, �R and 4R are “good
generalizations” of ≤R (they extend ≤Φ as a relation “above/below” for the
ports of R: see remark 33.3 but also the following lemma 49), with the further
property that any promotion cell is the least element (with respect to 4R) of
the box associated with it (proposition 47.2).

Proposition 47. Let R ∈ PS.

1. �R and 4R are order relations on P(R).

2. For every v ∈ Cbox(R), the unique auxiliary port of v is the least element
in inboxR(v) with respect to 4R.

3. For every v, v′ ∈ Cbox(R), if v 6= v′ then inboxR(v) 6= inboxR(v′).

Proof.

1. By remarks 31.3 and 33.3, it suffices to show that 4R is antisymmetric.
Let us suppose by absurd that 4R is not antisymmetric, so there exist
p, q ∈ P(R) such that p 4R q, q 4R p and p 6= q. As R ∈ PPS, ≤R is

1.5. BOXES AND (NON-INDUCTIVE) PROOF-STRUCTURES 39

antisymmetric, thus it is impossible that p ≤R q and q ≤R p. Hence,
there exist p0, p1, p2 ∈ P(R) and v ∈ Cprom(R) = Cbox(R) (as R ∈ PS)
such that p0 (resp. p1) is the principal (resp. unique auxiliary) port of
v, p2 ∈ auxdR(v) ∪ cutportsR(v) and p2 4R p0 (p2 /∈ deadlocksR(v) by
remark 31.2 since p2 4nR p1 for some n ∈ N∗). Therefore p0 ∈ inboxR(v)
p0 <R p1 and p1 ∈ doorsR(v), that is impossible by lemma 43.

2. By definition of inboxR(v) and 4R, if p is the unique auxiliary port
of v then p 4R q for every q ∈ inboxR(v). We conclude thanks to
proposition 47.1.

3. Let pv (resp. pv′) the unique auxiliary port of v (resp. v′). If there is not
path above v ending in pv′ then pv′ /∈ inboxR(v) but pv′ ∈ inboxR(v′),
hence inboxR(v) 6= inboxR(v′). Otherwise there exists a path above
v ending in pv′ (thus pv 4R pv′), moreover pv 6= pv′ since v 6= v′;
by antisymmetry of 4R (proposition 47.1), there is no path above
v′ ending in pv, so pv /∈ inboxR(v′) but pv′ ∈ inboxR(v′), therefore
inboxR(v) 6= inboxR(v′).

�

Remark 48. In the proof of proposition 47 the hypothesis that R ∈ PS is
used only to ensure that every promotion cell of R has a box defined in R, in
particular we never used the hypothesis that R fulfills the nesting condition.
Notice that in the examples showed in remark 33.3 the promotion cells have
no box defined. An example of pps Φ such that Cbox(Φ) = Cprom(Φ) (and
so 4Φ is an order relation) but the nesting condition is not fulfilled (and so
Φ /∈ PS) is the following: take one ⊥-cell whose principal port is connected by
a wire to the auxiliary port p of an unary ?-cell and two 1-cells whose principal
ports are both connected by a wire respectively to the unique auxiliary ports
pv and pv′ of two !-cells v and v′ which have both an arrow pointing to p;
in this case p ∈ inboxΦ(v) ∩ inboxΦ(v′) but inboxΦ(v) 6⊆ inboxΦ(v′) (because
the pv ∈ inboxR(v) r inboxR(v′)) and inboxR(v) 6⊆ inboxR(v′) (because pv′ ∈
inboxR(v′) r inboxR(v)).

Given a ps R, we can generalize lemmas 34 and 37 for the order relation
�R, which is a restriction of 4R (see remark 33.3).

Lemma 49. Let R ∈ PS and p, p′, q ∈ P(R).

1. If p �1
R q and p′ �1

R q then p = p′.

2. If p �R q and p′ �R q′ then either p �R p′ or p′ �R p.

3. For every c ∈ P free(R)∪
⋃
Cuts0(R)∪D0(R), if there exists an ascending

path from q to c then q = c.

4. There exists at most one box-crossing path in R from p to q.

40 CHAPTER 1. A NON INDUCTIVE SYNTAX

5. There exists a unique c ∈ P free(R) ∪
⋃
Cuts0(R) ∪ D0(R) such that

c �R q.

Proof.

1. q /∈ I(R) ∪ D0(R) by remark 31.2, hence there are only three cases:

• q ∈ Ppri(R), so p ∈ Paux(R) and either {p, q} ∈ W(R) or p
is the unique auxiliary port of some l ∈ Cbox(R) such that q ∈
cutportsR(l); analogously for p′; by definition of ppps (in particular,
condition 1 about the set of wires in definition 12), necessarily
p = p′;
• q ∈ Paux(R), so p = Ppri

R (l) = p′ for the l ∈ C(R) such that
q ∈ Paux

l (R) (because of the definition of box-crossing path);
• q ∈ D(R) and there exists v ∈ Cbox(R) such that q ∈ bcR(v),

hence p and p′ are the unique auxiliary port of v, therefore p = p′.

2. By induction on the length n ∈ N of the box-crossing path (pi)i∈I from
p to q. If n = 0 then p = p0 = q, thus there exists a box-crossing path
from p′ to p by hypothesis. If n > 0 then there are only two cases: if
p′ = q then there exists a box-crossing path from p to p′ by hypothesis;
otherwise there exist q′ ∈ P(Φ), a box-crossing path from p′ to q′ and
a box-crossing path of length 1 from q′ to q, so pn−1 = q′ by lemma
49.1, therefore there exists a box-crossing path from p to p′ or from p′

to p by induction hypothesis applied to pn−1.

3. By definition 30, there is no ascending path of length 1 from q to c,
hence the only possibility is that the path from q to c has length 0,
therefore q = c.

4. Let us suppose that (pi)0≤i≤m and (qj)0≤j≤n (for some m,n ∈ N) are
two ascending paths such that p0 = p = q0 and pm = q = qn: we prove
by induction on m that m = n and pi = qi for every 0 ≤ i ≤ m.

If m = 0 then p = q0 = p0 = q, furthermore n = 0 (otherwise
q = q0 41

R q1 and q1 4R qn = q with q 6= q1, that is impossible since
4R is antisymmetric by proposition 47.1).

If m > 0 then pm−1 = qn−1 by lemma 49.1. By induction hypothesis,
m − 1 = n − 1 and pi = qi for every 0 ≤ i ≤ m − 1, thus we can
conclude.

5. For the unicity, if c, c′ ∈ P free(R) ∪
⋃
Cuts0(R) ∪ D0(R) are such that

there exist two box-crossing path in R from c to q and from c′ to q
then there exists a box-crossing path in R from c to c′ or from c′ to c
by lemma 49.2, hence c = c′ by lemma 49.3.

For the existence, we build an initial segment J of N and a sequence of
finite paths (ϕj)j∈J in Φ as follows:

1.5. BOXES AND (NON-INDUCTIVE) PROOF-STRUCTURES 41

• 0 ∈ J and ϕ0 is the path of length 0 consisting only of q;

• if j ∈ J and ϕj = (pi)0≤i≤n then:

– if p0 ∈ P free(Φ) ∪
⋃
Cuts0(Φ) ∪ D0(R) then J = {0, . . . , j},

– otherwise, j + 1 ∈ J and ϕj+1 = (qi)0≤i≤n+1 where qi+1 = pi
for every 0 ≤ i ≤ n and
∗ if p0 ∈ Paux

l (Φ) for some l ∈ C(Φ) then q0 = Ppri
Φ (l);

∗ if p0 ∈ Ppri(Φ) then either q0 ∈ Paux(Φ) with {p0, q0} ∈
W(Φ), or q0 is the unique auxiliary port of some v ∈
Cbox(Φ) such that p0 ∈ cutportsΦ(v);
∗ if p0 ∈ D(R) with p0 ∈ bcR(v) for some v ∈ Cbox(R) then
q0 is the unique auxiliary port of v.

By construction, for every j ∈ J , ϕj is a box-crossing path in R of length
j ending in q and moreover, if j + 1 ∈ J then ϕj is a sub-path of ϕj+1.
J is a finite set (otherwise there would be an infinite box-crossing path
ϕω such that, for every j ∈ J = N, ϕj would be a sub-path of ϕω, that
is impossible since P(Φ) is a finite set and 4R is antisymmetric), hence
there exists m ∈ N such that J = {0, . . . ,m} and ϕm is a box-crossing
path from c ∈ P free(R) ∪

⋃
Cuts0(R) ∪ D0(R) to q.

�

Notice that lemmas 49.1,2,4,5 do not hold in the case of generic ascending
paths (i.e. for the order relation 4R).

Definition 50. Let R ∈ PS and p ∈ P(R).
We denote by cR(p) the unique c ∈ P free(R) ∪

⋃
Cuts0(R) ∪ D0(R) such

that c �R p.
We set boxesofR(p) = {v ∈ Cbox(R) | p ∈ inboxR(v)}. If boxesofR(p) 6= ∅,

we denote by Cbox
R (p) the v ∈ boxesofR(p) such that inboxR(v) is minimal

with respect to ⊆.
The ground of R is Ground(R) = {q ∈ P(R) | boxesofR(q) = ∅}.

By lemma 49.5, the function cR is well-defined for any R ∈ PS. By the
nesting condition, Cbox

R (p) is well-defined for every R ∈ PS and p ∈ P(R)
such that p ∈ inboxR(v) for some v ∈ Cbox(R).

Given R ∈ PS and p ∈ P(R), boxesofR(p) is morally the set of boxes in
R containing p.

In spite of our non-inductive definition of proof-structure, we can recover
some typical informations of the inductive one, such as the depth of a port
and the depth of a proof-structure. The following definition is nothing but
the adaptation to our syntax (allowing ps with cuts and deadlocks) of the
corresponding definition in [dCT12].

Definition 51 (Depth). Let R ∈ PS.

42 CHAPTER 1. A NON INDUCTIVE SYNTAX

Let p ∈ P(R) and let ϕp be the box-crossing path from cR(p) to p. The
depth of p in R, denoted by depthR(p), is a nonnegative integer defined by:

depthR(p) = card({l ∈ Cbox(R) | ϕp crosses l}) +∑
q∈Auxdoors(R)

card({l′ ∈ Cbox(R) | ϕp crosses q ∈ auxdR(l′)}) .

If depthR(p) = n then we say that “p is at depth n in R”.
For every l ∈ C(R), the depth of l in R, denoted by depthR(l), is the depth

of Ppri
R (l) in R. If depthR(l) = n then we say that “l is at depth n in R”.
For every v ∈ Cbox(R), the depth of boxR(v) inR, denoted by depthR(boxR(v)),

is the depth of v in R. If depthR(boxR(v)) = n then we say that “boxR(v) is
at depth n in R”.

The depth of R is depth(R) = sup{depthR(p) | p ∈ P(R)}.

The depth of a port p in a ps R is well-defined thanks to lemma 49.4,
which says that there exists a unique box-crossing path ϕp from cR(p) to
p. Roughly speaking, depthR(p) is calculated by counting the number of
promotion cells and arrows pointing to auxiliary doors of R crossed by ϕp.

Remark 52. Let R ∈ PS.

1. If R ∈ PPSDiLL0 then depth(R) = 0, as Cbox(R) = ∅ (remember that
PPSDiLL0 ⊆ PS).

2. Let v ∈ Cbox(R): if pv is the unique auxiliary port of v, then depthR(pv) =
depthR(boxR(v)) + 1. Indeed if ϕ

Ppri
R (v)

is the unique box-crossing path

from cR(Ppri
R (v)) = cR(pv) to Ppri

R (v), then ϕ
Ppri
R (v)

· pv is the unique
box-crossing path from cR(pv) to pv and moreover ϕ

Ppri
R (v)
· pv crosses v

whereas ϕ
Ppri
R (v)

does not.

3. Let v ∈ Cbox(R): if p ∈ inboxR(v)∩P(boxR(v)) then boxesofboxR(v)(p) =

boxesofR(p) r {l ∈ Cbox(R) | Ppri
R (l) /∈ inboxR(v)}. Indeed, let l ∈

Cbox(R): l ∈ boxesofboxR(v)(p) iff l ∈ Cbox(boxR(v)) and p ∈ inboxboxR(v)(l) =

inboxR(l) iff Ppri
R (l) ∈ inboxR(v) and l ∈ boxesofR(v).

The following lemma shows that the depth of a port p in a ps R is nothing
but the number of boxes in R containing p, as in the usual inductive syntaxes
of linear logic.

Lemma 53. Let R ∈ PS. For every p ∈ P(R), one has

depthR(p) = card(boxesofR(p))

In particular, depthR(p) = 0 iff p /∈ inboxR(v) for any v ∈ Cbox(R).

1.5. BOXES AND (NON-INDUCTIVE) PROOF-STRUCTURES 43

Proof. By induction on the depth(p) ∈ N. We denote by ϕp = (pi)0≤i≤n
(with n ∈ N) the unique box-crossing path from cR(p) to p.

If depthR(p) = 0, then ϕp does not cross any v ∈ Cprom(R) = Cbox(R) (as
R ∈ PS) nor any q ∈ Auxdoors(R), according to definition 51. Hence, for
every v ∈ Cbox(R), every path above v does not end in p, by condition 4 in
definition 38. Thus, card(boxesofR(p)) = 0 = depthR(p).

If depthR(p) > 0, then ϕp crosses some v ∈ Cbox(R) or some q ∈
Auxdoors(R), according to definition 51. Hence, n > 0 and for some
v ∈ Cbox(R), there exists a path above v ending in p (i.e. p ∈ inboxR(v)), by
condition 4 in definition 38. According to definition 50 (i.e. thanks to nesting
condition, as R ∈ PS), Cbox

R (p) is defined. By condition 4 in definition 38 and
lemma 49.4, ϕp crosses either Cbox

R (p) or q ∈ auxdR(Cbox
R (v)): in both cases,

there exists k ∈ {0, . . . , n} such that pk ∈ doorsR(Cbox
R (p)) and the subpath

(pi)k≤i≤n of ϕp does not cross any v ∈ Cbox(R) nor any q ∈ Auxdoors(R), be-
cause of the minimality of inboxR(Cbox

R (p)). So depthR(pk−1) = depthR(p)−1,
hence depthR(pk−1) = card(boxesofR(pk−1)) by induction hypothesis. Be-
cause of lemma 43, pk−1 /∈ inboxR(Cbox

R (p)) whereas pk /∈ inboxR(Cbox
R (p)) and

thus card(boxesofR(pk−1)) = card(boxesofR(p))− 1, by the nesting condition.
Therefore, depthR(p) = card(boxesofR(p)). �

The following proposition reveals some intuitive properties of some notions
already introduced.

Proposition 54. Let R ∈ PS.

1. If {p, q} ∈ W(R) then boxesofR(p) = boxesofR(q) and depthR(p) =
depthR(q).

2. Let v ∈ Cbox(R) and let pv be the unique auxiliary port of v: for
every q ∈ bcR(v) one has boxesofR(pv) = boxesofR(q) and depthR(q) =
depthR(pv).

3. Let p ∈
⋃
Cuts(R) ∪D(R): depthR(p) = 0 iff p ∈

⋃
Cuts0(R) ∪D0(R).

4. Let v, v′ ∈ Cbox(R): if inboxR(v′) ⊆ inboxR(v), then boxesofR(Ppri
R (v)) ⊆

boxesofR(Ppri
R (v′)) and depthR(boxR(v)) ≤ depthR(boxR(v′)).

5. for every v ∈ Cbox(R) one has depth(boxR(v)) < depth(R).

Proof.

1. For every v ∈ Cbox(R), there exists a path above v ending in p iff there
exists a path above v ending in q: this is evident when {p, q} is neither
a cut nor an axiom, this is due to condition 4 in definition 38 if {p, q} is
an axiom, and this is due to definition of bcR if {p, q} is a cut. Hence,
p ∈ inboxR(v) iff q ∈ inboxR(v) and thus boxesofR(p) = boxesofR(q).
Therefore depthR(p) = depthR(q) by lemma 53.

44 CHAPTER 1. A NON INDUCTIVE SYNTAX

2. For every l ∈ Cbox(R), l ∈ boxesofR(pv) iff pv ∈ inboxR(l) iff there
exists in R a path above l ending in pv iff (by definition of ascending
path) there exists in R a path above l ending in q iff q ∈ inboxR(l)
iff l ∈ boxesofR(q). Therefore, boxesofR(pv) = boxesofR(q) and so
depthR(q) = depthR(pv) by lemma 53.

3. If depthR(p) = 0 then the box-crossing path from cR(p) to p crosses
no promotion cells, hence there is no ports q such that q �1

R p, in
particular p /∈ im(bcR) and thus p ∈ Cuts0(R) ∪ D0(R).
Conversely, if p ∈ Cuts0(R) ∪ D0(R) then p = cR(p) by lemma 49.3,
therefore depthR(p) = 0.

4. By remark 42.2, in R there exists a path above v ending in the unique
auxiliary port of v′. If Ppri

R (v′) /∈ inboxR(v) then there is no path above
v ending in Ppri

R (v′), hence v = v′ and so Ppri
R (v) = Ppri

R (v′), whence
boxesofR(Ppri

R (v)) = boxesofR(Ppri
R (v′)). Otherwise in R there exists

a path ϕ above v ending in Ppri
R (v′): if l ∈ boxesofR(Ppri

R (v)) then
l ∈ Cbox(R) and Ppri

R (v) ∈ inboxR(l), thus there exists a path ψ above l
ending in Ppri

R (v) and so ψ · ϕ is a path in R above l ending in Ppri
R (v′),

whence Ppri
R (v′) ∈ inboxR(l) and thus l ∈ boxesofR(Ppri

R (v′)). Therefore
boxesofR(Ppri

R (v)) = boxesofR(Ppri
R (v′)), so depthR(boxR(v)) ≤ depthR(boxR(v′))

by lemma 53.

5. Let p ∈ P(boxR(v)) be such that depth(boxR(v)) = depthboxR(v)(p). If
p ∈ P(boxR(v))r inboxR(v) then p is the principal port of a unary ?-cell
whose unique auxiliary port q ∈ auxdR(v) and so q ∈ inboxR(v) and
depthboxR(v)(p) ≤ depthboxR(v)(q). Therefore, we can suppose without
loss of generality that p ∈ inboxR(v) and thus boxesofboxR(v)(p) =

boxesofR(p) r {l ∈ Cbox(R) | Ppri
R (l) /∈ inboxR(v)} by remark 52.3.

As Ppri
R (v) /∈ inboxR(v) (by lemma 43), one has boxesofboxR(v)(p) (

boxesofR(p), whence depth(boxR(v)) = depthboxR(v)(p) < depthR(p) ≤
depth(R) by lemma 53. �

According to proposition 54.1, we are entitled to talk about of the depth
of a wire {p, q} of a ps: it is the depth of p or q. Propositions 54.2-3 mean
that in a ps R, for any v ∈ Cbox(R), the cuts and deadlocks pointed by the
arrow function bcR are the cuts and deadlock at depth 0 in boxR(v), in other
words boxR(v) is the deepest (i.e. “smallest” in the sense of proposition 54.4)
box containing them.

Notice that proposition 54.2 does not hold if we replace the hypothesis
q ∈ bcR(v) with q ∈ auxdR(v) because in general, we can have v, l ∈ Cbox(R)
such that q ∈ auxdR(l)∩ auxdR(v) but pv /∈ inboxR(l) (where pv is the unique
auxiliary port of v), whence boxesofR(q) 6⊆ boxesofR(pv).

Proposition 54.5 allows to make easily induction on the depth of a ps.

1.6. INDEXED ((PRE-)PRE-)PROOF-STRUCTURES 45

1.6 Indexed ((pre-)pre-)proof-structures

We introduce the notion of indexed pseudo-structure (resp. ppps; pps; ps),
i.e. a pseudo-structure (resp. ppps; pps; ps) with ordered conclusions. This is
mandatory to fix an order on conclusions in order to define the interpretation
of a proof-structure in the relational model.

Definition 55 (Indexed ((pre-)pre-)proof-structure). An indexed pseudo-
structure is a pair (Φ, ind) such that Φ ∈ PseudoPPPS and ind : P free(Φ)→
{1, . . . , card(P free(Φ))} is a bijection. We say then that ind is an enumeration
of P free(Φ).

An indexed ppps (resp. indexed pps; indexed ps) is an indexed pseudo-
structure (Φ, ind) such that Φ ∈ PPPS (resp. Φ ∈ PPS; Φ ∈ PS).

We denote by PseudoPPPSind (resp. PPPSind; PPSind; PSind) the set
of indexed pseudo-structures (resp. indexed ppps; indexed pps; indexed ps).

We set PPSind
DiLL0

= {(R, ind) ∈ PSind | R ∈ PPSDiLL0} and PSind
MELL =

{(R, ind) ∈ PSind | R ∈ PSMELL}.

We introduce the notion of “identity” (or better said isomorphism) be-
tween two indexed ppps (resp. pps; ps). The idea is that two corresponding
conclusions of two indexed ppps (resp. pps; ps) have to be in the same order
position.

Definition 56 (Isomorphism between indexed ((pre-)pre-)-proof-structures).
Let (Φ, ind), (Φ′, ind′) ∈ PPPSind (resp. (Φ, ind), (Φ′, ind) ∈ PPSind; (Φ, ind), (Φ′, ind) ∈
PSind).

An isomorphism from (Φ, ind) to (Φ′, ind′) is a ϕ : Φ ' Φ′ such that the
following diagram commutes:

P free(Φ)
ind //

ϕP
��

{1, . . . , card(P free(Φ))}

P free(Φ′)

ind′

33

We write then ϕ : (Φ, ind) ' (Φ′, ind′).
If there exists an isomorphism from (Φ, ind) to (Φ′, ind′), then we say that

(Φ, ind) and (Φ′, ind′) are isomorphic and we write (Φ, ind) ' (Φ′, ind′).

Remark 57. Let Φ,Φ′ ∈ PPPS with ϕ : R ' R′. For every enumer-
ation ind of P free(Φ), there exists an enumeration ind′ of P free(Φ′) such
that ϕ : (Φ, ind) ' (Φ′, ind′). Indeed, it suffices to take ind′ : P free(Φ′) →
{1, . . . , card(P free(Φ′))} such that ind′(p) = ind(ϕ−1

P (p)).

46 CHAPTER 1. A NON INDUCTIVE SYNTAX

1.7 A non-inductive correctness criterion

A correctness criterion is a property fulfilled by all and only those proof-
structures corresponding to a proof in the (multiplicative and exponential
framework of) Linear Logic sequent calculus. This gives a geometrical
account of the Linear Logic proofs. There is a multitude of equivalent
correctness criteria for the multiplicative and exponential framework of Linear
Logic, the most common one is the Danos-Regnier criterion (see for example
[DR89, Tor03]), which is a simplification of the primary long trip criterion of
Girard introduced in [Gir87].

All the well-known correctness criteria for the multiplicative and expo-
nential framework of Linear Logic proof-structures are defined by induction
on the depth of the proof-structure, so they can considered “purely geo-
metrical” only in the case of a proof-structure without boxes (in particular,
in the multiplicative framework). In our syntax we can reformulate the
Danos-Regnier correctness criterion for the multiplicative and exponential
framework of Linear Logic proof-structures in such a way that our criterion is
completely “non-inductive”, that is reinforces the idea of a “purely geometrical”
characterization of (multiplicative and exponential) Linear Logic proofs.

Definition 58 (Snipping, linearization). Let Φ ∈ Modules and let Q ⊆
Paux(Φ). The snipping of Q in Φ is a 6-tuple Φ′ = (C′, I ′,D′,W ′, auxd′, bc′)
such that:

• C′ = (tΦ,P ′,CΦ�P ′ ,P
pri
Φ ,Pleft�LQ) where P ′ = P(Φ) rQ and LQ = {l ∈

C⊗,`(Φ) | card({p ∈ P ′ | CΦ(p) = l}) = 3};

• I ′ = I(Φ) r (Q ∩
⋃
Ax(Φ));

• D′ = D(Φ) and W ′ =W(Φ);

• auxd′ = ∅ = bc′ (where ∅ is the empty function).

If Q = ∅, we say that the snipping of Q in Φ is the linearization of Φ,
denoted by lin(Φ).

Remark 59. For every Φ ∈Modules andQ ⊆ Paux(Φ), if Φ′ = (C′, I ′,D′,W ′, auxd′, bc′)
is the snipping of Q in Φ, then C′ ∈ModuleBases and Φ′ ∈Module. Fur-
thermore C(Φ) = C(Φ′), P(Φ) = P(Φ′), Ppri(Φ) = Ppri(Φ′), D(Φ) = D0(Φ′)
and W(Φ) =W(Φ′), but in general I(Φ) 6⊇ I(Φ′), P free(Φ) 6⊇ P free(Φ′) and
Paux(Φ) 6⊆ Paux(Φ′). Therefore, every path in Φ′ is also a path in Φ (but the
converse does not hold).

If R ∈ PS, then lin(R) ∈ PPSDiLL0 , I(R) = I(lin(R)), P free(R) =
P free(lin(R)) and Paux(R) = Paux(lin(R)).

Roughly speaking, if Φ is a module and Q is a set of auxiliary ports of
Φ, the snipping of Q in Φ is the module obtained from Φ by disconnecting

1.7. A NON-INDUCTIVE CORRECTNESS CRITERION 47

the ports of Q (which become isolated ports) by their cells. This operation
might transforms a ps in a module which is not a pseudo-structure, because
some binary ⊗- or `-cells might get 0-ary or unary, or some wires might get
hanging (i.e. they connect a principal port with an isolated port).

The linearization of a ps Φ has to be seen as the DiLL0-proof-structure
obtained from Φ by forgetting the boundaries of all the boxes of Φ (i.e. their
arrows).

Definition 60 (Switching, correctness graph). Let R ∈ PS and let

C`,?c(R) = C`(R) ∪ {l ∈ C(R) | tR(l) = ?, aR(l) ≥ 2} .

A switching of R is a function associating with every l ∈ C`,?c(R) an
auxiliary port of l.

For every switching s of R, we set offR(s) = {p ∈ Paux
l (R) r im(s) | l ∈

C`,?c(R)}: the s-correctness graph of Φ is the snipping of offR(s) in R.
A correctness graph of R is a s-correctness graph of R for some switching

s of R.

Definition 60 reformulates in our syntax some standard notions of Linear
Logic proof-structures.

Remark 61. For every R ∈ PS and switching s of R, if GsR is the s-correction
graph of R then GsR ∈ Modules; moreover, if l ∈ C(R) is such that there
exists a p ∈ doorsR(v) ∩ Paux

l (R) for some v ∈ Cbox(R), then aGsR(l) = 1.

Conjecture 62 (Cryptic). Let R ∈ PS. R is acyclic iff for every switching
s in boxed(R), l ∈ Cbox(boxed(R)), p ∈ P(boxed(R)) there exists at most one
path in s above l ending in p. WHY?

Definition 63 (DR-path). Let R ∈ PS and let s be a switching of R.
A DR-path in R according to s is a path (pi)i∈I (where I is an initial

segment of N) in the s-correction graph of R such that for every v ∈ Cbox(R)
and i, i + 1 ∈ I, if pi ∈ doorsR(v) ∩ Paux

l (R) and pi+1 = Ppri
R (l) for some

l ∈ C(R), then for every j ∈ I such that j > i+ 1 one has pj /∈ doorsR(v).
For every p, q ∈ P(R), we say that p and q are DR-connected according

to s if there exists a DR-path in R according to s from p to q.

The idea is that, given a ps R and a switching s of R, a DR-path in R
according to s leaving a box cannot re-enter it. By means of DR-paths we
can give a simple correctness criterion.

Definition 64 (DR-connection, DR-acyclicity, proof-net). Let R ∈ PS.
R is DR-connected if for every switching s of R, all p, q ∈ P(R) are

DR-connected according to s.
R is DR-acyclic if D(R) = ∅ and, for every switching s of R, each path in

the s-correction graph of R is not a cycle and it is a DR-path in R according
to s.

48 CHAPTER 1. A NON INDUCTIVE SYNTAX

R is ACC (or R is a proof-net or R satisfies the correctness criterion) if
R is DR-connected and DR-acyclic.

We denote by PN the set of proof-nets. We set PNMELL = PN∩PSMELL

(resp. PNDiLL0 = PN∩PPSDiLL0), whose elements are the MELL-proof-nets
(resp. DiLL0-proof-nets).

We point out that our correctness criterion, as well as our definition of
proof-structure, is completely non-inductive, by taking into account only
some “geometrical informations” available in a proof-structure. Our correct-
ness criterion can be seen as a non-inductive version of the Danos-Regnier
correctness criterion [DR89, Tor03] for the multiplicative and exponential
framework of Linear Logic (whic is non-inductive only in the multiplicative
fragment). Intuitively, in our correctness criterion DR-paths play the role of
induction on the depth of a proof-structure in the Danos-Regnier criterion.

In the case of a DR-connected ps, we can simplify the correctness criterion.

Proposition 65. Let R ∈ PS be DR-connected. R is a proof-net iff D(R) = ∅
and, for every switching s of R, the s-correction graph of R is acyclic.

Proof. Let R ∈ PS be DR-connected such that D(R) = ∅ and, for every
switching s of R, the s-correctness graph of R is acyclic. We have to show
that each path in the s-correction graph of R is a DR-path in R according to
s. Let us suppose by absurd that for some switching s of R there exists a path
in the s-correction graph GsR of R which is not a DR-path in R according to s.
Thus, there would exist v ∈ Cbox(R) and a path (pi)0≤i≤n (for some n ∈ N∗)
in GsR the such that pn ∈ doorsR(v), p0 ∈ doorsR(v)∩Paux

l (R) and p1 = Ppri
R (l)

for some l ∈ C(R) and pi /∈ doorsR(v) for every 1 ≤ i ≤ n− 1. Since R is DR-
connected, there would exist a DR-path (qj)0≤i≤m (for some m ∈ N∗) in R
according to s from pn to p0, hence q1 ∈ inboxR(v) (in particular, q1 6= pn−1)
by remark 61 and so (pi)0≤i≤n · (qj)1≤j≤m would be a cycle in GsR, that is
impossible because of acyclicity of GsR. �

Definition 66 (Empire). Let R ∈ PPSDiLL0 and let p ∈ P(R).
For every switching s of R, let GsR be s-correction graph of R: the s-

correction graph of R rooted in p is either the snipping of {p} in GsR if
p ∈ Paux(GsR), or GsR otherwise.

The empire of p in R, denoted by εR(p), is the set of q ∈ P(R) such that
p and q are connected in all the s-correction graph of R rooted in p, for every
switching s of R.

The boundary of εR(p) is

∂εR(p) = {q ∈ P(R) | ∃ q′ ∈ P(R)rεR(p) and (q, q′) is a path in R of length 1}.

1.8 Taylor expansion

Definition 67 (Join of two DiLL0-structures). Let R,S ∈ PPSDiLL0 be
disjoint, let n ∈ N, let p1, . . . , pn ∈ P free(S) be pairwise distinct and let

1.8. TAYLOR EXPANSION 49

l1, . . . , ln ∈ C!,?(R).16 The join of S in R through (p1, l1), . . . , (pn, ln) is
R′ = (C′, I ′,D′,W ′, auxd′, bc′) where:

•

We say then that “R′ is obtained by joining S in R through (p1, l1), . . . , (pn, ln)”.

Definition 68. Let R ∈ PS. The Taylor expansion of R, denoted by R∗,
is a set of DiLL0-proof-structures defined by induction on depth(R) ∈ N as
follows:

• if depth(R) = 0, then R∗ = {R};

• if depth(R) > 0, then let v1, . . . , vn (for some n ∈ N∗) be the promotion
cells of R at depth 0.

16Possibly, li = lj for some i, j ∈ {1, . . . , n} with i 6= j.

50 CHAPTER 1. A NON INDUCTIVE SYNTAX

Chapter 2

Relational semantics

Let us consider the category Rel of sets and relations: the Kleisli category
of the comonad associated with the finite multisets functor on Rel is a
Cartesian closed category, i.e. a denotational model for λ-calculus. Such an
interpretation of λ-terms is the same as the interpretation of the Linear Logic
proof-net translating the λ-term in the multiset based relational model of
Linear Logic. This holds for both the typed and untyped case.

In λ-calculus, the shift from typed to untyped semantics essentially relies
on the choice of a suitable objectD which is reflexive, that is such thatD ⇒ D
(the exponentiation of D) is a retract of D (i.e. there exist two morphisms
abs : (D ⇒ D)→ D and app : D → (D ⇒ D) such that app ◦ abs = idD⇒D).
In the multiplicative and exponential framework of Linear Logic we have
more constructions than the intuitionistic arrow, then it is not enough for
the object D we look for to enjoy the λ-calculus notion of reflexivity (it must
satisfy more properties). Indeed we define an object D (definition 69) in the
category Rel in such a way that not only D×D and Mfin(D) are retracts of
D, but also that each of these constructs interacts well with the others (via
some morphisms), thus allowing an interpretation of untyped proof-structures
invariant under cut-elimination.

2.1 Relational spaces

We introduce a domain D to interpret (untyped) proof-structures as it is
already defined in [dCPT11, dCT12]. All the following definitions are exactly
the same as those ones in [dCT12].

In the definition of the domain D the set {+,−} of polarities is used
in order to “semantically distinguish” cells of dual types 1/⊥, ⊗/` and !/?,
which is mandatory in an untyped framework.

Definition 69 (Atom, point). We fix a set A not containing any pair nor
any 3-tuple and such that ∗ /∈ A; we call atoms the elements of A.

We define Dn by induction on n ∈ N:

51

52 CHAPTER 2. RELATIONAL SEMANTICS

• D0 = A ∪ ({+,−} × {∗}),

• Dn+1 = D0 ∪ ({+,−} ×Dn ×Dn) ∪ ({+,−} ×Mfin(Dn)).

We set D =
⋃
n∈NDn. The depth of an element α ∈ D is the least n ∈ N

such that α ∈ Dn.
We set D<ω =

⋃
n∈ND

n, whose elements are called points.

Remark 70.

1. Dn ⊆ Dn+1 for every n ∈ N. The proof is by a straightforward induction
on n ∈ N.

2. Let α, β, α1, . . . , αk ∈ D (for some k ∈ N), let γ ∈ A and ι ∈ {+,−}:

• depth(γ) = 0 = depth(ι, ∗), as D0 = A ∪ ({+,−} × {∗});
• depth(ι, α, β) = max{depth(α), depth(β)}+1, indeed if depth(α) =
n, depth(β) = m and d = max{n,m} then (α, β) ∈ Dd ×Dd and
(α, β) /∈ Di×Di for any 0 ≤ i ≤ d−1, hence depth(ι, α, β) = d+1;

• depth(ι, [α1, . . . , αk]) = sup{depth(αi) | i ∈ {1, . . . , k}}+1, indeed
if depth(αi) = ni for any i ∈ {0, . . . , k} and d = sup{ni | i ∈
{1, . . . , k}}, then (α1, . . . , αk) ∈ Dk

d and (α1, . . . , αk) /∈ Dk
j for

any 0 ≤ j ≤ d− 1, hence depth(ι, [α1, . . . , αk]) = d+ 1.

3. The conditions on A ensure that D satisfies the following equation

D = A] ({+,−} × {∗})] ({+,−} ×D ×D)] ({+,−} ×Mfin(D))

which means that A, {+,−}×{∗}, {+,−}×D×D and {+,−}×Mfin(D)
are retracts of D.

Thanks to remark 70.2, we can easily define some notions and prove some
propositions by induction on the depth of elements of D.

The function ()⊥ (which is the semantic version of the linear negation)
flips polarities.

Definition 71 (Dual). We set +⊥ = − and −⊥ = +. We define α⊥ for
every α ∈ D, by induction on depth(α) ∈ N as follows (where γ ∈ A,
α, β, α1, . . . , αn ∈ D for some n ∈ N, and ι ∈ {+,−}):

• γ⊥ = γ and (ι, ∗) = (ι⊥, ∗);

• (ι, α, β)⊥ = (ι⊥, α⊥, β⊥) and (ι, [α1, . . . , αn])⊥ = (ι⊥, [α⊥1 , . . . , α
⊥
n]).

Definition 72 (Substitution). A substitution is a function σ : D → D
induced by a function σA : A → D and defined by induction on the depth
of elements of D, as follows (where γ ∈ A, α, β, α1, . . . , αn ∈ D for some
n ∈ N, and ι ∈ {+,−}):

2.1. RELATIONAL SPACES 53

• σ(γ) = σA(γ) and σ(ι, ∗) = (ι, ∗);

• σ(ι, α, β) = (ι, σ(α), σ(β));

• σ(ι, [α1, . . . , αn]) = (ι, [σ(α1), . . . , σ(αn)]).

If σA : A→ D is a function such that im(σA) ⊆ A (resp. σA is a bijection),
then the substitution σ induced by σA is atomic (resp. bijective).

We denote by M (resp. S) the set of atomic (resp. bijective and atomic)
substitutions.

Remark 73. By a straightforward induction on depth(α) ∈ N, we can prove
that σ(α)⊥ = σ(α⊥) for every substitution σ and α ∈ D.

Definition 74 (Occurrences of an element of D). For every α ∈ D, we define
sub(α) ∈Mfin(D) by induction on depth(α) ∈ N as follows:

• sub(γ) = [γ] if γ ∈ A ∪ ({+,−} × {∗});

• sub(ι, α, β) = [(ι, α, β)] + sub(α) + sub(β);

• sub(ι, [α1, . . . , αn]) = [(ι, [α1, . . . , αn])] +
∑n

j=1 sub(αj).

For every n ∈ N and (α1, . . . , αn) ∈ D<ω, we set sub(α1, . . . , αn) =∑n
i=1 sub(αi).
For every α ∈ D and r ∈ D<ω, we say that α occurs in r if α ∈

supp(sub(r)), and that there are exactlym occurrences of α in r if sub(r)(α) =
m.

In the sequel we need the notion of injective k-point of D<ω for any k ∈ N,
and for every E ⊆ D<ω the notion of E-atomic point.

Definition 75 (Injective point, k-point, E-atomic point). r ∈ D<ω is injec-
tive if for every γ ∈ A, either γ does not occur in r or there are exactly 2 occur-
rences of γ in r. For every E ⊆ D<ω, we set Einj = {r ∈ E | r is injective}.

Given k ∈ N, we say that r ∈ D<ω is a k-point if, for every m ∈ N and
α1, . . . , αm ∈ D such that (+, [α1, . . . , αm]) occurs in r, we have m = k.

Let E ⊆ D<ω. r ∈ E is E-atomic if for every r′ ∈ E and every substitu-
tion σ such that σ(r′) = r one has σ(γ) ∈ A for every γ ∈ A occurring in r′.
We set Eat = {r ∈ E | r is E-atomic}.

Once the subset E of D<ω is fixed, it makes sense for r ∈ E to say
that it is E-atomic: this means that no other element of E is “more atomic”
than r. In a typed framework, we would not have to define the notion of
E-atomic point, but in our untyped framework we need that: the reason will
be explained after definition 80.

54 CHAPTER 2. RELATIONAL SEMANTICS

2.2 Experiments

Like in [Tor03, dCPT11, dCT12], we use experiments, introduced by Girard
in [Gir87] to compute the interpretation of a proof-net in the coherent and
relational semantics and deeply studied by Tortora de Falco in [Tor00, Tor03].
An experiment (definition 76) can be thought as objects between syntax and
semantics allowing to associate with every ps R a point of D<ω (called result
of the experiment, see definition 77) which is an element of the interpretation
of R in the relational semantics. The interpretation of R in the relational
semantics is the set of results of all the experiments of R (definition 78).
Experiments are deeply related to non-idempotent intersection types and
their derivations in the λ-calculus (see [dC07, dC09, Ehr12]): an experiment
corresponds to a type derivation and the result of an experiment corresponds
to a type. The intersection types system considered in [dC07, dC09, Ehr12]
lacks idempotency and this corresponds to the fact that we use multisets for
interpreting exponentials and not sets as in the set based coherent semantics
introduced by Girard in [Gir87].

The definition of experiment of a ps (the same as that one in [dCT12]) is
inductive and it uses the nesting condition.

Definition 76 (Experiment). Let R ∈ PS. An experiment e of R, denoted
by e : R, is a function associating with every p ∈ P(R) a x ∈Mfin(D) and
with every v ∈ Cbox(R) a finite multiset of finite multisets of experiments
of boxR(v). The definition is by induction on depth(R) ∈ N, and we ask
that card(e(v)) = 1 for every v ∈ Cbox(R) such that depthR(v) = 0, and
card(e(p)) = 1 for every p ∈ P(R) such that depthR(p) = 0. Furthermore the
following conditions are to be fulfilled.

1. For every {p, q} ∈ W(R) such that depthR(p) = 0 = depthR(q):

• if {p, q} ∈ Ax(R) ∪ Cuts(R), e(p) = [α] and e(q) = [β], then
α = β⊥;

• if {p, q} ∈ W(R) r (Ax(R) ∪ Cuts(R)), then e(p) = e(q).

2. For every l ∈ C(R) such that depthR(Ppri
R (l)) = 0:

• if l ∈ C⊗(R) (resp. l ∈ C`(R)), e(Pleft
R (l)) = [α] and e(Pright

R (l)) =

[β], then e(Ppri
R (l)) = [(+, α, β)] (resp. e(Ppri

R (l)) = [(−, α, β)]);

• if l ∈ C1(R) (resp. l ∈ C⊥(R)), then e(Ppri
R (l)) = [(+, ∗)],) (resp.

e(Ppri
R (l)) = [(−, ∗)]);

• if l ∈ C?(R), then e(Ppri
R (l)) = [(−,

∑
p∈Paux

l (R) e(p))].

3. For every v ∈ Cbox(R) such that depthR(boxR(v)) = 0, let e(v) =
[[e1, . . . , env]]:

2.2. EXPERIMENTS 55

• if p is the conclusion1 of boxR(v) such that Ppri
R (v) <R p, then

e(Ppri
R (l)) = [(+,

∑nv
i=1 ei(p))];

• if w ∈ Cbox(boxR(v)), then e(w) =
∑nv

i=1 ei(v);2

• if p ∈ inboxR(v), then e(p) =
∑nv

i=1 ei(p).
3

Let (R, ind) ∈ PSind. An experiment of (R, ind) is an experiment of R.

Given a ps R, experiments of R are functions defined on R allowing to
compute the interpretation of R pointwise. Indeed, for every experiment e of
R, the labels associated by e with the conclusions of R form a tuple called the
result of e representing which is a point of D<ω, so the result of an experiment
is a truly semantic object. The set of results of all the experiments of R is
the interpretation of R in the (muliset based) relational semantics.

Definition 77 (Result of an experiment). Let (R, ind) ∈ PSind with n =
card(P free(R)) and let e be an experiment of R. The result of e in (R, ind) is
|e|ind = (α1, . . . , αn) ∈ Dn such that αi is the unique element of the multiset
e(ind−1(i)), for every i ∈ {1, . . . , n}.

Definition 78 (Interpretation of a proof-structure). Let (R, ind) ∈ PSind

and let n = card(P free(R)). The interpretation of (R, ind) is

J(R, ind)K = {|e|ind ∈ Dn | e is some experiment of R}.

Experiments are defined for whatever ps, including DiLL0-ps. Any deno-
tational semantics of DiLL0-ps provides a semantics for MELL-ps. through
the Taylor expansion. This is what the following proposition says in the case
of relational semantics.

Proposition 79. For every (R, ind) ∈ PSind, one has J(R, ind)K =
⋃
ρ∈R∗J(ρ, ind)K.

Proof. By straightforward induction on card(C(R)) ∈ N. �

Definition 80 (Atomic experiment). Let R ∈ PS. An experiment e of R is
atomic if for every p ∈

⋃
Ax(R), one has e(p) ∈Mfin(A).

In our untyped framework we need to restrict the set E of all results of
all experiments of a ps to the set of the results of the atomic experiments
of this ps, in order to avoid the problem of “infinite η-expansions” which are
semantically “invisible”. Of course, a given point of D<ω can be the result of
an atomic experiment of a ps and the result of a non-atomic experiment of
another ps. However, given (R, ind) ∈ PSind, it makes sense for r ∈ J(R, ind)K
to say that it is J(R, ind)K-atomic: this means that no other element of
J(R, ind)K is “more atomic” than r.

1See remark 42.1.
2This is well defined thanks to the nesting condition and because each promotion cell

in boxR(v) is a cell of R by proposition 41, since tR(l) = ? for every l ∈ L0.
3This is well defined thanks to the nesting condition.

56 CHAPTER 2. RELATIONAL SEMANTICS

Lemma 81. For every (R, ind) ∈ PSind cut-free, one has

J(R, ind)Kat = {|e|ind | e is an atomic experiment of R} .

Proof. By straightforward induction on card(C(R)) ∈ N. �

Lemma 82. Let (R, ind) ∈ PSind be cut-free and deadlock-free. For every
r ∈ J(R, ind)Kinj,at, if r is a 1-point then (r, indr) ' (lin(R), ind).

Proof. By straightforward induction on card(C(R)) ∈ N.WHY?
As r ∈ J(R, ind)K is a 1-point and R is cut-free, necessarily aR(l) = 1 for

every l ∈ C!(R).
If there exists l ∈ Cterm(R) ∩ C?(R) and then �

Roughly speaking, lemma 82 says that, given (R, ind) ∈ PSind, an injective
and atomic 1-point in the interpretation of (R, ind) is the same as (R, ind)
but the arrows of R.

2.3 The relationship between Taylor expansion and
relational semantics

In the intuition of many specialists, (a result of) an experiment of a MELL-ps
R is seen as a DiLL0-ps in the Taylor expansion R∗ of R, and the interpretation
of R in the relational semantics is seen as R∗. But this relationship between
Taylor expansion and relational semantics has been never formulated precisely.
This is what we aim at doing here. Quite surprisingly, the relationship between
a result of an experiment of a MELL-ps R and a DiLL0-ps in R∗ can be stated
in the expected intuitive way only when R is cut-free. This is due to the fact
seen in section ?? that two distinct DiLL0-ps in the Taylor expansion R∗ of a
MELL-ps R (with cuts) having the same normal form.

Definition 83 (From points to pseudo-structures). Let α ∈ D. We define by
induction on depth(α) a pair (α̃, axα) such that α̃ is a pseudo-structure having
only one conclusion (denoted by c(α)) and axα is a function associating with
every l ∈ Cax(α̃) some γ ∈ A, called the label of l as follows:

• if α ∈ A then α̃ = (C, ∅, ∅, ∅, ∅, ∅) where C is the pseudo-cell-base
consisting only of a ax-cell l, and axα(l) = α;

• if α = (+, ∗) (resp. α = (−, ∗)) then α̃ = (C, ∅, ∅, ∅, ∅, ∅) where C is the
pseudo-cell-base consisting only of a 1-cell (resp. ⊥-cell), and axα = ∅
(the empty function);

• if α = (+, α1, α2) (resp. α = (−, α1, α2)) then α̃ = (C, ∅, ∅,W(α̃1)]
W(α̃2)] {w1, w2}, ∅, ∅), where C is the pseudo-cell-base consisting of
the disjoint union of C(α̃1), C(α̃2) and a ⊗-cell (resp. `-cell) l, and
w1 = {c(α1),Pleft

C (l)} and w2 = {c(α2),Pright
C (l)}; moreover axα =

axα1] axα2;

2.3. THE RELATIONSHIP BETWEEN TAYLOR EXPANSION ANDRELATIONAL SEMANTICS57

• if α = (+, [α1, . . . , αn]) (resp. α = (−, [α1, . . . , αn])) with n ∈ N, then
α̃ = (C, ∅, ∅,

⊎
0≤i≤nW(α̃i)]{w1, . . . , wn}, ∅, ∅), where C is the pseudo-

cell-base consisting of the disjoint union of C(α̃1), . . . ,C(α̃n) and a n-ary
!-cell (resp. ?-cell) l with Paux

l (C) = {p1, . . . , pn}, and wi = {c(αi), pi}
for every 1 ≤ i ≤ n; moreover axα =

⊎n
i=1 axαi .

For every n ∈ N and r = (α1, . . . , αn) ∈ Dn, we set r̃ =
⊎n
i=1 α̃i and

axr =
⊎n
i=1 axαi, and we define the function indr : {c(α1), . . . , c(αn)} →

{1, . . . , n} by indr(c(αi)) = i for every 1 ≤ i ≤ n.
Let r ∈ D<ω. We denote by pseudo(r) the set defined as follows: Φ ∈

pseudo(r) iff Φ is obtained from r̃ by connecting (l1, l
′
1), . . . , (ln, l

′
n) (for some

n ∈ N) where l1, l′1, . . . , ln, l
′
n are pairwise distinct ax-cells of r̃ such that

axr(li) = axr(l
′
i).

Remark 84. Let r ∈ D<ω.
r̃ (resp. (r̃, indr)) is a cut-free and deadlock-free pseudo-structure (resp.

indexed pseudo-structure) such that I(Φ) = ∅ and Cprom(Φ) = ∅.
If r is injective then there exists exactly one Φ ∈ pseudo(r) such that

Φ ∈ PPSDiLL0 : this is the Φ ∈ pseudo(r) obtained from r̃ by connecting all
the pairs of distinct ax-cells with the same label in r̃ (there is exactly one way
to do that because of the injectivity of r). We denote such a Φ ∈ pseudo(r)
by r. Clearly, (r, indr) ∈ PPSind

DiLL0
.

We will see that, for every r ∈ D<ω, r can be seen as a sort of canonical
representative of r.

Proposition 85. Let r, r′ ∈ D<ω be injective points. If r ∼ r′ then r ' r′.

Lemma 86. Let (R, ind) ∈ PSind
MELL be cut-free and deadlock-free. For every

ρ ∈ (R, ind)∗ and for every atomic experiment e of ρ, if r is injective then
(r, indr) ' ρ.

Proof. By induction on card(C(R)). �

Lemma 87. Let (R, ind) ∈ PSind
MELL. For every r ∈ J(R, ind)Kat,inj, one has

(r, indr) ∈ (R, ind)∗.

Proof. By induction on card(C(R)). �

Theorem 88. For every (R, ind) ∈ PSind
MELL, If R is cut-free and deadlock-free

then
(R, ind)∗ = {(r, indr) | r ∈ J(R, ind)Kat,inj} .

Proof. Immediate consequence of lemmas 86 and 87. �

58 CHAPTER 2. RELATIONAL SEMANTICS

2.4 The connected case

Definition 89 (Separable ?-cell). Let R ∈ PS and let l ∈ Cterm(R) ∩ C?(R).
l is inseparable if either aR(l) ≤ 1 or there exists v ∈ Cbox(R) such that

depthR(v) = 0 and Paux
l (R) ⊆ auxdR(v).

l is separable if it is not inseparable.

In other words, given a ps R, a terminal ?-cell in R of arity greater than
or equal to 2 is inseparable if all its auxiliary ports are auxiliary doors of one
and only one promotion cell at depth 0 in R.

Remark 90. Let R ∈ PS and let l ∈ Cterm(R) ∩ C?(R). According to the
nesting condition, if l is separable then aR(l) ≥ 2 and:

• either there exists p ∈ Paux
l (R) such that p /∈ Auxdoors(R);

• or for every p ∈ Paux
l (R) there exists v ∈ Cbox(R) such that depthR(v) =

0 and p ∈ auxdR(v); moreover, there exist p, p′ ∈ Paux
l (R) and v, v′ ∈

Cbox(R) such that v 6= v′, depthR(v) = 0 = depthR(v′) and p ∈ auxdR(v)
and p′ ∈ auxdR(v′).

We give a notion of measure of a ps.

Definition 91 (aux -measure). Let R ∈ PS and let m?
R be a multiset on

N defined by m?
R(i) = card({l ∈ C?(R) | aR(l) = i}) for every i ∈ N. The

aux -measure of R is #(R) = (m?
R, card(C(R)), card(P(R))).

Remark 92.

1. Given R ∈ PS, m?
R is a finite multiset, as C?(R) is a finite set.

2. For every R,R′ ∈ PS, we can establish an order relation between m?
R

and m?
R′ , given by the usual multiset order:

m?
R ≤ m?

R′ ⇔ for any i ∈ N, if m?
R(i) > m?

R′(i) then there is j > i such that m?
R(j) < m?

R′(j)

Definition 93 (1- and 2-DiLL0-ps of a MELL-ps). Let R ∈ PSMELL and let
Φ ∈ R∗.

Φ is the 1-(resp. 2-)DiLL0-ps of R if for every l ∈ C!(Φ), one has aΦ(l) = 1
(resp. aΦ(l) = 2).

Definition 94 (1-projection). Let R ∈ PSMELL and let Φ be a 2-DiLL0-ps of
R. We define a 3-tuple (1(Φ), πP(Φ), πC(Φ)) as follows, by induction on #(Φ)
with the lexicographical order on N3.

• If R is the empty ps, then 1(Φ) is the empty ps, πP(Φ) and πC(Φ) are
the empty functions.

•

2.4. THE CONNECTED CASE 59

• If aΦ(l) = 0 for any l ∈ C(Φ), then 1(Φ) = Φ, πP(Φ) = idP(Φ) and
πC(Φ) = idC(Φ);

• If there exists l ∈ Cterm(Φ) ∩ C⊗,`(Φ), let Paux
l (Φ) = {pl, pr} with

pl = Pleft
Φ (l) and pr = Pright

Φ (l), let Φ′ be the erasure of Pl(Φ) in
Φ; by induction hypothesis, one has #(Φ′) < #(Φ), so there exists
(1(Φ′), πP(Φ′), πC(Φ′)). We set:

– 1(Φ) is the add of l in 1(Φ′) in such a way that Pleft
1(Φ)(l) = pl,

Pright
1(Φ)(l) = pr and if {q, pl} ∈ W(Φ) (resp. {q′, pr} ∈ W(Φ)) then
{q, pl} ∈ W(1(Φ)) (resp. {q′, pr} ∈ W(Φ));

– πP(Φ) = πP(Φ′) ∪ idPl(Φ);

– πC(Φ) = πC(Φ′) ∪ id{l}.

• If there exists l ∈ Cterm(Φ) ∩ C?(Φ) such that either there exists p ∈
Paux
l (Φ) such that p /∈ εΦ(l′) for any l′ ∈ C!(Φ), or there exist

Lemma 95. Let Φ be a 2-DiLL0-ps and let R ∈ PSMELL be such that
Φ, 1(Φ) ∈ R∗. For every R′ ∈ PSMELL, if Φ, 1(Φ) ∈ R′∗ then R ' R′.

Proof. We prove by induction on that R = R′ up to isomorphisms. For
the sake of simplicity, we ignore in this proof all the problems related to
isomorphisms.

We show �

The following theorem says that a cut-free and deadlock-freeMELL-proof-
net R is completely characterized by its atomic 2-point in its interpretation
in the relational semantics.

Theorem 96. Let r, r′ ∈ D<ω be 2-points, let (R, ind), (R′, ind′) ∈ PNind be
cut-free, deadlock-free and such that r ∈ J(R, ind)Kinj,at and r′ ∈ J(R′, ind′)Kinj,at.
If r = r′ then (R, ind) ' (R′, ind′).

60 CHAPTER 2. RELATIONAL SEMANTICS

Part II

Call-by-value lambda calculus

61

Chapter 3

About a call-by-value
λ-calculus

First formulated by Alonzo Church in 1936, λ-calculus is a formal system in
mathematical logic and theoretical computer science for expressing computa-
tion by way of variable binding and substitution. It found early successes
in the area of computability theory, such as a negative answer to Hilbert’s
Entscheidungsproblem. As pointed out by Peter Landin’s 1965 paper [Lan65],
sequential procedural programming languages can be understood in terms
of the λ-calculus, which provides the basic mechanisms for procedural ab-
straction and procedure (subprogram) application. The λ-calculus may be
seen as the idealized prototype of functional programming languages, like
Lisp, Haskell or the various dialects of ML. Under this view, β-reduction
(the operation performing substitution of a bound variable for an argument)
corresponds to a computational step.

Because of the importance of the notion of variable binding and substitu-
tion, there is not just one system of λ-calculus, and in particular there are
typed and untyped variants. Historically, the most important system was
the untyped λ-calculus, in which function application has no restrictions (so
the notion of the domain of a function is not built into the system). In the
Church–Turing Thesis, the untyped lambda calculus is claimed to be capable
of computing all effectively calculable functions; actually untyped λ-calculus
is equivalent to all the models of computation having the highest expressive
power nowadays known, like Turing machines and recursive functions. The
typed λ-calculus is a variety that restricts function application, so that func-
tions can only be applied if they are capable of accepting the given input’s
“type” of data.

Another variant of λ-calculus is the “call-by-value” λ-calculus. The most
commonly used parameter passing policy for programming languages is call-
by-value (CBV). Landin in [Lan65] pioneered a CBV formal evaluation for a
lambda-core of ALGOL60 (named ISWIM) via the SECD abstract machine.

63

64 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

Ten years later, Plotkin in [Plo75] introduced the λβv -calculus in order to
grasp the CBV paradigm in a pure lambda-calculus setting. The λβv -calculus
narrows the β-reduction rule by allowing the reduction of a redex (λx t)u,
only in case u is a value, i.e. a variable or an abstraction.

3.1 A call-by-value λ-calculus

We will study now ΛCBV, a call-by-value λ-calculus introduced in [Ehr12] by
Ehrhard and inspired by his analysis of the relational model for Linear Logic.

3.1.1 The syntax of ΛCBV

Let V be a countable set whose elements, denoted by x, y, z, . . . , are called
variables.

Definition 97. We define the elements of the sets Λt (terms), Λv (values),
ΛCBV (expressions) by mutual induction as follows:

Λt L,M,N ::= (M)N | (V)! terms
Λv U, V,W ::= x | λxM values
ΛCBV D,E, F ::= M | V expressions

Note that ΛCBV = Λt] Λv. Terms of the shape (V)! (resp. (M)N) for
some value V (resp. terms M and N) are called promoted values (resp.
applications). Terms of the shape (M)N for some terms M and N are called
applications, M (resp. N) is in function (resp. argument) position. Values of
the shape λxM for some term M are called abstractions.

Notation. We follows the Krivine’s notation (see [Kri93]) for applications,
where the parentheses are on the function. For instance, the term (M)(N)L
according to our notation is the term M(NL) according to Barendregt’s
notation (see [Bar84]).

Let M,N1, . . . , Nn be terms, with n ∈ N: if no ambiguity arise, often we
use the notation (M)N1 . . . Nn or MN1 . . . Nn for (. . . ((M)N1) . . .)Nn, in
particular if n = 0 then it stands for M .

If n = 0, (N1) . . . (Nn)M stands for M .
If V is a value, often we write V ! instead of (V)!.

Definition 98. With every expression E is associated its size size(E) ∈ N∗,
defined by induction on E as follows:

• size(x) = 1;

• size(V !) = size(V) + 1;

• size(λxM) = size(M) + 1;

• size(MN) = size(M)+size(N)+
1.

3.1. A CALL-BY-VALUE λ-CALCULUS 65

For every expression E, size(E) is the number of rules of definition 97
used to build E, in other words it is the sum of the nodes in the tree-like
representation T@M of M .

Due to the presence of constructor ()! (which allows to separate terms and
values into two distinct sets), the set ΛCBV of expressions does not coincide
with the set Λ of ordinary λ-terms. By the way, there is an obvious “forgetful
functor” F from ΛCBV to Λ, defined as follows (by induction on the expression
in ΛCBV):

F (x) = x F (λxM) = λxF (M)
F (V !) = F (V) F (MN) = F (M)F (N)

Definitions of free variables, α-equivalence and substitution (avoiding
variable capture) are extended to expressions as expected. For instance, the
free occurrences of a variable x in an expression E are defined, by induction
on E, as follows :

• if E is the variable x, then the occurrence of x in E is free;

• if E = (M)N for some terms M and N , then the free occurrences of x
in E are those of x in M and N ;

• if E = λyM for some term M , the free occurrences of x in E are those
of x in M , except if x = y; in that case, no occurrence of x in E is free.

• if E = (V)! for some value V , the free occurrences of x in E are those
of x in V .

A free variable in an expression E is a variable which has at least one
free occurrence in E; the set of free variables in E is denoted by fv(E). An
expression which has no free variable is said closed. A bound variable in an
expression E is a variable which occurs in E just after the symbol λ. In an
expression λxM the λx before M binds the free occurrences of x in M .

We work up to α-equivalence.
As another example of notion coming from ordinary λ-calculus trivially

adapted to ΛCBV, the operation of substitution avoiding variable capture is
extended by setting

V ![W1/x1, . . . ,Wn/xn] = (V [W1/x1, . . . ,Wn/xn])!

for any values V,W1, . . . ,Wn, variables x1, . . . , xn and n ∈ N. Notice that
the substitution is defined only for values replacing variables. The following
lemma extends at ΛCBV a substitution lemma of ordinary λ-calculus.

Lemma 99.

1. Let E be an expression, let V,W be values and let x, y be variables. If
x /∈ fv(W) ∪ {y} then E[V/x][W/y] = E[W/y][V [W/y]/x].

66 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

2. If E is a vale (resp. a term), V is a value and x is a variable, then
E[V/x] is a value (resp. a term).

Proof.

1. By induction on the expression E. The only novelty is the case where
E = U ! for some value U : by applying induction hypothesis the identity
holds.

2. By a straightforward induction on the expression E.
�

Remark 100. It follows immediately from definition that:

1. Every term is in the form

(V !)M1 . . .Mm and (N1) · · · (Nn)W !

where V and W are values, m,n ∈ N, Mi and Nj are terms for every
1 ≤ i ≤ m and 1 ≤ j ≤ n; both of these forms are unique, and m = 0
iff n = 0; moreover if m = 0 (i.e. n = 0) then V = W , otherwise
Mm = (N2) · · · (Nn)W ! and N1 = (V !)M1 . . .Mm−1.

2. As any term has always a finite length, applying recursively the left
(resp. right) decomposition in remark 100.1 yields that every term M
either is such thatM = V ! for some value V or there exist ` ∈ N, values
V, V0, . . . , V` and terms L0, . . . , L` such that:

• L0 = (V !)V !
0L01 · · ·L0k0 (resp. L0 = (L01) · · · (L0k0)(V !)V !

0) for
some k0 ∈ N and terms L01, . . . , L0k0 ;

• for every 1 ≤ i ≤ `, we have Li = (V !
i)Li−1Li1 · · ·Liki (resp. Li =

(Li1) · · · (Liki)(Li−1)V !
i) for some ki ∈ N and terms Li1, . . . , Liki ;

• M = L` .

Both of this decompositions are unique. It is more natural to consider
these decompositions as a binary tree, see §3.4.

3. As any term has always a finite length and any value is either a variable
or of the shape λxM for some termM , applying recursively the left (resp.
right) decomposition in remark 100.2 yields that every term M either isWHY?
such that M = y! for some variable y or there exist m, `0, . . . , `m ∈ N,
terms M0, . . . ,Mm, a variable y and for every 0 ≤ i ≤ m values
Vi0, . . . , Vi`i and terms Li0, . . . , Li`i , such that:

• L00 = (y!)V !
00L001 · · ·L00k00 (resp. L00 = (L001) · · · (L00k0)(y!)V !

i0)
for some ki0 ∈ N and terms Li01, . . . , Li0k0 ;

3.1. A CALL-BY-VALUE λ-CALCULUS 67

• for every 1 ≤ j ≤ `i, we have Lij = (V !
ij)Lij−1Lij1 · · ·Lijkij (resp.

Lij = (Lij1) · · · (Lijkij)(Lij−1)V !
j) for some kj ∈ N and terms

Lj1, . . . , Ljkj ;

• Mi = Li`i .

• for every 1 ≤ i ≤ m:

– Li0 = ((λxiMi−1)!)V !
i0Li01 · · ·Li0ki0 (resp. Li0 = (Li01) · · · (Li0k0)(λxiM

!
i−1)V !

i0)
for some ki0 ∈ N and terms Li01, . . . , Li0k0 ;

– for every 1 ≤ j ≤ `i, we have Lij = (V !
ij)Lij−1Lij1 · · ·Lijkij

(resp. Lij = (Lij1) · · · (Lijkij)(Lij−1)V !
j) for some kj ∈ N and

terms Lj1, . . . , Ljkj ;
– Mi = Li`i .

•

Both of this decompositions are unique. It is more natural to consider
these decompositions as an iteration of binary trees, see §3.4.

4. Every closed value is in the form λxN , where N is a term with fv(N) ⊆
{x}.

Definition 101. For every expression E, we define by induction on E the
set sub(E) of the subexpressions of E as follows:

sub(x) = {x} sub(λxM) = sub(M) ∪ {λxM}
sub(V !) = sub(V) ∪ {V !} sub(MN) = sub(M) ∪ sub(N) ∪ {(M)N}

A subterm (resp. subvalue) of an expression E is a term (resp. value) which
is a subexpression of E.

Definition 102 (βv- and β̂v-redex). A β-redex is a term of the shape
(λxM)!N for some terms M and N . A βv-redex is a term of the shape
(λxM)!V ! for some value V and term M , its contractum is the term M [V/x].

A σ1(resp. σ′3)-redex is a term of the shape (λxM)!NL (resp. (M)(λxL)!N)
for some termsM , N and L with x /∈ fv(L) (resp. x /∈ fv(M)), its contractum
is the term (λxML)!N . A σ3-redex is a σ′3-redex (M)(λxL)!N such that
M = V ! for some value V .

A σv(resp. σ′v)-redex is either a σ1-redex or a σ3(resp. σ′3)-redex. A
βvσ(resp. βvσ′)-redex is either a βv-redex or a σv(resp. σ′v)-redex.

Let E be an expression and let R ∈ {β, βv, σ1, σ3, σ
′
3, σv, σ

′
v, βvσ, βvσ′}. A

R-redex in E is an occurrence in E of a subterm of E which is a R-redex. A
R̂-redex in E is a R-redex in E which is not in any subvalue of E. We say
that E contains a R(resp. R̂)-redex if there is a R(resp. R̂)-redex in E.

In order to compare βv-redexes in ΛCBV with β-redexes in ordinary (call-
by-name) λ-calculus by means of the “forgetful functor” F , we observe that if a

68 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

termM ∈ ΛCBV is a βv-redex then F (M) is a β-redex (in Λ), but the converse
does not hold: for instance, M = (λxx!)!(y!)z! is not a βv-redex, differently
from F (M) = (λxx)(y)z which is a β-redex. Indeed for every term t ∈ Λ
there exists a βv-redex M ∈ ΛCBV such that F (M) = t iff t = (λxu)v for
some u, v ∈ Λ such that v is a variable or an abstraction. Essentially, modulo
the “forgetful functor” F , a βv-redex is a β-redex such that its argument is a
value.

A β̂v-redex can be seen as a “outermost” βv-redex, that is a βv-redex not
contained in any other βv-redex.

Remark 103.

1. Every term of the shape V ! for some value V contains no β̂v-redexes,
indeed a variable is not a β̂v-redex and, for every term N , any possible
β̂v-redex in N is “invisible” in (λxN)! since λxN is a subvalue of (λxN)!.

On the contrary, a value V (and so a term V !) might contains a βv-redex.
For instance (λy x!)!x′! is a βv-redex in the value λd(λy x!)!z! (and in
the term (λd(λy x!)!z!)!).

2. If a term contains several β̂v-redexes then they are non-overlapping,
i.e. they have no common occurrences of subexpressions. Indeed, a
β̂v-redex is of the shape (λxN)!V ! for some term N and value V , where
(λxN)! and V ! contain no β̂v-redexes (see remark 103.1).

The following definitions will be used to define and characterize binary
relations on the set ΛCBV of expressions.

Definition 104 (Contextual and applicative closure). Let R be a binary
relation on ΛCBV.

We say that R passes to context (resp. R passes to applicative contexts)
if R is such that the following conditions 1, 2, 3 and 4 (resp. 1 and 2) hold,
for any terms M,M ′, N and values V, V ′:

1. if M R M ′ then MN R M ′N ;

2. if M R M ′ then NM R NM ′;

3. if V R V ′ then V ! R V ′!;

4. if M R M ′ then λxM R λxM ′.

The contextual closure of R is the binary relation R′ on ΛCBV defined by
applying, a finite number of times, the following rules:

M R N
R

M R′ N
M R′ M ′

@l
MN R′ M ′N

N R′ N ′
@r

MN R′ MN ′

M R′ M ′
λ

λxM R′ λxM ′
V R′ W

!
V ! R′ W !

3.1. A CALL-BY-VALUE λ-CALCULUS 69

The applicative closure of R is the binary relation R′ on ΛCBV defined by
applying, a finite number of times, the following rules:

M R N
R

M R′ N
M R′ M ′

@l
MN R′ M ′N

N R′ N ′
@r

MN R′ MN ′

In the sequel we will consider contextual or applicative closures R′ of
relations R defined only by axiom rules. Therefore, thanks to the R-rule,
we are entitled to talk about the axiom rules of R as derivation rules of the
relation R′.

Notation. Let R be a binary relation on a set X.
We denote by R= (resp. R+; R∗; RT) the reflexive (resp. transitive;

reflexive-transitive; symmetric) closure of R. We denote by 'R the symmetric
and reflexive-transitive closure of R, i.e. 'R = (RT)∗.

Let E,F ∈ X and n ∈ N: we say that E R-reduces to F in n steps (and
we write E Rn F) if there exists a finite sequence (Ei)0≤i≤n of elements of X
such that E = E0, F = En and Ei R Ei+1 for every 0 ≤ i < n.

Remark 105.

1. If R ⊆ Λt×Λt and R′ is the contextual (resp. applicative) closure of R,
then R′ ⊆ (Λt × Λt) ∪ (Λv × Λv) (resp. R′ ⊆ Λt × Λt). The proof is by
a straightforward induction on the derivation of E R′ F , where E and
F are expressions.

2. If R is a binary relation on ΛCBV passing to context (resp. passing to
applicative context) then R=, R+, R∗, RT and 'R pass to context
(resp. pass to applicative context).

We recall some standard definitions in term rewriting systems.

Definition 106. Let R be a binary relation on a set X and let E ∈ X.
E is a R-normal form or is R-normal if there is no expression E′ such

that E R E′.
A R-normal form of E is a R-normal form E′ such that E β∗v E

′.
E is R-normalizable if there exists a R-normal form of E.
E is R-strongly normalizable if there is no infinite sequence (Ei)i∈N of

elements of X such that E0 = E and Ei R Ei+1 for every i ∈ N.

Definition 107. Let R be a binary relation on a set X.
R is strongly (resp. locally) confluent if for every E,E1, E2 ∈ X such

that E R Ei for i ∈ {1, 2} there exists E′ such that Ei R E′ (resp. Ei R∗ E′)
for i ∈ {1, 2}.

R is confluent if R∗ is strongly confluent.

We recall a well-known result of term rewriting system.

Theorem 108. Let R be a confluent binary relation on a set X and let
E1, E2 ∈ X. If E1 'R E2 then there exists E ∈ X such that E1 R

∗ E and
E2 R

∗ E.

70 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

3.1.2 Some call-by-value β-reductions

The following notions of βv- and β̂v-reduction are introduced by Ehrhard in
[Ehr12]. They formulate respectively the the well-known ([Plo75]) call-by-
value and lazy (or weak) call-by-value β-reduction for the syntax presented in
§3.1.1. Some results of this section are nothing but a reformulation in ΛCBV

of well-known results for call-by-value λ-calculus, the novelty is in pointing
out the deep symmetries in βv- and especially β̂v-reduction.

Definition 109 (βv- and β̂v-reduction). The βv-reduction (resp. weak βv-
reduction or β̂v-reduction), denoted by βv (resp. β̂v), is the contextual (resp.
applicative) closure of the binary relation →βv on Λt defined by the following
rule:

β
(λxM)!V ! →βv M [V/x]

where M is a term and V is a value.

Remark 110. By remark 105, βv ⊆ (Λt ×Λt)∪ (Λv ×Λv) and β̂v ⊆ Λt ×Λt.

In order to compare our call-by-value λ-calculus with ordinary (call-by-
name) λ-calculus with respect to reductions by means of the “forgetful functor”
F (see p. 65), we can prove, by straightforward induction on E ∈ ΛCBV, that
if E and E′ are expressions such that E βv E

′ then F (E) β F (E′), but
the converse does not hold: for instance M = (λxx!)(y!)z! is βv-normal (in
ΛCBV), on the contrary F (M) = (λxx)(y)z β (y)z (in Λ). In other words
modulo the “forgetful functor” F , the call-by-value λ-calculus allows to reduce
a β-redex only if its argument is a value, i.e. a variable or an abstraction (see
the β-rule for βv- and β̂v-reductions), whilst there is no such a restriction in
ordinary λ-calculus.

Remark 111.

1. It is immediate to check that for every expression E (resp. term M),
there exists an expression E′ (resp. a term M ′) such that E βv E

′ (resp.
M β̂v M

′) iff E (resp. M) contains a βv(resp. β̂v)-redex. Therefore,
an expression (resp. a term) is βv(resp. β̂v)-normal iff it contains no
βv(resp. β̂v)-redex.

2. It is easy to verify that for all expressions E,E′ (resp. terms M,M ′),
E βv E

′ (resp. M β̂v M
′) iff E′ (resp. M ′) is obtained from E (resp.

M) by replacing exactly one βv-(resp. β̂v-)redex in E (resp. M) with
its contractum.

3. Clearly, β̂v ⊆ βv (the proof is by induction on the length of the derivation
of M β̂v M

′). More precisely, weak βv-reduction is the βv-reduction
with the restriction that it does not reduce under the λ’s (whence the

3.1. A CALL-BY-VALUE λ-CALCULUS 71

word “weak”): β̂v-reduction reduces a βv-redex only if there is no λ
in front of it. In particular, every βv-normal form is β̂v-normal; the
converse fails to hold: for instance, (λd(λy x!)!z!)! is β̂v-normal but not
βv-normal since (λd(λy x!)!z!)! βv (λxz!)!.

4. Terms of the shape V ! where V is a value are β̂v-normal forms; on the
contrary, a value V and so a term V ! are not necessarily βv-normal (see
remarks 103.1 and 111.1)

5. All the critical pairs for β̂v-reduction (i.e. terms M,M1,M2 such that
M β̂v M1 and M β̂v M2 with M1 6= M2) arise from non-overlapping
β̂v-redexes in the same term (see remarks 103.2 and 111.2)

6. For every expressions E and E′, if E βv E
′ then fv(E′) ⊆ fv(E) (the

proof is by a straightforward induction on E). In particular, for every
closed expression E, if E βv E

′ then E′ is closed.

In [Ehr12] Ehrhard showed that βv-reduction is confluent and that β̂v-
reduction enjoys the following propriety: a term is β̂v-normalizable iff its
interpretation in the relational model for ΛCBV defined in [Ehr12] is not empty.
The latter result is analogous to that one in ordinary λ-calculus stating that a
(ordinary) term is head-normalizable iff its interpretation in the Engler model
is empty. This allows to draw a parallel between β̂v-reduction and heand
reduction in ordinary λ-calculus. The most apparent difference between these
two things is that β̂v-reduction is not a reduction strategy, that is a term
in ΛCBV might contains several β̂v-redexes, whilst every term in ordinary
λ-calculus can have at most one head redex. We will show that this is only a
seeming difference.

The following notions of size will be used several times, they are well-
defined for all terms by remark 100.1.

Definition 112. For every term M , their sizes #lM ∈ N and #rM ∈ N are
defined by induction on M as follows:

#lM =



0 if M = V ! for some value V ;
0 if M = (V !)W !N1 . . . Nn for some n∈N, terms N1, . . . , Nn and

values V,W ;
#lL1 + #lL2 + 1 if M = ((V !)(L1)L2)N1 . . . Nn for some n ∈ N, terms N1, . . . , Nn,

L1, L2 and value V .

#rM =



0 if M = V ! for some value V ;
0 if M = (N1) · · · (Nn)(W !)V ! for some n∈N, terms N1, . . . , Nn and

values V,W ;
#rL1 + #rL2 + 1 if M = (N1) · · · (Nn)((L1)L2)V ! for some n ∈ N, terms N1, . . . , Nn,

L1, L2 and value V .

72 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

The closed β̂v-normal forms are promoted values easily characterizable.

Proposition 113. Let M be a closed term: M is a β̂v-normal form iff
M = (λxN)! for some term N with fv(N) ⊆ {x}.

Proof.

⇐: Trivial (it is not necessary to suppose M is closed, see also remark
111.4).

⇒: The proof is by induction on the size #lM ∈ N. By remark 100.1,
M = (V !)M1 . . .Mm for some m ∈ N, terms M1, . . . ,Mm and value V .
As M is closed, V is a closed value, thus V = λxN for some term N
with fv(N) ⊆ {x}.
If #lM = 0 thenm = 0 and soM = (λxN)!, otherwise it should bem >
0 and M1 = W ! for some value W and so M = (λxN)!W !M2 . . .Mm,
that is impossible because M is β̂v-normal.

If #lM > 0 then it should be m > 0 and M1 = (L1)L2 for some closed
terms L1, L2 which are β̂v-normal forms (since M is a β̂v-normal form),
hence L1 = (λx1N1)! and L2 = (λx2N2)! for some terms N1, N2 by
induction hypothesis, thus M = ((V !)((λx1N1)!)(λx2N2)!)M2 . . .Mm,
that is impossible because M is β̂v-normal.

Therefore the only possibility is that M = (λxN)! for some term N
with fv(N) ⊆ {x}.

�

Theorem 114 (Strong confluence for β̂v). Let M,M1,M2 be terms: if
M β̂v M1 and M β̂v M2 with M1 6= M2, then there exists a term N such
that M1 β̂v N and M2 β̂v N .

Proof. By induction on the term M . Let us consider the last rule of the
derivation of M β̂v M1.

If it is the β-rule, then M = (λxN1)!V ! and M1 = N [V/x], so there is
no M2 6= M1 such that M β̂v M2, since (λxN1)! and V ! are β̂v-normal forms
(see remark 111.4).

If it is the @l-rule, then M = N1N2 and M1 = N ′1N2 with N1 β̂v N
′
1,

hence N1 6= (λxM ′)! for any term M ′ (see remark 111.4). Thus there are
only two cases : either M2 = N1N

′
2 with N2 β̂v N

′
2 and then M1 β̂v N

and M2 β̂v N where N = N ′1N
′
2; or M2 = N ′′1N2 with N1 β̂v N

′′
1 6= N ′1 by

hypothesis, and then there exists a term L such that N ′1 β̂v L and N ′′1 β̂v L
by induction hypothesis, so M1 = N ′1N2 β̂v N and M2 = N ′′1N2 β̂v N where
N = LN2.

If it is the @r-rule, then M = N1N2 and M1 = N1N
′
2 with N2 β̂v N

′
2,

hence N2 6= V ! for any value V (see remark 111.4). Thus there are only two
cases: either M2 = N ′1N2 with N1 β̂v N

′
1 and then M1 β̂v N and M2 β̂v N

3.1. A CALL-BY-VALUE λ-CALCULUS 73

where N = N ′1N
′
2; or M2 = N1N

′′
2 with N2 β̂v N

′′
2 6= N ′2 by hypothesis, and

then there exists a term L such that N ′2 β̂v L and N ′′2 β̂v L by induction
hypothesis, so M1 = N1N

′
2 β̂v N and M2 = N1N

′′
2 β̂v N where N = N1L.

�

The following corollary of theorem 114 is a well known result which holds
for every strongly confluent term rewriting system.

Corollary 115 (Confluence, uniqueness of normal form, number of steps).

1. β̂v is confluent. More precisely, let M,M1,M2 be terms: if M β̂∗v M1

in m1 ∈ N steps and M β̂∗v M2 in m2 ∈ N steps, then there exists a
term N such that M1 β̂

∗
v N in n1 ≤ m2 steps and M2 β̂

∗
v N in n2 ≤ m1

steps.

2. Every term M has at most a β̂v-normal form, and if that exists then all
the β̂v-reductions from M to its β̂v-normal form have the same number
of steps.

3. Every term M is β̂v-strongly normalizable iff it is β̂v-normalizable.

Proof.

1. By induction on m1 +m2 ∈ N.
If m2 = 0 then M = M2, hence M2 β̂

∗
v M1 in m1 steps (and M1 β̂

∗
v M1

in 0 steps).

If m1 = 0 then M = M1, hence M1 β̂
∗
v M2 in m2 steps (and M2 β̂

∗
v M2

in 0 steps).

If m1,m2 > 0 then there exist terms L1, L2 such that M β̂v L1 and
M β̂v L2: by theorem 114, there exist a term L such that L1 β̂

∗
v L and

L2 β̂
∗
v L in at most one step. By induction hypothesis (as L2 β̂

∗
v M2 in

m2 − 1 steps), there exists a term N ′ such that L β̂∗v N
′ in ` ≤ m2 − 1

steps and M2 β̂
∗
v N

′ in at most one step. Therefore L1 β̂
∗
v M1 in m1− 1

steps and L1 β̂
∗
v N

′ in `′ ≤ `+ 1 ≤ m2 steps, so there exists a term N
such that M1 β̂

∗
v N in n1 ≤ `′ ≤ m2 steps and N ′ β̂∗v N in n ≤ m1 − 1

steps by induction hypothesis, thus M2 β̂
∗
v N in n2 ≤ n+ 1 ≤ m1 steps.

2. IfM β̂∗v M1 andM β̂∗v M2 whereM1 andM2 are β̂v-normal forms, then
there exists a term N such that M1 β̂

∗
v N and M2 β̂

∗
v N by corollary

115.1, so M1 = N = M2 since M1 and M2 are β̂v-normal forms.

Let M ′ be the β̂v-normal form of M . We prove by induction on m ∈ N
that if M β̂∗v M

′ in m steps, then every β̂v-reduction from M to M ′

has length m.

• If m = 0 then M = M ′ and so M is a β̂v-normal form, hence the
β̂v-reduction of 0 steps is the only β̂v-reduction from M to M ′.

74 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

• If m > 0 then there exists a term M1 such that M β̂v M1 and
M1 β̂

∗
v M

′ in m− 1 steps. We show that for every term M2 and
m2 ∈ N, if M β̂∗v M2 in m2 steps and M2 β̂

∗
v M

′ then M2 β̂
∗
v M

′

in m′ steps with m = m2 +m′.
If m2 = 0 then M2 = M β̂∗v M

′ in m steps by hypothesis, so we
conclude by taking m′ = m.
If m2 > 0 then there exists a term N such that M β̂v N and
N β̂∗v M2 in m2−1 steps. If N = M1 then N β̂∗v M

′ in m−1 steps
by hypothesis, soM2 β̂

∗
v M

′ inm′ steps withm−1 = m2−1+m′ by
induction hypothesis applied toM1, thusm = m2+m′. If N 6= M1

then there exists a term N ′ such that M1 β̂v N
′ and N β̂v N

′ by
theorem 114, hence N ′ β̂∗v M ′ in n steps with n+ 1 = m− 1 by
induction hypothesis applied to M1, so N β̂∗v M

′ in n+ 1 = m− 1
steps, therefore by applying the induction hypothesis to N we
conclude that M2 β̂

∗
v M

′ in m′ steps with m− 1 = m2 − 1 +m′,
hence m = m2 +m′.

3. The left-to-right direction is obvious. For the right-to-left direction, let
us suppose by absurd that there exists a β̂v-normalizable term M which
is not β̂v-strongly normalizable: then there should exist the β̂v-normal
form M ′ of M and an infinite sequence of terms (Mi)i∈N such that
M = M0 and Mi β̂v Mi+1; if M β̂∗v M

′ in m steps, then Mm = M ′ by
corollary 115.2, that is impossible because Mm β̂v Mm+1 and so Mm is
not β̂v-normal.

�

The β̂v-reduction is not necessarily normalizing: ifM = (λx(x!)x!)!(λx(x!)x!)!

then M β̂v M and there is only one β̂v-redex in M , so M is a not β̂v-
normalizable (closed) term. Moreover, the fact that a term is strongly
β̂v-normalizable does not imply that it is βv-normalizable: for instance, if M
is as above then (λzM)! is a β̂v-normal form but (λzM)! βv (λzM)!.

Definition 116 (Leftmost and rightmost(-outermost) reduction). We define
two binary relations on Λt:

• the weak leftmost(-outermost) βv-reduction, denoted by β̂vl, whose rules
are:

β
(λxM)!V ! β̂vl M [V/x]

M β̂vl M
′

@l

MN β̂vl M
′N

N β̂vl N
′

@rv

V !N β̂vl V
!N ′

• the weak rightmost(-outermost) βv-reduction, denoted by β̂vr, whose
rules are:

3.1. A CALL-BY-VALUE λ-CALCULUS 75

β
(λxM)!V ! β̂vr M [V/x]

M β̂vr M
′

@lv

MV ! β̂vr M
′V !

N β̂vr N
′

@r

MN β̂vr MN ′

Remark 117. Clearly, β̂vl, β̂vr ⊆ β̂v (the proof is by induction on the length
of the derivation of M β̂vl M

′ or M β̂vr M
′ respectively). As a consequence,

every β̂v-normal form is β̂vl- and β̂vr-normal (in particular, for every value V ,
V ! is β̂vl- and β̂vr-normal, see remark 111.4). The converse fails to hold; for
instance, if I = (λxx!)!, xi is a variable and Vi is a value for i ∈ {1, 2}, then

M =
(
(x!

1)V !
1

)(
(II)(I)I

)
(x!

2)V !
2

is a β̂vl- and β̂vr-normal form but M β̂+
v ((x!

1)V !
1)(I)(x!

2)V !
2 .

We can characterize terms which are not β̂vl- or β̂vr-normal (see also
remark 100.2).

Theorem 118. Let M,M ′ be terms: M β̂vl (resp. β̂vr) M ′ iff there exist
` ∈ N, values V0, . . . , V` and terms L0, . . . , L`, L

′
0, . . . , L

′
` such that:

• (λxN)!V !
0L01 · · ·L0k0 (resp. L0 = (L01) · · · (L0k0)(λxN)!V !

0) and (N [V0/x])L01 · · ·L0k0

(resp. L′0 = (L01) · · · (L0k0)N [V0/x]) for some k0 ∈ N and terms
N,L01, . . . , L0k0 ;

• for every 1 ≤ i ≤ `, we have (V !
i)Li−1Li1 · · ·Liki (resp. Li = (Li1) · · · (Liki)(Li−1)V !

i)
and (V !

i)L′i−1Li1 · · ·Liki (resp. L′i = (Li1) · · · (Liki)(L′i−1)V !
i) for some

ki ∈ N and terms Li1, . . . , Liki ;

• M = L` and M ′ = L′` .

Furthermore, both of these decompositions, if any, are unique.

Proof. We prove the statement about β̂vr, the proof for the β̂vl case is
perfectly symmetric.

⇐: Proof by induction on ` ∈ N.

If ` = 0, thenM = (L01) · · · (L0k0)(λxN)!V !
0 andM ′ = (L01) · · · (L0k0)N [V0/x]

for some k0 ∈ N, value V0 and terms N,L01, . . . , L0k0 ; hence M β̂vr M
′

by applying the β-rule and k0 times the @r-rule.

If ` > 0, thenM = (L`1) · · · (L`k`)(Lk`−1)V !
` andM

′ = (L`1) · · · (L`k`)(L′k`−1)V !
`

for some k` ∈ N, value V` and terms L`1, . . . , L`k` ; by induction hypoth-
esis, L`−1 β̂vr L

′
`−1, so M β̂vr M

′ by applying the @vr-rule and k` times
the @r-rule.

76 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

⇒: The uniqueness is obvious. The proof for the existence is by induction
on the length of the derivation of M β̂v M

′. Let us consider the last
rule.

If the last rule is β, then M = (λxN)!V ! and M ′ = N [V/x] for some
term N and value V , so we conclude by taking ` = 0 = k0.

If the last rule is @lv, then M = NV ! and M ′ = N ′V ! for some value
V and terms N,N ′ such that N β̂vr N

′; by induction hypothesis, there
exist ` ∈ N, terms L0, . . . , L`, L

′
0, . . . , L

′
` and values V0, . . . , V` such

that:

– L0 = (L01) · · · (L0k0)(λxL)!V !
0 and L′0 = (L01) · · · (L0k0)L[V0/x]

for some k0 ∈ N and terms L,L01, . . . , L0k0 ;
– for every 1 ≤ i ≤ `, Li = (Li1) · · · (Liki)(Li−1)V !

i and L′i =
(Li1) · · · (Liki)(L′i−1)V !

i for some ki ∈ N and terms Li1, . . . , Liki ;
– N = L` and N ′ = L′` .

We conclude by taking L`+1 = M , L′`+1 = M ′ and k`+1 = 0.

If the last rule is @r, then M = N1N2 and M ′ = N1N
′
2 for some terms

N1, N2, N
′
2 such that N2 β̂vr N

′
2; by induction hypothesis, there exist

` ∈ N, terms L0, . . . , L`, L
′
0, . . . , L

′
` and values V0, . . . , V` such that:

– L0 = (L01) · · · (L0k0)(λxL)!V !
0 and L′0 = (L01) · · · (L0k0)L[V0/x]

for some k0 ∈ N and terms L,L01, . . . , L0k0 ;
– for every 1 ≤ i ≤ `, Li = (Li1) · · · (Liki)(Li−1)V !

i and L′i =
(Li1) · · · (Liki)(L′i−1)V !

i for some ki ∈ N and terms Li1, . . . , Liki ;
– N2 = L` and N ′2 = L′` .

We can conclude by replacing in the sequence of Li’s (resp. L′i’s), L`
(resp. L′`) withM` = (M0) · · · (Mm`)(L`−1)V !

` (resp.M
′
` = (M0) · · · (Mm`)(L

′
`−1)V !

`),
with m` = k` + 1, M0 = N1 and Mj = L`j−1 for every 1 ≤ j ≤ m`,
thus M = M` and M ′ = M ′`. �

Theorem 118 says that in every term there exists at most one β̂v-redex
that can be reduced by β̂vl-(resp. β̂vr-)reduction: theorem 118 might be seen
also as a sort of definition of “β̂vl-(resp. β̂vr-)redex”.

Corollary 119.

1. There are no critical pairs for the β̂vl(resp. β̂vr)-reduction: if M,N1, N2

are terms such that M β̂vl (resp. β̂vr) N1 and M β̂vl (resp. β̂vr) N2, then
N1 = N2 .

2. For every term M , it is β̂vl(resp. β̂vr)-normal iff either M = V ! for
some value V or there exist ` ∈ N, a variable x, values V0, . . . , V` and
terms L0, . . . , L` such that:

3.1. A CALL-BY-VALUE λ-CALCULUS 77

• L0 = (x!)V !
0L01 · · ·L0k0 (resp. L0 = (L01) · · · (L0k0)(x!)V !

0) for
some k0 ∈ N and terms L01, . . . , L0k0;

• for every 1 ≤ i ≤ `, we have Li = (V !
i)Li−1Li1 · · ·Liki (resp. Li =

(Li1) · · · (Liki)(Li−1)V !
i) for some ki ∈ N and terms Li1, . . . , Liki ;

• M = L` .

3. Every closed term is a β̂v-normal form iff it is a β̂vl-normal form iff it
is a β̂vr-normal form.

4. For every closed β̂v-normalizable term M , if M ′ is the β̂v-normal form
of M then M β̂∗vl M

′ and M β̂∗vr M
′.

5. For every term M , it is β̂v-normal iff either M = V ! for some value V
or there exist ` ∈ N, a variable x, values V0, . . . , V` and terms L0, . . . , L`
such that:

• L0 = (x!)V !
0L01 · · ·L0k0 (resp. L0 = (L01) · · · (L0k0)(x!)V !

0) for
some k0 ∈ N and β̂v-normal terms L01, . . . , L0k0 ;

• for every 1 ≤ i ≤ `, we have Li = (V !
i)Li−1Li1 · · ·Liki (resp.

Li = (Li1) · · · (Liki)(Li−1)V !
i) for some ki ∈ N and β̂v-normal

terms Li1, . . . , Liki;

• M = L` .

Proof.

1. As every non-β̂vl(resp. β̂vr)-normal term M can be written in a unique
way in the forms of theorem 118, there is exactly one β̂v-redex in M
that can be reduced by β̂vl(resp. β̂vr)-reduction.

2. It is an immediate consequence of theorem 118 and remark 100.2.

3. Every β̂v-normal form is obviously a β̂vl-(resp. β̂vr-)normal form (it is
not necessary to suppose the term be closed, see remark 117).

Conversely, let M be a closed β̂vl-(resp. β̂vr-)normal term: by corollary
119.2 and since M is closed, the only possibility is that M = V ! for
some value V , so M is a β̂v-normal form by remark 111.4.

4. Proof by induction on the number n ∈ N of steps of the β̂v-reduction
from M to M ′ (this number is well-defined by corollary 115.2).

If n = 0 then M = M ′, hence M β̂∗vl M
′ and M β̂∗vr M

′ (in 0 steps).

If n > 0 then M is not β̂v-normal. By corollary 119.3, M is neither
a β̂vl- nor a β̂vr-normal form, hence there exist terms Nl and Nr such
that M β̂vl Nl and M β̂vr Nr. As β̂vl, β̂vr ⊆ β̂v, both Nl β̂

∗
v M

′ and
Nr β̂

∗
v M

′ in n−1 steps by corollaries 115.1-2. By induction hypothesis,
Nl β̂

∗
vl M

′ and Nr β̂
∗
vr M

′, thus M β̂∗vl M
′ and M β̂∗vr M

′ (in n steps).

78 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

5. If M is β̂v-normal then it is β̂vl(resp. β̂vr)-normal. By corollary 119.2,
either M = V ! for some value V or there exist ` ∈ N, a variable x,
values V0, . . . , V` and terms L0, . . . , L` such that:

• L0 = (x!)V !
0L01 · · ·L0k0 (resp. L0 = (L01) · · · (L0k0)(x!)V !

0) for
some k0 ∈ N and terms L01, . . . , L0k0 ;
• for every 1 ≤ i ≤ `, we have Li = (V !

i)Li−1Li1 · · ·Liki (resp. Li =
(Li1) · · · (Liki)(Li−1)V !

i) for some ki ∈ N and terms Li1, . . . , Liki ;
• M = L` ;

moreover, for every 1 ≤ i ≤ ` and 1 ≤ j ≤ k`, Lij is β̂v-normal (again
since M is β̂v-normal) and so Lij is β̂vl(resp. β̂vr)-normal by remark
117.

Conversely, let M be a term. If M = V ! for some value V then M is
β̂v-normal (see remark 111.4).

If there exist ` ∈ N, a variable x, values V0, . . . , V` and terms L0, . . . , L`
such that:

• L0 = (x!)V !
0L01 · · ·L0k0 (resp. L0 = (L01) · · · (L0k0)(x!)V !

0) for
some k0 ∈ N and β̂v-normal terms L01, . . . , L0k0 ,
• for every 1 ≤ i ≤ `, we have Li = (V !

i)Li−1Li1 · · ·Liki (resp.
Li = (Li1) · · · (Liki)(Li−1)V !

i) for some ki ∈ N and β̂v-normal
terms Li1, . . . , Liki ,
• M = L` ,

then we show by induction on ` ∈ N that M is β̂v-normal and Li
is an application for every 1 ≤ i ≤ `. If ` = 0 then M = L0 =
(x!)V !

0L01 · · ·L0k0 which is an application (for any k0 ∈ N) and a β̂v-
normal form since L0j is so for every 1 ≤ j ≤ k0 by hypothesis.
If ` > 0, then M = L` = (V !

`)L`−1L`1 · · ·L`k` (resp. M = L` =

(L`1) · · · (L`k`)(L`−1)V !
`); by induction hypothesis, L`−1 is a β̂v-normal

application, hence (V !
`)L`−1 (resp. (L`−1)V !

`) is a β̂v-normal application;
thusM is a β̂v-normal (since L`j is so for every 1 ≤ j ≤ k` by hypothesis)
application. �

In other words, according to corollary 119.1, the β̂vl-(resp. β̂vr-)reduction
is “strongly deterministic” i.e. it is a partial map from Λt to Λt: any term M
has at most one β̂vl-(resp. β̂vr-)redex, if any it is the “leftmost-(resp. rightmost-
)outermost” βv-redex in M and there exists a unique term M ′ such that
M β̂vl (resp. β̂vr) M ′, otherwise if M is closed then it is β̂v-normal.

Corollary 119.2 provides a characterization of β̂vl- and β̂vr-normal forms.
Corollary 119.5 claims that a term is β̂v-normal iff it is “hereditarily” β̂vl-
normal iff it is “hereditarily” β̂vr-normal. This characterizations are more
comprehensible by decomposing terms as binary trees (see §3.4).

3.1. A CALL-BY-VALUE λ-CALCULUS 79

The equivalences stated by corollary 119.3 have to be read together with
the characterization given by proposition 113.

Corollary 119.4 provides two perfectly symmetric “β̂v-normalizing strate-
gies”, which can be used for any β̂v-normalizable closed term.

Note that the hypothesis that the term is closed is necessary in corollaries
119.3-4: a term with some free variable might have a β̂v-redex without having
neither “β̂vl-” nor “β̂vr-redex”, see for example the term M in remark 117,
which is a β̂vl- and β̂vr-normal form but not a β̂v-normal form, so its β̂v-normal
form cannot be reached by either β̂vl- or β̂vr-reduction.

We introduce now a “β̂v-normalization strategy” for which it is not neces-
sary to assume that the term is closed.

Definition 120 (β̂vt-reduction). We define a relation β̂vt ⊆ Λt × Λt, called
turbo weak βv-reduction or β̂vt-reduction, by the following rules:

β
(λxM)!V ! β̂vt M [V/x]

M β̂vt M
′ N β̂vt N

′
@

MN β̂vt M
′N ′

M β̂vt M
′ N is β̂v-normal

@ln

MN β̂vt M
′N

N β̂vt N
′ M is β̂v-normal

@rn

MN β̂vt MN ′

A term M is a β̂vt-normal form or is β̂vt-normal if there is no term M ′

such that M β̂vt M
′.

The following proposition clarifies the intuitive meaning of the β̂vt-
reduction.

Proposition 121. Let M,M ′ be terms:

• M β̂vt M
′ iff M contains at least one β̂v-redex and M ′ is obtained from

M by replacing all the β̂v-redexes in M with their contractums;

• if M β̂vt M
′ then M β̂+

v M ′ in n steps, where n is the number of
β̂v-redexes in M .

Proof.

⇒: Proof by induction on the length of the derivation of M β̂vt M
′. Let us

consider the last rule of this derivation.

If it is the β-rule, thenM = (λxN)!V ! andM ′ = N [V/x] for some term
N and value V , so M is the only β̂v-redex in M , M ′ is its contractum
and M β̂v M

′ (in one step) by the β-rule.

If it is the @-rule, then M = M1M2 and M ′ = M ′1M
′
2 for some terms

M1,M2,M
′
1,M

′
2 with Mi β̂vt M

′
i for i ∈ {1, 2}; by induction hypothesis,

80 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

Mi contains a β̂v-redex, M ′i is obtained from Mi by replacing all the
β̂v-redexes in Mi with their contractums and Mi β̂

+
v M ′i in ni steps

where ni is the number of β̂v-redexes in Mi, for i ∈ {1, 2}. M is not
a β̂v-redex, otherwise M2 = V ! for some value V that is impossible
by remark 103.1 since M2 contains a β̂v-redex. Hence M ′ is obtained
from M by replacing all the β̂v-redexes in M with their contractums,
moreover (M1)M2 β̂

+
v (M ′1)M2 in n1 steps and (M ′1)M2 β̂

+
v (M ′1)M ′2 in

n2 steps, thus M β̂+
v M ′ in n1 + n2 steps, where n1 + n2 is the number

of β̂v-redexes in M .

If it is the @ln-rule, then M = M1M2 and M ′ = M ′1M2 for some
termsM1,M2,M

′
1 whereM1 β̂vt M

′
1 andM2 is β̂v-normal; by induction

hypothesis, M1 contains a β̂v-redex, M ′1 is obtained from M1 by replac-
ing all the β̂v-redexes in M1 with their contractums and M1 β̂

+
v M ′1

in n steps where n is the number of β̂v-redexes in M1. M2 contains
no β̂v-redexes (by remark 111.1) and M is not a β̂v-redex (otherwise
M1 = (λxN)! for some term N that is impossible by remark 103.1 since
M1 contains a β̂v-redex). Hence M ′ is obtained from M by replacing
all the β̂v-redexes in M with their contractums, moreover M β̂+

v M ′ in
n steps, where n is the number of β̂v-redexes in M .

If it is the @rn-rule, the proof is analogous to the previous case.

⇐: Proof by induction on the term M . As M contains a β̂v-redex, M =
M1M2 for some terms M1 and M2 by remark 103.1.

If M1 and M2 contain no β̂v-redexes then M is the only β̂v-redex in M ,
so M1 = (λxN)!, M2 = V ! and M ′ = N [V/x] (since M ′ is obtained by
M by replacing all the β̂v-redexes in M with their contractums) for
some term N and value V , thus M β̂vt M

′ by the β-rule.

IfM1 andM2 contain a β̂v-redex, then by induction hypothesisMi β̂vt M
′
i

where M ′i is obtained from Mi by replacing all the β̂v-redexes in Mi

with their contractums, for i ∈ {1, 2}. Hence M ′ = M ′1M
′
2 since M is

not a β̂v-redex (otherwise M2 = V ! for some value V that is impossible
by remark 103.1 since M2 contains a β̂v-redex). Thus M β̂vt M

′ by the
@-rule.

If M1 contains a β̂v-redex and M2 does not, then M2 is β̂v-normal
(by remark 103.1) and M1 β̂vt M

′
1 where M ′1 is obtained from M1 by

replacing all the β̂v-redexes in M1 with their contractums (by induction
hypothesis). Hence M ′ = M ′1M2 since M2 contains no β̂v-redexes (by
remark 111.1) and M is not a β̂v-redex (otherwise M1 = (λxN)! for
some term N that is impossible by remark 103.1 since M1 contains a
β̂v-redex). Thus M β̂vt M

′ by the @ln-rule.

If M2 contains a β̂v-redex and M1 does not, the proof is analogous to
the previous case, in particular we conclude that M β̂vt M

′ by applying

3.1. A CALL-BY-VALUE λ-CALCULUS 81

the @rn-rule.
�

Corollary 122.

1. Every term is β̂v-normal iff it is β̂vt-normal.

2. Terms of the shape V ! for some value V are β̂vt-normal.

3. There are no critical pairs for the β̂vt-reduction: if M,N1, N2 are terms
such that M β̂vt N1 and M β̂vt N2, then N1 = N2.

Proof.

1. By proposition 121 and remark 111.1.

2. By corollary 122.1 (⇒) and remark 111.4.

3. Immediate consequence of proposition 121.
�

Corollary 122.3 says that the β̂vt-reduction is “strongly deterministic” (i.e.
it is a partial map from Λt to Λt): if a term M is not β̂v-normal, then there
exists a unique term M ′ such that M β̂vt M

′.
Obviously, the fact that M β̂vt M

′ does not entail that M ′ is β̂v-normal,
since the β̂vt-reduction might create new β̂v-redexes. For instance (λx(x!)x!)!(λxx!)! β̂vt (λxx!)!(λxx!)!

which is not β̂v-normal.

Theorem 123. For every β̂v-normalizable term M , if M ′ is the β̂v-normal
form of M then M β̂∗vt M

′.

Proof. By induction on the number m ∈ N of steps of the β̂v-reduction
M β̂∗v M

′.
If m = 0 then M = M ′, therefore M β̂∗vt M

′ by reflexivity of β̂∗vt.
If m > 0 then M is not β̂v-normal, thus M is not β̂vt-normal by corollary

122.1, hence there exists a term N such that M β̂vt N . By proposition
121, M β̂+

v N in n > 0 steps, with n ≤ m by corollary 115.2. By corollary
115.1 there exists a term N ′ such that M ′ β̂∗v N ′ and N β̂∗v N

′, so M ′ = N ′

since M ′ is β̂v-normal and thus N β̂∗v M
′ in m− n < m by corollary 115.2.

Therefore N β̂∗vt M
′ by induction hypothesis, hence M β̂∗vt M

′ by transitivity
of β̂∗vt. �

Theorem 123 provides a “β̂v-normalizing strategy”, which can be used for
any β̂v-normalizable (not necessarily closed) term.

3.1.3 Some problems with η-reduction

Definition 124 (η-reduction). We define a relation η ⊆ (Λt×Λt)∪(Λv×Λv),
called η-reduction, by the following rules:

82 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

η
(λxMx)! η M

M η M ′
@l

MN η M ′N

N η N ′
@r

MN η MN ′

M η M ′
λ

λxM η λxM ′
V η W

!
V ! η W !

where in η-rule the variable x is not free in the term M .

Remark 125. LetM = (λd y!)!
(
λz
(
(λxx!x!)!(λxx!x!)!

)
z!
)!: thenM η (λd y!)

(
(λxx!x!)!(λxx!x!)!

)
M β̂v y

! where y! and (λd y!)
(
(λxx!x!)!(λxx!x!)!

)
are βvη-normal forms.

Therefore, neither the βvη-reduction nor the β̂vη-reduction are confluent.

3.2 A “completion” of βv-reduction

A solid theory of call-by-value λ-calculus requires an operational characteri-
zation of solvability, i.e. to find a strategy which computes the results of the
represented functions. Following [PR04], a term t is CBV-solvable whenever
there is an head context H s.t. H[t] →∗βv I where I = λxx and →βv

is the call-by-value β-reduction in Plotkin’s λβv -calculus. An operational
characterization has been provided in [PR99, PR04] but, unfortunately, it is
obtained through call-by-name β-reduction, which is disappointing and not
satisfying. If it is not possible to get an internal characterization, i.e. one
which uses the rules of the calculus itself, then there is an inherent weakness
in the rewriting rules of the calculus. For Plotkin’s call-by-value λβv -calculus
[Plo75] it is indeed the case, let us illustrate the point with an example.
Let ∆ = λx (x)x. There is no head context sending (via βv-reduction) the
following term to the identity:

t =
(
(λy∆)(x)z

)
∆

and – as a consequence – t should be unsolvable and divergent in a good call-by-
value calculus, while it is in βv-normal form. The weakness of βv-reduction is
a fact widely recognized and accepted, indeed there have been many proposals
of alternative call-by-value λ-calculi, see for instance [Mog89, Hof95, DL07,
HZ09, AP12]. All these different versions of call-by-value λ-calculi extend the
syntax of λ-calculus with an explicit substitution constructor t{u/x} (which
is equivalent to use let . . . in expressions) defined in the syntax, but these
substitutions are just delayed, they are not propagated in a small-steps way.

In particular, Accattoli and Paolini introduced in [AP12] the value-
substitution lambda-calculus, a simple call-by-value λ-calculus with explicit
substitutions borrowing ideas from Herbelin and Zimmerman’s lambda-CBV
calculus ([HZ09]) and from Accattoli and Kesner’s structural lambda-calculus
([AK10]), both with explicit substitutions. Interestingly, in this new setting,
Accattoli and Paolini characterized solvable terms as those terms having
normal form with respect to a suitable contextual closure of its (call-by-value)
reduction rules, thus improving over the previous characterization.

3.2. A “COMPLETION” OF βV-REDUCTION 83

We aim at showing that we can characterize CBV-solvable terms without
using explicit substitutions, by only adding some simple reduction rules in
our syntax. These supplementary rules are nothing but an orientation of
the two orientable rules σ1 and σ3 generating the σv-equivalence (see section
5.2): they are a reformulation in our syntax without explicit substitutions of
the letlet- and letapp-rules of the Herbelin’s and Zimmerman’s calculus (see
[HZ09]).

Definition 126 (σ- and σ′-reduction). σ1 is the contextual closure of the
binary relation →σ1 on Λt defined by the following rule:

σ1

(λxM)!NL →σ1 (λxML)!N

where M,N,L are terms and x /∈ fv(L).
σ3 is the contextual closure of the binary relation →σ3 on Λt defined by

the following rule:
σ3

(V !)
(
(λxL)!

)
N →σ3 (λxV !L)!N

where N and L are terms, V is a value and x /∈ fv(V).
σ′3 is the contextual closure of the binary relation →σ′3

on Λt defined by
the following rule:

σ′3
(M)((λxL)!)N →σ′3

(λxML)!N

where M,N,L are terms and x /∈ fv(M).
The σv-reduction (resp. σ′v-reduction) is σv = σ1∪σ3 (resp. σ′v = σ1∪σ′3).

The variable condition on σ1-, σ3- and σ′3-rules can be always fulfilled by
α-conversion.

The σ3-rule is a weakened version of the σ′3-rule, i.e. it is the σ′3-rule
limited to the case where M = V ! for some value V .

σ1- and σ′3-rules above are just an orientation of respective rules in the
definition of σv-equivalence. Note the left-right symmetry of σ1- and σ′3-rules:
in σ1(resp. σ′3)-rule, the σ-redex is an an application of a β-redex (resp. term)
to a term (resp. β-redex). In remark 135, we will see a reason to like the
σ3-rule more than its generalization σ′3.

Remark 127.

1. By remark 105, one has σv, σ′v ⊆ (Λt × Λt) ∪ (Λv × Λv). Moreover, σv
(resp. σ′v) is the contextual closure of the relations→σ3 (resp.→σ′3

) and
→σ1 (the proof is by straightforward induction on the derivations).

2. It is immediate to check that for every expression E, there exists an
expression E′ such that E σv E

′ (resp. E σ′v E
′) iff E contains a σv(resp.

σ′v)-redex. Therefore, an expression is σv(resp. σ′v)-normal iff it contains
no σv(resp. σ′v)-redex.

84 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

3. It is easy to verify that for all expressions E,E′, E σv E
′ (resp. E σ′v E

′)
iff E′ is obtained from E by replacing exactly one σv(resp. σ′v)-redex in
E with its contractum.

4. Clearly, σv ⊆ σ′v. The converse does not hold, for instance take M =
(z!

1)z!
2, N = (y!

1)y!
2 and L = (M)

(
(λx1x

!
2)!
)
N where x1, x2, y1, y2, z1, z2

are pairwise distinct variables: then L is σv-normal but L σ′3 (λx1(M)x!
2)!N .

We can merge the σv- and σ′v-reduction into the βv- and β̂v-reduction, in
order to get a sort of “completion” of the βv- and β̂v-reduction.

Definition 128. We set βvσ = βv∪σv (resp. βvσ′ = βv∪σ′v), called βvσ(resp.
βvσ′)-reduction, and β̂vσ = β̂v ∪ σv (resp. β̂vσ′ = β̂v ∪ σ′v), called β̂vσ(resp.
β̂vσ′)-reduction.

Intuitively, σv-reduction might enable a βv-redex in an expression E
which is hidden by the inessential sequential structure of E. For instance, if
N = (z!)z! and M = (λy(λx z!

0)!x!)!N where x, y, z, z0 are pairwise distinct
variables, then M1 = (λy(λx z!

0)!)!Nx! and M2 = (λx z!
0)!((λy x!)!)N are

βv-normal, but M1 σv M (by the σ1-rule) and M2 σv M (by the σ3-rule),
where M is not βv-normal.

Remark 129.

1. By remark 105, one has βvσ, β̂vσ, βvσ′ , β̂vσ′ ⊆ (Λt × Λt) ∪ (Λv × Λv).

2. It is immediate to check that for every expression E (resp. term M),
there exists an expression E′ (resp. a termM ′) such that E βvσ E

′ (resp.
M β̂vσ M

′) iff E (resp. M) contains a βvσ(resp. β̂vσ)-redex. Therefore,
an expression (resp. a term) is βvσ(resp. β̂vσ)-normal iff it contains
no βvσ(resp. β̂vσ)-redex. Analogous considerations hold for βvσ′(resp.
β̂vσ′)-reduction.

3. It is easy to verify that for all expressions E,E′ (resp. terms M,M ′),
E βvσ E′ (resp. M β̂vσ M ′) iff E′ (resp. M ′) is obtained from E
(resp. M) by replacing exactly one βvσ(resp. β̂vσ)-redex in E (resp.
M) with its contractum. Analogous considerations hold for βvσ′(resp.
β̂vσ′)-reduction.

4. Clearly, β̂vσ ⊆ βvσ ⊆ βvσ′ and β̂vσ ⊆ β̂vσ′ ⊆ βvσ′ . The converses do not
hold.

We prove now a confluence property for βvσ and β̂vσ. For this purpose,
we use a commutation property of βv- and σv-reductions and the strong
normalization of σ′v.

Definition 130. With every expression E are associated two measures
size′(E),#w(E) ∈ N, defined by induction on E as follows:

3.2. A “COMPLETION” OF βV-REDUCTION 85

• size′(x) = 2;

• size′(λxM) = size′(M) + 1;

• size′(V !) = size′(V);

• size′(MN) = size′(M) + size′(N).

• #w(x) = 1;

• #w(λxM) = #w(M) + size′(M);

• #w(V !) = #w(V);

• #w(MN) = #w(M) + #w(N) + 2size′(M)size′(N)− 1.

#w(M) is the sum of the weights of the nodes in T@M , where the weight
of a node n in T@M is the difference between size(M) and the number of
λ-nodes above n. WHY?

Remark 131. size′(E) ≥ 2 and #w(E) ≥ 1 for any expression E. The proof
is by a straightforward induction on the expression E.

Lemma 132. Let E and E′ be expressions. If E σ′v E
′ then #w(E) > #w(E′)

and size′(E) = size′(E′).

Proof. By induction on the length of the derivation of E σ′v E
′. Let us

consider the last rule of this derivation.
If it is the σ1-rule then E = (λxM)!NL and E′ = (λxML)!N for some

terms N,M and L, so

#w(E) = #w(M) + #w(L) + #w(N) + size′(M) + 2size′(N) + 2size′(L) +

2size′(M)size′(N) + 2size′(M)size′(L) + 2size′(L)size′(N)− 2

#w(E′) = #w(M) + #w(L) + #w(N) + size′(M) + 2size′(N) + size′(L) +

2size′(M)size′(N) + 2size′(M)size′(L) + 2size′(L)size′(N)− 2 = #w(E)− size′(L)

hence #w(E) > #w(E′) by remark 131. Moreover, size′(E) = size′(M) +
size′(L) + size′(N) + 1 = size′(E′).

If it is the σ′3-rule then E = (M)((λxL)!)N and E′ = (λxML)!N for
some terms N,M and L, so

#w(E) = #w(M) + #w(L) + #w(N) + 2size(M) + 2size(N) + size(L) +

2size(M)size(N) + 2size(M)size(L) + 2size(L)size(N)− 2

#w(E′) = #w(M) + #w(L) + #w(N) + size′(M) + 2size′(N) + size′(L) +

2size′(M)size′(N) + 2size′(M)size′(L) + 2size′(L)size′(N)− 2 = #w(E)− size′(M)

hence #w(E) > #w(E′) by remark 131. Moreover, size′(E) = size′(M) +
size′(L) + size′(N) + 1 = size′(E′).

86 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

If it is the λ-rule then E = λxM and E′ = λxM ′ for some terms M and
M ′ such that M σ′v M

′, thus #w(E) = #w(M) + size′(M) and #w(E′) =
#w(M ′) + size′(M ′); by induction hypothesis, we have #w(M) > #w(M ′)
and size′(M) = size′(M ′), therefore #w(E) > #w(M ′) + size′(M) = #w(E′)
and size′(E) = size′(M) + 1 = size′(E′).

If it is the !-rule then E = V ! and E′ = V ′! for some values V and V ′ such
that V σ′v V

′, thus #w(E) = #w(V) and #w(E′) = #w(V ′); by induction
hypothesis, we have #w(V) > #w(V ′) and size′(V) = size′(V ′), therefore
#w(E) > #w(E′) and size′(E) = size′(V) = size′(E′).

If it is the @l(resp. @r)-rule then E = MN and E′ = M ′N (resp. E =
MN ′) for some terms M , N and M ′ (resp. N ′) such that M σ′v M

′ (resp.
N σ′v N

′), thus #w(E) = #w(M) + #w(N) + 2size′(M)size′(N) − 1 and
#w(E′) = #w(M ′)+#w(N)+2size′(M ′)size′(N)−1 (resp. #w(E′) = #w(M)+
#w(N ′)+2size′(M)size′(N ′)−1); by induction hypothesis, we have #w(M) >
#w(M ′) (resp. #w(N) > #w(N ′)) and size′(M) = size′(M ′) (resp. size′(N) =
size′(N ′)), therefore #w(E) > #w(M) + #w(N) + 2size′(M ′)size′(N)− 1 =
#w(E′) (resp. #w(E) > #w(M)+#w(N)+2size′(M)size′(N ′)−1 = #w(E′))
and size′(E) = size′(M) + size′(N) = size′(E′). �

Proposition 133. σ′v (and in particular σv) is strongly normalizing.

Proof. It is an immediate consequence of the previous lemma. �

Lemma 134. σv is locally confluent.

Proof. By induction on the expression E such that E σv Ei for i ∈ {1, 2}.
The only interesting case are:

• if E =
(
(λxM)!((λyL)!)N

)
L′ with E σv (λxML′)!((λyL)!)N = E1 (by

reducing the σ1-redex E) and E σv (λy(λxM)!L)!NL′ = E2 (by reduc-
ing the σ3-redex (λxM)!((λyL)!)N inE), thenE2 σv (λy(λxM)!LL′)!N σv (λy(λxML′)!L)!N =
E′ (by reducing twice a σ1-redex) and E1 σv E

′ (by reducing the σ3-
redex E1);

• if E = (V !)((λxL)!)((λx′L′)!)N with E σv (V !)(λx′(λxL)!L′)!N = E1

(by reducing the σ3-redex (λxL)!((λx′L′)!)N inE) andE σv (λxV !L)!((λx′L′)!)N =
E2 (by reducing the σ3-redexE), thenE1 σv (λx′(V)(λxL)L′)N σv (λx′(λxV !L)!L′)!N =
E′ (by reducing twice a σ3-redex) and E2 σv E

′ (by reducing the σ3-
redex E2). �

Remark 135. σ′v and βvσ′ are not locally confluent and so neither confluent.
For instance, takeNi = (z!

i)z
!
i for i ∈ {1, 2} andM =

(
(λx1 y

!
1)!N1

)(
(λx2 y

!
2)!
)
N2

where x1, x2, y1, y2, z1, z2 are pairwise distinct variables: M is βv-normal and
it contains no σ3-redexes but M σ′v (λx2(λx1 y

!
1)!N1y

!
2)!N2 (because of the

σ′3-rule) which contains only a σ1-redex, and M σ′v (λx1(y!
1)(λx2y

!
2)!N2)!N1

(because of the σ1-rule) which contains only a σ3-redex, so M reduces to two
different σ′v-normal forms, (λx2(λx1 y

!
1y

!
2)!N1)!N2 and (λx1(λx2 y

!
1y

!
2)!N2)!N1.

3.2. A “COMPLETION” OF βV-REDUCTION 87

We conjecture that σ′ is confluent modulo the equivalence relation on
ΛCBV generated by the following binary relation ∼σ4 on Λt defined by:

(λx1(λx2M)!N2)!N1 ∼σ4 (λx2(λx1M)!N1)!N2

where x2 6∈ fv(N1) and x1 6∈ fv(N2).

Proposition 136. σv is confluent.

Proof. By lemma 134, proposition 133 and Newman’s lemma. �

We recall a well-known result on term rewriting systems.

Lemma 137 (Hindley–Rosen). Let →1 and →2 be two binary relations on
a set X. If they are both confluent and they commute, i.e. if t →∗1 u1 and
t→∗2 u2 then there exists s such that u1 →∗2 s and u2 →∗1 s, then →1 ∪ →2

is confluent.

Proof. See proposition 3.3.5 in [Bar84]. �

Lemma 138. Let E and E′ be expressions, let V and V ′ be values and let x
be a variable:

1. if V σv V
′ then E[V/x] σ∗v E[V ′/x];

2. if E σv E
′ then E[V/x] σv E

′[V/x].

Proof.

1. By induction on the expression E.

If E = x, then E[V/x] = V and E[V ′/x] = V ′, so E[V/x] σ∗v E[V ′/x]
by hypothesis.

If E = y 6= x, then E[V/x] = y = E[V ′/x], then E[V/x] σ∗v E[V ′/x] by
reflexivity of σ∗v .

If E = λyM for some term M , then we can suppose without loss
of generality that y 6= x, hence E[V/x] = λyM [V/x] and E[V ′/x] =
λyM [V ′/x]; by induction hypothesis, M [V/x] σ∗v M [V ′/x] and thus
E[V/x] σ∗v E[V ′/x] since σ∗v passes to context.

If E = W ! for some value W , then E[V/x] = (W [V/x])! and E[V ′/x] =
(W [V ′/x])!; by induction hypothesis, W [V/x] σ∗v W [V ′/x] and thus
E[V/x] σ∗v E[V ′/x] since σ∗v passes to context.

If E = MN for some terms M,N , then E[V/x] = M [V/x]N [V/x] and
E[V ′/x] = M [V ′/x]N [V ′/x];M [V/x] σ∗v M [V ′/x] andN [V/x] σ∗v N [V ′/x]
by induction hypothesis, therefore E[V/x] σ∗v
M [V ′/x]N [V/x] σ∗v E[V ′/x] since σ∗v passes to context.

88 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

2. By induction on the length of the derivation of E σv E
′. Let us consider

the last rule of this derivation.

If it is the σ1-rule, then E = (λyM)!NL and E′ = (λyML)!N with
y /∈ fv(L); we can suppose without loss of generality that y /∈ fv(V)∪{x},
henceE[V/x] = (λyM [V/x])!N [V/x]L[V/x] andE′[V/x] = (λyM [V/x]L[V/x])!N [V/x],
therefore E[V/x] σv E

′[V/x] by the σ1-rule, since y /∈ (fv(L) r {x}) ∪
fv(V) = fv(L[V/x]).

If it is the σ3-rule, then E = (W !)((λyL)!)N and E′ = (λyW !L)!N
with y /∈ fv(W); we can suppose without loss of generality that
y /∈ fv(V) ∪ {x}, so E[V/x] = (W [V/x])!((λyL[V/x])!)N [V/x] and
E′[V/x] = (λy(W [V/x])!L[V/x])!N [V/x], therefore E[V/x] σv E

′[V/x]
by the σ3-rule, since y /∈ (fv(W) r {x}) ∪ fv(V) = fv(W [V/x]).

If it is the λ-rule then E = λyM and E′ = λyM ′ for some termsM and
M ′ with M σv M

′; we can suppose without loss of generality that y /∈
fv(V)∪ {x}, hence E[V/x] = λyM [V/x] and E′[V/x] = λyM ′[V/x]; by
induction hypothesis, M [V/x] σv M

′[V/x] and thus E[V/x] σv E[V ′/x]
since by the λ-rule.

If it is the !-rule then E = W ! and E′ = W ′! for some values W such
that W σv W

′, so E[V/x] = (W [V/x])! and E[V ′/x] = (W ′[V/x])!; by
induction hypothesis, W [V/x] σv W

′[V/x] and thus E[V/x] σv E
′[V/x]

by the !-rule.

If it is the @l (resp. @r) then E = MN and E = M ′N (resp. E′ = MN ′)
for some terms M,N and M ′ (resp. N ′) such that M σv M

′ (resp.
N σv N

′), so E[V/x] = M [V/x]N [V/x] and E′[V/x] = M ′[V/x]N [V/x]
(resp.E′[V/x] = M [V/x]N ′[V/x]); by induction hypothesis,M [V/x] σv M

′[V/x]
(resp. N [V/x] σv N

′[V/x], so E[V/x] σv E[V ′/x] by the @l(resp. @r)-
rule.

�

Lemma 139.

1. βv (resp. β̂v) and σv quasi-strongly commute i.e. if M σv N1 and
M βv N2 (resp. M β̂v N2) then there exists M ′ such that N2 σ

∗
v M

′

and N1 βv M
′ (resp. N1 β̂v M

′).

2. βv (resp. β̂v) and σv commute.

Proof.

1. We prove the statement about βv by induction on M . The only inter-
esting cases are:

• ifM = (λxN)!V !L withM σ1 (λxNL)!V ! = N1 andM βv (N [V/x])L =
N2, then N1 βv N2 since x /∈ fv(L).

3.3. SIMULATION OF ACCATTOLI AND PAOLINI’S CALCULUS AND SOLVABILITY89

• if M = (W !)
(
(λxN)!

)
V ! with M σ3 (λxWN)!V ! = N1 and

M βv (W !)N [V/x] = N2, then N1 βv N2 since x /∈ fv(W).
• if M =

(
(λyP)!((λxN)!)V !

)
L with M σ1 (λyPL)!

(
(λxN)!

)
V ! =

M1 and M βv (λyP)!N [V/x]L
= M2, then M1 βv (λyPL)!N [V/x] = M ′ and M2 σ1 M

′.
• ifM = (λxN)!V ! withM σv (λxN)!V ′! = N1,M βv N [V/x] = N2

and V σv V
′, thenN1 βv N [V ′/x] = M ′ and soN2 σ

∗
v M

′ by lemma
138.1.
• ifM = (λxN)!V ! withM σv (λxN ′)!V ! = N1,M βv N [V/x] = N2

and N σv N
′, then N1 βv N

′[V/x] = M ′ and so N2 σv M
′ by

lemma 138.2.

As regards the statement about β̂v, it is not proved explicitly because
it is enough to observe that in the previous proof whenever the step is
β̂v then we can close the commutation diagram with one β̂v-reduction
step.

2. We prove the following stronger statement, in order to apply the right
induction hypothesis: given R ∈ {βv, β̂v}, if L σ∗v N and L RmM then
there exists L′ such that M σ∗v L

′ and N Rm L′. Let L σnv N : the proof
is by induction on (m,n) with the lexicographical order on N2.

If m = 0 or n = 0, we conclude easily.

Let m,n > 0: there exist N ′,M ′ such that L σ N ′, L R M ′, N ′ σn−1
v N

and M ′ Rm−1 M . By lemma 139.1 applied to L, there exists L′′ such
that N ′ R L′′ and M σ∗v L

′′. By induction hypothesis applied to M ′,
there existsM ′′ such thatM σ∗v M

′′ and L′′ Rm−1 M ′′; thus N ′ Rm N ′,
so there exists L′ such that M ′′ σ∗v L′ and N Rm L′ by applying the
induction hypothesis to N ′, therefore M σ∗v L

′.
�

Theorem 140. βvσ and β̂vσ are confluent.

Proof. By proposition 136 and lemmas 137 and 139, since βv (see [Ehr12])
and β̂v (see corollary 115.1) are confluent. �

3.3 Simulation of Accattoli and Paolini’s calculus
and solvability

We present the Accattoli and Paolini’s call-by-value λ-calculus with explicit
substitutions, λvsub, introduced in [AP12]. This calculus can be seen as a
merging of two already existing λ-calculi, the Herbelin and Zimmerman’s
one (a call-by-value λ-calculus with explicit substitutions, see [HZ09]) and
the Accattoli and Kesner’s one (a call-by-name λ-calculus with explicit
substitutions and a very elegant notion of reduction, see [AK10, AK12]).

90 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

The following definitions 141, 142 and 145 are exactly the same as in
[AP12].

Definition 141 (Syntax of λvsub). We define the sets λterms
vsub (of λvsub-terms)

and λvaluesvsub (of λvsub-values by mutual induction as follows:

λtermvsub s, t ::= v | (s)t | s{t/x} λvsub-terms
λvaluevsub u, v ::= x | λx s λvsub-values

A constructor of the form {t/x} is an explicit substitution and a term of
the form s{t/x} is a term with an explicit substitution. For any n ∈
N, a tuple ({t1/x1}, . . . , {tn/xn}) of explicit substitutions is denoted by
{t1/x1} . . . {tn/xn}.

Notice that any λvsub-value (i.e. a variable or an abstraction) is a λvsub-
term.

There are two kinds of binder: λx t and t{u/x}, both binding x in t.
All λvsub-terms are considered up to α-equivalence. The capture-avoiding
substitution of values replacing variables is extended to λvsub-terms with
explicit substitutions by setting:

s{t/y}[v/x] = s[v/x]{t[v/x]/y}

for every λvsub-terms s and t, λvsub-value v and variable x with y /∈ fv(v)∪{x}.

Definition 142 (→λvsub-,→w- and→sw-reduction). Let R be a binary relation
on λtermvsub .

The contextual closure of R is the binary relation R′ on λtermvsub defined by
applying, a finite number of times, the following rules:

s R t
R

s R′ t
s R′ s′

@l
st R′ s′t

t R′ t′
@r

st R′ st′

s R′ s′
λ

λx s R′ λx s′
s R′ s′

sub l
s{t/x} R′ s′{t/x}

t R′ t′
subr

s{t/x} R′ s{t′/x}

The applicative closure of R is the binary relation R′ on λtermvsub defined by
applying, a finite number of times, the following rules:

s R t
R

s R′ t
s R′ s′

@l
st R′ s′t

t R′ t′
@r

st R′ st′

s R′ s′
sub l

s{t/x} R′ s′{t/x}
t R′ t′

subr
s{t/x} R′ s{t′/x}

→λvsub (resp.→w), called the →λvsub-reduction (resp. weak→λvsub-reduction)
is the contextual (resp. applicative) closure of the binary relation 7→λvsub (resp.
7→w) on λtermvsub defined by the following rules:

3.3. SIMULATION OF ACCATTOLI AND PAOLINI’S CALCULUS AND SOLVABILITY91

dβ
(λx s)Lt 7→λvsub s{t/x}L

sv
s{vL/x} 7→λvsub s[v/x]L

where L = {t1/x1} . . . {tn/xn} for some n ∈ N and v ∈ λvaluevsub , moreover
xi /∈ fv(t) (resp. xi /∈ fv(s)) for every 1 ≤ i ≤ n in the dβ(resp. sv)-rule.

The stratified-weak λvsub-reduction is the binary relation →sw on λtermvsub

defined by applying, a finite number of times, the following rules:

s→w t w
s→sw t

s→sw s
′

@l
st→sw s

′t

s→sw s
′

λ
λx s→sw λx s

′
s→sw s

′
sub l

s{t/x} →sw s
′{t/x}

The dβ-rule (coming from the call-by-name λ-calculus with explicit sub-
stitutions introduced in [AK12]) extend the notion of β-redex: indeed, given
some λvsub-terms s, t and u, (λx s){t/y}u→λvsub s{u/x}{t/y} by the dβ-rule.
This means that the dβ-rule acts a distance. In the proof-nets representation
of λvsub-terms this apparent distance is avoided, the dβ-rule is perfectly local
from the proof-nets point of view.

The sv-rule impose the “call-by-value” constraint in λvsub, because only
an explicit substitution {vL/x} (where v is a λvsub-value and L is a finite
sequence of explicit substitutions) can perform an effective substitution of the
occurrences of x for v. The fact that s{vL/x} →λvsub s[v/x]L by the sv-rule
means that also the sv-rule acts at a distance.

Remark 143. Clearly, →w⊆→sw⊆→λvsub .

Stratified-weak λvsub-reduction extends weak λvsub-reduction allowing
reduction under top-level abstractions, which have the important property
that cannot be duplicated nor erased.

Proposition 144. →λvsub, →sw and →w are confluent.

Proof. See corollary 1 and lemma 11 in [AP12]. �

In λvsub two terms can have the same behavior and differ only for the
position of explicit substitutions, which is not relevant because they do not
block →λvsub-redexes. This is formalized in a precise way by o-equivalence on
λvsub-terms.

Definition 145 (o-equivalence). For every i ∈ {1, 2, 3, 4}, let ∼oi be the
contextual closure of the relation oi defined by the oi-rule:

o1

t{s/x}{u/y} o1 t{u/y}{s/x} where x /∈ fv(u) and y /∈ fv(s)

o2

t u{s/x} o2 (tu){s/x} where x /∈ fv(t)

o3

t{s/x}u o3 (tu){s/x} where x /∈ fv(u)

o4

t{s{u/y}/x} o4 t{s/x}{u/y} where y /∈ fv(t)

92 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

We set ∼o =
⋃4
i=1∼oi . The o-equivalence is the symmetric and reflexive-

transitive closure of ∼o, i.e. ≡o = (∼To)∗.

Remark that ≡o is an equivalence relation on λvsub which allows the
commutation of explicit substitutions with every constructor of λvsub except
abstractions.

We remind a standard notion of rewriting theory and some well-known
results about it.

Definition 146 (Strong bisimulation). Let X be a set and let →X be a
binary relation on X.

A strong bisimulaton for (X,→X) is a binary symmetric relation ≡ on
X such that, for every s, s′, t ∈ X, if s ≡ t and s →X s′ then there exists
t′ ∈ X such that t→X t′ and s′ ≡ t′.

Given an equivalence relation ≡ on X:

• we denote by →X/≡ the binary relation on X defined by: s→X/≡ s
′ iff

there exists t, u ∈ X such that s ≡ t→X u ≡ s′;

• we set ↔X/≡= (→T
X ∪ ≡)∗;

• →X is Church-Rosser modulo ≡ if for every s, s′ ∈ X such that s↔X/≡
s′, there exist t, t′ ∈ X such that s→∗X t, t ≡ t′ and s′ →∗X t′.

Remark 147. Let X be a set, let →X be a binary relation on X and let
≡ be a strong bisimulation for (X,→X). If →X is Church-Rosser modulo
≡ then →X is confluent modulo ≡, i.e. for every s, s′, u, u′ ∈ X such that
s ≡ u, s→∗X s′ and u→∗X u′, there exist t, t′ ∈ X such that s→∗X t, t ≡ t′

and s′ →∗X t′.

Lemma 148. Let X be a set, let →X be a binary relation on X and let ≡
be a strong bisimulation for (X,→X) which is an equivalence relation on X.

1. ≡ can be postponed to →X , i.e. for every s, s′ ∈ X, if s→∗X/≡ s
′ then

there exists t ∈ X such that s→∗X t ≡ s′.

2. If →X is confluent then →X/≡ is confluent and →X is Church-Rosser
modulo ≡.

Proof. See for example [Acc11], pp. 86-87. �

Accattoli and Paolini showed that:

Lemma 149. ≡o is a strong bisimulation for both (λtermvsub ,→λvsub) and (λtermvsub ,→sw

).

Proof. See lemma 12 in [AP12]. �

3.3. SIMULATION OF ACCATTOLI AND PAOLINI’S CALCULUS AND SOLVABILITY93

Therefore, according to proposition 144 ad lemmas 148 and 149, ≡o can
be postponed to →λvsub and →sw, →λvsub/≡o

and →sw/≡o
are confluent and

→λvsub and →sw are Church-Rosser modulo ≡o.
There is a natural way to simulate the λvsub-calculus into our ΛCBV: it

is based on the following translation which transforms a λvsub-term with an
explicit substitution in a βv-redex in ΛCBV.

Definition 150. With every λvsub-term t there is associated a term (t)♦ ∈
ΛCBV (also denoted by t♦) as follows (the definition is by induction on t ∈
λtermvsub):

• (x)♦ = x!;

• (λx t)♦ = (λx t♦)!;

• (st)♦ = s♦t♦;

• (s{t/x})♦ = (λx s♦)!t♦

With every λvsub-value v there is associated a value (v)� ∈ ΛCBV (also
denoted by v�) as follows:

• (x)� = x; • (λx s)� = λx s♦.

Remark 151. It is immediate to check that:

1. for every v ∈ λvaluevsub , one has v♦ = (v�)!;

2. for every t ∈ λtermvsub , one has fv(t) = fv(t♦) = fv(t�) (the proof is by
straightforward induction on t ∈ λtermvsub).

Lemma 152. For every λvsub-term t, λvsub-value v and variable x, one has
(t[v/x])♦ = t♦[v�/x].

Proof. By induction on the λvsub-term t.
If t = x then (t[v/x])♦ = v♦ = (v�)! = t♦[v�/x], by remark 151.
If t = y for some variable y 6= x, then (t[v/x])♦ = y! = t♦[v�/x].
If t = λy s for some λvsub-term s, then (s[v/x])♦ = s♦[v�/x] by induction

hypothesis, moreover we can suppose without loss of generality that y /∈
fv(v) ∪ {x}, thus (t[v/x])♦ = (λy (s[v/x])♦)! = (λy s♦[v�/x])! = t♦[v�/x].

If t = s{u/y} for some λvsub-terms s and u, then (s[v/x])♦ = s♦[v�/x]
and (u[v/x])♦ = u♦[v�/x] by induction hypothesis, moreover we can suppose
without loss of generality that y /∈ fv(v) ∪ {x}, hence by lemma 152

(t[v/x])♦ = (s[v/x]{u[v/x]/y})♦ = (λy (s[v/x])♦)!(u[v/x])♦ = (λy s♦[v�/x])!u♦[v�/x]

= ((λy s♦)!u♦)[v�/x] = t♦[v�/x]

If t = su for some λvsub-terms s and u, then (s[v/x])♦ = s♦[v�/x] and
(u[v/x])♦ = u♦[v�/x] by induction hypothesis, so (t[v/x])♦ = s[v/x]♦u[v/x]♦ =
s♦[v�/x]u♦[v�/x] = t♦[v�/x]. �

In order to simulate in ΛCBV all the reductions seen in definition 142, we
introduce the following notions.

94 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

Definition 153. The weak βvσ-reduction is a binary relation βw on ΛCBV

defined by applying a finite number of times the following rules:

M β̂vσ M
′
β̂vσM βw N

M βw M ′
red l

(λxM)!N βw (λxM ′)!N
M βw M ′

@l
MN βw M ′N

N βw N ′
@r

MN βw MN ′

The stratified-weak βvσ-reduction is a binary relation βsw on ΛCBV defined
by applying a finite number of times the following rules:

M βw M ′
w

M βsw N

M βsw M ′
@l

MN βsw M ′N

M βsw M ′
λ

λxM βsw λxM ′

V βsw V ′
!

V ! βsw V ′!

Remark 154. By remark 105, one has βw, βsw ⊆ (Λt × Λt) ∪ (Λv × Λv).
Furthermore, β̂vσ ⊆ βw ⊆ βsw ⊆ βvσ. The converses do not hold.

Proposition 155 (Simulation of λvsub in ΛCBV). Let s, t ∈ λtermvsub .

1. If s→λvsub t then s
♦ β∗vσ t

♦.

2. If s→w t then s♦ β∗w t♦.

3. If s→sw t then s♦ β∗sw t♦.

Proof.

1. By induction on the length of the derivation of s →λvsub t. Let us
consider the last rule of this derivation.

If it is the dβ-rule, then s = (λxu)Lw and t = u{w/x}L for some λvsub-
terms u,w and tuple of explicit substitutions L = {t1/x1} . . . {tn/xn}
with n ∈ N. We can suppose without loss of generality that xi /∈ fv(w)
for every 1 ≤ i ≤ n, so

s♦ = (λxn . . . (λx1(λxu♦)!)!t♦1 . . .)
!t♦nw

♦ σn1 (λxn . . . (λx1(λxu♦)!w♦)!t♦1 . . .)
!t♦n = t♦

(in particular s♦ = t♦ if n = 0), therefore s♦ β̂∗vσ t♦ and thus s♦ β∗w t♦

(by the β̂vσ-rule for βw) and s♦ β∗vσ t♦.

If it is the sv-rule, then s = u{vL/x} and t = u[v/x]L for some
λvsub-term u, λvsub-value v and tuple of explicit substitutions L =
{t1/x1} . . . {tn/xn} with n ∈ N. We can suppose without loss of gen-
erality that xi /∈ fv(u) ∪ {x} for every 1 ≤ i ≤ n, hence by lemma 152
and remark 151

s♦ = (λxu♦)!
(
(λxn . . . (λx1v♦)!t♦1 . . .)

!
)
t♦n σ

n
3 (λxn . . . (λx1(λxu♦)!(v�)!)!t♦1 . . .)

!t♦n

βv (λxn . . . (λx1u
♦[v�/x])!t♦1 . . .)

!t♦n = (λxn . . . (λx1(u{v/x})♦)!t♦1 . . .)
!t♦n = t♦.

3.3. SIMULATION OF ACCATTOLI AND PAOLINI’S CALCULUS AND SOLVABILITY95

therefore s♦ β∗w t♦ and thus s♦ β∗vσ t♦.

If it is the @l-rule (resp. @r-rule) then s = uw and t = u′w (resp.
t = uw′) for some λvsub-terms u, u′ and w (resp. w′) such that
u →λvsub u

′ (resp. w →λvsub w
′). By induction hypothesis, u♦ β∗vσ u′♦

(resp. w♦ β∗vσ w′♦), so s♦ = u♦w♦ β∗vσ u′♦w♦ = t♦ (resp. s♦ =
u♦w♦ β∗vσ u

♦w′♦ = t♦) since β∗vσ passes to context.

If it is the λ-rule then s = λxu and t = λxu′ for some λvsub-terms u
and u′ such that u→λvsub u

′. By induction hypothesis, u♦ β∗vσ u′♦, thus
s♦ = (λxu♦)! β∗vσ (λxu′♦)! = t♦ since β∗vσ passes to context.

If it is the sub l-rule (resp. subr-rule) then s = u{w/x} and t = u′{w/x}
(resp. t = u{w′/x}) for some λvsub-terms u, u′ and w (resp. w′) such that
u →λvsub u

′ (resp. w →λvsub w
′). By induction hypothesis, u♦ β∗vσ u′♦

(resp. w♦ β∗vσ w′♦), so s♦ = (λxu♦)!w♦ β∗vσ (λxu′♦)!w♦ = t♦ (resp.
s♦ = (λxu♦)!w♦ β∗vσ (λxu♦)!w′♦ = t♦) since β∗vσ passes to context.

2. By induction on the length of the derivation of s→w t. Let us consider
the last rule of this derivation.

If it is the dβ- or sv-rule, then we have seen in the proof of proposition
155.1 that s♦ β∗w t♦.

If it is the @l-rule (resp. @r-rule) then s = uw and t = u′w (resp.
t = uw′) for some λvsub-terms u, u′ and w (resp. w′) such that u→w u

′

(resp. w →w w
′). By induction hypothesis, u♦ β∗w u′♦ (resp. w♦ β∗w w′♦),

so s♦ = u♦w♦ β∗w u′♦w♦ = t♦ (resp. s♦ = u♦w♦ β∗w u♦w′♦ = t♦) by the
@l-rule (resp. @r-rule) for βw.

If it is the sub l-rule (resp. subr-rule) then s = u{w/x} and t = u′{w/x}
(resp. t = u{w′/x}) for some λvsub-terms u, u′ and w (resp. w′) such
that u →w u′ (resp. w →w w′). By induction hypothesis, u♦ β∗w u′♦

(resp. w♦ β∗w w′♦), so s♦ = (λxu♦)!w♦ β∗w (λxu′♦)!w♦ = t♦ (resp.
s♦ = (λxu♦)!w♦ β∗w (λxu♦)!w′♦ = t♦) by the red l-rule (resp. @r-rule)
for βw.

3. By induction on the length of the derivation of s→sw t. Let us consider
the last rule of this derivation.

If it is the w-rule, then s♦ β∗w t♦ by 155.2, thus s♦ β∗sw t♦ by the w-rule
for βsw.

If it is the @l-rule then s = uw and t = u′w for some λvsub-terms u,
u′ and w such that u→sw u

′. By induction hypothesis, u♦ β∗sw u′♦, so
s♦ = u♦w♦ β∗sw u′♦w♦ = t♦ by the @l-rule for βsw.

If it is the sub l-rule then s = u{w/x} and t = u′{w/x} for some
λvsub-terms u, u′ and w such that u→sw u

′. By induction hypothesis,
u♦ β∗sw u′♦, so s♦ = (λxu♦)!w♦ β∗sw (λxu′♦)!w♦ = t♦ by the λ-rule,
!-rule and @l-rule for βsw.

96 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

If it is the λ-rule then s = λxu and t = λxu′ for some λvsub-terms u
and u′ such that u →sw u′. By induction hypothesis, u♦ β∗sw u′♦, so
s♦ = λxu♦ β∗sw λxu′♦ = t♦ by the λ-rule for βsw.

�

Remark 156. s →w t does not implies that s♦ β̂∗vσ t♦. For instance, take
u = (z1)z2 ∈ λtermvsub and s = x1{y1{u/y2}/x2} ∈ λtermvsub where x1, x2y1, y2, z1, z2

are pairwise distinct variables: then u♦ = (z!
1)z!

2, s→w x1{u/y2} = t and

s♦ = (λx2 x
!
1)!
(
(λy2y

!
1)!
)
u♦ σ3 (λy2(λx2 x

!
1)!y!

1)!u♦ = M

whereM is β̂vσ-normal but t♦ = (λy2x
!
1)!u 6= M . On the contrary,M βw (λy2 x

!
1)!u♦ =

t♦ thanks to red l-rule.

By means of “forgetful functor” ()F (see p. 65) and o-equivalence, →λvsub-
reduction can simulate the βvσ-reduction.

Remark 157. For every E ∈ ΛCBV one has fv(E) = fv(EF) (the proof is by
straightforward induction on E ∈ ΛCBV).

Lemma 158. For every termM , value V and variable x, one has (M [V/x])F =
MF[V F/x].

Proof. By induction on M ∈ Λt.
If M = x then MF = x, thus (M [V/x])F = V F = MF[V F/x].
If M = y for some variable x 6= y, MF = y, thus (M [V/x])F = y =

MF[V F/x].
If M = λyN for some term N , then we can suppose without loss of gen-

erality that y /∈ fv(V)∪{x}; by induction hypothesis, (N [V/x])F = NF[V F/x],
thus (M [V/x])F = (λyN [V/x])F = λy(N [V/x])F = λyNF[V F/x] = MF[V F/x].

IfM = W ! for some valueW , then (W [V/x])F = WF[V F/x] by induction
hypothesis, so (M [V/x])F = ((W [V/x])!)F = (W [V/x])F = WF[V F/x] =
MF[V F/x].

If M = NL for some terms N and L, then (N [V/x])F = NF[V F/x] and
(L[V/x])F = LF[V F/x], hence (M [V/x])F = (N [V/x]L[V/x])F = (N [V/x])F(L[V/x])F =
NF[V F/x]LF[V F/x] = MF[V F/x]. �

Lemma 159. Let E,E′ ∈ ΛCBV.

1. If E βv E
′ then EF →+

λvsub
E′F.

2. If E σv E
′ then EF ↔λvsub/≡o

E′F.

3. If E β∗vσ E
′ then EF ↔λvsub/≡o

E′F.

4. For every M ∈ ΛCBV, if M β∗vσ (λxx!)! then MF →∗λvsub λxx.

Proof.

3.3. SIMULATION OF ACCATTOLI AND PAOLINI’S CALCULUS AND SOLVABILITY97

1. By induction on the derivation of E βv E
′. Let us consider th last rule

of this derivation.

If it is the β-rule, then E = (λxN)!V ! and E′ = N [V/x], hence EF =
(λxNF)V F →λvsub N

F{V F/x} →λvsub N
F[V F/x] = (N [V/x])F = E′F

by dβ- and sv-rule and lemma 158.

If it is the @l(resp. @r)-rule, then E = NL and E′ = N ′L (resp.
E′ = NL′) for some terms N , L and N ′ (resp. L′) such that N βv N

′

(resp. L βv L′). By induction hypothesisNF →+
λvsub

N ′F (resp. LF →+
λvsub

L′F), so EF = NFLF →+
λvsub

N ′FLF = E′F (resp. EF = NFLF →+
λvsub

NFL′F = E′F).

If it is the λ-rule, then E = λxN and E′ = λxN ′ for some terms N
and N ′ such that N βv N

′. By induction hypothesis NF →+
λvsub

N ′F,
thus EF = λxNF →+

λvsub
λxN ′F = E′F.

If it is the !-rule then E = V ! and E′ = V ′! for some values V and
V ′ such that V βv V

′. By induction hypothesis V F →+
λvsub

V ′F, hence
EF = V F →+

λvsub
V ′F = E′F.

2. By induction on the derivation of E σv E
′. Let us consider th last rule

of this derivation.

If it is the σ1-rule, then E = (λxM)NL and E′ = (λxML)!N for
some terms M , N and L with x /∈ fv(L) = fv(LF), thus EF =
(λxMF)NFLF →λvsub M

F{NF/x}LF ≡o (MFLF){NF/x} λvsub← (λxMFLF)NF =

E′F. Therefore EF ↔λvsub/≡o
E′F.

If it is the σ3-rule, then E = (V !)
(
(λxL)!

)
N and E′ = (λxV !L)!N for

some terms N and L and value V with x /∈ fv(V) = fv(V F), hence
EF = (V F)(λxLF)NF →λvsub V

FLF{NF/x} ≡o (V FLF){NF/x} λvsub←
(λxV FLF)NF = E′F. Therefore EF ↔λvsub/≡o

E′F.

If it is the @l(resp. @r)-rule, then E = NL and M ′ = N ′L (resp.
E′ = NL′) for some terms N , L and N ′ (resp. L′) such that N σv N

′

(resp. L σv L
′). By induction hypothesis NF ↔λvsub/≡o

N ′F (resp.
LF ↔λvsub/≡o

L′F), so MF = NFLF ↔λvsub/≡o
N ′FLF = M ′F (resp.

EF = NFLF ↔λvsub/≡o
NFL′F = E′F).

If it is the λ-rule, then E = λxN and E′ = λxN ′ for some terms N
and N ′ such that N σv N

′. By induction hypothesis NF ↔λvsub/≡o
N ′F,

thus EF = λxNF ↔λvsub/≡o
λxN ′F = E′F.

If it is the !-rule then E = V ! and E = V ′! for some values V and V ′

such that V βv V
′. By induction hypothesis V F ↔λvsub/≡o

V ′F, hence
EF = V F ↔λvsub/≡o

V ′F = E′F.

98 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

3. By induction on the number n ∈ N of steps of the βvσ-reduction from E
to E′. If n = 0 then E = E′ and so EF = E′F, thus EF ↔λvsub/≡o

E′F.
If n > 0 then there exists E′′ ∈ ΛCBV such that E βnvσ E

′′ βvσ E
′; by

induction hypothesisEF ↔λvsub/≡o
E′′F; ifE′′ βv E′ thenE′F →+

λvsub
E′F

by lemma 159.1, otherwise E′′F ↔λvsub/≡o
E′F by lemma 159.2; in any

case EF ↔λvsub/≡o
E′F.

4. By lemma 159.3 MF ↔λvsub/≡o
(λxx!)!F = λxx. By lemmas 148.2

and 149, there exist t, t′ ∈ λtermvsub such that MF →∗λvsub t, t ≡o t
′ and

λxx →∗λvsub t′. As λxx is →λvsub-normal, one has t′ = λxx, thus
t ≡o λxx that implies t = λxx. Therefore MF →∗λvsub λxx. �

3.4 From terms to trees

It is more natural to study β̂vl-, β̂vr-, β̂v- and β̂vt-reductions and the decom-
positions seen in remark 100.2, theorem 118, corollaries 119.2 and 119.5 and
proposition 121 by means of labeled full binary trees. This analysis, perhaps
implicit in some publications on call-by-value λ-calculus, has never been made
explicitly and reveals deep symmetries of this calculus which can be seen
from a more “geometrical” point of view.

3.4.1 Syntax of applicative trees

Definition 160 (Quasi-leaf, applicative tree). We denote by T@ the set of
full binary trees whose internal nodes are labeled by @ and whose leaves are
labeled by terms of the shape V ! with V ∈ Λv.

A quasi-leaf is an element of T@ whose root is a @-node having two leaves
of T as children. For every term T ∈ T@, a quasi-leaf of T is a subtree of T
which is a quasi-leaf.

With every term M is associated app(M) ∈ T@, called applicative tree of
M , defined by induction on M as follows:

• app(V !) consists of a leaf labeled by V !;

• app(MN) consists of a node labeled by @ whose left (resp. right) child
is app(M) (resp. app(N)).

With every T ∈ T@ is associated term(T) ∈ Λv, called term of T , defined
by induction on T as follows:

• if T consist simply of a leaf labeled by V ! for some value V then
term(T) = V !;

• if T consists of a node labeled by @ whose left (resp. right) child is
term(T1) (resp. term(T2)), then term(T) = (term(T1))term(T2).

3.4. FROM TERMS TO TREES 99

Remark 161.

1. Every leaf of every T ∈ T@ is labeled by a term of the shape V ! for
some value V .

2. For every terms M and N , app(MN) has at least one quasi-leaf: this
is a well-known result on full binary trees having more than one node.
As a consequence, for every term M , app(M) is either a leaf and in this
case M = V ! for some value V , or such that its root has two childes
and each sub-trees of app(M) contains a quasi-leaf.

3. It is immediate to check that the two functions app and term are inverses
of each other: for every T ∈ T@ and term M , app(term(T)) = T and
term(app(M)) = M . So each element of T@ is the applicative tree of
some term and each term is uniquely determined by its applicative tree.

Definition 162. Let T ∈ T@. With every node n of T is associated a finite
sequence posT (n) of elements of {l, r} as follows (the definition is by induction
on T):

• if the root of T is a leaf, then posT (n) = ∅;

• if the root of T is not a leaf and if Tl (resp. nr) is the left (resp. right)
child of n, then for every node m in Tl (resp. Tr) posT (m) = l ·posTl(m)
(resp. posT (m) = r · posTr(m)).

For every subtree T ′ of T we set posT (T ′) = posT (n) where n is the root of
T ′.

Remark 163. Given T ∈ T@, posT is a injection: if posT (n) = posT (m)
(resp. posT (T1) = posT (T2)) then n = m (resp. T1 = T2), for any nodes m,n
(resp. subtrees T1, T2) of T ; this is a consequence of acyclicity of trees;

Given a term M , we can localize uniquely all its subterms thanks to
pos−1

app(M). WHY?
We recall a well-known results on trees.

Proposition 164. Let T be a tree.

1. Given two subterms T1 and T2 of T , either T1 is a subtree of T2, or T2

is a subtree of T1, or T1 and T2 are disjoint.

2. Let <T be the binary relation on the subtrees of T defined by: R <T S
(R is on the left of S in T) iff R and S are subterms of T such that
posT (R) = (r1, . . . , rnR), posT (S) = (s1, . . . , snS) with nR, nS ∈ N,
ri, sj ∈ {l, r} for any 1 ≤ i ≤ nR and 1 ≤ j ≤ nS, and there exists
m ≤ nR, nS such that rm = l, sm = r and ri = si for every 1 ≤ i < m.
Then <T is an order relation on the disjoint subtrees of T .

100 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

Proof. T is a acyclic and connected graph, so we can conclude. �

Proposition 164.2 says that a natural order relation “from left to right” is
definable on the disjoint subtrees of T .

Remark 165. Proposition 164 has as one of its consequences that for every
T ∈ T@, if T1 and T2 are two distinct quasi-leaves of T then T1 are T2 are
disjoint and either T1 is on the left of T2 or T2 is on the left of T1. This order
relation is on the quasi-leaves of T is well-founded.

This notion of order is useful for the following definition.

Definition 166 (β̂v-redex on T@). A β̂v-redex on T@ is an element of T@

which is a quasi-leaf whose left child is labeled by (λxM)! for some M ∈
Λt. Let T be a β̂v-redex on T@ whose left (resp. right) child is labeled by
(λxM)! (resp. V !) for some term M (resp. value V): the contractum of T is
app(M [V/x]).

Let T ∈ T@. A β̂v-redex in T is an occurrence of subtree of T which is a
β̂v-redex on T@. If T ′ is both the leftmost (resp. rightmost) quasi-leave of T
and a β̂v-redex on T@, T ′ is the β̂vl-(resp. β̂vr-)redex of T .

We say that T contains a β̂v-(resp. β̂vl-; β̂vr-)redex if there is a β̂v-(resp.
β̂vl-; β̂vr-)redex in T .

Some elements of T@ might contains a β̂v-redex without having neither the
β̂vl-redex nor the β̂vr-redex, for example app((((x!

1)x!
2)(M)z!)(y1

1)y!
2) where

M = (λxN)! for some term N .
Formally, the notions of β̂v-, β̂vl- and β̂vr-redex on T@ are distinct from

the notions of β̂v-, β̂vl- and β̂vr-redex on terms, but actually they are strictly
correlated. For example, if M = ((λx1x

!
1)!y!)((λx2x

!
2)!)z!, app(M) con-

tains exactly two β̂v-redexes, app((λx1x
!
1)!y!) (the β̂vl-redex of app(M)) and

app((λx2x
!
2)!z!) (the β̂vr-redex of app(M)); but M also contains exactly two

β̂v-redexes, (λx1x
!
1)!y! (the β̂vl-redex of M) and (λx2x

!
2)!z! (the β̂vr-redex of

M).

Lemma 167. Let M,N be terms: app(N) is a β̂v-redex in app(M) iff N is
a β̂v-redex in M .

Proof. By induction on the term M .
If M = V ! for some value V , then there is no β̂v-redex in M and app(M)

consists only of a leaf labeled by V !, so there is no β̂vt-redex in app(M).
If M = M1M2 for some terms M1,M2, then there are three cases.

• N (resp. app(N)) is a β̂v-(resp. β̂vt-)redex in M1 (resp. app(M1)): by
induction hypothesis, app(N) (resp. N) is a β̂v-redex in app(M1) (resp.
M1); as app(M) consists of a node whose left child is app(M1) (resp.
as M = M1M2), then app(N) (resp. N) is a β̂v-redex of app(M) (resp.
M).

3.5. VALUE BÖHM TREES 101

• N (resp. app(N)) is a β̂v-(resp. β̂vt-)redex in M2 (resp. app(M2)): by
induction hypothesis, app(N) (resp. N) is a β̂v-redex in app(M2) (resp.
M2); as app(M) consists of a node whose left child is app(M2) (resp.
as M = M1M2), then app(N) (resp. N) is a β̂v-redex of app(M) (resp.
M).

• M = N = (λxN ′)!V ! for some term N ′ and value V : app(M) = app(N)
consists of a quasi-leaf whose left leaf is labeled by (λxN ′)! and whose
right leaf is labeled by V !, hence app(M) is a β̂vt-redex in app(M).

�

3.4.2 Some reductions on applicative trees

Definition 168 (β̂v-, β̂vl-, β̂vr- and β̂vt-reduction on T@). We define a relation
β̂v ⊆ T@ × T@, called β̂v-reduction or weak βv-reduction on T@, as follows:
T β̂v T

′ if T, T ′ ∈ T@ and T ′ is obrained from T by replacing a β̂v-redex in T
with its contractum.

We define a relation β̂vl (resp. β̂vr) ⊆ T@ × T@, called β̂vl(resp. β̂vr)-
reduction or leftmost (resp. rightmost) weak βv-reduction on T@, as follows:
T β̂vl β̂vr T

′ if T, T ′ ∈ T@ and T ′ is obtained from T by replacing the β̂vl(resp.
β̂vr)-redex in T (if any) with its contractum.

We define a relation β̂vt ⊆ T@ × T@, called β̂vt-reduction or turbo weak
βv-reduction on T@, as follows: T β̂vt T

′ if T, T ′ ∈ T@ and T ′ is obtained
from T by replacing each β̂v-redex in T with its contractum.

Theorem 169. Let T, T ′ ∈ T@.

• If T β̂v T
′ then term(T) β̂v term(T ′).

• If T β̂vl (resp. β̂vr) T ′ then term(T) β̂vl (resp. β̂vr) term(T ′).

• If T β̂vt T
′ then term(T) β̂vt term(T ′).

3.5 Value Böhm trees

We extend the call-by-value λ-calculus ΛCBV by adding a constant Ω.

Definition 170. We define the elements of the sets ΛΩ
t (Ω-terms), ΛΩ

v

(Ω-values) and ΛΩ
CBV (Ω-expressions) by mutual induction as follows:

ΛΩ
t L,M,N ::= Ω | (M)N | (V)! Ω-terms

ΛΩ
v U, V,W ::= x | λxM Ω-values

ΛΩ
CBV D,E, F ::= M | V Ω-expressions

The constant Ω has to be considered as a closed term, in particular
Ω[V/x] := Ω for every value V and variable x.

102 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

Definition 171. We define a relation βvΩ ⊆ (ΛΩ
t × ΛΩ

t) ∪ (ΛΩ
v × ΛΩ

v), called
βvΩ-reduction, by the following rules:

β
(λxM)!V ! βvΩ M [V/x]

M βvΩ M ′
@l

MN βvΩ M ′N
N βvΩ N ′

@r
MN βvΩ MN ′

M βvΩ M ′
λ

λxM βvΩ λxM ′
V βvΩ W

!
V ! βvΩ W !

Ωl
(Ω)M βvΩ Ω

Ωr
(M)Ω βvΩ Ω

We prove now a confluence property for this calculus. For this purpose,
we adapt the standard Tait-Martin-Löf technique of parallel reduction.

Definition 172. We define a relation ρvΩ ⊆ (ΛΩ
t × ΛΩ

t) ∪ (ΛΩ
v × ΛΩ

v), called
parallel βvΩ-reduction or ρvΩ-reduction, by the following rules:

axx ρvΩ x
axΩ

Ω ρvΩ Ω
Ωl

(Ω)M ρvΩ Ω

Ωr
(M)Ω ρvΩ Ω

V ρvΩ W
!

V ! ρvΩ W !

M ρvΩ M ′ V ρvΩ V ′
ρ

(λxM)!V ! ρvΩ M ′[V ′/x]

M ρvΩ M ′ N ρvΩ N ′
@

MN ρvΩ M ′N ′

M ρvΩ M ′
λ

λxM ρvΩ λxM ′

Remark 173.

1. The ρvΩ-reduction is reflexive (the proof is by straightforward induction
on the expression E).

2. βvΩ ⊆ ρvΩ (the proof is by straightforward induction on the length of
the derivation of E βvΩ E′, by exploiting remark 173.1).

Lemma 174. ρvΩ ⊆ β∗vΩ .

Proof. By induction on the length of the derivation of E ρvΩ E′, we prove
that E β∗vΩ E′, for every expressions E,E′. Let us consider the last rule of
this derivation.

If it is the ax- or axΩ-rule, then we conclude that E β∗vΩ E′ by reflexivity
of β∗vΩ.

If it is the x-rule with x ∈ {Ωl,Ωr, λ, !}, then we conclude that E βvΩ E′

by applying the x-rule.
If it is the ρ-rule then E = (λxM)!V ! and E′ = M ′[V ′/x] for some terms

M,M ′ and values V, V ′ such that M ρvΩ M ′ and V ρvΩ V ′. By induction hy-
pothesis,M β∗vΩ M

′ and V β∗vΩ V
′, henceE β∗vΩ (λxM ′)!V ! β∗vΩ (λxM ′)!V ′! βvΩ E

′.
If it is the @-rule then E = MN and E′ = M ′N ′ for some terms

M,M ′, N,N ′ such that M ρvΩ M ′ and N ρvΩ N ′. By induction hypothesis,
M β∗vΩ M ′ and N β∗vΩ N ′, thus E β∗vΩ M ′N β∗vΩ E′. �

3.5. VALUE BÖHM TREES 103

Corollary 175. ρ∗vΩ = β∗vΩ .

Proof.

⊆: Proof by straightforward induction on the number n ∈ N of steps of
the ρvΩ-reduction, by exploiting lemma 174.

⊇: The proof is by straightforward induction on the number n ∈ N of steps
of the βvΩ-reduction, by exploiting remark 173.2. �

Lemma 176. For all expressions E,E′, values V, V ′ and variable x, if
E ρvΩ E′ and V ρvΩ V ′ then E[V/x] ρvΩ E′[V ′/x].

Proof. By induction on the length of the derivation of E ρvΩ E′. Let us
consider the last rule of this derivation.

If it is the ax-rule then E = y = E′. If y = x then E[V/x] = V and
E′[V ′/x] = V ′, thus E ρvΩ E′ by hypothesis. Otherwise y 6= x and so
E[V/x] = y = E′[V ′/x], hence E ρvΩ E′ by remark 173.1.

If it is the axΩ-rule then E = Ω = E′ and thus E[V/x] = Ω = E′[V ′/x],
therefore E ρvΩ E′ by remark 173.1.

If it is the Ωl-(resp. Ωr-)rule then E = ΩM (resp. E = MΩ) and E′ =
Ω, hence E[V/x] = (Ω)M [V/x] (resp. (M [V/x])Ω) and E′ = Ω, therefore
E ρvΩ E′ by the Ωl-(resp. Ωr-)rule.

If it is the !-rule then E = W ! and E′ = W ′! for some values W,W ′ such
that W ρvΩ W ′, thus E[V/x] = (W [V/x])! and E′[V ′/x] = (W ′[V ′/x])!. By
induction hypothesis W [V/x] ρvΩ W ′[V ′/x], so E[V/x] ρvΩ E′[V ′/x] by the
!-rule.

If it is the λ-rule then E = λyM and E′ = λyM ′ for some terms M,M ′

such that M ρvΩ M ′, furthermore we can suppose without loss of generality
that y 6= x, thus E[V/x] = λyM [V/x] and E′[V ′/x] = λyM ′[V ′/x]. By
induction hypothesis M [V/x] ρvΩ M ′[V ′/x], hence E[V/x] ρvΩ E′[V ′/x] by
the λ-rule.

If it is the @-rule then E = MN and E′ = M ′N ′ for some terms
M,M ′, N,N ′ such thatM ρvΩ M

′ andN ρvΩ N
′, thusE[V/x] = (M [V/x])N [V/x]

andE′[V ′/x] = (M ′[V ′/x])N ′[V ′/x]. By induction hypothesisM [V/x] ρvΩ M
′[V ′/x]

and N [V/x] ρvΩ N ′[V ′/x], hence E[V/x] ρvΩ E′[V ′/x] by the @-rule.
If it is the ρ-rule then E = (λyM)!W ! and E′ = M ′[W ′/y] for some

terms M,M ′ and values W,W ′ such that M ρvΩ M ′ and W ρvΩ W ′, fur-
thermore we can suppose without loss of generality that y /∈ fv(V ′) ∪ {x},
therefore E[V/x] = (λyM [V/x])!W [V/x]! and E′[V ′/x] = M ′[W ′/y][V ′/x] =
M ′[V ′/x][W ′[V ′/x]/y] by lemma 99.1. Thus M [V/x] ρvΩ M ′[V ′/x] and
W [V/x] ρvΩ W ′[V ′/x] by induction hypothesis, hence E[V/x] ρvΩ E′[V ′/x]
by the ρ-rule. �

Theorem 177 (Strong confluence for ρvΩ). Let E,E1, E2 be expressions: if
E ρvΩ E1 and E ρvΩ E2 with E1 6= E2, then there exists an expression F
such that E1 ρvΩ F and E2 ρvΩ F .

104 CHAPTER 3. ABOUT A CALL-BY-VALUE λ-CALCULUS

Proof. �

Corollary 178 (Confluence for βvΩ). Let E,E1, E2 be expressions: if E β∗vΩ E1

and E β∗vΩ E2 with E1 6= E2, then there exists an expression F such that
E1 β

∗
vΩ F and E2 β

∗
vΩ F .

Chapter 4

Two symmetrical call-by-value
Krivine abstract machines

Abstract machines play an important role in the implementation of pro-
gramming languages. The reason abstract machines are so useful is because,
on the one hand, they are sufficiently “abstract” to relate easily to other
kinds of mathematical semantics, such as equational semantics; on the other
hand, they are sufficiently “machine-like” to be easily implementable on real
machines.

For the ordinary (call-by-name) λ-calculus, the most remarkable example
of abstract machine is the Krivine’s machine (KAM) [Kri85, Kri07, DR04].
For the call-by-value λ-calculus, the first abstract machine was the Landin’s
SECD [Lan65], another more recent example is the Leroy’s ZINC [Ler90].

We introduce two versions of the KAM for our call-by-value λ-calculus
ΛCBV, that one without environments (closer to β̂v-reduction) and that one
with environments (closer to what happens in implementations of functional
programming languages). Both versions have two subversions: the left-hand
one and the right-hand one, which are perfectly symmetric. Our approach
is more theoretical and “λ-calculus-like” (as in [Kri85, Kri07, DR04, dC09])
than the abstract machines defined in [Lan65, Ler90].

4.1 The versions without environments

Definition 179 (Stack, process). A stack is a finite sequence of expressions.
A process is a pair (M,π), denoted by M ∗ π, where M is a term and π

is a stack.

In other words, a process is a non-empty stack whose first component is
a term.

Intuitively, a process can be seen as a program in execution.

105

106CHAPTER 4. TWO SYMMETRICAL CALL-BY-VALUE KRIVINE ABSTRACTMACHINES

Notation. Let π = (E1, . . . , En) be a stack with n ∈ N: if n = 0 we denote
π by ∅; for every expression E, we denote by E ·π (resp. π ·E) the stack
(E,E1, . . . , En) (resp. (E1, . . . , En, E)); moreover, we denote E·∅ and ∅·E by
E.

Definition 180. We define two call-by-value Krivine abstract machines
without environments Kl (the left CBV-KAM) and Kr (the right CBV-KAM)
by the following reduction rules:

• this reduction rule is common to Kl and Kr

swap V ! ∗N ·π → N ∗ V ·π

• these reduction rules are specific for Kl

pushl (M)N ∗ π → M ∗N ·π
popl V ! ∗ λxM ·π → M [V/x] ∗ π

• these reduction rules are specific for Kr

pushr (M)N ∗ π → N ∗M ·π
popr (λxM)! ∗ V ·π → M [V/x] ∗ π

Remark 181. The reduction rules for Kl (resp. Kr) are “strongly deterministic”
(i.e. they form a partial map from the set of processes to the set of processes):
for every process M ∗ π there exists at most one process M ′ ∗ π′ such that
M ∗ π → M ′ ∗ π′ according to a reduction rule of Kl (resp. Kr).

Note the different role played by values and terms in Kl and Kr’s stacks
respectively: in Kl(resp. Kr)’s stack, values have to be seen as functions (resp.
arguments) and terms have to be seen as arguments (resp. functions).

The fact that only the popc rule (with c ∈ {l, r}) performs a substitution
corresponds to the call-by-value constraint for reduction: the argument in a
βv-redex has to be a value. The pushl (resp. pushr) and swap rules impose
the call-by-value strategy reducing the “leftmost-(resp. rightmost-)outermost”
βv-redex.

Remark 182. Let M,M ′ be terms, E be an expression and π, π′ be stacks:
by definition, if M ∗ π →x M

′ ∗ π′ with x ∈ {popl, popr, pushl, pushr, swap},
then M ∗ π ·E →x M

′ ∗ π′ ·E for every expression E.

Definition 183. With every process M ∗ π is associated a term M ∗ πl and
a term M ∗ πr defined by induction on the length of π as follows:

M ∗ ∅l := M M ∗ ∅r := M

M ∗ V ·πl := (V !)M ∗ π
l

M ∗ V ·πr := (M)V ! ∗ π
r

M ∗N ·πl := (M)N ∗ πl M ∗N ·πr := (N)M ∗ πr

4.1. THE VERSIONS WITHOUT ENVIRONMENTS 107

Roughly speaking, the stack π in a process M ∗ π can be seen as the
“applicative closure” of the term M , and the function ()

l
(resp. ()

r
) allows to

rebuild the term corresponding to a given process of Kl (resp. Kr), taking into
account the swapped application in the stack i.e. the different role played by
terms and values in the Kl(resp. Kr)’s stack.

Lemma 184. Let M,N be terms, V be a value and π be a stack.

1. M ∗ π ·V l
= (V !)M ∗ πl.

2. M ∗ π ·N l
=
(
M ∗ πl

)
N .

3. M ∗ π ·V r
=
(
M ∗ πr

)
V !.

4. M ∗ π ·N r
= (N)M ∗ πr.

Proof. All the proofs are by induction on the length of π.

1. If π = ∅, thenM ∗ π ·V l
= M ∗ V l

= (V !)M ∗ ∅
l
= (V !)M = (V !)M ∗ ∅l =

(V !)M ∗ πl.
If π = W ·π′ where W is a value, then M ∗ π ·V l

= (W !)M ∗ π′ ·V
l
=

(V !)(W !)M ∗ π′
l
= (V !)M ∗ πl (the central identity holds by induction

hypothesis).
If π = L ·π′ where L is a term, then M ∗ π ·V l

= (M)L ∗ π′ ·V l
=

(V !)(M)L ∗ π′l = (V !)M ∗ πl (the central identity holds by induction
hypothesis).

2. If π = ∅, thenM ∗ π ·N l
= M ∗N l

= (M)N ∗ ∅l = (M)N = (M ∗ ∅l)N =

(M ∗ πl)N .
If π = W ·π′ where W is a value, then M ∗ π ·N l

= (W !)M ∗ π′ ·N
l
=

((W !)M ∗ π′
l
)N = (M ∗ πl)N (the central identity holds by induction

hypothesis).
If π = L ·π′ where L is a term, then M ∗ π ·N l

= (M)L ∗ π′ ·N l
=

((M)L ∗ π′l)N = (M ∗ πl)N (the central identity holds by induction
hypothesis).

3. If π = ∅, thenM ∗ π ·V r
= M ∗ V r

= (M)V ! ∗ ∅
r

= (M)V ! = (M ∗ ∅r)V ! =
(M ∗ πr)V !.
If π = W ·π′ where W is a value, then M ∗ π ·V r

= (M)W ! ∗ π′ ·V
r

=

((M)W ! ∗ π′
r
)V ! = (M ∗ πr)V ! (the central identity holds by induction

hypothesis).
If π = L ·π′ where L is a term, then M ∗ π ·V r

= (L)M ∗ π′ ·V r
=

((L)M ∗ π′r)V ! = (M ∗ πr)V ! (the central identity holds by induction
hypothesis).

4. If π = ∅, thenM ∗ π ·N r
= M ∗N r

= (N)M ∗ ∅r = (N)M = (N)M ∗ ∅r =
(N)M ∗ πr.

108CHAPTER 4. TWO SYMMETRICAL CALL-BY-VALUE KRIVINE ABSTRACTMACHINES

If π = W ·π′ where W is a value, then M ∗ π ·N r
= (M)W ! ∗ π′ ·N

r
=

(N)(M)W ! ∗ π′
r

= (N)M ∗ πr (the central identity holds by induction
hypothesis).
If π = L ·π′ where L is a term, then M ∗ π ·N r

= (L)M ∗ π′ ·N r
=

(N)(L)M ∗ π′r = (N)M ∗ πr (the central identity holds by induction
hypothesis).

�

Now we compare the two CBV-KAMs with βv-reduction, more precisely
we compare Kl(resp. Kr)’s reduction rules with β̂vl-(resp. β̂vr-)reduction.

Lemma 185. Let M be a termand π be a stack.

1. IfM β̂v M
′ (resp.M β̂vl M

′) thenM ∗ πl β̂v M ′ ∗ π
l (resp.M ∗ πl β̂vl M ′ ∗ π

l).

2. IfM β̂v M
′ (resp.M β̂vr M

′) thenM ∗ πr β̂v M ′ ∗ π
r (resp.M ∗ πr β̂vr M ′ ∗ π

r).

Proof. Both proofs are by induction on the length of π.

1. If π = ∅, then M ∗ πl = M ∗ ∅l = M β̂v M
′ = M ′ ∗ ∅l = M ′ ∗ πl.

If π = V·π′ where V is a value, thenM ∗ πl = (V !)M ∗ π′
l
β̂v (V !)M ′ ∗ π′

l
=

M ′ ∗ πl (the central relation holds by induction hypothesis, since (V !)M β̂v (V !)M ′).
If π = N·π′ whereN is a term, thenM ∗ πl = (M)N ∗ π′l β̂v (M ′)N ∗ π′l =

M ′ ∗ πl (the central relation holds by induction hypothesis, since (M)N β̂v (M ′)N).

The proof that M β̂vl M
′ implies M ∗ π β̂vl M ′ ∗ π is analogous, it

suffices to replace β̂v by β̂vl.

2. If π = ∅, then M ∗ πr = M ∗ ∅r = M β̂v M
′ = M ′ ∗ ∅r = M ′ ∗ πr.

If π = V·π′ where V is a value, thenM ∗ πr = (M)V ! ∗ π′
r
β̂v (M ′)V ! ∗ π′

r
=

M ′ ∗ πr (the central relation holds by induction hypothesis, since
(M)V ! β̂v (M ′)V !).
If π = N·π′ whereN is a term, thenM ∗ πr = (N)M ∗ π′r β̂v (N)M ′ ∗ π′r =
M ′ ∗ πr (the central relation holds by induction hypothesis, since
(N)M β̂v (N)M ′).

The proof that M β̂vr M
′ implies M ∗ π β̂vr M ′ ∗ π is analogous, it

suffices to replace β̂v by β̂vr. �

Notice thatM β̂v M
′ does not entail eitherM ∗ πl β̂vl M ′ ∗ π

l orM ∗ πr β̂vr M ′ ∗ π
r;

for example, take M = ((z!)z!)((λxx!)!)y! (resp. M = ((λxx!)!y!)(z!)z!),
M ′ = ((z!)z!)y! (resp. M ′ = (y!)(z!)z!) and π = ∅: then M β̂v M

′ but
M ∗ ∅l = M ∗ ∅r = M which is a β̂vl-(resp. β̂vr-)normal form.

Proposition 186. Let M and M ′ be terms, let π and π′ be stacks:

• ifM∗π →popl M
′∗π′ (resp.M∗π →popr M

′∗π′) thenM ∗ πl β̂vl M ′ ∗ π′
l

(resp. M ∗ πr β̂vr M ′ ∗ π′
r);

4.1. THE VERSIONS WITHOUT ENVIRONMENTS 109

• if M ∗ π →x M
′ ∗ π′ where x ∈ {pushl, swap} (resp. x ∈ {pushr, swap})

then M ∗ πl = M ′ ∗ π′l (resp. M ∗ πr = M ′ ∗ π′r).

Proof. If M ∗ π →popl M
′ ∗ π′ (resp. M ∗ π →popr M

′ ∗ π′) then M =
V !, π = λxN ·π′ (resp. M = (λxN)!, π = V ·π′) and M ′ = N [V/x] for
some term N and value V ; as (λxN)!V ! β̂vl (resp. β̂vr) N [V/x], by lemma
185.1 (resp. 185.2) M ∗ πl = (λxN)!V ! ∗ π′

l
β̂vl M ′ ∗ π′

l (resp. M ∗ πr =

(λxN)!V ! ∗ π′
r
β̂vr M ′ ∗ π′

r).
If M ∗ π →pushl M

′ ∗ π′ (resp. M ∗ π →pushr M
′ ∗ π′) then M = (L)N

(resp. M = (N)L), M ′ = L and π′ = N ·π for some terms N and L, so
M ∗ πc = L ∗N ·πc = M ′ ∗ π′c with c = l (resp. c = r).

If M ∗ π →swap M
′ ∗ π′ then M = V !, M ′ = N , π = N ·π0 and π′ = V ·π0

for some term N and value V , so M ∗ πl = (V !)N ∗ π0
l

= M ′ ∗ π′l (resp.
M ∗ πr = (N)V ! ∗ π0

r
= M ′ ∗ π′r). �

Proposition 186 states the soundness of the CBV-KAM Kl(resp. Kr)’s
reduction rules with respect to β̂vl-(resp. β̂vr-)reduction (and β̂v-reduction, by
remark 117). Indeed the following is an immediate corollary of proposition
186:

Corollary 187. Let M,M ′ be terms and π, π′ be stacks. If M ∗π →l M
′ ∗π′

(resp.M∗π →r M
′∗π′) thenM ∗ πl β̂=

vl M
′ ∗ π′l andM ∗ πl β̂=

v M ′ ∗ π′l (resp.
M ∗ πr β̂=

vr M
′ ∗ π′r andM ∗ πr β̂=

v M ′ ∗ π′r). In particular, ifM∗∅ →l M
′∗π′

(resp. M ∗ ∅ →r M
′ ∗ π′) then M β̂=

vl M
′ ∗ π′l and M β̂=

v M ′ ∗ π′l (resp.
M β̂=

vr M
′ ∗ π′r and M β̂=

v M ′ ∗ π′r).

Remark 188. Let M,M ′, N be terms: M β̂vl (resp. β̂vr) M ′ does not entail
N ∗M →∗l (resp. →∗r)N ∗M ′. For example, take M = (λyy!)!z!, M ′ = z!

and N = x!: M β̂vl M
′ and M β̂vr M

′ but

N∗M = x!∗(λyy!)!z! →swap (λyy!)!z!∗x
{
→pushl (λyy!)! ∗ z! ·x→swap z

! ∗ λyy! ·x→popl
→pushr z

! ∗ (λyy!)! ·x→swap (λyy!)! ∗ z ·x→popr

}
z!∗x 6→

and every process in the Kl-(resp. Kr-)reduction started with N ∗M is different
from N ∗M ′.

As a consequence, M β̂v M
′ does not imply that there exist a term

N and a stack π such that M ∗ ∅ →∗l (resp. →∗r)N ∗ π and M ′ = N ∗ πl

(resp. M ′ = N ∗ πr). For instance, take M = ((λx1x
!
1)!y!)((λx2x

!
2)!)z! and

M ′ = ((λx1x
!
1)!y!)z! (resp. M ′ = (y!)((λx2x

!
2)!)z!): M β̂v M

′ but

M ∗ ∅ →pushl (λx1x
!
1)!y! ∗ (λx2x

!
2)!z! →pushl (λx1x

!
1)! ∗ y! ·(λx2x

!
2)!z! →swap y

! ∗ λx1x
!
1 ·(λx2x

!
2)!z!

→popl y
! ∗ (λx2x

!
2)!z! →swap (λx2x

!
2)!z! ∗ y →pushl (λx2x

!
2)! ∗ z! ·y →swap z

! ∗ λx2x
!
2 ·y →popl z

! ∗ y 6→
(resp.M ∗ ∅ →pushr (λx2x

!
2)!z! ∗ (λx1x

!
1)!y! →pushr z

! ∗ (λx2x
!
2)! ·(λx1x

!
1)!y! →swap (λx2x

!
2)!∗ z ·(λx1x

!
1)!y!

→popr z
! ∗ (λx1x

!
1)!y! →swap (λx1x

!
1)!y! ∗ z →pushr y

! ∗ (λx1x
!
1)! ·z →swap (λx1x

!
1)! ∗ y ·z →popr y

! ∗ z 6→)

110CHAPTER 4. TWO SYMMETRICAL CALL-BY-VALUE KRIVINE ABSTRACTMACHINES

and no process N ∗ π in the Kl-(resp. Kr-)reduction started with M ∗ ∅ is
such that M ′ = N ∗ πl (resp. M ′ = N ∗ πr).

What makes both implications of remark 188 fail is that CBV-KAM
Kl(resp. Kr)’s reduction rules correspond to the call-by-value strategy reducing
the “leftmost-(resp. rightmost-)outermost” βv-redex, i.e. the β̂vl-(resp. β̂vr-
)reduction.

Proposition 189. Let M and M ′ be terms. If M β̂vl (resp. β̂vr) M ′ then
there exist a term N and a stack π such that M ∗ ∅ →+

l (resp. →
+
r) N ∗ π

and M ′ = N ∗ πl (resp. M ′ = N ∗ πr).

Proof. By induction on M ∈ Λt. Let us consider the last rule of the
derivation of M β̂vl (resp. β̂vr) M ′.

If it is the β-rule, thenM = (λxN)!V ! andM ′ = N [V/x] for some term N
and value V , henceM ∗∅ →pushl (λxN)!∗V ! →swap V

!∗λxN →popl N [V/x]∗∅
(resp. M ∗ ∅ →pushr V

! ∗ (λxN)! →swap (λxN)! ∗ V →popr N [V/x] ∗ ∅), where
M ′ = N [V/x] ∗ ∅l (resp. M ′ = N [V/x] ∗ ∅r).

If it is the @rv-(resp. @lv-)rule, then M = (V !)L and M ′ = (V !)L′

(resp. M = (L)V ! and M ′ = (L′)V !) for some terms L,L′ and value V
with L β̂vl (resp. β̂vr) L′, thus there exist a term N and a stack π such
that L ∗ ∅ →+

l (resp. →+
r) N ∗ π and L′ = N ∗ πl (resp. L′ = N ∗ πr) by

induction hypothesis; henceM ∗∅ →pushl(resp. →pushr) V
!∗L→swap L∗V →+

l

(resp. →+
r) N ∗π·V by remark 182, where M ′ = (V !)N ∗ πl = N ∗ π ·V l (resp.

M ′ = (N ∗ πr)V ! = N ∗ π ·V r) by lemma 184.1 (resp. 184.3).
If it is the @l-(resp. @r-)rule, then M = (L2)L1 and M ′ = (L′2)L1

(resp. M = (L1)L2 and M ′ = (L1)L′2) for some terms L1, L2, L
′
2 with

L2 β̂vl (resp. β̂vr) L′2, thus there exist an expression N and a stack π such
that L2 ∗ ∅ →+

l (resp. →+
r) N ∗ π and L′2 = N ∗ πl (resp. L′2 = N ∗ πr)

by induction hypothesis; hence M ∗ ∅ →pushl (resp. →pushr) L2 ∗ L1 →+
l

(resp. →+
r) N ∗ π ·L1 by remark 182, where M ′ = (N ∗ πl)L1 = N ∗ π ·L1

l

(resp. M ′ = (L1)N ∗ πr = N ∗ π ·L1
r) by lemma 184.2 (resp. 184.4). �

Intuitively, proposition 189 is a sort of converse to proposition 186, i.e.
it states the “completeness” of the CBV-KAM Kl(resp. Kr)’s reduction rules
with respect to β̂vl-(resp. β̂vr-)reduction.

Proposition 190. Let M and M ′ be terms. If M β̂v M
′ then there exist an

expression E and a stack π such that M ∗ ∅ →+ E ∗ π and M ′ β̂∗v E ∗ π.

Proof. By induction on M ∈ Λt.
IfM = (λxN)!V ! andM ′ = N [V/x], thenM∗∅ →push V

!∗(λxN)! →access

V ∗ (λxN)! →swap (λxN)! ∗ V →access λxN ∗ V →pop N [V/x] ∗ ∅, where
N [V/x] ∗ ∅ = M ′.

4.2. THE VERSIONS WITH ENVIRONMENTS 111

If M = (L)N and M ′ = (L)N ′ with N β̂v N
′, then by induction hypoth-

esis there exist an expression E and a stack π such that N ∗ ∅ →+ E ∗ π and
N ′ β̂∗v E ∗ π; hence M ∗ ∅ →push N ∗ L →+ E ∗ π ·L by remark 182, where
M ′ β̂∗v (L)E ∗ π = E ∗ π ·L by lemma 184.1. � WHY?

4.2 The versions with environments

We recall that the set of variables (resp. values; terms) of ΛCBV is denoted by
V (resp. Λv; Λt).

Definition 191 (Environment). For every p ∈ N, we define a set Ep, by
induction on p, as follows:

• E0 = V ⇀fin ∅ (i.e. the set containing only the empty function ⊥);

• if p > 0 then Ep = V ⇀fin (Λv × Ep−1).

We set E =
⋃
p∈N Ep, whose elements are called environments. For every

e ∈ E, we denote by d(e) the least p ∈ N such that e ∈ Ep.

Intuitively, an environment can be seen as a kind of heap memory used
for dynamic memory allocation.

Remark 192. For every p ∈ N, Ep ⊆ Ep+1. The proof is a straightforward
induction on p ∈ N. The empty function is in E1, so E0 ⊆ E1. Let p > 0 and
e ∈ Ep: if dom(e) = {x1, . . . , xn} for some n ∈ N, then for every 1 ≤ i ≤ n
there exist a value Vi and ei ∈ Ep−1 such that e(xi) = (Vi, ei); by induction
hypothesis, Ep−1 ⊆ Ep and thus ei ∈ Ep, hence e(xi) ∈ Λv × Ep; therefore
e ∈ V ⇀fin (Λv × Ep) = Ep+1, whence Ep ⊆ Ep+1.

Definition 193 (Closure). The set Cv of value (resp. term) closures is
defined by Cv = Λv × E (resp. Ct = Λt × E). The set C of closures is defined
by C = Cv ∪ Ct.

Given v = (V, e) ∈ Cv, we define v = V [e] ∈ Λv by induction on d(e) ∈ N:

• if d(e) = 0 then V [e] = V ;

• if d(e) > 0 then V [e] = V [e(x1)/x1, . . . , e(xn)/xn] where dom(e) =
{x1, . . . , xn} for some n ∈ N.

Given t = (M, e) ∈ Ct, we define t = M [e] ∈ Λt by induction on M ∈ Λt:

• if M = V ! for some value V , then M [e] = (V [e])!;

• if M = NL for some terms N and L, then M [e] = (N [e])L[e].

Remark 194.

112CHAPTER 4. TWO SYMMETRICAL CALL-BY-VALUE KRIVINE ABSTRACTMACHINES

1. With reference to notations used in definition 193, note that v is
well-defined for v = (V, e) ∈ Cv: indeed, in the case d(e) > 0, for
every 1 ≤ i ≤ n there exists a value Vi and ei ∈ Ed(e)−1 such that
e(xi) = (Vi, ei), hence d(ei) ≤ d(e) − 1 and so e(xi) is defined by
induction hypothesis. Furthermore if c ∈ C is a value (resp. term)
closure, then c is a value (resp. term).

2. By definition, E = V ⇀fin Cv, i.e. environments are the partial functions
with finite domains from the set of variables to the set of value closure.

3. C = Cv] Ct, since Λv ∩ Λt = ∅.

Let E be an expression and e be an environment: each pair (x, v) (where
x is a variable and v = (V, e′) is a value closure) in the graph of e can be seen
as a sort of “recursive” explicit substitution in the expression E[e], associating
V [e′] with the free occurrences of x in E.

Definition 195 (Stack, state). A stack is a finite sequence of closures.
A state is a pair (t, π), denoted by t ∗ π, where t is a term closure and π

is a stack. If s = t ∗ (c1, . . . , cn) for some n ∈ N is a state, then s denotes
the term (t)c1 · · · cn.

In other words, a state is a non empty stack whose first component is a
term closure.

Intuitively, a state is a program in execution, taking into account also the
environment of this execution.

Definition 196 (Variable convention). For every value closure v = (V, e),
we define, by induction on d(e), what means that the value closure v respects
the variable convention; v respects the variable convention if the following
conditions are fulfilled:

• every bound variable in E is bound in E at most once;

• for every bound variable x in E, x /∈ dom(e);

• for every v ∈ im(e), v respects the variable convention.

For every term closure t = (M, e), we define, by induction on M , what means
that the term closure t respects the variable convention:

• if M = V ! for some value V then t respects the variable convention if
(V, e) respects the variable convention;

• if M = NL for some terms N and L then t respects the variable
convention if (N, e) and (L, e) respect the variable convention.

We say that state t ∗ (c1, . . . , cn) (where n ∈ N, t is a term closure and ci is
a closure for any 1 ≤ i ≤ n) respects the variable convention if the closures
t, c1, . . . , cn respect the variable convention.

4.2. THE VERSIONS WITH ENVIRONMENTS 113

For instance, (λy(λx(x!)x!)!,⊥) respects the variable convention, whereas
(λx(λxx!)!,⊥) does not.

Definition 197. We define two call-by-value Krivine abstract machines with
environments Kl

env (the left CBV-KAMenv) and Kr
env (the right CBV-KAMenv)

by the following reduction rules:

• these reductions rule are common to Kl
env and Kr

env

swap (V !, e) ∗ (M, e′)·π → (M, e′) ∗ (V, e)·π if either V /∈ V, or V ∈ V and V /∈ dom(e)
sub (x!, e) ∗ π → (V !, e′) ∗ π if x ∈ dom(e) and e(x) = (V, e′)

• these reduction rules are specific for Kl
env

pushl (MN, e) ∗ π → (M, e) ∗ (N, e)·π
popl (V !, e′) ∗ (λxM, e)·π → (M, e ∪ {x 7→ (V, e′)}) ∗ π

• these reduction rules are specific for Kr
env

pushr (MN, e) ∗ π → (N, e) ∗ (M, e)·π
popr ((λxM)!, e) ∗ (V, e′)·π → (M, e ∪ {x 7→ (V, e′)}) ∗ π

Remark 198. The reduction rules for Kl
env (resp. Kr

env) are “strongly deter-
ministic” (i.e. they form a partial map from the set of states to the set of
states): for every state t ∗ π there exists at most one state t′ ∗ π′ such that
t ∗ π → t′ ∗ π′ according to a reduction rule of Kl

env (resp. Kr
env).

114CHAPTER 4. TWO SYMMETRICAL CALL-BY-VALUE KRIVINE ABSTRACTMACHINES

Chapter 5

Translations

5.1 The typed ΛCBV and boring translations in Lin-
ear Logic

A type system is a class of formulas in some language, the purpose of which
is to express some properties of λ-terms. By introducing such formulas,
as comments in the terms, we construct what we call typed terms, which
correspond to programs in a high level programming language. The main
connective in these formulas is “→”, the type A → B being that of the
“functions” from A to B, that is to say from the set of terms of type A to the
set of terms of type B.

By a variable declaration, we mean an ordered pair (x,A), where x is
a variable of the λ-calculus, and A is a type. It will be denoted by x : A
instead of (x,A). A context Γ is a mapping from a finite set of variables to
the set of all types. Thus it is a finite set {x1 : A1, . . . , xk : Ak} of variable
declarations, where x1, . . . , xk are distinct variables ; we will denote it by
x1 : A1, . . . , xk : Ak (without the braces). So, in such an expression, the order
does not matter. We will say that xi is declared of type Ai in the context Γ.
The integer k may be 0; in that case, we have the empty context.

We will write Γ, x : A in order to denote the context obtained by adding
the declaration x : A to the context Γ, provided that x is not already declared
in Γ.

Given a λ-term t, a type A, and a context Γ, we define, by means of the
following rules, the notion: t is of type A in the context Γ (we will also say :
“t may be given type A in the context Γ”) ; this will be denoted by Γ `L t : A
(or Γ ` t : A if there is no ambiguity) :

ax
Γ, x : A ` x : A

Γ ` V : A
!

Γ ` V ! : A

Γ, x : A `M : B →i

Γ ` λxM : A→ B
Γ `M : A→ B Γ ` N : A →e

Γ `MN : B

115

116 CHAPTER 5. TRANSLATIONS

There are two ways to traduce the intuitionistic arrow A→ B in Linear
Logic with a “call-by-value” style (see [Gir87]).

X◦ := !X X• := X
(A→ B)◦ := !(A◦(B◦) (A→ B)• := (!A•(!B•)

(Γ ` V : A)◦ := !Γ◦ ` A◦ (Γ ` V : A)• := !Γ• ` V : A•

(Γ `M : A)◦ := !Γ◦ ` A◦ (Γ `M : A)• := !Γ• `M : !A•

In some sense, the following proposition means that these two translations
are equivalent.

Proposition 199. For every formula A of the implicative fragment, A◦ =
!A•.

Proof. By induction on the formula A.

• If A = X, then A◦ = !X = !A•.

• If A = B → C, then B◦ = !B• and C◦ = !C• by induction hypothesis,
so A◦ = !(B◦(C◦) = !(!B•(!C•) = !A•.

�

5.2 σv-equivalence

In the ordinary (call-by-name) λ-calculus the σ-equivalence (introduced by
Regnier in [Reg92, Reg94]) identifies terms that differ only in their sequential
structure (e.g. (λx1λx2u)v1v2 and (λx2λx1u)v2v1): λ-terms contain pieces
of information, which are unnecessary from the operational view-point. The
same phenomenon may be found in the call-by-value λ-calculus. So two
questions naturally arise for ΛCBV: find the σv-equivalence for ΛCBV; find
some parallel syntax which identifies σv-equivalent terms. In the ordinary λ-
calculus, these two questions are answered by means of the Girard’s translation
of intuitionistic logic into Linear Logic proof-nets: (A → B) (!A(B).
We give an analogous answer for ΛCBV by means of the “boring” translation
of intuitionistic logic into Linear Logic proof-nets: (A→ B) (!A(!B).

Interestingly, this new σv-equivalence relation is not included in the βv-
equivalence, i.e. the σv-equivalence identifies distinct βv-normal terms. We
eventually show that two terms are equivalent iff they are translated as the
same Linear Logic proof-net.

The σv-equivalence is generated by the following rules:

σ1: (λxM)!NL ' (λxML)!N with x /∈ fv(L);

σ2: (λx(λyL)!)!MN ' (λy(λxL)!)!NM ;

σ3: (M)((λxL)!)N ' (λxML)!N with x /∈ fv(M)

5.3. CPS 117

None of this rules are included in the βv-equivalence differently from the
standard (call-by-name) λ-calculus, where the σ-equivalence is included in
the β-equivalence. In some sense, the βv-equivalence is incomplete, and the
σv-equivalence is its completion.

Theorem 200. For every expression E and F , E ' F iff E• = F •.

5.3 CPS

A more significant way than the forgetful functor to embedding the call-
by-value λ-calculus ΛCBV into the ordinary (call-by-name) λ-calculus Λ is
the continuation-passing style (CPS) translation. We present two CPS
translations, the left one ()l (already used in [Plo75, Sel01]) and the right
one ()r.

Definition 201. Let E be an expression.
We define, by induction on E, the right CPS translation of E, denoted

by Er ∈ Λ, as follows:

• xr = x;

• (λxM)r = λxM r;

• (V !)r = λk(k)V r with k /∈ fv(V);

• (MN)r = λk(N r)λn(M r)λm(m)nk with k,m, n /∈ fv(MN).

We define, by induction on E, the left CPS translation of E, denoted by
E l ∈ Λ, as follows:

• xl = x;

• (λxM)l = λxM l;

• (V !)l = λk(k)V l with k /∈ fv(V);

• (MN)l = λk(M l)λm(N l)λn(m)nk with k,m, n /∈ fv(MN).

Note that the only difference between left and right CPS translations is
in the applicative case.

Remark 202. For every expression E, fv(Ec) = fv(E) with c ∈ {l, r} (the
proof is a straightforward induction on E ∈ ΛCBV).

Lemma 203 (Substitution). For every expression E, value V and variable
x, (E[V/x])c = Ec[V c/x] with c ∈ {l, r}.

118 CHAPTER 5. TRANSLATIONS

Proof. By induction on E ∈ ΛCBV. Let c ∈ {l, r}.
If E = x, then E[V/x] = V and Ec = x, so (E[V/x])c = V c = Ec[V c/x].
If E = y for some variable y 6= x, then E[V/x] = y and Ec = y, so

(E[V/x])c = y = Ec[V c/x].
If E = λyM for some term M , then we can suppose without loss of

generality y /∈ fv(V) ∪ {x} (by α-equivalence), thus E[V/x] = λyM [V/x]
and Ec = λyM c with (M [V/x])c = M c[V c/x] by induction hypothesis, so
(E[V/x])c = (λyM [V/x])c = λy(M [V/x])c = λyM c[V c/x] = Ec[V c/x] since
y /∈ fv(V c) ∪ {x} by remark 202.

If E = W ! for some value W , then E[V/x] = (W [V/x])! and Ec =
λk(k)W c with k /∈ fv(W) ∪ {x} (by α-equivalence), thus k /∈ {x} ∪ fv(W c)
by remark 202, moreover (W [V/x])c = W c[V c/x] by induction hypothesis,
so (E[V/x])c = λk(k)(W [V/x])c = λk(k)W c[V c/x] = Ec[W c/x].

If E = MN for some terms M and N , then E[V/x] = M [V/x]N [V/x]
and

E l = λk(M l)λm(N l)λn(m)nk

Er = λk(N r)λn(M r)λm(m)nk

with k,m, n /∈ fv(M)∪fv(N)∪{x} = fv(M c)∪fv(N c)∪{x} by remark 202 and
α-equivalence, moreover (M [V/x])c = M c[V c/x] and (N [V/x])c = N c[V c/x]
by induction hypothesis, hence

(E[V/x])l = λk(M [V/x])lλm(N [V/x])lλn(m)nk = λk(M l[V l/x])λm(N l[V l/x])λn(m)nk = E l[V l/x]

(E[V/x])r = λk(N [V/x])rλn(M [V/x])rλm(m)nk = λk(N r[V r/x])λn(M r[V r/x])λm(m)nk = Er[V r/x]

�

Remark 204. For every values V1 and V2, if c ∈ {l, r} then (V !
1V

!
2)c β+ λk(V c

1)V c
2 k

with k /∈ fv(V c
1 V

c
2). Indeed, let k,m, n /∈ fv(V c

1) ∪ fv(V c
2) = fv(V c

1 V
c

2) with
c ∈ {l, r}:

(V !
1V

!
2)l = λk(λk1(k1)V l

1)λm(λk2(k2)V l
2)λn(m)nk β λk(λk1(k1)V l

1)λm(λn(m)nk)V l
2

β λk(λm(λn(m)nk)V l
2)V l

1 β λk(λn(V l
1)nk)V l

2 β λkV l
1V

l
2k .

(V !
1V

!
2)r = λk(λk2(k2)V r

2)λn(λk1(k1)V r
1)λm(m)nk β λk(λk2(k2)V r

2)λn(λm(m)nk)V r
1

β λk(λn(λm(m)nk)V r
1)V r

2 β λk(λn(V r
1)nk)V r

2 β λkV r
1V

r
2k .

The following proposition claims that one step of βv-(and so β̂v-)reduction
is simulated by at least one step of βη-reduction in ordinary λ-calculus,
modulo left or right CPS translation.

Proposition 205. Let E,E′ ∈ ΛCBV: if E βv E
′ then Ec βη+ E′ c with

c ∈ {l, r}.

5.3. CPS 119

Proof. By induction on E ∈ ΛCBV. Let us consider the last rule of the
derivation of E βv E

′.
If it is the β-rule, then E = (λxM)!V ! and E′ = M [V/x] for some

term M and value V , hence Ec β+ λk(λxM c)V ck by remark 204 and E′ c =
(M [V/x])c = M c[V c/x] by lemma 203; thusEc β+ λk(λxM c)V ck β λk(M c[V c/x])k =
λk(E′ c)k η E′ c since k /∈ fv(M c) ∪ fv(V c) ∪ {x}.

If it is the @l-rule, then E = MN and E′ = M ′N where M,M ′, N
are terms with M βv M

′, hence M c βη+ M ′ c with c ∈ {l, r} by induction
hypothesis, so

E l = λk(M l)λm(N l)λn(m)nk βη+ λk(M ′ l)λm(N l)λn(m)nk = E′ l

Er = λk(N r)λn(M r)λm(m)nk βη+ λk(N r)λn(M ′ r)λm(m)nk = E′ r

since βη-reduction passes to context.
If it is the @r-rule, then E = MN and E′ = MN ′ where M,N,N ′

are terms with N βv N
′, hence N c βη+ N ′ c with c ∈ {l, r} by induction

hypothesis, so

E l = λk(M l)λm(N l)λn(m)nk βη+ λk(M l)λm(N ′ l)λn(m)nk = E′ l

Er = λk(N r)λn(M r)λm(m)nk βη+ λk(N ′ r)λn(M r)λm(m)nk = E′ r

since βη-reduction passes to context.
If it is the λ-rule, then E = λxM and E′ = λxM ′ where M is a term

with M βv M
′, hence for c ∈ {l, r}, M c βη+ M ′ c by induction hypothesis, so

Ec = λxM c βη+ λxM ′ c = E′ c since βη-reduction passes to context.
If it is the !-rule, then E = V ! and E′ = V ′! where V, V ′ are values

with V βv V
′, hence for c ∈ {l, r}, V c βη+ V ′ c by induction hypothesis, so

Ec = λk(k)V c βη+ λk(k)V ′ c = E′ c since βη-reduction passes to context. �

120 CHAPTER 5. TRANSLATIONS

Bibliography

[Acc11] B. Accattoli. Jumping around the box: graphical and opera-
tional studies on Lambda Calculus and Linear Logic. PhD thesis,
Università "La Sapienza", Roma, January 2011. 92

[AK10] B. Accattoli and D. Kesner. The structural lambda-calculus. In
Proceedings of the 19th EACSL Annual Conference on Computer
Science and Logic, number 6247 in Lecture Notes in Computer
Science, pages 381–395. Springer-Verlag, August 2010. 82, 89

[AK12] B. Accattoli and D. Kesner. Preservation of Strong Normalisation
modulo permutations for the structural lambda-calculus. Logical
Methods in Computer Science, 8(1), 2012. 89, 91

[AP12] B. Accattoli and L. Paolini. Call-by-Value Solvability, Revisited.
In T. Schrijvers and P. Thiemann, editors, Functional and Logic
Programming, volume 7294 of Lecture Notes in Computer Science,
pages 4–16. Springer Berlin Heidelberg, 2012. 10, 82, 89, 90, 91,
92

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Se-
mantics, volume 103 of Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1984. 64, 87

[dC07] D. de Carvalho. Sémantiques de la logique linéaire et temps de
calcul. PhD thesis, Université Aix-Marseille II, 2007. 54

[dC09] D. de Carvalho. Execution time of lambda-terms via denotational
semantics and intersection types. To appear in Mathematical
Structures in Computer Science, 2009. Available at http://
arxiv.org/abs/0905.4251. 54, 105

[dCPT11] D. de Carvalho, M. Pagani, and L. Tortora de Falco. A Se-
mantic Measure of the Execution Time in Linear Logic. The-
oretical Computer Science, Special issue Girard’s Festschrift,
412(20):1884–1902, 2011. 15, 16, 34, 38, 51, 54

121

http://arxiv.org/abs/0905.4251
http://arxiv.org/abs/0905.4251

122 BIBLIOGRAPHY

[dCT12] D. de Carvalho and L. Tortora de Falco. The relational model is
injective for Multiplicative Exponential Linear Logic (without
weakenings). Annals of Pure and Applied Logic, 163(9):1210–
1236, September 2012. 5, 6, 8, 15, 16, 19, 21, 30, 31, 34, 35, 38,
41, 51, 54

[DL07] R. Dyckhoff and S. Lengrand. Call-by-Value λ-calculus and LJQ.
Journal of Logic and Computation, 17(6):1109–1134, 2007. 82

[DR89] V. Danos and L. Regnier. The structure of multiplicatives.
Archive for Mathematical logic, 28(3):181–203, 1989. 5, 46, 48

[DR95] V. Danos and L. Regnier. Proof-nets and the Hilbert space. In
J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in
Linear Logic, volume 222 of Lonon Mathematical Society Lecture
Notes Series, pages 307–328. Cambridge University Press, 1995.
15, 16, 17, 34, 38

[DR04] V. Danos and L. Regnier. Head Linear Reduction. Submitted
for publication, 2004. Available at http://iml.univ-mrs.fr/
~regnier/articles/pam.ps.gz. 10, 105

[Ehr05] T. Ehrhard. Finiteness spaces. Mathematical Structures in
Computer Science, 15(04):615–646, 2005. 6

[Ehr12] T. Ehrhard. Collapsing non-idempotent intersection types. In
P. Cégielski and A. Durand, editors, Computer Science Logic
(CSL’12) - 26th International Workshop/21st Annual Conference
of the EACSL, volume 16 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 259–273, Dagstuhl, Germany, 2012.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 8, 9, 54, 64,
70, 71, 89

[ER03] T. Ehrhard and L. Regnier. The differential lambda-calculus.
Theoretical Computer Science, 309(1-3):1–41, 2003. 6

[ER06a] T. Ehrhard and L. Regnier. Böhm trees, Krivine machine and
the Taylor expansion of ordinary lambda-terms. Lecture Notes
in Computer Science, 3988:186–197, 2006. 6, 7

[ER06b] T. Ehrhard and L. Regnier. Differential interaction nets. Theo-
retical Computer Science, 364(2):166–195, 2006. 6, 15, 17

[ER08] T. Ehrhard and L. Regnier. Uniformity and the Taylor expansion
of ordinary lambda-terms. Theoretical Computer Science, 403(2-
3):347–372, 2008. 6, 7

http://iml.univ-mrs.fr/~regnier/articles/pam.ps.gz
http://iml.univ-mrs.fr/~regnier/articles/pam.ps.gz

BIBLIOGRAPHY 123

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–
101, 1987. 5, 6, 7, 9, 15, 16, 34, 38, 46, 54, 116

[Hof95] M. Hofmann. Sound and complete axiomatisations of call-by-
value control operators. Mathematical Structures in Computer
Science, 5(4):461–482, 1995. 82

[HZ09] H. Herbelin and S. Zimmermann. An operational account of call-
by-value minimal and classical λ-calculus in “natural deduction”
form. Typed Lambda Calculi and Applications, pages 142–156,
2009. 82, 83, 89

[Kri85] J.-L. Krivine. Un intepréteur du λ-calcul. Unpublished notes,
Université Paris 7, 1985. Available at https://www.pps.
univ-paris-diderot.fr/~krivine/articles/interprt.pdf.
105

[Kri93] J.-L. Krivine. Lambda-calculus, types and models. Ellis Horwood,
1993. 64

[Kri07] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, September
2007. 7, 10, 105

[Laf95] Y. Lafont. From Proof-Nets to Interaction Nets. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic,
volume 222 of London Mathematical Society Lecture Notes Series,
pages 225–247. Cambridge University Press, 1995. 5, 15, 17

[Lan65] P. J. Landin. A correspondence between ALGOL 60 and Church’s
lambda notation. Communications of the ACM, 8:89–101; 158–
165, 1965. 63, 105

[Lau03] O. Laurent. Polarized proof-nets and λµ-calculus. Theoretical
Computer Science, 290(1):161–188, January 2003. 34, 38

[Ler90] X. Leroy. The ZINC experiment: an economical implementation
of the ML language. Technical report 117, INRIA, February
1990. 105

[LT06] O. Laurent and L. Tortora de Falco. Obsessional cliques: a
semantic characterization of bounded time complexity. In Pro-
ceedings of the twenty-first annual IEEE symposium on Logic
In Computer Science, pages 179–188. IEEE Computer Society
Press, August 2006. 15

[Mog89] E. Moggi. Computational lambda-calculus and monads. In
Logic in Computer Science, 1989. LICS’89, Proceedings., Fourth
Annual Symposium on, pages 14–23. IEEE, 1989. 82

https://www.pps.univ-paris-diderot.fr/~krivine/articles/interprt.pdf
https://www.pps.univ-paris-diderot.fr/~krivine/articles/interprt.pdf

124 BIBLIOGRAPHY

[MOTW95] J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-
by-name, Call-by-value, Call-by-need, and the Linear Lambda
Calculus. Electronic Notes in Theoretical Computer Science,
1:370–392, 1995. 8

[MP07] D. Mazza and M. Pagani. The Separation Theorem for Differen-
tial Interaction Nets. In N. Dershowitz, editor, Proceedings of the
Ten-Foruth International Conference on Logic for Programming
Artificial Intelligence and Reasoning Conference (LPAR 2007),
volume 4790 of Lecture Notes in Artificial Intelligence. Springer,
2007. 7, 15, 34, 38

[NGP12] P. Nogueira and Á. García-Pérez. Towards Böhm trees for
lambda-value: the operational and proof-theoretical machinery.
Submitted to Mathematical Structures in Computer Science,
2012. 10

[Pag09] M. Pagani. The Cut-Elimination Thereom for Differential Nets
with Boxes. In P.-L. Curien, editor, Proceedings of the Ninth
International Conference on Typed Lambda Calculi and Applica-
tions (TLCA 2009), Lecture Notes in Computer Science, pages
219–233. Springer, 2009. 15, 16, 34, 38

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the lambda-
calculus. Theoretical Computer Science, 1(2):125–159, 1975. 8,
10, 64, 70, 82, 117

[PR99] L. Paolini and S. Ronchi Della Rocca. Call-by-value Solvabil-
ity. Theoretical Informatics and Applications, 33(6):507–534,
November 1999. RAIRO Series, EDP-Sciences. 82

[PR04] L. Paolini and S. Ronchi Della Rocca. The Parametric λ-
Calculus: a Metamodel for Computation. Texts in Theoretical
Computer Science: An EATCS Series. Springer-Verlag, Berlin,
2004. 82

[PT10] M. Pagani and L. Tortora de Falco. Strong Normalization Prop-
erty for Second Order Linear Logic. Theoretical Computer Sci-
ence, 411(2):410–444, 2010. 15

[Reg92] L. Regnier. Lambda calcul et réseaux. PhD thesis, Université
Paris 7, 1992. 10, 17, 116

[Reg94] L. Regnier. Une équivalence sur les lambda-termes. Theoretical
Computer Science, 126(2):281–292, April 1994. 10, 116

BIBLIOGRAPHY 125

[Sel01] P. Selinger. Control categories and duality: on the categorical
semantics of the lambda-mu calculus. Mathematical Structures
in Computer Science, 11(02):207–260, 2001. 10, 117

[Tor00] L. Tortora de Falco. Réseaux, cohérence et expériences obses-
sionnelles. PhD thesis, Université Paris 7, 2000. 7, 54

[Tor03] L. Tortora de Falco. Obsessional Experiments For Linear Logic
Proof-Nets. Mathematical Structures in Computer Science,
13(6):799–855, December 2003. 7, 15, 16, 34, 38, 46, 48, 54

[Tra11] P. Tranquilli. Intuitionistic differential nets and lambda-calculus.
Theoretical Computer Science, 412(20):1979–1997, 2011. 15, 34,
38

	Introduction
	I Linear Logic
	A non inductive syntax
	Cells and ports
	Pre-pre-proof-structures
	Paths
	Pre-proof-structures
	Boxes and (non-inductive) proof-structures
	Indexed ((pre-)pre-)proof-structures
	A non-inductive correctness criterion
	Taylor expansion

	Relational semantics
	Relational spaces
	Experiments
	The relationship between Taylor expansion and relational semantics
	The connected case

	II Call-by-value lambda calculus
	About a call-by-value -calculus
	A call-by-value -calculus
	The syntax of CBV
	Some call-by-value -reductions
	Some problems with -reduction

	A ``completion'' of v-reduction
	Simulation of Accattoli and Paolini's calculus and solvability
	From terms to trees
	Syntax of applicative trees
	Some reductions on applicative trees

	Value Böhm trees

	Two symmetrical call-by-value Krivine abstract machines
	The versions without environments
	The versions with environments

	Translations
	The typed CBV and boring translations in Linear Logic
	v-equivalence
	CPS

