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Introduction

Communication in the Internet relies on both a physical interconnection net-
work and a distributed routing protocol responsible for computing routing
paths among all network devices. Data and control traffic are routed along
these paths, whose characteristics (e.g., latency, congestion, and stability) can
impact the quality of the user experience. Selecting the “best” paths is a
non-trivial challenge that puzzled network operators and protocol designers for
decades. Moreover, computing these paths in a distributed environment does
not alleviate this task.

The high-level objective of network organizations is to achieve the best
trade-off between the total cost of ownership (TCO) and the quality of the
user experience. To obtain this, network operators attempt to drive routing
protocols to compute paths that maximize network performance. However, dif-
ferent routing goals arise when operators focus on intradomain or interdomain
routing. In intradomain routing, i.e., routing traffic within a single network,
operators want to maximize the network utilization within their own infras-
tructure. In interdomain routing, i.e., routing traffic from/to different neighbor
networks, operators may want to minimize the cost of sending traffic outside
their network, where the cost depends on economic agreements, or to avoid to
transit traffic without getting any revenue. To achieve these different goals, a
network runs both an intradomain and an interdomain routing protocol. Each
routing protocol supports a routing policy language that network operators use
to control what paths are selected. Routing policy languages offered by differ-
ent routing protocols also differ in terms of expressiveness. Roughly speaking,
the more expressive a routing policy language, the wider the set of operations
that an operator can perform to influence the selection of routing paths. This
difference is particularly evident between interdomain and intradomain routing
protocols.

Traditional interdomain routing protocols compute paths “hop-by-hop” based
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on the path-vector paradigm, i.e., each router selects one of its available routes
from its neighbors and propagates it to some of its neighbors. When this
mechanism is combined with a very expressive policy language, predicting how
routes propagate throughout a network becomes a difficult task. Failure to
predict the routing outcome means impossibility to perform network debug-
ging, routing configuration migrations, and traffic-engineering without causing
service disruptions.

This thesis makes three important contributions that answer different ques-
tions about routing protocols. The first two questions relate to the process of
computing a set of routing paths in interdomain routing protocols, hence deal-
ing with route propagations issues. The third question deals with the problem
of selecting routing paths (i.e., traffic-engineering) that maximize network uti-
lization in intradomain routing protocols.

We focus on destination-based routing, where a packet is forwarded based
on its destination fields, and study the following problems by leveraging formal
tools for analyzing computational complexity.

Question 1 Given a path-vector-based routing protocol and a set of router
configurations, does the routing protocol compute a set of routing paths in finite
time?

Extensive literature showed that the standard de-facto interdomain routing
protocol adopted in the Internet (i.e., the Border Gateway Protocol, BGP)
may fail to perform this task in finite time, i.e., it may indefinitely continue
to change the computed routing paths, causing routing instabilities. This un-
wanted behavior arises when conflicting routing policies cannot be simultane-
ously satisfied. In particular, the BGP routing policy language is so expressive
that it allows operators to take routing decisions autonomously without any
guarantee that they can all be simultaneously satisfied.

In Chapter 2, we show that the most interesting problems related to Ques-
tion 1 are computationally hard even if policies are restricted to be neighbor-
based. Our findings suggest that the computational intractability of stability
is an intrinsic property of policy-based path vector routing protocols that al-
low policies to be specified in complete autonomy. Stimulated by this negative
result, we investigate whether stability problems can be made tractable by sac-
rificing the expressive power of policy configurations, while preserving organi-
zational autonomy. We show that computational tractability of BGP stability
can be achieved without sacrifying neighbor-based ranking by filtering routes
in a very specific manner.
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In Chapter 3, we continue our investigation on (Question 1), providing the
main insight into BGP intractability. We unveil an intriguing analogy between
logic circuits and BGP network configurations that leads to a surprising result:
“BGP is Turing-Complete”. Put another way, analyzing BGP routing config-
urations is as hard as debugging any computer program, which in most cases
is an unfeasible feat. To achieve this result, it suffices to show how elementary
BGP configurations can replicate the behavior of AND, OR, and NOT gates.
In particular, the logic signals 1 and 0 are mapped to the absence or presence
of a BGP route, respectively. Two elements are nonetheless missing to build
a Turing machine: the ability to store information in the BGP configuration
(i.e., a memory) and a clock. These elements are built by exploiting two pe-
culiar real-world configurations that have troubled network operators and the
IETF community for over a decade, showing that some real-world BGP con-
figurations are capable of storing information in a very similar way electronic
flip-flops do. BGP is therefore powerful enough to encode logic circuits of arbi-
trary complexity and, as such, the BGP routing system constitutes the “biggest
computer” ever made!

In a second part of the thesis (Chapter 4), we continue this study on BGP
route propagation answering the following intriguing question.

Question 2 How can a network operator trigger global routing changes in the
Internet?

The foremost motivation for this study is inspired by a famous YouTube
hijacking attack, in which a small network hijacked a large portion of the traf-
fic directed to YouTube by simply announcing that it owned the YouTube IP
subnet. This announcement propagated throughout the Internet with unpre-
dictable effects on global routing. Eventually, it caused a world-wide service
disruption for YouTube users. Although the attack was fairly simple, past work
showed that more clever attack strategies exist.

We believe that Question 2 is intriguing from at least two points of view:
the one of a hacker who wants to hijack a communication flow between two
different parties and, conversely, the one of a network operator who wants to
eventually plan a counterattack strategy to restore the hijacked IP prefixes. In
both cases, only local modifications to routing announcements are permitted.

Computing a hijacking strategy is tricky since route propagation, as shown
in Chapter 2, is itself unpredictable. Four results are shown in Chapter 4,
where it is assumed that routing policies are specified according to typical eco-
nomic agreements, which limit their expressiveness and autonomy. First, we
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present an efficient algorithm that optimally computes attacking strategies for
hijacking traffic. Second, we show that adding cryptographic security into the
routing protocol makes it computationally harder to understand if an attacking
strategy exists. This result is not an obvious consequence of using cryptogra-
phy. Third, a hacker cannot create a global routing instability: Routing is
always guaranteed to converge to a stable state. Finally, we show a strategy
to hijack traffic without creating a “black-hole”, i.e., the traffic is forwarded to
the correct destination after it is hijacked.

In the last part of the thesis, we tackle the problem of maximizing net-
work utilization. While interdomain routing protocols offer expressive routing
policies to support economic agreements, intradomain routing protocols do not
necessarily do it. As a matter of fact, in traditional routing protocols like
OSPF and RIP, operators can only have an indirect control of routing paths.
Namely, they set link weights in the network and the routing protocol routes
traffic along shortest paths. A widespread technique to achieve high network
utilization is to equally split traffic when multiple shortest paths are available.
However, computing the optimal routing paths is difficult: in order to deal
with modern-day challenges, networks are overprovisioned (e.g., in wide area
networks only a poor 30% of network resources are utilized). This motivates
our last question.

Question 3 Can we compute routing paths that maximize network utilization
using equal-split load-balancers?

In Chapter 5, we contribute to this question with a striking result: it is
hard to distinguish in polynomial time whether two routers can exchange a
data flow of size 1 or x, for any constant x > 0. This result applies to a broad
range of definitions of “network utilization”: minimizing the most congested
edge, where congestion is modeled as the ratio between the amount of data
routed through a link and its bandwidth; maximizing the throughput of the
network; minimizing the sum of link costs, where the cost can be any convex
function of the flows routed through a link.

This negative result may be alleviated when the network topology is con-
strained. We design an efficient algorithm for recently proposed data-center
topologies where the computed paths can be expressed as shortest-paths.

This thesis is organized as follows. A high-level overview of the main routing
protocols used in the Internet (i.e., BGP and OSPF) and a description of a BGP
model are introduced in Chapter 1. Chapter 2 deals with the complexity of
BGP convergence. Chapter 3 shows an intriguing mapping between logic gates
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and BGP configurations. Chapter 4 studies the impact of local routing changes
on global routing from the point of view of a malicious AS. Chapter 5 tackles
the problem of maximizing network utilization within a network. We draw
conclusions and directions for future research in the last part of the thesis.



Chapter 1

Internet Routing Policies

The Internet has been growing and evolving for decades. Nowadays, it con-
sists of thousands of interconnected networks owned by different independent
organizations, called Autonomous Systems (ASes). The number of Internet
devices that are connected to these networks exceeded 8 billions. Communi-
cation between these devices happens by means of packets that are forwarded
throughout the network along routing paths. Routing protocols are respon-
sible for computing these paths and routers are the physical network devices
that handle data and control packets. For each packet in transit, a router
uses a forwarding function to determine where the packet must be forwarded.
The specific forwarding function that is installed in a router is configured by
a routing protocol that performs the following actions: It computes the “best”
routing paths and it translates them into a set of forwarding functions that are
installed into each router that appears in these paths. These actions can be per-
formed both in a centralized or in a distributed way and both simultaneously
or sequentially.

Selecting the “best” routes is far from being an easy task. Routing pro-
tocols can be configured via a routing policy language, which defines a set of
constructs that can be used to influence the routing decision process. Network
organizations control routing paths by specifying a set of routing policies that
is used to rank paths according to a certain metric. A routing policy can be
more or less expressive. The higher the expressivity, the more fine-grained the
control on the routing paths.

Computing paths within a single network domain poses different challenges
from the task of computing paths that traverse different networks. In the for-
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mer case, the entire topology is known, the traffic matrix can be sometime
estimated, and network operators have (almost) complete control of their in-
frastructure. In the latter case, both topology, routing policies, and traffic
demands are not known (except for this information that is explicitly shared
among networks). Moreover, operators do not have any control outside their
domain. For these reasons, computing routes within a single network requires
a different routing protocol from the one that is used for computing routes
across different domains. The first task is handled by an intradomain routing
protocol, while the second one is handled by an interdomain routing protocol.

Expressiveness. Nowadays, interdomain routing protocols must cope with
the need of network operators to control their routing. Economic agreements
between ASes are established with the purpose of exchanging traffic data among
different networks. These economic agreements may be very different, depend-
ing on the nature of each AS. For instance, a stub AS, which has a single
connection to another AS, does not have many alternatives on where to route
outgoing traffic. On the contrary, a multihomed AS, which has at least two
connections with different ASes, has several choices: using one connection as
a primary route and the second one as a backup route; load-balancing its out-
going traffic between these two ASes; prevent transit traffic between the two
neighbors from traversing its network. Finally, a transit AS, which has at least
two connection with other ASes and want to transit traffic only between spe-
cific pairs of its neighbors, requires a more complex routing protocol to satisfy
its requirements than a stub or multihomed AS, e.g. accept to send traffic to a
specific neighbor only if it is received from those neighbors that are paying for
this service. The consequences of supporting such expressive routing policies
are studied in Chapter 2, Chapter 3, and Chapter 4.

In intradomain routing protocols, achieving maximum network utilization
is the most simple objective function for reducing infrastructure costs. In
fact, the higher the network utilization, the smaller the network infrastruc-
ture. This translates into less expensive network devices and, consequently, a
smaller power consumption. Traditional intradomain routing protocols offer to
network operators a limited number of configurable parameters (e.g., setting
link weights and routing along shortest paths based only on the destination
address). With the ever growing increase of Internet traffic, network operators
are struggling in an effort to deal with a new set of modern-day challenges by
tweaking these protocols. As a consequence, the costs of managing a network
are far from being optimal: in order to deal with sporadic peaks of traffic,
networks are highly overprovisioned. In wide area networks only a poor 30%
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of network resources are utilized [JKM+13]. In datacenter networks, recent
works advocate the need for more expressive routing protocols, showing that
network utilization can be improved by 50% if certain specific traffic flows
are routed according to both the source and destination address (flow-based
routing) [AFRR+10][BAAZ11]. Intradomain routing protocols are discussed in
Chapter 5, where we consider both destination-based and flow-based routing
protocols and paths can be be constrained along shortest paths or not.

In Section 1.1, we introduce the Border Gateway Protocol (BGP), i.e., the
standard de-facto interdomain routing protocol. In Section 1.2, we describe
Open Shortest Path first (OSPF), i.e. a widely adopted intradomain routing
protocol based on shortest-path routing. In Section 1.3, we present the stan-
dard model for BGP, i.e. SPP [GSW02], which can be adapted for modeling
shortest-path protocols. In Section 1.4, we provide an overview of the compu-
tational complexity notions that are widely used throughout the thesis. The
reader that is familiar with BGP, OSPF and computational complexity should
read only Section 1.3, where a model for BGP is introduced.

1.1 Border Gateway Protocol (BGP)

The Border Gateway Protocol is the standard de-facto interdomain routing pro-
tocol that that glues the Internet together. It is described in RFC4271 [RLH06],
RFC4276 [HR06], and RFC4277 [MP06].

Routing information is exchanged by establishing a BGP session between
two routers, called BGP speakers. A session is a TCP connection that is used
to exchange BGP messages. BGP messages carry reachability information and
are discussed later in this section. BGP speakers can be located within the
same AS or in different ASes. Each BGP speaker belongs to a unique AS,
which is identified with an integer, that is, the Autonomous System Number
(ASN).

BGP has two modes of operation. The external BGP (eBGP) is used to ex-
change information among BGP speakers belonging to different ASes. If there
exists more than one eBGP speaker in the same AS, then internal BGP (iBGP)
is required. We stress the fact that iBGP is not an intradomain routing proto-
col. It is responsible for disseminating routing information learnt from eBGP
speakers to all the eBGP speakers within the same AS. It does not compute
routing paths within the same AS, which is the goal of an intradomain routing
protocol. Border routers run both iBGP and eBGP sessions (see Fig. 1.1).
Internal BGP does not require that iBGP speakers are directly connected by
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AS A

AS YAS X

AS W AS Z

eBGP

iBGP

Figure 1.1: High-level overview of eBGP and iBGP. Dashed gray circles rep-
resent AS domains. BGP routers are depicted by non-dashed circles. Blue
arrows (red arrows) represent eBGP (iBGP) sessions. Internal topology of
each domain is not shown.

a physical link. As we already pointed out, an intradomain routing protocol is
used to keep connectivity among iBGP routers. However, since the number of
iBGP sessions would be quadratical with respect to the number of eBGP speak-
ers, techniques known as Route Reflector [BCC06] or Confederations [TMS07]
are typically adopted. Conversely, two eBGP speakers must be interconnected
by a physical link as there is not any intradomain routing protocol running
between two different domain networks.

Path attributes of BGP messages

BGP defines the type of messages that are exchanged in a session between two
BGP speakers. Each message carries reachability information for a set of desti-
nations. Destinations are IP subnets identified by IP prefixes. Each prefix has
a set of attributes possibly configured by each AS. There are mainly two kind of
messages: announcements and withdrawals. Announcement messages are sent
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by an AS that is willing to forward traffic from the receiver of the announce-
ment to the set of destinations specified in the announcement. Receivers of
withdrawal messages are notified that the set of destinations contained in the
announcement are no longer reachable passing by the sender of the withdrawal
message.

It follows a list of attributes. The first three are relevant for the purposes
of this thesis.

� AS-path. It is a well-known mandatory attribute. It contains the se-
quence of ASes that forwarded that announcement. It corresponds to
the route to the destination. When a BGP speaker announces a route to
an external peer, the receiver updates the AS-path attribute by prepend-
ing its ASN. On the contrary, when a BGP speaker announces a route
to an internal peer, the receiver shall not modify the AS-path attribute
associated with this route, i.e., it does not prepend its ASN. This field is
used to avert the count-to-infinity problem as in any path-vector routing
protocol.

� local-preference. It is a well-known attribute. It allows a BGP router
to indicate the relative degree of preference that is locally associated
with the route contained in the BGP update. This attribute enables
administrators to specify powerful routing policies in the path selection
process.

� next-hop. It is a well-known mandatory attribute that represents the IP
address to which forward traffic in order to reach the associated destina-
tion. That address belongs to a different AS.

� origin. It is a well-known mandatory attribute. It is set by the originator
of the announcement and signals how the prefix has been injected in BGP
(e.g., IGP, EGP). Its value should not be changed by any other speaker.

� multi-exit-discriminator. It is an optional non-transitive attribute.
It is used in order to rank different outgoing links that interconnect two
different ASes. It is used for inbound traffic-engineering.

� atomic-aggregate. It is a well-known discretionary attribute. It is used
to indicate that the route contained in the BGP message corresponds to
the aggregation of multiple contiguous IP prefixes that share the same
attribute values.
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� aggregator. It is an optional transitive attribute that indicates the AS
number and the IP address of the last BGP router that aggregated the
prefix.

� community. It is an optional transitive attribute that can be used to add
tags to announcements. Receivers can interpret tags to perform several
actions.

BGP Dynamics

An AS announces to its neighboring ASes of its existence and which destina-
tions it owns. When an AS receives an announcement, it appends its ASN
into the AS-path field of the message and propagates it according to its eco-
nomic agreements with its neighboring ASes. Loop detection is performed by
checking the content of the AS-path attribute when a BGP announcement is
received. Namely, an AS discards a BGP announcement whereas the message
already contains its ASN in the AS-path. Each network has only a partial view
of the topology. In particular, an AS can only see routes announced to it by
its neighbors.

We now define what data structures BGP keeps in memory and how they
are used during the reception of a BGP message. Each BGP speaker B store
a Routing Information Base (RIB), which consists of three distinct data struc-
tures:

� Adj-RIBs-In. It stores routing information learnt from BGP messages
that has been advertised to B by its peers. Whenever a BGP message is
received, it is matched against a set of local import filter policies, which
contains also loop-detection mechanisms. If the message is not discarded,
then it is stored in the Adj-RIBs-In and if there already exists an entry
for the same prefix and from the same neighbor, the older message is
overwritten.

� Loc-RIB. It contains the output of the path selection process, that is, for
each prefix, the application of the local policies on the paths stored in
the Adj-RIBs-In is performed. The decision process usually consists of
seven steps that are shown in Table 1.1. The decision process starts from
the step 1. When the results of a single step contains exactly one path,
the process halts, otherwise the following step is used to break ties.

� Adj-RIBs-Out. When the speaker selects a new best path for a certain
prefix, it must announce it to its neighbors according to its export filter
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Step Criterion
1 Selects the route with the highest local-preference
2 Selects the route with the lower AS-path length
3 Prefers the route with origin IGP over BGP and origin BGP

over others
4 Among the routes received from the same AS neighbor, discard

those having higher multi-exit-discriminator than the lowest
5 Prefer routes learnt via eBGP to those learned via iBGP
6 Prefer routes with lower IGP metric to the egress point
7 Prefer the route announced by the BGP router with the lowest

router-id (i.e., IP address)

Table 1.1: Steps in the path selection process of BGP.

policies. The Adj-RIBs-Out stores the BGP messages that are scheduled
to be sent to the neighbors of the speaker.

Ranking and Filtering

Path ranking. The local-preference attribute is the most powerful tool
for ranking paths. It is typically used to rank routes according to their next-
hops. It is set when a route is received from an eBGP session and its value is
not changed when the message is propagated in iBGP. Routes with a higher
value of local-preference are preferred over routes with a smaller value of
local-preference. As an example, consider again Figure 1.1. Suppose that
AS A purchases transit services from both X and Y , while it offers transit
services to both W and Z. When A receives four different routes for a specific
IP prefix from all of its neighbors, it prefers to forward traffic to those neighbors
where it does not have to pay (i.e., probably its customer W and Z). For this
reason, AS A set a higher local-preference to those announcements received
by W and Z and a lower local-preference to those received by X and Y .

Path filtering. Operators can filter paths during both the import and the
export phase. During the import phase, an operator may decide to discard all
the routes that traverse a specific AS. During the export phase, an operator
may prevent some routes to be exported to some of its neighbors. Consider the
following example based on Figure 1.1. Suppose that AS A is a multihomed
domain that purchases transit services from both X and Y . Since this domain
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does not earn money from its two providers X and Y , it does not want to
overload its network with transit traffic between X and Y . To avoid this, A
can configure its import and export filters in such a way that it does not export
to B any routes that it learnt from A, and viceversa.

1.2 Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) [Moy98] is an intradomain routing proto-
col that is used to compute all-pairs shortest-paths between routers based on
configurable static link weights (where a link’s weight specifies its distance in
the shortest-path computation). It is a link-state routing protocol. Namely,
each router announces local information (e.g., its directly-connected neighbors
and link weights values) to every other router in the network, which, in turn,
use them to reconstruct a map of the connectivity of the network and to com-
pute routing paths. These routing paths are computing by running Dijkstra’s
algorithm for finding shortest paths. Since all routers have the same view of
the networks, forwarding loops are prevented, unless during transient states
(e.g., link failures). To exploit multiple paths, OSPF is equipped with the
Equal-Cost Multi Path (ECMP) feature. This feature is introduced to exploit
shortest-path diversity in a network. It enables routers to “split” traffic among
different multiple shortest-paths via per-flow static hashing [CWZ00].

Network operators configure OSPF using a routing policy language that
limits the expressiveness as follows: (1) traffic from a source to a destination in
the network can only flow along the shortest paths between them (for the given
configuration of link weights); and (2) traffic can only be split between multiple
shortest paths (if multiple shortest paths exist) in a very specific manner (i.e.,
per-flow hashing).

It is worth to observe that OSPF provides a less expressive routing policy
language than BGP. In fact, Step 2 in the BGP routing process (Table 1.1) is
a shortest path metric based on the number of ASes contained in the AS-path

field. To simulate link weights, an AS can prepend its own ASN several times.
In Chapter 5, we show that even in OSPF, finding an “optimal” set of routes
is computationally intractable. The same result applies to BGP as well.

1.3 A Model for Routing Policies

In [GW99] a BGP model is proposed where policies are described by means
of functions that implement import and export filters, similarly to real-world
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BGP configuration languages.
This section describes the well-known Stable Paths Problem (SPP) formal-

ism [GSW02] and defines k-SPP, a variation of SPP which is suitable to study
how policy expressiveness impacts the computational complexity of stability
problems. Moreover, the class of models of k-SPP with k = 3 has been shown
to capture the so-called Local-Transit-Policies, a very common router configu-
ration language where policies are functions only of the ingress and the egress
points.

The Standard Path Problem Model (SPP)

SPP models a BGP network as an undirected graph G = (V,E), where vertices
V = {d, 1, . . . , n} represent ASes and edges in E correspond to BGP peerings
between ASes. Vertex d is a special vertex in that it is the destination every
other vertex attempts to establish a path to. Since different destinations are
independently handled by BGP [RLH06], d is assumed to be the only desti-
nation, without loss of generality. A path P is a sequence of k + 1 vertices
P = (vk vk−1 . . . v1 v0), vi ∈ V , such that (vi, vi−1) ∈ E for i = 1, . . . , k.
Vertex vk−1 is the next hop of vk in P . For k = 0 we obtain the trivial path
(v0) consisting of vertex v0 alone. The empty path represents inability to reach
the destination and is denoted by ε. The concatenation of two nonempty paths
P = (vk vk−1 . . . vi), k ≥ i, and Q = (vi vi−1 . . . v0), i ≥ 0, denoted as PQ,
is the path (vk vk−1 . . . vi vi−1 . . . v0). We assume that Pε = εP = ε, that
is, the empty path can never extend or be extended by other paths.

BGP policies are modeled by explicitly listing and ranking all permitted
paths. More precisely, for each vertex u ∈ V is assigned a set of permitted
paths Pu which represent the paths that u can use to reach d. All the paths
in Pu are simple (i.e., without repeated vertices), start from u and end in
d. The empty path, representing unreachability of d, is permitted at each
vertex u 6= d. Vertex d can reach itself only directly, hence Pd = {(d)}. Let
P =

⋃
u∈V Pu. For each u ∈ V , a ranking function λu : Pu → N determines

the relative level of preference λu(P ) assigned by u to path P . If P1, P2 ∈ Pu
and λu(P2) < λu(P1), then P2 is preferred over P1. Let Λ = {λu|u ∈ V }.

The following conditions hold on permitted paths of each vertex u ∈ V−{d}:

1. ∀P ∈ Pu, P 6= ε: λu(P ) < λu(ε) (unreachability of d is the last resort);

2. ∀P1, P2 ∈ Pu, P1 6= P2 : λu(P1) = λu(P2)⇒ P1 = (u v)P ′1, P2 = (u v)P ′2,
(strict ranking is assumed on all paths but those with the same next hop).
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Figure 1.2: An SPP instance known in literature as disagree [GW99].

An instance S of SPP is a triple (G,P,Λ).
An example of SPP instance is shown in Fig. 1.2, using the same graphical

convention as in [GSW02]. The list beside each vertex u represents the paths
in Pu sorted by increasing values of λu. For example, vertex 2 can use paths
in P2 = {(2 1 d), (2 d)} to reach d and prefers (2 1 d). The empty path and
Pd are omitted for brevity.

A path assignment is a function π that maps each vertex v ∈ V to a path
π(v) ∈ Pv, representing the fact that the BGP process running at vertex v is
selecting π(v) as its preferred path to reach the destination. We always have
π(d) = (d).

BGP dynamics are modeled by a distributed algorithm called Simple Path
Vector Protocol (SPVP) [GSW02], which computes a path assignment πt at
each iteration t. Since we consider discrete time, iterations and time are inter-
changeable concepts. SPVP works as follows (details can be found in [GSW02]).
Vertex d keeps announcing its presence to its neighbors. Every other vertex
u collects announcements from its neighbors and stores announcements in a
data structure called rib int. In particular, rib int(u ⇐ v) contains the lat-
est announcement from neighbor v. If the last announcement received from a
neighbor v is discarded, then rib int(u⇐ v) = ε. Thus, u can select a path in
the following set:

choicest(u) =

{
{(u v) rib int(u⇐ v)} if u 6= d
{(d)} if u = d

We say that a path p is available at vertex u at time t if p ∈ choicest(u).
Let W be the set of available paths at u. At this point, u selects the best

ranked path in W according to its ranking function λu:
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best(W,u) =

{
arg min
P∈W

λu(P ) if W 6= �
ε if W = �

If this operation updated u’s selected path, then u sends announcements to all
its neighbors. Notice that, at any time t, SPVP computes a path assignment
πt such that each vertex selects the best available path.

Given an SPP instance, we say that πt is a stable path assignment if, ∀u ∈
V : πt(u) = best(choicest(u), u), that is, every vertex has settled to the best
possible choice and cannot switch to a better ranked alternative.

An activation sequence [GW00] σ = (A1 . . . Ai . . . ) is a (possibly infinite)
sequence where At is a set representing the announcements that are received
by vertices at time t. Set At contains an ordered pair (u, v)|(u, v) ∈ E for
each vertex v that processes a message from u at time t. Simultaneous acti-
vations are allowed. We say that edge (u, v) is activated at time t. Since the
delay introduced by edges is finite, announcements are eventually delivered.
As an example, consider Figure 1.2. Before SPVP starts working, we assume
bestt(u) = ε for all vertices but d. A possible activation sequence is σ = (A1 A2)
with A1 = (d, 1), (d, 2), and A2 = (1, 2), (2, 1). Namely, at time t = 1 vertices
1 and 2 simultaneously receive an announcement from d, stating that vertex
d is directly reachable. Hence, vertex 2 inserts into its rib-in path (2 d), i.e.,
rib− in1(2⇐ d) = (2 d). Similarly, for vertex 1 rib in1(1⇐ d) = (1 d). Since
vertices 1 and 2 have no other alternatives, they both select the direct path
as the best route to d, i.e., best1(1) = (1 d) and best1(2) = (2 d). Because
of A2 , at time t = 2 vertex 3 also receives an announcement from d, sets
rib in2(2⇐ 1) = (2 1 d), and computes its best path best2(2) = (2 1 d). At the
same time, vertex 1 receives an announcement from 2, which advertises path
(2 d). Hence, vertex 2 sets rib in2(1⇐ 2) = (1 2 d), and computes a new best
path best2(1) = (1 2 d).

An activation sequence is fair if any edge (u, v) is eventually activated after
u has sent a message to v. In the following, we consider only fair activation
sequences.

As shown in [Cit10], simplifying the definition of activation sequences (e.g.
by activating vertices instead of edges or by not allowing simultaneous activa-
tions) leads to inability to model a subset of the possible routing oscillations.
It has been shown [GSW99] that, possibly depending on the specific activation
sequence, the SPVP algorithm might oscillate indefinitely, never converging to
a stable state. An SPP instance S is safe [GSW99] if SPVP is guaranteed to
eventually reach a stable path assignment on S for any fair activation sequence.
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Figure 1.3: An instance of the 3-SPP model.

A state s is the representation of all the the RIBs at each vertex at a certain
time. The evaluation digraph of an SPP instance S = ((V,E), P,Λ), denoted
Eval(S), is a labeled directed graph having one node for each possible state.
There exists an edge e between two vertices s1 and s2 only if there exists a set
of edges Ā ⊆ E such that if they are simultaneously activated in the state s1,
the resulting state is s2. As in previous work [SSZ09], we refer to the special
state in which all the RIBs are empty as the 0-state.

3-SPP and k-SPP

SPP can model every possible BGP policy specification. However, since it
requires explicit listing and ranking of all paths, it is mostly a theoretical
model. In fact, network operators configure BGP policies without knowing the
entire network topology. Also, the size of an SPP instance is bound to the size
of P, which can be exponential in |V |.

Several models have been proposed in alternative to SPP, either adopting a
more realistic specification of policies (e.g., [GW99]) or limiting the expressive-
ness of the policies that can be expressed in the model (e.g., [JR04]). However,
these models either have the same expressive power of SPP or have important
limitations.

We now describe 3-SPP, a variant of SPP in which vertices are forced to
rank and filter announcements on the basis of the first 3 distinct hops in the
path. This model allows ASes to specify Local Transit policies [GGSS09], that
is, policies in which ASes define filters based on neighbor pairs (e.g., paths
received from neighbor x should not be exported to neighbor y).

We now formally define the 3-SPP model. Let G = (V,E) be defined as
for standard SPP instances. Each vertex u ∈ V , with u 6= d, is assigned a
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set of permitted path fragments P̃u such that (u d) can be in P̃u if (u, d) ∈ E
and paths (u v w) can be in P̃u if u, v, and w are distinct vertices in V and
(u, v), (v, w) ∈ E. The only permitted path fragment at vertex d is P̃d = {(d)}.
To reach d, a vertex u ∈ V −{d} can use any path P = (u v1 . . . vn d), starting
with a fragment in P̃u and obtained by concatenating any permitted fragment
at each vertex vi, with i = 1, . . . , n. Path fragments contain exactly 3 vertices
except for the case of d and of its neighbors, which can reach d directly. Let
P̃ =

⋃
u∈V P̃u.

Each vertex u ∈ V −{d} ranks path fragments in P̃u according to a function
λ̃u : P̃u → N which assigns a level of preference to paths starting with a
fragment in P̃u. Namely, if λ̃u((u v w)) < λ̃u((u x y)) then any path starting
with (u v w) is preferred to any path starting with (u x y).

Similarly to the SPP model, the empty path is always permitted, i.e., ε ∈
P̃u, ∀u ∈ V − {d}, and unreachability is the last resort, i.e., ∀P ∈ P̃u, P 6= ε:
λ̃u(P ) < λ̃u(ε).

Differently from the SPP model, two path fragments can have the same
rank even if they have a different next hop. Moreover, paths through the same
neighbor always have the same rank, i.e., if (u v w) and (u v z) are two path
fragments in P̃u then λ̃u((u v w)) = λ̃u((u v z)). Any deterministic criterion
(e.g., shortest path) can be used to break ties.

An instance S̃ of 3-SPP is a triple (G, P̃, Λ̃). An example 3-SPP instance
is depicted in Fig. 1.3 using a graphical convention analogous to the one used
in [GSW02]. The list beside each vertex u represents the permitted path frag-
ments in P̃u sorted by increasing values of λ̃u. For example, vertex 2 can use
path fragments in P̃2 = {(2 1 d), (2 d)} to reach d and prefers (2 d). The empty
path and P̃d are omitted for brevity. Vertex 3 decides not to propagate the
path received from d to 2, and permitted paths fragments at vertex 2 result
from filtering action performed by 3 and ranking configured at 2. In Figure 1.3
we observe that path fragment 432 at vertex 4 models two distinct paths from
4 to d, namely 432d and 4321d, that have the same rank.

The 3-SPP model can be generalized to the k-SPP model, where permitted
path fragments defined at each vertex contain k hops. The number of path
fragments at each vertex is O(nk−1), where n = |V |, hence the size of an
instance of k-SPP is O(nk). It is easy to verify that, given a specific tie break
criterion, an instance of k-SPP can be uniquely translated to an instance of
SPP (e.g., by concatenating path fragments to generate permitted paths at
each node), while the opposite is in general not true. In other words, k-SPP
allows us to trade policy expressiveness for policy succinctness.
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A natural generalization of next-hop based preferences are class based rout-
ing policies [JR04]. The ranking (filtering) component of a routing policy is
class based if function λv at vertex v ranks P (filters) paths according to a
total order defined on a partition of v’s neighbors into classes. That is, vertex
v prefers paths announced by neighbors in class Cj to paths announced by
neighbors in class Ck , k > j, and does not accept paths from neighbors in spe-
cific classes. The set of available classes is a network-wide constant. Observe
that customer-provider instances are a special case of class based instances
where each vertex partitions its neighbors into 3 classes: customers, peers,
and providers. In this setting, a polynomial time algorithm is given to check
whether the structure of the classes can lead to specific BGP policies in which
oscillations are possible.

The 3-SPP model is similar to the one used in [JR04] in that it also limits
the expressiveness of BGP policies, however it is more general since it allows
each AS to preserve its autonomy.

Shortest-Path and 3-SPP

The 3-SPP model is capable of modeling shortest-path routing protocols. In
fact, when two path fragments have the same ranking functions, ties are broken
by shortest-paths criterium (see Table 1.1), which corresponds to selecting
routes that contain fewer ASN in the AS-path field. Moreover, if each link has
a weight w, then each AS prepends its ASN w times.

1.4 Computational Complexity Overview

This section provides a brief overview of the main computational complexity
notions that are required to understand this thesis. For a more detailed intro-
duction to this topic, the reader should refer to [Sip97], [GJ79], and [Pap94].

Computational complexity theory classifies problems according to their dif-
ficulty. To do this, it requires a model of computation that captures the amount
of resources that are needed to solve a problem, such as time and space. The
more the resources utilized, the harder the problem. We consider the standard
computational model of a Turing Machine (TM), i.e., a simple device that
reads and writes symbols on a infinite tape according to a table of rules. A
TM can be adapted to compute any computer algorithm. The time resource
is represented by the number of steps (i.e., write/read operations) that a TM
must perform to solve an instance of a problem. The space resource is repre-
sented by the number of cells of the tape that are utilized. A non-deterministic
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Turing Machine (NTM) is a TM that at each step can take a non-deterministic
decision, e.g., write on a cell two different values. When this happens, the
computation is split in two branches that continue to solve the problem inde-
pendently. It suffices that a single branch of the computation solves a problem
for the NTM to solve the problem. In that case, the time and space resources
used by the NTM correspond to the time and space resourced used by the
branch that solved the problem. Although a NTM does not model a real-world
machine, it has a fundamental role in the classification of the hardness of the
problems.

A decision problem is a yes-or-no question on an infinite set of input in-
stances. A computational complexity class contains problems that can “asymp-
totically” be solved with the same amount of resources with respect to the size
of the input. For the purpose of this thesis, we consider the following compu-
tational complexity classes. P contains all the decision problems that can be
solved by a TM in polynomial time. NP contains all decision problems that
can be solved by a NTM in polynomial time. PSPACE contains all the deci-
sion problems that can be solved by a NTM in polynomial space. NPSPACE
contains all the decision problems such that their complement can be solved
by a NTM in polynomial space. coNP contains all the decision problems
such that their complement is in NP. coNPSPACE contains all the decision
problems such that their complement is in NPSPACE.

The following relationships among these classes hold:

P ⊆ NP ⊆ PSPACE
P ⊆ coNP ⊆ PSPACE

PSPACE = NPSPACE = coNPSPACE.

The last relationship is known as the Savitch’s Theorem [Sip97]. All prob-
lems not contained in P are computationally intractable, as no polynomial time
algorithm is known to solve them.

An alternative way of defining complexity classes is by means of reductions.
A reduction is a transformation f of an instance I1 of a problem P1 into an
instance I2 of another problem P2 such that if I1 is a ’yes’ (’no’) instance of
P1, then I2 is a ’yes’ (’no’) instance of P2. A polynomial time reduction is a
reduction that takes polynomial time with respect to the input instance and
can be used to define all the complexity classes harder than P as follows. A
problem P is hard for a class of problems C, with C ∈ {NP, coNP, PSPACE,
NPSPACE, coNPSPACE}, if every problem in C can be reduced to P in
polynomial time. Hence, an efficient algorithm for P allows us to solve any
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problem in C efficiently. Hardness is a powerful tool. In the last 40 years,
many great mathematicians failed to prove whether P = NP or P 6= NP.
Proving that a problem is NP-hard gives a strong evidence that we cannot
“easily” come up with a polynomial time algorithm.



Chapter 2

Stability Testing *

In this chapter, we study the problem of checking whether a BGP network is
guaranteed to converge to a stable routing or not. We address several problems
related to BGP stability, stating the computational complexity of testing if a
given configuration is safe, is robust, or is safe under filtering. Further, we de-
termine the computational complexity of checking popular sufficient conditions
for stability.

We adopt a model that captures Local Transit policies, i.e., policies that are
functions only of the ingress and the egress points. The focus on Local Transit
policies is motivated by the fact that they represent a configuration paradigm
commonly used by network operators. We also address the same BGP stability
problems in the widely adopted SPP model.

Unfortunately, we find that the most interesting problems are computa-
tionally hard even if policies are restricted to be as expressive as Local Transit
policies. Our findings suggest that the computational intractability of BGP
stability is an intrinsic property of policy-based path vector routing protocols
that allow policies to be specified in complete autonomy.

2.1 Introduction

In this section, we overview the BGP stability problem, we motivate it, and we
present our contributions to the topic.

*Part of the material presented in this chapter is based on the following publications: M.
Chiesa, L. Cittadini, G. Di Battista, S. Vissicchio. Local Transit Policies and the Complexity
of BGP Stability Testing. In Proc. INFOCOM, IEEE, 2011.

22
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In Chapter 1, we showed that BGP supports a very expressive policy routing
language that can be used by network operators to enforce economic interests
in the BGP routing process. However, because of this rich expressiveness,
BGP is renowned to be prone to oscillations: it can fail to find a stable routing
either because there does not exist any [VGE00] or because of bad ordering of
messages [GSW02].

Since the effects of BGP oscillations can range from performance degrada-
tion [WMW+06] to denial of service [KKK07], BGP stability attracted lots of
research interest. Necessary [FJB07] and sufficient [GSW99, GSW02] condi-
tions for stability have been found and changes to the protocol [ERC+07] or lim-
itations to the expressiveness of the policies [GR00, JR04] have been proposed.
However, changing the protocol faces severe deployment issues. Moreover, en-
forcing sufficient conditions for stability may be incompatible with the need for
expressiveness and autonomy that BGP was designed to address. For these rea-
sons, the problem of checking a given BGP configuration for stability has also
been deeply studied. As an example, it has been shown that deciding whether a
given BGP configuration admits a stable routing is NP-hard [GW99, GSW02].

In this chapter, we consider several fundamental problems related to BGP
stability: (i) Safety [GW99, GSW02], i.e., the problem of verifying that a
BGP configuration is guaranteed to converge. (ii) suf [FJB07] and Robust-
ness [GSW02], i.e., the problems of verifying that a safe BGP configuration
is guaranteed to converge under any filtering action and any link failure, re-
spectively. (iii) no-dw [GSW02] and no-dr [CBRV09] i.e., the problems of
verifying that a BGP configuration does not contain a dispute wheel and a dis-
pute reel, respectively. The absence of a dispute wheel is a sufficient condition
for Safety while the absence of a dispute reel is a characterization for suf.

Despite prior work shed some light on BGP stability, many problems remain
open. For example, determining how hard it is to check that a BGP network
is guaranteed to converge, i.e., Safety, has been an elusive research goal up
to now.

We study the complexity of the above problems within three different mod-
els for BGP policies: (i) The widely adopted SPP model [GSW02], that cap-
tures arbitrarily complex BGP policies. (ii) The 3-SPP model, that captures
the so-called Local Transit policies [GGSS09], a very common configuration
paradigm where policies are functions only of the ingress and the egress points.
(iii) The 2-SPP model, a simplified version of 3-SPP, where either only the
ingress point, i.e., the BGP neighbor that announced the route, is considered.
In all three cases we adopt the well-known SPVP [GSW02] model for BGP
dynamics.
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2-SPP 3-SPP SPP
Safety P coNP-hard coNP-hard
no-dw ? coNP-complete P [GSW99]
no-dr ? coNP-complete coNP-complete
suf ? coNP-hard coNP-complete
Robustness ? coNP-hard coNP-hard

Table 2.1: Complexity of BGP stability problems in different models.
P stands for Polynomial time solvable.

We exploit those models to study how expressive BGP policies can be in
order to allow an efficient static assessment of BGP stability, assuming that
ASes fully preserve their autonomy. Unfortunately, we find that the most
interesting problems are computationally hard even if policies are restricted
to be Local Transit only (see Table 2.1). First, solving a long standing open
problem [GW99, GSW02], we prove that Safety is coNP-hard both in SPP
and in 3-SPP. In Chapter 3, we further investigate this result and show a
surprising mapping between logic gates and BGP configurations. Second, we
prove that suf is coNP-complete in SPP and that Robustness is coNP-hard
both in SPP and in 3-SPP. Third, we show that even the no-dw problem,
which can be solved efficiently in SPP [GSW99], is coNP-complete in 3-SPP.
Also, we find that the no-dr problem is coNP-complete both in SPP and in
3-SPP. As a side effect, since any 3-SPP configuration can be expressed in the
model proposed in [GW99] without changing the size of the input, our negative
results can be extended to the model in [GW99].

Stimulated by the above list of negative results, we investigate whether sta-
bility problems can be made tractable by sacrificing the expressive power of
policy configurations, while preserving ASes’ autonomy. Eventually, we find
that Safety is solvable in polynomial time in 2-SPP, where policies are re-
stricted in such a way that they are unsuitable for most practical uses.

This chapter is organized as follows. In Section 2.2, we introduce the prob-
lem of routing oscillations and we formally state all the BGP stability related
problems. In Sections 2.3 and 2.4, we study the complexity of Safety and
no-dw respectively, while Section 2.5 studies no-dr, suf, and Robustness.
Section 2.6 reviews related work in the field of BGP stability. Finally, we
conclude in Section 2.7. We recall that BGP models have been introduced in
Chapter 1.
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2.2 BGP Routing Oscillations

We introduce some examples of routing oscillations borrowed from past work [GW99].

Weak and strong oscillations. We show an example of routing oscillation
in Fig. 2.1, which has already been discussed in Chapter 1. In the initial
state, both vertex 1 and vertex 2 do not have any available path to d. After
d announces itself to 1 and 2, they selects (1 d) and (2 d) as their best paths,
respectively. Now, consider an activation sequence A = (A1 A2), where A1 =
A2 = {(1, 2), (2, 1)}. After triggering A0, both vertices 1 and 2 receive a new
route from 2 and 1, respectively. Vertex 1 selects path (1 2 d) and 2 selects
(2 1 d). Now, since both of them changed their best path, they announce this
new route to each other. This is modeled by A2, where both edges (1, 2) and
(2, 1) are activated. When 1 receives the announcement from 2, it learns that
2 is no longer selecting (2 d) as its best route, but is now selecting (2 1 d).
As a consequence, it selects (1 d) as its best route and announces it to 2. By
symmetry, 2 selects and announces (2 d), which correspond to the same state
before A1 was triggered. By repeating the same activation pattern, the gadget
will never stabilize on a stable routing.

The reader may observe that if the activation of edge (1, 2) and (2, 1) is not
perfectly synchronized, then the oscillation halts. Namely, if 1 announces to 2
that he selected (1 2 d), before that 2 selects (2 1 d), then 2 will not change its
best route from (2 d) to (2 1 d) since (1 d) will not be anymore available at 2.
This leads to a stable routing.

A routing oscillation is weak if there exists an activation sequence that leads
to a stable state, as in the Disagree example. Otherwise, the oscillation is
strong, i.e., for any activation sequence, the network never reaches a stable
routing. Routing oscillations correspond to cycles in the Eval(·) graph. If a
vertex in this cycle has a path to a vertex representing a stable state, then the
oscillation is weak, otherwise it is strong. An example of a strong oscillation
is the Bad-Gadget, depicted in Fig. 2.2, where routing will keep changing
due to unsatisfiable routing policies. The probability that a Disagree gadget
is going to oscillate in practice is very low. However, in larger networks this
probability may be much higher and number of iterations before the network
converges may be extremely high. As an example, we can embed a Disagree
into a larger network, where vertices 1 and 2 are two ASes far away from each
other and edges (1, 2) and (2, 1) are two disjoint paths in the network. In that
case an oscillation may persist for a very long time.

For this reason, in this chapter we are interested in the study of both weak
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Figure 2.1: Disagree.
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Figure 2.2: Bad-Gadget.

and strong routing oscillations. The problem of checking if a network may be
trapped in a strong routing oscillation has been studied in [GW99] and proved
to be NP-hard. From now on, we use refer to routing oscillations as both weak
and strong oscillations.

We recall that an SPP instance S is safe if S is guaranteed to converge for
every fair activation sequence and every initial state. Hence, if there exists an
arbitrary initial state such that there exists an infinite fair activation sequence,
then S is not safe. In our analysis, we limit the space of admissible initial states
to the set of states that can be reached from the 0-state. In fact, inconsistent
states that cannot be reached from the 0-state can only be triggered by external
events (e.g., a link failure). In this case, we say that an instance is robust if it
is safe under every possible link failure.

The Safety problem is defined as follows.

Problem. Safety. Given an SPP instance, is it safe?

We are also interested in checking whether an instance is safe for any pos-
sible link failures (i.e., is robust) and under any additional filtering. In that
case, we refer to the Robustness and suf problem, respectively.
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Problem. Robustness. Given an SPP instance S, is it robust? More
formally, given an SPP instance ((V,E),P,Λ), is ((V,E∗),P,Λ) safe for any
E∗ ⊆ E ?

Problem. suf. Given an SPP instance ((V,E),P,Λ), is ((V,E),P∗,Λ) safe
for any P∗ ⊆ P∗ ?

In [GSW02] a sufficient condition for Safety, Robustness, and suf has
been introduced. Namely, it has been shown that safety is guaranteed if the
BGP network does not contain a dispute wheel (DW ), a particular struc-
ture that involves cyclic preferences which cannot be simultaneously satisfied.
Hence, the BGP last stability related problem that we tackle is the following
one.

Problem. no-dw. Given an SPP instance ((V,E),P,Λ), does it contain a
DW ?

In the analysis of these problems, we will make use several times of the
following fundamental result about BGP stability.

Theorem 2.1 [SSZ09] Let I be an SPP instance that admits two or more
stable states. Then there exists an infinite fair activation sequence.

It is worth to observe that, in the proof of Theorem 2.1, the infinite fair
activation sequence is a weak routing oscillation in which the network fails to
reach any of its stable states.

In Section 2.3, we use this result to show that checking whether a net-
work may trigger a (weak or strong) routing oscillation is computationally
intractable. Further, we use the same result to prove limitation to the expres-
siveness (as in the 2-SPP model) makes it feasible to solve Safety.

2.3 The Complexity of the Safety Problem

We recall that an SPP instance S is safe if S is guaranteed to eventually
reach a stable path assignment for any fair activation sequence. Given an SPP
instance, the Safety problem asks whether that instance is safe or not.

In this section we study the computational complexity of Safety in the SPP
model, in the 3-SPP model, and in the 2-SPP model.
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We first show that the Safety can be solved in polynomial space. More
formally, it belongs to PSPACE. This is a “positive” result since it bounds the
amount of memory resources that are needed to solve Safety.

Theorem 2.1 Safety is in PSPACE in the SPP and 3-SPP model.

Proof: We prove the theorem by showing that the complement of the Safety
problem can be solved in polynomial space using a Non-Deterministic Turing
Machine (NDTM). By Savitch’s Theorem [Sip97] and since PSPACE is closed
under complement, it follows that Safety is in PSPACE.

We non-deterministically generate every possible initial state and store that
state on the tape of the machine. We observe that a state has polynomial size
w.r.t. the size of the instance both in SPP and in 3-SPP. Then, we generate all
the possible activation sequences by non-deterministically activating, at each
step of the computation, a random edge in the network. While computing
these paths, each independent branch of the computation stores into two sets
E1 and E2 the edges that are activated at least once during the computation
and the edges that must be activated for fairness at least once, respectively. A
branch of the computation accepts an instance if it returns to the same initial
state and E1 = E2 (i.e., all the edges that must be activated for fairness are
activated during the oscillation). We recall that a NDTM accepts an instance
only if at least one of its branches accepts.

It is now trivial to observe that if an instance is not safe, then at least
one of the branches of the computation will eventually find a fair activation
sequence that corresponds to a routing oscillation. We remind that it does
not matter how “long” is the oscillation since PSPACE membership does not
enforce any time constraint. Otherwise, if the instance is safe, all the branches
will eventually terminate on a stable state. This proves the theorem.

�

Safety is coNP-Hard in the SPP and in the 3-SPP models

We now prove that Safety is coNP-hard in the SPP model using a reduction
from sat complement [Pap94]. In order to prove such a result, we first need to
show some technical properties regarding the SPP instance of Fig. 2.3, which we
call twisted gadget. twisted has vertex set V = {d, x, x̄, a, b, c1, . . . , cm} and
edge set E = {(d, a), (d, b), (a, x), (b, x̄), (x, x̄)}∪{(c1, x), (c1, x̄), . . . , (cm, x), (cm, x̄)}.
Policies are as described in Fig. 2.3. Vertices ci, with i = 1, . . . ,m, also have
links to another portion of the network not explicitly shown in Fig. 2.3. Each
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Figure 2.3: twisted gadget.

path P ji passes through the portion of the network that is not shown and is
ranked better than (ci d).

We now prove two important properties of twisted.

Lemma 2.2 For each activation sequence, there do not exist two instants t′

and t′′ such that πt′(x) = (x x̄ b d) and πt′′(x̄) = (x̄ x a d).

Proof: Suppose, for a contradiction, that there exists an activation sequence
such that πt′(x) = (x x̄ b d) and πt′′(x̄) = (x̄ x a d). Denote by tP the first
time when path P = (v . . . d) is selected by vertex v. By definition of SPVP,
we have that tad < txad < tx̄xad and tbd < tx̄bd < txx̄bd. Since vertex d can
never withdraw path (d), vertex a (b) cannot select the empty path after tad
(tbd).

Suppose txx̄bd ≥ txad. Note that, after tad, vertex a can withdraw path
(a d) only by announcing path (a x x̄ b d). However, a cannot select path
(a x x̄ b d) because this would imply taxx̄bd ≤ txad ≤ txx̄bd < taxx̄bd, hence a
contradiction. On the other hand, if vertex a does not withdraw path (a d)
then vertex x never selects path (x x̄ b d) because of the availability of the
better ranked path (x a d).

Then it must be txx̄bd < txad and, by symmetry, tx̄xad < txbd. A contradic-
tion: txad < tx̄xad < tx̄bd < txx̄bd < txad.

�
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Lemma 2.3 For each fair activation sequence, if a vertex cj and a time t′

exist such that ∀t > t′ πt(cj) = (cj d), then a time t′′ exists such that ∀t > t′′

πt(x) = (x a d) and πt(x̄) = (x̄ b d).

Proof: By definition of fair activation sequence, there must exist a time t1 > t′

after which paths (x cj d) and (x̄ cj d) are always available to vertices x and x̄,
respectively. This indefinitely prevents vertex x from selecting path (x x̄ b d)
and vertex x̄ from selecting path (x̄ x a d).

As a consequence and because of the fairness, there must exist a time t2 > t1
such that vertex a can only select path (a d) and vertex b can only select path
(b d). Analogously, there must exist a time t3 > t2 after which paths (x a d)
and (x̄ b d) are always available at vertices x and x̄.

The statement follows by noting that (x a d) is the most preferred by x and
(x̄ b d) is the most preferred by x̄.

�

We now use the twisted gadget and the results from Lemmas 2.2 and 2.3 to
reduce the opposite of the sat problem, namely sat complement, to Safety.
Let F be a logical formula in conjunctive normal form with variables X1 . . . Xn

and clauses C1 . . . Cm. We construct an SPP instance S in polynomial time
with respect to the size of the sat complement instance as follows (see Fig-
ure 2.4).

For each clause Ci, add a vertex ci to S. For each variable Xi, add a
copy of the twisted gadget with x, x̄, a, and b replaced by xi, x̄i, ai, and bi,
respectively. In the copy, for each clause Cj , (xi cj d) ∈ Pxi and (x̄i cj d) ∈ P x̄i .
For each vertex cj , path (cj xi x̄i bi d) ∈ Pcj if literal Xi is in Cj and path
(cj x̄i xi ai d) ∈ Pcj if literal X̄i is in Cj . Path (cj d) is the least preferred
path at each vertex cj , while the relative preference among other paths is not
significant.

Theorem 2.4 Safety is coNP-hard in the SPP model.

Proof: Consider a logical formula F and construct the corresponding SPP
instance S = ((V,E),P,Λ) as described above. We now prove the statement
in two parts.

If F is unsatisfiable then S is safe.
Consider any fair activation sequence and assume that all vertices cj select

a path P 6= (cj d) infinite times. Let W = {xi ∈ V | ∃cj ,∃t : πt(cj) =
(cj xi x̄i ai d)} and Z = {x̄i ∈ V | ∃cj ,∃t : πt(cj) = (cj x̄i xi bi d)}. Consider
the boolean assignment M such that Xi is assigned to TRUE if xi ∈ W , and
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Figure 2.4: Reduction from sat complement to Safety.

Xi is assigned to FALSE if x̄i ∈ Z. Lemma 2.2 ensures that Z ∩W = �. By
construction of S, each clause in F is satisfied by at least a variable in M , that
is a contradiction.

Then there must exist a time t′ and a vertex ck such that ∀t > t′ πt(ck) =
(ck d). By Lemma 2.3, this implies that there exists a time t′′ > t′ after which
each vertex xi always selects path (xi ai d) and each vertex x̄i always selects
path (x̄i bi d). The fairness of the activation sequence guarantees that, even-
tually, each vertex cj permanently selects (cj d), each vertex ai permanently
selects (ai d), and each vertex bi permanently selects (bi d). It is easy to check
that such a path assignment is stable. Since any fair activation sequence leads
to a stable path assignment, if F is unsatisfiable then S is safe.

If F is satisfiable then S is not safe.
Let M be a boolean assignment that satisfies F . We now show that S has

at least two stable path assignments.
Let π′ be a path assignment such that π′(xi) = (xi ai d), π′(x̄i) = (x̄i bi d),
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π′(ai) = (ai d), π′(bi) = (bi d), and π′(cj) = (cj d), where i = 1, . . . , n and
j = 1, . . . ,m. It is easy to check that π′ is a stable path assignment.

Also, consider path assignment π′′ defined as follows. For each variable
Xi such that M(Xi) = >, let π′′(xi) = (xi x̄i bi d), π′′(x̄i) = (x̄i bi d),
π′′(ai) = (ai xi x̄i bi d), π′′(bi) = (bi d). For each variable Xi such that
M(Xi) = ⊥, let π′′(x̄i) = (x̄i xi ai d), π′′(xi) = (xi ai d), π′′(ai) = (ai d),
π′′(bi) = (bi x̄i xi ai d). Each vertex cj selects in π′′ the most preferred among
paths in set Rj = {(cj xi x̄i bi d) ∈ Pcj |M(Xi) = >} ∪ {(cj x̄i xi ai d) ∈
Pcj |M(Xi) = ⊥}.

Observe that ∀j Rj 6= � since each clause is satisfied by at least one variable
in M . We now show that path assignment π′′ is stable. Each vertex cj ,
j = 1, . . . ,m, selects the best ranked path in Rj and, by construction, no
better alternative is available at cj . For each variable Xi such that M(Xi) = >
(M(Xi) = ⊥) vertices ai (bi) and x̄i (xi) select their best ranked path, while
vertices bi (ai) and xi (x̄i) cannot select any other path except the one defined
by π′′.

We conclude that, if F is satisfiable, then S has two stable path assignments.
The statement follows by Theorem 3.1 of [SSZ09], which proves that any SPP
instance with two distinct stable path assignments is not safe.

�

Theorem 2.5 Safety is coNP-hard in the 3-SPP model.

Proof: We can use the same reduction from sat complement to Safety
applied in Theorem 2.4. In fact, the SPP instance constructed in the reduction
can be easily translated into a 3-SPP instance, since every permitted path at
each vertex is uniquely identified by the first three hops in the path. The
reduction proves the statement.

�

Safety can be efficiently checked in the 2-SPP model

The 2-SPP model allows ASes to only specify path fragments of length 2. In
other words, policies can be specified only on a per-neighbor basis: all paths
from the same neighbor are either accepted or filtered and are equally preferred.
As in 3-SPP, any arbitrary deterministic criterion can break ties. By applying
the technique in [FSS06], it can be shown that every 2-SPP instance has at
least a stable path assignment π and π can be computed in polynomial time.
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Observe, however, that 2-SPP allows configurations that are not safe, e.g., the
famous SPP instance disagree [GW99] can be represented in 2-SPP.

Given a 2-SPP instance S̃ = (G = (V,E), P̃, Λ̃), a path fragment (u v),
with u, v ∈ V , is consistent if there exists a sequence of permitted path frag-
ments P1, P2, . . . , Pn in P̃ such that (u v)P1P2 . . . Pn(d) is a simple path on G.
Consistency of a given path fragment can be trivially checked in polynomial
time. In the following, we consider only 2-SPP instances in which all permitted
path fragments are consistent.

We show an algorithm, called nh-greedy, that efficiently solves Safety in
2-SPP. nh-greedy is an adaptation of the greedy algorithm in [GSW02]. nh-
greedy incrementally grows a set of stable vertices for which convergence is
guaranteed. The set of stable vertices at iteration i of nh-greedy is denoted
by Vi. At iteration i nh-greedy also computes a partial path assignment
π∗i , that is, a path assignment where ∀u 6∈ Vi π

∗
i (u) = ε. At the beginning,

V0 = {d} and π∗0(d) = (d). Let Hi be the set of vertices u 6∈ Vi such that the
most preferred path fragment is either Bu = ε or Bu = (u v), where v ∈ Vi.
If Hi is not empty, then Vi+1 = Vi ∪ Hi, π

∗
i+1(u) = π∗i (u) if u ∈ Vi, and

π∗i+1(u) = Buπ∗i (u) for each u ∈ Hi. Otherwise, if Hi is empty, nh-greedy
terminates. At each iteration, nh-greedy either inserts at least one vertex
in Vi or terminates, hence it terminates after at most |V | iterations. If nh-
greedy terminates after k iterations with Vk = V then we say that it succeeds,
otherwise it fails. Being derived from the algorithm in [GSW02], nh-greedy
inherits the properties shown in [CRCD09]. In particular, this implies that nh-
greedy is correct, i.e., after k iterations each vertex v ∈ Vk is guaranteed to
eventually select path π∗k(v) in any fair activation sequence. As a consequence,
if nh-greedy succeeds then the 2-SPP instance is safe. We now show that if
nh-greedy fails the instance is not safe.

Let G′ = (V,E′) be the directed graph such that (u, v) ∈ E′ iff (u v) ∈ P̃x.
Given a partial path assignment π and a vertex u such that P̃u 6= {ε} and
π(u) = ε, the ideal path Pπu of u in π is the simple path from u to d obtained
by performing a depth-first visit on G′ starting from u. Vertices are visited
according to Λ̃, i.e., the neighbor with the highest preference is visited first. By
definition, Pπu = (w1 . . . wn v1 . . . vm), where w1 = u, vm = d, n ≥ 1, m ≥ 1,
(u w1) is the most preferred fragment in Pu, π(wi) = ε for i = 1, . . . , n, and
π(vj) = (vj . . . vm) for j = 1, . . . ,m. Intuitively, the ideal path of u traverses
the best ranked neighbor of u and such that all vertices wi ∈ Pπu select the
best-ranked simple path that extends a path in π and ends in d. Observe that
such a path must exist because all path fragments are assumed to be consistent,
i.e., (u w1) generates at least a path on G.



CHAPTER 2. STABILITY TESTING 34

Assume that nh-greedy fails on a 2-SPP instance S̃ after k iterations with
partial path assignment π∗k and let u be any vertex in V − Vk.

Lemma 2.6 There exists a stable path assignment π̄ on S̃ such that u selects

its ideal path, i.e., π̄(u) = P
π∗k
u .

Proof: We construct a sequence of partial path assignments π1, π2, . . . , π̄

by iteratively growing π∗k. Let P
π∗k
u = (u w1 . . . wn v1 . . . vm) be the ideal

path of vertex u in π∗k. Let π1(u) = P
π∗k
u , for each wi ∈ P

π∗k
u let π1(wi) =

(wi . . . wn v1 . . . vm) and for each v ∈ Vk let π1(v) = π∗k(v). Then, we
consider any other vertex z such that π1(z) = ε and z ∈ V − Vk (if one exists,
otherwise stop). Given Pπ1

z the ideal path of z, we construct the (partial) path
assignment π2 by extending π1 as above. Since V is finite, we eventually find
a path assignment π̄ defined for each v ∈ V .

We now show that π̄ is stable. Suppose, for a contradiction, that there exists
a vertex v that has an alternative path towards d that is preferred to π̄(v). By
construction, v must either be in Vk or be part of the ideal path of some vertex
x. In the first case, being π̄ an extension of π∗k, v is guaranteed to select path
π̄(v). In the latter case, by definition of ideal path, v can not have a better-
ranked alternative, since the depth-first visit analyzes paths at each vertex in
a decreasing order of preference. In both cases, we have a contradiction.

�

Theorem 2.7 Safety can be solved in polynomial time in the 2-SPP model.

Proof: Given a 2-SPP instance S, S is safe if and only if nh-greedy succeeds.
We have already discussed that if nh-greedy succeeds S is safe. On the other
hand, if nh-greedy fails after k iterations, it is possible to build two distinct
stable path assignments. In fact, let u be any vertex in V − Vk. Lemma 2.6

ensures that there exists a stable path assignment π′ such that π′(u) = P
π∗k
u .

Path P
π∗k
u must be in the form P

π∗k
u = P ′(z v)P ′′ where z 6∈ Vk and v ∈ Vk.

Observe that z 6= u, since u 6∈ Vk. Consider the stable path assignment π′′ such

that π′′(z) = P
π∗k
z , constructed as in Lemma 2.6. Obviously, π′ 6= π′′ at least

for vertex z since z 6∈ Vk. Since two distinct stable path assignments exist, by
Theorem 3.1 of [SSZ09] S is not safe.

�
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2.4 Searching for Dispute Wheels

In Section 2.3 we proved that Safety turns out to be a computationally hard
problem. A possible way to overcome the unfeasibility of testing Safety could
be verifying if at least sufficient conditions for Safety are satisfied.

In [GSW02] a celebrated sufficient condition for Safety has been intro-
duced. Namely, it has been shown that safety is guaranteed if the BGP net-
work does not contain a dispute wheel (DW ), a particular structure that in-
volves cyclic preferences which cannot be simultaneously satisfied. In the SPP
model, a DW Π = (~U , ~Q, ~R) is a sequence of vertices ~U = (u0 u1 . . . uk−1) and

sequences of nonempty paths ~Q = (Q0 Q1 . . . Qk−1), called spoke paths, and
~R = (R0 R1 . . . Rk−1), called rim paths, such that:

(i) Ri is a path from ui to ui+1

(ii) Qi ∈ Pui

(iii) RiQi+1 ∈ Pui

(iv) λui(Qi) ≥ λui(RiQi+1)

where all indexes are to be intended modulo k. Since an instance of k-SPP
can be uniquely translated into an SPP instance, we can extend the definition
of DW as follows: we say that an instance of k-SPP contains a DW if its
translation to SPP contains a DW. Verifying the absence of a DW in a BGP
network is referred to as the no-dw problem. In the SPP model no-dw can
be solved in polynomial time [GSW99] by finding a cycle in an auxiliary graph
called dispute digraph, whose construction takes polynomial time.

In the following, we analyze the computational complexity of no-dw in the
3-SPP model. We do it in two steps. First, we deal with the basic problem
of deciding whether a given vertex of a 3-SPP instance can establish a path to
d. We call this problem path and we show that it is NP-complete. Second,
we exploit such a result to prove that no-dw in the 3-SPP model is coNP-
complete.

path is NP-complete since it is possible to reduce 3-sat to path. Let F
be a 3-SAT formula with variables X1, . . . , Xn and clauses C1, . . . , Cm. We
construct a 3-SPP instance as follows. For each variable Xi we insert vertices
vi, xi, and x̄i, and we build a gadget having edges (vi, xi) and (vi, x̄i). For each
clause Cj we build a gadget consisting of vertices cj and cj,k and edges (cj , cj,k),
(cj,k, cj+1) with k = 1, 2, 3. Also, we add to the instance vertices vn+1, cm+1
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Figure 2.5: Reduction from 3-sat to path.

and d, and edges (cm+1, d) and (vn+1, c1). Fig. 2.5 shows an example of the
construction, where variable gadgets are on the left side while clause gadgets
are on the right side.

Intuitively, vertex vi attempts to establish a path to d via xi (x̄i) if the
corresponding 3-sat variable Xi is TRUE (FALSE). Vertices cj,k are called
literal vertices because each of them represents one of the three literals that
appear in clause Cj .

Consider literal Xi, i = 1, . . . , n. Let P = (vi xi cj1,k1
. . . cjn,kn vi+1)

be the path from vertex vi to vertex vi+1 that traverses all the literal vertices
cjp,kp such that the corresponding literal in clause Cjp is X̄i. If there are no
such literals, then path P simply consists of edges (vi, xi) and (xi, vi+1). We
add to the graph constructed so far all the edges of P . We apply exactly the
same procedure for literal X̄i. We then get from path P all the ordered triples
of consecutive vertices and add each triple (u v w) to P̃u. For example, in
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Fig. 2.5 there is a path (v1 x̄1 c1,1 cm,1 v2) because we assume, without loss of
generality, that the first literal both in C1 and in Cm is X1. For each vertex
cj , set P̃cj only contains paths (cj cj,k cj+1), with k = 1, 2, 3 and for each

vertex cj,k, we add to P̃cj,k paths (cj,k cj+1 cj+1,l), with l = 1, 2, 3. This
construction ensures that if vertex vi attempts to establish a path to d via
xi (x̄i), it cannot use a path including cj,k iff X̄i (Xi) is the k-th literal in
Cj , representing the fact that clause Cj cannot be satisfied by literal cj,k. We

define P̃vn+1 = {(vn+1 c1 c1,k)|∀k = 1, 2, 3} and P̃cm+1 = {(cm+1 d)}.
Function λcj,k , where j = 1, . . . ,m and k = 1, 2, 3, is such that paths

(cj,k cj+1 cj+1,l), with l = 1, 2, 3, are better ranked than others. Preferences
at vertices vi, xi, x̄i and cj , where i = 1, . . . , n + 1 and j = 1, . . . ,m + 1, can
be assigned arbitrarily. It is easy to check that the instance of 3-SPP can be
built in polynomial time.

Lemma 2.1 path is NP-complete in the 3-SPP model.

Proof: Consider the construction depicted in Fig. 2.5. We now show that
vertex v1 can establish a path to d iff the corresponding 3-SAT formula F is
satisfiable.

Observe that every path P from v1 to d, if any, must be in the form P = AB
where A = (v1 . . . v2 . . . vn+1) and B = (vn+1 c1 c1,j1 . . . cm cm,jmd). Since
vertex vi must choose either xi or x̄i and there is only one path connecting
xi (x̄i) to vi+1, path A can be mapped to a boolean assignment for F . By
construction, only literal vertices cj,k can appear twice in P , since they can
appear both in A and in B.

Now, if P = AB exists, then every cj can reach d via one of its neighbors
cj,1, cj,2 and cj,3 which is not traversed by path A. By construction, this implies
that the boolean assignment mapped to path A satisfies at least one literal in
every clause, hence F is satisfiable.

On the other hand, if there is no path P from v1 to d, then for any choice
of path A there exists a vertex cj that is unable to reach d via any of its
neighbors because they all appear in A. By construction, this implies that
for each boolean assignment there exists a clause Cj that is false, hence F is
unsatisfiable.

The above arguments prove that path is NP-hard. NP-completeness follows
by noting that a path P from v1 to d is a succinct certificate for path because P
has polynomial size and it takes polynomial time to check if P can be generated
by any fragment of v1.

�
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We now use the reduction as above for proving that no-dw is coNP-
complete. First of all, we prove that the 3-SPP instance built in the reduction
does not contain any DW.

Lemma 2.2 The 3-SPP instance S constructed in the reduction from 3-sat
to path (see Fig. 2.5) contains no DW.

Proof: Suppose, for a contradiction, that S contains a DW and assume that
no vertex ci can appear in any rim path. We now show that rim paths of such a
DW do not form a cycle, that is a contradiction since concatenating rim paths
must result in a cycle by definition of DW (each rim path connects a pivot
vertex with its successor).

By construction, permitted paths of all the vertices in S are subpaths of
P = P1 . . . Pn (vn+1 c1) Q1 . . . Qm (cm+1 d). Paths Qi are such that
Qi = {ci ci,j ci+1}, where j is either 1, 2, or 3. Each path Pi starts at vi, ends in
vi+1, and traverses xi (x̄i) and all the vertices cj,k such that the corresponding
literal in clause Cj is X̄i (Xi). This implies that Pj ∩ Pj+1 = {vj+1} for each
j, and Pj ∩ Pk = �, if k 6∈ {j, j + 1}. Since no rim path can contain a node ci,
all the rim paths must be subpaths of P1 P2 . . . Pn. However, since vertices
vi are ordered and all paths Pi intersects only at vertices vi, no cycle among
rim paths can be built, yielding a contradiction.

The proof is completed by showing that no vertex ci can appear in any rim
path of any DW Π. In fact, suppose that there exists a non empty set of vertices
Z = {cj , . . . , ck} such that each vertex ci ∈ Z appears in one or more rim paths.
Obviously, cm+1 cannot belong to Z. Consider, among all the vertices in Z,
the vertex ch with the highest index. Let R be a rim path in which appears
ch and let R[ch] be the subpath of R starting from ch. By definition of ch and
by construction of S, R[ch] can only be (ch ch,h′), with h′ = 1, 2, 3. In fact, all
permitted paths at ch are sequences of vertices ci and ci,j , such that i > h and
ch+1 cannot appear in R[ch] by definition of ch. Hence, vertex ch,h′ must be a
pivot vertex of Π, and its spoke path must be a path (ch,h′ ch+1 . . . d) since
it must be extended by a permitted path of ch. By definition of DW, the rim
path of ch,h′ should be one among paths (ch,h′ ch+1 . . . d), that is, ch+1 is also
on a rim path. This leads to a contradiction, because ch is defined to be the
vertex with the highest index among those appearing in a rim path.

�

Theorem 2.3 no-dw is coNP-complete in the 3-SPP model.



CHAPTER 2. STABILITY TESTING 39

Proof: We prove the statement by reducing 3-sat complement to no-dw.
Let F be a logical formula with variables X1, . . . , Xn and clauses C1, . . . , Cm.
We construct an instance S̃ = ((V,E), P̃, Λ̃) of 3-SPP as follows. Let S̃′ =
((V ′, E′), P̃ ′, Λ̃′) be the 3-SPP instance constructed as above (see Fig. 2.5).
Let V = V ′∪{1, 2}, let E = E′∪{(1, v1), (1, 2), (2, d)}, let P̃ = P̃ ′∪{(1 v1 x1),
(1 v1 x̄1), (2 d),(1 2 d), (2 1 v1)} and let Λ̃ = Λ̃′ ∪ {λ̃1, λ̃2}, where λ̃1 is such
that path (1 2 d) is most preferred and λ̃2 is such that path (2 1 d) is most
preferred.

Intuitively, we added two extra vertices 1 and 2, and defined policies such
that a DW exists in S̃ only if 1 can establish a path to d. By applying the
same arguments as in the proof of Lemma 2.1 we therefore have that S̃ has
no dispute wheel iff F is unsatisfiable. This implies that no-dw is coNP-hard
in the 3-SPP model. The proof is complete by noting that a DW on S̃ is a
succinct disqualification for no-dw, that is, a succinct proof that S̃ is a negative
instance.

�

2.5 Safety Under Filtering and Robustness

In this section we study the computational complexity of safety under filtering
and robustness.

Problem safety under filtering (suf) [FJB07] is defined as follows:
given an SPP instance S, will S remain safe under arbitrary filtering of paths?
Similarly, the Robustness problem [GSW02] requires that the input SPP in-
stance be safe even under arbitrary link failures. It has been proved in [CBRV09]
that the two problems are distinct, as there exist SPP instances that are robust
but not safe under filtering.

It is known [CBRV09] that an SPP instance is safe under filtering iff it
does not contain a dispute reel (DR). Intuitively, a dispute reel is a dispute
wheel such that spoke paths form a tree T and rim paths never intersect T
nor contain more than two pivot vertices. Let P [v] denote the subpath of P
starting at vertex v. A dispute reel (DR) is a dispute wheel such that

(i) (Pivot vertices appear in exactly three paths) – for each ui ∈ ~U , ui only
appears in paths Qi, Ri and Ri−1.

(ii) (Spoke and rim paths do not intersect) – for each u 6∈ ~U , if u ∈ Qi for
some i, then no j exists such that u ∈ Rj .
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(iii) (Spoke paths form a tree) – for each distinct Qi, Qj ∈ ~Q, if v ∈ Qi ∩Qj ,
then Qi[v] = Qj [v].

suf, Robustness and DR are defined in the SPP model. The definition
of DR can be extended to k-SPP by translating the considered k-SPP instance
to SPP. suf and Robustness are defined in 3-SPP as the problems of deter-
mining if an input 3-SPP instance is safe even under arbitrary filtering of path
fragments or under arbitrary link failures, respectively. It is easy to check that
a 3-SPP instance is robust iff the corresponding SPP instance is robust. On
the contrary, it is not known if a suf 3-SPP instance corresponds to a suf SPP
instance, nor if the absence of a DR is a characterization for suf in the 3-SPP
model.

No Dispute Reel is CoNP-Complete

We now prove that no-dr is coNP-hard by reducing 3-sat complement to
suf in polynomial time. Refer to Fig. 2.6 for an example of the reduction.

Let F be a logical formula, with variablesX1, . . . , Xn and clauses C1, . . . , Cm.
For each variable Xi, we add to the SPP instance a gadget consisting of three
vertices, namely ai, xi, and x̄i, and four edges, namely (xi d), (x̄i d), (ai xi) and
(ai x̄i). Vertices xi and x̄i have no permitted paths other than (xi d) and (x̄i d),
respectively. Permitted paths at vertex ai are Pai = {(ai xi d), (ai x̄i d)} and
the ranking among them is not significant. Intuitively, ai represents variable
Xi. Gadgets corresponding to variables are at the bottom of Fig. 2.6.

For each clause Cj , we add to the SPP instance a gadget containing vertices
cj , cj,i, and edges (cj , cj,i) and (cj,i, cj+1), where i = 1, . . . , 3. Intuitively,
vertex cj (clause vertex ) represents clause Cj while vertex cj,i (literal vertex )
represents the i-th literal in Cj . Further, if Xl appears in the i-th literal in Cj ,
then we add an edge (al, cj,i), and we set Pcj,i = {(cj,i cj+1 d), (cj,i al xl d)} if
literal represented by cj,i is Xl, Pcj,i = {(cj,i cj+1 d), (cj,i al x̄l d)} otherwise.
Among the two paths in Pcj,i , (cj,i cj+1 d) is the most preferred. The permitted
paths at vertex cj are (cj d) plus the extension of the longest path permitted
at each vertex cj,i, i = 1, . . . , 3. Path (cj d) is the least preferred path, while
the ranking of other paths can be arbitrary. Gadgets corresponding to clauses
are placed at the top of Fig. 2.6.

Observe that the SPP instance built in the reduction contains several DWs.
Vertices ai, xi, x̄i can not be pivot vertices of any dispute wheel, since they
only have direct paths to d. In fact, by arbitrarily picking exactly one literal
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vertex cj,i for each clause vertex cj , we construct a DW where pivot vertices
are all clause vertices and the selected literal vertices.

For any DW Π, each pivot appears in exactly three paths and spoke paths
never intersect rim paths, hence conditions (i) and (ii) of the definition of
DR are satisfied. However, spoke paths are not guaranteed to form a tree
(condition (iii) of the definition of DR), so DWs are not guaranteed to be
DRs.

Since spoke paths in Π only share vertices ai, condition (iii) is satisfied
only if there are no two distinct spoke paths Q1 and Q2 in Π such that Q1 =
(. . . ai xi d) and Q2 = (. . . ai x̄i d), which represents the fact that variable Xi

cannot be TRUE and FALSE at the same time.

Theorem 2.1 no-dr is coNP-complete in the SPP model.

Proof: Consider a logical formula F and construct the corresponding SPP
instance S as described above.

If F is unsatisfiable then S does not contain a DR.
Suppose, for a contradiction, that S contains a DR Π. Then, condition (iii)

ensures that, for each ai, either path (ai xi d) or path (ai x̄i d) is a subpath
of all spoke paths that traverse vertex ai. This property allows us to construct
a boolean assignment for F by setting variable Xi to TRUE if there exists
a spoke path Q′ = (. . . ai xi d) or to FALSE if there exists a spoke path
Q′′ = (. . . ai x̄i d).

As we already observed, Π contains exactly one literal vertex for each clause
vertex. By construction of S, we have that the boolean assignment correspond-
ing to Π satisfies at least one literal in each clause in F , contradicting the
hypothesis that F is unsatisfiable.

If F is satisfiable then S contains at least one DR.
Consider a boolean assignment M that satisfies F . We will now show a DR

Π = (~U , ~Q, ~R) in S. Vertices cj must be pivot vertices, that is, u2j−1 = cj and
Q2j−1 = (cj d) for j = 1, . . . ,m. For each literal vertex cj,i, if its least preferred
path is (cj,i ai xi d) and M(Xi) = > then we set u2j = cj,i, Q2j = (cj,i ai xi d),
R2j−1 = (cj cj,i), and R2j = (cj,i cj+1). We set u2j , R2j and R2j−1 to the same
values also if the least preferred path of cj,i is (cj,i ai x̄i d) and M(Xi) = ⊥,
however in this case we set a different spoke path Q2j = (cj,i ai x̄i d). Whenever
multiple literal vertices cj,i for the same clause vertex cj satisfy the above
conditions, we arbitrarily pick only one among them.

It is easy to see that, since each clause in F is satisfied by at least one
literal, Π is a DW. Moreover, by construction of Π we have that for each vertex
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Figure 2.6: Reduction from sat complement to suf.

ai only one among (ai xi d) and (ai x̄i d) can be traversed by spoke paths in Π,
hence satisfying condition (iii) of the definition of DR. Conditions (i) and (ii)
are trivially satisfied by Π. Hence, Π is a DR.

CoNP-completeness follows from noting that a DR on S is a succinct dis-
qualification for no-dr.

�

We now state the complexity of no-dr in 3-SPP.

Theorem 2.2 no-dr is coNP-complete in the 3-SPP model.

Proof: Observe that all the permitted paths in SPP instance built in the
reduction 3-sat complement to 3-SPP are entirely identified by the first three
hops. Hence, an analogous reduction can be applied from 3-sat complement
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to 3-SPP. The statement follows from the fact that a DR on a 3-SPP instance
is a succinct disqualification for no-dr.

�

Complexity of Safety Under Filtering and Robustness

Since the absence of a DR is a characterization of suf in the SPP model, we
can state the following theorems.

Theorem 2.3 suf is coNP-complete in the SPP model.

Proof: The statement directly follows from Theorem 2.1 considering that the
absence of a DR is a necessary and sufficient condition for suf in the SPP
model [CBRV09]. �

Theorem 2.4 suf is coNP-hard in the 3-SPP model.

Proof: Let S be the SPP instance in Fig. 2.6 and construct the 3-SPP instance
S′ by truncating all paths in S with length greater than 3. Since each permitted
path in S is identified by its first three hops, there is a one-to-one mapping
between permitted paths in S and permitted paths in S′. This implies that each
filter in S can be mapped to a unique filter in S′. We conclude that S′ is SUF
iff S is SUF, hence a construction analogous to that described in Section 2.5
can be applied to reduce from 3-sat complement to SUF in 3-SPP.

�

In general, suf implies Robustness, while the opposite does not hold [CBRV09].
However, observe that the SPP instance in Fig. 2.6 is suf iff it is also robust. In
fact, filtering a path P = (u v . . . d) at vertex u is equivalent to removing edge
(u, v) from the graph. This property allows us to reduce 3-sat complement
to Robustness using the same reduction used in Theorem 2.3.

Theorem 2.5 Robustness is coNP-hard in the SPP model.

Since a 3-SPP instance is robust iff the corresponding SPP instance is ro-
bust, we can directly extend Theorem 2.5.

Theorem 2.6 Robustness is coNP-hard in the 3-SPP model.
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2.6 Related Work

In [GW99] a BGP model is proposed where policies are described by means
of functions that implement import and export filters, similarly to real-world
BGP configuration languages. Several important complexity results are proved:
(i) checking if a BGP network has a stable routing (Solvability) is NP-
complete, (ii) deciding whether a BGP network can be trapped in a permanent
oscillation is NP-hard, and (iii) deciding whether a BGP network has a stable
routing, i.e., it is solvable, under any combination of link failure is NP-hard.
Observe that result (iii) is different from the Robustness problem. In fact,
checking if a network admits at least one stable state is different from checking
whether a network is safe. In fact, a network with two or more stable states
is proved to be unsafe [SSZ09]. Also, both these results may identify positive
instances even if they are unsafe. Namely, in (i), a network with one or more
stable states may be unsafe. In (ii), a network without strong routing oscilla-
tion may have weak routing oscillations. In (iii), checking if a network admits
at least one stable state under any possible link failures is different from check-
ing whether a network is safe under any link failures, as in result (i). Hence,
Safety remains an open problem.

In [GSW02] the SPP model is introduced. BGP policies are expressed by
explicitly enumerating and ranking all the permitted paths. In this setting,
it is shown that Solvability is NP-hard. This result could not be evinced
from [GW99], as translation from one model to the other might take exponen-
tial time. The complexity of Safety and Robustness is left open.

In [SSZ09] it is proved that the coexistence of two stable states implies
the existence of an oscillation. Policies are modeled with SPP. Although the
model for BGP dynamics is slightly different from SPVP, the result also holds
in SPVP [SSZ09].

In [JR04] a model is used in which BGP policies are applied consistently
network-wide based on a classification of neighbors into groups. In this setting,
a polynomial time algorithm is given to check whether the structure of the
classes can lead to specific BGP policies in which oscillations are possible. The
3-SPP model is similar to the one used in [JR04] in that it also limits the
expressiveness of BGP policies, however it is more general since it allows each
AS to preserve its autonomy.

The rest of the literature studied BGP from a game-theoretic perspective,
where ASes act as players and BGP policies as players’ strategies. Messages
between players are still allowed to be arbitrarily (even if not indefinitely)
delayed. However, these approaches fail to capture specific BGP features either
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in the game (e.g., by assuming that routers can directly receive routes from non-
neighbors [FP08]) or in the strategies (e.g., by considering impossible strategies
in BGP [JSW11, EFSW13]). In particular, In [FP08] Safety is claimed to
be PSPACE-complete. However, the adopted model assumes that ASes are
omniscient, that is, upon activation they can immediately know the AS-paths
that are being used by every other AS, without the need to exchange BGP
messages. This assumption makes it very hard to apply the results to any
realistic model of BGP.

2.7 Conclusions

The design of BGP as a protocol where ASes interact in full autonomy poses a
fundamental trade-off between the expressiveness of routing policies and risks
of routing oscillations. Restricting the expressiveness of routing policies can
be done either dynamically, e.g., by extending the protocol with oscillation-
detection capabilities, or statically, e.g., by limiting the expressive power of
BGP configuration languages. Unfortunately, the first option is affected by
severe deployment issues. Prior contributions that explored the second option
(e.g., [GR00]) devised restrictions on BGP policies that guarantee convergence,
but affect both the autonomy and the expressiveness, e.g., by forcing ASes to
filter certain paths.

In this chapter, we take a different approach, which can be summarized
by the following question: assuming that ASes preserve their autonomy, how
expressive can policies be in order to allow an efficient static assessment of
BGP stability?

Unfortunately, we find that the most interesting problems about BGP sta-
bility are computationally intractable if ASes fully preserve their autonomy and
are allowed to specify policies as expressive as Local Transit policies. Table 2.1
summarizes the results. While such results are primarily related to BGP, they
can be generalized to any policy-based path vector routing protocol. Our find-
ings show that computational tractability of BGP stability can be achieved by
restricting the expressiveness of the policies alone, preserving ASes’ autonomy.
Determining whether there exist restrictions that keep the policies expressive
enough for practical uses remains an interesting open problem. Also, we want
to stress the fact that all the results, but Safety in the 3-SPP model, can
be proved in the Safety version of the problem where the initial state is not
constrained to be the 0-state. We believe that studying Safety in the 3-SPP
model for every initial state can lead to new insight into the analysis of BGP
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stability.



Chapter 3

Routing Policies and Logic
Gates *

Because of its practical relevance, BGP has been the target of a huge research
effort since more than a decade. In particular, many contributions aimed at
characterizing the computational complexity of BGP-related problems. We
described out contributions in Chapter 2. In this chapter, we further investigate
the inherent difficulty of analyzing BGP dynamics. We unveil a fundamental
mapping between BGP configurations and logic circuits. Namely, we describe
simple networks containing routers with elementary BGP configurations that
simulate logic gates, clocks, and flip-flops, and we show how to interconnect
them to simulate arbitrary logic circuits. We then investigate the implications
of such a mapping on the feasibility of solving BGP fundamental problems, and
prove that, under realistic assumptions, BGP has the same computing power
as a Turing Machine. This result is stronger than the one in Chapter 2, but
it is stated under different message timing assumptions. We also investigate
the impact of restrictions on the expressiveness of BGP policies and route
propagation (e.g., route propagation rules in iBGP and Local Transit Policies
in eBGP) and the impact of different message timing models. Finally, we show
that the mapping is not limited to BGP and can be applied to generic routing
protocols that use several metrics.

*Part of the material presented in this chapter is based on the following publications:
M. Chiesa, L. Cittadini, Laurent Vanbever, S. Vissicchio, G. Di Battista. Using Routers to
Build Logic Circuits: How Powerful is BGP?. In Proc. ICNP, IEEE, 2013.

47
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3.1 Introduction and Related Work

We recall from Chapter 1 that BGP enables each AS to apply routing policies
in complete autonomy, i.e., enabling each AS to fully control the routes that it
accepts, prefers, and propagates to its neighboring ASes. While such a rich pol-
icy expressiveness can support complex business relationships, it can also cause
routing and forwarding anomalies both in eBGP [GSW02] and iBGP [GW02]
configurations.

Because of its practical relevance for Internet operation and its lack of
correctness guarantees, BGP has been the focus of many research and indus-
trial efforts in the last 15 years. Results of such an effort encompass formal
analyses of the protocol (e.g., [GSW02, GW02]), experimental measurements
of disruptions due to BGP (e.g., [MWA02, KKK07]), proposal of configuration
guidelines (e.g., [GR00]) and of protocol modifications (e.g., [FR09]), and prac-
tical approaches to check a given configuration for correctness (e.g., [CRV+11,
FMS+10]). Refer to Chapter 2 for a more detailed description of BGP stabil-
ity related work. However, all previous studies missed a fundamental analogy:
Basic BGP configurations can encode elementary logic gates but also, memory
and clock components. As such, BGP is powerful enough to encode logic cir-
cuits of arbitrary complexity, as we show in Section 3.2. We build this mapping
assuming a simplified model (i.e. 3-SPP) for BGP routing policies which does
not include advanced BGP features like MED or conditional advertisement.

In this chapter, we investigate the theoretical consequences of the existence
of such a mapping between BGP configurations and logic circuits. We make
the following four contributions.

First, we leverage the mapping to characterize the computational complex-
ity of several routing problems in a “bounded” asynchronous model. Contrary
to the previous chapter and previous works on BGP complexity, in this model
each network link is associated with a network delay bounded between finite
minimum and maximum values. This effectively imposes a partial order on the
exchange of BGP updates. Previous lower bounds for BGP related problems
have been proved in models that allow BGP messages to be arbitrarily (even if
not indefinitely) delayed (e.g., see Chapter 2 and related work). In Section 3.3,
we show that BGP configurations can simulate arbitrary Turing Machines in
the considered bounded asynchronous model. Two implications derive from
this observation. First, policy-based protocols like BGP intrinsically have the
same computational power of Turing Machines, even when simple policies are
considered. Second, it enables us to assess the computational intractability of
BGP routing problems, like routing convergence and correct route propagation.
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Second, in Section 3.4, we use the mapping to investigate the impact of pol-
icy restrictions on the complexity of BGP problems. We analyze both iBGP
networks and eBGP policy configuration paradigms like the well-known Gao-
Rexford conditions [GR00] and the widely used Local Transit Policies [GGSS09].
Also, we discuss the extent to which the mapping holds when other message
timings are considered.

Third, in Section 3.6, we show that our methodology can be applied in a
routing framework that is different from BGP, and we investigate how difficult
the analysis of a generic routing protocol using several metrics is.

Finally, we prove that our approach can be used in several message tim-
ing models in Section 3.5. In particular, we show that the complexity of un-
studied routing problems can be assessed in the bounded asynchronous mod-
els [GSW02] by relying on the mapping between BGP configurations and logic
gates.

3.2 BGP Configurations as Logic Circuits

The most prominent feature of BGP is the support for routing policies that
can be independently defined on each BGP router. Routing policies are used to
specify which routes should be accepted from (or announced to) which neigh-
bors, and to assign different degrees of preference to different routes.

In this chapter, we rely on the well-known SPP formalism [GSW02] to
model eBGP configurations (in Section 3.4 we use a similar model to represent
iBGP configurations). In SPP, an eBGP configuration is represented as a graph
where every node is an Autonomous System (AS) and every edge is an eBGP
peering. Since BGP routers treat different destinations separately, we focus on
one destination at the time. The destination is represented by a special node
d, to which all other nodes try to establish a route. A route is a simple path
on the graph. Each node can specify its own policy, which is modeled as a list
of all the routes that the node accepts towards the destination. The order of
the elements in the list corresponds to the preference of the node.

Despite the fact that SPP is a simplified model for BGP policies (it does
not capture MEDs and conditional route announcements, just to name a few),
in this section we show that SPP instances representing eBGP configurations
can emulate any logic circuit. To achieve this result, we show how elementary
BGP configurations can replicate the behavior of AND, OR and NOT gates.
In particular, we map the logic signals 1 and 0 to the absence or presence of
a BGP route, respectively. Two elements are nonetheless missing to build a
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Turing machine: the ability to store information in the BGP configuration (i.e.,
a memory) and a clock. To build those, we leverage two peculiar configura-
tions that have troubled network operators and the IETF community for over
a decade. The first one is a BGP wedgie [TG05], a BGP configuration that has
two stable states. In our construction, we map one of its state to 0 and the other
one to 1. Like a flip-flop memory, this BGP configuration may oscillates be-
tween these two stable states. The second configuration [MGWR02, WRCS13]
is a perpetual BGP oscillation that emits a BGP route at a known frequency.

Elementary Logic Gates with eBGP

We now show how to build eBGP configurations that simulate the OR and
NOT logic gates. We map the inputs (outputs, resp.) of a logic gate to a set
of input nodes (output nodes, resp.) of the SPP instance. Also, we map the
availability of a route to a 1 (true value) and the absence of a route to a d (false
value). In particular, the availability (absence, resp.) of a route at an output
node r at time t means that the output signal of r at time t is 1 (d, resp.).

The eBGP configurations simulating the OR and the NOT logic gates are
shown in Fig. 3.1 and Fig. 3.2, respectively. The graphical convention we use
in the figure is adopted throughout the chapter, unless differently specified.
ASes are represented by circles, and solid edges represent eBGP peerings. A
list of paths is specified beside each AS. Each list contains the paths that the
AS accepts (i.e., paths that are not filtered out by the routing policy) in a
descending order of preference. All routes refer to the same destination d. We
use dots inside a path when we do not specify the entire path, so (a b . . . d)
represents a path that start at a, traverses b and ends at d. Incoming and
outgoing dashed arrows indicate input and output nodes, respectively. For the
sake of brevity, whenever it is clear from the context, we omit node d and its
peerings. For example, in Fig. 3.2, d should be considered directly attached to
a, b and c.

Fig. 3.1 represents an eBGP configuration corresponding to the OR gate.
Nodes i1 and i2 correspond to the inputs and node o1 corresponds to the
output. Since node o1 only accepts routes from r, it will have a route to d if
and only if either i1 or i2 has a route to d. Similarly, Fig. 3.2 represents an
eBGP configuration simulating the NOT gate, where i1 is the input and o1

is the output. In this configuration, o1 has a route to d if and only if i1 has
no route to d. Indeed, if i1 has a route to d, r receives and selects the route
from i1 instead of the route from b (that is always available at r) because of
its preferences. Thus, o1 will end up with no route, since o1 does not accept
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Figure 3.1: The OR gate.
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Figure 3.2: The NOT gate.



CHAPTER 3. ROUTING POLICIES AND LOGIC GATES 52

a b

(a s . . . d)
(a d)

(b r . . . d)
(b d)
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Figure 3.3: A Disagree with two extra nodes S and R behaves as a flip-flop.

path (o1 r i1 . . . d), as shown by the absence of the path in the list aside o1 in
Fig. 3.2). On the contrary, if i1 has no route to d, then r selects (r b d) and,
consequently, o1 selects (o1 r b d).

Memory and Clock with Popular eBGP Gadgets

Besides encoding elementary gates, eBGP is powerful enough to simulate more
complex logic components, like flip-flops and clock generators.

Fig. 3.3 shows an eBGP configuration that simulates an SR flip-flop. This
flip-flop has two inputs S (set bit) and R (reset bit) and one output Q. The
flip-flop stores and outputs a 1 (d, resp.) whenever the set (resp., reset) bit is
set to 1 (d, resp.). If both set and reset bits are set to d, then output Q is the
stored value. Setting both S and R to 1 is not allowed. The configuration in
Fig. 3.3 simulates this behavior. It is based on the presence of a well-known
BGP gadget, called Disagree [GSW02], that has two stable states. Indeed,
nodes a and b form a Disagree. In one stable state, nodes a and b select paths
(a b d) and (b d), respectively. In the other one, nodes a and b select (a d)
and (b a d), respectively. Depending on whether nodes s and r receive a route,
we have the following three cases. If s announces a route to a and r does not
announce any route to b, then a never selects (a d), since path (a s . . . d) is
available and more preferred than (a d). Hence, b has to select (b d) because
none of (b a d) and (b r . . . d) is available. Since a receives (b d), it can select
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Figure 3.4: A Bad-Gadget plus output node o behaves as a clock.

its best path (a b d). Symmetrically, if r announces a route to b and s does
not announce any route to a, then a has to select (a d). Finally, if neither s
nor r receives a route, then the Disagree does not change its stable state. As
a consequence, node o has an available path to d if and only if node a selects
path (a b d), hence mirroring the output of an SR flip-flop.

Further, the dynamics of eBGP configurations that admit no stable state
are conceptually similar to those of clock generators. A clock generator is a
logic circuit producing a signal that oscillates between 1 and d. The Bad-
Gadget [GSW02], shown in Fig. 3.4, is a gadget that never converges to a
stable state. It consists in a cycle of three nodes a, b, and c, in which each node
prefers a route through its successor instead of a direct route to d. When the
gadget oscillates, node a alternatively selects paths (a c d) and (a d). Since o
does not accept path (a c d) from a, o has a route only when node a selects
(a d). Therefore, the output node o will alternate forever between having a
route and not having any route, as for a clock generator. Observe that the
clock of Fig. 3.4 can be thought in terms of the circular interconnection of 3
NOT gates of Fig. 3.2.

Simulating Arbitrary Logic Circuits

Now that we have the elementary logic components, it would be tempting to
simply interconnect them using eBGP peerings. Such an operation is needed
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Figure 3.5: The Hub gadget we use to interconnect logic components.

for building: (i) the AND gate, using OR and NOT and applying the De
Morgan’s laws; (ii) arbitrary logic gates as a combination of AND, OR, and
NOT; and (iii) arbitrary logic circuits starting from logic gates, flip-flops and
clocks. Unfortunately, because of BGP peculiarities, arbitrary interconnections
are not straightforward.

The first problem we face is that signal propagation in logic circuits has a
direction, while routes may traverse an eBGP peering in both ways. We need to
prevent routes from being propagated in unintended directions, e.g., “signals”
traversing the gates from their output to their input. This can be accomplished
by using eBGP policies to accept only routes in the intended direction.

A second and more subtle problem arises with loops. BGP has a built-in
control plane loop prevention mechanism [RLH06] which mandates an AS to
discard routes containing its own identifier. Because of this mechanism, we need
an additional building block to be able to simulate logic circuits where the signal
is propagated through a loop. In particular, we interpose a special gadget,
called Hub gadget, between any pair of interconnected logic components.

The Hub gadget is in Fig. 3.5. Intuitively, it takes a route at its input
node i and generates a new, completely different route at its output node o. It
can be seen as the concatenation of two NOT gadgets, in which the first NOT
gadget filters out the original route and the second NOT gadget generates the
new one. No route is produced at the output if i receives no external route. In
other words, the Hub gadget is able to correctly propagate both the presence
of a route (a binary 1) and the absence thereof (a binary d). Nodes h, b1
and b2 are different for each Hub gadget and therefore cannot appear in any
external route received by i. This guarantees that the output route cannot
share any node (besides d) with the input route, which in turn keeps BGP’s
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loop prevention mechanism from being triggered. More precisely, if i receives
no route from its neighboring node p, i selects route (i b1 d). This allows h to
select its preferred path (h i b1 d), which in turn makes o unable to select any
valid route to d. Otherwise, if p advertises a route (p . . . d) to i, then i selects
(i p . . . d). As a consequence, h selects (h b2 d), and o selects (o h b2 d).

Observe that the output node of the Hub gadget can either announce no
route, or it can announce a single route which does not depend on the route
received by the input node. For this reason, when connecting the output node
o of the Hub gadget to the input node i′ of another gadget, i′ can receive only
one route. Given a logic circuit, w.l.o.g. composed by NOT and OR gates, we
can replace each gate with the gadgets of Sect. 3.2 and replace each wire with
a Hub gadget obtaining a BGP network computing the same function. Since
the gadgets and the Hub have a constant number of routers, each requiring a
constant size routing configuration, we have that the construction is done in
polynomial time.

Restricting our attention to combinational logic circuits, we have a first in-
teresting consequence of our constructions. Since a combinational logic circuit
can encode any logic formula, the fact that eBGP can be used to construct
combinational logic circuits gives new intuition of why most problems related
to BGP are NP-hard. In fact, by encoding a logic formula in BGP, it is typi-
cally possible to obtain a polynomial reduction from SAT [Pap94], a well-known
NP-complete problem.

3.3 Understanding the Complexity of BGP Using Logic
Gates

The fact that eBGP configurations can simulate logic circuits has several impli-
cations in terms of the computational complexity of routing problems. To deep
out investigation in this direction we have to model BGP dynamics. We con-
sider a bounded asynchronous model, where messages traversing a link have a
propagation delay between a minimum and a maximum value. A link propaga-
tion delay encompasses many delay elements of a BGP network (e.g., physical
delays, congestion of a link, MRAI timer) whose values range between a min-
imum and a maximum. We recall that since BGP updates travel into TCP
connections, packet loss and out-of-order packets are not an issue.
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Building a Turing Machine with Logic Gates

In the bounded BGP model, each link l is associated with a propagation delay
that can take any value within range (ml,Ml), where ml (Ml, resp.) is the
minimum (maximum, resp.) delay value for l. Both ml and Ml are finite val-
ues different from d. Observe that, if ml = Ml all BGP message exchanges are
completely synchronized. In general, however, we assume ml 6= Ml. Analo-
gously, we can define a bounded model for logic circuits associating a minimum
and a maximum propagation delays on each wire.

We recall from Chapter 1 that a BGP network is safe if, for each possible
execution, the network converges to a stable state. safety is defined as the
problem of checking if a BGP network is safe. A BGP network oscillates if it
is not safe. A logic circuit halts if, for each timing, there is a time instant when
(i) for each link its endpoints have the same value and (ii) for each gate, its
output value is the correct output with respect to the current gate inputs. A
logic circuit oscillates if it does not halt.

Using standard circuit design methodologies for the bounded model (e.g., [Fri01])
we can use logic gates in the bounded model to construct a Finite Turing Ma-
chine (FTM) [Lin06], i.e., a Turing Machine where the size of the tape is finite.
More details on such a construction are reported at the end of the chapter in
Section 3.8. An FTM is a simple device that reads and writes symbols on a
finite tape according to a table of rules. This enables us to show that most
BGP routing problems are at least as difficult as the “halting” problem for
an FTM, which is known to be PSPACE-hard [GJ79]. Hence, we have the
following lemma.

Lemma 3.1 Given a Finite Turing Machine M , it is possible to construct in
polynomial time a logic circuit C in the bounded model such that C halts iff M
halts.

The discussion of Section 3.2 shows that using eBGP we can construct
logic circuits. Since we are using a BGP model with bounded delays, then
we can simply assign the desired delays to BGP peerings. Hence, exploiting
Lemma 3.1, we have the following theorem.

Theorem 3.2 Given a Finite Turing Machine M , it is possible to construct
in polynomial time an eBGP network N in the BGP bounded model such that
N converges to a stable state iff M halts.

The ability to simulate FTMs with eBGP configurations enables us to prove
PSPACE-hardness results for BGP problems. We reduce those problems from
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the Linear Space Acceptance problem, which is known to be PSPACE-
complete [GJ79]. An instance of Linear Space Acceptance consists of a
FTM M and a finite string x, where the size of the tape of M is linear with
respect to the size of x. The problem is to verify if M accepts x. We say that
an FTM M accepts a string x if M halts on an acceptance state given that x
is initially written on its tape.

In the following, we prove that both Safety [GSW02] and Reachabil-
ity [GW99] are PSPACE-hard. The PSPACE class contains all problems that
can be solved by a TM using a tape of polynomial length w.r.t. the size of
the input string [Pap94] and, in turn, it contains all problems in the NP class.
PSPACE-hard problems are the representative problems of the PSPACE class,
i.e., if a PSPACE-hard problem can be solved in polynomial time, then every
problem in PSPACE (and in NP) can be solved in polynomial time. Since NP is
believed to be a proper subset of PSPACE, PSPACE-hard problems are consid-
ered to be harder than NP-hard problems. For instance, SAT solvers [PBG05],
which are a practical tool used to deal with NP-hard problems, cannot be used
for PSPACE-hard problems.

Theorem 3.3 Safety is PSPACE-hard.

Proof: We reduce Safety from the Linear Space Acceptance problem.
A similar construction with respect to that described above enables to build
an eBGP configuration that simulates an arbitrary FTM M in such a way that
the network converges to a stable state if and only if M reaches an acceptance
state. This polynomial-time reduction directly yields the statement. �

In [FP08] BGP Safety is proved to be PSPACE-complete in an unrealistic
game-theoretical model in which BGP speakers are assumed to be omniscient
and BGP messages are not passed router by router (i.e., router receives routing
update as in a link-state protocol). We stress the fact that this unrealistic as-
sumption fails to capture the communication model of BGP in which messages
are exchanged as in a distance-vector protocol.

A very similar reduction from Linear Space Acceptance can be lever-
aged to show the complexity of the Reachability problem [GW99], that is,
deciding whether a BGP configuration admits a stable state in which a given
node s has a route to a given destination d. Namely, it is sufficient to build
an BGP configuration that simulates the FTM M as shown in the proof of
Theorem 3.3 and modify it such that node s is guaranteed to have a route
if and only if the BGP gadget simulating the clock of the FTM has stopped
oscillating.
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Observe that, theoretically, an infinite BGP network would be able to sim-
ulate a Turing Machine, where each cell of the infinite tape is modeled by a
certain number of routers. In a sense this means that, despite the simplifica-
tions listed in Section 3.2, unrestricted BGP policies have the same expressive
power as Turing Machines. As a consequence, since the halting problem for a
TM is undecidable [Wol02], also Safety would be an undecidable problem for
an infinite BGP network.

3.4 The Impact of Policy Restrictions

As in Chapter 2, we study the impact of this mapping between logical gates and
router configurations under different restrictions to the routing policy expres-
siveness. Intuitively, the fact that BGP configurations can encode arbitrary
logic circuits suggests that the complexity of BGP related problems stem out
of the intrinsic complexity of BGP semantics, which ultimately maps to the
expressiveness of BGP policies. One might argue that it is not surprising that
completely unrestricted policies yield complex semantics. It is therefore in-
teresting to study whether restricting BGP policies significantly simplifies the
analysis of a BGP configuration.

In this section, we consider iBGP configurations, where policies are dictated
by the iBGP route propagation rules and distances derived from the intrado-
main routing protocol, called IGP distances. We also consider Local Transit
policies, where policies depend solely on the ingress and egress AS and Gao-
Rexford conditions, where policies are tied to commercial relationships among
ASes.

Restricting to iBGP

BGP [RLH06] comes in two flavors: external BGP (eBGP) and internal BGP
(iBGP). eBGP is used to exchange reachability information between neighbor-
ing networks or Autonomous Systems (AS), while iBGP is used to distribute
externally-learned routes within an AS. As opposed to eBGP, in iBGP all
routers belong to the same AS. For this reason, routing policies are typically
not applied on iBGP messages [GW02]. However, the specification of iBGP
with route reflection [BCC06] imposes an implicit route ranking and an im-
plicit route filtering. The ranking component is restricted in that it has to be
consistent with the IGP graph. The filtering component is restricted in that it
has to be consistent with the iBGP graph.
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In particular, the BGP decision process has some tie breaking rules that
only have local significance (e.g., IGP distance), therefore routing preferences
are implicitly imposed by the BGP decision process itself. Further, when route
reflection is used, the protocol requires certain routes to be filtered out at each
iBGP router. More precisely, the iBGP neighbors of each router are split into
three sets: clients, peers and route-reflectors. Best routes are always relayed to
clients, but best routes learned from peers or route-reflectors are not propagated
to other peers and route-reflectors.

We now show that, despite the restrictions above, the protocol still retains
enough expressive power to encode arbitrary logic circuits. First of all, observe
that we can consider just egress points preferences, disregarding the details
of the IGP graph. In fact, in the following we show that for any given set
of egress point preferences there exists an IGP graph which is consistent with
those preferences. Consider a single destination d. Let E be the set of egress
points to d. Let λv : E → N be the egress point ranking function of router v,
such that λv(ej) = i if and only if ej is the i-th most preferred egress point
by v. Since the BGP process forces each router to deterministically select only
one route, egress point preferences at each router are totally ordered, that is,
∀ei 6= ej λ

v(ei) 6= λv(ej). Given the ranking functions of all the routers in the
networks, the following algorithm, that we call IB, builds an IGP graph which
is consistent with those ranking functions as follows:

(i) Create an empty IGP graph where the nodes are the routers and the
egress points of the network.

(ii) For each pair of a router r and an egress point e, add a link (r, e) in the
IGP graph.

(iii) To each link (r, e), assign a weight w(r, e) = λr(e) + |E|.

We now prove that the IB algorithm is correct, that is, it builds an IGP
graph consistent with the given egress point preferences at each router. Let
dist(v, u) be the length of the shortest path from v to u. We say that an IGP
topology realizes the given ranking functions if for each router v 6∈ E and each
arbitrary pair of distinct egress points e1 and e2, λv(e1) < λv(e2) implies that
dist(v, e1) < dist(v, e2).

Lemma 3.1 In the IGP topology built by the IB algorithm, the shortest path
between any router r and any egress point e is (r e).
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(i1. . .ē1 d) (i2. . .ē2 d)
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Figure 3.6: The OR gate in iBGP.

Proof: Let G = (V,E) be the IGP topology built by the IB algorithm.
Consider any router r and any egress point e. By construction, the weight of
the path (r e) is equal to w(r, e) = λr(e) + |E| ≤ 2|E|. We now show that
any path P from r to e, with P 6= (r e), has a weight higher than w(r, e).
By definition of P , P contains at least two edges. By definition of the weight
function adopted in the IB algorithm, the weight of P is equal or greater to
2 + 2|E|. Hence, the weight of any path P 6= (r e) is higher with respect to
(r e), yielding the statement.

�

We are ready to prove the following theorem on the correctness of our
construction.

Theorem 3.2 Given a set Λ of ranking functions, the IB algorithm builds an
IGP topology that realizes Λ.

Proof: Let G = (V,E) be the IGP topology built by the IB algorithm.
Consider a router r and any pair of egress points e1 and e2, such that r prefers
routes from e1 over routes from e2. By Lemma 3.1, dist(r, e1) = w(r, e1)
and dist(r, e2) = w(r, e2). By definition of the weight function used in the
algorithm, we have w(r, e1) < w(r, e2), which proves the statement.

�

Exploiting the IB algorithm, we now show how to construct OR and NOT
gates with iBGP configurations, as shown in Fig. 3.6 and Fig. 3.7, respectively.
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Figure 3.7: The NOT gate in iBGP.

In these figures, one-headed solid arrows represent sessions from a client to its
route reflector, while double-headed solid arrows represent sessions between two
peers. Inbound and outbound dashed arrows indicate input and output nodes,
respectively. Paths aside each router represent the iBGP path towards egress
points. The rest of the notation is consistent with the graphical convention
introduced in Section 3.2.

The iBGP configuration in Fig. 3.6 simulates the behavior of an OR logic
gate. The output router will receive a route to any of the egress points ē1

and ē2 if and only if a route is received by either i1 or i2 (or both). Similarly,
Fig. 3.7 depicts an iBGP configuration corresponding to the NOT gate. If i1
receives an eBGP route, it will propagate it to r2. Because of egress point
preferences, r2 will select the route announced by i1. Now, since this route was
learned from a peer, iBGP route propagation rules require that r2 do not relay
the route to o, which therefore is unable to learn any feasible route. On the
contrary, if i1 receives no route, r2 will select the route announced by r1 and
will propagate it to o. Note that the iBGP configuration corresponding to the
NOT gate is based on the Over-Ride gadget introduced in [VCVB12].

Reference [GW02] shows examples of iBGP configurations realizing Dis-
agree and Bad-Gadget structures. This enables us to build the memory
and the clock components as we did for eBGP in Section 3.2.

Finally, to interconnect logic components, we use the iBGP-Hub gadget
(see Fig. 3.8), which is the equivalent of the Hub gadget for iBGP. If i receives
an iBGP path R towards any egress point ēj , then i, c and x also select route
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Figure 3.8: The iBGP-Hub gadget.

R. In this case, y selects path (y ey) because of its ranking function, and
propagates it to o. Hence, o receives, selects and propagates one route which
has no router in common with the original route R. Otherwise, if i receives no
path towards any ēj , then x selects route (x ex), enabling y to select its most
preferred route (y x ex). However, y cannot propagate (y x ex) to o because
of iBGP propagation rules that deny propagation of a path learned from an
iBGP peer to a route reflector.

Observe that the iBGP-Hub gadget outputs at most one route, and has
at most two routes in input. Also, node i cannot receive paths from c, which
implies that routes can only flow from the left to the right part of the gadget,
hence preventing propagation of routes in undesired directions. In fact, either
i) node i selects a path R = (i . . . ēj) which is learned over the client session
itself; or ii) node i has no path to select as c’s best route (c ex) is learned from
an iBGP peer and cannot be propagated to another iBGP peer.

Having all the needed building blocks, an iBGP configuration that simu-
lates a Finite Turing Machine can be done exactly as in Section 3.3 for eBGP
configurations, again exploiting Lemma 3.1. As a consequence, we can de-
rive new intractability results (PSPACE-hardness for the min-max model) of
all correctness problems defined in iBGP, namely signaling, dissemination and
forwarding correctness [GW02, VCVB12].
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Local Transit Policies and Gao-Rexford Conditions

We now consider eBGP policy restrictions that have been proposed in the
literature.

A common policy configuration practice consists in applying the so-called
Local Transit policies [GGSS09]. Local Transit policies consist in defining
routing policies as functions of the AS that announces the route and of the AS
to which the route is announced only. Observe that all the policies used to
build the gadgets presented in Section 3.2 are compliant with the definition of
Local Transit policies. The same holds for the Disagree gadget and the Bad-
Gadget. As a consequence, BGP problems remain hard (in the unbounded
asynchronous model) or very hard (in the bounded asynchronous model) even
for BGP networks in which only Local Transit policies are applied. These
results extend the findings in [CCDV11].

A further restriction with respect to Local Transit Policies consists in im-
posing that the eBGP configuration satisfies the Gao-Rexford conditions in-
troduced in [GR00]. These conditions are the most famous way to trade
policy expressiveness for correctness guarantees without the need for global
coordination among ASes. Gao-Rexford conditions assume that each AS clas-
sifies its eBGP neighbors as either customers, peers, or providers, and that:
i) routes learned from customers are preferred over those learned from peers
and providers; ii) there is no cycle such that each AS in the cycle is a customer
of the next AS in the cycle; iii) an AS does not export routes learned from a
peer or provider to its peers or providers. It has been proved [GR00] that the
Gao-Rexford conditions guarantee that BGP always converges to a unique sta-
ble state and a greedy algorithm proposed in [GSW02] can be used to compute
the stable state, and to solve BGP problems in polynomial time.

The BGP networks simulating the OR and NOT logic gates (Fig. 3.1 and
Fig. 3.2, respectively) are compliant with Gao-Rexford conditions if the output
node o1 is set as provider of r, and r is a provider of all the other nodes. Simi-
larly, the Hub gadget (Fig. 3.5) is compliant with the Gao-Rexford conditions
if o is a provider of h, h is a provider of both i and b2, and i is a provider of both
p and b1. This assignment of commercial relationships has the property that
if a logic circuit does not contain cycles (as in combinational circuits) then it
can be simulated by a BGP network that satisfies the Gao-Rexford conditions.
Otherwise, cycles in the logic circuits translates to customer-provider cycles
in the eBGP configuration, which violates the second Gao-Rexford condition.
However, assuming Gao-Rexford conditions prevents us from building arbitrary
logic circuits and configurations like a Disagree or a Bad-Gadget. This can
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Figure 3.10: A Hub violating Condition iii). Variants of the Hub gadget
obtained by violating one of the Gao-Rexford conditions. An oriented (un-
oriented) edge from a to b represents the fact that a is a customer (peer) of
b.

be seen as an intuitive explanation of why most BGP problems turn out to be
polynomial in such a setting.

However, violating any of the Gao-Rexford conditions enables us to build
configurations that simulates arbitrary logic circuits, hence arbitrary Finite
Turing Machines in the min-max model. We have already shown a customer-
provider assignment such that a cycle in a logic circuit translates to a customer-
provider cycle in the BGP network. Hence, if we violate condition ii) and
customer-provider loops are allowed, then every interconnection between logic
components is admitted. Otherwise, if conditions i) or iii) are violated, we
modify the Hub gadget as shown in Fig. 3.10. In each of these two cases,
cycles in the logic circuits are guaranteed not to translate to customer-provider
cycles, and only one of the Gao-Rexford conditions is violated at the time.
Hence, for any violation of the Gao-Rexford conditions, arbitrary logic circuit
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can be simulated with BGP configurations. As a consequence, convergence and
route propagation problems are still PSPACE-hard if any of the Gao-Rexford
condition is violated.

3.5 Extending the Approach to Different Delay Models

In this section, we show that our mapping technique can be used in a delay
model different from the bounded one. Namely, we use the same dynamic
model used in Chapter 2 based on fair activation sequences, where there is no
lower and upper bound on the link delays. In this section, we refer to this
model as the unbounded model. Since Lemma 3.1 holds in the bounded model,
all the proofs derived in Sect. 3.3, Sect. 3.4, and Sect. 3.6 for building an FTM
do not directly extend to the unbounded one. In fact, as proved in [Mar90], it
is not possible to construct a circuit with memory elements using logic gates in
an unbounded model. Hence, it is not possible to build a FTM. Anyway, this
limitation does not prevent our mapping to be used in order to simply prove
new complexity result on BGP (Theorem. 3.1). Moreover, as a by-product of
our study, we also discovered that many already known results from [GW02]
and [GW99] can easily be proved with our technique (Appendix 3.5).

For instance, consider the following problem, called MOAS Reachability.
Assume that a destination prefix is generated by multiple origin ASes in the
eBGP network, as it happens when IP anycast is deployed in the Internet
(e.g., for the DNS root name servers). The MOAS Reachability problem
consists in determining if the destination prefix is reachable from a given source
AS for any nonempty subset of origin ASes announcing the prefix. Such a
problem aims at verifying that reachability of a given MOAS (Multiple Origin
AS) destination is guaranteed in presence of failures or planned maintenance.
Leveraging the mapping between BGP networks and logic gates, it is easy to
prove the following theorem.

Theorem 3.1 MOAS Reachability is coNP-hard.

Proof: The scheme of the reduction from SAT COMPLEMENT [Pap94] is
represented in Fig. 3.11, where nodes labeled as di, with i = 1, . . . , n, represent
the origin ASes announcing the destination prefix, and N , F , and s are defined
as follows. Let F be the boolean formula in conjunctive normal form that rep-
resents an instance of SAT. Let s be a vertex that is the given source AS. We
interpose between them a BGP network N which simulates the logic circuit
corresponding to F . Now, considering the combination of origin ASes from
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Figure 3.11: Scheme of the reduction from SAT COMPLEMENT to MOAS
Reachability.

which the prefix is announced corresponds to providing all possible inputs to
the network N . By construction of N , this translates to considering all boolean
assignments to variables in the original boolean formula F . Hence, s receives a
route for each combination of origin ASes announcing the destination prefix if
and only if the boolean formula F is satisfied by any boolean assignment. The
statement of the theorem follows from the coNP-hardness of SAT COMPLE-
MENT and the fact that the reduction can be built in polynomial time with
respect to the size of F . Indeed, given that the number of clauses in F is C,
the number of origin ASes di is equal to C, and each gate in N has a constant
number of nodes, each accepting at most 2 ∗ C paths, because of the presence
of Hub gadgets at each interconnection between gates. �

Observe now that the above theorem holds also in the case Gao-Rexford
conditions are enforced. In fact, as already discussed in Sect. 3.4, if there
are no cycles in the logic circuit, it is possible to map it to a Gao-Rexford
compliant BGP configuration. Hence, since the only circuit used in the proof
of Thm. 3.1 is combinational, the MOAS Reachability problem remains
NP-hard even when Gao-Rexford conditions are enforced. The NP-hardness of
MOAS Reachability under Gao-Rexford conditions is especially interesting,
because other BGP problems are polynomial in such a setting [GR00].

We stress that, by applying the same reduction technique, it is also straight-
forward to build reductions for problems like Reachability, Solvability,
Trapped, Unique, and Multiple [GW99].
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Reductions for the Unbounded Delay BGP Model

In the following, we show how to leverage the mapping between eBGP con-
figurations and logic gates to prove the complexity of the problems studied
in [GW99] in the unbounded asynchronous model. All the following reductions
can be built in polynomial time with respect to F (see Section 3.2). Also note
that a Disagree can be obtained as a loop of two NOT gadgets. As a con-
sequence, the following complexity proofs remain valid whenever the OR and
the NOT logic gates can be simulated and arbitrarily interconnected via the
Hub gadget.

Reachability, Solvability, and Trapped

The Reachability problem consists in deciding if a BGP network admits a
stable state in which a given router s has a route to a given destination d. The
problem has been already shown in [GW99] to be NP-hard. We now show an
NP-hardness proof exploiting the mapping between BGP configurations and
logic gates.

Theorem 3.2 Reachability is NP-hard.

Proof: Let F be a boolean formula in conjunctive normal form that represents
an instance of SAT. We build an instance of Reachability as follows (see
Fig. 3.12). Let o and d be the source and the destination vertices considered in
Reachability, respectively. We interpose between them a BGP network N
which simulates the logic circuit corresponding to F . We also add a Disagree
gadget between d and each input router ij in N . Each Disagree gadget can
converge to one of two distinct stable states. Each possible combination of
these stable states is mapped to a boolean assignment M of the variables. For
each of these combinations, by construction of N , node o will have a route to
d if and only if F is satisfied by M . �

We now consider the Solvability and Trapped problems that deal with
convergence guarantees of a BGP configuration. Namely, Solvability consists
of deciding if a given BGP configuration admits at least one stable solution,
while Trapped is the problem of deciding if the network can be trapped in
permanent routing oscillations, like those occurring in a Bad-Gadget. For
both problems, we use the reduction shown in Fig. 3.12, where a Bad-Gadget
between nodes p1, p2, and p3 is added. The Bad-Gadget does not oscillate
if and only if p2 steadily receives path (o . . . d) from o. However, since this
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Figure 3.12: Construction for Reachability, Solvability, and Trapped.

requires to solve the Reachability problem, both Solvability and Trapped
are proved to be NP-Hard.

Unique and Multiple

Unique (Multiple) is the problem of deciding if a single (more than one)
stable state exists for a given BGP configuration. In the reduced instance in
Fig. 3.13 the presence of a stable state is guaranteed in one of the two stable
states of the Disagree between a and b. Indeed, if a steadily selects (a b d)
and b steadily selects (b d), then no route is provided to c, which implies o
having no route, and e selecting (e b d). This, in turn, implies nodes f , g, and
h having no route to d. However, if a steadily selects (a d) and b steadily selects
(b a d), then the presence of additional stable states depends on the formula
F . Indeed, if F is not satisfiable then o has no steady route. In this case, e
selects (e d) activating the Bad-Gadget between f , g, and h. As a result, no
other stable state exists. Otherwise, if F is satisfiable, then o steadily selects a
route for at least one combination of inputs to N . This implies that e selects
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Figure 3.13: Scheme of the reduction from SAT to Unique and Multiple.

the route it receives from o, hence preventing the Bad-Gadget between f , g,
and h from oscillating, and forcing a second stable state. This proves Unique
is NP-Hard, which directly implies the NP-hardness of Multiple, as already
noted in [GW99].

3.6 Combining Popular Metrics can be Hard to Analyze

In Sect. 3.2 and 3.4, we built a mapping from BGP to logic gates. This map-
ping exploits two specific BGP constructs: per-neighbor filtering and a ranking
function that is based on the presence of a specific vertex in the path (i.e.,
per-neighbor and per-egress-point ranking in eBGP and iBGP, respectively).
One may wonder whether this mapping technique can be applied to proto-
cols different from BGP. In this section, we answer this question. We consider
distance-vector routing protocols where each routing message contains a vector
of metrics (as in EIGRP [SSN+13], where messages contain between five and
seven different metrics) and where route filtering is not allowed. We suppose
(notice that this is different from EIGRP) that each router make routing de-
cisions based on any available routing metrics (e.g., path length, bandwidth,
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reliability). Surprisingly, also in this setting, we found this mapping technique
to be extremely powerful. We will show that, if a protocol handles more than
two metrics, then it is possible to map router configurations to logic gates. As
a consequence, we derive the computational intractability results as for BGP.

Consider an arbitrary distance-vector routing protocol, where messages as-
sociated to each route contain a vector of three metrics A, B, and C. We refer
to this protocol as the METRIC-DV. To describe routing metrics, we use the
standard terminology from routing algebras [BT10]. Each metric S = A,B,C
has a domain DS and it is endowed with two binary operators ⊕S and ⊗S .
Given two paths, with metric values s1 and s2, from the same router, s1 ⊕S s2

returns the value of the most preferred one. We assume that ⊕ is transitive, i.e.,
if s1 is preferred over s2 and s2 is preferred over a value s3, then s1 is preferred
over a third value s3. Given a path pn, with metric sn, from a neighbor n of a
router r, where the link joining r with n has metric value s(r,n), s(r,n)⊗S sn re-
turns the metric value of the path from r obtained by concatenating (r, n) with
pn. We denote by 1̄S the identity element of ⊗S . For instance, a path length
metric has domain DS = N∞ and operators (⊕,⊗) = (min,+). Each router r,
for each path of length c learned from one of its neighbors n, adds (⊗ is +) the
cost of the link from r to n to c. Also, each router selects the shortest (⊕ is
min) path among the available ones. The identity element of + is d. A band-
width metric has domain DS = N∞ and it has operators (⊕,⊗) = (max,min).
In this case, the maximum-bandwidth available path is the most preferred and,
since the capacity of a path is equal to the bottleneck capacity of that path
(the smallest along the path), a minimum operator is used to compute the
path bandwidth. The identity element of min is ∞. A most-reliable metric
has domain DS = [0, 1], operators (⊕,⊗) = (max,×), and the identity element
of × is 1. When a router r receives a route Rn, with vector 〈a, b, c〉, from one
of its neighbors n, r computes a new vector 〈eA ⊗ a, eB ⊗ b, eC ⊗ c〉 for route
(r n)Rn, where 〈eA, eB , eC〉 is the metric of the link between r and n.

In order to discuss the protocol, we define some generic metric values for
metrics A, B, and C and a mapping from logic values to routes available at
a router. For each metric S = A,B,C, let hS be the most preferred value,
mS be the second-most preferred value, and lS be the least preferred value.
Also, we assume that each metric S is monotonic, i.e., for each pair of values
x and y of S such that y is preferred over x, (y ⊗ x) ⊕ x = x. It basically
means that the concatenation of two paths produces a path whose metric is
at least as worse as the path with the lowest metric value. For example, this
holds for metrics like path length, bandwidth, and reliability. Indeed, in the
path length metric, for two paths of length 10 and 20, respectively, we have that
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Figure 3.14: The OR gate in METRIC-DV.

min(10+20, 20) = 20. As for the mapping, since no path filtering is allowed, we
use a more sophisticated mapping between paths selected at a router and logic
values. Namely, we map a router that selects a path with a vector 〈hA, lB , ·〉
(〈lA,mB , ·〉) to a 1 (0) in the logic circuit, where · is an arbitrary value for the
C value.

We now show that METRIC-DV configurations can simulate OR and NOT
gates. To simplify their analysis, we allow identity elements to be used as link
metric values (e.g., a link with bandwidth ∞). Even if this is not a realistic
assumption, we stress that a more complex analysis would allow us to forbid
identity elements as link metric values. In Fig. 3.14 and Fig. 3.15 we use the
following graphical convention. Each edge has a label 〈a, b, c〉 that represents
its values for metrics A, B, and C, respectively. Inside a box beside each router
r, a label contains metrics in decreasing order of preferences for r. E.g., label
(A,B,C〉 at router r means that r prefers metric A over B, which in turn is
preferred over C.

Simulating an OR gate is easy (see Fig. 3.14). It has two input vertices
i1 and i2, an output vertex o1, and a vertex r that prefers paths with higher
values of A. Observe that, since each edge has identity elements for metrics A
and B, metrics A and B remain unchanged when a path is propagated through
the gadget. If both i1 and i2 select a path with vector 〈lA,mB , ·〉, then o1

also selects a path with vector 〈lA,mB , ·〉. Otherwise, if at least one router
among i1 and i2 selects a path with vector 〈hA, lB , ·〉, then o1 also selects a
path with vector 〈hA, lB , ·〉. We discuss backward propagation of paths after
having introduced the NOT and HUB gadgets.



CHAPTER 3. ROUTING POLICIES AND LOGIC GATES 72

dr

i1

(lA, hB , lC)

s

(lA,mB , hC)

o1

(hA, lB , lC)

A,B,C

B,A,C C,A,B

(1̄A, lB , 1̄C)

A,B,C

(1̄A, 1̄B , 1̄C)

(1̄A, 1̄B , 1̄C)

Figure 3.15: The NOT gate in METRIC-DV.

The NOT gadget is a more tricky (Fig. 3.15). Let d be the unique desti-
nation vertex of the network. We make several necessary observations. First,
each edge of path (r s o1) has identity elements as its metric values, hence,
if a path is propagated through (r s o1), then its metric values remain un-
changed. Second, vertices r, s, o1 never select paths with metrics 〈lA,mB , hC〉,
〈hA, lB , ·〉, and 〈lA, ·, lC〉, respectively, because of their metric preferences. In
fact, paths with metrics 〈lA, hB , lC〉, 〈lA,mB , hC〉, and 〈hA, lB , lC〉 are steadily
available at r, s, and o1, respectively. For this reason, r (s) selects a path with
vector 〈hA, lB , ·〉 (〈lA, hB , lC〉) only if it receives it from i1 (s). Now, we are
ready to analyze the behavior of the gadget. If i1 selects a path with vector
〈hA, lB , ·〉, which is mapped to a 1 in the logic circuit, then r selects it instead
of the direct route to d with vector 〈lA, hB , lC〉 because it prefers metric A. In
turn, s selects its direct route to d with vector 〈lA,mB , hC〉 instead of the one
learned from r because it prefers metric B. Finally, o1 selects the route via
s, which is mapped to a 0 in the logic circuit, instead of the direct one vector
〈hA, lB , lC〉 because it prefers metric C. Otherwise, if i1 selects a path with
vector 〈lA,mB , ·〉, which is mapped to a 0 in the logic circuit, then r selects the
direct route to d with vector 〈lA, hB , lC〉 (in fact, by monotonicity and transi-
tivity, hB is preferred over lB , which, in turn, is preferred over 〈lB ⊗mB〉) and
propagates it to s, which, in turn, selects this route over the direct one. Finally,
o1 selects its direct route to d with vector 〈hA, lB , lC〉, which is mapped to a 1
in the logic circuit, instead of the one learned from s with vector 〈lA, hB , lC〉.
In fact, since both routes have the same value for C, the direct route has a
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better value for A. To construct an HUB gadget it suffices to connect two NOT
gadgets in series, as we have already done in the BGP analysis.

We now discuss the issue of route backward propagations. We first analyze
the NOT gadget. As we argued above, r selects a path with vector 〈hA, lB , lC〉
only if it learns it from i1. Hence, the only route that can be propagated back
to i1 is its direct path to d with vector 〈lA, hB , lC〉. Two cases are possible. If
i1 selects a path with vector 〈hA, lB , ·〉, which is mapped to 1, then the direct
path from r to d is not selected at i1 and backward propagation is prevented.
Otherwise, if i1 selects a path with vector 〈lA,mB , ·〉, which is mapped to 0,
then the direct path from r to d is not selected at i1 because lB ⊗ hB is, by
monotonicity, less preferred than lB which, in turn, is less preferred than mB .
Hence, backward propagation is prevented in this case too. We now discuss the
OR gadget. Since the output of an OR gadget is always connected to the input
of an HUB gadget, which is the input of a NOT gadget, we are guaranteed, by
the above discussion, that there is no backward propagation from the output
router of the OR gadget to any of of its input routers. However, a route with
vector 〈lA,mB , hC〉 can be propagated from i1 to i2, which is connected to
the output of an HUB gadget. When this route is propagated through path
(i1 r i2), its metric value at o1 becomes 〈lA,mB , lC ⊗ (lC ⊗ hC)〉, which is less
preferred than 〈hA, lB , lc〉 (the metric of the directed path from o1 to d). Hence,
o1 never selects a path from an input router of the OR gadget, which prevents
any backward path propagation.

We draw several interesting considerations derived from this non-trivial
construction of the NOT gadget. First, filtering is not a necessary construct
for simulating logic circuits. This means that the Safety problem may be
PSPACE-hard in the bounded model even if the analyzed protocol does not
have filter capabilities. Second, per-neighbor and per-egress-point ranking
functions, even in the absence of filters, are not necessary constructs for simu-
lating logic circuits. In fact, our construction relies on simple popular metrics.
Last, observe that if a protocol has exactly one “strict” monotonic metric,
then it is guaranteed to converge to a stable state [GS05]. In this section, we
proved that three metrics are enough to make Safety PSPACE-hard. We
think that studying the complexity of Safety in a protocol with two metrics
is an interesting non-trivial open problem.
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3.7 Conclusions

Over the last 15 years, a routing theory has been developed to study problems
on BGP convergence and route propagation. In this chapter, we described
a mapping between BGP configurations and logic circuits that puts existing
results in a new perspective. We showed how to leverage the mapping to devise
reduction techniques and defined the computational complexity of several BGP
routing problems under different assumptions. Most notably, by simulating
Finite Turing Machines with BGP configurations, we proved the PSPACE-
hardness of famous BGP problems like Reachability and Safety in a model
in which link delays are constrained into finite ranges. We also investigate the
impact of restrictions to the expressiveness of the BGP policy language. We
show that, under any restriction which does not guarantee convergence, BGP
still retains enough expressive power to simulate arbitrary logic circuits, which
in turn implies that several interesting BGP problems remain computationally
intractable. Finally, we show that the mapping can be effectively used to
investigate routing protocols that are very different from BGP. We found an
interesting family of routing protocols, with no filter nor per-neighbor ranking
constructs, for which the mapping to logic circuits is still possible.

We believe that this study raises many natural questions regarding the
possibility of mapping routing configurations to logic circuits. In future work,
we plan to investigate whether policy restrictions exist that do not guarantee
convergence but allow efficient analysis of BGP configurations. We also plan
to extend our analysis to other models and routing protocols.

3.8 Appendix: Building a Turing Machine with Logic
Gates

The proof consists of two steps. In the first step we show that it is possible to
construct an FTM starting from logic gates and a clock, and interconnecting
them with links having a bounded delay. In the second step we use the building
blocks in Section 3.2 to translate the logic circuit that simulates the FTM in
an eBGP configuration.

Technically, an FTM is a device that processes symbols on a finite-length
tape according to a history-less transition function δ. An FTM maintains a
state during the computation and uses a head to read and write on specific
cells of the tape. At the beginning, the tape is initialized with an initial string
of symbols and the FTM is in an initial state. At each step, the FTM reads
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Figure 3.16: A Turing Machine. Delays with values ( 2
3T,

2
3T + ε) and (ε, 2ε)

are associated with thick and thin lines, respectively, where T is the maximum
time the clock holds the same output value.

the symbol stored in the cell pointed by the head of the tape. Next, according
to its state and the read symbol, the transition function δ computes a new
symbol to be written on the tape, a new state for the FTM, and eventually
a movement of the head of the tape. The computation halts when the FTM
reaches some special states.

Now, we build an FTM using only logic gates and a clock (see Fig. 3.16)
and connecting the circuital components with links having a minimum and
maximum delay. Each building block in the figure represents a logic circuit,
hence it can be encoded with an eBGP configuration (see Section 3.2). Details
of the circuits represented in Fig. 3.16 are provided in [CCD+12]. Observe
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that a clock with the appropriate timing can be built interconnecting, as in
Section 3.2, 3 NOT gates. It is not difficult to observe that 3 NOT gates
correspond to a Bad-Gadget, which contains a strong routing oscillation.

The main issue is the synchronization. Indeed, on one hand, an FTM
performs the computation in a centralized way, where all the operations are
synchronized by the FTM itself. On the other hand, in a logic circuit the
computation is distributed among the different logic gates and only partially
synchronized since the signal propagation delay is variable. In a perfectly
synchronized model where signal propagation delay is deterministic, it is easy
to keep the circuit synchronized by conveniently assigning specific delays to
the links. However, in the more general min-max model, the synchronization
requires more attention since we need to be sure that the variability of link
delays does not add up across multiple iterations. We build the logic circuit
that simulates an FTM as follows. Function δ is simulated by a combinational
logic circuit obtained by conveniently interconnecting simple logic gates. We
call such a combinational circuit “δ block”. A set of D flip-flops, called the
δ-flip-flops, are interconnected to the output of the δ block in order to store
its output value. The tape, the position of the head of the tape, and the state
of the FTM, are simulated using D flip-flops. We build a logic circuit that
updates the position of the head and we connect it to the clock (which acts as
an enabler), to the δ-flip-flops that store the new position of the head (which is
the input of the circuit), and to the D flip-flops that store the current position
of the head (which is the output of the circuit). Similarly, we build a circuit
that reads the tape and another one that updates it. The link delays within
the clock are set in such a way that the clock’s output node produces the same
output value (either a 0 or a 1) for a time that is at most T and at least T − ε,
with ε << T .

We now show that even if the clock period is variable, we can synchronize
the circuit to simulate a FTM. Assume, for the sake of simplicity, that the
clock switches to 1 at time 0 and that at time 0 the δ-flip-flops store the new
state, the symbol that needs to be written on the tape, and the direction in
which to move the head.

Consider a single clock period, which consists of two clock ticks (one for 1
and one for 0). The main intuition is to use the clock value 0 as a disabler, in
order to block the propagation of signals until the clock switches to 1 again.
During the first tick, the clock outputs 1 so all the δ flip-flops are enabled and
signals can propagate. Within this tick, we need to

� propagate the new symbol to write on the tape to the logic circuit that
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updates the tape;

� propagate the new tape head position to the logic circuit that updates
the position;

� propagate the new state to the D flip-flops that store the state; and

� transfer the symbol which is currently on the tape to the input of the
δ-block.

Observe that we need to make sure that the new symbol is written on the
correct cell of the tape. In order to do so, we introduce a propagation delay
between the D flip-flops that store the head position and the logic circuit that
updates the tape. This ensures that when the circuit updates the tape, it will
refer to the correct position, independent of whether the new position has been
already written to the D flip-flops that store the head position.

On the other hand, we need to avoid the possibility that two or more sym-
bols are read and elaborated within a single clock period. In particular, we
want the δ-block to be disabled when the newly read symbol arrives, because
we want this new symbol to be processed in the next clock period. This means
that the propagation delay from the logic circuit that reads the tape to the δ-
block must ensure that the symbol arrives when the clock has already switched
to 0.

Now, if we can find an assignment of link delays that guarantees the above
properties, then we can apply the same arguments to the next clock period
and so on, yielding the ability to synchronize the signals to the clock periods
and hence completing the definition of FTM. We show an example of such an
assignment of link delays in Appendix 3.8.

The computation of an FTM finishes when a final state is reached. If and
only if the FTM reaches a final state, the clock is stopped by the δ-flip-flops,
hence the logic circuit stabilizes. Some final states are called acceptance states
as in standard Turing Machine terminology.

Finally, we note that, since an FTM has a tape length which is polynomial
in the size of the input string, the entire construction of the logic circuit takes
polynomial time. More details about the initialization phase of the logic circuit
can be found in [CCD+12].

Analysis of the Simulation of a Finite Turing Machine

In Section 3.3, we claimed that, in the min-max model, delay can be assigned
to links in such a way that each step of a Finite Turing Machine (FTM) can be
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simulated by the corresponding BGP configuration in a separate clock period.
We now prove our claim by showing a convenient link delay assignment.

Delays between the logic circuit blocks are shown in Fig. 3.16. In the figure,
thick and thin lines represent delays of ( 2

3T,
2
3T + ε) and (ε, 2ε) respectively,

where 2T is the period of the clock and ε << T . All the internal delays of the
various logic circuit blocks are set to (ε, 2ε). Observe that, since ε << T , the
ordering of events occurring during one clock period, is not influenced by ε link
delays or their sum. Hence, we disregard ε delays in the following.

We now show that the ordering of events occurring during one clock period
is as defined in Section 3.3, allowing us to simulate any FTM in the min-max
model. The computation starts at time t = 0, with the output of the clock
at 0 until t = T . Before t = T , the only event that occurs is the transfer of
the symbol in the current cell of the tape to function δ. At time t = T the
clock signal changes from 0 to 1, enabling the δ-flip-flops. As a consequence,
the δ-flip-flops change their output values according to the output of the δ
function. After 2

3T , the new output of the δ-flip-flops is provided as input
to the logic circuit that controls the tape head, to the logic circuit to update
the tape, and to the flip-flops that store the state of the FTM. Hence, at time
t = T+ 2

3T = 5
3T , the state and the position of the head are updated. Moreover,

at time T + 2 2
3T = 7

3T , the tape is updated, and the new symbol on the tape
and the new state of the FTM are provided as input to the δ function. Thus,
the new output of function δ is ready at time 7

3T . However, since 7
3T > 2T

and 7
3T < 3T , the clock is at 0 and all flip-flops are disabled at that time, and

nothing changes anymore until t = 3T , when the simulation of the next step
of the FTM is performed.

Observe that if ε = 0 the arguments above are still valid. This means that
the above simulation works also when the minimum and maximum delay on
each link are set to the same value, i.e., in the completely synchronous model.



Chapter 4

Traffic Hijacking in BGP and
S-BGP *

In Chapters 2 and 3, we proved that, in the general case, the outcome of the
routing process may be completely unpredictable. In this chapter, we there-
fore assume that routing is stable. We study how local routing changes (e.g.,
modifying export filters or announcing bogus routes) affects the global Internet
routing. This problem is of great interest for the networking community.

Harmful Internet hijacking incidents put in evidence how fragile BGP is.
As proved by recent research contributions, even S-BGP, the secure variant
of BGP that is being deployed, is not fully able to blunt traffic attraction
attacks. Given a traffic flow between two ASes, we study how difficult it is for
a malicious AS to devise a strategy for hijacking or intercepting that flow. We
show that this problem marks a sharp difference between BGP and S-BGP.
Namely, while it is solvable, under reasonable assumptions, in polynomial time
for the type of attacks that are usually performed in BGP, it is NP-hard for
S-BGP. Our study has several by-products. E.g., we solve a problem left open
in the literature, stating when performing a hijacking in S-BGP is equivalent
to performing an interception.

*Part of the material presented in this chapter is based on the following publications: M.
Chiesa, G. Di Battista, T. Erlebach, M. Patrignani. Computational Complexity of Traffic
Hijacking under BGP and S-BGP. In Proc. ICALP, 2012.
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4.1 Introduction and Overview

On 24th Feb. 2008, Pakistan Telecom started an unauthorized announcement
of prefix 208.65.153.0/24 [Und08]. This announcement was propagated to the
rest of the Internet, which resulted in the hijacking of YouTube traffic on a
global scale. Incidents like this put in evidence how fragile BGP is, which
is used to exchange routing information between Internet Service Providers
(ISPs). Indeed, performing a hijacking attack is a relatively simple task. It
suffices to issue a BGP announcement of a victim prefix from a border router
of a malicious (or unaware) Autonomous System (AS). Part of the traffic ad-
dressed to the prefix will be routed towards the malicious AS rather than to the
intended destination. A mischievous variation of the hijacking is the intercep-
tion when, after passing through the malicious AS, the traffic is forwarded to
the correct destination. This allows the rogue AS to eavesdrop or even modify
the transit packets.

In order to cope with this security vulnerability, a variant of BGP, called
S-BGP [KLS00], has been proposed, that requires a Public-Key Infrastructure
(PKI) both to validate the correctness of the AS that originates a prefix and
to allow an AS to sign its announcements to other ASes. In this setting an AS
cannot forge announcements that do not derive from announcements received
from its neighbors. However, [GSHR10] contains surprising results: (i) simple
hijacking strategies are tremendously effective and (ii) finding a strategy that
maximizes the amount of traffic that is hijacked is NP-hard for both BGP and
for S-BGP.

In this chapter we tackle the hijacking and interception problems from a
new perspective. Namely, given a traffic flow between two ASes, how difficult
is it for a malicious AS to devise a strategy for hijacking or intercepting at
least that specific flow? We show that this problem marks a sharp difference
between BGP and S-BGP. Namely, while it is polynomial time solvable, under
reasonable assumptions, for typical BGP attacks, it is NP-hard for S-BGP. This
gives new complexity related evidence of the effectiveness of the adoption of
S-BGP. Also, we solve an open problem [GSHR10], showing when every hijack
in S-BGP results in an interception. Tab. 4.1 summarizes our results. Rows
correspond to different settings for a malicious AS m. The origin-spoofing set-
ting (Sect. 4.2) corresponds to a scenario where m issues BGP announcements
pretending to be the owner of a prefix. Its degree of freedom is to choose
a subset of its neighbors for such a bogus announcement. This is the most
common type of hijacking attack to BGP [wik12]. In S-BGP (Sect. 4.3) m
must enforce the constraints imposed by S-BGP, which does not allow m to
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Table 4.1: Complexity of finding a hijack strategy in different settings.

AS-paths Bounded Bounded
of any length AS-path AS-path length

length and AS degree
Origin-spoofing NP-hard (Thm. 4.1) P(Thm. 4.5) P

S-BGP NP-hard NP-hard (Thm. 4.1) P(Thm. 4.2)

pretend to be the owner of a prefix that is assigned to another AS. Columns
of Tab. 4.1 correspond to different assumptions about the Internet. In the first
column we assume that the longest valley-free path (i.e. a path enforcing cer-
tain customer-provider constraints) in the Internet can be of arbitrary length.
This column has a theoretical interest since the length of the longest path
(and hence valley-free path) observed in the Internet remained constant even
though the Internet has been growing in terms of active AS numbers during
the last 15 years [Hus12]. Moreover, in today’s Internet about 95% of the ASes
is reached in 3 AS hops [Hus12]. Hence, the second column corresponds to a
quite realistic Internet, where the AS-path length is bounded by a constant.
In the third column we assume that the number of neighbors of m is bounded
by a constant. This is typical in the periphery of the Internet. A “P” means
that a Polynomial-time algorithm exists. Since moving from left to right the
setting is more constrained, we prove only the rightmost NP-hardness results,
since they imply the NP-hardness results to their left. Analogously, we prove
only the leftmost “P” results.

Past work either attempt to optimize different objective measures (e.g.,
maximize the amount of attracted traffic, routing traffic throughout the most
preferred path) or do not tackle the problem from an algorithmic perspec-
tive [BFZ07, LSZ08, GHJ+08, GSHR10, BG11, BG14].

Gao-Rexford Model

We use the 3-SPP model introduced in Chapter 1. Since checking for Safety
in the 3-SPP model is NP-hard, we focus on a particular restriction of 3-
SPP where policies must satisfy the so-called Gao-Rexford conditions. These
conditions model those routing policies that are typically enforced by real-world
economic relationships among ASes.

We recall that BGP allows each AS to autonomously specify which paths are
forbidden (import policy), how to choose the best path among those available
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to reach a destination (selection policy), and a subset of neighbors to whom the
best path should be announced (export policy). Since BGP treats each prefix
independently, we focus on a single prefix π, owned by a destination vertex d.

Policies are typically specified according to two types of relationships [Hus99].
In a customer-provider relationship, an AS that wants to access the Internet
pays an AS which sells this service. In a peer-peer relationship two ASes ex-
change traffic without any money transfer between them. Such commercial
relationships between ASes are represented by orienting a subset of the edges
of E. Namely, edge (u, v) ∈ E is directed from u to v if u is a customer of v,
while it is undirected if u and v are peers. A path is valley-free if provider-
customer and peer-peer edges are only followed by provider-customer edges.

The Gao-Rexford [GR00] Export-all (GR-EA) conditions are commonly
assumed to hold in this setting [GSHR10].

� GR1: G has no directed cycles that would correspond to unclear customer-
provider roles.

� GR2: Each vertex v ∈ V sends an announcement containing a path P
to a neighbor n only if path (n v)P is valley-free. Otherwise, some AS
would provide transit to either its peers or its providers without revenues.

� GR3: A vertex prefers paths through customers over those provided by
peers and paths through peers over those provided by providers.

� Shortest Paths: Among paths received from neighbors of the same
class (customers, peers, and provider), a vertex chooses the shortest ones.

� Tie Break: If there are multiple such paths, a vertex chooses according
to some tie break rule. As in [GSHR10], we assume that the one whose
next hop has lowest AS number is chosen. Also, as in [ES11], to break
ties between equal class and equal length simple paths Pu1 = (u v)P v1
and Pu2 = (u v)P v2 at the same vertex u from the same neighbor v, if
v prefers P v1 over P v2 , then u prefers Pu1 over Pu2 . This choice is called
policy consistent in [ES11].

� NE policy: a vertex always exports a path except when GR2 forbids
it to do so.

Since we assume that the GR-EA conditions are satisfied, then a (partially
directed) graph is sufficient to fully specify the policies of the ASes. Hence, in
the following a BGP instance is just a graph.
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Understanding Hacking Strategies

We consider the following problem. A BGP instance with three specific vertices,
d, s, and m are given, where such vertices are: the AS originating a prefix π,
a source of traffic for π, and an attacker, respectively. All vertices, but m,
behave correctly, i.e., according to the BGP protocol and GR-EA conditions.
Vertex m is interested in two types of attacks: hijacking and interception. In
the hijacking attack m’s goal is to attract to itself at least the traffic from s to
d. In the interception attack m’s goal is to be traversed by at least the traffic
from s to d.

It is worth to observe that computing an hijacking strategy in a shortest-
path routing protocol is an easy task. Since a network prefers shorter routes,
an attacker can attract traffic from all the networks that are “closer” to him
than to the correct destination by simply announcing that it is the rightful
destination. In BGP, we will show that the problem is more tricky.

In Fig. 4.1 (2, 6) is peer-to-peer and the other edges are customer-provider.
Prefix π is owned and announced by d. According to BGP, the traffic from s
to d follows (s 6 2 1 d). In fact, 2 selects (1 d). Vertex 6 receives a unique
announcement from d (it cannot receive an announcement with (5 4 3 m 2 1 d)
since it is not valley-free). By cheating, (Example 1) m can deviate the traffic
from s to d attracting traffic from s. In fact, if m pretends to be the owner of
π and announces it to 2, then 2 prefers, for the shortest path criterion, (2 m)
over (2 1 d). Hence, the traffic from s to d is received by m following (s 6 2 m).
A hijack!

Observe that m could be smarter (Example 2). Violating GR2, it can
announce (2 1 d) to 3. Since each of 3, 4 and 5 prefers paths announced by
customers (GR3), the propagation of this path is guaranteed. Therefore, 6 has
two available paths, namely, (2 1 d) and (5 4 3 m 2 1 d). The second one is
preferred because 5 is a customer of 6, while 2 is a peer of 6. Hence, the traffic
from s to d is received by m following path (s 6 5 4 3 m). Since after passing
through m the traffic reaches d following (m 2 1 d) this is an interception.

Fig. 4.2 allows us to show a negative example (Example 3). According to
BGP, the traffic from s to d follows (s 4 d). In fact, s receives only paths (4 d)
and (1 2 3 d), both from a provider, and prefers the shortest one. Suppose that
m wants to hijack and starts just announcing π to 6. Since all the neighbors of
s are providers, s prefers, for shortest path, (4 d) over (5 6 m) (over (1 2 3 d)
over (4 9 8 7 m)) and the hijack fails. But m can use another strategy. Since
(s 5 6 m) is shorter than (s 1 2 3 d), m can attract traffic if (4 d) is “disrupted”
and becomes not available at s. This happens if 4 selects, instead of (d), a path
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Figure 4.2: A network for Example 3.

received from its peer neighbor 9 (m may announce that it is the originator of
π also to 7). However, observe that if 4 selects path (4 9 8 7 m) then 5 selects
path (5 9 8 7 m) since it is received from a peer and stops the propagation of
(s 5 6 m). Hence, s still selects path (s 1 2 3 d) and the hijack fails.

In order to cope with the lack of any security mechanism in BGP, sev-
eral variations of the protocol have been proposed by the Internet commu-
nity. One of the most famous, S-BGP, uses both origin authentication and
cryptographically-signed announcements in order to guarantee that an AS an-
nounces a path only if it has received this path in the past.

The attacker m has more or less constrained cheating capabilities. (i) With
the origin-spoofing cheating capabilities m can do the typical BGP announce-
ment manipulation. I.e., m can pretend to be the origin of prefix π owned by
d, announcing this to a subset of its neighbors. (ii) With the S-BGP cheating
capabilities m must comply with the S-BGP constraints. I.e.: (a) m cannot
pretend to be the origin of prefix π; and (b) m can announce a path (m u)P
only if u announced P to m in the past. However, m can still announce paths
that are not the best to reach d and can decide to announce different paths to
different neighbors. In Example 2, m has S-BGP cheating capabilities.

In this chapter, we study the computational complexity of the hijack and
of the interception problems. The hijack problem is formally defined as
follows.
Instance: A BGP instance G, a source vertex s, a destination vertex d, a

manipulator vertex m, and a cheating capability for m.
Question: Does there exist a set of announcements that m can simultaneously
send to its neighbors, according to its cheating capability, that produces a stable
state for G where the traffic from s to d goes to m?
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The interception problem is defined in the same way but changing “the
traffic from s to d goes to m” to “the traffic from s to d passes through m
before reaching d”.

Path Ranking

We introduce some technical notation in order to prove our lemmas and the-
orems. Let P be a valley-free path from vertex v. We say that P is of class
3, 2, or 1 if its first edge connects v with a customer, a peer, or a provider of
v, respectively. We also define a function fv for each vertex v, that maps each
path from v to the integer of its class. Given two paths P and P ′ available at
v if fv(P ) > fv(P ′) we say that the class of P is better than the class of P ′.

Path Disruption

Consider a stable routing state and two vertices v1 and vn connected in G by
path P = (v1 . . . vn). Suppose that vn owns prefix π. Path P is disrupted at
vertex vi by a path P ′ if there exists a vertex vi of P such that vi selects path
P ′ different from (vi . . . vn) (see Example 2).

Vertex vi may select P ′ over (vi . . . vn) for several reasons. As an example,
(vi . . . vn) could not be available at vi. If P ′ is preferred because of the GR3
condition, we say that P is disrupted by a path of a better class. If P ′ is
preferred because of the shortest-paths criterion, we say that P is disrupted by
a path of the same class.

Routing Stability under Manipulator Attacks

BGP policies can be so complex that there exist configurations that do not allow
the network to reach any stable routing state (see, e.g., [GSW02]). A routing
state is stable if there exists a time t such that after t no AS changes its selected
path. If the GR-EA conditions are satisfied, then a BGP network always
converges to a stable state [GR00]. However, there is a subtle issue to consider
in attacks. As we have seen in the previous examples, m can deliberately ignore
the GR-EA conditions. Anyway, the following lemma makes it possible, in our
setting, to study the hijack and the interception problem ignoring stability
related issues. The same result has been independently obtained in [LGS12].

Lemma 4.1 Let G be a BGP instance and suppose that at a certain time one
or more manipulators start announcing steadily any set of arbitrary paths to
its or their neighbors. Routing in G converges to a stable state.
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Proof: Suppose, for a contradiction, that, after all manipulators start
their announcements, routing in G is not stable. In [GSW99], it has been
proved that (with no manipulators) the presence of a specific circular structure,
known in the literature as a dispute-wheel, is a necessary condition for routing
instability. We first improve this result, proving that, if routing is not stable,
such a structure must necessarily exist also in the presence of one or more
manipulators that steadily announce possibly different bogus paths. Then,
as a consequence of this, we show that the existence of a dispute-wheel in a
BGP instance implies a violation of the GR-EA conditions, which leads to a
contradiction. Hence, a GR-EA instance always converges to a stable state
even in the presence of one or more manipulators.

Let U = u0, . . . , un be a circular sequence of vertices of G such that for each
ui: (1) ui does not steadily announce a path; and (2) the most preferred path
Pui = RiQi that is selected infinitely many times at ui is such that Ri ends at
ui+1, Qi starts with ui+1, and each vertex in Qi but ui+1 steadily announces a
path, where i has to be interpreted modulo n+ 1. This circular sequence is a
specific instance of a dispute-wheel. We show that if such a circular sequence U
does not exist, then at least one vertex of U is stable, which is a contradiction.
Suppose by contradiction that such a circular sequence U = u0, . . . , un does
not exist. Let u0 be a vertex that does not steadily select a path and U be a
maximal (non-circular) sequence of vertices such that u0, . . . , ul−1 satisfies (1)
and (2) and ul only satifies (1). Since ul does not satisfy (2), it means that
all vertices in Pul but ul, are stable. This means that ul should steadily select
Pul as its best path, which leads to a contradiction since we assumed that ul
does not steadily select a path. Hence, if routing is not stable, there exists a
circular sequence U as described above.

We now prove that the presence of a dispute-wheel in a BGP instance
implies a violation of the GR-EA conditions. We first make some basic ob-
servations about U . For each i = 0, . . . , n: (i) path Ri contains at least two
vertices (i.e., ui and ui+1); (ii) vertex ui is not a manipulator, since it does
not steadily select a path; (iii) Pui 6= Qi−1, otherwise, since ui is the only
vertex in Qi−1 that is not stable, it would imply that ui+1 is stable, which is a
contradiction. (iv) λui(Pui) < λui(Qi−1) (i.e., Pui is preferred over Qi−1).

Now, consider observation (iv). Two cases are possible. Either each path
Pui is preferred over Qi−1 for same class or there exists a vertex uj that prefers
Puj over Qj−1 for better class. In the first case, it means that, for each ui, path
Pui is preferred over Qi−1 either by shortest path or by tie-break criterion. In
both cases, it implies that fui(Qi−1) = fui(Pui) and |Qi−1| ≥ |Pui |. Since we
know from observation (ii) that |Ri| ≥ 2, we obtain |Pui | > |Qi|, which implies
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|Qi−1| ≥ |Pui | > |Qi| ≥ |Pui+1 |. Following the cycle of inequalities we have a
contradiction as we obtain |Qi| > |Qi|. In the second case, let uj be a vertex
that prefers Puj over Qj−1 for better class, that is fuj (Puj ) > fuj (Qj−1). For
each i = 0, . . . , j−1, j+1, . . . , n we have fui(Pui) ≥ fui(Qi−1) ≥ fui−1(Pui−1)
because of the GR2 and GR3 conditions. Following the cycle of inequalities we
have a contradiction as we obtain fuj (Puj ) > fuj (Puj ).

�

The existence of a stable state (pure Nash equilibrium) in a game where
one player can deviate from a standard behavior has been proved, in a different
setting in [ES11]. Such a result and Lemma 4.1 are somehow complementary
since the export policies they consider are more general than Export-All, while
the convergence to the stable state is not guaranteed (even if such a stable
state is always reachable from any initial state).

4.2 Checking if an Origin-Spoofing BGP Attack Exists

In this section, we show that, in general, it is hard to find an attack strategy if
m has an origin-spoofing cheating capability (Theorem 4.1), while the problem
turns out to be easier in a realistic setting (Theorem 4.5).

A hijacking can be obviously found in exponential time by a simple brute
force approach which simulates every possible attack strategy and verifies its
effectiveness. The following result in the case the Internet graph has no degree
constraints may be somehow expected.

Theorem 4.1 If the manipulator has origin-spoofing cheating capabilities, then
problem hijack is NP-hard.

Proof: We prove that hijack is NP-hard by a reduction from the 3-sat
problem, which is known to be NP-complete [Pap94]. Let F be a logical for-
mula in conjunctive normal form with variables X1 . . . Xn and clauses C1 . . . Ch
where each clause Ci contains three literals. We construct a GR-EA compliant
BGP instance G as follows.

Graph G consists of 4 structures: the Intermediate structure, the Short
structure, the Long structure, and the Disruptive structure. See Fig. 4.3.

The Intermediate structure is the only portion of G containing valley-free
paths joining s and m that are shorter than the one contained in the Long
structure. It is composed by edge (m, q1) and two directed paths from s to q1

of length 2n: the first path is composed by edges (s, tn), (tn, qn), (qn, tn−1),
(tn−1, qn−1), (qn−1, tn−2), . . . , (t2, q2), (q2, t1), and (t1, q1) while the second



CHAPTER 4. TRAFFIC HIJACKING IN BGP AND S-BGP 88

q1
m

s d

t1 t̄1

w1 w2n+2

Short

Long

I
n
t
e
r
m
e
d
i
a
t
e

tn t̄n

qn

t2 t̄2

q2

q3

Disruptive

x1 x̄1 x2 x̄2 xn x̄n

ch,1 ch,3ch,2

c2,3c2,2

c1,3c1,2c1,1

c2,1

Figure 4.3: Reduction of the 3-sat problem to the hijack problem when m
has origin-spoofing capabilities. Dotted lines from m to vertices xi and x̄i have
length 2n+ 2.

path is composed by edges (s, t̄n), (t̄n, qn), (qn, t̄n−1), (t̄n−1, qn−1), (qn−1, t̄n−2),
. . . , (t̄2, q2), (q2, t̄1), and (t̄1, q1). Obviously, these two paths can be used to
construct an exponential number of other paths. We say that a path traverses
the Intermediate structure if it passes through vertices s and q1.

The Short structure consists of h paths joining s and d. Each path has
length 4 and has edges (s, ci,1), (ci,1, ci,2), (ci,2, ci,3), and (ci,3, d) (1 ≤ i ≤ h).
The Long structure is a directed path of length 2n + 3 with edges (s, w1),
(w1, w2), . . . , (w2n+1, w2n+2), and (w2n+2, d). The Disruptive structure is
composed by 2n paths plus 3h edges. The 2n paths are defined as follows. For
1 ≤ i ≤ n we define two paths. The first path contains a directed subpath of
length 2n+ 2 from m to xi (dotted lines in Fig. 4.3), plus the undirected edge
(xi, ti). The second path contains a directed subpath of length 2n+2 from m to
x̄i (dotted lines in Fig. 4.3) plus the undirected edge (x̄i, t̄i). The 3h edges are
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added to G as follows. For each clause Ci and each literal Li,j of Ci, which is
associated to a variable xk, if Li,j is positive, then we add (xk, ci,j), otherwise
we add (x̄k, ci,j). We say that a path traverses the Disruptive structure if it
traverses it from m to s.

Vertices s, d, and m have source, destination, and manipulator roles, re-
spectively.

Intuitively, the proof works as follows. The paths that allow traffic to go
from s to m are only those passing through the Disruptive structure and
the Intermediate structure. Also, the paths through the Intermediate
structure are shorter than the one through the Long structure, which is shorter
than those through the Disruptive structure.

If m does not behave maliciously, s receives only paths that traverse the
Short structure and the Long structure. In this case s selects one of the
paths in the Short structure according to its tie break policy.

Observe that if m wants to attract traffic from s, then: (i) a path from m
traversing entirely the Intermediate structure has to reach s and (ii) all paths
contained in the Short structure have to be disrupted by a path announced
by m.

Observe that only valley-free paths contained in the Intermediate struc-
ture, which have length at least 2n+ 2, can be used to attract traffic from s. If
(i) does not hold, then s selects the path contained in the Long structure or
a path contained in the Short structure. If (ii) does not hold, then s selects
a path contained in the Short structure.

Our construction is such that the 3-sat formula is satisfiable iff m can
attract the traffic from s to d. To understand the interplay between our con-
struction and the 3-sat problem, consider (see Fig. 4.3) the behavior of m with
respect to neighbors x2 and x̄2. If m wants to disrupt path (s c1,1 c1,2 c1,3 d)
(which corresponds to making clause C1 true) it might announce the prefix to
x2. This would have the effect of disrupting (s c1,1 c1,2 c1,3 d) by better class.
Observe that at the same time this would disrupt all the paths through t2. If
m is able to disrupt all the paths in the Short structure, then s has to select
a path in the Intermediate structure. However, m has to be careful for two
reasons. First, m has to announce the prefix to q1 (otherwise no path can
traverse the Intermediate structure). Second, m cannot announce the prefix
both to x2 and to x̄2 (variable X2 cannot be true and false at the same time).
In this case, all the paths through t2 and t̄2 are disrupted. Also, consider that
the paths that reach s through t2 and x2 (t̄2 and x̄2) and that remain available
are longer than the one in the Long structure.

Now we show that if F is satisfiable, then m can attract traffic from s. Let
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M be a truth assignment to variables X1, . . . , Xn satisfying formula F . Let
m announce to its neighbors paths as follows: if Xi (i = 1, . . . , n) is true then
m announces the prefix to xi and does not announce anything to x̄i; otherwise
m does the opposite. Also, the prefix is announced to q1 in all cases.

We have that: (i) all paths (one for each clause) in the Short structure are
disrupted by better class from the paths in the Disruptive structure; (ii) one
path belonging to the Intermediate structure is available at s; (iii) the path
in the Long structure, available at s, is longer than the path in the Interme-
diate structure. Hence, m can attract traffic from s.

Now we prove that if manipulator m can attract traffic from s, then F is
satisfiable.

We already know from the above discussion that m can attract traffic from
s only using paths that traverse the Intermediate structure entirely. We also
know that these paths are longer than paths contained in the Short structure
and therefore, every path contained in the Short structure has to be disrupted.
We have that paths contained in the Short structure can be disrupted only
by using paths contained in the Disruptive structure. Let V ∗ be the set of
neighbors of m different from q1 that receive an announcement of the prefix
from m. Observe that s, to attract traffic from m, has to announce the prefix
to q1. From the above discussion we have that for i = 1, . . . , n it is not possible
both for xi and for x̄i to receive the announcement. Also, since all paths in the
Short structure have been disrupted, for j = 1, . . . , h at least one of the cj,k
(k = 1, 2, 3) receives an announcement of the prefix from m. Hence, we define
an assignment M , which satisfies formula F , as follows: for each i = 1, . . . , n,
if xi ∈ V ∗, then M(Xi) = >, otherwise M(Xi) = ⊥. �

Surprisingly, in a more realistic scenario, where the length of valley-free
paths is bounded by a constant k, we have that in the origin-spoofing setting an
attack strategy can be found in polynomial time (nO(k), where n is the number
of vertices of G). Let N be the set of neighbors of m. Indeed, the difficulty
of the hijack problem in the origin-spoofing setting depends on the fact that
m has to decide to which of the vertices in N it announces the attacked prefix
π, which leads to an exponential number of possibilities. However, when the
longest valley-free path in the graph is bounded by a constant k, it is possible
to design a polynomial-time algorithm based on the following intuition, that
will be formalized below. Suppose m is announcing π to a subset A ⊆ N of
its neighbors and path p = (z . . . n m) is available at an arbitrary vertex
z of the graph. Let n1, n2 be two vertices of N \ A. If p is disrupted (is not
disrupted) by better class both when π is announced either to n1 or to n2, then
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p is disrupted (is not disrupted) by better class when π is announced to both n1

and n2. This implies that once m has a candidate path p∗ for attracting traffic
from s, it can check independently to which of its neighbors it can announce π
without disrupting p∗ by better class, which guarantees that a path from m to
z longer than p cannot be selected at z.

In order to prove Theorem 4.5, we introduce the following lemmata that
relate attacks to the structure of the Internet.

Lemma 4.2 Consider a valley-free path p = (vn . . . v1) and consider an
attack of m such that v1 announces a path pv1

to v2 to reach prefix π and p is
not disrupted by better class. Vertex vn selects a path λvn(pn) ≤ λvn(ppv1

).

Proof: We prove inductively that each vertex vi in p selects a path
λvi(pi) ≤ λvi((vi . . . v1)pv1

) such that |pi| ≤ |(vi . . . v1)pv1
|. In the base

case (n = 1), the statement holds since v1 selects pv1
. In the inductive

step (n > 1), by induction hypothesis and NE policy, vertex vi receives a
path pi−1 from vertex vi−1 such that λvi−1(pi−1) ≤ λvi−1((vi−1 . . . v1)pv1)
and |pi−1| ≤ |(vi−1 . . . v1)pv1

|. Two cases are possible: pi−1 contains vi,
or not. In the second case, vi selects a path λvi(pi) ≤ λvi((vi vi−1)pi−1)
and since path (vi . . . v1) is not disrupted by better class, we have also
|pi| ≤ |(vi vi−1)pi−1| ≤ |(vi . . . v1)|. In the first case, let p′ be the sub-
path of pi−1 from vi. Observe that, since m has only origin-spoofing cheating
capabilities, it cannot invalidate the acyclicity of G (the same does not hold if
m has S-BGP cheating capabilities). As a consequence, since (vi vi−1)pi−1 is
a valley-free path, vertex vi is repeated in that path, and G is acyclic, we have
that the class of p′ must be higher than the class of (vi vi−1)pi−1. Hence, by
inductive hypothesis, we have fvi(p′) > fvi((vi vi−1)pi−1) ≥ fvi(vi . . . v1),
which is a contradiction since (vi . . . v1) cannot be disrupted by better class.
Hence, the statement is proved. �

Lemma 4.3 Consider a successful attack for m and let psm be the path selected
at s. Let psd be a valley-free path from s to d that does not traverse m and that
satisfies λs(psd) < λs(psm). Path psd is disrupted by a path of better class.

Proof: Suppose by contradiction that there exists a valley-free path psd
from s to d such that λs(psd) < λs(psm) and psd is not disrupted by a path
of better class. If psd is not disrupted, then it is available at vertex s. It
implies that s selects psd as its best path, which leads to a contradiction.
Otherwise, suppose psd is disrupted only by same class. By Lemma 4.2 we
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have a contradiction since s selects a path λs(p) ≤ λs(psd) < λs(psm) different
from psm. �

Lemma 4.4 Let p = (vn . . . v1) be a valley-free path. Consider an attack
where v1 announces a path p1 to v2. Vertex vn selects a path of class at least
fvn(p).

Proof: We prove that each vertex vi, with i > 1, in p selects a path pi
such that fvi(pi) ≥ fvi(vi . . . v1). In the base case (n = 2), the statement
holds since fv2(p2) ≥ fv2(v2 v1). In the inductive step (n > 2), by induction
hypothesis and NE policy, vertex vi receives a path pi−1 from vertex vi−1 such
that fvi−1(pi−1) ≥ fvi−1(vi−1 . . . v1). Two cases are possible: pi−1 contains
vi or not. In the second case, vi selects a path λvi(pi) ≤ λvi((vi vi−1)pi−1)
which implies that fvi(pi) ≥ fvi(vi . . . v1). In the first case, let p′ be the sub-
path of pi−1 from vi. Observe that, since m has only origin-spoofing cheating
capabilities, it cannot invalidate the acyclicity of G (the same does not hold if
m has S-BGP cheating capabilities). As a consequence, since (vi vi−1)pi−1 is
a valley-free path, vertex vi is repeated in that path, and G is acyclic, we have
that the class of p′ must be higher than the class of (vi vi−1)pi−1. Hence, by
inductive hypothesis, we have fvi(p′) > fvi((vi vi−1)pi−1) ≥ fvi(vi . . . v1),
which implies that the statement holds also in this case. �

Theorem 4.5 If the manipulator has origin-spoofing cheating capabilities and
the length of the longest valley-free path is bounded by a constant, then problem
hijack is in P.

Proof: We tackle the problem with Alg. 1. First, observe that line 9 tests
if a certain set of announcements causes a successful attack and, in that case,
it returns the corresponding set of neighbors to whom m announces prefix π.
Such test can be performed in polynomial time using the algorithm in [SSZ09].
Hence, if Alg. 1 returns without failure it is trivial to see that it found a
successful attack in polynomial time. Suppose now that there exists a successful
attack a∗ from m that is not found by Alg. 1. Let p∗sm be the path selected by
s in attack a∗. Let A∗ be the set of neighbors of m that receives prefix π from
m in the successful attack.

Consider the iteration of the Alg. 1 where path p∗sm is analyzed in the outer
loop. At the end of the iteration Alg. 1 constructs a set A of neighbors of m.
Let a be an attack from m where m announces π only to the vertices in A.
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Algorithm 1 Algorithm for the hijack problem where m has origin-spoofing
capabilities and the longest valley-free path in the graph is bounded.

1: Input: instance of hijack problem, m has origin-spoofing cheating capa-
bilities;

2: Output: an attack pattern if the attack exists, fail otherwise;
3: let Psm be the set of all valley-free paths from s to m;
4: for all psm in Psm do
5: let w be the vertex of psm adjacent to m; let A be a set of vertices and

initialize A to {w}; let N be the set of the neighbors of m;
6: for all n in N \ {w} do
7: if there is no path p through (m,n) to a vertex x of psm such that

fx(p) > fx(pxm), where pxm is the subpath of psm from x to m
then

8: insert n into A
9: end if

10: end for
11: if the attack succeeds when m announces π only to the vertices in A

then
12: return A
13: end if
14: end for
15: return fail

First, we prove that A∗ ⊆ A. Suppose by contradiction that there exists a
vertex n ∈ A∗ that is not contained in A. It implies that there exists a valley-
free path p through (m,n) to a vertex x of p∗sm such that fx(p) > fx(pxm),
where pxm is the subpath of p∗sm from x to m. Since m announces π to n, by
Lemma 4.4, we have that x selects a path p′ of class at least fx(p), that is a
contradiction since p∗sm would be disrupted by better class. Hence, A∗ ⊆ A.

Now, we prove that attack a is a successful attack for m. Consider a valley-
free path psd from s to d that does not traverse m and is preferred over p∗sm.
By Lemma 4.3 it is disrupted by better class in attack a∗. By Lemma 4.4,
since A∗ ⊆ A, we have that also in a path psd is disrupted by better class. Let
x be the vertex adjacent to s in psd. Observe that vertex s cannot have an
available path (s x)p to d such that λs((s x)p) < λs(p∗sm), because (s x)p must
be disrupted by better class.

Moreover, consider path p∗sm. Since in a∗ path p∗sm is not disrupted by
better class by a path to d, by Lemma 4.4, there does not exist a path p′xd from
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a vertex x of p∗sm to d of class higher than pxm, where pxm is the subpath of
p∗sm from x to m. Hence, path p∗sm cannot be disrupted by better class by a
path to d. Also, observe that for each n ∈ A there is no path p through (m,n)
to a vertex x of p∗sm such that fx(p) > fx(pxm), where pxm is the subpath
of p∗sm from x to m. Hence, p∗sm can be disrupted only by same class. By
Lemma 4.2, we have that s selects a path p such that λs(p) ≤ λs(p∗sm). Since
path p cannot be a path to d, attack a is successful. This is a contradiction
since we assumed that Alg. 1 failed.

Finally, since the length of the valley-free paths is bounded, the iterations
of the algorithm where paths in Psm are considered require a number of steps
that is polynomial in the number of vertices of the graph. �

4.3 S-BGP Gives Hackers Hard Times

We open this section by strengthening the role of S-BGP as a security protocol.
Indeed, S-BGP adds more complexity to the problem of finding an attack
strategy (Theorem 4.1). After that we also provide an answer to a conjecture
posed in [GSHR10] about hijacking and interception attacks in S-BGP when a
single path is announced by the manipulator. In this case, we prove that every
successful hijacking attack is also an interception attack (Theorem 4.4).

Theorem 4.1 If the manipulator has S-BGP cheating capabilities and the
length of the longest valley-free path is bounded by a constant, then problem
hijack is NP-hard.

Proof: We reduce from a version of 3-sat where each variable appears at
most three times and each positive literal at most once [Pap94]. Let F be a
logical formula in conjunctive normal form with variables X1 . . . Xn and clauses
C1 . . . Ch. We build a BGP instance G (see Fig. 4.4) consisting of 4 structures:
Intermediate, Short, Long, and Disruptive.

The Long structure is a directed path of length 6 with edges (s, w1),
(w1, w2), . . . , (w4, w5), and (w5, d). The Intermediate structure consists
of a valley-free path joining m and s. It has length 4 and it is composed by a
directed path (s j3 j2 j1), and a directed edge (m, j1). The Short structure
has h directed paths from s to d. Each path has length at most 4 and has
edges (s, ci,1), (ci,1, ci,2), . . . , (ci,v(Ci), d) (1 ≤ i ≤ h), where v(Ci) is the size
of Ci. The Disruptive structure contains, for each variable Xi vertices, ri, ti,
xi, pi and p′i. Vertices, ri, ti, and xi, are reached via long directed paths from
m and are connected by (ti, pi), (xi, pi), (xi, p

′
i), (ri, j3), (ti, j3), and (pi, d).
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Figure 4.4: Reduction of a constrained 3-sat problem to the hijack problem
when m has S-BGP cheating capabilities.

Finally, suppose Xi occurs in clause Cj with a literal in position l. If the literal
is negative the undirected edge (pi, cj,l) is added, otherwise, edges (pi, cj,l),
(ri, cj,l), (cj,l, j3), and undirected edge (p′i, cj,l) are added. An edge connects
m to d. Vertices s, d, and m have source, destination, and manipulator roles,
respectively.

Intuitively, the proof works as follows. The paths that allow traffic to go
from s to m are only those passing through the Disruptive structure and the
one in the Intermediate structure. Also, the path through the Interme-
diate structure is shorter than the one through the Long structure, which
is shorter than those through the Disruptive structure. If m does not be-
have maliciously, s receives only paths traversing the Short structure and the
Long structure. In this case s selects one of the paths in the Short structure
according to its tie break policy. If m wants to attract traffic from s, then:
(i) path (j3 j2 j1 m d) must be available at s and (ii) all paths contained in
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the Short structure must be disrupted by a path announced by m. If (i) does
not hold, then s selects the path contained in either the Long structure or the
Short structure. If (ii) does not hold, then s selects a path contained in the
Short structure.

Our construction is such that the 3-sat formula is true iff m can attract the
traffic from s to d. To understand the relationship with the 3-sat problem,
consider the behavior of m with respect to variable X1 (see Fig. 4.4) that
appears with a positive literal in the first position of clause C1, a negative
literal in the first position of C2 and a negative literal in the second position
of Ch.

First, we explore the possible actions that m can perform in order to disrupt
paths in the Short structure. Since m has S-BGP cheating capabilities, m is
constrained to propagate only the announcements it receives. If m does not
behave maliciously, m receives path (d) from d and paths Pr1 , Pt1 , and Px1

from r1, t1, and x1, respectively. These paths have the following properties:
Pr1 contains vertex c1,1 that is contained in the path of the Short structure
that corresponds to clause C1; paths Pt1 and Px1

both contain vertex p1 and
do not contain vertex c1,1 since p1 prefers (p1 d) over (p1 c1,1 c1,2 c1,3 d).

Now, we analyze what actions are not useful for m to perform an attack. If
m issues any announcement towards t1 or r1 the path traversing the Interme-
diate structure is disrupted by better class. Also, if m sends a path Pr1 , Pt1 ,
or Px1

towards rj , tj , or xj , with j = 2, . . . , n, the path traversing the Inter-
mediate structure is disrupted by better class. Also, if m sends (m d) to x1,
then the path traversing the Intermediate structure is disrupted from c1,1 by
better class. If m sends Px1

to x1, then it is discarded by x1 because of loop de-
tection. In each of these cases m cannot disrupt any path traversing the Short
structure without disrupting the path traversing the Intermediate structure.
Hence, m can disrupt a path in the Short structure without disrupting the
path traversing the Intermediate structure only by announcing Pr1 and Pt1
from m towards x1.

If path Pt1 is announced to x1, then p1 discards that announcement because
of loop detection and path (s c1,1 c1,2 c1,3 d) is disrupted from p′1 by better
class. Also, the path through the Intermediate structure remains available
because the announcement through p′1 cannot reach j3 from c1,1, otherwise
valley-freeness would be violated. Hence, announcing path Pt1 corresponds to
assigning the true value to variable X1, since the only path in the Short struc-
ture that is disrupted is the one that corresponds to the clause that contains
the positive literal of X1.
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If path Pr1 is announced to x1, then c1,1 discards that announcement be-
cause of loop detection and both paths (s c2,1 c2,2 c2,3 d) and (s ch,1 ch,2 ch,3 d)
are disrupted by better class from p1. Also, the path through the Intermedi-
ate structure remains available because the announcement through p1 cannot
reach j3 from c2,1 or ch,2, otherwise valley-freeness would be violated. Hence,
announcing path Pr1 corresponds to assigning the false value to variable X1,
since the only paths in the Short structure that are disrupted are the ones
that correspond to the clauses that contain a negative literal of X1.

Hence, announcing path Pt1 (Pr1) from m to x1 corresponds to assigning
the true (false) value to variable X1. As a consequence, m can disrupt every
path in the Short structure without disrupting the path in the Intermediate
structure iff formula F is satisfiable.

�

Theorem 4.2 If the manipulator has S-BGP cheating capabilities and its de-
gree is bounded by a constant, then problem hijack is in P.

Proof: Observe that if the manipulator m has S-BGP cheating capabilities
and the degree of the manipulator’s vertex is bounded by a constant k, then
problem hijack is in P. In fact, since m has at most k available paths plus the
empty path, a brute force approach needs to explore (k + 1)k possible cases.

�

To study the relationship between hijacking and interception we introduce
the following technical lemma.

Lemma 4.3 Let G be a BGP instance, let m be a vertex with S-BGP cheating
capabilities, and let d 6= m be any vertex of G. All vertices that admit a class
c valley-free path to d not containing m have an available path of class c or
better to d, irrespective of the paths propagated by m to its neighbors.

Proof: Let p = (vn . . . v1) be a valley-free path to d not containing m. We
prove by induction on vertices v1, . . . , vn that each vertex vi has an available
path of class fvi(vi . . . v1) or better. In the base case i = 2, v2 is directly
connected to d and the statements trivially holds. Suppose that vertex vi, with
i > 2, has an available path of class fvi(vi . . . v1). Hence, vi selects a path p∗

such that fvi(p∗) ≥ fvi(vi . . . v1). Also, since (vi+1 vi . . . v1) is valley-free
even (vi+1 vi)p

∗ is valley-free. Then, vi announces (because of the NE policy)
its best path p∗ to vi+1. There are two possible cases: either p∗ does not contain
vi+1 or it does. In the first case, path (vi+1 vi)p

∗ is available at vi+1 and the
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statement holds. In the second case, consider the subpath p∗vi+1
of p∗ from vi+1

to d. The statement easily follows because fvi+1(p∗vi+1
) ≥ fvi+1((vi+1 vi)p

∗.
�

Theorem 4.4 Let m be a manipulator with S-BGP cheating capabilities. If
m announces the same path to any arbitrary set of its neighbors, then every
successful hijacking attack is also a successful interception attack. If m an-
nounces different paths to different vertices, then the hijacking may not be an
interception.

Proof: We prove the following more technical statement that implies the
first part of the theorem. Let G be a BGP instance, let m be a vertex with
S-BGP cheating capabilities. Let p be a path available at m in the stable state
S that is reached when m behaves correctly. Suppose that m starts announcing
p to any subset of its neighbors. Let S′ be the corresponding routing state.
Path p remains available at vertex m in S′. The truth of the statement implies
that m can forward the traffic to d by exploiting p.

Suppose for a contradiction that path p is disrupted in S′ when m propa-
gates it to a subset of its neighbors. Let x be the vertex of p closest to d that
prefers a different path px (p is disrupted by px) in S′ and let p′ be the subpath
of p from vertex d to x (see Fig. 4.5).

Observe that p is not a subpath of px as x cannot select a path that passes
through itself. Since px is not available at x in S, let y be the vertex of px
closest to d that selects a path py that is preferred over p′x in S, where p′x is
the subpath of px from y to d.

We have two cases: either fx(px) > fx(p′) or fx(px) = fx(p′) (i.e., px is
preferred to p′ by better or by same class).
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Suppose that fx(px) > fx(p′). By Lemma 4.3, since there exists a valley-
free path px from x to d that does not traverse m, then x has an available path
of class at least fx(px). Hence, x cannot select path p′ in S, a contradiction.

Suppose that fx(px) = fx(p′). Two cases are possible: either py contains
x or not. In the first case either fy(py) > fy(p′x) or fy(py) = fy(p′x). If
fy(py) > fy(p′x), then we have that fy(py) ≤ fx(p′) = fx(px) ≤ fy(p′x), a
contradiction. If fy(py) = fy(p′x), we have that |p′x| < |px| ≤ |p′| < |py|. A
contradiction since a longer path is preferred.

The second case (fx(px) = fx(p′) and py does not contain x) is more com-
plex. We have that |p′| ≥ |px|. Also, by Lemma 4.3, since py and p′x do not pass
through m, then y has an available path of class at least max{fy(py), fy(p′x)}.
As y alternatively chooses py and p′x we have that fy(py) = fy(p′x), which im-
plies that |p′x| ≥ |py|. Denote by pxy the subpath (vk . . . v0) of px, where v0 = y
and vk = x. Consider routing in state S. Two cases are possible: either pxypy
is available at x or not. In the first case, since |p′| ≥ |px| = |pxyp′x| ≥ |pxypy|,
we have a contradiction because p′ would not be selected in S. In the sec-
ond case, we will prove that for each vertex vh 6= x in pxy we have that
|ph| ≤ |(vh . . . v0)py|, where ph is the path selected by vh in S. This implies
that |(vk vk−1)pk−1| ≤ |pxypy| ≤ |px| ≤ |p′| and this leads to a contradic-
tion. In fact, if |(vk vk−1)pk−1| < |p′|, then we have a contradiction because
p′ would not be selected in S. Otherwise, if |(vk vk−1)pk−1| = |p′|, we have
that |px| = |p′|. Then, x prefers px over p′ because of tie break. We have a
contradiction since also (vk vk−1)pk−1 is preferred over p′ because of tie break
in S.

Finally, we prove that for each vertex vh 6= x in pxy we have that |ph| ≤
|(vh . . . v0)py|. This trivially holds for v0 = y. We prove that if it holds for vi
then it also holds for vi+1. If vi+1 selects (vi+1 vi)pi, then the property holds.
Otherwise, (vi+1 vi)pi is disrupted either by better class or by same class by
a path pi+1. In the first case, we have that either pi+1 traverses m or not.
Suppose pi+1 traverses m and let q′ be the neighbor of vi+1 on pi+1. Observe
that p is not necessarily a subpath of pi+1. In fact, in the statement of the
lemma, we only assumed that p is available at m, which does not imply that
it is also selected at m. Now, since pi+1 disrupts (vi+1 vi)pi by better class,
then pi+1 is composed by a directed path from d to q′ (that traverses m) and
an edge (q′, vi+1) that can be either an oriented edge from q′ to vi+1 or an
unoriented edge. Let n be the neighbor of m on p and n′ be the neighbor of n
on p different from m. Consider the relationship between n and n′. Suppose n
is a customer or a peer of n′. If m is a provider or a peer of n, then p is not
valley-free and p cannot be available at m in S, which leads to a contradiction.
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Otherwise, consider the case where m is a customer of n. In this case p is not
a subpath of pi+1. Otherwise, since m is a customer of n, we have that pi+1,
which passes through n and m, is not a directed path from d to q′, which is
a contradiction. Hence, since pi+1 does not traverse n and pi+1 is a directed
path from d to q′, m has to announce it to its provider n, which, in turn, would
have preferred it over the subpath of p learnt from its peer or provider n′.
This implies that p would not be available at m in S, that is a contradiction.
Hence, n is a provider of n′ and the subpath of p from d to n is a directed
path. Since fx(px) = fx(p′), we have that also px is a directed path from d to
x. Therefore, vi+1 is a provider of vi and so (vi+1 vi)pi would not be disrupted
by better class in S, which is a contradiction. Hence, pi+1 does not traverse
m. By Lemma 4.3, a path of a class better than (vi+1 . . . v0)p′x is available at
vi+1 and so vi+1 cannot select (vi+1 . . . v0)p′x in S′, a contradiction. In the
second case ((vi+1 vi)pi is disrupted by same class by a path pi+1) we have
that |pi+1| ≤ |(vi+1 vi)pi| ≤ |(vi+1 . . . v0)py|. The second inequality comes
from the induction hypothesis.

This concludes the first part of the proof. For proving the second part we
show an example where m announces different paths to different neighbors and
the resulting hijacking is not an interception. Consider the BGP instance in
Fig. 4.6. In order to hijack traffic from s, vertices 1 and 4 must be hijacked.
Hence, m must announce (m 3 4 d) to 2 and (m 2 1 d) to 3. However, since
(3 4 d) and (2 1 d) are no longer available at m the interception fails.

�

4.4 Conclusions and Open Problems

Given a communication flow between two ASes we studied how difficult it is for
a malicious AS m to devise a strategy for hijacking or intercepting that flow.
This problem marks a sharp difference between BGP and S-BGP. Namely,
while in a realistic scenario the problem is computationally tractable for typical
BGP attacks it is NP-hard for S-BGP. This gives new evidence of the effective-
ness of the adoption of S-BGP. It is easy to see that all the NP-hardness results
that we obtained for the hijacking problem easily extend to the interception
problem. Further, we solved a problem left open in [GSHR10], showing when
performing a hijacking in S-BGP is equivalent to performing an interception.

Several problems remain open: (i) We focused on a unique m. How
difficult is it to find a strategy involving several malicious ASes [GSHR10]?
(ii) In [SZR10] it has been proposed to disregard the AS-paths length in the
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BGP decision process. How difficult is it to find an attack strategy in this
different model?



Chapter 5

Equal-Split Load-Balancing *

In this chapter, we switch our focus from route propagation predictability to
the problem of selecting routing paths that make an efficient usage of network
resources. To efficiently exploit network resources operators do traffic engineer-
ing (TE), i.e., adapt the routing of traffic to the prevailing demands. TE in
large IP networks typically relies on configuring static link weights and split-
ting traffic between the resulting shortest-paths via the Equal-Cost-MultiPath
(ECMP) mechanism. Yet, despite its vast popularity, crucial operational as-
pects of TE via ECMP are still little-understood from an algorithmic viewpoint.
We embark upon a systematic algorithmic study of TE with ECMP. We con-
sider the standard model of TE with ECMP and prove that, in general, even
approximating the optimal link-weight configuration for ECMP within any con-
stant ratio is an intractable feat, settling a long-standing open question. We
establish, in contrast, that ECMP can provably achieve optimal traffic flow for
the important category of Clos datacenter networks. We last consider a well-
documented shortcoming of ECMP: suboptimal routing of large (“elephant”)
flows. We present algorithms for scheduling “elephant” flows on top of ECMP
(as in, e.g., Hedera [AFRR+10]) with provable approximation guarantees. Our
results complement and shed new light on past experimental and empirical
studies of the performance of TE with ECMP.

*Part of the material presented in this chapter is based on the following publications: M.
Chiesa, G. Kindler, M. Schapira. Traffic Engineering with ECMP: an Algorithmic Perspec-
tive. In Proc. INFOCOM, IEEE, 2014.
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5.1 Introduction

The rapid growth of online services (from video streaming to 3D games and
virtual worlds) is placing tremendous demands on the underlying networks. To
make efficient use of network resources, adapt to network conditions, and satisfy
user demands, network operators do traffic engineering (TE), i.e., tune routing-
protocol parameters to control how traffic is routed across the network. Our
focus in this chapter is on the prevalent mechanism for engineering the flow of
traffic within a single administrative domain (e.g., company, university campus,
Internet Service Provider, and datacenter): TE with Equal-Cost-MultiPath
(ECMP) [Hop00] via static link-weight configuration.

Most large IP networks run Interior Gateway Protocols, e.g., Open Short-
est Path First (OSPF) [Moy98], to compute all-pairs shortest-paths between
routers based on configurable static link weights (where a link’s weight spec-
ifies its distance in the shortest-path computation). The ECMP feature was
introduced to exploit shortest-path diversity by enabling the “split” of traffic
between multiple shortest-paths via per-flow static hashing [CWZ00]. See Fig-
ure 5.1 for an illustration of shortest-path routing and ECMP traffic splitting
on a simple network topology. Hence, today’s TE often constrains the flow of
traffic in two important respects: (1) traffic from a source to a destination in
the network can only flow along the shortest paths between them (for the given
configuration of link weights); and (2) traffic can only be split between multiple
shortest paths (if multiple shortest paths exist) in a very specific manner (as
illustrated in Figure 5.1).

Despite many proposals for alternative TE protocols and techniques, “tra-
ditional” TE with ECMP remains the prevalent mechanism for engineering the
(intradomain) flow of traffic in today’s Internet because, alongside its limita-
tions, TE with ECMP has many advantages over other, more sophisticated
schemes: stable and predictable paths, relatively low protocol overhead, im-
plementation in existing hardware, simple configuration language, scalability,
a built-in failure recovery mechanism, and more. Still, while ECMP is the sub-
ject of much empirical and experimental study (e.g., for ISP networks [FRT02]
and for datacenter networks [GHJ+11]), even crucial operational aspects of TE
with ECMP are little-understood from an algorithmic perspective: Can the
configuration of link weights be done in a provably good manner? What condi-
tions on network topologies lead to desirable TE guarantees? Can algorithmic
insights aid in “fixing” ECMP’s documented shortcomings, e.g., the suboptimal
routing of large (“elephant”) flows? We embark on a systematic algorithmic
study of TE with ECMP. Our main contributions are discussed below.
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Figure 5.1: An illustration of Equal-Cost-MultiPath routing: 4 TCP connec-
tions, called “flows 1-4”, originate at (source) router s and are destined for
(target) router t. All link weights are 1. Observe that (s, b, c, t), (s, b, e, t) and
(s, d, e, t) are (all) the induced shortest-paths from s to t. Each router now
uses a static hash function on packet headers to map every connection to an
outgoing link on a shortest-path to its destination, e.g., router s can map each
of the flows 1-4 to the link (s, b) or the link (s, d) according to its hash function.
The figure describes a possible mapping of flows to outgoing links.

Optimizing link-weight configuration? In practice, link weight configu-
ration often relies on heuristics, such as setting link weights to be inversely pro-
portional to capacity [Cis11]. While reasonable, these heuristics come with no
guarantees. Can link-weight configuration be executed in a provably good man-
ner? We consider the standard “splittable-flow model” of TE with ECMP, put
forth by Fortz and Thorup [FT00, FT06, FT04], and the standard objective of
minimizing the maximum link utilization. We settle a long-standing open ques-
tion by proving a devastating impossibility result: No computationally-efficient
algorithm can approximate the optimal link-weight configuration within any
constant ratio. We show that this inapproximability result extends to other
metrics of interest, e.g., maximizing total throughput and minimizing the sum
of (exponentially-increasing) link costs (introduced in [FT00]). Our proof uti-
lizes a new (“graph-power”) technique for amplifying an inapproximability fac-
tor. We believe that this technique (somewhat inspired by the “diamond graph”
in [LN04]) is of independent interest and may prove useful in other TE (and
flow optimization, in general) contexts.

Optimizing ECMP performance on specific (datacenter) network
topologies. The above negative result establishes that without imposing any
restrictions on the network topology, TE with ECMP comes with no reasonable
(provable) guarantees whatsoever. What about specific network topologies of
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interest? What conditions on network topology imply good guarantees? We
take the first steps in this research direction. We consider two recent proposals
for datacenter network topologies: folded Clos networks (VL2 [GHJ+11]) and
hypercubes (BCube [GLL+09], MDCube [WLL+09],). Our main positive result
establishes that in the splittable-flow model, TE with ECMP is optimal for the
important category of folded Clos networks. We show, in contrast, that for
hypercubes, computing the optimal link weights for ECMP is NP-hard.

Our optimality result for folded Clos networks supports past experimental
studied of ECMP in environments with fine-grained traffic splitting. [AFRR+10]
shows that ECMP routing of small (“mice”) flows in Clos networks leads to
good network performance. To avoid TCP packet reordering, ECMP rout-
ing splits traffic across multiple paths at an (IP-)flow-level granularity, that
is, packets belonging to the same IP flow traverse the same path. [DPHK13]
advocates replacing today’s ECMP traffic splitting scheme with packet-level
traffic splitting (i.e., allowing the “spraying” of packets belonging to the same
flow across multiple paths). [DPHK13] shows, via extensive simulations, that
“ECMP-like” traffic splitting at packet-level granularity leads to significantly
better load-balancing of traffic in folded Clos networks. Our optimality result
provides a strong theoretical justification for this claim.

Optimizing the routing of elephant flows. As explained above, ECMP
splits traffic across multiple paths at an (IP-)flow-level granularity. Conse-
quently, a key limitation of ECMP is that large, long-lived (“elephant”) flows
traversing a router can be mapped to the same output port. Such “colli-
sions” can cause load imbalances across multiple paths and network bottle-
necks, resulting in substantial bandwidth losses [DPHK13, AFRR+10]. Beyond
transitioning to ECMP traffic splitting at packet-level, researchers have also
examined other possible approaches to alleviating this. Recent studies, e.g.,
Hedera [AFRR+10] and DevoFlow [CMT+11], call for dynamically scheduling
elephant flows in datacenter (folded Clos) networks so as to minimize traffic
imbalances (while still routing mice flows with ECMP). We now focus on the
unsplittable-flow model, which captures the requirement that all packets in a
flow (be it long-lived or short-lived) traverse the same path, and investigate the
approximability of elephant flow routing. We show that this task is intractable
and devise algorithms for approximating the (unattainable) optimum. We dis-
cuss the connections between our algorithmic results and past experimental
studies along these lines.

Organization. We present the standard ECMP routing model in Section 5.2.
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Our inapproximability result for optimizing link-weight configuration is pre-
sented in Section 5.3. We discuss our results for TE with ECMP for specific
(datacenter) network topologies (folded Clos networks and hypercubes) in Sec-
tion 5.6. Our results for scheduling elephant flows in folded Clos networks
appear in Section 5.7. We conclude and present directions for future research
in Section 5.9.

5.2 EMCP Routing Model

We now present the standard model of TE with ECMP from [FT04]. We refer
the reader to [FT06, FT00, FT04] for a more thorough explanation of the model
and its underlying motivations. We shall revisit some of the premises of this
model in Section 5.7.

Network and traffic demands. The network is modeled as an undirected
graph G = (V,E), where each edge e ∈ E has fixed capacity ce. Vertices in
V represent routers and edges (links) in E represent physical communication
links between routers. We are given a |V | × |V | demand matrix D such that,
for each pair s, t ∈ V , the entry Dst specifies the volume of traffic, in terms of
units of flow, that (source) vertex s sends to (target) vertex t.

Flow assignments. A flow assignment is a mapping f : V ×V ×E → R+\{0}.
f(s, t, e) represents the amount of flow from source s to target t traversing
edge e. Let fe = Σs,t∈V f(s, t, e), that is, fe denotes the total amount of flow
traversing edge e . We restrict out attention (unless stated otherwise) to flow
assignments that obey two conventional constraints: (1) flow conservation:
∀v ∈ V , ∀s, t ∈ V such that v 6= s and v 6= t, Σe∈Evf(s, t, e) = 0, where Ev
is the set of v’s incident edges in E; (2) demand satisfaction: for all s, t ∈ V
Σe∈Osf(s, t, e) = Σe∈Otf(s, t, e) = Ds,t. (Observe that in some scenarios a flow
satisfying the two above conditions must exceed the capacity of some link, i.e.,
fe > ce for some edge e).

Link-weight configurations and routing. A link-weight configuration is
a mapping from edges to nonnegative “weights” w : E → R+ \{0}. Every such
link-weight configuration w induces the unique flow assignment that adheres
to the following two conditions:

� Shortest-path routing. Link weights in w induce shortest paths be-
tween all pairs of vertices, where a path’s length is simply the sum of
its link weights. All units of flow sent from source s to target t must be
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routes along the resulting shortest-paths between them. We next explain
how traffic is split between multiple shortest paths.

� Equal splitting. All units of flow traversing a vertex v en route to a
given target vertex t are equally split across all of v’s outgoing links on
shortest-paths from v to target t.

Optimizing link weight configuration. We study the optimization of link-
weight configuration for ECMP routing. We consider 3 optimization goals:

� Min-ecmp-Congestion (mec). A natural and well-studied optimiza-
tion goal is to minimize the maximum link utilization, that is, to engineer
a flow assignment f (via link-weight configuration) so that maxe∈E

fe
ce

is
minimized.

� Min-Sum-Cost. Another optimization goal that has been studied in
the context of TE with ECMP is Min-Sum-Cost [FT00, FT06, FT04,
SGD05]: minimizing the sum of edge-costs under a given flow Σeφ( fece ),
where φ is an exponentially-increasing cost function, e.g., φ(x) = 2x.

� Max-ecmp-Flow (mef). mef can be regarded as the straightforward
generalization of classical max-flow objective to the multiple sources /
multiple targets (i.e., multicommodity flow) setting. Here the goal is
to send as much traffic through the network while (i) not exceeding the
demands in D (i.e., possibly violating “demand satisfaction”, as defined
above) and (ii) not exceeding the link capacities.

Approximating the optimum. While in some scenarios computing the op-
timal solution with respect to the above optimization goals is tractable, in other
scenarios this task is NP-hard. We therefore also explore the approximability of
these goals. We use the following standard terminology. Let A be an algorithm
for a minimization problem P . For every instance I of P , let A(I) denote the
value of A’s outcome for I and OPT (I) denote the value of the optimal solu-
tion for I. A is a polynomial-time α-approximation algorithm for P for α ≥ 1
if A runs in polynomial time and for any instance I of P , A(I) ≤ α ·OPT (I).
Similarly an algorithm A is a polynomial-time α-approximation algorithm for
a maximization problem P , for α ≥ 1, if A runs in polynomial time and, for

any instance I of P , A(I) ≥ OPT (I)
α .
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5.3 TE with ECMP is Inapproximable!

We settle a long-standing question by showing that optimizing link-weight con-
figuration for ECMP is not only NP-hard but cannot, in fact, be approximated
within any “reasonable” factor (unless P=NP) with respect to all 3 optimiza-
tion goals discussed in Section 5.2: Min-ecmp-Congestion, Min-Sum-Cost,
and Max-ecmp-Flow. Remarkably, these inapproximability results hold even
when the demand matrix has a single nonzero entry, i.e., when only a single
router aims to send traffic to another router. Hence, in general, configuring
link-weights for ECMP cannot be done in a provably good manner.

Theorem 5.1 No computationally-efficient algorithm can approximate the op-
timum with respect to Min-ecmp-Congestion, Min-Sum-Cost or Max-
ecmp-Flow, within any constant factor α ≥ 1 unless P = NP , even when
the demand matrix has a single nonzero entry.

The remainder of the section provides a proof of Theorem 5.1 for the Min-
ecmp-Congestion, Max-ecmp-Flow, and Min-Sum-Cost objectives.

We henceforth focus on the scenario that the demand matrix has a single
nonzero entry. Below, we discuss the three main ingredients of the proof of
Theorem 5.1: (1) a new graph-theoretic problem called “Max-ecmp-DAG”,
which we prove is inapproximable within a small constant factor (Section 5.3);
(2) amplifying this inapproximability result for Max-ecmp-DAG via a new
technique to establish that Max-ecmp-DAG is not approximable within any
constant factor (Section 5.3); and (3) showing that our inapproximability result
for Max-ecmp-DAG implies similar results for both Min-ecmp-Congestion
and Max-ecmp-Flow (Section 5.3).

Max-ecmp-DAG

Max-ecmp-DAG. We present the following graph-theoretic problem called
“Max-ecmp-DAG” (MED). In Max-ecmp-DAG, the input is a capacitated
directed acyclic graph (DAG) H and a single source-target pair of vertices
(s, t) in H. We associate with every sub-DAG H̄ of H that contains s and t a
flow assignment fH̄ as follows. Given H̄, the flow assignment fH̄ is the max-
flow from s to t in H̄ subject to the constraint that every vertex in H̄ split
outgoing flow equally between all of its outgoing edges in H̄. The objective in
Max-ecmp-DAG is to find the sub-DAG of H for which the induced flow is
maximized, i.e., maxH̄ |fH̄ |.
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Inapproximability result for Max-ecmp-DAG. We prove that Max-
ecmp-DAG is inapproximable within a (small) constant factor via a reduction
from a hardness result for Min-ecmp-Congestion in [FT04]. We shall later
amplify this inapproximability ratio in Section 5.3 using our new amplification
technique.

Theorem 5.2 Given a Max-ecmp-DAG instance I, distinguishing between
the following two scenarios is NP-hard:

� OPT (I) = 1

� OPT (I) = 2
3

where OPT (I) is the value of the optimal solution for I.

Observe that Theorem 5.2 implies that Max-ecmp-DAG cannot be ap-
proximated within a factor of 3

2 (unless P=NP).
To prove it, we first show that, in the single source-target pair case, an opti-

mal solution for a Min-ecmp-Congestion instance is also an optimal solution
for a Max-ecmp-Flow instance and vice versa. We then show that every so-
lution for a Max-ecmp-DAG instancecan be translated into an “equivalent”
solution for a Max-ecmp-Flow instance of the same graph. The following
theorem has been proved by Fortz and Thorup [FT04].

Theorem 5.3 Given a Min-ecmp-Congestion instance I, with multiple unit
flow demands in D, distinguishing between the following two scenarios is NP-
hard:

� OPTMEC(I) = 1

� OPTMEC(I) = 3
2

Based on Theorem 5.3, we first prove that the same result holds even in the
more restrictive case where there only exists a single source-target pair.

Lemma 5.4 Given a Min-ecmp-Congestion instance I with a single source-
target pair, distinguishing between the following two scenarios is NP-hard:

� OPTMEC(I) = 1.

� OPTMEC(I) = 3
2 .
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Proof: Let I = (G,D) be a mec instance such that OPTMEC is either 1 or 3
2 ,

where F = {(s1, t1), . . . , (sk, tk)} is the set of source-target pairs of vertices of G
with Dsi,ti = 1. For sake of simplicity, we assume that k is a power of 2. Create
a copy G′ of G and D′ of D. Add a new source vertex s into G′ and connect it
to all vertices s1, . . . , sk with a binary tree rooted at s. Add a new target vertex
t and connect it with an edge to all vertices t1, . . . , tk. Let Ds,t = |F |, Dx,y = 0
for x 6= s and y 6= t, and set the capacity of each edge of the binary tree incident
to a source (target) vertex si (ti) to 1 and all the remaining edges of both binary
trees to infinite. We now show that OPTMEC((G,D)) = OPTMEC((G′, D′)).
It is easy to see that OPTMEC((G,D)) ≥ OPTMEC((G′, D′)). In fact, if
(i) flow demand Ds,t is split among every edge in the binary tree that join
s to all vertices s1, . . . , sk, (ii) each flow from si is routed as in the optimal
solution for I, and (iii) each flow is routed from each ti directly to t, then the
value of this solution will be equal to OPTMEC((G,D)). By observing that an
unequal splitting through the binary tree from s to vertices s1, . . . , sk causes a
congestion of 2, our lemma easily derives from Theorem 5.3.

�

We denote by I = (G, s, t) an instance of both Max-ecmp-Flow (Min-
ecmp-Congestion) with a single source-target (unit) flow demand.

Lemma 5.5 A link weight assignment for a graph G is optimal for an instance
(G, s, t) of Min-ecmp-Congestion if and only if it is optimal for an instance
(G, s, t) of Max-ecmp-Flow.

Proof: It is easy to see that, given an optimal solution for an instance I =
(G, s, t) of Min-ecmp-Congestion, by scaling the amount of flow sent from
s to t by a factor of 1

OPTMEC(I) , each edge will have congestion at most 1.

Hence, OPTMEF (I) ≥ 1
OPTMEC(I) . Vice versa, given an optimal solution for

an instance I = (G, s, t) of Max-ecmp-Flow, by scaling the amount of flow
sent from s to t by a factor of 1

OPTMEF (I)
, each edge will have congestion

at most 1
OPTMEF (I)

and a unit of flow will be routed from s to t. Hence,

OPTMEC(I) ≤ 1
OPTMEF (I) .

�

Corollary 5.6 Given a Max-ecmp-Flow instance I with a single source-
target pair, distinguishing between the following two scenarios is NP-hard:

� OPTMEF (I) = 1
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� OPTMEF (I) = 2
3

Proof: It easily follows by Lemma 5.5 and Theorem 5.4.
�

We now show that every solution for a Max-ecmp-DAG instance can be
translated in a link weight assignment that is associated with the same flow
assignment on the graph. Hence, finding an optimal (s, t)-dag is equivalent to
compute an optimal link weight assignment, which justifies our reduction to the
Max-ecmp-DAG problem. We now introduce some useful notation. We say
that a flow assignment f on a graph G is realized by a weight assignment w, if
setting link weights of G as in w, flows are routed according to f . Given a link
weight assignment w, let B(w) denote the oriented subgraph of G containing
the edges that are traversed by a flow, which are oriented according to the
direction of the flow. Since flows are routed according to the shortest-path
criterium, B(w) is a directed acyclic graph (DAG) with a single source s and a
single sink t.

Lemma 5.7 For any arbitrary sub-DAG A with a single source s and a single
sink t of a graph G, there exists a link weight assignment w such that B(w) is
equal to A.

Proof: We denote by out(v,A) the set of vertices of A that have an ingoing
edge from vertex v. and by sp(v, t, w) the length of the shortest-paths from
vertex v to vertex t of G according to a link weight assignment w. Consider a
topological order (v1, . . . , vn) of the vertices of A, where v1 = t and vn = s. We
compute a link weight assignment w by the following procedure that processes
vertices from v2 to vn. For each vertex vi, with i = 2, . . . , n, let M be the
length of the longest shortest path from any neighbor of vi ∈ out(vi, A),i.e.,
M = maxvl∈out(vi,A){sp(vl, t, w)}. For each vertex vk ∈ out(vi, G), we set
w((vk, vi)) = M + 1 − sp(vk, t, w). This guarantees that all the edges in
out(vi, A) belong to at least one shortest path from vi to t. Observe that,
since vertices are processed in topological order, we have that l < i and k < i,
which implies that both sp(vl, t, w) and sp(vk, t, w) has already been recursively
computed. Observe that this assignment implies that the shortest path in G
from s to t is at most |E(G)|. For this reason, for each edge e ∈ E(G) \E(A),
we set w(e) = |E(G)|+ 1. This guarantees that every shortest path between s
and t does not pass through an edge that is not contained in A.

�
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This theorem implies that for any instance (G, s, t) of Max-ecmp-Flow
with a single source-target unit flow from s to t, we have thatOPTMF ((G, s, t)) =
OPT ((G, s, t)). Hence, combining this with Lemma 5.7 leads to our constant
inapproximability result for Max-ecmp-DAG.

Theorem 5.2. Given a Max-ecmp-DAG instance I, distinguishing between
the following two scenarios is NP-hard:

� OPT (I) = 1

� OPT (I) = 2
3

where OPT (I) is the value of the optimal solution for I.

Amplifying the Inapproximability Gap

We can now leverage Theorem 5.2 to prove that that Max-ecmp-DAG is not
approximable within any constant factor.

Amplifying the inapproximability gap: a new technique. Our proof
relies on a new technique for amplifying an inapproximability gap. Roughly
speaking, we show how to create, given an instance I0 of Max-ecmp-DAG, a
new, polynomially-bigger, instance I1 of Max-ecmp-DAG such thatOPT (I1) =
(OPT (I0))2. Observe that as distinguishing between the scenario thatOPT (I0) =
1 and the scenario that OPT (I0) = 2

3 is NP-hard, distinguishing between the
scenario that OPT (I1) = 1 and the scenario that OPT (I1) = ( 2

3 )2 is also NP-
hard. By applying this idea multiple times the inapproximability gap can be
further amplified to an arbitrary (constant) factor.

The ⊗ operator: intuition. We now sketch the key tool used in our
proof technique. We define the “⊗ operator” that, given two Max-ecmp-
DAG instances, constructs a new Max-ecmp-DAG instance. Before formally
defining the ⊗ operator, we illustrate its use via the example in Figure 5.2.
Consider the Max-ecmp-DAG instance I0 in Figure 5.2. The numbers in
black are edge capacities and the orange arrows indicate the direction of the
edges. Observe that the optimal solution for I0 is the sub-DAG that contains
the edges (s, a), (a, b), (b, t), and (a, t) and that the value of this solution is 9.
Specifically, the optimal solution routes 9 units of flow through (s, a), which
are then equally split between(a, b) and (a, t), and the 4.5 units of flow entering
vertex b are then sent directly to t. Now, consider the instance I1 of Max-
ecmp-DAG, shown in Fig. 5.3, that is obtained from I0 as follows. Let G0 be
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Figure 5.2: Graph G0.

the network graph in I0. We replace each edge (u, v) in G0 with an exact copy
of G0. We connect vertex u to the source vertex in this copy of G0 and vertex
v to the target vertex. The capacity of each edge in this copy of G0 is set to be
its original capacity in G0 multiplied by the capacity of (u, v). The capacities
of the edges connecting vertices u and v to this copy of G0 are set to be ∞.

We argue that the optimal solution for I1, OPT (I1) is f∗ = 92 = 81.
We now provide some intuition for this claim. Let G1 be the network graph
in I1. Consider G(u,v), the copy of G0 that was used in the construction
of I1 to replace the edge (u, v) in G0. Specifically, consider G(a,b), with
V (G(a,b) = {sa,b, aa,b, ba,b, ta,b, } and E(G(a,b)) = {(s(a,b), a(a,b)), (s(a,b), b(a,b)),
(a(a,b), b(a,b)), (a(a,b), t(a,b)), (b(a,b), t(a,b))}. Observe that the optimal sub-DAG
of G(a,b) in terms of maximizing the flow from s(a,b) to t(a,b) is precisely as in
the optimal solution for I0. Observe also that the value of the optimal solution
within G(a,b) is 9 × 6, that is, f∗ multiplied by the capacity of the edge (a, b)
in G0. Similarly, every subgraph G(u,v) can route a flow of f∗ × cG0

((u, v)),
where cG0

((u, v)) is the capacity of the edge (u, v) in G0. Hence, the network
graph G1 can be abstracted as in Figure 5.4 (replacing each copy of G0 by
a single edge with the appropriate capacity). A simple argument shows that
the optimal solution in this instance of Max-ecmp-DAG has value (f∗)2, the
value of the optimal solution in I0 multiplied by a scaling factor of f∗.

The ⊗ operator: formal definition. Let I1 and I2 be two Max-ecmp-
DAG instances. We now define the operation I1 ⊗ I2. Let G1 and G2 be
the network graphs in I1 and I2, respectively. I = I1 ⊗ I2 is an instance of
Max-ecmp-DAG with network graph G constructed as follows. We create,
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Figure 5.3: Graph G1.

for every edge e ∈ E(G1), a copy of G2, Ge. Let se and te denote the source
and target vertices in Ge, respectively. The set of vertices in G consists of
the vertices in V (G1) and also of the vertices in all V (Ge)’s, i.e., V (G) =
V (G1)

⋃
e∈E(G1) V (Ge). The set of edges in G contains all the edges in the

different E(Ge)’s, and also the edges (u, se) and (te, v) for every edge e =
(u, v) ∈ E(G1), i.e., E(G) =

⋃
e=(u,v)∈E(G1)({(u, se)(te, v)} ∪ E(Ge)). The

capacity of every edge in Ge is set to be the capacity of the corresponding edge
in G2 multiplied by the capacity of e in I1. The capacity of every edge of the
form (u, se) or (te, v) is set to ∞.



CHAPTER 5. EQUAL-SPLIT LOAD-BALANCING 115

9f∗

4f∗ 6f∗

t

s a

b

8f∗

5f∗

Figure 5.4: Abstraction of G1.

Gap amplification via the ⊗ operator. We prove a crucial property of the
⊗ operator: applying the ⊗ operator to an instance I of Max-ecmp-DAG k
times increases the value of the optimal solution from OPT (I) in the original
instance I to (OPT (I))k in the resulting new instance of Max-ecmp-DAG.

Lemma 5.8 Let I be an instance of Max-ecmp-DAG. OPT (⊗kI) = (OPT (I))k

for any integer k > 0.

Proof: Let I = ⊗0I be a Max-ecmp-DAG instance. Recall that I is a
DAG with a single source s and sink t. We prove this lemma by induction on
k. Let H̄0 be an optimal solution for ⊗0I, that is, a sub-DAG of I.

In the base case k = 0, we have that OPT (⊗0I) = OPT (I)1, which is true
since ⊗0I = I.

In the inductive case k > 0, let Ik = ⊗kI and Ik+1 = ⊗k+1I. Let H̄k be
an optimal solution for Ik. We prove that there exists a sub-DAG H̄k+1 of
Ik+1 such that OPT (Ik+1) = OPT (I)k+2. First, we prove that OPT (Ik+1) ≥
OPT (I)k+2. Recall that, each edge e of Ik with capacity cIk(e) 6=∞ is replaced
in Ik+1 by a DAG He, where the capacity of each edge of He is multiplied by
a factor cIk(e). Consider a solution H̄k+1 of Ik+1 constructed as follows. For
each vertex of Ik+1 that is not contained in any graph He (i.e, each vertex
in common with Ik), we split the traffic according to the optimal solution in
Ik, i.e., for each edge (x, y) ∈ E(H̄k) add (x, s(x,y)) and (t(x,y), y) into H̄k+1.
Moreover,for each subgraph He, with e ∈ E(Ik), we split traffic as H̄0 does in I.
Namely, for each subgraph He, where e ∈ E(H̄k), for each edge (x, y) ∈ E(H̄0)
add (we, ye) into E(H̄i+1). Observe that we can route through He a flow that



CHAPTER 5. EQUAL-SPLIT LOAD-BALANCING 116

is OPT (I0) times larger than cIk(e). Therefore, the maximum flow in Ik+1 is
OPT (I0) ·OPT (Ik) = OPT (I0 =) ·OPT (I0)k+1 = OPT (I0)k+2, which implies
OPT (Ik+1) ≥ OPT (I)k+2.

Now, we prove that OPT (Ik+1) ≤ OPT (I)k+2. Suppose, by contradiction,
that there exists a sub-DAG H̄k+1 of Ik+1 such that fH̄k+1

> OPT (I)k+2.

Construct a sub-DAG H̄k of Ik as follows. For each directed edge (v, u(x,y)) ∈
E(H̄k+1), where v is a vertex of Ik+1 in common with Ik and u(x,y) is the source
or target vertex of any subgraph H(x,y), add (v, y) into E(H̄k) if y 6= v, other-
wise add (v, x). Since each edge e of Ik can route a flow OPT (I) times smaller
than its corresponding subgraph He of Ik+1, we have that the maximum flow

through H̄k is at least
fH̄k+1

OPT (I) >
OPT (I)k+2

OPT (I) = OPT (I)k+1, which is a contra-

diction, since, by induction hypothesis, we have that OPT (Ik) = OPT (I)k+1.
�

Lemma 5.8 can now be used to prove that no constant approximation ratio is
achievable for Max-ecmp-DAG. Recall that, by Theorem 5.2, distinguishing,
for a given a Max-ecmp-DAG instance I, between the following two scenarios
in NP-hard: (1) OPT (I) = 1; and (2) OPT (I) = 2

3 . Observe that when
combined with Lemma 5.8 this implies that distinguishing, for a given a Max-
ecmp-DAG instance I, between the following two scenarios is also NP-hard:
(1) OPT (I) = 1; and (2) OPT (I) = (2

3 )k for any constant integer k > 0.

Relating Max-ecmp-DAG to Min-ecmp-Congestion and
Max-ecmp-Flow

Given an instance H0 of Max-ecmp-DAG, let Gk be a copy of ⊗kH0 with
undirected edges. Let s and t be the source and sink vertices of H0. We denote
by Ik an instance (Gk, s, t) of Max-ecmp-Flow. We introduce a property
of a graph instance that will be used to exploit the amplification technique in
Min-ecmp-Congestion and Max-ecmp-Flow.

Reversibility. We say that a mef instance I = (G, s, t) is non-reversible
if OPTMEF (I) ≥ OPTMEF ((G, t, s)). Similarly, a mec instance I is non-
reversible if OPTMEC(I) ≤ OPTMEC((G, t, s)).

Lemma 5.9 Let I = (G, s, t) be a mef instance with OPTMEF =
{
k, 2

3k
}

,
with k > 0. It is possible to construct in polynomial time a non-reversible
instance I ′ such that OPTMEF (I) = OPTMEF (I ′).
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Proof: If G is non-reversible, we create I ′ = (G′, s′, t) as a copy of I where s′ is
a new vertex added into V (G′). Moreover, we add four vertices v1, v2.v3, and v4

and connect them to s through a path (v1, v2, v3, v4, s), with capacity k. Then,
we connect s′ to each vertex v1, v2, v3, v4 with an edge of capacity 1

4k. Observe
that, by construction, the maximum flow from s to s′ is 1

4k + 1
8k + 1

16k + 1
32k,

while the maximum flow from s′ to s is k since s′ can send a flow of value 1
4k

to v1, v2, v3, and v4, respectively. Hence,

OPTMEF (G, s′, t) =

= min{OPTMEF (G′, s′, s), OPTMEF (G′, s, t)} =

= min{k,OPTMEF (G, s, t)} = OPTMEF (G, s, t) ≥

≥ 2

3
k ≥ 1

4
k +

1

8
k +

1

16
k +

1

32
k =

= OPTMEF (G′, s, s′) ≥ OPTMEF (G′, t, s′),

which means that I ′ is non-reversible.
�

Corollary 5.10 Let I = (G, s, t) be a mec instance with OPTMEC =
{
k, 3

2k
}

,
with k > 0. It is possible to construct in polynomial time a non-reversible
instance I ′ such that OPTMEC(I) = OPTMEC(I ′).

Proof: It easily follows by Lemma 5.5. �

Relating Max-ecmp-DAG to Max-ecmp-Flow. Given an instance H0

of Max-ecmp-DAG such that its undirected copy G0 is non-reversible. Let s
and t be the source and sink vertices of H0. We say that a flow assignment f
in G0 is compliant with H0 if for every edge (x, y) ∈ E(G0), if a flow is routed
from x to y, then (x, y) ∈ E(H0). We say that a directed acyclic graph H ′ is an
orientation of an undirected graph G0 if at least an optimal flow assignment f
of G is compliant with H. We denote Hk = ⊗kH0, by Gk the undirected copy
of Hk, and by Ik an instance (Gk, s, t) of Max-ecmp-Flow.

Lemma 5.11 Suppose that in at least one optimal solution for (G0, s, t) the
corresponding flow assignment is compliant with H0. Then, OPT (Hk) =
OPTMEF (Ik).



CHAPTER 5. EQUAL-SPLIT LOAD-BALANCING 118

Proof: We prove it by induction. In the base case k = 0, the statement of
the lemma holds since instance I0 is such that it has an optimal solution that
is compliant with H0. In the inductive case k > 0, by Lemma 5.7 we know
that OPTMEF (Ik) = OPT (Hk) = OPT (H0)k+1 and OPTMEF (Ik+1) is at
least OPT (Hk+1) = OPT (H0)k+2. We want to show that OPTMEF (Ik+1) ≤
OPT (H0)k+2. Suppose, by contradiction, that there exists a sub-DAG H̄k+1

of Ik+1 such that fH̄k+1
> OPT (I)k+2. Construct a sub-DAG H̄k of Ik as

follows. For each directed edge (v, u(x,y)) ∈ E(H̄k+1), where v is a vertex of
Ik+1 in common with Ik and u(x,y) is the source or target vertex of any sub-
graph H(x,y), add (v, y) into E(H̄k) if y 6= v, otherwise add (v, x). Recall that,
since I0 is non-reversible, for each graph He, we have OPTMEF (He, te, se) ≤
OPTMEF (He, se, te) = OPTMEF (H0, s, t) · cIk(e), which means that, for each
edge e of Hk, we can route at least a flow OPTMEF (I0) times smaller than
in He. Hence, solution H̄k, induces a maximum flow through Hk of at least
OPTMEF (Ik+1)
OPTMEF (I0) > OPTMEF (I0)k+2

OPTMEF (I0) = OPTMEF (I0)k+1 units, which is a contra-

diction, since, by induction hypothesis, we have thatOPTMEF (Ik) = OPTMEF (I0)k+1.
�

By Lemma 5.5. we have the following corollary.

Corollary 5.12 OPT (Hk) = 1
OPTMEC(Ik) .

We present the following lemma, which concludes the proof.

Lemma 5.13 For any α > 1, if Max-ecmp-DAG is NP-hard to approximate
within a factor of α then

� Min-ecmp-Congestion is NP-hard to approximate within a factor of α
in the single source-target pair setting;

� Max-ecmp-Flow is NP-hard to approximate within a factor of α in the
single source-target pair setting.

Proof: Suppose, by contradiction that there exists an α > 0, such that
Max-ecmp-Flow can be approximated within a factor of α, i.e., there ex-
ists a polynomial time algorithm A that, given an instance I of Max-ecmp-

Flow, returns a solution of value A(I) ≥ OPTMF (I)
α . We can construct a α-

approximation algorithm for Max-ecmp-DAG as follows. Let I0 = (H0, s, t)
be a Max-ecmp-DAG instance used in Lemma 5.6 such that its undirected
copy G0 is non-reversible. By Lemma 5.9, we know that such instance must



CHAPTER 5. EQUAL-SPLIT LOAD-BALANCING 119

exists. Moreove, we have that OPT (I0) is either 1 or 2
3 . Further, it was proved

in [FT00] that it is easy to compute an orientation of G0 such that at least
one optimal solution is compliant with it. Now, let c be an integer such that(

2
3

)c
< α. Let Hc = ⊗cH0, denote by Gc the undirected copy of Hc, and by

Ic an instance (Gc, s, t) of Max-ecmp-Flow. By Lemma 5.11, we have that
OPT (Hc) = OPTMF (Ic). Now, if OPT (H0) = 1, we have that A((Gc, s, t)) ≥
α. Otherwise, if OPT (H0) = 2

3 , since OPTMF (Ic) = OPT (Hc) =
(

2
3

)c
, we

have that A(Ik) ≤
(

2
3

)c
< α. Hence, A can be used to distinguish, in poly-

nomial time, between Max-ecmp-DAG instances with optimal value 1 or 2
3 ,

which is a contradiction to Theorem 5.2.
By Lemma 5.5, the same result also holds for Min-ecmp-Congestion.

�

5.4 Sum of Link Costs inapproximability

As observed in [FT00], minimizing the maximum congested link may be an
overly-pessimistic and incomplete measure of the network congestion state. In
fact, even if just one link is congested, the value of the solution would not
give any information about the state of all the other links in the network. For
this reason, we now consider the well-studied Min-Sum-Cost problem. In this
case each link has a cost that depends on the amount of flow that is routed
through it. The goal is to minimize the sum of the costs of all the links in the
network. Past works [FRT02, FT00, FT06] observed that the link cost increases
progressively as the congestion approaches 1, and explodes when we go above 1.
Hence, we model this behavior by an exponential function φ(x) = 2x−1, where
x is a measure of the congestion of the link. The objective goal is therefore:

min
∑

e∈E(G)

φ

(
fe
ce

)
.

We show that even in this case approximating the optimum within any
constant factor is an NP-hard problem. We will again exploit our amplification
technique based on the operator ⊗.

We first introduce and study a related problem called Min-Congested-
Edges. The goal is to minimize the number of edges that has congestion
at least 3

2 . We then show how to leverage our ⊗ amplification technique in
order to amplify the gap between two different classes of instances of Min-
Congested-Edges, in a similar manner as we did for the Max-ecmp-DAG
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problem in the previuos section. Finally, we relate Min-Congested-Edges
to Min-Sum-Cost by showing that the the latter is not approximable within
any constant factor (Theorem 5.4).

Min-Congested-Edges problem. An instance I of this problem is a graph
G, a source vertex s, and a target vertex t, exactly as in the mec and the mef
problems.

In the reduction construction from 3-SAT used in [FT04] to prove that Min-
ecmp-Congestion is not approximable within a factor of 3

2 , a SAT formula
F with n variables is transformed into an instance I = ((G, s, t), ·) of Min-
ecmp-Congestion such that, if a variables assignment satisfies a clause c,
then the edge ec associated with clause c is such that

fec
cec
≤ 1, otherwise

fec
cec

= 3
2 . Since the reduction is from 3-SAT, we can use the following well-

known inapproximability result (Theorem 5.1) to prove that also in a slightly
modified Fortz and Thorup construction, at least a certain amount of edges
must be congested (Lemma 5.2).

Theorem 5.1 [H̊as01]. For any ε > 0, MAX-3-SAT is ( 7
8 +ε)-hard to approx-

imate.

We omit the proof of the following lemma, which is based on Theorem 5.1
and on a straightforward modification of the Fortz and Thorup construction.

Lemma 5.2 There exists two constants α > 1 and p > 0 such that, given a
congestion threshold C = 3

2 , it is NP-hard to approximate Min-Congested-
Edges within a factor of α even if the input instance I is “non-reversible”,
in its optimal solution either all edges have congestion at most 1 or at least a
fraction p of its edges have congestion at least C, and an orientation of I is
given in input.

In Min-Congested-Edges, an instance I = (G, s, t) is non-reversible if,
in every optimal solution of (G, t, s) at least p > 0 edges have congestion at
least 3

2 .
We now prove the following key lemma that, given an instance I, provide a

lower bound on the number of edges that are “heavily” congested in ⊗kI, with
k ∈ N.

Let I = (G, s, t) be a non-reversible Min-Sum-Cost instance such that it
only admits solutions where at least a fraction p > 0 of its edges have congestion
at least C. Let H be a directed copy of G such that there exists at least an
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optimal flow assignment for I that is compliant with H. We denote by Gk the
undirected copy of ⊗kH and by Ik = (Gk, s, t).

Lemma 5.3 For every k ≥ 0, every solution for (Gk, s, t) is such that at least
a fraction pk+1 of the edges of Gk have congestion at least Ck+1.

Proof: We prove it inductively on k. In the base case k = 0, the statement
trivially holds. In the inductive step k > 0, by inductive hypothesis, in every
solution of Ik at least pk+1|E(Gk)| edges have congestion at least Ck+1. We
want to prove that in every solution of Ik+1 at least pk+2|E(Gk+1)| of the edges
have congestion at least Ck+2. Suppose, by contradiction, that there exists an
optimal solution Ā of Ik+1 (i.e., a sub-DAG of ⊗kH with a source s and a sink
t) such that less than pk+2|E(Gk+1)| edges have congestion at least Ck+2. We
now construct an optimal sub-DAG solution Ak of Ik from Ā exactly as we did
in the proof of Lemma 5.8, i.e., for each vertex in common between Gk and
Gk+1, we split traffic in the same way.

Recall that, each edge e of Gk with capacity cGk(e) 6= ∞ is replaced by a
graph Ge = G in Gk+1, where the capacity of each edge of Ge is multiplied by
cGk(e). Observe that, by definition of G, we have that at least a fraction p of the
edges in E(G) have a congestion of C, when one unit of traffic is routed from s
to t in G. As a consequence, by definition of Ge, we know that at least a fraction
p of its edges have congestion Ce ≥ Cfe, where fe is the amount of flow routed
from se to te in Gk+1. By construction of Ak, we have that edge e ∈ E(Gk) is
also traversed by a flow fe, which means that its congestion is Ce

C . By a simple
counting argument, there only exist at least (1 − pk+1)|E(Gk)| subgraphs Ge
such that for each of them less than p|E(G)| edges have congestion at least
Ck+2. This implies, that the flow assignment associated with Ak is such that

at least (1− pk+1)|E(Gk)| edges have congestion at most Ce
C < Ck+2

C = Ck+1,
which is a contradiction since, by inductive hypothesis, in any solution of Ik at
least pk+1|E(Gk)| edges have congestion at least Ck+1.

�

We now prove that Min-Sum-Cost is inapproximable within any constant
factor. We consider the two class of instances of Lemma 5.2. We then leverage
our construction technique based on operator ⊗ on these instances. As a
consequence, by Lemma 5.12 and Lemma 5.3, the gap between the optimal
sum of link costs can be set arbitrary large.

Theorem 5.4 It is NP-hard to approximate the Min-Sum-Cost problem within
any constant factor.
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Proof: Suppose that there exists an α-approximation algorithm for a
certain constant α. Let I = (G, s, t) be a non-reversible instance of Min-
Congested-Edges used to prove the NP-hard-ness in Lemma 5.3, i.e., in any
optimal solution of I either (i) all edges have congestion at most 1 or (ii) at
least a fraction p of the edges have congestion at least C =

{
3
2

}
. Let H be a

directed copy of G such that there exists at least an optimal flow assignment
of I that is compliant with H.

We now leverage our result for Min-Congested-Edges to get an esti-
mate of the value of an optimal solution of the Min-Sum-Cost problem on an
instance constructed based on I using our operator ⊗.

In case (i), by Lemma 5.12, each edge of Gk in the optimal solution of

Ik has congestion at most 1. Hence,
∑
e∈E(Gk) φ

(
fe
ce

)
≤ φ(1)|E(Gk)| =

|E(Gk)|. In case (ii), by Lemma 5.3, there exists at least a fraction pk+1 of the

edges of Gk that have congestion at least Ck+1. Hence,
∑
e∈E(Gk) φ

(
fe
ce

)
≥

pk+1|E(Gk)|φ
((

3
2

)k+1
)

= pk+1|E(Gk)|2( 3
2 )
k+1−1. Hence, the value of an opti-

mal solution in case (ii) is at least 2( 3
2 )
k+1−1pk+1 times higher than the value

of an optimal solution in case (i). This quantity can be made larger than
α, for any α ≥ 1, by carefully selecting a certain k > 0. This implies that,
an α-approximation algorithm for Min-Sum-Cost can be exploited to distin-
guish between the two class of instances, which is a contradiction because of
Lemma 5.2.

�

5.5 Non-Constant (Almost Polynomial)
Inapproximability Factors

Theorem 5.1 shows that both Min-ecmp-Congestion and Max-ecmp-Flow
cannot be approximated with any constant factor unless P=NP. However, if
one is willing to use a slightly stronger assumption than P 6= NP , namely that
NP is not contained in ‘quasi-polynomial’ time, then one can push further the
technique of Lemma 5.8. Namely, assuming that not all problems in NP can be
solved in “quasi-polynomial time”, can lead to an even worse (i.e., higher) in-
approximability factor: both Min-ecmp-Congestion and Max-ecmp-Flow
are hard to approximate within a non-constant factor that is “almost” a con-
stant power of the size of the input instance. Again, this result is achieved via
the repeated use of our gap-amplification technique (see, e.g., [BGS96] for a
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similar approach).

Theorem 5.1 Min-ecmp-Congestion and Max-ecmp-Flow cannot be ap-

proximated within a factor of
(

3
2

)(logn)1−ε

, where n is the number of edges of
the input graph, unless NP is in quasi polynomial time.

5.6 TE with ECMP in Datacenter Networks

We now explore the guarantees of TE with ECMP in two specific network
topologies, which have recently been studied in the context of datacenter net-
works: folded Clos networks and hypercubes. We prove that while in hy-
percubes optimal TE with ECMP remains intractable, ECMP routing easily
achieves the optimal TE outcome in folded Clos networks. Our positive result
for folded Clos networks implies that TE with ECMP is remarkably good when
traffic consists of a large number of small (mice) flows (see Hedera [AFRR+10]),
or when traffic is split at a packet-level (instead of IP-flow-level, e.g., via Ran-
dom Packet Spraying [DPHK13]), as in these contexts the splittable-flow model
well-captures the network behavior. We discuss the handling of unsplittable
large (elephant) flows in Section 5.7.

TE with ECMP is Optimal for Folded Clos Networks

We now present our optimality result for TE with ECMP in folded Clos net-
works (FCNs).

Folded Clos networks. An n-FCN is a graph whose vertices are parti-
tioned into n sets, called stages, that is obtained via the following recursive
construction:

� A 1-FCN. A 1-FCN consists of a single stage (“stage 1”) that contains
a single vertex.

� Construction an n-FCN from an (n-1)-FCN. Let Fn−1 be an (n-
1)-FCN. An n-FCN Fn is constructed as follows:

– Creating stages 1, . . . , n−1 of Fn: Create, for some chosen k > 0,
k duplicates of Fn−1: Fn−1

1 , . . . , Fn−1
k . Set stage i = 1, . . . , n − 1

of Fn to be the union of the i’th stages of Fn−1
1 , . . . , Fn−1

k . Create
an edge between two vertices in stages 1, . . . , n− 1 of Fn iff the two
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Figure 5.5: A 3-FCN constructed by interconnecting four 2-FCNs.

vertices belong to the same Fn−1
t and there is an edge between the

two vertices in Fn−1
t .

– Creating stage n of Fn: Create, for a chosen r > 0, r new
vertices vi,1, . . . , vi,r for every vertex i in the n−1’th stage of Fn−1.
Set the n’th stage of Fn to be the union

⋃
i{vi,1 . . . , vi,r}. Create,

for every vertex i in the n − 1’th stage of Fn−1 an edge between
each of the k vertices in the n− 1’th stage of Fn that correspond to
vertex i and each of the vertices in {vi,1, . . . , vi,r}.

Figure 5.5 shows a 3-FCN constructed by interconnecting six 2-FCNs. Past
work focused on the scenario that all link capacities in an FCN are equal (as
in [AFLV08, GHJ+11, YNDM07]). Our positive result below extends to the
scenario that only links in the same “layer”, that is, that all links that connect
the same two stages in the FCN, must have equal capacity.

TE with ECMP is optimal for Clos networks even when all link
weights are 1. We investigate the complexity of Min-ecmp-Congestion,
Min-Sum-Cost, and Max-ecmp-Flow, for FCNs. We call a demand matrix
for an FCN “inter-leaf” if the source and targets of traffic are all vertices in
stage 1 of the FCN (i.e., the leaves of the multi-rooted tree). Inter-leaf demand
matrices capture realistic traffic patterns in datacenters, as most traffic in a
datacenter flows between the top-of-rack switches at the lowest level of the
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datacenter topology. We present a surprising positive result: Setting all links
weights to be 1 (i.e, the default in datacenters) results in the optimum traffic
flow for any inter-leaf demand matrix for all three optimization objectives.

Theorem 5.1 When all link weights in an FCN network are 1 ECMP routing
achieves the optimum flow with respect to Min-ecmp-Congestion, Min-Sum-
Cost, and Max-ecmp-Flow.

We now prove this result with respect to Min-ecmp-Congestion, and for
the scenario that all edge capacities are equal.

Proof: Let F be an n-FCN network such that n ≥ 2 and all link weights
are 1. An l-sub-FCN of F , for 1 ≤ l ≤ n is the subgraph of F that is induced
by all vertices in stages 1, . . . , l (i.e., the graph consisting of these vertices and
edges between them only).

Now, let S be any sub-FCN of F with l ≤ n stages of F and let F l−1
1 , . . . , F l−1

m

be all the (l−1)-sub-FCNs of S that used in the recursive construction of S (see
above). V̄ (S) denotes the set of vertices in the last stage of S and V̄ (F l−1

i ),
with i = 1, . . . ,m denotes the set of vertices in the last stage of F l−1

i . The
following claims easily follow from the construction of F and S.

Claim 5.2 If l > 1 (S has more than one stage), then for every two vertices
v ∈ V̄ (S) and u ∈ V̄ (F l−1

i ) for i = 1, . . . ,m, (u, v) is on a shortest path from
v to any vertex in the first stage of V (F l−1

i ).

Proof: We prove by induction on l that the length of the shortest path from
v to any vertex z in the first stage of F l−1

i is |l−1|. Clearly, if l = 2, then there
is a unique path of length 1 between v and every vertex in the first stage. If
l > 2, then by the induction hypothesis there exists a shortest path of length
l− 2 from any vertex in V̄ (F l−1

i ) to any vertex z in the first stage of F l−1
i . As

v is directly connected to a vertex in V̄ (F l−1
i ), and every path to z must cross

a vertex in V̄ (F l−1
i ), the claim follows.

�

Claim 5.3 If l > 1 (S has more than one stage), then for every two vertices
v ∈ V̄ (S) and u ∈ V̄ (F l−1

i ) for i = 1, . . . ,m, (u, v) is on a shortest path from
v to any vertex in the first stage of F that is not in V (F l−1

i ).

Proof: We prove by induction on j = n − l that the length of the shortest
path from any u ∈ V̄ (F li ) to any vertex z in the first stage of F that is not in
V (F l−1

i ) is the same. Observe that if j = 0, then, by Claim 5.2, the shortest



CHAPTER 5. EQUAL-SPLIT LOAD-BALANCING 126

path between a vertex in V̄ (S) and a vertex z in the first stage of F that is
not in V (F l−1

i ) is n − 1. As every vertex u ∈ V̄ (F li ) is directly connected
to a vertex in V̄ (S), and as all shortest paths from y must cross a vertex in
V̄ (S), the claim follows. Now, if j > 1, then by induction hypothesis and by
Claim 5.2, from every vertex in V̄ (S) there exists a shortest path to z (with
nonnegative length). Since every vertex u ∈ V̄ (F li ) is directly connected to a
vertex in V̄ (S) and every shortest path from u must cross a vertex in V̄ (S),
the claim again follows.

�

Let FS be the set of flows such that (i) the source vertex is in S and the
target vertex is not in S; or (ii) the sources vertex is in F li for some i = 1, . . . ,m
and the target vertex is in some F lj for j 6= i.

Claim 5.4 Each vertex in V̄ (S) receives an equal fraction of every flow f ∈
FS.

Proof: We prove the claim by induction on l, that is, the number of stages
of S. When l = 1, S is simply a 1-FCN and the claim trivially follows. Now,
suppose that l > 1. By the induction hypothesis, each vertex v ∈ V̄ (F l−1

i )
receives the same fraction of any flow f ∈ FS whose source is contained in
V (F l−1

i ). Since every vertex in V̄ (F l−1
i ) is connected to the same number

of vertices in V̄ (S), each vertex v ∈ V̄ (S) must be (directly) connected to
precisely one vertex mv ∈ V̄ (F l−1

i ). By Claim 5.3, v is contained in a shortest
path from mv to the target vertex of f , and so each vertex in V̄ (S) receives an
equal fraction of f .

�

Let F̄S be the set of flows such that the target vertex is in S and the source
vertex is not in S.

Claim 5.5 Each vertex in V̄ (S) receives an equal fraction of every flow F̄S.

Proof: We prove the claim by induction on the number of stages l = n, . . . , 1
of F . When l = n, F̄S = � and the statement holds. Otherwise, if l < n, let
T be a (l+ 1)-sub-FCN of F that contains S as a subgraph. Consider any flow
f ∈ F̄S . If the source vertex of f is in (not in) T , then, by Claim 5.4 (by the
induction hypothesis), each vertex in V̄ (T ) receives an equal fraction of every
flow f ∈ F̄S . Since each vertex in v ∈ V̄ (T ) is connected to exactly one vertex
in V̄ (S), each vertex mv ∈ V̄ (S) is connected to the same number of vertices
in V̄ (T ), and, by Lemma 5.2, mv is contained in a shortest path from v to the
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target vertex of f , we have that each vertex in V̄ (S) receives an equal fraction
of f .

�

Let ES be the set of edges between vertices in V̄ (S) and vertices in stage
l − 1 of F . Observe that, by the definition of FCN, the set of vertices in V̄ (S)
is a vertex-cut of F for all pairs in FS . Hence, each flow in FS and F̄S must
traverse at least one vertex in V̄ (S) and through at least one edge in ES . Let

F∗S be the sum of all the flows in FS and in F̄S . We have that
F∗S

cl|ES | , where cl
is the capacity of edges between vertices in the l’th and in the (l−1)’th stages,
is a lower bound on the amount of flow that is routed through the most loaded
edge in ES . We will now prove that when all link weights are 1, this lower
bound is achieved (and the theorem follows).

Edges in ES connect vertices in V̄ (S) to vertices in stage l − 1 of S. Since
each vertex in V̄ (S) is connected to the same number of vertices in stage l− 1
of S and each vertex in stage l − 1 of S is connected to the same number of
vertices in V̄ (S), Claim 5.4 and Claim 5.5 imply that each edge carries an equal
fraction of each flow in F∗S .

�

TE with ECMP is NP-hard for Hypercubes

We now investigate Min-ecmp-Congestion in hypercubes. We show that,
in contrast to folded Clos networks, Min-ecmp-Congestion in hypercubes is
NP-hard.

Hypercubes. A k-hypercube is a graph in which the set of vertices is {0, 1}k
and an edge between two vertices u = (u1, . . . , uk) and v = (v1, . . . , vn) exists
iff the hamming distance between u and v is 1 (that is, the two vertices differ
in just a single coordinate).

Optimizing TE with ECMP is intractable for hypercubes. We present
the following hardness result for hypercubes.

Theorem 5.6 Computing the optimal flow with respect to Min-ecmp-Congestion
in hypercubes is NP-hard.

Proof: we leverage instances used in Theorem 5.3 to prove the hardness result
for hypercube topologies. In particular, we consider an instance I = (G, s, t)
such that either OPTMC(I) = 1 or OPTMC(I) = 3

2 . We “embed” I into an
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hypercube H, with a logarithmic dimension w.r.t. to the size of I, and we
carefully construct a demand matrix D for vertices in V (H) in such a way that
OPTMC(H,D) = 1 iff OPTMC(I) = 1, where OPTMC(H,D) = 1 is the value
of an optimal weight assignment for a graph H with demand matrix D.

Embedding sketch idea. Let I = ((G, s, t), f) be an instance of Min-
ecmp-Congestion, where a vertex s of G wants to sends a flow of f units to
a vertex t of G. Consider an hypercube H that contains a subgraph G′ that it
is a subdivision of G, i.e., a subdivision G′ of a graph G can be obtained from
G by replacing each edge of G with a single simple path. We can show that
such hypercube exists and has size polynomial w.r.t. the maximum degree of
a vertex of G and the size of G. We then construct a demand matrix among
vertices of H. We add a flow between the endpoints of each edge e ∈ E(H) in
such a way that we saturate the capacity of e only if e is not in E(G′). In order
to enforce capacity constraints of edges of G to paths in H, for each path p of G′

that corresponds to an edge e of G, for each edge e′ of p, we assign a certain flow
between the endpoints of e′ that limits the capacity of that path. Namely, the
higher the value of the capacity of e, the lower the size of the flow that we assign
between the endpoints of e′. These flows are used to force a flow from s to t
to flow exactly through G′. We then refine our mapping by removing “chords”
from the subgraph induced by vertices of G′. Since G′ is a subdivision of G and
the available capacity of each edge of G′ is properly scaled by these extra-flows,
we can prove that if OPTMC(I) = 1, then OPTMC(H,D) = 1. Otherwise, if
OPTMC(I) > 1, then OPTMC(H,D) > 1. Since Min-ecmp-Congestion is
NP-hard even in the case G has degree at most 3 and OPTMC(I) is either 1
or 3

2 [FT04], then also Min-ecmp-Congestion is NP-hard even if we restrict
our attention to hypercubes.

We now show how to find a subgraph G′ of an hypercube such that G′ is a
subdivision of G.

Embedding a graph instance into an hypercube. Consider an instance
(G,D) of Min-ecmp-Congestion, where D contains only a flow demand f
from s to t. We first map G into a k-hypercube H, with k > 0. Let φ be an
injective function that maps each vertex v of G to a vertex φ(v) of H, each
edge e = (v, u) of I to a simple path φ(e) of H from φ(v) to φ(u). Let G′ be
the subgraph of H such that e ∈ E(G′) iff there exists an edge e′ ∈ E(G) such
that φ(e′) traverses e. We say that φ is an embedding of G into H if G′ is a
subdivision of G. In other words, for each pair of edges e1 and e2 of G, paths
φ(e1) and φ(e2) are internal-vertex-disjoint.
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We construct H from G with the following recursive procedure. Let M =
max{|V (G)|2∆(G)−1, 2|E(G)|}, where ∆(G) is the degree of the vertex with the
maximum degree, and d = 2dlg2Me. We first construct a d-hypercube H using
the following notation to denote its vertices. H contains 2d vertices v(x,y), with

0 ≤ x ≤ 2
d
2 − 1 and 0 ≤ y ≤ 2

d
2 − 1. There exists an edge between two vertices

vxy and vwz iff there exists a n ≥ 0 such that either (x = w) ∧ (|z − y| =
2n) ∧

(
b y

2n+1 c = b z
2n+1 c

)
, or (y = z) ∧ (|x− w| = 2n) ∧

(
b x

2n+1 c = b w
2n+1 c

)
.

We now create a mapping φ from G to H. Let u0, . . . , un be all the vertices
of G. Let φ(ui) = v(0,2∆(G)−1i). Let A be the set of edges of G that has been
mapped to a path of H. Initially, A = ∅. Each vertex v order its incident
edges into a sequence Ev. For each edge e = (a, b) ∈ E(G), we compute a
path pi from φ(a) = v(0,y) to φ(b) = v(0,z), where y = φ(a) and z = φ(b), as
a concatenation of 5 paths p1, p2, p3, p4 and p5. Suppose e is the i-th (j-th)
edge in Ea (Eb). If i 6= 1, p1 = (v(0,y), v(0,y+2i−1)), otherwise p1 = (v(0,y)). If
j 6= 1, p5 = (v(0,z), v(0,z+2j−1)), otherwise p5 = (v(0,z)). p2 is a shortest path
from v(0,y+2i−1) to v(2|A|+1,y+2i−1). p4 is a shortest path from v(0,z+2j−1) to
v(2|A|+1,z+2j−1). p3 is a shortest path from v(2|A|+1,y+2i−1) to v(2|A|+1,z+2j−1).
Add e into A.

See an example of embedding a cliqueK4 of size 4 into an hypercubeH of di-
mension d = 2dlg2Me = dlg2(max{|V (G)|2∆(G)−1, 2|E(G)|})e = 2dlg2(max{4 ·
23−1, 12})e = 2dlg2(12)e = 8 in Fig. 5.6. Each vertex v(x,y) of H is represented
as a circle in column x and row y. Edges of the hypercube are not depicted. In
order to better understand where an edge between two vertices of H exists, we
drew several dashed lines, each of them with a number beside it. An edge of the
hypercube is such that, if it intersects any dashed line, then its two endpoints
have a difference in one of their coordinate that is exactly equal to the highest
number associated to any of the intersected dashed lines. Let u0, u1, u2, u3 be
all the vertices of K4. We have that φ(u0) = v(0,0), φ(u1) = v(0,4), φ(u2) =
v(0,8), and φ(u3) = v(0,12). These vertices are colored gray in the picture. Let
(u0, u1) be the first edge of K4 to be analyzed and let (u0, u1) be the first edge
in both Eu0 and Eu1 . We have that path p1 = (v(0,0)), path p2 = (v(0,0), v(1,0)),
path p3 = (v(1,0), v(1,4)), path p4 = (v(1,4), v(0,4)), and p5 = (v(0,4)). Now, con-
sider edge (u0, u2) and suppose that it is the second (first) edge in Eu0

(Eu2
).

We have that path p1 = (v(0,0), v(0,1)), path p2 = (v(0,1), v(2,1), v(3,1)), path
p3 = (v(3,1), v(3,9), v(3,8)), path p4 = (v(3,8), v(2,8), v(0,8)), and p5 = (v(0,8)). In-
tuitively, for each edge (x, y), path p1 (p5) is used to connect φ(x) (φ(y)) to a
vertex zx (zy) in the first column in the first “available” row below φ(x) (φ(y)).
Path p1 and p5 may be empty in the case (x, y) is the first edge in Ex and Ey,
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Figure 5.6: A clique with 4 vertices embedded in a 8-hypercube. Vertices of the
clique are mapped to vertices v0,0, v0,4, v0,8 and v0,12, depicted as gray vertices.
Dashed lines are depicted in order to ease the readability of this figure. Let
l be the highest number of a dashed line intersected by an edge (vx,y, xx,z)
((vx,y, xw,y)). Then, it must hold that |y − z| = l (|x− w| = l).

.
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respectively. Then, path p2 (p4) is used to connect zx (zy) to a vertex wx (wy)
of a column with index 2|A| + 1. Observe that, since p2 and p4 are shortest
paths, they never change row. Also, observe that each of these paths has only
one vertex that lies on an even column, namely on column 2|A| + 1. Finally,
path p3 is used to interconnect these two vertices wx and wy. Also in this case,
path p3 never leaves column 2|A| + 1. Because of these properties, it is easy
to see that for each pair of edges e1 and e2 of G, paths φ(e1) and φ(e2) are
internally vertex-disjoint.

Assigning flow demands in H. We construct set D from ((G, s, t), f),
H, and φ. For each edge e ∈ E(G), for each edge (x, y) of φ(e), add flow

((x, y), 2
5

(
cmax−cG((x,y))

4cmax
+ 1
)

and ((y, x), 2
5

(
cmax−cG((x,y))

4cmax
+ 1
)

into D. For

each edge e′ ∈ H that has no flow assigned, add flows ((x, y), 1
2 ) and ((y, x), 1

2 )
into D. Finally, add a flow ((φ(s), φ(t)), 1

5cmax
).

Removing chords from G′. Consider the subgraph of H induced by vertices
of G′, where V (G′) = {v ∈ V (H ′)|∃e ∈ E(G) such that φ(e) passes through v}
and E(G′) = {e′ ∈ E(H ′)|∃e ∈ E(G) such that φ(e) traverses e}}. By the
above construction, G′ may contain edges that are not in E(G′). We call
these edge “chords”. We now show a procedure that, given a mapping φ
of a graph G into a k-hypercube H, produces a new mapping φ′ from G′

to a 2k-hypercube H ′ such that the subgraph of H ′ induced by vertices in
{v ∈ V (H ′)|∃e ∈ E(G′) such that φ′(e) passes through v} is chordless. The
construction works as follow. Map each vertex x = (x0, . . . , xk) of H, where
x ∈ V (G′), to vertex φ′(x) = (qx, qx) = (x0, . . . , xk, x0, . . . , xk) of H. Consider
each edge e = (x, y) = ((x0, . . . , xk), (y0, . . . , yk)) of H, where (x, y) ∈ E(G′).
Since (x, y) is an edge of an hypercube, x and y differ in exactly one coordi-
nate i. Map (x, y) to a path φ′(e) = (φ′(x), x̄i, φ′(y)), where x̄ = (qix, qx) =
(x0, . . . , xi−1, yi, xi+1, . . . , xk, x0, . . . , xk), where qix is obtained by flipping the
i-th coordinate of qx. Let G′′ be a subgraph of H ′, such that V (G′′) =
{v ∈ V (H ′)|∃u ∈ V (G′) s.t. φ′(u) = v} and E(G′) = {e ∈ E(H ′)|∃e′ ∈
E(G′) s.t. φ′(e′) traverses e}.

Lemma 5.7 G′′ is chordless.

Proof: Suppose, by contradiction, that G′′ is not chordless. Then, there exists
at least a pair of vertices x and y of G′′ that are not adjacent in G′′ and are
adjacent in H ′. Let i be the coordinate in which x and y differs by one element.
We have two cases. If there exist two vertices a and b of G′ such that φ′(a) = x
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and φ′(b), then, by construction of G′′, since a and b differs in one coordinate,
we have that x and y must differ in two coordinates. This is a contradiction
since (x, y) cannot be a chord. Otherwise, if such two vertices does not exists,
w.l.o.g., let x be a vertex such that there does not exist a vertex a of G′ with
φ′(a) = x. Observe that, by construction of φ′, each vertex z = (qz, qz) of
φ′(G) has coordinate either (qz, qz) or (qjz, qz), with j = 1, . . . , k. Hence, x has
coordinates (qjx, qx), with j = 1, . . . , k. x and, since y is a neighbor of x and
it is a vertex of G′′, it must have coordinate either (qx, qx) or (qix, q

i
x). This

leads to a contradiction since, by construction of G′′, both ((qx, qx), (qix, qx))
and ((qix, qx), (qix, q

i
x)) are edges of G′′.

�

Assigning flow demands in H ′. We construct set D′ from (H,D) and φ′

as follows. For each flow demand Dxy in D, with x 6= s and y 6= t, for each
edge e′ = (x′, y′) traversed by φ′((x, y)), add a flow demand Dx′y′ = Dxy into
D′. For each edge e′ = (x′, y′) ∈ E(H ′) such that there does not exists an edge
e of G′ such that φ′(e) traverses e′, add flows ((x′, y′), 1

2 ) and ((y′, x′), 1
2 ) into

D. Finally, add a flow demand D′φ′(s), φ′(t) = Dst into D′.

Proving optimal solution for (H ′, D′).

Lemma 5.8 If OPTMC(I) = 1, then OPTMC(H ′, D′) = 1.

Proof: We first compute a weight assignment of (H ′, D′) from a weight
assignment of (I, f) that has congestion at most 1. We first map each flow
(x, y) in D′ to an (x, y)-dag σ((x, y)). Then, we compute weight links from
this set of dag. Suppose OPTMC(I) = 1. By construction of D′, each flow
((x, y), 1) ∈ D′, with x 6= φ′(φ(s)) and y 6= φ′(φ(t)), is such that (x, y) ∈
E(H ′). Let σ((x, y)) = Axy, where Axy is a (x, y)-dag that consists of a sin-
gle edge (x, y). Consider an optimal (s, t)-dag AI of (I, f). We construct
an (φ′(φ(s)), φ′(φ(t)))-dag Ast from AI . For each edge e ∈ E(AI), add di-
rected path φ′(φ(e)) into E(Ast). Finally, let σ((φ′(φ(s)), φ′(φ(t)))) = Ast. By
construction of (H ′, D′), it is trivial to see that this solution has congestion
equal to 1. Consider an edge (x, y) /∈ Ast. By construction of (H ′, D′) and σ,
only two saturating flows ((x, y), 1

2 ) and ((y, x), 1
2 ) are routed through (x, y),

which implies that (x, y) has congestion equal to 1. Consider now an edge
(x, y) ∈ E(Ast). By construction of (H ′, D′) and σ, we have that (x, y) is
traversed by a fraction of the flow from φ′(φ(s)) to φ′(φ(t)) and, a saturating

flow
(

(y, x), 2
5

(
cmax−cG((u,v))

4cmax
+ 1
))

, where (u, v) is the edge of AI and edge

e′ of φ((u, v)) is such that (x, y) is an edge of φ′(e′), and a saturating flow
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(
(y, x), 2

5

(
cmax−cG((u,v))

4cmax
+ 1
))

. Observe that, if a fraction q of the unit flow

from s to t is routed through (u, v) in G, then, by construction of Ast, also a
fraction q of the flow from φ′(φ(s)) to φ′(φ(t)) is routed through (x, y). Hence,
we have that the amount of flow routed through (x, y) is

2 · 2

5

(
cmax − cG((u, v))

4cmax
+ 1

)
+ q

1

5cmax
=

=
4

5

(
cmax − cG((u, v))

4cmax
+ 1

)
+ q

1

5cmax
=

=
1

5

(
cmax − cG((u, v)) + 4cmax + q

cmax

)
=

=
1

5

(
5cmax − cG((u, v)) + q

cmax

)
=

= 1− cG((u, v))− q
cmax

≤ 1, since q ≤ cG((u, v)).

We now show how to set link weights in H ′ in order to obtain a flow as-
signment where flow is routed according to σ. For each saturating flow (x, y)
of H ′ such that (x, y) /∈ E(G′′), we set a very large weight W >> 1 to edge
(x, y). Since G′′ is chordless, each of these flow is routed through (x, y). Let
σ̄ = σ(φ′(φ(s)), φ′(φ(t))). We set link weights in σ̄ using Lemma 5.7. Hence,
flow demand (φ′(φ(s)), φ′(φ(t))) is routed through σ̄ and each saturating flow
(x, y) of H ′ such that (x, y) ∈ E(G′′) is routed exactly through (x, y). This
concludes the proof of the lemma.

�

Lemma 5.9 If OPTMC(I) > 1 and G has maximum degree 3, then OPTMC(H ′, D′) >
1.

Proof: Suppose, by contradiction, that there exists an assignment of the
link weights such that mc∗(H ′, D′) ≤ 1. Among these optimal assignments,
consider the one that has the higher number of saturating flows routed through
the edge that interconnects their source and target vertices. For each flow
((x, y), ·) ∈ D′, let Axy be the (x, y)-dag where the flow is routed through. We
show that for each saturating flow ((x, y), 1

2 ), where (x, y) ∈ E(H ′), we have
that Axy consists of a single edge (x, y). Suppose, by contradiction, that it is
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not true. Observe that, if Axy contains an edge (x′, y′), then Ax′y′ ⊂ Axy. It
implies that there must exists a saturating flow f∗ = ((x, y), ·) such that Axy
consists of at least a directed path p different from (x, y). Observe that Ayx
contains an edge (u, v) iff Axy contains an edge (v, u). Let A∗ be such (x, y)-
dag of a saturating flow ((x, y), ·) such that it does not consist of a single edge
(x, y). Consider all the nx edges adjacent to x. Since G has maximum degree 3,
we have that at least nx − 4 (one edge connects x to y) of these edges incident
to x are edges whose capacity is saturated by saturating flows. The remaining
edges different from (x, y) (at most 3) have congestion at least 4

5 . If x splits
((x, y), ·) among 5 of its neighbors, then it is sending a flow with size greater
than 0 through an edge that already has congestion 1. This is a contradiction,
since we assumed that mc∗((H ′, D′)) ≤ 1. Otherwise, x sends at least a fraction
1
4 of flow ((x, y), 1

2 ) through at least an edge that already has congestion at least
4
5 , which is a contradiction since we assumed that mc∗((H ′, D′)) ≤ 1.

Hence, for each saturating flow ((x, y), 1
2 ), where (x, y) ∈ E(H ′), we have

that Axy consists of a single edge (x, y). Consider now A = Aφ′(φ(s))φ′(φ(t)).
Observe that A contains an edge (x, y) only if there exists an edge e ∈ E(G)
such that there exists an edge e′ of H traversed by φ((x, y)) and (x, y) is
traversed by φ′(e′). We now compute an (s, t)-dag A∗ of (I, f) such that
OPTMC(I) ≤ 1, which is a contradiction. For each edge e ∈ E(G) such that
for every e′ ∈ E(G′) traversed by path φ(e), φ′(e′) is contained in A, add e into
E(A∗). Observe that, since φ and φ′ defines a subdivision of G, we have that
if a fraction q of the flow from φ′(φ(s)) to φ′(φ(t)) is routed through φ′(e′),
then the same fraction q of the flow from s to t is routed through e, where φ(e)
traverses e′. Hence, since congestion of φ′(e′) is at most 1, it implies that

2 · 2

5

(
cmax − cG((u, v))

4cmax
+ 1

)
+ q

1

5cmax
≤ 1

1− cG((u, v))− q
cmax

≤ 1

cG((u, v)) ≥ q,
which means that each edge has congestion less than 1, i.e., OPTMC(I) ≤ 1,

a contradiction. Hence, the statement of the theorem holds.
�

The theorem easily follows by Lemma 5.8 and Lemma 5.9. Observe also
that since the embedded instance I has degree at most 3, hypercube H ′ has
dimension polynomial w.r.t. the size of I.
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�

5.7 Routing Elephants in Datacenter Networks

A key shortcoming of ECMP is that large, long-lived (“elephant”) flows travers-
ing a router can be mapped to the same output port. Such “collisions” can
cause load imbalances across multiple paths and network bottlenecks, resulting
in substantial bandwidth losses. To remedy this situation, recent studies, e.g.,
Hedera [AFRR+10] and DevoFlow [CMT+11], call for dynamically schedul-
ing elephant flows in folded Clos datacenter networks so as to minimize traffic
imbalances (while still routing small, “mice” flows via link-state routing and
ECMP). We therefore next focus on the so called “unsplittable-flow model”.

Min-Congestion-Unsplittable-Flow (mcuf). We study the Min-Congestion-
Unsplittable-Flow (mcuf) objective: The input is a capacitated graph
G = (V,E, c) and a set D̄ of “flow demands” of the form (s, t, γ) for s, t ∈ V
and γ > 0, where a single source-target pair (s, t) can appear in more than
one flow demand. The goal is to select, for every flow demand (s, t, γ), a single
shortest path from s to t, such that the maximum load, i.e., fe

ce
, is minimized

(as in Min-ecmp-Congestion, see Section 5.2 for formal definitions of flow
assignments and load). We aim to understand how well unsplittable flows can
be routed in datacenter network topologies and, specifically, in FCNs.

mcuf cannot be approximated within a factor better than 2 even in
2-FCNs. We show in the following theorem that approximating mcuf within
a factor better than 2 is NP-hard even in a 2-FCN.

Theorem 5.1 Approximating mcuf within a factor of 2 − ε is NP-hard for
2-FCNs for any constant ε > 0.

Proof: We prove it by a polynomial time reduction from the 3-Edge-
Coloring problem. The input of 3-Edge-Coloring consists of an unori-
ented graph G and a set of 3 colors {c1, c2, c3}. Each edge can be colored with
any of these colors. An edge-coloring of G assigns a color to each edge of G. An
edge-coloring is valid if, for each vertex v ∈ V (G), no pair of edges incident to v
have the same color. If there exists a valid edge-coloring of G, G is 3-colorable.
In 3-Edge-Coloring, it is asked to determine whether G is 3-colorable. The
following lemma is a well-known result about edge-coloring problems.
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Lemma 5.2 [Hol81] It is NP-hard to determine whether a graph G with max-
imum degree 3 is 3-colorable.

We now use this result to prove the following theorem.
In this proof, each flow demand that we will have to route has size 1.

Therefore, we avoid to specify the size of each flow demand and, consequently,
the set of flow demands D is modeled simply as a set of pairs of vertices. Let G
be an input graph of 3-Edge-Coloring. We construct an instance I = (F,D)
of mcuf, where F is a 2-FCN and D is a set of flow demands constructed as
follows. Add three vertices y1, y2, and y3 in the last stage of F . For each vertex
v ∈ V (G), add a vertex uv in the first stage of F . Connect each vertex in the
first stage to each vertex in the last stage, i.e., F is a complete bipartite graph.
Each edge of F has capacity 1. We now map each edge of G to a flow demand
in D. For each edge (x, y) ∈ E(G), add a flow demand (ux, uy) into D. It is
easy to verify that this construction reduction can be done in polynomial time
w.r.t. the size of G. Observe that each flow demand must traverse exactly one
vertex in the last stage of F in order to be routed between its source and target
vertices.

We now prove that G is 3-colorable iff there exists a routing R of flow
demands in D such that mc(I,R) = 1. Suppose that G is 3-colorable and let
γ be a valid edge-coloring of G that assigns a color γ(e) to each edge of G. We
construct a routing solution R as follows. We first map colors c1, c2, and c3
to vertices y1, y2, and y3, respectively. Then, for each flow demand (ux, uy),
if γ((x, y)) = ci, with i = 1, 2, 3, we route (ux, uy) through yi. Suppose, by
contradiction, that there exists an edge of F that has congestion 2. This implies
that at least two flow demands d1 and d2 that share at least one endpoint v, are
routed through the same vertex yi, with i = 1, 2, 3. By construction of R, this
implies that d1 and d2 are both incident to v in G and γ colors both d1 and d2

with the same color, which is a contradiction since γ is a valid edge-coloring.
Suppose now that all flow demands in D can be routed with congestion at
most 1. We construct a edge-coloring γ of G as follows. For each flow demand
(ux, uy), let yi be the vertex in the last stage of F , with i = 1, 2, 3, that is
traversed by (ux, uy). Let γ((x, y)) = ci. Suppose, by contradiction, that γ is
not a valid edge-coloring of G. Let (x, y) and (x, z) be two edges of G such that
γ((x, y)) = γ((x, z)). By construction of γ, flow demands (ux, uy) and (ux, uz)
are both routed to the same vertex yi, with i = 1, 2, 3. This implies that there
are two flows routed through edge (ux, yi), which is a contradiction.

The above reduction shows that, if G is 3-colorable, F has congestion at
most 1, otherwise, if G is not 3-colorable, F has congestion at least 2 since at
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least two flows are routed through the same edge. Hence, by Lemma 5.2, the
hardness of the problem is proved.

�

A 5-approximation algorithm for 3-FCNs. We now consider 3-FCNs,
which are of much interest in the datacenters context. [AFLV08] and VL2 [GHJ+11]
advocate 3-FCNs as a datacenter topology, and Hedera [AFRR+10] and De-
voFlow [CMT+11] study the routing of elephant flows in such networks. We
present a natural, greedy algorithm for mcuf, called Equilibrium-Algo:

� Start with an arbitrary assignment of a single shortest path for every
source-target pair (s, t).

� While there exists a source-destination pair (s, t) such that rerouting
the flow from s to t to a different path can either (1) result in a lower
maximum load or (2) lower the number of links in the network with the
highest load, reroute the flow from s to t accordingly. We call this a
“reroute operation”.

We show that Equilibrium-Algo has provable guarantees. Recall that D
is a set of flow demands.

Theorem 5.3 After |D̄| reroute operations, Equilibrium-Algo approximates
mcuf in 3-FCNs within a factor of 5.

Theorem 5.1 establishes that even in 2-FCNs (and hence also in 3-FCNs) no
approximation ratio better than 2 is achievable. We leave open the question
of closing the gap between the lower bound of 2 and upper bound of 5 (see
Section 5.9). We do show that the analysis of Equilibrium-Algo is tight
for equal-size flows. We point out that the key idea behind Equilibrium-
Algo (rerouting flows to least loaded paths until reaching an equilibrium)
resembles the simulated annealing procedure in Hedera [AFRR+10] and can
be regarded as a first step towards analyzing the provable guarantees of this
family of heuristics.

Proof for 5-approximation. We introduce the following notation. Consider
a 3-FCN F that contains kr 2-FCN, each with kb vertices in its first stage and
km vertices in its last stage. Every i’th vertex in the last stage of a 2-FCN is
connected to the same kt vertices in the last stage of F . Hence, there are ktkm
vertices in the last stage of F . We denote by bji (mj

i ) the i’th vertex in the
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first (second) stage of the j’th FCN. Each vertex mj
i is connected to vertices

tj1, . . . , t
j
kt

in the last stage of F . See Figure 5.7. Consider a flow assignment

computed by Equilibrium-Algo. A flow demand d ∈ D̄ from vertex s to
vertex t of size γd is denoted by ((x, y), γd). For each demand d ∈ D̄, let pd
be the simple path along which d is routed and c(pd) be the value of the most
congested link of pd.

Lemma 5.4 Let d ∈ D̄ be a flow demand such that c(pd) ≥ 5 · OPT . There
exists a path p′ between s and t such that c(p′) ≤ 5 ·OPT − γd.

Proof: Suppose, by contradiction, that such a path p′ does not exist. Let
s = bji and t = blg, with i, g ∈ [kb] and j, l ∈ [kr], where [n] = 1, . . . , n. Observe
that fd is a lower bound for the optimal solution, i.e. OPT ≥ fd. It implies
that c(pd) ≥ 5 ·OPT ≥ 5fd. Let nb be the number of edges incident to bji plus
the number of edges incident to blg that have congestion at least 5 ·OPT . Let

n′b be the number of edges incident to bji plus the number of edges incident to
blg that have congestion at least 5 ·OPT − fd and at most 5 ·OPT . We denote
by Fv the amount of flow demands that have v as a source or target vertex,
i.e. Fv =

∑
d′=((v,·),·)∈D fd′ +

∑
d′=((·,v),·)∈D fd′ . Hence we have that,

Fbji + Fblg ≥ nb(5 ·OPT ) + n′b(5 ·OPT − fd) ≥

≥ 5nbOPT + n′b(5 ·OPT −OPT ) = 5nbOPT + 4n′bOPT

Let F∗ = max{f bji , f blg}. We have that

2F∗ ≥ 5nbOPT + 4n′bOPT (5.1)

Consider now the following obvious lower bound for OPT

OPT ≥
Fbji
km

, OPT ≥
Fblg
km
⇒ OPT ≥ F∗

km
(5.2)

In the first lower bound, we say that the total amount of flow originated
from or directed to bji must necessarily be split among its km edges that connect
it to the vertices in the second stage. The same bound holds for blg.

Combining (5.1) and (5.2), we obtain

kmOPT ≥
5nbOPT + 4n′bOPT

2
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Figure 5.7: A 3-FCN with kr = 6, kb = 3, km = 3, and kt = 3.
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km ≥
5nb + 4n′b

2

km
2
≥ 5

4
nb + n′b (5.3)

Let H be the set of indices h such that both (bji ,m
j
h) and (blg,m

l
h) have

congestion lower than or equal to 5 · OPT − fd. By Equation (5.3), we have
that |H| ≥ km − nb − n′b ≥ km − ( 5

4nb + n′b) ≥ km
2 . Observe that, if j = l,

i.e., the source and target vertex are both in the j-th 2-FCN, hence d can be
routed through any path (bji ,m

j
h, b

j
g), with h ∈ H, that has congestion less than

5 ·OPT −fd. This is a contradiction, since we assumed that such path does not
exists. Hence, j 6= l. In this case, let nt be the number of edges incident to any
vertex thx, with h ∈ H and 1 ≤ x ≤ kt and congestion at least 5 ·OPT , and n′t
be the number of edges incident to any vertex thx, with h ∈ H and 1 ≤ x ≤ kt
and congestion between 5 · OPT − fd and 5 · OPT . Observe that each path
(mj

h, t
h
x,m

l
h) must have congestion at least 5 · OPT − fd, otherwise d can be

routed through (bji ,m
j
h, t

h
x,m

l
h, b

l
g), which is a contradiction since we assumed

that such path does not exists. Hence,

nt + n′t ≥ |H|kt ≥ (km − nb − n′b)kt (5.4)

and we have that∑
i∈[kb]

Fbji +
∑
i∈[kb]

Fbli ≥ nt(5 ·OPT ) + n′t(5 ·OPT − fd) ≥

≥ 5ntOPT + 4n′tOPT = OPT (5nt + 4n′t)

where
∑
i∈[kb]

Fbji (
∑
i∈[kb]

Fbli) is the sum of the flows originated from or di-

rected to a vertex in the j-th (l-th) FCN. Let FH = max{∑i∈[kb]
Fbji ,

∑
i∈[kb]

Fbli}.
We have that

2FH ≥ OPT (5nt + 4n′t) (5.5)

Consider now the following obvious lower bounds for OPT

OPT ≥
∑
i∈[kb]

Fbji
ktkm

, OPT ≥
∑
i∈[kb]

Fbli
ktkm

⇒
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⇒ OPT ≥ FH
ktkm

(5.6)

After |D̄| reroute operations, Equilibrium-Algo approximates mcuf in 3-
FCNs within a factor of 5.

In the first lower bound, we say that the total amount of flow originated
from or directed to vertices in the j-th FCN must necessarily be split among
its kmkt edges that connect it to the last stage vertices. The same bound holds
for the l-th FCN. Combining (5.5), and (5.6), we obtain

ktkmOPT ≥
OPT (5nt + 4n′t)

2

Using (5.4) and (5.3), we have that

2ktkm ≥ 5nt + 4n′t = 4(nt + n′t) + nt ≥ 4kt(km − nb − n′b) + nt =

= 4kt

(
km −

5

4
nb − n′b +

1

4
nb

)
+ nt ≥ 4kt

(
km
2

+
nb
4

)
+ nt

We have that

2km ≥ 2
(
km +

nb
4

)
+
nt
kt

0 ≥ nb
2

+
nt
kt

which is a contradiction since at least nb or nt is bigger than 0. In fact, at
least one edge have congestion at least 5 · OPT . This concludes the proof of
the lemma.

�

Theorem 5.3. After |D̄| reroute operations, Equilibrium-Algo approxi-
mates mcuf in 3-FCNs within a factor of 5.

Proof: Let D̄′ = {d ∈ D̄|c(pd) ≥ 5 ·OPT}. By Lemma 5.4, each flow d ∈ D̄′
can be routed through a path p′ such that c(p′) ≤ 5 · OPT − γd by a single
rerouting operation. Once a flow is rerouted, it does no longer belong to D̄′.
Hence, since |D̄′| ≤ |D̄|, after at most D̄ rerouting operations, each flow d ∈ D̄
is such that c(pd) < 5 ·OPT .

�
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Corollary 5.5 After |D̄| reroute operations, Equilibrium-Algo approximates
mcuf in 3-FCNs within a factor of 4, if all flows have equal size.

We now show that the analysis is tight for equal-size flows.

Tightness analysis of Equilibrium-Algo

Equilibrium-Algo analysis is tight in the case of equal size flows.
We construct an instance I = (F,D) of mcuf and a routing solution R of I
such that there exists a routing solution R such that mc(I,R) = 1 and there
exists a routing solution R′ such that R′ is an equilibrium and mc(I,R′) = 4.
This proves that the result in Corollary 5.5 is tight.

We construct I = (F,D) based on the following recursive construction. Let
k = 4n, for a certain n > 0. I0 = (F0,∅) consists of a (k, k, k, 1)-FCN and
an empty set of flow demands. In = (Fn, Dn) is a (k, k, k, 1 + k2k′r)-FCN,
where k′r is the number of (2, k, k)-FCN of In−1, constructed as follow. We
denote the first (2, k, k)-FCN of Fn by F 1 and the following k2k′r (2, k, k)-FCN
by Fi,j , with i = 1, . . . , k and j = 1, . . . , k. The main idea is to map flow
demands of several I−n−1 instances to distinct set of k′r consecutive (2, k, k)-
FCN of Fn. Given a graph G and a set of vertices V ′ ⊆ V (G), a subgraph G′

of G induced by V ′ is defined as V (G′) = V ′ and E(G′) = {(x, y) ∈ E(G)|x ∈
V ′ ∧ y ∈ V ′}. Let φ(x, y) = ((x − 1)k + y − 1)k′r + 1. For each i = 1, . . . , k
and j = 1, . . . , k, denote by Ni,j the subgraph of Fn induced by vertices in
V (Fφ(i,j))∪· · ·∪V (Fφ(i,j)+k′r−1) and vertices in the last stage of Fn. Intuitively,
φ(x, y) returns the index of the first (2, k, k)-FCN of Nx,y. Let Dn−1 be the
set of flow demand of an In−1 instance. We now map flows in Dn−1 to sets of
k′r consecutive (2, k, k)-FCN of Fn. For each i = 1, . . . , k and j = 1, . . . , k, for

each flow demand ((buh, b
y
g), f) ∈ Dn−1, add ((b

u+φ(i,j)
h , b

y+φ(i,j)
g ), f) into Dn.

Observe that, by construction of Dn, there does not exist a flow demand in Dn

that has b1i as a source vertex, for any i = 1, . . . , k. We create flow demands
from these vertices as follows. For each 1 ≤ i ≤ k, for each j = 1, . . . , k, if

i 6= 1 ∧ j 6= k, add a flow demand d from vertex bi1 of Fn to vertex b
φ(i,j)
1

into Dn. Hence, φ(i, j) returns the index of the first (2, k, k)-FCN of Fn that
contains the target vertex of the j-th flow demand that has b1i as a source
vertex. We denote by ρ(d) the subgraph Ni,j . Let D̄n ⊆ Dn be the set of flow
demands that have b1i as a source vertex, with i = 1, . . . , k. Observe that, for
each i = 1, . . . , k and j = 1, . . . , k, there exists at most one flow demand in D̄n

that has a target vertex in Ni,j . This concludes the definition of In.
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We now prove some properties of In, with n = 1, 2, 3, 4. We first introduce
some terminology. Given a routing solution R of an instance (F,D), we say
that a flow demand d = ((s, t), fd) ∈ D is non-reroutable if Equilibrium-
Algo cannot reroute it to a less loaded path, i.e., there does not exist a path p
between s and t such that c(pd) > c(p)+fd. A routing solution is in equilibrium
if every flow in D is non-reroutable. For any d ∈ Dn, we denote by D(ρ(d))
the set of flow demands in Dn that have both their source and target vertices
in ρ(d) and by D̄(ρ(d)) the set of flow demands that have their source vertex
in the first (2, k, k)-FCN of ρ(d). A top-down path of F is a path between a
vertex in the last stage of F and a vertex in the first stage of F .

We first prove that, for any n ≥ 0, In admits a solution with congestion
exactly 1.

Lemma 5.6 Given an In instance and a top-down path p of In to b11, there
exists a routing solution of In with congestion 1 and c(p) = 0.

Proof: We prove that, given an In instance, with n ≥ 0, given a top-down
path p of In, there exists a routing solution R of In such that mc(In, R) = 1 and
c(p) = 0. We prove it by induction on n. If n = 0, the statement trivially holds
since there is no flow routed through I0. If n ≥ 1, by inductive hypothesis,
we have that for each subgraph Ni,j = (Fi,j , Di,j), with i = 1, . . . , k and
j = 1, . . . , k, contained in In, there exists a routing solution Rn−1 of Ni,j such
that, given an arbitrary top-down path p′ of flows in D(Ni,j), each edge of
Ni,j has congestion at most 1 and c(p′) = 0. We use this inductive hypothesis
in order to build a routing solution for In with congestion 1 and c(p) = 0.
Hence, we now show how to route flows in D̄n and then we use the inductive
hypothesis for routing flows in D(Ni,j), with i = 1, . . . , k and j = 1, . . . , k.
Let p = (tgl ,m

1
g, b

1
1) be the given top-down path, with g = 1, . . . , k and l =

1, . . . , k. For each i = 1, . . . , k, consider flow demands di1, . . . , d
i
l in D̄n, with

l ∈ {k − 1, k}. If i = 1 ∧ g 6= k, route d1
g through (b11,m

1
k, t

k
1) and through an

arbitrary top-down path p1,g from tk1 to its destination b
φ(1,g)
1 . If i > 1∧, for

each j = 1, . . . , k, if i = l route dlg through (b1i ,m
1
g, t

g
1) and through an arbitrary

top-down path pl,g 6= p from tg1 to its destination b
φ(l,g)
1 , otherwise, if i 6= l,

route dij through (b1i ,m
1
j , t

j
i ) and through an arbitrary top-down path pi,j 6= p

from tji to its destination b
φ(i,j)
1 Observe that, by inductive hypothesis, there

exists a routing solution of flow demands in D(Ni,j) such that it has congestion
at most 1 and c(pi,j) = 0, with i = 1, . . . , k and j = 1, . . . , k. Hence, since each
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flow in D̄n is routed through a distinct path, we have that the congestion of
In is at most 1 and c(p) = 0.

�

We now prove that there exists a routing solutionR of I4 such thatmc(I4, R) =
4 and R is an equilibrium. We first introduce the following three lemmas and
then we use them to prove construct such instance I4.

Lemma 5.7 Given a instance In = (Fn, D, n), consider a routing R′ where
only flow demands in D̄n are routed. For any d = (s, t) ∈ D̄n such that
c(pd) ≤ n and c(pd) ≤ 2, there exists a routing solution R of In such that d
and every flow demand in D(ρ(d)) is non-reroutable and each flow in Dn is
routed according to R′.

Proof: We prove it by induction on n. In the base case n = 0, it trivially
holds since D0 of I0 is the empty set. In the inductive step n > 0, consider an
arbitrary routing where only flows in D̄n are routed through Fn. Consider a
flow demand d ∈ D̄n. If c(pd) = 1, then it is easy to see that it is not possible
to reroute d in order to obtain a better routing solution. In fact, for every
d ∈ D̄n, we always have that c(pd) ≥ 1. Otherwise, if c(pd) = 2, suppose
that d is routed through a path (bg1,m

g
l , t

l
h), with 1 ≤ g ≤ k, 1 ≤ l ≤ k, and

1 ≤ h ≤ k. Let bi1 be a vertex of the first (2, k, k)-FCN of ρ(d). Observe
that d is routed through p′ = (tlh,m

g
l , b

g
1) in ρ(d). We consider an arbitrary

routing R′ of flow demands in D̄(ρ(d)) such that (i) only d is routed through
p′, (ii) bi1 routes its k−1 flow demands d1, . . . , dk−1 through its k−1 neighbors
m1

1, . . . ,m
1
g−1,m

1
g+1, . . . ,m

1
k, and (iii) the value of the most congested edge in

ρ(d) is less than 2. This implies that, by construction of R, d is non-reroutable
and, by inductive hypothesis, for every d′ ∈ D̄(ρ(d)), d′ and every flow demand
in D(ρ(d′)) is non-reroutable. Hence, every flow demand in D(ρ(d)) is non-
reroutable, which proves the statement of the lemma also in this case.

�

Lemma 5.8 Given an In instance, with n ≥ 3, consider a routing R′ where
only flow demands in D̄n are routed such that: (i) for each i = k

2 + 1, . . . , k,

edges (m1
i , t

i
1), . . . , (m1

i , t
i
k
2

) have congestion 3, and (ii) edge (m1
k
2

, t
k
2
1 ) has con-

gestion 2. Consider a flow demand d = (s, t) ∈ D̄n, with c(pd) = 3, such that
d is routed neither through m1

k
2

nor through txy , for any x = k
2 + 1, . . . , k and

y = k
2 + 1, . . . , k. There exists a routing solution R of In such that d and ev-
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ery flow demand in D(ρ(d)) are non-reroutable and each flow in Dn is routed
according to R′.

Proof: We compute such routing solution R as follows. Assume that d is
routed through a path (bg1,m

g
l , t

l
h), where mg

l 6= m1
k
2

and tlh 6= txy , and this

path has congestion less than 4. Let bi1 be a vertex of the first (2, k, k)-FCN
of ρ(d). Observe that d is routed through p′ = (tlh,m

g
l , b

g
1) in ρ(d). For each

j = k
2 + 1, . . . , k, let dj1, . . . , d

j
k be flow demands in D̄(ρ(d)) that have bij as a

source vertex. For each l = 1, . . . , k, if d l2e+ k
2 6= j, let l̄ = d l2e+ k

2 and route

djl through (mj

l̄
, tl̄j). Otherwise, if d l2e + k

2 = j, route djl through (mj
k
2

, t
k
2
j ).

For each j = 2, 3, let dj1, . . . , d
j
k be flow demands in D̄(ρ(d)) that have bij as a

source vertex. For each l = k
2 + 1, . . . , k, route djl through (mj

l , t
l
l). For each

j = 2, . . . , k2 , let dj1, . . . , d
j
k be flow demands in D̄(ρ(d)) that have bij as a source

vertex. Route dj1 and dj2 through (mj
k
2

, t
k
2
j ). Let d1

1, . . . , d
1
k be flow demands in

D̄(ρ(d)) that have bi1 as a source vertex. For each l = 1, . . . , k− 1, let l̄ = dl 4
k e

and route d1
l through (m1

l̄
, tl̄1). Observe that c(p′) = 0. Now, route all the

remaining flows in D̄(ρ(d)) that were not routed so far in such a way that the
congestion of edges in ρ(d) is at most 2 and c(p′) = 0. This concludes the
definition of R. By construction of R, d is non-reroutable and, by Lemma 5.7,
for every d′ ∈ D̄(ρ(d)) which has c(p′) ≤ 2, there exists a routing of flows in
D(ρ(d′)) such that d′ and every flow demand in D(ρ(d′)) is non-reroutable and
every flow is routed according to R. Hence, every flow demand in D(ρ(d)) is
non-reroutable, which proves the statement of the lemma also in this case.

�

It is easy to see that, by a symmetry argument, Lemma 5.8 can be used to
prove the following lemma.

Lemma 5.9 Given an In instance, with n ≥ 3, consider a routing R′ where
only flow demands in D̄n are routed such that: (i) for each i = k

2 + 1, . . . , k,

either edges (m1
i , t

i
k
2 +1

), . . . , (m1
i , t

i
k) have congestion 3, and (ii) edge (m1

k
2

, t
k
2
1 )

has congestion 2. Consider a flow demand d = (s, t) ∈ D̄n, with c(pd) = 3, such
that d is routed neither through m1

k
2

nor through txy , for any x = k
2 +1, . . . , k and

y = 1, . . . , k2 . There exists a routing solution R of In such that d and every flow
demand in D(ρ(d)) are non-reroutable and each flow in Dn is routed according
to R′.
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We can now exploit Lemma 5.7, Lemma 5.8, and Lemma 5.9 in order to
build a routing solution R of I4 such that at least an edge has congestion 4 and
R is in an equilibrium.

Lemma 5.10 There exists a routing solution of I4 that has congestion 4.

Proof: We compute such routing solution R as follows. Let d1
1, . . . , d

1
k be flow

demands in D̄4 that have b11 as a source vertex. For each j = 1, . . . , 3k4 , let j̄ =

dj 3
k e and route d1

j through (m1
j̄
, tj̄1). We have that edges (b11,m

1
k
4 +1

), . . . , (b11,m
1
k
2

)

have congestion 3. Route d1
3 k4 +1

through (m1
1, t

1
1). Both edges (b11,m

1
1) and

(m1
1, t

1
1) have congestion 4. For each i = k

4 + 1, . . . , k, let di1, . . . , d
i
k be flow

demands in D̄4 that have b1i as a source vertex. For each j = 1, . . . , k, let
j̄ =

(
(j − 1)mod k

2

)
+ k

2 + 1, ī = 2
(
i mod k

4

)
+ dj 2

k e and route dij through

(b1i ,m
1
j̄
, tj̄
ī
). We have that, for each j = k

2 +1, . . . , k, edges (m1
j , t

j
1), . . . , (m1

j , t
j
k
2

)

have congestion 3. Let d2
1 and d2

2 be two flow demands in D̄4 that have b12 as

a source vertex. Route d2
1 and d2

2 through (m1
k
2

, t
k
2
1 ). Route all the remaining

flows in D̄4 through any path that does not traverse any vertex m1
j , with j ≥ k

2 ,
in such a way that the congestion created by these flow demands is less than
4. Observe that, edges (b11,m

1
1), . . . , (b11,m

1
k
4

) have have congestion 4. Consider

any flow demand d in D̄4 that is routed through any of these edges. Observe
that d is routed in ρ(d), through (t11,m

i∗

1 , b
i∗

1 ), where i∗ is the index of a vertex
bi
∗

1 of the first (2, k, k)-FCN of ρ(d) in I4. We construct a routing solution R′ of
flows inD(ρ(d)) that is similar to R. Let di

∗

1 , . . . , d
∗

k be flow demands in D̄(ρ(d))
that have bi

∗

1 as a source vertex. For each j = 1, . . . , 3k4 , let j̄ = dj 3
k e+ k

4 and

route di
∗

j through (mi∗

j̄
, tj̄1). We have that edges (bi

∗

1 ,m
i∗
k
4 +1

), . . . , (bi
∗

1 ,m
i∗
k
2

) have

congestion 3. For each i = k
4 + 1, . . . , k, let di1, . . . , d

i
k be the flow demands in

D̄4 that have b1i as a source vertex. For each dij , with j = 1, . . . , k, and txy be

a vertex traversed by pdij . Let di
∗+i

1 , . . . , di
∗+i
k be the flow demands in D̄(ρ(d))

that have bi
∗

i as a source vertex. Route di
∗

l , with l = 1, . . . , k, through txk−y+1.

We have that, for each j = k
2 + 1, . . . , k, edges (mi∗

j , t
i∗
k
2 +1

), . . . , (mi∗

j , t
j
k) have

congestion 3. Let di
∗

1 and di
∗

2 be two flow demands in D̄(ρ(d)) that have bi
∗

2 as

a source vertex. Route di
∗

1 and di
∗

2 through (bi
∗

2 ,m
i∗
k
2

, t
k
2
1 ), exactly as we have

done in D̄4. We have that, edges (mi∗
k
2

, t
k
2
2 ), . . . , (mi∗

k
2

, t
k
2

k ) have congestion 2.

Route all other flows in D̄(ρ(d)) through any path that does not traverse any
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vertex mi∗

j , with j ≥ k
2 in such a way that the congestion created by these

flow demands is less than 4. Observe that, by construction of R and R′, d is
non-reroutable and, by Lemma 5.9, there exists a routing solution of flows in
D(ρ(d)) such that every flow demand in D(ρ(d)) is non-reroutable and every
flow demand in D(ρ(d)) is routed according to R′. Moreover, for every flow
demand d′D̄4 that is routed through a path with congestion 3, by Lemma 5.8,
there exists a routing R′′ of flows in D(ρ(d′)) such that d′ and every flow de-
mand in D(ρ(d′′)) are non-reroutable and every flow demand in D(ρ(d)) is
routed according to R′′. For all the remaining flow demands d′′ ∈ D̄4 that are
routed through a path that has congestion 2 or 1, by Lemma 5.7, there exists a
routing solution R′′′ of flows in D(ρ(d′′)) such that d′′ and every flow demand
in D(ρ(d′′)) are non-reroutable and every flow demand in D(ρ(d′′)) is routed
according to R′′′. Hence, R is in an equilibrium and the lemma is proved.

�

The following theorem is a direct consequence of Lemma 5.6 and Lemma 5.10.

Theorem 5.11 There exists an instance I of mcuf such that mc∗(I) = 1 and
Equilibrium-Algo returns a routing solution R such that mc(I,R) = 4.

5.8 Related Work

Configuring OSPF link weights and ECMP routing have been the subject of
extensive research in the past two decades (in a broad variety of contexts: ISP
networks, datacenters, and more). Generally speaking, research along these
lines has thus far primarily focused on experimental and empirical analyses.
We now discuss relevant past studies and their connections to our work. We
refer the reader to [AFU12], [Rex06] and [SBT03] for more complete surveys.

TE with EMCP. We study TE with ECMP routing within the (“split-
table flow”) model of Fortz and Thorup [FT04]. Past work on optimizing
ECMP routing mostly examined heuristic approaches (e.g., local search [FT04],
branch-and-cut for mixed-integer linear programming [PAS06], memetic [BRRT02]
and genetic [ERP02] algorithms) with no provable performance guarantees.
[FT04] proves that Min-ecmp-Congestion is NP-hard and cannot be ap-
proximated within a factor of 3

2 . These results leave hope that an (efficient)
algorithm for configuring link weights with good (provable) guarantees is possi-
ble. Our inapproximability results for MIN-ECMP-CONGESTION, Min-Sum-
Cost, and Max-ecmp-Flow, shatter this hope (and, in a sense, establish the
necessity of heuristics).
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TE with ECMP in datacenters. The emergence of datacenter networks
spurred a renewed interest in interconnection networks [DT03]. Topologies such
as Clos networks [AFLV08] and generalized hypercubes [ABD+09, GLL+09,
WLL+09] have been proposed as datacenter topologies. We compare Clos
and hypercube networks from an ECMP routing perspective. Our analysis
of Clos networks (Theorem 5.1) supports and explains (i) the experimental
results in [DPHK13] regarding packet-level traffic splitting in Clos networks,
and also (ii) the experimental results in [AFRR+10] regarding the routing of
small (mice) flows via ECMP in Clos networks. Our optimality result for
Clos networks shows that the optimal link weight configurations with respect
to MIN-ECMP-CONGESTION, Min-Sum-Cost, and Max-ecmp-Flow, can
be computed independently of the actual demand matrix and can therefore
be regarded as “oblivious routing”. [YNDM07] presents results for oblivious
routing in fat tree topologies. Our optimality result for Clos networks can be
regarded as a generalization of the result in [YNDM07] for oblivious multipath
routing in fat trees to more general (Clos) networks and edge capacities, and to
other performance metrics (namely, Min-Sum-Cost and Max-ecmp-Flow).

Routing elephant flows in datacenters. Under ECMP routing, all packets
belonging to the same IP flow are routed along the same path. Consequently,
a router might map large (elephant) flows to the same outgoing port, possibly
leading to load imbalances and throughput losses. Optimizing routes for “un-
splittable flows” is shown to be O(log n)-approximable in [CCGK02] for general
networks. Recent work studies the routing of unsplittable flows in Clos data-
center networks [AFRR+10, CMT+11, GHJ+11] and experimentally analyzes
greedy and other heuristic approaches, e.g., simulated annealing. We initiate
the formal analysis of the routing of unsplittable flows in datacenter networks
and present upper and lower bounds on the approximability of this task in Clos
networks. We present, among other results, a simple, greedy 5-approximation
algorithm. We point out that the key idea behind our algorithm (rerouting
flows to least loaded paths until reaching an equilibrium) resembles the simu-
lated annealing procedure in Hedera [AFRR+10] and can be regarded as a first
step towards analyzing the provable guarantees of this natural heuristic.

5.9 Conclusion and Future Research

We studied TE with ECMP from an algorithmic perspective. We proved that,
in general, not only is optimizing link-weight configuration for ECMP an in-
tractable task, but even achieving a good approximation to the optimum is
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infeasible. We showed, in contrast, that in some environments ECMP(-like)
routing performs remarkably well (e.g., Random Packet Spraying in multi-
rooted trees [DPHK13], specific traffic patterns). We then turned our attention
to the question of optimizing the routing of elephant flows and proved upper
and lower bounds on the the approximability of this task. Our results motivate
further research along the following lines:

� ECMP in datacenters. We showed that TE with ECMP is NP-hard
for hypercubes. What about approximating the optimum? Can a good
approximation be computed in a computationally-efficient manner? An-
other interesting question is adapting this result to show similar hardness
results for specific hypercube-inspired topologies (e.g., Bcube [GLL+09],
and MDCube [WLL+09]). What about other proposed datacenter topolo-
gies, e.g., Jellyfish-like random graphs [SHPG12]?

� Routing elephants. We presented positive and negative approxima-
bility results for routing elephants in folded Clos networks. What is the
best achievable approximation-ratio? What are the provable guarantees
of simulated annealing (see Hedera [AFRR+10]) in this context? We be-
lieve that research along these lines can provide useful insights into the
design of elephant-routing mechanisms.

� ECMP with bounded splitting. Consider a model of TE with ECMP
in which, to reflect the limitations of today’s routers’ static hash functions
used for ECMP, a router can only split traffic to a destination between a
bouded number of links. What can be said about the provable guarantees
of TE with ECMP in this model?



Conclusions

Understanding routing protocols dynamics is a fundamental requirement for
network management that troubled the network community for decades. Con-
trolling routing allows network operators to carefully select the most suitable
paths that fully exploit their network infrastructure. On the other hand, the
inability to predict routing dynamics makes it difficult to perform network
debugging, routing configuration migrations, and traffic-engineering.

Our contributions focused on routing stability, the impact of local rout-
ing changes on global routing, and the problem of achieving optimal network
utilization using equal-split load balancers.

Stability. We studied the problem of checking if a network is guaranteed
to converge to a stable routing. Unfortunately, we found that this (and many
related problems) are algorithmically hard. We investigated this problem and
showed our most valuable intuition: a fascinating mapping between BGP con-
figurations and logic circuits that puts existing results in a new perspective. In
terms of computational resources, the existence of this mapping between logic
circuits and BGP configurations implies that problems regarding BGP dynam-
ics are very likely to be intractable. Overall, we believe that this mapping
serves as a guide to protocol designers as it applies to a broad range of routing
protocols that includes BGP as a specific case. Also, it has a great potential
to foster new research on the design of routing protocols and their analysis.

We investigated whether the inherent complexity of route propagation could
be mitigated. We asked whether limiting policy expressiveness could improve
the protocol predictability (e.g., deterministic route propagation). Unfortu-
nately, we observed that all the simple and realistic policy restrictions consid-
ered in research, standard and best practices do not alleviate the problem. On
the positive side, we showed that computational tractability of BGP stability
can be achieved when filters expressivity is limited to very simple coarse-grained
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policies. While such results are primarily related to BGP, they can be gener-
alized to any policy-based path vector routing protocol.

Impact of local routing changes on global routing. We gave several
contributions to this topic by acting in behalf of a malicious AS that wants
to modify Internet routing by locally forging bogus announcements. We con-
sidered three goals: creating routing oscillations, hijacking a specific flow of
traffic, intercepting traffic without creating a black-hole. All these problems
are clearly intractable when expressiveness of routing policies is not restricted.
Hence, we assumed standard Gao-Rexford conditions, which models simple
economic relationships between ASes. We showed that routing oscillations at-
tacks are not possible when routes are steadily announced. Moreover, our main
striking result states that finding an hijacking strategy in BGP is easier than
in S-BGP. We stress the fact that this result is not an obvious consequence of
the fact that S-BGP uses cryptography. In particular, we designed a polyno-
mial time algorithm to device whether an attacker can hijack a specific flow of
traffic. Finally, we showed how to guarantee that a successful attack does not
create a black-hole, i.e., an interception attack.

There are many open problems. First, when an attacker hijacks a flow of
traffic, the real owner of a prefix may counterattack and regain control of its
traffic. Both the attacker and the real owner may either indefinitely continue
to “battle” for this traffic or one of them will eventually prevail over its oppo-
nent. Predicting the outcome of such complex interactions is both intriguing
and challenging. Moreover, counterattacking may have some undesirable side-
effects, e.g., it may expose other traffic flows to the risk of being hijacked. Last,
our main assumption throughout this thesis is that both topology and routing
policies are known. It is interesting to study what can be derived from a partial
view of the topology and routing policies.

Load-balancing. We solved a long-standing open problem in intradomain
traffic-engineering where traffic can be equally split among different paths. We
proved that, in general, not only computing these paths is an unfeasible task,
but even achieving a good approximation to the optimum is intractable. This
holds even for shortest-path routing policies. In contrast, on specific network
topologies we can achieve optimal load-balancing using shortest-path routing
paths. A simple lesson can be derived from these two results. The former one
alerts us to the risk of poor network performances when a network is built and
configured in an arbitrary way. The latter shows that carefully designing a
topology is a suitable way to achieve high network utilization.
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We believe that there are many attractive open problems that can still
stimulate interesting research. For instance, even if we showed that the prob-
lem is NP-hard for hypercube topologies, this does not mean that a good ap-
proximation cannot be computed efficiently. Also, the application of random
graphs theory to the design of network topologies is attracting the attention of
the datacenter networking community [SHPG12][SGK14], especially because of
the good expansion properties that there topologies expose (i.e., high through-
put). However, naive approaches for setting link weights do not perform well in
random graphs [SHPG12]. It is unclear whether this is a limitation of shortest-
paths routing policies or an intrinsic difficulty that arises in random graphs
and we believe that a study of the problem is necessary.
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