
Scuola Dottorale in Ingegneria
Sezione di Ingegneria Meccanica e Industriale

XXVI Ciclo Dottorale

Higher Order Isogeometric BEM
for

High Accuracy Simulations in Acoustics

Dottorando:

Vincenzo Marchese

Tutor:

Prof.Umberto Iemma

Coordinatore:

Prof.Edoardo Bemporad



Acknowledgments

H: What are you doing?
C: Being cool.
H: You look more like you’re bored.
C: The world bores you when you’re cool.

C and H

A PhD work is like a three–year long journey between theories that do not fit,

simulations that do not work and results that do not match with the expected.

During the journey one also encounters good news, everything falls into place and

the many struggles resolve in finding the “perfect fit” with what one is expecting

from his work.

This journey, for me, has begun some years ago, with my graduation. Back

then, I thought I could stop travelling and try myself in the “outside” world,

finding a job and settling for a less challenging but equally noble way of spending

my days. My supervisor at that time looked me in the eyes and said: “You will get

bored”. I dismissed that remark with the presumption that only a just graduated

young man can have.

In the years between my graduation and these last three years I have been

bouncing between my day–to–day job and the many collaborations with the uni-

versity and I have to say that while my work as an IT professional has put bread

on my table, my “academic” work has fed vitamins to my mind and has satisfied

the needs on the topmost layers of Maslov’s pyramid.

So, part of my thanks after these many years (not just these latest three) goes

to Prof.Luigi Morino because he was right: in the “outside” world, I got bored,

after all.

The other, most sincere and heartfelt huge part of my thanks goes to my PhD

supervisor, Prof.Umberto Iemma, who shared with me these years of work and

laughs, years in which we managed, in my humble opinion, to accomplish many

good things from a scientifically point of view and in which, most importantly, we

developed a profound and long lasting friendship.



To M. and M.



Contents

1 Introduction 2

1.1 The Boundary Element Method . . . . . . . . . . . . . . . . . . . . 2

1.2 Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Acoustic Problem 9

3 BEM for Acoustics 11

3.1 Cubic Hermite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 The numerical solution . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Classic Cubic Hermite BEM . . . . . . . . . . . . . . . . . . 14

3.1.2.1 Results and discussion . . . . . . . . . . . . . . . . 15

3.1.2.1.1 Planar wave on a 2D cylinder . . . . . . . 15

3.1.2.1.2 Numerical convergence analysis . . . . . . 18

3.1.3 Dual BEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3.1 Results and discussion . . . . . . . . . . . . . . . . 24

3.1.3.1.1 Planar wave on a 2D cylinder . . . . . . . 24

3.1.3.1.2 Numerical convergence analysis . . . . . . 26

3.2 Hermite Coons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 The Coons patch . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 The numerical solution . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Finite Diff.Approach . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3.1 Results and discussion . . . . . . . . . . . . . . . . 38

3.2.3.1.1 Planar wave on a sphere . . . . . . . . . . 38

i



CONTENTS CONTENTS

3.2.3.1.2 Numerical convergence analysis . . . . . . 41

3.2.4 Dual approach . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Global Methods 46

4.1 NURBS introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 NURBS and BEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Reconstructing abscissae . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 The numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Knots h-refinement . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 Incompressible potential aerodynamics . . . . . . . . . . . . 55

4.5.2 Acoustic scattering of a circular cylinder . . . . . . . . . . . 58

5 Application to Phononic Crystals 65

5.1 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Straight guide . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.2 S–shaped guide . . . . . . . . . . . . . . . . . . . . . . . . . 72

A NURBS Parameters and local coordinates 80

A.1 NURBS Parameters Distribution . . . . . . . . . . . . . . . . . . . 80

A.2 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Analytical solutions 82

B.1 2D cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.2 3D sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C Parallel implementation 84

C.1 MPI–2 and ScalaPack . . . . . . . . . . . . . . . . . . . . . . . . . 84

C.2 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.2.1 Parallel Loops for 2D solution . . . . . . . . . . . . . . . . . 85

C.2.2 Parallel Loops for 3D solution . . . . . . . . . . . . . . . . . 86

D Kernel Sing.and Num.Integration 89

ii



CONTENTS CONTENTS

E Hermite Coons Dual 93

1



Chapter 1

Introduction

C: I’m a genius, but I’m a misunderstood genius.
H: What’s misunderstood about you?
C: Nobody thinks I’m a genius.

C and H

1.1 The Boundary Element Method

The Boundary Element Method is an established standard tool for solving many

type of Boundary Value Problems (BVP), e.g. inviscid and viscous incompressible

flow around solid bodies in subsonic and transonic regime, structural elasticity

problems, heat conduction and acoustic scattering. The main advantages in using

the BEM methodology are in the reduction of the dimensionality of the problem

and in the ease of implementation on a cluster of parallel computing nodes.

The usual approach in BEM involves the partitioning of the domain into Nel

finite elements, where the dependent and independent variables are approximated

using suitable local basis functions. In a 0th order approximation, the variables are

assumed as piecewise constants on the elements. Many 0th order implementations,

both commercial and open source, of the solution of the acoustic problem with a

BEM methodology can be found, among which: AcouSTO[23], released under the

LGPL license and BEM acoustics [24], a Matlab toolbox released under the GPL

license.
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1.1. THE BEM CHAPTER 1. INTRODUCTION

Low order approximations however, while easy to implement, has a low rate of

convergence and an accuracy O(h) where h is the size of the element. Although

this approach is usually convenient with respect to the field methods, such as

Finite Volumes Method (FV), Finite Differences Method (FD) or Finite Element

Method (FE), especially when the far–field analysis is required (i.e., aeroacoustics)

in some specific applications the number of boundary elements required to capture

a specific feature of the phenomenon may become extremely high.

This is the case, for example, of acoustic propagation and scattering problems,

where the wave length of the perturbation at high frequencies can be orders of

magnitude smaller than the characteristic length of the domain of interest, thus

requiring a huge amount of boundary panels to correctly reproduce the scattering

and interference effects.

Different modifications to the BEM method have been developed to reduce the

computational effort due to the larger number of degrees of freedom. Although

some of these are quite effective in low to medium accuracy problems (i.e., the Fast

Multipole Method [29]) it has been shown [10] that, for high accuracy applications,

the approximations made in the algorithm could introduce artefacts in the solution

that could lead to wrong analysis and design.

One of the possible approaches to deal with high demanding problems without

losing in precision is the improvement of the accuracy of the local representation

of the variables using higher–order functions. Among the published works on the

subject, it is worth mentioning the use of third order polynomials based on Over-

hauser [13, 2] or Hermite splines [6, 11] elements, recently coupled with Coons

patches [8]. The adoption of the above mentioned techniques increases the num-

ber of degrees–of–freedom. The classic cubic Hermite interpolation, for instance,

implies the knowledge of the nodal values and of the derivative of the interpolated

function. In a 3D interpolation, one must also take into account the nodal mixed

derivatives along the curvilinear coordinates ξ and η on the surface. The higher

accuracy of the solution however, allows to decrease the number of elements Nel

required to capture the solution and a convenient trade off between number of

degrees–of–freedom and number of elements can be found. For orders higher than
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1.2. METAMATERIALS CHAPTER 1. INTRODUCTION

the third, the knowledge of higher derivatives in the discretisation nodes is needed,

hence making the representation on a single panel being dependent on the nodal

values on the adjacent panels due to the evaluation with a finite difference scheme

of the aforesaid derivatives.

1.2 High Accuracy applications: Metamaterials

Recently, thanks to advanced fabrication techniques and increased performances

in computational frameworks, a great attention has been directed to the so–called

“metamaterials”, term coined for the first time by Rodger Walser[9], who gave the

following definition:

“macroscopic composites having a manmade, three–dimensional, peri-

odic cellular architecture designed to produce an optimised combination,

not available in nature, of two or more responses to specific excitation.”

A metamaterial is hence a structure expected to show one of more property “dif-

ferent” than those of its “constituents”.

In the present work, we focus our attention on phononic crystals that are

acoustic metamaterials designed to direct the sound waves by exploiting the 1D,

2D or 3D periodic (Figure 1.1) variations of the acoustic properties of the used

material.

Figure 1.1: Periodic structures, from left to right: 1D, 2D and 3D

The peculiar property of phononic crystals is the exhibition of an acoustic band

gap i.e., a zone in the transmission spectra where the propagation of acoustic

waves is forbidden. This is a phenomenon well known in physics, for instance in
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1.2. METAMATERIALS CHAPTER 1. INTRODUCTION

semiconductors where electrons can occupy only certain specific energy bands or

in photonics crystals that allow light only in certain frequency ranges thanks to

the variation in the refractive index of the material. The same principle is applied

in phononic crystal where the band gap is obtained by using a material with a

periodic change of density or elasticity that cause periodic changes in the speed of

sound or by spatial periodicity of the domain geometry. When an acoustic wave

passes through these materials, constructive interference leads to the creation of

a band gap while destructive interference to the creation of propagation bands.

To allow for constructive interference to take place the material must be designed

such as the path differences between the interfering waves is a multiple of their

wavelength λ. This is obtained by designing the material with a lattice parameter

a comparable with the wavelength λ. By changing the size of the unit periodic

cells, that is by changing a, we can control the frequency of the band gap. The

band gap width is controlled by the ratio of the densities and of the sound speed

velocities in the material.

The position and width of the band gap also depends on the direction of the

impinging wave. Some crystals form band gaps for waves propagating in any

directions, others only for waves with certain angle of incidence.

An example of the sonic properties of phononic crystals is the kinematic sculp-

ture of Eusebio Sempere, consisting of a periodic array of hollow stainless-steel

cylinders, each 2.9 cm in diameter, arranged on a square 10× 10 cm lattice, which

exhibits a strong attenuation at f = 1670 Hz.

The most obvious application of such structures is sound manipulation in terms

of perfect mirroring of waves or acoustic wave-guides forcing the acoustic wave in

a specific area of the crystal and also having it go around sharp corners (Figure

5.2 and 5.3). In order to be effective in the human audible regime (20Hz–20kHz),

the dimensions of a phononic structure are suitable for architectural purposes but

impractical for portable uses (i.e., headphones and speakers). This is not the

case in the ultrasonic regime where phononic crystals can be much smaller (from

centimetres to fraction of millimiters).
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1.2. METAMATERIALS CHAPTER 1. INTRODUCTION

In particular, for ultrasonic waves, some studies [27, 28] have shown as appro-

priately designed structures can act as “perfect acoustic lenses” i.e., lenses that

overcome the diffraction limit of the material and allow to focus the acoustic waves

on spots shorter than the wavelength of the impinging wave itself, representing a

huge breakthrough for ultrasound techniques.

Moving further in the acoustic spectrum and reaching the hypersonic regime

(λ < 10µm), periodic structures can have applications in light emitting devices,

where the emission is due to the interaction between electrons and high–frequency

phonons, and in thermal management where the thermal conductivity of metama-

terials is mainly due to the phonons.

The simulation of these kind of structures, however, requires a high level of

accuracy due to the complex interactions between the bodies in the periodic system

and also, in some cases, to the high frequencies involved. The adoption of a

boundary element method in the simulation allows to avoid the discretisation of

the domain. The 0th BEM algorithm could be applied here but the number of

structures and the frequencies involved make the number of elements and hence

the required computational resources involved rapidly grow. As mentioned before

and as shown by Rokhlin [29], the adoption of an approximated algorithm can

reduce the number of the degrees of freedom but the introduced artefacts in the

solution can completely disrupt the simulation due to the high level of accuracy

required. The adoption of a not–approximated methodology of an order higher

than 0th is hence recommended.
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1.3. PRESENT WORK CHAPTER 1. INTRODUCTION

1.3 Present work

In the present work we developed five different not approximated BEM higher–

order approaches for the solution of the 2D and 3D acoustic problem, validating

them against analytical solution, where available, and performing a convergence

analysis. The different approaches explored in this work are:

• 2D Hermite (classic approach)

• 2D Hermite Dual

• 3D Hermite Coons

• 3D Hermite Coons Dual (preliminary implementation)

• 2D Nurbs

We explored algorithms based mostly on Hermite splines. The presence of the

nodal derivatives in the representation of the variables, has been taken into account

both with a “classic approach”, where those derivatives are expressed with a finite

differences scheme in terms of the nodal values and with a so called “dual approach”

where the same derivatives are considered as unknown of the problem and the linear

system is completed by the tangential gradient of the integral equation.

The Hermite based higher order representations, also coupled with Coons

patches to avoid the introduction of the mixed derivatives, although achieving

a higher rate of convergence than O(h), are limited to a single order.

In order to overcome the single–order limitation of the Hermite based BEM

methods we also explored an approach based on Non Uniform Rational Basis–

Splines (NURBS). By using a global representation of the variables based on

NURBS, the order of the basis functions can be improved at runtime when needed

by the specific application at hand. This is a consequence of the iterative defi-

nition of the NURBS, which makes possible the increase of the NURBS degree

simply by changing an input parameter. The use of the NURBS for the represen-

tation of curves and surfaces is a common technique in the CAD community for
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1.3. PRESENT WORK CHAPTER 1. INTRODUCTION

the modeling of complex geometries with strict requirements of smoothness and

continuity between patches[20, 18]. Their use in the numerical solution of BIE is

not new, although relatively recent. NURBS have been used to develop boundary

element solutions of integral equations in elastostatics[21], in radiation and diffrac-

tion problems[14], and in potential aerodynamics[19]. As already mentioned, the

peculiarity of this approach is in the use of the NURBS for the development of

a global isogeometric approach aimed at the meshless numerical solution of the

BVP. The control points used for the representation of the dependent variables

are obtained through the h-refinement of the optimal NURBS representation of

the geometry.

In the following chapters we will outline the underlying theory for the acoustic

problem and for the BEM methodology, we will illustrate the above said approaches

in detail and in Chapter 5 we will show how the high order methods described in

this work are an effective tool to the simulation of these kind of phenomena.
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Chapter 2

The Acoustic Problem

This one’s tricky. You have to use imaginary numbers, like
eleventeen ...

C and H

Under the assumptions of a homogenous and quiescent propagation medium,

with adiabatic characteristics and with small perturbations of pressure p and den-

sity ρ0, the acoustic wave equation reads:

∆p(x, t)− 1

c2
0

∂2

∂t2
p(x, t) = −q(x, t) (2.1)

being c0 the speed of sound in the reference conditions and q(x, t) the acoustic

sources. Applying a Laplace transformation we can write Eq.(2.1) in the frequency

domain as:

∇2p̃(x)− κ2p̃(x) = −q̃(x) (2.2)

where the •̃ indicates Laplace transformation and:

p(x) acoustic pressure,

ω = 2πf angular frequency,

f frequency,

s = α + j ω Laplace variable,

κ = s/c0 complex wave number.

(2.3)
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CHAPTER 2. THE ACOUSTIC PROBLEM

Eq.(2.2) can be also written, using the linearized Bernouilli’s theorem, in terms of

the velocity potential function ϕ, in the Laplace domain, to yield

∇2

ϕ̃(x)− κ2

ϕ̃(x) = 0, for x ∈ V (2.4)

where the •̃ indicates Laplace transformation and q̃ represents the acoustics sources

present in the field.
Considering the fundamental solutions of the wave equation:

G(x,y, s) =
1

4
iH0

2
(kr) for the 2D case (2.5)

G(x,y, s) = −e
−sθ

4πr
= G0e

−sθ for the 3D case (2.6)

in which:

r = ‖x− y‖ norm of the distance,

H0
2
(x) Hankel function of the second kind,

θ =
r

c0

acoustic delay. (2.7)

and applying the Gauss theorem we arrive at the well known boundary integral

formulation for the velocity potential:

E(y) ϕ̃(y) =

∮
S

(
G
∂ϕ̃

∂n
− ϕ̃∂G

∂n

)
dS(x). (2.8)

where the domain function E(y) is

E(y) =


1 if y ∈ V ,
1/2 if y ∈ ∂V ,
0 if y /∈ V ,

(2.9)

and S = ∂V for internal problems, and S = ∂V\S∞ for external problems.
Eq.(2.8) is the familiar KHIE:

E(y) ϕ̃(y) =

∮
S

(
G
∂ϕ̃

∂n
− ϕ̃∂G

∂n

)
dS in 2D

E(y) ϕ̃(y) =

∮
S

(
G0
∂ϕ̃

∂n
− ϕ̃∂G0

∂n
+ sϕ̃G0

∂θ

∂n

)
e−sθdS in 3D. (2.10)
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Chapter 3

BEM for Acoustics

I propose we leave math to the machines and go play
outside.

C and H

The KHIE (2.10) is numerically solved through a Boundary Element Method

(BEM). The boundary of the domain is partitioned into non-overlapping Nel pan-

els, and we assume both geometrical and physical quantities to be represented by

a linear combinations of n basis functions of order p, Na,p(ξ) having as coefficients

the values f̃a of the function f in the nodal points of the discretization. This

representation can be written, as:

f(ξ) =
n∑
a=1

Na,p(ξ)f̃a (3.1)

Applying Eq.(3.1) to Eq.(2.10), and taking into account the discretization, we

have1:

E(y)ϕ(y) =
n∑
a=1

χ̂a

Ne∑
i=1

∫
Si

G(ξ̂,y)Na,p(ξ̂)J(ξ̂)dξ

−
n∑
a=1

ϕ̂a

Ne∑
i=1

∫
Si

∂G(ξ̂,y)

∂n
Na,p(ξ̂)J(ξ̂)dξ (3.2)

1the following treatment is written for the 2D case, the 3D formulation is similar with the
addition of the coefficients due to the ∂θ

∂n term
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CHAPTER 3. BEM FOR ACOUSTICS

In which J(ξ̂) is the jacobian of the transformation to an appropriate local curvi-

linear coordinate ξ̂ defined on Si.
Eq.(3.2) can be written, collocating in the nodal points, in matrix form as:

EΦ = BΨ−CΦ̂ (3.3)

in which matrix E = 1/2 I and the elements of matrices B and C are:

Bij =

∫
Si

G(ξ̂,yj)Na,p(ξ̂)J(ξ̂)dξ

Cij =

∫
Si

∂G(ξ̂,yj)

∂n
Na,p(ξ̂)J(ξ̂)dξ (3.4)

in which ξ̂ ∈ [−1, 1].

Equation (3.3) can’t be solved as a straightforward linear system because the

coefficients of the linear combination (3.1), ϕ̂a are not, generally speaking, the

values of ϕ in the nodal points. If we can find a set of parameters ξ
′

k such as:

ϕ(ξ
′

k) =
n∑
a=1

Na,p(ξ
′

k)ϕ̂a (3.5)

in the nodal points of the discretisations, we can apply the representation (3.5) to

the left hand side term of Eq.(3.3):

NΦ̂ = BΨ−CΦ̂ (3.6)

in which the matrix N is written as:

N =


N1,p(ξ

′
0) N2,p(ξ

′
0) . . . Nm,p(ξ

′
0)

N1,p(ξ
′
1) N2,p(ξ

′
1) . . . Nm,p(ξ

′
1)

...
...

...
...

N1,p(ξ
′
m) N2,p(ξ

′
m) . . . Nm,p(ξ

′
m)

 (3.7)

The solution of (4.15) is then:

Φ̂ = (N + C)−1BΨ̂ (3.8)

We must note that the vector Φ̂ and Ψ̂ are just coefficients of the representation

(3.1) for ϕ and χ respectively and might not have a physical meaning.

12



3.1. CUBIC HERMITE CHAPTER 3. BEM FOR ACOUSTICS

3.1 Cubic Hermite

We assume the basis functions (or shape functions) to be the Hermite polynomials
(Fig.3.1):

H0(ξ) = + 2− 3ξ + ξ3

H1(ξ) = + 2 + 3ξ − ξ3

H2(ξ) = + 1− ξ − ξ2 + ξ3

H3(ξ) = − 1− ξ + ξ2 + ξ3 (3.9)

ξ

H(ξ)

Figure 3.1: Hermite polynomials, (−−) H0(ξ), (· · ·) H1(ξ), (− · −) H2(ξ), (−)
H3(ξ)

In this case, the representation (3.1) can be written as2

f(ξ) = f0H0(ξ) + f1H1(ξ) +
∂f

∂ξ


0

H2(ξ) +
∂f

∂ξ


1

H3(ξ), ξ ∈ [−1, 1] (3.10)

in which f0,1 and ∂f
∂ξ


0,1

are the values of the function f(ξ) and of its derivatives

in ξ = ±1. We must note that, while Eq.(3.10) doesn’t impose anything about

the domain of the curvilinear coordinate ξ, in this case we are assuming it to be

in the range [−1, 1] on a single panel, i.e. between two nodal points.

2for the sake of simplicity we drop the •̃ on ϕ

13



3.1. CUBIC HERMITE CHAPTER 3. BEM FOR ACOUSTICS

3.1.1 The numerical solution

Applying representation (3.10) to Eq.(3.2) we have a linear system of equations

in which the unknown are represented by the nodal values of φ(ξk) and ∂φ
∂ξ


k

for

each panel i = 1, . . . , Nel:

E(y)φ(y) =

Nel∑
i=1

(
χi0

∫
Si
G(ξ,y)H0(ξ)J(ξ)dξ

+ χi1

∫
Si
G(ξ,y)H1(ξ)J(ξ)dξ

+
∂χi

∂ξ


0

∫
Si

G(ξ,y)H2(ξ)J(ξ)dξ

+
∂χi

∂ξ


1

∫
Si

G(ξ,y)H3(ξ)J(ξ)dξ
)

−
Nel∑
i=1

(
ϕi0

∫
Si

∂G(ξ,y)

∂n
H0(ξ)J(ξ)dξ

+ ϕi1

∫
Si

∂G(ξ,y)

∂n
H1(ξ)J(ξ)dξ

+
∂ϕi

∂ξ


0

∫
Si

∂G(ξ,y)

∂n
H2(ξ)J(ξ)dξ

+
∂ϕi

∂ξ


1

∫
Si

∂G(ξ,y)

∂n
H3(ξ)J(ξ)dξ

)
(3.11)

In this case, ϕ̂a and χ̂a happen to be the nodal values of ϕ and χ and of their

derivatives but, generally speaking, the meaning of those vectors depends on the

choice of the representation (3.1).

In order to obtain a system of Nel + 1 equation from Eq.(3.11) we can follow

two different approaches described in the following sections.

3.1.2 Classic Cubic Hermite BEM

The classic methodology to obtain a linear system of equations from Eq.(3.11)

involves the representation of the nodal derivatives with a finite difference schema.

14



3.1. CUBIC HERMITE CHAPTER 3. BEM FOR ACOUSTICS

We can apply, for instance, a two-points centred schema:

∂ϕ

∂ξ


j

=
ϕ(ξj+1)− ϕ(ξj−1)

2
+O(h2) (3.12)

In this case the integral on the panel i contributes not only to the coefficients

relative to its boundary nodal points but also to the nodal points involved in the

derivative (3.12). As shown in Fig.(3.2), for instance, the element i will contribute

to nodes k and k + 1 as nodal values, to nodes k − 1 and k + 1 for the derivative

in node k and to nodes k and k+ 2 for the derivative in node k+ 1. Eq.(3.11) can

k − 1 k k + 1 k + 2

i-1 i i+1
ξ

Figure 3.2: Element i on curvilinear coordinate ξ

hence be written as:

EΦ = BΨ + CΦ. (3.13)

the solution of which is, once again, straightforward. It must be said that this

approach is not innovative and has already been applied to both 3D [6] and 2D

cases [11]. We include it here for the sake of completeness and to demonstrate the

utility of this approach in high accuracy applications as described in Chapter 5.

3.1.2.1 Results and discussion

3.1.2.1.1 Planar wave on a 2D cylinder The above described approach has

been tested on an acoustic scattering problem for which an analytical solution is

known: a planar wave impinging on a 2D cylinder (see Appendix B). Indicating

with k the wave vector, the incident field is given by ϕi = ϕ0e
ik·r.

The validation has been performed for f = 50Hz, f = 200Hz and f = 500Hz

by evaluating the scattering pressure at microphones collocated at R = 20r where

r is the radius of the cylinder. The agreement with the analytical solution is very

good as shown in Figures 3.3, 3.4 and 3.5 in which the total scattering solution is

plotted for the three analysed frequencies.
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Figure 3.3: 2D Hermite: Planar wave on a 2D cylinder, Total scattering solution
at R = 20r, f = 50Hz, Nel = 16, (2) BEM, (–) Analytical
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Figure 3.4: 2D Hermite: Planar wave on a 2D cylinder, Total scattering solution
at R = 20r, f = 200Hz, Nel = 32, (2) BEM, (–) Analytical
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Figure 3.5: 2D Hermite: Planar wave on a 2D cylinder, Total scattering solution
at R = 20r, f = 500Hz, Nel = 64, (2) BEM, (–) Analytical

3.1.2.1.2 Numerical convergence analysis In order to evaluate the rate of

convergence of the solution, an analysis has been performed on the same test case

for the same three frequencies by evaluating both the Lebesgue norm of order 2

of the local relative difference ‖(ϕs − ϕa)/ϕa‖, being ϕs the scattering solution on

the surface:

ε =

√∫
S

∥∥∥∥ϕs − ϕaϕa

∥∥∥∥2

dS (3.14)
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in which ϕa is the analytical solution and the relative error of the maximum value

of ϕs, ‖max(ϕs)−max(ϕa)‖ evaluated on the surface of the cylinder. The results,

i.e., the above described metrics plotted on a log–log scale against 1/Nel with Nel

being the number of elements of the discretisation to the surface, are reported in

figure 3.6,3.7 and 3.8 showing a convergence rate always > 1.

0.01

0.1

1

0.1

‖E
rr

or
‖

h = 1/Nel

‖max(ϕs)−max(ϕa)‖
h2.5534

ε
h1.5026

Figure 3.6: 2D Hermite: Convergence analysis at f = 50Hz, (2)
‖max(ϕs)−max(ϕa)‖ , (—) x2.5534, (×) ε , (- - -) x1.5026
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‖max(ϕs)−max(ϕa)‖
h1.5367
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Figure 3.7: 2D Hermite: Convergence analysis at f = 200Hz, (2)
‖max(ϕs)−max(ϕa)‖ , (—) x1.5367, (×) ε , (- - -) x1.4941
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‖E
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or
‖

h = 1/Nel

‖max(ϕs)−max(ϕa)‖
h1.4066

ε
h1.6617

Figure 3.8: 2D Hermite: Convergence analysis at f = 500Hz, (2)
‖max(ϕs)−max(ϕa)‖ , (—) x1.4066, (×) ε , (- - -) x1.6617

The convergence rates are reported in Table 3.1.

Table 3.1: 2D Hermite: Convergence Rate at f = 50Hz, f = 200Hz and f = 500Hz

Method f = 50Hz f = 200Hz f = 500Hz

‖max(ϕs)−max(ϕa)‖ 2.5534 1.5367 1.4066

ε 1.5026 1.4941 1.6617
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3.1.3 Dual BEM

Another approach is to consider the nodal derivatives of ϕ as unknown. In this

case, in order to have a system of 2(Nel+1) equations we can consider the gradient

of Eq. (2.8):

E(y)∇∗tϕ(y) = ∇∗t
∮
S

(
G
∂ϕ̃

∂n
− ϕ∂G

∂n

)
dS(x). (3.15)

which, after the discretization and the projection on the covariant base g1, be-
comes:

E(y)
∂ϕ(y)

∂ξ
=

Nel∑
i=1

(
χi0

∫
Si

∂G(ξ,y)

∂ξ
H00(ξ)J(ξ)dξ

+ χi1

∫
Si

∂G(ξ,y)

∂ξ
H10(ξ)J(ξ)dξ

+
∂χi

∂ξ


0

∫
Si

∂G(ξ,y)

∂ξ
H01(ξ)J(ξ)dξ

+
∂χi

∂ξ


1

∫
Si

∂G(ξ,y)

∂ξ
H11(ξ)J(ξ)dξ

)
−

Nel∑
i=1

(
ϕi0

∫
Si

∂G(ξ,y)

∂n∂ξ
H00(ξ)J(ξ)dξ

+ ϕi1

∫
Si

∂G(ξ,y)

∂n∂ξ
H10(ξ)J(ξ)dξ

+
∂ϕi

∂ξ


0

∫
Si

∂G(ξ,y)

∂n∂ξ
H01(ξ)J(ξ)dξ

+
∂ϕi

∂ξ


1

∫
Si

∂G(ξ,y)

∂n∂ξ
H11(ξ)J(ξ)dξ

)
(3.16)

We now have a system of 2(Nel+1):

EΦ̂ = BΨ̂−CΦ̂ (3.17)
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in which:

Φ̂ =



ϕ
ϕ
...
ϕ
—

∂ϕ
∂ξ


0

∂ϕ
∂ξ


1

...
∂ϕ
∂ξ


n


Ψ̂ =



χ0

χ1
...
χn
—

∂χ
∂ξ


0

∂χ
∂ξ


1

...
∂χ
∂ξ


n


(3.18)

The matrices B and C elements are given by the integrals of the kernels and of
their derivative, in particular if we write:

B0ij =

∫
Si
G(ξ,yj)H(ξ)J(ξ)dξ

B1ij =

∫
Si
G(ξ,yj)H

′
(ξ)J(ξ)dξ

B2ij =

∫
Si

∂G(ξ,yj)

∂ξ
H(ξ)J(ξ)dξ

B3ij =

∫
Si

∂G(ξ,yj)

∂ξ
H
′
(ξ)J(ξ)dξ

C0ij =

∫
Si

∂G(ξ,yj)

∂n
H(ξ)J(ξ)dξ

C1ij =

∫
Si

∂G(ξ,yj)

∂n
H
′
ξ)J(ξ)dξ

C2ij =

∫
Si

∂G(ξ,yj)

∂n∂ξ
H(ξ)J(ξ)dξ

C3ij =

∫
Si

∂G(ξ,yj)

∂n∂ξ
H
′
(ξ)J(ξ)dξ. (3.19)

being H(ξ) and H ′(ξ) the Hermite polynomials for the nodal values and the deriva-

tives respectively, we have the following partitions for the matrices B and C:

B =

[
B0 B1
B2 B3

]
C =

[
C0 C1
C2 C3

]
(3.20)

Solving system (3.17) gives us, as a result, the values of ϕ and of its derivative in

the collocation points.
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3.1.3.1 Results and discussion

3.1.3.1.1 Planar wave on a 2D cylinder The same analysis as in the finite

difference approach has been performed for the Hermite Dual approach. In Fig-

ures 3.9, 3.10 and 3.11 we reported the total scattering solution at R = 20r for

f = 50Hz, f = 200Hz and f = 500Hz respectively. The results are again in good

agreement with the analytical solution.
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4 3 2 1 0 1 2 3

-4 -2 0 2 4

Figure 3.9: 2D Hermite Dual: Planar wave on a 2D cylinder, Total Scattering
Solution at R = 20r, f = 50Hz, Nel = 16, (2) BEM, (–) Analytical
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Figure 3.10: 2D Hermite Dual: Planar wave on a 2D cylinder, Total Scattering
Solution at R = 20r, f = 200Hz, Nel = 32, (2) BEM, (–) Analytical
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3

2

1

0

1

2

3

4 2 0 2 4 6 8 10 12

-10 -5 0 5 10 15

Figure 3.11: 2D Hermite Dual: Planar wave on a 2D cylinder, Total Scattering
Solution at R = 20r, f = 500Hz, Nel = 64, (2) BEM, (–) Analytical

3.1.3.1.2 Numerical convergence analysis The same numerical convergence

analysis as in the previous approach has been performed here leading to even better

convergence rates.
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Figure 3.12: 2D Hermite Dual: Convergence analysis at f = 50Hz, (2)
‖max(ϕs)−max(ϕa)‖ , (—) x3.8756, (×) ε , (- - -) x2.7067
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Figure 3.13: 2D Hermite Dual: Convergence analysis at f = 200Hz, (2)
‖max(ϕs)−max(ϕa)‖ , (—) x2.8298, (×) ε , (- - -) x1.4565
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Figure 3.14: 2D Hermite Dual: Convergence analysis at f = 500Hz, (2)
‖max(ϕs)−max(ϕa)‖ , (—) x3.1788, (×) ε , (- - -) x2.0771

The convergence rates are reported in Table 3.2.

Table 3.2: 2D Hermite Dual: Convergence Rate at f = 50Hz, f = 200Hz and
f = 500Hz

Method f = 50Hz f = 200Hz f = 500Hz

‖max(ϕs)−max(ϕa)‖ 4.296 2.8298 3.1788

ε 1.4565 2.0771 2.7067
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3.2 Hermite Coons

The approach described in the previous chapter can easily be applied to 3D cases.

The representation of a function x(ξ, η) in 3D, however, involves a bi–cubic in-

terpolation which takes into account the mixed derivatives in ξη evaluated at the

nodal points.

This introduces an additional complexity due to the second–order derivatives in

the representation of the geometry and of the variables. In this chapter we will

introduced an approach based on the work published by Steven Anton Coons in

1967[1] at MIT in which he described a methodology to describe generalised sur-

face patches based on boundary curves and blending functions for the interpolation

of the internal points. This kind of approach avoids the introduction of the nodal

mixed derivatives while granting the freedom of choosing a suitable algorithm for

the representation of the boundary curves.

3.2.1 The Coons patch

Consider a two–dimensional manifold x(ξ, η), with x ∈ R3, bounded by the four

curves x0η = x(0, η), x1η = x(1, η), xξ0 = x(ξ, 0), xξ1 = x(ξ, 1) sharing the four

corners x0 = x(0, 0), x1 = x(1, 0), x2 = x(1, 1), x3 = x(0, 1) (see Figure 3.15) we

can build a patch interpolation considering the sum of the two lofting surfaces in

ξ and η

sη(ξ, η) = (1− η) x(ξ, 0) + η x(ξ, 1)

sξ(ξ, η) = (1− ξ) x(0, η) + ξ x(1, η) (3.21)

If we consider the sum of sξ and sη and we evaluate it at the boundaries, we

note that, in order to get back the boundary curves, we must subtract a bilinear

interpolation of the values of x at the four corners:

sξη(ξ, η) = (1− ξ)(1− η) x0

+ ξ(1− η) x1

+ η(1− ξ) x3

+ ξη x2 (3.22)
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x0 = x(0, 0)

x1 = x(1, 0)

x3 = x(0, 1)

x2 = x(1, 1)

x(ξ, 0)
x(1, η)

x(ξ, 1)

x(0, η)

ξ

η

x(ξ, η)

Figure 3.15: Quadrilateral patch in a curvilinear space x(ξ, η)

obtaining the interpolation introduced by Steven Coons[1] and known as Coons

patch.

x(ξ, η) = sξ(ξ, η) + sη(ξ, η)− sξη(ξ, η) (3.23)

Equation(3.23) is only dependent on the four boundary curves and on the values

at the corners without the need of mixed derivatives in ξη.

Adopting, for the representation along the boundaries, the cubic Hermite poly-
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nomials in the span ζ ∈ [0, 1]:

H0(ζ) =
1

4
(1− 3ζ + ζ3)

H1(ζ) =
1

4
(1 + 3ζ − ζ3)

H2(ζ) =
1

4
(1− ζ − ζ2 + ζ3)

H3(ζ) =
1

4
(−1− ζ + ζ2 + ζ3) (3.24)

and their derivatives

H ′0(ζ) =
1

4
(−3 + 3ζ2)

H ′1(ζ) =
1

4
(3− 3ζ2)

H ′2(ζ) =
1

4
(−1− 2ζ + 3ζ2)

H ′3(ζ) =
1

4
(−1 + 2ζ + 3ζ2) (3.25)

we can substitute the boundary curves with their cubic Hermite approximation,

indicated with the bar, having the form:

x̄ξ0 = x0H0(ξ) + x1H1(ξ) +
∂xξ0
∂ξ

∣∣∣∣
ξ=0

H2(ξ) +
∂xξ0
∂ξ

∣∣∣∣
ξ=1

H3(ξ) (3.26)

x̄ξ1 = x3H0(ξ) + x2H1(ξ) +
∂xξ1
∂ξ

∣∣∣∣
ξ=0

H2(ξ) +
∂xξ1
∂ξ

∣∣∣∣
ξ=1

H3(ξ) (3.27)

x̄0η = x0H0(ξ) + x3H1(ξ) +
∂x0η

∂η

∣∣∣∣
η=0

H2(ξ) +
∂x0η

∂η

∣∣∣∣
η=1

H3(ξ) (3.28)

x̄1η = x1H0(ξ) + x2H1(ξ) +
∂x1η

∂η

∣∣∣∣
η=0

H2(ξ) +
∂x1η

∂η

∣∣∣∣
η=1

H3(ξ) (3.29)

(3.30)

in which the only needed quantities are the values at the boundary of the

interval and the derivatives along the boundary curve. Combining the Coons

patch representation in Eq.(3.23) with the cubic Hermite representation for the
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boundary curves in Eq.(3.26), we obtain the following equation for the patch:

x(ξ, η) =
1− ξ

2

[
x0H0(η) + x3H1(η) +

∂x

∂η


0
H2(η) +

∂x

∂η


3
H3(η)

]
+

1 + ξ

2

[
x1H0(η) + x2H1(η) +

∂x

∂η


1
H2(η) +

∂x

∂η


2
H3(η)

]
+

1− η
2

[
x0H0(ξ) + x1H1(ξ) +

∂x

∂ξ


0
H2(ξ) +

∂x

∂ξ


1
H3(ξ)

]
+

1 + η

2

[
x3H0(ξ) + x2H1(ξ) +

∂x

∂ξ


3
H2(ξ) +

∂x

∂ξ


2
H3(ξ)

]
−

(
1 + ξ

2

1 + η

2
x2 +

1 + ξ

2

1− η
2

x1

)
+

(
1− ξ

2

1 + η

2
x3 +

1− ξ
2

1− η
2

x0

)
(3.31)

and, for the derivatives in ξ and η

∂x(ξ, η)

∂ξ
= −1

2

[
x0H0(η) + x3h1(η) +

∂x

∂η


0
H2(η) +

∂x

∂η


3
H3(η)

]
+

1

2

[
x1H0(η) + x2H1(η) +

∂x

∂η


1
H2(η) +

∂x

∂η


2
H3(η)

]
+

1− η
2

[
x0H

′
0(ξ) + x1H

′
1(ξ) +

∂x

∂ξ


0
H ′2(ξ) +

∂x

∂ξ


1
H ′3(ξ)

]
+

1 + η

2

[
x3H

′
0(ξ) + x2H

′
1(ξ) +

∂x

∂ξ


3
H ′2(ξ) +

∂x

∂ξ


2
H ′3(ξ)

]
−

(
1 + η

4
x2 +

1− η
4

x1 −
1 + η

4
x3 −

1− η
4

x0

)
(3.32)

∂x(ξ, η)

∂η
=

1− ξ
2

[
x0H

′
0(η) + x3H

′
1(η) +

∂x

∂η


0
H ′2(η) +

∂x

∂η


3
H ′3(η)

]
+

1 + ξ

2

[
x1H

′
0(η) + x2H

′
1(η) +

∂x

∂η


1
H ′2(η) +

∂x

∂η


2
H ′3(η)

]
− 1

2

[
x0H0(ξ) + x1H1(ξ) +

∂x

∂ξ


0
H2(ξ) +

∂x

∂ξ


1
H3(ξ)

]
+

1

2

[
x3H0(ξ) + x2H1(ξ) +

∂x

∂ξ


3
H2(ξ) +

∂x

∂ξ


2
H3(ξ)

]
−

(
1 + ξ

4
x2 −

1 + ξ

4
x1 +

1− ξ
4

x3 −
1− ξ

4
x0

)
(3.33)
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Collecting by nodal values, these equations can be written as:

x(ξ, η) =
3∑
i=0

[
xiCi(ξ, η) +

∂x

∂ξ


i
Dξi (ξ, η) +

∂x

∂η


i
Dηi (ξ, η)

]
∂x(ξ, η)

∂ξ
=

3∑
i=0

[
xi
∂Ci(ξ, η)

∂ξ
+
∂x

∂ξ


i

∂Dξi (ξ, η)

∂ξ
+
∂x

∂η


i

∂Dηi (ξ, η)

∂ξ

]
∂x(ξ, η)

∂η
=

3∑
i=0

[
xi
∂Ci(ξ, η)

∂η
+
∂x

∂ξ


i

∂Dξi (ξ, η)

∂η
+
∂x

∂η


i

∂Dηi (ξ, η)

∂η

]
(3.34)

in which:

C0(ξ, η) = 0.5 [(1− ξ)H0(η) + (1− η)H0(ξ)− 0.5(1− ξ)(1− η)]

C1(ξ, η) = 0.5 [(1 + ξ)H0(η) + (1− η)H1(ξ)− 0.5(1 + ξ)(1− η)]

C2(ξ, η) = 0.5 [(1 + ξ)H1(η) + (1 + η)H1(ξ)− 0.5(1 + ξ)(1 + η)]

C3(ξ, η) = 0.5 [(1− ξ)H1(η) + (1 + η)H0(ξ)− 0.5(1− ξ)(1 + η)]

Dξ0(ξ, η) = 0.5(1− η)H2(ξ)

Dξ1(ξ, η) = 0.5(1− η)H3(ξ)

Dξ2(ξ, η) = 0.5(1 + η)H3(ξ)

Dξ3(ξ, η) = 0.5(1 + η)H2(ξ)

Dη0(ξ, η) = 0.5(1− ξ)H2(η)

Dη1(ξ, η) = 0.5(1 + ξ)H2(η)

Dη2(ξ, η) = 0.5(1 + ξ)H3(η)

Dη3(ξ, η) = 0.5(1− ξ)H3(η) (3.35)
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C0ξ(ξ, η) = 0.5 [−H0(η) + (1− η)H ′0(ξ) + 0.5(1− η)]

C1ξ(ξ, η) = 0.5 [+H0(η) + (1− η)H ′1(ξ)− 0.5(1− η)]

C2ξ(ξ, η) = 0.5 [+H1(η) + (1 + η)H ′1(ξ)− 0.5(1 + η)]

C3ξ(ξ, η) = 0.5 [−H1(η) + (1 + η)H ′0(ξ) + 0.5(1 + η)]

Dξ0ξ(ξ, η) = 0.5(1− η)H ′2(ξ)

Dξ1ξ(ξ, η) = 0.5(1− η)H ′3(ξ)

Dξ2ξ(ξ, η) = 0.5(1 + η)H ′3(ξ)

Dξ3ξ(ξ, η) = 0.5(1 + η)H ′2(ξ)

Dη0ξ(ξ, η) = −0.5H2(η)

Dη1ξ(ξ, η) = +0.5H2(η)

Dη2ξ(ξ, η) = +0.5H3(η)

Dη3ξ(ξ, η) = −0.5H3(η) (3.36)

C0η(ξ, η) = 0.5 [(1− ξ)H ′0(η)−H0(ξ) + 0.5(1− ξ)]

C1η(ξ, η) = 0.5 [(1 + ξ)H ′0(η)−H1(ξ) + 0.5(1 + ξ)]

C2η(ξ, η) = 0.5 [(1 + ξ)H ′1(η) +H1(ξ)− 0.5(1 + ξ)]

C3η(ξ, η) = 0.5 [(1− ξ)H ′1(η) +H0(ξ)− 0.5(1− ξ)]

Dξ0η(ξ, η) = −0.5H2(ξ)

Dξ1η(ξ, η) = −0.5H3(ξ)

Dξ2η(ξ, η) = +0.5H3(ξ)

Dξ3η(ξ, η) = +0.5H2(ξ)

Dη0η(ξ, η) = 0.5(1− ξ)H ′2(η)

Dη1η(ξ, η) = 0.5(1 + ξ)H ′2(η)

Dη2η(ξ, η) = 0.5(1 + ξ)H ′3(η)

Dη3η(ξ, η) = 0.5(1− ξ)H ′3(η) (3.37)
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3.2.2 The numerical solution

The boundary of the problem, Γ is then discretized in Nel patches. Using the

representation in Eq.(3.34) for both the geometry and the unknowns ϕ̃(y), and

applying the collocation method on the nodal values of the discretized geometry,

we can rewrite Eq.(2.10) as a linear combination of the four nodal values and of

the eight nodal derivatives in ξ and η as:

E(y) ϕ̃(yj) =

Nel∑
i=0

∫
Γi

G0(ξ, η)Ψi(ξ, η)J(ξ, η)e−sθdΓ

−
Nel∑
i=0

∫
Γi

∂G0(ξ, η)

∂n
Φi(ξ, η)J(ξ, η)e−sθdΓ

+ s

Nel∑
i=0

∫
Γi

G0(ξ, η)Φi(ξ, η)
∂θ(ξ, η)

∂n
J(ξ, η)e−sθdΓ (3.38)

in which Ψi(ξ, η) and Φi(ξ, η) are the Coons+Hermite interpolation expressions,

given in Eq.(3.34), on the element i of ∂ϕ̃
∂n

and ϕ̃ respectively and J(ξ, η) is the

jacobian of the transformation of coordinates.

3.2.3 Finite differences approach

In this approach the nodal derivatives have been evaluated, after the discretization

of the boundary domain, with a finite difference algorithm, reducing the depen-

dency of the system only to the nodal values. Eq.(3.38) can then be rewritten

as:

E ϕ̃j =

Nel∑
i=0

M∑
j=0

χj

∫
Γi

G0(ξ, η)J(ξ, η)e−sθdΓ

−
Nel∑
i=0

M∑
j=0

ϕ̃j

∫
Γi

∂G0(ξ, η)

∂n
J(ξ, η)e−sθdΓ

+ s

Nel∑
i=0

M∑
j=0

ϕ̃j

∫
Γi

G0(ξ, η)
∂θ(ξ, η)

∂n
J(ξ, η)e−sθdΓ

=

Nel∑
i=0

M∑
j=0

(Bijχj − Cijϕ̃j + sDijϕ̃j) (3.39)
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or in a more compact form:

1

2
ϕ̃ = Bχ+ (sD−C)ϕ̃ (3.40)

which is a linear system of equations in the unknowns ϕ̃.

It must be noted that, depending on the finite difference schema chosen for the

nodal derivatives, the nodal value of the unknown appears in the representation

as multiplier of the integral coefficients over adjacent patches of the discretization

both for the nodal contribution, for Hermite polynomials H0(ξ) and H1(ξ), and for

the contribution as a coefficient of the discrete derivative, for Hermite polynomials

H2(ξ) and H3(ξ). In Fig.3.16 we reported the patches ”influenced” by a nodal

value when the nodal derivatives are evaluated with a centered finite difference

schema:

fξ(ξ) =
f(ξ + h)− f(ξ − h)

2h
(3.41)
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Figure 3.16: Influence of a nodal value over the patches when the nodal derivative
is evaluated with a centered schema

3.2.3.1 Results and discussion

3.2.3.1.1 Planar wave on a sphere The formulation presented is applied to

a simple acoustic case study for which the analytical solution is known (see e.g.,

Morse and Ingard [17] or Appendix B). Specifically, we consider the simple case

of a plane wave of amplitude ϕ̃0 impinging on a unit sphere. Indicating with k the
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wave vector, the incident field is given by ϕ̃p = ϕ̃0e
ik·r.

r

R

ϕ̃p

Figure 3.17: 3D Hermite Coons: Planar wave impinging on a unit sphere

In Figure 3.18 we reported the value of |ϕ̃| at R = 5r for f = 200Hz and in

Figure 3.19 for f = 500Hz compared with the analytical solution.
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Figure 3.18: 3D Hermite Coons: Absolute scattering pressure, f = 200Hz, (–)
analytical, (2) BEM, Nel = 32× 32

40



3.2. HERMITE COONS CHAPTER 3. BEM FOR ACOUSTICS

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Figure 3.19: 3D Hermite Coons: Absolute scattering pressure, f = 500Hz, (–)
analytical, (2) BEM, Nel = 32× 32

3.2.3.1.2 Numerical convergence analysis In order to evaluate the rate of

convergence of the proposed formulation we evaluated the Lebesgue norm of order

2 of the local relative difference ‖(ϕ̃− ϕ̃a)/ϕ̃a‖:

ε =

√∫
S

∥∥∥∥ ϕ̃− ϕ̃aϕ̃a

∥∥∥∥2

dS (3.42)

in which ϕ̃a is the analytical solution. We also evaluated the relative error of the

maximum value of ϕ̃, ‖max(ϕs)−max(ϕa)‖ evaluated on the surface of the sphere.
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Figure 3.20: 3D Hermite Coons: Convergence analysis at f = 200Hz, (2)
‖max(ϕs)−max(ϕa)‖, (–) x3.6583, (×) ε, (– –) x2.756
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Figure 3.21: 3D Hermite Coons: Convergence analysis at f = 500Hz, (2)
‖max(ϕs)−max(ϕa)‖, (–) x2.8808, (×) ε, (– –) x3.4069

The convergence rates are reported in Table 3.3.

Table 3.3: 3D Hermite Coons: Hermite Coons approach: Convergence Rate at
f = 200Hz and f = 500Hz

Method f = 200Hz f = 500Hz

‖max(ϕs)−max(ϕa)‖ 3.6583 2.8808

ε 2.756 3.4069
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3.2.4 Dual approach

In the previous approach the nodal derivatives in 3.34 are evaluated with a finite

difference scheme, hence including in the vector of the unknowns only the nodal

values. By applying the same technique used in Chapter 3.1 we can take into

account the tangential gradient of the Kirchhoff–Helmholtz equation:

∇y
t [E(y)ϕ(y)] = ∇y

t

∮
S

(
G
∂ϕ

∂n
− ϕ∂G

∂n

)
dS(x) (3.43)

where

∇t• = ∇ • −∂•
∂n

(3.44)

Following the procedure described in [8] we can rewrite equation 3.43 as:

E(y)ϕ(y) =

∮
S

(
G
∂ϕ

∂n
− ϕ∂G

∂n

)
dS (3.45)

E(y)vα(y) =

∮
S

(
− ∂G
∂xα

∂ϕ

∂n
−G[∇tn]∇tϕ · gα −

∂G

∂n

∂ϕ

∂xα

)
dS α = 1, 2

where

vα =
∂ϕ

∂xα
(3.46)

and gα is the covariant base in the chosen system of coordinates. By expressing the

unknowns in equation 3.45 with a Hermite Coons representation and by collocating

in the nodal point, we arrive at the system of equations:

1

2
IΦ = BΨ + CΦ (3.47)

in which:

B =


GC GDξ GDη

— — —
GξC GξD

ξ GξD
η

— — —
GηC GηD

ξ GηD
η

 (3.48)

C =


GnC GnDξ GnDη

— — —

HCξ + KCη HDξ
ξ + KDξ

η HKDη
ξ + KDη

η

— — —

MCξ + NCη MDξ
ξ + NDξ

η MDη
ξ + NDη

η

 (3.49)
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where the elements of the matrices are detailed in appendix E and

Ψ =


χi
—
∂χ
∂ξ


i

—
∂χ
∂η


i

Φ =


ϕi
—
∂ϕ
∂ξ


i

—
∂ϕ
∂η


i

 (3.50)

are the vectors containing the nodal values and their derivatives. The nodal deriva-

tives of ϕ are, in this case considered as unknowns.
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Chapter 4

Global Methods

C: I’m a simple man, Hobbes.
H: You?? Yesterday you wanted a nuclear powered car
that could turn into a jet with laser-guided heat–seeking
missiles!.
C: I’m a simple man with complex tastes.

C and H

4.1 NURBS introduction

The acronym NURBS stands for Non-Uniform Rational B-Splines and their general

form is:

f(u) =
N∑
i=1

Ni,p(u)Wiqi
Ni,p(u)Wi

u ∈ [0, 1] (4.1)

In which the Basis function Na,p(ξ), of order p, are defined in a recursive way as:

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (4.2)

with

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise
(4.3)

The points qi are called control points and the quantities Wi are the weights of

the NURBS. The set of abscissae ui needed to fully define the basis functions forms
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the knot vector. If the knot vector has p + 1 elements repeated at its beginning

and at its end, it is called an open knot vector. In general, for a NURBS curve

the following two properties hold:

1. if a knot ui is repeated k times, the continuity of the curve at that point is

Cp−k.

2. if the curve is C0 at a point, the control point belongs to the curve.

As a consequence, for a given open knot vector the resulting NURBS passes

through the first and last control points. Eq.(4.1) can be written as

f(u) =
N∑
i=1

Ri,p(u)qi u ∈ [0, 1] (4.4)

with

Ri,p(u) =
Ni,p(u)Wiqi∑n
i=1 Ni,p(u)Wi

(4.5)
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Figure 4.1: NURBS:Function Ri,p(u) for ui = 0.5 and 0 ≤ p ≤ 5.

The function Ri,p(u) for ui = 0.5 and 0 ≤ p ≤ 5 is depicted in Fig. 1, whereas

Fig. 2 shows the complete basis in u ∈ [0, 1], for p = 2.
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Figure 4.2: NURBS basis for p = 2.

On the basis of equation (4.1) to (4.5) the NURBS representation of ϕ̃ has the

form

ϕ̃(u) =
N∑
i=1

Ri,p(u)qi (4.6)

with coefficients qi and basis functions as reported in Eq.(4.5). Applying Eq.(4.6)

to the RHS of Eq.(2.10), and limiting, for the sake of simplicity, the notation to

the two–dimensional case, we obtain

E(y)ϕ̃(y) = b(y)−
N∑
i=1

qi

∮
Γ

∂G(u,y)

∂n
Ri,p(u)J(u)du (4.7)

where J(u) is the Jacobian of the transformation from the physical space coordi-

nate x to the NURBS parametric space one u. It is worth noting that the integrals
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in Eq.(4.7) span the whole boundary. Indeed, the use of the global NURBS rep-

resentation makes the concept of surface elements no longer required for the nu-

merical solution of Eq.(4.7) and thus the partition of Γ is not strictly needed. On

the other hand, the integrals in Eq.(4.7) must be accurately evaluated and, unless

we have an analytical solution for them (and this could happen for very simple

geometries and/or boundary conditions), a suitable numerical integration strategy

must be identified. To this aim, a possible solution for complex geometries and/or

boundary conditions could be the partition of the boundary into macro patches

on which suitable quadrature formulas can be easily applied. However, it is im-

portant to notice that this partitioning, if needed, would have nothing to do with

the number of unknowns of the solving linear system, but only with the proper

evaluation of the integrals in Eq.(4.7). In Appendix D the effects of the partition

of Γ on the convergence of the integrals in Eq.(4.7) is analyzed for two different

geometries.

4.2 NURBS and BEM

In this case we will consider, as a starting point, the weight Wa to be unitary, i.e:

Wa = 1 a = 1, . . . n. If we apply the representation (4.1) to Eq.(2.10), we arrive

at Eq.(4.15) in which now we know the quantities ϕ̃a and χ̃a to be the control

points of the velocity potential and of the normal wash. In order to apply the

representation (3.5) to be valid we need a set ξk k = 1, . . . , n of abscissae to apply

the collocation method on. We must choose the abscissae in such a way that the

collocation point, i.e the values of:

x(ξk) =
n∑
a=1

Na,p(ξk)Wax̃a
Na,p(ξk)Wa

(4.8)

lay exactly on the boundary ∂S of the domain. To ensure this we can adopt two

different approaches that will be described in the following chapters.
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4.3 Reconstructing abscissae from geometry dis-

cretisation

We discretise the domain ∂S inNel elements and n = Nel+1 nodes {xk, k = . . . , n}.
The representation (4.13) applies for a set of abscissae {ξk k = 1, . . . , n} and a

set of control points {x̃a a = 1, . . . , n}. In order to find the control points for the

NURBS representation (4.13), we choose an initial set ξ
′

k in the parameter space

with a one of the common methodologies, described in Appendix (A). It must be

noted that the abscissae ξ
′

k do not give us the representation in the original nodal

points but are used only to allow us to obtain the control points x̃a. Evaluating

(4.13) in the abscissae ξ
′

k, gives us the linear system:

x = Rx̃ (4.9)

in which x are the original collocation points, x̃ are the control points of the

NURBS representation and R is the matrix:

R =


R1,p(ξ

′
0) R2,p(ξ

′
0) . . . Rn,p(ξ

′
0)

R1,p(ξ
′
1) R2,p(ξ

′
1) . . . Rn,p(ξ

′
1)

...
...

...
...

R1,p(ξ
′
n) R2,p(ξ

′
n) . . . Rn,p(ξ

′
n)

 (4.10)

being

Ra,p =
Na,p(ξk)Wa∑n
a=1Na,p(ξk)Wa

(4.11)

for a given distribution of weights Wa, Eq.(4.9) solution gives us the desired control

points of the geometry:

x̃ = R−1x (4.12)

Knowing the control points, we can now apply a bisection method to obtain the

values ξk in which the representation in Eq.(4.13) gives us the original collocation

points.

4.4 The numerical solution

The numerical solution of Eq.(4.7) can be obtained using the collocation method,

with collocation points lying on the boundary Γ. To this aim, it is necessary
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to identify a set of collocation points yk ∈ Γ. In the present approach, this

requires the identification of a set of abscissae uk in the NURBS parametric space

corresponding to points on Γ in the physical space through the relationship

y(uk) =
N∑
i=1

Ri,p(uk)ηi (4.13)

where n is the number of the control points ηiused to build the NURBS repro-

ducing the geometry of Γ. To ensure that y(uk) is located on the boundary, the

abscissa uk must be chosen according to the Greville distribution [12, 21]

u
′

k =
ui+1 + ui+2 + . . .+ ui+p

p
, i = 1, . . . , n− 1 (4.14)

The abscissae u
′

k satisfying Eq.(4.14) correspond to points in the physical space

such that y(u
′
) ∈ Γ (see Fig. 3). A key aspect in the numerical evaluation of the

integrals in Eq.(4.7) is the management of the singularities of the kernels arising

from the collocation of the observation point y on the boundary. In this respect,

the meshless approach presents a significant advantage with respect to the classic

BEM, being now the integration extended to the whole boundary or, for complex

geometries, to a part of it significantly larger than a single boundary element. As a

consequence, the check for singularity occurrence (not a straightforward task with

NURBS) is less critical, or even not required at all, thus simplifying the numer-

ical integration procedure. The asymptotic behavior of the integral appearing in

Eq.(2.10) is briefly recalled in Appendix D for the sake of clarity and complete-

ness. Once that the location of the collocation points is fixed using the Greville

abscissae we can apply the same decomposition given in Eq.(4.6) to the left hand

side of Eq.(4.7). For y ∈ Γ we obtain

1

2
R q = B−C q (4.15)

where the elements of B and C have the form

Bj =

∮
Γ

G(x,yj)
∂ϕ

∂n
dΓ, Cij =

∮
Γ

∂G(u,yj)

∂n
Ri,p(u)J(u)du (4.16)

where u ∈ [0, 1]. The entries of the N ×N matrix R have the form Rij = Ri,p(u
′
j).

The final form of the linear system is (0.5 R + C) q = B, which can be solved

using the most appropriate solver.
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4.4.1 Knots h-refinement

In the derivation performed so far we assumed, without loss of generality, unit

weights in Eq.(4.5). This choice is certainly not optimal for the representation

of complex functions, but is the only possible to easily represent the unknowns.

Indeed, for a generic function ϕ̃ could be possible, in principle, identify an opti-

mal set of weights and control points capable to achieve a high level of accuracy

with a limited number of degrees of freedom. In actual applications, this can be

easily done to represent regular geometries (for example, simple geometries of the

boundary Γ). On the contrary, in complex phenomena, the optimal representation

of the unknown ϕ̃ could not be an easy task. As an example, consider a domain

bounded a circle. It can be represented exactly with the six control points depicted

by squares in Fig.4.3, provided that the vectors of the corresponding weights and

nodes are WT
c = {1 0.5 0.5 1 0.5 0.5 1} and uTc = {0 0 0 0.25 0.5 0.5 0.75 1 1 1},

respectively (see, e.g., Piegl[18]).
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Figure 4.3: NURBS Circle, (2) Control points, (×) Greville’s abscissae in the
physical space, (◦) refined Greville’s abscissae in the physical space.

On the other hand, the physical phenomenon described by the function ϕ̃ can

be extremely complex, even if the boundary of the domain is so simple. If, for

example, we are dealing with the scattering of an acoustic wave impinging on the

circle at medium–high frequencies, Wc and uc are clearly not suitable to reproduce

accurately the scattering pattern. In order to increase the number of collocation

points for the numerical solution of the BIE, starting from the NURBS optimal

representation of Γ, the h-refinement technique is used. With the h-refinement

technique, the non-zero intervals between the components of the knot vector uc

are refined with equally spaced knots. The number of inserted knots doesn’t

need to be the same for each interval, and thus the NURBS representation can
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be enriched only where needed. These new knots become the control points of

the representation of the unknown ϕ̃. The refinement obtained using an uneven

distribution of knots in the different intervals is depicted in Fig.4.3 (◦), along with

the original knot vector (×).

4.5 Results and discussion

The formulation presented is applied to two different problems: the solution of

an incompressible, two–dimensional potential flow around an impermeable, non–

lifting body, and the scattering of a sound–hard circular cylinder impinged by a

planar wave. The present section reports the results obtained and their validation

against available analytical solutions. The convergence analysis of the numerical

error with respect to the number N of degrees of freedom of the system is also

included.

4.5.1 Incompressible potential aerodynamics

In the first application, the function ϕ̃ has the physical meaning of a velocity po-

tential such that v = ∇ϕ̃, being v the velocity field associated with the irrotational

flow of an inviscid fluid. Such a flow is governed by the Laplace equation ∇2ϕ̃ = 0.

Consider an impermeable, blunt body immersed within a main flow at speed v0.

The velocity field is given by the superposition of the main stream velocity and the

perturbation v′ induced by the obstacle. The fundamental solution of the problem

and its normal derivative on Γ are

G(x,y) = − 1

2π
ln r,

∂G

∂n
= − 1

2π

r · n
r2

(4.17)

where r = ‖x − y‖. The analytical solution ϕ̃a exists if the impermeable ob-

stacle is a circular cylinder of radius R. In polar coordinates, it reads ϕ̃a =

v0r (1 +R2/r2) cos(θ). Figure 4.4 shows the comparison of the numerical solution

of the present method, ϕ̃, with the analytical solution ϕ̃a.
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Figure 4.4: Velocity potential ϕ̃ for a uniform flow U∞ in x-direction. (−) Ana-
lytical solution. (2) BIE-NURBS. p = 3

The convergence of the global error ε, defined as

ε =

√∫
Γ

∥∥∥∥ ϕ̃− ϕ̃aϕ̃a

∥∥∥∥2

dΓ (4.18)

is presented in Figure 4.5 as a function of 1/N for different values of the the degree

of the NURBS representation.
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Figure 4.5: Convergence of ε for the solution of potential incompressible aerody-
namics.

What can be observed first, is that the convergence curves are non linear in

the log/log plane, and, consistently with the use of a rational function basis, the

rate of convergence cannot be inferred directly from the order p of the NURBS.

The rate of convergence is slightly higher for lower N , gradually diminishes in

finer simulations, and appears to be marginally dependent on the order p of the

NURBS. Indeed, the average rate is between N−4 and N−5 for 3 ≤ p ≤ 6. This

phenomenon is not present in the acoustic simulations (see next section), and is

currently under investigation. A possible reason could be related to the adoption of

a uniform sampling in the NURBS parameter space which may produce unwanted

oscillations of the higher–order functions.[18]
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4.5.2 Acoustic scattering of a circular cylinder

In this case, the function ϕ̃ represents a physical quantity satisfying the wave

equation in Ω. The equation governing the propagation of an acoustic perturbation

of angular frequency ω at speed c0 is the Helmholtz equation, ∇2ϕ̃ + κ2 ϕ̃ = 0,

where κ = ω/c2
0. Adopting the eiωt time convention, the fundamental solution and

its normal derivative on Γ are

G(x,y, κ) =
i

4
H(2)

0 (κ r),
∂G

∂n
= − iκ

4
H(2)

1 (κr)
r · n
r

(4.19)

where r = ‖x − y‖ and H(2)
m (κ r) is the second–kind Hankel function of order m.

The case study at hand consists of a plane wave of unit amplitude impinging on a

circular cylinder of infinite length, for which the analytical solution is known (see

e.g., Morse and Ingard [17] or Appendix B). Indicating with κ the wave vector,

the incident field is given by ϕ̃i = eiκ·r. Figure 4.6 shows the solution at f = 50Hz.

The values of |ϕ̃| at the solution points are indicated with squares, whereas the

NURBS reconstruction of the solution along the whole boundary is depicted with

the times sign. The agreement with the analytical solution is remarkable. The

effect of the h-refinement can be observed in Figure 4.7, where four knots have

been inserted in the first and last intervals and two knots in the second and third

ones. The refined solution is substantially indistinguishable from the analytical

one. This excellent behavior is preserved also at higher frequencies, as Figures 4.8,

4.9, and 4.10 show for f = 200Hz, f = 500Hz, and f = 1000Hz, respectively.

58



4.5. RESULTS AND DISCUSSION CHAPTER 4. GLOBAL METHODS

Figure 4.6: Scattering field on the cylinder, f = 50Hz. (−) Analytical, (×) BIE-
NURBS, (2) BIE-NURBS at Greville’s abscissae.

Figure 4.7: Effect of refinement at f = 50Hz. Scattering field. (−) analytical, (×)
BIE- NURBS, (2) BIE-NURBS at Greville’s abscissae, N = 20, p = 3.
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Figure 4.8: Scattering field at f = 200Hz, (−) analytical, (×) BIE-NURBS, (2)
BIE-NURBS at Greville’s abscissae, N = 32, p = 3.
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Figure 4.9: Scattering field at f = 500Hz, (−) analytical, (×) BIE-NURBS, (2)
BIE-NURBS at Greville’s abscissae, N = 50, p = 5.
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Figure 4.10: Scattering field at f = 1kHz, (−) analytical, (×) BIE-NURBS, (2)
BIE-NURBS at Greville’s abscissae, N = 90, p = 5.

Also in this case, the convergence of the proposed formulation is evaluated using

the global error ε defined in Equation 4.18. The convergence analysis is performed

using the h-refinement by inserting equally spaced knots. The convergence of ε as

a function of 1/N is presented in Figures 4.11 and 4.12 for p=2,3,4,5,6 at f = 50Hz

and f = 200Hz, respectively. As in the aerodynamic application, the log-log plots

show a non–linear behavior. The major difference in the present application is in

the progressive enhancement of the accuracy and rate of convergence as p increases.
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Figure 4.11: NURBS: Convergence of ε at f = 50Hz.

63



4.5. RESULTS AND DISCUSSION CHAPTER 4. GLOBAL METHODS

Figure 4.12: NURBS: Convergence of ε at f = 200Hz.

It can be observed that the rate of convergence is greater than p for all the de-

grees tested, reaching values close to O(N−9) for p = 6, confirming the remarkable

level of accuracy achievable with the h- refinement.
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Chapter 5

Application to Phononic Crystals

Homework, I command thee, BE DONE!

C and H

Phononic Crystals are acoustic metamaterials designed to direct the sound

waves by exploiting the periodic variations of the acoustic properties of the used

material. These metamaterials have the peculiar property of exhibiting a phononic

bandgap i.e., a zone in the transmission spectra where the propagation of acoustic

waves is forbidden. By carefully designing the crystals it is hence possible to build

acoustic wave-guides forcing the acoustic wave in a specific area of the crystal

and also having it go around sharp corners. Both experimental and numerical

simulations have been done on the subject (see for instance [25], [26]) but to our

knowledge, no simulation of these kind of structures has been performed with a

BEM methodology.

The level of accuracy needed for the simulation of these phenomena is not

attainable with a 0th order BEM formulation due to the many interactions between

the structures composing the crystal and to the high frequencies involved.

5.1 Numerical simulation

In the present work we considered two different wave guides built by removing

bodies from a matrix of 15 × 11 cylinders that have a radius of r = 0.00125, a
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distance between their radius is l = 0.003 (Figure 5.1) and are immersed in water

(c = 1497.0 m/s). The first guide is a straight one built by removing a single line

l

r

Figure 5.1: Phononic crystals configuration

of cylinders (Fig.5.2).
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Figure 5.2: Phononic crystals: Straight waveguide

The second one is a S–shaped guide as shown in Figure 5.3. We studied the

behaviour of the these two wave guides under a planar wave impinging on the

structure. The wave guides were simulated with the approach described in 3.1 in

2D. In order to find the frequency at which the maximum transmission occurs we

performed a frequency analysis evaluating the power transmission spectra defined

as:

10 log

(∫
L
‖Ptot‖2∫

L
‖Pinc‖2

)
(5.1)

Where Ptot and Pinc are respectively the total and incident pressure evaluated on

the line L at the exit of the guide.
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Figure 5.3: Phononic crystals: S–shaped waveguide

5.1.1 Straight guide

In Figure 5.4 we reported the Transmission spectra for the straight guideline. It

is clear that the structure has a guiding band starting at f = 260kHz and ending

at f = 314kHz.
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Figure 5.4: Phononic crystals: Straight guide, Power Transmission spectra

In Figure 5.5 and in Figure 5.6 we reported the total pressure field for f = 292kHz

and f = 314.5kHz respectively to show how the structure behaves like a wave guide

at the former frequency and acts like a filter at the latter.
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Figure 5.5: Phononic crystals: Straight guide, Total Pressure at f = 292 kHz
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Figure 5.6: Phononic crystals: Straight guide, Total Pressure at f = 314.5kHz

In Figure 5.7 we reported the total pressure for the two considered frequencies

along a line in the middle of the guide. It is clear that at f = 314.5kHz there

is a drop in total pressure while at f = 292kHz the acoustic pressure propagates

almost undisturbed.
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Figure 5.7: Phononic crystals:Total Pressure field along a line in the middle of the
wave guide for f = 292kHz (purple line) and f = 314.5kHz (red line)

5.1.2 S–shaped guide

The same analysis has then been performed on the S–shaped guide. The power

transmission spectra is depicted in Figure 5.8 showing a guiding behaviour between

f = 272kHz and f = 282kHz.
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Figure 5.8: Phononic crystals: S–guide, Power Transmission spectra
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Figure 5.9: Phononic crystals: S–guide, Total Pressure at f = 267.5kHz
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Figure 5.10: Phononic crystals: S–guide, Total Pressure at f = 277kHz
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Figure 5.11: Phononic crystals: Total Pressure field along a line in the middle of the
exit straight section of the guide for f = 277kHz (purple line) and f = 267.5kHz
(red line)

The results for the band gap are in agreement with the experimental results

reported in [25] confirming the accurateness of the BEM method for the design of

these kind of structures.
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Appendix A

NURBS Parameters and local
coordinates

A.1 NURBS Parameters Distribution

In order to find a distribution of the parameter ξk, one can apply different default

methods:

• Equally spaced

The most simple distribution is a uniformly spaced one:

ξk =
(k − 1)

n+ 1
k = 1, . . . , n+ 1 (A.1)

with this kind of distribution the control points will be uniformly spaced too

• Chord length method

In this case the parameters are computed as

d =
n∑
k=1

‖fk − fk−1‖ (A.2)

ξk =
‖fk − fk−1‖

d
(A.3)

• Centripetal method
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This method is similar to the previous one:

d =
n∑
k=1

√
‖fk − fk−1‖ (A.4)

ξk =

√
‖fk − fk−1‖

d
(A.5)

A.2 Transformation of coordinate system

The integrals in (4.16) are evaluated in the interval ξ̂ ∈ [−1, 1]. Moreover the

evaluation of the basis functions Na,p is made in the parameter space ξ hence we

must compute the jacobian of the two coordinates transformation:

J =
dΓ

dξ

dξ̂

dξ
(A.6)

in which

dΓ

dξ
=

√(
dx

dξ

)2

+

(
dy

dξ

)2

= ‖g1‖ (A.7)

being ‖gα‖ the covariant base of the curvilinear coordinate system. The interval

ξ̂ ∈ [−1, 1] is then mapped to the parameter space interval ξ ∈ [ξ1, ξ2] with the

transformation of coordinates:

ξ =

[
(ξ2 − ξ1)ξ̂ + (ξ2 + ξ1)

]
2

(A.8)

which allows to write:
dξ̂

dξ
=
ξ2 − ξ1

2
(A.9)

and for the total jacobian:

J =
ξ2 − ξ1

2
‖g1‖ (A.10)
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Appendix B

Analytical solutions

B.1 Planar wave on 2D cylinder

The analytical solution for the total surface pressure exerted by a planar wave of

frequency f and amplitude P0, impinging on a 2D cylinder of radius a is given by:

Ptot(θ) =
4P0

πka

∞∑
m=1

cos(mθ)

E(m)
ei(−γ(m)+1/2(πm)) (B.1)

in which

E(m) =


2 j1(ka)

sin(γ(0))
if m = 0,

jm+1(ka)−jm−1(ka)
2 sin(γ(0))

if m 6= 0.

(B.2)

being jα(x) the Bessel functions of the first kind and the angles γ(m) are given

by:

γ(m) =


arctan

(
−j1(ka)
y1(ka)

)
if m = 0,

arctan
(
jm−1(ka)−jm+1(ka)
ym+1(ka)−ym−1(ka)

)
if m 6= 0,

(B.3)

in which yα(x) are the Bessel functions of the second kind.

B.2 Planar wave on 3D sphere

The analytical solution for the scattering surface pressure exerted by a planar wave

of frequency f and amplitude P0, impinging on a 3D sphere of radius a is given
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by:

Ps(r, θ) = −
∞∑
m=0

Dm(2m+ 1)imPm(cos θ)hm(kr) (B.4)

where

Dm =
mjm(ka)− (m+ 1)jm+1(ka)

mhm(ka)− (m+ 1)hm+1(ka)
(B.5)

and Pα(x) are the Legendre polynomials, hα(x) are the spherical Hankel functions

of the first kind and jα(x) are the spherical Bessel functions of the first kind.
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Appendix C

Parallel implementation

With exception of the NURBS–based approach illustrated in Chapter 4, all the

algorithm adopted in the present work have been implemented on a HPC archi-

tecture exploiting the parallel characteristics of the Boundary Element Method.

This has allowed the reduction of the computational effort in particular for the

convergence analysis performed. A detailed testing of the parallel code developed

in order to determine the efficiency of the implementation is beyond the scope of

the present work but it is worth describing some of the choices made and some of

the details in the implementation.

C.1 MPI–2 and ScalaPack

The implementations have been developed with the aid of two standard libraries

in parallel computing, MPI–2 [4] for the message passing features and ScaLA-

PACK [5] for the Linear Algebra operations. In particular, the structure of the

implementation is the same for all the approaches considered and the parallel

macro–operations are the ones shown in orange in Figure C.1.

Figure C.1: Structure of the algorithm
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The solution of the linear system has been done both by using the PZGELS

subroutine of the ScaLAPACK library that uses a QR or LQ factorization and with

a parallel GMRES algorithm implemented from scratch. It is worth noting how

the evaluation of the BEM coefficients for the matrices assembly can be considered

“embarrassingly parallel”.

The code has been written in the C language and tested on a cluster of Linux

nodes with a Scientific Linux derived distribution.

C.2 Details on the implementation

C.2.1 Parallel Loops for 2D solution

The usual implementation for the evaluation of the coefficients (3.19) is a nested

loop:

for xj = 1, . . . Nel + 1

for elementi = 1, . . . , Nel

evaluate integral Biij, Ciij

end loop on elementi

end loop on xj

being xj the control point. The ranges 1, . . . Nel+1 for the control points is splitted

on the q rows of the computational grid, whereas the range 1, . . . Nel is splitted on

the p columns. However, as we can see from Fig.(3.2) we cannot be sure that the

evaluation of the integral on a single element contributes to the nodes that are on

the same computational node.

In order to avoid data transfer between the nodes we can rewrite the loop as:

for xj = 1, . . . , Nel + 1

for xi = 1, . . . , Nel + 1

evaluate integral Biik, Ciik for each element contributing to node xi

end loop on xi

end loop on xj
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element Coefficients
i+1 -1

2
B2

i B0, -1
2
B3

i-1 B2, B1
i-2 B3

Table C.1: 2D Hermite Dual: Coefficients contributing to node k of element i

The partition on the computational grid is now both row-wise and column-wise

in terms of geometry nodes. For each node xi we must consider which elements

contribute to that node and evaluate the respective integrals. For instance, con-

sidering Fig.(figure:element) and 2-points centered finite differences for the nodal

derivatives, we have that for the node k the contributing integrals are the ones

reported in Table (C.1) (the same applies for the coefficients C) i.e. the integral

on panel i + 1 will contribute with coefficients B2, the integral on panel i with

coefficients B0 and B3 and so on.

C.2.2 Parallel Loops for 3D solution

The evaluation of the coefficients in Eq.(3.39) has been implemented on a cluster

of parallel computing nodes by means of the MPI–2 library. The usual implemen-

tation for the evaluation of the integral coefficients is a nested loop:

for xj = 1, . . . Np + 1

for elementi = 1, . . . , Nel

evaluate integral Bij, Cij Dij

end loop on xj

end loop on elementi

being Np the number of collocation points. The ranges 1, . . . Np+1 for the colloca-

tion points is splitted on the q rows of the computational grid, whereas the range

1, . . . Nel is splitted on the p columns. However, as we can see from Fig.(3.16) we

cannot be sure that the evaluation of the integral on a single element contributes

to the nodes that are on the same computational node. In order to avoid data

transfer between the nodes we can rewrite the loop as:
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for xj = 1, . . . , Np + 1

for xi = 1, . . . , Np + 1

evaluate integral Bij, Cij Dij

for each element contributing to node xi

end loop on xj

end loop on elementi

The partition on the computational grid is now both row-wise and column-wise

in terms of geometry nodes. For each node xi we must consider which elements

contribute to that node and evaluate the respective integrals. In Fig.3.16 we

reported the integral coefficients to be evaluated on each element of the multi
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patch when considering a nodal value contribution being:

B0ηij± =

∫
Γi

(1± ξ)
2

H0(η)Kj(ξ, η)J(ξ, η)dΓ

B1ηij± =

∫
Γi

(1± ξ)
2

H1(η)Kj(ξ, η)J(ξ, η)dΓ

B2ηij± =

∫
Γi

(1± ξ)
2

H2(η)Kj(ξ, η)J(ξ, η)dΓ

B4ηij± =

∫
Γi

(1± ξ)
2

H3(η)Kj(ξ, η)J(ξ, η)dΓ

B0ξij± =

∫
Γi

(1± η)

2
H0(ξ)Kj(ξ, η)J(ξ, η)dΓ

B1ξij± =

∫
Γi

(1± η)

2
H1(ξ)Kj(ξ, η)J(ξ, η)dΓ

B2ξij± =

∫
Γi

(1± η)

2
H2(ξ)Kj(ξ, η)J(ξ, η)dΓ

B4ξij± =

∫
Γi

(1± η)

2
H3(ξ)Kj(ξ, η)J(ξ, η)dΓ

B++ξηij =

∫
Γi

(1 + ξ)

2

(1 + η)

2
Kj(ξ, η)J(ξ, η)dΓ

B−+ξηij =

∫
Γi

(1− ξ)
2

(1 + η)

2
Kj(ξ, η)J(ξ, η)dΓ

B+−ξηij =

∫
Γi

(1 + ξ)

2

(1− η)

2
Kj(ξ, η)J(ξ, η)dΓ

B−−ξηij =

∫
Γi

(1− ξ)
2

(1− η)

2
Kj(ξ, η)J(ξ, η)dΓ (C.1)

where Kj(ξ, η) is either G(ξ, η) or ∂G0(ξ,η)
∂n

or G0(ξ, η)∂θ(ξ,η)
∂n

, depending on the

coefficient being evaluated.
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Appendix D

Kernel singularities and
numerical integration

Aim of the present section is the analysis of the asymptotic behavior of the kernel

K of Eq. 4.7 for y → y0 ∈ Γ and its relationship with the strategy used for

the numerical integration. The analysis deals with the two specific applications

covered. Assume that the observation point y approaches Γ from Ω (i.e., from the

positive side of the boundary) pointing to the boundary point yo (see Figure 13).

The integral on the right hand side of Equation 4.7 can be decomposed into two

contributions: the integral over a straight segment Γε centered in yo of length 2ε,

plus the integral over the remaining part of Γ

I(y) =

∫
Γε

ϕ̃(x)
∂G(y,x)

∂n
dΓ +

∫
Γ\Γε

ϕ̃(x)
∂G(y,x)

∂n
dΓ (D.1)

Assuming ε sufficiently small, I can be approximated as

I(y) ' ϕ̃(yo) Iε +

∫
Γ\Γε

ϕ̃(x)
∂G(y,x)

∂n
dΓ (D.2)

The kernels associated to the aerodynamic and the acoustic problems are

Kae(x,y) = − 1

2π

r · n
r2

, Kac(x,y) = −1

4
iκ H(2)

1 (κR)
r · n
r

(D.3)

Recalling the asymptotic form of H(2)
1 for small values of its argument (see, e.g.,

Kreyszig[15]), it can be easily seen that both Kae and Kac go to infinity as r−1.

Introducing the local coordinate (ξ, η), such that y ≡ (0, η) and x ≡ (ξ, 0) (see
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Figure D.1: Observation point y approaching the boundary at y0.

Figure D.1), it follows that

Iεac =

∫ ε

−ε

[
−η

2π (ξ2 + η2)
+ i η

κ2

16

]
dξ = Iεae +

iεκ2

8
η (D.4)

It can be easily seen that

Iεae = − 1

π
arctan

ε

η
(D.5)

Taking the limit for y → y0 yields limη→0 Iεae = limη→0 Iεac = −0.5. Now, substi-

tuting the result into Eq. D.2, it is possible to shrink indefinitely Γε to obtain for

both acoustic and aerodynamics

lim
ε→0
I(y0) = −1

2
ϕ̃(yo) +

∫
Γ

ϕ̃(x)
∂G(y,x)

∂n
dΓ (D.6)

Substituting Eq. D.6 into Eq. 4.7 follows that the domain function E(y) equals

0.5 at a regular point y0 ∈ Γ. The remaining part of the integral (i.e., the integral

appearing in Eq. D.6) is a convergent improper integral and can be integrated

using standard adaptive quadrature formulae capable to isolate the singularity of

the integrand function.

In the present work, Gauss–Kronrod adaptive quadrature rules have been used,

as implemented in the GNU Scientific Library.[3] The results obtained are pre-

sented in Table D.1, where the value of the real part of the integral in Equation

D.6 is reported for different number of Gaussian integration points NG. The influ-

ence of a partition of the boundary Γ into NΓ parts has been also included. Two

geometries have been analyzed: a circle and a flower–shaped geometry (Fig.D.2)

represented by the parametric equations:

x(θ) = [1 + 0.5 sin(5θ)] cos(θ), y(θ) = [1 + 0.5 sin(5θ)] sin(θ). (D.7)
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Table D.1: Real part of the double-layer integrals (×103) as a function of number
of Gaussian abscissae NG and number of partition of the boundary NΓ.

circle

NG=15 NG=30 NG=60

NΓ=1 5.13868867036 5.13868866829 5.13868867004

NΓ=2 5.13868867036 5.13868866829 5.13868867004

NΓ=4 5.13868867036 5.13868866829 5.13868867004

flower–like

NΓ=1 8.567698577476 8.567693658759 8.567712281749

NΓ=2 8.567698577476 8.567693658759 8.567712281749

NΓ=4 8.567698577476 8.567693658759 8.567712281749

Figure D.2: Flower–shaped geometry
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As can be seen, the convergence of the integration is extremely fast, giving

values substantially converged even with the coarsest quadrature rule. In addition,

the partition of Γ has no effects on the integral values, confirming the validity of the

NURBS global representation for the meshless solution of the BIE. Needless to say,

in presence of complex geometries, presenting slope and curvature discontinuities,

the assumption of unit weights in Eq.4.5 makes the accurate approximation of the

integrand impossible, thus causing the numerical convergence of the quadrature

rule impossible to be achieved when extended to the whole boundary. Nevertheless,

in those specific cases the geometry can be partitioned into macro patches having

the desired level of smoothness and the integrals in Equations 4.7 and 4.16 can be

split into their restrictions to each continuos patch.
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Appendix E

Hermite Coons Dual

Starting from 3.45 we can write:

∇tn =
∂n

∂xi
gi i = 1, 2 (E.1)

But the covariant derivative of n is:

∂n

∂xj
=

(
∂ni

∂xj
+ Γijkn

k

)
gi (E.2)

in which

Γikj =
∂gj
∂xj
· gi (E.3)

are the Christoffel symbols of the second kind. We can then write:

∇tn =

(
∂ni

∂xj
+ Γikjn

k

)
gi ⊗ gj = ni,jgi ⊗ gj i = 1..3 j = 1, 2 k = 1..3 (E.4)

Having defined the covariant derivative of a vector u as:

ui,j =
∂ui

∂xj
+ Γikju

k (E.5)

It is worth mentioning that, since in the covariant basis gi, the components of n

for i = 1, 2 are = 0, and n3 = 1 being n = g3/‖g3‖ the covariant derivatives of n

become:

n1
,j = Γ1

3j

n2
,j = Γ2

3j

n3
,j =

∂n3

∂xj
+ Γ3

3j (E.6)
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Hence:

∇tn = Γ1
3jg1 ⊗ gj

+ Γ2
3jg2 ⊗ gj

+

(
∂n3

∂xj
+ Γ3

3j

)
g3 ⊗ gj j = 1, 2 (E.7)

Since:

∇tϕ =
∂ϕ

∂xk
gk k = 1, 2 (E.8)

projecting 3.45 onto g1 and g2 and since g3 · g1 = 0 and g3 · g2 = 0, we can write:

[∇tn]∇tϕ · g1 =

+ Γ1
31

[
∂ϕ

∂x1
(g1 · g1) +

∂ϕ

∂x2
(g2 · g1)

]
(g1 · g1)

+ Γ2
31

[
∂ϕ

∂x1
(g1 · g1) +

∂ϕ

∂x2
(g2 · g1)

]
(g2 · g1)

+ Γ1
32

[
∂ϕ

∂x1
(g1 · g2) +

∂ϕ

∂x2
(g2 · g2)

]
(g1 · g1)

+ Γ2
32

[
∂ϕ

∂x1
(g1 · g2) +

∂ϕ

∂x2
(g2 · g2)

]
(g2 · g1)

= Γ1
31

[
∂ϕ

∂x1
‖g1‖2 +

∂ϕ

∂x2
(g2 · g1)

]
‖g1‖2

+ Γ2
31

[
∂ϕ

∂x1
‖g1‖2 +

∂ϕ

∂x2
(g2 · g1)

]
(g2 · g1)

+ Γ1
32

[
∂ϕ

∂x1
(g1 · g2) +

∂ϕ

∂x2
‖g2‖2

]
‖g1‖2

+ Γ2
32

[
∂ϕ

∂x1
(g1 · g2) +

∂ϕ

∂x2
‖g2‖2

]
(g2 · g1) (E.9)
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[∇tn]∇tϕ · g2 =

+ Γ1
31

[
∂ϕ

∂x1
(g1 · g1) +

∂ϕ

∂x2
(g2 · g1)

]
(g1 · g2)

+ Γ2
31

[
∂ϕ

∂x1
(g1 · g1) +

∂ϕ

∂x2
(g2 · g1)

]
(g2 · g2)

+ Γ1
32

[
∂ϕ

∂x1
(g1 · g2) +

∂ϕ

∂x2
(g2 · g2)

]
(g1 · g2)

+ Γ2
32

[
∂ϕ

∂x1
(g1 · g2) +

∂ϕ

∂x2
(g2 · g2)

]
(g2 · g2)

= Γ1
31

[
∂ϕ

∂x1
‖g1‖2 +

∂ϕ

∂x2
(g2 · g1)

]
(g1 · g2)

+ Γ2
31

[
∂ϕ

∂x1
‖g1‖2 +

∂ϕ

∂x2
(g2 · g1)

]
‖g2‖2

+ Γ1
32

[
∂ϕ

∂x1
(g1 · g2) +

∂ϕ

∂x2
‖g2‖2

]
(g1 · g2)

+ Γ2
32

[
∂ϕ

∂x1
(g1 · g2) +

∂ϕ

∂x2
‖g2‖2

]
‖g2‖) (E.10)

Substituting in 3.45 we arrive at:

E(y)ϕ(y) =

Nel∑
k=1

∮
Sk

(
G
∂ϕ

∂n
− ϕ∂G

∂n

)
dS

E(y)
∂ϕ(y)

∂x1
=

Nel∑
k=1

∮
Sk

(
− ∂G
∂x1

∂ϕ

∂n

)
dS

−
Nel∑
k=1

∮
Sk

(
∂ϕ

∂x1
H +

∂ϕ

∂x2
K

)
dS

E(y)
∂ϕ(y)

∂x2
=

Nel∑
k=1

∮
Sk

(
− ∂G
∂x2

∂ϕ

∂n

)
dS

−
Nel∑
k=1

∮
Sk

(
∂ϕ

∂x1
M +

∂ϕ

∂x2
N

)
dS (E.11)

95



APPENDIX E. HERMITE COONS DUAL

where

H = G
[(

Γ1
32‖g1‖2 + Γ2

32(g1 · g2)
)

(g1 · g2)

+
(
Γ1

31‖g1‖2 + Γ2
31(g1 · g2)

)
‖g1‖2

]
+
∂G

∂n
M = G

[(
Γ2

32‖g2‖2 + Γ1
32(g1 · g2)

)
(g1 · g2)

+
(
Γ2

31‖g2‖2 + Γ1
31(g1 · g2)

)
‖g1‖2

]
K = G

[(
Γ1

31‖g1‖2 + Γ2
31(g1 · g2)

)
(g1 · g2)

+
(
Γ1

32‖g1‖2 + Γ2
32(g1 · g2)

)
‖g2‖2

]
N = G

[(
Γ2

31‖g2‖2 + Γ1
31(g1 · g2)

)
(g1 · g2)

+
(
Γ2

32‖g2‖2 + Γ1
32(g1 · g2)

)
‖g2‖2

]
+
∂G

∂n
(E.12)

Introducing in E.11 the Hermite Coons representation of the variables ϕ and χ =
∂G
∂n

as in equation 3.34 we can write:

E(y)ϕ(y) =

Nel∑
k=1

∮
Sk

[
G

(
χiCi(ξ, η) +

∂χ

∂ξ


i
Dξi (ξ, η) +

∂χ

∂η


i
Dηi (ξ, η)

)]
J(ξ, η)dS (E.13)

−
Nel∑
k=1

∮
Sk

[
∂G

∂n

(
ϕiCi(ξ, η) +

∂ϕ

∂ξ


i
Dξi (ξ, η) +

∂ϕ

∂η


i
Dηi (ξ, η)

)]
J(ξ, η)dS

E(y)
∂ϕ(y)

∂ξ
=

Nel∑
k=1

∮
Sk

[
−∂G
∂ξ

(
χiCi(ξ, η) +

∂χ

∂ξ


i
Dξi (ξ, η) +

∂χ

∂η


i
Dηi (ξ, η)

)]
J(ξ, η)dS

−
Nel∑
k=1

∮
Sk

[
H

(
ϕi
∂Ci(ξ, η)

∂ξ
+
∂ϕ

∂ξ


i

∂Dξi (ξ, η)

∂ξ
+
∂ϕ

∂η


i

∂Dηi (ξ, η)

∂ξ

)]
J(ξ, η)dS

−
Nel∑
k=1

∮
Sk

[
K

(
ϕi
∂Ci(ξ, η)

∂η
+
∂ϕ

∂ξ


i

∂Dξi (ξ, η)

∂η
+
∂ϕ

∂η


i

∂Dηi (ξ, η)

∂η

)]
J(ξ, η)dS

E(y)
∂ϕ(y)

∂η
=

Nel∑
k=1

∮
Sk

[
−∂G
∂η

(
χiCi(ξ, η) +

∂χ

∂ξ


i
Dξi (ξ, η) +

∂χ

∂η


i
Dηi (ξ, η)

)]
J(ξ, η)dS

−
Nel∑
k=1

∮
Sk

[
M

(
ϕi
∂Ci(ξ, η)

∂ξ
+
∂ϕ

∂ξ


i

∂Dξi (ξ, η)

∂ξ
+
∂ϕ

∂η


i

∂Dηi (ξ, η)

∂ξ

)]
J(ξ, η)dS

−
Nel∑
k=1

∮
Sk

[
N

(
ϕi
∂Ci(ξ, η)

∂η
+
∂ϕ

∂ξ


i

∂Dξi (ξ, η)

∂η
+
∂ϕ

∂η


i

∂Dηi (ξ, η)

∂η

)]
J(ξ, η)dS
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where J(ξ, η) is the Jacobian of the transformation in the system of coordinates

ξ, η. Regrouping by the nodal values and the nodal derivatives, the previous

equations become:

E(y)ϕ(y) =

Nel∑
k=1

4∑
i=1

χi

∮
Sk

(GCi(ξ, η)) J(ξ, η)dS

+

Nel∑
k=1

4∑
i=1

∂χ

∂ξ


i

∮
Sk

(
GDξi (ξ, η)

)
J(ξ, η)dS

+

Nel∑
k=1

4∑
i=1

∂χ

∂η


i

∮
Sk

(GDηi (ξ, η)) J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

ϕi

∮
Sk

(
∂G

∂n
Ci(ξ, η)

)
J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

∂ϕ

∂ξ


i

∮
Sk

(
∂G

∂n
Dξi (ξ, η)

)
J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

∂ϕ

∂η


i

∮
Sk

(
∂G

∂n
Dηi (ξ, η)

)
J(ξ, η)dS (E.14)

E(y)
∂ϕ(y)

∂ξ
=

Nel∑
k=1

4∑
i=1

χi

∮
Sk

(
−∂G
∂ξ
Ci(ξ, η)

)
J(ξ, η)dS (E.15)

+

Nel∑
k=1

4∑
i=1

∂χ

∂ξ


i

∮
Sk

(
−∂G
∂ξ
Dξi (ξ, η)

)
J(ξ, η)dS

+

Nel∑
k=1

4∑
i=1

∂χ

∂η


i

∮
Sk

(
−∂G
∂ξ
Dηi (ξ, η)

)
J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

ϕi

∮
Sk

(
H
∂Ci(ξ, η)

∂ξ
+ K

∂Ci(ξ, η)

∂η

)
J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

∂ϕ

∂ξ


i

∮
Sk

(
H
∂Dξi (ξ, η)

∂ξ
+ K

∂Dξi (ξ, η)

∂η

)
J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

∂ϕ

∂η


i

∮
Sk

(
H
∂Dηi (ξ, η)

∂ξ
+ K

∂Dηi (ξ, η)

∂η

)
J(ξ, η)dS
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E(y)
∂ϕ(y)

∂η
=

Nel∑
k=1

4∑
i=1

χi

∮
Sk

(
−∂G
∂η
Ci(ξ, η)

)
J(ξ, η)dS (E.16)

+

Nel∑
k=1

4∑
i=1

∂χ

∂ξ


i

∮
Sk

(
−∂G
∂η
Dξi (ξ, η)

)
J(ξ, η)dS

+

Nel∑
k=1

4∑
i=1

∂χ

∂η


i

∮
Sk

(
−∂G
∂η
Dηi (ξ, η)

)
J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

ϕi

∮
Sk

(
M
∂Ci(ξ, η)

∂ξ
+ N

∂Ci(ξ, η)

∂η

)
J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

∂ϕ

∂ξ


i

∮
Sk

(
M
∂Dξi (ξ, η)

∂ξ
+ N

∂Dξi (ξ, η)

∂η

)
J(ξ, η)dS

−
Nel∑
k=1

4∑
i=1

∂ϕ

∂η


i

∮
Sk

(
M
∂Dηi (ξ, η)

∂ξ
+ N

∂Dηi (ξ, η)

∂η

)
J(ξ, η)dS

or, in matricial form:
1

2
IΦ = BΨ + CΦ (E.17)

where

Ψ =


χi
—
∂χ
∂ξ


i

—
∂χ
∂η


i

Φ =


ϕi
—
∂ϕ
∂ξ


i

—
∂ϕ
∂η


i

 (E.18)

B =


GC GDξ GDη

— — —
GξC GξD

ξ GξD
η

— — —
GηC GηD

ξ GηD
η

 (E.19)

C =


GnC GnDξ GnDη

— — —

HCξ + KCη HDξ
ξ + KDξ

η HKDη
ξ + KDη

η

— — —

MCξ + NCη MDξ
ξ + NDξ

η MDη
ξ + NDη

η

 (E.20)
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