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“I have always thirsted for knowledge, I have always been full of questions.”
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Chapter 1

Introduction

Vorticity and vortex flows have been extensively studied because of the important role they play in
so many different fields. The theoretical foundations of the vorticity kinematics/dynamics are well
understood (see for instance the works by Truesdell, Ref. [51], Serrin, Ref. [49], and more recently
Saffman, Ref. [46]).1 Other relevant issues are the relationship of vorticity with turbulence (see
for instance the monograph by Chorin, Ref. [4]) and that with sound generation (see for instance
Howe, Ref. [11]). It is apparent that the field is extremely wide and therefore some form of selection
is required, as discussed below.2

Here, the common thread is the analysis of the aerodynamics and aeroacoustics of jets. As we
will see, the vortical region behind a jet may be subdivided into four stages. In the first, we have
the generation of two boundary layers, inside and outside the nacelle; here, the role of viscosity
is essential (first stage). Next, we have a thin vortical layer, similar to that of the wake behind a
wing or a rotor blade (second stage). Because of the Kelvin–Helmholtz instability, this layer rolls
up to form a vortex ring, where the vorticity evolution is dominated by convection (third stage).
After that, the vortex rings break down and form so–called mushroom structure, for which the
viscosity becomes again relevant (fourth stage).

Here, we limit ourselves to incompressible flows and address rarely used formulations that we
believe to be particularly well suited for the specific flow of each stage. In particular, we address
specific methodologies for three types of flows, which in order of increasing complexity may be
classified as follows:

1. Incompressible thin vortex–layer flows (second stage),

2. Incompressible Euler vortex–ring flows (third stage),

3. Incompressible Navier–Stokes flows (first and fourth stages).

The vortex flows of the first group are the so–called almost potential flows; these comprise
all the flows which are irrotational everywhere but in some thin layers.3 These occur when we
have attached high–Reynolds flows, such as the flow around a civilian–aircraft wing at a small
angle of attack. Another important example is the flow generated by helicopter blades, again at
small angles of attack. These flows are closely related to quasi–potential flows, which are defined
as “flows in which vorticity is concentrated in some zero–thickness layers of fluid”.4 Therefore, for

1It may be of interest to note that the term vortex dynamics is often used, although the evolution of vorticity
does not involve forces; thus, Truesdell, Ref. [51], refers to it as vorticity kinematics. Here, we consistently use the
term “vorticity kinematics/dynamics”.

2Because of the extent and the complexity of the field of vortex flows, the review of the state of the art is also
limited to methodologies related to those used here for the study of these specific vortex flows.

3 Following Chorin and Marsden, Ref. [3], p. 60, an almost potential flow is defined as “a flow in which vorticity
is concentrated in some thin layers of fluid”.

4The relationship between almost potential flows and quasi–potential flows, is addressed in Appendix A, where
it is shown that the viscous–flow formulation of Chapter 4 yields, in the limit as the thickness and the viscosity
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the first type of flows, we consider a modified quasi–potential formulation, that takes into account
the effect of the viscosity. The approach used is addressed in greater depth in Section 1.1, along
with a review of the state of the art. The mathematical details of the formulation are presented
in Chapter 2, along with the numerical results obtained.

For the second type of flows (inviscid vortex rings), we used an approach based upon a result
obtained by Cauchy in 1815. Again, the approach used is addressed in greater depth in Section
1.2, along with a review of the state of the art; the mathematical details of the formulation are
presented in Chapter 3, along with the numerical results obtained.

For the third type of flows (viscous flows), we used a novel formulation named the natural
velocity decomposition. Again, the approach used is addressed in greater depth in Section 1.3,
along with a review of the state of the art; the mathematical details of the formulation are presented
in Chapter 4, along with the numerical results obtained.

In Chapter 5, we present concluding remarks. In particular, we show how an alternate for-
mulation of the natural velocity decomposition, discussed in details in Appendix B, may provide a
unified approach to study all four stages with the same methodology, with the appropriate simplifi-
cations afforded by the specific peculiarities of the flow. This novel natural velocity decomposition
has been obtained only very recently, and hence only very preliminary results are presented.

1.1 Incompressible thin vortex–layer flows

The first group of flows analyzed are incompressible quasi–potential flows, namely flows that are
potential everywhere except for those points that come into contact with the body surface. The
potential wake is a surface of discontinuity for the potential, and is defined as the locus of all such
points. In the past, this methodology has been applied to a non–permeable aerodynamic bodies,
such as wings and rotors. Here, it is extended to analyze jets, which are modelled as nacelle–
like three–dimensional bodies with prescribed flow through at the nacelle inlet and outlet. The
main assumption behind such an approach is that the Kelvin–Helmholtz instability is primarily
governed by convection, whereas the effect of viscosity is not that important. Such azimuthal
instability of the jet column dominates in the first few diameters downstream of the nozzle and
leads to the creation of large coherent structures. Thus, as long as the assumption holds, the
study of jet aerodynamics and aeroacoustics is facilitated by the use of the Euler equations which,
in turn, yields quasi–potential flows, provided that the flow is initially irrotational.

A common tool for the analysis of quasi–potential flows are the boundary element methods
(also known as panel methods), which model the body surface using distributions of aerodynamic
sources and doublets, while the wake surface is modelled as a doublet layer.5

Boundary element methods are a numerical version of boundary integral equation method
(see for instance the 1929 monograph by Kellog, Ref. [12]). This approach was largely neglected
as numerical method, until computer became available; indeed the first numerical works on this
subject, albeit initially limited to potential flows, appeared around 1960 (see, for instance, the
works of Smith and Pierce, Ref. [50], in 1958, and of Hess and Smith, Ref. [10], in 1964). Thus,
these methods have been extensively used for over fifty years. The formulation used here for
quasi–potential flows is based on that of Ref. [23], which is valid for unsteady three–dimensional
flows around bodies having arbitrary shapes and motions. This method has been widely used
for the analysis of quasi–potential flows around wings (as well as rotors, see Ref. [39]; for details
and reviews of the developments of the methodology and of its applications, see Refs. [36], [27]
and [28]).

Here, the formulation has been extended to jets and applied to a specific jet for which

tend to zero, the formulation for quasi–potential flows.
5 Using the equivalence between doublet and vortex layers (Batchelor, Ref. [1]), this is equivalent to modelling

the wake as a vortex layer.
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experimental results are available.

Of course, quasi–potential flows are closely related to almost potential flows. Here, the
relationship between the two (quasi–potential and almost potential flows) has been obtained and is
presented in Appendix A; the analysis is based upon the natural velocity decomposition, presented
in Chapter 4.

1.2 Euler vortex–ring flows

The second group of vortex flows examined in this work pertains incompressible inviscid flows,
namely incompressible Euler flows. For these types of flows, we chose a formulation based upon
a result obtained by Cauchy in 1815 (see Ref. [49], Eq. 17.5, p. 152; see also Eq. 3.18 here).
This result was reinterpreted in terms of material contravariant components in Ref. [24], which
includes the extension of the result to viscous flows, an extension made possible by the material–
contravariant component–approach used. No numerical applications are included in Ref. [24]; on
the other hand, the inviscid formulation was used by Casciola and Piva, Ref. [2], for a numerical
study of the vorticity intensification in swirling rings.

In order to take advantage of the Cauchy result mentioned above (namely that material
contravariant components of the vorticity remain constant in time, so that vortex lines are material
lines), the point of view used is of Lagrangian (not Eulerian) nature, which means that we follow the
material points. By taking advantage of such peculiarity of the material contravariant components
of the vorticity, we are able to study a flow with spatially bounded vorticity by simply following
the deformation of the vortical region. Indeed, once the vorticity has been initially set, the only
unknowns left will be the time evolution of the material points inside the vortical domain. For
inviscid flows, the vorticity is confined within the core of the vortex tube. For, the outer surface of
the vortex ring is a stream surface; indeed, in the absence of viscosity, the vorticity never propagates
outside the material region where vorticity was originally confined. Moreover, as we have seen
before, taking advantage of the invariant nature of the material contravariant components of the
vorticity, the unknowns that remains are the material covariant base vector at the grid points.
Choosing one curvilinear coordinates along the original vortex lines, we have that the vorticity
will exist only along such a direction. Thus, only one covariant base vector has to be evaluated
(step–by–step), in order to solve the problem. The velocity is then obtained through Biot–Savart
law.

The review of such a methodology is limited to the three works mentioned above, as we are
not aware of additional works based upon this methodology. Thus, the remainder of this section
is devoted to a review of the state of the art on vortex ring kinematics/dynamics. Vortex rings
have been extensively studied for a long time, for several reasons (see, for instance, the 1858 work
by Helmholtz, Ref. [9]). A very comprehensive reviews of vortex ring analysis can be found in
both Refs. [47] and [20]. In the aeronautical community, vortex rings have been studied initially
for aerodynamic reasons, in order to successfully capture the vorticity kinematics/dynamics of
stable/unstable, viscous/inviscid vortex rings (see Refs. [2], [21], [48], [52], [53] and [54]). Of
course, they are of interest also for aeroacoustic reasons, since unstable vortex rings represent a
noise source (Ref. [13]) and can be also used to study jet noise (Refs. [14], [15] and [44]).

In the present analysis, the study of a vortex ring is primarily carried out in order to inves-
tigate the evolution of the aeronautical jet. As stated above, the coherent structures created by
the Kelvin–Helmholtz instability are known to evolve into vortex rings. Indeed, these coherent
structures are subject to the same azimuthal and core instabilities of a vortex ring; such insta-
bilities subsequently lead to their breakdown (puffs) into smaller structures through mushroom
like structures. Thus, the dynamic of these structures could be better understood by studying
the instabilities of a vortex ring. Although in this final stage of the vortex ring evolution the
viscous effects are no longer negligible, here only vortex rings in incompressible inviscid flows are
investigated.
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A vortex ring model has been selected in order to study vortex rings’ instabilities. Such
vortex ring model belongs to the well known family of steady vortex rings in an ideal fluid (see
Refs. [8] and [40]). This family of vortex rings are described by a parameter α (non-dimensional
mean core radius). In order to satisfy the vorticity equation, the vorticity inside the core is set to
be linearly varying with the distance from the ring axis. Finally this model has been subjected to
both azimuthal and core instabilities.

1.3 Navier–Stokes flows

In the first and fourth stages, the viscosity is not negligible. Thus, contrary to the two first
cases, this time the governing equations will be the Navier-Stokes equations. No other simplifying
assumption is available, except for the fact that, for the cases of interest in the aeronautical com-
munity, the vorticity is present in a small fraction of the whole fluid region, the so–called vortical
region (here understood as the region where the vorticity is not negligible, namely boundary layer
and wake). Therefore, the last methodology proposed takes advantage of such a fact.

Specifically, it would be desirable to limit our computational domain to the vortical region. To
this end, one could use a vorticity based formulation. The classical approach of this type is based
upon the Helmholtz decomposition of the velocity field into a potential non–solenoidal portion and
a rotational but solenoidal portion (see Serrin, Ref. [49], p. 165). For incompressible flows, this is
particularly convenient because in the infinite space the potential contribution vanishes. However,
the vorticity based decompositions have some drawbacks, for instance (see Refs. [25] and [26] for
a detailed analysis):

1. Imposing that the vorticity remains solenoidal,

2. Transforming the velocity boundary condition, v = v
B

, into a vorticity boundary condition.

Attempts to remove this drawbacks have led to different decompositions (see Ref. [26]), which
however did not fully resolve the problems (see Ref. [33] for a detailed analysis of the state of the
art). Alternatively, a boundary integral formulation in primitive variables has been proposed in
Refs. [42] and [43], and further refined in Refs. [35], [29] and [30]. These works led to a compre-
hensive reformulation of the approach, presented in Ref. [31], where the situation is fully reversed.
The starting point is still a boundary integral formulation in primitive variables; however, the end
result is a decomposition of the velocity field (there called the natural velocity decomposition),
into a potential portion, vP = ∇ϕ, and a rotational portion, w (akin to the Helmholtz decompo-
sition). In other words, the starting point is a primitive–variable formulation, the end result is a
non–primitive variable formulation. This formulation is adopted here. Among the advantages of
such a decomposition, we have

1. It provides a differential equation directly for w (no need to evaluate the vorticity),

2. The rotational portion, w vanishes outside the vortical region (computational grid is limited
to the vortical region),

3. The potential ϕ is governed by the Poisson equation and may be evaluated through the use
of a standard boundary element method,

4. The velocity field may be obtained independently of the pressure p,

5. The pressure may be obtained through a generalized Bernoulli theorem, which is valid even
in the rotational region.

A very preliminary validation of the methodology has been presented in Ref. [17]. A more
exhaustive formulation is presented here. The test case is the incompressible flow behind an
infinite cylinder (two-dimensional problem). Although very limited in its breadth, the validation
has been successful.
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Chapter 2

Quasi–potential flows

The objective of this chapter is to introduce a simple model based upon the assumption that the
vorticity is concentrated within a thin layer whose thickness is negligible. Such thin vortex layer
can be used to model a wake. In this case, one may use a formulation based upon the assumption
of quasi–potential flows, namely flows that are potential everywhere in the fluid field, except for
the wake points (which are defined below). We first illustrate the formulation for potential flows
and then extend it to quasi–potential flows. The present formulation is an extension to jets of the
formulation of Refs. [23] and [39] for wings and rotors (for details and reviews of the method, see
Refs. [36], [27] and [28]).

In this chapter, we first review the formulation of purely potential flows (Section 2.1), and
then that for quasi–potential flows around a wing (Section 2.2). Next, we discuss how the formula-
tion for quasi–potential flows is modified when we deal with jets (Section 2.3). Finally, numerical
results are presented in Section 2.4.

2.1 Potential incompressible flows

Consider an irrotational flow, i.e., a flow with zero vorticity in the whole flow field. Irrotational
flows are potential, namely there exists a function φ(x), called the velocity potential, such that

v(x) = ∇φ(x) (for all x ∈ V), (2.1)

where v(x) denotes velocity and V the fluid region.

Combining Eq. 2.1 with the continuity equation for incompressible flows,

∇ · v = 0 (for all x ∈ V), (2.2)

one obtains

∇2φ = 0 (for all x ∈ V). (2.3)

In order to complete the problem, one needs boundary conditions. For the time being, we
assume the boundary surface, SB , to be impermeable. This implies

v · n = v
B
· n. (2.4)

Combining with Eq. 2.1 yields the following Neumann boundary condition

∂φ

∂n
= χ(x) (for all x ∈ S

B
), (2.5)
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where

χ(x) := v
B
· n. (2.6)

The boundary condition at infinity, in the air frame (namely in a frame of reference rigidly con-
nected to the undisturbed air) is given by v∞ = o(r−1), or, using Eq. 2.1,

φ = o(1). (2.7)

The problem defined by Eqs. 2.3–2.7 is known as the exterior Neumann problem for the
Laplace equation, which has a unique solution (Kress, Ref. [16], pp. 62–67).

Once the above problem has been solved, the pressure, p, is obtained from Bernoulli’s theorem
(a first integral of the Euler equations), which in the air frame is given by

∂φ

∂t
+

1

2
v2 +

p

ρ
=
p∞
ρ
. (2.8)

It should be noted that the original problem is formulated in terms of four non–linear dif-
ferential equations (continuity and Euler equations), for four unknowns (velocity and pressure),
with four independent variables (space and time). For potential flows, the formulation is consid-
erably simpler (one linear differential equation for one unknown); the time dependence and the
non–linearities appear only in the evaluation of the pressure via Bernoulli’s theorem, where they
appear respectively as a time derivative and as an algebraic non–linearity. Note also that, for
potential flows, one solves for the velocity independently of the pressure – the pressure appears to
be “driven” by the velocity. Moreover, potential flows have no memory.

2.1.1 Boundary integral formulation for Poisson equation

Next, consider a boundary integral formulation for potential flows. For future reference, we present
the boundary integral formulation for the Poisson equation

∇2φ = σ (for all x ∈ V). (2.9)

Boundary integral methods are based on the use of the so–called fundamental solution G,
which, for the Laplace equation, is defined by

∇2G = δ(x− y), (2.10)

where δ(x− y) denotes the three–dimensional Dirac delta function, placed at x = y. The funda-
mental solution G is subject only to the boundary condition G = o(1) at infinity (compare to Eq.
2.7). This gives

G(x,y) =
−1

4πr
, (2.11)

with r = ‖x− y‖.
Multiplying Eq. 2.3 by G(x,y) and Eq. 2.10 by φ(x), subtracting, using

∇ · (v∇u− u∇v) = v∇2u− u∇2v, (2.12)

integrating over the fluid volume, using Gauss’ divergence theorem, as well as Eqs. 2.5 and 2.7,
and interchanging the variables x and y, one obtains the following boundary integral representation
for φ(x):

E(x)φ(x) =

∮
S
B

(
∂φ

∂n
G− φ ∂G

∂n

)
dS(y) +

∫
V
σGdV(y) (x ∈ V), (2.13)

6



where ∂/∂n = n · ∇ (n being the outward normal), whereas

E(x) = 1 for x ∈ V
= 0 for x ∈ R3\V. (2.14)

In Eq. 2.13, φ(x) on S
B

is not known. However, if x is a smooth point of S
B

, one obtains, using
Eq. 2.5,1

1

2
φ(x) =

∮
S
B

(
χG− φ ∂G

∂n

)
dS(y) +

∫
V
σGdV(y), (x ∈ S

B
). (2.15)

Contrary to Eq. 2.13, Eq. 2.15 is a boundary integral equation, which relates φ(x) on S
B

to
χ(x) = ∂φ/∂n, also on SB . Note that this equation is a constraint on the Cauchy data of the
problem, φ(x) and χ(x), a constraint that must be satisfied by any solution of the Poisson equation.

It may be worth noting that Eqs. 2.13 and 2.15 may be combined by defining

E(x) = 1 for x ∈ V

=
1

2
for x ∈ S

B

= 0 for x ∈ R3\V. (2.16)

The solution procedure consists of solving first the boundary integral equation, Eq. 2.15, so as to
obtain φ(x) on SB ; then, one may use the boundary integral representation, Eq. 2.13, to obtain
φ(x) in the field, and hence, via Bernoulli’s theorem, the pressure in the field.

It is apparent that the presence of σ makes the approach much less convenient. Thus, the
fact that for potential flows σ = 0 makes the use of boundary integral methods particularly
advantageous. In general, the smaller is the region where σ 6= 0, the more advantageous is the use
of boundary integral methods.

It may be noted that in aerodynamics, we are typically interested in the pressure on the
body, whereas the pressure in the field is of interest in aeroacoustics. Moreover, the evaluation of
the pressure on the body does not require the use of Eq. 2.13. For, one may obtain the velocity
also on S

B
(the tangential components from φ(x) on S

B
, the normal one from Eq. 2.5), and hence,

via Bernoulli’s theorem, the pressure still on S
B

. Thus, if we were to ask a mathematician what is
the difference between the evaluation of the pressure on the surface (aerodynamic problem) and
that in the field (aeroacoustic problem), the reply would be: “The same difference that there is
between a boundary integral equation and a boundary integral representation.”

2.1.2 Boundary element formulation

Consider the boundary element formulation for the above problem, namely the discretization of
the boundary integral formulation. Let S

B
be divided into N

B
triangular and/or quadrilateral

elements, Sj , and let φ(x) and χ(x) to be treated as constant within each element. This yields

φ(x) =

N
B∑

j=1

Bj(x)χj +

N
B∑

j=1

Cj(x)φj , (2.17)

1 Throughout the paper we assume that the surface SB is smooth. This is justified by the fact that in the
zeroth–order formulation used for the discretization, the collocation points are at the centers of the elements, where
the surface is indeed smooth. This would not be acceptable in the higher order formulations, where the collocation
points are placed at the corner of the elements, which include in particular the trailing edge points; for an analysis
of this point see Ref. [32].
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where

Bj(x) =

∫
Sj
GdS(y),

Cj(x) = −
∫
Sj

∂G

∂n
dS(y). (2.18)

Next, consider the so–called collocation method, which consists of satisfying Eq. 2.17 at N
B

prescribed collocation points, which are assumed to coincide with the element centers xk (k =
1, ..., NB). This yields

1

2
φk =

N
B∑

j=1

Bkj χj +

N
B∑

j=1

Ckj φj , (2.19)

where Bkj = Bj(xk) and Ckj = Cj(xk). The above is a system of linear algebraic equations
relating the unknowns φj to the values of χj , known from the boundary condition, Eq. 2.5. Once
the values of φj have been obtained, Eq. 2.17 gives φ(x) in the field, as an infinitely differentiable
function of x. This implies in particular that one may use derivatives – instead of finite differences
– in order to evaluate v in the field.

2.2 Quasi–potential incompressible flows

Things are not quite as simple in aircraft aerodynamics. Indeed, let us recall the d’Alembert para-
dox: “Steady incompressible potential flows around S

B
produce no force on S

B
”. Therefore, one

needs a generalization that is capable of predicting lift and drag. This is addressed in this section.
As we will see, this generalization includes zero–thickness vortex layers (surfaces of discontinuity
for the potential).

To this end, let us introduce the material circulation

ΓM(t) =

∮
C
M

(t)

v · dx =

∫
S
M

(t)

n · ζ dS,

where CM(t) = ∂SM(t) is a material contour (i.e., a contour composed of material points), and
recall Kelvin’s theorem for incompressible inviscid flows, which states that dΓ

M
/dt = 0. Next,

consider for simplicity an attached flow around an isolated wing (i.e., a flow that leaves the wing
surface at a sharp trailing edge) and assume the vorticity, ζ = ∇ × v, to be initially vanishing
in the whole fluid region V (e.g., start from rest), so that ΓM(0) = 0 for all the CM in V. Then,
Kelvin’s theorem implies ΓM(t) = 0 for all the CM that remain in V between 0 and t. This in turn
implies that the vorticity vanishes everywhere in the field, except for the locus of the points that
came in contact with the trailing edge, for which the above assumption (that C

M
remains in V

between time 0 and time t) does not apply. These points form a surface, which is called the wake
and is denoted by S

W
. Hence, the velocity is still given by Eq. 2.1, which however does not hold

on SW :

v(x) = ∇φ(x) (for all x ∈ V\SW). (2.20)

It should be noted that the fact that ∆φ is not constant over S
W

implies a tangential dis-
continuity in the velocity, and hence the presence of vorticity (i.e., the wake corresponds to a
zero–thickness vortex layer). Therefore, these flows are called quasi–potential.

The equation that governs quasi–potential incompressible flows is again the Laplace equation,
which however does not hold on SW :

∇2φ = 0 (for all x ∈ V\SW). (2.21)
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The boundary conditions on the wing and at infinity are the same as those for potential flows
(Eqs. 2.5 and 2.7). In addition, we now need boundary conditions on the wake. For a surface of
discontinuity, the principles of conservation of mass and momentum (see Serrin, Ref. [49], p. 219,
Eq. 54.1) imply, for incompressible flows,2

v · n = vW · n, (2.22)

∆p = 0. (2.23)

In turn, these imply

∆

(
∂φ

∂n

)
= 0, (2.24)

and3

DW∆φ

Dt
:=

(
∂

∂t
+ vW · ∇

)
∆φ = 0, (2.25)

where vW =
1

2
(v1 + v2). If we introduce the concept of a wake point, xW , as a point having

velocity v
W

, Eq. 2.25 implies

∆φ = constant, following xW , (2.26)

or

∆φ(x
W
, t) = ∆φ(x

TE
, t− θ

C
), (2.27)

where xTE is the trailing–edge point from which xW originates, whereas θC = θC(xW , t) is the
convection time from x

TE
to x

W
.

Finally, we need a boundary condition at the trailing edge. The Joukowski hypothesis of
smooth flow at the trailing edge implies that

lim
x
W
→x

TE

∆φ(xW) = lim
x2→x

TE

φ(x2)− lim
x1→x

TE

φ(x1), (2.28)

where 2 and 1 here denote the sides of the wing surface corresponding to the sides 2 and 1 of the
wake, respectively.

2.2.1 Boundary integral formulation for quasi–potential flows

Next, consider the boundary integral formulation for quasi–potential incompressible flows. Oper-
ating as in Section 2.1.1, one obtains that the boundary integral representation for quasi–potential
incompressible flows is obtained by writing Eq. 2.13 for a volume outside a surface S

BW
that sur-

rounds the (closed) surface of the body, SB , and the (open) surface of the wake, SW . Then, we
take the limit as SBW tends to

S = S
B
∪ S

W1
∪ S

W2
, (2.29)

and use Eqs. 2.24 and 2.27 to obtain

E(x)φ(x, t) =

∮
S
B

(
χG− φ ∂G

∂n

)
dS(y)−

∫
S
W

∆φ(y
TE
, t− θ

C
)
∂G

∂n
dS(y), (2.30)

2For any function f , ∆f := f2 − f1 denotes the discontinuity of f across SW , with the subscripts 1 and 2
denoting the two sides of the wake at a given point.

3Equation 2.24 is obtained by combining ∆p = 0 with the Bernoulli theorem, Eq. 2.8, to yield

∂φ2

∂t
−
∂φ1

∂t
+

1

2
(v1 + v2) · (v2 − v1) = 0.

9



where χ(x) := vB · n and ∆φ is the potential discontinuity over the wake, whereas E(x) is given
again by Eq. 2.16; finally, n on SW points from side 1 to side 2.

We have that χ(x) is known from the boundary conditions, Eq. 2.5, whereas ∆φ is known
from the time history at the trailing edge of the body, Eq. 2.28; hence, as before, if x ∈ S

B
is a

smooth point, we have E(x) = 1/2, and Eq. 2.30 is a boundary integral equation which allows one
to solve for φ(x), and hence for v(x) and p(x), on S

B
(aerodynamic problem). Then, for x ∈ V,

Eq. 2.30 is a boundary integral representation which allows one to obtain φ(x), and hence p(x),
in V (aeroacoustic problem).

Note that the wake surface S
W

must be determined as an integral part of the solution by
integrating the equation

dx
W

dt
= vW(xW), (2.31)

where vW(xW) is obtained by taking the gradient of the above boundary integral representation,
Eq. 2.30 (free–wake analysis). In practical applications, the geometry of the wing wake has minor
effects on the solution, and hence it is often prescribed a priori, typically in the direction of the
undisturbed flow. However, this is not true for rotors in hover, especially in BVI (Blade Vortex
Interaction) conditions, for which a free–wake analysis is essential (see Ref. [39]). The same holds
true for a jet wake, the problem at stake here, which is addressed in Section 2.3.

2.2.2 Boundary element formulation

Consider the boundary element formulation for the quasi–potential incompressible flows. Proceed-
ing as in Subsection 2.1.2, let SB and SW be divided, respectively, into NB and NW triangular
and/or quadrilateral elements, Sj , and let φ(x) and χ(x) to be treated as constant within each
element. Then, Eq. 2.30, with xk ∈ SB

, is approximated by

1

2
φk(t) =

N
B∑

j=1

Bkj χj(t) +

N
B∑

j=1

Ckj φj(t) +

N
W∑

n=1

Fkn ∆φn(t− θn), (2.32)

where θn is the time required for a wake point to be convected from the trailing edge point xTE

n

to the wake point xW

n . Also,

∆φn(t) =

N
B∑

j=1

Snj φj(t), (2.33)

where Snj is introduced to implement the trailing–edge condition, Eq. 2.28. If a free–wake
analysis is being considered, then the vertices of the wake elements are displaced by an amount
vn∆t, namely (explicit Euler scheme, see Subsection C.1)

xW

n (tq+1) = xW

n (tq) + ∆tvW

n

[
xW

1 (tq), . . . ,x
W

N
W

(tq)
]
, (2.34)

where vW

n is evaluated by taking the gradient of the discretized boundary integral representation,
akin to Eq. 2.17.

2.3 Quasi–potential flows for jets

Here, we present the extension to jets of the above quasi–potential formulation of Refs. [23] and [32]
for wings and rotors. Let us exclude from the fluid volume the portion inside the nacelle, by
introducing two surfaces across the inlet and outlet of the nacelle denoted, respectively, by S

Inlet
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and S
Outlet

. In other words, the volume V is now defined as the volume outside the surface S that
surrounds the nacelle and the wake. In the limit, we have, instead of Eq. 2.29,

S = S
B
∪ S

W
1
∪ S

W
2
∪ S

Inlet
∪ S

Outlet
. (2.35)

Consider an attached initially–irrotational inviscid incompressible flow field due to a jet. Assume
that the velocity of the jet is uniform across the nozzle, so that no vorticity is introduced in
the flow field by the jet itself. Thus, the only vorticity in the field is due to the fact that the
velocity of the jet is higher than that of the surrounding environment. As a consequence, the flow
field is potential everywhere, except for the surface that emanates from the trailing edge of the
nacelle. Here, this is referred to as the wake and is denoted by SW . In physical terms, this surface
corresponds to the limit of the shear layer as the viscosity tends to zero.

The governing equation are the same as those in the preceding section, with the exception
of the boundary condition in Eq. 2.5; this equation is still valid on S

B
, the (outer) surface of the

nacelle. However, the surfaces S
Inlet

and S
Outlet

are not impermeable and the boundary condition
is still given by Eq. 2.5; however χ now is given by

χ = v
B
· n + v

Inlet
· n (for all x ∈ S

Inlet
),

χ = v
B
· n + v

Outlet
· n (for all x ∈ S

Outlet
), (2.36)

where v
Inlet

and v
Outlet

are, respectively the inlet and outlet velocities, relative to a body frame.

In addition, contrary to wing wakes, jet wakes are such that as the time tends to infinity
(and the wake becomes infinitely long), the value of ∆φ at the trailing edge tends to infinity, as
t tends to infinity. Hence, steady–state flows cannot be addressed with the present formulation;
only a time–domain formulation makes sense for jets. This is the main difference between the
formulation for wing and that for jets.

2.4 Numerical results

The method has been amply validated for wings and rotors (for reviews, see Refs. [36], [27] and
[28]). Therefore, the numerical results presented here are limited to jets.4

As previously mentioned, the present formulation has been used to model an incompressible
axisymmetric jet as depicted in Figure 2.1, p. 13. As described by Crow and Champagne, Ref. [6],
observing the flow downstream of the nozzle, we first notice some ripples on the jet column surface,
soon after those ripples grow into waves and eventually into organized axisymmetric structures
(Kelvin–Helmholtz instability). Finally these structures become unstable and break down into a
series of puffs.

Assuming that in the region close to the nozzle the viscosity effects are negligible, the initial
instability of the jet column must then be governed mainly by convective effects; hence it is possible
to study it using a quasi–potential flow formulation.

According to Eq. 2.30, the body surface is modelled by patches of uniform sources and a
vortex lattice; on the other hand the wake is modelled by a vortex lattice (uniform doublets).5 A
vortex core has then been introduced, its dimensions and its evolution is meant to reproduce some
behavior of the shear layer. Although viscosity has been neglected, the evolution of the vortex core
could be interpreted as a diffusion due to the viscosity.6 That been said, an important by–product
of such evolution was to eliminate numerical instabilities from the algorithm.

4These results supersedes those presented in [34] (see in particular, Footnote 5, p. 11).
5 As already pointed out in Footnote 5, p. 2, doublet layers equivalent to vortex layers. In particular, a constant

doublet element is fully equivalent to a series of vortex filaments along the sides of the element (Batchelor, Ref. [1]).
When compared to the results of Ref. [34], the present result differ because the distance between the vortices is
smaller than their diameters, so as to form an uninterrupted distribution of vorticity.

6The law used is that of the diffusion of a vorticity Gaussian distribution across the wake (see also Footnote 5
above).
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Taking into consideration that the usage of the quasi–potential formulation can only justified
for the study of the first few diameters from the nozzle but that by only modelling that first region
would alter the results, a longer portion of the wake has been modelled. However, a distinction
has been made between the first portion of the wake (the one up to 2 diameters away from the
nozzle) and the second part. While the first part has been treated as a free–wake, the second has
been convected downstream. Indeed, the second portion of the wake, because of its distance, has
little influence over the body and affects primarily the first portion of the wake.

The evolution of the jet column is shown in Figures 2.2–2.7 (pp. 14–19). The sequence
of images captures the arising and development of the Kelvin–Helmholtz instability7. In Figure
2.2, p. 14, the jet column is shown at rest in its initial geometry. In Figure 2.3, p. 15, we can
observe some ripples appearing along the jet column. The Kelvin–Helmholtz instability has been
triggered. From Figures 2.4–2.7, pp. 16–19, we notice the evolution of the instability. The ripples
grow and roll-up into large coherent structures similar to vortex rings.

The numerical results obtained have been qualitatively compared to the results obtained by
Romano, Ref. [45] and the comparison has been reported in Figure 2.8, p. 20. While observing
Figure 2.8, it is important to recall the initial assumption for the use of this methodology, that
is: the vorticity must be concentrated within a zero–thickness layer. Thus, as it can be seen in
the comparison, this methodology can only be used to model the first few diameters downstream
of the nozzle; the convected portion of the wake has been removed in order to enable a better
comparison between the numerical and the experimental results. The further away we move from
the nozzle, the more the vorticity is diffused by the viscosity.

A couple of last results have been obtained by evaluating the Strouhal number of the Kelvin–
Helmholtz instability with respect to the outlet speed and the nozzle diameter: St

D
= fD/v

Outlet
.

For such evaluation, velocity and pressure have been measured at a point whose coordinates
are (1.5, 1.0, 0.5). In Figure 2.9, p. 20, we can observe the velocity Strouhal number where a
fundamental frequency can be found around Strouhal number St

D
= 2.5Hz. Such peak is related

to the passage of the large coherent structures previously discussed. While in Figure 2.10, p.
21, one can observe the pressure Strouhal number. These values are in the right ballpark of the
experimental data, for the problem under consideration.

7In a first step, the jet column position has been maintained fixed so that the starting vortex could leave the
wake without altering its geometry. Finally in a second step, the wake has been enabled to evolve freely. The time
indicated in the captions does not take into account the first step.
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Figure 2.8: Comparison with experimental results by Romano, Ref. [45]
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Chapter 3

Incompressible Euler flows

In this chapter, we consider unsteady incompressible Euler flows around a body V
B

. For these
types of flows, we address a methodology based upon the vorticity evolution equation. Once the
vorticity has been evaluated, the velocity field is obtained through the Biot–Savart law (Serrin,
Ref. [49], p. 165).1 This methodology is particularly useful when the vorticity is spatially bounded
inside a well determined region (i.e., a vortex tube). The formulation is presented for the general
problem, namely the unsteady three–dimensional flow around a body having arbitrary shape and
motion. As stated in the introduction, in order to study the vorticity evolution, we used the fact
that the material contravariant components of the vorticity remain constant in time (see Serrin,
Ref. [49], Eq. 17.5, p. 152). As an application, we address the evolution of a vortex ring, for
which interesting results are available in the literature.

3.1 Proposed formulation

Here, we present a synthesis of the formulation of Ref. [24] (which is valid for compressible viscous
flows), for the limited case of incompressible Euler flows. These flows are governed by the continuity
equation for incompressible flows, namely

∇ · v = 0, (3.1)

and the Euler equation, namely (using the Lagrange expression for the acceleration)

Dv

Dt
=
∂v

∂t
+ (v · ∇)v =

∂v

∂t
+

1

2
∇v2 + ζ × v = −∇p

ρ
, (3.2)

where ζ denotes the vorticity

ζ = ∇× v. (3.3)

Next, let us consider the equation governing the vorticity evolution. Taking the curl of Eq.
3.2, one obtains

∇× ∂v

∂t
+

1

2
∇×∇v2 +∇× (ζ × v) = −∇× ∇p

ρ
, (3.4)

Then, recalling the following vector identity

∇×∇a = 0, (3.5)

1It may be of interest to know that the most computationally expensive part of this methodology is the evaluation
of the coefficients for the Biot–Savart law. Indeed, this has to be performed at each time step since the formulation
is Lagrangian and the geometry of the vortex ring varies.
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one obtains the vorticity transport equation

∂ζ

∂t
+∇× (ζ × v) = 0 (3.6)

In order to simplify this equation, recall the following vector identity

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b, (3.7)

which yields

∇× (ζ × v) = ζ(∇ · v)− v(∇ · ζ)− (ζ · ∇)v + (v · ∇)ζ = (v · ∇)ζ − (ζ · ∇)v. (3.8)

Hence, Eq. 3.6 may be rewritten as

∂ζ

∂t
+ (v · ∇)ζ − (ζ · ∇)v = 0, (3.9)

or, recalling the definition of substantial derivative (namely D/Dt = ∂/∂t+ v · ∇),

Dζ

Dt
= (ζ · ∇)v, (3.10)

Next, we formulate the problem using a Lagrangian point of view, namely by following the
material points. To this end, let us introduce a so–called system of material curvilinear coordinates,
ξα. This is a coordinate system that identifies a material point, namely such that the location of
a material is defined as follows

x = x(ξα, t). (3.11)

We can now introduce the so–called covariant base vectors, which are defined by

gα =
∂x

∂ξα
, (3.12)

and express the vorticity using the above set as a basis:

ζ = ζαgα, (3.13)

where ζα are the so–called contravariant components of the vorticity.

Next, note that

Dgα
Dt

=
∂2x

∂t ∂ξα
=

∂v

∂ξα
. (3.14)

Therefore, we have

Dζ

Dt
=

D

Dt
(ζαgα) =

Dζα

Dt
gα + ζα

∂v

∂ξα
. (3.15)

In addition, we have

(ζ · ∇)v = ζα
∂v

∂ξα
. (3.16)

Combining the last two equations with Eq. 3.10 yields2

Dζα

Dt
= 0. (3.17)

2 Note that for viscous flows, Eq. 3.10 would be modified by the addition of the viscous term ν∇2ζ; accordingly,
Eq. 3.17 would be modified by the addition of the term νgα ·∇2ζ (see Ref. [24], for details, as well as the extension
to compressible flows).
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Equation 3.17 states that the contravariant components of the vorticity remain constant in
time, by following a material point, namely3

ζ(x, t) = ζα(ξα, t) gα(ξα, t) = ζα(ξα, 0) gα(ξα, t) (3.18)

In other words, in order to solve the vorticity evolution equation for an incompressible inviscid
flow, we need to find the evolution of the material covariant base vectors gα.4

Once these are obtained we may evaluate the vorticity (and hence the velocity), anywhere in
the field, at any time, through the Biot–Savart law, given by

v(x, t) = ∇x ×
∫
V
G(x,y) ζ(y, t) dV(y)

=

∫
V
∇xG(x,y)× ζ(y, t) dV(y)

= −
∫
V
∇yG(x,y)× ζ(y, t) dV(y), (3.19)

where G(x,y) =
−1

4πr
and r = ‖x− y‖.

3.2 Application: Inviscid vortex ring

The above formulation has been applied to the study of a vortex ring. The corresponding nu-
merical formulation used is obtained as follows: the volume integral is discretized considering the
vorticity to be piece–wise constant. In order to evaluate successive position of the material points
a predictor–corrector time–stepping method has been used (Section C.3).

The steady inviscid incompressible vortex ring model can be observed in Figure 3.1, p. 26.
As previously mentioned this model is taken among the family of steady vortex rings studied by
Norbury (Ref. [40]). Still according to Norbury, Ref. [40], in order for the vortex ring to be stable,
the core boundary has to be described (in cylindrical coordinates) by

r = R(1 + s cos θ) (3.20)

z = Rs sin θ (3.21)

with s =

∞∑
n=0

an(α) cosnθ, where the parameter α is defined α =
√
Ac/πR

2 (Ac denotes the area

of the core of the ring R is the vortex–ring radius); the values of the coefficients an(α) can be
found in Ref. [40].5 All the numerical results, are obtained for α = .1.

Steady vortex ring

The steady evolution of the ring has been tested and a frame of the evolution is shown below in
Figure 3.2, p. 27. The translation velocity for such ring has been found to be V

t
= 0.013, in

agreement with Norbury, Ref. [40].

3According to Serrin, Ref. [49], Eq. 17.5, p. 152, “this beautiful result was obtained in 1815 by Cauchy”.
4It may be noted that Eq. 3.18 provides us an elementary proof of the statement “vortex lines are material

lines” (Helmholtz second vortex theorem, Serrin, Ref. [49], p. 163). Indeed, choosing the ξ1−lines to be parallel
to the vorticity at time t = 0, we have ζ(x, 0) = ζ10 g1(0), namely ζ20 = ζ30 = 0. This implies ζ(x, t) = ζ10 g1(0),
namely the ξ1−lines are, at the same time, material lines and vortex lines, in agreement with the theorem.

5If the core is circular, we have α = a/R, where a is the core radius. Thus, the parameter α represents the
dimensionless mean vortex core.
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Azimuthal perturbations of the vortex ring

Subsequently, in order to study the azimuthal instabilities, the ring has been initially perturbed
and then its evolution has been observed. The parameter k indicates the wave–number of the
azimuthal perturbations along the ring. In Figure 3.3, p. 28, the initial geometry of the ring with
k = 4 and with k = 6 is shown. Finally, a frame of the evolution with k = 4 can be observed in
Figure 3.4, p. 29. While the initial perturbation was in the plane of the vortex ring as shown in
Figure 3.3, the deformation of the ring occurs both in the plane and outside of it, as it is possible
to see in Figure 3.4. Such deformation increases in time thus showing how such perturbation
makes the vortex ring unstable.

Core perturbations of the vortex ring

Finally, in order to study the core instability, perturbations have also been initially applied to the
vortex core. The perturbations of the core have been implemented following, Ref. [18]:

r = R[1 + s cos θ(1 + ρ cosmθ)] (3.22)

z = Rs sin θ(1 + ρ cosmθ) (3.23)

The evolution of the unperturbed core is shown in Figure 3.5, p. 30. The perturbation amplitude
has been fixed at ρ = .05 while two different perturbation wave have been reported. For each
perturbation one can observe the evolution and (having translated the section back to its initial
position) the movement of the core. In Figure 3.6, p. 31, it is possible to observe the perturbation
of the core with m = 2 while in Figure 3.7, p. 32, the perturbation with m = 4 is shown. Both
perturbations seem to maintain a stable position around the unperturbed core.
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Figure 3.3: Initial azimuthal perturbation of the vortex ring with k = 4 and k = 6 over the
unperturbed geometry (transparent)
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Chapter 4

Navier–Stokes flows

In this chapter, we consider unsteady incompressible Navier–Stokes flows around a body V
B

. For
these types of flows, we address a methodology based upon the velocity decomposition for viscous
compressible flows, introduced in Ref. [31], and there denoted as the “natural velocity decomposi-
tion”.1 Here, the formulation is presented for the generic incompressible–flow problem, namely the
three–dimensional unsteady viscous incompressible flow around a body having arbitrary shape and
motion. The validation however is limited to steady two–dimensional problems (albeit the results
are obtained through a time–accurate transient); specifically, in order to validate the formulation,
we apply it to the study the flow around an infinite circular cylinder.

4.1 The governing equations

Navier–Stokes flows are governed by the continuity equation and the Navier–Stokes equations,
which for incompressible flows are given by, assuming for the sake of simplicity the forces per unit
volume to be negligible,

∇ · v = 0 (4.1)

∂tv + v · ∇v +
1

ρ
∇p = ν∇2v, (4.2)

where ν denotes the dynamic viscosity coefficient, here assumed to be constant, again for the sake
of simplicity.2

Next, consider the boundary conditions. For the Navier–Stokes equations, the standard
no–slip boundary condition is used on the boundary surface S

B
= ∂V

B

v(x, t) = v
B

(x, t) = prescribed (x ∈ S
B

). (4.3)

The boundary conditions at infinity are given by

v = 0 and p = p∞ (‖x‖ =∞). (4.4)

For the sake of simplicity, we assume the initial condition to be homogeneous, namely

v(x, 0) = 0 (x ∈ V). (4.5)

1Recently obtained theoretical results on the natural velocity decomposition are presented in Appendices A and
B.

2 For notational simplicity, we use ν. However, throughout the work it is tacitly understood that all the variables
are dimensionless. Thus, ν denotes the reciprocal of the Reynolds number, and is assumed to be small.
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4.2 The natural velocity decomposition

Here, we introduce a generic decomposition of the velocity field into a portion that is irrotational
(that is, potential) and one that is rotational, namely

v(x, t) = v
P
(x, t) + w(x, t), (4.6)

with

vP(x, t) = ∇ϕ(x, t). (4.7)

Combining with Eq. 4.1, one obtains, respectively

∇2ϕ+∇ ·w = 0 (4.8)

∇
[
∂tϕ+ p/ρ+$ − ν∇2ϕ

]
+ ∂tw + v · ∇v −∇$ − ν∇2w = 0, (4.9)

where $ is a function that may be arbitrarily chosen and whose role is illustrated below.

Next, let us introduce the key feature of the methodology under consideration. Note that the
use of the decomposition in Eq. 4.6 has replaced three unknowns (the three components of v),
with four (the three components of w as well as ϕ). Accordingly, we need four equation (a scalar
one and a vector one). In order to achieve this, we split Eq. 4.9, and obtain two equations from
one. Specifically, we impose3

∇
[
∂tϕ+ p/ρ+$ − ν∇2ϕ

]
= 0, (4.10)

∂tw + v · ∇v −∇$ = ν∇2w. (4.11)

The corresponding boundary conditions at infinity are given by (again, in the air frame)

ϕ = 0, w = 0, and p = p∞ (‖x‖ =∞). (4.12)

The boundary conditions on S
B

and the initial conditions are addressed in Subsection 4.2.2.

4.2.1 A convenient choice for $

Next, note that

v · ∇v = v · ∇(w + v
P
) = v · ∇w + w · ∇v

P
+

1

2
∇v2

P
. (4.13)

Therefore, a convenient choice for $ is4

$ =
1

2
v2
P

=
1

2
‖∇ϕ‖2. (4.14)

3It should be pointed out that the formulation presented here is based upon the following choices: (i) to set
v(x, t) = vP (x, t) + w(x, t), Eq. 4.6, and (ii) to set the first and second parts in Eq. 4.9 separately equal to
zero, so as to obtain Eqs. 4.10 and 4.11. Here, these choices appear to be completely arbitrary, albeit convenient.
However, as shown in Ref. [31], these choices stem “naturally” from (namely, as a direct consequence of) the
standard utilization of the boundary integral equation method for systems of differential equations. Specifically,
using such an approach, one obtains Eq. 4.6, as well as Eqs. 4.10 and 4.11 – hence, the name “natural velocity
decomposition”. However, such an approach (namely the utilization of the boundary integral equation method for
systems of differential equations) requires lengthy mathematical manipulations that obscure the simplicity of the
end result (see Ref. [31], Section 3, for incompressible viscous flows). Accordingly, here we have preferred to use the
present approach, referring the reader to Ref. [31], for the details of the proof of the “ineluctability” of the above
choices.

4 This is the choice in Ref. [31], which is addressed in this chapter. An alternate, equally convenient (and only
recently introduced), choice is discussed in Appendix B. Some comments appear in order. As we can see from Eq.
4.17, for inviscid flows the above choice for $ yields w(x, t) = 0, for all the material points with w(x, 0) = 0 (the
same holds true for the alternate choice discussed in Appendix B). The effect of the viscosity is to broaden the
region (akin to what happens to the vorticity); however, the decay at infinity is exponential. This is a considerable
advantage, because the computational region may be reduced considerably. Other choices for $ might give w 6= 0
even for those material points for which initially we have w = 0, with decay that is not exponential (this is true in
particular for the choice $ = 0).
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In this way, Eq. 4.10, integrated, yields, using Eq. 4.12,

∂tϕ+
1

2
‖∇ϕ‖2 +

p

ρ
− ν∇2ϕ =

p∞
ρ
, (4.15)

which is an extension of Bernoulli’s theorem to incompressible viscous flows. Note the similarity
of Eq. 4.15 with the Bernoulli theorem for incompressible potential flows,

∂tφ+
1

2
‖∇φ‖2 +

p

ρ
=
p∞
ρ
. (4.16)

The difference is only due to the term −ν∇2ϕ. Note that ∇2ϕ = −∇ ·w, Eq. 4.8. Therefore, in
those points where w = 0, Eq. 4.15 reduces to the Bernoulli theorem for incompressible potential
flows.

On the other hand, Eq. 4.11 yields

Dw

Dt
+ w · ∇v

P
= ν∇2w, (4.17)

where D/Dt := ∂t + v · ∇ denotes the substantial derivative.

For future reference, we rewrite Eq. 4.17 as

∂tw = g(t,w,vP), (4.18)

where

g(t,w,v
P
) := −v · ∇w −w · ∇v

P
+ ν∇2w. (4.19)

4.2.2 Boundary and initial conditions

We now have four unknowns, ϕ(x, t) and wk(x, t) (k = 1, 2, 3), to describe the velocity. Corre-
spondingly, we have four coupled equations, namely Eq. 4.8 (which, as we will see, can be treated
as an equation for ϕ, with σ known), and Eq. 4.17 (which can be treated as an equation for w,
with v

P
= ∇ϕ known).

As a consequence, we need to add a fourth boundary condition to the three we already have,
namely v(x, t) = vB(x, t), Eq. 4.3. In order to obtain a fourth boundary condition, we split the
normal component of Eq. 4.3 into two. Specifically, we choose the following boundary condition
for the normal component of w:

w · n = 0 (x ∈ S
B

). (4.20)

Correspondingly, Eq. 4.3 yields

∂ϕ

∂n
= χ := v

B
· n (x ∈ S

B
). (4.21)

On the other hand, for the tangential components, we use Eq. 4.3 as such, namely, combining
with Eq. 4.6,

w · tk +
∂ϕ

∂sk
= v

B
· tk (x ∈ S

B
). (4.22)

where tk (k = 1, 2) denotes two different tangential unit vectors, whereas ∂/∂sk denotes the
directional derivative along the direction tk.

Finally, in reference to the initial conditions, we set

w(x, 0) = 0 (x ∈ V). (4.23)

which implies ϕ(x, 0) = 0, as already stated in Eq. 4.12.
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4.3 Method of solution

Here, we summarize the results obtained in the preceding subsections and discuss how the for-
mulation thereby obtained may be implemented from a computational point of view. As shown
above, the velocity may decomposed into two terms, as v = w +∇ϕ (Eq. 4.6), where w satisfies
Eq. 4.17 (which however depends upon ϕ, through v

P
); on the other hand, ϕ satisfies Eq. 4.8,

which may be written as (Poisson equation)

∇2ϕ = σϕ (4.24)

which however depends upon w, since

σϕ = −∇ ·w (4.25)

Boundary integral formulation for ϕ

In the following, we will use the standard boundary integral equation method for the Poisson
equation (see Subsection 2.1.1), we have, for x ∈ V, the boundary integral representation, namely

ϕ(x, t) =

∮
S
B

(
χG− ϕ ∂G

∂n

)
dS(y) +

∫
V
σϕGdV(y). (4.26)

As x tends to S, Eq. 4.26 yields a boundary integral equation, namely

1

2
ϕ(x, t) =

∮
S
B

(
χG− ϕ ∂G

∂n

)
dS(y) +

∫
V
σϕGdV(y). (4.27)

This provides a linear relationship between ϕ(x, t) and χ(x, t) on S
B

and σϕ(x, t) = −∇ ·w in V.
Recall that χ(x, t) = ∂ϕ/∂n on S

B
is known from χ(x, t) := v

B
·n, Eq. 4.21. Hence, Eq. 4.27 may

be used to obtain ϕ(x, t) on S
B

, provided that σ(x, t) in V is known. Once ϕ on S
B

is known, Eq.
4.26 may be used to obtain ϕ (and hence vP , as well as p) everywhere in V, of course provided
again that σ in V is known.

Time discretization

Consider first the discretization with respect to time. Let tr = r∆t, with r = 0, 1, . . . , denote the
generic time step. We begin with the fact that w(x, t0) = w(x, 0) = 0 is known (see Eq. 4.23),
and show how to obtain w(x, t1) and, from this, w(x, t2). Of course, in the same way we can then
obtain w(x, t3), and then w(x, t4), and so on.

Indeed, from w(x, t0) = 0, we have σ(x, t0) = 0. Hence, Eq. 4.27 may be used to obtain
ϕ(x, t0) on S

B
, since χ(x, t0) on S

B
and σ(x, t0) in V are known (indeed, χ(x, t0) = v

B
· n, Eq.

4.21, whereas σ(x, t0) = 0). Then, Eq. 4.26 may be used to obtain ϕ(x, t0) (and hence v
P
(x, t0))

everywhere in V, again because χ(x, t0) on S
B

and σ(x, t0) in V are known.

Next, consider Eq. 4.18. Using the Euler explicit integration scheme, this may be discretized
into5

w(r+1) = w(r) + ∆tg(tr,w
(r),v(r)

P
) (4.28)

This allows us to obtain w(x, t1).

5 Of course, the Euler explicit scheme is used here simply for the sake of simplicity in order to illustrate the
step–by–step procedure. Other schemes (such as Runge–Kutta and/or implicit schemes) may be used as well.
The scheme used for the numerical results (namely the semi–implicit Euler scheme, also known as Crank–Nicolson
scheme, applied only to the linear portion of the equation) is discussed in Appendix C (see Section C.4, without
corrector).
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It should be noted that from w(x, t1) we may now evaluate σ(x, t1). Hence, using the same
sequence of operations used in the first time step, we can obtain, ϕ(x, t1) on SB , then ϕ(x, t1) (and
hence v

P
(x, t1)) everywhere in V. Therefore, Eq. 4.28, with r = 1, allows us to obtain w(x, t2).

In this way we may proceed and obtain the solution for the velocity for any time tr.

Space discretization

It goes goes without saying that the space discretization is also required. Equations 4.26 and 4.27
are discretized by boundary element approach (specifically, a third order discretization for the
surface integrals and a first order discretization for the volume integral). On the other hand, the
expression for g(t,w,vP), in Eq. 4.19, is approximated by central finite differences; these are also
used for vP = ∇ϕ and σ = ∇ ·w.

Comments

Note that, from the discussion presented in the preceding section, we may infer that the resulting
system of equations needs to be solved only in the vortical region, V

ζ
. Note that w vanishes

exponentially at infinity; hence, it may be neglected beyond a suitable outer boundary, that
surrounds body and wake; the boundary condition on such a boundary is w = 0. Also, the
method does not appear to be affected by well–known complexities of other schemes – such as
those related to the solenoidality of v for the incompressible Navier-Stokes equations, or that of
ζ for the vorticity transport equation, or those related to the boundary conditions for ζ.

Pressure field

Finally, note that, again from the discussion presented in the preceding section, we may observe
that the velocity field may be obtained independently of the pressure field. In addition, once the
velocity field has been obtained using the above procedure, the pressure may be evaluated by using
the generalized Bernoulli theorem for viscous incompressible fields, which for x ∈ V is given by,
again in the air frame, Eq. 4.15.

4.4 Validation and assessment

The natural velocity decomposition has been introduced only recently, hence the primary objective
has been the validation and assessment of the formulation.

As mentioned in the introduction, Chapter 1, a very preliminary validation of the method-
ology has been presented in Ref. [17]. A more exhaustive formulation is presented here. To
accomplish this, the natural decomposition has been applied to the study of the flow around an
infinite cylinder, since this case has been extensively examined in the past and therefore many
results are available in the literature.

A polar grid has been generated around a cylinder of unit radius positioned in the center of
the grid (Figure 4.1, p. 38). A stretch has been applied in the radial direction in order to increase
the resolution close to the body surface. In Figure 4.2, p. 39, it is possible to observe such stretch
as well has the scale factor along the radial direction. Then, we have assumed a constant body
velocity of v = −i. The implementation scheme is reported in Figure 4.3, p. 39, where it is
possible to note how the various steps described in the preceding theoretical section follow one
another. The details of the various time–stepping integration methods used for the solution of the
w equation (Eq. 4.17) are addressed in Appendix C.6

6Here, we would only like to mention that we have used both the explicit (Section C.1) and the semi–implicit
scheme (Section C.2), albeit limited to the linear portion of Eq. 4.18 (namely the viscous term, ν∇2w (see also
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Several Reynolds numbers (between 10 and 40, hence below the critical Reynolds number)
we have tested. The results obtained are in good agreement with those available in the literature.
The recirculation bubble’s length is compared in Figure 4.4, p. 40, while the separation angle
comparison can be found in Figure 4.5, p. 41. Moreover, for the case of Re

D
= 30, we present

several interesting results. The evolution of the velocity magnitude (Figure 4.6, p. 42) as well as
the final steady–state velocity vectors and velocity magnitude (Figure 4.7, p. 42). The convergence
of the length of the recirculation bubble (Figure 4.8, p. 43). Also, the w vectors (Figure 4.9, p.
43) and the vorticity contours (Figure 4.10, p. 44) are shown. It is possible to notice two counter-
rotating vortices close to the trailing edge of the cylinder. Those vortices eventually become
unstable and are those leading to the von Kármán instability.

Figure 4.1: Mesh around the infinite cylinder

Footnote 5, p. 36). Although these schemes are both adequately stable and provide a good accuracy, it may be
worth noting that considerable computing–time reduction may be obtained with the use of the ADI (alternate
direction implicit) scheme (Section C.5); indeed, the resulting matrices are block diagonal (this is true even if one
does not take advantage of the fact that they are tridiagonal). Moreover, the amount of memory necessary is largely
reduced if we take into consideration that instead of having to invert the matrix of the Laplacian for the whole
domain, one can work with a single radius and a single azimuth matrix, since all the radius are similar while all
the azimuth are simply scaled.
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Figure 4.2: Grid stretching in the radial direction

w(x, ti−1)
initial

conditions

ϕ(x, ti) vp(x, ti) w(x, ti)

p(x, ti) v(x, ti)

•

Figure 4.3: Natural decomposition implementation scheme
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Figure 4.6: Evolution of the velocity around the cylinder at Re
D

= 30 (from right-to-left and
top-to-bottom) after 0, 600, 1200, 1800, 2400 and 3000 timesteps

Figure 4.7: Steady velocity vectors behind the cylinder at Re
D

= 30

42



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

le
n
g
th

 o
f 
th

e
 r

e
c
ir
c
u
la

ti
o
n
 b

u
b
b
le

number of iterations

Figure 4.8: Convergence of the recirculation bubble’s length at Re
D

= 30

Figure 4.9: Steady w vectors around the cylinder at ReD = 30
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Figure 4.10: Steady vorticity contour around the cylinder at ReD = 30
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Chapter 5

Concluding remarks

Here, we present a summary of the work presented in the main body of this thesis. In addition,
we provide comments related to Appendices A and B.

5.1 Summary of work

Vortex flows have been analyzed through the use of three different methodologies. By focusing on
the aerodynamic and aeroacoustic study of a jet, we were able to identify three distinct vortical
regions. A region where the vorticity is found to be concentrated in a thin layer, a region where
the vorticity is distributed into a spatially bounded volume and finally a region (more precisely
two regions, see Chapter 1) where viscosity plays a major role thus the vorticity is diffused in the
field.

Then, specific methodologies have been introduced to analyze each of the three regions. A
quasi–potential formulation has been used to study the first vortex–layer flows. A methodology
based on the time–invariance of the contravariant component of the vorticity in Euler flows has was
chosen to examine the second region, where the vorticity is distributed yet confined. Finally, the
natural velocity decomposition was adopted to examine problems where viscosity effects cannot
be neglected.

Within the framework of aeronautical jets, the aim of the first part of this work is to capture
the phenomenon occurring in the area just downstream of a jet nozzle utilizing a quasi–potential
formulation. In that region, the difference between the jet velocity and the outer flow velocity
leads to the well known Kelvin–Helmholtz instability. The quasi–potential formulation used here
is closely related to that already extensively exploited for the study of both fixed and rotating
wings. Thus, after having briefly discussed its standard theoretical approach, details of its tuning
to the novel application have been given. Afterwards, the extended quasi–potential formulation
has been used to analyze the incompressible flow around a three–dimensional axisymmetric jet.
To this end, a non–permeable nacelle–like body containing two inner permeable surfaces (inlet
and outlet) has been modelled. The results obtained have been successfully compared to some
experimental ones thereby proving that the Kelvin–Helmholtz instability is mainly governed by
the convection of the vorticity. Velocity and pressure have been measured in a field point located
outside the jet and their respective Strouhal number has been evaluated.

The second methodology, based on the time invariance of the material contravariant com-
ponent of the vorticity in Eulerian flows, may be used to model any inviscid vortex flow where
the vorticity spatial distribution is bounded. Accordingly, a steady inviscid vortex ring has been
modelled and examined. Such vortex ring model stems from a well known family of stable vortex
rings that are described by the parameter α that represents the mean dimensionless radius of the
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ring core. The model has been validated by the evaluation of the translation velocity of a stable
vortex ring. In order to better understand the second region of a typical jet, where coherent struc-
tures similar to vortex rings appear, become unstable and break down, the vortex ring has been
subjected to different perturbations. Both azimuthal and core perturbations have been studied
and the evolution of the unperturbed and perturbed ring are presented.

Finally in order to complete the study of an aeronautical jet, a third methodology was intro-
duced. This methodology enables the analysis of incompressible viscous flows. Such methodology
is based upon the novel natural velocity decomposition and has several advantages among which:
the absence of the pressure in the evaluation of the velocity, the use of computational domain for
the analysis of the rotational part of the decomposition limited to the rotational region, the use
of a boundary element for the potential part and the use of a primitive variable formulation (not
requiring the evaluation of the vorticity). Before applying this formulation to the analysis of jets,
a validation is required. In order to validate this methodology, the incompressible flow around an
infinite cylinder was examined. Results such has the length of the re–circulation bubble and the
separation angle were evaluated for several Reynolds numbers and compared with results available
in the literature. Due to the accuracy of the obtained results, the methodology is considered as
validated.

The three methodology introduced in this work have given very encouraging results, thereby
showing their effectiveness in the study of vortex flows. Each methodology has its own strength
and is particularly suited to the study of its corresponding vortex flow.

5.2 Comments

The positive results obtained so far should encourage further developments of the three method-
ologies to either improve or extent their current application.

The main advantage of the first methodology is its efficiency in the modelling of the Kelvin–
Helmholtz instability of an incompressible jet. An improvement could be obtained by increasing
the order of accuracy of the solution. Indeed a third–order solution would enable to obtain both
a smoother surface and removing some numerical singularities present in the zeroth–order formu-
lation used here. Another improvement could be obtained by using a more efficient integration
scheme, such as the a predictor–corrector scheme (discussed in Section C.4) or even a Runge–Kutta
scheme.

Regarding the second methodology used, to further investigate the instability of the coherent
structures, typically found in jets, it would be possible to include the effects of viscosity. The
theoretical approach has already been discussed (see Footnote 2, p. 23), but not yet implemented.
Here as well, improvements could be obtained by using the linearly–implicit predictor–corrector
scheme discussed in Section C.4. Additional improvements are discussed below, in relationship
with the material presented in Appendix B (see Section 5.3).

The computational time of the third methodology could be reduced considerably by using
different grids in the solution of the potential and rotational parts. Indeed, the evaluation of the
field integral in the analysis of potential part is required only in the region where the divergence
of w(x, t), σ(x, t), is not negligible (see Figures 5.1, pp. 47); this happens to be much smaller
than the region where w is not negligible. This is especially true if a third–order discretization is
introduced in the evaluation of the field integrals, since in this case the fact that σ varies smoothly
also plays an important role. An additional improvement of the efficiency of the formulation may
be obtained by the use of the ADI (Alternating Direction Implicit) method, discussed in Section
C.5. Moreover, the formulation has only been tested in a two–dimensional domain and a extension
to a three-dimensional application, such as a sphere, would be in order before its usage for the
study of more complicated phenomenons like an aeronautical jet (or even airframe noise). One last
remark has to be made on the possibility of using this methodology to study compressible flows;
indeed, even though the natural decomposition has been applied, in this work, to an incompressible
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flow, this methodology is also valid for compressible flows (see Ref. [31], Section 5).

5.3 A unified approach

Finally, we want to discuss how the material presented in Appendix A and B may be used to
provided a unified approach for the solution of the three stages of the jet development, as proposed
in Ref. [37].

In Appendix A, we discuss how the quasi–potential flow formulation of Chapter 2 may
be obtained from the natural decomposition in the limit as the vortex–layer thickness tends to
zero. This would provide a unified formulation for the first, second and fourth stage of the jet
development.

In Appendix B, an alternate choice for the function $ is presented and, akin two the second
formulation with vorticity, it is discussed how, in an inviscid flow, the material covariant compo-
nents of the rotational part remain constant in time. This applies also to the material presented
in Appendix A. The promising results obtained in Appendix B have led us to believe that any
future development of the present work will follow the direction depicted in the appendices (see,
for instance, Ref. [37]).
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Appendix A

Quasi–potential flow vs almost
potential flows

In this appendix, we discuss the relationship between quasi–potential flows and almost potential
flows.1

A.1 Quasi–potential flows

In order to address this relationship let us start by reviewing quasi–potential flows, presented in
Chapter 2. The velocity field is given by

v = ∇φ, (A.1)

where φ satisfies the Laplace equation

∇2φ = 0 for x ∈ V\S
W
, (A.2)

where S
W

denotes the wake surface. The boundary conditions on the body surface S
B

are

∂φ

∂n
= v

B
· n, (A.3)

whereas, on the wake surface S
W

, we have

∆
∂φ

∂n
= 0 and

D
W
φ

Dt
=
∂φ

∂t
+ v

W
· ∇φ = 0, (A.4)

where vW =
1

2
(v1 + v2) is by definition the velocity of a wake point (1 and 2 denote the two sides

of the wake); finally, at infinity, we have

φ = 0. (A.5)

As shown in Chapter 2, the solution of the above equations admits the following integral repre-
sentation

φ(x, t) =

∮
S
B

(
χG− φ ∂G

∂n

)
dS(y) +

∫
S
W

∆φGdS(y), (A.6)

1As stated in Footnote 3, p. 1, we follow Chorin and Marsden, Ref. [3], p. 60, who define an almost potential
flow as “a flow in which vorticity is concentrated in some thin layers of fluid”.
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where G = 1/(4π‖x − y‖), whereas x ∈ V. All the quantities on the right side are known (see
above boundary conditions), except for φ on SB . This is obtained from the following boundary
integral equation (obtained as the limit of Eq. A.6, as x ∈ V tends to a point on S

B
)

1

2
φ(x, t) =

∮
S
B

(
χG− φ ∂G

∂n

)
dS(y) +

∫
S
W

∆φGdS(y), (A.7)

where now x ∈ S
B

. Once Eq. A.7 has been solved for φ on S, the value of φ (and hence that of
v = ∇φ) anywhere on V is given by Eq. A.6.

Finally, the pressure is given by the Bernoulli theorem for potential incompressible flows, Eq.
4.16, namely

∂tφ+
1

2
‖∇φ‖2 +

p

ρ
=
p∞
ρ
, (A.8)

in the air–frame.

A.2 Viscous correction; Lighthill equivalent sources

In order to shed further light on the relationship between quasi–potential flow and almost potential
flows, it is convenient to review the widely–used equivalent source method by Lighthill, Ref. [19],
as reformulated in Ref. [38].2

Some differential geometry

In order to formulate this method, let us introduce a set of curvilinear coordinates ξα (α = 1, 2)
over S, so that x = p(ξα) describes the surface S. Consider an infinitesimal quadrilateral surface
elements, bounded by two coordinate segments (namely segment along the coordinate lines ξβ =
constant)

x1 =
∂x

∂ξ1
dξ1 = a1 dξ1 and x2 =

∂x

∂ξ2
dξ2 = a2 dξ2, (A.9)

where

aα =
∂x

∂ξα
(α = 1, 2) (A.10)

are known as the surface covariant vectors. We have

dS = ‖dx1 × dx2‖ = ‖a1 × a2‖ dξ1 dξ2. (A.11)

Recalling the Binet–Cauchy identity,

a× b · c× d = (a · c) (b · d)− (a · d) (b · c), (A.12)

we have

‖a1 × a2‖2 = a1 × a2 · a1 × a2 = a1 · a1 a2 · a2 −
(
a1 · a2

)2
= a11a22 − a2

12 =
∣∣aαβ∣∣ =: a, (A.13)

where aαβ = aα · aβ are known as the covariant components of the surface first metric tensor.
Hence, we can use the traditional notations

dS =
√
a dξ1 dξ2. (A.14)

2The method is also known as the transpiration velocity method, and is closely related to the displacement
thickness method, also by Lighthill, Ref. [19].
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Next, let us introduce a mapping x(ξ1, ξ2, η), where ξ1 and ξ2 coincide with the surface
coordinates introduced above, whereas η is the coordinate along the normal n (the origin of the
η coordinate is on S, so that for η = 0, we recover the equation of the surface). For instance, we
may use the mapping3

x(ξ1, ξ2, η) = p(ξ1, ξ2) + η n(ξ1, ξ2) η ∈ [0, δ], (A.15)

where δ denotes the boundary–layer thickness, whereas

n(ξ1, ξ2) =
a1 × a2

‖a1 × a2‖
(A.16)

is the unit normal to the surface, and hence η is the arclength along the normal direction. In
addition, δ denotes the value of η just outside the boundary layer.

Similarly, we have

dV = J dξ1 dξ2 dη, (A.17)

where J is the Jacobian of the mapping x(ξ1, ξ2, η), given by

J(ξ1, ξ2, η) =
∂(x1, x2, x3)

∂(ξ1, ξ2, η)
= g1 × g2 · n, (A.18)

with

gα =
∂x

∂ξα
(α = 1, 2). (A.19)

Note that gα
∣∣
η=0

= aα. Hence, for η = 0 we have

J0 = J
∣∣∣
η=0

=
∂(x1, x2, x3)

∂(ξ1, ξ2, η)

∣∣∣∣
η=0

= a1 × a2 · n = ‖a1 × a2‖ =
√
a. (A.20)

Lighthill equivalent source method

As mentioned above, the Lighthill equivalent source method is widely used to provide a viscous–
flow correction to the results of a potential (or quasi–potential) flow analysis, so as to take into
account the effects of the boundary layer presence.

The method consists of the following procedure. Let us consider a potential flow and modify
its boundary condition, by replacing the potential–flow boundary condition, ∂φ/∂n = χ, with

∂φ

∂n
= χ+ χ̌

B
, (A.21)

where the equivalent source term, χ̌
B

, is given by4

χ̌
B

=
−1√
a

∂

∂ξα

∫ δ

0

[
J
(
vα − vα

E

)]
dη, (A.22)

with vα
E

denoting the contravariant components of vE , where vE is the “irrotational and solenoidal
continuation” into the vortical region V

ζ
of the velocity v (which is irrotational and solenoidal

outside the vortical region V
ζ
).

3It is well known that this mapping may be used only if the thickness of the vortical region is smaller than the
(smallest) radius of curvature of the surface (with outward concavity). However, it is useful (and adequate) for the
discussion presented here. If this is not the case, one may use a similar mapping where the condition that η be the
arclength along the normal is true only for η = 0.

4 The Einstein summation convention on repeated indices is adopted throughout the paper; Latin letters are
used when the range is from 1 to 3, Greek letters are used when the range is from 1 to 2.
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Indeed, following Ref. [38], set v = vE + w̌, where v and vE = ∇φ are both solenoidal, so
that the “defect velocity” w̌ is also solenoidal and hence ∇ · w̌ = 0. The boundary condition,
v · n = v

B
· n := χ, yields ∂φ/∂n = χ

B
+ χ̌

B
, Eq. A.21, with

χ̌
B

= −w̌ · n = −w̌3, (A.23)

since w̌3 = w̌ · n.

Next, recall that ∇ · w̌ = 0 and use the curvilinear–coordinate expression for the divergence
of a generic vector field, b(x),

∇ · b =
1

J

∂ (Jbk)

∂ξk
. (A.24)

This yields, using Eqs. A.20 and A.23,

[
J w̌3

]
η=0

=
∂

∂ξα

∫ δ

0

J w̌α dη, (A.25)

in agreement with Eq. A.22.5

Lighthill equivalent source method in presence of wake

Here, we are interested in the flow around a wing. In three dimensions, the presence of lift is
connected with the fact that the vortical region is not limited to the boundary layer. Indeed, this
is the reason to introduce quasi–potential flows (as distinct from potential flows). In this case, the
preceding formulation must be slightly modified, as follows: the surface η = 0 corresponds to the
limit of a surface that surrounds S

B
and S

W
, as the distance tends to zero. In other words, S is

the union of; (i) the (closed) body surface, SB , and (ii) the two sides of the (open) wake surface,
SW , namely S = SB ∪ SW

1
∪ SW

2
, Eq. 2.29.

The result is

φ(x, t) =

∮
S
B

(
(χ+ χ̌

B
)G− φ ∂G

∂n

)
dS(y) +

∫
S
W

(
χ̌

W
G−∆φ

∂G

∂n

)
dS(y), (A.26)

where

χ̌
W

= χ̌
W1

+ χ̌
W2
, (A.27)

with

χ̌
W
k

=
−1√
a

∂

∂ξα

∫ δk

0

[
J
(
vα − vα

E

)]
dη, (A.28)

where δ1 and δ2 denote the thicknesses of the vortical layers on the two sides of the wake.

A.3 Almost potential flows

In order to analyze almost potential flows, let us focus our attention on an attached high–Reynolds–
number flow around an isolated thin wing. Let us introduce the wake mid–surface (better defined
below) and a mapping x(ξ1, ξ2, η) similar to that introduced at the end of the the preceding section
(the only difference is that the quasi–potential wake surface is replaced by the wake mid–surface).

5The expression in Eq. A.22 is virtually identical to the equivalent–source term of Lighthill [19], where vE

denotes the velocity just outside the boundary layer (by definition independent of η, an unnecessary restriction).
Indeed, Eq. A.22 is exact. Note that the boundary–layer approximations used by Lighthill, Ref. [19], have not been
utilized.
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Then, using the curvilinear–coordinate expression for the divergence of a generic vector field
b(x), Eq. A.24, we have

∇ ·w =
1√
a

∂
√
awα

∂ξα
+
∂w3

∂η
. (A.29)

Thus, Eq. 4.26 may be written as (using dV = dS dη)

ϕ(x, t) =

∮
S
B

(
χG− ϕ ∂G

∂n

)
dS(y)

−
∫
S
V

∫ δ

0

1√
a

∂
√
awα

∂ξα
Gdη dS(y)−

∫
S
V

∫ δ

0

∂w3

∂η
Gdη dS(y), (A.30)

or, using Eq. A.14 and performing an integration by parts on the last integral,

ϕ(x, t) =

∮
S
B

(
χG− ϕ ∂G

∂n

)
dS(y)

−
∫
S
V

∫ δ

0

∂
√
awα

∂ξα
Gdη dξ1 dξ2 +

∫
S
V

∫ δ

0

w3 ∂G

∂η
dη dS(y). (A.31)

Next, recall that we are addressing almost potential flows, namely flows in which δ is very
small. Therefore, we may assume G and ∂G/∂η to be independent of η, provided of course that
the point x is suitably distant from each dummy point of integration y (namely that ‖x−y‖ � δ).
Then, neglecting higher order terms, we have

ϕ(x, t) =

∮
S
B

(
(χ+ χ̌B)G− (ϕ+ ∆ϕ)

∂G

∂n

)
dS(y) +

∫
S
W

(
χ̌W G−∆ϕ

∂G

∂n

)
dS(y), (A.32)

where, on SB , we have

χ̌B =
−1√
a

∂

∂ξα

∫ δ

0

√
awα dη, (A.33)

whereas, on SW , we have χ̌W = χ̌W
1

+ χ̌W
2

(as in Eq. A.27), with

χ̌
W
k

=
−1√
a

∂

∂ξα

∫ δk

0

√
awα dη, (A.34)

where δ1 and δ2 denote the thicknesses of the vortical layers on the two sides of the wake. In
addition, we have, on S

B

∆ϕ(x, t) = −
∫ δ

0

w3 dη, (A.35)

whereas, on SW

∆ϕ(x, t) = ∆ϕ1(x, t) + ∆ϕ2(x, t), (A.36)

with

∆ϕk(x, t) = −
∫ δk

0

w3 dη. (A.37)
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Comparison with Lighthill equivalent source method

Let us compare the boundary integral representation for quasi–potential flows with viscous cor-
rection, Eq. A.26 and that for almost potential flows, Eq. A.32. They are derived in quite a
different way: the velocity field v = ∇φ, with φ in Eq. A.26 is solenoidal, whereas the velocity
field v

P
= ∇ϕ, with ϕ in Eq. A.32 is not. In spite of this fact, the two equations are very similar.

The main difference is that ϕ+ ∆ϕ in Eq. A.32 takes the place of ϕ in Eq. A.26. However, this
should not be a cause for alarm. For, ϕ + ∆ϕ in Eq. A.32 is the value of the potential outside
the boundary layer, whereas ϕ is the value of the potential inside the boundary layer. Hence, the
boundary integral equation in the two cases are fully equivalent: for quasi–potential flows with
viscous correction, we have

1

2
φ(x, t) =

∮
S
B

(
(χ+ χ̌

B
)G− φ ∂G

∂n

)
dS(y) +

∫
S
W

(
χ̌

W
G−∆φ

∂G

∂n

)
dS(y) (A.38)

whereas for viscous flows, we have

1

2
ϕ

E
(x, t) =

∮
S
B

(
(χ+ χ̌

B
)G− ϕ

E

∂G

∂n

)
dS(y)

+

∫
S
W

(
χ̌

W
G−∆ϕ

∂G

∂n

)
dS(y) (A.39)

where

ϕ
E

:= ϕ(x, t) + ∆ϕ(x, t) (A.40)

is the exterior value of the potential ϕ, namely the value of the potential outside the boundary
layer. For, in taking the limit, one obtains ϕ

E
(x, t) and not ϕ(x, t), since the discontinuity is not

captured by the operation of limit.
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Appendix B

An alternate choice for $

In Chapter 4, specifically in Subsection 4.2.1, we introduced a convenient choice for ϕ, namely

$ =
1

2
v2
P
, Eq. 4.14. Here, we want to address an alternate choice, namely

$ =
1

2
v2
P
− 1

2
w2. (B.1)

B.1 The natural decomposition under the alternate choice

Using Eq. B.1, Eq. 4.10, integrated, yields, using Eq. 4.12,

ϕ̇+
1

2
‖∇ϕ‖2 + p− 1

2
‖w‖2 − ν∇2ϕ = p∞, (B.2)

which is an alternate extension of the Bernoulli theorem to incompressible viscous flows.1

Next, note that for any vector b we have

1

2
∂kb

2 = bj,k bj = bk,j bj +
(
bj,k − bk,j

)
bj (B.3)

which in tensor notation, corresponds to the following identity

1

2
∇b2 = CTb = Cb−

(
C−CT

)
b (B.4)

where C = ∇b is the tensor whose Cartesian components are cjk = bj,k = ∂bj/∂xk (the comma
denotes partial differentiation). On the other hand, using vector notations, we have

1

2
∇b2 = b · ∇b− c× b (B.5)

where c = ∇× b.

In particular, we have

1

2
∇w2 = w · ∇w − ζ ×w, (B.6)

where ζ = ∇×w = ∇× v denotes the vorticity. Therefore, Eq. 4.11 yields

Dw

Dt
= ∂t + v · ∇w = −w · ∇v + ζ ×w + ν∇2w. (B.7)

1Recall that ∇2ϕ = −∇ ·w, Eq. 4.8. Therefore, here as well, in those points where w = 0, Eq. 4.15 reduces to

the Bernoulli theorem for incompressible potential flows, ϕ̇+
1

2
‖∇ϕ‖2 + p = p∞.
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A comparison of the two approaches

Equation B.7 appears to be more complicated that Eq. 4.17. However, if we use indicial or tensor
notations, the difference becomes irrelevant. Indeed, Eq. 4.17 may be written as (compare Eqs.
B.4 and B.5)

Dw

Dt
+ PTw = ν∇2w. (B.8)

where P = ∇vP = PT, whereas Eq. B.7 may be written as (compare again Eqs. B.4 and B.5)

Dw

Dt
+ QTw = ν∇2w. (B.9)

where Q = ∇v 6= QT. Thus, computationally, the two approaches are similar – all is needed is
simply to replace P with Q.

B.2 Material covariant components of w

In analogy to what we did in Chapter 3 for the equation governing the contravariant components
of ζ, we can obtain a convenient equation governing the covariant components of w.

Let x = x(ξα, t) denote the transformation from the ξα space into the x space, as the
field evolves in time. Assuming that the Jacobian of the transformation does not vanish, we can
invert the transformation to obtain ξα = ξα(x, t). Next, introduce the material covariant and
contravariant base vector given respectively by:2

gα =
∂x

∂ξα
gα = ∇ξα (B.10)

A useful formula

Here, we prove that

Dgα

Dt
= −QT gα (B.11)

namely

D

Dt

(
∂ξα

∂xj

)
= −∂vk

∂xj

∂ξα

∂xk
(B.12)

In order to show this let us begin with the identity:

∂xk
∂ξβ

∂ξβ

∂xj
=
∂xk
∂xj

= δjk (B.13)

Note that

D

Dt

(
∂xk
∂ξβ

)
=

∂

∂t

[
∂xk
∂ξβ

]
ξα=constant

=
∂2xk(ξα, t)

∂ξα ∂t
=
∂vk
∂ξβ

(B.14)

Thus, taking the material derivative of Eq. B.13 and using Eq. B.14, one obtains

D

Dt

(
∂ξβ

∂xj

)
∂xk
∂ξβ

= − D

Dt

(
∂xk
∂ξβ

)
∂ξβ

∂xj
= −∂vk

∂ξβ
∂ξβ

∂xj
= −∂vk

∂xj
(B.15)

2The term material indicates that the vectors gα evolve in time and are always tangent to the material ξα–line.
Similarly, the contravariant base vector gα are always normal to the surface ξα = constant.
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Using ∂xk/∂ξ
β∂ξα/∂xk = δαβ

∂vk
∂xj

∂ξα

∂xk
= − D

Dt

(
∂ξβ

∂xj

)
∂xk
∂ξβ

∂ξα

∂xk
= − D

Dt

(
∂ξβ

∂xj

)
δαβ = − D

Dt

(
∂ξα

∂xj

)
(B.16)

in agreement with Eq. B.12.

Equation for wα

Let us express w in terms of its material covariant components wα, as

w = wα(ξβ , t) gα(ξβ , t), (B.17)

Taking the material time derivative and combining the result with B.11 we have:

Dw

Dt
=

Dwα
Dt

gα + wα
Dgα

Dt
=

Dwα
Dt

gα − wαQT gα =
Dwα
Dt

gα −QT w (B.18)

Substituting into Eq. B.9, we have

Dwα
Dt

gα = ν∇2w, (B.19)

or

Dwα
Dt

= ν gα · ∇2w. (B.20)

For inviscid flows (ν = 0), we have

Dwα
Dt

= 0 (B.21)

or wα constant following a material point, namely

wα(ξβ , t) = wα(ξβ , 0). (B.22)

This implies (see Eq. B.17)3

w(ξα, t) = wα(ξβ , 0) gα(ξβ , t) (B.23)

On the other hand, for viscous flows, w is given by Eq. B.17, with

wα(ξβ , t) = wα(ξβ , 0) + ν

∫ t

0

gα(ξβ , t) · ∇2w(ξβ , t)dt (B.24)

B.3 Preliminary results

Some encouraging, albeit very preliminary, results have been obtained applying Eq. B.9 to the
infinite cylinder presented in Chapter 4. In Figure B.1, p. 60, one can observe how the length of
the recirculation bubble obtained using the new formulation has bee found to be comparable to
the previous results. Moreover, streamlines obtained with this present formulation at Re

D
= 20

are shown in Figure B.2, p. 60.

3This is analogous to the “beautiful result was obtained in 1815 by Cauchy” (Serrin, Ref. [49], Eq. 17.5, p. 152),
for the material contravariant components of the vorticity, Eq. 3.18.
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Figure B.1: Length of recirculation bubble

Figure B.2: Velocity field at Re
D

= 20 with the new formulation
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Appendix C

Time-stepping methods

For the sake of completeness, all the details of the various time-stepping methods utilized, or
simply discussed, in this work are presented in this appendix.

Let us consider an initial problem represented by a system of ordinary differential equations:

ẋ = g(x, t) with x(0) = x0. (C.1)

The solution of this problem is unique, provided that the function g(x, t) satisfies suitable
regularity conditions (which are typically satisfied in practice). Unfortunately, in several problems
of practical interest, it is not possible to obtain explicit solutions. In these cases, however, one
may utilize numerical solution.

All the numerical methods for the integration of systems of differential equations consist
of the following procedure: from x0 obtain x1 = x(h), where h is suitable time step (which is
determined by considerations of accuracy and stability, see below). Once we have x1, we may used
this as the initial condition to obtain x2, by proceeding as in the first step. In general, we can use
xn to obtain xn+1 = x[(n+ 1)h]. In this way, we may obtain the solution for time t = tp as large
as we wish – provided of course that the solution exists, and that it is within the upper limits of
the computer utilized (every computer has a highest number that it can handle; if the number
evaluated is above this limit, the computer said to be in overflow). This approach is known as
step-by-step integration.

Let us now introduce the concepts of accuracy and stability.

Accuracy

We can assess the accuracy of the various schemes, by comparing their result with the exact
solution of Eq. C.3 when the function g is given by

g(x, t) = Ax + f(t), (C.2)

namely,

ẋ = Ax + f(t) with x(0) = x0, (C.3)

with A constant. The solution is given by

x(t) = eAt x0 +

∫ t

0

eA(t−τ) f(τ) dτ. (C.4)

In particular, we have

x1 = eAh x0 +

∫ h

0

eA(t−τ) f(τ) dτ, (C.5)
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and, in general,

xk+1 = eAh xk +

∫ tk+1

tk

eA(tk+1−τ) f(τ) dτ, (C.6)

where tk = kh (k = 0, 1, . . . ).

Stability

We have the following definitions

• A numerical integration scheme is called unstable, iff it yields a solution xk that grows
without limits as k tends to infinity.

• A numerical scheme is called conditionally stable, iff it is stable only for bounded values of
the time step h.

• A numerical scheme is called unconditionally stable, iff it is stable for any value of the time
step h.

• A numerical scheme is said to introduce artificial damping, iff the numerical solution is
damped, even when the exact solution is not.

In order to address the stability of the time stepping methods, we consider again the linear
problem with constant coefficients, Eq. C.3. In addition, we limit our analysis to homogeneous
problems. In addition, for simplicity, let us assume that the matrix A be diagonalizable, thus,
instead of Eq. C.3, we can study

ẏ = λy, (C.7)

where λ is any of the eigenvalues of the matrix A. The above equation is stable iff

<(λ) ≤ 0. (C.8)

C.1 Explicit Euler method

The simplest and most intuitive way to integrate systems of ordinary differential equations is to
approximate, in Eq. C.1, ẋk with its forward finite difference approximation, namely

ẋk =
xk+1 − xk

h
+O(h). (C.9)

Thus, setting fk = f(xk, tk) and multiplying by h, Eq. C.9 yields1

xk+1 = xk + h fk +O
(
h2
)
. (C.10)

Neglecting the term O(h2), one may obtain xk+1 from xk, with k = 0, 1, . . . , namely obtain
x1, x2, . . . starting from x0.

Note that Eq. C.10 defines xk+1 explicitly: hence the name Explicit Euler method. This
method is used in Chapter 2 to integrate the wake evolution equation, ẋW = vW(xW), Eq. 2.31
(see Eq. 2.34).

Accuracy analysis

In order to assess the accuracy of the scheme, let us compare Eq. C.10 with the exact solution,
Eq. C.6, of the linear problem with constant coefficients, Eq. C.3. Had we not neglected the term

1The scheme obtained by neglecting the term O(h2) is called accurate to the order h.
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O(h2), instead of Eq. C.10, Eq. C.9, with gk = Axk + fk, would have given us

xk+1 =
(
I + hA

)
xk + h fk +O(h2). (C.11)

This is in agreement with the power series expansion of Eq. C.6, that is (recall that ehA =
I + hA + . . . ),

xk+1 =
(
I + hA + . . .

)
xk + h fk + . . . . (C.12)

Thus, the two approaches yield the same result. This confirms that the accuracy of the solution
is to order h.

Stability analysis

Unfortunately, the method is affected by a problem known as numerical instability. This consists in
the fact that, as mentioned above, a dynamical system with a stable solution, may have an unstable
numerical solution. In order to address the stability of the explicit Euler scheme, consider Eq.
C.7. Using Eq. C.10, Eq. C.7 yields

yk+1 = ρ yk, (C.13)

where

ρ = 1 + λh. (C.14)

Equation C.13 implies xk = ρk x0. Hence, the solution is stable if and only if

|ρ| < 1; (C.15)

otherwise, lim
k→∞

‖xk‖ =∞, namely the numerical solution is unstable.

Real eigenvalues: Consider first the case in which λ = −β is real (note that, for the
stability of the differential equation, we must have β = −λ ≥ 0, Eq. C.8). In this case Eq. C.15
is satisfied only if

h <
2

β
with β ≥ 0. (C.16)

Thus, the scheme is conditionally stable even if the differential equation is stable.

Of course if we have a system of equations, instead of a single one, the instability constraint
must be satisfied for all the eigenvalues. Hence, the most restrictive stability constraint (which
gives the maximum allowed value for h, corresponds to the highest eigenvalue. In other words, the
numerical scheme is stable, if and only if h does not exceeds its maximum allowed value, namely
for

h <
2

β
Max

, where β
Max

= max
r

βr. (C.17)

Finally, note that for h > 2/β, we have ρ < −1. This implies that the numerical solution of
Eq. C.7 oscillates (as it grows). This is a typical sign of numerical instability.

Imaginary eigenvalues: Next, consider the case in which λ is purely imaginary: λ = ıω.
In this case, using Eq. C.10, we still have Eq. C.13 (that is, yk+1 = ρyk), where now ρ =

1 + ıωh. Hence, |ρ| =
√

1 + ω2h2 > 1, for all the values of h. Thus, in this case, the scheme is
unconditionally unstable.

Complex eigenvalues: On the other hand, for a generic complex eigenvalue λ = −β ± ıω,
with β ≥ 0 (recall that, for the stability of the differential equation, we must have β = −λ ≥ 0).
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Now, we have ρ = 1 + (−β ± ıω)h, and |ρ|2 = (1 − β h)2 + (ω h)2. Imposing the condition
|ρ|2 ≤ 1, one obtains h

[
− 2β + (β2 + ω2)h

]
≥ 0. This stability condition is satisfied only for

0 < h ≤ 2β/(β2 + ω2). Hence, the explicit Euler method is stable for

h ≤ 2β

β2 + ω2
, (C.18)

with β > 0, as required for the stability of the differential equation. Note that for ω = 0, we
recover the expression in Eq. C.16. Note also that h is a decreasing function of ω.

Of course if we have a system of equation instead of a single one, the instability constraint
must be satisfied for all the eigenvalues. The most restrictive stability constraint gives us

h ≤ max
r

[
2βr

β2
r + ω2

r

]
. (C.19)

Trade–off between accuracy and stability

Note that the fact accuracy and instability impose different types of constraints on h = ∆t.
Typically, the accuracy matters only for those modes that have low eigenvalues, whereas, as
pointed out above, the instability constraint must be satisfied for all the eigenvalues. It is possible
that the stability condition requires h to be so small that accuracy becomes irrelevant and vice
versa.

The above issue is particularly important when the ratio between the lowest and the highest
eigenvalue is very high. Systems with this characteristic are called stiff. In the vast majority of
the cases, we are interested in the accuracy of the lowest eigenvalue. In this case, for conditionally
stable systems the stability constraint is the dominant one. For, if this is satisfied, the accuracy
connected with the lowest eigenvalue is largely adequate.

The method presented in the following section (semi–implicit Euler method) offer a remedy
to this problem.

C.2 Semi–implicit Euler method

The semi–implicit Euler method consists of the approximations2

ẋk+ 1
2

=
1

h
(xk+1 − xk) +O(h2) (C.20)

gk+ 1
2

=
1

2
(gk+1 + gk) +O(h2). (C.21)

This yields

1

h
(xk+1 − xk) =

1

2
(gk+1 − gk) +O(h2). (C.22)

Neglecting terms of order h2 one obtains

xk+1 −
h

2
g(xk+1, tk+1) = xk +

h

2
g(xk+1, tk+1). (C.23)

The accuracy of this scheme is of order h2.

2This method is also referred to as the method of Crank and Nicolson, Ref. [5].
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Accuracy analysis

In order to assess the accuracy of the scheme, let us compare the semi–implicit Euler scheme,
namely

xk+1 =

(
I− h

2
A

) -1 [(
I +

h

2
A

)
xk + h

fk + fk+1

2

]
, (C.24)

with the exact solution of the linear problem with constant coefficients. Note that(
I− h

2
A

) -1

= I +
h

2
A +

h2

4
A2 +O(h3). (C.25)

Hence, Eq. C.24 yields

xk+1 =

(
I + hA +

h2

2
A2

)
xk + h

(
I +

h

2
A

)
fk + fk+1

2
+O(h3). (C.26)

This is in agreement with the power series expansion of the exact solution. In order to show
this, note that, setting τ = tk + τ ′, we have∫ tk+1

tk

eA(tk+1−τ) f(τ) dτ =

∫ h

0

eA(h−τ ′) f(τ ′) dτ ′. (C.27)

Next, noting that

f(τ) =
1

2
(fk + fk+1) +

1

h
(fk+1 − fk)

(
τ ′ − h

2

)
+O(h3), (C.28)

and recalling that ehA = I + hA +
1

2
h2 A2 + . . . , one obtains, with a little patience,

∫ h

0

eA(h−τ ′)f(τ ′) dτ ′ = h

(
I +

h

2
A

)
fk + fk+1

2
+O(h3). (C.29)

Finally, combining with xk+1 = eAhxk +

∫ tk+1

tk

eA(tk+1−τ)f(τ) dτ , Eq. C.6, one obtains that indeed

the accuracy of the scheme is of order h2.

Stability analysis

In order to address the stability of the semi–implicit Euler scheme, again we limit our analysis to
the homogeneous linear problem, with constant coefficients and assume again that the matrix A
be diagonalizable. Thus we can study ẏ = λy, where λ is any of the eigenvalues of the matrix A.
Using Eq. C.23, we obtain again yk+1 = ρyk, Eq. C.13, where now

ρ =
1− 1

2hλ

1 + 1
2hλ

. (C.30)

The scheme is stable iff |ρ| ≤ 1, that is, iff

|ρ| =
∣∣1− 1

2hλ
∣∣∣∣1 + 1

2hλ
∣∣ < 1. (C.31)

This is true, for any value of h, whenever λ
R

= −β < 0. Thus, for stable differential equations,
the implicit Euler scheme is unconditionally stable.
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Note that, for imaginary eigenvalues (λ = ıω, that is, λR = 0), we have3

|ρ| =
∣∣1− 1

2hıω
∣∣∣∣1 + 1

2hıω
∣∣ = 1. (C.32)

Thus, the scheme is not affected by artificial damping.

C.3 Predictor-corrector method (classical)

The standard predictor–corrector algorithm consists of obtaining first an approximative calculation
of the solution through an Euler explicit method, which is then corrected by an Euler semi–implicit
method (the overall method is an explicit one). Accordingly, denoting by n the current time step,
the n+ 1 prediction x̂n+1 is obtained through

x̂n+1 − xn
h

= g(xn), (C.33)

and the correction is consequently evaluated by taking the value of g in x̂n+1

xn+1 − xn
h

=
1

2

[
g(x̂n+1) + g(xn

]
. (C.34)

Accuracy and stability analysis

Assuming the system to be linear, diagonalized we would have g(y) = λy (and stable λR ≤ 0), we
would then have

ŷn+1 − yn = λynh, (C.35)

yn+1 − yn =
h

2
λ
(
ŷn+1 + yn

)
=
h

2
λ
(
2 yn + λynh

)
, (C.36)

or

yn+1 =

(
1 + λh+

λ2h2

2

)
yn = yn eλ∆t + o(h3) (C.37)

Thus, this method holds the same accuracy than an Euler semi–implicit one. Moreover, the
accuracy would not be improved by increasing the corrector iterations.

Regarding the stability, consider, for the sake of simplicity, only real eigenvalues, λ = −β.
The method is stable if and only if |1−βh+β2h2/2| < 1, namely, for h ≤ 2/β, akin to the explicit
Euler scheme, Eq. C.16.

C.4 Predictor–corrector method (linearly implicit)

Here, we assume that the right side of Eq. C.1, namely ẋ = g(x, t) is given by

g(x, t) = Ax + f(x, t) (C.38)

where this time f included all the nonlinear terms (compare to Eq. C.2, where we had f = f(t)),
and A is time–independent. In other words, the differential equation under consideration is

ẋ = Ax + f(x, t) with x(0) = x0 (C.39)

3Recall that, for any complex number z = x+ ıy = reıθ, we have |z/z| = |reıθ/re−ıθ| = |e2ıθ| = 1.
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The linearly implicit predictor–corrector scheme consists of the following: the semi-explicit
Euler scheme is used for the linear term of the right side of the equation, whereas for the nonlinear
term we use the explicit Euler scheme for the predictor and the semi–implicit Euler scheme for
the corrector. Specifically, the predictor is given by (for simplicity, we assume f = f(x))

1

h

(
x̂n+1 − xn

)
=

1

2
A
(
x̂n+1 + xn

)
+ f(xn) (C.40)

and the corrector

xn+1 − xn
h

=
1

2
A
(
xn+1 + xn

)
+

1

2

[
f(x̂n+1) + f(xn)

]
. (C.41)

C.4.1 Accuracy and stability analyses

The accuracy and stability analyses are limited to the case in which the nonlinear terms may be
approximated with linear ones f(x) ' Bx and that A and B can be diagonalized using the same
transformation. Thus, we study the equation

ẏ = λ y + µ y with y(0) = y
0

(C.42)

where λ and µ denote, respectively, eigenvalues of A and B corresponding to the same eigenvector.
The predictor is

1

h

(
ŷn+1 − yn

)
=

1

2
λ
(
ŷn+1 + yn

)
+ µ yn (C.43)

and the corrector is

1

h

(
yn+1 − yn

)
=

1

2
λ
(
yn+1 + yn

)
+

1

2
µ
(
ŷn+1 + yn

)
(C.44)

The overall scheme yields yn+1 = ρyn,

ρ =
1

1− λ̌

(
1 + λ̌+ µ̌+ µ̌

1 + λ̌+ 2µ̌

1− λ̌

)
(C.45)

with λ̌ = λh/2 and µ̌ = µh/2.

Accuracy analysis

The accuracy of the method is obtained by using again (1 − x) -1 = 1 + x + x2 + . . . and ex =
1 + x+ x2/2 + . . . , to yield

ρ = 1 + (λ+ µ)h+
1

2
(λ+ µ)2h2 + · · · = e(λ+µ)h +O(h3). (C.46)

This confirms that the accuracy of the scheme is of order h2.

Stability analysis

In order for this method to be stable we need −1 ≤ ρ ≤ 1. Thus, the stability boundary are

1 + λ̌+ µ̌

1− λ̌
+ µ̌

1 + λ̌+ 2µ̌

(1− λ̌)2
= ±1 (C.47)

or

(1 + λ̌+ µ̌)(1− λ̌) + µ̌(1 + λ̌+ 2µ̌) = ±(1− λ̌)2 (C.48)
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C.5 The Alternating Direction Implicit method (ADI)

The ADI (Alternating Direction Implicit) method, introduced by Peaceman and Rachford, Ref.
41, in 1955, is a generalization of the semi–implicit Euler scheme, which avoids the problem of
having to invert the whole matrix A at each time step. Assume that A = A1 +A2. Then, Eq. C.3
may be written as4

ẋ = (A1 + A2)x + f(t). (C.49)

The ADI scheme consists of using two semi–steps: in the first one the term A1x is treated as
implicit and A2x as explicit; in the second step, we reverse the roles. This yields

xn − xn−1

h
= A1 xn + A2 xn−1 +

1

2

(
fn + fn−1

)
xn+1 − xn

h
= A1 xn + A2 xn+1 +

1

2

(
fn+1 + fn

)
(C.50)

or (
I− hA1

)
xn =

(
I + hA2

)
xn−1 +

h

2

(
fn + fn−1

)
(
I− hA2

)
xn+1 =

(
I + hA1

)
xn +

h

2

(
fn+1 + fn

)
(C.51)

Combining, we have

xn+1 =
(
I− hA2

) -1(
I + hA1

) (
I− hA1

) -1(
I + hA2

)
xn−1

+
(
I− hA2

) -1 h

2

(
fn+1 + fn

)
+
(
I− hA2

) -1(
I + hA1

) (
I− hA1

) -1 h

2

(
fn + fn−1

)
(C.52)

Accuracy of the ADI method

For simplicity, assume f = 0. Using (I−M) -1 = I + M + M2 + . . . , Eq. C.52 yields

xn+1 = [I + 2h(A1 + A2) +
h2

2
(A2

1 + A1A2 + A2A1 + A2
2) + . . . ]xn−1 (C.53)

Let us compare the results with the exact solution,

xk+1 = e2h(A1+A2)xk−1 +

∫ tk+1

tk−1

e(A1+A2)(tk+1−τ)f(τ) dτ, k = 0, 1, . . . (C.54)

where, recalling that eM = I + M + M2/2 + . . . , we have

e2h(A1+A2) = I + 2h(A1 + A2) +
h2

2
(A2

1 + A1A2 + A2A1 + A2
2) + . . . (C.55)

Thus this method is accurate to order h2.

4In diffusion problems, A1 and A2 denote, respectively, the finite–difference matrix in the first and in the second
direction. In this case, we deal with block diagonal matrices, where each block is tridiagonal, with considerable
reductions of the computational time needed for the matrix inversions required.
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Stability of the ADI method

It is apparent that the algorithm for the homogeneous problem consists of a sequence of matrix
multiplications of the type

(
I + hA1

) (
I − hA1

) -1
, alternating with matrix multiplications of the

type
(
I+hA2

) (
I−hA2

) -1
. These are of the same kind as those in the semi–implicit Euler method,

which is unconditionally stable. Thus, the method in also unconditionally stable.
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