
Tesi di dottorato in
Filosofia e Teoria delle Scienze Umane

Università degli Studi Roma Tre

Thèse de doctorat en
Informatique

Université Paris 13 - Sorbonne Paris Cité

Concurrency in Interaction Nets
and Graph Rewriting

Andrei Dorman

Under the supervision of:

Damiano Mazza
Université Paris 13

Lorenzo Tortora de Falco
Università Roma Tre

Stefano Guerini
Université Paris 13

Referees: Jury:

Maribel Fernández
Catuscia Palamidessi

Fabio Gadducci
Stefano Guerrini
Daniel Hirschkoff
Cosimo Laneve
Damiano Mazza

Lorenzo Tortora de Falco

Merci

I would like to thank my co-supervisor Damiano Mazza for his permanent guidance
and support. He introduced me to pretty much any subject present in this thesis and
even more, since I was unaware of Linear Logic before I started to work with him for
my master’s thesis, had no idea of the existence of neither Curry nor Howard and did
not know a semantics could be denotational. Back then, I was a simple ol’ admirer of
Gödel and had no idea logic could go in such practical yet beautiful directions.

I also wish to thank him and Tobias Heindel for agreeing to co-author articles with
me. I have learned a lot at their contact, as much in the process of writing as in the
one of research, alone but most of all in collaboration. If some parts of this thesis
are nicely written, it is most likely their accomplishment. Thanks to Tobias, I have
discovered parts of Germany I would probably have not otherwise.

A broad thanks to the team LCR of the LIPN for their warm welcome and the
extraordinary way they take care of their PhD students. In general, the working
environment of the “Franco-Italian linear logic community” is very stimulating, thanks
to their professionalism but also their kindness and support. Every opportunity is given
to learn, exchange and discuss.

Thank you in advance to the referees Maribel Fernández and Catuscia Palamidessi
whose work has inspired some of the tools and results of this thesis. I hope they do
not realize that I somehow misunderstood their work.

A word to all the PhD students that I have met again and again throughout these
three years in various locations of the world, with which we have exchanged about
work, but not only, and who have made every conference, summer and winter school
particularly enjoyable. In order not to expose their extra-professional abilities, I shall
not thank them namely, but they will recognize themselves.

Thanks you of course to Lorenzo who has given me the opportunity to fulfill my
long-time dream of living in Rome.

Contents

Introduction 1
Plan of the thesis . 16

1 Interaction Nets 19
1.1 Lafont’s calculus . 19

1.1.1 Interaction nets . 19
1.1.2 Universality . 25

1.2 Non-deterministic extensions . 29
1.2.1 Multirule nets . 29
1.2.2 Multiwire nets . 30
1.2.3 Multiport nets . 31

1.3 Relative expressivity . 33
1.3.1 Encodings among non-deterministic interaction nets 33
1.3.2 A separation technique based on Event Structures 37
1.3.3 Event Structures of multiport vs. multiwire systems 40

2 Structural Operation Semantics for Interaction Nets 43
2.1 SOS for simple interaction nets . 43
2.2 Graph rewriting : preliminaries . 46

2.2.1 Hypergraphs . 46
2.2.2 Standard graph transformation 47
2.2.3 Behavior as interaction with the environment 50

2.3 A process calculus perspective on borrowed contexts 52
2.3.1 The analogy with CCS . 53
2.3.2 Borrowed contexts in three layers 55

2.4 Communication in composed states . 61
2.4.1 The idea of composition of transitions 61
2.4.2 Composition results for Borrowed Context diagrams 63

2.5 SOS semantics . 70
2.6 Application to interaction nets . 73

2.6.1 Towards a partial solution . 76
2.6.2 Sufficient conditions . 78

2.6.3 Particular means for particular ends 83
2.7 Conclusion . 87

3 Concurrent Interaction Nets 91
3.1 (Textual) interaction nets . 91
3.2 Encoding the pi-calculus . 97
3.3 Comparing interaction net extensions 102

3.3.1 Encodability . 103
3.3.2 Separation . 105
3.3.3 To sum-up . 106

3.4 Multiports can alone express rule ambiguity and connectors 107
3.4.1 Uniports, but multwires and/or multiple rules 107
3.4.2 Some issues with communication zones 115
3.4.3 Upgrade to multiport source language 118
3.4.4 Encoding general nets into multiport nets 121

3.5 Multiwires can express rule ambiguity 128
3.5.1 One multirule to rule them all 129
3.5.2 Encoding the asymmetric rule using multiwires 133
3.5.3 What about multiports? . 136

3.6 Multirules alone do not give concurrency 137
3.7 Comparing multiport and multiwire concurrency 139

4 Multiport Combinators 147
4.1 Special decomposition of nets . 147
4.2 Combinators for multiport interaction nets 153

4.2.1 The system . 153
4.2.2 Multiplexors and transpositors 157
4.2.3 Menus and selectors . 161
4.2.4 Allocator . 163

4.3 Encoding (restricted case) . 163
4.4 Encoding systems with recursion . 172

4.4.1 Duplication . 172
4.4.2 Codes, copiers and decoder . 173
4.4.3 The encoding, general case . 175
4.4.4 Correctness of the encoding . 180

4.5 Quality of the combinators . 181

References 185

Introduction

Same causes lead to the same effects. Modern science can only begin its existence
with this premise on the uniformity of nature. Science presupposes determinism as
a theoretical hypothesis – from the Laws of Newton to Laplace’s demon – and as a
working hypothesis, obtaining much success. With the discovery of quantum mechan-
ics, interpretations of the world with non-deterministic are made. We are not entering
this aporetic debate in this work. At best, we can say it inspired it.

In this thesis, we study a world in which we suppose that non-deterministic relations
can exist. The main questions that we ask ourselves about such a world are how to
define in them equality or similarity. If the same causes can have many consequences,
how can we say two states of the world are similar if what follows from them is not
well defined? Is it possible to think the equality of states of the world retrospectively,
by the events they generate? To model such worlds, we need cause/effect relations,
actions, events,. . .We pick the rewriting paradigm, strictly syntactical, where objects
are words on a given alphabet and events are given by instantiations of a rewriting
mechanism on parts of words. If it is debatable whether it is an acceptable model of
the physical world or not, it is the most general approach to any type of calculus. Any
computation is, syntactically, more or less complex rewriting mechanisms on more or
less complex objects.

The formal study of computation is related to the formal study of logic, histori-
cally and technically, which reflected onto the methodology. The same questions were
raised; equivalent answers were given. The former were: What can we prove? vs.
What can we compute? Is this logical system equivalent to this one? vs. Are these
two models of computation the same? Is this logic complete? vs. Is this model com-
plete? What does complete mean? Relatively to what? Are there infinitely many
logics/computational classes? The answers were extensional: this can prove this set of
theorems. vs. This can compute this class of functions. Completeness: It can prove
all theorems/compute all functions. What does it mean? This similitude was crowned
by one of the most important results in the field – of logic or computer science, de-
pending on which side you pick as secondary – that gave a mathematical reason to this
symbiotic relationship, a demonstration that they were strongly related. Curry and
Howard’s discovery of the relation between λ-calculus and natural deduction [11, 30].
To every proof corresponds a program. The two worlds are for ever united. Executing

1

2

a program is like transforming a proof. Into what? Into an equivalent proof, in some
sense a “simpler” one, a little like computing an arithmetical expression is transforming
it into a simpler one, until the simplest one is obtained.

This correspondence is therefore possible thanks to a special point of view on
proofs. Originally, formal logic was kind of static. A proof is this series of formulas
which sequence is determined by some causal relation given mainly by the modus
ponens law, and which proves the last formula of the sequence. In [25], Gentzen
modifies radically the point of view on the matter. He concentrates on deduction laws
more than on theorems, and most of all, introduces dynamic in the static world of
formal logic. In his paradigm, proofs can be transformed into equivalent proofs, by a
strict and rather complex rewriting mechanism. This opens the breach to the questions
of similarity, finite/infinite transformations, measure of a proof,etc. The proof is the
object of the study. In the setting, theorems are just a way of expressing that some
of these objects have a meaning, that they are correct. As for the others. . . it stays
unclear at first.

Many programs nevertheless do not correspond to proofs. A proof has a result, the
theorem it proves. Computations on the other hand, do not necessarily end. Famous
examples are non-terminating Turing machines or the λ-term (λx.xx)(λx.xx). They do
not have a result. So how can we compare them? Should all non-terminating programs
be considered equivalent? Is a program that calculates indefinitely the digits of π, one
at the time, equivalent to one that indefinitely outputs “Hello World”, “Hello World”,
“Hello World”, . . . ? Infinitesimal calculus can be applied here to answer negatively.
The first program approaches π: that is its result. The second one approaches “Hello
World” as a constant function: that is its result. But then, printing this sentence
infinitely many times is the same as printing it once? Answers similar to the ones
given by mathematics can be given in some cases. But not always.

For once, technology preceded the theory by far. Our computers are machines
executing computations. But as a whole, a computer cannot be considered to compute
“something”. First, it can do several tasks at once, so it may not only have one, but
several results. Second, its result depend highly on what is asked from them. It is
interactive. The external user will determine the computations that will take place
inside the machine. Its results, if ever defined, depend highly on its environment. How
can we compare such open, result-free systems? If we cannot compare what they do,
maybe the real question is: how do they do what they do? Because such a question
is too wide, we restrict ourselves to its relativization: do these systems do whatever
they do in the the same way?

Interaction nets In this work, we chose to study a graphical model of computation,
that has the advantages of being multitask – i.e. of parallel computing – and open –
objects can interact with the environment: Lafont interaction nets. Lafont interaction
nets, presented first in [32], are graphical computation languages in which the minimal

3

step of computation is given by rewriting rules on pairs of cells. This way, a program,
having a cell a but missing some cell b can interact with another program which has
b, thus modeling interaction (as often in computer science, we do not differentiate the
programs from their environment, which we consider to be another program). More
than a calculus, it is primarily a programming paradigm; it is left to the user to
define the primitive objects to use and the rewriting rules over these objects. Its great
freedom is clearly one of its advantages. It gives a simple and really powerful way of
programming a large panel of algorithms.

Primitives are labeled cells with a definite amount of ports that depend on the
label. Wires can connect two ports. Each cell has a special port, deemed principal.
Only pairs of cells joined by their respective principal ports can interact. Such pairs
are the calculus’ redexes. Each redex can be rewritten by a rule totally defined by the
labels of the involved cells. The rules are given with the system. At most one rule can
be given per redex.

Lafont himself “programmed” arithmetics, Turing machines and other computa-
tional models. In his PhD thesis [37], Sylvain Lippi programs some famous algorithms
as the Hanoi towers and several sorting algorithms. He moreover implements a pro-
gramming language based on interaction nets. One can anyhow think of any kind
of situation, build complicated rules from “complex” primitives. Hence, one can de-
scribe behaviors at different levels, scaling the language as he better sees fit, creating
“macros” for instance, or taking as primitives to the language more or less complicated
steps of computation. The only limitation is in the global expressivity: it allows only
to express parallel but deterministic computations. Several computation steps can
happens at once, but the result is always unique, like a Parallel Turing Machine, that
can have a reading head on each of its tapes.

Since programs and environments are identified, and we wish to model non pre-
dictable environments, we model programs themselves as non-deterministic. The def-
inition of interaction nets is restrictive. Several conditions can be readily relaxed,
among which we retain three, yielding so called multiruled, multiwire and multiport
interaction nets. They all allow non-deterministic behaviors.

These extensions have appeared naturally in the literature. Differential Interaction
Nets of Ehrhard and Regnier [17] use several rules for some of the redexes. They could
be a starting point for a Curry-Howard style equivalence between concurrent systems
and logic. Concurrent nets of Beffara and Maurel [5] use wires that connect more than
two ports, like names connect several prefixes in name-passing calculi. Yoshida also
uses such connectors in her work on concurrent combinators [59]. Mazza encodes the
π-calculus into interaction nets which cells can interact on more than one port. Such
systems are studies for themselves by Banach [3] who defines them as a particular
case of hypergraphs and studies their mechanism of deadlock creation. Fernàndez and
Khalil [20] study a very important such cell and its expressivity: a cell that naturally
represents resource management. Even though such applied results have discretely

4

flourished, a systematic study of such extensions has only been carried out, to our
knowledge, by Alexiev in his PhD thesis [1].

He compares the different extensions by encoding them into one another. This
means that for any system of one kind, he is able to define a system of another kind
that has the same “behavior, without really defining what it means. As he says himself:

“[W]e don’t prove formally the faithfulness of our translations, but we
introduce them gradually and give comprehensive examples, so we hope
that we have made their faithfulness believable” ([1], p. 64).

He is aware of equivalences such as bisimulation for Milner’s π-calculus, but such tools
for interaction nets are not available to him yet. Moreover, he does not discuss at all
the problem of divergence, which we believe is quite important. Because many of his
encodings are based on commitment, he has to introduce un-commitment steps, which
lead to cyclic reductions.

The question of relative expressivity of different concurrent extensions is quite
important. Although all these extensions have been shown to be as expressive as
π-calculus, the encodings are so different that the relations between them is yet un-
clear. The correctness of these encodings is proved with such ad-hoc techniques that
a satisfactory comparison of these extensions is lacking. For instance, multiwires eas-
ily express the usual parallel operator of process calculi that connects names without
bounding them, whereas multiports really seem fitted to emphasize π-calculus’ sum.
Non-interleaving semantics make us believe that these constructs are not completely
equivalent. It would therefore be possible that that multiwires and multiports do not
have exactly the same expressivity. We show on the other hand that multirules add
no expressivity to the other two extensions. It says something about “coin-tossing”
non-determinism, and the fact that it is not useful in the presence of connectors and
multiport cells, so it also explains in some sense that non-deterministic Turing ma-
chines are not good models of concurrency. It also brings attention on Ehrhard and
Laurent’s encoding of π-calculus in differential interaction nets [16] which are a par-
ticular instance of multirule nets. Which of the two results is more accurate: the
separation we propose or their encoding, since there is something more in multiport
cells than in differential interaction nets.

Another problem is the choice of a “canonical” extension to model concurrency.
Since they are all comparable with π-calculus (and other process calculi), such a choice
is not obvious. An easy answer would be the most general one. But then, it lacks some
simplicity. Why use multirules if they bring no expressive power? We can already say
that the main result we obtain is that multiport nets are the good choice. They can
perfectly encode any interaction net system. Most of all, it is the uselessness of connec-
tors that is interesting in this result, since they seem a natural way of expressing the
multiplicity of occurrences of names in processes. Getting rid of multiple connections
mean that all interaction can be done privately, as soon as primitives can have several

5

connection points. This reminds of internal mobility, where all communication is made
on bound names and which Sangiorgi proves to contain most of the expressive power
of π-calculus [53]. The result is made possible in interaction nets by our decision to
concentrate on ports as primitives for channels.

Finally, a more theoretical motivation of comparing different concurrent systems is
the hope of constructing some hierarchy of non-determinisms. This notion is negative
by definition – not deterministic. We might gain some insight on it if we can deal with
some kind of “non-deterministic complexity”. Before we can give a quantity to this
complexity, we want to see if it has any sense. For that, one needs to be sure that
there are non-equivalent systems; that some are actually more powerful that others,
more complex. Here, we are more interested in separating families of interaction net
systems. Separating here means to find some systems of one kind that cannot be
expressed by any system of another kind. Here again, results depend on the choices
that are made to compare expressivity, so a clear definition of equivalence is necessary.

We explore several ways to compare expressivity of concurrent interaction nets
extensions.

- The first is purely semantical, based on event structures. An event structure
describes the possible computations a net in a given interaction net system can
perform. Comparing systems then amounts to comparing the event structures
of their nets. A part of the job has already been done in [40]. We prospect it
because of its elegance and because it hints on the other relative expressivity
results.

- We then look for an operational semantics for interaction nets, simple enough
to use. For this, we consider nets as hyper-graph rewriting systems for which a
wide literature exists. We particularly look to define labels on transitions in a
manner that allows us to construct interaction as synchronization of transitions.
This is a usual approach of process calculi. Bisimulation can then be defined
in a natural way. It anyhow reveals itself to be too complicated to be used for
relative expressivity as the labels highly depend on the alphabet of the system.

- Finally, we define an observational equivalence based on a general notion of barbs.
This really seems to be the right approach. It allows to compare nets of different
systems, and therefore is fit for a good definition of translation.

It is only once we hold a good equivalence that we can consider defining good encodings.
We avoid entering the debate on what a good encoding is by using one of the most
exhaustive works on the subject, Gorla’s paper on encodings [26].

To sum-up, in this thesis, we pursue Alexiev’s study by making it more precise and
more technically satisfactory. We also link it to other areas of computer science like
graph rewriting and process calculi, of which we both use extremely powerful tools
and to which we bring in exchange new results. One of our main accomplishments
is to provide interaction nets with a good behavioral equivalence. For a more precise

6

definition of these equivalences, we define a textual language that is exactly interaction
nets. In this language, all ports, even bound, are explicitly designated, making them
the atomic particles of communication channels.

From channels to ports Names, representing communication channels, are one
of the most effective ideas of process calculi for the purpose of expressing concur-
rency. They make connection independent from contiguity. As Honda remarks in [29],
names are closely related to the non-determinism of concurrent computation in two
ways: “First, names can represent sharing of interaction points [. . .] Secondly names
serve for keeping identity in spite of possible change of meaning during computation”.
Honda goes on to show a formal equivalence of name-based calculi with what he calls
nameless processes which have a graph-rewriting look and make use of a notion of
explicit connection. Honda’s nameless processes are really not far from interaction
nets, multiport and multiwires allowed, while explicit connections are wires. It there-
fore seems that the underlying structure of name based calculi, the names, is very
naturally represented by interaction nets.

On the other hand, ports appear naturally in graphical representations of concur-
rent calculi, such as Milner’s π-nets [41] and Danos and Laneve’s graphical κ-calculus
[12], in which ports are called sites. Parrow actually uses the word “port” and insists
on their importance in his algebraic language for networks [46]. However, in these
last two examples reduction is not implemented by rendez-vous communication: it
depends on a notion of state and ports are rather indicators of that state. As we have
seen, ports are essential to interaction nets. They are the core of the connectivity and
differentiate nets from hypergraphs where incidence is sufficient.

Our wish here is to go from a graphical representation of processes to an alge-
braic one, with the result of separating the two relations that names bear with non-
determinism. While identity is maintained by identity of port names, sharing of inter-
action points is made explicit: ports all have different names but are bound together
through explicit connectors that take the form of a finite set of ports. To clarify the
relation between names and ports, one can think of ports to be different occurrences
of a name, and a connector to be the explicit definition of which ports are occurrences
of a same name.

Making the distinction of principal port and auxiliary port is what brought Lafont
to his encodability result. Interaction nets are powerful thanks to that feature: for
the same two cells to be able to interact or not while connected is a strong property
that hypergraph rewriting cannot provide. Even though the two worlds seem so close,
it is actually rather complicated to express interaction nets in the pure language of
hypergraphs, as shows the detailed work of Banach [3]. Actually, it seems any attempt
to define interaction nets in a more formal way than Lafont stumbles on the value to
give to ports. The fact that ports are connection points that are limited to connecting

7

two elements is unnatural in any other setting1.
The best approach for formalization (for one that considers Lafont’s definition as

not formal enough) seems to be textual. Giving a grammatical language for anything
is always a must of formalization. An algebraic language for Lafont nets was given
quite quickly . . . by himself. Immediately in fact [32]. But a systematic study of the
language was only started in [21], by Fernández and Mackie. That language is rather
aesthetic as it relies on the tree decomposition of Lafont nets. Thanks to this, terms
have a nice form, with a clear subterm relation, clear interface definition and some
kind of leveling that is close to π-calculus prefixing. The nice tree structure of Lafont
nets is lost once considered their concurrent extensions. This means that the textual
language cannot be transposed directly to express these later, especially connectors.

Textual interaction nets We introduce a simple and flexible algebraic framework
for concurrent interaction nets systems (INS). Instead of taking the inspiration in term
rewriting, we follow what are the most common algebraic languages for concurrent
systems – process calculi. In a way, we generalize the replication-free fragment of
Laneve and Victor’s solos calculus [35] (a connection between solos and interaction
nets was already pointed out in [34]).

The basic components of interaction nets are agents – or cells – and connectors –
or wires. An agent is an expression of the form α(x1, . . . , xn), where α is an arbitrary
symbol and x1, . . . , xn are ports, whose syntactic status is similar to names of usual
name-passing calculi. Each symbol comes with a fixed degree which determines the
number of ports of the cell, in this case n. A k-connector is a finite multiset of ports
of cardinality k, denoted by [x1, . . . , xk] (the use of multisets is actually a technicality;
the reader may think of a connector as a set).

A net is a finite multiset of agents and connectors, in which every port appears at
most twice. This restriction, which may seem unusual if one likens ports to names, is
in reality absolutely natural: a port only has two “sides”. If a net uses both of them,
the port is bound (and may be renamed at whim, by α-equivalence); otherwise, it is
free, and is an interface to the external world.

Given two nets µ, ν, one may suppose their bound ports to be disjoint, and consider
their standard multiset union, which we denote by µ | ν. This operation may bind
some ports, allowing the interaction between µ and ν. Two agents may interact when
there is a connector between them: the net α(x1, . . . , xm) | β(y1, . . . , yn), under the
hypothesis xi = yj, is called a pair and may be transformed into ν | [z̃], where ν is
any net whose form depends on the tuple (α, i, β, j) and whose free ports are exactly
x1, . . . , xi−1, xi+1, . . . , xm, y1, . . . , yj−1, yj+1, . . . , yn. Therefore, interaction is binary.
Several rules can be defined for an active pair, so tuple defining a rule are of the form

1Tom Hirschowitz has provided a profoundly formal definition of multiport interaction nets in
terms of presheaves. Theoretically nice, it feels a bit overwhelming to deal with such complicated
categorical concepts for something that is so simple to visualize.

8

(α, i, β, j, k) where k is an identifier of the rule for that pair. If at least one rule is
defined, the pair is deemed active.

An interaction net system is defined by choosing a set of symbols (an alphabet)
and by specifying a set of interaction rules, attaching a fixed net ν as above to a given
tuple (α, i, β, j, k). Of course, not all tuples need to have an associated rule.

Formalization of interaction nets into a textual form brings a new point of view on
the nature of the three non-deterministic extensions. The alphabet decides for the use
of multiports or not while the set of rules gives ambiguity or not. Connectivity, on the
other hand, is a structural component of interaction net systems. A given system can
be multiwire or not, depending if one allows k-connectors or not, for k 6= 2.

Example Let us give an example. We consider 5 symbols, Ω, η, ε, ρ and Win!, of
degree 1, 2, 1, 3 and 1, respectively. There are 4 interaction rules given graphically in
Figure 1 and textually by the following oriented equations:

Ω(a) | η(a, x) → Win!(x) ε(a) | η(a, x) → ε(x)
ρ(a, b, x) | η(a, y) → η(x, y) | ε(b) ρ(a, b, x) | η(b, y) → η(x, y) | ε(a)

The system may be seen as an extremely simple resource management model: the net
µ = Ω(c) | ρ(a, b, c) | η(a, x) | η(b, y) represents two agents η competing to access a
resource Ω. The agent ρ is the resource manager; it grants access to Ω to the agent
interacting first. The reader can check that µ has two normal forms, Win!(x) | ε(y)
and ε(x) |Win!(y), corresponding to the two possible outcomes of the competition. A
similar effect may be obtained by using a 3-connector instead of an agent ρ: the net
µ′ = Ω(c) | [a, b, c] | η(a, x) | η(b, y) has essentially the same behavior as µ.

Ω

η
Win!

(a) That’s a win.

ε

η

ε

(b) That’s a loss.

ρ

η

η

ε

(c) Fight!

ρ

η

η

ε

(d) Fight!

Figure 1: Rules for the resource management interaction net system.

A remarkable example is obtained by considering two families of symbols (ιn)n∈N,

9

(on)n∈N, with ιn, on of degree n+ 1, with the rule ιn(x, y1, . . . , yn) | on(x, z1, . . . , zn)→
[y1, z1] | · · · | [yn, zn]. If we write xỹ for ιn(x, ỹ) and xỹ for o(x, ỹ), we see how this
interaction net system is essentially the replication-free solos calculus, with explicit
fusions. We hope that these two examples give the reader a glimpse of the versatility
of interaction nets, and their ability to express equally well high-level and low-level
models.

Overview of this work After introducing the needed definitions, the first chapter
deals with the semantical approach to expressivity based on event structures. This
gives us intuitions on relative expressivity, but lacks of a good notion of encoding.
Chapter 2 is a study of interaction nets as hypergraphs and produces a structural
operational semantics for them, but is not well fit for language comparison. It is only
in the third chapter that we use the textual language for nets, as the observational
equivalence we give, based on a notion of barb, is strongly inspired from process calculi
equivalences. We are able then to define a good notion of translation of a system into
another that allows us to give both positive encodability results and separation results.
In this third chapter, we compare all combinations of concurrent interaction nets. The
main result of this study is that multiport interaction nets are powerful enough to
encode systems of any other kind. To emphasize this, we dedicate Chapter 4 to a
multiport system capable of expressing any multiport interaction net system. This
system is therefore universal for interaction nets in general.

Event structures In [40], Damiano Mazza proposes a very formal approach to study
relative expressivity of rewriting systems. He studies interaction nets through the lens
of Winskel’s event structures [58]. The assumption is that a computational process
can be described as a collection of events which are related by causality and conflict,
very much in the spirit of Poincaré’s definition of time [48]. An event f is caused by an
event e if f cannot occur until e has first. If e and f are not in a causal relation, then
they can occur independently and one can speak of parallelism. On the other hand,
events e and f are in conflict if the occurrence of one annihilates the possibility of the
other to occur. The expressivity of a rewrite system in this setting is in some sense
given by the complexity of its causal and conflict relations. For instance, the causality
and conflict of Turing machines is trivial: each transition depends on the preceding
one, while it is more complex for π-calculus.

Of course, defining an absolute complexity measure of event structures seems rather
insignificant, so one prefers to define some kind of relative complexity. Based on
history-preserving bisimulation on event structures, introduced independently by Ra-
binovitch and Traktenbrot [49] and van Glabeek and Goltz [57], Mazza introduces
the notion of bisimilar embedding. Intuitively, en event structure E embeds in an
event structure F if F contains a substructure E ′ bisimilar to E. It means the system
underlying F is able to yield a structure at least as complex as the one underlying E.

10

It is rather straightforward to determine the event structures corresponding to some
interaction net, and therefore the class of event structures that actually characterizes
a family of interaction nets. Using a local property on event structures – confusion
– Mazza gives a first abstract separation result: event structures of systems with
confusion cannot be embedded in the event structures of systems without confusion.
A straight application is that differential nets are strictly less expressive, as event
structures, than usual process calculi in which confusion is determinant. For us, the
immediate consequence is that multiwire and multiport interaction nets are strictly
more expressive than multirule interaction nets. We apply this technique to show
that some structures of multiport nets cannot be embedded in event structures of
multiwire nets without introducing divergence. Even though these results give us a
certain idea of the hierarchy of expressivity of different extensions of interaction nets,
they suffer from some strict properties of event structures. Especially, embeddings of
event structures are not related to the possibility of encoding, since they do not take
into account any syntactical constructs of the studied systems.

Operational semantics The second methodology of comparison is based on labeled
transition systems and bisimulation. It is a standard technique in process calculi as
π-calculus and even the more basic calculus of communicating systems (ccs). In these
calculi, synchronization is decomposed in atomic actions that are usually of the kind
“send” or “receive”. A process can evolve by performing one of the above. The channel
on which the message is sent or received, along with the message itself and the type of
the action form the label of the transition. In interaction nets, this approach can be
applied in the following way. If the net contains a cell of type α which principal port
is free, it can perform any action α is able to perform. This is due to the locality of
interaction. Depending on the active pairs α can be part of, several such actions can
occur. Can all these actions be labeled by α and the port name? The label needs to
contain information on the “opponent” of α. Conversely, is the single information of
the opponent enough to label the transition?

Moreover, in process calculi, the labeled transitions semantics is often given in
a structural form: two processes than can perform dual actions can be combined
into a process performing an internal reaction. This compositionality allows a very
elegant definition of the semantics, that really takes into account the local nature of
interaction. In interaction nets, this means that if there is a rule for a pair α/β, a net
containing an α with free principal port can be combined with a net containing a β
with free principal port and yield an interaction. Compositionality should therefore be
given on labeled transitions. It is not straightforward to define the equivalent of the
communication rule of ccs in interaction nets. The fact that a cell can interact with
several other cells, or in several ways, makes it hard to be sure that the transitions are
compatible, even if the combination of the two nets clearly creates an active pair.

A fruitful field in which labeled transition systems for non-standard calculi are

11

defined is the area of graph transformation, of which interaction nets are a particular
case. Such semantics have been developed from “reaction rules” [55, 19] and the
ambients calculus [51, 7]. An interesting fact about these semantics is the context
independence of the resulting behavioral equivalences, i.e. they are congruences.

In graph transformation calculi, labels are considered to be the “minimal context”
in which a reaction can take place. This approach is dual to the one of process calculi.
Here, the label says: if some process that is able to receive a message is connected to
this graph, this latter is able to perform an action. The idea of minimal context has
been formalized by Leifner and Milner [36]. We adopt an equivalent approach more
suitable for the case of hypergraphs: the Borrowed Contexts technique [19]. It is a
categorical approach based on the definition of rewriting rules as double pushouts. By
a “smart” diagrammatic construction, a minimal context for reaction is found.

This approach is anyhow “monolithic”. The diagram can only be constructed on
the whole hypergraph, making it impossible to define an equivalent of the communica-
tion rule of ccs. We focus on the search of an equivalent of the communication rule, as
it yields a nicer semantics overall. It seems natural too, since interaction is extremely
local in nets. The general direction here is towards formal results that support the
slogan that graph transformation and process calculi have essentially the same descrip-
tive power, as witnessed by a large variety of graphical encodings for process calculi.
This slogan is well established for reduction semantics of closed systems and calls for
an extension to open systems. The potential advantage of graph transformation over
process calculi is their inherent generality, as one will seldom study a particular graph
transformation system for its own sake: the results hold for graph transformation sys-
tems in general. Since we are interested in the paradigm of interaction nets, it seems
a good point of view.

However, this technique ends up being too general for our purpose, and at the same
time leads to a too restrictive semantics. The purpose is not completely achieved as
the communication rule cannot combine transitions from transitions only; some extra
information is always necessary, which finally amounts to the use of the full interaction
rule. We give some ways to bypass that problem in the case of simply wired nets, which
is still not sufficient, but gives us yet another reason to believe simple wires are the
way to go for interaction nets.

Observational equivalence In the third chapter, we study a third behavior in a
third way, by looking for an observational equivalence. A testing equivalence may work
within a given system, but it behaves poorly with respect to encodings. As Parrow
observes [47], it is not fit for a full abstraction result: the contexts in the encoding
language might be of greater number than in the encoded one, even if they do not
surface in the encoding, and can separate the translations of two equivalent terms.
The barbed equivalence approach is more satisfactory, but defining µ↓x (the net µ has
a barb on x) regardless of the system seems hopeless (the alphabet and interaction

12

rules may be virtually anything). Abstract approaches such as the one of [50] do not
work satisfactorily for interaction nets, mainly because of the possibility that symbols
interact with themselves (so a symbol would belong to its own orthogonal, which defies
the definition).

Our solution is to combine the may-testing approach and barbs, using the first to
define the second. We assume that some minimal information concerning the observ-
able behavior of nets is provided with the system itself. After all, in name-passing
calculi, it is usual to consider as a barb a name on which a process can interact in a
significant manner. In interaction nets, an interaction can be pretty much anything, so
we let the author of the interaction net system define for herself/himself which compu-
tations are significant. Therefore, the complete definition of an interaction net system
is a triple: an alphabet, a set of interaction rules, and a subset of observable rules. We
then write µ↓x if there exists a net o, called observer, such that fp(µ)∩ fp(o) = {x} and
such that µ | o generates an observable computation. Furthermore, we must require
that, in µ | o, such a sequence truly comes from the interaction of µ and o and is not
already present in µ or o alone. Once barbs are given, barbed bisimilarity and barbed
congruence are obtained in the standard way.

Taking parts of the interface as observables is natural in process calculi. We have
seen that labeling transitions is problematic since the labels depend highly on the
actual language, while ports are an atomic part of all interaction nets. This way, we
can compare observability on different languages, which is our purpose.

Expressivity We then proceed to introduce the notion of translation. It is based
on an almost straightforward reformulation, in interaction nets, of fairly standard
properties which are asked of encodings between process algebras. We take as main
reference Gorla’s work [26], whose thorough analysis of the literature on encoding and
separation results approaches exhaustiveness.

A translation builds for any system S of one family of IN systems, a system T of
another family, such that, for every net µ of S, there is a net ν of T which has the same
behavior as µ. In [26], Gorla gives a list of five criteria which a valid encoding between
concurrent calculi should meet, distilled from the common properties on which the
existing literature (which is quite vast) seems to converge:

i. Compositionality
ii. Name invariance
iii. Operational correspondence

iv. Success sensitiveness
v. Divergence reflexion

The first ensures the preservation of the degree of distribution, the fact that a
decider is not introduced to simulate locally taken decisions. The second guarantees
that all ports have the same meaning: the encoding cannot depend on the names of
the ports. Operational correspondence is the weakest form of equivalence that can

13

be asked of an encoding. It says that a net and its encoding have in fact the same
behavior. Success sensitiveness, which takes a particular form in Gorla’s work because
he considers mostly languages with a prefix constructor, excludes trivial encodings,
which are not banned by the other conditions. We use instead, with the same scope,
a bisimilarity condition, which stipulates, most of all, that a net and its encoding
have the same barbs. The last condition about divergence is the most debated one.
We follow Gorla’s intuition and believe that an encoding that necessarily introduces
divergence is weaker than one that does not. A separation based on that criteria alone
is weaker than a proof of the non-existence of an encoding all together, but the least
one can do is to make sure to know the dangerous patterns that can lead to divergent
encodings.

The case of interaction nets To test the sensibility of our definition of behav-
ioral equivalence and to investigate the expressivity of interaction nets, we propose an
encoding of the π-calculus in a suitable system (which is unrelated to the encoding
of [38]). It is interesting because it shows how replication, a highly non-local operation
in process calculi, may be implemented by means of completely local rewriting rules
in interaction nets.

We then proceed to the core of the work: internal expressivity results. We compare
all non-deterministic versions of interaction nets and their combinations by means of
translatability. This results in a non-strict hierarchy of systems. In synthesis, we
can say that multirules, i.e. coin tossing, can be considered as the weakest form of
non-determinism. It is always possible to get rid of them in the presence of multiwires
and/or multiports. Conversely, they are not able, on their own, to encode k-connectors
or multiport cells.

mwr ∼ mw, mpr ∼ mp, mpwr ∼ mpw, but mr < mw,mp.

The key to this result is that non-determinism in a simple net with multirules is in
some sense internal. Whatever happens inside such a net, an observable port will for
ever remains such. It is not at all the case in the presence of connectors and multiport
cells.

On the other end, multiport cells are omnipotent: k-connectors (k 6= 2) can be
eliminated in the presence of multiport cells. Since multiple rules can also be gotten
rid of, to any INS can be associated a strictly multiport system completely simulating
it. The converse relation is more delicate. In the absence of reflexive rules (see below),
it is not possible to encode multiport cells into a uniport system without introducing
divergence (the separation is weak, leading us to the use of a non-strict order between
the two systems):

mpw ∼ mp and mw ≤ mp.

As a result, accepting or not this weak separation result, processes in which each

14

name is shared by exactly two peers are sufficient for modeling concurrent computation.
This result, of which we saw an instance in the resource management example, in
which a 3-connector is replaced by the agent ρ, may be seen as a nice formalization of
a phenomenon remarked by Danos and Laneve [12]: “That such arbitrary transactions
are reducible to peer-to-peer interactions is a fact which should be, but for some reason
is not, a classical result in the theory of the π-calculus”.

Universality We have build a full hierarchy of interaction net families. In the last
chapter, we build a particular INS, capable of expressing all the others. As Lafont
himself puts it in [33]:

By definition, a universal interaction system has the property that any
other system can be translated into it.

Simon Gay [24] follows closely the mechanisms of combinatory logic to define combi-
nators for Lafont nets, composed of 8 symbols. Lafont takes a step aside and combines
several actions of Gay’s combinators in order to obtain a smaller system, composed
of three cells, ε, δ and γ, and all interactions for them, thus 6 rules. The rules are
nevertheless very simple, unlike Bechet’s minimal universal system with 2 kinds of
cells [4]. He combines Lafont’s δ and γ in one cell, but the rules that come out of this
process are . . . to complicated to be understood.

We wish to define a universal system for concurrent nets. This has a double
purpose. First, it would give interaction nets a natural system that can be studied and
dissected for itself, using techniques like geometry of interaction following the steps of
De Falco [13] or programming an actual language, extending Lippi’s inn. But it can
also help us understand the minimal laws of computation for concurrent systems. Some
are widely accepted, like the parallelism or name restriction. Others are discussed, as
prefixing, which does not seem primordial taken all existing solo-style languages, or the
sum representing choice. In Section 3.2, we show interaction nets code the π-calculus,
so they can be considered a good enough model of concurrent calculi. If we are able to
give an INS, universal but simple enough to have usable rules, one can consider these
steps to represent the basic operations of concurrent languages.

We prove in Section 3.4 that simple connections are enough to encode all interaction
nets. So unlike Yoshida [59] who studies shared combinators, meaning multiwire in
interaction net dialect, we focus on multiport nets with simple rules and simple wires.
In his PhD thesis [39], Mazza gives a universal system for multiport interaction nets.
He only shows the universality in the case of systems which cells have at most 2
principal ports, but most of all, his definition of observability is hardly related to ours,
so his combinators do not completely fit our purpose. Finally, we have more cells, but
the rules are slightly simpler.

We give a universal system for multiport interaction nets with 6 cells and an infinite
family, of which only a finite amount is needed to encode any given (finite) system. It
contains Lafont’s combinators and the encoding uses most of the constructions Lafont

15

uses in the case of simple nets. “News” cells are required for several reasons. First
because the source cells are now multiport. Second, because not all active pairs yield
observable interaction, so we use a particular cell for simulating observability. Third,
not all cuts are active pairs so we introduce a blocking mechanism and its corresponding
unblocking mechanism.

We partially achieve our goal. The rules are simple and interpretable and the cells
not so many, even though we believe some improvements can be made.

16

Plan of the thesis

Chapter 1 Interaction nets
In this chapter, we introduce the paradigm of Interaction Nets, which will be studied
in detail along the entire work. The first part is therefore devoted to definitions and
simple results already present in Lafont’s original works. His universal system is briefly
discussed, as it is useful for the second chapter.

Section 1.1 is devoted to the description of some generalizations of interaction nets
that can capture some non-deterministic behaviors. These generalization are created
by relaxing some conditions that are put in by Lafont for his definition of nets, since
he wished to model deterministic computations.

These extensions appear sparsely in the literature but have only been comparatively
studied by Alexiev [1]. So the last part is devoted to already known relative expressivity
results: whether the non-deterministic extensions can be encoded or not into one
another. Section 1.3.1 summarizes the work of Alexiev. In 1.3.2, we recall some
definitions around event structures and give some results of expressivity based on that
technique taken from [40], in which the author uses these abstract constructions for
comparing rewriting systems. We follow this method and add a separation result
between two of the extensions in Section 1.3.3.

Chapter 2 Structural Operational Semantics for
interaction nets
In the present chapter, we try to provide interaction nets with a proper operational
semantics. In particular we describe a ccs-like labeled transition semantics for graph
transformation systems.

We first discuss a straightforward out-of-the-blue definition of a sos-semantic for
simple interaction nets. The problems we meet make us try another approach, that
of hypergraph rewriting, considering that interaction nets can be seen as particular
hypergraphs. For this, we recall the basic definitions and concepts for the concrete
case of hypergraphs in Section 2.2; in particular we give a brief review of the Borrowed
Context technique. In Section 2.3, we provide a reformulation of the Borrowed Con-
text technique in analogy to Milner’s ccs; however, this analogy is imperfect as there
is no need for a counterpart of the communication rule. This issue is addressed in
Section 2.4, where we present our main results, which allow to define a graph transfor-
mation counterpart of a communication rule. These results are applied in Section 2.5
to obtain a satisfactory sos like reformulation of the Borrowed Context technique.
We conclude in Section 2.6 with some restrictions on hypergraphs and their rules that
allow for a simplified, and sometimes usable definition of the communication rule de-

17

rived in previous sections in the framework of interaction nets. This definition allows
us to formalize the initial intuitive sos-semantics.

Chapter 3 Concurrent Interaction Nets
In this chapter, we study the expressivity of the concurrent extensions of interaction
nets. A general definition of a labeled transition having partly failed, we consider here
the commonly used approach of encodability. What it means exactly is described in
Section 3.1.

We first deal with the general expressivity of interaction nets by giving a INS that
encodes the π-calculus (Sec. 3.2). Finally, we proceed with the core of the chapter:
comparing different concurrent extensions among themselves. Section 3.3 summarizes
the encodability and separability results, that are then given in detail: 3.4 show how
to encode any interaction net system in a multiport one; 3.5 shows how to express
rule ambiguity with multiwires; in 3.6, we show that multirules alone are not enough
to replace multiwires; finally, a weak separation result of multiport from multiwires is
given in 3.7.

Chapter 4 Multiport Combinators
In this last chapter, we introduce a universal system for strictly multiport interaction
nets, i.e. simply wired with simple rules. Since we have proven in the previous chap-
ter that any interaction net system can be encoded into one of these, the multiport
combinators we present can be considered as a universal system for general interaction
nets.

The procedure relies on the ability to decompose a net, namely the right-hand-
side of a rule, into two nets which have no active pairs and no deadlocks, making it
possible to erase and most of all duplicate them. A splitting of this sort is discussed
in Section 4.1. Section 4.2 presents the language of multiport combinators and some
constructions that allow to encode system without recursion. Such an encoding is
given in Section 4.3. The general case of encoding system with recursion is detailed
in Section 4.4, after describing the duplication procedure (4.4.1). A last short section
(4.5) question the quality of the system.

18

Chapter 1

Interaction Nets

In this chapter, we introduce the paradigm of Interaction Nets, which will
be studied in detail along the entire work. The first part is therefore devoted
to definitions and simple results already present in Lafont’s original works. His
universal system is briefly discussed, as it is useful for the second chapter.

Section 1.1 is devoted to the description of some generalizations of interaction
nets that can capture some non-deterministic behaviors. These generalization
are created by relaxing some conditions that are put in by Lafont for his defini-
tion of nets, since he wished to model deterministic computations.

These extensions appear sparsely in the literature but have only been com-
paratively studied by Alexiev [1]. So the last part is devoted to already known
relative expressivity results: whether the non-deterministic extensions can be
encoded or not into one another. Section 1.3.1 summarizes the work of Alex-
iev. In 1.3.2, we recall some definitions around event structures and give some
results of expressivity based on that technique taken from [40], in which the
author uses these abstract constructions for comparing rewriting systems. We
follow this method and add a separation result between two of the extensions in
Section 1.3.3.

The concepts for this chapter are introduced in the paragraphs about inter-
action nets (p. 2) and event structures (p. 9).

1.1 Lafont’s calculus

1.1.1 Interaction nets
The language of Interaction Nets is one of graphical nature. The atomic pieces, i.e. the
symbols, are cells – denoted by small Latin letters a, b, c . . . – which have a label –
usually denoted by small Greek letters – α, β, γ . . . – and a certain number of ports
onto which can be connected wires. Each symbol has a determined number of ports
depending on its label. We say a port belongs to or is incident to a cell. One of the

19

20

ports is more important than the others in a sense that will soon be made clear. It is
referred to as the principal port while the others are called auxiliary. The number of
auxiliary ports of a symbol defines its arity.

We represent cells like this: α

. . .

n

If n = 0, like this: α

Ports are not interchangeable and are implicitly numbered counterclockwise, start-
ing at the principal one. The arity of the cell labeled α above on the left is n. If n = 0,
then the cell has no auxiliary port and we represent it as a circle. Notice that a cell
necessarily has a principal port.

A net is a graph like object composed of cells, ports and wires such that every
port (belonging to a cell or not) is connected to a wire. Wires are each connected to
zero or two ports exactly. We will sometimes say the wire connects two ports and that
the ports belong to or are incident to a wire. Two wires connected to a same port are
considered as one wire connecting the two other extremities of the two wires: the port
in middle is forgotten about. The case of a 0-wire is called cycle and is represented by
a circle.

A port can only be incident to one or two objects: a cell and a wire, a wire and a
wire or just one wire. In the last case, the port is called free port of the net. The set
of free ports of a net forms its interface.

In short, a net is an undirected graph with labeled incidence-ordered vertices, with
the strange feature of having pending edges. An example of a net is given in Figure
1.1.

α β γ

δ ε

Figure 1.1: An example of a net (where ports are not shown, but implicit from the wiring)

Rewriting rules are defined for pairs of labels. Two cells which labels appear in
a same rule and that are connected by their principal port can interact. Such a
configuration is called an active pair (in general rewriting vocabulary: redex) and
denoted by A./B. We represent a rule for α./β, where α has arity m and β has arity
n as follows:

Interaction Nets 21

α β

. . .

m

. . .

n

α / .β

.

m n

where α/.β is a net with n+m free ports in its interface and is called right-hand side
(RHS for short) of the rule for α./β, which in return is called left-hand side (LHS) of
the rule. A rule is then denoted α./β → α / .β. By abuse of language, the rule itself
is sometimes referred to as α ./ β. Of course, since nets are graph-like objects, they
are subject to isomorphism, so the symmetric rule is immediately valid:

β α

. . .

m

. . .

n

α / .β

.

n m

where α / .β is the symmetric image of α / .β. Be careful that the symmetric image
of a cell is itself, meaning that ports are still given in counterclockwise order. The
symmetry is on the graph-like object, not on the “drawing”.

Some redex-like configurations do not have rules that can be applied to them.
Following Lafont, we call cut any net composed of two cells connected by their principal
ports. It is reducible if it is an active pair and irreducible otherwise. Irreducible cuts
lock the computation: it is impossible to get rid of them (or duplicate) as they are
nets in which all principal ports are bound but do not trigger interactions. Such nets
are called deadlocks, and a net is said to be deadlock-free if none of its subnets is a
deadlock.

The computation goes as follows. Given a netN and two cells c, d with respective
labels α, β for which there is a rule and such that their principal ports are connected
in N , the two cells are removed and the hole replaced by α / .β where the interface
if connected to N following the rule’s identification of ports. The configuration of the
cells c, d connected by their principal port is called an active pair, and is denoted by
analogy to the rule c./d. The rules have to be such that their is no possible ambiguity,
i.e. if a rule is given for α, β, then their is no other rule for this pair and neither for
β, α; and if a rule exists for α, α, then α/.α = α / .α. A set of such rules is said to be
unambiguous. Finally, right-hand-sides of rules have to be reduced , or cut-free (they
do not contain active pairs) and deadlock-free (no part of the net is in some sense cut
out of the computation).

The condition about possible redexes is justifiable by Proposition 1.1.2 ; if there
were any active pairs, it suffices to reduce them inside the right-hand side of the rule
to get rid of them, without changing at all the characteristics of the system. Except
of course if there is a divergent subnet, which is not reducible to a normal form. Such

22

a possibility is anyhow undesirable. As are undesirable any deadlocks, since they are
a piece of program that can neither be erased, duplicated nor interacted with. Why
would anyone willingly put such a defect in a system?

But more importantly, the technical consequence of violating these conditions
would be that the translation into the universal system (actually, any translation
in any system) would not enjoy the strong property of translations: the encoding of
a net necessarily reduces to the encoding of its reducts. The technical price to pay is
rather low compared to the achieved results. Anyhow, if one works with equivalences
based on simulations, translations do not need such a strong property to be considered
correct, so the conditions on rules become obsolete. Conversely, one can wish to study
deadlocks or divergent systems, so one can consider useful to allow them. In Lafont’s
interaction nets, it is quite easy to detect deadlocks, so the gain is worth the trouble.

Definition 1.1.1. An interaction net system (INS) is a pair (Σ,R), where Σ is a set
of labels and R an unambiguous set of rules on pairs of elements of Σ.

Let S be an interaction net system. Let → be a relation on S ×S : (M,N) ∈→
(usually denotedM→ N) iffM has an active pair c./d and reduces using the rule
for this active pair into N . →∗ is the reflexive transitive closures of → .

We use various vocables for interaction. As you have noticed, we sometimes say
interaction, and sometimes reduction, with all their derivatives. Normally, interaction
will be reserved for one step of “reduction”. We will sometimes say a net reduces some
active pair, or interacts through it, but also that the active pair triggers the interaction.

Example : Lists We encode elements of a list by cells of arity 1 labeled by the
value of the element of the list it represents; the end of the list is a cell ε of arity 0.
The concatenation function uses a cell labeled κ of arity 2 with the following rules:

A κ κ
A

ε κ

We let the reader verify that the computation goes as follows:

ε Ak · · · A1

ε Bn · · · B1

κ

*

ε Ak · · · A1Bn · · · B1

Interaction Nets 23

At each moment of the computation, only one active pair is present in the net. We can
concatenate another list C1, . . . , Cm through another κ-cell in the same way B1, . . . , Bn

is here. After the first step of reduction of the only active pair, two active pairs all
simultaneously present in the net. The choice of which to reduce has no consequence
on the final result, a list A1, . . . , Ak, B1, . . . , Bn, C1, . . . , Cm.
Proposition 1.1.2 (Strong Confluence). If a net N reduces in one step to M and
M′, then these latter both reduce in one step to a common net P .

N

M′

M

P

The proof is straightforward. It suffices to notice that rules do not overlap. Indeed,
if N can reduce intoM applying a rule r to a pair of cells c, d and intoM′ applying a
rule r′ to a pair of cells c′, d′, then c, c′, d, B′ are all different, so c′, d′ are still “present”
inM and c, d are still “present” inM′. It is therefore possible to apply r′ toM and
r to M′ obtaining a same net P . Notice that the proof does not make use of the
restrictions on rules, so the confluence is always valid, and can be then used to justify
the absence of redexes in right-hand sides of rules (in absence of infinite computations).

As mentioned before, it is rather easy to define deadlocks in interaction nets. They
are important for the universality result which is based on duplicating and erasing nets.
The problem with a deadlock is that it cannot be submitted to these two operations,
that is why Lafont insists on their study in [32], where he even gives a class of nets
which do not introduce deadlocks during computation. We will only need to check
that some given nets do not contain them.

A deadlock is either a redex-like configuration between a pair of cells which labels
do not form a rule (on the left) or a vicious circle (on the right):

α β
α1 α2 αk

The case where k = 0, a.k.a. the cycle, has already been mentioned. Forbidding
deadlock in rules is not enough to completely avoid them. They can appear during
computation; this is why we allow the 0-wire in the language.

With this characterization of deadlocks, it becomes clear what a reduced net is: no
redexes and no deadlocks. Let us continue by define some other particular nets.
Definition 1.1.3 (Tree). A tree is a net with one distinguished free port called root.
It is either a single wire, in which case the root is fixed arbitrarily, or it is obtained by
plugging n auxiliary ports of a cell α into the roots of n smaller trees T1, . . . , Tn:

24

T1 Tn

α

. . .

. . .

. . .

. . .

in which case, the root is the free port connected to the principal port of α.
A wiring is a net without cells and without cycles. So it is just a pairing of its free

ports. A permutation σ of {1, . . . , n} defines a wiring with 2n free ports represented
as follows:

σ

x1 xn...

y1 yn
...

or σ

x1...xn y1...yn

Proposition 1.1.4. Any reduced net N with n free ports can be uniquely decomposed
as follows:

σ

T1 ... Tn

where t1, . . . , tn are trees (remember that a tree can be a wire) and σ a wiring.
We are now equipped with a good characterization of acceptable nets. Even though

deadlocks can appear during computation, deadlock free nets enjoy a nice decomposi-
tion property:
Proposition 1.1.5 (Splitting). Let N be a reduced net and z̃1, z̃2 a partition in two
of its interface. Then there is a natural splitting of the whole net into two nets N1
and N2 s.t. z̃1 (resp. z̃2) belongs to N1 (resp. N2) and the two subnets are connected
through a wiring.

σ

T1 ... Tk T
k+1

... Tn

N1 N2

Interaction Nets 25

This is particularly useful to decompose right-hand sides of rules. Let us take a
rule for (α, β):

α β..
.

..
.

Rα,β..
.

..
.

We can now split Rα,β into two forests Rβ
α and Rα

β , such that the ports connected
to auxiliary ports of α are in the first net and those connected to β in the second:

..
.

..
.

..
.

..
.

σR
β

α
R

α
β

Moreover, Lafont builds for any wiring σ a tree Tσ such that connecting two such
trees by their principal port yields the desired wiring (for an implementation of that,
see Section 4.2.2):

Tσ..
.

Tσ ..
. * σ..
.

..
.

This tree can be integrated into each half Rβ
α and R

α
β , so the interaction can be

decomposed (artificially, since the first interaction is not correct: its RHS contains
active pairs):

α β..
.

..
.

Rβ
α

Rα
β..

.

..
. * Rα,β..
.

..
.

One can informally interpret Rβ
α as the net “hiding” in α and revealed by the

interaction with β. This suggests a way of encoding a system into a universal system:
a cell α shall be translated into a net containing in some sense all the hidden nets that
can be revealed by recursive interaction. We will see such a translation with a little
more details in Section 1.1.2. It is also useful to define an sos-semantics as we shall
see in 2.1.

1.1.2 Universality
Lafont gives a simple interaction net system which enable to encode any interaction
net system. Surprisingly enough, it contains only three labels and six rules; Another
interesting feature, is that in the universal system, all pairs of cells can interact, even
if it is not the case in the original one. We say this system is full.

To achieve this goal, Lafont identifies, along with trees we have seen before, a special
kind of nets: a package is a reduced net with only one free port. Because a reduced
net has no redexes and no deadlocks, a package has the following decomposition:

26

Π = T

. . .
σ

where T is a tree and σ a wiring. The shown structure of packages makes it easy to
erase or duplicate them. It is also easy to construct a big package Π1& . . .&Πn, that
Lafont calls a menu, composed of n smaller packages. He also encodes a selector Sin
which can extract the i-th package of a menu of n packages:

Π1& . . . &Πn

Si
n

*

Πi

We can already guess the idea behind the encoding. We denote by [αi] the encoding
of αi and by [N] the net N where each cell has been replaced by its translation.
Consider an interaction net system with p symbols α1, . . . , αp. Then the encoding of
a cell c labeled αk will contain a menu [Rαk

α1]& . . .&[Rαk
αp

] which represents all possible
futures of cells α1, . . . , αp when interacting with αk. It is αk that reveals in some sense
the possible futures of its opponents. The encoding of αk also contains a selector Skp ,
able to extract from an opponent its own possible future. The interaction with a net [c′]
representing a cell labeled αi will make the selector of [c] choose the “correct” package
in the menu of [c′] and vice-versa. By a clever wiring, one obtains the translation of
the corresponding right-hand side Rαk,αi

. The big picture is shown in Figure 1.2.
Lafont notes that the encoding enjoys a really strong property. It is compatible

with reduction, in other words [αi]./ [αj] reduces to the translation of αi / .αj. Since
interaction nets are deterministic up-to-interaction permutation, if a net N →∗ M,
then [N]→∗ [M].

It is however not that simple in the general case since, as you might have noticed,
the translation of a cell contains translations of other cells, hidden inside the menu for
all possible reductions. This means that the encoding above only suffices for recursion-
free interaction net system in the following sense. Assume the alphabet α1, . . . , αp can
be ordered in a way that any Rαj

αi contains only cell with labels strictly smaller than
αi and αj. The menu [Rαk

α1]& . . .&[Rαk
αp

] contains the possible futures of the opponents
of αk; these are finite. But imagine one of the Rαi

αk
contains αi itself?

It is anyhow possible to replace the actual infinite tree of possible futures of a cell
by a potential one, and this is the real achievement of Lafont’s work.

This is made possible by the nice property of packages, i.e. there ability to be
erased and most of all duplicated. With the menu and selector system, it is possible

Interaction Nets 27

[αi]

[αk]

. . .

. . .

*

[Rαk
αi

]

[Rαi
αk

]

. . .

. . .

. . .

. . .

σ

Figure 1.2: The translation is compatible with reduction

to create what Lafont calls a genetic code of the system. Let Mαk
denote the menu

Rαk
α1 & . . .&Rαk

αp
.

Then we create a menu Γ =Mα1& . . .&Mαp and a version of it that is duplicable,
denoted !Γ. We will callMαi

a submenu of !Γ.

Now the translation of a cell does not contain any more the translation of Mαk

directly, but rather a piece of net, in the simple form of a selector, that can extract it
from !Γ. It is also connected to a copy of !Γ. The translation of a cell can now make
a copy of that !Γ for personal use and extract from it the submenu corresponding to
its own future. When the interaction needs to be encoded, the concerned cells extract
from their respective submenus the correct half-of-rule and link each element of that
to their original copy of !Γ.

In fact, the translation of a cell is just a pointer on the part of !Γ it needs in order
to complete the interaction and a decoder which first duplicates !Γ and extracts the
part it needs. Each such piece of “extracted code” contains, in turn, the copier and a
set of pointers to other pieces of !Γ. This copier gives each pointer a copy of the full
package.

Why does it ever stop then? Assume the recursion-free alphabet. Then, the
minimal labels have no rules to them or become wirings, so they do not need nor
pointers to any part of !Γ, nor a decoder. In such a case, the abusive notation [R]
can be any normal net. In an alphabet with recursion, the trick of the !Γ-package is
that possible futures are extracted on-demand from it at each step of the simulation,
so each step is indeed finitely simulated.

Let us now define Lafont’s universal system for interaction nets. We leave the
details for Chapter 4 where we give a universal system for multiport interaction nets
which is (almost) an extension of Lafont’s encoding.

28

Interaction combinators

To do all of the above, all Lafont needs are three cells and six simple rules that we
give here to give the taste of the simplicity of the system.

• a symbol γ, called constructor, with arity 2: γ

• a symbol δ, called duplicator, with also arity 2: δ

• a symbol ε, called erasor, with arity 0: ε

The six rules are rather simple. Lafont separates them in two groups, commutation
when the two cells are of different label — γ ./δ, γ ./ε, δ ./ε — and annihilation when
they carry a same label — γ ./γ, δ ./δ, ε./ε. They are shown in Figure 1.3.

γ

δ
γ γ

δδ

γ

ε

ε ε δ

ε

ε ε

γ

γ

δ

δ ε

ε

Figure 1.3: The rules of Lafont Interaction Combinators

In [24], Simon Gay gives a universal system, similar to the one of Lafont but with
eight combinators. He declares himself that Lafont’s solution “goes further” than
his work, not only because it has less combinators, but because it deals naturally
with interactions between cells of the same kind, it identifies labels which have the
same rules, which seems natural, and he gets rid of the contraction node in a very
elegant manner, further described in Chapter 4. On the other hand, Bechet gives in

Interaction Nets 29

[4] a universal system based on the one of Lafont with only two combinators and three
rules, but the main rule with computational meaning is really complex: it encompasses
the three γ ./ δ, γ ./ γ, δ ./ δ rules in one. In fact, Bechet result is more interesting in
the fact that it shows how to encompass several cells in one, realizing some kind of
case-net on which study is based Gay’s system.

1.2 Non-deterministic extensions
We now define some non-deterministic extensions of Lafont’s interaction nets. In the
following, we will refer to the nets defined in the previous section as Lafont nets and
Lafont net systems, as opposed to the extensions discussed from now on. We will refer
to cell with a unique principal port as simple cells if this fact needs to be stressed and
wires connecting at most two ports as simple wires. The reader can already guess how
interaction nets can be extended.

Non-determinism will come from the fact that a net can reduce in at least two
ways that are not brought together anymore, in other words when confluence is lost.
Our purpose is to define non-deterministic systems but stay in the spirit of interaction
nets. The minimal requirements for that, we believe, is the existence of primitives –
cells with ports and wires – and a binary, local interaction: redexes are composed of
two primitives of style cell connected by a wire, without any kind of priority on the
rules: at each moment, the decision of which redex is reduced is completely arbitrary
(strategies can be studied a posteriori, but not imposed to the system). Unlike Alexiev
[1], we think that a port is a connection point between two elements at most. For
the rest, let your imagination flow... Three major non-deterministic interaction net
families emerge in the literature. Cited already, Alexiev [1], but others authors –
Banach [3], Khalil and Fernandez [20], Mazza [38], Beffara and Maurel [5], Ehrhart
and Regnier [17], and in some sense Honda [29] – independently introduced several
non-deterministic extensions, for proof-theoretic purpose or for discussing a graphical
framework for mobile and concurrent systems.

And thus, let the story of Non-Deterministic Interaction Nets begin.

1.2.1 Multirule nets
A first and most natural extension of Lafont net systems are non-deterministic rules.
In fact, one of the requests for admissible rules was that they are defined without
ambiguity. It is sufficient to remove this condition to get systems which are not
confluent any more. We call such systems multirule interaction net systems.

It is clear that any reasonable equivalence will not identify a net of a multirule sys-
tem and a net of a Lafont interaction net system: the latter, whenever the computation
is terminating can have only one result.

30

An active pair α ./ β has now several ways to reduce. We call degree of non-
determinism the maximum number of ways an active pair can reduce. We usually
only consider systems with finite degree of non-determinism, but the encoding result
into multiwire systems will show this requirement to be rather insignificant.

We consider the possible reductions of an active pair to be numbered and denote
by α / k. β the RHS of the k-th rule for the active pair α ./ β. Incompatibility of
interactions is trivial: two interactions are incompatible iff they are triggered by the
same active pair. Since non-determinism is defined here on interactions, it is a property
of the rules alone, so the graphical representation of multirule interaction nets are the
same as the one of Lafont nets.

A particular case of non-deterministic rule is the case of asymmetric rule , i.e. where
α / .α 6= α / .α. A first interesting result about multirule systems can be found
in [1](p46). It states that a multirule interaction net system can be encoded into one
where the only non-deterministic rule is in fact a non-symmetric reflexive one. It is
enough to create a net that can “pick a random number” to choose which rule to use.

1.2.2 Multiwire nets

Another natural non-deterministic extension of Lafont nets is to allow for wires to
connect more than two ports. Interactions are still due to pairs of cells connected by
their principal ports. In this framework, cells are represented as in Lafont nets, but
wires are now star-like edges, called multiwires:

α

βγ

δ ε

This multiwire has a free port. It is a usual technicality to consider a wire to only
be connected to at most one free port, but this condition can be relaxed without much
trouble. A wire which is connected to a free port is said itself to be free. It is bound
otherwise.

Rules now have to be slightly changed. In fact, when two cells interact, they first
disconnect from the wire and then interact. This corresponds to the fact that in an
interaction, the two involved principal ports disappear. Because of the requirement
that the left and right hand-sides of a rule have the same interface, rules are represented
with the reference to a multiwire, as represented in Figure 1.4 below.

Interaction Nets 31

α β..
.

..
.

. . .
α / .β..

.

..
.

. . .

Figure 1.4: A rule in a multiwire interaction net system.

The disconnection from the wire on which is made the interaction is not a strong
requirement. In the following configuration, the resulting net stays connected to what
stays of the wire.

. . .

A

B

When a wire connects several active pairs, the choice of which pair interacts is
non-deterministic. Imagine a rule α./β → α / .β, both cells having arity 2 and a net
N composed of one α-cell and two β-cells:

α

β β

β

β

α / .β

α / .β

This shows incompatibility in multiwire interaction nets: two interactions are in-
compatible iff the active pairs triggering them share exactly one cell.

1.2.3 Multiport nets
Another natural extension of Lafont nets is given by a language of multicells, which not

32

α
. . .

. . .

1 m

1n
only have several auxiliary ports, but can also have more
than one principal port. Cells are now represented by
trapezia. Principal ports are represented on the short
parallel sides and auxiliary ones on the long parallel side.
Again, ports are considered ordered clockwise on each side.

Following the definition of rules which stipulates that left-hand sides and right-hand
sides have same interface, rules are represented as follows:

α

a1
. . .

ai−1 ai+1
. . .

am

am+1
. . .

am+n

β

b1
. . .

bj−1bj+1
. . .

bk

bk+1

. . .
bk+l

αi / .βj

am+1

. . .
am+n

ak+l

. . .

ak+1

ai+1

am

..
.

a1

ai−1

..
.

bj−1

b1

..
.

bk

bj+1

..
.

where αi / .βj is a multiport net. In some sense, this corresponds exactly to the
generalization of a simple rule, in the following sense. One can imagine the fol-
lowing decomposition of the interaction above. First, the interaction transforms α
(and β similarly) into a simple cell α′ with, as principal port ai and auxiliary ports
a1, . . . , ai−1, ai+1, . . . , am+n. Then, the two cells α′, β′ interact into αi / .βj. Of course,
this decomposition is not correct w.r.t. interaction nets, since the first interaction has
a redex in its RHS.

If a multicell c is connected by its i-th principal port to the p-th principal port of a
cell d and by its j-th principal port to the q-th principal port of a cell d′, the choice of
which interaction is triggered is non-deterministic (if they have rules of course). Both
c, d and c, d′ form active pairs denoted respectively ci ./ dp and cj ./ d

′
q. Note that d

and d′ can be the same cell as long as p 6= q.

α
.

. . .

β

...
...

...

γ

...
...

...

Here again, incompatibility comes from sharing of cells in active pairs. Two inter-
actions are incompatible iff the active pairs triggering them share one or two cells.

Interaction Nets 33

1.3 Relative expressivity

Even though several results appear in the literature about relative expressivity of some
particular interaction net systems, only two works [1, 40] address this question directly
on interaction nets in general: given a system in one extension, is it always possible
to find a system in this other extension that has the same expressivity? The work
of Alexiev is actually an attempt to elaborate a complete study of the subject. He
studies the possibilities to encode concurrent extensions in one another. Mazza, on
the other hand, uses interaction nets as a case study to elaborate a general theory of
relative expressivity based on event structures.

In this section, we will expose these two works, so we can later on compare our
results with theirs. In fact, Chapter 3 will be similar to Alexiev’s thesis. The second
part of this section exposes event structures (very briefly) and Mazza’s results of
separation that Alexiev did not obtain. In a third part, we give a new separation
result based on Mazza’s technique, and that is a separation between multiport and
multiwire nets.

1.3.1 Encodings among non-deterministic interaction nets

In his PhD thesis, Alexiev [1] studies the possibility to express one extension of inter-
action nets into another. Even though the names he gives to the systems are different,
he discusses the three extensions we have given above, and also a fourth one, in which
ports can be shared by more than two agents (more precisely by an agent and several
simple wires). It seems at first to be the exact same thing as the multiwire setting,
but it is in fact closer to the multiport setting. So close that we do not look into that
extension in this work. The other important reason to discard this framework is that
it breaks the soul purpose of ports as we wish to study them: as primitives for names
(see Chapter 3).

Alexiev’s work is rather exhaustive on the extensions he defines: he gives trans-
lations and separations for all pairs of them, even if not explicitly for each. Some
translations are just hinted about (not the most straightforward ones as we will see),
and the whole machinery is not very formal. The main issue is that his criteria for
translation are rather vague and at the same time quite strict. Following Lafont, he
considers translations have to be complete in a classical way: every single-step fromM
to N is emulated by a proper multistep from the translation ofM to the translation
of N . This already is a strong requirement, which is awesome for encodability results,
but that we cannot accept for separation results. Even more arguable is his definition
of soundness. Because he does not use any notion of semantical equivalence such as
bisimulation, he has to use a machinery of completion context to deal with what he
calls pre-commitment steps and we would call garbage steps (because they only pose
problem at the end of computation): some steps in the target system which have no

34

counterpart in the original one and can occur after the original net has finished its
computation. Such steps are implicitly dealt with by semantical equivalences based on
bisimulations. Finally, his criteria for uniformity and preservation of port type are too
strong for a separation result as often discussed in the literature (e.g. [26]). Luckily,
most of this results are positive, so the strong criteria are a good justification of the
translations. Unluckily, the lack of a proper semantical equivalence yields translations
which have poor properties. Most of them introduce divergence and do not even verify
the criteria given by the author himself, such as preservation of port type.

We will of course not detail the translations here, but reproduce the summary
result of his thesis. Not to get confused, we will define the terminology for systems
which differs slightly from his:
• InMR for Multirule: an active pair can have several rules applied randomly;
• InMP for Multiport: cells can have several principal ports;
• InHP for Hyperport: ports can be connected to several (simple) wires;
• InMW for Multiwire: wires can connect any number of ports;

Note that Alexiev does not consider combinations of systems, so for instance MR, MP
and HP have simple wires, etc.

Table 1.1: Inter-representation of Non-Determinism: Basic Ideas

Source Target Status Description and critics

InMR InMP Given

Uses self-commitment: each cell decides
which rule to use (incompatibility is easily
taken care of without returning to initial
state). Elegant, but self-commitment can
happen even if cell is not part of a cut:
not strongly sound.
Can be easily improved to be so.

InMR InHP Given

Same translation as above where multiple
principal ports are merged into a unique
hyper port. Same defects and can be cor-
rected in the same way.

InMR InMW Hinted

Same exact remark as before.
Moreover, uses rules where multiwire on
which is made the cut stays connected to
the RHS. Can be improved to avoid that
also.

Interaction Nets 35

Source Target Status Description and critics

InMP InMR
Does
not
exist

The three separation results for transla-
tions into InMR are based on the same
argument: in InMR a free principal port
stays such for ever, while in the other sys-
tems it is not the case. We believe this
gives to much importance to the type of
the the port, principal or auxiliary.

InMP InHP Given

Uses commitment of cells to a particular
active pair. Is only developed the case
where commitments are compatible. In-
compatibility is not taken care of and the
translation doesn’t seem to be extended to
do so. It would anyway introduce diver-
gence.1

InMP InMW Given

Uses partial and full commitments. Ev-
ery principal port is transformed into a
cell that listens to the outside for possible
interaction and one that listens for the in-
side for a possible passivation: transform
a principal port into an auxiliary one. In-
troduces divergence1 when commitments
do not match (a general problem of agree-
ment translations).

InHP InMR Doesn’t exist See InMP → InMR.

InHP InMP Hinted

Transforms each hyperport of a cell A of
degree n into a cell a attached to the rep-
resentative of A and to n cells each repre-
senting a connection. Cell a can transmit
messages from A to port cells and back-
wards. (The hint wasn’t enough for me to
understand).

InHP InMW Given
Basically the same as InMP to InMW.
Shows the similitude between InMP and
InHP. Introduces divergence.1

InMW InMR Doesn’t exist See InMP → InMR.

1Introducing divergence means in this case that there exists an interaction net system in the source
language for which there is a net that has only finite reduction paths but any translation into a system
of the target language yields a net with an infinite reduction path.

36

Source Target Status Description and critics

InMW InMP Hinted
Represents a multiwire by a communica-
tion zone. Correct, but as we will see in
Chapter 3, it is not as straightforward as
it seems.

InMW InHP Given

Replace a multiwire by a connector cell
which chooses two compatible cells con-
nected to it and creates an active pair,
which then simulates the original interac-
tion.
To deal with the translation of merging
two multiwires into one, the author ex-
tends the system with a multirule, which
he thinks is unavoidable.2

Which can be in its turn summarized as follows, where S → T means there exists
an encoding of S-nets in T -nets:

InMR

InMW

InMP

InHP

If one does not take care about details, one could consider InMP, InMW and
InHP to be equipotent in the sense of encodability. The comments in Table 1.1 show
that some translations are arguable, and most of all, almost none are justified by any
semantical equivalence. We actually believe any reasonable equivalence would justify
them, except for divergence sensitive equivalences. It is often discussed if an encoding
that introduces divergence is acceptable or not ([44] vs. [45] for instance). Finally,
the encoding InMW into InHP is not strictly valid since it uses a multirule. We know
how to correct that easily, so we consider the translation to be valid.

Taking into account divergence, we can give an order on the systems where A < B

stands for: any system of framework A can be encoded into a system of framework
B but not backwards, and A ≤ B stands for: any system of framework A can be

2Strange since the author has knowledge of the InMW to InMP translation that can be easily
adapted here (without any need for explicit connectors) and where communication zones deal with
the merging of multiwires.

Interaction Nets 37

encoded into a system of framework B and the translation from B to A given by
Alexiev introduces divergence:

InMR < InMW ≤ InHP ≤ InMP

And in fact, this is what we will show more formally in Chapter 3 (except for
InHP). We will also study the different combinations of systems, as systems with
multirules and multiport cells, or multiport cells and multiwires.

1.3.2 A separation technique based on Event Structures
We now introduce a technique proposed by Mazza [40] as an abstract way of comparing
rewriting systems. It is based on Winskel’s event structures [58] that represent the
dynamics of rewriting by considering each rewriting step as an event. Events are then
related by causality and incompatibility. It is the complexity of such graphs of events
that give is some sense a measure of the complexity of the dynamics of the system.
Mazza adds to this construction a notion of embedding, describing in this way that an
event structure contains another one. For a system to be able to generate structures
containing the structures of another system is considered as a criterion for superiority
in the expressivity hiererachy. Inversely, its impossibility is considered to separate
systems in that hierarchy.

Without entering into details, let us now see some basic definitions and some basic
results as a pre-taste of the separation result we give in Section 1.3.3. The end of
this section is almost all taken directly from the cited article by Mazza. In what
follows, if (X,≤) is a poset and u ⊆ X, we denote by ↓u the downward closure of u,
i.e. ↓u = {y ∈ X | ∃x ∈ u, y ≤ x} and we write ↓x for ↓{x}. We also denote by
Pfin(X) finite subsets of X.
Definition 1.3.1 (Event Structures (Winskel and Nielsen, 1995)). An event structure
is a triple E = (|E|,≤,`) where
• |E| is a set, the elements of which are called events and are ranged over by
a, b, c, . . .

• ≤ is a partial order on |E|, called causal order, s.t. for all a ∈ |E|, {x ∈ |E| |
x ≤ a} is finite
• ` is an anti-reflexive and symmetric relation on |E|, called conflict relation, such

that for all a, b, c ∈ |E|, a ` b ≤ c implies a ` c.
The condition on the relation` is exactly the one that forbids duplication of events.
We say that u is a configuration of E iff ↓u = u and a, b ∈ u implies a 6` b, denoted

a ¨ b. The set of finite configurations of E is denoted by C(E) and ranged over by
u, v, w, . . . If u is a configuration and a an event such that a /∈ u and u′ = u ∪ {a} is

38

a configuration, we say u enables a. The smallest configuration enabling a ∈ |E| is
↓a \ {a} denoted dae.

Let E = (|E|,≤,`) and E ′ = (|E ′|,≤′,`′) be event structures and R ⊆ |E| × |E ′|.
We denote by π1(R), π2(R) the projections of R. If u ∈ C(E), a ∈ |E| is enabled by u
and v = u∪{a}, we write u a−→R v if a ∈ π1(R) (we call this a computational transition
labeled by a) and u→R v otherwise (we call this an administrative transition). They
correspond in some sense to visible and invisible transitions. We denote by ⇒R the
reflexive transitive closure of →R and we write u a=⇒R v if there exist u′, v′ ∈ C(E) s.t.
u⇒R u

′ a−→R v
′ ⇒R v. We apply the same notation for E ′. Moreover, given u ∈ C(E)

and u′ ∈ C(E ′), we set suppR(u) = u ∩ π1(R) and suppR(u′) = u′ ∩ π2(R).

Definition 1.3.2 (R-bisimulation). Let E = (|E|,≤,`) and E ′ = (|E ′|,≤′,`′) be
event structures and R ⊆ |E|×|E ′|. An R-bisimulation between E and E ′ is a relation
B ⊆ C(E) × Pfin(R) × C(E ′) such that (∅, ∅, ∅) ∈ B and, whenever (u, φ, u′) ∈ B, we
have:

1. φ is a poset isomorphism between (suppR(u),≤) and (suppR(u′);

2. u a−→R v implies u′ a
′

=⇒R v
′ with (v, φ ∪ {a, a′}, v′) ∈ B;

3. u→R v implies u′ ⇒R v
′ with (v, φ, v′) ∈ B;

4. u′ a
′−→R v

′ implies u a=⇒R v with (v, φ ∪ {a, a′}, v′) ∈ B;
5. u′ →R v

′ implies u⇒R v with (v, φ, v′) ∈ B;
We say that E and E ′ are R-bisimilar, and we write E ≈R E ′, if there exists an
R-bisimulation between them.

The meaningfulness of an R-bisimulation depends on R: for example, for any E,E ′,
{(u, ∅, v)} is a ∅-bisimulation. To avoid this kind of degeneracy, we consider special
cases of R-bisimulation, where R is in some sense maximal.

Definition 1.3.3 (Bisimilar embedding3). Let E = (|E|,≤,`) and E ′ = (|E ′|,≤′,`′)
be event structures. A bisimilar embedding of E into E ′ is a relation ι ⊆ |E| × |E ′|
such that:

totality: π1(ι) = |E|;
injectivity: for all a, b ∈ |E|, ι(a) ∪ ι(b) 6= ∅ implies a = b;

bisimilarity: E ≈ι E ′.
We write E ι

↪−→ E ′ to denote the fact that ι is an embedding of E into E ′ or simply
E ↪→ E ′ to state the existence of an embedding.

3The reader who is familiar with history-preserving bisimulations will recognize that E can be
embedded into E′ precisely when, once we consider the events to be labeled by themselves, there
is a way of labeling the events of E′ over E ∪ {τ} so that E and E′ are weakly history-preserving
bisimilar.

Interaction Nets 39

Notice that embeddings, even though based on bisimulation, are not symmetric.
This is a desirable feature since their purpose it to give some order on expressivity:
some systems are strictly more powerful than others.

We now define some particular substructures that can be “found” in event struc-
tures that allow to give some separation results.

Definition 1.3.4 (Immediate conflict). Let E be an event structure. We say that
a, a′ ∈ |E| are in immediate conflict, and we write a]a′, iff a ` a′ and there exists a
configuration enabling both a and a′. We denote by]∼ the reflexive transitive closure
of].

Definition 1.3.5 (Confusion). Let E be an event structure. A confusion of type I in
E is a triple (a, b, c) ∈ |E|3 such that a 6= c, a]b, b]c and a and c are not in immediate
conflict. A confusion of type II in E is a pair (a, b) ∈ |E| such that a]b and dae 6= dae.
Proposition 1.3.6. Let E,E ′ be two event structures with E containing a confusion.
Then E is embeddable in E ′ implies that E ′ contains a confusion.

It is possible to assign to any interaction net M of any INS an event structures
Ev(M) that describes the reductions ofM. One can then notice that ifM is a net
of a multirule system S, then Ev(M) is confusion-free; in fact, in multirule nets all
incompatible interactions are triggered by a same active pair. On the other hand, all
concurrent calculi exhibit confusion in the event structures corresponding to some of
there terms. So do multiwire and multiport nets; an example is given in Figure 1.5.
The last proposition then says that no bisimilar embedding can be found from any such
net to any net of any multirule system, suggesting that these later are less expressive.

β β

α α

with an only rule for α./β

α

α

α

α

with a rule for α1 ./α2

Figure 1.5: Example of nets which induce confusion of type I
in their corresponding event structure.

One would expect that if M,M′ are two computational models for which there
is an encoding from M to M′ and for which one can build event structures, that it
would be the case that M ↪→ M′. It is the case for instance for Lafont interaction
nets into the Interaction Combinators [33]. But it isn’t true of Mazza’s encoding of
π-calculus in multiport interaction nets: it does not induce a bisimilar embedding
[38]. Ehrhard and Laurent give an encoding of π-calculus into differential interaction

40

nets [16], but π-calculus admits confusion while differential interaction nets do not.
By Proposition 1.3.6, it does not induce a bisimilar encoding. Worse, no encoding
of π-calculus into differential nets do. Conversely, does the existence of a bisimilar
embedding between the event structures of two computational models say anything
on the existence of encodings? Probably not.

Mazza’s results give some insight on the profound reasons of some separation prop-
erties. The generality of the framework is very pleasant and promises some nice further
developments.

1.3.3 Event Structures of multiport vs. multiwire systems
Even though one can question the usability of bisimilar embeddings, we wish to give
another separation result based on that technique, as it hints on a separation result of
Chapter 3. We shall compare multiwire and multiport interaction net systems.

A bisimilar embedding is said to introduce divergence if, whenever B is a bisimula-
tion associated with ι, there exists (u, φ, u′) ∈ B such that there is an infinite sequence
of administrative transitions u′ →ι u

′
1 →ι u

′
2 →ι . . . in E ′. We show that some config-

urations are preserved by bisimilar embeddings that do not introduce divergence.
But first, we define for any net a graph of conflicts between the possible interactions

in it. Formally, we find the conflict-graph Cg(N) of a net N in the following way. We
name each cell of N . A vertex of Cg(N) is a triplet (a, b, k) where a, b are the names
of the cells of the active pair and k the number of the rule for this interaction. We
then add an edge between any two vertices that share a name in their label.

Conflict graphs are related to event structures because their nodes are the “events”
which are possible in N and the edges of Cg(N) represent conflict between events.
Causality is left appart as all the considered events are possible at the same time. An
example is given in Figure 1.6, for a multiport interaction net system with simple rules
and a net in which all cuts are active pairs.

In event structures, configurations correspond exactly to nets, thus the following
definition.
Definition 1.3.7 (Conflict graph). Let E = (|E|,≤,`) be an event structure and
u ∈ C(E) a configuration of E. The conflict graph of u, noted Cg(u) is the graph
which vertices are events triggered by u and edges represent the conflict relation.

We can easily define the conflict graphs that can be generated by some interaction
net systems. For instance, a conflict graph of any Lafont net is a discrete graph. In
fact, Lafont nets are conflict-free. More interesting are conflict graphs of multirule
interaction nets. These are graphs composed of disjoint cliques.4 The situation is
more complex for multiwire and multiport graphs. To each cell name corresponds a
clique. Moreover, since interactions are binary, a vertex can belong to at most two
such cliques.

4Cliques in conflict graphs correspond to anticliques in event structures.

Interaction Nets 41

a

b

d c

e f ••

•

•

•

•

•

(a,c) (a,b) (b,f)

(a,d) (a,b) (b,e)

Figure 1.6: A multiport net and its conflict graph (all cuts are active pairs).

Definition 1.3.8 (Entangled event structure). Let G be a graph. A clique covering
of G is a family C of cliques of G such that every edge of G belongs to at least one
clique in C. A good covering of G is a clique covering for which each vertex v of G
belongs to at most 2 cliques. G is entangled if, for every good covering of G, there
exist cliques C,C ′ such that |C ∩ C ′| > 1.

An event structure E is entangled if there exists a configuration u ∈ C(E) such
that Cg(u) is entangled.

The conflict graph of a multiwire or multiport net has (at least one) good covering,
corresponding to the clique decomposition given above5. On the other hand, conflict
graphs of multiwire nets cannot be entangled. In fact, in multiwire systems, each pair
of cells can lead to at most one interaction so two vertices of its conflict graph cannot
share both their names.

Lemma 1.3.9. Let E ι
↪−→ E ′ and let d, e ∈ |E|, d′ ∈ ι(d) and e′ ∈ ι(e). Then d ` e iff

d′ `′ e′.

Proof. It is an immediate consequence of the properties of ι-bisimulations. If d and e
are not in conflict, then by bisimulation d′ and e′ are not either and vice-versa.

We say G′ is a full subgraph of G if, for any edge e of G with extremities a, b ∈ G′,
e is an edge of G′.

Lemma 1.3.10. Let G be a graph and H a full subgraph of G. Then H is entangled
implies that G is entangled.

Proof. Let C1, . . . , Cn be a good covering of G. Since H is a full subgraphs, C1 ∩
H, . . . , Cn ∩H is a clique covering of H. By hypothesis, there exist i, j ≤ n such that
|(Ci ∩H) ∩ (Cj ∩H)| > 1. But 1 < |(Ci ∩H) ∩ (Cj ∩H)| = |Ci ∩Cj ∩H| ≤ |Ci ∩Cj|
so G is entangled.

5If we associate to an interaction net N a multigraph G in which vertices are cells of N and edges
interactions triggered by pairs of cells, the conflict graph of N is nothing else that the line-graph of
G. In [31], the authors show that a graph has a good covering if and only if it is the line graph of
a multigraph. Moreover, they show that the existence of a good covering is a polynomially solvable
problem.

42

Proposition 1.3.11. Let E ι
↪−→ E ′ without introducing divergence, and E entangled.

Then E ′ is entangled.

Proof. Let B be a bisimulation associated with ι and let u be a configuration of E
such that Cg(u) is entangled. Let a1, . . . , an be the vertices of Cg(u). There must be
a configuration u′ ∈ C(E ′) such that (u, ϕ, u′) ∈ B for some isomorphism ϕ, and since
ι does not introduce divergence, there exists a maximal sequence of administrative
transitions u ⇒ι u

′′ such that there is no administrative transition starting from u′′.
Then, since B is a bisimulation, and since for all 1 ≤ i ≤ n, we have u ai−→ι u∪{ai}, we
must have, for all 1 ≤ i ≤ n, some a′i ∈ ι(ai) such that u′′ a′i−→ι u

′′ ∪ {a′i}. By Lemma
1.3.9, Cg(u′′) contains a copy of Cg(u) as full subgraph, and by Lemma 1.3.10 Cg(u′′)
is entangled.

This means that divergence free event structures corresponding to multiport inter-
action nets cannot all be embedded in divergence free event structures of multiwire
interaction nets. The separation is relevant: the conflict graph of the multiport net
given in Figure 1.6 is entangled. A system that provides such a net is one containing
cells α with 4 principal ports and β with 1, and rules for α2 ./α3, α1 ./β1 and α4 ./β1.

Chapter 2

Structural Operation Semantics for
Interaction Nets

In the present chapter, we try to provide interaction nets with a proper
operational semantics. In particular we describe a ccs-like labeled transition
semantics for graph transformation systems.

We first discuss a straightforward out-of-the-blue definition of a sos-semantic
for simple interaction nets. The problems we meet make us try another ap-
proach, that of hypergraph rewriting, considering that interaction nets can be
seen as particular hypergraphs. For this, we recall the basic definitions and con-
cepts for the concrete case of hypergraphs in Section 2.2; in particular we give
a brief review of the Borrowed Context technique. In Section 2.3, we provide
a reformulation of the Borrowed Context technique in analogy to Milner’s ccs;
however, this analogy is imperfect as there is no need for a counterpart of the
communication rule. This issue is addressed in Section 2.4, where we present
our main results, which allow to define a graph transformation counterpart of a
communication rule. These results are applied in Section 2.5 to obtain a satisfac-
tory sos like reformulation of the Borrowed Context technique. We conclude in
Section 2.6 with some restrictions on hypergraphs and their rules that allow for
a simplified, and sometimes usable definition of the communication rule derived
in previous sections in the framework of interaction nets. This definition allows
us to formalize the initial intuitive sos-semantics.

The concepts for this chapter are introduced in the paragraph about opera-
tional semantics (p. 10).

2.1 SOS for simple interaction nets
We try to give an sos to simple interaction nets. We restrict to the simple case,
because of the property expressed in Proposition 1.1.5 that we remind below: it is
possible to define the half of an interaction that comes from each cell of the rule.

43

44

We then consider that an action corresponds to rewriting a cell with free principal
port into its half, considering each rule it is involved with. This is reminiscent of the
ccs-approach, present in the π-calculus and its derivatives.
Proposition 2.1.1 (Splitting). Let S be a simple interaction net system containing
the cells γ, δ of Lafont interaction combinators, α ./ β be an active pair of S and
α / .β the right-hand side of the rule for this pair. Let a1, . . . , am be the ports of α not
involved in the interaction and b1, . . . , bn the ones of β. Then their is unique net N of
the following form

t1 ... tm t′1 ... t′n

σβα σαβ

N1 N2

such that N →∗ α / .β, where the roots of t1, . . . , tm are a1, . . . , am and those of
t′1, . . . , t

′
n are b1, . . . , bn.

In the following, we will refer to N1 as Rβ
α and to N2 as Rα

β . The first idea is to
define actions on a free port labeled by the cell that can carry out the interaction:

N αB on p−−−−−→ N{Rβ
α/α}

where p is the principal port of an α-cell in N , the roots of the trees t1, . . . , tm are
connected according to the port names of the α-cell and the root of σβα is connected
to (the residue of) p.

A first try

Now, we can write derivation rules for an operational semantics. We use graph union
parametrized by a set of equalities on ports, N ∪{a=a′,...}M, to denote the operation
of “plugging” N and M together with at least a wire between a in N and a′ in M,
etc. Ports not explicitly mentioned can be interconnected or not. The following rule
has obviously a symmetric version:

N αB on p−−−−−→ N ′

N ∪EM αB on p−−−−−→ N ′ ∪EM
where p does not appear in E

This rule is valid since, if not connected during the plugging operation, a free port
stays free. If it is a principal port of a cell, an action can still be triggered on it.

How about a pendant of the communication rule? If their is a rule for α./β and
one net has α with free principal port and the other has β with free principal port,
the two cited ports can be connected together to form a bigger net which can reduce,

Structural Operation Semantics for Interaction Nets 45

internally. This seems quite close to ccs-like operational semantics. It should look
something like:

N αB on p−−−−−→ N ′ M βB on q−−−−−→M′

N ∪{p=q,...}M → N ′ ∪{p=q,...}M′

This would be nice. But imagine now the system also has a rule for α./γ. It could
be that the action on N was triggered by the α./γ rule, in which case the conclusion
interaction is not correct, since the plugging of N and M yields a cut on β and γ,
which might not even have a rule, or at least completely different from the one for
α./β.

So we need the information about what piece of net was connected to trigger the
interaction which justifies the action. If we denote by Cβ on p the fact of plugging a
cell labeled β on port p, we should have something like

N Cβ on p−−−−−→ N ′ M Cα on q−−−−−→M′

N ∪{p=q,...}M → N ′ ∪{p=q,...}M′

But now again, we do not know if inM, q was the the principal port of a β or a
γ-cell, making the conclusion interaction false in the latter case.

So it seems one needs the information about the whole rule used to justify the
action. We would write something like N α./β on p−−−−−→ N ′ to express that when a β-cell
is plugged to the port p which is the principal port of an α-cell in N , N evolves into
N ′ (Note that in this case, the active pair is considered ordered).

Then the communication rule could be:

N α./β on p−−−−−→ N ′ M β./α on q−−−−−→M′

N ∪{p=q,...}M → N ′ ∪{p=q,...}M′

Remarks

First, we need to notice that in order to obtain such a nice communication rule, we
had to add in the system two new cell. One can try to do without it naively, since the
splitting of the RHS of a rule is still valid, with the difference that the contact zone
between the two halves can have arbitrary size. In this case, in the communication
rule

N α./β on p−−−−−→ N ′ M β./α on q−−−−−→M′

N ∪{p=q,...}M → N ′ ∪EM′

the set E can be rather complex and can certainly not be derived from the labeled
transitions, neither the ones in the premise, nor the first part of the conclusion. The
resulting rule is not exactly structural, meaning that the conclusion can be derived
straight from the premises.

46

The simplicity of the result can anyhow justify the extension of systems to contain-
ing also cells γ, δ and their rules. But it raises a few questions about what rules should
be given for interaction between γ, δ-cells and other cells of the system? It might be
that having such rules extends the system beyond reasonable limits. It might also be
that forbidding γ, δ-cells to interact with any other cells is too restrictive.

Another question regards the case of multiwires. In this framework, wirings be-
tween a set of ports z̃ and set of ports z̃′ do not correspond to permutations, but
rather to relations on z̃× z̃′. It might not be so simple to build some tiny alphabet to
derive any such relation from two predefined nets (even less, trees). It is anyhow an
interesting question, that we do not adress in this work.

To cope with these problems, we will try to find help in the field of graph-rewriting,
and particularly of so called double-pushout graph rewriting with borrowed contexts. For
a detailed study of the subject, see for instance [18] by one of the key figures in the
domain.

2.2 Graph rewriting : preliminaries
We first recall the standard definition of (hyper-)graphs and a formalism of trans-
formation of hypergraphs (following the double pushout approach). We also present
the labeled transition semantics for hypergraph transformation systems that has been
proposed in [19]. In the present work, the more general case of categories of graph-
like structures is not of central importance. We avoid category theoretical jargon and
present all necessary concepts concretely for hypergraphs.

2.2.1 Hypergraphs

Definition 2.2.1 (Hypergraph). Let Λ be a set of labels with associated arity function
ar : Λ→ N. A (Λ-labeled hyper-) graph is a tuple G = (E, V, `, cnct) where E is a set
of (hyper-) edges, V is a set of vertices or nodes, ` : E → Λ is the labeling function,
and cnct is the connection function, which assigns to each edge e ∈ E a finite sequence
of vertices cnct(e) = v1 · · · vn where ar(`(e)) = n, i.e. cnct(e) is a function from
{i | 0 < i ≤ ar(`(e))} to V . For a given edge e ∈ E, the set of all e-adjacent vertices
is adj(e) = {cnct(e)(i) | 0 < i ≤ ar(`(e))} and for a given node v ∈ V , the set of edges
incident to it is inc(v) = {e ∈ E | v ∈ adj(e)}. The degree of a node v ∈ V , written
deg(v), is the number of edges incident to it, i.e. deg(v) = | inc(v)| (where for any
finite set M , the number of elements of M is |M |). We also write v ∈ G and e ∈ G if
v ∈ V and e ∈ E to avoid clutter.

Example 2.2.2 (Hypergraph). An example of an {α, β, γ}-labeled hypergraph is il-
lustrated in the grey box in Figure 2.1. The arities of α, β and γ are 2, 3 and 1,
respectively. The graph has hyperedges of each “type”, which are depicted as rounded

Structural Operation Semantics for Interaction Nets 47

boxes with the respective label inside; moreover, the graph has four nodes. The order
of the nodes that are connected to an hyperedge is usually not important (but could
be fixed easily by counting counter-clockwise from the bottom left corner of the edge).

u
v

v’
u’

β

α γ

Figure 2.1: A siple hypergraph with 3 hyperedges and 4 nodes.

We usually do not discern isomorphic graphs (which roughly corresponds to the
practice to consider terms of process calculi up to structural congruence); thus, we
usually do not mention the “names” of nodes and edges. The full details of the above
graph would be ({e, e′, d}, {u, v, u′, v′}, `, cnct) where ` = {e 7→ α, e′ 7→ β, d 7→ γ} and
cnct = {e 7→ uv, e′ 7→ v′vu′, d 7→ v}.

For completeness’ sake, we recall the standard definitions of hypergraph morphism,
sub-graph and isomorphism. However, usually, inclusions of sub-graphs in illustrations
are the obvious ones that preserve the (relative) positioning of nodes and edges.

Definition 2.2.3 (Hypergraph morphisms, inclusions, isomorphisms).
Let Gi = (Ei, Vi, `i, cncti) (i ∈ {1, 2}) be hypergraphs; a hypergraph morphism from
G1 to G2, written f : G1 → G2, is a pair of functions f = (fE : E1 → E2, fV : V1 → V2)
that preserves labels and connectivity of edges: The equality `2 ◦ fE = `1 holds and
we have fV (cnct1(e)(i)) = cnct2(fE(e))(i) for each edge e ∈ E1 and every i ∈ N such
that 0 < i ≤ ar(`(e)).

A hypergraph morphism f = (fE, fV) : G1 → G2 is injective (an isomorphism) if
both fE and fV are injective (bijective); it is the inclusion (of G1 into G2) if both
fE(e) = e and fV (v) = v hold for all e ∈ E1 and v ∈ V1 and then G1 is a sub-graph
of G2. As usual, we write G1 ∼= G2 if there is an isomorphism f : G1 → G2. We write
G1 ↪→ G2 or G2 ←↩ G1 (and very often just G1 → G2 or G2 ← G1) if G1 is a sub-graph
of G2.

In this subsection we have recalled the basic terminology for hypergraphs; next we
shall review a standard approach to graph transformation.

2.2.2 Standard graph transformation
The most established approach to graph transformation is double pushout rewriting.
It is most succinctly defined using the basic category theoretical notion of pushout,
which makes it a uniform approach for arbitrary graph-like structures. However, for
the particular case that we are interested in, pushouts can be understood as a variation

48

of the disjoint union of hypergraphs. In the next definition, we also cover the partic-
ular case of pullbacks that we shall need to properly present the Borrowed Context
technique [19] in Section 2.2.3 without a purely category theoretical perspective.
Definition 2.2.4 (Pullbacks & pushouts of inclusions). Let Gi = (Ei, Vi, `i, cncti)
(i ∈ {0, 1, 2, 3}) be hypergraphs and let G1 → G3 ← G2 be inclusions. The intersection
of G1 and G2 is the hypergraph G′ = (E1 ∩ E2, V1 ∩ V2, `

′, cnct′) where `′(e) = `1(e)
and cnct′(e) = cnct2(e) for all e ∈ E1 ∩ E2. The pullback of G1 → G3 ← G2 is the
pair of inclusions G1 ← G′ → G2 and the resulting square is a pullback square (see
Figure 2.2).

Let G1 ← G0 → G2 be inclusions; they are non-overlapping if both E1 ∩ E2 ⊆ E0
and V1 ∩ V2 ⊆ V0 hold. The pushout of non-overlapping inclusions G1 ← G0 → G2 is
the pair of inclusions G1 → (G1 +G0 G2) ← G2 where (G1 +G0 G2) = (E1 ∪ E2, V1 ∪
V2, `

′′, cnct′′) is the hypergraph such that

`′′(e) =

`1(e) if e ∈ E1

`2(e) if e ∈ E2
and cnct′′(e) =

cnct1(e) if e ∈ E1

cnct2(e) if e ∈ E2

hold for all e ∈ E1 ∪E2; often, (G1 +G0 G2) is referred to as the pushout of G1 and G2
over G0.

Without loss of generality, we shall assume that pairs of inclusions G1 ← G0 → G2
are always non-overlapping.

G3

G1

G2

G′

G0

G1

G2

G′′

Figure 2.2: Pullback and pushout square

We are finally ready to introduce graph transformation systems and their “reduc-
tion” semantics.
Definition 2.2.5 (Rules and graph transformation systems). A rule is a pair of inclu-
sions of hypergraphs ρ = (L← I → R). Let A,B be hypergraphs. Now, ρ transforms
A to B if
there exists a diagram as shown to the right in which
the two squares are pushouts, A′ ← I → R is non-
overlapping, and A ∼= A′ and B′ ∼= B. A graph
transformation system (gts) is a pair S = (Λ,R)
where Λ is a set of labels and R is a set of rules
(over Λ-labeled hypergraphs).

L I R

A′ D B′

A graph transformation rule can be understood as follows. Whenever the left hand
side L is (isomorphic to) a sub-graph of some graph A then this sub-graph can be

Structural Operation Semantics for Interaction Nets 49

“removed” from A, yielding the graph D. The vacant place in D is then “replaced” by
the right hand side R of the rule. The middleman I is the memory of the connections
that L had with the rest of the graph in order for R to be attached in exactly the same
place. Also note, that if we remove a node in A, we have also to remove all incident
edges explicitly, i.e. the deleted node has “the same” incident edges in L and A. Each
graph transformation step can also be thought of as a chemical reaction according to
the rule, which features as the reaction law. An example of a rewriting step is shown
in Figure 2.3.

α

β

R1

G

α

β

G G

R1

Figure 2.3: A rewriting step with rule “α/β”.

As mentioned before, inclusions are given implicitly by the spatial arrangement of
nodes and edges to keep the graphical representations clear.

As one might expect, the result of each transformation step is unique (up to iso-
morphism). This is a consequence of the following fact.
Fact 2.2.6 (Pushout complements). Let G2 ← G1 ←
G0 be a pair of hypergraph inclusions where Gi =
(Ei, Vi, `i, cncti) (i ∈ {0, 1, 2}) and assume that they sat-
isfy the dangling edge condition: For all v ∈ V1\V0 there
does not exist any edge e ∈ E2 \ E1 such that e is inci-
dent to v. Then there exists a unique sub-graph G2 ← D

such that (2.1) is a pushout square.

G1 G0

G2 D

(2.1)

Definition 2.2.7 (Pushout Complement). LetG2 ← G1 ← G0 be a pair of hypergraph
inclusions that satisfy the conditions of Fact 2.2.6; the unique completion G2 ← D ←
G0 that yields the pushout square (2.1) is the pushout complement of G2 ← G1 ← G0.

We now introduce the example graph transformation system that we shall use
throughout the chapter to illustrate the basic ideas. The rule in the “reaction” in
Figure 2.3 is part of this system.
Example 2.2.8 (Running Example). The system Sex = (Λ,R) will be the following one
in the sequel: The set of edge-labels is Λ = {α, β, γ, . . . } where ar(α) = 2, ar(β) = 3
and ar(γ) = 1; moreover, R is the set of rules given in Figure 2.4 where the Ri

represent different graphs (e.g. edges with labels Ri).

50

α

β
← → R1

(a) Rule “α/β”

β

α γ ← →
R4

(b) Rule “α/β/γ”

Figure 2.4: Reaction rules of Sex.

In this subsection, we have presented the double pushout approach as a model for
“reactions” that occur in a system about which one has complete knowledge. Thus
rewriting is similar to the reaction semantics for ccs. Now, we come to the more
recent and central idea that graph transformation systems “automatically” have an
interactive nature, which endows each graph with a behavior. This is similar to process
calculi where process terms cannot only react but also exhibit behavior that depends
on possible interactions with other processes.

2.2.3 Behavior as interaction with the environment

We now explain how to use the Borrowed Context technique [19] to equip each graph
transformation system with a labeled transition semantics that models the interactive
behavior of systems that are specified as graphs with graph transformation rules. Each
labeled transition will model an interaction of a graph with an “external” environment;
in the the world of process calculi, this environment is formalized as an arbitrary
(reactive) context.

Intuitively, one might want to “hide” parts of a graph from the environment while
some portion of the state is directly exposed. Thus, each state of the labeled transition
system (lts) will be a graph with an interface, which makes part of the graph directly
accessible whereas the remainder is “hidden”; more technically, the interface is also
needed to have a meaningful way to consider the graph within an “external” context.
To avoid confusion, we emphasize here that the labels of transitions in the lts will
depend directly on the rules of the gts (and thus only indirectly on the edge-labels
Λ). We use the standard definition of labeled transition systems, which we recall here
to fix notation.

Definition 2.2.9 (Labeled transition system). A labeled transition system (lts) is a
tuple (S,Ξ, R) where S is a set of states, Ξ is a set of labels and R ⊆ S ×Ξ× S is the
transition relation. We write

s
a−→ s′

Structural Operation Semantics for Interaction Nets 51

if (s, a, s′) ∈ R and say that s can evolve to s′ by performing a.

Before we delve into the technical details of the lts semantics for graphs, we first
discuss the main ideas informally. The states will be graphs with interface J → G. The
“larger” part G models the whole “internal” state of the system while the “smaller”
part, the interface J , models the part that is directly accessible to the environment
and allows for (non-trivial) interaction. As a particularly simple example, one could
have a Petri net where the set of places (with markings) is the complete state and
some of the places are “open” to the environment such that interaction takes place by
exchange of tokens.

More generally, the addition of agents/resources from the environment to (the
interface of) a state might result in “new” reactions, which have not been possible
before. In the Petri net scenario, extra tokens might enable transitions that could
not be fired before. The idea of the lts semantics for graph transformation is to
consider as labels “minimal” contexts that trigger “new” reactions (by providing extra
agents/resources). For a more formal treatment of this intuition, see [56]. A direct
definition of the lts semantics for graph transformation can be given in terms of
so-called borrowed context diagrams.
Definition 2.2.10 (DPOBC). Let S = (Λ,R) be
a graph transformation system. Its lts has all in-
clusions of hypergraphs J → G as states where J
is called the interface. Labels are pairs of inclu-
sions J → F ← K. A state J → G evolves to
another one K → H if there is a diagram as shown
to the right, which is called a dpobc-diagram or
just a bc-diagram: All morphisms are injective and
the squares are pullbacks or pushouts as marked.
In such a bc-diagram, G ← D → L is called the
partial match of L (in G).

D L I R

G Gc C H

J F K

We often speak of the graph D as the partial match for a transition; in fact, the
whole bc-diagram is determined by the rule and the partial match (up to isomor-
phism).
Example 2.2.11. An example of a dpobc-diagram is given in Figure 2.5. The original
state J → G contains a hyperedge α. The partial match D is exactly this edge.
The state can therefore evolve using rule α/β, provided that it borrows β from the
environment.

The bigger graph Gc contains G but is also completed with what is missing such
that the left-hand side of the rule can be embedded into it. It can thus be rewritten,
as shown in Figure 2.3. The last row shows the “evolution of the interface during
the rewriting”: First, we have the original interface; then the missing part is added;
finally, some elements from the interface have to be removed if they have been deleted

52

α
α

β

R1

G

α

G

α

β

G G

R1

β

Figure 2.5: An example of a bc-diagram that uses the rule “α/β”.

by application of the rule.
That the label J → F ← K in Definition 2.2.10 is “minimal” is captured by the

two leftmost squares in the bc diagram above: The “addition” J → F is “just enough”
to complete the partial match of the left hand side of the rule L ← I → R. That
the interaction with the environment involves a reaction is captured by the other two
squares in the upper row in the bc-diagram. During this reaction, some agents might
disappear or some resources might be used (depending on the preferred metaphor)
and new ones might come into play. Finally the bottom left pullback square in the
bc-diagram restricts the changes to obtain the new interface into the resulting state.

Different rules might result in different deletion effects that are “visible” to the
environment. Thus, the full label of each such “new” reaction is the “trigger” J → F

together with the “observable” change F ← K (with state K → H after interaction).
Note that more recent process calculi also have several reaction rules (as for example
the ambient calculus) while ccs has only a single one.

2.3 A process calculus perspective on borrowed con-
texts

We only assume familiarity with process calculi and in particular do not require knowl-
edge of the Borrowed Context technique (beyond the definition in the previous sec-
tion). This section should also clarify the purpose and relevance of the main results
in Section 2.4 and Section 2.5.

We begin with an informal motivation by developing an analogy with the axioms

Structural Operation Semantics for Interaction Nets 53

and rules of ccs. The axioms will provide basic actions, which can be seen as a
generalization of transitions of the form α.P −α� P in ccs. After a quick review of
how contexts are formalized in graph transformation, we shall give rules that allow
to “embed” transitions into contexts; these rules are similar to the rule that allows
to infer P ‖ Q −α� P ′ ‖ Q from P −α� P ′ in ccs because [·] ‖ Q is a “non-
interfering” context. Finally, we show formally that axioms for basic actions with two
“contextualization” rules exactly capture the Borrowed Context technique.

2.3.1 The analogy with CCS

The axioms of our system will be similar to the axioms of ccs, where the process α.P
can perform the action α and then behaves as P ; this is usually written α.P −α� P

where α ranges over the actions a, a (and τ). In particular, a and a are co-actions of
each other, which are consumed during the reaction of a.P and a.P in the combined
process a.P and a.P .

In the case of graphs, each rule L ← I → R gives rise to a whole family of such
actions – one for each subgraph of L. More precisely, each subgraph D of L can be
seen as an “action”; each such action has a co-action D̂L → L such that L is the union
of D and D̂L (and D̂L is the minimal sub-graph with this property). For example,
in the rule α/β, both edges α and β yield (complementary) basic actions. Indeed, to
make the analogy closer, the common node between the two edges in the left hand
side of the rule α/β is the analogue of a channel; one of the edges performs the input
and the other the output “on” the common node.

Formally, in Table 2.1, we have the family of Basic Action axioms. It essentially
represents all the possible uses of a transformation rule. In (an encoding of) ccs,
the left hand side would be a pair of unary edges a and a, which both disappear
during reaction. Now, if only a is present “within” the system, it needs a to perform a
reaction; thus, the part a of the left hand side induces the (inter-)action that consists
in “borrowing” a and deleting both edges (and similarly for a). In general, e.g. in the
rule α/β/γ, there might be more than two edges that are involved in a reaction and
thus we have a whole family of actions. More precisely, each portion of a left hand side
induces the action that consists in borrowing the missing part to perform the reaction
(thus obtaining the complete left hand side), followed by applying the changes that
are described by the rule.

Next, we shall describe counterparts for the two ccs-rules that allow to perform
a given action in parallel to another process and under a restriction; the respective
forms of contexts in which actions can be performed are “parallel contexts” [·] ‖ Q and
“restriction contexts” (νb)[·]. More precisely, whenever we have the transition P −α�
P ′ in ccs and another process Q, then there is also a transition P ‖ Q −α� P ′ ‖ Q;
similarly, we also have (νb)P −α� (νb)P ′ whenever α /∈ {b, b}. More abstractly, actions
are preserved by certain contexts and not by others; for example a.[·] does block all

54

actions.
In the case of graph transformation, there is a natural counterpart for process

contexts C[·] such as P ‖ [·] and (νb)[·]. The only complication is that graphs have
arbitrary interfaces J → G (see also Definition 2.2.10) while processes have a sacro-
sanct “interface”, viz. their free names. Thus, graph contexts have a “type”, which
is an interface graph J ; only states with interface J can be put into a context of this
“type”. The result is called the composition1 of the state with the context.

Definition 2.3.1 (Context and composition). Let J → G be a state. A context (of
type J) is a pair of inclusions C = J → E ← J ′. The composition of J → G with the
context C, written C[J → G], is the inclusion of J ′ into the pushout of E ← J → G

as illustrated in the following figure (with the assumption that C is free for J → G).

J

G

(J E J ′)C = J

G

E J ′

G

J ′

G

state context pushout
construction

composition
(C[J → G])

The left inclusion of the context, i.e. J → E in the definition, can also be seen as
a state with the same interface. The pushout then gives the result of “gluing” E to
the original G at its interface J ; the second inclusion J ′ → E models a new interface,
which possibly contains part of J and additional “new” entities in E.

The idea of our stratified presentation of the Borrowed Context technique is based
on the observation that each bc-transition

(J → G) J→F←K−−−−−→ (K → H),

which might be a basic action or not, remains roughly unchanged in contexts of a
certain form; in other words, some contexts C allow C[J → G] to perform “the same”
action as J → G.

With this observation in mind, we shall first characterize two classes of contexts
that are non-interfering in the described sense. These two classes roughly correspond
to ccs contexts of the form P ‖ [·] and (νb)[·]. However, even though “non-interfering”
contexts have no substantial influence on actions, we will have to keep track on what
they add and how they change interfaces. Finally, at the end of this section, we show
that axioms for basic actions together with the two natural contextualization rules for
non-interfering contexts yield a sound a complete description of the Borrowed Context
technique.

1The reason for this is that the construction in Definition 2.3.1 is essentially the composition of
co-spans.

Structural Operation Semantics for Interaction Nets 55

2.3.2 Borrowed contexts in three layers
In this subsection we shall provide the formal details of a process calculus like pre-
sentation of the Borrowed Context technique. We have already discussed the idea of
basic actions and non-interfering contexts. We fix now a graph transformation system
S = (Λ,R) and – relative to this parameter – define the system 3l.

Basic Actions We start with the axioms of the system. They derive the basic
actions as discussed above; and example of a basic action is given in Figure 2.6.

α

α

α
α

β

R1

Figure 2.6: An example of a basic action.

Definition 2.3.2 (Basic Action axioms). Let (L ← I → R) ∈ R be a rule and let
D → L be a sub-graph. Then

(D → D) D→L←I−−−−−→ (I → R)

is a Basic Action Axiom of 3l.

Interface Narrowing Next, we address the counterpart of name restriction. This
means, we first define the counterpart of ccs-contexts of the form (νa)[·]; these are
just contexts of the form C = J → J ← J ′, which will be called narrowing contexts.
Intuitively, such a context does not interfere with a transition with label J → F ← K

if J ′ is still big enough to glue all new entities in F . This is in direct analogy to
ccs, where the restriction (νa) preserves only those actions that do not involve a.
While we do not have to adjust labels in ccs, even non-interfering narrowing context
“narrows” the label of the transition while the “proper” action remains untouched.
This is made formal in the following definition and the analogy to ccs is made more
precise afterwards.

Definition 2.3.3 (Narrowing). A narrowing context is a pair of inclusions C = J →
J ← J ′ in which only the right inclusion might be proper. Let J → F ← K be a
label. The narrowing context C = J → J ← J ′ does not interfere with the label
if the pushout complement of F ← J ← J ′ exists. If C is non-interfering, then the
C-narrowing of the label, written C〈J → F ← K〉, is the lower row in the following
figure

56

J ′C〈J → F ← K〉 :=

J

F ′

F

K ′

K

where C = J → J ← J ′

where the left square is a pushout and the right one a pullback. Whenever we write
C〈J → F ← K〉, we assume that the relevant pushout complement exists.

If we think of the interface as the set of free names of a process, then restricting
a name means removing it from the interface. Thus, J ′ plays the role of the set
of all remaining free names. If the pushout complement F ′ exists, it represents F
with the restricted names erased. Finally, since a pullback here can be seen as an
intersection, K ′ is K without the restricted names. So we finally obtain the “same”
label where “irrelevant” names are not mentioned. It is of course not always possible
to narrow the interface. For instance, one cannot restrict the names that are involved
in labeled transitions of ccs-like process calculi. This impossibility is captured by the
non-existence of the pushout complement.

Narrowing contexts just make interfaces smaller; the remainder of the involved
states is left unchanged. An example of interface narrowing is given in Figure 2.7

G

α

α

α
α

β

G

R1

G

α β

G

R1

Figure 2.7: An example of interface narrowing

where the narrowing context removes the α-labeled edge and the first of its nodes
from the interfaces. Interface narrowing yields the first rule scheme in the system 3l.
Definition 2.3.4 (Narrowing rule). Let J → F ← K be a label, let C = J → J ← J ′

be a non-interfering narrowing context, and let J ′ → F ′ ← K ′ = C〈J → F ← K〉 be
the C-narrowing of the label; moreover let J → G and K → H be inclusions. Then

(J → G) J→F←K−−−−−→ (K → H)
(J ′ → G) J ′→F ′←K′−−−−−−→ (K ′ → H)

is an instance of the narrowing rule of 3l.

Structural Operation Semantics for Interaction Nets 57

Compatible contexts It remains to define contexts that correspond to parallel
composition with another process P in ccs. In the case of graph transformation, this
case is slightly more involved than one might expect. The problem is that even the
“pure” addition of context potentially interferes with transitions. For example, if an
interaction involves the deletion of an (isolated) node in the interface, the addition of
an edge to this node blocks the reaction. Thus a context that only adds new entities,
which will be called monotone, interferes if it creates dangling edges. Non-interfering,
monotone contexts are intuitively similar to ccs-contexts of the form P ‖ [·]; they are
called compatible.

Definition 2.3.5 (Compatible contexts). Let C = J → E ← J be a context; it is
monotone if J → J . Let J → F ← K be a label; now C does not interfere with
J → F ← K if it is possible to construct the diagram in (2.3.2) where both squares
are pushouts. Finally, a context J → E ← J is compatible with the label J → F ← K

if it is monotone and does not interfere with the label.

E

J

E1

F

E ′

K

In a label J → F ← K, the left inclusion represents the addition of new entities that
“trigger” a certain reaction. A compatible context is simply a context that preserves
the old interface and adds new entities that do not block the reaction, i.e. it does not
add new edges to nodes that disappear during the interaction. An illustration of how
to embed of a whole transition into a monotone context is given in Figure 2.8.

α

α

α
α

β

R1

G

α

α

α
α

β

G

R1

Figure 2.8: A transition in a monotone context.

To properly define a rule for monotone contexts, we introduce a partial operation for
the combination of co-spans with a common interface, which generalizes the narrowing
construction.

58

Definition 2.3.6 (Cospan combination). Let C = (J → F ← K) and C = (J →
E ← J) be two co-spans. They are combinable if there exists a diagram of the following
form.

E

J

E1

F

E ′

K

J F K =: C〈J → F ← K〉
The label J → F ← K is the combination of C with C, and is denoted by C〈J →
F ← K〉.

In fact, it is easy to show that compatible contexts are combinable with their label.
Lemma 2.3.7. Given a label J → F ← K and a compatible context J → E ← J ,
we can split the diagram in (2.3.2) to obtain the following diagram.

E E1 E ′

J F K

J F K

and therefore E

J

E1

F

E ′

K

J F K

With this lemma we can easily define the rule that corresponds to “parallel com-
position” of an action with another “process”.
Definition 2.3.8 (Compatible Contexts rule). Let J → F ← K be a label, let C =
J → E ← J be a context that is compatible with it, and let C = (J → F ← K)〈C〉 be
the combination of C with the label; moreover let J → G and K → H be inclusions.
Then

(J → G) J→F←K−−−−−→ (K → H)
C[J → G] C〈J→F←K〉−−−−−−−→ C[K → H]

is an instance of the combination rule in 3l.

Soundness and Completeness The 3l-system, which consists of basic actions,
the narrowing rule and the combination rule is summarized in Table 2.1. It does not
only give an analogy to the standard sos-semantics for ccs. In fact, we shall see that
the labels that are derived by the standard bc technique are exactly those labels that
can be obtained from the basic actions by compatible contextualization and interface
narrowing. In technical terms, the 3l-system is sound and complete.
Theorem 2.3.9 (Soundness and completeness). Let S be a graph transformation sys-
tem. Then there is a bc-transition

(J → G) J→F←K−−−−−→ (K → H)

Structural Operation Semantics for Interaction Nets 59

• Basic Actions

(D → D) D→L←I−−−−−−→ (I → R) where (L← I → R) ∈ R
and D → L

• Interface Narrowing

(J → G) J→F←K−−−−−−→ (K → H)
(J ′ → G) J′→F ′←K′−−−−−−−→ (K ′ → H)

where C = J → J ← J ′

and J ′ → F ′ ← K ′ = C[J → F ← K]

• Compatible Contextualization

(J → G) J→F←K−−−−−−→ (K → H)

C[J → G] C[J→F←K]−−−−−−−−→ C[K → H]
where

C = J → E ← J is compatible
with J → F ← K

and C = (J → F ← K)[C]

Table 2.1: Axioms and rules of the 3l-semantics.

if and only if it is derivable in the 3l-system.

Proof sketch. It is easy to build a dpobc-diagram to justify the Basic Action axioms.
We have seen while defining the Narrowing and Compatible Context rules that they
are derivable with the bc technique. Let us now show completeness.

Let d be a dpobc-diagram using the rule ρ = L← I → R; the resulting transition
is t = (J → G) J→F←K−−−−−→ (K → H) and the partial match is D.

D L I R

G Gc C H

J F K

We have that the transition t0 = (D → D) D→L←I−−−−−→ (I → R) is a basic action, i.e.
derivable by an axiom of the system. Let C = D → G ← G be a monotone context.
It is clearly non-inhibiting w.r.t. D → L ← I. Thus it is compatible with it and
C〈D → L ← I〉 = G → Gc ← C. So one can use the contextualization rule, and
obtain, from t0, the transition

t′′ = (G→ G) G→Gc←C−−−−−−→ (C → H).

Let C ′ = G → G ← J . By uniqueness of pushout complement and pullback, the
C-narrowing of G → Gc ← C is exactly J → F ← K. Therefore the narrowing rule
applied to t′′ yields the original transition t.

60

As a result, for any dpobc-diagram that justifies a transition t (where the names
of the graphs are the usual ones, as in Definition 2.2.10), the following three step
derivation in 3l justifies t:

(D → D) D→L←I−−−−−→ (I → R)
ax.

(G→ G) G→Gc←C−−−−−−→ (C → H)
ctx.

(J → G) J→F←K−−−−−→ (K → H)
narr.

Example 2.3.10. An example of a derivation of the example transition is shown in
Figure 2.9. We can see the basic action first, using the partial match of the diagram.
Using compatible contextualization, we “add” to this transition, all that is in the
original state. The interface is everything that is necessary; in this example, we just
add an extra vertex (and we could have put some more objects in the interface of
the monotone context). Finally, we remove from the interface everything that is not
needed, to get the desired interface.

α

α

α
α

β

R1

(a) First, make the partial match evolve (Basic Action).

G

α

α

α
α

β

G

R1

(b) Then, add what is missing from the original graph, thanks to
Compatible Context.

G

α β

G

R1

(c) Finally, remove the interface you don’t need, using Interface
Narrowing.

Figure 2.9: An example of a derivation in the 3l-system.

The main role of soundness and completeness is not its technical “backbone”,
which is similar to many other theorems on the Borrowed Context technique. The

Structural Operation Semantics for Interaction Nets 61

main insight to be gained is the absence of any “real” communication between sub-
systems; roughly, every reaction of a state can be “localized” and then derived from a
basic action (followed by contextualization and narrowing). In particular, we do not
have any counterpart to the communication-rule in ccs, which has complementary
actions P −a� P ′ and Q −a� Q′ as premises and allows to infer communication of the
processes P and Q, i.e. a silent “internal” transition P ‖ Q −τ� P ′ ‖ Q′. This absence
of communication in the “monolithic” bc-labels is the main motivation for our study
of composition of transitions.

2.4 Communication in composed states
The formal analogy between ccs and the Borrowed Context technique that we have
established in the previous section is imperfect: we have no counterpart to the com-
munication rule of ccs, which allows to derive the reaction P ‖ Q −τ� P ′ ‖ Q′ of
the “composed” state P ‖ Q from the two interactions P −a� P ′ and Q −a� Q′ of
the “constituents” P and Q. Thus, we shall now analyze when and how two labeled
transitions from two different states in a gts give rise to a “smaller” labeled transition
of the composition of the two states. This analysis will lead to a counterpart of the
communication rule of ccs that is admissible in the system 3l; moreover, as we shall
exploit in Section 2.5, we can reduce the number of axioms.

2.4.1 The idea of composition of transitions

Communication within a composed state is based on the following idea: (sub-)states
may provide resources for each other that they (used to) borrow from the environment;
as a consequence, the composed state needs to borrow less from the environment. This
idea is illustrated in the following example.
Example 2.4.1 (Composition of transitions). Let s = J → G be a state of Sex that
contains an edge α with its second connected node in the interface as shown in Fig-
ure 2.10(a). Further, let s′ = J ′ → G′ be a state that contains an edge β with its
second connected node in the interface as shown in Figure 2.10(b). Both graphs can
perform transitions t and t′, using the rule α/β/γ. Let X be the graph that consist
of the black round vertex only, which is both a subgraph of J and J ′. Now we can
compose t and t′ along J ← X → J ′ to obtain the transition in Figure 2.10(c).

The crucial problem of a general composition rule for the system 3l is due to the
inherent, “incomplete” information of labels. The transitions that we derive with the
Borrowed Context technique only indicate what a state needs from the environment
to perform some reaction that the state cannot perform on its own; in particular
the transition label abstracts away from the complete bc diagram. Roughly, labels
indicate what needs to “be around” to make something happen but do not inform

62

G

α β

γ

G

R4

(a) A first transition for a state s = J → G.

G′
β α γ

G′

R4

(b) A second transition for a state s′ = J ′ → G′.

G

α

G′
β γ

G

G′

R4

(c) The composition of s and s′ along J ← X → J ′.

Figure 2.10: An example of composition of two transitions that use the rule α/β/γ.

about what exactly is happening “inside” the interacting state. For instance, a state
can react after “borrowing” some small graph F ; however the graph F could be used
in several ways – possibly even applying different rules.

Thus, in general, one can neither determine what part of a state is actually reacting,
i.e. what partial match has been used to derive the label, nor what rule is used. Thus,
it is non-trivial to generalize the communication rule of ccs to a composition rule for
“opposite labels” – simply, because the “opposite” of a derived label does not exist.
The following example illustrates the problem and also suggests that it is not due to
the use of graphs as system models but is rather a consequence of the use of minimal
contexts as labels.

Example 2.4.2 (Failure of Composition). Consider the following microscopic (process)
calculus. The terms are given by

P ::= ?a | !a | [a | \a | 0 | P ‖ P

where a is element of a set of names and we have ‖ as an associative operator. Moreover,
we have the following reaction axioms and rules for contextualization.

?a ‖ !a→ 0 [a ‖ !a→ 0 ?a ‖ \a→ 0

Structural Operation Semantics for Interaction Nets 63

P → Q

P ‖ R→ Q ‖ R
P → Q

R ‖ P → R ‖ Q
With the intuitive idea of minimal contexts as labels, we have the two labeled

transitions ?a −[·‖!a]� 0 and !a −[?a‖·]� 0; they can be composed, leading to the “silent”
transition ?a ‖ !a −[·]� 0. However, we also have [a −[·‖!a]� 0 and \a −[?a‖·]� 0 but not
[a ‖ \a −[·]� 0. Thus, two transitions with labels [· ‖ !a] and [?a ‖ ·] are not always
composable. This means that composability depends on the states. Nevertheless,
there is at most one way to compose “opposite” labels.

In the case of graphs, the use of the Borrow Context technique implies the exis-
tence of some “substate” that is “responsible” for an interaction with the environment.
Moreover, in the composition of the two labeled transitions in Example 2.4.1, we can
still locate the “responsible” substates of the constituents, namely the edges with la-
bels α and β. Finally, we see that the new “responsible” substate is the union of the
old ones. Thus, the interaction of the composed state is not only based on the same
rule, but it actually reuses the same parts of the original states that triggered the
transition.

2.4.2 Composition results for Borrowed Context diagrams
We now formalize the idea that labeled transitions of “composed” states can be “re-
stricted” to interactions of their “constituents”. We start by defining superstates of
states (which in turn will be substates) and formally describe how transitions of sub-
states can be extended to superstates.
Definition 2.4.3 (Superstate and homogeneous transitions). Let s = J → G and
s′ = J ′ → G′ be two states. Now s′ is a superstate of s and s is a substate of s′ if
s′ = C[s] for some monotone context C = J → F ← J ′ (see Definition 2.3.5).
Let ρ = L ← I → R be a rule, let J ′ → G′ be a superstate
of J → G and let t = (J → G) J→F←K−−−−−→ (K → H) and t′ =
(J ′ → G′) J ′→F ′←K′−−−−−−→ (K ′ → H ′) be two transitions that are
derived with respective partial matches D and D′. Now, t′ is
homogeneous with respect to t and t extends to t′ (relative to D
and D′) if D → D′.

D′ L

G′

D L

G

The extension of a transition yields the illustrated diagram (as part of the complete
bc diagrams).

Now we are ready to formulate our composition results: in Proposition 2.4.4, we
describe how two transitions that are derived using partial matches into a common
rule can be composed such that the original states have a “minimal” overlap in the
composed state, namely the intersection of the partial matches; further, Theorem 2.4.6
gives sufficient conditions for the composition of two transitions such that the resulting
transition is homogeneous w.r.t. to both of them (relative to their partial matches).

64

Composition with minimal overlap Homogeneity expresses the fact that the
rule is applied in the superstate exactly where we expect it to be, i.e. its partial match
“reuses” the elements that were already in the partial match in the original graph. In
the opposite direction, for any transition t from a state s = J → G that is derived
using a partial match D, any substate s = J → G of s can evolve in “the same” way by
“restricting” t to a transition t from s such that t is homogeneous w.r.t. t: we simply
take the intersection of G and D as partial match for t. In general, s might miss some
parts that were in s to evolve and thus the superstate s will need to borrow less from
the environment.

Now consider states s and s′ with respective transitions t and t′ that are derived
with respective partial matches D and D′ into a common rule ρ = L ← I → R.
Suppose we want to extend t and t′ to a composed transition t such that it needs to
borrow as little as possible from the environment (relative to D and D′). In fact, the
solution uses the union of D and D′ as partial match and yields a minimal overlap of
s and s′ in the composed state s.

Proposition 2.4.4 (Composition with minimal overlap). Let s = J → G and s′ =
J ′ → G′ be states, let ρ = L← I → R be a rule, and let t = (J → G) J→F←K−−−−−→ (K →
H) and t′ = (J ′ → G′) J ′→F ′←K′−−−−−−→ (K ′ → H ′) be two transitions that are derived using
respective partial matches D and D′ into L.

Then there exists a transition t = (J → G) J→F←K−−−−−→ (K → H) that is homogeneous
w.r.t. both t and t′ (relative to D and D′) where G → G ← G′ is the pushout of
G← (D ∩D′)→ G′ and J = J ∪ J ′.

Proof. Let d and d′ be the dpobc-diagrams yielding t and t′ using rule ρ, with partial
matches D and D′ where we use the usual names for objects in dpobc diagrams (as
in Definition 2.2.10).

D L I R

G Gc C H

J F K

D′ L′ I ′ R′

G′ G′
c C ′ H ′

J ′ F ′ K ′

We shall build a dpobc-diagrams d using rule ρ and yielding a transition t where
J → G is as in the statement of the proposition. The outline of the proof is as follows:
we start by constructing the graph G and the first row of the bc diagram d, then we
build the interface J , and finally we show that there exists a pushout complement for
J → G→ Gc.

Let D− be the pullback of D → L← D′ and let D be the union of D and D′ over
L, i.e. D → D ← D′ is the pushout of D ← D− → D′; now we use D to split the
upper left pushout squares of d and d′ as shown in Figure 2.11(a).

Structural Operation Semantics for Interaction Nets 65

D−

G

G′

D′

D
D

G+

G′+

L

Gc

G′c

(a)

D L I R

G Gc C H

G′ G′
c C ′ H ′

G Gc C H

(b)

Figure 2.11

Next, take all pushouts and mediating morphisms as shown in Figure 2.11(b). It
is straightforward to verify that all faces are pushouts: by composition of pushout
squares, the vertical “diagonal” squares are pushouts. We have thus constructed the
first row of d.

D L I R

G Gc C H

As J , let us take the union of J and J ′ in G. It is clear that J → G is a superstate of
J → G and J ′ → G

′.

Let us show now that a pushout complement for J → G→ Gc exists. It is sufficient
to show that there exist graphs X and Y such that Y is a pushout complement of
X → D → L and X → J , as shown in the diagram below.

D

G

J

x

L

Gc

y
G

J

x

Gc

y

In d and d′ we already have pushout complements for D and D′ in L as shown in
Figure 2.12(a). By splitting the back pushout squares through D and constructing the
pullbacks in Figures 2.12(b) and 2.12(c), we obtain a pushout square where Y is the
pushout complement of X → D → L. It is now sufficient to show that X → J , which
is a consequence of the following reasoning in the distributive lattice of subgraphs.

X = X ∩D = X ∩ (D ∪D′) = (X ∩D) ∪ (X ∩D′) ⊆ E ∪ E ′ ⊆ J ∪ J ′ = J (2.2)

66

D

G

J

E

L

Gc

D̂

F
D′

G′

J ′

E ′

L

G′
c

D̂′

F ′

(a)

D

E

D

D̃

L

D̂

D′

E ′

D

D̃′

L

D̂′

(b)

D

D̃

X

D̃′

L

D̂

D̂′

Y

(c)

Figure 2.12

This proposition already generalizes the preliminary results that have been de-
scribed in [15]. However, it is still too specialized to obtain a meaningful counterpart
to the communication rule of ccs; nevertheless, it can be “re-used” to obtain the main
theorem about the composition of dpobc-diagrams.

Composition with arbitrary overlap The composition for states that is used in
Proposition 2.4.4 uses as default a minimal overlap of the substates in the composed
super-state; in particular, their overlap is part of the left hand side of the rule that is
used to derive the involved transitions. In general, in the composition of two states,
we might want to have a bigger overlap than strictly necessary. To illustrate this
point, the processes a.0 ‖ P and a.0 ‖ Q, can communicate. It suffices that they
communicate over the name a; however, in the parallel composition a.0 ‖ P ‖ a.0 ‖ Q,
the process P and Q share all free names and not only the name a. Thus, while the
minimal overlap is just the channel name a, we in fact want also to share all common
free names of P and Q in a.0 ‖ P ‖ a.0 ‖ Q.

Thus, we want to extend Proposition 2.4.4 to “arbitrary” overlaps of two given
states J → G and J ′ → G′; more detailed, we start with two dpobc-diagrams d and
d′ and an “admissible” overlap G ← X → G′. The idea of an “admissible” is simple:
the graph X should just be an extension of the minimal overlap of G and G′ that is
necessary for communication.

As proof technique, we want to reuse Proposition 2.4.4 by “artificially” enlarging
the rule that we use to obtain the desired composition to a suitable extended rule.

Definition 2.4.5 (Extended rule). For any rule ρ = L← I → R and any supergraph
L→ L+ of L, the L+-instance of ρ, denoted ρ(L+), is the lower-span of the following
double-pushout diagram (if it exists).

Structural Operation Semantics for Interaction Nets 67

L I R

L+ I+ R+

Now, the main idea of the theorem is to extend the rule that is used in the com-
position just enough to obtain the “desired” overlap X as the minimal overlap of
Proposition 2.4.4.
Theorem 2.4.6 (Composition of transitions). Let s = J → G and s′ = J ′ → G′ be
states; moreover let t = (J → G) J→F←K−−−−−→ (K → H) and t′ = (J ′ → G′) J ′→F ′←K′−−−−−−→
(K ′ → H ′) be two transition using respective partial matches D and D′ into a common
rule ρ = L← I → R. Let X be a common subgraph of G and G′ and let G = G+X G

′

be the pushout of G and G′ over X.
Now, there exists a transition t = (J → G) J→F←K−−−−−→ (K → H) that is homogeneous

with respect to both t and t′ (where J is the union of J and J ′) if there exists E such
that (the black part of) the diagram in Figure 2.13 consists of three pullback squares.

E
D′D

X

L

G′G

G′
cGc

G

Figure 2.13: The condition for ρ-composability (in black) and some pushouts from the
proof (in grey)

Proof. We start by building the pushout of L ← E → X, and call L̃ the pushout
graph. Because EXGcL (resp. EXG′cL) is a composition of two pullbacks, it is
itself a pullback square. Therefore, there is a unique monomorphism L̃ → Gc (resp.
L̃ → G′c) making the diagram with the square commute, in other words, L̃ splits
L→ Gc (resp. L→ G′c) into two monomorphisms. By classical pushout splitting, we
can split the square ELL̃X into two pushouts. Since the square EDGX is a pullback,
there is a unique monomorphism D+ → G such that the diagram in Figure 2.14(a)
commutes. Because of pushout decomposition properties, the square D+L̃GcG is a
pushout.

A symmetric construction yields a match D′+ for G′ and L̃. Since EDLD′ is a
pullback, and all vertical squares of the cube of Figure 2.14(b) are pushouts, the lower
square is a pullback.

68

E

X

D

D+

L

L̃

G Gc

(a)

E

D′

D

L

X

D′+

D+
L̃

(b)

Figure 2.14

We can now construct the diagrams d(L̃) and d′(L̃) by the construction mentioned
after Definition 2.4.5, with D+ and D′+ as matches. We compose them by Proposi-
tion 2.4.4 and obtain the dpobc-diagram d̃ shown in Figure 2.15(a).

D̃ L̃ Ĩ R̃

G̃ G̃c C̃ H̃

J̃ F̃ K̃
(a)

+
D D L

D+ D̃ L̃
(b)

⇒

D L I R

G̃ G̃c C̃ H̃

J̃ F̃ K̃
(c)

Figure 2.15: Recomposition of a dpobc-diagram with the correct rule.

By pushout complement splitting in two of the upper-left square of the construction
of d(L̃), as shown in Figure 2.15(b), one obtains a match for the completion of d̃ into
a dpobc-diagram with rule ρ. Thanks to the uniqueness properties of pushouts and
pullbacks, it is easy to show that the same match would be constructed from d′.

It is now left to show that G ∼= G̃. In fact, we not only want to prove that there
exists a homogeneous transition, but also that there is one involving G.

Figure 2.16(a), where all “faces” are pushout squares, shows how G̃ is constructed,
as well as some other parts of the composition diagram. One part of it, namely the left
face of the cube, the top square and the two diamond-shaped faces are shown flattened
out in Figure 2.16(b).

By uniqueness of pushouts, the outer square of Figure 2.16(b) being one, we have
G ∼= G̃.

Structural Operation Semantics for Interaction Nets 69

X

G

G′

D′+

D+
D̃

G+

G′+

G̃

L̃

Gc

G′
c

G̃c

(a)

X

D+

D′+

D̃

G

G′

G+

G′+

G̃

(b)

Figure 2.16

The intuition behind the condition of Theorem 2.4.6 is as follows. Whatever G
and G′ had in common with L, namely the partial matches D and D′ respectively, are
glued in G as they should be in L, i.e. by identifying the same elements, namely E.
Technically, the condition ensures that the pullback of D → G ← D′ is the same as
the one of D → L ← D′. For instance, if D and D′ contain both more than half the
rule L, the gluing in G has to identify everything they have “in common” to form L,
and not something “bigger”. Of course, if this gluing is bigger than L (if not enough
is identified), it still makes G able to evolve using this rule. But then, it is not clear
how to obtain the resulting graph H from the two resulting graphs H and H ′, so we
will not understand it as composition of transitions.

We will make use of the condition of the theorem in the next section to succinctly
describe the premises of the counterpart to the communication rule of ccs.

Definition 2.4.7. With the assumptions of Theorem 2.4.6, the transitions t and t′ are
ρ-composable if there exists E such that (the black part of) the diagram in Figure 2.13
consists of three pullback squares; the transition t of the theorem is the composition
through G of t and t′ (relative to D and D′).

Remark 2.4.8 (The “Meaning” of Compositionality). The word compositionality is
used differently in different contexts. We understand compositionality as the principle
that the semantics of the whole is determined by the semantics of the parts, where the
(possibly composed) entities are states with interfaces. To illustrate the basic idea,
take all transitions of a state as semantics; in this situation, using Theorem 2.4.6,
we have that this “all transitions” semantics is compositional: each transition of the
composed state can be (re-)constructed from the transitions of its components. It is
an open problem how this approach to compositionality can be incorporated into the
work presented in [52] where compositionality is considered on the level of rules and
rewriting diagrams.

In fact, we shall only make use of the special case of Theorem 2.4.6 where X is
actually a common sub-interface of the states J → G and J ′ → G′, i.e. X is a common

70

subgraph of J and J ′. This is in analogy to process calculi where it is crucial that
parallel composition lets the composed processes only share some of their free names.

2.5 SOS semantics
We now make use of the composition result of Theorem 2.4.6 in two ways: first, as
already discussed at length, we obtain a counterpart of ccs-style communication for
graph rewriting; second, we can dispense with a number of “superfluous axioms” for
basic actions.

Looking at ccs again, we can notice a difference with 3l in the definition of axioms.
In fact, in 3l, the application of the rewriting rules themselves appear as basic actions,
which is not the case in ccs where we cannot have both actions a and a in a single label.
The communication rule covers the case where both are performed complementary,
which corresponds exactly to the application of a reduction rule. Conversely, in 3l,
any match for a left-hand side of a rule yields a basic action, in particular the empty
graph. Now that we have an equivalent of the ccs-composition, we can remove from
the set of basic actions certain “superfluous” ones, which can then be reconstructed
by addition of a composition rule.

As “good” matches for a rule in graphs we shall take the irreducible elements in
the lattice of subgraphs of the left hand side of the rule. Using irreducible graphs, we
define atomic actions, which use irreducible graphs as partial matches. However, we
shall show that we can obtain all basic actions by applying the composition rule to
the atomic ones. This allows us to define a system that is exactly as expressive as 3l
(and hence dpobc) with one extra rule, but a smaller number of axioms.
Definition 2.5.1 (Irreducible graph). Let G be a hypergraph. A (non-trivial) de-
composition of G is a pair of inclusions A → G ← B such that G is the union of A
and B and G 6= A or G 6= B. A hypergraph G is irreducible if it has no non-trivial
decomposition.

Thus, an irreducible graph cannot be decomposed into strictly smaller graphs.
Clearly, a single node is an irreducible graph, but a graph composed of two single
nodes is not. This formal definition fits the intuition of “atomic” hypergraphs.
Fact 2.5.2. The only irreducible hypergraphs are the single vertex graph and all graphs
that consist of a single hyperedge that is incident to every node.

We now have all concepts to inductively define a transition system for graph rewrit-
ing in analogy to ccs. The system is summarized in Table 2.2. We call the system
sosbc, since it is an sos-like definition for borrowed contexts (as we shall show below).

Formally, the first rule describes a family of Atomic Actions, which are the basic
actions in which the partial match is an irreducible graph. The second and third rule
are taken from 3l and have already been discussed in Section 2.3. Finally, the last
rule is the one justified by the composition theorem, i.e. Theorem 2.4.6.

Structural Operation Semantics for Interaction Nets 71

We now show that this system is exactly as expressive as 3l. We have already
seen that it is included in it. Indeed, every transition derivable in sosbc is also in 3l
(trivially for the first three rules, and by Section 2.4 for the last one). It then suffices
to show that every transition derivable in 3l is also in sosbc. It is trivially true for
interface narrowing and compatible contextualization. It is left to show that every
basic action can be derived in sosbc.
Lemma 2.5.3 (Basic action decomposition). Let ρ = L ← I → R be a rule and D
a partial match for L. Let A → D ← B be a decomposition of D. Then A → A and
B → B are ρ-composable through D and the result of the composition is exactly the
axiom transition (D → D) D→L←I−−−−−→ (I → R).

Proof. We first show that the condition of Theorem 2.4.6 holds. As A→ D ← B is a
decomposition of D, the morphisms D is the union of A and B. Thus, let A← O → B

be the pullback of A→ D ← B to obtain a pushout square. Since D is a partial match
for L, then so are A and B, and therefore their corresponding basic action transitions
exist. They are justified by the dpobc-diagrams in Figure 2.17(a), which lead to the
construction of the diagram 2.17(b).

A L I R

A L I R

A L I

id id id id

B L I R

B L I R

B L I

id id id id

(a)

O
BA

O

L

BA

LL

D

id id

id id

id

(b)

Figure 2.17

After applying the construction of Theorem 2.4.6, it is easy to check that the
resulting composition of the two transitions is the transition (D → D) D→L←I−−−−−→ (I →
R).

Theorem 2.5.4 (Basic Completeness). Any basic action of the 3l-system can be ob-
tained from atomic actions and the composition rule of the sosbc-system.

Proof. Let t = (D → D) D→L←I−−−−−→ (I → R) be a basic action and l be the size of D,
i.e. the number of hyperedges. By applying the decomposition lemma (Lemma 2.5.3)

72

• Atomic Actions

(D → D) D→L←I−−−−−−→ (I → R)
where

(L← I → R) ∈ S
and D irreducible
with D → L

• Interface Narrowing

(J → G) J→F←K−−−−−−→ (K → H)
(J ′ → G) J′→F ′←K′−−−−−−−→ (K ′ → H)

where C = J → J ← J ′

and J ′ → F ′ ← K ′ = C[J → F ← K]

• Compatible Contextualization

(J → G) J→F←K−−−−−−→ (K → H)

C[J → G] C[J→F←K]−−−−−−−−→ C[K → H]
where C = J → E ← J compatible with J → F ← K

and C = (J → F ← K)[C]

• Composition

t = (J → G) J→F←K−−−−−−→ (K → H) t′ = (J ′ → G′) J′→F ′←K′

−−−−−−−→ (K ′ → H ′) J ← X → J ′

t = ((J +
X
J ′)→ (G+

X
G′))

(J+
X

J′)→F←K−−−−−−−−−−→ (K → H)

where t and t′are ρ-composable
and t is their composition through G+X G′

Table 2.2: Axioms and rules of the sosbc-system.

repeatedly until all the subgraphs of D are decomposed into irreducible graphs, one
obtains a binary tree whose root is t and nodes are basic actions. Since l is finite, and
the decomposition lemma decreases the size of graphs, this process is finite, and the
leaves of the tree are atomic actions.

Theorem 2.5.5 (Soundness and completeness). Let S be a graph transformation sys-
tem. Then there is a bc-transition

(J → G) J→F←K−−−−−→ (K → H)

if and only if it is derivable in the sosbc-system.

Proof. Atomic actions, interface narrowing and contextualization are part of the 3l-
system, therefore they are derivable as bc-transitions. By construction, the composi-
tion yields derivable transitions in bc too. Conversely, every bc-transition is derivable
in 3l, and by Theorem 2.5.4, is derivable in sosbc.

In fact, every derivation tree obtained by the process that is described in the
theorem will have the same structure: a certain number n of Atomic Actions, followed
by n− 1 applications of the composition rule. Then a Compatible Contextualization

Structural Operation Semantics for Interaction Nets 73

α

α

α

β

α γ R4

β

β

β
β

α γ R4

α

β
α

β

α

β β

α γ R4

G

α

G′
β

α

β

α

β β

α γ

G

G′

R4

G

α

G′
β γ

G

G′

R4

Figure 2.18: An example of a derivation in the sosbc-system.

and an Interface Narrowing, as in the case of the 3l system. Consider the following
example of a derivation tree.
Example 2.5.6 (Composition of transitions). As example, consider the derivation tree
of sosbc for the final transition of Example 2.4.1, which is shown in Figure 2.18.

2.6 Application to interaction nets

Process calculi, such as ccs and the π-calculus, have a so-called communication rule
that allows to synchronize sub-processes to perform silent actions. The involved pro-
cess terms have complementary actions that allow to interact by a “hand-shake”.

74

As we have seen before, it is not the case in general graph rewriting theory. In in-
teraction nets, we get close to this idea, since all interactions are binary. The difference
with most common process algebras is that there are several possible interactions.

To elaborate on this using the metaphor of handshakes, assume that we have an
agent that needs a hand to perform a handshake or to deliver an object. If we observe
this agent reaching out for another hand, we cannot conclude from it which of the two
possible actions will follow. In general, even after the action is performed, it still is not
possible to know the decision of the agent – without extra information, which might
however not be observable. However, with suitable assumptions about the “allowed
actions”, all necessary information might be available.

In this section, we will address binary rules from a global point of view. Instead of
stating that we allow only this kind of rules, we will split all rules in two, considering
half-left-hand sides as generalized agents. This is more general than interaction net
rules, since agents will be able to somehow overlap each other. As an example, consider
a ternary rule for cells α, β, γ given some connections between them. We split this rule
in three rules, one for the pair α./(β, γ), one for β ./(α, γ) and one for γ ./(α, β).

We then give a few conditions under which it is possible to retrieve the reduction
rule from the label and the original state. The first of these conditions enlightens us
on the reason why the composition rule is so neat in usual name-based process calculi,
while the second one leads directly to simply wired interaction nets.

The running example that will be used to illustrate this section is the following.
Example 2.6.1. The system Sex = (Λ,R) will be the following one in the sequel:
Λ = {α, β, γ, . . . } such that ar(α) = 2, ar(β) = 3 and ar(γ) = 1; moreover R is the
set of rules given in Figure 2.19 where the Ri are different graphs, e.g. hyperedges with
suitable arity.

β

α
← → R1

(a) Rule “α/β”

α

γ
← → R2

(b) Rule “α/γ”

β

γ
← → R3

(c) Rule “β/γ”

β

α γ
← →

R4

(d) Rule “α/β/γ”

Figure 2.19: Reaction rules of Sex.

First, we recall that dpobc-diagrams can be composed under certain circum-
stances, as detailed in Proposition 2.4.4.

Structural Operation Semantics for Interaction Nets 75

Fact 2.6.2. Let

(J → G) J→F←K−−−−−→ (K → H) and (J ′ → G′) J ′→F ′←K′−−−−−−→ (K ′ → H ′)

be two transitions obtained from the same rule ρ = L ← I → R by dpobc-diagrams
D1 and D2. Then, it is possible to build a dpobc-diagram with same rule for the
composition of J → G and J ′ → G′ along some common interface J ← JL

D → J ′.
However, we emphasize at this point, that derivability of a counterpart of the

communication rule of ccs is not the same question as the composition of pairs of
transitions that come equipped with complete bc-diagrams. To clarify the problem,
consider the following example where we cannot infer the used rule from the transition
label.
Example 2.6.3. Let G be a graph composed of two edges α and β and consider a
transition label where an edge γ is “added”. Then it is justified by both rules α/γ and
β/γ (see Figure 2.20).

β
γ βα R2

(a) A transition from rule α/γ

β
γ αα R3

(b) A transition from rule β/γ

Figure 2.20: Same transition label for different rules.

Our purpose is exactly to avoid this problem by restricting to suitable classes of
graph transformation systems. For this, we shall focus on the derivation of “silent”
transitions in the spirit of the communication rule of ccs.
Definition 2.6.4 (Silent label). A label J → F ← K is silent or τ if J = F = K; a
silent transition is a transition with a silent label.

Intuitively, a silent transition is one that does not induce any “material” change
that is visible to an external observer that only has access to the interface of the states.
Hence, in particular, a silent transition does not involve additions of the environment
during the transition. Moreover, the interface remains unchanged. This latter re-
quirement does not have any counterpart in process calculi, as the interface is given

76

implicitly by the set of all free names. (In graphical encodings of process terms [7] it
is possible to have free names in the interface even though there is no corresponding
input or output prefix in the term.)

Now, with this special case in mind, for a given rule L← I → R we can illustrate
the idea of complementary actions as follows. If a graph G contains a subgraph D of L
and moreover a graph G′ has the complementary subgraph of D in L in it, then G and
G′ can be combined in a big graph G that has the whole left hand side L as a subgraph
and thus G can perform the reaction. A natural example for this are interaction nets of
course. The intuitive idea of complementary (basic) actions is captured by the notion
of active pairs.
Definition 2.6.5 (Active pairs). For any inclusion D → L, where D 6= L and for all
nodes v of D, deg(v) > 0, let the following square be its initial pushout

JL
D

D

D̂L

L

,

i.e. D̂L is the smallest subgraph of L that allows for completion to a pushout. We call
D̂L the complement of D in L and JL

D the minimal interface of D in L and we write
{D,D′} ≡ L if D′ = D̂L. The set of active pairs is

D =
{
{D, D̂L} | ∀L← I → R ∈ R

}
.

Abusing notation, we also denote by D the union of D.
It is easy to verify that the complement of D̂L in L is D itself and that its minimal

interface is also JL
D . It is the set of “acceptable” partial matches in the sense that they

do not yield a τ -reaction on their own. Indeed, if D is equal to L, then the resulting
transition of this partial match is a τ -transition. And if it is just composed of vertices,
its complement is L and thus not acceptable.
Example 2.6.6 (Active pairs). In our running example, the set D of our example is

{
{α, β}, {α, γ}, {β, γ}, {α, β + γ}, {α + β, γ}, {α + γ, β}

}
.

The minimal interface of any pair is a single vertex.
This completes the introduction of preliminary concepts to tackle the issues that

have to be resolved to obtain “proper” compositionality of transitions. We can clearly
see how this is usable for interaction nets, where redexes are naturally defined as active
pairs in this sense.

2.6.1 Towards a partial solution
We shall address the problem of finding the right reaction rule in some more detail. We
start by considering the left half of labels, which intuitively describe possible borrowing

Structural Operation Semantics for Interaction Nets 77

actions from the context. Relative to this, we define the admissible rules as those rules
that can be used to let states evolve while borrowing the specified “extra material”
from the environment.
Definition 2.6.7 (Admissible rule). Let J → G be a state and let J → K be an
inclusion (which represents a possible contribution of the context). A rule ρ is admis-
sible (for J → K) if L 6→ G and it is possible to find D ∈ D and L the left-hand side
of ρ, such that the following diagram commutes

JL
D

G

J F

Gc

D

L

\

where JL
D → D is the minimal interface of D in L. We call D the rule addition.

This just means that G can evolve using the rule ρ if D is added at the proper
location.
Proposition 2.6.8 (Pre-compositionality). Let

(J → G) J→F←K−−−−−→ (K → H) and (J ′ → G′) J ′→F ′←K′−−−−−−→ (K ′ → H ′)

be two transitions such that a single rule ρ is admissible for both, and let D and D′
be their respective rule additions. If {D,D′} ∈ D, it is possible to compose G and G′
into a graph G in a way to be able to derive a τ -transition using rule ρ.

Proof. We first show that in such a case, D′ → G and the pushout of G ← D′ → L

is exactly Gc. Similarly, D → G′ and the pushout of G′ ← D → L is exactly G′c.
Then, it is easy to see that it is possible to build the dpobc-diagram D1 using rule ρ
on G (respectively G′) yielding the transition (J → G) J→F←K1−−−−−−→ (K1 → H1) for some
K1, H1 (respectively D2 yielding the transition (J → G) J→F←K2−−−−−−→ (K2 → H2) for some
K2, H2), and then compose D1 and D2 using Proposition 2.4.4.

This follows from {D,D′} ∈ D and G ≡ Gc. Indeed, E = L so the top left
morphism of the composed dpobc-diagram is an isomorphism and so are the ones
under it, using basic pushout properties.

This first result motivates the following definition.
Definition 2.6.9 (τ -compatible). In the situation of Proposition 2.6.8, we say the
two transitions are τ -compatible.
Remark 2.6.10. In general, the result of the τ -transition cannot be obtained from H

and H ′. So we do not yet talk about compositionality.

78

Example 2.6.11. Let G be a graph composed of two edges α and γ and G′ of two edges
β and γ (see Figure 2.21). Then the rule α/β is admissible for both transitions and
moreover they are τ -compatible. The rule α/β yields the respective rule additions.
“Glueing” G and G′ by their interface results in a graph with edges α, β and two γs;
the latter graph can perform a τ -reaction from rule α/β, which however does not give
the desired result since the target state is not the “expected composition” of H and
H ′. In other words, although we have been able to construct a τ -transition, it is not
the composition of the original transitions.

βγ R3α α

(a) A transition from rule β/γ

γβ βα
R2

(b) A transition from rule α/γ

Figure 2.21: τ -compatible, but not composable: different rules.

We can see from the examples here that the difficulty of defining a composition of
transitions comes mainly from three facts. The first is that a partial match can have
several subgraphs triggering a reaction. This is dealt with by the construction of the
set of active pairs. The second is the possibility to connect multiple edges together,
not knowing which one exactly is consumed in the reaction. Finally, a given edge can
have multiples ways of triggering a reaction.

2.6.2 Sufficient conditions
We now give two frameworks in which neither of the two last problems do occur.
Avoiding each of them separately is enough to define compositionality properly. Both
cases are inspired by the study of interaction net systems, which can be represented
in the “obvious” manner as graph transformation systems. We ironize on the evidence
of such a representation as it is not at all straightforward. Such a representation is
detailed for instance by Banach in [3].

In systems embodying one of the two conditions we give, the dpobc-diagram built
from an admissible rule of a transition is necessarily the one that has to be used to
derive the transition. In one case, it works for essentially the same reasons as in ccs:

Structural Operation Semantics for Interaction Nets 79

every active element can only interact with a unique other element, such as a vs. a, b
vs. b. In the other one, the label itself is not enough, but since we also know where it
“connects” to the graph, it is possible to “find” the partner that was involved in the
transition.

We introduce interaction graph systems, which are the counterpart of interaction
nets in the hypergraph rewriting setting and vocabulary introduced so far. We fix a
labeling alphabet Λ.

Definition 2.6.12. An activated pair is a hypergraph L on Λ composed of two hy-
peredges e and f and a node v such that v appears exactly once in cnct(e) and once
in cnct(f). If v is the i-th incident vertex of e labeled α and the j-th incident vertex
of f labeled β, we denote the activated pair by eionfj and label it by αionβj.

An interaction graph system (Λ,R) is given by a set of reaction rules R over
hypergraphs on Λ where all left-hand side of rules are activated pairs, and nodes are
never deleted, i.e. for any rule ρ = L← I → R,

• L is an activated pair;

• for any node v, v ∈ L⇒ v ∈ I.

Note that for any interaction graph system, the set D is composed of pairs {D,D′}
where each of them is composed of an edge and its connected vertices. Also the
minimal interface of any active pair {D,D′} is a single node. It is also the case that
it is enough for interfaces to be composed of vertices only.

We first take advantage of the form of LHS in interaction graph systems to give a
nice condition of τ -compositionality. We will use the fact that an activated pair eionfj
has exactly one node v that appears exactly once in cnct(e) and once in cnct(f). In
the following we denote by • the unique interaction graph composed of a single node.
In diagramatical terms, it means that

•

e

f

L and never ∅

e

f

L

since an activated pair is always connected.

Lemma 2.6.13. Let S be an interaction graph system and (J → G) J→F←K−−−−−→ (K →
H) be a reduction of state J → G in that system. Then there exist a unique injection
• → J such that • → J → F has a pushout complement • → F− → F :

•

J F

F −

80

Proof. Let us show first that such an injection exists. We consider the dpobc-diagram
d justifying the reduction, using rule for L = e ./ f . From its first column, we build
the pullback J ← X → • of J → G ← • and the pullback F ← X ′ → f of
F → Gc ← f , yielding an already famous cube with four pullbacks, of which two are
pushouts, implying the two “unknown” ones to be pushouts also. By pullback splitting,
we split the cube into two cubes with all corresponding pushouts and pullbacks, which
implies that X ′ ← X → e has a pushout e→ L← X ′:

•

G

J

X

f

Gc

X ′

F

====⇒

•

e

Jm

X

f

L

X ′

Fm

G Gc

J F

====⇒
e

X X ′

L

By the previous remarks, X cannot be the empty graph, so X = • (and X ′ ≡ f),
so X → J is our desired • → J .

Why is it unique? Well, imagine two pushout squares

•

J F

F −

f

g •

J F

F −

f ′

g′

Since all morphisms are injection, the squares are also pullbacks, and so there are
injections i and j from • → • s.t. f ◦ j = f ′ and f ′ ◦ i = f . But there is only one
possible injection id = • → •, so f = f ′ and g = g′.

We have shown that, given any reduction label for a state J → G, their exists a
unique non-interfering narrowing context • → J ← J . Its corresponding narrowing
label is in fact the most interesting kind of labels in interaction nets. It represents
some kind of minimality for labels. It would make sense for a theory of structural
semantics for interaction nets like ours to replace atomic actions on “full states” (see
Table 2.2) by atomic actions on states of the form • → D. We could then probably
omit the interface narrowing rule. We will consider such a structure in future work.

We now give a new sufficient condition for labels to be composable. Its advantage
is that it does not involve to imagine which rule is admissible for the states but it
actually gives it.

Structural Operation Semantics for Interaction Nets 81

Theorem 2.6.14 (τ -compatibility). Let

(J → G) J→F←K−−−−−→ (K → H) and (J ′ → G′) J ′→F ′←K′−−−−−−→ (K ′ → H ′)

be two reductions. If there exist morphisms F− → G′ and F ′− → G such that the
following diagram commutes, and F−onF ′− is the LHS of a rule ρ, then J → G and
J → G′ are τ -compatible.

•
F−

J F K

G H

F ′−

J ′ F ′ K ′

G′ H ′

L

Proof. Show that ρ is admissible for J → G and J ′ → G′.

Remark 2.6.10 is of course still valid. What we know from the condition is that it
is possible to compose states J → G and J ′ → G′ in a state J → G s.t. this latter
has a silent transition. We even know which rule yields that transition. It is still not
the case that the result of the silent transition is linked in any way to H and H ′.
In our example shown in Figure 2.21, the labels are already the “narrowest” possible
and they fulfill the conditions of the theorem. We are therefore sure it is possible to
combine two nets, and one can see it. The result is not in any way the composition of
the right-hand side nets.

It is true, on the other hand, that the theorem hold in the general case of graph
rewriting. If it is possible to build the diagram above from the two label, then the
states are τ -compatible. But this means to find a common interface for which both
labels have a narrowing interface involving half of an activated pair and such that the
whole thing commutes. It is in general a rather difficult task. In interaction graphs,
it is quite natural, because of the unicity of the narrowing.

We finally give two frameworks for which τ -compatibility implies necessarily com-
positionality.

Hypergraphs with unique partners In multiwire interaction nets, we lose the
unicity of the rule for a given transition label. It can be recovered by another condition.

82

Definition 2.6.15 (Unique partners). Let I = (Λ,R) be an interaction graph system.
We say it is with unique partners if for any α ∈ Λ, ∀i ≤ ar(α), exists a unique β ∈ Λ
and a unique j ≤ ar(β) such that αionβj is the label of a left-hand side of a rule in R.
Lemma 2.6.16. Let J → G a state of I and (J → G) J→F←K−−−−−→ (K → H) a non-τ
reaction label. Then there is exactly one admissible rule ρ for this transition.

Simply wired hypergraphs On the other hand, simple wires seem sufficient to
gain the power of finding the used rule form the label of the action. We define the
equivalent of simple wires for hypergraphs.
Definition 2.6.17. Let N = (E, V, `, cnct) be a hypergraph on Λ.

The graph N is simply wired if ∀v ∈ V , deg(v) ≤ 2. When deg(v) = 1, we say that
v is free.

In other words, vertices are only incident to at most two edges of a graph. First,
we have to notice that it is possible to define the category of simply wired hypergraphs
as a sub-category of hypergraphs.

The purpose of the interface of a graph being observability in the sense of the
possibility to connect some context to it, in simply wired hypergraphs, it is meaningless
for a vertex that is already connected to two edges to be in the interface.
Definition 2.6.18 (Lafont interaction graph system). A Lafont interaction graph is a
simply connected graph such that its interface consists of free vertices only. A Lafont
system L = (Λ,R) is given by reaction rules over Lafont interaction graphs.
Lemma 2.6.19. Let J → G be a state of L and (J → G) J→F←K−−−−−→ (K → H) a non-τ
transition. Then there is exactly one admissible rule ρ for this transition.

Finally, we conclude our investigation with the following positive result.
Theorem 2.6.20 (Compositionality). Let S = (Λ,R) be a Lafont interaction graph
system, or an interaction graph system with unique partners. Let D be its set of active
pairs.

Let t1 = (J → G) J→F←K−−−−−→ (K → H) and t2 = (J ′ → G′) J ′→F ′←K′−−−−−−→ (K ′ → H ′) be
two transitions in T and D and D′ their respective rule additions.

If {D,D′} ≡ L ∈ D, let G and H are described by the following diagrams

JL
D

J

J ′

G

G′

GJ R

H

H ′

H

where JL
D → J and JL

D → J ′ are the inclusions from the admissibility of ρ for states
J → G and J ′ → G′ (Definition 2.6.7).

Then
(J → G) J→J←J−−−−−→ (J → H).

Structural Operation Semantics for Interaction Nets 83

Sketch of proof. By Lemma 2.6.19 or 2.6.16, there exists exactly one rule ρ ∈ R with
L as a left-hand side that allows to derive transitions t1 and t2 – it is indeed the same
rule for both. Let D be the composition diagram of the dpobc-diagrams justifying the
transitions (see Proposition 2.4.4).

It is first shown that G ≡ Gc. Since the upper and lower left squares of D are
pushouts we can infer that D ≡ L and J ≡ F . Finally, since no vertex is deleted (see
Definition 2.6.12), we have J → C and thus K ≡ J .

So D is a bc-diagram of a τ -reaction from J → G to J → H.

We haven’t achieved structurality, since the resulting reduction label depends
highly on the full recomposition of both dpobc-diagram, especially in order to build
H. Even worse, in some sense, the capability of interaction depends on the knowledge
of the way the LHS of a rule is to be found in each state, in some sense, reconstructing
the diagrams already.

2.6.3 Particular means for particular ends

We can see how difficult it is to define a real communication rule for general graph
rewriting. In this section we take advantage of the special form of LHSs in interaction
nets, and cheat a little about the RHSs in order to achieve our purpose. We take
inspiration in sosbc, but define them on something closer to action then to reduction.
By action, we mean half-a-reduction: an agent replaced by half-a-RHS, as we did in
the intuitive semantics in the first section of this chapter. Remember that the purpose
in defining a communication rule is to get a structural semantics.

Anyhow, as we can see, even though the construction of the combinations of G and
G′ can be rather simple, combining H and H ′ is only possible if one has knowledge of
R as RHS of the involved rule. This goes against the structurality: one should hope
to define the reduction rule from the pieces, in our case, from the halves.

We discuss the issue for simply-wired interaction net systems S which have cells
δ, γ and the γ ./ γ and δ ./ δ rules of Lafont combinators. We suppose also that the
system has the splitting property of 1.1.5. We will actually prove this property in the
last chapter in the case of interaction nets with simple wires, so we only restrict to
this case.

Let A./B = L ← I → R = A / .B a rule of S. Let R be split into RB
A and RA

B,
joined by a unique wire between the roots of σBA from RB

A and σAB from RA
B:

A B..
.

..
.

RB
A RA

B..
.

..
. * RA,B..
.

..
.

We introduce new rewriting rules, which are not correct as interaction net rewriting
rule and only serve as a technicality to define actions. We consider in the following

84

that for any rule A./B, IBA is the complete set of ports of cell A:

ρBA := L← IBA → RB
A .

We thus consider the principal port of A involved in rule L to be sent to the root of
σBA in RB

A , and have an inclusion IBA → A.
In the following, we drop the fastidious sub- and superscripts of the elements of

the new kind of rules. Unless specified otherwise, I, R, C,K,H are the ones for the
corresponding half-rule.

Let J → G be an interaction net containing A with free principal port p (i.e. p ∈ J).
All the conditions are summarized by the following commutative diagram:

A L I R

G Gc C H

J F K

•

Proposition 2.6.21 (Special label form). In an interaction graph system, rules of the
form ρBA yield labels of the form J → F ← J , where both injections are in fact the
same.

Proof. We construct the narrowing label from Theorem 2.6.14, which gives two pushout
squares:

A L I

G Gc C

• F − K−

J F K

implies
J F K

• F − K−

and
J K

• K−

Indeed, the two top squares and the existence of an injection I → A implies the
existence of an injection C → G. By usual pullback combinations and splitting, this
implies the existence of an injection K → J and K− → • (with everything commuting
and the square above on the right is a pushout).

On the other hand, • → I implies • → C. Since • → F , then there is a unique
injection • → K with everything commuting. Finally, since the lower right square is
a pushout of injections, it is a pullback, so the is an injection • → K−, keeping the
diagram commutative.

Therefore, K− = •, and since there is only one possible • → • injection, K− →
• = id, and so does K → J .

Structural Operation Semantics for Interaction Nets 85

In this proof, we did not use the knowledge of which node is image to the principal
port of A in R. If we say demand it to be the root of the tree σBA , we get reductions
(J → G) J→F←J−−−−−→ (J → H) where J → H sends the involved node into the root of σBA
in H.

If we consider systems with unique partners or simply wired, we know that τ -
compatibility implies compositionality. This allows for the particular form of the
compositionality theorem:
Theorem 2.6.22 (Compositionality). Let (Λ,R) be a Lafont interaction graph system,
or an interaction graph system with unique partners. Let D be its set of active pairs.

Consider a new system T = (Λ,R′) in which, for each A./B ∈ D the corresponding
rules ρBA and ρAB to be in R′.

Let t1 = (J → G) J→F←K−−−−−→ (K → H) and t2 = (J ′ → G′) J ′→F ′←K′−−−−−−→ (K ′ → H ′) be
two non-τ transitions and D and D′ their respective rule additions.

If {D,D′} ≡ L ∈ D, let G and H are described by the following diagrams

Jm

J

J ′

G

G′

GJ

H

H ′

H

where Jm is any subgraph of both J and J ′ identifying • from J and J ′. Then we have
the following labeled transition in S:

(J → G) J→J←J−−−−−→ (J → H).

Proof. We made sure by forcing the image in the corresponding R of the principal port
of each rule addition that the pushout of H ← R→ H ′ is the same as the pushout of
H ← Jm → H ′.

Another important feature of interaction nets in comparison with general graph
rewriting is the status of the interface. In interaction nets, the interface is the set of free
ports. We cannot therefore use interface narrowing and compatible contextualization
as we please.

Interface narrowing is admissible in interaction graphs if we consider we can “plug”
something into a free port and make it bound, something that translates the ccs new
name operator. It is usually not the case anyhow in interaction nets.

Contextualization on the other hand can bound some free ports, but also add some
new free ports. So we cannot restrict ourselves to monotone contexts. In fact, when

86

we attach a context of the form J ′ → E ← J to a state J → G, we need the union
of J and J ′ inside E to be exactly all free ports of E. We will call such contexts net
contexts.

E

J

J ′

J∩ fp(E)

Lemma 2.6.23 (Combinable net context). Let J → G be a state which admits a non-
silent transition J → F ← J . Let J → E ← J ′ be a net context. Then J∩ = J ∩E J ′
contains • iff J → E ← J ′ is combinable with J → F ← J . We call combinable net
context a net context that contains the free port of the rule addition in its interface.

Proof. Cospan combinations are defined in Definition 2.3.6. If the cospans are com-
binable, we know the combination is of the form J ′ → F ′ ← J ′, and all four squares
are pushouts. We use the narrowing label of J → F ← J to get the diagram on the
left:

J ′ F ′ J ′

E E ′ E

• F− •

J ′

E

J F J

•

By constructing pullbacksX of • → E ← J ′ and the pullbackX ′ of F− → E ′ ← F ′,
we get a label X → X ′ ← X which is a narrowing label for • → F− ← •, which means
it is itself that label. Remember in interaction graphs, that label is minimal with
respect to narrowing.

On the other hand, if J ′ contains •, we have the diagram above on the right. By
constructing pushouts, one can fill the diagram with the narrowing • → F− ← •
to J → F ← J that we know to exist, and then by constructing the pushout of
J ′ ← • → F−, one gets a graph F ′ such that J ′ → F ′ ← J ′ is the wished cospan
combination.

We can then show, by diagram chasing, that if J → E ← J ′ is combinable with
J → F ← J , then it is possible to build the union G of G and E along J and the
union H of H and E along J in order to have an action from one to the other labeled
C〈J → F ← J〉 = J ′ → F ′ ← J ′, where F ′ is the union of J ′ and F along J∩.

We can now build a Structural Operational Semantics for such interaction net
systems.

Structural Operation Semantics for Interaction Nets 87

Theorem 2.6.24 (sos for simply wired interaction graphs). Let S = (Λ,R) be a
simply wired interaction graph system (or with unique partners). Lets consider T =
(Λ,R∪R′) where R′ are the half-rules described in Proposition 2.6.22.

We consider acceptable labeled transitions in T to be either silent transitions yielded
by a rule in R or “usual” transitions yielded from a rule in R′.

Then the Structural Operational Semantics of T is given in Table 2.3.

(We remind that A ∪X B is a notation for the pushout of A ← X → B, which
corresponds here to the union where both images of X are identified).

• Atomic Actions

(I → α) I→F←I−−−−−→ (I → R) where
(L← I → R) ∈ R′
L = αi ./βj

F = I ∪{•} β i.e. βj = •

• Combinable Net Contextualization

(J → G) J→F←J−−−−−−→ (J → H)

J → G ∪J E
C〈J→F←J〉−−−−−−−−→ J → H ∪J E

where
J = fp(G)
C = J → E ← J is a combinable
net context for J → F ← J

• Composition

t = (J → G) J→F←J−−−−−−→ (J → H) t′ = (J ′ → G′) J′→F ′←J′

−−−−−−−→ (J ′ → H ′) J ← X → J ′

t = (J → G ∪X G′) J→J←J−−−−−→ (J → H ∪X H ′)

where
t and t′are τ -compatible
X contains •
J = (J ← X → J ′) \X

Table 2.3: Axioms and rules of the sosbc-system for simply wired interaction graphs.

2.7 Conclusion
We haven’t proved Theorem 2.6.24. The two differences with the sos of Table 2.2 is
the special nature of atomic actions (the considered interfaces are now minimal) and
the lack of interface narrowing rule.

This formulation is given for intuition more than the result itself, as it is not very
useful in practice. The labels are complicated, but most of all, it requires the δ and
γ cells: it relies on the fact that a rule can be split in two in such a way that the
connection between the two halves is made exactly in one node. It is true, as Lafont
showed, that it is sufficient to have or to add the δ and γ cells and the two reflexive
rules without changing the expressivity of the system to obtain such a system. Almost.

88

Lafont’s splitting property does not for instance consider the case when the two
halves are disconnected. It is still possible to add a dummy connecting port that would
remain floating around. One should just be careful.

For our purpose, we see a much bigger problem. We are looking to compare systems
and there expressivity power, also systems not having δ and γ-cells. We cannot just
add them and pretend we have accomplished the comparison. Moreover, in Chapter
4, we prove a universality result: there is a system U in which any interaction net
system can be encoded. Even ones not having these cells already. It is therefore not
possible to use this operational semantics to compare a system with its encoding in
the universal system. This is why we don’t insist on the proofs of this section.

We have made a first step towards a proper sos semantics for graph transformation
systems, by introducing sos rules not only for a specific graph transformation system,
but by presenting a method for synthesizing such rules for arbitrary systems. This will
hopefully lead to a better understanding of the nature of sos semantics in general.

While earlier work on automatic derivation of labeled transition systems, pioneered
by [36], focused on the derivation of labeled transitions such that the resulting bisim-
ilarity is a congruence, we here concentrated on synthesizing sos rules, obtaining a
compositional operational semantics.

Composition rules for process calculi, such as ccs or the π-calculus, where at most
two processes interact in a well-defined manner, can usually be stated quite concisely,
whereas our composition rule is surprisingly complex. In future work we want to
investigate under which conditions the label of the composed step can be determined
from the labels of the interacting graphs by a simpler procedure. We regard this
work as a first step towards a sos semantics for graph transformation, however in
order to obtain a simpler and more straightforward presentation it might be necessary
to impose certain constraints on the rules, such as restrictions on the left-hand or
right-hand side.

A natural question to ask is how the sos semantics for a specific calculus or graph
transformation system would look like, for instance for the encoding of css into graph
transformation studied in [6]. One of the synthesized rules would certainly correspond
to the ccs communication rule, which states that P a→ P ′ and Q

a→ Q′ imply P |
Q

τ→ P ′ | Q′. On the other hand we would also generate many other rules, for instance
a rule where P in addition borrows the output prefix of Q and Q borrows the input
prefix of P . Our sos rules allow the composition of such labeled transitions, since we
accept arbitrary overlaps of the left-hand side and the two graphs to be composed.
Hence the full sos semantics would be somewhat large and unwieldy and difficult to
represent. Pruning the synthesized rules to a minimal set is a direction of future work.

Our focus is quite different than that of work on process calculi defining syntactic
conditions on the rules in such a way that the resulting bisimilarity is a congruence
(compare with the de Simone format [14] and the tyft/tyxt-format [27]). Instead,

Structural Operation Semantics for Interaction Nets 89

bisimilarity on labeled transition systems derived via the Borrowed Context technique
is automatically a congruence [19], and here we synthesize the sos rules that are
already given in the work on rule formats.

Earlier work has established graph transformation as a formalism into which many
process calculi can be encoded or “compiled”. This becomes apparent in Milner’s
work on bigraphs [42, 43] and there are several papers giving a graphical syntax for
processes, such as [8, 22] or the well-known interaction nets [32]. Even closer to our
work are papers that deal with sos semantics for graphs such as [10, 28]. In both
papers however sos rules are given a priori, similar to the work on rule formats cited
above, while here they are synthesized. A predecessor paper of the current work
is [2] which deals with the composition and decomposition of derivations without
explicitly focusing on sos rules, but by combining entire Borrowed Context diagrams.
In [52] compositionality for graph transformation is obtained by decomposing rules
into subrules, a view that is somehow dual to ours: we do not decompose rules, but
the graph to be rewritten. Finally [9] shows how label derivation can be addressed in
double categories and explores connections to the tile model [23]. There are similarities
to our approach, however [9] works in a different categorical setting and does not
investigate composition of lts steps.

This diversity of work on compositionality in semantics of interactive systems re-
flects the richness of the subject. Attracted by the simplicity of structural operational
semantics, we have developed basic results for a simplified account of the Borrowed
Context technique. Even though we have missed the mark of a proper sos format
for interaction nets in general – since composition of labels depends on the involved
states – we believe that our results are interesting in themselves and for a better
understanding of operational semantics for graph transformation.

90

Chapter 3

Concurrent Interaction Nets

In this chapter, we study the expressivity of the concurrent extensions of
interaction nets. A general definition of a labeled transition having partly failed,
we consider here the commonly used approach of encodability. What it means
exactly is described in Section 3.1.

We first deal with the general expressivity of interaction nets by giving a INS
that encodes the π-calculus (Sec. 3.2). Finally, we proceed with the core of the
chapter: comparing different concurrent extensions among themselves. Section
3.3 summarizes the encodability and separability results, that are then given in
detail: 3.4 show how to encode any interaction net system in a multiport one;
3.5 shows how to express rule ambiguity with multiwires; in 3.6, we show that
multirules alone are not enough to replace multiwires; finally, a weak separation
result of multiport from multiwires is given in 3.7.

The concepts for this chapter are introduced in the paragraphs about tex-
tual notation of interaction nets (p. 7), observational equivalence (p. 11) and
expressivity (p. 12).

3.1 (Textual) interaction nets
In order to make this chapter self-contained, we redefine everything about concurrent
extensions of interaction nets that is needed to follow the results, but in the framework
of the textual representation. From now on, we will say interaction nets for their
textual version as well as their graphical version, and will use the two epithets only
when it will be necessary to stress them. A reader who feels confident with the way
textual and graphical representations are similar can skip this section all together.

Nets. In the following, we fix a enumerable infinite set of ports, ranged over by
lowercase Latin letters. We write x̃ to denote a finite sequence of ports x1, . . . , xn such
that every port appears at most twice in the sequence; n is said to be the length of x̃.
If ports appear at most once, we say that x̃ is repetition-free.

91

92

Definition 3.1.1 (Net). An alphabet is a pair Σ = (|Σ|, deg), where |Σ| is a set and
deg : |Σ| → N is the degree function.

A cell, or agent, on the alphabet Σ is an expression of the form α(x̃), where α ∈ |Σ|
and x̃ is of length deg(α).

A k-connector, or multiwire, is a multiset of cardinality k of ports, containing at
most two occurrences of every port, denoted by [x̃]. A 2-connector is called a simple
wire.

A net on an alphabet Σ is a finite multiset of connectors and agents on Σ in which
every port appears at most twice. A net is simply-wired if it contains no multiwires,
but only simple ones.

The set of free ports of a net µ, denoted by fp(µ), is the set of ports appearing
exactly once in µ. The ports appearing twice in a net are called bound. We identify
any two nets which may be obtained one from the other by an injective renaming of
their bound ports (this is α-equivalence).

We denote by µ{y/x} the net µ in which the only free occurrence of x is replaced
by y. The notation is extended to sequences (i.e., µ{ỹ/x̃}) with the obvious meaning.
Definition 3.1.2 (Juxtaposition). Given two nets µ, ν, we denote by µ | ν the net
obtained by renaming (using α-equivalence) the bound ports of µ and ν so that the
two nets have no bound name in common, and by taking then the standard multiset
union.

Note that unlike usual process calculi, the symbol | is not part of the language but
rather an operation defined on nets. It is obviously commutative and has the empty
net, denoted by 0, as neutral element. It is not associative in general; however, for
µ | (ν | ρ) and (µ | ν) | ρ to be equal, it is enough that fp(µ) ∩ fp(ν) ∩ fp(ρ) = ∅.
More in general, if µ1, . . . , µn are such that, for all pairwise distinct i, j, k, fp(µi) ∩
fp(µj) ∩ fp(µk) = ∅, then the expression µ1 | · · · | µn, also denoted by ∏n

k=1 µk, is not
ambiguous. Such a notation will always be used under this assumption in the sequel.

In the sequel, by congruence on nets we mean an equivalence relation ∼ such that
µ ∼ ν implies that for every ρ, ρ | µ ∼ ρ | ν.
Definition 3.1.3 (Structural congruence). Structural congruence ≡ is the smallest
congruence on nets satisfying the following:

0-connector: µ | [] ≡ µ

Fusion: [x̃, a] | [a, ỹ] ≡ [x̃, ỹ]
Wire: µ | [a, x] ≡ µ{x/a} if a ∈ fp(µ)

A net is totally disconnected if it contains no connector and no bound port. Con-
versely, a wiring is a net consisting solely of connectors. We deem maximal a connector
which shares no name with any other connector. The following is easy to check:
Lemma 3.1.4 (Expanded form). For every net µ, there exist unique µ0 and ω such
that µ ≡ µ0 | ω, where µ0 is totally disconnected and ω is a wiring of maximal
connectors containing all the free ports of µ.

Concurrent Interaction Nets 93

In fact, it corresponds exactly to the description of a graphical net into cells and
wires. We will also need a special property on nets:
Definition 3.1.5 (Symmetric net). A net µ is symmetric if µ ≡ µ{x̃′/x̃, x̃/x̃′} where
x̃, x̃′ are the free ports of µ. xi and x′i are said to be exchanged by the symmetry.

Interaction. We fix two infinite sequences of ports (pi)i∈N and (qi)i∈N, which we
suppose to never occur in nets.
Definition 3.1.6 (Interaction scheme). An interaction scheme on an alphabet Σ is a
partial function ./ from |Σ| ×N× |Σ| ×N×N∗ to nets on Σ such that, where all free
ports are reserved:
• if (α, i, β, j, k) is in the domain of ./, then 1 ≤ i ≤ m = degα and 1 ≤ j ≤ n =

deg β and it is denoted αi /k. βj. If α = β and i = j the scheme is called a
self-rule, or reflexive rule;
• if defined, the image of (α, i, β, j, k) is denoted by αi /k. βj and its free ports are

exactly p1, . . . , pi−1, pi+1, . . . , pm, q1, . . . , qj−1, qj+1, . . . , qn;
• furthermore, we require, for any α 6= β or i 6= j, that βj /k. αi be also defined

and equal to the net obtained from αi /k. βj by exchanging the ports p1 and q1,
p2 and q2, and so on.
• if αi /k. αi ≡ αi /k. αi{q̃/p̃, p̃/q̃}, the self-rule is called symmetric. Otherwise it

is asymmetric.

A projection (α, i, β, j) of ./ is said to be simple if for all k, k′ ∈ N∗, (α, i, β, j, k) ∈
Dom(./) and (α, i, β, j, k′) ∈ Dom(./) implies k = k′ and if α = β and i = j the (unique)
self-rule is symmetric. We can, without loss of generality, consider that αi /k. βj is
defined only if ∀k′ ≤ k, αi /k′. βj is. So a scheme is simple if for all (α, i, β, j, k) in the
domain of ./, k = 1, and ./ (α, i, α, i, 1), if defined, is symmetric.
Definition 3.1.7. An interaction net system (INS) is a triple S = (ΣS , ./S ,OS) where
ΣS is an alphabet, ./S is an interaction scheme on ΣS and OS ⊆ |ΣS |×N×|ΣS |×N×N
is non-empty and such that (α, i, β, j, k) ∈ OS implies that (β, j, α, i, k) ∈ OS and that
max{n | ./ (α, i, β, j, n) is defined} = l > 0 and 1 ≤ k ≤ l. Subscripts are omitted
when clear from the context.
Definition 3.1.8 (Reduction). The reduction relation →S of an INS S is defined as
follows:

αi /k. βj defined
α(x̃) | β(ỹ) | [xi, yj, z] →S αi /k. βj{x̃/p̃, ỹ/q̃} | [z] interaction

µ→S µ′
µ | ν →S µ′ | ν

context µ ≡ µ′ µ′ →S ν ′ ν ′ ≡ ν
µ→S ν struct

94

We denote by →∗S the reflexive-transitive closure of →S . A net structurally con-
gruent to the net on the left side of the interaction rule is called an (αi, βj)-active
pair, denoted αi

k
./ βj. Clearly, µ →S ν only if some (αi, βj)-active pair is reduced

using the k-th rule for (α, i, β, j). When we need to specify it, we write µ
αiβj−→k ν.

In a INS S, given α ∈ |ΣS |, we say that the i-th port of α is principal if αi /k. βj
is defined for some β ∈ |Σ| and k ∈ N∗. Otherwise, it is called auxiliary.

A connector containing two occurrences of the same port is said to be vicious. We
say that a net µ diverges if there is an infinite reduction path starting from it, or if it
reduces to a net containing a vicious connector.

To improve readability, it is convenient to assume principal ports to be always the
“leftmost” in the list of ports of a cell, and to use the notation α(x1, . . . , xm; y1, . . . , yn)
for a cell whose symbol α is of degree m + n and has m principal ports. If all ports
are principal, the semicolon is omitted.

In practice, when defining an interaction net system, it is convenient to specify the
interaction scheme directly by giving rewriting rules of the form

α(x̃) | β(ỹ)→k ν

where x̃, ỹ are repetition-free, xi = yj = z for some i, j, and fp(ν) = {x̃, ỹ} \ {z}. It is
then intended that αi /k. βj is defined and equal to ν{p̃/x̃, q̃/ỹ}. It also automatically
defines βj /k. αi.

An INS can have one or few of the following properties. It can be:

• uniport if all its symbols have exactly one principal port; otherwise, it is called
multiport (mp).

• simply-wired (sw), if all reduction rules introduce simply-wired nets (in that
case, one restricts to simply wired nets); otherwise, it is called multiwired (mw).

• simple (sr), if all of its projections are simple; otherwise, it is said multirule
(mr).

Lafont interaction nets are uniport, simply-wired, simple interaction nets. Any
other combination of these adjectives denote a kind of non-deterministic interaction
net system. The meaning and use of the set OS (the observable rules) will be made
clear later.

Graphical representations. We wish, for the sake of exhaustivity, to make precise
the relation between textual and graphical representations. Following the convention
that all principal ports are listed first in the cell, a cell

α(a1, . . . , an; an+1, . . . , am)

Concurrent Interaction Nets 95

α
...

...

a1 an

an+1am

(a) A cell α

β

...

a

a1am

(b) Uniport cell

γ

a

(c) A one-cell (d) A 5-connector

Figure 3.1: Cells and connectors

of degree m with n principal ports is pictured as in Fig. 3.1(a). Cells with only one
principal port, such as β(a; a1, . . . , an), or cells of degree 1 such as γ(a) are repre-
sented more conveniently as in Fig. 3.1(b) and Fig. 3.1(c), respectively. Connectors
are represented as Fig. 3.1(d). We add a simple arc between any two occurrences of a
port. To represent graphically structural congruence, we use the graphical equality as
a rewriting rule in both ways:

..
.

..
.

..
.

..
.

Behavioral equivalence. In the following, we fix an arbitrary INS.
Definition 3.1.9 (Residue, interreduction). Given an active pair φ of a net µ and a
reduction µ→ µ′ reducing an active pair ψ, we have two possibilities: either φ and ψ
share a cell (the extreme case being φ = ψ), or they are disjoint. In the first case, φ has
no residue in µ′; in the second case, the cells of φ are left untouched by the reduction,
and µ′ contains an active pair φ′ which is “the same” as φ. This is its residue in µ′.
The notion of residue is extended to reductions of arbitrary length in the obvious way.

Let µ be a net, and let F be a set of active pairs of µ. We say that a reduction
µ→∗ µ′ is F -legal if it reduces no active pair of F nor any of their residues.

Let µ, ν be two nets, and let F,G be the set of all of their respective active pairs.
An interreduction of µ | ν is a reduction which is F ∪G-legal (juxtaposition may create
active pairs not in F ∪G; this is why the definition is sensible.).
Definition 3.1.10 (Barbed bisimilarity). Let S be an INS. We say that a reduction
step µ

αiβj−→k ν is observable if (α, i, β, j, k) ∈ OS .
We write µ↓x if there exists a net o such that fp(µ) ∩ fp(o) = {x} and an interre-

duction of µ | o containing an observable step. We write µ⇓x if µ→∗ µ′↓x and we say
that o is an observer of x in µ.

Let S, T be two INSs. A barbed (S, T)-bisimulation is a binary relation B ⊆ S×T
on nets s.t. B(µ, ν) implies
• for every port x, µ↓x implies ν⇓x and ν↓x implies µ⇓x ;
• µ→S µ′ implies that there exists ν ′ s.t. ν →∗T ν ′ and B(µ′, ν ′);
• ν →T ν ′ implies that there exists µ′ s.t. µ→∗S µ′ and B(µ′, ν ′).

96

If there exists a barbed (S, T)-bisimulation B such that B(µ, ν), we say that µ and ν
are barbed bisimilar and write µ S

�≈T ν (subscripts are dropped in a clear context).
Barbed congruence for S, denoted by 'c

S , is the greatest congruence contained in
S
�≈S .
The above definition of barb may be applied to standard name-passing calculi:

if the only reduction rule (i/o synchronization) is considered observable, we obtain
the usual barbs. The concept of interreduction is necessary to guarantee that the
observable step does not come from active pairs already present in µ or, worse, in the
observer o.

Usually, barbed congruence is defined to be the greatest congruence included in
barbed bisimilarity. The two definitions are known to coincide in the π-calculus. We
ignore whether this is the case for net systems. In this work we chose this definition
because it allows the use of coinductive arguments, which will be exploited for proving
the validity of our encodings (3.2.5 and 3.4.14).

Definition 3.1.11 (Translation). Let S, T be INSs. A translation from S to T is a
map J·K from nets of S to nets of T s.t., for all nets µ, µ′ of S:
Homomorphism: J0K = 0 and Jµ | µ′K = JµK | Jµ′K;
Port invariance: for every net µ of S, fp(JµK) = fp(µ), and if µ = ν{x̃/p̃}, we have

JµK = JνK{x̃/p̃};
Operational correspondence: we have the following two properties:

• µ→S µ′ implies JµK→∗T'c
T Jµ′K;

• JµK→∗T ν implies ∃ a net µ′ of S s.t. µ→∗S µ′ and ν →∗T'c
T Jµ′K;

Bisimulation: µ S
�≈T JµK.

A translation does not introduce divergence if, whenever JµK diverges, µ diverges.

The bisimulation condition corresponds to what Gorla [26] calls “success sensitive-
ness”, in that it excludes trivial translations which would otherwise be validated by
the other three conditions (such as an encoding mapping every net with free ports
x1, . . . , xn to the net [x1], . . . , [xn]). Furthermore, bisimulation implies the adequacy
and relative completeness of translations with respect to barbed congruence (of the
respective systems):

adequacy: JµK 'c
T Jµ′K implies µ 'c

S µ
′;

relative completeness: µ 'c
S µ
′ implies ∀ net ρ of S, JρK | JµK T �≈T JρK | Jµ′K.

This is a consequence of the (easy to verify) fact that, for any three INSs S, T ,U ,
µ S

�≈T ν and ν T
�≈U ρ implies µ S

�≈T ρ.
We will see in Section 3.4.2 that problems occur when we wish to translate con-

nectors. In such cases, we will need to loosen up the definition of translation.

Concurrent Interaction Nets 97

The reader might be disturbed by the parametricity of observability. Two answers
can be given to that. First: the more general the definition, the more general the
result. This is the scientists approach. More practically, it is always possible to
consider a default definition of barbs, that is, that all interactions are observable.
Such a choice makes every free principal port a barb. This is not completely senseless:
if we regard the solos calculus [35] as a textual interaction net system, and we deem its
only interaction rule observable, we obtain the usual barbs. It is only when considering
encodings that smaller sets of observable rules need to be considered. A target system
of a translation will most probably have more rules that the source language, and it
is natural to consider some of those to be administrative: they serve an organizing
purpose, more that a computing one – reorganizing connections, duplicating parts of
code, garbage collection. . . These interactions should most certainly not be considered
observable.

3.2 Encoding the pi-calculus
We consider the synchronous, monadic π-calculus, as defined for instance in [54].
For convenience, we use the same letters to range over π-calculus names and ports.
Processes are defined by

κ ::= x(y)
∣∣∣ π π ::= xy

∣∣∣ x(y)
P,Q ::= M

∣∣∣ P | Q
∣∣∣ ν(z)P

∣∣∣ !κ.P M,N ::= 0
∣∣∣ π.P

∣∣∣M +N

We denote by fnP the set of free names of the process P .
The restriction on the form of replicated processes is known not to diminish the

expressive power of the calculus (see, for instance, Exercise 2.2.30 of [54]) and allows us
to discard the equation !P ≡ P | !P in favor of reduction axioms such as x(z).P +M |
!x(z).Q → ν(z)(P | Q) | !x(z).Q, determining how replicated prefixes interact with
sums and other replicated prefixes, in the obvious way. This will greatly simplify our
encoding.

We do not consider match (or mismatch) prefixes. These may be encoded at the
cost of further technical complications which we believe are unnecessary to show the
expressiveness of interaction net systems.

Some notation. We will introduce the alphabet of the interaction net system en-
coding the π-calculus gradually, together with the encoding itself, which we denote by
L·M. The encoding will have the property that fp(LP M) = fnP . To help us maintain
this equality, we will need the notation

(x)µ =
{
µ if x ∈ fp(µ),
µ | [x] if x 6∈ fp(µ),

98

where µ is an arbitrary net. Another convenient notation for wirings is the following:

Jx̃1, . . . , x̃mK = [x1
1, . . . , x

m
1] | · · · | [x1

n, . . . , x
m
n],

where we implicitly assume that x̃1, . . . , x̃m have all length n. Furthermore, if µ, ν are
arbitrary nets and if x̃ spans fp(µ) ∩ fp(ν), we define

µ ‖ ν = µ{ã/x̃} | ν{b̃/x̃} | Jx̃, ã, b̃K.

Unlike juxtaposition, this parallel composition is strictly associative (and is still com-
mutative and has neutral element 0).

Null process, parallel composition and name restriction. We start with the
agent-free part of the encoding:

L0M = 0,
LP | QM = LP M ‖ LQM,
Lν(x)P M = [x] | (x)LP M.

Guarded sums. We introduce a family of symbols (σmn)m,n∈N, of degree 3(m + n)
and with m + n principal ports. A guarded sum containing m input prefixes with
subjects w̃ and bound names z̃, together with n output prefixes with subjects x̃ and
sending names ỹ, will be encoded by a net of the form µ = σmn (w̃, x̃; z̃, ỹ, c̃, d̃) | ν, with
ν containing the encodings of the continuations, located at c̃ for the inputs and d̃ for
the outputs. Of course there may be other σhk cells in ν; the one shown corresponds
to the top-level prefixes. If µ′ = σm

′
n′ (w̃′, x̃′; z̃′, ỹ′, c̃′, d̃′) | ν ′ is another net of this form,

we define
µ⊕ ν = σm+m′

n+n′ (w̃, w̃′, x̃, x̃′; z̃, z̃′, ỹ, ỹ′, c̃, c̃′, d̃, d̃′) | (ν ‖ ν ′),
which is still of the same form. Then, we define

LM +NM = LMM⊕ LNM.

Prefixing. To encode continuations, we need to introduce two families of symbols
(γn)n∈N (multiplexors) and (βn)n∈N (blockers), all having one principal port and such
that deg(γn) = deg(βn) = n + 1. We will also need two symbols ϕ (unblocker) and
ε (eraser), both of degree 1. All these symbols are deemed administrative. Their

Concurrent Interaction Nets 99

interaction rules, also called administrative, are the following:

γn(x; ỹ) | γn(x; z̃) → Jỹ, z̃K
γn(x; y1, . . . , yn) | ϕ(x) → ϕ(y1) | · · · | ϕ(yn)
γn(x; y1, . . . , yn) | ε(x) → ε(y1) | · · · | ε(yn)
βn(x; y1, . . . , yn) | ϕ(x) → [y1, . . . , yn]
βn(x; y1, . . . , yn) | ε(x) → [y1] | · · · | [yn]

Let now µ be a net. By 3.1.4, we have µ ≡ µ0 | [x̃1] | · · · | [x̃n], where µ0 is a totally
disconnected net and x̃1, . . . , x̃n contain all the free ports of µ (and therefore all the
ports appearing in µ0). Let k1, . . . , kn be the lengths of x̃1, . . . , x̃n, respectively, and
let c be a port not appearing free in µ. We define the net

c.µ = γn(c; d̃) | βk1(d1; x̃1) | · · · | βkn(dn; x̃n) | µ0.

Obviously, fp(c.µ) = fp(µ) ∪ {c}, and it is easy to check the following:
Lemma 3.2.1. The net c.µ is normal and has the following properties:

1. c.µ | ϕ(c) →∗ µ;
2. c.µ | ε(c) →∗ [y1] | · · · | [ym] | ζ, where y1, . . . , ym are the free ports of µ and ζ

is a normal net with no free ports.
Moreover, both of the above reductions consist entirely of administrative steps.

We may now give the encoding of single prefixes:

Lxy.P M = σ0
1(a; b, c) | c.LP M{a′/x, b′/y} | [x, a, a′] | [y, b, b′],

Lx(y).P M = σ1
0(a; y, c) | (y)(c.LP M){a′/x} | [x, a, a′].

The interaction rule of σmn cells is the following:

σm+1
n (w̃, x̃; z̃, ỹ, c̃, d̃) | σm′n′+1(w̃′, x̃′; z̃′, ỹ′, c̃′, d̃′) → [zi, y′j] | ϕ(ci) | ϕ(d′j)

| ε(c̃−) | ε(d̃) | ε(c̃′) | ε(d̃′−)
| K(w̃−, x̃, z̃−, ỹ, w̃′, x̃′−, z̃′, ỹ′−),

where wi = x′j and we used the notations K(ã) = [a1] | · · · | [ak] and ε(ã) = ε(a1) | · · · |
ε(ak), and w̃−, z̃−, c̃− (resp. x̃′−, ỹ′−, d̃′−) stand for w̃, z̃, c̃ without xi, zi, ci (resp. x̃′, ỹ′, d̃′
without x′j, y′j, d′j). The intuition is that the name sent (y′j) and the binder (zi) are
connected, while two ϕ cells are dispatched to “unblock” the selected continuations.
The other continuations are erased, and all the other ports are “discarded” (this is the
function of the 1-connectors in the right hand side).

Replication. We introduce a further administrative cell, the duplicator δ, of degree
3 and with 1 principal port, which interacts with itself and with any cell α 6= δ of

100

degree n as follows (these reductions too are considered administrative):

δ(x; y, z) | δ(x;u, v)→ [y, u] | [z, v]
δ(xi; y, z) | α(x̃)→ α(ã) | α(b̃) | δ(x1; a1, b1) | · · · | δ(xn; an, bn),

where, in the second rule, ai = y and bi = z and there is no cell δ(xi; ai, bi).
Given a net µ and a port c 6∈ fp(µ), if x̃ is a sequence of length n spanning fp(µ),

we define
c!x̃µ = γn+1(c; a, x̃) | a.µ,

which has only one free port c. This is a sort “duplicable package” containing µ. To
“extract” µ from c!x̃µ, we use the net Dn(c; z̃) = γn+1(c; b, z̃) | ϕ(b).

Lemma 3.2.2. The net c!x̃µ is normal and satisfies the following:

1. c!x̃µ | δ(c; d, e) →∗ d!x̃µ | e!x̃µ;
2. c!x̃µ | Dn(c; z̃) →∗ µ{z̃/x̃}.

Moreover, both of the above reductions consist entirely of administrative steps.

We introduce three families of symbols (!ιn)n∈N, (!on)n∈N and (!obn)n∈N, representing
replicated input, replicated output and replicated bound output, respectively, of degree
n+3, n+4 and n+3, respectively, all with 1 principal port. The encoding of replicated
prefixes is as follows:

L!xy.P M = !ok(a; a′, y, ũ, c) | c!x,y,ũ(x)(y)µ | [x, a, a′]
L!x(y).P M = !ιk(a; a′, ũ, c) | c!x,y,ũ(x)(y)µ | [x, a, a′]
L!x(y).P M = !obk(a; a′, ũ, c) | c!x,y,ũ(x)(y)µ | [x, a, a′]

In all three cases, ũ spans fnP \ {x, y} and is supposed to be of length k. The extra
port a′ is a copy of the subject name needed to spawn a new copy of the prefix. The
interaction rules with summation cells are as follows:

σm+1
n (w̃, x̃; z̃, ỹ, c̃, d̃) | !ok(wi;w′, y′, ũ, e)→ [zi, y′, b, b′] | ϕ(ci) | ε(c̃−) | ε(d̃) | δ(e; f, g)

| Dk+2(g; a′, b′, ũ′) | !ok(a; a′′, b, ũ′′, f)
| [w′, a, a′, a′′] | Jũ, ũ′, ũ′′K

σm+1
n (w̃, x̃; z̃, ỹ, c̃, d̃) | !obk(wi;w′, ũ, e)→ [zi, b′] | ϕ(ci) | ε(c̃−) | ε(d̃) | δ(e; f, g)

| Dk+2(g; a′, b′, ũ′) | !obk(a; a′′, ũ′′, f)
| [w′, a, a′, a′′] | Jũ, ũ′, ũ′′K

σmn+1(w̃, x̃; z̃, ỹ, c̃, d̃) | !ιk(xi;x′, ũ, e)→ [yi, b′] | ϕ(di) | ε(c̃−) | ε(d̃) | δ(e; f, g)
| Dk+2(g; a′, b′, ũ′) | !ιk(a; a′′, ũ′′, f)
| [x′, a, a′, a′′] | Jũ, ũ′, ũ′′K

Concurrent Interaction Nets 101

where we used the same notational convention as above for the “missing” ports on
the right hand side. Basically, together with the usual behavior of summations, a
replicated prefix agent also creates a copy of itself, and dispatches a duplicator to
make two copies of the continuation; one of these copies is kept as it is, the other is
“extracted” by means of the net Dk+2.

A similar, but expectedly twice as complicated behavior is obtained when these
agents interact with themselves:

!ιh(x;w, ũ, c) | !ok(x; z, y, ṽ, d)→ [y, b, b′, b′′] | δ(c; f, g) | δ(d; i, j) | Dh+2(g; a′, b′, ũ′)
| ιh(a; a′′, ũ′′, f) | Dk+2(j; e′, b′′, ṽ′) | !ok(e; e′′, b, ṽ′′, i)
| [w, a, a′, a′′] | [z, e, e′, e′′] | Jũ, ũ′, ũ′′K | Jṽ, ṽ′, ṽ′′K

!ιh(x;w, ũ, c) | !obk(x; z, ṽ, d)→ [b, b′] | δ(c; f, g) | δ(d; i, j) | Dh+2(g; a′, b, ũ′)
| ιh(a; a′′, ũ′′, f) | Dk+2(j; e′, b′, ṽ′) | !obk(e; e′′, ṽ′′, i)
| [w, a, a′, a′′] | [z, e, e′, e′′] | Jũ, ũ′, ũ′′K | Jṽ, ṽ′, ṽ′′K

Validity of the encoding. The INS encoding the π-calculus, which we call Π, is
obtained by taking the system introduced in the previous section and considering as
observable all non-administrative reductions.

Below, we write µ →∗a µ′ if the reduction is purely administrative. The following
lemma states that administrative reductions are deterministic.
Lemma 3.2.3. Let µ →∗a µ′′, and let µ →∗ µ′ be another, arbitrary reduction, of
length n. Then, there exists ν such that µ′′ →∗ ν and µ′ →∗a ν. Moreover, the length
of the reduction from µ′′ to ν is at most n.

Proof. Consider µ →a µ2 and µ → µ1. Since administrative active pairs do not
overlap with other active pairs, we immediately have a net ν1 such that µ2 → ν1 and
µ1 →a ν1, unless µ1 = µ2, in which case confluence is trivial (this is why we do not get
that the length of µ′′ →∗ ν is exactly n, but may be shorter). The result then follows
by a standard diagram chasing argument, using an induction on n.

Lemma 3.2.4. 1. For every π-calculus process P , the active pairs of LP M are in
bijection with the one-step reductions of P .

2. Let P → P ′. Then, LP M → µ →∗a LP ′M | ζ, where the first reduction step is not
administrative, and ζ is a normal net with no free ports.

Proof. Point 1 is proved by induction on P . Point 2 is a tedious but straightforward
verification, using Lemmas 3.2.1 and 3.2.2. The fact that we discarded the rule !P ≡
P | !P is essential; the lemma would be false otherwise.

Theorem 3.2.5. For every π-calculus process P , we have:
completeness: P →∗ P ′ implies LP M→∗'c

Π LP ′M;

102

soundness: LP M→∗ µ′ implies that there exists P ′ s.t. P →∗ P ′ and µ′ →∗'c
Π LP ′M.

Proof. Completeness is a straightforward consequence of 3.2.4 and the fact, which is
not hard to prove, that P ≡ Q implies LP M 'c

Π LQM. The fact that 'c
Π is a barbed

bisimulation is used here. Soundness is proved by induction on the length n of the
reduction LP M →∗ µ′. If n = 0, the result is trivial. Otherwise, we have LP M →
µ1 →∗ µ′, and the length of the reduction from µ1 to µ′ is strictly smaller than n. By
point 1 of 3.2.4, there exists P1 s.t. P → P1. By point 2, the step LP M → µ1 is not
administrative, and we have µ1 →∗a LP1M | ζ = µ′′. We are in position to apply 3.2.3,
which gives us a net ν such that µ′ →∗a ν and µ′′ →∗ ν, and the latter reduction is
still of length strictly smaller than n. But ζ is normal, so we actually have ν = ν0 | ζ
and LP1M →∗ ν0, and we may apply the induction hypothesis, which gives us P ′ such
that P → P1 →∗ P ′ and ν0 →∗'c

Π LP ′M. So µ′ →∗'c
Π LP ′M | ζ, and we may conclude

because ζ 'c
Π 0, a fact that is immediate to show for any net with no free ports.

3.3 Comparing interaction net extensions
In this section, we study in detail the relative expressivity of different concurrent
extensions of interaction nets, namely interaction nets with multiple rules, multiwires,
multiport cells and all there combinations. We remind the abreviations:

mr Nets with multiple rules, a.k.a. multirule systems.

mw Rules introduce multiwires for any k, , a.k.a. multiwired systems.

mp Nets with multiport cells, a.k.a. multiport systems.

In this section, unless clearly specified, the kind of system is strict: mr means the
system has multirules but simple wires and simple cells only; mw allows connectors
of any size but simple rules and simple cells; mp has multiport cells but simple rules
and simple wires. We express combinations explicitly:

mwr Multiple rules of which some introduce multiwires.

mpr Nets with multiport cells and multiple rules.

mpw Nets with multiport cells and rules introducing multiwires.

mpwr Nets with multiport cells, multiwires and multiple rules, alias general nets.

In the following, we will usually denote the source interaction net system by S and
the target system by T or S∗, unless specified otherwise. We will denote the encoding of
a net µ by JµK, since which encoding is used will be clear from the context. In graphical
representations, interaction is written with an arrow →, reduction by a starred arrow
→∗ and the encoding by a squigarrow µ ν means the same as JµK = ν. In diagrams,
arrows between interaction net frameworks means relative expressiveness: for S,S ′

Concurrent Interaction Nets 103

among mr,mw,mp,mwr,mpr,mpw,mpwr, S → S ′ means there is an encoding from
S to S ′ or that S is a subsystem of S ′ (S ⊆ S ′).

Before we continue, we need to make an important remark. Active pairs composed
of two cells of same label are qualified of reflexive as are the rules defined on reflexive
pairs (see Def. 3.1.6). The place to give to such rules is interesting. They never
appear in actual calculi: Lafont forbids them in his first definition of interaction nets
[32] before allowing them for universality purposes in [33]; even in a wish to make
π-calculus symmetric, Sangiorgi still distinguishes input from output prefixes [53]. It
is not clear if allowing them brings any expressivity. Lafont for instance gives an
alternative to his combinators which have no reflexive rule. The question of their
expressivity cannot be answered strictly in terms of encodings, as a cell that allows a
reflexive rule must most probably, for any encoding, need a reflexive rule to trigger the
simulation. On the other hand, as we will see, any multirule system can be encoded
into a system with a unique (non-symmetric) reflexive rule, so reflexive rules seem to
have a great expressivity power.

Non-symmetric reflexive rules are problematic. Such rules are by nature multir-
ules, since there are at least two ways of replacing an active pair by the asymmetric
right-hand-side. Therefore, one has to be carefull when manipulating reflexive rules,
especially when triying to “get rif of multirules”. This is why we avoid using them for
the first encoding. This is not really a problem, since we later on show how to take care
of them. Nevertheless, we have to take them into account in the separation between
multiports and multiwires-multirules: the result is only valid in the absence of asym-
metric reflexive rules. We still believe that the separation is true in their presence,
just are not able to show it yet.

Let us now present the relative expressivity results.

3.3.1 Encodability

We can consider the lattice of interaction net concurrent extensions as shown in the
following diagram, where arrows represent inclusion:

mr mw mp

mwr mpr mpw

mpwr

Or if the reader prefers a table:

104

mr mw mwr mp mpr mpw mpwr
mr = ⊆ ⊆ ⊆
mw = ⊆ ⊆ ⊆

mwr = ⊆
mp = ⊆ ⊆ ⊆

mpr = ⊆
mpw = ⊆

mpwr =

where inclusion is given from a framework in the title column into systems in the title
row. The reader can notice the unnatural position of mwr in the table. It is explained
by the first result, given in the following paragraph.

Multiports can alone express rule ambiguity and multiple connections The
first encoding result is quite powerful. It is, what one would call a strike.

We give, for any general interaction net system S a simple, simply wired multiport
system T which is multiport and has the exact same behavior. Therefore, we obtain
straight away an equivalence between mp, mpwr, mpw and mpr, since encoding into
mp means encoding into any of its extensions, and encoding from mpwr is encoding
from any of its subsystems. We also get, as special cases, encodings from mwr, mw
and mr into mp.

mr mw mp

mwr mpr mpw

mpwr

Or in the table version:

mr mw mwr mp mpr mpw mpwr
mr = ⊆ X ⊆ X ⊆
mw = ⊆ X X ⊆ ⊆

mwr = X X X ⊆
mp = ⊆ ⊆ ⊆

mpr X = X ⊆
mpw X X = ⊆

mpwr X X X =

Concurrent Interaction Nets 105

The encoding is quite complicated to express but the ideas underlining it are quite
simple. We have been enlightened anyhow in Chapter 1 thanks to conflict graphs (see
section 1.3.3) about the fact that multiports seem to be a combination of multirules
with multiwiring. We are going to make it clearer in Section 3.4, by first giving
intuitions on the two encodings separately on systems with simple cells, and then only
combine the two adding the multiport dimension.

Multiwires can control rule ambiguity We continue with the study of the rela-
tion between multiwires and multiple rules. We give here an encoding of mwr into
mw, which bears of course an encoding from mr to mw. Moreover, if the source
language has no self-rules, it is possible to define a translation into a mw without
self-rules. We will also see how we can use the same idea to go straight from mr to
mp.

mr mw mp

mwr mpr mpw

mpwr

Or in the table version:

mr mw mwr mp mpr mpw mpwr
mr = X ⊆ X ⊆ X ⊆
mw = ⊆ X X ⊆ ⊆

mwr X = X X X ⊆
mp = ⊆ ⊆ ⊆

mpr X = X ⊆
mpw X X = ⊆

mpwr X X X =

3.3.2 Separation
Multirules alone do not give concurrency The first separation result is rather
strong. It says that it is not possible to use multirules to express multiport cells or
rules that use multiwires. It is a question of observability. In plain multirule systems,
any non-deterministic behavior is internal: it has no consequence on the interface. If
a port is weakly observable, it stays so. Which is not at all the case in systems which
allow multiple connections or multiport cells.

106

mr mw mwr mp mpr mpw mpwr
mr = X ⊂ X ⊂ X ⊂
mw × = ⊆ X X ⊆ ⊆

mwr × X = X X X ⊆
mp × = ⊆ ⊆ ⊆

mpr × X = X ⊆
mpw × X X = ⊆

mpwr × X X X =

Comparing multiport and multiwire concurrency In this paragraph, we give
a weak separation result from mp to mwr, which automatically gives us separations
from mp to mw, mp to mr and all the equivalents for mpr, mpw and mpwr. It
actually concerns systems without self-rules. There is a series of nets not using self-
rules in multiport systems that cannot be translated into mwr with no self-rules
without introducing divergence.

It is not convenient to show the absence of arrows in a diagram, so we will just
give the table version of what we get as a result of this encoding:

mr mw mwr mp mpr mpw mpwr
mr = X ⊂ X ⊂ X ⊂
mw × = ⊆ X X ⊆ ⊆

mwr × X = X X X ⊆
mp × = ⊆ ⊆ ⊆

mpr × X = X ⊆
mpw × X X = ⊆

mpwr × X X X =

3.3.3 To sum-up
The final diagram for translatability is:

mr mw mp

mwr mpr mpw

mpwr

To synthesize, the hierarchy for interaction nets is of the following form:

Concurrent Interaction Nets 107

mp ≡ mpr ≡ mpw ≡ mpwr

mw ≡ mwr

mr

×

where × mean no translation exists and that any translation introduces
divergence (in the restricted case of self-rule-free systems).

We dedicate now a section to each encoding and separability result discussed above.

3.4 Multiports can alone express rule ambiguity
and connectors

The encoding from general nets to mp is technical, so we split it in two1. We first deal
with systems which have simple cells but multiwires and/or multiple rules. Then, we
engage the conversation on what some of the difficulties occur when upgrading to the
case of an already multiport source language (i.e. a general interaction net system).
The last subsection is the technical one, giving and proving the actual encoding.

3.4.1 Uniports, but multwires and/or multiple rules
We first show how to transform multiwires into simply wired nets. The idea is inspired
from communication zones of Ehrahrd and Laurent’s encoding of π-calculus into dif-
ferential nets [16]. We then show how to get rid of multirules. We then combine the
two in a rather straightforward way.

Multiwires as communication zones Let us take a mw system S, thus with
simple rules and simple cells. Let α, β, γ be three labels of S that form a net µ by
being all attached by there principal port on a same bound 3-connector w.

For each cell of S, we have a cell α1 which represents α, has same arity and coarity.
The subscript means it has one copy of α’s principal cell. In fact, we have, for all
n ∈ N∗ a cell αn which represents α with n copies of its principal port. Intuitively, a
cell of the form αn(a1, . . . , an) represents the net α(z; x̃) | [z, a1, . . . , an], i.e., an α-cell
whose principal port is attached to a (n + 1)-connector. In other words, we “embed”
the connectors in the cells themselves, modifying their degree if necessary.

1We understand we miss the whole point of the unique encoding, but the result still holds. Only
the intuitions are “split”.

108

α

β γ

α1

β
1 γ1

χ

χ χ

α2

β
1 γ1

χ χ

α2

β
2

γ1
χ

α2

β
2 γ2

Jα / .βK | γ2

Jα / .γK | β2

Jβ / .γK | α2

Figure 3.2: The translation and simulation of a net with a 3-connector.

We add to the language a label χ, of degree 3 of which one only port is principal.
When a χ meets a “normal” cell c, it duplicates c’s principal port and connects the two
copies to χ’s auxiliary ports. The 3-connector is replaced by three χ-cells, connected
2-by-2 by their auxiliary ports. The translation and the ongoing simulation(s) is shown
in Figure 3.2. The final three interactions correspond to the real interactions that are
simulated. Jα / .βK | γ2 for instance corresponds to the reduction of α ./ β in the
original net, so γ is left alone. It therefore contains the translation of the RHS of that
rule. If it exists. Otherwise, it is not defined and the non-active pair is encoded as a
non-active pair.

We can see that even if the rule is defined, the simulation of the interaction in the
encoding net not necessarily brings to the encoding of the result of the interaction in
the source net. In the example of the active pair α./β, the cell γ2 is not exactly the
encoding of γ. It is possible, in a simple case like this one, to send a message to γ2 and
“re-transform” it into a γ. It shall be done by sending on all principal ports of α2 and
β

2 that are not involved in the interaction a zerocell that erases useless principal ports
it meets (and erases χ-cells all together on the way). Since we work up-to bisimilarity,
we do not need this useless yet aesthetic addition.

We can notice here a nice and important feature of this encoding. Or rather of the
χ-cells. Let us call ν1, ν2, ν3 and ν4 the four first nets of the simulation above (in the
target system) and µ1 the result of reducing the active pair α2

1 ./β
2

2 from ν4. As we

Concurrent Interaction Nets 109

can see, ν3 already contains the active pair α2
1 ./β

2
2, so it can be reduced to a net we

call µ′. Well µ′ on its turn can be reduced to µ1 by reducing the residue of the active
pair γ1 ./χ. In fact, this is true for any reduction involving a χ-cell: it is independent
from any other interaction, almost in the sense of events in event structures.

If a net ν has two reductions ν → ν1 and ν → ν2 of which one is an interaction
involving a χ-cell, then there is a net µ s.t. ν1 →∗ µ and ν2 →∗ µ. In some sense, ν
cannot introduce non-determinism on its own. It is deterministic. This will be true
of other rules we will add later for χ and we will use this property a lot to show
bisimulation results.

We can generalize χ-cells to any arity in order to simulate larger multiwires:

 χ3

χ3

χ3

χ3

 χ4

χ4

χ4

χ4

χ4

With the general rule that

α1(a; b1, . . . , bm) | χp(a, x1, . . . , xp)→ αp(x1, . . . , xp; b1, . . . , bm),

we can see how the translation works in general. Of course, we are missing some parts
of it, but we hope the reader can wait a little for the details.

From multiple rules to multiple ports We use of a similar strategy to get rid
of multirules. For simplicity, we first consider an interaction system S with simple
cell, simple wires and multiple rules. Moreover none of the self-rules is asymmetric.
Imagine two simple cells α, β that have 3 rules for interaction. It suffice to translated
each of them into a multiport cell with 3 principal ports connected two by two, where
the interaction on the first ports triggers the equivalent of the first rule for α./β, the
interaction on their second ports triggers the equivalent of the second rule, and so on.

α

β

. . .

. . .

α

β

. . .

. . .

This is clearly not sufficient. First of all, the translation of each cell does not have
the same interface as the cell, which is problematic, since if each rule α i

./β is observ-
able, then each of the free ports a, b, c of a net α(a, b, c; x̃) will be observable. Also,

110

the encoding cannot be made homomorphic: how to glue two translations together?
Second, it could be that α has more rules with another label γ, in which case α should
have more principal ports. But we cannot know in advance who α is going to be
connected to. We solve both problems simultaneously.

Let K be the maximal number of rules for any pair of the source system S and
n = K(α, β) the number of rules for α./β. We translate each cell by itself (again with
an over-lined label) connected by its principal port to the only auxiliary port of a cell
k.

α

β

. . .

. . .

α

β

. . .

. . .

K

K

. . .

. . .

αK

β
K

. . .

. . .

. . .

. . .

1

n

...

A multiwire is decomposed as a bundle of K wires each bearing one rule. A K-
cell splits the principal port of a cell into K ports. A rule is defined for αKi ./ β

K

j iff
i = j ≤ K(α, β). Then, αKi /.β

K

i is the net α/i.β in which each cell has been replaced
by its encoding.

Now imagine we allow S to have multiwires. We need to split the multiwire in the
same way into K multiwires. This is done by a communication zone in the spirit of
the previous section but composed of K-cells. Some examples are given in Figure 3.3.

 K

K

K

 K

K

K

K

Figure 3.3: Decomposing a multiwire for K rules, K = 3 and K = 4

Equipped with these K-communication zones, we can describe the translation. Let
us take again the simple case of three cells c1, c2 and c3, labeled α, β, γ, connected by
a 3-wire. Any cell labeled α is translated by a cell α1, and any multiwire [a1, . . . , an]

Concurrent Interaction Nets 111

by a communication zone

K(a1;u1
1, . . . , u

1
K) | . . . | K(an;un1 , . . . , unK) | [u1

1, . . . , u
n
1] | . . . | [u1

K , . . . , u
n
K]

The translation of our net is composed of three cells with a K-communication zone.
After reducing all (independent) α ./ K, β ./ K and γ ./ K, we obtain a net with
three cells of coarity K in which all first principal ports of c1, c2, c3 are connected by
a 3-wire, all second principal ports also, and so on. The choice of which interaction
to trigger corresponds to the simultaneous choice of an active pair of the original net
and a number for the rule to use to reduce it.

Combining the two From now on, to distinguish the two previous cases of com-
munication zones, we will speak of χ-zones and K-zones. The combination of the two
we give here will be referred to as general communication zones, or just comzones.

We have seen that the main idea to get rid of multiwires is to encode them into
communication zones of χ-cells. We have also seen how to just get rid of multirules
even in the presence of multiwires. We can now eliminate both at the same time.

There are two ways of doing so. Transform multiwires into K-zones and replace
each multiwire in them by a χ-zone (on the left below), or transform multiwires into
χ-zones and replace each wire in them by a K-zone (on the right). A communication
zone between 3 ports of a system for which K = 2 is one of the following:

K

K

K

χ

χ

χ

χ

χ

χ

χ

χ

χ

K

K

K

K

K

K

A clear difference appears when those communication zones interact with a normal
cell. K splits principal ports while χ duplicates them. The choice that is made will
lead to split ports that are duplicated (as many times as needed from the multiwire)
or to duplicated ports that are split:

α α
.

n Kn K
K n

In the first case, the first group of ports represents n copies of the first rule, in the
second case, the first group represents the K rules of a single copy. We also have to

112

keep in mind all the intermediate steps. In the first choice, some rules are copied an
other no, while in the second some copies are split and others no.

We can already give a complexity argument in favor of the first choice. A n-
connector in a system with K-rules is encoded, in the first version, in a net containing
n(K + 1) cells, in the second version in a net containing n2 cells. K being constant
for a system while the size of multiwires is unbounded, we are talking liner versus
quadratic size. Also, splitting and copying a port of a cell connected to a multiwire of
n ports in a system with at most K-rules needs K+1 reduction steps in the first choice
is made, while in the other, it requires n steps. Here its constant versus linear time.
We are not that interested in complexity for this to be a convincing argument. What
drives our choice is that the communication zones of the first kind can be combined.

Fusion of wires In the presence of multiwires, it can happen that a port belongs
to two of these. In this case, we use the fusion equation of structural congruence (see
Definition 3.1.3) that says that two wires in that situation can be considered as a single
wire. This situation can appear during reduction. An active pair αi ./ βj has a RHS
in which all the ports of the interface belong to multiwires for instance. Imagine a net
µ in which all ports of α and β are already connected to multiwires. In its encoding,
α and β’s ports are all connected to communication zones. Once the reduction for
αi ./βj is simulated, all ports of the interface of that rule belong to two com-zones.

We therefore need to make communication zones have the property of being able
to combine. For this, we give rules for active pairs composed of χ-cells. What does a
χ-cell represent? It is nothing else than a potential connection between copies of its
principal port and all of its auxiliary ports. So what do two χ-cells c1, c2 represent?
A potential two-by-two connection between all auxiliary port of c1 and all auxiliary
ports of c2.

χ

χ

χ χ

χ χ

χ

χ3

χ3 χ3

χ χχ

Each χ-cell duplicates the other one as many times as its own arity, thus making
explicit the two-by-two connections. The general rule is shown in Figure 3.4(a).

The use of the rule above brings to a situation of trees of χ-cells. What do such
trees do? They duplicate a port, and then duplicate its copies. It can be achieved in
one step, if we add a rule for χm1 ./χni , shown in Figure 3.4(b), where i 6= 1 (making
this way all ports of χ-cells principal; for commodity, we draw only the first port of
χ-cells as a principal port).

With the two rules, we get what we were looking for, i.e. a way to fuse two χ-zones
zones together. A simple example of a fusion of χ-zones is shown in Figure 3.5.

Concurrent Interaction Nets 113

χm

χn

. . .

. . .

m

n

χn

. . .

χn

. . .

. . .

m

χm

. . .
χm

. . .

. . .

n

(a) Autoduplication

a

χn
. . .

χm
.

χm+n−1

.
n

(b) Fusion of χ-cells

Figure 3.4: The general rule for χ-cells.

Lemma 3.4.1 (Fusion of χ-zones). Let S be a simple system with multiwires (K = 1).
Let T be a translation system of S in which the translation multiwires by χ-zones. For
any two wires w = [a, x1, . . . , xm], w′ = a, y1, . . . , yn that share a single name, let
v = [x1, . . . , xm, y1, . . . , yn] (so v ≡ w | w′). Then

Jw | w′K = JwK | Jw′K→∗ JvK

χ

χχ

χ

χχ

χ χ

χ χ

χχ

χχ

χ3χ3

χ3 χ3

Figure 3.5: Two 3-comzones fuse.

If one considers the more general communication zones (with K-cells), the result
stays valid. It is a bit more complicated to write down, but not to visualize. Remember
that in such a case, a general comzone is composed of K χ-zones which extremities
are shared by K-cells. When two of those K-cells meet on their principal port, the
interaction brings together their auxiliary ports two by two.

114

K..
.

K ..
.

..
.

..
.

K(a; x1, . . . , xK) | K(a; y1, . . . , yK) → [x1, y1] | . . . | [xK , yK].

When two communication zones meet, the K-cells creating the link connect their
auxiliary ports yielding K fusion situations between χ-zones, discussed right above.
Therefore, the following lemma holds:
Lemma 3.4.2 (Fusion of comzones). Let S be a multiport system with multiwires,
with multirules of degree at most K. Let T be a translation system of S in which
the translation multiwires by comzones. For any two wires w = [a, x1, . . . , xm], w′ =
a, y1, . . . , yn that share a single name, let v = [x1, . . . , xm, y1, . . . , yn] (so v ≡ w | w′).
Then

Jw | w′K = JwK | Jw′K→∗ JvK

This is the real argument for this choice of communication zones over the other
(see p. 111).

What simulation does to the cells Translating the multiwires with external K
cells leads to cells α in which a partition into K classes p̃1, . . . , p̃K of its principal ports
is made, such that each port in p̃i represents in some sense a possible use of the i-th
rule of an active-pair.

In our simple example with three cells c1, c2, c3 (labeled resp. α, β, γ) in a system
with at most 2-rules, it means the following. When reducing completely the commu-
nication zone in-between the three cells, we obtain cells c′1, c′2c′3, each with 4 principal
ports, the first two of which represent the first rule and the second two the second
possible rule. So we have a certain number of copies of ports representing a certain
rule number. The only difficulty is to keep track of which port is a copy of which rule
number.

To do so, we will annotate the cell label by a semi-colon separated string of integers
that keeps track of all operations made on the principal ports of the cell. α1:2:2:11:1

means that the cell is the encoding of a α cell from a system for which K = 5, in which
the principal port is split and the first and last rules have one copy, the second rule
and third rule have two copies, the third rule has 11 copies. If the port is not split,
we use the notation I as the entire string. The short for 1 : . . . : 1 will be K and for
n : . . . : n will be n ·K.
Definition 3.4.3 (id of a cell, number of a port). We call identification of a cell c, or
id(c), the string annotating the label of c. Given an id a1 : . . . : aK , also called K-type,
and an integer i ≤ ΣK

j=1aj, we call number of i in c, denoted]id(c)(i) or directly]c(i)
the minimal p for which Σp

j=0aj ≥ i.

Concurrent Interaction Nets 115

In other words, the number of a port is the rule it represents, that we can determine
from the cells id.

We now need to determine rules for active pairs between cells with ids. Let c, c′
two cell labeled respectively αID and β

ID′ . Then, there is a rule for αIDi ./ β
ID′

j iff
]ID(i) =]ID′(j) = n and there is a rule number n for the active pair α ./ β in the
original system. The RHS of the rule is almost the encoding of the RHS of the original
corresponding rule. We just need to bound all the images of the principal ports, and
for an even better result, send a message on them that these ports are useless and the
connections can be erased.

3.4.2 Some issues with communication zones

We address some precise questions in this paragraph about communication zones. Are
they a translation of multiwires? Do we need χn-cells for unbounded n? We also
discuss the possibility for communication zones to introduce divergence.

Are communication zones translations of wires? Wires have a special nature
in nets. In fact, they are the real purpose of the existence of a structural congruence.
We have seen already how the fusion equation commands the rules of communication
zones. In fact, the situation is even worse. Because ports of cells are numbered, there
is no possible way a net containing cells but only simple wires can have the same
symmetries as a multiwire, which has all possible permutations on its free ports.

Let us take the case of a simply wired net µ with 3 free ports x, y, z. To be the
translation of a 3-connector, it would need to be such that µ ≡ µ{y/z, z/y}. This
means that there is a path from x to y iff there is a path from x to z. Since x and
y are not connected by a wire, otherwise x and z should too, x is connected to a cell
c. The path from x to y passes necessarily through this cell c. So their is a path
from another port x′ of c to y. But then, there must be a path from x′ to z. This
process can go on along the entire path going from x to y. When it reaches the cell y
is connected to, the only way this last port is also connected to z is by a multiwire, of
size at least 3.

The induction step is possible because ports are numbered. A simple illustration
of that is that, for any label α of power 3,

α(a, x, y) 6= α(a, y, x).

A slightly more complex illustration is given in Figure 3.6. There are several ways of
encoding a wire [a, b, c] as χ-zones, depending on the original choice of the representant
of the multiset. The χ-zones for [a, b, c] is not isomorph to the communication zone
representing [a, c, b]. This is because of the commutativity of multisets that nets do
not have.

116

a

bc

a

cb

a

bc

χ

χχ
6≡

χ

χχ
≡

χ

χχ

Figure 3.6: Encodings of a same multiwire are not necessarily structurally congruent.

Our encoding is therefore not a translation, since we do not map a multiwire to a
net, but rather to a collection of nets. The choice of which net is used for the actual
encoding of a given wire is unimportant, as all nets representing a communication
zone of a given size n are barbed congruent. Despite this rather important fact, the
condition of Definition 3.1.11 still hold. If we consider the encoding of a net to be the
set of all the nets that only differ by their encoding of a communication zone, we have
• homomorphism, in which JµK | JνK means “pick one in each encodings”;
• port invariance as equality of sets, where the substitution is made point-wise on

every net of the set;
• operational correspondence and bisimulation work for every element of the set

of encodings of µ.
We can therefore consider we have an translation up-to-barbed congruence.

We prefer to state the result in the following way. For any interaction net system S
(for now, only uniport), there is a simply wired multiport system with simple rules T
such that: for any net µ in S, there is a net ν in T with the same degree of distribution,
which does not depend on the free ports of µ and which has the exact same behavior.
Therefore, multiwires and multirules do not extend the operational expressivity of
multiport interaction net systems. In other words, in presence of multiport cells, there
is no need for multirules and multiwires.

This is not it. Structural congruence on wires brings other problems.

Simple wires It is a little problem that our encoding does not encode simple wires
as simple wires. In fact, this means that we cannot encode directly any net but only
an extended version where ports do not belong to two cells at once. The encoding is
therefore up-to structural congruence, which is not to bad.

It is possible anyhow to remedy this little problem by adding a simple cell c of
arity and coarity 1 that checks if there is a wire or not. A cell α is encoded as a cell
αI,...,I(z1, . . . , zn) | c(a1, z1) | . . . | c(an, zn). If c meets a K cell, then it just disappears.
If not, then it must meet another c-cell. In which case, there interaction provides
exactly the encoding of the wire, meaning back-to-back K-cells with their wiring. In
order not to complicate the encoding, we do not use this strategy and just use the
encoding up-to-structural congruence making all simple wires explicit, using the wire

Concurrent Interaction Nets 117

χ χ

χχ
*

χ

χ

χ

χ

χ

χ

χ

χ

Figure 3.7: A simple divergent net.

equation of structural congruence (Def. 3.1.3) as a right-to-left rewriting rule. In the
absence of multirules, no change has to be made to the encoding, as in such a case
simple wires are encoded as simple wires.

Do we need χn for any n? From the results of Mazza [40] related in Chapter 1,
we can guess that in order to encode multiwire systems into simply wired multiport,
we will most certainly need a infinite language of cells. It might be possible to find
an encoding bypassing that problem, since Mazza’s result is only valid for encoding
that yield bisimilar embeddings. Our encoding does yield them. It does not mean we
cannot try to restrict the “amount of infinite cells”.

Generalized χ-cells can be avoided. In fact, they are nothing else than trees of
simple χ-cells.

Definition 3.4.4 (χ-tree). A χ-tree of root x is a net defined inductively as follows:
[x, z] is a χ-tree of root x; if X,X ′ are χ-trees of root a, a′, χ(x; a, a′) | X | X ′ is a
χ-tree of root x. The free ports of a χ-tree other than its root are called leaves; their
number is the arity of the tree.

We let the reader check that χ-trees behave like generalized χ-cells for both rules
above (the second being trivial since connecting the root of a tree to the leave of another
is a tree by definition). Later, when we also introduce κ-cells, we will authorize some
other structures to represent χ-trees. These cells act like plugs, so a tree that has some
leaves plugged by κ-cells still acts as a tree, just of smaller arity.

Divergence of fusion The reader might have notices that we stressed, during all
the discussion about fusion, that the wires should share at most one name. It is
compatible with the fusion equation of structural congruence (see Def. 3.1.3), which
is only valid in that case. Why is that?

Consider the reduction represented in Figure 3.7. It is a (growing in size) infinite
reduction. The net originating it appears when two comzones share two or more
extremities. Notice that this does not occur for K-zones, but it a property of χ-zones,
and thus of general communication zones.

118

Two comzones share two or more extremities when they are encodings of two
connectors that share two or more names. Lafont already considered them as vicious
(in the case of simple wires), as they are the simplest deadlock in Lafont nets. It is
interesting that this encoding treats (at least one kind of) deadlock as livelock.

Since the encoding of multiwires brings such problems, we could have worked up-
to structural congruence all the way. We could consider, for any net µ its expanded
form (see Definition 3.1.4). The translation of a net would be the translation of its
expanded form. This avoids divergence because of cyclic wires, avoids missing some
hidden simple wires, but would still not be a map from nets to nets, as the symmetries
of multiwires are still a problem. We would also loose homomorphism, even if we could
still argue that the parallel distribution is maintained.

3.4.3 Upgrade to multiport source language
If the source system is already multiport, we need to keep track of the splittings and
duplications of every principal port in cells. For this, we redefine the id to be a string
of ids, of length corresponding to the coarity of the cell.

Let S be a source language which is mpwr with K-rules at most and T the target
language which is mp.
Definition 3.4.5 (id of a cell, number of a port). Let K ∈ N. We call identification
of K-types (id) a string of the form W = Z1, . . . , Zn where for each i ≤ n, Zi is either
a string of (strictly positive) natural numbers ai1 : . . . : aiK , or I. In the first case,
|Zi| = ΣK

j=1aj, in the second case |I| = 1. Each Zi is called a type of the id.
Let N = Σn

i=1|Zi| (the sum of all integers in all substrings of the id). N is called
coarity of W .

For any p ≤ N , the type of p in W , denoted TW (p), is the least t ≤ n s.t. p ≤
Σt
j=1|Zj|. The number of i in W , denoted]W (i) is defined as follows:
• if ZTc(i) = I, then]c(i) = I;
• if ZTc(i) = a1 : . . . : aK , then]c(i) is the least k ≤ K s.t. p ≤ ΣTc(i)−1

j=1 |Zj|+Σk
j=1aj.

A cell c in T can be labeled αW iff coarity of c is equal to the coarity of W .
The type and number of a port i of c is defined as the type and number of i in W .
This technical definition is a complicated way of saying that given a port p of an

encoding of a cell labeled α, p belongs to the splitting of one of α’s principal ports.
That is p’s type (thus the special type I if unsplit). p is also one representative of a
rule number for that port. That is its number.

Let us consider a cell c of a target system, labeled α1:2,2:1,I,K . This means that
the original system had at most 2-rules (K = 2, i.e. each type in the id has size 2),
the original cell has coarity 4 (there are 4 types in the id) and that c has coarity
1 + 2 + 2 + 1 + 1 + K = 9. The types and numbers of its principal ports is given in

Concurrent Interaction Nets 119

Tc(1) = 1]c(1) = 1 First rule for first port
Tc(2) = Tc(3) = 1]c(2) =]c(3) = 2 Second rule for first port
Tc(4) = Tc(5) = 2]c(4) =]c(5) = 1 First rule for second port
Tc(6) = 2]c(6) = 2 Second rule for second port
Tc(7) = 3]c(1) = I (undefined) Not yet split third port
Tc(8) = 4]c(8) = 1 First rule for fourth port
Tc(9) = 4]c(9) = 2 Second rule for fourth port

Table 3.1: The detailed description the ports of a cell whose idis 1 : 2, 2 : 1, I,K.

the table on next page, along with what each of them is a representative of from the
point of view of α.

Given an active pair αsi ./β
t

j, where the i-th port of α has kind k1 and number n1
and the j-th port of β has kind k2 and number n2, there is a rule for it if and only if
n1 = n2 = n and there are at least n rules for αk1 ./ βk2 in the original system. The
RHS of the rule depends of course on both the number and the kinds involved and are
almost the translation of the original RHS, except that we have to take into account
the fact that some ports have been split and copied.

When the original cells have a unique principal port, their encodings can have them
split and duplicated. But as soon as one active pair c./c′ is reduced in the encoding, all
other copies of the principal ports of c, c′ become useless, since in the original system,
the two principal ports involved in the interaction “disappear”. Hence, it is sufficient
to send a cell on each of these copies that says: “hey, I’m useless here. So are you
now.” For this purpose we use κ-cells. They have one port, which is principal. Unlike
Lafont’s ε, they do not erase cells but the ports they are connected to.

One the other hand, when the original cells have several principal ports that can be
separately duplicated and split, the issue gets more complicated. If one copy interacts,
all ports of the same type become useless, as in the former case. But ports of different
type still represent ports that exists in the RHS of the rule, thus in the net resulting
from the interaction. And these ports are already split and duplicated in some manner.
If we just encode the RHS of the original rule as is, we get only unsplit and non-
duplicated ports. This does not fit the interface of the left-hand side. We thus need
to re-split and re-duplicate those translations of ports to end-up with the situation we
had before the interaction. For this, we use a special kind of trees, we call for now
comtrees. They have a root which is the principal port of a K-cell c. Each auxiliary
port of c is connected to the root of a tree of χ-cells. The free ports of the tree (all
auxiliary to some cell) are its leaves. The number of leaves is the arity of the tree.

Let us now consider a net µ of S which has an active pair αi ./βj and its encoding
ν. After reducing some active pair involving K and χ cells which belong to the
communications zones linking the image of the ports i of the α-cell and j of β-cell,
one obtains a net ν ′ which has an active pair αZp ./β

Z′

p′ where TZ(p) = i, TZ′(p′) = j

120

and]Z(p) =]Z′(p′) = k for some k.
The RHS for αi ./ βj is the net αi /k. βj. Its image by the encoding is a net, in

which each cell labeled ζ has been replaced by a cell labeled ζI,...,I , with a unique copy
of each principal port. Meanwhile, our active pair involves two cells where some of the
active ports have been split and duplicated. For each type Y in Z and Z ′, we consider
the comtree T :

• if Y = I, T is a simple wire;

• if Y = a1 : . . . : aK , T is a tree of root cell c labeled K and such that the χ-tree
attached to the k-th auxiliary port of it has arity ak.

Y = I

K

T1

. . .

TK

. . .

. . .

a1aK

Y = a1 : . . . : aK

In the encoding, the image of a port in the interface of the active pair is now a
certain amount of ports that can be determined by the corresponding type in Z or Z ′.
Depending on this type, we connect to the image of the RHS of the rule a comtree to
the image of that exact port. Each ports of type i in α and of type j in β receive a
κ-cell.

Let us consider that α and β have same coarity 3 and that their encodings meet
on ports of type 2 and number k. If the original k-th rule looked like this:

α

a1 a3

. . .

β

b1b3

. . .

αi /k. βj

. . .

. . .

a3a1

b1b3

then an “image rule” lools like this:

Concurrent Interaction Nets 121

αY1,Y2,Y3

. . .
y1

.
y3

. . .

βZ1,Z2,Z3

. . .
z1

.
z3

. . .

Jαi /k. βjK

. . .

. . .

T1..
.y1 T3 ..
. y3

T ′
1..

.z3 T ′
3 ..

. z1

κ κ

κ κ

. . .

. . .

where T1 is comtree corresponding to Y1, T3 t Y3, T ′1 to Z1 and T ′3 to Z3, while all ports
of Y2 and Z2 receive κ-cells.

3.4.4 Encoding general nets into multiport nets
We now formalize all these ideas. Let S = (ΣS , ./S ,OS) be an arbitrary interaction
net system. The only restriction we put is that all self-rules are symmetric. The case
of asymmetric self-rules will be dealt with in a following section. We will define a
simply wired INS S∗ and an encoding J·K of S into S∗ such that, for every net µ of S,
JµK is simply wired.

Let K be the maximal number of rules for all active pairs and Id the set of identifi-
cations of K-types (see Definition 3.4.5). For each n ∈ N, we denote by Idn the set of
identifications of Id which contain exactly n types (i.e. are composed of n K-types).
Given an id Z = a1

1 : . . . : a1
K , . . . , a

n
1 : . . . : anK of n K-types, we denote by Zi(k) the

k-th element of its i-th type, in other words aik. If the type is yet unsplit, then the
notation is undefined. In every case, the notation Zi represents the i-th type of Z.

Agents. The alphabet of S∗ is composed of three symbols K, χ and κ, of degree
K, 3 and 1, resp., and of a family of symbols (αZ)Z∈Idn for each symbol α ∈ |ΣS | of
degree n, the degree of αZ being the degree of Z. If K = 1 (simple rules), the K-cell is
replaced by a simple wire. Intuitively, a cell of the form αZ(x̃1, . . . , x̃n) will represent
an α cell whose principal ports are attached to connectors and might have been split
and duplicated. In other words, we “embed” the connectors and the multirule choice
in the cells themselves, modifying their degree if necessary.

K splits ports into K copies, each of same type as the original but of different
number. It can only do so for unsplit ports. If]Z(i) = I,

αZ(x1, . . . , xp, . . . , xn) | K(xp; a1, . . . , aK)→ αZ(x1, . . . , xp−1, a1, . . . , aK , xp+1, . . . , xn)

where Z is obtained from Z by replacing Zi by 1 : . . . : 1 (written K).
However, where K is a constant of S, the size of connectors changes dynamically

(it is even altered by structural equivalence), so there is no hope of using a fixed αZ

122

cell to encode a given α cell. The symbols χ and κ have precisely the purpose of
ensuring that the “multiplicities” of ports are updated during reduction. They both
have 1 principal port and interact with αZ cells as follows. Let p be a port of αZ of
type i and number k.

αZ(x1, . . . , xp, . . . , xn) | χ(xp; y, z)→ αZ
+(x1, . . . , xp−1, y, z, xp+1, . . . , xn)

where Z+ is the id obtained from Z by adding 1 to Zi(k) (a copy was made of a port
of type i and rule k). If Zi(k) ≥ 2,

αZ(x1, . . . , xp, . . . , xn) | κ(xp)→ αZ
−(x1, . . . , xp−1, xp+1, . . . , xn)

where Z− is the id obtained from Z by subtracting 1 to Zi(k) (a port of type i and
rule k has been deleted as it has become useless. At least one copy of such a port has
to remain, thus the condition).

Connectors. To encode connectors, we use an idea of Ehrhard and Laurent [16]
updated to include multirule translation.

Definition 3.4.6 (χ-tree, χ-zone, comnet). A χ-tree of root x is a net defined induc-
tively as follows: [x, z] is a χ-tree of root x and arity 1; κ(x) is a χ-tree of root x and
arity 0; if X1, X2 are χ-trees of root a1, a2, then χ(x; a1, a2) | X1 | X2 is a χ-tree of
root x. The free ports of a χ-tree other than its root are called leaves; their number
is the arity of the tree.

A χ-zone of order n ≥ 1 on ports x0, . . . , xn−1 is a net structurally congruent to a
net of the form

C0(x0; ã0) | . . . | Cn−1(xn−1; ãn−1) |
n−1∏

k=0

n−1∏
i=1

[aki , a
(k+i)modn
n−i]

where, for all 0 ≤ k ≤ n − 1, Ck(xk; ãk) is a χ-tree of root xk, arity n − 1 and leaves
ãk, and the sequences ak are pairwise disjoint. We write Zone(x0, . . . , xn−1) to denote
a generic χ-zone on x0, . . . , xn−1. The only χ-zone of order zero is the empty net.

A communication net (or comnet) of order n ≥ 1 on ports x1, . . . , xn is a net
structurally congruent to a net of the form

K(x1; ã1) | . . . | K(xn; ãn) | Zone(a1
1, . . . , a

n
1) | . . . | Zone(a1

K , . . . , a
n
K)

where the sequences ak haveK elements and are pairwise disjoint. We use the notation
Comm(x1, . . . , xn) to denote a generic comnet on x1, . . . , xn. Again, the only comnet of
order zero is the empty net.

Notice that the size of a comnet does not really depend on its arity. Consider a full
tree T of χ-cells of height m (by full we informally mean that every auxiliary port of

Concurrent Interaction Nets 123

C4

C4

C4

C4

C4

(a) A χ-zone of order 5

C

C′

. . .

. . .

m

n

−→∗
C′

. . . C′

C
. . .

C

. . .

. . .

. . .

. . .

m

n

(b) Reduction of χ-trees

χ

χ
κ

κ

χ

χ

κ κ

(c) χ-zone of
order 2

Figure 3.8: Some examples of nets and reductions in S∗.

a χ-cell that is not a leave of T is connected to the principal port of a χ-cell). It has
2m leaves (and 2m − 1 cells, so it can get pretty big fast). Connect a κ-cell to 2m − 1
of them. You get a χ-tree of arity 1. Use that to build a comnet of order 2 (two of
those and join their respective leaves together). Of course, when we are in control, we
will use χ-trees and comtrees with no κ-cells. We call those light trees. For instance,
the unique light χ-tree of order 1 is the simple wire.

Some particular cases can ease-up a little bit the readers indigestion. If K = 1,
then the K-cell is not a cell but a wire, and a communication zone is a single χ-zone.
We in fact fall into the mpw to mp encoding. Seemingly, if the original system is
simply wired, every χ-zone needs to be at most of order 1, so simple wires are good
enough. No need for χ-cells, and we get a quite natural mpr to mp encoding. In
both cases, starting with a system with simple cells leads to the encodings discussed
previously.

The behavior of comnets is governed by the following rules:

κ(a) | κ(a)→ 0,
κ(a) | χ(a; y, z)→ κ(x) | κ(y),

κ(a) | K(a;x1, . . . , xK)→ κ(x1) | . . . | κ(xK),
χ(a;w, x) | χ(a; y, z)→ χ(w; a, b) | χ(x; c, d) | χ(y; a, c) | χ(z; b, d),

χ(a;w, x) | K(a;x1, . . . , xK)→ K(w; z1, . . . , zK) | K(x; z′1, . . . , z′K)
| χ(x1; z1, z

′
1) | . . . | χ(xK ; zK , z′K)

K(a;x1, . . . , xK) | K(a; y1, . . . , yK)→ [x1, y1] | . . . | [xK , yK].

The 9 reduction steps introduced so far are called administrative, as are K,χ and κ

cells, and purely administrative reductions are denoted by →∗a. The following result
is a tedious but straightforward verification. The second part uses the first.
Lemma 3.4.7.

124

1. χ-trees reduce through →∗a as in 3.8(b).

2. For all symbols αY , βZ of S∗ of degree at least 1 and for all n ∈ N, we have that

αY (. . . a0 . . .) |
n∏
i=1

Comm(ai−1, ai . . .) | βZ(. . . an . . .)

→∗a αY
′(. . . a . . .) | βZ′(. . . a . . .) | ν

for some net ν and some identifications Y ′, Z ′.

It is sufficient for a path that goes through comzones to exist between two principal
ports to be able to create an active pair between the two in the future. And this,
unregarding of the geometry of the comzones: they might even be divergent (in the
sense of paragraph 3.4.2).

The encoding, and its validity. We are ready to define the encoding:

Jα(x̃)K = αI,...,I(x̃), J0K = 0,
J[x̃]K = Comm(x̃), Jµ | νK = JµK | JνK.

Since there are infinitely many comnets of any given order, the encoding is actually
a relation. For simplicity, we will abusively denote by JµK any net in the image of µ
through such a relation. Indeed, any of them faithfully encodes µ. It is obvious that
fp(JµK) = fp(µ) and that JµK is simply wired (because comnets are simply wired).

As we can see, the image of a cell has a unique copy of each of the cells ports.
Because of administrative steps, this number can later vary. For any K-type Z, we
need to be able to transform a port of type I into one of type Z. For this, we define
another special kind of tree.

Definition 3.4.8 (type-tree). A type-tree of root x is a net structurally congruent to
a net of the form

K(a, x1, . . . , xK) | X1(x1; z̃1) | . . . | XK(xK , z̃K)

where for any 1 ≤ k ≤ K, Xk is a χ-tree.
It is a type-tree for Z if Z = a1 : . . . : aK and for each 1 ≤ k ≤ K, Xk has arity ak.

The type tree for I is a simple wire.

We may now go on with the definition of S∗ and give its non-administrative inter-
action rules. Let α, β ∈ |ΣS | or respective arities m,n be s.t. αi /k. βj is defined. We
denote by κ(ã) the net containing all κ(ai), ai ∈ ã. For any Y = Y1, . . . , Ym ∈ Idm
and Z = Z1, . . . , Zn ∈ Idn, for any p, q such that TY (p) = i, TZ(q) = j and

Concurrent Interaction Nets 125

]Y (p) =]Z(q) = k we set

αY (x1, . . . , xp, . . . , xm) | βZ(y1, . . . , yq, . . . , yn)→
Jαi /k. βjK{ã/p̃, b̃/q̃} |

∏
l 6=i
T Yl(al; x̃l) |

∏
l 6=j
TZl(bl; ỹl) | κ(ãi) | κ(b̃j′),

whenever xp = yq, where T Yl , TZl are type-trees for l-th type of Y and Z resp. The
intuition is that as soon as a “copy” of port i of (the encoding of) an α cell is connected
to a “copy” of port j of a β cell, the interaction αiβj is simulated through the encoding,
and administrative cells are introduced to perform the necessary bookkeeping. In
particular, κ cells are dispatched to all the remaining “copies” of port i of α and j of
β, which are no longer necessary. Of course, to actually define the rule, we need to
fix a representative of Jαi /k. βjK and the comtrees T Yl , TZl , the actual choice being
irrelevant. We can still add the condition that the choices we make for comzones and
χ-trees all use light trees. It is a simple complexity choice, unnecessary, but it ensures
at least one nice result:
Proposition 3.4.9 (Useless theorem). If S is a mp system (i.e. with simple wires and
simple rules) and the encoding from S to S∗ only uses light trees, then S∗ = S where
(useless) I, . . . , I identifications have been added to all labels.

Proof. The K-cell being in fact a simple wire, as is the only light χ-tree of order one,
each wire (which is simple) is translated into a list of two-by-two connected simple
wires which is structurally congruent to a simple wire. No K nor χ-cells, so each
αI,...,I cells stays as is is until real interaction, so no other id is ever needed. It is
sufficient to relabel them α.

The name of the proposition is justified by the fact that we are not interested at
all by encoding a system into itself. It is nice anyhow to stress that our encoding is so
faithful that is does not modify what need not be.

The specification of the mp system S∗ is completed by declaring that a non-
administrative reduction is observable as soon as the corresponding reduction of S
is. The reader may check that no reduction rule of S∗ introduces connectors of order
other than 2, so S∗ is simply wired.

One of the main tools we use to show equivalences is the fundamental determinacy
of some of its cells and interactions, namely administrative ones. Determinacy is here
understood as some local confluence.

As we have mentioned, all χ-trees of same arity are congruent. We have not proved
so yet, but we need to express that two nets only differ by some χ-trees.
Definition 3.4.10. Let ∼t be the smallest congruence on nets containing structural
congruence and such that T ∼t T

′ for all χ-trees T, T ′ of equal arity with same root
and leaves.

For instance, for any type Y , all type-trees for Y are ∼t.

126

Lemma 3.4.11 (Determinacy of administration). Let µ be a net of S∗ s.t. µ →a µ1
and µ→ µ2. Then there are two reductions µ1 →∗ ν1 and µ2 →∗ ν2 such that ν1 ∼t ν2.
Moreover,

• if both initial interactions are administrative, then ν1 = ν2, µ1 →∗ ν1 and µ2 →∗
ν2 have same length which is 0 or 1.

• if µ → µ2 is non-administrative and the two active pairs share a cell, then
µ1 →∗ ν1 has length 1 and is non-administrative while µ2 →∗ ν2 has length 0.

Proof. If the two reductions do not share cells, then the result is immediate. All
administrative cells have one principal port, so for two active pairs to share a cell,
that one has to be non-administrative. The “only” cases remained to study are the
following:

1. αZ

κ κ

2. αZ

κ χ

3. αZ

κ K

4. αZ

χ χ

5. αZ

χ K

6. αZ

K K

7. αZ

αZκ

8. αZ

αZ
χ

9. αZ

αZK

Of course, not every id Z fits for every reduction, even if the id is of correct size.
For instance, in case 1, for both reductions to be triggable, the type and number
of each port connected to the κ-cells has to contain at least two copies. In almost
each case, some special subcases occur. Again in 1, if both involved ports belong to
the same type and number, then the two interactions already result in the same net
µ1 = µ2 (it is actually the only situation of the first kind when the second reductions
have length 0). In general, in any of the cases 1 through 6, the reductions can be
considered almost independent: reducing one active pair maintains the other one, in
which the non-administrative cell has been replaces by an αZ

′ cell for some Z ′, on
which a reduction can still be applied, bearing the desired result.

The important cases are the last three ones, that are all similar. Let us call
c, d the non-administrative cell and a the administrative one connected to c. The
administrative reduction transforms the id of the cell c in exactly one type Zi ∈ Z

which becomes Z ′i. The new cell c′ is still connected to the other non-administrative
cell; reducing it produces a type-tree for Z ′i. On the other hand, the non-administrative
step reduces to a net in which a is connected to a leave of a type-tree for Zi. If a is a
κ or a χ-cell, then the type-tree for Zi along with cell a form a type-tree for Z ′i, not
necessarily the one chose for the encoding, but ∼t, thus the result. If a is a K-cell,
then, even better: µ1 reduces directly to µ2, since Zi = I, Z ′i = K, so Z ′is type-tree is
exactly a K-cell.

Concurrent Interaction Nets 127

To understand ∼t a little better, we need to understand interactions between χ-
trees and arbitrary cells.

Lemma 3.4.12. Let c be any cell and p one of its principal ports, and let T, T ′ be
any two χ-trees of arity k. Let us consider full reductions of c | T (p, ũ) →∗ µ and
c | T ′(p, ũ)→∗ ν. Then µ ∼t ν.

Proof. In fact:

• If c is a κ-cell, then c | T (p; ũ)→∗ κ(ũ) and c | T ′(p; ũ)→∗ κ(ũ);

• If c is a χ or K cell, and c | T (p; ũ) fully reduced to some net µ, then c | T ′(p; ũ)
reduces to the net ν, which is µ with each copy of T replaced by T ′ (so µ ∼t ν);

• If c is a non-administrative cell of label αZ , then p is of a certain type t and of
certain number n in Z (otherwise, if p is unsplit, the reduction cannot take place
and the result is trivial, except if K = 1, which brings us back to the same case).
Let l be the value of type t and number n in Z. Then µ = ν = αZ

′{ũ/p} where
Z ′ is Z in which the value l has been replaced by l + k.

The only particularity might arise when the considered trees have arity 1, since
then one of T, T ′ might be a simple wire, which can be a little awkward. It is because
of that situation that ∼t is not yet a barbed bisimulation.

Lemma 3.4.13. Let ∼a be the smallest congruence on nets containing ∼t and such
that µ ∼a µ

′ for all µ→∗a µ′.
Then ∼a is a barbed bisimulation. Moreover, µ ∼a ν and µ →∗ µ′ by a reduction

containing n non-administrative steps implies ν →∗ ν ′ ∼a µ′ also by a reduction
containing n non-administrative steps.

Proof. Note that, by symmetry of ∼a, it is enough to show that it is a simulation.
The key observation is that µ ∼a ν implies that there is a one-to-one correspondence
between non-administrative cells of µ and ν, and that a non-administrative (αY , βZ)-
active pair in µ yields in ν the presence of two cells αY ′ and βZ′ connected by a path
composed of χ and K-cells, which may be reduced to perform the simulation.

Note that Lemma 3.4.13 implies that µ 'c
S∗ ν as soon as µ ∼a ν, which is quite

useful.

Theorem 3.4.14. For every net µ of S, we have:

• µ→∗ µ′ implies JµK→∗'c
S∗ Jµ′K;

• JµK→∗ ν implies that there exists µ′ s.t. µ→∗ µ′ and ν →∗'c
S∗ Jµ′K.

128

Proof. Completeness is a consequence of 3.4.7 and of the fact that µ ≡ µ′ in S implies
JµK 'c

S∗ Jµ′K, which follows immediately from Lemma 3.4.13. For what concerns
soundness, we prove it by induction on the number of non-administrative steps in the
reduction JµK →∗ ν, using the second part of Lemma 3.4.13 in a similar way to how
we used 3.2.3 in the proof of soundness for 3.2.5.

Theorem 3.4.15. For every net µ of S, µ S
�≈S∗ JµK.

Proof. The relation {(µ, ν) ∈ S ×S∗ ; ν ∼a JµK} is an (S,S∗)-barbed bisimulation. In
complement to the homomorphism of the encoding, it proves the theorem.

Combined with this theorem, lemma 3.4.13 says that the simulation of a reduction
in S∗ has as many non-administrative step as the original reductions had steps in
general. Therefore, divergence can only occur from administrative interactions. Con-
sidering a size of a net to be a pair composed of, first the quantity of χ and K-cells in
a net, and second the quantity of κ-cells, we can see the only administrative rule that
does not strictly decrease the size is the rule for χ./χ. And in fact, it is possible to
build a simple net composed of χ-cells that diverges using this rule only (see p. 117).
In encodings, such a net occurs, and it is only the case when two communication zones
share more than one port (or a communication zone is degenerate Comm(a, a, b̃).
Theorem 3.4.16 (Divergence of the encoding). For any net µ ∈ S, JµK has an infinite
reduction iff one at least of the following holds:
• µ has an infinite reduction;
• µ→∗ ν and ν has a vicious connector.
In fact, if it wasn’t for this divergent encoding of wires that share more than

one name, we could consider a structural congruence equation for wires of the form
[ã] | [b̃] ≡ [ã ∪ b̃] as soon as ã ∩ b̃ 6= ∅, slightly more elegant. Anyhow, the refinement
of simple wires is only made stronger by this: they are powerful, and sensitive to
short-circuits.

In short, the encoding does not introduce divergence: JµK diverges only if µ diverges
in the sense of 3.1.8, i.e. it generates an infinite reduction or a vicious connector. We
understand it is debatable that the presence of a vicious connector should be considered
as divergence. The fact alone of controlling when the encoding diverges, and that is
does so only for very administrative reasons is, we believe, an argument in favor of
this encoding.

3.5 Multiwires can express rule ambiguity
In our encoding of general interaction nets into mp, we did not take into account
asymmetric reflexive rules as they have a very particular way of bringing ambiguity.
Consider the simple example below composed of a unique cell r with arity and coarity
1 and a single non-symmetric rule:

Concurrent Interaction Nets 129

r

r

r(a; x) | r(a; y) → r(x; y)

r

It encompasses its symmetric result r(a; y) | r(a;x)→ r(y;x). If simply considered
as two different rules, its encoding in mp would go like this:

r

r

rI

2

rI

2

r1:1

r1:1

rI

rI

The last two interactions shown in the picture represent the two versions of the
asymmetric reflexive rule. But as pure multiport rules, they are each non-symmetric
as well, and there is no way to actually define the two rules to make sure the two issues
come out. As asymmetric rules, they could both lead to an r-cell pointing north.

We did not insist on that problem in the previous section, since it complicates an
already complicated encoding. Also, we deal very specifically with it in this section
that is divided in three parts. First, we show that the only multirule that is necessary
for expressing all multirules is in fact the one shown above. It has a non reflexive
version that can be used in case the original multirule system has no self-rule and one
wishes to keep this property by encoding. This way, we mostly get rid of multirules.
Then we use a translation of this special asymmetric rule to encode mr into mw (we let
the reader imagine how the versions with no-self rules can be applied). The extension
of that encoding to an encoding from mwr to mw is then straightforward. Finally we
discuss how to use this to really encode multirules into multiports.

3.5.1 One multirule to rule them all
The first result has already been noticed by Alexiev ([1]), in a weaker form. He shows
that it is possible to get rid of multirules that are not reflexive. For this, he encodes a
wire into a net that randomly choses a k ∈ {1, . . . , K} that decides in some sense which
rule should be used. This net uses deterministic rules and one asymmetric reflexive
one. A little problem of this net is that it is not symmetric itself, so Alexiev settle for
an ordering of labels in order for the encoding to decide in which direction to encode

130

each wire, a little like comzones. Since it is possible to avoid this inconvenience, let us
show how.

We take this observation of his to a next level. It is possible to get rid of all
multirules, even asymmetric reflexive ones, using a unique asymmetric reflexive rule
on a simple cell, shown in introduction of the section. Even better, if the original
system has no self-rules, it is possible to do the same trick, using a unique non-self-
pair that has two rules, all other rules being simple.

In presence of reflexive rules

Let r be a cell of arity and coarity 1, with its reflexive rules

r(a;x) | r(a; y)→ r(x; y)

Theorem 3.5.1 (Multirule systems are almost Lafont-nets). Let S be a multirule
system. Then there is another multirule system S∗ that contains the cell r, s.t. S∗ is
a valid encoding of S and the unique multirule of S∗ is the asymmetric self-rule for r.

Proof. Basically, we build, for every K ∈ N, a net K with two free ports x, y, that
reduces, for any 1 ≤ k ≤ K, to a net Rk pointing towards x or y. So the net K by
itself has 2K normal forms.

The nets Rk are composed of a chain of r cells, connected back to front:

• R0 is a wire;

• R1(a, b) ≡ r(a, b);

• Rk(a, b) ≡ Rk−1(a, x) | r(x, b).

Fact (a). K ≡ RK(a, x) | RK(a, y) can reduce to Rk(x, y) and Rk(y, x) for any 1 ≤
k ≤ K. Moreover, during the reduction, before it has reached one of these (normal)
forms, both its free ports are auxiliary ports of an r cell, and therefore cannot interact
with the environment.

K ≡ r r. . . r r. . .

Proof. For any k, l ≤ 1, Rk(a, x) | Rl(a, y) can reduce in one step
to one of Rk−1(a, x) | Rl(a, y) or Rk(a, x) | Rl−1(a, y), both with
auxiliary ports in the interface except if one of l or k equals 1, in
which case one of the normal forms has been reached.

For every cell label α in S, there is in S∗ a family of cells {αi}0≤i≤K with same
arity as α. They behave like counters:

∀0 ≤ k ≤ K − 1, αk(a; z̃) | r(a; b)→ αk+1(b; z̃).

Concurrent Interaction Nets 131

Fact(b). α0(a; z̃) | K(a, b) | β0(b, z̃′) reduces either to αk(c; z̃) | β0(c; z̃′) or to α0(c; z̃) |
βk(c; z̃′) for some k ∈ {1, . . . , K}.

What is an asymmetric reflexive rule? It is rule on a net of the form α(a, z̃) | α(a, z̃′)
such that the result is not symmetric w.r.t. z̃, z̃′:

α / .α{z̃/z̃′} 6≡ α / .α.

This means it is possible to consider each of those as oriented towards z̃ or towards
z̃′. So if we in some sense manage to transform each active pair α./α into an active
pair α ./ α′, transforming one only of the two cells labeled α into a cell labeled α′,
and consider the rule for α ./ α′ as the rule for α ./ α oriented toward the “second”
cell α, we transposed the asymmetry from the rule to a pre-choice. We denote the
choice “towards the first cell” by

←−−−−
α / .α′ and the other choice

−−−−→
α / .α′. For symmetric

self-rules or non reflexive rules, we can consider both oriented rules to be the same.
We have seen in Fact (b) that we are able to “asymmetricize” a reflexive active pair,
in a non deterministic way, in the case α = β.

Whatever the encoding will be we can already give the translation of the oriented
versions of rules:

αk(a, ỹ) | β0(a, z̃)→ J←−−−−α /k. βK
if there is a rule k for α./β in S, and

αk(a, ỹ) | β0(a, z̃)→ J←−−−−−α /K. βK

otherwise (any predetermined choice would do). It is observable in S∗ iff the k-th rule
for α./β is observable in S (or the K-th in the second case).

For the encoding, we could just transform each cell α into a cell α0 preceded on its
principal port by a RK net. But such a solution could start a choice of rule process
between two cells that have no rule at all.

Instead, the encoding of a cell α is composed of a cell α′ of arity ar(α) + 2, and a
net RK :

α

. . .

= α′

. . .

RK

If α./β has at least one rule in S, the rule for α′ ./β′ is:

132

α′

. . .

β′

. . .

α0

. . .

β0

. . .

In this way, if we are sure α, β can interact, we fall into the situation we wanted.
And only in that case. Notice also that this rule is simple, even when α = β.

Lemma 3.5.2. This encoding is valid.

Proof. Compositionality is completely met. Name invariance is un-
doubtful. Operational correspondence is given by Fact (b). Diver-
gence reflexion is not in question. Barbs are the same for a net and
its encoding.

This concludes the proof of the theorem.

If the rules are not reflexive

The exact same strategy can be applied avoiding self-rules by differentiating two kinds
of r-cells, in the way Lafont creates oriented combinators [33]. Let us consider two
cells r and s of arity and coarity 1. The two rules that govern them are:

r(a;x) | s(a; y)→ r(y;x)
r(a;x) | s(a; y)→ s(x; y) r s

r

s

We now consider the nets Rk and Sk to be composed of chains of r and s cells
respectively, connected back to front:

• R0 is a wire;
• R1(a, b) ≡ r(a, b);
• Rk(a, b) ≡ Rk−1(a, x) | r(x, b).

• S0 is a wire;

• S1(a, b) ≡ s(a, b);

• Sk(a, b) ≡ Sk−1(a, x) | s(x, b).

Fact (a’). K ≡ RK(a, x) | SK(a, y) can reduce to Rk(y, x) and Sk(x, y) for any 1 ≤
k ≤ K. Moreover, during the reduction, before it has reached one of these (normal)
forms, both its free ports are auxiliary ports, and therefore cannot interact with the
environment.

Concurrent Interaction Nets 133

Let us now consider a multirule system S with no self-rules. We can order its
alphabet without any loss of generality, so we can consider the labels to be α1, . . . , αn.
The translation of a cell αi is given by a cell αi or arity ar(αi) + 4 and two nets, RK

and SK :

αi

. . .

 α′
i

. . .

RKSK

Suppose now i < j, then the interaction of αi with αj will pick for the first the net
RK and second the net SK , sending some erasors on the ports of the unused net:

α′
i

. . .

α′
j

. . .

α0
i

. . .
ε ε

α0
j

. . .
εε

3.5.2 Encoding the asymmetric rule using multiwires
We will use this result on multirules for our translation from mwr to mw. We encode
the r ./ r rule of the previous section by a symmetric rule that uses multiwires. It
is not complicated, and it reveals an interesting (and fashionable) point of view on
non-determinism in calculation2.

How can we brake the symmetry of an encoding of r(a, x) | r(a, y) to favor either
x or y? We do not really. What we do instead is that we superpose the two possible
outcomes in one net, and let the environment decide.

Let us consider a cell qb of arity and coarity 1 in a system with multiwires. The
only reflexive rule for qb is

qb(a;x) | qb(a; y)→ qb(b; c) | [b, c, x, y]

Let S be a source language which is mr and T the target language which is mw.
Let K be the maximum number of rules for an active pair, considering that the two
versions of an asymmetric self-rule count as one.

2We will not pronounce The Word, as we do not develop in any sense that metaphor in this work
and would not like an automatic referencing to suggest that we do.

134

Along with the new cell qb, for every α ∈ S, there is a α′ ∈ T which has arity
ar(α) + 2 and a family α0, . . . , αK which have the same arity as α.

Again, we define some special nets. For every k ∈ N,

Rk(a, x) ≡ qb(a;x1) | qb(x1;x2) . . . | qb(xk−1;x)

is a chain of qb-cells (meaning a wire if k = 0), and, for every k ∈ N∗

R
k(a, x) ≡ [a, y, z, x1] | qb(y, z) | qb(x1, x2) . . . | qb(xk−1, x)

is a chain of qb-cells with a qb-cell connected by its both ports to the head of the chain
(S1(a, x) is just a qb-cell with its auxiliary and principal port connected on a same
connector).

Encoding a cell α looks exactly like the previous encoding:

Jα(a; z̃)K = α′(a; s, t, z̃) | RK(t, s)

Wires stay wires.
The administrative rules also look alike:

α′(a;x, x′, x̃) | β′(a; y, y′, ỹ)→ α0(x′, x̃) | β0(y′, ỹ) | [x, y] if α./β has a rule in S
αk(a, x̃) | qb(a, b)→ αk+1(b, x̃)
qb(a, x) | qb(a, y)→ qb(b, c) | [b, c, x, y]

Lemma 3.5.3. Let K(a, b) be the symmetric net RK(x, a) | RK(x, b) (with both ports
of the interface auxiliary). Then, for any 1 ≤ k ≤ K, K(a, b) reduces to Rk(a, b) or
to Rk(b, a). These are the only reductions of K(a, b) for which one of the ports of the
interface is principal (both iff k = 1).

Proof. The proof is by induction. We do not give it in detail. In the following, we
denote by Qb(a, a′) a net structurally congruent to [a, a′, s, t] | qb(s, t). The first step
of reduction of K(a, b) leads to the nets

RK−1(x, a) | Qb(x, y) | RK−1(y, b)

which corresponds to the first step of the induction if K = 1. Then, for every k, l ≤
K − 1, Rk(x, a) | Qb(x, y) | Rl(y, b) has two possible reductions:

Rk−1(x, a) | Qb(x, y) | Rl(y, b)
Rk(x, a) | Qb(x, y) | Rl−1(y, b)

which interfaces are auxiliary. So the reductions of the net are defined by pairs of
(k, l) decreasing one coordinate at the time. Until one of k, l becomes 0, which is a

Concurrent Interaction Nets 135

case given by the lemma.

We can see that this looks like the simulation of asymmetric rules given in the
previous section. The difference is that here, when K(a, b) reaches one of the forms
Sk(a, b) or Sk(b, a), it is not normal and can go on decreasing to Sk−1(a, b) or Sk−1(b, a)
until it reaches Qb(a, b) (in both cases). But all these cases fall in the conclusion of
the lemma.

Lemma 3.5.4. Let Act ≡ α0(a, x̃) | RK(s, a) | RK(t, b) | β0(b, ỹ). Then all possible
reductions reach one of

• αk(a, x̃) | β0(a, ỹ) for some 1 ≤ k ≤ K;

• α0(a, x̃) | βk(a, ỹ) for some 1 ≤ k ≤ K;

Proof. We proceed by pieces. Thanks to Lemma 3.5.3, we have that Act necessarily
reduces to a net of the form, for some 1 ≤ k ≤ K:

α0(a, x̃) | Sk(a, b) | β0(b, ỹ)

or
α0(a, x̃) | Sk(b, a) | β0(b, ỹ).

Fact (1). Let P k(b, x̃) ≡ α0(a; x̃) | Sk(a, b). Then all possible reductions of P neces-
sarily reach one of:

• L(b, x̃) ≡ α0(a; x̃) | Qb(a, b);
• W l(b, x̃) ≡ αl(b; x̃) for some l ≤ k.

These are the only cases when b is principal.

Proof. Two possibilities only for P k:
• either reducing the active pair α0 ./qb leading to a net α1(a; x̃) |
Rk−1(a, b) which deterministically leads to αk(b, x̃) = W k(b, x̃);
• or the only active pair qb./qb, which leads to P k−1(b, x̃).

Reiterating this choice as long as the second one is chosen proves the
fact, P 1(b, x̃) being exactly L(b, x̃).

Fact (1) says that in a net α0(a, x̃) | Sk(a, b) | β0(b, ỹ), no interaction is possible
on β0 unless the left part of the net hasn’t reached α0(a, x̃) | Qb(a, b), which has two
reductions:

α1(a, x̃) | β0(a, ỹ) or α0(a, x̃) | β1(a, ỹ).

This finishes the proof of the lemma.

136

We can now give the last set of rules, which actually encode the rules of S.
If α 6= β:

αk(a; x̃) | β0(a; ỹ) ↘
α0(a; x̃) | βk(a; ỹ) ↗ Jα /k. βK

Otherwise:

αk(a; x̃) | α0(a; ỹ)→ ←−−−−−−−−−−−−−α(a; x̃) /k. α(a; ỹ)

α0(a; x̃) | αk(a; ỹ)→ −−−−−−−−−−−−−→α(a; x̃) /k. α(a; ỹ)

For exactly the same reasons as in the previous section,

Lemma 3.5.5. This encoding is valid.

Moreover, it we allow multiwires in the original system S, the encoding is still
valid. We indeed made sure that a simulation is triggered if at least a rule can be
applied. So this translation actually gives us an encoding from mwr to mw, where
connectors are encoded as connectors.

It is simple to apply the second result of Section 3.5.1 (p. 132) by using two cells
r, s along with qb to get rid of non-reflexive rules with only non-reflexive rules. The
only rule for r ./ s yields a qb-cell which can both interact with r and s in a unique
way, providing in this way a translation form a self-rule-free multirule system to a
self-rule-free multiwire system.

Notice that if the original system has no multirule, then we have to consider K =
0 (K = 1 means all active pairs have one rule only, but some self-rule might be
asymmetric).

3.5.3 What about multiports?

It is possible to encode the reflexive r-cell into a multiport cell and proceed with the
exact same schema to encode multirules. We prefer to complete the encoding from
general interaction nets to strictly multiport ones given in Section 3.4 by showing how
to encode asymmetric self-rules in it. Interestingly, the solution gives us a hint on how
to separate multiports from multiwires (see Section 3.7).

We need to brake the symmetry. As we have seen, our encoding duplicates ports
but does not brake the symmetry. Let us consider a system that has a cell which has
only one asymmetric reflexive rule, and the following encoding:

Jα(a; x̃)K = α2(a′, a′′; x̃) | γ(a; a′, a′′).

γ is nothing more that Lafont γ-cell:

γ(a, x1, x2) | γ(a, y1, y2)→ [x1, y2] | [y1, x2].

Concurrent Interaction Nets 137

This give us the following encoding for the active pair α/α:

α

. . .

γ

α
. . .

γ

α

. . .

α
. . .

which can reduce in two ways, depending on which active pair is considered. And in
a completely deterministic way, since the active pairs are now not reflexive.

We now fit this in the multiport framework by transposing what we did with the
multiwire translation. Multiport cells now have extra three auxiliary ports, on which
we plug the γ-cell as shown in the following picture. We do not give the detail of the
encoding, but just show how the simulation works, only in the case of simulating a
symmetric rule: αi ./ αj where TV (i) = TW (j). Once the communication zone has
created the active pair between the two ports of same type representing a same rule –
the maybe asymmetric self-rule – the simulation continues like this:

alphaV

. . .

.

alphaW

. . .

.

γ

γ

alphaV +

. . .

.

alphaW +

. . .

.

γ

γ

γ

γ

alphaV +

. . .

.

alphaW +

. . .

.

γ

γ

A new γ-cell is created by reduction in case another symmetric active pair would
want to get a try at being simulated. At the end, we get the asymmetric look we are
looking for. Of course the ids V + and W+ have to reflect what those two new ports
mean, so in general identifications have to be changed a bit, and all encoding cells
should now come with this extra γ-cells. There is some technical work to be done to
make sure these additions do not change the result.

3.6 Multirules alone do not give concurrency
In the following, we fix an arbitrary INS S.

138

Definition 3.6.1 (Must observability). A port x is said to be must-observable in the
net µ if, for all µ′ s.t. µ→∗ µ′, we have µ′⇓x . In that case, we write µ W x.

Observe that, by definition, must observability is preserved by reduction.

Lemma 3.6.2. Let x be a port and let µ ≡ µ′ | α(y; z̃) be a net of S, with y 6= x,
y ∈ fp(µ). Then, µ W x iff µ′ W x.

Proof. The cell α(y; z̃) may react only on y, but y is free, so the cell does not participate
in any reduction of µ.

For technical reasons, we introduce the following restricted notion of barbed bisim-
ulation:

Definition 3.6.3 (x-bisimulation). Let x be a port. An x-bisimulation is a binary
relation B on nets of S such that, whenever B(µ, ν), µ↓x implies ν⇓x and ν↓x implies
µ⇓x , plus the usual reduction properties required by barbed bisimulations (last two
points of Definition 3.1.10).

In other words, an x-bisimulation is a usual barbed bisimulation in which we con-
tent ourselves with simulating barbs on x only.

Lemma 3.6.4. Let B be an x-bisimulation, and let B(µ, ν). Then, µ W x iff ν W x.

Proof. Immediate.

Lemma 3.6.5. Suppose that S is uniport and simply-wired, and let µ be a simply-
wired net of S such that µ W x. Then, for every simply-wired net ν such that x 6∈ fp(ν),
(µ | ν) W x.

Proof. By definition, OS 6= ∅, so let (α, 1, β, 1, k) ∈ OS . Let ỹ be a repetition-free
sequence not containing x, of length equal to the number of auxiliary ports of α, and
consider the relation

B = {(µ | ν, α(x; ỹ)) ; µ, ν simply-wired, µ W x, x 6∈ fp(ν)}.

We claim that B is an x-bisimulation. Let (µ | ν, α(x; ỹ)) ∈ B. First of all, µ W x implies
µ⇓x which implies (µ | ν)⇓x , and by hypothesis α(x; ỹ)↓x, so the first two properties
are met. Since α(x; ỹ) does not reduce, it is enough to show how α(x; ỹ) simulates a
reduction µ | ν → ρ. Such a reduction necessarily comes from an active pair φ. If φ
is entirely contained in µ or ν, the definition of B allows us to conclude immediately.
So we suppose that φ is an active pair created by the juxtaposition of µ and ν, i.e.,
we may assume that

µ ≡ µ′ | β(z; t̃),
ν ≡ γ(z; s̃) | ν ′,

Concurrent Interaction Nets 139

with z free both in µ and ν, because both nets are simply-wired. Then, if ρ′ is either
β1/k.γ1{t̃/p̃, ũ/q̃} or γ1/k.β1{ũ/p̃, t̃/q̃} (for some irrelevant k), we have ρ = µ′ | ρ′ | ν ′.
But by Lemma 3.6.2, µ′ W x, so (ρ, α(x; ỹ)) ∈ B by definition of B.

Now, obviously α(x; ỹ) W x (as already observed, we have α(x; ỹ)↓x and the net does
not reduce), so we may conclude by Lemma 3.6.4.

Lemma 3.6.5 is false in presence of multiwires or multiports. For instance, consider
an INS in which there are two symbols α, β, of degree 1 and 2, respectively, with the
following interaction rule (which is observable, since it is the only one):

α(x) | β(x; y)→ α(y).

If we set µ = α(x) | [x, y, z], we obviously have µ W y and µ W z. However, for example,
although still observable, z is no longer must-observable in µ | β(y; s), because µ |
β(y; s)→ α(s) | [z], in which there is no way to observe z. Similar examples may be
built with multiports.

Theorem 3.6.6. There exists an INS S which cannot be translated into any simply-
wired, uniport INS T using only simply-wired nets.

Proof. Take as S the system defined above, in which we allow nets containing multi-
wires, and suppose there exists a translation J·K into a simply-wired, uniport INS T
whose image consists of simply-wired nets only. Let µ = α(x) | [x, y, z]. Since µ �≈ JµK,
we must have JµK W z. Consider now the net ρ = µ | β(y; s). By the homomorphism
property, JρK = JµK | Jβ(y; s)K. By port preservation, x 6∈ fp(Jβ(y; s)K), so we may
apply Lemma 3.6.5 (all nets in the image of the translation are simply wired) and infer
that JρK W z. But we saw above that we do not have ρ W z, contradicting the fact that
ρ
�≈ JρK.

As already mentioned, although the system S used in the proof is uniport and uses
multiwires, there is no difficulty in finding a simply-wired but multiport system S ′ for
which Theorem 3.6.6 holds (with basically the same proof).

3.7 Comparing multiport and multiwire concurrency
We have seen until now two encoding results. We know that multiwires can absorb
multiple rules and that cells with multiple principal ports are capable of absorbing
both multirules (by splitting ports) and connectors (by duplicating ports). We have
seen, on the other hand, that mp and mwr induce the same conflict graphs, so it
might be possible to encode the first in the second. After all, those multiports seem to
be exactly fit for a combination of multirules and connectors. Can they do anything
more?

140

The last part of the previous section about encoding asymmetric reflexive rules into
multiports surprisingly brings us an answer. We will not be able to respond entirely
by the negative to this question, but we will see that even if such an encoding existed,
it would be problematic. The section is dedicated to the following result:

There exists a self-rule-free mp system S which cannot be translated into
any self-rule-free mwr system without introducing divergence.

The proof is based on the election problem, in a version very close to Palamidessi’s
result from [45]. Let us suppose we have an encoding from mp to mwr.

Let us consider the following mp system S. Its alphabet has two symbols: α of
coarity 2 and arity 1; υ of coarity and arity 1. S has two observable rules:

α1(a, s; y) | α2(a, t; z)→ υ(y; s) | [t, z]

and any rule for υ1 ./ υ1. The idea is that when two α cells “meet”, one on its first
principal port, the other on its second, the one which interacts on the first “wins the
election”. The victory is represented by the fact that its auxiliary port becomes prin-
cipal to a υ cell, which is observable by otherwise useless rule for υ1 ./υ1. Graphically:

α

α

υ

In that system, we consider the net

f = α(a, b;x) | α(b, a; y).

It has interface x, y, but no immediately observable ports, even though both ports
of its interface are weakly observable. Indeed, whatever is connected to x or y, no
interreductions are possible, but each of the two internal interactions makes one of
x, y observable. The two possible internal reductions are

f
↗
↘

υ(x; y) = µx

υ(y;x) = µy

α

α

υ

υ

Nets µx and µy look alike but have opposite observational values: µx↓x but µx 6⇓y
whereas µy↓y but µy 6⇓x . Moreover, and it is important, µx and µy cannot reduce any

Concurrent Interaction Nets 141

further. As a result, we have a system in which a net with a strong symmetry property
can reduce in two ways into nets not having this property.

Definition 3.7.1 (Twofold net). A net µ is strictly twofold if there exists a net ν
whose free ports contain (but do not necessarily coincide with) s̃, t̃, ũ such that

µ = ν{ã/s̃, ã′/t̃, x̃/ũ} | ν{ã′/s̃, ã/t̃, x̃′/ũ}.

In that case, the free ports of µ are x̃, x̃′, and the pairs of ports xi, x′i are said to be
exchanged by the symmetry. We say that µ is twofold if µ ≡ µ0 with µ0 strictly double.

Double nets formalize the fact that everything in them comes in pairs, cells, wires
or ports, therefore barbs. In the absence of self-rules in a uniport framework, even
active-pairs come in pairs. Moreover, being strict twofold is preserved by translation.

Lemma 3.7.2. Let µ be a twofold and let x, x′ ∈ fp(µ) be exchanged by the symmetry.
Then:

• µ↓x iff µ↓x′;
• µ⇓x iff µ⇓x′ .

Proof. If ỹ, ỹ′ are the sequences of free ports of µ, with yi, y′i exchanged by the sym-
metry, then µ = µ{ỹ′/ỹ, ỹ/ỹ′}. The result then follows immediately.

Lemma 3.7.3. If µ is a strictly twofold and J·K is a translation, JµK is strictly twofold
too.

Proof. An immediate consequence of the homomorphism and port invariance proper-
ties of translations.

The key property twofold nets have in uniport systems is that they cannot break
symmetry in one step without the use of a self-rule.

Lemma 3.7.4. Let µ be a twofold net in a uniport INS that has no self-rules and let
µ→ ν. Then, there exists a twofold net ν ′ s.t. ν → ν ′ (i.e. in 1 step).

Proof. Let µ ≡ ρ{x̃/z̃} | ρ{x̃′/z̃′}. Observe that the reduction µ→ ν cannot concern
an active pair created by the juxtaposition of the two copies of ρ. In fact, since ρ
is uniport, such an active pair would consist of two cells carrying the same symbol.
Then, the active pair ϕ reduced to obtain ν is entirely in one of the two components
of µ and has a symmetric counterpart ϕ′ in the other component. Because they are in
separate components, ϕ and ϕ′ do not overlap. Then, ϕ has a residue in ν; by reducing
it (in the same way as the first one) we obtain a twofold net ν ′ .

Theorem 3.7.5. There exists a self-rule-free mp system S which cannot be translated
into any self-rule-free mwr system without introducing divergence.

142

Proof. We take as S the multiport system introduced at the beginning of the section
and the net we denoted by f (p. 140). Let J·K be a translation of S into a uniport
INS and let ν0 = JfK. By Lemma 3.7.3, ν0 is twofold and x, y are exchanged by
its symmetry. By the bisimulation property, we know that there exists a barbed
bisimulation B such that B(f, ν0). Since f → µx, we must have ν0 →∗ νx such that
B(µx, νx). Since µx↓x but µx6⇓y , by Lemma 3.7.2 we must have νx 6= ν0, which means
that at least one reduction step is possible from ν0. Then, we may apply Lemma
3.7.4 and infer that ν0 →∗ ν1 in at least one reduction step, with ν1 twofold. But this
implies that f →∗ µ1 such that B(µ1, ν1). Now, µ1 can only be one of µx, µy or f
itself, but the fact that ν1 is twofold and Lemma 3.7.2 rule out the first two cases,
hence B(f, ν1).

The reader is invited to check that, in the above reasoning, we deduced B(f, ν1)
starting from B(f, ν0) using only the fact that ν0 is twofold and that its two free ports
are x, y (and must therefore be exchanged by its symmetry). These properties still
hold for ν1, so we may apply the reasoning again and again, obtaining a reduction
sequence JfK = ν0 →∗ ν1 →∗ ν2 →∗ · · · , in which every reduction νi →∗ νi+1 is of
length at least 1, so JfK diverges.

Self-rules might not be the answer The absence of self-rules is primordial in
Lemma 3.7.4. Let us place ourselves in a multiwire but uniport system with simple
rules. This lemma is false in that setting: think for instance of the cell qb of Section
3.5.2. Such a rule break the symmetry in one step. It does not, nevertheless, break
another symmetry in that same step, the one of observability.

We remind the definition of symmetric net.

Definition 3.7.6 (Symmetric net). A net µ is symmetric if µ ≡ µ{x̃′/x̃, x̃/x̃′} where
x̃, x̃′ are the free ports of µ. xi and x′i are said to be exchanged by the symmetry.

The equivalent of Lemma 3.7.2 is still valid for symmetric nets:

Lemma 3.7.7. Let µ be symmetric and let x, x′ ∈ fp(µ) be exchanged by the symmetry.
Then:
• µ↓x iff µ↓x′
• µ⇓x iff µ⇓x′
Moreover, if µ is twofold and µ→ ν, then ν is symmetric. This is due to the fact

that all simple rules are symmetric, which means exactly that if it is a self-rule, its RHS
is a symmetric net. So the symmetry of observables can still not be “asymmetricized”
in one step. Of course, it might be possible that any of the following steps necessarily
breaks the observational symmetry. This is the way we simulate non-symmetric self-
rules with multiwires. The difference here is that the rule we try to simulate is not a
self-rule.

Let us consider the following wanabee-simulation of the net f.

Concurrent Interaction Nets 143

qbqb

qbqb

A

A

2
qb qb

A

A

qb

A

A

It is not correct as an encoding as it can reach, from the middle state, a net in
which both ports of the interface are observable indefinitely. At least as soon as the
last state is capable of choosing. The problem is that a symmetric self-rule yields a
net that is only capable of observing both or none, but not just one. Which is the
case of our multiport system. If we now consider fx = α(a, b1;x) | α(b2, a; y). By just
disconnecting the other active pair, this net is made deterministic: fx⇓x but fx 6⇓y .
If we consider the encoding above, the image of fx would not be barb bisimilar to it.
Multiports have the capability of breaking a symmetry in two directions, or just in
one. Which seems to not be the case in a uniport setting. Asymmetric self-rules do
not seem to bring an answer either to that question.

About self-rules, asymmetric or not, they offer a great deal of questions and prob-
lems.

For instance, the abstract definition of barbs given by Rathke and als. [50] is
problematic in the presence of self-rules. Based on orthogonality, where this later is
given by the possibility of immediate reduction, in a testing flavor, self-rules lead to
sets included in their orthogonal.

As about the expressivity there use can bring to a language, we have no clear idea.
They are, to our knowledge, never used in the literature. As is, this problem cannot
be addressed by translations, as their functional nature and homomorphism w.r.t.
constructors necessarily translates a self-active pair into a net that has a self-active
pair. If a study can be brought by encodings, it requires to encode wires into something
different than wires. We have done this for the general encoding into multiports, but
in languages which do not have the wire feature, as the usual name-based calculi
languages, such an encoding is not possible. The search for a study of expressivity of
self-rules will most probably not come from an encoding technique.

General election problem The impossibility for self-rule-free uniport systems to
solve some model of the 2-election problem can be extended. In fact we are able
to give a multiport net for any even natural p which is strongly twofold, but which
computation ends in a non-symmetric net, necessarily.

144

We follow the general algorithm provided by Palamidessi in [45]. We build a
net of the form µ1 | . . . | µp in which all µi have the exact same form and fully
interconnected two-by-two, with the following underlying procedure: each time a net
µk dominates another net µl, the nets previously dominated by µl and µl itself are
considered dominated by µk. Once a net is dominated, it is out of the game.

Let p be a natural number. We consider, for all n < p a family of cells {αni }2≤i≤2n
with i principal ports and 1 auxiliary port. The subscript n of the label of a cell
represents the amount of interactions this cell needs to win in order to win the entire
election. By negative, it gives the amount of interactions this cell has already won:
p− n− 1. We also make use of a dummy cell ε with one unobservable principal port
and the cell υ of the previous section.

The interesting interaction rules are the following:

αni (a1, b1, . . . , ak, bk, . . . , ai, bi;x) | αmj (a′1, b′1, . . . , a′l, b′l, . . . , a′j, b′j; y) | [ak, b′l]
→ α

n−(p−m)
i−2 (a1, b1, . . . , ak−1, bk−1, ak+1, bk+1, . . . , ai, bi;x) | ε(bk)

|
j∏

z=1
z 6=l

(ε(a′z) | ε(b′z)) | [a′l, y]

iff n− (p−m) 6= 0, else

αni (a1, b1, . . . , ak, bk, . . . , ai, bi;x) | αmj (a′1, b′1, . . . , a′l, b′l, . . . , a′j, b′j; y) | [ak, b′l]→

υ(x; bk) |
i∏

z=1
z 6=k

(ε(az) | ε(bz)) |
j∏

z=1
z 6=l

(ε(a′z) | ε(b′z)) | [a′l, y]

which generalizes the rule we used for the separation result. Ports of α-cells can be
erased by ε-cells, but it is not needed for the correctness of the algorithm. As usual,
two ε-cells erase each other when they interact.

We claim that the net Λp we define below is such that any reduction is finite and
such that, for any net µ such that Λp →∗ µ 6→ , there exists 1 ≤ k ≤ p such that µ⇓xk

but µ⇓xk′ for all k′ 6= k.

Λp = αp−1
2p−2(a0

1, b
0
1, . . . , a

0
p−1, b

0
p−1) | . . . | αp−1

2p−2(ap−1
1 , bp−1

1 , . . . , ap−1
p−1, b

p−1
p−1) |

p−1∏

k=0

p−1∏
i=1

[aki , b
(k+i) mod p
p−i]

Moreover, Λp is strictly twofold. A possible reduction path of Λ4 is shown in Figure
3.9

Theorem 3.7.8. For any even natural p, there is a multiport system Sp and a net Λp

Concurrent Interaction Nets 145

in that system which cannot be translated into any self-rule-free mwr system without
introducing divergence.

In fact, the twofoldness of a net is a particular case of cycle. The same result could
be obtained by considering a cyclic automorphism of any power n ≤ 2, leading to the
impossibility to encode any Λn of a system Sn, for any natural n ≤ 2. For a better
understanding of how such a property is defined, we address the reader to the paper
that inspired this result and the election problem solving algorithm [45].

α3
6

α3
6

α3
6

α3
6

3
-(

4-
3)

=
2

α3
6

α3
6

α2
4

ε

ε ε

ε
ε

3 - (4-2) = 1

α3
6

α1
4

ε

ε

ε ε ε ε

ε
ε

3
-(

4-
1)

=
0

υ

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

εε
εε

Figure 3.9: A possible reduction path for Λ4 in S4.
The active pair for the reduction is shown in bold. The operation determining the counter

of how many cells remain to be dominated is given with every interaction :
counter of winner− (p− counter of loser).

146

Chapter 4

Multiport Combinators

In this last chapter, we introduce a universal system for strictly multiport
interaction nets, i.e. simply wired with simple rules. Since we have proven in
the previous chapter that any interaction net system can be encoded into one
of these, the multiport combinators we present can be considered as a universal
system for general interaction nets.

The procedure relies on the ability to decompose a net, namely the right-
hand-side of a rule, into two nets which have no active pairs and no deadlocks,
making it possible to erase and most of all duplicate them. A splitting of this
sort is discussed in Section 4.1. Section 4.2 presents the language of multiport
combinators and some constructions that allow to encode system without recur-
sion. Such an encoding is given in Section 4.3. The general case of encoding
system with recursion is detailed in Section 4.4, after describing the duplication
procedure (4.4.1). A last short section (4.5) question the quality of the system.

The concepts for this chapter are introduced in the paragraph about univer-
sality (p. 14).

4.1 Special decomposition of nets
We start by given a useful decomposition of nets. It is not at all natural as in Lafont
nets, as the structure of multiport nets is really messy, geometrically speaking. We
will use this decomposition to split RHS s of rules in two special kinds of nets, that
basically have no active pairs. We also use this decomposition to show that some
special nets, called reduced, can be duplicated when necessary.

Let us start by some useful vocabulary.

Definition 4.1.1 (Lafont [33]). A wiring is a net ω without cells and cyclic wires.
So it is just a pairing of its free ports. In particular, a wiring has an even number of
free ports. A permutation σ of {1, . . . , n} defines a wiring with 2n free ports, which is
represented as follows:

147

148

σ

xnx1

yny1

· · ·

· · ·
or σ

yn· · ·
y1xn· · ·

x1

In both cases, xi is connected to yσ(i). For instance, the wiring corresponding to the
identity on {1, 2, 3}, [x1, y1] | [x2, y2] | [x3, y3] is pictured as follows:

x1 x2 x3

y1 y2 y3

or

x1 x2 x3 y1 y2 y3

As we have seen, we have to be careful about reflexive rules and symmetric nets.
Luckily, in strictly multiport systems, symmetric nets have a precious feature.
Lemma 4.1.2. Let S be an IN and µ a symmetric net with only simple wires. Then
µ is twofold.

Proof. The proof is by induction on the size of the net, where the size means the
amount of wires and cells.

If µ ≡ [a, b], then it is twofold.
If µ ≡ µ{x′/x, x/x′}, we can check that, for any i, either xi, x′i belong to a same

wire (or series of wires) or are connected to the same principal or auxiliary port of cells
c, c′ of same label, thus of two different cells. In the first case, if we remove the wire
(which is a twofolded net), we obtain a smaller net. In the second cases, we remove
the two cells xi and x′i are connected to, obtaining also a smaller net.

In the proof, when xi, x′i are connected to cells, we consider the two cells to also be
exchanged by the symmetry of the net.

Unlike in Lafont nets, characterizing deadlocks is a complicated matter in a mul-
tiport setting. We give a general definition:
Definition 4.1.3 (Deadlock). A deadlock is a net with no (reducible) active pairs and
such that all principal ports are bound.

In this chapter, we will call cut any kind of configuration that reminds an active
pair, even in an unusual way:
Definition 4.1.4 (Cut). We call cut any net composed of one or two cells that contains
a wire which connects two principal ports. When needed, we call irreducible cut a cut
which is not an active pair, so active pairs are sometimes referred to as reducible cuts.

Cuts on a single cell are dangerous as they can create deadlocks. Imagine simply
a cell of coarity 2 and a wire connecting its two principal ports. But we also want to
avoid situations like an α(a, b, c; d) | [a, b]. In fact, we would not be able to guarantee
that a net containing too many of those can be duplicated.

We remind, to be sure to be precise, what is a subnet.

Multiport Combinators 149

Definition 4.1.5 (Subnet). A subnet N of a net M is a subset S of the set of cells of
M and contains at least all ports of cells in S. There is no condition on wires or other
ports.

The first important types of nets we need are the following:
Definition 4.1.6 (Reduced net). A net N is reduced if none of its subnets are neither
cuts nor deadlocks.

An irreducible net is not necessarily reduced, as it can contain irreducible cuts or
deadlocks, but a reduced net is always irreducible of course.

Let us make a remark here. Any closed net, i.e. with no interface, is barbed
congruent to the empty net. This is due to the fact that bound ports can never be
made free, and rules cannot create new free ports. Furthermore, since observability is
built on interreduction, no free ports means no possible observable, ever. This means
that even if the closed net is not irreducible, worse, even if it contains observable active
pairs, it is barbed congruent to the empty net.

Unlike in Lafont nets, we do not need to consider RHS of rules to be deadlock free,
or even cut-free. In fact, it is sometimes useful to have reducible RHS, as for instance
for [20]. Because of the absence of confluence, there is in fact no argument to consider
that rules produce only reducible nets.

We now define some special reduced nets. They are a generalization of trees to a
world with multicells.
Definition 4.1.7 (Multitree). A wire [a, b] is a multitree. It can be considered in two
ways. Either its root interface is a, in which case b is its leaf interface, or both a and
b are in its leaf interface, in which case its root interface is empty.

Let T1(b̃1, z̃1), . . . , Tn(b̃n, z̃n) be n trees with resp. b̃i as root interface and z̃i as leaf
interface. Let ã be a sequence of fresh names and x̃ such that

x̃ ∩ z̃i = ∅ ∀1 ≤ i ≤ n but x̃ ∩ b̃i 6= ∅ ∀1 ≤ i ≤ n.

Then α(ã; x̃) | T1(b̃1, z̃1) | . . . | Tn(b̃n, z̃n) is a multitree, of root interface any subse-
quence a′ of a (even empty) and leaf interface all other free ports (i.e. a\a′, bi \ (bi∩ x̃)
and z̃i). The cell labeled α is its root.

Let T (ã, z̃) be a multitree of root interface ã and leaf interface z̃, then T (ã, z̃) |
[zi, zj] is a multitree of same root interface and root but of leaf interface z̃ \ {zi, zj}.

Any net structurally congruent to a multitree is a multitree.
What we achieve with this complicated definition is to get a net which looks like a

tree if you consider cells as nodes and vertices to be the existence of a wire connecting
an auxiliary port of a cell to a principal port of another. A representation of a generic
multitrees is represented in Figure 4.1. It can be misleading, since some ports on top
can be principal ports of some cells inside. We will remind the reader this fact when
necessary.

150

T
. . .

. . .

≡
α
. . .

T1Tn
. . .

.

Figure 4.1: How a generic multitree looks like.

We need for leaf interfaces to grab every principal port of cells that are not the
root in order to avoid having “several roots” like in the dummy example below. Such
a situation is not problematic for the decomposition lemma but forbids duplication.

We call just tree a multitree in which all cells are simple and the root interface is
non-empty, i.e. of size 1 exactly. Notice that in a tree, all ports of the leaf interface
are auxiliary ports.
Proposition 4.1.8. A multitree is a reduced net.
Lemma 4.1.9 (Multitree decomposition). Let N be a net. It is possible to decompose
N into n multitrees and a wiring on the union of their leaf interfaces.

Proof. The procedure is simple. Pick randomly a cell. It is going to be the root of the
first multitree. Those of its principal ports that are free form the trees root interface.
Its other principal cells are part of the leaf interface. Those of its auxiliary ports that
are connected to an auxiliary port of another cell or are free are part of the trees leaf
interface. Those of its auxiliary ports connected to an auxiliary port of the tree (for
now just the cell) are part of the tree, with the wires connecting them. If an auxiliary
port is connected to a principal port of the cell itself, it is considered as part of the leaf
interface. The others are connected to principal ports of some other cell. Those cells
are “added” to the tree and processed in the same way, except that all their principal
ports not connected to auxiliary ports of the root are part of the leaf interface.

The procedure ends when all auxiliary ports of all cells are part of the leaf interface.
The first tree is finished.

Pick a cell that is not part of this tree as a root for a second tree. Etc.
At the end, connect two by two all ports of the leaf interface as they connected

ports in N . For any port from the leaf interface that is free, add a wire (which is a

Multiport Combinators 151

tree) connected to that port with its leaf. Its other port is considered its root interface,
and is part of the interface of N .

Since cells alone make multitrees, we can even consider a maximal decomposition,
cell by cell, taking then care of the whole wiring of the net. The decomposition is not
at all unique and depends on what cells are chosen as roots. Unlike in Lafont nets,
there is no striking canonical choice for roots of the trees. The trick nevertheless relies
on the fact that a wire can be split in many wires by structural congruence. We will
use that trick often in the following proofs.
Corollary 4.1.10. Let N(ã, b̃) be a symmetric net which symmetry exchanges ã and
b̃. There exists a net M s.t. N(ã, b̃) ≡M(ã, z̃) |M(b̃, z̃).

Proof. Proceed in the same way but always building in parallel two trees with roots
cells that are image to one another by the symmetry.

Corollary 4.1.11. Any reduced net N can be decomposed as follows:

T1

. . .

. . .

Tn

. . .

. . .

. . .

ω

where T1, . . . , Tn are multitrees and ω is a wiring. In other words, there is a multitree
decomposition of N in which all multitrees have nonempty root interface.

Proof. In fact, if N is reduced and one of the multitrees in its decomposition, let us
call it T , has an empty root interface, then all the principal ports of its root cell are
connected to an auxiliary port of other cells. If all these cells already belong to T ,
then T is a deadlock, which is impossible. So one of these cells belong to another
multitree T ′. Then, it is sufficient to build a bigger multitree with same root as T ′ but
containing also T , which keeps the decomposition correct.

Remember of course that a simple wire is a multitree, so the interface of N can
contain auxiliary ports.

We can see by this decomposition that a reduced net with no free ports is necessarily
empty. A reduced net with one free port (which is therefore principal) is called a
package. It has the following decomposition:

π ≡
T

. . .
ω

where T is a multitree with a unique port in its root interface and ω a wiring.
Most nets of course are not reduced. We now show a way how to split any net into

two part connected by a wiring, each of the parts being reduced.

152

Lemma 4.1.12 (Splitting of a net). Let N be a net and I1, I2 a two-partition of its
interface. Then there exist two reduced nets M1,M2 such that I1 ⊂ M1, I2 ⊂ M2 and
a wiring ω on (fp(M1) \ I1), (fp(M2) \ I2) such that

N ≡M1(I1, ỹ) |M2(I2, z̃) | ω(ỹ, z̃).

We call M1 and M2 halves of N along I1 and I2. Moreover, if N is symmetric,
then it is possible to find a decomposition in which M1 ≡M2.

Proof. Partition the net by Lemma 4.1.9 into a certain number of multitrees and assign
each of the trees randomly to M1 and M2. To any port of a root interface of one of
the trees that is free add a wire between it and the free port. For each wire [x, y]
of N that is not already in M1 or M2 (they should be the ones in the wiring of the
decomposition or connecting a port of a root interface of a tree to a free port).
• if x, y ∈ I1 (resp. I2), then assign [x, y] to M1 (resp. to M2).
• if x ∈ I1, y ∈ I2 (or vice-versa), then [x, y] ≡ [x, z1] | [z1, z2] | [z2, y] and assign

[x, z1] to M1 and [z2, y] to M2. [z1, z2] will be part of ω.
• if x ∈ I1 and y ∈M1 (resp. I2 and M2), assign [x, y] to M1 (resp. M2).
• if x ∈ I1 and y ∈ M2 (resp. I2 and M1), then [x, y] ≡ [x, z1] | [z1, z2] | [z2, y] and

assign [x, z1] to M1 and [z2, y] to M2. [z1, z2] will be part of ω.
• if x ∈ M1 and y ∈ M2, then [x, y] ≡ [x, z1] | [z1, z2] | [z2, y] and assign [x, z1] to
M1 and [z2, y] to M2. [z1, z2] will be part of ω.
• if x, y ∈M1 (resp. M2), then [x, y] ≡ [x, z1] | [z1, z2] | [z2, z3] | [z3, z4] | [z4, y] and

assign
– [x, z1] and [z4, y] to M1 (resp. M2);
– [z2, z3] to M2 (resp. M1);
– [z1, z2] and [z3, z4] are part of ω.

If N is symmetric, thus twofold, we do not partition the net randomly but along
its “symmetry”. The procedure gives the desired result.

Graphically, the different configuration of wire-splitting are shown in a graphical
representation in Figure 4.2. Thanks to the last point, any possible cut is avoided
in each of M1 and M2 since (at least) every wire connecting any principal ports is
transformed into a wire that passes through the other half. Actually, M1 and M2 each
composed of disjoint multitrees. This decomposition is again far from being unique.

The reader must be careful not to mix-up the different decompositions. In the
splitting of a net each half of N is reduced, but its interface is both in front and in
the back. The wiring given in the splitting is a wiring between the two parts of the
splitting. In the tree decomposition on the other hand, all the interface was brought to
the front with the help of degenerated multitrees (wires) and a wiring that belongs to
the net.

Multiport Combinators 153

M2 ω M1 ω M2 ω M1

Figure 4.2: All situation for splitting wires outside of multitrees.
Remember that ports on the back of multitrees are not necessarily auxiliary.

4.2 Combinators for multiport interaction nets
In this section we use a lot of results of interaction combinators of Lafont for simple
nets as they are (of course) still useful in the multiwire case. In order not to overload
the reading, we will not notify every result that it already in Lafont’s work, but it is
not our wish to take credit for any thing that was already in his work.

4.2.1 The system

The system of multiport combinators, MC for short, contains a denumerable set of
cells, but only a finite number is needed to encode any multiport system S. Six cells
are distinguished, which are fixed, and an infinite family is used to express all possible
coarities of the original system. If the largest coarity in S is n, then only n cells of the
infinite family are needed in the encoding.

The cells of MC are the following:

ε

ε(a)

δ

δ(a;x, y)

γ

γ(a;x, y)

χn

. . .

. . .

χn(a1, . . . , an;x1, y1, . . . , xn, yn)

α

α(a, b;x)

λ

λ(a;x)

o

o(a;x)

The first three are Lafont’s interaction combinators. Their respective purpose is

154

to erase cells, duplicate cells and exchange ports1. The family {χn}n∈N are cells that
control the number of principal ports in the interface of the net that simulates a
given cell. α plays two roles. Against γ-cells, it plays the role of a resource allocator.
Against χ-cells it blocks interaction to simulate inactive pairs. λ is then needed to
annihilate the blocker α if the transformation of one of the cells of the inactive pair
has transformed the cut into an active pair.

We use the label θ for generic (multi)cell label.

Duplicator δ The cell labeled δ is mainly used to duplicate all other cells. Its
general rule is therefore:

δ(a;x, y) | θ(a1, . . . , an) | [a, ak]→ θ(b1, . . . , bn) | θ(b1, . . . , bn) |
n∏

i=1
i 6=k

δ(ai; bi, ci)

for any label θ different from δ, and any k such that k-th port of θ is principal.
In order to duplicate entire nets, we need for it to annihilate itself, otherwise a

duplication would lead to infinitely growing nets.

δ(a;x, y) | δ(a;x′, y′)→ [x, x′] | [y, y′].

None of the rules for δ are observable. Graphically, they are shown in Figure 4.3(a).

Erasor ε The cell labeled ε is used as garbage collecting in almost all cases. Its
usual way of acting is to erase the other cell c and send ε cells on all other ports of c,
principal or auxiliary.

ε(a) | θ(a1, . . . , an) | [a, ak]→
n∏

i=1
i6=k

ε(ai)

for any label θ different from α, and any k such that k-th port of θ is principal. In fact,
α is an exception. In this case, the cell labeled α is still erased, but the two remaining
ports are linked together:

ε(a1) | α(a1, a2;x)→ [a2, x]
ε(a2) | α(a1, a2;x)→ [a1, x]

None of the rules for ε are observable. Graphically, they are shown in Figure 4.3(b).
Note that ε ./ δ is defined uniquely, as the result is the same if you look at it as a
duplication of ε or erasing of δ.

1Pretty much anything that implies only those cells is already in [33]. Anything with the others
cells is original to this work

Multiport Combinators 155

Exchanger γ The real important rule for γ is its reflexive rule, in which it exchanges
auxiliary port numbers:

γ(a;x1, x2) | γ(a; y1, y2)→ [x1, y2] | [x2, y1].

Notice that the symmetry condition is verified. This rule is never observable. Another
rule is its interaction with α, given below.

Strange cell α As we have said before, α is the combination of two very different
behaviors. When it meets a γ-cell, this last one wins access to the auxiliary port, while
an eraser is sent to its other principal port.

α(a, b;x) | γ(a; y, z)→ γ(x; y, z) | ε(b)
α(a, b;x) | γ(b; y, z)→ γ(x; y, z) | ε(a)

On the other hand, when it meets a λ cell, it means it is a blocker which block
access from one of its principal ports to the other, in which case λ unblocks it:

α(a, b;x) | λ(a; y)→ λ(b; y) | ε(x)
α(a, b;x) | λ(b; y)→ λ(a; y) | ε(x)

None of the rules for α are observable. Graphically, they are shown in Figure 4.3(d).

Unblocker λ and observer o In simple interaction nets, an irreducible cut auto-
matically created deadlock. Simulating one of them could be done by reducing its
encoding to any deadlock. In the multiport setting, it is not the case anymore, so irre-
ducible cuts have to be simulated by irreducible cuts. That is why we need a blocking
mechanism.

Most all the rules for λ have been already given: λ can be duplicated, erased, and
most of all, it can erase a blocker α-cell. It does not need to interact in any particular
way with γ-cell, but it needs to disappear in case it meets a χ-cell, as it means the
maybe active-pair is no more to be:

λ(a;x) | χn(a1, . . . , an; z̃) | [a, ak]→ χn(a1, . . . , ak−1, x, ak+1, an; z̃).

There are two options for the reflexive rule for λ, and both lead to a correct
encoding: they can commute or get erased. We tossed a coin and chose the second
version.

λ(a;x) | λ(a; y)→ [x, y].

Strangely also, a cell like λ will be needed to create observability. As it is only when
a long part of the encoding process has started that one can know if this simulation

156

is one of an observable interaction or if it is one of a silent interaction, or worse, an
inactive pair. It is at this point that we need to be able to observe interaction or not.
So λ has a brother cell o, which has the same reflexive rule but which is observable.

Graphically, the rules for λ and so o are shown in Figure 4.3(e).

The χn family Here again we have almost given all the rules for these cells: they
can be erased, duplicated and they can get rid of extra unblocker cells. There is no
need for any interaction with γ-cells as this will never need to happen. It is on the
other hand very important that there is no rule for active pairs of χn and α. In fact,
this will allow us to block some cuts to behave like inactive pairs.

The most important rule anyhow for this family of rules are the one among them-
selves. The main idea of the encoding is that a cell of coarity n is encoded into some
net containing a χn-cell in its front, representing all its principal ports. When two such
cell interact, they trigger the simulation of the corresponding interaction. The purpose
of universality for combinator makes it necessary for any such created configurations
to trigger interaction. We give the intuition about this rule later. We now just give
the formal rule, even though the reasons of such a rule are not yet clear:

χn(a1, . . . , an; s1, t1, . . . , sn, tn) | χn(b1, . . . , bm;x1, y1, . . . , xm, ym) | [ai, bj]

→ [si, xj] | [ti, yj] |
n∏

k=1
k 6=i

(
[ak, tk] | ε(sk)

)
|

m∏

k=1
k 6=j

(
[bk, yk] | ε(xk)

)

Graphically, the rules for α are shown in Figure 4.3(f). We will discuss the observ-
ability of these rules further on.

As a result – if we count the whole family of χ-cells as one – multiport combinators
have 7 cells, out of which 5 are simple. Since the rules for multicells χn and α do not
depend on which port is involved, we consider rules to be well defined when giving
a pair of cells alone, without specifying the ports involved. This means 28 possible
pairs, out of which “only” 22 are active pairs. Rules can be added without danger for
some of the inactive pairs, except for α vs. χn, as this pair will be used to simulate
inactive pairs from the original system. Cuts between γ and λ as well as between γ
and χn should never occur during the encoding. Cuts α/α happen and can be given
several different rules compatible with the blocking process, but it is not necessary.

In order to explain the encoding gradually, we give some particular feature (mul-
tiport) interaction nets can have. We then get rid of these features one by one to get
more and more general.

As we know, some cut-like configurations can make inactive pairs. We qualify of
full an interaction net system in which all pairs on principal ports have an interaction
rule. If, furthermore, all its rules are observable, it is qualified transparent.

Multiport Combinators 157

Another quality systems can have has more to do with computational capabilities:
possibility of recursion – a rule for θ ./ θ′ can use or not cells θ or θ′ in its RHS. In
fact, we need to be even more restrictive. An order should be given on cells, and a
RHS can contain or not cells greater for that order than the ones of the corresponding
active pair.

We will first consider full and transparent recursion-free systems. Encoding such a
system S does not require the blocking procedure – so no λ cell –, neither the use of
the observable cell.

We then consider opaque systems, in which some rules are not observable. The
trick is then really simple: the encoding of an observable rule creates an observable
active-pair, and other encodings do not.

We go on considering system in which not all pairs are active. Then, the encoding
of an inactive pair reduces to itself, since other ports of these cells may want to interact.
In order to avoid divergence, this newly created pair which is not active is connected
by a net that represents a blocked wire. Any other reduction involving one of these
two cells unblocks the wire. This is done with the help of α and λ.

Finally, we show the most interesting part: how to encode recursion, when a active-
pair creates cells greater than itself, creating the possibility of infinite reduction.

From now on, and until further notice, each rule χni ./χmj is considered observable,
for any m,n, i, j ∈ N. All other rules are not.

4.2.2 Multiplexors and transpositors
Multiplexors and transpositors are taken as is from Lafont’s work.

For any n ∈ N, one constructs two trees Mn and M∗
n (multiplexors) with n ports

in the leaf interface (thus, all auxiliary), with the following property:

M∗
n

. . .

Mn

. . .

* . . .

An implementation of these multiplexors is given in Figure 4.4. The needed rules
are ε ./ ε and γ ./ γ. There are alternative implementations using δ or χ1 instead of
γ, but it will be essential that the implementation of the multiplexors does not use δ,
and the version with χ1-cells is less drawable.

We shall also need a kind of autodual multiplexor, that is, a tree Tn with n ports
in its leaf interface with the following property:

158

δ

θ
.

. . .

θ
.

. . .

θ
.

. . .

δ δ

δδ

δ

δ

(a) Rules for δ

ε

θ
.

. . .

ε ε

ε ε

. . .

. . .

α

ε

α

ε

(b) Rules for ε

γ

γ

(c) Reflexive rule for γ

Multiport Combinators 159

α

γ γ

ε α

γ γ

ε

α

λ λ

ε α

λ λ

ε

(d) (Remaining) rules for α

χn

.

. . .

λ

χn

.

. . .

λ

λ

o

o

(e) (Remaining) rules for λ and observable rule o./o

χn

χm

.

.

.

.

ε

ε

ε

ε

ε

ε

ε

ε

. . .

. . .

. . .

. . .

(f) The (sometimes observable) rule for the χ family

Figure 4.3: Multiport interaction combinators

160

Tn

. . .

Tn

. . .
*

.

An implementation of these autodual multiplexors is given in Figure 4.5. The
needed rules are ε./ε and δ ./δ. χ1 can replace δ, but γ is not at all suitable for that
purpose.

More generally, if p, q ∈ N, one constructs a tree Tp,q (transpositor) with 2p+ q leaf
ports, with the following property:

Tp,q

. . .

Tp,q

. . .
* ιp,q

.

where ιp,q is the involutive permutation of {1, . . . , 2p + q} which exchanges 1 with 2,
3 with 4 and so on until 2p. Here is a possible implementation of these transpositors:

Tp,q

. . .

2p+ q

=
Tp+q

. . .

q

γγ
. . .

The needed rule is γ ./ γ. Note that δ and χ2 are not suitable at all for that
purpose.

Finally, if σ is an involutive permutation of {1, . . . , n}, one constructs a tree Tσ
with n ports in the leaf interface with the following property:

Tσ

. . .

Tσ

. . .
* σ

.

Any such permutation is indeed a product of disjoint transpositions, that is σ =
θ−1 ◦ ιp,q ◦ θ where θ is a permutation of {1, . . . , n} and 2p + q = n. So a possible
implementation of Tσ is:

Tσ

. . .

=
Tp,q

. . .

. . .
θ

Multiport Combinators 161

M∗
0

ε=

M0 ε=

M∗
1 =

M1 =

M∗
2 γ=

M2 γ=

M∗
n+1
. . .

M∗
n

. . .
γ

Mn+1

. . .

Mn

. . .
γ

=

=

Figure 4.4: Implementation of the multiplexors

T0 ε= T1 = T2 δ= Tn+1

. . .

Tn

. . .
δ

=

Figure 4.5: Implementation of the autodual multiplexors

Note that conversely, if such a Tσ exists, the permutation σ is necessarily involutive.
This is a consequence of the symmetry condition.

We can see already that transpositors simulate wiring. Since multiport systems
are not confluent, it is not enough, as in simple nets, to simulate. We need to check
that in some sense, they do not create interference with the environment. Imagine the
encoding of a wiring with transpositors, which are only partly reduced into something
that is not yet a wiring but that creates some unwished active pairs.

Well, it cannot happen. In fact, the tree structure here is important, but most
of all, the fact that auxiliary cells of the encoding of a wiring always stay auxiliary
w.r.t. to it. No interreduction is possible between the encoding of the wiring and
the environment, so trivially, a wiring and its encoding with transpositors are barbed
congruent.

Finally, we use a particular autodual multiplexor which acts like the asymmetric
one, but is only available for powers of 2. We only need it for the case with 4 ports:

4.2.3 Menus and selectors

If π1, . . . , πn are packages, one constructs a new package π1& . . .&πn (menu) which can
perform as any of the original nets depending on which of the (reduced) net S1

n, . . . , S
n
n

(selectors) is connected to it:

162

π1& . . .&πn

Si
n

* N 'c πi

Here is a possible implementation:

π1& . . .&πn = Mn

πn

. . .
π1

Si
n = M∗

n

ε ε ε ε
.

i− 1 n− i

This implementation is good for encoding. With it, the reduction to a net congruent
to package πi is necessary: M = π1& . . . πn | Sin has its unique interface port auxiliary.
Since each πi is a package, any reduction ofM is in fact an interreduction of π1& . . . πn
and Sin, which means that M necessarily reduces to a net N composed of the package
πi and some closed nets.

We can do a little better in some circumstances. The following lemma is immediate.
Lemma 4.2.1. Let ω be a wiring on a1, . . . , an. Then ε(a1), . . . , ε(an)→∗ ∅.

Using this, we also show that:
Lemma 4.2.2. Let π(a) be a package with no α-cells. Then π(a) | ε(a) →∗ ∅ neces-
sarily.

Proof. The proof shows a stronger result. Let π(a1, . . . , an) be a reduced net with
no α-cells, of which at least one of a1, . . . , an is a principal port, then π(a1, . . . , an) |
ε(a1) | . . . | ε(an)→∗ ∅. It goes by induction on the size of π. If π is composed of one
cell c of power n, it means that all ports of c, except k of its principal ports for some
k, are connected 2 by 2. The interaction with ε-cell on the free ports of that net lead
to (n− 1) + (k − 1) ε-cells connected 2-by-2, that reduces to the empty net.

If the package is not a simple cell, then it has a multitree decomposition in which
each multitree has non-empty root interface. Pick one of the roots c and reduce any
of the ε./c. The reduction leads to a smaller reduced net with ε-cells connected on all
of its interface. If at least one port of the interface is principal, the result is obtained
by induction hypothesis. Otherwise the considered net is a wiring, and we use the
previous lemma to conclude.

What happens in the presence of α-cells? We can have a multitree T ≡ α(a, b;x) |
T ′ in which b is part of the leaf interface, thus bound, and T ′ is a multitree of root
interface x. Then T | ε(a) reduces to T ′{b/x} which is a deadlock since b is bound.

Multiport Combinators 163

Lemma 4.2.3. Let N be a net and N → N ′ using a rule on an active pair containing
an ε-cell. Then N ′ has an active pair implies N has a cut.

Proof. The only rule with ε that creates wires between ports is the ε ./ α. The
disappearance of α creating an active pair means that the principal port of α on which
the ε-cell interacts was already connected to a principal port of a cell.

4.2.4 Allocator
When a γ-cell competes with an ε-cell on the principal ports of an α, it is always the
γ-cell that is finally connected to α’s auxiliary cell. We construct, for each n ∈ N, a
net An which is in a generalization of that:

An

.

γ
ε ε ε ε

* N 'c
γ

The implementation we choose uses α-cells :

A1 = A2 = α An+1

. . .
=

An

. . .

α

4.3 Encoding (restricted case)
With the constructions we gave, we can already simulate multiport interaction nets
which are recursion-free. Let us consider S to be a multiport system with alphabet of
labels θ1, . . . , θN of respective coarities pi and arities ni.

Full, transparent, recursion-free system Let us start with the case in which S
is full and transparent. As the reader might remember, any net can be split in two
reduced net, following any splitting of its interface. We apply, for each k, l ≤ N ,
i ≤ pk, j ≤ pl, Lemma 4.1.12 to the RHS of the rules for θki ./θlj (shown in Figure 4.6).
<k:i
l:j in some sense represents the future of θk if it interacts on its i-th port with

the j-th port of an θl cell. By symmetry, σk:i,l:j = σ−1
l:j,k:i. Since both <k:i

l:j and <l:jk:i
are reduced nets, we can apply Lemma 4.1.9 and consider each of them as a reunion
of multitrees on all there interface (considering that the connection with the wiring
σk:i,l:j is part of it). Such decompositions are not unique, but we just need to pick one
initially. If the rule is for a reflexive symmetric active pair, by Corollary 4.1.10, there
is a splitting in which each half is the same (thus named <k:i

k:i) and σk:i,k:i is involutive.

164

θk θl

.

. . .
nk

i− 1 pk − i
.

. . .
nl

j − 1 pl − j

<k:i
l:j <l:j

k:i

.

. . .

i−1pk−ink

.

. . .

j−1pl−jnl

σk:i,l:j

Figure 4.6: Splitting RHS of a rule into two reduced nets.

This is important to make sure to encode reflexive symmetric rules correctly, without
creating by mistake a multirule.

Definition 4.3.1 (recursion-free systems). Let S be an interaction net system. It is
recursion-free if it possible to order its alphabet of labels into θ1, . . . , θN in such a way
that <k:i

l:j , when defined, contains only symbols that are strictly smaller than θl (and
symmetrically <l:jk:i, when defined, contains only symbols that are strictly smaller than
θk).

With this order, a reduced net can be defined for each θi inductively, encoding
in it all of the possible futures of each of its opponents. This is our definition of
recursion-free.

We construct, for any k, l ≤ N , i ≤ pk and j ≤ pl the following packages which
represent

• Γk:i
l:j : the future of θk if interacting on i with the j-th port of θl;

• Γlk:i : the possible futures of θl if interacting with the i-th port of θk;

• Γk:i : the possible futures of all the cells if interacting with i-th port of θk.

Multiport Combinators 165

Γk:i
l:j =

M∗
nk+pk

i

[<k:i
l:j]

. . .

. . .
Tσk:i,l:j

Γlk:i = Γl:1k:i & . . . & Γl:pl
k:i

Γk:i = Γ1
k:i & . . . & ΓNk:i

[<k:i
l:j] stands for the net obtained by replacing each cell θk by [θk] in <k:i

l:j , where
the square bracket for a cell means:

[θk]
. . .

. . .

=

χpk

. . .

. . .

γ γ

Γk:1 Γk:pk

Sk
N

S1
pk

Sk
N

Spk

pk

Apk

. . .

Mnk+pk

.

The iteration can start because the possible futures of minimal cells for that order
are wirings alone. Let us suppose θk is a minimal cell, then:

Γk:i
l:j = M∗

nk+pk

i

Tσk:i,l:j
. . .

166

so Γk : i can be built for any i and therefore [θk]. A simulation of an interaction is
given in Figure 4.7.

It is important to notice that, even though multiport systems are not confluent,
once an interaction χ ./ χ has taken place (Fig. 4.7(b)), the rest of the reduction is
necessary, to a certain point. From here, things can happen in parallel: erasors can do
their erasing job, or the only non erasor cut can be reduced. Once it is reduced, the
net is split in two independent parts, each representing the future of each of the cells.
The two futures of the cells are shown in parallel in the generic reduction, but in fact,
they can each reach there state of Fig. 4.7(f) separately. Until neither of them does,
the whole net is independent from the rest of the world: all its interface is composed
of auxiliary ports. Once one part has reached its 4.7(f)-state, the encoding can start
the simulation of a new active pair, entangled with the first one.

Let S be a multiport system and T its encoding into multiport combinators. Then,
for any net M ∈ S, it is clear that the encoding is complete: M → N implies
JMK →∗ M ′ 'c JNK. We have shown which reduction does that. A precise strategy:
reduce an χ./χ active-pair only if there are no other active pairs.

For soundness, we need to notice that each cell of encode M and its reductions can
be tagged as part of a cell of M or of its reductions. Even more, there is a one-to-
one correspondence between cells of M and its reductions and χp-cells of JMK and its
reductions. Any reduction JMK →∗ N can be back-simulated by M →∗ M ′, reducing
in M all cells corresponding to χp-cells that have been reduced during JMK→∗ N . N
can have all its other active pairs reduced, leading to N ′′ 'c M ′.

We can see in the generic reduction simulation why the encoding does not reduce
to the encoding of a reduction: the packages that were not used by the choice of the
reduction are plugged with an erasor which makes sure they have no computational
value but which do not get necessarily erased because of the presence of α-cells. It is
possible to get rid of any α-cell in those packages, by using then a decoder to place
back the missing cells. We will see how to do this when we will get rid of δ-cells as it is
primordial there. Applying this technique to α-cells does not bring much explanatory
power to the encoding, just a better garbage collector system.

More interesting, the determinism of the allocator Ap suggests it is possible to
avoid it completely, as the reduction of the χ-cell already determines its issue. It is in
fact possible to modify χ for a more complicated rule which encompasses the allocator.
The rule is rather unnatural. Since we are looking for minimal actions of concurrent
processes, we believe an allocator cell is not misplaced. We would need a cell of coarity
2 anyway for the blocking mechanism.

Adding opacity In the paragraph above, we have not taken good care of observabil-
ity. We considered any start of simulation to be observable, since it would eventually
end-up in the encoding of the reduction. This is good enough if all rules of S are
observable. But how to handle unobservable rules? In the presence of those, it can-

Multiport Combinators 167

[θk] [θl]
.

. . .

.

. . .

=

χpk

.

. . .

γ γ

Γk:1 Γk:pk

Sk
N

S1
pk

Sk
N

Spk

pk

Apk

. . .

Mnk+pk

.

χpl

.

. . .

γ γ

Γl:1 Γl:pl

Sl
N

S1
pl

Sl
N

Spl

pl

Apl

. . .

Mnl+pl

.

(a) An active pair in the encoding of a net

γ γ γ

Γk:1 Γk:i Γk:pk

Sk
N

S1
pk

Sk
N

Si
pk

Sk
N

Spk

pk

Apk

.

Mnk+pk

.

ε ε

.
γ γ γ

Γl:1 Γl:j Γl:pk

Sl
N

S1
pl

Sl
N

Sj
pl

Sl
N

Spl

pl

Apl

.

Mnl+pl

.

ε ε

.

(b) First step: the simulation is on.

168

*

Γk:1 Γk:pk

ε ε

. . .
Sk
N

S1
pk

ε

Sk
N

Si
pk

Sk
N

Spk

pk

ε

.

Apk

.

Mnk+pk

.

Γl:j

Γl:1 Γl:pl

ε ε

. . .
Sl
N

S1
pl

ε

Sl
N

Sj
pl

Sl
N

Spl

pl

ε

.

Apl

.

Mnl+pl

.

Γk:i

(c) Exchange of possible futures.

*

C1 Cpk
. . .

Apk

.

Mnk+pk

.

Γk:i
l:jε ε C ′

1 C ′
pl

. . .

Apl

.

Mnl+pl

.

Γl:j
k:iε ε

(d) Each cell extracts its correct future.

*

Mnk+pk

.

Γk:i
l:j

Mnl+pl

.

Γl:j
k:i

D1 Dpk
. . .

D′
1 D′

pk
. . .

(e) No choice here.

Multiport Combinators 169

*

[<k:i
l:j]

. . .
Tσk:i,l:j

.

[<l:j
k:i]

. . .
Tσl:j,k:i

.

E ′
1 E ′

pk
. . .

E1 Epk
. . .

(f) All is left to simulate is the wiring

Figure 4.7: Simulation of the interaction for αk ./αl

not be a characteristic of some χk ./ χl active pairs to be observable or not, since it
could happen that the active pairs employ cells of same coarities, but one is observable
and the other not. What is true of χ/χ-rules, is true for any other rule used in the
simulation above. We therefore need to introduce a new rule which is observable.

As the reader might notice, we will later introduce even more rules (from the ones
given in the beginning of the section). Maybe one of those could be the observable
equivalent of the encoded rule. We assure him that it is not the case, as he will
understand from the following paragraphs. It is not possible to use the decoding
mechanism as observable, since it might be produced at several places at the same
time leading to a surplus of observability.

Let us proceed. The system is very simple. If a rule is observable in S and we
want a unique reduction step to be observable in T , we need it to be applied between
cells from both halves of the reduction simulation.

By a quick overview of the simulation, we can see no interaction can happen be-
tween both halves before reaching the stage of simulating the wire (Fig. 4.7(f)). It is
sufficient then to add an observable but otherwise useless cell at the root of each of
the trees Tσk:i,l:j and Tσl:j,k:i . The only change to the whole encoding is that if, and
only if, θki ./ θlj is observable in S, the package Γk:i

l:j uses an extra o-cells, as shown in
Figure 4.8.

Inactive pairs We have considered until now that any cut-like configuration between
two cells in S has a rule. In such a case, any χk/χl pair in a net JNK can trigger the
chain of interactions, since it necessarily simulates some reduction of the original net.
It is not the case that all systems are full. Actually, the separation principal auxiliary
ports is ad-hoc in a multiport setting, and is used only for clarity. If we consider the
a posteriori definition of principal ports, we need to be able to encode the fact that
some connections between ports do not define active cells.

170

Γk:i
l:j =

M∗
nk+pk

i

[<k:i
l:j]

. . .

. . .
Tσk:i,l:j

o

Figure 4.8: Possible future if the interaction is observable.

In simple nets, a cut between two principal ports defined necessarily a deadlock. It
was easy then to consider the encoding of θ / .θ′ to be any deadlock that is splittable
in half and use it as the reduced of JθK | JθK. It is not true anymore in a multiport
setting. In fact, it is possible for instance, to have a rule for θ1(a, b, c) ./ θ′1(a, d),
making the first port of θ principal, and no rule for θ1(a, b, c) ./ θ1(a, d, e), making a
cut-like configuration an inactive pair.

A simple approach is to consider then θ / .θ′ to be the active pair θ./θ′ itself. We
would then simply consider <θ′θ to be θ, for any θ, θ′ in the language, and of course
make that rule unobservable. This is satisfying if one does not consider divergence as
irritating. The encoding of a net containing such an active pair could go on for ever
just trying to simulate it and go back to itself.

In order to avoid this cyclic reduction, we introduce a blocking mechanism. When
an inactive pair is simulated, it reduces to itself, except that the wire that created the
active pair now contains a blocker cell, pointing toward both principal ports, thus the
need of a cell of coarity 2. If one of the involved cells is later reduced by another of
its ports, its simulation sends unblocking cells on all the ports of its interface. In this
way, the cell that has not been modified gets its use of a principal port restored, in
case it needs it.

[θk]

[θl]

.

. . .

.

. . .

*

[θk]

[θl]

.

. . .

.

. . .

B

If k : i 6= l : j, it is sufficient to attach the net B to one of the halves of the almost
active pair. The problem is is k = l and i = j, in oder for the encoding to be defined

Multiport Combinators 171

correctly, we need for B to be created from the connection of two smaller nets b. It is
not a problem. We consider

b(x, y) = α(x, y; z) | ε(z).

For any (k, i, l, j) which has no rule, we define Γk:i
l:j the following way:

Γk:i
l:j =

M∗
nk+pk

. . .

[θk]

. . .

.
. . . α ε

In this way, the end of the simulation contains, instead of [θk] | [θl], a net:

[θk] [θl]
.

. . .

.

. . .

α α

ε ε

which has no active pairs, since we explicitly stated that α./χp has no rule.
On the other hand, for any (k, i, l, j) which has a rule in S, we define Γk:i

l:j the
following way (remove the o-cell if the original rule is not observable):

Γk:i
l:j =

M∗
nk+pk

i

[<k:i
l:j]

. . .
Tσk:i,l:j

λ λ. . .

o

172

In this way, if the net representing θk in the blocked situation has interacted by
another port simulating an actual reduction rule, a λ-cell is sent towards the α-cells,
erasing them one after the other, and vanishing against the χl-cell of the other part
of the blocked net. If a unblocker cell has been also sent by the other side, the two
λ-cell vanish when they encounter, creating the wished connection between the wished
ports.

If λ-cells are sent toward non-blocked wires, they mean no harm and just get erased
by contact with the χ-cell, if it exists, or as soon as it starts existing.

4.4 Encoding systems with recursion

We have seen in the previous section how to encode any multiport system that has no
recursion (see Definition 4.3.1). We have seen how to deal correctly with observability,
and inactive pairs. In this section, we show how to encode systems with recursion,
which is the main accomplishment of Lafont in [33]. The principle is exactly the same,
so if the reader is already aware of Lafont’s work, he will learn nothing here. We only
adapt it for a world with multiport cells.

Lafont’s intuition was that it is possible to create a big big package containing all
possible futures of all cells (we add: interacting on all possible principal ports). Every
cell-encoding has access to a copy of that DNA-package and takes in it only what it
needs. To do so, it first copies it for personal use as many times as it needs (and
always keeps a full-copy for further duplication). Each part inside the net extracts the
needed piece from a copy that is given to it. The system is able to perform, in some
sense, self-duplication and specialization, thus the DNA metaphor.

4.4.1 Duplication

We can see how the whole system is based on duplication and therefore on a strong use
of the δ-cell. Unfortunately, δ does not copy itself. Nevertheless, a package π without
δ-cells can be duplicated as follows:

π

δ

* π π

It is a corollary of the following lemmas, and the decomposition of reduced nets
(Cor. 4.1.11):

Lemma 4.4.1 (duplication).

Multiport Combinators 173

1. For any multitree2 T (ã, x̃) without δ-cells, of root interface ã = a1, . . . , ap and
leaf interface x̃ = x1, . . . , xq:

T (ã, x̃) | δ(a1; b1, b
′
1) | . . . | δ(ap; bp, b′p)→∗

T (b1, . . . , bp, y1, . . . , yq) | T (b′1, . . . , b′p, y′1, . . . , y′q) | δ(x1; y1, y
′
1) | . . . | δ(xq; yq, y′q)

T

δ δ

. . .

. . .

.

*

T

δ

T

δ

. . .

. . .

. . .

. . .

. . .

2. For any wiring w(a1, . . . , an)

w(ã) | δ(a1; b1, b
′
1) | . . . | δ(an; bn, b′n)→∗ w(b1, . . . , bn) | w(b′1, . . . , b′n).

ω

δ δ
. . .

.

* ω ω

.

Both statements are proved by induction on the size of the tree or the wiring. The
rule for the active pair δ ./ δ is primordial for the correct duplication of wirings. It is
therefore not possible to change its rule to have δ duplicate itself.

4.4.2 Codes, copiers and decoder

One constructs, for any package π another package !π (code of π) which can be du-
plicated, erased and from which π can be extracted. More precisely, one constructs
reduced nets Cn (copier) and D (decoder) with the following properties:

2We remind that not all ports of the leaf interface are connected to auxiliary ports even though
they are represented as such (see Def. 4.1.7).

174

!π

Cn

. . .

n

* !π !π
. . .

n

!π

ε

* ∅
!π

D

* π

The reader can notice the use of tree to graphically represent Cn and D. It is just
because the implementations we (meaning Lafont) propose are in fact trees.

We start by dealing with duplication, building for π a net π that can be duplicated
and decoded. If a package really has no δ-cell, a simple implementation of Cn is Tn:
a tree of δ-cells. Any tree of these cells with enough auxiliary ports does the job as
well. We define π and D. The main remark is that if π contains n δ-cells, it can be
decomposed as follows:

π = δ δ
. . .

.
π′

where π′ is reduced with 3n+ 1 fee ports, and contains no δ-cells. An implementation
for π can therefore be:

π =
M∗

n

. . .

M∗
n

. . .

Mn

. . .

M4

π′

In which case, an easy way to fill in δ-cells back where they belong is the tree D:

Multiport Combinators 175

D =
M∗

4

δ

Here again, since all cell involved are simple cells, there is a kind of partial conflu-
ence. Anyway, we just use the fact that

π(a) | D(a, b) 'c π(b).

We got rid of δ-cells in order to create some duplicable packages. We can use the
same strategy to create erasable packages. The only problematic cell for erasure is α.
When erased using ε, its other two ports are not transmitted erasers, situation that
can end with the creation of a deadlock. A simple way of assuring that a package gets
erased by ε is for it not to have α-cells. This is done by a very similar construction,
given in Figure 4.9. We call π the package π coded as to not contain α-cells. D is
the generic name for the tree allowing to place back in π the α-cells in order to obtain
π back. These two constructions use autodual multiplexors instead of γ-cells, so this
coding has to be done before the one getting rid of δ-cells.

We define !π to be the result of removing δ-cells from π (if we went the other way,
we would have added δ-cells after getting rid of them). Finally, D(a; b) ≡ D(a;x) |
D(x; b).

4.4.3 The encoding, general case

A big duplicable package containing all possible futures of all possible cells for all
possible interactions is constructed. It is simply called Γ. It can be erased and dupli-
cated. For each cell θk of S, of arity m and coarity p, we construct the net denoted
[θk], containing this package Γ and decoders D. This net is capable of retransforming
Γ into the “real” menu of all possible futures and extract from it each piece that is
necessary. It is shown in Figure 4.10.

It is not possible to build the big package Γ with the help of these nets, since
they contain Γ. Instead, for each cell labeled θk (of arity m and coarity p) is given
another net, denoted < θk > with an interface composed of p+ 1 principal ports and
m auxiliary ones. This cell is like a squeleton of [θk]: it contains the decoders and
selectors, but does not contain Γ directly. When Γ is connected to it, at the right
place, it “transforms” itself into [θk] by first duplicating Γ to keep a full copy and then
decoding and selecting the right pieces.

176

π =
Tn

. . .
Tn

. . .

Tn

. . .

T4

π′

D =
T4

α

Figure 4.9: Coder and decoder to get rid of α-cells.

Multiport Combinators 177

[θk]
. . .

. . .

=

χpk

. . .

. . .

γ γ

Γk:1 Γk:pk

Sk
N

S1
p

Sk
N

Sp
p

D D

Ap
. . .

Mp+m+1

. . .

. . .

. . .

Γ

Figure 4.10: Encoding of a cell θk of coarity p and arity m.

178

< θk >

. . .

. . .

m

p

=

χp

. . .

. . .

γ γ

Sk
N

S1
p

Sk
N

Sp
p

D D

Ap
. . .

Mnk+pk+1

. . .

.

S1
p

Sk
N

Sp
p

Sk
N

Cp

. . .

δ

m

p

Figure 4.11: The net that is used instead of [θk] to build the packages of possible futures.

Multiport Combinators 179

The way of doing so, is of course by using copiers and selectors (see Figure 4.11).
We can see that it copies Γ as many times as necessary (one for each principal port)
and once more, this last copy being connected as auxiliary package for further use.

To encode the halves of right-hand-sides of rules, we build a net that acts like an
empty receptacle for a real encoding of a cell, like a mold. It contains a net < θk > for
every cell of arity k that the corresponding half-rule contains and copiers that send a
copy of Γ to each of them. With these molds, we build the packages containing the
possible futures of a cell. Let N be the total number of cell of <k:i

j:l .

Γk:i
l:j = < <k:i

l:j >

M∗
nk+pk

i

Tσk:i,l:j

λ λ. . .

o

CN
. . .

The copier CN is in fact connected to each and every net < θ > in < <k:i
j:l >, on

the principal port of the δ-cell at the top.
Let us now build the full genetic code Γ. If we follow the wished sequence for the

simulation, we can see that Γ will first be copied, thus needs to not have δ-cell. This
is why Γlk:i is now defined with the help of !Γl:1k:i packages. Then packages Γk:i get
extracted for each 1 ≤ i ≤ p, once k has been determined. Let pl be the coarity of θl.

Γl
k:i = !Γl:1

k:i & . . . & !Γl:pl
k:i

Γk:i = Γ1
k:i & . . . & ΓN

k:i

Γk = Γk:1 & . . . & Γk:p

Γ = Γ1 & . . . & ΓN

Since !Γl:jk:i has no δ-cell, none of the packages above do either (see Definition 4.2.3).
In < θk >, a copy of Γ is performed for each of θk’s principal port. Out of this copy

180

is first extracted a package Γk. If one is interested in performance, it is possible
to exchange these two operations, and extract Γk before copying. Out of each Γk,
each port gets its corresponding Γk:i. Then, the interaction is simulated as before:
the opponent port which wins the interaction extracts Γlk:i and Γl:jk:i for him to use,
obtaining its future, which is injected with the needed δ and α-cells at the right places
by the use of D-trees.

4.4.4 Correctness of the encoding
We denote by J K the encoding described along this entire section, which is, for any
S = (|S|,R,O), a function from |S| to |MC| describes, for each label θ of S by < θ >.

Thanks to our use of coding nets into δ and α-free nets, the previously floating-
around-the-main-computation-closed-nets are now composed of a package with no α-
cells, erased by a ε, making them totally erasable. This way, we get the following
theorem:
Theorem 4.4.2 (Strong completeness). For any multiport system S, J K is such that
for any net M from S, M →∗ N implies JMK→∗ JNK.

Proof. It is sufficient, for each interaction in the reduction of M to N , to follow the
perfect simulation that leads to the correct encoding.

Conversely:
Theorem 4.4.3 (Soundness). For any multiport system S, J K is such that for any
net M from S, if JMK→∗ M ′, then there are nets N ∈ S and N ′ ∈MC such that

M →∗ N and M ′ →∗ N ′ 'c JNK.

In fact, what we imagine N ′ to be is not exactly JNK because of the blocking
mechanism. When M – or one of its reductions – contains an irreducible cut, its
encoding can start to simulate it before to enter in the blocked process. Then, N ′ is
JNK in which the wire connecting the inactive pair is replaced by a blocked wire. This
is the only case in which soundness if up-to barbed congruence. Therefore we have the
following theorem:
Theorem 4.4.4 (Strong soundness). For any full multiport system S, J K considered
without the blocking mechanism is such that for any net M from S, if JMK →∗ M ′,
then there is a net N ∈ S such that

M →∗ N and M ′ →∗ JNK.

Multiport Combinators 181

4.5 Quality of the combinators

The encoding fits Gorla’s criteria [26], which speak about the quality in terms of
computability comparison. We would like to make a few comments on the system of
combinators itself. The search for combinators for a language, or set of languages, has
two purposes.

A practical one first. It is particularly true for interaction nets. These are a frame-
work, more than a language, and allow a great deal of freedom. Cells can represents
information at any scale, from operations in machine language to computers on a
network. It is maybe not the best language to study each of these scales, but its
universality can hardly be denied. Having a system of combinators puts a little bit
of order in that chaos. It gives a natural scale for interaction nets. In fact, it gives a
natural interaction net language, if we wish for instance to implement a programming
language based on interaction nets.

The second purpose, which was the one driving Lafont, was theoretical. The ques-
tion is: what are the real operations behind a calculation? Several answers can be
given. We know that behind arithmetics stands, as most important, the operation
“add 1”. Hard to get smaller that that. Sequential computation can be modeled by
Turing machines, in which the basic operations are: read, write and move right/left.
But it can also be modeled by Λ-calculus, which has one rule, necessarily the mini-
mal one we are looking for: substitution. Can substitution be considered minimal?
As Lafont remarks, a more primitive system is combinatory logic, with two rewriting
systems: erasing and duplication. Most probably, there is no real answer to the mini-
mality problem, as it is most likely to be cyclic in some manner. Think of a dictionary.
Which are the minimal words needed to start the definition process? Our purpose is
to give one possible answer to the minimality question for concurrent computation.

A quality system is one that has a good balance of simplicity throughout all its
components. Interaction nets have two main components: the alphabet and the rules.
A good balance of simplicity is one that has as little different cells as possible, but
not at the price of complicated rules. For instance, interaction combinators for Lafont
nets have three cells and six rules. Bechet on the other hand [4] shows how to combine
several cells into one, obtaining, from Lafont’s combinators a universal system with
only two cells. (The ε erasing cell cannot be combined with others). The system is
universal, but the interesting rule is so complicated, it has no meaning to us. We tried
to follow this idea of simplicity over minimality. We now discuss a little bit some of
the ways the system could loose cells and rules.

Unlike Lafont, we chose to distinguish the duplication cell from the cell representing
the root of encoded cells. We can see anyhow that χ1 ./χ1 has the same rule as δ ./δ,
so χ-cells can be considered as generalized δ. It is possible to consider so, but in this
case χ-cells cannot be duplicated. The code mechanism that gets rid of δ-cells needs to
get rid of each χn cell that can be encountered in the system. Luckily, given a system

182

S, this quantity is finite. It just seems that the choice mechanism and the duplication
mechanism are not the same and combining them in this way is more cheating then
getting a new insight on what minimal operations are.

Another way of dealing with that is to consider γ-cells to be the duplicator. And
in fact, it is possible to code any package without γ-cells and build a decoder, using
autodual multiplexors instead of normal ones, which means duplication can take place.
Menus and selectors can also be built with autodual multiplexors. Finally, we would
use χ1 as the winner of the allocator cell α, since the package Γl:jk:i would be built
with autodual multiplexors too, using only δ-cells. A complication of using γ as a
duplicator is that it is hard to follow the rule, since each port of a duplicated cell
has to be in some sense connected to the wrong auxiliary port of γ in order for the
process to continue without interleaving duplications of different parts of nets. It is,
nevertheless, a not that hard way of reducing the number of cells.

β(a1, . . . , an) | γ(ai;x, y)→
β(b1, . . . , bn) | β(c1, . . . , cn) | [bi, x] | [ci, y] | γ(a1; c1, b1) | . . . | γ(an; cn, bn)

The only place autodual multiplexors cannot do the job alone is to create transpositors.
It is possible anyhow to create multiplexors with χ1-cells only:

M∗
0

ε=

M0 ε=

M∗
1 =

M1 =

M∗
2 χ=

M2 χ=

M∗
n+1
. . .

M∗
n

. . .
χ

Mn+1

. . .

Mn

. . .
χ

=

=

Of course, this means we need to get rid of γ-cells for making packages duplicable.
Another, more profound remark, is the one about the use of allocators. Even

though the rule is quite clear and is natural in computer science (think of allocating
resource), it is not necessary in combinators. A χ/χ interaction already defined who
has to win the allocator: all of its other ports receive ε-cells. It is therefore possible to
modify χ-cells to integrate the allocator: each χn-cell would have an extra auxiliary
port x which would correspond to the auxiliary port of An. The interaction of χ/χ
would directly connect the correct auxiliary port of the decoder with this port x. This
mean the tail of the decoder D has to be an auxiliary port of χ. Then, for each
principal port χ has 3 auxiliary ports, plus the one, therefore ar(χn) = 3n+ 1. We do
not give the detail of the encoding, but one possible rule is given in Figure 4.12.

Multiport Combinators 183

χ3

χ3

ε ε ε ε

εεεε

Figure 4.12: A possible rule that combines χn-cells and allocators choice.

Such a rule seems a little bit ad-hoc for our purpose. It does not bear at all the
simplicity we would wish from a universally useful cell. Moreover, it would still not
dispense us from the use of a 2-multicell for the blocking mechanism. In fact, if we get
rid of α, the only cell with multiple principal ports becomes the χ-family. A careful
analysis of the blocking mechanism shows that a cell with at least two principal ports
is needed, but all cells in the χ-family need to interact with each other. We do not
win much by complexifying the χ-cells to contain the allocator mechanism.

184

185

References
[1] Alexiev, V. Non-deterministic interaction nets. PhD thesis, University of Alberta,

Edmonton, Alta., Canada, 1999. AAINQ46797.
[2] Baldan, P., Ehrig, H., and König, B. Composition and Decomposition of DPO

Transformations with Borrowed Context. In Proc. of ICGT ’06 (International Con-
ference on Graph Transformation) (2006), A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, and G. Rozenberg, Eds., vol. 4178 of Lecture Notes in Computer Science,
Springer, pp. 153–167. LNCS 4178.

[3] Banach, R. The Algebraic Theory of Interaction Nets. Tech. rep., University of
Manchester, 1995.

[4] Bechet, D. Universal Interaction Systems with Only Two Agents. In Proceedings of
RTA 2001 (2001), A. Middeldorp, Ed., vol. 2051 of LNCS, Springer, pp. 3–14.

[5] Beffara, E., and Maurel, F. Concurrent nets: A study of prefixing in process
calculi. Theor. Comput. Sci. 356, 3 (2006), 356–373.

[6] Bonchi, F., Gadducci, F., and König, B. Synthesising CCS Bisimulation using
Graph Rewriting. Information and Computation 207, 1 (2009), 14–40.

[7] Bonchi, F., Gadducci, F., and Monreale, G. V. Labelled Transitions for Mobile
Ambients (As Synthesized via a Graphical Encoding). Electronic Notes in Theoretical
Computer Science 242, 1 (2009), 73–98.

[8] Bruni, R., Gadducci, F., and Lluch-Lafuente, A. A graph syntax for processes
and services. Web Services and Formal Methods (2010), 46–60.

[9] Bruni, R., Gadducci, F., Montanari, U., and Sobociński, P. Deriving weak
bisimulation congruences from reduction systems. In Proc. of CONCUR ’05 (2005),
Springer, pp. 293–307. LNCS 3653.

[10] Corradini, A., Heckel, R., and Montanari, U. Graphical Operational Semantics.
In ICALP Satellite Workshops (2000), pp. 411–418.

[11] Curry, H. B., Feys, R., and Craig, W. Combinatory logic, vol. 1. North-Holland,
1958.

[12] Danos, V., and Laneve, C. Graphs for Core Molecular Biology. In CMSB (2003),
C. Priami, Ed., vol. 2602 of Lecture Notes in Computer Science, Springer, pp. 34–46.

[13] de Falco, M. An Explicit Framework for Interaction Nets. In RTA (2009), R. Treinen,
Ed., vol. 5595 of Lecture Notes in Computer Science, Springer, pp. 209–223.

[14] de Simone, R. Higher level synchronizing devices in MEIJE-SCCS. Theoretical Com-
puter Science 37 (1985), 245–267.

[15] Dorman, A., and Heindel, T. Structured Operational Semantics for Graph Rewrit-
ing. In ICE (2011), A. Silva, S. Bliudze, R. Bruni, and M. Carbone, Eds., vol. 59 of
EPTCS, pp. 37–51.

186

[16] Ehrhard, T., and Laurent, O. Interpreting a Finitary Pi-Calculus in Differential
Interaction Nets. Information and Computation 208, 6 (2010), 606–633.

[17] Ehrhard, T., and Regnier, L. Differential interaction nets. Theoretical Computer
Science 364, 2 (November 2006), 166–195.

[18] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2006.

[19] Ehrig, H., and König, B. Deriving Bisimulation Congruences in the DPO Approach
to Graph Rewriting with Borrowed Contexts. Mathematical Structures in Computer
Science 16, 6 (2006), 1133–1163.

[20] Fernández, M., and Khalil, L. Interaction Nets with McCarthy’s amb. Electr.
Notes Theor. Comput. Sci. 68, 2 (2002), 51–68.

[21] Fernández, M., and Mackie, I. A Calculus for Interaction Nets. In PPDP (1999),
G. Nadathur, Ed., vol. 1702 of Lecture Notes in Computer Science, Springer, pp. 170–
187.

[22] Gadducci, F. Term Graph rewriting for the π-calculus. In Proc. of APLAS ’03
(Programming Languages and Systems) (2003), A. Ohori, Ed., Springer, pp. 37–54.
LNCS 2895.

[23] Gadducci, F., and Montanari, U. The tile model. In Proof, Language, and Interac-
tion (2000), G. D. Plotkin, C. Stirling, and M. Tofte, Eds., The MIT Press, pp. 133–166.

[24] Gay, S. Combinators For Interaction Nets. In Proceedings of the 2nd Imperial College,
Department of Computing, Workshop on Theory and Formal Methods. Imperial (1995),
College Press, pp. 63–84.

[25] Gentzen, G. Untersuchungen über das logisches Schließen. Mathematische Zeitschrift
1 (1935), 176–210.

[26] Gorla, D. Towards a unified approach to encodability and separation results for
process calculi. Inf. Comput. 208, 9 (2010), 1031–1053.

[27] Groote, J. F., and Vaandrager, F. W. Structured operational semantics and
bisimulation as a congruence. Information and Computation 100 (1992), 202–260.

[28] Hirsch, D., and Montanari, U. Synchronized Hyperedge Replacement with Name
Mobility (A Graphical Calculus for Mobile Systems). In Proc. of CONCUR ’01 (2001),
Springer-Verlag, pp. 121–136. LNCS 2154.

[29] Honda, K. Elementary Structures in Process Theory (1): Sets with renaming. Math-
ematical. Structures in Comp. Sci. 10, 5 (Oct. 2000), 617–663.

[30] Howard, W. A. The formulae-as-types notion of construction. In To H.B. Curry: Es-
says on Combinatory Logic, Lambda Calculus and Formalism, J. Seldin and J. Hindley,
Eds. Academic Press, 1980, pp. 479–490. Reprint of manuscript first published in 1969.

[31] Javadi, R., Maleki, Z., and Omoomi, B. Local Clique Covering of Graphs.
arXiv:1210.6965v1, Oct. 2012.

187

[32] Lafont, Y. Interaction nets. In Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (New York, NY, USA, 1990), POPL
’90, ACM, pp. 95–108.

[33] Lafont, Y. Interaction Combinators. Information and Computation 137, 1 (1997),
69–101.

[34] Laneve, C., Parrow, J., and Victor, B. Solo Diagrams. In TACS: 4th Interna-
tional Conference on Theoretical Aspects of Computer Software (2001).

[35] Laneve, C., and Victor, B. Solos in Concert. In ICALP (1999), J. Wiedermann,
P. v. E. Boas, and M. Nielsen, Eds., vol. 1644 of Lecture Notes in Computer Science,
Springer, pp. 513–523.

[36] Leifer, J. J., and Milner, R. Deriving Bisimulation Congruences for Reactive
Systems. In CONCUR ’00 (2000), C. Palamidessi, Ed., vol. 1877 of Lecture Notes in
Computer Science, Springer, pp. 243–258. LNCS 1877.

[37] Lippi, S. Théorie et pratique des réseaux d’intéraction. PhD thesis, Université de la
Méditerranée, 2002.

[38] Mazza, D. Multiport Interaction Nets and Concurrency. In Proceedings of CONCUR
2005 (2005), M. Abadi and L. d. Alfaro, Eds., LNCS, Springer, pp. 21–35.

[39] Mazza, D. Interaction Nets: Semantics and Concurrent Extensions. PhD thesis,
Université de la Méditerranée & Roma Tre, 2006.

[40] Mazza, D. The True Concurrency of Differential Interaction Nets. Mathematical
Structures in Computer Science (2013). To appear.

[41] Milner, R. Pi-nets: a graphical form of Pi-calculus, vol. LNCS 788. Springer-Verlag,
Proceedings ESOP ’94, 1994.

[42] Milner, R. Bigraphical Reactive Systems. In Proc. of CONCUR ’01 (2001), Springer-
Verlag, pp. 16–35. LNCS 2154.

[43] Milner, R. Pure bigraphs: Structure and dynamics. Information and Computation
204, 1 (2006), 60–122.

[44] Nestmann, U., and Pierce, B. C. Decoding choice encodings. Inf. Comput. 163
(November 2000), 1–59.

[45] Palamidessi, C. Comparing the Expressive Power of the Synchronous and the Asyn-
chronous pi-calculus. In Symposium on Principles of Programming Languages (1997),
pp. 256–265.

[46] Parrow, J. The Expressive Power of Simple Parallelism. In PARLE (2) (1989),
E. Odijk, M. Rem, and J.-C. Syre, Eds., vol. 366 of Lecture Notes in Computer Science,
Springer, pp. 389–405.

[47] Parrow, J. Expressiveness of Process Algebras. Electronic Notes in Theoretical Com-
puter Science 209 (2008), 173–186.

[48] Poincaré, H. La Valeur de la science. Flammarion, Paris, 1905.
[49] Rabinovitch, A., and Traktenbrot, B. Behaviour structures and nets. Funda-

menta Informatica 11, 4 (1988), 357–404.

188

[50] Rathke, J., Sassone, V., and Sobociński, P. Semantic Barbs and Biorthogonality.
In FoSSaCS (2007), H. Seidl, Ed., vol. 4423 of Lecture Notes in Computer Science,
Springer, pp. 302–316.

[51] Rathke, J., and Sobociński, P. Deriving structural labelled transitions for mobile
ambients. Information and Computation 208 (2010), 1221–1242.

[52] Rensink, A. Compositionality in Graph Transformation. In Proc. of ICALP (2010),
S. Abramsky, C. Gavoille, C. Kirchner, F. M. auf der Heide, and P. G. Spirakis, Eds.,
vol. (2) of Lecture Notes in Computer Science, Springer, pp. 309–320. LNCS 6199.

[53] Sangiorgi, D. Internal Mobility and Agent-Passing Calculi. In ICALP (1995),
Z. Fülöp and F. Gécseg, Eds., vol. 944 of Lecture Notes in Computer Science, Springer,
pp. 672–683.

[54] Sangiorgi, D., and Walker, D. The Pi-Calculus: A Theory of Mobile Processes,
new ed ed. Cambridge University Press, October 2003.

[55] Sassone, V., and Sobociński, P. Deriving Bisimulation Congruences Using 2-
categories. Nordic Journal of Computing 10, 2 (2003), 163–183.

[56] Sassone, V., and Sobociński, P. A congruence for Petri nets. In Proc. of the
Workshop on Petri Nets and Graph Transformations (PNGT 2004) (2005), vol. 127.2
of ENTCS, pp. 107–120.

[57] van Glabbeek, R. J., and Goltz, U. Equivalence notions for concurrent systems
and refinement of actions. In Proceedings of MFCS 1989 (1989), vol. 379 of Lecture
Notes in Computer Science (LNCS), Springer-Verlag.

[58] Winskel, G. Event structures. Petri nets: applications and relationships to other
models of concurrency, Springer Lecture Notes in Computer Science 255 (1987), 325–
392.

[59] Yoshida, N. Graph Notation for Concurrent Combinators. In Proceedings of TPPP
(1994), T. Ito and A. Yonezawa, Eds., vol. 907 of LNCS, Springer, pp. 393–412.

	Introduction
	Plan of the thesis

	Interaction Nets
	Lafont's calculus
	Interaction nets
	Universality

	Non-deterministic extensions
	Multirule nets
	Multiwire nets
	Multiport nets

	Relative expressivity
	Encodings among non-deterministic interaction nets
	A separation technique based on Event Structures
	Event Structures of multiport vs. multiwire systems

	Structural Operation Semantics for Interaction Nets
	SOS for simple interaction nets
	Graph rewriting : preliminaries
	Hypergraphs
	Standard graph transformation
	Behavior as interaction with the environment

	A process calculus perspective on borrowed contexts
	The analogy with CCS
	Borrowed contexts in three layers

	Communication in composed states
	The idea of composition of transitions
	Composition results for Borrowed Context diagrams

	SOS semantics
	Application to interaction nets
	Towards a partial solution
	Sufficient conditions
	Particular means for particular ends

	Conclusion

	Concurrent Interaction Nets
	(Textual) interaction nets
	Encoding the pi-calculus
	Comparing interaction net extensions
	Encodability
	Separation
	To sum-up

	Multiports can alone express rule ambiguity and connectors
	Uniports, but multwires and/or multiple rules
	Some issues with communication zones
	Upgrade to multiport source language
	Encoding general nets into multiport nets

	Multiwires can express rule ambiguity
	One multirule to rule them all
	Encoding the asymmetric rule using multiwires
	What about multiports?

	Multirules alone do not give concurrency
	Comparing multiport and multiwire concurrency

	Multiport Combinators
	Special decomposition of nets
	Combinators for multiport interaction nets
	The system
	Multiplexors and transpositors
	Menus and selectors
	Allocator

	Encoding (restricted case)
	Encoding systems with recursion
	Duplication
	Codes, copiers and decoder
	The encoding, general case
	Correctness of the encoding

	Quality of the combinators

	References

