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To Mahmoud
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Preamble

This thesis deals with dissipative and fluctuating mechanisms, taking place both

in the superconducting, and in the normal phase of the Rh-doped family of 122

iron-based superconductors. These novel materials have been holding the stage Motivations and

Organization of

the thesis

of superconductivity, and renewing the interest in high temperature supercon-

ductors, for the last six years.

Iron-pnictides are extremely type-II superconductors, with a Ginzurg-Landau pa-

rameter κ ∼ 100, and extremely high upper critical fields, that can reach up to

100 T! Such large values of Hc2 result from their short coherence lengths ξ = 1−3

nm. On the other hand, the lower critical field Hc1 is of the order of few mT, so

there is a very broad range of magnetic fields in which the behavior of the vortex

matter can vary significantly.

Nuclear Magnetic Resonance (NMR) is the more widely employed experimental

tool in this thesis, given its microscopic nature, and the sensitivity to kHz-MHz

fluctuations, that well match the vortices dynamic timescale. However, not many

NMR studies concerning the dynamic in the iron-pnictides of the vortex lattice

have been carried out, so far. One possible reason may be that the vortex dy-

namic is strongly related to technological applications, whereas NMR usually

probes the equilibrium state, namely the limit J → 0. Even though from a tech-

nological point of view this regime is not very appealing, it can anyhow help to

grasp some information about the nature of the solid vortex phase.

The experimental data discussed here, have been collected in several research

laboratories. The main part of the NMR measurements has been carried out in

the NMR laboratory of the University of Pavia, and of the Northwestern Univer-

sity (Illinois), while the NMR experiments at high field have been done at the

LNCMI of Grenoble (France), and the NHMFL of Tallahasse (Florida). The Mag-

netic characterization of the sample has been done by a SQUID magnetometer, at
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the University of Pavia, while the ac-susceptibility measurements were performed

at the University of Parma. The cantilever magnetometry study, presented in

the last chapter, has been carried out at Poggio Lab, at the University of Basel

(Switzerland).

The thesis is organized as follows:

• Part I includes the first two chapters. The first chapter presents an overview

of structural, electronic and magnetic properties of the materials. A whole

section reports the main NMR results obtained on 122 iron-pnictides, up

to now. The second chapter presents the basic aspects of NMR, which are

needed to understand the experimental results.

• Part II includes chapters 3-7. The third chapter discusses the onset of

unconventional fluctuative phenomena of the order parameter, taking place

above Tc. Chapter 4 debates an NMR study of the anomalous enhancement

of the spin-spin decay rate, in the normal state. The phenomenology of

these systems becomes even more rich, below the transition temperature,

where the vortex lattice dynamic, in equilibrium condition (Chapter 5),

and out-of-equilibrium (Chapter 6) can be investigated by NMR. Finally,

chapter 7 deals with novel methodologies to study the vortex lattice melting

transition.

• Part III is devoted to the appendices, which describe both the experimental

equipment employed, as well as some theoretical background.
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Part I

Introductive remarks
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Chapter 1
Iron-Based superconductors at a

glance

The response of the worldwide scientific community to the discovery of super-

conductivity at 26 K in an iron-based compound (LaFeAsO1−xFx) has been very

enthusiastic [1]. This experimental finding polarized the attention of the scientific

research so much that, in few years after the discovery, new iron-based materials

were identified and hundreds of papers were published. Since the very beginning,

it was clear that the iron-based superconductors display unconventional super-

conductivity, and also share some similarities with cuprate superconductors. For

instance, superconductivity takes place in the FeAs layers, while the ions interca-

lated between the layers act as charge reservoirs. Additionally, superconductivity

can be induced by chemical doping or external pressure. The isotope effect has

been found in both the families of superconductors, and their phase diagrams

suggest the coexistence of superconductivity with magnetism.

After 28 years from the discovery of the high-Tc materials however, the micro-

scopic mechanism responsible for superconductivity has not been found yet. As

a consequence of the similarities among the materials, many scientists think that

the study of the iron-based superconductors may shed light on the cuprates, as

well. Nevertheless, after 6 years from the discovery of iron-based superconductors,

a zoology of theories and models has been formulated, but the crucial experimen-

tal evidence which is able to discriminate among all of them has not been found

yet. Some of the more intriguing theories involve plasmonic excitation, in Joseph-

son coupled layered superconductor [2]. Although the scenario may appear quite

confusing, there are some fixed points that have been understood.

This thesis begins by listing some basic structural and electronic properties of the
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1. Iron-Based superconductors at a glance

iron-based superconductors, with particular attention to the so-called 122 family.

In the following, an overview concerning the Nuclear Magnetic Resonance (NMR)

phenomenology of these compounds is given.

The name iron-pnictides comes from the FePn structure common to all com-

pounds, where Pn is the pnictogen atom.1 This FePn group forms a two-dimensional

(2-D) layer which is contained into a tetragonal crystal structure, for all the com-

pounds, at room temperature. The low-dimensionality of the systems plays an

important role in determining their physical properties, as in other superconduc-

tors like the cuprates, ruthenates and cobaltates. The iron-pnictides are custom-

ary divided into four families that are presented below, in order of discovery.

The discovery made in February 2008 of a new superconductor, LaFeAsO1−xFx,

with a critical temperatures as high as 26 K, was a clear indication that a new

chapter of the story of superconductivity has begun. Tc could be raised if the1111 family

compound was put under pressure, reaching 43 K, and even higher transition

temperatures (up to 55 K) could be found in other rare earth members [3, 4].

This family, called ”1111”, presents the crystal structure of ZrCuSiAs-like (space

group P4/nmm) and its formula is written as RTMPnO, where R is the rare earth

element, TM the transition metal, Pn the pnictogen atom. The parent compound

shows a simultaneous, first-order, structural/ antiferromagnetic phase transition

at 150 K, which gives rise to a low-temperature, orthorhombic, antiferromagnetic

phase. The first superconducting element of this family emerges when at least the

3% of oxygen is replaced by F. To this family belong more than 300 compounds,

among which the critical temperature record holder SmFeAs(O1−xFx), exhibits

Tc = 55 K [4].

Few months later, in May 2008, Ba1−xKxFe2As2 was found to superconduct

at temperatures approaching 40 K [5]. The parent compound of the so-called

”122” family, BaFe2As2, has the ThCr2Si2-type structure and is a poor Pauli-122 family

paramagnetic metal which undergoes a structural and magnetic phase transi-

tion at 140 K. The parent compounds LaFeAsO and BaFe2As2 both share sim-

ilar structural features, namely a square planar Fe layer, which is included (on

the top and in the bottom) by As layers. On the other hand, BaFe2As2 and

LaFeAsO1−xFx compounds differ in the oxygen content. As a consequence of

that, it was clear that FeAs layer was the structural leit motif in these materi-

als and that the superconductivity in RFeAsO (R=rare earth element) materials

1To the pnictogen group belong the chemical elements in group 15 of the periodic table. This
group is also known as the nitrogen family. It consists of the elements nitrogen (N), phosphorus
(P), arsenic (As), antimony (Sb) and bismuth (Bi).
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was not uniquely associated with oxide physics. Furthermore, the fact that the

compounds of the second family are made solely of metallic elements, was a great

advantage with respect to the growing techniques. Indeed, the 122 compounds

can be grown using conventional intermetallic, solution growth techniques, of

which Sn-flux and self-flux techniques give the best results [6].

A third important discovery was posted in July 2008: superconductivity could

be stabilized in both 1111 and 122 families, by substitution of Co for Fe [7], in

contrast to the cuprates, where atomic substitution tends to hinder superconduc-

tivity. The two 122 sub families, share the same unit AFe2As2 (I4/mmm): the

B+(A1−xBx)Fe2As2 (with A= Ba, Rs, Ca and B=K,Cs,Na), which induces su-

perconductivity via hole doping and A(Fe1−xTMx)2As2, which is electron doped,

instead. These compounds show a similar antiferromagnetic ordering, in the un-

derdoped region of the phase diagram, which is not first order like the 1111, and

it can coexist with superconductivity.

The third structure was reported in superconducting LiFeAs (P4/nmms) [8]. It

shows the Cu2Sb-type tetragonal structure, containing the FeAs layer with an

average iron valence of +2, like those for the 1111 or 122 parent compounds, and 111 family

it is named 111. Noticeably, the parent compound shows superconductivity itself

at 18 K, with electron-like carriers but it can also be induced by Li-deficiency and

high pressure. There are recent evidences showing that the 111 family displays a

triplet state superconductivity [9].

In the end of the same year, superconductivity has been found in a α-PbO-type

structure, which is called ”11” and has the same planar structure found in the

other four families, but it is a chalcogenide instead of a pnictides. This last

family shows superconductivity in case of Se deficiency in FeSe systems, or Te 11 family

substitution of Fe. Se-deficient FeSe has a rather small transition temperature,

namely 9 K, which can be raised up to 27 K, by applying a pressure larger than

1 GPa. It was also found that Te substitution for Se enhances Tc up to 15.2 K

in FeSe0.5Te0.5 [10]. The four families are sketched in Fig. 1.1.

Later on, in March 2013 Kudo et al. [11] showed that Tc in CaFe2As2 could be

enhanced, up to 45 K, if the sample was doped with P and La, thus reaching a

new record for the 122 family.

Finally in November 2013 the discovery of a new superconductor family has

been announced by Katayama et al. [12]. Superconductivity has been found in

Ca1−xLaxFeAs2, which is a monoclinic iron-pnictide with arsenic forming zig-zag

bonds.

As it has been stated before, the iron-based materials are unconventional
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1. Iron-Based superconductors at a glance

Figure 1.1: The four families of iron-based superconductors, as described in the text

above. The figure is adapted form Ref. [13].

superconductors, where the microscopic interaction cannot be explained only by

electron-phonon coupling, as in the BCS theory. It is widely accepted that the

isotope effect on Tc provides a strong evidence for the role of electron-phonon

interaction. Basically, such law claims that the Debye frequency, as well as the

transition temperature, scales with the α-th power of the isotopic mass M :

MαTc = const (1.1)

where α = 0.5. In case of phonon-coupling superconductivity, it is reasonable

to assume that the relevant effect of isotopic substitution is just to change the

Debye frequency, leaving essentially unchanged all the other parameters concern-Isotope effect

ing the electronic part of the problem. In fact, in the Debye model for simple

lattices, ωD is proportional to
√
M . Some transition metals, like mercury, verify

this effect very well, but the actual phenomenology is much more complex. In the

iron-pnictides the complete (namely α = 0.5) isotopic effect has not been clearly

found. Liu et al. [14] reported the effect of isotropic substitution on Tc and on the

antiferromagnetic transition temperature TN in SmFeAsO1−xFx, by replacing 16O

with isotope 18O, and Ba1−xKFe2As2 by replacing 56Fe with isotope 54Fe. TN and

Tc were found to change by approximately 0.61% and 0.75%, for oxygen isotope

exchange in the first compound, and changes are 1.39% and 1.34% for Fe isotope

exchange in the second compound, with x = 0 and 0.4 respectively. The effect of

the oxygen isotope is much smaller than that of the iron isotope, which suggests

that the FeAs layer is responsible for superconductivity [13]. However an iron

isotope effect in both Tc and TN suggests that the electron-phonon interaction

plays an important role in superconductivity and in the magnetic interaction as

well [15]. Up to now there is no general consensus about the mechanism leading

6



1.1. Are the iron-pnictides good candidates for applications?

to superconductivity, in these materials. However, the electron-phonon interac-

tion alone is too weak to produce such a high transition temperature [16]. On

the other hand explicit involvement of the spin degree of freedom leads to an

enhancement of electron-phonon coupling [17]. One of the most prominent mech-

anism was suggested by Mazin et al. [18] and it was inspired by the shape of the

Fermi surface and of the s± topology of the superconducting gap (as explained

subsequently), having different sign on the hole and electron-like sheets forming

the Fermi Surface. Mazin suggested that superconductivity can be driven by a

strong repulsive interband interaction, and spin fluctuations are appealing can-

didates for that. That is why the role of the spin fluctuations has been deeply

investigated since the discovery of those novel materials.

1.1 Are the iron-pnictides good candidates for

applications?

In order to answer to such a question, one has to look at some key properties of

the materials. At first, the critical field versus temperature reveals some insights

into the microscopic behavior of these systems [19]. In fact, at some doping

levels, the Hc2 curves show a linear dependence on the temperature which is

reminiscent to the standard Werthamer-Helfand-Hohenberg (WHH) theory. On

the other hand, it is sometimes observed a positive curvature which is considered

a hallmark of multiband superconductivity. This difference may be related to the

complex multisheet Fermi surfaces of these materials, suggesting the involvement

of other bands. Even though the multiband superconductivity is quite widely

agreed, in the present work Hc2(0) was determined from the ordinary single-

band Ginzburg-Landau relations for the upper critical field, which is derived from

the single-band Werthamer-Helfand-Hohenberg (WHH) expression [20]: Hc2 =

−0.69Tc|dHc2/dT |Tc.

A first SQUID characterization of the compounds Ba(Fe1−xRhx)2As2 for x = 7

%, showed |dHab
c2/dT | = 2.85 ± 0.1 T/K and |dHc

c2/dT | = 2.6 ± 0.1 T/K. From

those values it has been derived H
‖c
c2 = 40.5 T and H

‖ab
c2 = 51.5 T, which matches

the values found by Ni et al. [21] (Fig. 1.2). From the upper critical fields, the

7



1. Iron-Based superconductors at a glance

Figure 1.2: Upper critical field curves determined for two single crystalline samples of

Ba(Fe1−xCox)2As2 (x=0.074), and for H ‖ c and H ⊥ c. The figure is adapted form

Ref. [21].

coherence lengths for the two field orientations can be obtained [22]

ξ2
ab =

Φ0

2πH
‖c
c2

ξc =
Φ0

2πξabH
‖ab
c2

(1.2)

In the same compound the correlation lengths become ξab = 2.85± 0.15 nm and

ξc = 2.24± 0.2 nm.

Surprisingly, the K-doped family of Ba122 can reach upper critical fields up to

100 T, which is extremely appealing for the applications! [23] Among the four

most representative families of iron-pnictides, the 122 seems to have the largest

values of Hc2 [24].

Being said that, another important aspect to mention is the value of the

anisotropy of Hc2, which is defined as γ = ξab/ξc (Fig. 1.3). In the limit of very

low temperature, these compounds show nearly isotropic magnetic behavior, de-

spite the layered structure. Together with the high critical fields and the low

8



1.1. Are the iron-pnictides good candidates for applications?

Figure 1.3: Anisotropy ratio, as a function of effective temperature, T/Tc, for

Ba(Fe1−xCox)2As2 single crystals. Upper panel: onset criterion; lower panel: offset

criterion. The ”onset” and ”offset” criterion are explained in Ref. [21], from which the

picture is adapted.

anisotropy, also the critical currents of these materials are very promising. In

fact the critical current densities Jc can reach up to 105− 106 A/cm2 at 5 K [24],

which is comparable to the high-Tc and MgB2 superconductors. Note that the

absolute value of Jc has roughly increased of 1 order of magnitude in two years.

Another interesting marker of the ”effectiveness” of a superconductors is the

Ginzburg number:

Gi =

(
2π2λ2kBTc
cξΦ2

0

)2

(1.3)

where kB is the Boltzmann constant, Φ0 = 2.05 × 10−7 Gcm2 is the magnetic

quantum flux, λ the London penetration depth and ξ the coherence length. Such

number quantifies the extent of thermal fluctuations, which are detrimental for

the applications. In the iron-pnictides Gi is in the range of Gi < 10−4 − 10−2,

suggesting that different phases of vortex matter can be found, ranging from

glassy/liquid transition to the conventional Abrikosov Vortex lattice [19]. Note

that the family with the smallest Gi value is the Ba122 one.

In the following section, particular attention will be paid to the Ba(Fe1−xCox)2As2

and Ba(Fe1−xRhx)2As2 families.

9



1. Iron-Based superconductors at a glance

1.2 The Ba(Fe1−xCox)2As2 and Ba(Fe1−xRhx)2As2

families

Superconductivity can be induced in the Ba(Fe1−xTMx)2As2 materials when the

structural/antiferromagnetic phase transitions are suppressed to sufficiently low

temperatures, and the number of extra electrons added by the TM-doping is

within a specific window. Fe is typically substituted with some transition metals,

as Co, Rh, Ni and Pd....

Much experimental and theoretical efforts have been focused on the Co-doped

family, given its superior homogeneity as compared to the K-doped one. Even

if, at a glance (Fig. 1.4), the phase diagrams of Co and Rh-doped compounds2

are equivalent, which might be firstly ascribed to the fact that Co and Rh are

isoelectronic dopant pairs (like Ni and Pd) as a matter of fact, there is a substan-

tial difference on the way they affect the c lattice parameter and the c/a, upon

doping. In fact, while Co dopes the compound with 3d electrons, Rh provides

Figure 1.4: T-x phase diagrams for Co and Rh-doping (upper panel) and for Ni and

Pd doping (lower panel). Figure adapted from Ref. [6].

2The transition temperature is usually derived as the onset of the superconducting transition,
in the magnetization measurement, and the offset of the resistive transition, in the transport
measurements.
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1.2. The Ba(Fe1−xCox)2As2 and Ba(Fe1−xRhx)2As2 families

4d electrons. For 3d substitution it is found that the c lattice parameter and the

c/a ratio do scale with x, and additionally c/a scales very well with the extra Doping

issuesconduction electron e, added by the dopant per Fe/M site. Co and Rh add just

one extra electron, while Ni and Pd provide two extra electronic charges. On the

other hand, for the 4d-doping the same parametrization does not apply.

It has been proposed that some other parameters, such as bonding angles asso-

ciated with the As position, might be a better alternative to parameterize the

transition temperatures [25].

Other curious effects are observed when the superconducting domes are compared.

In fact, the underdoped side of the phase diagram shows a finite spread among

different curves. In Fig.1.5 it is clear that the Rh-doped compounds suppress the

magnetic transition at the lowest doping, as compared to the other compounds,

and accordingly, they also show superconductivity at the lowest doping. In fact,

superconductivity starts to arise from x = 0.0263.

Figure 1.5: T-e phase diagram enlargement, showing just the superconducting dome

for Co-, Rh-, Ni-, Pd-, Cu-, and Cu/Co-dopings of BaFe2As2. The phase diagrams have

been derived by the analysis of electrical transport, magnetization, and specific heat

measurements data, whereas the actual doping concentration was detected by means

of wavelength dispersive x-ray spectroscopy (WDS). From the latter techniques, it has

been inferred that no impurity phases are present. Figure adapted from Ref. [6].

Moreover the optimally doped compound of this family emerges at x = 0.057,

and it has a maximum temperature of 24 K, with ∆Tc = 0.7 K [26]. On the

overdoped side of the phase diagram, the critical field data merge together onto a

universal curve, regardless the dopant element. This evidence is not understood

3At this doping rate for the Rh doped compound, it has been found that Tc = 3 K.
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yet.

All the techniques employed to build the phase diagram (see caption Fig. 1.5),

detect a magnetic/structural transition (in the underdoped region of the phase

diagram), and a superconductive transition.

Resistivity and magnetization data show the apparent coexistence of the higher

temperature structural antiferromagnetic phase transition, with lower temper-

ature superconductivity for the lower Rh-doping levels [6]. This intriguing as-

pect has been vastly investigated by microscopic techniques, like NMR [13] and

µSR [27].

1.3 Self-flux growth procedure

Ba(Fe1−xRhx)2As2 samples have been prepared by Canfield’s group at Ames lab-

oratory, by self-flux using conventional high-temperature solution growth tech-

niques. Hereafter the growth procedure is described, as reported in Ref. [21].

Small Ba chunks, FeAs powder, and CoAs powder were mixed together according

to the ratio Ba:FeAs:CoAs=1:4(1−x):4x. The mixture was placed into an alu-

mina crucible. A second catch crucible containing quartz wool was placed on top

of this growth crucible and both were sealed in a quartz tube under 1/3 atm Ar

gas. The sealed quartz tube was heated up to 1180 ◦C, stayed at 1180 ◦C for 2 h,

and then cooled to 1000 ◦C over 36 h. Afterwards, the excess of FeAs/CoAs was

decanted from the platelike single crystals. The FeAs and CoAs powders used as

part of the self-flux were synthesized by reacting Fe or Co powder and As powder

after they were mixed together and pressed into pellets. Single crystal dimension

grown by this technique can reach 12 x 8 x 0.8 mm3 (Fig. 1.6).

Figure 1.6: Single crystal of BaFe2As2 is shown against a millimeter grid. The figure

is adapted from Ref. [6].
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1.4. The electronic properties

1.4 The electronic properties

The parent compounds of iron-pnictide superconductors show (quite bad) metallic

behavior in electric resistivity, differently from the insulating parent compounds

of cuprate superconductors. Magnetic measurements have evidenced the occur-

rence of antiferromagnetism in the undoped systems, with critical vector equal

to (π, 0) and (0, π) which corresponds to a stripe-type, or columnar, or some-

times also called nematic antiferromagnetic structure. The relationship between

the Fermi surface nesting and the magnetic correlations within the parent com-

pound, is very important to unveil the origin of magnetism in these novel ma-

terials. Ab initio calculations can be compared with experimental techniques,

as Angle-resolved photoemission spectroscopy (ARPES), or Scanning Transmis-

sion Microscopy (STM) or Point-contact Andreev reflection, to understand the

physical origin of magnetism and, hopefully, also superconductivity [28]. Local

density approximation (LDA) of the density functional theory (DFT) allows one

to calculate the band dispersion, the density of states (DOS), as well as the Fermi DFT calculations

surface. Singh [29] reported for BaFe2As2 that hole Fermi surfaces appear around

the center of the Brillouin zone (Γ point), and are generally derived from heavier

bands, namely lower velocity, than the electron surfaces, which are around the

zone corner M point in a primitive tetragonal zone (Fig. 1.7). The underdoped

compounds share some similarities with the parent compound, namely (1) small

Fermi surfaces, with hole cylinders at the zone centers and electron cylinders at

the corner, (2) high DOS at the Fermi level, and a strongly enhancement of the

DOS below the Fermi level. This may suggest that in underdoped compounds

ferromagnetic spin fluctuations, rising from the hole band, may break the sin-

glet superconductivity. Additionally, Singh showed that the Spin Density Wave

(SDW) is the best candidate for the ground state: he calculated a magnetic mo-

ment of 1.75µB/Fe, quite far from the measured value of 0.35µB/Fe [30]. The high

sensitivity of the Fe moment to the ordering, and the fact that the SDW state is

so much lower in energy, would favor the scenario of itinerant magnetism, with

a spin-density wave state driven by the structure of the Fermi surface. On the

other hand, the local moment framework, which is related to the Heisenberg-type

exchange coupling, is less favored. Nevertheless, as will be discussed later, the

Hubbard-like scenario is able to predict some remarkable behaviors.

LDA calculations predict a robust magnetic moment across the entire phase dia-

gram. Experimentally what happens is different, in fact the compounds become The challenge

of the magnetic

moment

paramagnetic and then superconducting, above a certain doping level. The Fermi

13



1. Iron-Based superconductors at a glance

Figure 1.7: LDA Fermi surface of BaFe2As2. The color refers to band velocity, as

described in Ref. [29].

surface of the BaFe2As2, calculated by density functional theory, is similar to the

parent compound of 1111 family, but the hole Fermi surface at the Z point is

flattened out, suggesting a more three-dimensional character than that in the

1111 and 11 structures. Remarkably, cylinders at the Γ and M points are nearly

nested at (π, π), in the folded Brillouin zone. This can lead to enhanced spin

fluctuations at critical wavevectors equal to the nesting one. Now it has been

suggested that, if these fluctuations are sufficiently strong, they can cause stripe-

type Spin-Density-Wave ordering [13].

Moreover, the more the doping, the less the degree of nesting of the Fermi sheets.

Figure 1.8 shows a comparison of the size of the low-temperature Γ and X pock-

ets. These data suggest that the overdoped side of the superconducting dome

is governed by relative Fermi surface size, which is controlled by e-value in the

case of TM-doping. When the electron doping increases, the hole pocket shrinks,

thus hindering the nesting between the electron and hole pockets and potentially

suppressing the spin fluctuations [31]. To corroborate the nesting effect, ARPES

measurements made by Ding et al. have found, in Ba0.6K0.4Fe2As2, two super-

conducting gaps, which are nearly isotropic, and which close simultaneously at

the bulk Tc. The authors claim that the pairing mechanism originates from the

interband interaction between the hole and the electron nested Fermi surface

sheets [32].

Very recently Tai et al. [33] developed a minimal multiorbital tight-binding model

for hole and electron doped BaFe2As2 compounds. Interestingly, by lowering the
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1.5. Spin fluctuations and magnetic properties from an experimental viewpoint

Figure 1.8: Γ and X pockets location of the low-temperature data, extracted through

the peak position of the momentum distribution curves in Ba(Fe1−xCox)2As2, as mea-

sured from angle-resolved photo emission spectroscopy. x is the Co concentration.

Figure adapted from Ref. [31].

crystal symmetry from C4 to D2d an accurate description of the Fermi surface

evolution with doping is naturally found. Furthermore such model is in agree-

ment with the experimental ARPES results. The authors claim that the upper

anion atom mediates the overlap between the Fe 3dxz orbital and the 4p As or-

bital. Likewise, the lower anion atom mediates the overlap between the Fe 3dyz

orbital and the 4p As orbital. Moreover they suggest that the symmetry break-

ing, and the competing interactions in the multiorbital mean-field Hamiltonian,

are responsible for the rising of a small d−wave pairing, in addition to the more

robust extended s−wave scenario. This admixture can give rise to quasiparticles

which behave like nodal excitation.

1.5 Spin fluctuations and magnetic properties

from an experimental viewpoint

Since the discovery of iron-pnictide superconductors, many NMR experiments

have been carried out to investigate the magnetic and superconducting properties

of these systems, from a microscopic viewpoint. In this paragraph, an overview
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1. Iron-Based superconductors at a glance

of the most significant achievements obtained by NMR, and their contribution to

the vastly debated topic of spin fluctuations is given. Indeed quantum magnetism

in the iron-pnictides is a ”hot topic”, as there are many issues that the scientists

fail to reconcile. Some examples are:

• The small measured value of Fe magnetic moment, as opposed to the theo-

retical calculation;

• The interplay between superconductivity and magnetism: whether they are

competing or precursors;

• The correct scenario to interpret the iron magnetic moments: whether they

are strongly delocalized, or localized;

• The role of frustration and its effects on reducing the magnetic moment,

facilitating the formation of superconductivity, and spin fluctuations.

• The role of orbital currents.

NMR spectroscopy can contribute to solve this puzzle. The first aspect concerns

the Knight-shift measurements in the superconducting state. In the iron-pnictides

the Shift decreases continuously (see Fig. 1.9), below Tc, indicating a monotonic

decrease of the spin expectation value, suggesting that these materials show aThe Knight

Shift spin-singlet state. Moreover, an accurate Knight shift study over temperature in

principle allows one to make quantitative considerations on the magnitude and

on the symmetry of the gap [34].

An even more intriguing result was found in the temperature dependence of

the Knight Shift, in the normal state. The shift follows an Arrhenius-like trend,

that is still a matter of debate. Tentative explanations will be given in Chapter 4.

While the Knight Shift is sensitive to static fields and spin excitations at

q = 0, the spin-lattice relaxation time T1 is able to probe the spin dynamics at1/T1

all wavevectors, and in the limit of low-energies:

1

T1

∼ T
∑
q

|A(q)|2χ
′′(q, ω0)

ω0

(1.4)

where A(q) is the q-dependent form factor, and χ′′(q, ω0) is the dynamical sus-

ceptibility, at the Larmor frequency ω0. The sum is taken over the first Brillouin

zone. The spin-lattice relaxation rate 1/T1 is often measured in the supercon-

ducting state to study the nature of the coupling, and sometimes also the gap
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1.5. Spin fluctuations and magnetic properties from an experimental viewpoint

Figure 1.9: Knight shifts measured at several magnetic fields, in Ba(Fe1−xCox)2As2

with x=7.4%. The figure is adapted from Ref. [35].

symmetry.

The first remarkable finding in 1/T1 is the absence of a coherence peak, which

rules out the pure s-wave scenario (see Chapter 2 for further explanations). On

the other hand, a power law trend 1/T1 ∼ T 3 has been observed [36], suggest-

ing the presence of an anisotropic superconducting gap, in partial disagreement

with other experimental techniques. Nevertheless the occurrence of a power-law

behavior in 1/T1T is not necessarily due to the presence of a nodal gap. In fact,

impurity scattering in various strengths, is sufficient to produce a wide variety

of power-law behavior in many thermodynamic quantities, even in the near-Born

limit [37, 38]. In the extended s-wave state, interband impurities are even more

effective in creating such a behavior.

In fact, one of the gap symmetry that has been more supported is the s±-wave,

which considers the presence of two gaps, with an inversion of the gap sign. In

such a case, the peak in the 1/T1 is not expected [37], in agreement with the

experimental results (Fig. 1.10). Another way to extract the symmetry and the

value of the superconducting gap is to observe the temperature dependence of the

London penetration depth λ which is related to the density of the Copper pairs

ns, via

λ2 =
m

4πnse2
(1.5)
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Figure 1.10: Temperature dependence of 1/T1, for H ‖ ab, in LaFeAS(O1−xFx). The

figure is adapted from Ref. [39].

However, NMR is not the best technique, in this regard, because the vortex su-

percurrents can provide diamagnetic screening which does not effectively cancel

in the intervortex region. On the other hand, muon spin rotation (µSR) can pro-

vide more reliable data.4

Furthermore, in the undoped LaFeAsO and BaFe2As2, a strong enhancement of

the 1/T1T rate has been observed and ascribed to stripe-type magnetic fluctu-

ations [13]. Remarkably, in the 1111 family the fluctuations are suppressed by

increasing the doping concentration [39]. Indeed in LaFeAsO1−xFx, at x=0.04

a weak magnetic anomaly occurs at 30 K, and superconductivity sets in at 16

K. Upon F doping, significant AFM fluctuations observed for x=0 and 0.04 areThe pseudo-gap

suppressed systematically, and pseudogap behavior appears for x=0.11 and 0.14

without pronounced AFM fluctuations. Indeed 1/T1T measurements of LaFeAsO,

display an activated temperature dependence:

1

T1T
= a+ b exp

(
−∆

T

)
(1.6)

which is reminiscent of the pseudo-gap ∆. Such behavior increases upon the

F (electron)-doping, that is opposite to what observed in the cuprate super-

4See [27] for a recent review.
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conductors, in which the pseudogap behavior is significant in the underdoped

region. However, Oka and coworkers [40] reported a systematic study by 75As

nuclear-quadrupole resonance in the same compound, where antiferromagnetic

spin fluctuations were found above the magnetic ordering temperature and from

0.04<x<0.08 doping, where superconductivity sets in. Moreover, the spin-lattice

relaxation rate, below Tc decreases exponentially down to 0.13Tc, which unam-

biguously indicates that the energy gaps are fully opened. The temperature vari-

ation of 1/T1 becomes nonexponential for other dopings, by impurity scattering.

The situation in Ba122 compounds is rather different, as reported by Nakai

and coworkers [41]. With this respect Ning et al. [42] published a study of the

Ba(Fe1−xCox)2As2 family, where 1/T1T behaves in such a way that, upon increas-

ing the doping concentration, a suppression of the spin fluctuations occurred until

the systems behaves like a Fermi liquid, with a peculiar Korringa’s law behav-

ior. No pseudogap-trend has been observed, and a Curie-Weiss relation (see Fig.

1.11) fits quite well the experimental data for 1/T1T . They observed that, as the

level of doping is decreased across x=0.15, a hole Fermi surface emerges in the

center of the Brillouin zone, inducing a strong enhancement of antiferromagnetic

spin fluctuations associated with interband transitions, at a critical wavevector

Qc = (π, 0). The superconducting critical temperature is maximum when these

spin fluctuations are enhanced, until the SDW ordering does not set in.

Therefore, Kitawaga et al. [43] found a remarkable difference in 1/T1T of BaFe2As2,

depending on the orientation of the sample, with respect to the field, namely an

enhancement in 1/T1T was observed when the external field was laying in the ab

plane. The authors concluded that the observed anisotropy was due to spin-space

anisotropy of the stripe-type (nematic) spin fluctuations, and suggested that such

anisotropy might also be observed in the tetragonal doped superconducting com-

positions, and indeed might have an important role in superconductivity.

As far as the magnetic moment discrepancy is concerned, one possible reason

may be found in magnetic frustration. The key feature here is that in the FeAs Magnetic

frustrationunit, not only the Fe atoms form a square lattice, but also each As atom lays

at an equal distance from each of the four adjacent Fe atoms. Superexchange

interactions develop between a pair of nearest-neighbor Fe spins J1, and a pair of

next-nearest-neighbor spins J2. Fig. 1.12 shows the process contributing to the

NNN superexchange interaction, between a pair of 3dx2−y2 electrons, mediated by

4p orbitals, and the process contributing to the NN superexchange interaction,

between a pair of 3dx2−y2 electrons together with two orthogonal 4p orbitals, lead-
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Figure 1.11: (left figure) Temperature dependence of the 1/T1T for different com-

pounds of the 1111 family. Figure adapted from [39]. (right figure) 1/T1T for in

Ba(Fe1−xCox)2As2 , with magnetic field applied along the ab plane. Solid and dashed

arrows mark Tc and TSDW , respectively. Solid and dashed curves are the best fits to

the Curie-Weiss law, rising from antiferromagnetism. Figure adapted from Ref. [42].

ing to a ferromagnetic J1, and an antiferromagnetic J2. In the undoped parent

compound, these frustrated interactions lead to a two-sublattice collinear anti-

ferromagnet with a reduced magnitude of the ordered moment. Electron or hole

doping, together with the frustration effect, suppress the magnetic ordering and

allows a superconducting state. This idea has been proposed by Si et al. in

2008 [44]. The authors suggest that magnetic frustration may have two roles in

Figure 1.12: The orbital hybridization as a source of exchange interaction. J2 inter-

action is given by the hybridization shown in the left panel, while J1 arises from the

hybridization shown in the right panel. The figure is adapted from Ref. [44].
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these systems: at first it is responsible to suppress the magnetic ordering, and

secondly to accumulate entropy at low temperatures, the relief of which can turn

into a superconducting gap opening. However Fang et al. [30] showed that, in a

quantum Heisenberg spin-localized model, frustration is not sufficient to account

for the experimentally observed small magnitude of the ordered moment.

Other authors supporting the spin-fluctuation scenario, as Mazin et al. [18, 45],

state that spin fluctuations can induce only a triplet superconductivity, or a

singlet superconductivity, with the order parameter changing sign over the Fermi

surface. The s±-wave is a good candidate, with a gap ∆(kx, ky) ∼ cos(kx)+cos(ky)

(Fig. 1.13). According to these authors, the spin fluctuations spectrum in the

Figure 1.13: Contour plot of the s±-wave gap. The horizontal axis denotes kx, while

the vertical axis denotes ky. The color map shows sign reversion of the gap.

parent compound of 1111 family may have three different origins: (1) the system

is relatively close to a Stoner ferromagnetic instability, (2) there is a nearest- Spin

fluctuationsneighbor antiferromagnetic (AFM) superexchange path, which can give rise to

frustration and (3) there may be a nesting of the Fermi surfaces, leading to SDW

fluctuation, at wave vectors connecting the electron and hole pockets. The latter

seems to be the most supported hypothesis, also considered that such effect may

induce a strong pairing, provided that the order parameters on the two sets of

the Fermi sheets have opposite signs. Moreover spin fluctuations and fluctuating

magnetic domain boundaries persist up to the paramagnetic state and the over-

doped part of the phase diagram. This observation may pave the way for the

interpretation of the anomalous T2 data, presented in Chapter 4.

A recent NMR study [46] seems to support this framework, suggesting that an-

tiferromagnetic spin fluctuations could be responsible for the ”glue” binding the

Cooper pairs. The authors believe that NMR spin-lattice relaxation rate, elec-
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trical resistivity, inelastic neutron scattering data, in the paramagnetic phase of

BaFe2(As1−xPx)2 and Ba(Fe1−xCox)2As2, can be understood quantitatively in the

framework of the self-consistent renormalization spin-fluctuation theory. A con-

sistent description of these physical properties suggests a cross-over between a

non-Fermi liquid towards a Fermi-liquid behavior, which emerges upon increas-

ing the doping concentration.

The presence of spin fluctuations has been studied very recently also by other au-

thors [47]. Hammerath et al. studied the evolution of low-energy spin dynamics in

F-doped LaFeAsO, over a broad doping, temperature, and magnetic field range.

An enhanced spin-lattice relaxation rate divided by temperature, in underdoped

superconducting samples, suggests the presence of unconventional antiferromag-

netic spin fluctuations, which are strongly reduced in optimally doped (x = 0.10)

and completely absent in overdoped (x = 0.15) samples.

Together with NMR, also inelastic neutron scattering (INS) is used to probe the

collective spin excitation. For instance, Lester et al. [48] studied the near opti-IN spectroscopy

mally doped superconductor Ba(Fe1−xCox)2As2. Prior measurements on the anti-

ferromagnetically ordered parents of this material, showed a strongly anisotropic

spin-wave velocity. Lester and coworkers measured the magnetic excitations up

to 80 meV, and observed a magnetic anisotropy of the excitations persisting for

superconducting compositions (Fig. 1.14). Moreover from the spin wave veloc-

ity and the Heisenberg model they succeed in extracting the exchange couplings:

J1 = 43± 7 meV, and J2 = 30± 3 meV, on the compound Ba(Fe0.935Co0.065)2As2.

Even though there is no static magnetic order, this system is close to the anti-

ferromagnetic quantum critical point. In fact, it has been shown [49] that 2D

square-lattice systems, described by the J1-J2 Hamiltonian, develop a stripe-like

order of the type observed in the ferropnictides for J2/J1 > 1/2. In this case,

the order out of disorder mechanism [50] predicts the formation of collinear state

described by two interpenetrating Néel sublattices.

Few months ago, Chaloupka and coworker [51] proposed a model describing the

magnetic behavior of Fe-based superconductors, based on a dynamical mixing of

quasidegenerate spin states of the iron ion, by intersite electron hopping, resulting

in an effective local spin Seff . They suggested that the Fe2+(d6) ion, in a covalent

compound, is characterized by a competition between the Hund’s rule and the

covalency, that is responsible of a ground state which is a coherent superposition

of a triplet and a singlet state. The resulting effective spin expectation value Seff ,

depends on pressure and similar parameters. The process generating the dynam-

ical mixing of triplets and singlets is shown in figure 1.15. They claim to have
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Figure 1.14: The dispersion of magnetic excitations in Ba(Fe1−xCox)2As2 with x = 6.5

%, for T = 7 K. The comparison shows a dispersive behavior of the spin fluctuations,

and a marked anisotropy. The figure is adapted from Ref. [48].

solved the puzzle of large, but fluctuating, Fe moments by invoking magnonic

exitations, taking place across the whole phase diagram. Their model allows one

to predict the temperature-activated behavior of the spin susceptibility. The au-

thors found that the effective moment Seff is a function of the thermal expansion

coefficient. Moreover, while the ordered moment vanishes at certain doping, the

effective moment remains almost constant, corresponding to a fluctuating mag-

netic moment of ∼ 1µB.

When the spin fluctuations issue is addressed from the ”NMR viewpoint”, the

quantity that is typically studied is 1/T1. However also the spin-spin relaxation

time T2, turns very versatile to investigate the low-frequency spin dynamics. 1/T2 T2 study

is particularly effective in revealing the spin dynamics that involves the longitu-

dinal component of the local field probed by the nucleus.
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Figure 1.15: The process κ, as described by Chaloupka et al., is given by the hopping

of two electrons in the d-levels of iron Fe2+ ions. Two configurations are dynamically

created: a spin singlet S =0 state, and a spin triplet S=1 state. The ground state is a

mixture of the two pure states. The figure is adapted from Ref. [51].

In fact, Oh et al. [35] studied Hahn Echo and Carr-Purcell-Meiboom-Gill (CPMG),

on the optimally Co-doped Ba122. Measurements of NMR spin-spin relaxation

time indicate an anomalously long T2, that could not be justified in terms of

As-As dipolar interaction. The authors suggested that strong indirect exchange

interactions among As nuclei play a role, at all temperatures, in increasing the

values of T2. This exchange narrowing effect, in metals, needs to have resonant

nuclei, namely the flip-flop processes can happen without changing the nuclei en-

ergy. In other words the nuclei must have the same Larmor frequency, within an

interval corresponding to the dipolar coupling.

Below the superconducting transition temperature, abrupt changes in vortex

dynamics lead to an anomalous dip in T2 (Fig. 1.16), consistent with vortex

freezing/melting, from which the authors obtain the vortex phase diagram up

to H =28 T. An earlier study made by Mukhopadhyay et al. in 2009 [52]

in Ba1−xKxFe2As2 and CaFe2As2 has reported the spin-spin relaxation rate, by

means of both Hahn echo and CPMG sequence (Fig. 1.17). They observed that

the parent compound CaFe2As2 has a spin-spin relaxation time comparable with

the dipolar calculation, which gives 0.72 ms. On the other hand, Ba1−xKxFe2As2

shows an anomalously long T2, suggesting a quenching of the dipole-dipole inter-

action. Chapter 4 will address the study of the spin-spin relaxation time, as a

probe of spin fluctuations.

Finally INS measurements have recently discovered two branches of weakly dis-Orbital currents

persive collective modes, in underdoped cuprates. Polarization analysis revealed

that such modes are magnetic excitations. He and coworker [53] have theoreti-

cally shown that these branches are originated from orbital current ordering, in

the CuO6 octahedron in Hg1201. Mounce et al. [54] have used NMR to infer

about the presence of these currents, but surprisingly they didn’t find any clue

of them, form the study of the spectra of the apical and planar 17O. Mounce pro-

posed that the discrepancy between detection of magnetic ordering by neutrons

and NMR measurements is due to the different timescales involved in the experi-
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Figure 1.16: 75As NMR Hahn echo decay time for Ba(Fe1−xCox)2As2, for various

magnetic fields. At the temperature where T2H displays the minimum, the authors

associate the vortex freezing. The figure is adapted from Ref. [35].

Figure 1.17: 75As NMR Hahn echo and CPMG decays in Ba1−xKxFe2As2 and

CaFe2As2. The figure is adapted from Ref. [52].
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ments. In essence, neutrons are sensitive to way faster timescales (10−11 s), while

NMR shifts are sensitive to MHz frequencies. This suggestion may also be an

alternative explanation of the ”missing magnetic moment” found in experiments

on iron-pnictides. Also, the role of orbital currents in inducing superconductivity

in the iron-based material is under discussion [55].

1.6 The flux line lattice (FLL)

Since the main part of this thesis focuses on the dynamics occurring in the mixed

phase of iron-based materials, it is convenient to spend few words about the

Abrikosov’s vortices. A. Abrikosov found that type-II superconductor allows some

magnetic flux to enter into the specimen body, below Tc, for magnetic field in-

tensity between Hc1 and Hc2. The flux enters in the form of periodic lines or

tubes, any of which carries a magnetic quantum flux Φ0 = hc/2e =2.05x10−7

Gcm2 [56]. This result came after solving the Ginzburg-Landau equations for a

GL parameter κ > 1/
√

2, and it found immediate good agreement with Zavarit-

sii’s experimental results on a low-temperature film [57]. This periodic solution

is called Flux Line Lattice (FLL) or Abrikosov lattice and it is characterized by

lines which have a core of size ∼ ξ, where the superconductivity is suppressed,

and around that a circulating supercurrent J(r) is responsible for generating a

decreasing field B(r).

The isolated vortex line is a topological excitation of the superconductor charac-

terized by a line singularity in the phase θ of the order parameter. By encircling

the vortex line once, the phase θ changes by 2π [58]. As a result, the order param-

eter is suppressed within the core region extending a length ξ from the singularity.

More important is the fact that, the gauge-invariant phase gradient ∇θ creates a

circular screening current:

J = −(2e~/m)|Ψ|2∇θ (1.7)

which extends over a distance λ from the core.

From the purpose of the NMR study one can imagine the Abrikosov vortices

like tubes of section πξ2 (Fig. 1.18), in which the magnetic field is close to

the external one. The FLL usually forms a triangular arrangement, with an

intervortex distance of le =
√

3Φ0

2H0
, which is about 170 Å, for fields near 10 T. In

case of an isolated vortex, Clem and Hao calculated an approximate solution for
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Figure 1.18: Single vortex line, pinned by the collective action of many weak pointlike

pinning centers. u is the displacement of the vortex line from the equilibrium position.

Figure adapted from Ref. [58].

both the amplitude of the order parameter and the field: [59,60]

|ψ(r)|2 ∼ 1

1 + 2ξ2/r2
(1.8)

B(r) ∼ ψ0

2πλ2
K0[
√
r2 + 2ξ2/λ] (1.9)

where r2 =
√
x2 + y2 and K0(x) is a modified Bessel function. For r � λ the

approximated solution for the wavefuction is ψ ∼ exp(−r/λ). Moreover the

supercurrent circulating around the vortex core can be found by the Maxwell

equation. It can be shown that, for κ � 1, at the center of the vortex, the

maximum current is the depairing current J0 (in S.I. units):

J0 = ψ/(3
√

3πλ2ξµ0). (1.10)

When the applied field is increased, more and more flux lines penetrate until

they overlap such that ψ vanishes, and the superconductivity disappears. When

H > 0.2Hc2 (which is nearly always verified in the experiments hereafter) the

magnetic field is given by a linear superposition of the previous solution, and the

second moment of the field distribution is given by:

< ∆2B >= c0Φ2
0/λ

4 (1.11)
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where c0 is a constant depending on the geometry of the lattice. The field profile

derived for this case can be seen in figure 1.19. The minimum field is found at

the center of the unit cell of the vortex lattice. The saddle-point field is found

midway between two nearest-neighbor vortices, and it is the most likely position.

The maximum field is found in the vortex core (long tail), with very low

probability. The NMR spectrum is directly related to the vortex field distribution,

even if such line profile is hardly found in real experiments, as the NMR linewidth

is usually a convolution of a Gaussian and the distribution sketched in Fig. 1.19.

The Gaussian takes into account the disorder due to the pinning centers or sample

impurities. Once the line is de-convoluted, the actual vortex field distribution can

be extracted and the vortex lattice properties can be studied selectively on the

spectrum. On the contrary, at high inductions, H > 0.5Hc2, the GL theory gives

Figure 1.19: Real space magnetic field profile and the corresponding field distribution

function. Figure adapted from ref. [61].

a periodic FLL:

|ψ(r)|2 =
1−H/Hc2

1− 2/(2κ2)
βA
∑
K

aK cos(K · r) (1.12)

B(r) = Ba − (ψ0/4πλ
2)|ψ(r)|2 (1.13)
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where the sum runs over the reciprocal lattice vectors K. For a general lattice

symmetry the Fourier coefficients aK and the Abrikosov parameter βA are:

aK = (−1)m+n+mn exp(−Kmnx1y1/8π) (1.14)

βA =
∑
K

a2
K (1.15)

where x1y1 is the unit-cell area. Also from the previous values, the free energy

and the magnetization can be estimated.

Anyhow, in real systems, when a deviation form the stochiometry occurs (even

in the highest quality crystals) the order parameter is suppressed in the vicinity

of the defect, thus allowing some magnetic flux to enter the specimen. Such a

point defect, deforms the free energy profile, creating a metastable minimum, in

correspondence to such defect or, in other words, the vortex line will be attracted

by the potential well. Thermal energy, as well as external field gradients, will Vortex

pinningtend to depin the vortex line: at small distances from the vortex core the pinning

energy is linear with the distance, resulting into an elastic behavior.

Twin plane boundaries are another source of pinning, which is likely found in

the orthorombic crystals. In case of a tetragonal structure no many line defects

are expected. Moreover, the layered structure is a source of intrinsic pinning,

since the vortex core can be stuck in the superconducting layers, when the field

is aligned along the ab plane [22].

In order to prevent the vortices to move and dissipate energy, it is quite customary

to induce artificial defects, by bombarding the sample with high-energy beam or

heavy ions.

1.7 Conclusions

The basic structural, electronic and magnetic properties of the iron-pnictides are

discussed, paying particular attention to the first two families, 1111 and 122.

Despite the rich experimental and theoretical efforts, the microscopic mechanism

responsible for the superconducting transition is still under debate. Although the

electron-phonon scenario may be partially saved, a further mechanism has to be

invoked. Some authors propose a spin-fluctuation mediated scenario, while others

claim that a coupling with orbital currents must be considered, instead. Open

discussions concern the symmetry of the order parameter.

Among all the experimental techniques employed to explore the superconducting

state, more attention is given to NMR, as it turns to be very useful to investigate
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1. Iron-Based superconductors at a glance

any dynamic which is able to affect the local magnetic field, in a frequency window

of typically kHz-MHz. Moreover, NMR is very sensitive to collective as well as a

individual mechanisms. The next chapter will address the basic aspects of NMR.
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Chapter 2
Basic aspects of Nuclear

Magnetic Resonance

Almost all materials present on Earth contain elements which have a Nuclear

Magnetic Resonance active isotope. These nuclei have such small magnetic mo-

ments (3 orders of magnitude smaller than the electronic moments), that their

interaction with an external magnetic field does not perturb the electrons in the

surrounding atoms. However, by virtue of their magnetic moments, nuclei can

resonate at radiofrequencies (rf) high enough to allow the scientists to grasp the

response of the nuclei interacting with their charge/spin environment. In fact

NMR is a local probe which allows one to study individual particles, as well as

collective particles phenomena. Additionally, NMR is sensitive to low-frequency

spin dynamics (kHz-MHz range), that affect both the longitudinal and transverse

local field components.

If on one hand NMR requires rather ”cheap” equipment (see appendix D), on

the other hand the theoretical background needed to interpret the experimental

results is quite intricate. Therefore, new sequences are implemented and invented

also in recent times, thus making NMR a state-of-the-art research technique.

Since NMR is the most widely employed experimental tool in this thesis, it is

conceivable to devote one whole chapter to the description of its basics. Here-

after the key concepts of pulsed NMR, mainly from a quantum point of view, are

reported. It is shown how static interactions among nuclei together with the re-

sponse of the spin dynamics may affect the NMR linewidth and relaxation times.

Finally, the most widely agreed theories used to interpret the NMR results in the

superconducting state, will be sketched.
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2. Basic aspects of Nuclear Magnetic Resonance

2.1 Semi-classical description

Nuclear Magnetic Resonance is a branch of radio-frequency (rf) spectroscopy with

a very broad frequency domain. Magnetic dipole transitions among nuclear levels

are induced by an external rf source, after the application of a static magnetic

field, which splits the levels, by virtue of the Zeeman interaction. The absorption

and emission of radiation does not need to set up a quantum mechanical descrip-

tion of the radiation field, hence the second-quantization of the radiation is not

needed. Nonetheless, the complexity of NMR is reflected in its ”double” interpre-

tation. From a semi-classical viewpoint, the nuclear magnetization is a vector,

which turns back to thermal equilibrium, after a rf pulse has perturbed its initial

state. Actually, the ”return to equilibrium” contains many physical properties of

the system.

The most intuitive approach to the study of the evolution of nuclear spins in a

magnetic field was due to Bloch, who formulated in 1946 a set of phenomenologicalBloch equations

equations that predict the temporal evolution of the longitudinal and transverse

components of nuclear magnetization. When a static magnetic field H0 is applied

along the z axis, the nuclear moments µ = γ~I tend to line up with the external

field, to minimize their magnetic energy. Since the magnetic moment is associated

to an angular moment, via the gyromagnetic ratio γn, the return to equilibrium

is a precessional motion.1 Indeed the nuclear magnetic moment experiences a net

torque N = µ ∧H0. According to the second cardinal equation of dynamics :

dI

dt
= N, (2.1)

the magnetic moment will be described by a precessional motion

dµ

dt
= γnµ ∧H0. (2.2)

By solving the equation one realizes that equation (2.2) describes a classical

precession of frequency ω0 = −γH0 in clockwise sense. In case of non-interacting

spins, equation (2.2) holds also for the expectation value of the magnetization,

which is the measured quantity. Then relation (2.2) can be properly modified

considering N spins in a volume V . The nuclear magnetization M is defined as

1An accurate description of the Bloch equations can be found in many excellent NMR text-
books, as [62] and [63].
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2.1. Semi-classical description

the magnetic moment per unit volume:

M =
1

V

∑
i

µi (2.3)

where i is the spin index. When the nuclear system is out-of-equilibrium, the

longitudinal component of the nuclear magnetization evolves with time in such a

way that:
dMz

dt
= γ(M×H0)z +

M0 −Mz

T1

(2.4)

where T1, which is called spin-lattice relaxation time, describes the time in which

the energy exchange between the spin ensemble and the thermal bath (i.e. elec-

tron spins, phonons, magnons etc...) occurs. Moreover M0 = χ0H0 is the equilib-

rium magnetization, and χ0 is the Curie susceptibility, describing the response of

a non interacting nuclear spin ensemble, to the application of an external field.

On the contrary, to the electronic spins, which can show several magnetic behav-

iors, as ferromagnetism, antiferromagnetism, diamagnetism or paramagnetism,

nuclear spins just experience the last kind of behavior.

As far as the xy components are concerned, naively one can deduce that if the

magnetization tends to align to the external field, the transverse component will

vanish. Bloch in fact predicted:

dMx,y

dt
= γ(M×H0)x,y −

Mx,y

T2

(2.5)

where T2 (called spin-spin relaxation time) quantifies the timing of this process.

However the classical approach seems to suggest that T1 = T2, which is not gener-

ally true. The confusion originates from the fact that the nuclear magnetization

is not a rigid vector, and there is a substantial difference between the T1 and T2

mechanisms. Indeed, in the former case the return to equilibrium is due to energy

transfer from the spin system to the thermal reservoir, whereas in the latter case,

the spin-spin process takes place without exchanging energy with the lattice, and

it quantifies the loss of phase coherence on the nuclear spins in the xy plane, dur-

ing the time. For this reason T2 is sometimes called dephasing, or decoherence

time. One possible mechanism for the T2 decay is the dipolar interaction. In fact,

if a nucleus is at distance r from its nearest neighbor, it will experience a local

field Hloc ∼ µ/r3. The two nuclei will precess at a slight different frequency (with

respect to the Larmor frequency ωL) separated by δω = Hlocγ that, in a time t,

turns into a phase difference δωt. The actual presence of many nuclei with many

first, second, and n-th neighbors, will result into a big amount of accumulated
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2. Basic aspects of Nuclear Magnetic Resonance

phase, and eventually in a big spread of the signal. Solid samples have the largest

”spread effect”, which reflects into the broadest lines. A rough estimate of T2

coming from dipolar interaction is T2 ∼ r3/(γ2~).

If a small field H1, rotating at frequency ω, and directed perpendicularly to

H0, is added to the external one:

H = H1(x̂ cosωt− ŷ sinωt) +H0ẑ, (2.6)

the Bloch equations will be modified, accordingly:

dMx

dt
= ω0My + ω1Mz sinωt− Mx

T2

(2.7)

dMy

dt
= −ω0Mx + ω1Mz cosωt− My

T2

(2.8)

dMz

dt
= −ω1(Mx sinωt+My cosωt) +

M0 −Mz

T1

(2.9)

where ω1 = γH1 and ω0 = γH0 is the Larmor frequency. If the rf field is so smallBloch equations

in presence of

a rotating field

that γH1 << 1/
√
T1T2, it can be shown that, at resonance (ω1 = ω0), Mz can

be tilted in the xy plane. In fact, if one neglects ω1 and Mz ≈ M0, one obtains
dMz

dt
= 0. A solution for Mx and My can be looked for, by exploiting the classical

analogy of the spinning top precession problem (Fig. 2.1):

Mx = m cos(ωt+ ϕ)

My = −m sin(ωt+ ϕ)

In an NMR experiment, the signal comes from the time variation of the trans-

verse magnetization itself. In fact, the pick up coil containing the sample, probesSignal

generation the time variation of the magnetic flux, induced by the precessing nuclear mag-

netization. According to the Faraday law, the magnetic flux is converted into an

electromotive force (e.m.f),2 the magnitude of which is proportional to Mx,y. To

get the amplitude of the signal the sine and cosine functions are expanded:

Mx,y = m[x̂(cosωt cosϕ− sinωt sinϕ)− ŷ(sinωt cosϕ+ cosωt sinϕ)] (2.10)

where x̂, ŷ are the versors pointing towards the x and y axes. By collecting the

2See Appendix D for the details concerning the NMR equipment.
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2.1. Semi-classical description

Figure 2.1: Precession of nuclear spins (I = 1/2) at thermal equilibrium, in a stationary

magnetic field that defines the z-axis. The angle between the vectors and the z-axis has

been exaggerated for illustrative purposes. The picture is adapted from Ref. [64].

terms in cosϕ and sinϕ

m′ = m cosϕ(x̂ cosωt− ŷ sinωt) (2.11)

m′′ = −m sinϕ(x̂ sinωt+ ŷ cosωt), (2.12)

where the first component is in phase with H1, while the second is in quadrature

with respect to the same field. It is now conceivable to introduce the response

function of the nuclear magnetization, under the action of the oscillating external

field, χ = χ′ + iχ′′:

χ′(ω) =
M0

H0

T 2
2 (ω0 − ω)ω0

T 2
2 (ω0 − ω)2 + 1

(2.13)

χ
′′
(ω) =

M0

H0

T2ω0

T 2
2 (ω0 − ω)2 + 1

(2.14)

the real part represents the energy dispersion, while the imaginary part repre-

sents the energy dissipation (or absorption), the latter being a Lorentian (Fig.

2.2) centered at the resonance frequency ω0, and of width 1/T2.
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2. Basic aspects of Nuclear Magnetic Resonance

Figure 2.2: A sketch of the dissipative (χ′′) and dispersive (χ′) parts of the spin

susceptibility.

2.2 The Free Induction Decay (FID) signal

A great improvement in the NMR development was introduced when the pulsed

technique was employed. Pulsed NMR allows one to study the free induction

decay signal (FID) of the nuclear magnetization, after a rf pulse H1 is applied,

along the xy plane, which is in resonance with the Larmor frequency, and which

persists for τ . In such a time, the nuclear magnetization will be flipped by a

tipping angle θp = ωτ . The flipping of a π/2 angle is sketched in Fig 2.3.

From a quantistic point of view, the free induction signal (FID) emerging

after a π/2 pulse, in-resonance with the Larmor frequency, is equal to the auto-

correlation function of the transverse magnetization G(t) =< Mx(t)Mx >,

which can be also written as G(t) = Tr {Mx(t)Mx} = Tr {T ∗MxTMx} where

T = e−iHt/~ is the time evolution operator, in agreement with the interaction

representation, and H is the Hamiltonian describing the interactions of the nu-

clei with the surrounding particles. Before describing the effect of the rf pulse,

the density matrix operator, which illustrates the statistical behavior of the spin

ensemble, is derived

ρeq =
exp

(
− H
kBT

)
Tr
{

exp
(
− H
kBT

)} . (2.15)

In the high temperature limit, namely when kBT >> ~ω0, the density matrix

operator turns out to be:
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2.2. The Free Induction Decay (FID) signal

Figure 2.3: Starting from left, the magnetization is at the equilibrium condition (in a

frame rotating with ωL), i.e. the spin and the lattice temperatures are equalized. In

the right frame, the application of an in-resonance 90◦ pulse has the effect of reversing

the magnetization along the xy plane. Below this frame, a sketch of the NMR sequence

representing the application of a square rf pulse. The Figure is adapted from Ref. [64].

ρeq ∼
{
1− H

kT

}
Tr {1}

(2.16)

where 1 is the identity matrix. If a rf pulse of amplitude H1 , tuned at the Larmor

frequency ω0, is applied for a duration τ , such that the two following conditions

are fulfilled:

1. γH1τ = π/2;

2. The intensity of the rf H1 field is smaller than the local magnetic field

probed by the nuclei;

3. The dipolar interaction doesn’t have the time to act while the pulse is on,

the longitudinal magnetization Mz will be flipped into the xy plane. In other

words, one can describe such evolution, by applying the rotation operation R =

eiω0Izt to the magnetization R∗MzR = Mx cos(ω0t) + My sin(ω0t). Immediately

after the pulse, the statistical operator describing the nuclear spin system is given

by:

ρ(τ+) = 1− ω0V

γkT
[Mx cos(ω0τ) +My sin(ω0τ)]. (2.17)

When the pulse is turned off, the nuclear magnetization will evolve under the

effect of the interaction Hamiltonian H (see the following paragraph).
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2.3 Dipolar nucleus-nucleus interaction

In solid state NMR, the dipole nucleus-nucleus interaction is one of the most

relevant, and it is the main source of the broad linewidth and short T2 relaxation.

In fact, the bare nucleus would have a nearly Dirac delta NMR line yet,3 in the

realistic case of a nucleus embedded in matter, the line broadens due to the spread

of the Larmor frequency, because of different interactions and/or distribution of

interactions. The interaction hamiltonian can be specified as:

H = HZ +Hn−n +Hn−e +HEFG, (2.18)

where the different contributions are, the nuclear Zeeman interaction of the nu-

clear spin with the external magnetic field H0, the nuclear dipole-dipole inter-

action, the hyperfine nuclear-electron interaction, and finally the quadrupolar

hamiltonian, due to the nuclear quadrupolar moment Q interaction with the

electric field gradient (EFG). The last term is non-zero only for I > 1/2 spins. If

the two first terms are taken into account (which is true for dipolar solids, but

it might be a wrong assumption in case of a strong hyperfine field distribution),

the hamiltonian turns out to be:

H = −γ~H0

∑
j

Ijz +
∑
j<k

~2γ2

r3
jk

[
Ij · Ik − 3

(Ij · rjk)(Ik · rjk)
r2
jk

]
(2.19)

where the sums are performed on couples of nuclei (j and k) which are distant

rjk. The dipolar term can be written as the sum of six contributions, as explained

in Ref. [62]. In fact, if one calls θjk and φjk the angles formed by the field H0

and the rjk vector, as illustrated in Fig. 2.4, the dipolar hamiltonian can be split

in different terms

Hn−n =
∑
j<k

~2γ2

r3
jk

[Ajk +Bjk + Cjk +Djk + Ejk + Fjk], (2.20)

3In the realistic case, the spontaneous emission is always present.
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2.3. Dipolar nucleus-nucleus interaction

Figure 2.4: The j-th and k-th nuclei are represented as colored spheres, separared by

rjk. The θjk, φjk angles are shown together with the magnetic field vector.

where

Ajk = IjzI
k
z (1− 3cos2θjk)

Bjk = −1

4
(1− 3cos2θjk)(I

j
+I

k
− + Ij−I

k
+)4

Cjk = −3

2
sin θjk cos θjk(I

j
zI

k
+ + IjzI

k
+)e−iφjk

Djk = C∗jk (2.21)

Ejk = −3

4
sin2 θjke

−2iφjkIj+I
k
+

Fjk = E∗jk = −3

4
sin2 θjke

2iφjkIj−I
k
−.

Each of these terms is responsible for a transition, in agreement with the selection

rules listed below

Ajk → ∆mt = ∆(mj +mk) = 0

Bjk → ∆mt = 0 (2.22)

Cjk → ∆mt = 1

Djk → ∆mt = −1

Ejk → ∆mt = 2

Fjk → ∆mt = −2
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2. Basic aspects of Nuclear Magnetic Resonance

Since the dipolar interaction is usually of the order of few Gauss, while the Zeeman

interaction is of the order of some Tesla, the former is usually a perturbation of

the latter. Accordingly, the energy correction due to the dipolar interaction is

given by first-order perturbation theory, which requires just the terms of the

perturbation matrix that commute with the non-perturbed hamiltonian. The

method of moments allows one to predict the NMR lineshape from first principles,

without calculating the eigenstates of the total hamiltonian, which is sometimes

a complex problem without an exact solution. Such theory shall be presented in

Appendix B.

2.4 Electron-nucleus interaction

The third term of the Hamiltonian in equation (2.18) describes the nucleus-

electron interaction. The hyperfine field is responsible for macroscopic effects,

as the shift of the NMR line from the bare nucleus frequency, or the strong

reduction of the electronic spin fluctuations, as observed in the spin-lattice relax-

ation rate (see Appendix A) [65]. In this section it is reported how the hyperfine

interaction affects the Knight Shift, and how the hyperfine tensor is derived from

the Knight Shift and Static Spin Susceptibility. The precise form of the hyperfine

interaction is complicated for a general atom, but it can be worked out in detail

for a single-electron atom interacting with a point nucleus. In the following, the

problem will be treated with the purpose to show the basic mechanism of the

interaction.

The hyperfine interaction couples the electronic to the nuclear magnetic moments

and it is ascribed to two main contributions, the former being the dipolar field,

namely the dipole-dipole interaction between the electronic µe = −gµBS and nu-

clear µN = γ~I magnetic moments, at a distance r. In fact for two closely spaced

dipoles, the potential energy is [66]:

E =
µe · µN

r3
− 3(µe · r)(µN · r)

r5
. (2.23)

The second contribution is called the on-site or pseudo-dipolar hyperfine

coupling and it is related to the possibility of the electron sitting on the nuclear

site, to polarize the nucleus itself, according to the following ideas:

1. If the wave function Ψ(r) of the electron does not vanish at the nuclear

position (s-states in atomic terminology), Ψ(0) 6= 0, one has a scalar term,

which is called the Fermi-contact interaction. The energy cost of the
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2.4. Electron-nucleus interaction

contact interaction is [67]

EFermi = −µI · µe|Ψ(0)|2 = γg~µBI · S

2. If the wave function of the electron has an angular dependence and vanishes

at the nuclear position: Ψ(0) = 0 (e.g. a p-function), the interaction is

proportional to 3 cos2 θ − 1, where θ is the angle formed by the magnetic

field H0 with the orbital lobe function (Fig. 2.5).

In gases and liquids, only the isotropic part (1) is observable, since the rapid

reorientation of the atoms or molecules averages the anisotropic contributions to

zero. On the other hand, in the solid state, the site symmetry of the nuclear

position is important. In fact in cubic symmetry sites, only the isotropic part is

retained, but in the general case the interaction is a second rank tensor Ahyp. Such

Figure 2.5: Sketch view of a p orbital, in a magnetic field.

a tensor is usually written in the principal axes system (x, y, z). In addition to the

pseudo-dipolar, there is also the transferred hyperfine coupling, which couples

electronic spins sitting on one site i, to nuclear spins sitting on a different site j.

It is clear that to evaluate the complete hyperfine tensor from first principles one

should have precise information about the orbitals involved, which also requires

a non-negligible numerical effort. On the experimental side, NMR and SQUID

magnetometry techniques help to overcome this problem. In fact the resonance

frequency depends on the local field probed by the nucleus, which contains the

hyperfine field itself:

ωres = γn < Hlocal
z >= γn(H0+ < hz >) = γn(H0+ < AhypS

z >) (2.24)
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The Knight Shift is usually defined as:

K =
ωres − γnH0

γnH0

=
< hz >

H0

=
Ahyp < Sz >

H0

(2.25)

Since the molar static Spin Susceptibility is given by [67]

χmol = gµBNA < Sz > /H0, (2.26)

it is straightforward to conclude that the hyperfine field is a proportionality con-

stant between K and χmol:

Kαβ
spin =

Aαβhyp
gµBNA

χαβmol (2.27)

where α, β = x, y, z. It is noticed that in the literature sometimes it is written:

Kαα
spin = Aααhypχ

αα (2.28)

where all the factors are dimensionless. Nonetheless the hyperfine constant is

often written in Oe/µB units, hence the origin of the confusion, because then

χ should be expressed in µB/Oe, which are not standard units for χ. ThenDimension

mismatch Johnston [15] derived more complete expressions to solve this inconsistency. The

author of this thesis believes that is not necessary, provided that the electronic

spin is taken as a dimensionless quantity. In fact, by referring to the considerations

made in Appendix E, the equation (2.27) turns out dimensionally correct:

Kspin[1] =
Ahyp[Oe]

gNA[mol−1]µB[erg/G]
χ[erg/G2mol] (2.29)

From now on the hyperfine field will be expressed in [Oe], or equivalently in [G]

units, which is particularly useful when calculating the Form Factor (see Appendix

A).

2.5 Quadrupolar interaction

For nuclei with I > 1/2, the nuclear charge distribution does not have a spherical

symmetry, hence a nuclear quadrupolar moment eQ 6= 0 arises. Such moment will

interact with the electric field gradient (EFG), due to the charge distribution sur-

rounding the nucleus, partially removing the degeneracy in the quantum number
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2.5. Quadrupolar interaction

m. When such interaction is so strong that it reaches the MHz range, the exter-

nal magnetic field can be removed and the rf field can induce transitions directly

between the eigenstates of the quadrupole Hamiltonian. The quantization axis

will be given by the Z principal axis of the EFG tensor, of component VZZ , which

is the direction of the largest electric field gradient. This is the basis of Nuclear

Quadrupolar Resonance Spectroscopy (NQR). The quadrupolar hamiltonian is

given by [68]:

HQ =
∑
i

HQi =
∑
i

e2qQ

4I(2I − 1)

[
3I2
z − I(I + 1) +

1

2
η(I2

+ − I2
−)

]
(2.30)

where eq = VZZ = ∂2V/∂z2 and Vij are the EFG components in the principal

axes of the reference frame, and I± is the common raising/lowering operator I± =

Ix ± iIy. The compounds investigated in this thesis have axial symmetry, with

good approximation, namely the asymmetry parameter η = |VXX − VY Y |/VZZ is

zero. Moreover, the probed nucleus (As) has a spin I = 3/2. Hence if one would

like to perform NQR, he should then induce transitions between the hyperfine

levels, where the energy correction is related to the quadrupolar frequency:

νQ =
3eVZZQ

2hI(2I − 1)

(
1 +

η2

3

)1/2

(2.31)

This quadrupolar frequency is so sensitive to the charge symmetry distribution

around the nuclei that it can detect any lattice distortion/transition. In turn,

the line first moment resulting from the quadrupolar interaction, is given by the

following expression, at the first order:

ν
(1)
m→m+1 = νQ(2m− 1)(3 cos2 θ − 1 + η(sin2 θ)(cos 2φ))/4, (2.32)

where the angle θ is formed between the magnetic field and the VZZ axis, while

φ angle is formed between the xy projection of the magnetic field and the VXX

axis. At the second order, the central transition for a spin 3/2 will be corrected

by:

∆
(2)
1/2ν = −ν2

Q/16νL(a− 3/4)(1− cos2 θ)(9 cos2 θ − 1) (2.33)

with a = I(I+1). It can be noticed that the first order correction for the transition

−1/2→ 1/2 is always null. Anyhow, the second order correction involves all the

transitions and it is proportional to the second power of νQ.

The principal interactions and their action on the NMR line, are summarizes in

Fig. 2.6.
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2. Basic aspects of Nuclear Magnetic Resonance

Figure 2.6: The nuclear levels evolution in presence of different interactions, and their

effects on the spectrum, on a spin I=3/2 systems. In absence of magnetic field, the

nuclear levels are degenerate. When a static field is applied, the Zeeman interaction

removes the degeneracy, by creating equispaced levels, that give rise to a Dirac-delta like

spectrum (red line in the bottom). When the dipolar interaction is taken into account,

the line broadens. The hyperfine interactions shifts the levels, without affecting their

width, and finally the quadrupolar interaction corrects the level spacing by generating

three different lines, separated by νQ.
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2.6 NMR in presence of a dynamic

In addition to the static interaction discussed above, NMR is able to provide many

clues about the dynamical processes taking place into the system. Typically,

NMR is sensitive to frequencies in the kHz-MHz range, but it can also push

the limit to higher and slower frequencies. Whenever NMR is used as a tool to

investigate some dynamical property, the following rule has to be remembered:

an NMR observable (i.e. linewidth, T1 or T2) is affected by the motion, when the

characteristic frequencies of the dynamic match some specific time-scale, namely

the Larmor frequency, in case of T1, or the inverse of the pulse spacing, in case

of the T2.5 For instance, diffusive motion of the nuclei (or ions nearby), spin

fluctuations, molecular motions, flux lines lattice motion in a superconductor

(see Chapter 5), are examples of dynamics affecting the NMR variables. When

the rate of the fluctuations of the local field, is comparable with the magnitude

of the interaction which broadens the line, usually the dipolar field ( a few Gauss

or tenth of Gauss) the linewidth is affected. The motional effect of the line turns

into a narrowing, that can be intuitively understood, by considering that the local

field probed by the nucleus will be an average, over the time, of the longitudinal

component of the local magnetic field hz(t). Since the average will be smaller

than the instantaneous value of hz(t), the NMR line will be narrowed. In the

following paragraph the description of the NMR line evolution in presence of a

dynamic is reported.

2.6.1 Motional Narrowing of the line

If the time-dependent part of the hamiltonian is very small, it can be treated as

a perturbation, HP (t) = −γ~
∑

i Ii · hi(t), where the fluctuating field acting on

the i -th spin is smaller than the static field. The free induction signal, can be

obtained by retaining, as shown before, just the secular part of the perturbation

Hamiltonian, which is [68]

H′p = −~
∑
i

I iz∆ωi(t) (2.34)

where ∆ωi(t) represents the fluctuations of the resonance frequency, of the i -th

nucleus. Afterwards one has to find the correlation function of the longitudinal

local field g(τ). In the rotating frame, the free induction decay amplitude G′(t),

5This might be the dipolar field distribution, the flux line lattice distribution, etc...
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is written as

G′(t) =< exp

(
i

∫ t

0

∆ω(t′)dt′
)
> .

The symbol<,> is the statistical average over the distribution probability P (ω, t).

Indeed the fluctuations can be described by a probability distributions that, in

case of independent motions, as in a random walk, can be assumed to be a sta-

tionary Gaussian, with a mean square amplitude < ∆ω2 >= M2:

P (ω, t) =
1√

2πM2

e
−(ω−ω0)2

2M2 (2.35)

This is not the case of sudden jumps in the local field magnitude, but it is effective

to describe slow molecular motions. By using the following equivalence [69]

< e−ix >=

∫
P (x, t)eixdx = e−

<x2>
2 (2.36)

and defining the normalized correlation function as g(τ) =< ∆ω(t + τ)∆ω(t) >

/ < ∆ω2 >, that is characterized by a correlation time τc:

τc =

∫ ∞
0

g(τ)dτ, (2.37)

representing a measure of the time after which the correlation starts to become

negligible, one can finally write the free induction decay signal as:

G′(t) = G′(0)e−<∆ω2>
∫ t
0 (t−τ)g(τ)dτ (2.38)

where T2 is sometimes indicated as T ′2. From the last equation, some information

can be obtained about the fast and slow motion case, without making any as-

sumption on the analytic form of g(τ).

In the slow motion limit, the correlation function decays so slowly that, over

the measure time t << τc, it can be approximated to g(τ) ≈ g(0) ≈ 1 (Fig. 2.7).Slow Motion

regime (s.m.r.) The FID signal becomes G′(t) ≈ G′(0)e
−<∆ω2>t2

2 , namely it shows a Gaussian

shape. Accordingly the NMR line is a Gaussian as well, with second moment

< ∆ω2 >.

In the opposite case, after a time t >> τc, the correlation function has already

reached a value close to zero (Fig. 2.8). To calculate the FID expression, one

can extend the integration upper limit to infinity and neglect τ with respect to t.Fast Motion

regime (f.m.r.)
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Figure 2.7: Sketch of a slowly decaying correlation function g(t).

Equation (2.38) will then become:

Figure 2.8: Sketch of the correlation function in case of fast motions.

G′(t) = G′(0)e−<∆ω2>t
∫∞
0 g(τ)dτ

= G′(0)e−<∆ω2>tτc = G′(0)e
−t
T2 (2.39)

Since the FID signal is an exponential decay, the NMR line will be a Lorentzian:

f(ω) = f(0) 2T2

1+ω2T 2
2

, and as a consequence of that, in correspondence to a tran-

sition from slow to fast motions, a change in the lineshape from Gaussian to

Lorentian may be seen.

The last considerations suggest an ”operative definition” for T2, that is valid just

in the fast motion regime,

1

T2

= M2τc =

∫ ∞
0

< ∆ω(t)∆ω(t+ τ) > dτ (2.40)
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If the fluctuation involves just the z axis of the local field ∆ω(t) = γhz(t), one

can write the correlation time as:

1

T2

= γ2

∫ ∞
0

< hz(t)hz(0) > dt = γ2J(ω = 0) (2.41)

where the last term is the spectral density of fluctuations, at zero frequency.

In case of an exponentially decaying correlation function, which is commonly used

in case of Gaussian Markoffian processes, g(τ) = e−
τ
τc , the free induction decay

signal becomes:

G′(t) = G′(0)e−<∆ω2>
∫∞
0 (t−τ)g(τ)dτ = G′(0)e−<∆ω2>τ2

c{e−t/τc−1+t/τc}, (2.42)

that nicely interpolates between the f.m.r and s.m.r (Fig. 2.9).

Figure 2.9: Sketch of the FID signal, according to Eq. (2.42), for different τc values.
The long decaying purple solid curve corresponds to a very small correlation time,
namely fast dynamics. The blue curve refers to an intermediate motion limit, while
the yellow line is found when the correlation time becomes very long, namely slow
dynamics.

2.7 Spin-Spin relaxation

T2 has been introduced as the time over which the transverse nuclear magnetiza-

tion decays by 1/e of its initial value, after a π/2 pulse. The decay can be induced

by different mechanisms, that can be grouped into the extrinsic and intrinsic

mechanisms. The first type is due to inhomogeneous distribution of resonance

frequencies (as for instance in external inhomogeneous magnetic fields) and it is

responsible of the so-called T ∗2 . When T ∗2 is particularly short, the measure of the
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2.7. Spin-Spin relaxation

dephasing associated with the intrinsic mechanisms (normally dipole-dipole in-

teraction), is quite challenging. To overcome this problem a spin echo sequence is

usually employed. In the following, two of the most common methods to measure

the ”intrinsic” T2 are discussed.

2.7.1 The Spin Echo

While liquid compounds usually have very narrow lines, the solid compounds

are affected by intrinsic sources of line broadening, such as the distribution

of hyperfine/dipolar fields. In metallic compounds with impurities this case is

particularly common. In fact, magnetic, or also non magnetic, impurities can

polarize the surrounding electronic environment, by giving rise to a staggered

magnetization. As a consequence of that, the nuclei which are in different sites

may experience a different local resonance frequency, which can be quite distant6

from the Larmor frequency [70]. When the distribution of the local field/frequency

is too much spread, the Free Induction Decay can be ”too fast” to be seen. In

NMR terminology it is said that the signal has a short T ∗2 . A way to solve this

problem was found by Hahn, [71]. Hahn was originally interested in measuring

nuclear relaxation in liquid samples, by applying rf pulses. In the configuration

used nowadays, a Hahn (or spin) echo is created after the application of a π/2

r.f. pulse, followed by a π pulse, after a time τecho. Such sequence produces an

echo at 2τecho (See Fig. 2.10) [63].

To understand the generation of the echo, one can imagine to apply, at t = 0,

an in-resonance π/2 pulse, along the x′ axis. Within the semi-classical picture

of the magnetization, after the pulse, the magnetization vector will be flipped

into the xy plane, along y′ axis. At t = 0+, owing to the local field distribution,

some spins will probe a slightly larger field, thus precessing a little bit faster, and

moving forwards in the rotating frame, while other nuclei that probe a smaller

field, will precess a little bit slower, then moving backwards. Hahn’s genial idea

was to apply, at t = τecho a second pulse, double than the previous in duration,

along y′, the effect of which is to reverse every spin around the same axis. Now,

if no time-dependent effects are acting, the same field distribution responsible for

the spin dephasing, will also affect the spin signal in this second time window.

As a consequence, at the time τecho, after the π pulse the spin will refocus around

+y′, thus giving a non null NMR signal.

On the contrary, if a dynamic is playing a role, not all the spins will be refocused.

6Namely of the order of some Hz up to some tenths of kHz.
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2. Basic aspects of Nuclear Magnetic Resonance

Figure 2.10: The figure represents the evolution of the transverse magnetization, after
a r.f. pulse of π/2, followed by a π pulse. If the second pulse was not applied, the signal
would decay by T ∗2 . On the other hand, the effect of the second pulse is to refocus the
spins, so that a second signal, called ”echo” is formed. The amplitude of the echo will
not be affected by the sources of field inhomogeneity, but it will evolve according to the
intrinsic spin-spin relaxation time T2.

Nevertheless the description of the spin echo E(2τ) can still be done according

to the same idea presented above [69]:

E(2τ) =< exp(−i
∫ τ

0

ω(t)dt+ i

∫ 2τ

τ

ω(t)dt) > (2.43)

where the sign change in the second term is due to the fact that the π pulse will

reverse the magnetization phase.

Takigawa and Saito [69] calculated the form of the Hahn echo, without making

any assumption of the form of g(τ). They found that, when the dynamics is so

slow that
√
< ∆ω2 >τc � 1 or it is absent, the echo will be totally refocused

E(2τ) ≈ E(0). (2.44)

However, in the opposite limit, namely
√
< ∆ω2 > τc � 1, they showed that the

echo has the same analytic form of the FID, E(2τ) = e−<∆ω2>τct. Finally if an

exponentially decaying correlation function is assumed, the echo decay becomes:

E(2τ) = E(0) exp−<∆ω2>τc[2t−τc(1−exp(−t/τc))(3−exp(−t/τc))], (2.45)
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which still interpolates between the fast and slow limit. Further details about

this expression will be provided in Chapter 6.

2.7.2 The CP Sequence

Every time there is an ongoing dynamic, the nucleus can change its precession

frequency, for instance by diffusing to a point in the sample, where the static field

assumes a different value, owing to some inhomogeneity in the sample or in the

external magnetic field. Then the spin echo will decay because of an imperfect

rephasing of the nuclear spins. One example of ”imperfect rephasing”was brought

by Slichter in the case of the spin diffusion into a field gradient ∂H
∂z

. In such a

scenario, the transverse magnetization decay can be written as: [63]

M(2τ) = M(0) exp(−2τ/T2) exp

[
−
(
γ∂H

∂z

)2
2

3
Dτ 3

]
(2.46)

where D is the diffusion constant in the static field gradient. As it is clear from the

this equation, the derivation of 1/T2 may be affected by the second exponential.

Carr and Purcell (CP) invented a way for reducing the effect of the cubic term

in τ , formulating a new clever sequence of pulses. The advantages of the CP

sequence are the following:

• There is no need to wait for the T1 recovery, after each echo (time saving),

as the T2 measure is made in a ”single shot”;

• It allows one to improve the signal-to-noise ratio by
√
N (useful in case of

weak signals), by summing up the echoes.7

The idea of the CP sequence is sketched below (see Fig. 2.11).

1. At t=0 a π/2 pulse at resonance, is applied along +x axis, which leads the

magnetization to reverse along the +y axis.

2. After waiting for a time τCP , a second in-resonance π pulse is applied along

+x axis. The result of that is a precession of the spins along +x, and the

growth of the magnetization along −y, giving a negative echo at time 2τCP .

3. Now, instead of waiting for the T1 recovery, one just has to wait another

τCP , and then apply a π pulse along +x, so that a second echo will be

formed at +y.

7N is the scans number.
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The final result is a train of echoes, formed every even multiple of τCP , whereas

the pulse is applied every (2n + 1)τCP . After n cycles, the CP echo amplitude

will be [63]

M(n2τ) = M(0) exp(−2nτCP/T2) exp

[
−
(
γnτCP

∂H

∂z

)2
1

3
Dτ 2

CP

]
(2.47)

Finally, when τCP is chosen in such a way that the second term tends to 1, the

normal exponential decay is restored. Basically, the best way to obtain the in-

trinsic T2 is to repeat the CP sequence, by changing τCP every time, and taking

the limit for τCP → 0.

Despite its utility, this sequence presents some drawbacks. In fact, if there is a

slight error in the pulse width, the spins will not properly refocus and therefore,CPMG

sequence the more pulses, the more the accumulated (wrong) phase. Meiboom and Gill

implemented the former sequence by a clever trick: if the π pulses are applied

alternatively along ±x axis, the cumulative error is zero and the spins are refo-

cused along +y, always generating a positive echo. More details about the so

called CPMG sequence can be found in [62,63].

Figure 2.11: The idea of the CPMG sequence is sketched here. The red rectangle is

the rf pulse the duration of which is either π/2 or π. The blue dome-like shape is the

echo, while the blue-dotted line is the echo decay envelope profile.

2.8 Spin-Lattice relaxation

The spin-lattice relaxation time T1 measures the recovery rate of the compo-

nent of the nuclear magnetization along the direction of the external magnetic
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2.8. Spin-Lattice relaxation

field. T1 yields information about the microscopic mechanisms responsible for

energy exchange between nuclei and the elementary excitation of the lattice. It

is customary to derive T1 from quantum theory, namely one should consider the

quantum states of the whole system and define the transition probabilities Wmm′

in terms of matrix elements of the interaction Hamiltonian, by using the Fermi

Golden Rule [62].

Wmm′ =
2π

~
∑
ff ′

Pf | < fm|H′|f ′m′ > |2δ(Ef + Em − Ef ′ − Em′) (2.48)

where |fm > and |f ′m′ > are the initial and final state, respectively, H′ is the

perturbing hamiltonian and Pf is the probability of occupancy of the f state.

This approach is usually applied for relaxation due to lattice vibrations.

From the former relation one can derive the following (more familiar) expression

Wmm′ =
1

~2

∫
e−iωmm′τ < H′mm′(0)H′mm′(τ) > dτ ∝ J(ω) (2.49)

where J(ω) is the spectral density of the fluctuating field.

Very often, when speaking of 1/T1 the terms ”weak-collision”and ”strong-collision”

are encountered. The weak-collision limit is applicable when many fluctuating

events are necessary to induce sizable relaxation. On the other hand, the strong-

collision regime should be used when each fluctuation event it able to induce a

sizable relaxation probability.

Some examples of mechanisms responsible for spin-lattice relaxation are the hy-

perfine interactions with the conduction electrons; lattice vibrations; quadrupolar

interactions; vortex diffusion (in the superconducting state); quasi-particle scat-

tering; fluctuating spin electrons/nuclei; and nuclear spin diffusion.

In order to measure T1 one needs a special sequence. Any T1 sequence is

based on three steps: (1) the preparation of the initial magnetization, (2) the

evolution of the magnetization and the (3) detection step. The last one can be a T1 sequences

simple FID or a Echo (solid, Hahn, CPMG...), but what really distinguishes the

different sequences is step (1). The more common methods are the inversion and

saturation recovery sequences, usually employed when T1 is shorter than 1 s. In

the opposite limit, progressive saturation is helpful.

Hereafter the saturation recovery sequence is described, as it was the most fre-

quently employed in the following experiments. The preparation step consists in

55



2. Basic aspects of Nuclear Magnetic Resonance

the application of a π/2 (in-resonance) pulse, which will tip the nuclear magne-

tization in the xy plane. After that, the system will be left to evolve under the

effect of (nuclear) spin-lattice interactions, so that after τ , a component of Mz(τ)

will be grown. To detected that signal, another π/2 pulse has to be applied, in

order to turn the magnetization in the plane of the pick up coil. The name of the

sequence comes from the fact that the first π/2 pulse will equalizes (i.e. saturate)

the population of the Zeeman levels, leaving a zero magnetization along the z

axis. The sequence is sketched in Fig. 2.12. In presence of large NMR spectra,

the nuclear levels cannot be effectively saturated by a single π/2 pulse, rather

a comb or train of pulses has to be applied [72]. This was not the case of the

present study, since the pulse width allowed one to irradiated the whole line.

Figure 2.12: The figure represents the saturation recovery sequence. The pulses are

the red rectangles, while the blue line is a sketch of the echo.

In any case, the recovery to equilibrium is determined by the transition prob-

ability, between the hyperfine levels associated with the time-dependent part of

the hamiltonian. If one considers a system of N spins I, the evolution of the

nuclear magnetization Mz is found once the 2I + 1 rate equations are solved:

dNm

dt
=
∑
n6=m

(NnWnm −NmWmn) (2.50)

where Nn is the population of the n−th level. The solution of the former equation,

for I = 1/2 can be worked out quite easily:

y(t) =
Mz(∞)−Mz(t)

Mz(∞)
= e−t/T1 (2.51)

where 1/T1 = 2W± and Mz(∞) is the equilibrium magnetization. In case of a
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spin value I, the general solution is given by the sum:

y(t) =
∑
j

cje
−αjt/T1 (2.52)

where 1/T1 = 2W
I=1/2
± and the coefficients depend on the spin value and on the

relaxation mechanism (magnetic or quadrupolar).

A general definition of T1, in presence of an oscillating transverse field hx,y(t) is

commonly written as:

1

T1

=
γ2

2

∫
eiωot < h+(t)h−(0) > dt ∝ J(ω0) (2.53)

where h± is related to the raising/lowering spin operator, and J(ω0) is the Fourier

Transform of the correlation function at the resonance frequency ω0. This expres-

sion shows that 1/T1 is driven by the transverse components of the fluctuating

field, and 1/T1 is proportional to the spectral density of the fluctuations, at the

resonance frequency. So far the analytic form of the correlation function has not

been specified, in order to keep the description as general as possible. In the next

section, a famous case will be illustrated.

2.8.1 Bloembergen-Purcell-Pound (BPP) theory

In 1948, Bloembergen, Purcell, and Pound proposed a theory [73] to explain the

relaxation rate taking place in a compound, affected by random motions, as in

liquids. A simplified version of the discussion proposed in the original paper,

will be reported without changing its physical meaning. This theory assumes

that the autocorrelation function of the microscopic field fluctuations, causing

the nuclear relaxation, is proportional to e−t/τc . In fact, it can be shown that

when the local field jumps randomly between two values ±h0, the correlation

function of the transverse component of the local magnetic field will become

< h+(t)h−(0) >=< ∆h2
⊥ > e−t/τc [63]. The spin-lattice relaxation rate 1/T1

turns out:
1

T1

=
γ2

2
< ∆h2

⊥ >
2τc

1 + ω2
0τ

2
c

(2.54)

In strong analogy to the case of the spin-spin relaxation, three significant dynamic

regimes are found:

• In the fast motion regime, ω0τc � 1, the denominator is ∼ 1 and the

relaxation rate becomes 1
T1

= γ2 < ∆h2
⊥ > τc.
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• In the slow motion regime, ω0τc � 1, the unity at the denominator can be

neglected, and then 1
T1

= γ2 < ∆h2
⊥ >

1
τcω2

0
.

• Remarkably, when ω0τc = 1 the spin-lattice relaxation rate is extremely

sensitive to the field fluctuations, and 1/T1 shows a peak sometimes referred

as the BPP peak (Fig. 2.13).

Figure 2.13: Dependence of the relaxation rates 1/T1 and 1/T2 on the correlation time

τc. 1/T2 levels off in the rigid lattice limit, namely for long correlation times. The

picture is adapted from Ref. [64].

The utility of the BPP theory will be clear after Chapters 4 and 5. The

next sections will focus on the contributions that NMR can provide to study the

superconducting state.

2.9 NMR as a probe of the superconducting

state

NMR is an excellent technique to probe the superconducting properties of matter,

because it is able to investigate the collective electronic behavior. Nonetheless,

an NMR experiment in a superconductor can become tricky, in particular when

the sample is a single crystal. In fact, the Meissner-Oschenfel effect [22] predicts

that, below the critical temperature, any static magnetic field is shielded at the

interior of the material, due to the screening supercurrents. The expulsion of the

magnetic field takes place in the whole sample except from a small region of size
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λL, which is related to the density of superconducting electrons ns:
8

λ2
L =

mc2

4πnse2
(2.55)

and it’s numerical value is typically in the range of 100 − 1000 nm, depending

on the material. In type-II superconductors, the sample volume accessible to

NMR is wider, since the magnetic field will penetrate also in the interior of the

superconductor, in form of tubes or filaments of section ∼ πξ2, and then the field

profile will decay, far from the core of the tube, as e−r/λL , as recalled in Chapter

1.

The second technical problem is related to the penetration of the rf field. In fact,

while above Tc the rf penetration is dominated by the skin effect [74]

δ ∼
√

ρ

ωµ
(2.56)

where ρ is the resistivity and µ the magnetic permeability, below Tc the London

and the Cambpell penetration depths are responsible for the signal intensity (see

Appendix C). As a consequence of that, performing NMR in the superconducting

state of a single crystal, on a non high sensitive nucleus may become challenging.

One way to improve the signal-to-noise ratio is to increase the number of scans.

However, when the spin-lattice relaxation rate is longer than 1 s, a single mea-

surement may get extremely long. Regardless the long waiting times, NMR can

still provide unique insights into the superconducting properties.

2.9.1 Yosida Theory

One of the consequences of the BCS microscopic theory of superconductivity is

that the spin susceptibility of the conduction electrons will vanish exponentially,

as the reduced temperature T/Tc, approaches zero [34,75,76]. This is true when

the ground state of the superconductor is a singlet,9 namely the Cooper pair is

described by an eigenstate, whose total spin part has a zero eigenvalue. The spin

state is reflected in the spin susceptibility, which can be measured by SQUID

Magnetometry. Nonetheless SQUID is a macroscopic technique which actually

measures an average over all the magnetic contributions, impurities included.

Therefore, the paramagnetic contribution is totally screened by the Meissner ef-

8This results is found in the Ginzburg-Landau and in the London theory, as well.
9In addition to the singlet state superconductivity another state with S = 1, namely a triplet

superconductivity, can be found.
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fect. On the other hand, the first moment of the NMR line is sensitive to electronic

spin susceptibility only. In fact, corresponding to each term of the susceptibility

there exists a contribution to the Knight Shift. For example, for a transition

metal material [77]:

K = KP +Korb = αχP + βχorb (2.57)

where the first term is the Pauli contribution, and the second term is the Van-

Vleck orbital contribution, which is important to transition metal compounds

with partly filled non-s bands. If one assumes, for simplicity, that the last con-

tribution is temperature independent10, what really determines the drop of the

susceptibility down to Tc is the first term.11 The spin susceptibility of a gas of

non-interacting electron is usually written as [67,74]:

χ = −2µ2
B

∑
k

df

dEk

(2.58)

where f is the Fermi-Dirac function of the excited states Ek, and µB the Bohr

magneton. The sum can be replaced by an integral, by using the BCS energy

density of states (see Fig. 2.14)

NBCS(E) = N(0)
|E|√

E2 −∆2
, (2.59)

in order to obtain

χ = −4µ2
B

∫ ∞
∆

NBCS(E)(df/dE)dE. (2.60)

The ratio between the susceptibility in the superconducting state, and in the

normal state, directly allows one to extract the value of the superconducting gap

∆:
χSC
χn

(T ) =

∫
|E|√

E2 −∆2

df

dE
dE (2.61)

Notice that the q-dependence of the gap, namely the presence of an anisotropy,

is neglected, in this case.

10That is true for narrow-band materials.
11This is true for some elemental superconductors, and also some transition metal alloys.
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Figure 2.14: (left figure) A sketch of the density of state for an isotropic superconduc-
tor, according to BCS theory. The temperature dependence from the gap is not taken
into account here. The opening of the gap results into a depletion of the energy levels.
(right figure) A sketch of the susceptibility below Tc according to the Yosida theory,
explained above.

2.9.2 Hebel-Slichter (HS) Peak

Another NMR quantity which is very sensitive to the opening of a spin gap in

the DOS is the spin-lattice relaxation rate. The problem of accounting for the

superconducting gap opening, in the spin-lattice relaxation time, was firstly un-

dertaken by Hebel and Slichter [78,79]. They were studying the NMR relaxation

in superconducting Al, and assumed a nucleus-electron coupling of the form of

the hyperfine contact interaction. Then, by using the perturbation theory, they

evaluated the spin-lattice relaxation time, as the following:

1

T1

∼
∫ ∞

∆

(EE ′ + ∆2)√
(E2 −∆2)(E ′2 −∆2)

f(E)(1− f(E ′))dE (2.62)

where E is the energy of the initial state and E ′ = E + ~ω is the energy of the

final state, while ~ω is the energy of the nuclear Zeeman level separation. When

the difference in the energy between the initial and the final state is neglected,

the former relation becomes:

1

T1

∼
∫ ∞

∆

(E2 + ∆2)

(E2 −∆2)

1

cosh2(E/2kBT )
dE, (2.63)

which turns into a logarithmic divergence at E = ∆. Yet, in case of low temper-

ature (namely E � kBT ) the expression is approximated to

1

T1

∼ Te−∆/kBT . (2.64)
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The exponential decay of 1/T1 was experimentally confirmed by Masuda and

Redfield in superconducting Al, down to T = 0.35 K (Tc = 1.2 K) [80]. However,

these authors found an inconsistency between the absolute value of their T1, and

the Hebel- Slichter’s theory. In fact, a phenomenological broadening in the energy

of the excited states, corresponding to a rectangle centered around E ′ = E was

initially taken into account in the HS theory. Afterwards Masuda and Redfield

noticed that their data could be better fit by assuming that the gap itself exhibits

a distribution of values. This suggested a natural explanation in term of the gap

anisotropy. Indeed, in case of nodal gap, the spin lattice relaxation rate, in the

limit of very low temperature may be a power law, 1
T1
∝ T 3, while the Knight

Shift is linear in T [81]. A detailed explanation of their results is beyond the aim

of this work. A sketch view of a s-wave and d-wave gap is reported below.

Figure 2.15: Sketch of a s-wave

order parameter (pink zone). The

Fermi surface is the inner blue

dashed circle.

Figure 2.16: Sketch of a d-wave

superconductor, where the value of

the gap can assume both positive

and negative values, but also zero

values at certain wavevectors.

Before concluding this section it is stressed that in case of s±-wave super-

conductor, no coherence peak is predicted. In fact the hole-band gap ∆1 and

electron-band gap ∆2 have opposite signs. As a consequence, the spin-lattices±-wave gap

relaxation rate becomes:

1

T1

∼
∫ ∞

∆

1

cosh2(E/2kBT )
dE. (2.65)

Parker et al. [37] have shown that in s±-wave superconductors the coherence peak
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is not observed neither in the clean limit, as shown before, nor in case of impurity

scattering, where a power-law behavior has been predicted.

2.9.3 Site-selective nuclear spin-lattice relaxation time

NMR is particularly useful in the mixed state of a type-II superconductor, as it

provides two simultaneous information, namely the NMR spectrum reflects the

magnetic field distribution, and T1 probes electronic excitations. Given the one-

to-one correspondence between the NMR line of a superconductor in the mixed

phase, and the spatial arrangement of vortices, the NMR spectrum can access

the vortex core or the intervortex position and, consequently, a frequency/site

selective T1 measurement can reveal the local density of states (LDOS). The

great advantage of NMR with respect to other DOS-sensitive techniques, like

STM, is that NMR probes bulk properties, free from surface problems [81]. The

Bogoliubov-de Gennes theory for a dx2−y2-wave pairing predicted that the tem-

perature dependence of T−1
1 must be a power law, ∼ T 3, for nuclear sites far

from the center of the vortex core, as expected for a gap with a line (point) node.

On the contrary, for positions close to the vortex core, a linear dependence on

temperature is expected. The origin of this linear behavior is the presence of low-

energy excitations, localized around the vortex core. These results are expected

at low temperature, namely for T/Tc < 0.1.

The spacial distribution of T1 has been extensively studied by several authors

and has revealed a rich phenomenology, as Doppler shifted nodal quasiparticles

states (Volovik effect), strong antiferromagnetic fluctuations in the vortex core

and charge-induced vortex lattice instabilities [82–85]. Notice that the previous

considerations do not take into account the dynamic of the vortex matter.

2.10 Conclusions

This Chapter sets the basis to understand the experimental results presented in

the following chapters. The basic theory of NMR is reported, together with its

capability of studying the spin correlations, and more generally the interactions

among the nuclear spins themselves, and of the nuclei with the surrounding en-

vironment. NMR is also able to provide some insights into the superconducting

state, as it can shed some light on the magnitude and the symmetry of the su-

perconducting order parameter. Indeed the combination of spin-lattice relaxation

rate, and Knight Shift is remarkably useful to probe the density of states and, in
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particular cases, also the local DOS.

So far the vortex lattice dynamic has not been mentioned, as it will be the

main subject of Chapters 5, 6 and 7. Moreover, Chapter 4 will present how

NMR allows the study of spin fluctuations, emerging in the normal state of the

Ba(Fe1−xRhx)2As2 compounds.
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Chapter 3
Observation of unconventional

superconducting fluctuations by

SQUID magnetometry

This Chapter addresses the fluctuating phenomena occurring above the transi-

tion temperature, due to the pre-formation of the Cooper pairs. The static spin

susceptibility and macroscopic magnetization, as measured by Superconducting

Quantum Interference Device (SQUID) can allow one to study this phenomenon,

in single crystals of the Ba(Fe1−xRhx)2As2 family, over different doping. In fact,

a careful study of the static magnetization, shows that the temperature region

just above Tc can host rather exotic effects.

Precursor diamagnetism was experimentally found in all the investigated speci-

mens, with a quite intriguing phenomenology: while at high fields the precursor

diamagnetism can be described in the framework of the Ginzburg-Landau theory

(GL), at smaller fields the last theory cannot be invoked. In fact, in addition

to the GL fluctuations, hereafter called ”conventional”, there are unconventional

type of fluctuations, which are still matter of debate within the state-of-the-art

research. The latter model has been developed nearly 10 years ago, and it has

been successfully used to interpret the results found on the high-Tc cuprates [86].

According to this approach, the amplitude of the order parameter is supposed to

remain fixed, while the phase is allowed to change from one region to the other

of the specimen. These fluctuating regions are mesoscopic islands, the existence

of which has been experimentally found by means of microscopic techniques.

In the following section, a quick overview of the Ginzburg-Landau (GL) theory,

together with its main experimental predictions, is given. The pre-formation of
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the Cooper pairs is explained in the limit of Gaussian approximation, and for

long-wavelength limit of the order parameter.

3.1 The Ginzburg-Landau theory

The Ginzburg-Landau (GL) theory was formulated in the 50s to overcome some

limits of the BCS theory, and regardless its phenomenological foundation, that

made it initially the target of many criticisms, it allowed to predict several exper-

imental evidences. Among the best achievements of the GL theory, the prediction

of the existence of type-II superconductors is the most remarkable one. The the-

ory comes from the intuition to extend the description of the second-order phase

transitions to the superconducting one, in such a way that the order parameter

turns out to be a complex wavefunction Ψ(r),1 describing the superconducting

electrons

ψ(r) = |ψ(r)|eiθ(r). (3.1)

Within the GL theory, the square modulus of the wavefunction, |ψ(r)|2, is equal to

ns(r), the superconducting electron density, at position r. Moreover, the phase

θ is related to the supercurrent J that flows through the material, below Tc,

through:

J =
ie~
m

(ψ∗∇ψ − ψ∇ψ∗) =
−2e~
m
|Ψ|2∇θ. (3.2)

For temperature T → Tc, the free energy density functional can be written in

form of a power expansion of the order [22]

Fs(T, ψ) = Fn(T ) + α(T ) |ψ|2 +
1

2
β(T ) |ψ|4 +

1

2m∗

∣∣∣∣(p− e∗A
c

)
ψ(r)

∣∣∣∣2 (3.3)

where and m∗ = 2m and e∗ = 2e are the effective mass and the charge of the

Cooper pairs, and the indices n and s denote the normal and superconducting

states, respectively.2 The GL theory introduces two phenomenological parame-

ters, α and β, and also assumes that the order parameter may change with the

position. In absence of magnetic fields, namely A = 0 and of a smooth order

parameter, ∇ψ = 0, the difference between the superconducting and normal free

energy takes the form:

1This is not a trivial statement, since in other phase transitions, as in ferromagnets or
paramagnets, the order parameter is a real quantity.

2When the GL theory was proposed (1952), the BCS theory was not yet developed, so there
was not reason to speak of Cooper pairs.
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3.1. The Ginzburg-Landau theory

Fs − Fn = α(T ) |ψ|2 +
1

2
β(T ) |ψ|4 (3.4)

Such a difference must be negative, in the superconducting state, and positive in

the normal one. This condition is verified if

• α(T ) > 0, β(T ) > 0 for T > Tc,

• α(T ) < 0, β(T ) > 0 for T < Tc.

In the latter case Fs−Fn will display a minimum, at a certain |ψ|2 = ns > 0 (see

Fig 3.1). Within the Landau theory, one can assume that:

Figure 3.1: Dependence of the free energy difference, as a function of the normalized

order parameter (see text above for explanation). The picture is adapted from Ref. [87].

α(T ) = α0(T − Tc) where α0 > 0 and β(T ) = β0 > 0.

By following the variational approach, the Copper pair concentration becomes:

β|ψ|2ψ = −α(T )ψ(r)⇒ |ψ|2 = −α(T )

β
= |ψ(r →∞)|2 . (3.5)

By substituting the former relation into Eq. (3.4), the difference in the free

energy becomes Fs − Fn = −α2(T )
2β

, and remembering that the superconducting
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condensation energy is equal to Fs−Fn = −H2
c (T )
8π

, it is straightforward to get the

temperature dependence of the critical field

Hc ∝ (Tc − T ), when T → Tc. (3.6)

This expression can be particularly useful when the temperature dependence of

some peculiar superconducting properties, such as the London penetration depth,

are needed. Indeed, this turns out to be:

λ =

√
m∗c2β0

4πe∗2|α0|
1√

Tc − T
, in the limit T → Tc. (3.7)

In case of a non-null magnetic field, the variational condition will become:The GL

equations

αψ + β|ψ|2ψ +
1

2m∗
(i~∇+

e∗

c
A)2ψ = 0, (3.8)

where the moment operator p has been written in its explicit form. In the Landau

Gauge, namely ∇ ·A = 0, the former equation turns out [22]

−αψ − β|ψ|2ψ +
1

2m∗
(~2∇2ψ − e∗2A2ψ − 2i~e∗A · ∇ψ) = 0 (3.9)

that is called the first Ginzburg-Laundau equation.

By recalling that B = ∇×A and deriving with respect to A:

c∇× (∇×A)

4π
+
ie∗~
2m∗

(ψ∗∇ψ − ψ∇ψ∗) +
e∗2

m∗c2
∇|ψ|2 = 0 (3.10)

the second Ginzburg-Landau equation is obtained. The latter can be refined

once the Ampére-Maxwell equation, ∇×B = 4πJ
c

, is employed:

J = − i~e
∗

2m∗
(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗c2
∇|ψ|2. (3.11)

Finally the GL equations constitute a set of two coupled differential equations,

to be solved in the order parameter and the vector potential, in order to get com-

plete information about the superconductor.

As stated before, a remarkable result of the GL theory is the prediction of

the existence of two types of superconductors. A simple case shall be illustrated

hereafter [22].

In case of a superconductor with a mono-dimensional spacial dependence, and
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3.1. The Ginzburg-Landau theory

such that ψ(x) 6= 0, for x > 0, in absence of a magnetic field, the GL equation

turns out to be

− ~2

2m∗
d2ψ(x)

dx2
+ β|ψ(x)|2ψ(x) = −α(T )ψ(x) (3.12)

The former equation can be divided by |α(T )|, in order to get the following

− ~2

2m∗
1

|α(T )|
d2ψ

dx2
+
|ψ|2

|ψ∞|2
ψ(x) = ψ(x) (3.13)

which has the solution:

ψ(x) = ψ(x→∞)
[
1− e−

x
ξ

]
(3.14)

where ξ2 = ~2

2m∗|α(T )| is the coherence length, which measures the spacial extension

over which the Cooper pairs are correlated. Its temperature dependence, when

T → T+
c , is given by

ξ ∝ 1√
Tc − T

(3.15)

Moreover, the ratio of λ and ξ, gives the so-called Ginzurg-Landau parameter

κ =
λ(T )

ξ(T )
=

1√
2π

m∗c

e∗~
√
β0, (3.16)

It can be shown that when κ > 1√
2

the superconductor allows some magnetic Two types of

superconductorsflux to enter, partially violating the Meissner-Ochsenfeld effect, while for κ < 1√
2

the superconductor expels all the flux inside it. The magnetization versus the

magnetic field is sketched in Fig. 3.2. A. A. Abrikosov was the first to address

the problem of the GL equations, in κ > 1√
2

limit. He found that some magnetic

flux can enter the superconductor, in form of filaments of fluxons, surrounded by

supercurrents forming vortices [56], as explained in Chapter 1.

3.1.1 Anisotropic superconductors: the Lawrence-Doniach

model

Lawrence and Doniach [22] in 1971 proposed a model to describe the properties of

a layered superconductor, starting from the assumption that such material could

be viewed as a stacked array of two-dimensional superconducting layers, coupled

together by the Josephson tunneling between adjacent layers (Fig. 3.3). In any

layer, the order parameter is a two-dimensional (2D) function ψn(x, y), at which
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Figure 3.2: Sketch of the macroscopic magnetization versus the external field, for type-

I and type-II superconductors. Type-I (left panel) exhibits perfect diamagnetism below

the transition temperature, and it displays only one critical magnetic field Hc. Type-II

(right panel) totally expels the magnetic flux below the lower critical field Hc1, while

it partially expels it between Hc1 and the upper critical field Hc2; all superconductors

except elements are Type-II.

the authors associated, by omitting the vector potential, the following free energy

functional:

F =
∑
n

∫
dΣ

{
α|ψn|2 +

β

2
|ψn|4 +

~2

2mab

(
|∂ψn
∂x
|2 + |∂ψn

∂y
|2
)

+
~2

2mcs2
|ψn − ψn−1|2

}
,

(3.17)

where the sum runs over the layers and the integral is made over the area of each

layer. The reader may notice that here the electron mass is taken as a tensor of

components:  mab 0 0

0 mab 0

0 0 mc


where the anisotropy in the ab plane is neglected. Also the z derivative has been

replaced by its discrete version. Moreover, if the modulus of the order parameter

is fixed across the planes, the last term of the equation can be written in a more

familiar form, reminiscent of the Josephson coupling:

~2

mcs2
|ψn|2[1− cos(θn − θn−1)]. (3.18)

When the vector potential is restored, the variational approach is given by the

derivative of the free energy density functional, with respect to ψ∗
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Figure 3.3: A sketch of a layered superconductor, where the blue arrows represent the

inter-layer Josephson coupling.

0 = αψn + β|ψn|2ψn −
~2

2mab

(
∇− i e

∗

~c
A

)2

ψn (3.19)

− ~2

2mcs2
(ψn+1e

−2ieAzs/~c − 2ψn − ψn−1e
+2ieAzs/~c)

The GL theory can be extended to the anisotropic limit, for long wavelength

fluctuations (k=0), in which the variation along z is smooth enough so that
ψn−ψn−1

s
can be replaced by ∂ψ

∂z
. The last equation can then be written as:

αψ + β|ψ|2ψ − ~2

2

(
∇− i e

∗

~c
A

)
·
(

1

m̃

)
·
(
∇− i e

∗

~c
A

)
ψ = 0 (3.20)

The mass anitropy produces an anisotropic coherence length:

ξ2
i (T ) =

~2

2mi|α(T )|
, (3.21)

and accordingly an anisotropic upper critical field (see Chapter 1). The degree

of anisotropy is then quantified by the ratio:

γ =

(
mc

mab

)1/2

=
λc
λab

=
ξab
ξc
, (3.22)

where λi describes the screening due to supercurrents flowing along the i-th axis.
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3.1.2 The GL Superconducting Fluctuations

According to the Ginzburg-Landau (GL) theory, the complex order parameter

ψ(r) = |ψ|eiθ has zero average value < ψ(r) > above the critical temperature

Tc, while at thermal equilibrium the mean square value is < |ψ(r)|2 >6= 0. As a

consequence, at T > Tc there will be some islands, of the order of the correlation

length ξ, where highly unstable Cooper pairs are formed. The lifetime of such

pre-formed pairs is proportional to ~
kB(T−Tc) [22], as expected from the uncertainty

principle.3 The more direct way to derive the contribution of thermal fluctuations

to the static magnetization is to start from the following

F = −kBT lnZ, (3.23)

where Z is the partition function. Then, to derive the fluctuation magnetization,

namely the diamagnetic response due to the preformed Cooper pairs Mfl(H,T ),

the derivative of F has to be taken

Mfl(H,T ) = − 1

V

∂F

∂H
. (3.24)

In the Gaussian limit (i.e. neglecting the 4-th power of |ψk|), and for A = 0 and

J = 0, the order parameter of the transition can be expanded in the Fourier sum:

ψ =
∑
k

ψke
ik·r, (3.25)

and accordingly the free energy becomes:

Fn = Fs +
∑
k

(
α +

~2

2m∗
k2

)
|ψk|2 (3.26)

Since the fluctuating variable is the amplitude of the order parameter, the statistic

average of the square modulus has to be evaluated accordingly [22]

< |ψk|2 >=

∫
|ψk|2e−F/kBTd|ψk|2∫
d|ψk|2e−F/kBT

=
kBT

α(1 + ξ2k2)
(3.27)

The latter equation enters into the expression for the correlation function of the

amplitude of the order parameter:The correlation

function

3In the estimation of the Cooper pairs lifetime, the GL energy has been approximated at
the first order.
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g(r− r′) =< ψ(r)ψ(r′) >=
∑
k

< |ψk|2 > eik·(r−r
′). (3.28)

By calling R = r − r′ and substituting equation (3.27) into the last one, and

finally by transforming the sum into an integral, the correlation function turns

out to be:

g(R) =
m∗kBT

2π~2

1

R
e−R/ξ, (3.29)

which shows the spacial extension of the fluctuations in |ψk|. In other words,

the amplitude of the order parameter will have a fixed value within a correlation

length ∼ ξ. By approaching the critical temperature from above, the mesoscopic

island will grow until the bulk superconductivity is reached. It can be argued

that the transition to the bulk superconducting state is nothing but a percolation

of the superconducting order parameter in the whole volume of the material (Fig.

3.4).

Figure 3.4: Sketch of the precursor islands (blue regions), through which the su-

perconducting order parameter can percolate and induce the transition to the bulk

superconducting state.

3.1.3 Scaling laws

Although the theory of the classical superconducting fluctuations can be exactly

solved in the zero-dimensional case, where an analytic form of the spin suscepti-
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bility can be given, in real samples it turns to be hardly suitable. Nonetheless,

the general idea can be extended by treating a macroscopic sample as if it was

made of small ”droplets”, of size L. In such a case, Schmid [88] found for a bulk

metallic sample, in the evanescent field limit H → 0, a susceptibility divergence

at Tc according to:

χ ∼ −10−7

(
Tc

T − Tc

)1/2

. (3.30)

More generally, for evanescent fields, one finds a diamagnetic magnetization linear

with the field H, and accordingly a susceptibility χdia ∝ −εD/2−2, where ε =

(T − Tc)/Tc is the reduced temperature, and D is the dimensionality.

In a more realistic case, when strong magnetic fields are applied, the previous

approach does not apply anymore. The first theoretical effort to interpret the

experimental results in the limit of finite fields was due to Prange, and it was based

on the GL theory [89]. Prange predicted that the diamagnetic (or fluctuative)

response could be written as:

M ′
√
HT

= fP (x), (3.31)

where fP (x) is a function of x = T−Tc
2H

dHc2
dT

sketched in Fig. 3.5.

Figure 3.5: Sketch of the fp originally calculated by Prange in reference [89], from

which the sketch is taken.

In such a case, Prange [22, 90] predicted in 1970 that the fluctuating mag-

netization Mfl diverges as (T − Tc)
−1/2 and also that at Tc(H = 0) there is aPrange’s

law proportionality between Mfl and the field H1/2. Later on these predictions were

experimentally proven on In and Pb samples by Gollub et al. [91], and it was
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found that the magnetic field has the effect to suppress the fluctuations, even

more strongly than in the GL framework. In fact, on increasing the magnetic

field above a characteristic value, the diamagnetic magnetization was found to

decrease on increasing the field.

These ”conventional” fluctuations have been experimentally found in metallic

nanoparticles [92], as well as in optimally doped high-Tc cuprates: optimally

doped YBa2Cu3O7, for example, has been an excellent material to test the GL

theory [93, 94]. The latter compounds are well described in a 3D XY universal-

ity class. In fact, the classical form of the GL free energy functional, has been

effectively substituted by the Lawrence-Doniach (LD) F [ψ] functional [95]. The

high-Tc superconductors were indeed a fertile material for the study of the con-

ventional superconducting fluctuations, because of their small coherence length ξ,

reduced carrier density, strong anisotropy, and high transition temperature. Note

that the Gaussian or, as called hereafter conventional fluctuations, as opposed to

the unconventional ones, where originally well argumented by Aslamazov, Larkin,

Maki and coworkers [96,97].

Another hallmark of superconducting fluctuations is the presence of an upturn

field, Hup. Since the size of fluctuating pairs ξ(T ) grows when the temperature The upturn

fieldapproaches Tc, |Mfl| is expected to show a progressive increase, on cooling. On

the other hand, very high magnetic fields suppress the superconducting fluctu-

ations. The combination of the two effects induces an upturn in the isothermal

magnetization. The value of the upturn field Hup for layered superconductors, in

the framework of the GL phenomenology, is approximately given by Φ0/ξ
2. As

a consequence of that, in high-Tc superconductors, the upturn can be detected

only at very high fields, even for temperatures close enough to Tc.

3.2 Non GL fluctuations in the high-Tc super-

conductors

Contrary to the optimally doped cuprates, underdoped and overdoped materials

show dramatic deviations from the conventional GL behavior [86]. Indeed, in

correspondence with the upturn in |Mfl| [86], the susceptibility χdia for T → T+
c

is anomalously large, and furthermore magnetic history dependence is detected.

Sewer and Beck [98] tried to justify these anomalous value of χdia by taking

into account the phase fluctuations of the order parameter, in the framework

of a layered XY model which describes a liquid of vortices, that can be either
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thermally excited or induced by the magnetic field. Such model was initially

formulated to interpret the former experimental results in YBa2Cu3O6+x [99].

Afterwards, by following the inspiring idea of Sewer and Beck [98] and by taking

into account terms in the free energy functional initially neglected, the model

was extended [86, 100] and the upturn in |Mfl| at low field was justified from a

phenomenological point of view. The model assumes the occurrence, above Tc,

of mesoscopic islands where |ψ| 6= 0, but with strong phase fluctuations which in-

hibit the long-range coherence, while ψ is fixed. Some authors claim that Nernst

effect suggests that vortex excitation survive above Tc [101–103]. However such

issue is still under discussion [104]. Moreover Scanning SQUID microscopy [105]

in La2−xSrxCuO4 thin films has shown phase fluctuations above Tc, leading to

local superconductivity.

As a result of the above discussion, one should finally remark that after the

introduction of the phenomenological GL theory, many steps have been moved

towards the comprehension of the superconducting fluctuations. There is plenty

of experimental evidence of the occurrence of precursor diamagnetism in BCS

superconductors [100] as well as high-Tc cuprates [86, 99, 102, 106]. Some of

the techniques employed so far are Nuclear Magnetic Resonance (NMR) spec-

troscopy, Superconducting Quantum Interference Device (SQUID) magnetome-

try, [99, 107–109] torque magnetometry, [102, 103, 110] resistivity, [111] scanning

SQUID microscopy, [105] Nernst effect [103] and infrared spectroscopy [112].

Moreover, very recent papers show a renewed interest in the fluctuating dia-

magnetism. Sarkar et al. [113] have shown that Banerjee and coauthor’s phe-

nomenological theory [114] has proven successful in describing the fluctuation

diamagnetism of high-Tc superconductors, as a function of doping, temperature

and field.

After these intense experimental investigations on the cuprates, it is conceivable

to drive the attention towards the more recent iron-based superconductors. Pal-

lecchi et al. [24] have shown that the 122 family seems to be the most promising

for applications, as they are characterized by reduced thermal fluctuations, owing

to a Ginzburg number of ∼ 1.5× 10−5. This means that a study of thermal fluc-

tuations in 122 pnictides is quite challenging. The following paragraphs deal with

high resolution magnetization of the Ba(Fe1−xRhx)2As2 compounds, reporting the

first study of precursor diamagnetism, systematically carried out in an iron-based

superconductor, over a broad doping range. Before presenting the experimental

results, some considerations on the phase fluctuation model are reported.
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3.2.1 The Phase Fluctuation model

The Phase Fluctuation model is based on a 3D anisotropic layered XY mode

functional F [θ], [95] where the only independent variable is the phase of the

order parameter θ (London Approximation):

F [θ] =
1

s

∑
l

∫ {
J‖

(
O‖θ −

2ie

c~
A‖

)2

+ J⊥ (1− cos(θl+1 − θl))

}
d2r (3.32)

being s the FeAs inter-layer distance, l the layer index, J‖ and J⊥ the in-plane

and inter-plane couplings, and A the vector potential. In fact, in the theoretical

framework introduced by Sewer and Beck, the amplitude of the order parameter

|Ψ| is supposed to be frozen, while the phase θ fluctuates among mesoscopic

islands, preventing the formation of long-range superconductivity.

Sewer and Beck claimed that it is possible to model the critical behavior of 3D

XY systems in terms of vortex excitations which, for topological reasons, have

to form closed loops or continuous lines crossing the whole system. The loops

are the 3D extension of the planar vortex-antivortex structure, whereas the lines

rise from the presence of an external magnetic flux penetrating into the sample,

likewise the Abrikosov vortices (Fig. 3.6). In the implementation due to Romanó

Figure 3.6: Sketch of a 3D thermally excited vortex loop (left) and of a field-induced

vortex line (right), in a layered superconductor. The field induced vortices are equiva-

lent to the traditional Abrikosov vortices, where the ”pancake” pile up to form a single

line of magnetic flux. Notice that d is the interlayer distance, while in the text it has

been named s. The figure is adapted from Ref. [98].

et al. [100], the phase coherence occurs into ”droplets” of size L. Hence the
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correlation function of the order parameter, namely the phase θ, is

g(r) =< eiθ(r)eiθ(0) >∼ e−r/L. (3.33)

In such a scenario, the fluctuating susceptibility is evaluated by starting from the

following relation:

χ =

〈
∂2FLD

∂H2

〉2

− 1

kBT

〈(
∂FLD

∂H

)2
〉

+
1

kBT

〈
∂FLD

∂H

〉2

(3.34)

where <,> stands for the thermal average. In the gauge A = −yH, the suscep-

tibility is given by:

χ = lim
q→0

K(q)

q2
, (3.35)

where K(q) is made by the sum of three terms:

K(q) =
J‖
d

(
2π

Φ0

)2 [ J‖
kBT

(P (q)−Q(q))− 1

]
. (3.36)

In the last equation P (q) involves the current-current correlation function, Q(q)

comes from the third term of equation (3.34), and −1 is the diamagnetic response.

By following Ref. [86] the response function turns out to be:

K(q) =
J‖
d

(
2π

Φ0

)2
[

2πJ‖
q2
v

(1 + 2n)− δ
(
H

H∗

)2

− 1

]

−
[
kBT

sΦ2
0

1

1 + 2n

[1 + δ(H/H∗)2]2

nv
+
s2γ2(1 + n)

1 + 2n
[1 + δ(H/H∗)2]

]
q2

+
47L2

540

J‖
s

(
2π

Φ0

)2

δ(H/H∗)2q2 (3.37)

where δ is equal to π2(J‖/kBT ) and H∗ = Φ0/L2 is a magnetic field that takes into

account the dimension of the superconducting droplets. Beck and Sewer predictedThermally

activated and field

induced vortices

the formation of thermally activated vortex loops nth, and field induced vortex

lines nH , such that nv = nth + nH . For small fields, the temperature dependence

of the susceptibility is controlled by the vortex loops density [115]

nth = n0e
E0/kBT (1+δ(h)2), (3.38)
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where h = H/H∗ and n0 is the density of thermal activated loops, in the limit

of infinite temperatures. In the opposite limit, the field induced vortices are

dominant, as their density nH is linear in the field:

nH =
H

Φ0

=
H

H∗L2
(3.39)

Finally, n is the number of layers over which the vortices are correlated, which is

a free parameter of the fit.

Owing to the presence of 2D weakly interacting vortices, the 2D XY model can be

mapped into the 2D Coulomb gas. In such a case, each vortex can be associated 2D Coulomb gas

to a charge qv =
√

2πJ‖, and to an activation energy E0 = q2
v ln(r/ξab). Moreover,

a couple of vortex and antivortex has an energy:

Ev−a = qiqj log |ri − rj
a
|, (3.40)

being a the intervortex spacing, ri the i − th vortex position, and qi the vortex

”charge”. It is noticed, incidentally, that q takes the meaning of vorticity, within

the 2D Coulomb gas ∮
dθ(r) = 2πq. (3.41)

Nonetheless, in a 3D XY system, to avoid divergences of K(q)/q in the long

wavelength limit, it is necessary to renormalize both the former quantities:

qv(H) =

√
q2
v(1 + 2n)

1 + δ(h)2
and E(H) =

E0

1 + δ(h)2
(3.42)

Finally the diamagnetic susceptibility can be obtained:

χ = −kBT
sΦ2

0

1

1 + 2n

(1 + δ(h)2)2

nv
− s2γ2(1 + n)

1 + 2n
[1 + δ(h)2] +

47L2

540

J‖
s

(
2π

Ψ0

)2

δ(h)2.

The main difference between the last model and the one presented in Ref. [98],

consists in the presence of the factor h = H/H∗, and of a third positive term,

which is responsible for the sign inversion of the susceptibility, corresponding to

an upturn in the magnetization curves.
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3.2.2 The phase-disordering scenario

The phase-disordering scenario is a three-dimensional version of the well-known

two-dimensional Kosterlitz-Thouless (KT) transition. The latter describes a

phase transition in the 2D XY model which occurs from bound vortex-antivortex

pairs (Fig. 3.7), at low temperatures, to unpaired vortices and anti-vortices (liq-

uid), occurring at the KT critical temperature. In correspondence to the dissoci-

ation of vortex couples, the superfluid density ns(T ) exhibits a sudden jump. The

phase disordering model is suitable to describe layered superconductors, which

are not strictly 2D systems but quasi-2D, namely where there is a small (but non

null) coupling J⊥ among the layers.

If a superconductor is characterized by small regions (as compared to ξ) where

the order parameter θ fluctuates, the energy cost of local variations in θ will be

given by [103,116]

E =
1

2

∫
dr2Ks(∇θ)2 (3.43)

where the phase stiffness Ks = 2ns/4m
∗ is proportional to the superfluid electrons

ns. Moreover the former equation can be written in terms of the superfluid

velocity vs = ~∇θ
2m∗

as:

E =
1

2
m∗ns(0)

∫
dr2v2

s (3.44)

which takes the meaning of a kinetic energy.

In the Kosterlitz-Thouless problem, vortex-antivortex unbinding, occurring at

the KT transition temperature TKT , leads to a loss of long-range coherence in

θ. More generally, the phase-disordering transition Tθ is proportional to the

superfluid stiffness:

Tθ =
AKs(T )

kB
(3.45)

where the A parameter takes different values according to the dimensionality

of the system [117]. Some authors claim the need to re-interpret the Uemura

plot as initial evidence of the phase-disordering scenario [103]. Additionally, the

renormalization group theory predicts the temperature for the ”phase disordering”

transition for quasi 2D systems [116]:

Tc = Tk +

(
π

ln(1/
√
J⊥/J)

)2

. (3.46)

Summarizing, in the strict 2D case, a true phase transition is expected, whereas

in the 3D case, no sudden jump in ns is observed, while a crossover between 2D
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and 3D behavior should occur.

Figure 3.7: Sketch of a vortex-antivortex couple associated to an energy E , and a

charge qv, according to the Coulomb 2D scenario.

3.3 SQUID Magnetometry of Ba(Fe1−xRhx)2As2

single crystals

A. Experimentals

Magnetization measurements have been performed by Superconducting Quan-

tum Interference Device (SQUID), in the Reciprocating Sample Operation (RSO)

mode, which allows to get a better sensitivity (down to 10−8 emu).4 Experiments

have been carried out on three Ba(Fe1−xRhx)2As2 single crystals, namely an un-

derdoped sample, with x = 4.1% (Tc(H0 = 0) = 13.6 K, with H0 the magnetic

field intensity), a nearly optimally doped sample, with x = 7% (Tc(0) = 22 K),

and an overdoped sample, with x = 9.4% (Tc(0) = 15.1 K). All measurements

were made in fields up to 7 T, parallel to the c axis. The critical temperature was

estimated from the magnetization curves versus T at small fields (5 Oe), by ex-

trapolating at M = 0 the linear behavior of M occurring below Tc, as measured in

Zero Field Cooled (ZFC) (Fig. 3.8). A crucial issue that must be addressed, when

approaching the anomalous precursor diamagnetism, is the exact determination

of the critical temperature Tc. This indeed is a fundamental question, since the

difference between the bulk transition temperature Tc(H → 0), and a possible

distribution of local temperatures Tc
loc(r) characterizing a diffuse transition, is a

key-point for the interpretation of the fluctuating diamagnetism, as it will appear

in the discussion of the experimental data. The narrow temperature range where

χ shows a smooth increase, above Tc (Fig. 3.8), is supposed to be characterized

4See Appendix C for details about the experimental technique.
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Figure 3.8: The longitudinal magnetic moment µ measured on the compound x =

4.1%. The blue circles refer to the Zero-Field-Cooled data (ZFC) while the black

squares refer to the Field-Cooled (FC) data. The dashed red horizontal line marks the

Pauli-like trend, while the oblique line is a linear fit. The crossing point identifies the

critical temperature Tc . The inset zooms around the critical temperature, to evidence

the smoothing of the transition, which leads to precursor diamagnetism.

by Cooper pairs pre-formation, and in such a region, accurate isothermal magne-

tization measurements were carried out in ZFC, in steps of 2 Oe up to 1000 Oe.

Magnetization was measured as a function of field (isotherm) and temperature.

High resolution scans were performed for several isotherms in a narrow temper-

ature region above Tc, generally in 0.03 K increments. Additional scans at a

temperature well above Tc allowed the determination of the paramagnetic signal

of the normal state, and background contributions from the sample holder. InFluctuating

magnetization fact, the measured magnetization M is a sum of the fluctuation magnetization

Mfl, the normal state (mainly Pauli-like) MP , and the sample holder Msh con-

tributions. Since the latter are nearly T-independent, in the limited temperature

range just above Tc, the fluctuating magnetization was derived by the following

subtraction:

Mfl(T,H) = M(T,H)− (MP +Msh). (3.47)

Other isothermal curves were measured also below Tc and well above Tc, for

comparison. The isothermal curves show a clear upturn (Fig. 3.9) for all the

samples, in the range of 10 - 30 Oe. Such a small field is not ascribable to

conventional superconducting fluctuations, as it shall be explained hereafter.
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Figure 3.9: The fluctuating magnetization as obtained by equation (3.47), for x=7%

compound, with Tc(0) = 22 K. The upturn, as well as its trend with temperature are

clearly identified.

B. The Upturn field

The upturn field, observed in all the studied samples, shows a peculiar tempera-

ture dependence, namely it increases when the temperature increases, in contrast

with Hc1 field (Fig. 3.10). Moreover, the GL theory predicts that in case of

zero-dimensionality systems, Hup ∼ εΦ0/ξ
2. For ξ ∼ 20− 30 Å and ε ∼ 0.02, the

upturn is expected to be in the range of 10 T, whereas the reported upturn field

are four orders of magnitude smaller! Additionally, the value of the diamagnetic

susceptibility is anomalously large, in the precursor region. These observations

suggest that the origin of the present phenomenology cannot be ascribed to con-

ventional GL fluctuations.

A tentative explanation may rely on the inhomogeneity of the sample, which is

responsible for diffuse transition [118, 119]. In this respect, the behavior of the

upturn field with the temperature is a crucial aspect for discriminating the pres-

ence of diffuse transition. In these compounds the upturn field increases with the

increase of the temperature, although in a narrow temperature range above Tc

(Fig. 3.10). At higher temperatures, the upturn field begins to decrease, suggest-

ing a coexistence of non conventional superconducting fluctuations and diffuse

transition, in the same sample (see Section C). Noticeable, ∆Tfl, defined as the

range from Tc to the temperature where the upturn field begins to decrease,
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Figure 3.10: (a) The upturn field as a function of temperature for x = 7%, derived

by taking the derivative of Mfl with respect to the field. (b) The upturn field for

x = 9.4%, where the fluctuation region is wider. The insets show the profile of the

upturn field over a large temperature range: below Tc the field shows the typical Hc1

trend. Above Tc the upturn field increases, and then it decreases. The red lines show

the temperature region which is zoomed in the main plot.
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shows a consistent increase, when plotted as a function of the Rh content (Fig.

3.11), suggesting that the non-magnetic impurity may facilitate the formation of

the superconducting pre-formed islands.5 The latter result implies the following Critical region

conclusions: (i) the anomalous superconducting fluctuations are not only present

in the underdoped or overdoped regions, as found in cuprates, but also in the

nearly optimally doped compounds; (ii) the extension of the fluctuation region

increases when the doping concentration increases; (iii) no relationship can be es-

tablished between the superconducting fluctuations and the pseudo-gap. In fact,

the 122 iron-pnictides do not show any pseudo-gap feature and, in addition, the

superconducting fluctuations seem more robust when the electronic concentration

increases.
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Figure 3.11: The plot shows the evolution of Tc (right axis) and ∆Tfl (left axis), as a

function of Rh content, x. The dotted-dashed lines are guide for the eye: the blue line

sketches the profile of the superconducting dome. ∆Tfl monotonically increases with

the doping concentration.

C. Isothermal Magnetization

The analysis of these results initiates from the interpretative model based on a

3D XY liquid of vortices, as introduced by Sewer and Beck, and implemented

later on by L. Romanó and coworkers [86, 100]. Here the amplitude of the order

parameter |Ψ| is supposed to be frozen at a non-zero value, while the phase θ

fluctuates in time, preventing the formation of long-range superconductivity. Such

5Further experimental evidences are needed to explore such a claim.
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model predicts the presence, above the bulk Tc, of superconducting ”droplets”,

characterized by the formation of thermally activated vortex loops nth, and field

induced nH vortex lines. For small fields, the temperature dependence of the

susceptibility is controlled by the vortex loops density [115]

nth = n0e
−E0(1+2n)/kBT (1+δ(h)2), (3.48)

where the energy activation depends on the number of layers n involved in the

pancakes. The second derivative of the free energy with respect to H yields the

field-dependent susceptibility, that is recalled below: [86]

χ = −kBT
sΦ2

0

1

1 + 2n

(1 + δ(h)2)2

nv
− s2γ2(1 + n)

1 + 2n
[1 + δ(h)2] +

47L2

540

J‖
s

(
2π

Φ0

)2

δ(h)2

(3.49)

where s is the interlayer distance and γ = ξab/ξc is the anisotropy ratio.

A first numerical integration of the last equation allows one to fit the experimen-

tal data. The results revealed the presence of an additional contribution, which

is reasonably ascribed to the diffuse transition. In fact, the presence of regions

where Hup decreases with increasing temperature, shows the fingerprint of a local

distribution of Tc(r). The latter contribution must be removed from the data,

to correctly employ the discussed theoretical framework, that strictly refers to

the case where only SF are present. For this reason, a curve Mfl(T
∗, H) was

subtracted from the fluctuating magnetization, where T ∗ is found in the diffuse

region, such that T ∗= 23.1 K for x=7%, and 17.5 K for x=9.4%. Despite the

heuristic nature of the approach, the result of the fit is very good (Fig. 3.12).

Even though more accurate analysis is needed, this evidence suggests a simple

approach to the problem of treating the coexistence of SF with a distribution of

transition temperatures.

In the fitting procedure, the interlayer distance has been set s=6 Å according

to the structural data [26],while the anisotropy ratio was taken γ = 2 ÷ 3 [21].

This small anisotropy implies a large number of layers involved in the pancakes.Fit results

Indeed, according to the best fitting of the isothermal magnetization curves, at

temperatures T = 22.4 K for x=7% and 15.35 K for x=9.4%, the expression

E0(1 + 2n)/kBT is estimated about 96 in the former case, and 76 in the second

one, corresponding respectively to n ∼ 11 and n ∼ 9. Hence, the activation

energy in Eq. (3.48) turns out E0 ∼ 2kBTc in the two cases, which is of the same

order of magnitude usually estimated in YBCO (E0 ∼ 10kBTc). These values are

confirmed also at other temperatures, suggesting that n is nearly temperature
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Figure 3.12: The fluctuating magnetization, as a function of the field, for sample

x = 9.4 % (top panel), and x = 7 % (bottom panel). The curves have been corrected

by the diffuse transition contribution, as explained in the text. The solid lines are the

fit to the equation (3.49).
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independent. By comparison, YBCO and Sm-based cuprates [106] have shown n

= 3, as expected from their higher anisotropies.

In the numerical integration, also H∗ and J‖ are given as free parameters. From

the characteristic field H∗, it is possible to estimate an order of magnitude of

the average size L of the superconducting regions. In Tables 3.1 and 3.2 the

significant fitting parameters, respectively for nearly optimally doped and over-

doped compounds, are reported. The underdoped sample displayed the same

phenomenology, however because of the poor quality of the data, a reliable fitting

could be hardly achieved. Nevertheless, also in x=4.1%, the upturn field shows

the same trend with the temperature.

Table 3.1: Fit results for sample x =7%. N represents the volumetric density of
mesoscopic islands, of surface L2.

ε N × 1014(cm−3) L (nm)

0.0048 3.0234 580
0.0058 2.5426 574
0.0067 2.5176 550
0.0089 2.0198 530
0.01345 1.8153 510

From the fit the pre-exponential factor n0 turns out to be 2.5×1019, for x = 7

%, and 1.5×1020 for x = 9.4 % [120].

Table 3.2: Fit results for sample x =9.4%.

ε N × 1014(cm−3) L (nm)

0.01466 9.0625 480
0.023 1.2706 310
0.033 1.1784 270
0.0466 1.10283 260
0.0533 0.8610 260
0.06 0.7077 260

D. Restoring the Conventional Fluctuations

The results presented in the previous section show the occurrence of unconven-

tional superconducting fluctuations, in the limit of small fields. On the contrary,
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when a magnetic field above ∼ 4500 Oe is applied, a different phenomenol-

ogy is found. The isothermal magnetization was measured at fixed field, in

Field Cooled (FC). The diamagnetic magnetization was found by subtracting,

from the raw data the high temperature (i.e. normal phase) contribution, the

latter being estimated by a polynomial fit. Afterwards, the reduced magneti-

zation mred = − M√
HTc

, was studied as a function of the reduced temperature

ε = (T − Tc)/Tc. According to the GL theory, in the 3D anisotropic limit, the

mred curves should cross at ε = 0 in correspondence to the value

m′red = −M(Tc)√
HTc

=
kB

Φ3/2
m3(∞)γ (3.50)

where m3(∞) = −0.323 [121, 122]. Fig. 3.13 shows that the curves are nearly

parallel below 4500 Oe, while above that threshold they begin to cross at about

ε = 0. Interestingly, the crossing point implies an anisotropy ratio of γ = 2 ÷ 3

(Fig. 3.13), in agreement with the values found in literature for these compounds

[21,26].

One might argue about the field dependence of the critical temperature Tc.
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Figure 3.13: The reduced magnetization as a function of the reduced temperature ε

is reproduced for fields below 2 T, for x = 7%. Above ∼ 4500 Oe, the data cross at

values included into the two dashed lines. Such values are in agreement with the GL

theory for 3D XY systems, [121] when anisotropy ratio of 2÷3 is assumed.
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Indeed the former relation has been derived from Ref. [122]:

Mfl(T,H)√
H

= −kBT
4π

(
4π

Φ0

)3/2
√

mc(0)

mab(0)
×
(
T − Tc(H = 0)

2H
|∂Hc2/∂T |Tc

)
.

(3.51)

For small fields H such that Tc ∼ Tc(0), the scaling function f , can be evaluated

numerically: f(0) ∼ 0.09133, and the former relation turns into equation (3.50).

This suggests that one should be careful when applying the former scaling, in the

high fields regime.

Furthermore, a study of the fluctuating magnetization, up to the maximum

achievable field (7 T), can give insights into the occurrence of conventional fluctu-

ations. Nevertheless one must be careful, since magnetic impurities are relevant atPrange

regime high fields. Indeed a ferromagnetic contribution was found and subtracted from

each curve, eventually showing a non negligible diamagnetism, at high fields. Fig.

3.14 evidences the occurrence of a second strong diamagnetic contribution, which

is precursor of the formation of a second upturn Hup2, at high fields as expected

for the GL theory. The linear trend of Mfl, at high fields and for T > Tc suggests

that the Prange regime is fulfilled, namely Mfl ∼ H [122]. Note that Mosqueira
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Figure 3.14: Field dependence of Mfl for x = 7 %: the strong diamagnetic contribution

suggests the formation of a second upturn, at very high fields not achievable by the

magnet. The first upturn has been added for comparison. The red solid curves are

guides for the eye. The inset shows the first upturn field and the onset of the second

one, that is marked by the second arrow.
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et al. recently found classical GL fluctuations in Ba1−xKxFe2As2, [123] in agree-

ment with a 3D anisotropic approach in the high field range. A recent Raman

study on a sample of Ca4Al2O5.7Fe2As2 showed an anomaly at 60 K ∼ 2 Tc, which

has been ascribed to a strong coupling of the observed phonon mode with the

superconducting order parameter fluctuations [124].

Finally, it should be remarked that the presence of both conventional and uncon-

ventional SF is not a totally unexpected result. In fact a similar phenomenol-

ogy was observed by Prando et al. [125] in SmFeAsO0.8F0.2. However, while

Ht is ∼ 4500 Oe in 122 iron-based superconductors, it turns into higher values

(Ht ∼ 1.5 T) in 1111 compounds.

E. Irreversibility and Relaxation

Another still debated issue concerning the cuprates, is the manifestation of an

irreversibility effect in the isothermal magnetization, above Tc (Fig. 3.15) [126].

Such an effect, not predicted within the GL theory, is a clear indication that some

magnetic flux enters into the sample. On the other hand, according to the super-

conducting island scenario, it is possible to ascribe irreversibility to the presence

of vortices entering the superconducting ”droplets”. Remarkably, in Rh-doped

Ba122 compounds, the FC and ZFC fluctuating magnetizations show very dif-

ferent absolute values, namely the ZFC magnetization turns out to be five time

smaller than the FC one, at 16 Oe.

It is not clear whether the irreversibility is due to vortices entering the region of

the sample characterized by a local distribution of Tc, or to field-induced vortices

entering the metastable islands discussed in the text. In fact, even though the

upturn field is increasing with the temperature, a simultaneous presence of dif-

fuse transition with anomalous SF has been found. Noticeably, the reversibility

is restored around 4000-5000 Oe, in good agreement with the field where the GL

theory can be applied.

Finally, Fig. 3.16 shows another interesting result that is encountered just in

the critical region: if the magnetization is measured at progressive time intervals

(in ZFC) at 16 Oe,6 a time-dependent phenomenon is observed, namely M relaxes Relaxation

to the FC value, in a long time scale (nearly 7 h). This relaxation mechanism

cannot be directly related to the pre-formed Cooper pairs which are, by nature,

fluctuating. Furthermore, magnetic relaxation above Tc might be confused with

616 Oe is the field of the maximum irreversibility.
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Figure 3.15: The plot shows a comparison between FC and ZFC magnetization, u just

above Tc , in the fluctuation region, for sample x = 9.4%. The evident difference among

the two indicates the presence of a strong thermal history dependent effect.

magnetic impurities. Nevertheless, if this was the case, the region above the fluc-

tuating phenomena should display the same trend. To work out the origin of

this phenomenon, the relaxation has been compared in three different tempera-

ture regimes (Fig. 3.16). Remarkably, there is no relaxation in the normal state,

while in the fluctuating phase and in the mixed phase, the effect is clearly ob-

served. Indeed, this might be the proof that the precursor islands host persistent

diamagnetism.
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Figure 3.16: The relaxation of the magnetization for three different temperature

regimes, namely the mixed phase (a) where the relaxation is ascribable to the Abrikosov

vortex relaxation, the superconducting fluctuation (b) and the normal phase (c).

3.4 Conclusions

The diamagnetic response of Ba(Fe1−xRhx)2As2 crystals is studied by high reso-

lution magnetization measurements, over a broad doping range. At low magnetic

fields, namely H < 4500 Oe, the experimental findings cannot be described within

the classical Ginzburg-Landau theory, and they seem to be consistent with the

phase fluctuating scenario. In such framework, unconventional superconducting

fluctuations are supposed to develop into precursor islands, where the amplitude

of the order parameter is frozen, while the long-range phase coherence associ-

ated to the bulk superconducting state is prevented by strong fluctuations of the

phase. At higher temperature, the effect of diffuse transition is likely responsible

for the decrease of the upturn field. A first tentative to describe both phenomena

has provided a good agreement with the theory of anomalous superconducting

fluctuations.

On the other hand, when strong fields are applied, the GL theory is restored

and the experimental findings agree with the 3D XY universality class. In fact,
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the indication of a second upturn, together with the crossing of the reduced

magnetization at Tc, are interpreted as the precursors of conventional fluctuations.

Such dichotomy seems peculiar of the iron-based superconductors, since similar

results were found also in a member of the 1111 family.

The phenomenology observed in these systems occurs in a narrow tempera-

ture region, which makes more difficult to study the effects accompanying the

superconducting fluctuations, at variance of the more noticeably phenomena ob-

served in the cuprates. Still, the experimental evidences displayed in this Chapter

clearly support the presence of anomalous superconducting fluctuations, in the

iron-based superconductors.
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Chapter 4
Evidence of unconventional

low-frequency dynamics in the

normal phase of

Ba(Fe1−xRhx)2As2

It is widely believed that understanding the normal phase properties of the high

temperature superconductors will also shed light onto the superconducting cou-

pling mechanism. In the NMR study presented in this Chapter, a clear evidence

for robust spin-fluctuations is deduced from the temperature dependence of 1/T2,

the linewidth, and the spin-lattice relaxation rate in the normal state.

The motivation to study the spin-echo decay time T2, lays on the fact that very

few data reporting T2 have been published so far, despite the large amount of

Nuclear Magnetic Resonance studies on the iron-based superconductors. In fact,

most of the NMR investigations have concentrated on the features emerging from

the spin-lattice relaxation rate (1/T1) measurements [37, 42, 43, 83, 127–129] and

much attention has been paid to the intriguing issues of the superconducting

coupling, the spin gap symmetry, and the nanoscopic competition/coexistence of

superconductivity with magnetism [43,83,127,128]. However also 1/T2 is a useful

tool to probe very low-frequency excitations [35,130,131].

This Chapter is organized as follows: at first the T2 issue is introduced through a

historical overview, and secondly a systematic study of 75As NMR spin echo de-

cay in Ba(Fe1−xRhx)2As2 iron-based superconductors, is discussed. The spin echo

shows a high temperature dominant Gaussian decay, which becomes exponential

at low temperature. The exponential decay rate increases upon cooling already in
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the normal phase, evidencing the onset of an unconventional very low-frequency

activated dynamic, whose characteristic correlation time is derived together with

the corresponding energy barrier. This dynamic persists across the whole phase

diagram up to the overdoped compound, and it is less pronounced if the mag-

netic field is applied perpendicular to the FeAs layers. Moreover a similar dynamic

affects 1/T1, as well as the linewidth. Toward the end of the Chapter, an inter-

pretative framework based on domain walls motion, possibly involving nematic

fluctuations will be discussed. Further considerations concerning an analogy with

the spin/charge stripe order will be proposed.

Finally, the dependence of the Knight shift with the temperature, will be ad-

dressed, and it will reveal an ”exotic” behavior, in the normal phase, that is

currently under debate.

4.1 Spin-echo decay time as a probe of the spin

fluctuations

The study of the spin excitations emerging in the normal phase of superconduc-

tors is of major importance to unravel the mechanisms driving the Cooper pair

formation. Both in the cuprates and in the iron-pnictides, the presence of com-

peting interactions gives rise to complex phase diagrams and to quasi-degenerate

ground-states, which can cause unconventional dynamics at low energies.

Nuclear Magnetic Resonance has played a key role in the study of the low-

frequency excitations, in the normal state both of high-Tc superconductors, and

more recently of the iron-based superconductors. In particular, the issue of a

dynamic effect emerging in the spin-echo decay time has been discussed in ear-

lier times [132–135]. Several subjects were under discussion: firstly the indirect

spin coupling was found as the main contribution to the dephasing of the NMR

echo, while the dipole-dipole interaction was a negligible correction [136]. Sec-

ondly in some cuprates, like YBa2Cu3O6.63 [134], the increase of the 1/T2 upon

cooling revealed the growth of antiferromagnetic (AF) correlations, down to a

temperature where the spin fluctuations probed by the 1/T1 seemed suppressed

(Fig. 4.1). Indeed in the cuprates, one of the most significant achievements was

the derivation of the staggered static spin susceptibility from 63Cu(2) Gaussian

echo decay rate 1/T2G [134]. It was demonstrated by Pennington et al. [136],

that measurements of the nuclear transverse relaxation rate in high-Tc materials,Indirect

spin coupling provide important information concerning the static q-dependent spin suscepti-
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4.1. Spin-echo decay time as a probe of the spin fluctuations

Figure 4.1: Temperature dependence of 1/T2G (filled circles) and 1/(T1T ) (empty

circles) of 63Cu NMR on YBCO. The figure is adapted from Ref. [134]. The spin-

spin relaxation rate keeps increasing, while the 1/(T1T ) (empty circles) drops down,

because of the fundamental difference in the static and low-frequency susceptibility at

the antiferromagnetic wavevector (π, pi).

bility, which is complementary to the information obtained from 1/T1T . They

found that 63Cu nuclear spins in YBa2Cu3O7 are coupled via virtual electronic

spin excitations, leading to a large enhancement of the transverse nuclear relax-

ation rate. Pennington and Slichter analyzed such indirect coupling in the light of

the phenomenological model of antiferromagnetic spin correlations proposed by

Millis, Monien, and Pines (MMP) [137]. Such an indirect coupling is well known

in metals (as the Rudermann-Kittel-Kasuya-Yosida mechanism). MMP describe

the spin dynamics of the CuO2 planes with a spin susceptibility strongly peaked

about the (Néel) antiferromagnetic wave vector. In essence, a nucleus I1, located

at the origin, polarizes the electron spin at position Ri, resulting into a spatially

varying spin polarization:

< Sα(Ri) >∼ Iα1
∑
q

e−iqRiχαqA
αα
q , (4.1)

where α = x, y, z are the components involved. Then the electron spin can

polarize a second nuclear spin I2, resulting into a final indirect interaction among

the two nuclei. By calculating the second moment (M2) of the NMR spectrum,
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in presence of that interaction, one finds [134]

2M2 =
1

T 2
2G

=
c

8~2

1

(~γe)4

∑
q

|Azzq |4χ2
q −

(∑
q

|Azzq |2χq

)2
 (4.2)

where Aq is the form factor (see Appendix A), χq is the wave-vector dependent

spin-susceptibility, c is the abundance of the nuclear spin and z is the direction

of the external magnetic field.

Later on, a similar compound was found to exhibit a bump in the echo decay rate

of 89Y nucleus [138]. Walstedt and Cheong [135] ascribed this feature to un-like

nuclear dipolar interaction (Y-Cu) as a source of local field, and Cu spin-lattice

relaxation as the source of field fluctuation. Remarkably, when the field was par-Controversial

peaks in 1/T2. allel to the c axis of the crystal, a peak in 1/T2 appeared (Fig. 4.2), just below

the transition temperature Tc. Such a feature was associated with the freez-

ing/melting of the vortex lattice. Additionally, an 17O NMR study on the same

Figure 4.2: NMR echo decay rate for YBa2Cu3O7, measured at 9 T, with the magnetic

field oriented parallel to the c axis, for 17O (open circles) and 89Y (filled squares).

Vertical lines label, for the applied field of 9 T, Tc (90 K) and TR=0 (76 K), where

resistance vanishes. Inset: 89Y linewidth (square root of the second moment), in Gauss,

vs T. The figure shows the presence of two peaks in the ”extra” (namely exponential)

relaxation rate, both below the superconducting transition. The Figure is adapted from

Ref. [138].

compound evidenced a second peak, at a lower temperature. The second peak

was not understood at that time [139]. Indeed, the same feature was observed
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4.1. Spin-echo decay time as a probe of the spin fluctuations

also in NQR experiments in YBa2Cu3O7−x, thus ruling out the FLL hypothesis

and suggesting other mechanisms involving charge fluctuations [138–140].

Noticeably, nuclei with a smaller hyperfine coupling show a different phenomenol-

ogy of 1/T2. In fact 199Hg NMR study of HgBa2CuO4+δ revealed that the echo

decay could be fit by the product of a Gaussian and an exponential compo-

nent [133, 141], the former being due to pseudo−dipolar interaction via the con-

duction electrons, while the latter was justified again in terms of vortex dynamics.

In addition to the phenomenology related to superconductivity and vortex lattice

dynamics, the high-Tc superconductors, can shed light onto a totally different

kind of problem. Indeed the precursor materials of cuprates are the prototypes of

the two-dimensional Heisenberg antiferromagnets, which display magnetic frus-

tration. In fact, other achievements of the T2 study have been obtained from

the investigation of spin fluctuations taking place in frustrated systems. Two- 2DQHAF

dimensional S = 1/2 Heisenberg antiferromagnets (2DQHAF), are characterized

by strong quantum spin fluctuations because of (i) the reduced dimensionality

of the interaction and (ii) the low spin value. In such systems, long range order

would take place, in principle, only at zero temperature.1 Moreover the presence

of frustrated antiferromagnetic exchange interactions further enhances quantum

fluctuations. This situation is described by the J1-J2 model on a square lattice,

where the next-nearest-neighbor interaction J2, acting along the diagonal of the

square, competes with the nearest-neighbor interaction J1, acting along the side

of the square [142, 143]. On increasing J2, one firstly expects a quantum phase

transition from a Néel ordered phase to a nonmagnetic ground state, the nature

of which is still a subject of debate, and then another transition to a collinear

ground state. The collinear phase can be considered as formed by two interpen-

etrating sublattices with a reciprocal orientation of the Néel vectors, which can

classically assume any orientation. In Li2VOSiO4 and Li2VOGeO4, µSR spec-

troscopy together with 7Li NMR investigation, revealed the occurrence of very

slow spin-fluctuations in 1/T2, which have been ascribed to domain walls motion

associated with the two collinear phases, CAFI and CAFII (Fig. 4.3).

Another vastly debated effect, that can be probed by means of 1/T2, is the

spin/charge stripe ordering, mostly occurring in strongly correlated materials, Spin/charge

stripessuch as transition metal oxides or organic conductors. Due to the strong inter-

actions between electrons, charges are localized on different sites, leading to an

ordered superlattice, which may assume different patterns, ranging from vertical

1More precisely, the magnetic order is prevented in low-dimensional systems by the Mermim-
Wigner theorem. As a consequence of that, the magnetic order can occur if a dimensional
crossover to 3D takes place.
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Figure 4.3: 7Li NMR temperature dependence of 1/T2 in Li2VOGeO4 above TN , for

H =3.7 kG. The dotted line shows the best fit according to an activated temperature

dependence of 1/T2, with an effective barrier of 3.5 K. The Figure is adapted from

Ref. [143].

to horizontal stripes, or also checkerboard patterns. The charge order transition is

accompanied by symmetry breaking, it may lead to ferroelectricity, and addition-

ally it is often found in close proximity to superconductivity. NMR spectroscopy

is a powerful tool to measure the charge re-arrangement, in particular via the

study of the first moment of the line [144]. Very recently 1/T2 has provided some

insights into this topic. In fact, Wu et al. [144] have found in YBCO, just below

the temperature of the spin charge ordering, a strong increase of 1/T2(Fig. 4.4).

That enhancement is accompanied, also in other systems, by a change in the an-

alytic expression of the spin-echo decay, from Gaussian to exponential [145]. Wu

et al. interpreted their result in term of antiferromagnetic spin-density-wave fluc-

tuations, that are slow enough to appear frozen, on the timescale of a cyclotron

orbit.

After the discovery of iron-based superconductors, the scenario became more

and more complex. T2 was mainly studied via Hahn Echo (HE ) and Carr-Purcell-The iron

-pnictides Meiboom-Gill (CPMG) sequences (see Chapter 1). In essence, the optimally

doped Ba(Fe1−xCox)2As2 [35] and Ba(Fe1−xRhx)2As2 [130] display a peak in 1/T2,

below Tc, which was associated to the vortex dynamics (See Chapter 1). In

spite of that, the behavior of 75T2 in the normal phase of Ba(Fe1−xRhx)2As2

superconductors is not completely understood [35, 130], and its absolute value is

far from any theoretical expectation. In the following section the experimental

results on Ba(Fe1−xRhx)2As2 are presented.
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Figure 4.4: Increase in the 63Cu 1/T2 on cooling below Tcharge (grey rectangle), ob-

tained from a fit of the echo decay with a stretched exponential. The 1/T2 is enhanced

by the magnetic field. The Figure is adapted from Ref. [144].

4.2 Spin-spin relaxation rate study of

the Ba(Fe1−xRhx)2As2 family

Three different single crystals belonging to the Rh-doped family Ba(Fe1−xRhx)2As2

have been investigated: an underdoped sample, with x = 4.1% (Tc(0) = 13.6 K),

a nearly optimally doped sample, with x = 6.8% (Tc(0) = 22.4 K), and an over-

doped sample, with x = 9.4% (Tc(0) = 15.1 K). The critical temperature Tc of

any sample was determined prior to the NMR experiment, via SQUID magnetom-

etry, as described in Chapter 3. Subsequently, the samples were studied via 75As

NMR, at three different magnetic fields: 6.4, 9 and 11 T, with H0 parallel and

perpendicular to the c axis. The spin-echo decay time was estimated by fitting

the decay of the transverse nuclear magnetization, measured by a standard HE

(π/2− τ − π) and by a CPMG sequence (π/2x− τ − πy − τ − πy...), by varying τ

and extracting the intrinsic T2CPMG for τ → 0 [146]. Firstly, the HE decay data

are shown.

4.2.1 Hahn Echo decay

The high temperature decay rate revealed a non-negligible Redfield contribution,

evidencing a linear dependence of T2 on T1 (Fig. 4.5). According to that, the raw

data have to be corrected by the T1 contribution to the dephasing of the nuclear
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Figure 4.5: The 1/T2 versus 1/T1 measured in the normal phase, for x = 9.4 %, at 6.4

T ‖ c. T2 is evaluated as the time when the (normalized) echo amplitude decays of 1/e.

spin signal:

Mt(2τ) = E(2τ) exp

(
− 2τ

T1e

)
, (4.3)

which encloses the spin-lattice contribution to the echo decay. Walstedt et al.

[135] calculated the expression of 1
T1e

when the spin-lattice relaxation rate shows

anisotropy. According to these authors, the Redfield contribution becomes:

1

T
‖c
1e

=
3

T
‖c
1

+
1

T⊥c1

(4.4)

1

T⊥c1e

=
3

T⊥c1

+
1

T
‖c
1

, (4.5)

where the symbols ‖ and ⊥ refers to the external field. After that, the corrected

data have been fit to the product of an exponential and a Gaussian decay (Fig.

4.6 inset):

E(2τ)/E(0) = exp(−2τ/T2exp) exp(−(2τ)2/2T 2
2G). (4.6)

The two components evolve with the temperature in such a way that, in the high

temperature regime, the Gaussian term is significantly larger than the exponen-

tial one, and both are weakly temperature dependent. This trend persists down

108



4.2. Spin-spin relaxation rate study of
the Ba(Fe1−xRhx)2As2 family

0 2 4
0.01

0.1

1

10 100

0.1

1

 

T (K)

1/
T 2e

xp
(m

s-1
) 1/T

2gauss (m
s

-1)

Tc

x = 6.8 %

0.0

0.3

0.6

0.9

1.2

1.5

1.8

x = 9.4 %

 

 

                      70 K
                      50 K

         30 K
         20 K
         17 K
         15 K
          13 K

M
t/M

0

2  (ms)

Figure 4.6: The exponential (black half filled squares) and Gaussian (blue half filled

circles) 1/T2 measured by Hahn echo at 11 T ‖ c of the x =6.8% sample. The red solid

line shows the best fit to Eq. 5.12. (Inset) The spin-echo amplitude decay at different

temperature , for x = 9.4%, at H0 = 11 T ‖ c axis, corrected by the T1 contribution.

to a temperature T ∗ > Tc, where the Gaussian contribution becomes negligible,

while the exponential rate grows rapidly and becomes the main contribution to

the echo decay (Figs. 4.6). The experimental values of T ∗ are 22 ±2 K and 18±2

K for x = 6.8% and x = 9.4%, respectively. Here the attention will be focused on

the low temperature exponential component, while the high temperature constant

behavior will been discussed in a following section. From Fig. 4.13 one notices

that also 1/T2CPMG is significantly reduced with respect to 1/T2exp for T < T ∗,

and shows a less pronounced field and temperature dependence. HE and CPMG

sequences are sensitive to fluctuations with a characteristic time scale τc ∼ τ

and ∼ τCP , respectively. The difference between the magnitude of 1/T2CPMG and

1/Texp points out an upper and lower limit for the correlation time probed by 75As

nuclei. In fact, since a non-negligible effect is visible in both the sequences, one

may argue that the correlation time of the fluctuations, τc, is between τecho ∼ ms

and τCP ∼ µs. More precisely, it can be observed, by the following T1 analysis,

that τc grows above the µs, below T ∗.

Further insights into the low-frequency dynamics can be derived from the T-
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dependence of the full width at half maximum (FWHM) of the central 1/2 →
−1/2 NMR line, obtained from the Fourier transform of half of the echo (Fig.

4.7). Indeed the NMR spectrum displays an inhomogeneously broad lineshape,
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Figure 4.7: (a) 1/T2exp measured at H0 = 6.4 T ‖ c, for x =9.4%. The red solid line

shows the best fit according to equation of fast motion (see text below). The blue circles

show 1/T2exp measured at H0 = 6.4 T ⊥ c. (b) The T dependence of the FWHM of
75As central line: the width increases with decreasing T down to T ∗ (red dashed line),

where it begins to decrease. Finally the linewidth increases again at the vortex freezing

temperature Tm (green dashed-dotted line). The blue line marks Tc at 6.4 T. The inset

displays an example of the 75As NMR spectrum, showing a clear asymmetry.

characterized by a low-frequency tail. A possible reason for that may rely on

the mosaicity, namely the fact that such crystals may show some microscopic

misalignment, within few degrees [147,148].

The line becomes progressively broad and symmetric upon cooling. Surprisingly,

at the same temperature where the echo decay becomes exponential, the linewidth

starts to decrease, suggesting the onset of low-frequency dynamics which canFWHM vs T

average-out the static frequency distribution probed by 75As nuclei. Finally, at

Tm < Tc, the line broadens again (Fig. 4.7), as expected when the solid/glassy
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vortex phase sets in [35,130,149]. The increase of the linewidth upon cooling (in

the high temperature range) may be due to a distribution of local hyperfine fields

and/or quadrupolar frequencies around the Rh ions. A source of hyperfine fields

distribution can be found in RKKY-like effects around each Rh ion, which would

induce decaying alternated oscillations of the local paramagnetic susceptibility

[70].

Being said that, there is an additional effect of the magnetic field amplitude

on the spin-spin relaxation rate. Fig. 4.8 shows 1/T2exp versus temperature, Magnetic

field effectmeasured at two different fields. It turns out that the field intensity has the effect

of enhancing the spin fluctuations, namely the slowing down of the fluctuations

occurs at higher temperatures. By comparing the measurements performed on
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Figure 4.8: The exponential 1/T2 versus temperature is measured for x =9.4 %, with

the field parallel to the c axis. The larger the field intensity, the higher the temperature

when the dynamic starts to get slower (T∗). The arrows mark Tc.

the three Ba(Fe1−xRhx)2As2 crystals, for different magnetic field orientations (Fig.

4.7) and magnitudes (Figs. 4.7 and 4.13), one can conclude that the enhancement

of 1/T2exp has the following main features:

• the dynamic begins to slow-down above Tc;

• it is favored by the magnetic field;

• it is accentuated for in-plane fields;
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• it persists across the whole phase diagram, up to the overdoped compound.

Further quantitative information on the correlation times describing the low-Fast motions

frequency activated dynamics, can be gained from the analysis of the spin-echo

decay rate 1/T2exp. In fact, when the HE becomes exponential, 1/T2exp can be fit

by the fast motions expression [62,69] (see Chapter 2)

1

T2exp

=75 γ2 < h2
e‖ > τ0e

U(H,x)/T (4.7)

where the energy barrier U is assumed to depend on the field intensity H0 and

on the Rh concentration x. The fit results, obtained by using the τ0 value de-

rived from 1/T1 (see section 4.3), are shown in Fig. 4.9. The reader may notice

that U is field-independent, in the explored range, while it clearly depends on

the electronic concentration, namely it decreases by increasing the Rh content.

This trend indicates that the larger the electron doping, the faster the dynamics,

which is in agreement with the expectations. In fact, when the compound lays

into the underdoped region, a static antiferromagnetic order should set in [65].

Very recently a new NMR study, regarding the Ba(Fe1−xCox)2As2 family [150],

has shown a similar phenomenology both in the spin-lattice and spin-spin relax-

ation rates. The authors claim that their observations reveal the coexistence of

frozen antiferromagnetic domains and superconductivity for 0.060 < x < 0.071.

The inhomogeneous glassy dynamics is argued to be an intrinsic response to the

competition between superconductivity and antiferromagnetism.

4.2.2 The Gaussian contribution to T2

Besides the exponential component of the spin-echo decay time, there is also a

Gaussian contribution, which is weakly temperature dependent, and the value of

which cannot be ascribed to the dipolar interaction among like As spins, since

the experimental value of the T2G is 3.6 times bigger than the theoretical predic-

tion from the rigid lattice summations (0.7 ms) (see Appendix B). On the other

hand Oh et al. in the 23Na NMR investigation of NaFe0.975Co0.025As2 found an

experimental T2 = 0.34 ms (at Tc) that is very close to the theoretical prediction

(0.4 ms) [151]. Anyhow, the 75As NMR study on the same compound still gives

a much longer T2, suggesting that the As nuclei interact via some kind of mecha-

nism, which might be the exchange-narrowing one, debated in Chapter 1 [35]. On

top of that, in x = 7% compound of Ba(Fe1−xRhx)2As2 family, the spin-spin re-

laxation rate at low temperature agrees well with the Van-Vleck calculation [130].
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Figure 4.9: (a) The figure shows the energy barriers estimated from 1/T2exp according

to Eq. (4.7) at different doping. (b) The field dependence of the amplitude of the lon-

gitudinal field fluctuations is shown for different Rh concentration. A field and doping

dependence is clearly visible for x = 9.4%. The inset shows a sketch where colum-

nar antiferromagnetic regions are separated by antiphase domain walls: the blue/red

arrows stand respectively for the down/up spins, while the grey circles indicate the

electronic charges which may favor the domain formation. Furthermore the fluctuating

longitudinal local field he‖ shows a continuous increase with the applied field and the

doping.

This was interpreted as the proof that the whole vortex excitations are frozen at

low temperature and the only mechanism responsible for the spin-echo decay is

the direct dipolar one (Fig. 4.10).

4.2.3 The CPMG sequence

T2 becomes even longer when measured with the CPMG sequence. As recalled

in Chapter 2, the CPMG sequence allows one to extract the intrinsic spin-spin
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Figure 4.10: The figure shows the spin echo decay rate measured at 7 T ‖ c, for x = 7%.

The peak around 12 K has been ascribed to vortex lattice melting/freezing transition.

The red arrow indicates the ab-initio value for 1/T2 given by the dipolar sums. Tc(7

T)∼ 19 K.

relaxation time. In presence of a dynamic, the spin-spin relaxation time will

depend on the τCP value, so a single CPMG sequence will not be very meaningful,

and for this reason one should repeat the same sequence, by varying the τCP .

An example is shown in Fig. 4.11. Afterwards, 1/T2CPMG is extracted by an

exponential fit of the echo decay. Remarkably, 1/T2CPMG turns out to be linear

with τCP (Fig. 4.12), instead of following a quadratic behavior, as expected in case

of diffusive motion, taking place in a uniform gradient. A possible explanation is

reported below.

It is recalled that the HE decay is well fit by the product of a Gaussian and

exponential term, written here again, for the sake of clarity.

E(2τ)/E(0) = exp(−2τ/T2exp) exp(−(2τ)2/2T 2
2G). (4.8)

After a generic τ , the echo will be reduced by:

α = exp(−2τ/T2exp) exp(−(2τ)2/2T 2
2G). (4.9)

Accordingly, after the second π pulse, the echo amplitude will be:

E(2τ) = E(0)α2. (4.10)
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Figure 4.11: The decay of the transverse magnetization for Hahn Echo sequence (red

solid curve) and CPMG at different τCP , for x = 6.8%, at 6.4 T‖ c. This measurement

was carried out in the normal state (70 K).
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Figure 4.12: 1/T2cpmg is plotted as a function of τCP . The measurement was carried

out in the normal state (70 K) of x = 6.8%, 6.4 T parallel c.
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And finally, after the iteration of n pulses, one concludes that:

E(2τ) = E(0)αn = exp(−2nτ/T2exp) exp(−(2τ)2n/2T 2
2G), (4.11)

which can be written in a different form:

E(2τ) = E(0) exp

(
− 2nτ

T2cpmg

)
(4.12)

where the linear dependence of 1/T2cpmg from τ is now straightforward:

1

T2cpmg

=
τ

T 2
2G

+
1

T2exp

(4.13)

Notice that this argument is valid if the ”Gaussian mechanism” (which is not

longer visible via the HE sequence) is present as long as the CPMG sequence is

performed.

If the results of two sequences are compared (Fig. 4.13), it appears that when the

magnetic field is increased, the HE seems more sensitive to the slowing down of

the dynamic, while the CPMG relaxation rate does not show any enhancement

in the temperature range explored, as it remains weakly temperature dependent.

4.3 Spin-Lattice relaxation time T1

The spin lattice relaxation rate 1/T1 was also measured over a broad range of

temperatures, by a saturation recovery sequence. The raw data were fit according

to the law for a magnetic relaxation mechanism, while irradiating the central

transition 1/2→ −1/2 of a spin I = 3/2:

1−m(t)/m0 = 0.1e−t/T1 + 0.9e−6t/T1 (4.14)

Noticeably, a bump in the spin-lattice relaxation rate was observed in the normal

state, when H0 ⊥ c (Fig. 4.14) for x=9.4%. It is noticed that the correspondent

1/T1T data for H0 ⊥ c, are quantitatively in agreement to those measured by Ning

et al. [42], in Ba(Fe1−xCox)2As2 crystals, for the same magnetic field orientation.

The comparison of 1/T1 for the two crystal orientations suggests to fit the data

measured for H0 ⊥ c with a Bloembergen-Purcell-Pound (BPP) law [62, 73],

accounting for a low-frequency activated dynamic (Fig. 4.14), plus a power law

trend Tα (α → 1), which characterizes these compounds when H0 ‖ c. More

explicitly:
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Figure 4.13: The green squares refer to the Hahn Echo 1/T2 while the red circles refer

to the CPMG relaxation rate. Below Tc ∼ 11 K, the curves deviate more than 1 order

of magnitude from each other. The green solid curve is the best fit to the equation of

fast motion, while the red dotted line is just a guide for the eye.

1

T1 ‖ab
= γ2h2

⊥
τc

1 + ω2
Lτ

2
c

+ Tα (4.15)

1

T1 ‖c
= Tα (4.16)

where the first equation refers to the case where H0 ⊥ c, while the second equation

refers to H0 ‖ c. By assuming an activated correlation time:

τc(T,H) = τ0e
U/T , (4.17)

an energy barrier of U = 50 ± 5 K, a correlation time at infinite temperature of

τ0 = 5.2×10−10s, and the average fluctuating hyperfine field of he⊥ = 1.94±0.22

G were found. Such parameters are comparable with the ones recently reported

by Hammerath et al., in underdoped LaO1−xFxFeAs [47]. Two possible reasons

for the anisotropy in 1/T1 should be considered:

• the role of the magnetic field in inhibiting the low-frequency fluctuations

when H0 ‖ c;
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Figure 4.14: 1/T1 versus temperature measured at two orientations, for the x = 9.4%.

The solid lines are best fit to the equations above.

• the filter effect of the hyperfine form factor [65] (see Appendix A).

Given the behavior of 1/T2exp for the different magnetic field orientations, the

former framework appears more likely. Moreover Lester et al. provided clear

experimental evidence for anisotropic spin excitation, through inelastic neutron

scattering experiments [48].

4.4 Interpretative scenario

The low-frequency dynamics evidenced by 1/T2exp, by the linewidth and by the

bump in 1/T1, cannot be ascribed to standard correlated electron spin fluctua-

tions, which are of the order of the Heisenberg frequency, or to superconductive

fluctuations, which typically occur at frequencies orders of magnitude larger than

the frequency probed here. One should rather look for very low-frequency fluctua-

tions, as the ones occurring close to a spin (or charge) freezing, or also taking place

among quasi-degenerate ground-states. In this respect, one should consider that,

owing to the geometry of the relevant exchange couplings, the magnetic properties

of the iron pnictides have often been described within an effective J1-J2 model on
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a square lattice [44]. The ground-state of that model is indeed characterized by

two degenerate columnar antiferromagnetic ground-states corresponding to two

nematic phases, with critical wavevectors Qc(±π/a, 0) or Qc(0,±π/a). Because

the two states have the same energy, namely they are frustrated, slow quantum

fluctuations may occur between these two states. In fact in vanadates, which

can be considered the prototypes of that model, low-frequency fluctuations have

been detected by µSR, above the magnetic ordering [143], in a temperature range

where the electron spins are already correlated [142]. These dynamics can be

associated with domain walls motion, separating correlated regions of the two

nematic states. Such walls are intrinsic non-equilibrium structures, as they have

an excess of free energy, that will induce their motion, in order to minimize their

occupied area [49] (Figs. 4.9 and 4.15).

Figure 4.15: Sketch of the double potential well separating two collinear phases. The

iron spins are represented together with the critical wavevector. The domain wall can

develop among these two phases and can be put into motion.

A similar scenario has also been proposed in a recent study of the magnetic

state of CaFe2As2 [131], where resistivity, magnetization and microscopic 75As

nuclear magnetic resonance measurements, in the antiferromagnetically ordered

state, exhibit anomalous features that are consistent with the collective freezing

of domain walls. Below a certain temperature, Xiao et al. [131] observed a peak

in the resistivity and a downturn, plus a sharp increase in the bulk magnetiza-

tion. 75As NMR measurements reveal the presence of slow fluctuations of the

hyperfine field. These features emerging both in the charge and in spin channels,

are strongly field dependent and suggest the presence of filamentary supercon-

ductivity, nucleated at the antiphase domain walls.

Finally, an interesting analogy with the spin/charge stripe dynamics observed in
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the cuprates, can be suggested. In fact, in Hg-based high-Tc superconductors,Spin/charge

stripes an enhancement in 1/T2 and 1/T1, with respect to the magnetic field has been

observed. Also in this case, when H0 ‖ c, the spin fluctuations are reduced. Such

an effect is reminiscent of the field-induced charge order, recently reported in

underdoped YBa2Cu3O6+x, where the blocking of the charge order occurs only if

H0 is perpendicular to the highly conductive CuO2 layers [144,152]. In the light

of these analogies, one could speculate that very low-frequency fluctuations asso-

ciated with domain walls motion, involving charge stripes, are present both in the

cuprates and in the iron-based superconductors. However, further experiments

are required to support such a scenario.

4.5 Knight Shift in the normal state

As it has been shown in the previous paragraphs, the normal state of iron-

pnictides reveals exotic and unconventional features. Another remarkable exam-

ple, is the temperature behavior of the Knight Shift of 122 compounds. Indeed

K(T) shows an activated behavior with the temperature, that is currently under

discussion. Indeed, the experimental data shown in Fig. 4.16 on x = 7 %, can be

fit to an equation:

K(T ) = A+B exp(−D/T ),

yielding A = 0.26 %, B = 0.071 % and D = 225 ± 22 K, in good agreement

with the values found in Ref. [35]. The interpretation suggested here starts by

considering the Van-Hove singularities occurring in the Density of States (DOS),

which are evidenced by DFT calculations (Fig. 4.17). Such singularities can

provide some insights into the anomalous temperature dependence of the spin

susceptibility. In fact, by assuming a Pauli-like susceptibility for free electron

spins [74,153]:

χ(T ) = µ2
B

∫ ∞
0

(
−∂f(E, T )

∂E

)
D(E)dE (4.18)

and inserting the DOS, calculated by the DFT theory, the spin susceptibility as

a function of the temperature can be worked out, with one adjustable parameter,

which is the Fermi level. As it is observed in Fig.4.18, the qualitative and quan-

titative results are fairly well reproduced, but only after adjusting ”ad-hoc” the

Fermi level.

Very Recently, Chaloupka and coworker [51] proposed a novel many-body

approach to justify the quantum magnetism of the iron-pnictides (see Chapter
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Figure 4.16: The figure shows the Knight Shift at 7 T ‖ c, for x=7%. The red line is

the Arrhenius fit. Tc ∼ 19 K.)

Figure 4.17: The DOS for the parent compound (black line) and the x=12.5% compond

(red line), in the paramagnetic state, display Van-Hove singularities, around the Fermi

level. The DFT analysis was done by G. Profeta (University of L’Aquila).

1 for details), invoking a dynamical mixing of quasi-degenerate states of Fe2+,

resulting into an effective local spin Seff , that has a dependence on pressure
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Figure 4.18: The Knight Shift as a function of the temperature (black circle) is com-

pared with the simulations obtained by the DOS of a paramagnetic compound, for

different doping concentrations, and in correspondence to different Fermi levels, which

are free parameter.

(external or chemical) and temperature. They claim that singlet correlations

inherent to the model may lead to an increase of the paramagnetic susceptibility

upon warming. Considering the nonmagnetic phase, they found that the spin

susceptibility turns into:

χ(T ) ∼ 1

2T

∫
N(ω)

sinh2(ω/2T )
dω (4.19)

where N(ω) is the density of states of magnetic excitations. The DOS is con-

tributed mainly by the regions around the CAF critical wavevectors, hosting

antiferromagnetic correlations. The resulting spin susceptibility is reported in

Fig. 4.19. Finally, the temperature activated behavior of the knight shift is an

implicit result of this model.

4.5.1 The Hyperfine coupling

The study of K(T), in the normal state, is remarkably useful also to derive the

hyperfine field tensor. Indeed if the Knight Shift is plotted as a function of the
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Figure 4.19: Temperature dependence of the uniform susceptibility, for parallel and
perpendicular components to the local director of the stripe order [154]. The figure is
adapted from Ref. [51].

Spin susceptibility (Fig. 4.20), with the temperature as an implicit parameter,

one can observe a linear dependence. Here the zz component of the total hyperfine

field is Azzhyp = 43.99 ± 6.25 kG, which is reasonably close to the value found in

literature: Azzhyp = 18.8 kOe/µB=37.6 kOe for the parent compound of BaFe2As2

[43] and 23 kOe/µB = 46 kOe for the parent compound of CaFe2As2 [131]. If the

same calculation is repeated for H0 ∈ (a, b) plane (Fig. 4.21) one gets Axxhyp =

102.7± 6.25 kG. The ratio
Axxhyp
Azzhyp

= 2.33 is larger than the literature value, i.e. 1.4,

that can make wonder about the possible dependence of the hyperfine coupling

on the temperature. This possibility has been discussed by some authors, but

no detailed investigations have been done, so far. The Knight shift consists of

the temperature dependent Spin Shift Ks, the temperature independent chemical

Kchem and orbital Korb shifts. In case of transition metals compounds, the angular

orbital moment L is quenched (at the first order), then:

K(T ) = Kchem +Ks(T ).

Likewise, the susceptibility is the sum of the contributions from core diamag-

netism, Van Vleck paramagnetism, and spin paramagnetism:

χ(T ) = χdia + χs(T ).
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Figure 4.20: Knight Shift versus the Spin Susceptibility for x=7%, as measured by
NMR and SQUID, respectively (at 7 T‖ c).
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Figure 4.21: Knight Shift versus the Spin Susceptibility for x=7%, as measured by
NMR and SQUID, respectively (at 7 T⊥ c).

In absence of a structural/magnetic phase transition, the hyperfine constants are

supposed not to change with the temperature:

Kaa(T ) = Aaahypχ(T ) +Kchem +KQ (4.20)

Kcc(T ) = Acchypχ(T ) +Kchem, (4.21)
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where KQ is the quadrupolar contribution to the shift. For the central line, the

quadrupolar frequency can be estimated to be νQ(100 K) ∼ 1.5 MHz, very close

to the parent compound [155]. After some algebra, the previous system can be

worked out

Kaa(T ) = Aaahyp
[Kcc(T )−Kchem]

Acchyp
+Kchem +KQ = αKcc(T ) + T.I., (4.22)

where T.I. denotes the temperature independent terms.2 By plotting Kaa(T )

versus Kcc(T ) the ratio Aaahyp/A
cc
hyp is found. The results are shown in Fig. 4.22.

The angular coefficient turns out to be α = 2.07 ± 0.23, in agreement with the
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Figure 4.22: In-plane shift versus the out-of plane shift, for the x=9.4% compound
measured at 6.4 T.

ratio found before. The hyperfine field tensor finally becomes:

Ahyp =

102.7 0 0

0 102.7 0

0 0 44.39

 kOe.

2The symbols (a, b, c) are used interchangeably with (x, y, z).
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4.6 Conclusions

This Chapter presents a systematic study of the spin-echo decay rate in 122 iron-

pnictides, over a broad doping range. A low-frequency spin dynamic is responsible

for a bump in the spin-lattice relaxation time, as well as for an enhancement of

the exponential component of the spin-echo decay rate. Such dynamics are com-

mon at all the doping concentrations, and get faster in the overdoped regime.

One possible explanation is found in the onset of domain walls motion, possibly

involving nematic fluctuations. The remarkable analogies with the cuprates in-

dicate the need for a deeper investigation, also by other techniques. Moreover

this phenomenology may shed some light into the hot topic of spin fluctuation-

induced-superconductivity.

Moreover, the activated behavior of the Knight Shift with temperature is re-

ported, and two interpretative scenarios are suggested. Such issue still represents

a challenge for the NMR solid state community.

Finally, the study of the Knight shift versus the molar spin susceptibility allows

one to derive the hyperfine field tensor.
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Chapter 5
NMR and ac-susceptibility

investigation of vortex dynamics

in Ba(Fe0.93Rh0.07)2As2

superconductor

In the first Chapter it has been shown that the iron-pnictide superconductors dis-

play promising qualities, regarding technological applications. Yet, once a current

is injected, flux dynamics may lead to energy dissipation, which in turn prevents

any efficient application. With regard to this, the pinning mechanism is very

helpful to restore the resistanceless state [58]. Accordingly, the understanding of

the pinning properties, such as Jc, the correlation times for the vortex motions

τc, the pinning activation barrier U , their dependence on the magnetic field H

and temperature T , has major relevance. When fields of some Tesla are applied,

the time-scale of the vortex dynamics matches the nuclear magnetic resonance

(NMR) and ac-susceptibility time-scales. As a consequence, these two exper-

imental tools are excellent to study the pinning effect, and their joint employ

provides complementary information on the vortex dynamics. In both cases the

vortex lattice (VL) excitations are probed in the radio-frequency range but, while

ac-susceptibility is sensitive to dissipative/dispersive mechanisms taking place at

wave-vector q→0, NMR is sensitive to the q-integrated dynamics.

Besides the applications, the study of the vortex dynamics, in particular in low-

dimensional systems, can reveal interesting scenarios. In fact, even in absence of

an external current, the vortex lattice can experience a dynamic owed to thermal

fluctuations. On the other hand, the presence of quenched disorder, such as crys-
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tal defects, or atomic substitution, may hinder the motion and drive a crossover

from a liquid vortex state to a vortex glassy state [58, 156–158], instead of the

well ordered solid phase predicted by Abrikosov. In case of weakly anisotropic

superconductors, such as the 122 family of iron-pnictides, the phase diagram is

characterized, just below the upper critical field line, by a high mobility state of

vortex lines [159]. The nature of such a motion is quite complex, since it involves

the interplay among the pinning forces, the intervortex repulsion/attraction [58]

and the thermal excitations. By taking advantage of the work carried out in

cuprates, it is worth extending the investigation of the vortex lattice (VL) to the

iron-based superconductors, bearing in mind the different structural and physical

properties. In particular, the small anisotropy of the iron-based superconductors

has the effect of reducing the extension of the liquid region, as the FLL becomes

quite stiff.

This chapter deals with the NMR and ac-susceptibility results obtained on

a nearly optimally doped (slightly overdoped) member of the Ba(Fe1−xRhx)2As2

family, namely x = 7 %. Below the superconducting transition temperature Tc,

when the magnetic field is applied along the c axis, a peak in 1/T1 and 1/T2

rates has been observed. Remarkably the peak in 1/T1 is totally suppressed when

H ⊥ c. The maxima in 1/T1 and 1/T2 have been ascribed to flux line lattice (FLL)

motion, and the corresponding correlation times and pinning energy barriers have

been derived on the basis of a phenomenological model. Further information on

the flux lines motion was derived from the narrowing of the NMR linewidth below

Tc, and it was found consistent with 1/T2 measurements, in the light of thermally

activated vortex motion theory.

Further studies were performed, by employing higher fields (namely 11 and 15

T) at the Laboratoire National des Champs Magnétiques intenses (Grenoble).

A complementary investigation was done by using ac-susceptibility, on the same

single crystal. In this second step, the characteristic correlation times for the

vortex dynamics have been derived. Upon cooling, the vortex dynamic displays

a crossover consistent with a vortex glass transition. It shall be shown that the

correlation times, in the fast motions regime, merge onto a universal curve which

is fit by the Vogel-Fulcher law. Moreover, the pinning barrier shows a weak

dependence on the magnetic field, which can be heuristically justified within a

fragile glass scenario. In addition, the glass freezing temperatures obtained by

the two techniques merge onto the de Almeida-Thouless line. Finally the phase

diagram for the mixed phase has been drawn.
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5.1 Introductory remarks

While Abrikosov predicted the formation of a well ordered arrangement of vor-

tices, i. e. the flux lines lattice, in many cases experimental results evidenced

that no order exists at large distances, while a short-range order survives. In such

case, it is more appropriate to speak of a vortex glass state [58].

At finite temperature, the vortices can be thermally excited, and for evanescent Thermal

fluctuationsexternal currents, they give rise to a flux creep motion, which is characterized by

activated jumps from one pinned site to the other. In high-Tc superconductors,

thermal depinning is observed in large intervals below the transition temperature.

The term ”giant flux creep” was introduced by Yeshurun and Malozemoff [160]

to describe the phenomenon of very large creep rates characteristic of the oxide

superconductors. The vortex creep leads to irreversible behaviors below the so-

called irreversibility or depinning line.

Thermal depinning is enhanced by two factors [161]

• small coherence lengths ξ;

• large penetration depths λ;

In fact the depinning energy U , for small pinning centers, is written as

U =
Φ2

0cξ

32π3λ2
,

where large penetration depths soften the FLL and decreases the pinning energy.

Also the anisotropy ratio γ plays an important role in the pinning process. The

122 iron-based superconductors have very small coherence lengths, namely 1-3

nm, and quite large penetration depths, 100-300 nm, which lead to large κ. How-

ever the anisotropy is about 1÷3. Moreover, Gi values [24] suggest that thermal

fluctuations are limited to a narrow temperature range, hence any fluctuating

phenomenon will be quite depressed, as compared to the high-Tc cuprates.

One of the main effects of thermal fluctuations is the smoothing of the quenched

disorder potential producing the pinning. In fact, owing to thermal motion, the

vortex core will probe the disorder potential, over an extended spatial region. As

the amplitude of the thermal fluctuations increases beyond the extent of the vor-

tex core, the vortex will experience an averaged disorder potential, and thereby

the pinning will be reduced [58].

In weakly anisotropic systems, the flux line can be modeled as a 3D string, with
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its own elastic energy. On the opposite limit, in strongly layered superconductors,

Glazmann and Koshelev [162] showed that above Bcr ∼ Φ2
0/(γs)

2,1 there is a di-

mensional crossover of the vortex lattice, between 2D and 3D. Ba(Fe1−xRhx)2As2

compounds display a crossover field of 1.38 x 103 T, hence vortices have to be

considered as 3D objects.

When vortices become so dense that their field profile overlaps (namelyH > 2Hc1)

and thermal fluctuations start to be less effective, the vortex matter eventually

turns into a solid state. If no pinning is present, vortices form a well-ordered

periodic structure, namely a lattice. However, the presence of quenched disor-Vortex

glass der may give rise to a low-temperature glassy state, where the long-range or-

der is destroyed. Bitter pattern decorations and miscroscopic techniques have

shown such disordered state [87, 163]. From the viewpoint of applications, the

glass line determines the crossover below which the vortices can be pinned or

supercurrent can still survive. In 2012 Ghorbani and coworkers [164] studied

the vortex liquid-to-glass transition in Ba0.72K0.28Fe2As2, Ba(Fe0.91Co0.09)2As2,

and Ba(Fe0.95Ni0.05)2As2 single crystals, by magnetoresistance measurements, and

they found that non-magnetic K doping results in a high glass line close to the

upper critical field line, while magnetic Ni and Co doping causes a low glass line

which is far away from the same line. Magnetoresistance is indeed the easiest

way to study the liquid-glassy transition. Usually in the vortex liquid, resistivity

is described within a thermally assisted flux flow (TAFF) model [58]

ρ(T,H) = ρn exp(−U/kBT ) (5.1)

where ρn is the normal state resistivity. The pinning barrier can be derived from

the derivative ∂ρ
∂(1/T )

. The authors found a value of U equal to 192 K, 77 K,

and 32 K for BaK-122, BaCo-122, and BaNi-122 single crystals respectively, sug-

gesting that the non-magnetic impurity is more effective in the pinning process.Vortex

liquid Moreover the field dependence of the pinning barriers shows a crossover from sin-

gle pinning to collective pinning (Fig. 5.1). Ghorbani et al., and more recently

Pervakov [165], employed the Vogel-Fulcher relation to interpret their resistivity

data. Hereafter it will be shown that the same approach has been employed in

this work, to describe the vortex correlation time, independently from Ghorbani

and Pervakov’s results.

1s is the interlayer distance.
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Figure 5.1: Magnetic field dependence of the pinning activation energy, for different

compounds (see text). Notice that the K-doped compounds show weak field depen-

dence, as expected from a single vortex mechanism, while in the other two compounds

there is a crossover to a power-law. The inset refers to a fit based on the thermally

activated flux flow (TAFF) model. Figure adapted from Ref. [164].

In addition to the macroscopic techniques, also the microscopic ones are em-

ployed to study the vortex state properties. Since the discovery of the iron-based

superconductors [1] a systematic study of the vortex lattice was not possible until

high quality single crystals were available [6].

In the past years a fruitful study performed on the cuprates [141,166,167] showed

that the NMR linewidth and the spin-lattice relaxation times were effective mark-

ers of the vortex dynamics. Moreover, these two NMR observables provide com-

plementary information, as the linewidth narrowing is sensitive to the magnetic

field fluctuations along the direction of the external field, while the spin-lattice

relaxation time is sensitive to the transverse field fluctuations.

Thanks to the study performed on the cuprates, it is now known that within

anisotropic superconductors vortices can be considered as independent two-dimensional

isles called ”pancakes”, which undergo diffusive thermal motions [22, 168]. Bear-

ing this in mind, and looking at the structural similarities between cuprates and

pnictides, some questions naturally rise: is it possible to probe the thermal acti- Motivations

vated vortex dynamics in 122-pnictides by NMR, despite the narrow fluctuating

range? What is the vortex structure in the new iron-based compounds? What is

the nature of the frozen vortex state?

In order to answer these questions, an NMR study of the superconducting state
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of Ba(Fe1−xRhx)2As2, with x∼ 0.07, was performed. The spin-lattice (1/T1) and

spin-echo (1/T2) relaxation rates of the 75As nuclei, together with the Knight

Shift and the NMR linewidth, at two different field intensities (7 T and 3 T) and

orientations (H ‖ or ⊥ c) were initially measured.

The sample was grown by self-flux method according to the procedure reported

in Ref. [26] and presented in Chapter 1. The sample looks like a flat 0.8 x 5 x

7 mm3 parallelepiped shaped crystal, with the c axis along the shortest side.

At x = 7 % both the structural and antiferromagnetic phase transitions are

suppressed. To provide a first characterization of the crystal, the field cooled

(FC) and zero field cooled (ZFC) magnetization were measured by means of

a Quantum Design MPMS-XL7 Superconducting QUantum Interference Device

(SQUID) magnetometer. The irreversibility line was estimated looking at the

temperature where the ZFC curve departs from the FC one, as in Ref. [169], and

it was found in agreement with the detuning of the NMR tank circuit [166] (Fig.

5.2).

18 19 20 21 22 23 24
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10  Tirr (SQUID)
 1/T1 peak (NMR)
 Tdet(NMR-probe)
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 (T

)

T (K)

Figure 5.2: The irreversibility temperature measured with a DC SQUID magnetometer

(open circle) is compared with that derived from the detuning of the NMR probe (blue

stars). The red circles refer to the temperature of the peaks in 1/T1. The dotted lines

are guides for the eye.
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5.2 NMR Investigation of the vortex lattice

5.2.1 ”Historical peaks” in 1/T1

The peaks emerging in 1/T1 , and presented in the following sections are not a

unique case in the study of the FLL via NMR. Indeed there are some widely

agreed cases concerning the cuprates, as already mentioned. 89Y NMR in YBCO,

and 199Hg NMR in HgBaCuO4+δ (both oriented powders with H ‖ c) are reported

here, for illustrative purposes (Fig. 5.3).

Figure 5.3: (Top panel) The spin-lattice relaxation rate, measured at different field

intensities and orientations on Y. The Figure is adapted from Ref. [170]. (Bottom

panel) Similar measurement on Hg nucleus. The Figure is adapted from Ref. [171].

In the previous picture a non-negligible dependence on the field orientation is

reported.

More recently Laplace and coworkers found a similar peak in the superconducting
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and normal phase of Ba(Fe1−xCox)2As2 with x=6%, a sample which is expected

to show the coexistence of superconductivity with magnetism [172]. The presence

of the peak below Tc has been ascribed to the FLL dynamics.

Moreover, in 2009 Baek et al. [173] found a sharp peak in the 1/T1 just in the

superconducting region of Ca122 compound. Such a feature disappeared in null

field, and when strong fields (H > 8 T) were applied. Such behavior is still rem-

iniscent of the cuprate superconductor, and this lead the authors to suggest a

tentative interpretation related to FLL dynamics.

Hereafter the results on the Rh-doped Ba122 compounds are presented and dis-

cussed.

5.2.2 Spin-Lattice relaxation time

The NMR measurements were performed by using standard radiofrequency pulse

sequences, as explained in Chapters 2 and 4. Initially, the spin-lattice relax-

ation time T1 was measured by means of a saturating recovery pulse sequence,

at two different magnetic fields H = 7 T and 3 T. The recovery of the nuclear

magnetization m(t) was fit to the relation [155,174]:

1−m(t)/m0 = 0.1e−t/T1 + 0.9e−6t/T1 (5.2)

expected for a nuclear spin I = 3/2, in case of magnetic relaxation (see Fig.

5.4). In the normal phase, 1/T1T shows a temperature independent behavior, as

expected for a weakly correlated metal (see the inset of Fig. 5.5).2 In this case,

scattering processes with the conduction electron spins can cause the nuclear spin

to relax, as described by the Korringa process [63]:

1

T1T
=

16π3~3kBγ
2
eγ

2
n

9
< |u2

k(0)| >Ef N
2(Ef) (5.3)

where < |u2
k(0)| >Ef is the average over the Fermi surface of the periodic part of

the Bloch orbital, which describes the quantistic state of the conduction electron.

The former equation is reminiscent of the spin susceptibility, or analogously ofWeakly

interacting

electrons

the Knight Shift owed to contact interaction K0:

1

T1

=

(
8π2kBT

h

)(
γn
γe

)2

K0 (5.4)

2The x=7% sample displays a peculiar behavior in the spin-lattice relaxation rate, as com-
pared to the others compounds of the same family (see next paragraphs and Chapter 4 for
comparison).
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Figure 5.4: The recovery curves for three different temperatures are shown, for x =

7%, at 7 T‖ c. The blue squares refers to the 15 K data, while the pink circles are

taken at 17.7 K, in correspondence with the peak in 1/T1, and the black triangles refer

to 18.7 K. The dotted colored lines are the best fits according to Eq. 5.2.

where K0 is:

K0 =

(
8πχP

3

)
< |u2

k(0)| >Ef Ω (5.5)

where Ω is the unit cell volume and χP is Pauli susceptibility.

In short, Korringa’s relation claims that 1
T1T

is a temperature independent quan-

tity. Moreover, Korringa’s ratio:

RK =
K2

0T1T

Sn
, (5.6)

where Sn = ~
4πkB

(γe/γn)2 is supposed to be close to 1, in case of a non interacting

electron gas (or Fermi liquid scenario). Deviations from RK = 1 suggest that

correlations effects among electrons can rise. For instance, when RK < 1 it means

that antiferromagnetic correlation can be found among the electrons. Ning et al.

found RK = 0.85(10), in Ba(Fe1−xCox)2As2 at x = 26% [15], suggesting that even

the strongly overdoped compounds display antiferromagnetic correlations.

By decreasing the temperature below Tc, a well-defined peak in 1/T1 for H ‖ c
has been found. The peak temperature decreases by increasing the magnetic field

magnitude (see Fig. 5.5 (left panel)). Remarkably, when H ⊥ c the peak in 1/T1

disappears (see Fig. 5.5 (right panel)). At lower temperatures 1/T1 decreases
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exponentially and it is only weakly dependent on the magnetic field orientation.
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Figure 5.5: (Top panel) The spin-lattice relaxation rate, measured at 7 T (open

squares) and 3 T (blue circles), for H ‖ c. The inset shows the 1/T1T data at 7

T, in a wider temperature range. The arrows show the temperature of the detuning of

the NMR probe at the two fields: the blue arrow stands for 3 T and the black arrow for

7 T. (Bottom panel) The spin-lattice relaxation rate, measured at 7 T, in H ‖ c geom-

etry (black diamonds) and H ⊥ c geometry (blue circles) is shown. A neat difference

for the two field orientations is found in the 16-19 K range. Data, in H ⊥ c geometry,

have been normalized by a value 1.55 to match 1/T1 for H ‖ c, at Tc thus revealing an

anisotropy of the spin fluctuations, as observed by Ref. [127].

As recalled above, in Co-optimally doped compound [175], no peak was ob-

served in 1/T1, below Tc, except by Laplace et al. [172] in a 6% Co-doped

BaFe2As2, and by Baek and coworkers in CaFe2As2 [173].

Such peak cannot be ascribed to the enhancement of the DOS, related to the open-

ing of the superconducting spin gap (Hebel-Slichter peak [78]) since the majority
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of the experimental and theoretical results point towards an extended s±-wave Coherence

peak?pairing [32,37,176–178] where that feature is not expected. Furthermore the co-

herence peak predicts an activated behavior, well below Tc, namely 1/T1 ∼ e−∆/T

with ∆ the amplitude of the superconducting gap. The fit to the data of Rh-

doped x=7% compound gives ∆ ' 200 K which is too large as compared to the

BCS theory, in the weak coupling limit, namely 2∆(0)
kBTc

= 3.5 (Fig. 5.6). Moreover

ARPES and specific heat data report ∆(0) ∼ 6 meV (∼ 70 K), in 122 com-

pounds [177,179]. Additionally, the suppression of the peak for H ⊥ c can hardly
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Figure 5.6: The spin-lattice relaxation rate a T � Tc . The red curves refer to the

temperature activated fits, which are discussed in the text.

be reconciled with the small anisotropy of the electron spin susceptibility, hence

the maximum in 1/T1 just below Tc cannot be associated with the electron spin

dynamics. On the other hand, given the similarities with the behavior found in

HgBa2CuO4+δ [171] and YBa2Cu4O8 [170] cuprates, it is tempting to associate

1/T1 peak to the FLL dynamics.

In order to analyze the experimental results one can start from the basic mod- FLL scenario

eling of FLL in strongly anisotropic superconductors [180]: the vortices enter the

sample in form of quasi-two dimensional pancakes, lying in the FeAs planes. Ow-
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ing to thermal excitations the vortices randomly move out of their equilibrium

positions. Such dynamics can be hindered by the action of pinning centers. Dif-

ferently from cuprates, which exhibit a very high anisotropic ratio γ = ξab/ξc,

the Ba122 superconductors show γ ∼ 1÷ 3, varying with temperature [21]. This

suggests to describe the flux lines not as completely uncorrelated pancakes, but

rather as a stack of correlated islands (see Fig. 5.7).3 According to this physical

Figure 5.7: (Upper panel) A sketch of the vortex line made of a stacked of pancake

vortices, in a layered iron-based superconductor. When the external field is perpen-

dicular to the FeAs layers, the pancakes tend to line up with the field. Since these

compounds are rather isotropic the interlayer Josephson coupling is not so small and

the three dimensional appearance of the vortices is restored. (Bottom panel) When

the field lays withing the ab plane, the vortices will tend to align along the field, to

minimize their energy. However, the FeAs layers will act as intrinsic pinning centers.

In this configuration, the thermal excitation of the vortex line is prevented.

picture, when H ⊥ c, the flux lines are preferentially trapped between the planes

and the FeAs plane boundaries act as pinning centers [58]. This intrinsic pinning

hinders the dynamics and lead to the suppression of the 1/T1 peak.

In order to provide a quantitative description of this phenomenology, it can be

firstly reminded that the spin-spin relaxation rate is written as

1

T1

=
γ2

2

∫
< hρ(t)hρ(0) > e−iωLtdt (5.7)

with hρ is the magnetic field component perpendicular to H. According to the

last equation, 1/T1 probes the spectral density of the spin fluctuations, at the

3In fact s = 6 Å [5].

140



5.2. NMR Investigation of the vortex lattice

nuclear Larmor frequency J(ωL). If the vortex fluctuations fulfill the following

requisites:

• they are two-dimensional excitations;

• they take place in a spacial range smaller than the inter-vortex distance [181]

le =
√

2/
√

3
√

Φ0/H (for a triangular FLL);

• they move by Brownian motions [170, 171], described by a diffusive-like

correlation function, g1(t) = exp(−D⊥q2
⊥t), D⊥ being the diffusion constant

of the motion taking place in the ab plane;

then τc(q⊥) = 1/D⊥q
2
⊥ plays the role of a q-dependent correlation time, for the

collective vortex motions. By summing over all collective in-plane excitations up

to a cut off wave-vector qm = (1/le)(8π
3/3)1/4, Suh et al. [171] found the following

spectral density

J(ωL) = τm ln

[
τ−2
m + ω2

L

ω2
L

]
(5.8)

where the average correlation time is τm = 1/D⊥q
2
m. An activated correlation

time τm(T ) = τ0 exp(U/T ) was assumed, where U is an average pinning energy

barrier and τ0 refers to the correlation time, in the infinite temperature limit.

The fit of the data according to this 2D vortex model is reported in Fig. 5.8.

Despite the quite good agreement with the data, one should wonder about the

effect of the low anisotropy of 122 compounds, and how small γ affects the vortex

structure and dynamics. If one considers the vortex line as a 3D string, and its

excitations as generators of stationary waves oscillating in between the pinning

centers, it can be introduced a modulation in the amplitude of the correlation

function, characterized by a wavelength λ, which has an upper bound given by

λc:

g2(t) = exp(−D⊥q2
⊥t) cos (z/λ)

By resuming the correlation function [170]

< hρ(0)hρ(t) > =
Φ2

0s
2

4πλ4
c

< u2 >
1

ξ2

1

l2e
√

3
g2(t) (5.9)

and taking the root mean square amplitude of the vortex core fluctuations with

respect to equilibrium position, for a 3D line [182,183] 3D vortex

line

< u2 >'
√

2π
√

3

Φ2
0

λcλablekBT
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Eq. 5.9 can be written as:

< hρ(0)hρ(t) > =

√
3

8π

s2kBT

le

λab(T )

λ3
c(T )ξ2(T )

g2(t) (5.10)

Taking the values for the London penetration depth reported in the literature

[184], the coherence lengths derived from the Hc2 measurements, and their tem-

perature dependence according to the two-fluid model, a second fit was performed

(Fig. 5.8 Table 5.1).

Table 5.1: Fit results for sample x =7%.

H (T) U (K) τ0 (s)

7 322 ±66 5.7 ±10−17

3 468 ±5 3.6 ±10−14

Even though the activation energies are comparable with YBCO-124, [170]

the extremely small τ0 values indicate that the Arrhenius law is not the correct

approach to describe the vortex motion, in 122 iron-based superconductors.

A stimulating comparison with the earlier study can be drawn, by deriving the

root-mean-square amplitude of the transverse field fluctuations
√
< h2

e > whichThe magnetic

field ripple represents the ripple of the magnetic field profile generated by the flux lines. In

fact from Eqs. (5.7) and (5.10), 1/T1 can be written in a slight different form

1/T1 = (γ2/2) < h2
e > J(ωL),

from which he ∼ 30 − 40 Gauss at 7 T and ∼ 20 Gauss, at 3 T, are derived.

Such values agree with the NMR full width at half maximum, measured below

Tc, which gives the second moment of the FLL field distribution (see Paragraph

5.2).

To gain a better understanding of the 75As spin-lattice relaxation rate re-

sults 1/T1, in the superconducting phase, further NMR experiments were done at

higher magnetic fields, to analyze how the peaks in 1/T1 evolve with the magnetic

field intensity. The 75As NMR measurements were performed on the same single

crystal at 11 and 15 T, at the LNCMI in Grenoble. Another experiment was

carried out at 8.5 T in the NMR laboratory of Pavia University.4 This time the

4T1 was measured via the same sequence reported above.
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Figure 5.8: (Top figure) The spin-lattice relaxation rate at 7 T for ‖ c; (bottom figure)

the spin-lattice relaxation rate at 3 T in the same geometry. The fitting curves are given

by the 2D- uncorrelated pancakes model, deriving from the correlation function g1(t)

(dash-dotted line) and the correlated vortices model, deriving from the 3D-correlated

assumption, g2(t) (solid line). In both cases, the second model shows the best agreement

with the experimental data.

recovery of nuclear magnetization m(t) was fit to the stretched law:

1−m(t) = 0.1 exp(−t/T1)r + 0.9 exp(−6t/T1)r (5.11)

with r → 1, as expected for the central transition of a nuclear spin I = 3/2.

A deviation from r = 1 was found in the temperature region where the peak

appears. In fact r turned out to be ∼ 0.7, suggesting the occurrence of a (small)

distribution of correlation times Fig. 5.9. The earlier data were then reanalyzed,
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with the same stretched exponential. Again the fit shows peaks in 1/T1, visible
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Figure 5.9: The raw saturation recovery data at 8.5 T (H ‖ c) and 16.5 K. The

dashed red line is the best fit according to the previous equation. From the best fit,

the stretched exponent r is found to be r = 0.93.

solely in H ‖ c geometry. In addition the former case, now the contribution of

the vortex dynamics to the spin-lattice relaxation rate 1/T1V L was more correctly

evaluated, by subtracting from the raw data the electronic contribution, estimated

by extrapolating the data out of the peak region. This procedure is equivalent to

subtract the data taken for H ⊥ c, properly scaled by the hyperfine factors [130],

since for that orientation the nuclear spin-lattice relaxation is only given by the

electronic spin fluctuations (Fig. 5.5). Namely, one has

1

T1

=
1

T1V L

+
1

T1el

, (5.12)

where the first term is the vortex-lattice contribution, whilst the latter is due to

electronic spin fluctuations.

Fig. 5.10 shows the relaxation rate 1/T1 versus temperature, at all the applied

fields. By increasing the field intensity, the peak in 1/T1 shifts towards lower

temperatures and it is rapidly reduced above 7 T, so that only a small kink

remains at 11 T and 15 T. The results of Fig. 5.10 show remarkable similarities

with earlier studies on oriented powders of the cuprate YBa2Cu4O8 (YBCO124)

[141,170]. The decrease of the peak amplitude is consistent with the drop of the

magnetic field ripple due to the vortex penetration, as the magnetic field intensity

increases. This is in fact a consequence of the reduction of le.
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Below the temperature of the peak in 1/T1, a marked growth in the acoustic

ringing was observed at all fields, mostly for H ‖ c. This effect will be discussed

in Chapter 7.
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Figure 5.10: The spin-lattice relaxation rate at different magnetic field values: 3 T

(blue squares), 7 T (pink triangles), 8.5 T (green circles), 11 T (yellow stars), and 15 T

(purple pentagons), is reported. All data refer to H ‖ c orientation. The arrows show

the temperature of the detuning of the NMR probe resonating circuit. The dashed

arrows mark the position of the kink in the 1/T1, when the field reaches 11 T and 15 T.

The inset shows the 1/T1V L peak due to the VL dynamics, namely after the subtraction

of the electronic contribution. The solid lines are guides for the eye.

To interpret the field dependence of the peak, it is noticed that there is a

correspondence between 1/T1 and the q-integrated correlation time τ ′c,
5 by means

of the equation:

1

T1

=
(75γ)2

2

Φ2
0s

2

4πλ4
ab

< u2 >3D
1

ξ2

1

l2e
√

3
τ ′c ln

[
τ ′−2
c + ω2

L

ω2
L

]
, (5.13)

has been numerically solved, keeping the correlation time τ ′c, as a free parameter.

This procedure is more reliable than the fit, because no multiple fitting parameters

are involved, and the crossover between two dynamical regimes can be better

evidenced. The result is visible in Fig. 5.11.

5From now on, the correlation time derived via NMR will be indicated with a ”prime”symbol,
in order to distinguish it from the same time obtained via ac-susceptibility.
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Figure 5.11: The q-integrated correlation time τ ′c of the vortex motions derived from

1/T1 is shown. The data are reported as a function of 1/(T−T ′0), and they merge onto a

universal curve that can be fit via the VF law (red line). The inset shows the correlation

time calculated by Eq. (5.13), before correcting the temperature dependence.

One may wonder if the approach earlier employed is the best to describe T1

in this weakly anisotropic system, as it starts from the assumption that the 3D

vortex lines can be represented as stacks of 2D pancake vortices oscillating around

their equilibrium positions. To check whether the dimensionality of the vortex

plays a role in the description of the dynamics, a further analysis was done, by

employing a relation where the correlation time has a 3D isotropic character [73],

as assumed in the BPP theory, explained in Chapter 2. No significant difference

in the qualitative behavior of τ ′c was observed. This result suggests that the actual

magnetic anisotropy of a superconductor, and then the topology of the vortex line,

do not affect the local nature of the vortex line dynamic. Further considerations

on the temperature dependence of the correlation time will be done after the

following section.

5.2.3 Spin-Spin relaxation rate in the superconducting

phase

The transverse relaxation time T2 was measured by recording the decay of the

echo after a π/2 − τ − π pulse sequence, as a function of the delay τ . T2 was

initially defined as the time where the echo amplitude decreases by 1/e.

In the normal phase, 1/T2 shows an activated temperature dependence which is
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ascribed to the Redfield contribution, as discussed in Chapter 4. Below Tc, a

remarkable increase in 1/T2 gives rise to a peak around 12-13 K, for H ‖ c. Oh et

al. found a similar behavior in their 7.4% Co-doped single crystal, where the peak

was observed at 15 K [35]. Upon progressive cooling, the spin echo decay rate

matches quite well the value derived by Van-Vleck lattice sums (see Appendix B),

as it happens when all the spin dynamics freeze, and the only process giving rise

to the echo decay is the nuclear dipole-dipole interaction. Furthermore, similarly

to 1/T1, also 1/T2 peak gets significantly reduced for H ⊥ c (Fig. 5.12). Note
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Figure 5.12: The spin echo decay rate measured at 7 T. A peak around 12 K is found

for H ‖ c (black diamonds) while it strongly decreases, for H ⊥ c (blue squares), and

shifts towards higher temperatures. The red arrow indicates the ab-initio value for 1/T2

given by the dipolar sums. The inset shows the spin echo decay rate for H ‖ c up to

room temperature.

that when the vortices are strongly correlated along the c axes, the flux lines move

rigidly and do not affect significantly the transverse field components, while they

do change the longitudinal ones [182], hence the information derived from those

two types of measurements can be complementary.

The analyze of the temperature dependence of 1/T2 has been inspired again by

observation that the VL dynamics plays an important role, in affecting the NMR

properties. One could begin from a relation similar to Eq. 5.9, nevertheless here,

for the sake of simplicity, an exponential correlation function for the longitudinal
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field fluctuations as been assumed

< hl(0)hl(t) >=< h2
l > e−t/τL , (5.14)

where τL is the correlation time, for the longitudinal value of the field. Corre-

spondingly, the decay of the echo amplitude can be written as a function of the

delay τ between the π/2 and π pulses in the echo sequence as [69]

M(2τ) = M0e
−2τ/T 2

2dip ×M2(2τ) (5.15)

M2(2τ) = e−γ
2<h2

l>τ
2
L[2τ/τL+4 exp(−2τ/τL)−exp(−2τ/τL)−3] (5.16)

where the first Gaussian term accounts for the nuclear dipole-dipole contribution,

while the second term describes the low-frequency vortex motions. The fit to the

former equations gives the temperature dependence of the longitudinal correlation

time (Fig. 5.13). By decreasing the temperature, the FLL motion is supposed to

go through different motional regimes. Above 11 K, where the peak in 1/T1 is

observed, it is noticed that τL shows an activated behavior characterized by an

activation barrier UL ' 50 K much lower than the one derived from 1/T1 (see Fig

5.13). This observation will be clarified in the next section.

5.2.4 Linewidth

The NMR spectrum was determined by the Fourier transform of half of the 75As

echo signal, while below T ' 13 K, when the line became broader than 60 kHz,

the spectrum was derived by sweeping the irradiation frequency. The full width at

half maximum (FWHM) was determined by a Gaussian fit. In the normal state

the linewidth increased on cooling, following a Curie-Weiss trend (Fig. 5.14),

probably due to the presence of magnetic impurities (Rh ion). The impurities

cause the appearance of a staggered magnetization and a broadening of the NMR

line. On the other hand, the average magnetic field is only weakly affected, so

we do not expect an extra-contribution to the shift [185]. After subtracting this

impurity-dependent contribution ∆νNP , from the raw data, by using the relation

∆ν(T ) '
√

∆ν(T )2
raw −∆ν2

NP (5.17)

an extra-broadening induced by the presence of the flux lines lattice appears (Fig.

5.14). The impurity-dependent contribution is well described by the Curie-Weiss

148



5.2. NMR Investigation of the vortex lattice

12 14 16 18

0.01

0.1

 7T H || c
 from Linewidth
 from echo decay

 

 

L (m
s)

T (K)

Figure 5.13: The temperature dependence of the correlation time τL derived from the

echo decay time (black squares), as compared with the one derived by the linewidth

analysis (blue circles) in the assumption of fast motions (see Eq. 5.19). The red curves

are the fitting of the correlation time, according to an activated law.

relation, for both the sample orientations:

∆νNP (T ) =
C

T − θ
+ A (5.18)

The fit gives θ = −60 K, (for both the orientations) and, for the H ‖ c, C =

1319 ± 118 kHzK and A = 20.8 ± 1 kHz, while for the perpendicular geometry

the fit gives C = 1264± 50 kHz K and A = 23.4± 0.1 kHz.

In the superconducting region, when H ‖ c, the vortex correlation time can

be derived also from the linewidth data, by following the approach reported in

Ref. [62]. Indeed, in the fast motions regime, namely 2π(∆νR)2
1/2
τL << 1, with

(∆νR)2
1/2

the square root of the rigid lattice second moment, the correlation time Fast motion

regimecan be found by the following relation:

∆ν ' τL
(∆νR)2

2π
. (5.19)

The temperature dependence of τL (Fig. 5.13) is then fit by an Arrhenius law.

The pinning energy barrier is UL = 48 ± 3 K, consistent with the one derived
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Figure 5.14: The two figures show the FWHM at 7 T, for H ‖ c (top) and H ⊥ c

(bottom), with the Curie-Weiss fit curve (see Eq. 5.17). In the insets the raw data are

subtracted from the impurity contribution and the extra-broadening effect due to the

penetration of the FLL is analysed in terms of the London two-fluid model (blue line).

For the longitudinal case one can observe a strong deviation, at high temperatures, just

below Tc , which is hardly visible in the transverse case.

from the spin echo decay measurements. This is not surprising since both T2 and

∆ν probe the longitudinal component of the local field.

Additionally, a noticeable change in the line shape, from Lorentzian to Gaussian

is observed upon cooling, as it is expected when the correlation time gets longer

than few ms. The Gaussian lineshape, below Tc, indicates the presence of lattice

distortions induced by randomly distributed pinning centers. In this scenario
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one can only make a tentative estimate of the London penetration depth. These

authors reported λab values between 200 and 217 nm. On the other hand, by

following Ref. [186]:

λab =

√
2.36Φ0γ

√
k

∆ν
(5.20)

where
√
k = 0.04324 depends on the lattice geometry and on the magnitude of

the applied field, and taking ∆ν(T → 0) ' 30 kHz, for H ‖ c a penetration

depth of λab(0) ∼ 226 ± 9 nm was found, in agreement with the former results,

derived by transverse µSR, [187] transport [184] and the tunnel diode resonator

measurements [188] on a similar 7.4% Co-doped BaFe2As2 single crystal.

5.3 Ac-susceptibility

In the present section, ac-susceptibility plays the role of a complementary tech-

nique to investigate the vortex lattice dynamics, since it detects a signal from the

bulk, and just the q → 0 excitations are probed. Measurements of the real χ′

and imaginary part χ′′ of the ac-susceptibility are presented and discussed. Such

measurements were carried out in Field Cooled (FC), by means of a Quantum

Design MPMS-XL5 Squid ac-susceptometer, at the University of Parma. The

sample was mounted on the experimental setup, with both the static Hdc and the

oscillating Hac fields laying in the crystallographic ab plane. The sample dimen-

sions, compared to the ones of the experimental setup, allowed one to measure

the spin susceptibility for the H ‖ ab geometry only.6 During the experiment, the

intensity of the oscillating magnetic field was kept constant at Hac = 1.5 Oe, while

the dc field intensity ranged from Hdc = 500 Oe to 4.8 T, so that the mixed phase

regime could be explored. The ac field frequency range was ν = 37.5-1488 Hz.

Fig. 5.15 (top) shows the real χ′ and imaginary χ′′ part of the spin susceptibility.

From the real part the transition temperature can be evaluated, whereas the

peak in χ′′ provides information about the dissipative mechanisms occurring in

the mixed phase. To gain insights into the VL dynamics, the maximum in χ′′ has

to be carefully analyzed. Just below the onset of superconductivity, evidenced in

the χ′ curve, a peak in χ′′ appears (Fig. 5.15 (bottom)). The peak shifts towards

high temperature, when increasing the frequency, thus excluding the occurrence

of the Bean critical state [189]. In such a scenario, the peak in the imaginary

part of the susceptibility is interpreted as the result of magnetic flux reaching Bean critical

state
6An explanation concerning the experimental techniques will be provided in appendix C.
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Figure 5.15: (Top panel) Temperature dependence of χ′ (black circles), and χ′′ (blue

squares) measured at H = 500 Oe, and at ν = 37.5 Hz. Below the transition tem-

perature marked by the drop in χ′, the peak in χ′′ appears, pointing out that some

dissipation mechanism plays role in the mixed phase. The red lines are fits to determine

Tc . (Bottom panel) Frequency ν and temperature T dependence of χ′′ peaks, measured

at H = 1 T. The peak temperature Tp shifts towards high temperature when increasing

ν.

the center of the specimen and giving a resultant magnetization M . This effect

would be strongly dependent on the sample geometry and on the intensity of

the applied field. Moreover, the peak temperature would not depend on the ac-

frequency, at variance with the experimental findings. However, to definitely rule

out the occurrence of Bean critical state, a further analysis should be carried out,

by varying the intensity of the ac-field.

If the imaginary part of the spin susceptibility is plotted as a function of the

real part, with the temperature as implicit parameter (see Fig. 5.16) the so-calledCole-Cole

plot
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5.3. Ac-susceptibility

Cole−Cole plot is derived. The inset of the figure shows that the Cole−Cole plot

lays on a circle, the center of which has a negative ordinate, pointing out that

there is a likely distribution of correlation times τc, consistent with the NMR

results [190].
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Figure 5.16: Cole-Cole plot, at H = 1 T, with the temperature as implicit parameter.

The absolute value of χ′′ increases slightly but systematically with increasing ν, as

expected for a vortex glass phase [191]. The arrow shows a kink probably due to a

residual inter-grain contribution [192]. The inset shows the Cole−Cole plot, and the

dashed red line shows the fit (see text).

A possible interpretation relies on the following consideration: the peak in χ′′

is dominated by the onset of irreversible behavior of the magnetization, occurring

when the vortex lines are thermally excited across the pinning barriers [193]. This Resonant

absorption

of energy

leads to a resonant absorption of energy for 2πντc ∼ 1, which is described by the

Debye relation

χ′′ ∝ ωτc
1 + (ωτc)2

, (5.21)

Given the sharpness of the peaks in χ′′(T ), and the previous consideration on

the Cole-Cole plot, a small distribution of correlation times may be assumed.

Accordingly, τc shall be considered as an average value. Fig. 5.17 shows the

temperature dependence of τc, and a crossover towards very slow motions (nearly

0.1 s) upon cooling. A fit of the correlation time data, to the Arrhenius law, as

employed in cuprates [194] and in the SmFeAsO0.8F0.2 [125], non-physical values

of τ0 are found as previously found in the NMR data analysis.

When the data are plotted, the correlation times show the same slope (inset Single-vortex

dynamics
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of Fig. 5.17), namely the pinning energy barrier does not depend on the field

intensity. Now, if the data are properly scaled by a temperature T0(H), they

merge onto a universal curve that can be fit by the Vogel-Fulcher (VF) law [195]:

τc(T,H) = τ0 exp

[
Ueff

T − T0(H)

]
(5.22)

The data display a nearly field-independent activation barrier (Ueff = 120 ± 20

K), owing to a process of single vortex depinning, in contrast to the typical power

low Hn [194], which evidences the occurrence of collective pinning phenomena

(see next paragraph). Before presenting the phase diagram of the system, it
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Figure 5.17: The correlation time for the q = 0 motions derived from ac-susceptibility

data, reported as a function of 1/(T − T0). The data nicely merge onto a universal

curve that obeys the VF law (red line). In the inset the τc is reported as a function of

1/T . The dynamical crossover is clear.

is observed that the absolute value of the imaginary part of the susceptibility

increases, while increasing the frequency ν. Moreover, the peak height of the

Cole−Cole plot grows when increasing the ac-frequency, and so does the peak in

the imaginary part of the spin susceptibility χ′′(T ). These findings are in agree-

ment with the numerical simulations of Adesso et al., based on the occurrence of

a fragile vortex scenario, as well as with their experimental results on YBCO [191]

and LaFeAsO0.9F0.08 [192]. In conclusion, it is pointed out that the same behavior

has been recently observed in the optimally Cobalt doped Ba122 [196].
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5.4. Phase diagram

5.4 Phase diagram

Firstly it can be observed that the different absolute values of τc and τ ′c display

a dispersive behavior in the vortex lattice excitations. Moreover, both τc and τ ′c
data merge onto a universal trend, after being properly rescaled by T ′0 (Fig. 5.11).

The VF fit value (to the NMR data) of the pinning barrier is Ueff ∼ 200 ± 20

K, not far from the ac-susceptibility value, suggesting that the two techniques

are indeed probing the same dynamic. Remarkably, the energy barriers Ueff

are field independent both for NMR and ac-susceptibility. This result, together

with the VF behavior, suggests the occurrence of a glass state that, by resorting

to the ”glass terminology” [197], can be named fragile glass. In fact, the field

independence of Ueff can be justified by the following qualitative consideration: in

case of weak pinning [19] and high magnetic fields, namely in case of a high vortex

density, the pinning energy distribution can be characterized by close meta-stable

minima, in the bottom of spatially extended and deeper energy minima, as in the

fragile glass scenario [198,199]. Hence, upon varying the magnetic field strength,

the VL can be rearranged within those meta-stable minima without having to

overcome the high energy barrier. Accordingly, the barrier will correspond to an

average energy distribution < U >, determined solely by the quenched disorder,

and not by the magnetic field. This idea is sketched in Fig. 5.18. When reporting

T0 and T ′0 in the phase diagram, one finds a surprising result (see Fig. 5.19):

the temperatures estimated by the two techniques merge onto the de Almeida-

Thouless line [200]

H = H0[1− Tg(H)/Tg(0)]γ,

the exponent γ ∼ 1.5 being in agreement with spin and superconductive glasses

[201]. Moreover, both T0 and T ′0 lines intersect the H = 0 axis at a temperature

that is close to the zero field limit for the thermal ”disruption” of a vortex line.

By assuming that a vortex line is made by piling up many pancakes across the

FeAs planes, Clem predicted that the thermal disruption of a vortex line would

occur at the Kosterlitz-Thouless (KT) transition temperature [182]

Tcr =
Φ2

0d

32π2kBλab(T )2
, (5.23)

where d is the FeAs layer thickness. The calculated value of Tcr for this compound

is ∼ 17.5 K [202]. This observation agrees with the picture of vortices passing

from a glass/solid phase to a liquid phase, namely a regime of poorly correlated

vortices.
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Figure 5.18: Sketch view of the pinning energy profile, as a function of the position,

for two kind of glasses. In the top panel the fragile glass scenario is sketched: close

metastable minima, nearly all equivalent, lay in the bottom of a deep energy minimum.

In order to overcome the barrier, the vortex needs a thermal energy correspondent at

least to the small wells. The bottom figure, on the contrary, shows the strong glass

scenario. Here the mimima are spatially farther and deeper.

5.5 Conclusions

This Chapter presents a study of thermally activated vortex motion, by means of
75As NMR spectroscopy, as well as ac-susceptibility.

Different frequency windows of the vortex motion are explored, by looking at

different NMR quantities. In fact a feature in the spin-lattice relaxation time

emerges when the vortex correlation rate is approximately in the MHz range.

Moreover the 1/T2 maximum reveals, at a lower temperature, a longer correlation

time, comparable to the interpulse spacing τecho, i.e. few ms. In the tempera-

ture window between those peaks, the motions are still effective and yield the

motional narrowing of the NMR line. Indeed, in order to observe a line narrow-

ing, the correlation times must be smaller than the inverse of the rigid lattice

linewidth, namely τc ∼ 10−4 s. Additionally, a remarkable anisotropic behavior

has been observed.

Moreover, the joint employ of NMR and ac-susceptibility has revealed that the

Arrhenius law is not effective to interpret the slowing-down of the vortex dynam-

ics. Anyhow, the Vogel-Fulcher empirical law has shown to be more appropriate.
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Figure 5.19: The phase diagram for the mixed phase of the Ba(Fe0.93Rh0.07)2As2

compound. The purple diamonds show the upper critical field Hc2 for H ‖ c, while the

squares mark the irreversibility temperature Tirr, for the static uniform susceptibility,

which coincides with the detuning temperature of the NMR probe. The black circles

mark the Tpeak line for the NMR relaxation rate, namely the temperature of the peak

in 1/T1. The green triangles represent T0, while the blue half circles represent T ′0. The

green solid line is the de Almeida-Thouless fit, while the other lines are guides for the

eye. The blue-grey zone marks the thermal disruption of the vortices, and the crossover

from slow dynamics (glassy state) to fast dynamics (liquid state).

Moreover, the Vogel-Fulcher temperatures merge on same curve, which is well fit

to the de-Almeida Thouless line, with a power of 1.5, in agreement with a glass

state. The presence of a correlation time distribution, together with the obser-

vation of the imaginary part of the spin susceptibility, and the comparison with

the simulation carried out by Adesso and coworkers, show that the glass state is

very likely to describe the vortex frozen state, in the Rh-doped Ba122 family.
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Chapter 6
NMR study of current driven

vortex dynamics

The last Chapter has shown how thermal excitations of the vortex matter affect

the NMR properties, in the equilibrium state.1 An additional source of motion is

provided by the application of an external current. In such a case, a new scenario

is established, as the Lorentz force induces a drift of vortices that, in turn, affects

the local field dynamic. The study of the vortex dynamic under the action of an

external current is particularly interesting in view of the applications. Indeed,

when a superconductor is employed to generate high magnetic fields, one has

to know J0, which is responsible for the depairing, but more important is the

depinning current Jc < J0, which is able to generate a drift motion of the VL,

and as a consequence, a non null resistance into the wire, which can eventually

quench the magnet. In fact, the vortex motion will lead to slow changes in the

trapped magnetic field and to measurable resistive voltages, which are detrimental

for superconductivity. 2

Besides the more widely employed magnetoresistance technique [19, 203], the

response of a type-II superconductor, under the injection of a dc current, can

be also investigated from a ”microscopic viewpoint”, by means of NMR. The

first to employ NMR, with the aim of studying the vortex motion in the high-Tc

superconductors, under non equilibrium condition was Carretta [204], after the

inspiring experiment of Delrieu [205]. Carretta showed, via 89Y NMR, that an

applied Lorentz force induces a narrowing of the line in YBa2Cu3O7−δ, owing to

1The word ”equilibrium”refers to the absence of an external current driving the VL. However
the effect of the rf field still induces a perturbation, although weak.

2Note that type-II superconductors are more often employed, because of their high critical
fields. For example V3Si and Nb3Sn have Hc2 ∼ 105 Oe.
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a decrease in the effective correlation time of the vortex motion.

Some background about the dynamical properties of the FLL under J are first

presented. Afterwards the experimental data obtained on Ba(Fe1−xRhx)2As2 are

shown and discussed.

6.1 Dynamical properties of the FLL

The study of the vortex phase, in presence of a driving current can be very

interesting, not only form a technological viewpoint, but also in regards to funda-

mental aspects. According to the intensity of the external current, the following

classification of the vortex motion can be done:

• Ideally flux flow occurs when there is no pinning, and the vortex motion

can be explained in terms of a diffusion, in presence of some viscous damp-

ing, with a drag coefficient η. Since all real systems show pinning, the

flux flow can be observed when the external current exceeds the depinning

critical current Jc.

• Flux creep occurs when the motion is hindered by the presence of pinning

centers which can trap the vortex, by modifying the free energy profile. The

nature of the motion is not a drift but, as the name suggests, it is rather

discontinuous (”hopping-like” dynamic).

In the former case, when a current density J is injected into a type-II super-

conductor, a Lorentz force acts on the vortices:3

F = J× Φ0

c
, (6.1)

thus forcing them to flow with a velocity vL, that is perpendicular to the magneticFlux flow

field, and generating an electric field:

E = B× vL

c
(6.2)

Since E is parallel to the current J, a non-zero resistance ρf will rise. The

resistivity can be derived by equating the Lorentz force and the viscous force

J× Φ0

c
= ηvL, (6.3)

3The following relations assumes a cubic shaped sample.
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and recalling the Ohm law:

ρF =
|E|
|J|

=
BΦ0

c2η
. (6.4)

Bardeen and Stephen developed an intuitive model, experimentally verified by

Kim and coworkers [206], to explicit the drag coefficient η. This model assumes

that the dissipation takes place within the vortex core of radius ξ, according to

ordinary dissipative processes [207].

If one takes the power dissipation:

W = −F · vL = ηv2
L (6.5)

and considers the Bardeen and Stephen’s argument, one obtains:

W ∼ v2
LΦ2

0

2πξ2c2ρn
(6.6)

where a factor 2 has been accounted for the dissipation outside the core. Finally

the resistivity becomes:

ρf =
Bρn
Hc2

(6.7)

so the flow resistivity ρf is directly proportional to the field and it increases as

much as the field approaches the upper critical field Hc2.

In the flux creep scenario, the vortex flow is prevented by the presence of pin-

ning centers. Anderson and Kim noticed that when a driving current is taken into Flux creep

account, the energy profile changes in such a way that the jumps in the direction

of the decreasing potential will be more likely than the opposite ones (Fig. 6.1).

The creep-type motion of a vortex can be visualized as a thermal diffusion pro-

cess in which different segments of the vortex move between metastable states.

In absence of an external current, a vortex segment lowers its energy by finding

the optimal low-energy state among its neighboring metastable states. Under the

action of an applied current density J, some other metastable states become more

favorable and the vortex begins to move. The new optimal states are determined

by the condition that the energy gain due to the driving Lorentz force is equal

to the deformation plus the pinning energy of the vortex. Kim and Anderson

assumed that the vortices move into bundles of average volume L3. In order to

move a bundle in the direction of the decreasing potential of a spacing equal to

its size, there will be an energy cost Ef = fL4, while to move it to the opposite
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Figure 6.1: The potential energy profile as a function of the position, in case of a

transport current. The downward jumps are more favored than the upward ones. The

figure is adapted from Ref. [22].

direction Eb = −fL4, where f is the Lorentz force density. Then the net jump

rate can be written as [22]:

Ω = ω0e
−U0/kBT (eEf/kBT − e−Ef/kBT ) = 2ω0e

−U0/kBT sinh

(
fL4

kBT

)
(6.8)

where ω0L ∼ 1 − 106 cm/s. A rough estimate allows one to find the free energy

U0: U0 ∼ H2
cL

3/(8π).4 When fL4 � kBT , the former result can be approximated

to:

Ω ∼ ω0e
(−U0+fL4)/kBT (6.9)

The previous model was successfully employed by P. Carretta [204] to interpret

the motional narrowing of the 89Y NMR spectrum. An YBCO sample, made ofLinewidth study

under the action

of a current.

pressed powder, with Tc = 90 K, was injected by a dc current, up to 120 mA. The

VL dynamic can affect the linewidth as reported in Fig. 6.2 (top). According to

the vortex creep scenario, characterized by a hopping rate τ−1
c , the linewidth is

described by [204]
δν0

δν(I)
=

τc0
τc(I)

∼ cosh(Ef/kBT ). (6.10)

In fact, while the resistivity measures the net jump rate, namely the difference

between the jump rate in favor and against the Lorentz force, the nuclei probe,

in an NMR experiment, the sum of the two processes. Hence the hyperbolic sine

turns into the hyperbolic cosine showed in the equation above.

The author found a good agreement between the experimental data and the

Kim-Anderson model, as the hyperbolic cosine was well reproduced (Fig. 6.2

(bottom)).

4p is usually much smaller than 1. See Ref. [22] for further explanations.
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Figure 6.2: (Top panel) The NMR linewidth versus temperature at different current

values. The normal phase linewidth has been subtracted, as shown in the next para-

graphs. The applied currents were I =0 mA (squares), I = 50 mA (triangles) and

I =120 mA (circles). (Bottom panel) Normalized correlation time as a function of

the current. The solid line is a fit to equation (6.10). The figures are adapted from

Ref. [204].

Few years later, Recchia et al. [208] studied the same material, in form of single

crystal, via 63Cu NMR, under the injection of a pulsed current. They performed

spin-echo experiments, after injecting current pulses as large as 10 A/cm2 (100

times larger than that used by Carretta). The NMR linewidth in the super-

conducting state, does not exceed the value measured in the normal state until

the temperature reaches a value where the resistance vanishes. Moreover the

linewidth was measured together with the resistance of the sample. The authors

claimed that a vortex liquid state occurs between Tc and the temperature at
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which the resistivity drops to zero. No effect on the spin-echo was observed. The

sample resistance also served as an excellent sensor of the crystal temperature,

as the measure was carried out at a fixed current. Their main results are shown

in Fig. 6.3. By combining Einstein relation into the description of the vortex

Figure 6.3: Resistivity and 63Cu NMR linewidth versus temperature, YBCO crystal in

a 9 T field applied parallel to the crystalline c axis. No broadening of the Cu line shape

is seen down to temperatures below which the resistance becomes zero, suggesting the

effect of motional narrowing. The figure is adapted from Ref. [208].

diffusion, Recchia et al. deduced that near 80 K, vortices diffuse at a distance

larger than one lattice spacing, within a time of 10 µs. Moreover a vortex bundle

of volume 2×1011 Å3 was derived.

The two last works have inspired the experiments presented in this chapter.

As shown above, the VL motion can induce local field fluctuations, with a typicalMotivations

correlation time τc, defined here as the time in which the vortex bundle covers

a distance of nearly an intervortex spacing le. Such fluctuating fields hi(t) are

responsible for the motional narrowing effects observed by Carretta and Recchia.

However, while the linewidth is sensitive just to the ”fast motion limit”, the spin

echo decay time can give insights into a wider time range (typically µs - ms

or shorter) [62]. Hereafter the spin-spin relaxation time T2 will be studied, as

a function of the current and temperature, in a Ba(Fe1−xRhx)2As2 compound

(x=6.8%).
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6.2 Spin-echo decay under a Lorentz force:

preliminary observations

This experiment is basically very similar to a customary NMR experiment, as de-

scribed in the previous chapters, with the further complication to inject a current Experimental

setupthrough the sample, via two thin copper wires.5 A static field of 6.4 T was applied

parallel to the c axis. The wires were soldered to the sample surface, by means

of a silver paste, and then connected to a current generator, that can provide

currents larger than 1 A. The current density J injected into the sample is in the

0 - 4.5×103 A/cm2 range, which is well below the depinning current measured in

the Co-doped Ba122 family: Jc ∼ 105 A/cm2, at H =6.4 T and T =4.2 K [24].

The current was provided in form of pulses, by a switch box, triggered by the

spectrometer, as in Fig. 6.4. The current pulse flows through the sample during

the whole preparation and acquisition times, while it is injected into a resistance

of 1 kΩ, during the ”Last Delay” time (see Fig. 6.4). The duty cycle is approxi-

mately 1/60.

The reason to apply a pulse, instead of a continuous current, is to avoid sample

Figure 6.4: An example of the sequence employed in the experiment. The Hahn echo

is built by the application of a π/2 pulse, followed by a π pulse (purple box). From the

start of the sequence until the end of the acquisition the current pulse is switched on

(red box).

heating, due to Joule effect. Particular attention has to be paid to such effect,

as it is responsible for the increase of T2, which can be easily mistaken with VL

5Wires of 0.19 mm diameter were employed.
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dynamics, within the temperature range of Tm − Tc, i.e. the liquid vortex phase.

Regardless the fact that above Tc no large current-induced effect has been ob-

served on the echo-decay (Fig. 6.5 (bottom)), one should still be careful, below

Tc. In fact:

• the echo intensity, at zero τ , is affected by the current intensity (not shown).

Indeed the amplitude of the NMR signal is proportional to:

E0 ∝ δ(T )H0/T (6.11)

where δ is the skin-depth.

• The spin echo decay becomes slower with the increase of the current inten-

sity.

It is tentative to interpret the above phenomenology by stating that the sample

heating is more effective below Tc, as the thermal capacity of the sample dramat-

ically diminishes in the superconducting state. However the duty cycle may play

an important role.

To check this hypothesis, the echo decay has been studied, while the sample was

injected with 100 mA, and a comparison between a pulsed and a continuous cur-

rent was carried out (Fig. 6.5 (top)). From the data it is clear that the smaller

the duty cycle, the smaller the effect of the current on the echo decay. Moreover,

deeper insights can be provided by the study of the echo intensity, at zero τ ,

as function of the current and temperature. Fig. 6.6 shows the temperature

dependence of δ, which reflects the square root of the resistivity
√
ρ.

When a continuous current is injected, δ shifts towards lower temperature

as the current intensity increases (Fig. 6.6 (top)). Moreover, the curves can be

properly rescaled by a temperature correction (Fig. 6.6 (bottom)). On the other

hand, when a pulsed current is applied, the experimental data overlap with the

curve in absence of current.

As a consequence of the above discussion, it was deduced that the injection of

a continuous current does heat the sample, therefore the following measurements

are taken after injecting current pulses, ∼ 10 ms long.
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Figure 6.5: The top panel shows a comparison between the echo decay under the

action of a pulsed current and of a continuous current, as described in the text above

(Tc ∼ 19.5 K). The bottom panel shows the echo decay in absence of a current, for 120

mA (pulsed and continuous), above Tc.

6.3 Spin-echo decay under a Lorentz force:

experimental results and discussion

The spin echo decay was investigated as a function of the temperature and of the

current intensity. T2 was firstly derived as the time when the echo decays at 1/e.

When the spin echo decay rate 1/T2 is plotted as a function of the current in-

tensity, a dome-like shape develops with the temperature. The current at which

1/T2 shows its maximum progressively grows, as the temperature diminishes (Fig.

6.7). The increase in 1/T2 which appears at small current intensity, below 18 K,

cannot be due to the Joule effect, as in such temperature range the opposite trend

would be expected. More likely the dome-like shape of the spin-echo relaxation

rate indicates that the current is affecting the motion of the VL, as discussed in

the next paragraph.

What is the origin of such an effect?
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Figure 6.6: The top panel shows how the current affects the penetration depth. In the

bottom panel the curve are scaled into the I = 0 data, by applying a shift of 0.5 and 1

K, for 120 mA and 500 mA, respectively.

T2 decay requires that the nucleus probes a longitudinal magnetic field, which

fluctuates in time [138]. As discussed in Chapter 4, such longitudinal field is

hardly ascribed to direct dipolar interaction, but it is rather owed to indirect

exchange mechanism. The source of dynamic likely originates, below Tc, by inco-

herent fluctuations, due to vortex diffusive motions.

It is recalled here that, in case of highly incoherent motions, as diffusive processes,

it can be assumed that the longitudinal field (hz) fluctuates in time, in such a

way that the correlation function becomes:

< hz(t)hz(0) >=< h2
0 > exp(−t/τc) (6.12)

This leads to the following general expression for the echo decay [62,134,209]:

E(2τ) = E(0) exp−<M2>τc[2t−τc(1−exp(−t/τc))(3−exp(−t/τc))] (6.13)

where M2 is the second moment of the static field distribution, M2 =< ∆ω2 >,

which is about the square of the linewidth,6 in the rigid lattice limit. Nevertheless,

6Indeed M2 coincides with the square of the linewidth just for a Gaussian line.
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Figure 6.7: Progressive evolution of the spin echo decay rates, as a function of the

current, from 30 K down to 15 K, with Tc ∼ 19.5 K. Above the critical temperature

no effect on the echo decay rate is visible, while below Tc a downturn behavior in 1/T2

versus I, emerges. An external magnetic field of 6.4 T was applied.

for each value of T2eff , there correspond two values of τc which solve the former

equation: the first one lays in the fast limit regime, and the second one lays in

the slow limit regime, as also reported by Recchia and coworkers [209] (Fig. 6.8).

Indeed, for very long correlation times, T2eff (1/T2eff ) becomes long (small),

since field fluctuations should take place during the characteristic time of the echo

experiment, in order to prevent the echo from refocusing perfectly. For very short

correlation times, motional narrowing occurs, and again T2eff (1/T2eff ) becomes

long (short), as it occurs for the FID. Accordingly, for intermediate correlation

times, where 1/τc is of the order of ∆, T2eff displays a minimum. The mini-

mum (maximum) in T2eff (1/T2eff ), is reminiscent of the well-known minimum

in T1, which occurs when a similarly fluctuation frequency matches the Larmor

frequency [63].

In agreement with the above discussion, one would expect to observe a crossover

similar to Fig. 6.8, once the effective correlation rate is plotted as a function of
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Figure 6.8: Effective transverse relaxation time, as derived from the Gaussian-

approximation method described in Ref. [209], plotted as a function of the dimensionless

parameter γh0τc. A crossover between long and short correlation time and it’s effect

on the echo decay time is observed for γh0τc ∼ 1.

τc. In order to obtain τc, the equation reported in the Anderson-Kim theory has

been employed

τc(I) =
τ0

cosh(WI)
(6.14)

where W takes into account the vortex correlation volume V and the hopping

distance x0:

W =
HV x0

ΣckBT
=

Hx2
0

ckBT
(6.15)

where the lower limit for the hopping length, x0, is the intervortex spacing, le.

The former equation can be written again in a new form:

τc(I, T ) =
τ0

cosh(UI/T )
(6.16)

where now U is naturally related to W . In the last equation, the explicit depen-

dence on the temperature and the current has been evidenced.

Note that τ0 (∼ 4.5×10−3ms) has been derived by the condition for the maximum

of 1/T2eff , namely ∆τc ∼ 1, and it is fixed throughout the whole temperature

range, while U is a free parameter, which varies within 1-10.

The result is shown in Fig. 6.9, where the effective 1/T2, namely the value taken

at ”1/e”, is plotted as a function of the correlation time multiplied by the square
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Figure 6.9: The effective spin echo decay rate as a function of the dimensionless param-

eter ∆τc, with the current as an implicit parameter. 1/T2eff for different temperatures

is displayed.

can be evidenced:

• At 19.5 K (→ T−c ), the VL motion is fast, and it gets even faster upon

increasing the current intensity (which, in turn, decreases τc);

• At 19 K and 18.5 K a dynamical crossover, from fast to slow motion, is well

evidenced by the presence of the peak in 1/T2ff ;

• Upon progressively decreasing the temperature down to 17 K and 15 K, the

VL motion lays in the slow limit regime.

Therefore, the amplitude of the 1/T2ff increases with the decrease of the temper-

ature, because the second moment of the static field distribution behaves likewise.

From the former results, one may deduce that the temperature and the current

play a similar role in accelerating the VL dynamic, regardless the motion nature.

In fact, in the absence of a current, the VL notion is purely thermally assisted,

whereas, at a fixed temperature, the current increase enhances the correlation

frequency.
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Although the qualitative behavior of the data agrees with the expectations,

further studies are required to provide more striking conclusions.

6.4 Conclusions

The present Chapter shows a study of the vortex lattice dynamics, driven by the

injection of an external dc current, via the analysis of the spin echo decay time.

After addressing the issue of the Joule effect, which may cause a fake drop in

the spin echo decay rate, the correlation time has been derived by the Anderson-

Kim theory for collective flux-creep of vortex bundles, as it has been successfully

employed in the high-Tc cuprates. T2eff versus the adimensional parameter ∆τc

has been found in agreement with the general theory of the echo decay in the

Gaussian approximation.

In addition to earlier studies, this analysis shows how temperature and current

act simultaneously.

Further experimental and analytic efforts are envisaged to complete these results,

and derive microscopic information about the quantities involved in the motion.
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Chapter 7
Exotic Phenomena induced by

Vortex Lattice

This Chapter presents novel approaches to study the thermal excitations of the

vortex lattice, in absence of an external current. The first part of the Chap-

ter deals with an anomalous acoustic ringing of the NMR coil, emerging below

the transition temperature. Such an effect was initially very inconvenient, as it

prevented low temperature measurements. At a deeper look, the phenomenon

showed some systematic behaviors, that suggested an interpretation based on

magneto-acoustic coupling between the vortex lattice and the superconducting

sample.

The second part of the Chapter deals with a cantilever magnetometry experi-

ment performed on a single grain of NbSe2 superconductor. At first, the feasibility

of Nuclear Magnetic Resonance Force Microscopy (NMRFM) is addressed, later

on a study of field and temperature dependence of the cantilever energy dissipa-

tion and resonance frequency is analyzed and discussed.

The experimental results are interpreted in terms of the melting transition of

the vortex lattice, and the pinning energy barriers are derived, together with the

phase diagram of the superconducting particle.

In Chapter 5, the vortex melting/freezing phase transition has been experi-

mentally observed, yet no so much mathematical formalism has been presented.

Here some preliminary theoretical background is provided.

175



7. Exotic Phenomena induced by Vortex Lattice

7.1 Vortex Melting transition

The study of vortex physics in type-II superconductors is extremely fascinating,

as it touches on several phenomena, involving hydrodynamics, electromagnetism

and quantum field theory. The interplay between thermal fluctuations, vortex

repulsion/attraction and the role of quenched disorder contribute to create a

puzzling scenario [58,210]. Such a study is appealing not only form a fundamen-

tal viewpoint, both also in the light of the practical limitations related to the

occurrence of a liquid vortex phase, where the dissipationless state, peculiar of

superconductivity, vanishes.

The melting transition has been intensively studied during the last years, and

many efforts from a theoretical [162, 182, 211] as well as experimental viewpoint

have been carried out. In particular, the more widely employed techniques were

resistivity, ac-susceptibility [194], ultrasound attenuation [212], mechanical mea-

surements [163], STM [213], magnetic decoration, [214] SEM, [215] MFM, [216]

NMR [35, 130, 141, 149, 167, 170, 205, 206, 208], µSR [217], and neutron scattering

spectroscopy [218,219].

Nevertheless all the above techniques need either big samples of at least a few

mm2 or cm2 size, or small magnetic fields. However, the combination of small

samples and fields in the Tesla range has not been often encountered. The B part

of this Chapter suggests a new method to overcome this limit, while hereafter the

attention will be focused on the mathematical formalism of the melting transition.

The derivation of the vortex line tension can be pursued by following Tin-

kham’s argument [22], in case of non strongly interacting vortices. For κ� 1, a

crude estimation of the core can be done, and it turns out that the vortex-line

energy is written as the sum of the magnetic and kinetic energies (namely the

term related to the currents):

ε1 =
1

8π

∫
(h2 + λ2|∇ × h|)d2r (7.1)

which can be reexpressed in the following form:

ε1 =
H2
c

8π
4πξ2 lnκ. (7.2)

In addition, the mutual vortex interaction has to be taken into account. In fact,

between two flux lines oriented along the field direction (z) and with the same

verse, there is a repulsive magnetic force fx = Φ0

4π
∂h1(r2)
∂x2

where h1x is the field
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that flux line 1 induces on flux line 2. On the other hand, vortices on different

planes feel an attractive force among each others, that induces the formation of

3D vortex lines (Fig. 7.1). If the vortices are periodically arranged, no net force

will originate. On the contrary, if one vortex is displaced by δx with respect to

the equilibrium position, a new force will appear [22]:

fe =
Φ0

4π

∂2h1(r2)

∂x2
2

δx. (7.3)

In presence of an array of vortices, a sum over all the neighbors must be per-

Figure 7.1: Sketch of three flux lines (black lines) and current vortices (black circles).

The repulsive and attractive interactions are represented by arrows.

formed, in order to obtain the approximate total force (per unit length):

fe ∼ (
√

3Φ0/4π
2λ2)H ∼ Hc1H. (7.4)

The elastic energy associated with fe is finally:

Eel =
1

2
fe < u2 > Lz

u being the displacement taking place in the plane perpendicular to z.

By summing over the elastic energy to the line tension, and minimizing the total

energy with respect to Lz, it is found:

Lz ∼
√

Φ0/H ∼ le.
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Finally, by inserting the optimal Lz into the total energy expression, and invoking

the energy equipartition theorem, the root mean square amplitude of the vortex

fluctuation turns out to be:

< u2 >
∼ kBT√
feε1

.

Now, the vortex melting transition can be explained by resuming the Lindemann

criterion, which states that the melting occurs when < u2 > is a significant

fraction c2
L of l2e .

1 Accordingly the temperature dependence of the melting field

Bm is obtained [58]:

Bm ∼
c4
LΦ5

0

(kBT )2λabγ(cos2 θ + γ2 sin2 θ)1/2
, (7.5)

where θ is the angle between the magnetic field and the ab plane. Strong anisotropy

γ can suppress the melting field, giving rise to a broad liquid region, as reported

in Fig. 7.2.

One might expect that the long-range order of the FLL would be broken

in an abrupt way, as in a first order phase transition. On the other hand the

nature of the melting transition is not so clear to identify, as sometimes

it occurs so close to the Hc2 line to be ”hidden” in the superconducting transition

itself. So the entropy reduction taking place at Tm, which is of the order of kB

per layer number is quite small, as compared to the entropy drop due to the

superconducting transitions. That is why specific heat measurements are not

suitable to observe this effect. On the other hand magnetic measurements are

better candidates.

Part A:

Anomalous spurious ringing in the mixed phase

of Rh-doped Ba122 compounds

The term ”spurious ringing” refers to the mechanical vibration of a part of the

NMR apparatus, usually the pick up coil, which turns into a fake NMR signal,

1-100 µs long, and may overlap to the real signal. This effect is sometimes

called ”the coil disease” [220], since it is so detrimental that it can prevent from

collecting the FID or echo signal, especially when the T2 is very short. In order

1Typically cL = 0.1− 0.2
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Figure 7.2: Phenomenological phase diagram for the strongly layered high-Tc supercon-

ductors. The part of the phase diagram occupied by the liquid phase is substantially

larger than the case of more isotropic superconductors. The figure is adapted from

Ref. [58] .

to get rid of this effect, some tricks are usually employed, as for instance making The ”coil

disease”an irregular pick up coil, using a stiff copper wire, or coating the coil with epoxy.

A further source of ringing comes from the probe body and walls. Finally, in

case of metallic samples, also the specimen can generate ringing, the latter being

the hardest to remove. In such a case, one may consider to work on a powder

sample, instead of a single crystal, which has the additional benefit of increasing

the surface/volume ratio and so the NMR signal intensity. Anyhow, when it is not

possible to change the sample or the probe, the ringing may become so persisting,

to stimulate new questions!

The source of ringing is often found in the electromagnetic generation of ultrasonic

standing waves, in metals. When standing waves are generated in presence of a

static magnetic field, the acoustic energy will be converted into magnetic energy,

and then picked up by the NMR coil. This effect can be understood by recalling

the reciprocity theorem of classical electrodynamics, that can be generalized in

case of magnetic material. In particular, an effective analogy can be done by

considering that in an ultrasound attenuation experiment, the interaction between

the external acoustic wave and the static magnetic field will induce a vibration

of the FLL that turns into an acoustic attenuation [221]. On the other hand,

the coupling between the magnetic field and the thermally driven FLL dynamics,

may give rise to an acoustic wave, as sketched in Fig.7.3.

An example of ringing observed in the Ba(Fe1−xRhx)2As2 compounds is visible
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Figure 7.3: In picture A) the acoustic attenuation experiment is sketched: if flux

lines are pinned, the flux line lattice is vibrated by the ultrasound propagating in the

superconductor. The figure is adapted from the web (energy.eee.kagoshima−u.ac.jp).

In picture B) the reverse mechanism is shown. Here the FLL dynamic is activated by

thermal energy, and the motion by interacting with the external magnetic field, is able

to generate an acoustic wave.

in Fig. 7.4.

7.2 Experimental results and interpretation

The phenomenology of the spurious ringing, as reported in Fig.7.4 can be sum-

marized as follows:

• It is found in the nearly optimally doped compounds, namely x = 7% sample

(and partially in the 6.8 %) at any magnetic field, i.e. from 3 up to 15 T;

• It appears just in the superconducting phase;
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Figure 7.4: Example of the ringing signal (without the actual NMR signal) for x=7%,

measured at 7 T ‖ c, at 15 K (below Tc). The red solid curve is a tentative fit, with

three resonance frequencies (see text below).

• Its amplitude increases with the magnetic field magnitude;

• It does not depend on the experimental apparatus employed: it was ob-

served in Pavia, Grenoble, Northwestern University, and at NHMFL in

Florida;

• It is enhanced when the field is perpendicular to the FeAs layers.

These evidences suggest that a tentative explanation of such an effect lays in a

magneto-acoustic coupling between the vortex and the crystal lattices. In partic-

ular, when the vortex matter becomes glassy, the thermal excitation is too weak

to overcome the pinning barrier, so the vortex elastic energy is transferred to

the crystal lattice, causing a vibration. This would explain why the ringing is

enhanced at low temperatures.

Fukushima et al. showed that the amplitude of the ringing signal induced in the

coil is written as [220]:

Ar ∼ H1
H2

mvs(1 + β2)
(7.6)

where H1 is the oscillating rf field at frequency ω, while m and vs are the mass

density and the acoustic shear velocity of the specimen. Moreover β is defined
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as:

β =
(qδ)2

2
=
ωρ(T )

v2
sµ

(7.7)

where the wave vector q is equal to ω/vs, and ρ is the resistivity, which is related

to δ, the penetration depth; finally µ is the magnetic permeability. From the

previous equation β turns out to be a function of the temperature.

Two limit cases can be considered:

• In the solid vortex phase, ρ→ 0, then the amplitude of the spurious ringing

can be approximately written as:

Ar ∼ H1
H2

mvs
(7.8)

As a consequence of that, at low temperature, the quadratic relation Ar ∼
H2 should be satisfied. Remarkably, the ringing amplitude maximum, asSolid

Phase measured on Ba(Fe1−xRhx)2As2 in the time domain, agrees well with equa-

tion (7.8) (Fig. 7.5).
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Figure 7.5: Maximum of the ringing amplitude, measured in the superconducting

phase (about 10 K), below the temperature of the peak in 1/T1, as a function of the

second power of the field. The linear behavior confirms the expectation of equation

(7.8).

Moreover, the geometry of the sample is also relevant to the ringing forma-
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tion. In fact, in a sample of size d, the resonance frequency is proportional to

the sound velocity and inversely proportional to d. So, when the specimen

is made of more than one crystal (as in a powder sample) a broadening of

the resonance frequency can take place, and eventually the spectral density

of the ringing becomes broader and flatter, leading to a less intense ringing.

Another consideration relies on the coupling between the sample and the

coil. It is sometimes useful to shield the sample with a metal cage or strip,

like a copper tape, in order to get rid of the component of the electric field

related to H1, which in turn may give rise to the generation of acoustic

waves. An attempt to isolate the sample with a copper tape was done,

but the effect was negligible, thus suggesting that the physical origin of the

ringing is magnetic and not electric (Fig. 7.6).
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Figure 7.6: The echo with the ringing are displaced for x=6.8%, as they appear in

an NMR experiment, at 16 K (below Tc) and 6.4 T, before and after the copper tape

screening.

• When T → T−c , the resistivity is non null, as vortices will move2 by flux

creep, and will dissipate energy. Since in the liquid phase the pinning mech-

anism is less effective, it is reasonable that the ringing magnitude will be Liquid

Phasestrongly reduced. If the magnetic field is constant, the inverse of the maxi-

mum amplitude of the ringing signal versus temperature behaves like:

1

Ar
(T ) =

mvs
H1H

(
1 +

ρ2

d2v2
sµ

2

)
(7.9)

2Usually ρ shows strong non-linear behavior with temperature.
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Hence the temperature dependence of the ringing amplitude is mainly given

by the resistivity term which, in the liquid phase, is strongly non linear and

it usually follows an Arrhenius law:
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Figure 7.7: The square root of the inverse of the ringing amplitude is plotted as a

function of the temperature, for H = 8.5 T ‖ c. The red curve is the best fit according

to equation (7.10).

log

(√
1

Ar

)
∼ log ρ0 −

U

T
. (7.10)

From a fit to the previous equation (Fig. 7.7) the pinning activation energy

becomes Up ∼ 380 ± 30 K, which is of the same order of magnitude of the

NMR measurements.

A further indication of the intrinsic relationship between vortex dynamics and

the ringing effect is shown in the phase diagram (Fig. 7.8), from which it is clear

that the ringing begins at a temperature above the liquid/solid crossover.

Before concluding this section some additional considerations concerning the

natural frequency of the ringing are proposed. The fit in figure 7.4 is made by

assuming three components in the ringing spectrum. This assumption has beenRinging

frequency verified in another experiment, carried out in Tallahasse, at 11 T on x=6.8%,

where the Fourier transform of the ringing is characterized by three equidistant

184



7.2. Experimental results and interpretation

11 13 15 17 19 21 23
0

5

10

15

Norm
al Phase

Glassy Vortex Phase

Vortex Liquid Phase

 H
 (T

)

T (K)
Figure 7.8: The phase diagram of Chapter 5, enriched with the blue stars data, showing

the onset of the ringing effect, taking place in the liquid phase, where vortices are just

a little correlated.

peaks (Fig. 7.9). These peaks are nearly 300 kHz far apart and their amplitude

decreases with the increase of the frequency, but it does not depend on the tem-

perature. If the origin of this resonance frequency is related to an optimal energy

transfer from the vortex matter to the crystal, and consequently from the crystal

to the coil, it is reasonable that when the pinning frequency matches the reso-

nance energy of the coil, the ringing will be strongly enhanced. The subsequent

decreasing maxima, in the Fourier transform of the spectra can be ascribed to

harmonic resonances of the coil.

Finally, one may conclude that the study of the ringing can become a new

methodology to explore the dynamical properties of FLL in type-II supercon-

ductors. However, in order to make other quantitative predictions some further

analysis must be pursued, and the temperature/field dependence of the quality

factor has to be taken into account.
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Figure 7.9: Field sweep of the ringing, as measured at 11 T ‖ c, on x = 6.8 % single

crystal.

Part B:

Cantilever Magnetometry studies of NbSe2 single

grain

Dynamic cantilever magnetometry allows one to employ nm-µm size samples, and

fields ranging from the mT up to ∼ 10 Tesla. Such a technique requires ultrasen-

sitive cantilevers, the fabrication of which is rapidly improving [222]. Outstand-

ing advances have been pushed forward through the results obtained by Wago

et al. [223] and more recently, by the flourishing research activity based on the

combination of AFM ultrasensitive cantilevers, and the achievements of ultra-

low temperatures [224–226]. While some recent papers address the problem of

Ni nanotubes [227, 228], and semiconductor nanodevices [229, 230], a few studies

drive the attention on superconducting particles [210,231].

In this section, a well known type-II superconductor is investigated by cantilever

magnetometry. NbSe2 is chosen as it is a layered s-wave superconductor, with

Tc ∼ 7.2 K [232–234]. It also shows multiband superconductivity, with dis-

tinct small and large superconducting gaps on different sheets of the Fermi sur-

face [235, 236]. Furthermore the vortex phase of niobium diselenide is known to

show a plastic flow which dominates the dynamics [237].
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Firstly an analytic expression for the vortex lattice magnetization is derived. Af-

terwards, the dynamical response of the flux lines lattice (FLL) is studied by

measuring the cantilever energy dissipation and resonance frequency. In par-

ticular, the pinning energy barriers of the thermally activated creep motion are

derived, and the mixed phase diagram of the material is drawn.

Before the realization of the cantilever magnetometry, an attempt to realize a

Nuclear Magnetic Resonance Force Microscopy experiment was done. The basics

of this fairly new technique are discussed below.

7.2.1 Principles of Nuclear Magnetic Resonance Force Mi-

croscopy (NMRFM)

NMRFM is a technique that aims at improving the detection sensitivity of in-

ductive pick-up coils, usually employed in Magnetic Resonance Imaging (MRI),

by mechanically detecting the magnetic forces produced by nuclear moments. In

NMRFM, a soft cantilever is used to sense the magnetic forces arising between

the nuclear spins in a sample and a nearby nanomagnet. This experiment can be

carried out in two configurations:

• if the sample is placed on the cantilever, hanging above the nanowire+magnet,

it is said to be in the ”sample-on-cantilever configuration” (see Fig. 7.10);

• if the nanomagnet is fixed at the cantilever, the setup is called ”tip-on-

cantilever”.

Figure 7.10: Schematics of an MRFM apparatus, in the sample-on-cantilever configu-

ration. The figure is adapted from Ref [222].
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A nanowire generates an oscillating rf field that, when tuned at resonance with

the nuclear spins, can make them periodically flip, generating an oscillating ultra-

small (attonewton) magnetic force on the cantilever. In order to resonantly excite

the cantilever, the nuclear spins must be inverted at the cantilever’s mechanical

resonance frequency. The cantilever mechanical oscillations are then measured by

an optical interferometer. The electronic signal produced by the optical detector

is proportional both to the cantilever oscillation amplitude, and to the number

of nuclear spins involved in the sample volume. As in a conventional MRI ex-

periment, a field gradient is employed to get a spatial map of the nuclear spin

density. In such a case the field gradient is generated by a nanomagnet, which is

responsible for the high spacial resolution.

A noticeable example of this technique was realized by Degen et al. [238] on a

sample of tobacco mosaic virus (TMV), less than 10 nm long. The probed nucleus

was 1H, which has the highest NMR sensitivity among all the nuclear species. The

hydrogen spins are flipped at the cantilever frequency by means of the rf field,

which is tuned at the Larmor frequency. This results in a periodic force that

drives the mechanical resonance of the cantilever. Monitoring the cantilever os-

cillation amplitude, while mechanically scanning the magnetic tip with respect to

the sample, allows the reconstruction of the proton density. In fact, the Larmor

condition changes with the position, in such a way that:

ω(r) =1 γ(H0 +Htip(r)), (7.11)

where r is the position where the magnetic tip generates a field Htip(r).

Typical spin signal vibration amplitude is a fraction of an angstrom, which is

smaller than the root mean square amplitude of cantilever thermal vibrations.

A lock-in amplifier is employed so that the spin signal appears predominantly in

the in-phase channel for on-resonance spins. Since the signal originates from the

statistical (random) polarization of the spins, the sign of the detected signal can

be either positive or negative and fluctuates during the course of the measurement,

making conventional signal averaging ineffective. Degen et al. decided to detect

the spin signal via its variance. To estimate the spin signal variance and to

distinguish the spin signal from cantilever thermal vibrations, both the in-phase

channel and the quadrature channel of the lock-in amplifier are digitized. These

signals are then digitally filtered in software and the variances for the in-phase

σ2
i , and out-of-phase signal σ2

q are derived, and of course the cantilever thermal

noise will contribute to the two channels, likewise. The spin signal variance is
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thus estimated by the difference between the in-phase and quadrature variances:

ξ =
k2

Q2
(σ2

i − σ2
q ) (7.12)

where k is the cantilever elastic constant, Q the cantilever quality factor, and ξ

is called the ”spin variance signal”, or simply the ”spin signal”, that contains the

physical information about the proton density distribution ρ(r), and in turn allows

one to build the three-dimensional image. Finally, since ξ is a convolution of ρ(r)

and the magnetic field distribution, the spin density map can be obtained after

deconvolving the magnetic field profile. The advantages of this technique lay on

the high resolution and on the record size of the device. In fact the smallest MRI

sample can reach down to 3 µm, as the biggest limit is related to the fabrication

of resonant coils. On the other hand mechanical, resonators can be fabricated

with dimensions way smaller than a micron and, additionally, mechanical devices

usually show resonant quality factors that surpass those of inductive circuits by

orders of magnitude, resulting in a much lower baseline noise. In the next section

the experimental results on the NbSe2 grain are presented.

7.3 Experimental Results

The superconducting NbSe2 powders were firstly characterized by SQUID mag-

netometry and by SEM microscopy. The static spin susceptibility showed Tc(0) ∼
7.2 K, while the average grain size of the crystallites is 1.4 µm. A superconducting

grain of surface 2x4 µm2 was chosen with a glass needle using precision microma-

nipulators, combined with an optical microscope. The grain was attached to the

cantilever tip, by using epoxy (Gatan G1), after coating the lever with a Si/Au

bilayer, 5/10 nm thick (Fig. 7.11). Si was evaporated first, as an adhesive layer,

Au afterwards, in order to shield unwanted electrostatic interactions between the

cantilever and the surface. The single-crystal Si cantilever is 105 µm long, 4 µm

wide, and 0.1 µm thick and includes a 18 µm long, 1 µm thick mass on its end.

It has a small spring constant k = 80 µN/m, with low intrinsic dissipation, that

is ideal for detecting small forces, down in the aN (attoNewton) range.

The motion of the lever was detected using laser light focused onto a 12 µm wide

paddle, and using an optical fiber interferometer operating at a 1550 nm wave-

length, with 20 nW of optical power incident. The sample with the cantilever and

the chip with the magnetic tip were inserted into an ultra high vacuum (UHV)

chamber at the bottom of a He3 continuous-flow cryostat, mechanically insulated
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Figure 7.11: The sketch represents the sample-mounted-cantilever, oscillating in a

static magnetic field H0, like a pendulum. The superconducting particle (green sphere)

carries the magnetic moment µ, associated to the vortex lines lattice.

from the ground and equipped with a 6 T superconducting magnet, with the field

applied along the cantilever axis.

After the sample preparation, a preliminary measure of the cantilever Q-factor

was done, through the ”ringdown” method, as described by Stipe et al. [239].

The cantilever is oscillated at its natural resonance frequency, with a root mean

square amplitude of typically 10 to 20 nm, using a piezoelectric disk and a gain-

controlled positive feedback loop. The drive circuit is then abruptly grounded

and the cantilever rings down until thermal equilibrium is recovered. The same

results were also obtained by measuring the spectral density of the cantilever’s

thermal motion and fitting the fundamental mode to a Lorentzian.

In the ringdown method, the cantilever displacement signal has been collected as

a function of time. The power spectral density S(ω), i.e. the Fourier transform

of the signal, has then been derived and fit to a dissipative harmonic oscillator

model, with the Q-factor and the oscillation frequency ω as free parameters. Then

the energy dissipation Γ was derived:

Γ =
mω

Q
(7.13)

with m the motional mass, namely the sample mass plus the cantilever paddle.

The study of the cantilever mechanical response, as a function of the temper-

ature, reveals a sudden increase in Γ, corresponding to a drop of the Q-factor,
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7.4. Vortex Lattice Magnetization

close to Tc. Such an effect, reported in Fig. 7.12, has been observed earlier in

other superconductors [163, 231, 240], and it has been interpreted as the sudden

change of the sample magnetization, due to the Meissner-Ochsenfel effect. Fur-

thermore, in type-II superconductors, the incomplete Meissner effect related to

the FLL penetration, and the thermal fluctuations of the vortices competing with

the pinning mechanism, can significantly affect the cantilever elastic response.

0.12 0.14 0.16 0.18

100

1000

10000

T (K)

 

 4 T
 2.5 T
 1.5 T
 0.7 T

x1
0-1

5 (K
g/

s)

1/T (K-1)

8.0 7.5 7.0 6.5 6.0 5.5

Figure 7.12: Temperature evolution of the cantilever energy dissipation, measured in

field cooled, at different fields. The upturn of Γ marks the onset of the superconductivity

transition. The solid curves are the fit discussed subsequently

Remarkably, at a temperature systematically below the drop in the Q-factor/increase

in Γ, an abrupt increase in the cantilever resonance frequency ω has been observed

(Fig. 7.13(a)). Moreover, a study of Γ as a function of H reveals a peak, denot-

ing a phase transition, in the vortex matter (Fig. 7.13(b)), as shall be discussed

subsequently.

Note that the sudden upturn of Γ hinders the performance of the NMRFM

experiment, as in this condition the Q-factor becomes too small. Further consid-

eration will be given towards the end of the chapter.

7.4 Vortex Lattice Magnetization

In the following, an analytic expression for the vortex lattice magnetizationM as

a function of the cantilever dissipation Γ, and resonance frequency ω is derived.
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Figure 7.13: (a) Temperature evolution of the Q-factor (right axis) and fundamental

mode frequency (left axis) of the sample-mounted cantilever, at 2 T. The increase of

the cantilever natural frequency ν is found below the onset of the Q-drop, at each

field. The dotted lines mark the Normal Phase (NP) from the Liquid Vortex Phase

(LVP), and the Solid Vortex Phase (SVP). (b) Cantilever dissipation measured at 6.5

K (blue circles) and 5.5 K (black squares), by sweeping the field from 6 T to zero.

Upon decreasing the magnetic field, the dissipation drops down, at the vortex freezing

transition (red arrow).

Since the relaxation of the whole vortex lattice magnetization takes place over a

timescale much longer than 1/ω (typically few hours), it cannot give rise to the

observed increase in Γ. Moreover the vortices are supposed to enter, when the

cantilever is in the equilibrium position. The total energy of the sample-mounted

cantilever, in the superconducting region, can be written as3

E =
1

2
k(lcθ)

2 − VM · µ0H0 (7.14)

where lc is the cantilever length, θ is the angle formed by the magnetic field

direction and the cantilever axis, µ0H0 the external magnetic field, and V the

sample volume. The scalar product in Eq. (7.14) gives a cos θ factor, which is

3Form now on, all the equations will be written in I.S. units.
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approximated up to the second order, for small angles:

E ∼ 1

2
k(lcθ)

2 − VMµ0H0

(
1− θ2

2

)
(7.15)

The angular dependence of the energy gives rise to a torque force

τ = −∂E
∂θ

= −(kl2c + VMµ0H0)θ (7.16)

By recalling the equation of motion for the damped-forced harmonic oscillator

[227]

m
∂2x(t)

∂t2
+ Γ

∂x(t)

∂t
=
τ

lc
, (7.17)

being x(t) ∼ lcθ the tangential displacement, then:4

ml2c
∂2θ(t)

∂t2
+ Γl2c

∂θ(t)

∂t
+ (kl2c + VMµ0H0)θ(t) = 0. (7.18)

By assuming the boundary condition θ(0) = 0, the partial derivative equation

has the following solution:

θ(t) = ce−αt sin(ωt), (7.19)

Indeed the system oscillates like an underdamped harmonic oscillator, where α is

related to the dissipation:

α =
Γ

2m
, (7.20)

while the frequency ω:

ω =

√
− k
m

+
VMµ0H0

ml2c
− Γ2

4m2
. (7.21)

By defining the natural oscillation frequency as ω0 =
√
k/m, it is possible to

calculate the frequency shift (Fig. 7.14).

∆ω =

√
k

m

(√
1− Γ2

4km
+
VMµ0H0

kl2c
− 1

)
. (7.22)

4If the vortices enter when the cantilever forms an angle θ0 6= 0 with the field, the former
solution can be easily modified, by adding a phase, which however does not affect the final
result.
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Since equation (7.21) shows a one-to-one correspondence between the sample

magnetization and the measurable parameters (Γ, ω), the magnetization can be

derived as

M(Γ, ω) =
l2c

V µ0H

(
mω2 + k +

Γ2

4m

)
. (7.23)
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Figure 7.14: The magnetization as a function of the magnetic field, for three temper-

atures. The arrow marks the superconducting transition.

7.5 Vortex Freezing/Melting Transition

In addition to the above result, the study of Γ gives insights into the vortex lattice

dynamics, as well. In fact, the upturn in cantilever dissipation, observed at Tc,

can only occur through a non-conservative energy relaxation mechanism, such as

spin relaxation or phonons escaping into the bulk, via the following relation:

dE
dt

= −Γv2 (7.24)

where v is the cantilever velocity.

In the present case, the leading mechanism is ascribed to the flux-creep motion

of vortices, hopping among metastable energy minima, generated by the pinning

potential. In the former equation, Γ(T,H) is taken as the sum of Γc + Γv(T,H),

i.e. intrinsic cantilever losses plus the vortex loss.

By drawing an analogy between Γ, and the imaginary part of the ac susceptibility,

or the magnetoresistivity, which are all strictly related to the energy dissipation
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induced by vortex motion, the data can be fit to the expression:

Γ(T,H) = Γc + Γ0e
U(H)/T (7.25)

where U represents the pinning energy barrier of the thermally activated vortex

motion. Fig. 7.15 shows that the thermally activated model fits the experimental activation

barrierdata fairly nicely, supporting the initial assumption. Form the fit, the intrin-

sic cantilever dissipation turns out to be ' 80 × 10−15 kg/s, while Γ0 ' 10−35

kg/s. Moreover a study of the pinning energy barrier U as a function of the
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Figure 7.15: Energy barrier of the pinning as a function of the field, for NbSe2 grain

(black circles), as compared to the result presented in Ref. [242], on the same compound

(blue triangles). The red dashed line is a guide for the eye.

magnetic field intensity is reported in Fig. 7.16. At first one notices a power-law

behavior (red dotted line), as expected for a vortex bundle motion [22]. In-

deed, a STM study on the same compound, shows the occurrence of a collective

vortex bundle creep, taking place at 0.6 T, under the application of a strong cur-

rent J = 0.4Jc [241]. In the same panel, the pinning barriers are compared to

Ref. [242], reporting a magnetoresistivity study on NbSe2 (powder sample). The

slight disagreement between the two data sets can be ascribed either to a powder

effect, which in the transport measurements averages the activation barrier along

the crystallographic directions, or to a little underestimation of Γc.

Furthermore, when the vortices enter into the solid phase, so that the hopping

vortex correlation time becomes very long with respect to the cantilever natural vortex

freezingoscillation frequency, one has to expect that (i) the small dissipation state is
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restored, and (ii) the sample-mounted cantilever becomes ”stiffer”. Fig. 7.13(a)

shows a rise in ν, reflecting an increased stiffness of the cantilever, namely the

presence of fixed vortex lines, while the Q-drop at Tc is associated to the entrance

into the liquid phase.

Moreover, when Γ is plotted as a function of the magnetic field, a peak is observed

and ascribed to the crossover from the liquid to the solid vortex phase (Fig.

7.13(b)). One may argue that such decrease of Γ at small field is not related to

the freezing transition, but it is due to the diminished interaction of the field with

the FLL. However, the peak moves towards higher fields, at lower temperatures,

thus ruling out the former hypothesis.

An analogous phenomenology was found by Gammel et al., [163] using mechanical

measurements on high temperature superconductors single crystals, with a surface

of about 1 mm2, 0.1 mm thick, and containing many twins.

However note that here the sample dimension is pushed to the limit of

few µm, and a wider field range is explored.

7.6 Phase diagram

Finally, a phase diagram of the mixed state of the NbSe2 particle can be drawn

(Fig. 7.16). In fact, the Γ onset overlaps with the Hc2 data, measured by the

SQUID magnetometer. Furthermore, the so called ”Q-drop offset”, namely the

deviation from the normal state, well overlaps with the increase of the frequency

response of the cantilever. The diagram allows one to identify the vortex liquid

phase and the transition to the solid phase.
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Figure 7.16: The phase diagram of NbSe2 grain: theHc2 line is derived from the Q-drop

onset (green squares) and the SQUID measurement (not shown). The Q-drop offset

(blue circles) and the frequency increase (red triangle) mark the melting transition, as

discussed in the text.

7.7 Conclusions

The last Chapter of this thesis deals with some novel approaches to study the

vortex melting/freezing transition. The first method focuses on the persistent

acoustic ringing affecting the NMR coil, below Tc. Such phenomenology has been

analyzed in terms of magneto-acoustic coupling between the vortex lattice and

the crystal itself.

The second part of the Chapter shows a cantilever magnetometry experiment,

on a NbSe2 single grain, carried out in the sample-on-cantilever geometry. The

solution of the equation of motion results in an analytic expression for the vortex

state magnetization, which depends on the measured parameters, Γ and ω. The

temperature and field dependence of the cantilever energy dissipation and oscilla-

tion frequency reveals the energy barrier of the pinning mechanism, as a function

of the field. Such results show that the ultrasensitive cantilever magnetometry is

effective to derive the dissipation properties of the vortex lattice in micrometer

and submicrometer size samples, and that its results are directly comparable with

macroscopic techniques.
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Moreover, the present discussion points out that in the liquid vortex phase the

feasibility of an MRFM experiment becomes extremely challenging, as a result of

the thermally activated depinning motions. However, the solid vortex phase the

MRFM experiment may be a good candidate for such a study.

198





7. Exotic Phenomena induced by Vortex Lattice

200



Conclusions and future

perspectives

This thesis has addressed different issues regarding the Ba(Fe1−xRhx)2As2 fam-

ily of iron-pnictide superconductors, paying particular attention to the dissipa-

tive and fluctuative phenomena, occurring both below and above the transition

temperature Tc. The mixed phase of these compounds, grown in form of single

crystals, is characterized by a very rich phenomenology, despite the rather narrow

fluctuating temperature region, which makes them good candidates for techno-

logical applications.

Among the various experimental techniques presented in such a study, nuclear

magnetic resonance spectroscopy has been the most widely employed. In addi-

tion, SQUID magnetometry, ac-susceptibility and cantilever magnetometry have

been used either to support the NMR results, or to study a new phenomenology.

The experimental part of this dissertation begins with a detailed study of

static spin susceptibility, over a broad range of electron doping. The results

provide a clear evidence for the occurrence of low-fields unconventional super-

conducting fluctuations, as well as Ginzburg-Landau fluctuations at intermediate

and high fields, in a narrow temperature range, above the transition temperature.

The experimental data have been supported by a theoretical analysis, which has

earlier proven to be remarkably successful in interpreting similar phenomenology,

occurring in the high-Tc superconductors. To the best of the author’s knowledge,

this is the first detailed study of static spin susceptibility, above the transition

temperature, in 122 iron-pnictides, over a broad range of physical parameters.

Furthermore, given the renewed interest in the superconducting fluctuations, and

the great attention paid to the iron-pnictides, it is believed that these results may
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open a fruitful discussion in the field and also stimulate new experiments, in other

families of iron-based superconductors.

As far as the normal phase of the Ba(Fe1−xRhx)2As2 family is concerned, a

deep study of 75As NMR spin-echo decay rate 1/T2 has been carried out, over

a broad range of electron doping, magnetic fields and with different rf pulse

sequences. The experimental results suggest the onset of an unconventional low-

frequency dynamics, occurring in the normal state, below a characteristic tem-

perature T ∗. In particular it has been found that (i) the dynamic is favored by

the magnetic field; (ii) it is accentuated for field in-plane; and (iii) it persists

across the phase diagram. Moreover, the same dynamic is also observed in the

spin-lattice relaxation rate 1/T1, in a quantitatively consistent manner. These

observations have been discussed in the light of nematic fluctuations involving

domain walls motion, and have been also suggested interesting analogies with the

cuprates. New measurements at high fields would be desirable to discriminate

between the nematic or stripe-like dynamics. A recent paper [150], has presented

NMR results on the Ba(Fe1−xCox)2As2 family, which support the interpretative

framework proposed in Chapter 4.

When the temperature is lowered below Tc, a noticeable phenomenology re-

lated to the Abrikosov vortex lines motion has been observed. Ac-susceptibility

and NMR spectroscopy have been employed as comparative techniques, to gain

some insights into the temperature and field dependence of the vortices correla-

tion time. Such an analysis has evidenced a dynamical cross-over from a liquid

vortex state, to a glassy vortex state. This work also shows that the Arrhenius

law, usually employed to describe the vortex dynamics in high-Tc superconduc-

tors, has to be abandoned in 122 iron-pnictides, in favor of the Vogel - Fulcher

law. Still in contrast to the previous materials, the vortex pinning mechanism in

Ba(Fe1−xRhx)2As2 122 pnictides seems to be fairly individual, rather than col-

lective, over a broad field range. A fairly rich phase diagram characterizing the

vortex state has been drawn.

In addition to the equilibrium phase diagram, another - more complex - sce-

nario concerning the vortex dynamics can be pictured, as an external dc current

is injected into the sample. NMR can still provide deep insights into the issue,

given its microscopic character, through the study of the spin - spin decay time.

Moreover, a detailed study of Jc in the Ba(Fe1−xRhx)2As2 family is till lacking,
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and it would be beneficial to inspect more deeply into the current driven vortex

dynamics.

Finally, the concluding chapter introduces some novel approaches to inves-

tigate the melting transition occurring in the vortex matter of two type-II su-

perconductors: (i) the analysis of the acoustic ringing emerging from the NMR

coil, below the critical temperature, and (ii) the study of the energy dissipation

and resonance frequency of the sample-mounted cantilever, in an ultrasensitive

cantilever magnetometry investigation. Even though such observations still need

theoretical and experimental confirmations, they may become new methodologies

to inspect the fascinating world of the Abrikosov lattice dynamics.
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Appendix A:

The form factor

This appendix reports a step by step calculation, of the form factor of the local

magnetic field probed by the nucleus, in a spin-lattice relaxation rate 1/T1 experi-

ment. In general, this quantity is related to the q-averaged low-energy dynamical

electron-spin susceptibility, and it can shed some light on the spin fluctuations

issue. In order to understand this relationship the general expression for the

spin-lattice relaxation rate is recalled: [63]

1

T1

=
γ2
n

2

∫
eiωLt {< hx(t)hx(0) > + < hy(t)hy(0) >} dt (7.26)

where (x, y, z) are the coordinate of a system oriented according to the external

magnetic field H0, i.e. H0 = H0z. The local field at the nuclear site h(t) is given

by:

h(t) =
∑
i

Ãhypi · Si (7.27)

Ãhyp is the hyperfine tensor, which couples the nuclear spins to the electronic

spins Si, and the sum runs over the i-th electronic ion sites. The FeAs magnetic

cell will be taken as the model to develop this calculation. In such a case every

As nucleus is coordinated with four Fe ions.

As it will be shown shortly, it is very useful to introduce the collective spin

components

Si(t) =
1√
N

∑
q∈BZ

eiq·riSq(t), (7.28)

where the sum runs over the wave vectors of the first Brillouin zone, and ri is the

ion position. Moreover, the α-th component of the local field can be written as:
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hα(t) =
1√
N

∑
q∈BZ

4∑
i=1

∑
β=x,y,z

AαβhypiS
β
q(t)eiq·ri . (7.29)

Assuming to deal with a Heisenberg system, Sβq(t) will not depend on the β

component, so the former equation can be written in an equivalent form

hα(t) =
1√
N

∑
q∈BZ

4∑
i=1

( ∑
β=x,y,z

Ãαβhypi

)
Sβq(t)eiq·ri . (7.30)

The correlation function of the local field < hα(t)hα(0) > turns out to be:

< hα(t)hα(0) >=
1

N

∑
qq′∈BZ

(
4∑
i=1

∑
β=x,y,z

Aαβhypie
iq·ri

)(
4∑
j=1

∑
β=x,y,z

Aαβ
′

hypj
eiq
′·rj

)
< Sβq(t)Sβ

′

q′ (0) >

(7.31)

A further substitution can be made

Aαβhypq =
∑
i=1,4

eiq·riAαβhypi . (7.32)

Moreover, since the following properties are holding [243]

1.
∑

qq′ < Sq(t)Sq′(0) >=
∑

q < Sq(t)S−q(0) > given the translation symme-

try of the q−space;

2. S(−q, 0) = S(q, 0)∗;

the dynamical structure factor is naturally introduced

Sαα(q, ωL) =

∫
eiωLt < Sαq (t)Sα−q(0) > dt (7.33)

It is recalled that the dynamical structure factor is related to the imaginary part

of the Spin Susceptibility, via the Dissipation-Fluctuation Theorem, which

in low frequency limit reads

Sαα(q, ω) =
2kBT

ω
χ
′′
(q, ω) (7.34)

Now, the analytic expression of 1/T1 can be written in a more compact form:

1

T1

=
γ2
n

2N

∑
q∈BZ

(|
∑

β=x,y,z

Axβq |2 + |
∑

β=x,y,z

Ayβq |2)Sαα(q, ωL) (7.35)
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The term in brackets is called Form Factor. Because the correlation function

of the local field for orthogonal direction is zero, namely < Sq(t)αS−q(0)β >6=
0⇐⇒ α = β, it can be concluded that:

|
∑

β=x,y,z

Axβq |2 =
∑

β=x,y,z

|Axβq |2 (7.36)

As a consequence of that, the form factor is given by the sum of six squared

moduli. The two following geometries will be considered:

1. H0 ‖ c axis;

2. H0 ∈ (a, b) plane;

To go further into the calculation the coordinates of Fe ions, and As are needed.

Recalling the crystalline structure of the Ba(Fe1−xRhx)2As2compounds [26], it is

known that the As nucleus sits at the apex of a tetrahedron the basis of which is

formed by four Fe ions, and it is rotated of π/4 rads with respect to the unit cell

(Fig. 7.17). Nonetheless it’s more effective to orient the axes like the magnetic

Figure 7.17: Sketch view of the FeAs tetrahedron, seen through the c direction. Fe
ions are depicted as grey spheres, while As nucleus is the blue sphere, in the middle.

cell (Fig. 7.18), so from now on the origin of the axes sits at the As site, and it is

rotated of π/4, with respect to the crystal unit cell. Since the magnetic cell has

the same symmetry of the crystal cell, the Fe coordinates are written accordingly
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Figure 7.18: Sketch view of the magnetic cell.

Fe1 (−a′/2, a′/2,−h) (7.37)

Fe2 (−a′/2,−a′/2,−h)

Fe3 (a′/2,−a′/2,−h)

Fe4 (a′/2, a′/2,−h)

As (0, 0, 0)

where a′ = a
√

2/2 is the magnetic cell parameter, a = b = 3.6925 Å is the unit

cell parameter in the tetragonal symmetry, and h = 1.36 Å is the distance of the

As ion as respect to the Fe plane.

Now the form factor for the x component becomes:

|Axq|2 = |
∑
i

Axxi e
iq·ri |2 + |

∑
i

Axyi e
iq·ri |2 + |

∑
i

Axzi e
iq·ri |2 = (7.38)

= (Axx1 e
iq·r1 + Axx2 e

iq·r2 + Axx3 e
iq·r3 + Axx4 e

iq·r4)(c.c.) +

+ ”xy” terms

+ ”xz” terms
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where ”c.c.” means complex conjugate. After some algebra, it is found

|Axq|2 = E2 + 2((AxBx + CxDx) cos(qyb
′) + (AxDx +BxCx) cos(qxa

′) +(7.39)

+ AxCx cos(−qxa′ + qya
′) +BxDx cos(qxa

′ + qya
′))

+ ”xy” terms

+ ”xz” terms

where Ax = Axx1 , Bx = Axx2 , Cx = Axx3 , Dx = Axx4 and E = A2
x + B2

x + C2
x + D2

x.

The complete Form Factor is given by the sum |Axq|2 + |Ayq|2, where the same

procedure applies for the y components.

The Hyperfine tensor: dipolar coupling

The second rank tensor of the hyperfine interaction is a key ingredient of this

calculus. The latter is usually given by the dipolar interaction Adip between

the nucleus and the electron plus the transferred interaction At, as described in

Chapter 2. The former, in cgs units,5 reads:

Aidip = gµB


3x2
i−r2

i

r5
i

3xiyi
r5
i

3xizi
r5
i

3xiyi
r5
i

3y2
i−r2

i

r5
i

3yizi
r5
i

3xizi
r5
i

3yizi
r5
i

3z2
i−r2

i

r5
i


where g ∼ 2, µB is the Bohr magneton and ri = (xi, yi, zi) is the vector connecting

the i -th electron to the nuclear site. The dipolar tensor of the four Fe sites fulfills

the symmetry properties listed below:

Adip1 =

 Axx −Axy Axz

−Axy Ayy −Ayz
Axz −Ayz Azz



Adip2 =

Axx Axy Axz

Axy Ayy Ayz

Axz Ayz Azz



Adip3 =

 Axx −Axy −Axz
−Axy Ayy Ayz

−Axz Ayz Azz


5 µ0

4π = 1.
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Adip4 =

 Axx Axy −Axz
Axy Ayy −Ayz
−Axz −Ayz Azz


The Hyperfine tensor: transferred coupling

To evaluate the hyperfine transferred coefficients, it should be considered both the

contribution of the s-wave orbitals, which provides a scalar term, plus the l 6= 0

orbitals, which has a complicated angular dependence. A trick to overcome this

problem is to recall that the Knight Shift and the spin susceptibility are related

to the hyperfine constant via the equation (see Chapters 2 and 4)

Kαα(T ) =
Aαα

gNAµB
χαα(T ) (7.40)

So that Atαα = Aαα − Adipαα , being NA the Avogadro number. If the transferred

term is equal for each Fe ion, namely Atααi = (Aαα − 4Adipααi)/4, it can be finally

written

At =

25.6 0 0

0 25.6 0

0 0 11.3

 kOe
When the external field is parallel to the crystallographic c axis, the coordinate

system can be mapped onto one another so that (x, y, z) → (a, b, c). All theH0 ‖ c
excitation at wavevectors on the border of the Brillouin zone will be strongly

reduced by the form factor, which however is not null at this border.

On the other hand, when the magnetic field lays in the (a, b) plane, the coordinates

can be replaced with the following: z → a , x → b, y → c. This is just one ofH0 ∈ (a, b)

the possible choices since all the other combinations are equivalent, provided that

z ∈ (a, b) plane, owing to the cylindrical symmetry of the hyperfine tensor. The

results are compared in 7.19.

The second Form Factor is flatter, however its value at the critical wavevector

for the antiferromagnetic (nematic or CAF) excitations, namely Qc(0,±π/a) or

Qc(±π/a, 0) is about twice the value of the other orientation, a more effective

filter effect of the spin fluctuations can be done by the form factor, when the

field lays along the c axis. This however is not enough to explain the anisotropy

if the peak observed in 1/T1, above the critical temperature (Chapter 4), and a

different explanation involving spin fluctuation dispersion may be rather invoked.

Before concluding the appendix it is shown what is the effect of the dipolar
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Figure 7.19: The Form Factor of As nucleus coordinated with four Fe ions, for a

magnetic field applied along the c axis (top figure), and within the (a, b) plane (bottom

figure).

coupling to the Form Factor. In fact, without the dipolar term, the Hyperfine

tensor is diagonal. The results show that, for both the orientations of the sample,

a null form factor at the critical wave vectors (0,±π), (±π, 0) rises, thus leading

to a null relaxation rate, which is not physically correct. So, even though the

dipolar field is smaller than the transferred one, it should not be omitted.
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Appendix B:

Methods of moments

The Method of moments allows to predict the NMR linewidth due to dipolar

interaction among nuclei, from first principles, with no need to estimate the

eigenstates of the total hamiltonian. This appendix deals with the calculation

of the second and fourth moments of like nuclei, namely in the assumption that

just one nuclear species is present. However, when unlike spins are also present,

a similar reasoning can be followed [62].

The Free Induction Decay (FID) signal is described by the correlation function

of the transverse magnetization M§(t), which depends on the time:

G(t) = cos(ω0t) <Mx(t)Mx(0) > (7.41)

where the symbol <,> refers to the statistic average over the quantum operator

M§. In the rotating reference frame (at the Larmor frequency ω0), the signal

will drop off the cosine factor. Moreover, the temporal evolution ofM§ operator,

implies to resume the interaction representation [244]:

Mx(t) = eiH0t/~Mxe
−iH0t/~ (7.42)

From the complete hamiltonian presented in Chapter 2, just the terms that com-

mute with the Zeeman interaction are retained, namely Ajk and Bjk, and the

deriving H′n−n is called the ”truncated” dipolar interaction:

G(t) = Tr
{
e−iω0IzteiH

′
n−nt/~Mxe

+iω0Izte−iH
′
n−nt/~Mx

}
= Tr

{
eiH

′
n−nt/~M−iH′n−nt/~

x eiω0IztMxe
iω0Izt

}
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By recalling that eiω0Izt = R‡ is the rotation operator around the z axis of an angle

ω0t, it can be written R‡∗M§Rz as Mxcos(ω0t) + Mysin(ω0t). The correlation

function becomes:

G(t) = Tr
{
eiH

′
n−nt/~M−iH′n−nt/~

x (Mx cos(ω0t) +My sin(ω0t))
}

(7.43)

Finally,

G(t) = cos(ω0t)Tr{eiH
′
n−nt/~M−iH′n−nt/~

x Mx}+sin(ω0t)Tr{eiH
′
n−nt/~M−iH′n−nt/~

x My}

the second term of the sum gives the mixed correlation ofMx andMy which can

be proved to be zero.

In passing, it can be defined G(t) = G′(t) cos(ω0t) as the correlation function seen

in the laboratory frame, and viceversa G′(t) as the auto-correlation function, seen

in the rotating frame. Now the relation between the correlation function and the

NMR spectrum f(ω) is

f(ω) = K

∫ ∞
0

G(t) cos(ωt)dt.

and conversely,

G(t) =
2

Kπ

∫ ∞
0

f(ω) cos(ωt)dω (7.44)

K being the normalization constant.

If the variable ω is replaced by u = ω − ω0 and h(u) = f(ω0 + u) is written

instead:

G′(t) cos(ω0t) =
2

πK

∫ ∞
−ω0

f(ω0 + u) cos((ω0 + u)t)du

=
2

πK

(
cos(ω0t)

∫ ∞
−∞

h(u) cos(ut)du− sin(ω0t)

∫ ∞
−∞

h(u)sin(ut)du

)
h(u) is an even function, so the last term will drop off. Eventually

G′(t) =
2

πK

∫ ∞
−∞

h(u) cos(ut)du, (7.45)

the extension of integral lower limit to infinity is allowed, in case of narrow lines.

Finally, the moment of the function h(u) centered at zero (Van Vleck treatment)
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is written as [62]

Mn =

∫ ∞
−∞

h(u)undu. (7.46)

Since h(u) is an even function, only the even moments survive:

M2n = (−1)n
πK

2

d2nG′(t = 0)

dt2n
(7.47)

To find the n−th moment, G′(t) can be expanded:

G′(t) =
∑
k

Mk
tk

k!
(7.48)

where Mk stands for the k-th moment of the NMR spectrum. Moreover by ex-

pliciting equation 7.45, it is written

dnGd(t = 0)

dtn
=

(
i

~

)n
Tr {H ′n−n, [H ′n−n, [....[H ′n−n,Mx]]]Mx} (7.49)

where it can be shown that the n-times commutator is equal to [.., ..]n.

Finally it is easy to show that the expressions for the second and fourth moments

become:

M2 = − 1

~2

Tr {[H ′n−n,Mx]
2}

Tr {I2
x}

(7.50)

M4 =
1

~4

Tr {[H ′n−n, [H ′n−n,Mx]]
2}

Tr {I2
x}

(7.51)

After expliciting the commutator [H ′n−n,Mx], the most important result of this

appendix is written:

M2 =
γ4~2

3
I(I + 1)

∑
k

3

2

1− 3 cos2(θj,k)

r3
j,k

(7.52)

The fourth moment can be calculated analogously. Moreover, a Gaussian line

shape, namely a FID G′(t) = G′(0)e−M2t2/2, has to fulfill the property

M4

M2
2

= 3 (7.53)

In such a case the NMR line has the form:

f(ω) =
1

∆
√

2π
e−(ω−ω0)2/(2∆2) (7.54)
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where the second moment ∆2 is related to the FWHM by the following:

FWHM = 2∆
√

2log(2) = 2.36∆. (7.55)

On the other hand, when the line is a Lorentian, no second or higher order moment

can be defined.

This calculation is not just useful to obtain the linewidth of the NMR line,

but also to predict the magnitude of the spin-spin relaxation time, if the dipole

interaction is the only mechanism responsible for the signal dephasing.

A C++ program has been implemented to calculate the second moment of As

nucleus, in case of dipolar interaction. A value of T2 = 0.7 ms, for H ‖ c

axis, and 0.64 ms for H ⊥ c, are found. Such results are in agreement with

Ref. [52]. Nevertheless, the experimental value of the T2 is 3.6 times bigger than

the theoretical prediction from the rigid lattice summations [130, 245]. However

the previous calculation does not take into account K. Kambe et al.’s argument

for the second moment of the central line of a I > 1 spin [246]. Additionally,

if one neglects the flip-flop terms in the interaction Hamiltonian, assuming that

the dipolar contribution to the line linewidth may be much smaller than the xy

components of the indirect coupling, thus inhibiting the spin-flip process [134], one

finds T2 = 1.36 ms, which is nearly two times bigger than the former estimation,

but still too far from the experimental value (∼ 2.5 ms).
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Appendix C:

Magnetic Susceptibility

Among all the materials present on Earth, none of them is ”non-magnetic”. These

words mean that any material has a magnetic response, called magnetic suscep-

tibility χ, to a magnetic field, either static or time-dependent. The operative

definition of such a quantity originates from the constitutive equation of mag-

netism, where the magnetic induction is written as [247]

B = H + 4πM (7.56)

being H the magnetic field and M the magnetization, namely the magnetic mo-

ment per unit volume, and B the magnetic induction. In the linear response

theory, the susceptibility can be written as the ratio:

χ =
M

H
, (7.57)

hence the previous equation becomes:

B = H(1 + 4πχ). (7.58)

When the magnetic field is not homogeneous, the sample will probe a force F =

M×∇H, that is attractive in case of paramagnetic and ferromagnetic samples,

while it is repulsive in case of diamagnetic samples. This is the starting point for

the so-called ”Force Methods”6, employed to measure the magnetization.

6Such as Gouy and Faraday methods.
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In an anisotropic system, the previous definition has to be extended appropriately:

M = χ ·H (7.59)

where the susceptibility is a tensor of rank two. In magnetism, it is customary

to classify materials according to the sign and value of the spin susceptibility.

Diamagnetism is fundamental of all chemical compounds, since it is generated7

by electrons moving in a closed orbit around the nucleus. The spin susceptibility

in such a case is negative and typically small, namely χ ∼ −10−6 to −10−7 erg/G

g.

On the other hand, a paramagnetic material, at room temperature, has a sus-

ceptibility of the order of 10−4 to 10−6 emu/g, with a positive value. For the

sake of completeness, it is recalled that the Curie law describes the temperature

dependence of the susceptibility in a paramagnet:

χ =
Ng2µ2

BS(S + 1)

3kBT
(7.60)

where g is the Landé factor, µB the Bohr magneton, S the spin value and kB the

Boltzmann constant.

When a magnetic interaction acts among neighboring spins, the susceptibility can

be modified into the Curie-Weiss law:

χ =
Ng2µ2

BS(S + 1)

3kB(T − θ)
. (7.61)

The experimental techniques which allow to measure the spin susceptibility are

usually classified in terms of the main physical principle on which they are based,

for example there are:

• Force methods: when a magnetic specimen is placed into an inhomogeneous

magnetic field, a displacement force is exerted on the sample. Such force is

proportional to the sample magnetization;

• Inductive Methods: this technique probes the change in the magnetic flux

density that results when a sample is placed into a pick up coil.

This appendix focuses mainly on the second method. When the magnetic

moment changes in time, a magnetic flux Φ variation will be detected by the coilSQUID-

susceptometer L, inductively couple to it via Φ = Li. Eventually, an e.m.f. will result in the

7Note that this is not the only source of diamagnetism, but it is common to all materials.

220



detection coil

V = Ldi
dt

=
µN2A

L

di

dt
(7.62)

being µ = 1 + 4πχ the magnetic permeability of the medium, N the number of

turns of wire, A the cross-sectional area and L the wire length.

Superconducting QUantum Interference Device (SQUID) magnetometer has been

invented in the early 60s, after the development of the BCS theory of superconduc-

tivity, the GL theory and most important, the discovery of the flux quantization

in a superconducting ring. A SQUID is formed by one superconducting ring which

has a weak link. Via the inductance coupling to a pick up coil, this device is able

to amplify very small changes in magnetic flux, (even in presence of large static

fields) into a large electrical signal. The experimental setup requires the sample

to be inserted into a second order gradiometer, which is inductively coupled to

the SQUID ring. The signal is given by either a permanent magnetic moment or

a field induced magnetization.

A gradiometer is obtained by replacing the single loop by two or more loops

(four in the used system) arranged so that no net flux is coupled with the ap-

plication of a uniform magnetic field, namely the gradiometer is able to collect

the flux variations deriving only from the sample magnetic moment. A second

order gradiometer is used to cancel out both the uniform field and the first order

derivative, leaving the flux proportional to the second order derivative of the flux

generated by the sample magnetic moment.

The sample is placed in the middle of a plastic straw, which is moved into the

gradiometer (see Fig. 7.20), by means of a stepper-motor. As the sample moves

through the detection coil, the magnetic moment induces a current. Since the

detection coil, the wires and the SQUID form a superconducting closed loop, any

flux change will be detected by the loop and converted (by the SQUID) in a

voltage signal. The gradiometer is designed with a superconducting wire that is

wound counterclockwise at the extremes and clockwise at the center, in order to

subtract the background unbalanced signal. The standard transport configura-

tion can measure a magnetic moment down to 10−5 emu, while the Reciprocating

Sample Operation (RSO) goes down to 10−8 emu. In the MPMS Quantum De-

sign system used in this thesis, the sample space is a 9 mm diameter tube, that

is kept in a static helium gas atmosphere. The sample is inserted from above by

opening an airlock valve, which puts the sample space into contact with a cham-

ber, that can be purged and pumped with helium gas (coming from the magnet

boil-off). The lower part of the sample chamber is lined with copper, to provide

thermal uniformity to the sample space. The temperature is then measured with
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Figure 7.20: Sketch view of the second order gradiometer employed to pick up the
signal, in the MPMS SQUID. The gradiometer is put out of the sample chamber and
it is immersed into liquid helium. The figure is adapted from Ref. [248].

two sensors.

The field is generated by a superconducting magnet (Max. field 7 T) which is

kept in persistent mode (see next Appendix). A sketch view of the superconductor

can be seen in Fig. 7.21. The field can be changed in oscillating or no-overshoot

mode. In the former case, the wanted field is achieved after an oscillation around

the desired values, in order to get rid of pinned flux that can cause a residual

field inside the magnet. In the latter case, the magnet ramps up to the desired

value, by slowing down at the end of the ramp, to avoid over-shooting. The

magnetization measurements are usually carried out in zero-field-cooled (ZFC)

or field cooled (FC) mode. ZFC is done by cooling the sample to the lowest

measurement temperature in H=0. Later on, a magnetic field is applied, and

the magnetic moment is measured as a function of temperature. The FC mode

can be done by collecting data while warming the sample, after a cooling process

done with H 6= 0, or while cooling in field.

The actual magnetic moment measurement is performed by a fit or integra-

tion of the Voltage versus position (Fig. 7.22), by assuming that the magnetic

behavior of the sample can be approximated to a point-source magnetic dipole

moving through a second order gradiometer. As a consequence of that, when a

big sample is measured, sample centering and moment measuring can be rather

difficult. One way to perform the measurements is to simply integrate the Volt-
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Figure 7.21: Sketch view of a section of the magnet with the sample space. The figure
is adapted from Ref. [248].

Figure 7.22: Voltage versus the sample position, after a scan of the sample in the
gradiometer. The figure is adapted from Ref. [248].
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age versus position curve (full scan method). The second way is to fit the data

with a theoretical curve (linear regression method) as explained above, provided

that the sample has not moved along its centered position. The third way (itera-

tive regression) takes into account possible movements of the sample and sample

holder, via inserting other parameters into the fit.

In an ac-susceptometer,8 an oscillating ac magnetic field is applied to theac-susceptibility

sample, in addition to the static field:

H(t) = H0 +H1 cos(ωt) (7.63)

where ω is the oscillation frequency. The resulting magnetization is written as:

M(t) = M0 +M1 cos(ωt+ φ) (7.64)

where the additional phase φ describes the retarded response of the magnetization.

The previous equation can be reformulated in such a way that the in-phase and

out-of-phase components can be evidenced:

M(t) = χ0H0 + χ′H1 cos(ωt) + χ′′H1 sin(ωt) (7.65)

where the static components is trivially defined as

χ0 =
M0

H0

, (7.66)

while the in-phase response is

χ′ =
M1 cosφ

H1

(7.67)

and the out-of-phase is

χ′′ =
M1 sinφ

H1

. (7.68)

The used setup allowed to measure only the longitudinal moment, since the pickup

coils are parallel to the static magnetic field. The measurement is carried out by

the same methods described above.

ac-superconductivity is a standard tool for determining the physics of supercon-

ductors, in particular for measuring critical temperatures. Indeed, in the fully

8The model employed in this thesis is MPMS XL.
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superconductive state, χ′ = −4π, while χ′′ describes a dissipative behavior.

The ac field penetration depth is a relevant issue, as the intensity of the NMR

signal, as well as the ac-susceptibilty signal, will depend on the amount of rf

penetrating into the surface of the sample. Cambpell and Brandt answered this Cambpell

lengthquestion, giving a very simple equation. If one supposes to have a slab sample with

the field applied parallel to the surface, H1 will take the following profile [211,249]:

H1 = Hse
r/λ where the penetration depth λ =

√
λ2
L + λ2

c , (7.69)

being the first the London or GL penetration depth, while the second the Cambpell

length:

λ2
c = cii/αL, (7.70)

where ii = 11 (compression modulus) or 44 (tilt modulus), according to the way

vortices enter the specimen, namely if the field is applied parallel to the surface

or perpendicular to it. Yet when H0 > 2Hc1 the two moduli nearly coincides.

Moreover αL is the Labusch parameter that quantifies the FLL rigidity, such that

the softer the FLL, the deeper the flux line enters the sample.
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Appendix D:

NMR equipment

To begin this appendix, the tank circuit, namely the RLC circuit that is usually

handmade, is presented. That indeed is the place where the rf signal is either

transmitted and received, in a pulse NMR experiment. The circuit is made of an

inductance where the sample is inserted, so that the coil (usually copper-made)

has to optimize the filling factor, by miming the sample dimension as much as

possible, but at the same time it is made of a number of turns, such that the

associated inductance L must guarantee a big quality factor:

Q = ωL/R (7.71)

being R the resistance associated to all the circuital elements. The pick up coil is

sometimes immersed in a bi-component epoxy resin, which allows to get mechanic

stability and to minimize the annoying spurious ringing effect that can emerge

from the coil ring-down.

The maximum power transmittance to the sample is provided by the impedance

matching (namely 50 Ω) at the Larmor frequency. The tuning and matching pro-

cedure is made by a set of variable capacitors, that can be put either in series or

parallel to the coil, and also within the tank circuit (cold-tuned) or as a part of

the transmission line (warmed-tuned). The latter induces rf losses, on the coax,

of the sensitivity of the probe, and a smaller quality factor Q. On the other hand,

the cold-tuned scheme is likely to turn into capacitor breakdown when helium is

used as exchange gas [250]. High quality factors are clearly useful to have a better

transmittance of the power, but on the other hand the circuit becomes extremely

sensitive to the magnetic sample behavior. For example, a superconducting sam-

ple may affect the circuit inductance so much, that the resonance shifts towards
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too high frequency, out of the Larmor frequency range.

When a sample of susceptibility χ is inserted in a pick up coil of inductance L0,

the total inductance will change to L=L0[1+4πqχ(ω)], where q takes into account

the filling factor9. The result will be a change in the imaginary (i.e. inductive)

as well as real (i.e. resistive) part of L:

Z = iL0ω[1 + 4πχ′(ω) + i4πχ′′(ω)] +R0 =

= iL0ω[1 + 4πχ′(ω)]− L0ω4πχ′′(ω) +R0 (7.72)

hence the variation of the resistive part is equal to

∆R

R0

= −L0ω

R0

4πχ′′(ω) = 4πχ′′(ω)Q,

being Q of the order of 50-100, for handmade coils for rf applications).

Since the energy stored in an inductance of volume V is E= 1
8π
H2

1V , also in

absence of nuclei, then the average power stored in the inductance and dissipated

by the nuclei is given by

P̄ =
1

2
I2

0 ∆R =
1

2
I2

0L0ω4πχ′′(ω) =

−1

2
ωH2

1V χ
′′(ω) (7.73)

where the last equation has a minus sign, because the energy is transferred from

the circuit to the nuclei. In Continuous Wave (CW) NMR experiment, the de-

tected signal is directly proportional to the absorbed power, and then to χ′′.

As the transmitted power is received, the sample ”responds” by inducing a time-

varying magnetization, which is responsible for the e.m.f. generated in the same

pick up coil. A rf duplexer is then needed in order to decouple the in coming

signal (transmission), to the out-going signal (receiver). The duplexer is usually

done by a solid state device made of crossed diodes. This device is also called

directional coupler and it works in such a way that during the high power rf

transmission, there is an open circuit after the probe/tank circuit, allowing all

rf power to go into the probe and tank circuit. When the pulses are complete,

9The filling factor is given by the ratio between the volume occupied by the sample and the
coil volume.
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during the receiving mode, there is an open circuit before the probe/tank circuit,

allowing all of the induced e.m.f. to go only into the pre-amplifier and receiver

end of the spectrometer.

The e.m.f. induced signal is then ready to be pre-amplified, received, and ana-

lyzed by the spectrometer and the user. The real heart of the NMR experiment is

the spectrometer. The author used two kind of spectrometers. The spectrometer

hardware used at Northwestern University and NHMFL, MAGRes2000, comes

with a user interface program called MAGRes2000 commercially made by Arneil

Reyes at the NHMFL. The spectrometer used at Pavia University is a commer-

cial Fourier transform NMR spectrometer, Apollo Tecmag. The common building

blocks of an NMR spectrometer are sketched in the following (see Fig. 7.23).

Figure 7.23: Sketch view of an NMR spectrometer.

The core of the NMR spectrometer is the pulse generation, namely the synthe-

sizer generates a reference wave cos(ωrf t), the frequency of which can be chosen

by the user via a software interface, that is cut into pulses of a particular shape.10

The modular mixes the signal to four possible carriers with a phase difference

of 0◦, 90◦, 180◦, 270◦, from the reference. Particular phase cycling sequences are

employed as an additional way to get rid of the spurious ringing. The (de-phased)

signal is then amplified (up to several kV) and send it to the duplexer which opens

the path to the pre-amplifier. The signal generates and oscillating magnetic field,

whose amplitude is usually small (1 - 100 Oe). Afterwards the new signal (coming

10The rectangular is the most commonly employed.
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from the sample) will pass to the duplexer, which now will open the transmission

line and will close the pre-amplifier path. Indeed the signal is very small (µV)

and it has to be amplified. Later on the signal will be mixed with two reference

signals: and in-phase cos(ωrf t + β) and and out-of-phase sin(ωrf t + β) signal.

From the mixing, the dissipative and dispersive parts will be extracted and then

converted by a 2 channel analog to digital converter. The voltage measurement

is sampled at a frequency which is the inverse of the time resolution of the exper-

iment (dwell time), and then it is digitalized.

Magnets are the very basic ”ingredients” needed to perform NMR. In case of

electromagnets, magnetic fields up to nearly 2 T can be produced if the core ofMagnets

ferromagnetic material, such as soft iron, is placed inside the coil. Indeed the fer-

romagnetic core increases the magnetic field to thousands of times the strength

of the field of the coil alone, due to the high magnetic permeability µ of the ferro-

magnetic material. To prevent damages generated by heat, a water-based cooling

systems is usually employed. However, for this work, superconducting magnets

are more useful. These are typically made of many fine filaments of a niobium-

titanium (NbTi) alloy embedded in a copper matrix. Although most magnets

are wound with multi filamentary niobium-titanium conductors, some are con-

structed with multi filamentary, niobium-tin (Nb3Sn) conductors and some with

single filaments of niobium-titanium. Single filament NbTi magnets are preferred

where the stability of the magnetic field over a long period of time is essential, as

in nuclear magnetic resonance measurements. Persistent switches are provided on

many magnets to increase their stability over long periods of time, or to reduce

the rate of helium boil-off associated with continually supplying current to the

magnet. A persistent switch is comprised of a short section of superconducting

wire, connected across the input terminals of a magnet, and an integral heater

used to drive the wire into the resistive, normal state. When the heater is turned

on and the wire is resistive, a voltage can be established across the terminals

of the magnet and the magnet can be energized. Once energized, the heater is

turned off, the wire becomes superconducting and further changes in the magnet

current cannot be made. In this persistent mode of operation, the external power

supply can be turned off to reduce the heat input to the helium bath and the

current will continue to circulate through the magnet and the persistent switch.

Superconducting magnets can provide a limited (although high) magnetic field,

usually not higher than ∼ 20 T, due to flux creep. When higher fields are needed,

resistive Bitter magnets are usually employed. These magnets require high quan-
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tity of coolant (usually water), so they have to be built in large scales facilities.

Since 2011 the National High Magnetic Field Laboratory in Tallahassee houses

the world’s strongest resistive magnet. This system has a maximum field strength

of 36.2 T, and consists of hundreds of separate Bitter plates. The system con-

sumes 19.6 megawatts of electric power and requires about 139 liters of water

pumped through it per second, for cooling. The strongest continuous magnetic

field, 45 T, was produced by a device consisting of a Bitter magnet inside a super-

conducting magnet, hence it’s name: ”hybrid”. More information can be found

on Ref. [251].

When using superconducting magnets as well as superconducting sample, the

cryogenics is an important part. For the most of this work, magnets cooled in

a liquid helium 4 bath, surrounded by a liquid nitrogen jacket isolated from the Cryogenics

outside via a vacuum chamber, have been employed. Moreover, the sample has

to be cooled down with liquid helium as well. A dynamic flux cryostat was com-

monly used, where the liquid helium is transferred from the dewar to the cryostat,

via a transfer line, under continuous pumping. Another possibility (static flux

cryostat) needs the sample to be inserted into an evacuated sample space, that is

put into contact with the helium bath, via helium gas flow. This second method

is usually needed when the ”tuning” and ”matching” capacitors are close to the

sample space and not outside, in order to prevent arching between the ceramic

capacitors or the coil and the capacitors.
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Appendix E:

The Unit Systems in Magnetism

To conclude the results of this research activity, it is recalled that all the physical

quantities in thesis thesis are written in the Gaussian unit system, or the CGS

EMU system, both of which are CGS subsystems.11 In fact there is a kind of

discomfort in the solid state physics community about the unit systems used in

magnetism, which sometimes turns into a real confusion when trying to compare

the theoretical expression with the experimental results. The origin of the mis-

understanding comes from the fact that the designation ”emu” (for the magnetic

moment) is not a real unit. In fact in the CGS system, it should rather be said

that the unit of the magnetic moment is the erg/G. Because of this reason, this

short appendix aims to clarify the dimensions and the employed units.

The merit to create a new unit system, after the well known SI, is ascribed

to H. Hertz [252], who combined the electrostatic and electromagnetic CGS units

into a single system, which is called the Gaussian system of units. The two

former systems depended on whether the law of force for electric charge or for

electric currents were taken as fundamental, and they where just related by the

c constant. Nonetheless, even if the three systems (namely CGS ESU, EMU and

Gaussian) are different it can be said that from a numerical point of view the

Gaussian units coincides with the EMU (i.e. no conversion factors are involved),

as far as the magnetic quantities are concerned, whereas it coincides with the ESU

system as far as the electric quantities are concerned. Furthermore it is noted that

both the subsystems have assumed that the electric permittivity ε0 and magnetic

permeability µ0 are equal to 1. As an example the Bohr magneton, is µB =

11The exceptions have been declared by the author.
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e~
2me

= 2.78027710−10 esu in CGS ESU, instead of µB = e~
2mec

= 9.27400910−21

emu in CGS EMU.

At the beginning of the XX century the Gaussian system was so vastly em-

ployed that many physicists like A.H. Lorentz, M. Planck, A. Einstein, A. Mil-

likan, N. Bohr, A. Sommerfeld, W. Pauli, L. de Broglie, E. Schrodinger, M. Born,

W. Heisenberg, P.A.M. Dirac and others, used it in their theories. The particular

benefit of the system came from the discovery that, in the Gaussian units, the

magnetic and the electric fields have the same dimensions and units. [253] More

recently, in 2006, the Bureau International des Poids et Measures (BIPM)

mentioned that there is a scientific advantage of ”the use of CGS Gaussian units

in electromagnetic theory applied to quantum electrodynamics and relativity”. De-

spite its undeniable benefits, the author believes that the use of the emu units

produces too much misunderstanding. For this reason the following table displays

the magnetic quantities, used in the present work, with the actual units employed.

Quantity Symbol EMU/Gaussian SI

Magnetic Field H Oe A/m

Magnetic Induction B G T

Flux of Magnetic Induction Φ Gcm2 Wb

Magnetic Moment µ erg/G Am2

Magnetization M erg/Gcm3 A/m

Volume Susceptibility χvol 1 1

Molar Susceptibility χmol erg/G2mol A/(m ·mol)
Hyperfine field Ahyp Oe T

Electronic Spin S dimensionless dimensionless

The volume Spin Susceptibility is dimensionless, in fact the magnetic constitutive

equation reads: B = H + 4πM = µH with µ = 1 + 4πχ, [153] where M = χH

defines the dimensionless magnetic susceptibility χ. In fact, in the linear response

regime one can write

χ =
µ

HV

[erg]

[G2cm3]

this unit is correct, but additionally, by recalling that the integral of the magnetic

energy density
∫
H2dr3[G2cm3] has the dimension of an energy [erg], by defini-
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tion, hence χ = [G2cm3][G2cm3] = 1. Sometimes the Susceptibility is written

in emu/cm3, where the label ”emu” now refers to ”susceptibility emu”, which in

EMU system is equivalent to cm3. On the other hand, the molar Spin Suscep-

tibility is not dimensionless. The decision to write also the hyperfine field and

electronic spin unit aims at getting rid of some confusion that rises in the NMR

community, when trying to extract the actual value of hyperfine field Ahyp from

the Knight Shift and Spin Susceptibility, as it was presented in Chapter 4.
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Grazie a mia zia Gió... ce l’hai fatta di nuovo a convincermi!
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