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Preface

This thesis deals with a class of theoretical problems arising in applications in
communication networks. The dissertation is mainly divided in two parts.

In the first part, we attempt to solve a set of survivability network design
problems. Network survivability refers to the guarantees that a communication
network provides in the event that one or more failures occur. An attack or
failure can significantly reduce the capability of the communication network to
efficiently deliver basic services to users. In several cases, when a failure occurs,
the network operators are interested in restoring traffic by re-routing it through
different links. Since re-routing traffic can be rather expensive and may cause
delays in transmissions, a key property is that of requiring that traffic which
is not affected by the failure is not redirected in failure situations.
We study the problem of determining whether a given network, where the traf-
fic is commonly routed on the edges of a shortest path tree (e.g. Ethernet
networks with the Spanning Tree Protocol), may satisfy the above mentioned
property. We provide computational complexity results for directed and undi-
rected networks. In particular, for the directed case, we prove that such prob-
lem is in general NP-hard and that it remains NP-hard also in some special
cases. Moreover, we show how to assign weights to the links of the network in
order to configure a routing topology with the above mentioned property.

In the second part of the thesis, we deal with a problem regarding broad-
casting in telecommunication networks. We investigate a new version of the
well known Minimum Broadcast Time problem which has been deeply stud-
ied in the past, since broadcasting is a basic primitive in the communication
networks area. Fundamental requirements for a broadcast process are that it
completes in the quickest way and that, at the end of the procedure, all the
peers in the network are informed. In this thesis we deal with an objective
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function that takes into account the quality of the service associated with the
broadcast, namely the minimization of the average broadcast time of the peers.
We show that the considered version of the broadcast problem is an NP-hard
problem. Indeed, the problem becomes polynomially solvable, if the instance
graph is a tree. We also provide a distributed approximation algorithm for our
version of the broadcast problem, in which every network node does not know
the network topology.

The thesis is organized in the following way.

In Chapter 1, we introduce the reader to the communication network re-
search area. We treat some of the most important topics regarding the com-
munication network literature, and cite several fundamental results that are
still now mile stones of network research field.

In Chapter 2, we provide an in-depth analysis of survivability network de-
sign issues.

In Chapter 3, we describe and discuss the complexity of a survivability
network problem. Hence, we provide both the hardness result for the general
setting and the proof of the polynomial solvability for some special cases.

In Chapter 4, we extend the survivability properties proved for the case of
single link failure in Chapter 3 to multiple links failure.

In Chapter 5, we introduce the fundamental issues of network broadcast-
ing. We also discuss the differences among the communication models used in
broadcasting literature.

In Chapter 6, we deal with a variant of the minimum broadcast time prob-
lem: the minimum service time broadcast problem. We prove that the problem,
in a centralized scenario, is in general NP-hard, but polynomial time solvable
in special cases like in trees.

In Chapter 7, we analyze the minimum service time problem in a distributed
scenario and provide a fast and simple approximation algorithm.
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Chapter 1

Introduction

The field of Network Design, with its many variants, is one of the most ac-
tive research areas in computer science involving researchers from graph the-
ory, combinatorial optimization, game theory, system and information theory.
Mathematical modeling of networks plays a vital role in the understanding
of computer and telecommunication networks and provides questions and so-
lutions regarding the allocation of network resources, analysis and effects of
competitive and/or cooperative agents, Internet protocols, wireless network
protocols, network dynamics, queuing systems, performance optimization, and
network traffic and topology. These models explain fundamental performance
limits and trade-offs in practical scenarios. In addition, new problems in this
area are constantly proposed by practitioners working in various aspects of
network design such as construction, routing and staged deployment. Fur-
thermore, many new design paradigms such as ATM, Ad hoc, Optical and
Wireless networking add rich new flavors to existing problems. On the other
hand, many of the key algorithmic challenges in the context of the internet,
the largest network in the world, require considering the objectives and in-
terests of the different participants involved. These include problems ranging
from pricing goods and resources, to improving search, to routing, and more
generally to understanding how participants can support the improving of the
overall system. Recent results show a strong relation between network design
and combinatorial optimization, and techniques from each seem well-poised to
help with key problems of the other.

Network design area is too big to be treated in a comprehensive way in
this thesis, so we limit to describe several intresting aspects and problems. In

1
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CHAPTER 1. INTRODUCTION 2

particular, we introduce network design by a more theoretical point of view:
we use graph theory to model network design problems. Therefore, in network
design, we can identify a division in smaller basic subareas, among which we
list the following:

• spanning trees problems;

• routing problems;

• survivability network problems;

• broadcast problems.

Usually, real applications in network design are a complex mix of basic ques-
tions and constrains. Further, if we attempt to solve a real network problem,
we must analyze in a deep way the network architectures, so that we may take
advantage of their features. In this discussion we skate over technical issue and
deal only with theoretical questions.

1.1 Spanning tree problems

Given a connected, undirected graph, a spanning tree of that graph is a sub-
graph which is a tree and connects all the vertices together. A single graph
can have many different spanning trees. We can also assign a weight to each
edge, which is a number representing how unfavorable it is, and use this to
assign a weight to a spanning tree by computing the sum of the weights of the
edges in that spanning tree. A minimum spanning tree or minimum weight
spanning tree is then a spanning tree with weight less than or equal to the
weight of every other spanning tree. More generally, any undirected graph
(not necessarily connected) has a minimum spanning forest, which is a union
of minimum spanning trees for its connected components. Problem to find a
minimum spanning tree, over a weighted graph, was shown in the past to be
solvable in polynomial time. We can solve the problem using the well known
algorithms of Kruskal [56] or Prim [68]. But there are several versions of the
minimum spanning tree problem that are under attention of many researchers,
and that are more complex than the previous one.

The problem of computing the minimum tree spanning any k vertices can be
viewed in the general setting of finding a “best” subgraph spanning k vertices
and satisfying certain property. Clearly, all problems for which the properties
can be checked in polynomial time are polynomially solvable, for fixed k, by
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CHAPTER 1. INTRODUCTION 3

examining all k vertex subsets. In particular if we require that the subgraph
be connected and of the least possible weight, then we are really looking for
the minimum weight tree that spans k vertices. Thus, given an undirected
graph G, a weight function w : V → Z+, and an integer k ≤ |V |, we want
to find a spanning tree over G, that spans only k vertices, such that its total
weight is lesser or equal than each other spanning tree that spans k vertices
over G. This problem was shown to be NP-hard by Ravi et al. in [73]. A 3

√
k-

approximation algorithm for this problem was first given in [73], and this has
been, after, improved to a O(log2 k)-approximation algorithm by Awrebuch,
Azar, Blum and Vempala [9]. The best approximation algorithm, with an
approximation ratio of 3, for the minimum k-spanning tree was provided by
Garg (see [40]).

An other minimum spanning tree problem with constraint is the the mini-
mum degree spanning tree (MDST) problem, in which we find a spanning tree
for a graph G with n vertices whose maximal degree is the smallest among
all spanning trees of G. This problem was easily shown to be NP-hard. Let
T ∗ be an optimal spanning tree, whose maximal degree is ∆∗. Fürer and
Raghavachari [35] have given a parallel approximation algorithm which pro-
duces a spanning tree of degree O(∆∗ log n). The same authors, in [36], prove
that the algorithm provided in the paper guarantees an approximation ratio,
for the MDST problem, of ∆∗ + 1.

Given an arbitrary weighted graph with a distinguished vertex subset, the
Steiner Tree Problem asks for a minimum-cost subtree spanning the distin-
guished vertices. Steiner trees are important in various applications such as
VLSI routing, wirelength estimation, phylogenetic tree reconstruction in bi-
ology, and network routing. The Steiner Tree Problem is NP-hard even if
we consider the instance graph in the Euclidean or rectilinear metrics [39].
Arora established that Euclidean and rectilinear minimum-cost Steiner trees
can be efficiently approximated arbitrarily close to optimal [5]. On the other
hand, unless P = NP , the Steiner Tree Problem in general graphs cannot
be approximated within a factor of 1 + ε for sufficiently small ε > 0 [13, 20].
For arbitrary weighted graphs, the best Steiner approximation ratio achievable
within polynomial time was gradually decreased from 2 to 1, 59 in a series of
works [82, 91, 12, 92, 69, 50, 48]. Actually, the best approximation algorithm for
the Steiner Tree Problem guarantees an approximation ratio of 1+(ln 3)/2, [75].
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CHAPTER 1. INTRODUCTION 4

1.2 Routing problems

In the field of network design, a routing process is the procedure of moving
information across an interconnected system, from a source to a destination.
Usually, along the way, there are at least one network peer, so that the routing
protocol uses metric to identify which path is the best for the information to
travel. In order to dispatch the information, by a more technical point of view,
a routing protocol need to organize the information, so that different kinds of
network architectures can communicate among them.

In the area of network routing, there is an enormous number of kinds of
routing problems. Many works, in literature, treat the performance evalua-
tion of routing algorithms. Here, for the sake of shortness, we cite only some
combinatorial problems, related to routing problems.

In a theoretical scenario, in which the communication network is modeled
as a graph, the best known problem is the Traveling Salesperson Problem. In
a TSP instance, we are given a number of cities (the network peers) and a
distance function over each pair of cities. The question is to find the smallest
distance round-trip (cycle) that visits each city exactly once, and that returns,
at the end, to the starting city. Since TSP has a mass of application in the real
world, this problem has been well studied by many researchers belonging to the
operations research and discrete combinatorial areas. There is a huge number
of papers that treat the TSP issue, for an intriguing history we refer to [57], but
in this discussion we limit to describe only some peculiar aspects. In 1979, TSP
was shown to be NP-complete, [39], and, in 1987, Orponen and Mannila, [64],
proved that TSP can not have a constant factor approximation algorithm (is
NPO-complete). Even if this simple problem is so hard to approximate, many
TSP variants have been studied alot in the past, with better approximation
results. We cite, among them, the metric TSP and the Euclidean TSP. The
metric TSP is the version of the TSP in which the distance function among
the vertices agrees with the triangular inequality. The metric TSP (also known
as ∆-TSP) was shown to be APX-complete. The Christofides approximation
algorithm (see [18]) guarantees an approximation ratio of 3/2 for this TSP
variant. A more restrictive version of the TSP is the Euclidean TSP. In this
problem, we are given a set of points in the Euclidean two-dimensional space, so
that the distance among the nodes agrees with all the geometric property of the
plane. In 1996, Sanjeev Arora proved the best result about the approximation
for the Euclidean TSP (or geometric TSP). He has shown, in [5], that the
geometric TSP has a polynomial time approximation scheme (PTAS).
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CHAPTER 1. INTRODUCTION 5

1.3 Survivability network problems and broadcasting
problems

Since this two areas, in network design, are of special interest for this thesis, we
prefer to treat them apart from the general introduction. We analyze the sur-
vivability network issue in Chapter 2, and we describe the broadcast problems
in Chapter 5.
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Chapter 2

Introduction to survivability
problems

With the increase in size, complexity, and speed of communication, network
performance under failures or attacks has become a great concern in the
telecommunication industry. A failure or attack can significantly reduce the
capability of the communication network to efficiently deliver service to users.
This scenario contributed to the growth of the discipline named survivability
network design. Network survivability refers to the trustworthy of the overall
network to provide communication in the event of one or more failures in the
network occur. The term fault-tolerant is often used to refer to how reliable a
particular component of a network is (e.g., a computer, a switch or a router).
The term fault-tolerant network, on the other hand, refers to how resilient the
network is against the failure of a component. There are several techniques to
project a failure resilient network. Depending on the type of the network we
want design, there is a different strategy. Also, the survivability of a network
is concerned with the ability of the network to provide a defined degree of as-
surance that the system will continue to function during and after a natural
or man-made disturbance. In some cases, the survivability of a network is the
capability of the network to remain connected after the failures. In more ap-
plicative cases, survivability is a more complex concept, that is perceived as
a composite measure consisting of both network failure duration and failure
impact on the network. Since several researchers, in their papers, have used
different definition of survivability, we refer to the tech report of Knight and
Sullivan (see [52]), that is a good dissertation on the meaning of survivability.

6
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CHAPTER 2. INTRODUCTION TO SURVIVABILITY PROBLEMS 7

In that work, they attempt to find a general survivability definition that can
be applied to any system.

But, the different kinds of network architecture have led to many different
applications in survivability network design. A lion’s share of the network
survivability literature tells about wireless networks. The motivation of this
literature trend, as well as in many other computer science fields, is imputable
to the fall of the price of the wireless transmitters and, as a consequence, the
dissemination of them in a mass of products. The wireless communication
scenario has worsened a lot the failure survivability issues. The mobility of
the peers and the variability of other connecting factors result in a network
with a potentially rapid and unpredictable changing topology (ad-hoc network).
In [80], the authors explain several options that the connection providers for
mobile devices must consider to decrease the number of network failures and
to cope with failures when they occur. In particular, they discuss strategies to
improve network survivability and classify them into three categories:

• Prevention,

• Network design and capacity allocation,

• Traffic management and restoration.

Regarding mobile communication, in wireless network area, there is a well
known network architecture, named Personal Cellular Service (PCS) network.
We refer to [71, 84] for an in-depth examination of survivability issues in PCS
networks. Moreover, in [71], the authors, with a simulation model, study a va-
riety of failure scenario over this type of mobile networks. In an ad-hoc wireless
network there are many parameters that combine to bring about the network
functionality, e.g. transmission range, average velocity of the peers, power con-
sumption. Very important is also the density of the peers over the terrain. A
experimental study of which combinations of these parameters guarantee that
network works, is done in the paper of Paul et al. [66]. Furthermore, in [60], we
can find a framework for the maximum survivability routing, that, considering
parameter specificactions, permits to evaluate the limit until network connec-
tivity is preserved. After the break of the network connectivity, there is the
impossibility to route messages. Thus, it becomes a fundamental issue, in sur-
vivability area, to develop good restoration strategies. For instance, we refer
to the work of Wang et al. [86], that proposes two failure-handling schemes to
recover connectivity in ATM networks. Every restoration scheme works under
suitable hypothesis, first of all, the type of failure that it attempts to handle.
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CHAPTER 2. INTRODUCTION TO SURVIVABILITY PROBLEMS 8

Therefore, it is important to classify failures, so that it is possible to quantify
the survivability of the network. Considering wireless ad-hoc networks, in [16]
there is an extensive discussion about the network survivability performance
evaluation by a quantitative measure.

While the previous works on network survivability provide a good descrip-
tion of the concept of survivability, they do not have the mathematical issue to
lead to a topological property in network design. We know that, if a network (a
graph) is k-edge-connected, after the failure of k−1 links, the network remains
functional. Analogously, if a network is k-vertex-connected, after the failure
of k − 1 peers, the network remains functional. In the first case, the problem
reduces to solve an instance of the well known minimum cut problem. The
algorithmic problem of testing k-connectivity has been well studied in the past
(e.g. in [88, 51, 49, 67]). Considering the theoretical side of the survivability
issue, we must cite the survivability telecommunication network design prob-
lem. Since we prefer to discuss this problem apart from the other topics, we
deepen it in the next section.

2.1 Survivability and the telecommunication network
design problem

Interesting in network survivability issue, is the application to the telecom-
munication network design problem. Given an undirected graph G = (V,E),
where V is the set of nodes and E is the set of links, the telecommunication
network design problem is to choose integer multiples of a capacity unit on the
links and route all the traffic demands so that the total capacity installation
cost is minimized. In many networks (e.g. ATM networks), the capacity is
considered undirected even if flow is directed. With respect to telecommuni-
cation network design problem, a network is said to be survivable if all of the
demands can be routed after the failure of any one of its links. Usually, a link
failure is considered as the event of decreasing the capacity of the link to zero.
Since in telecommunication networks the probability of two components fail-
ing simultaneously is very small, designing a network protected against single
component failures is considered satisfactory. In this case 2-edge-connectivity
of the underlying graph G is a necessary condition for the survivability of the
network, but it is clearly not sufficient. In order to ensure that the flow on the
network can be rerouted in case of a failure, sufficient spare (excess) capacity
must be available on the working links of the network (see [2, 70]).

The capacitated survivable network design problem can be formulated, with
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CHAPTER 2. INTRODUCTION TO SURVIVABILITY PROBLEMS 9

integer linear programming, as a multicommodity network flow problem, for
each failure scenario, linked by integral capacity variables [3]. However, there
are at least two reasons as to why such a model is not used in practice. The first
one is that it has a cubic number of variables and constraints in the number
of edges for a complete network and is, therefore, impractical for designing
networks except for very small instances. The second reason is that its solution
involves globally rerouting flow in the network whether the flow of a commodity
is disrupted by the failed edge or not. Solutions with minimal changes to
no-failure flows are preferred because it is highly undesirable in practice to
manipulate unaffected flow while restoring affected flows. Therefore, a number
of practical models and strategies have been developed for designing survivable
networks that admit local rerouting of flow on a failed edge; see for instance [4,
10, 43, 90]. We refer the reader to [81] for a well done survey on the survivable
network design problem.

Traditionally, in order to design and implement survivable networks, one
uses some variant of the following two different strategies: protection or restora-
tion. Protection techniques completely identify ahead time the routes that
disrupted flows will take and the capacities that will be used. Restoration
techniques determine which available capacity will be used for a specific failure
(and the routes that will be used for each affected demand) when the failure
occurs. Dedicated protection techniques [4, 19, 43] install and assign spare
capacity specifically for each commodity to protect it against the different pos-
sible failures, i.e., spare capacity is dedicated to a particular commodity. A
significant reduction in the amount of spare capacity can be achieved by us-
ing a shared protection strategy [3, 4, 47] when dealing with failures. In a
shared protection scheme, instead of preassigning spare capacity to protect
each commodity of the network independently, spare capacity is shared by
more than one commodity, and used as required to restore the disrupted flow.
Survivable networks design strategies can also be broadly classified into frame-
works: hierarchical (non-joint) and integrated (joint). The hierarchical one (for
instance [47, 76]) involves a two-stage approach; first, no-failure routing and
working capacities are determined, followed by rerouting of disrupted flows and
spare capacities. Solving these two problems simultaneously in an integrated
framework provides significant savings in installed capacity [61].

In [7], a heuristic method to solve survivable network design problem is
proposed. It consists of a scheme that explicitly introduce spare capacities on
directed cycles of the network, which are used to reroute disrupted flow under
failure.

A study of the polyhedra of splittable and unsplittable single arcset relax-
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CHAPTER 2. INTRODUCTION TO SURVIVABILITY PROBLEMS 10

ations of multicommodity flow capacitated network design problems is devel-
oped in [8].

2.2 Local restoration problems

The Spanning Tree Protocol (STP) and its several variants, are a family of
routing techniques used in network architectures like Ethernet. An STP routing
protocol routes the traffic on a spanning tree, namely, the shortest path tree
for some special node r of the network, the root, with respect to suitable arc
costs set by network operators. In the context of STP family protocols, in the
last years efficient protocols have been standardized, such as Rapid Spanning
Tree Protocol (RSTP) and Multiple Spanning Tree Protocol (MSTP)[1], so
that the design of networks based on such routing protocols is receiving a lot
of attention (see e.g. [53, 65, 78]).

The problem of designing tree-based routing strategies that are strongly re-
silient concerns, essentially, the maintenance of the connectivity of the network.
Since the tree-based routing topology uses just a small set of the communication
links of the underlying network, in these cases a restoration strategy consists,
in the event of a link failure, in a procedure that finds a set of new links that
restore topology connectivity. In this scenario, fault-tolerant communication
networks are required, to guarantee that traffic demands can be re-routed even
in failure situations. In particular, since re-routing of traffic can be rather
expensive and/or may cause long delay in a message’s transmission [31, 62],
in order to meet QoS constraints, a key property of the re-routing strategy is
the so-called strong resilience [14] or minimum service disruption property [22],
requiring that traffic, which is not affected by the failure, is not redirected. In
other words, under the minimum service disruption property, the number of
traffic demands that are re-routed is minimized. Further, in [22], the authors
study the relationship between load balance and service disruption. They pro-
pose a MSTP links weights assignment that implements any desired spanning
tree, minimizing the number of extra links needed to re-route traffic demands
affected by links failures.

Many authors have dealt with problems regarding the links weight setting
on communication networks. When dealing with OSPF networks this problem
is usually called traffic engineering and consists, roughly speaking, in deter-
mining a link weight system for a given objective. Most of the papers on this
topic aim at balancing the network load by minimizing certain cost functions
(see for instance [32, 33, 63, 87]). In particular, in [32] the authors show that
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CHAPTER 2. INTRODUCTION TO SURVIVABILITY PROBLEMS 11

optimizing link weights to balance load for a given traffic matrix is NP-hard
and they propose a local search heuristic. In [87] the authors prove that there
exists a set of weights in OSPF such that the resulting shortest paths are the
same as the optimal routes derived from the optimization model where traffic
can be split among equal cost paths. Such a set of link weights can be derived
by solving the dual of a linear programming formulation. Finally, in [63] the
same problem is address however, here the authors consider also the possibility
that a link may fail and therefore try to choose weights so that overloads during
transient link failures are minimized.

In case of single link failure, the problem of finding the best link which re-
connects the communication topology (swap arc) with efficient techniques was
studied by Nardelli et al. [62] and, with distributed algorithms, by Flocchini et
al. [31]. In particular, the problem of minimum service disruption in networks
using the Multiple Spanning Tree Protocol has been addressed by De Sousa
et al. in [22]. In the next two chapter we examine, in a deeper way, network
design techniques to provide a quick restoration procedure in case of single or
multiple link failures.
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Chapter 3

Single link failure restoration

In network survivability, one of the most common failure situation that can
affect the functioning of an interconnected system, is a link break. As we for-
merly said, a link failure may interrupt the delivery of basic services, specially
in SPT routing protocols. Thus, we are interested in developing a survivable
network design strategy for SPT protocol family.

Since in these routing protocols there is a good performance implementation
of the shortest path tree routine, the standard way to use an SPT protocol is
to assign a weight to each edge in the network, so that the routine builds
the communication topology depending on the operator weights assignment.
Therefore, the engineers set low weights for suitable edges and high weights
for bad (expensive to use) edges. Furthermore, we are interested in planning
a network such that, there exists a weight assignment that allows to build a
“robust” tree routing topology. With the term robust we mean that the new
routing topology built after a link failure, differs from the first one for at most
one edge. Hence, we formally provide, by proving several properties, a criterion
to identify whether a network has this survivability property or not.

We consider the following setting. We are given a communication network
G = (V,E), that we first suppose to be undirected. Consider |E| + 1 scenar-
ios, each corresponding either to the failure of some link e ∈ E, the back-up
scenario, or to the no-failures case, the primary scenario. For each scenario, as
in SPT protocols, traffic will be routed on a spanning tree of the network that
is operational in that scenario. Therefore, in the primary scenario, traffic will
be routed on a spanning tree T (∅) of G; in the back-up scenario corresponding
to the failure of link e ∈ E, traffic will be routed on a spanning tree T (e) of
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CHAPTER 3. SINGLE LINK FAILURE RESTORATION 13

G′ = (V,E \ {e}). (In the following, with an abuse of notation, we indicate
with G \ {e} the subgraph G′ = (V,E \ {e}).)

By SPT protocols setting, we have a communication network G and a root
node r, so that, by our choice of the cost function w : E 7→ Z+, we get T (∅) as
a shortest path tree of G, while T (e), e ∈ E, as a shortest path tree of G \ {e}.
The spanning tree T (∅) is called the primary tree; the paths in the primary
tree are called primary paths and the primary path between u and v is denoted
by Puv(∅).

To clarify our way to proceed, we now explain the chapter organization. We,
first, show that an undirected network G has the 1-restoration property if and
only if it is 2-edge-connected. We also give a different proof that every span-
ning tree T of a 2-edge-connected undirected network G has the 1-restoration
property: the proof includes a very simple procedure for assigning the costs on
the edges so that T has the 1-restoration property. We then deal with directed
networks. We show that deciding whether a directed network G has the 1-
restoration property is NP-hard (therefore, this decision problem can unlikely
be solved by an algorithm with time-complexity bounded by a polynomial in
the size of the network), already when each node of G has distance at most 2
from the root r. On the sunny side, the problem is easy when each node has
distance 1 from r and it is easy to check whether a given spanning arborescence
T has the 1-restoration property.

To avoid any ambiguity, we explain here the notation used in the rest of
the discussion. For the sake of simplicity, in the following, we will use the term
2-connected instead of 2-(edge)-connected. For a subset of nodes S ⊆ V of an
undirected network, we denote by δG(S) the set of edges in E(G) with exactly
one endpoint in S. For a subset of nodes S ⊆ N of a directed network, we
denote by δ+

G(S) the set of edges in A(G) outgoing S, and δ−G(S) the set of
edges incoming S.

3.1 1-restoration property for undirected networks

In this section we deal with networks modeled as undirected graphs. We, for-
mally, introduce a property that guarantees that the communication topology
is resilient to single link failure, when we use SPT routing protocols.

Definition 1. Given an undirected graph G = (V,E) and T a spanning tree
over G. We say that T has the 1-restoration property, with respect to G, if
there exist a root vertex r and a cost function w : E 7→ Z+ such that:
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CHAPTER 3. SINGLE LINK FAILURE RESTORATION 14

• T is T (∅) (T is the unique shortest path tree over G respect to r and the
weight function w);

• for each e ∈ T there exists f ∈ G \ T such that T (e) = T \ {e} ∪ {f}
(T \ {e} ∪ {f} is the unique shortest path tree over G \ {e} respect to r
and the weight function w).

Note that, given a network G = (V,E) and a spanning tree routing topology
T over G that has the 1-restoration property, for each link e in T we have that,
for each pair of nodes u, v that do not use e in their primary path, the primary
path is still operational when e fails, i.e. Puv(∅) ⊆ T (e), if e 6∈ Puv(∅). As
a consequence, we define the network survivability in the event of single link
failure.

Definition 2. Given an undirected graph G = (V,E), we say that G has the
1-restoration property if there exists a spanning tree T over G, such that T has
the 1-restoration property respect to G.

Now, we provide an equivalent property to the 1-restoration property that
does not involve the definition of the root and the edges costs.

Definition 3. Let G = (V,E) be an undirected graph and T a spanning tree
over G. We say that T has the 1-exchange property if, for each edge e ∈ E(T ),
there exists f ∈ E(G) \ E(T ) such that T (e) = (T \ {e}) ∪ {f} is a spanning
tree.

The following lemma reduces the problem of checking whether a spanning
tree T of a graph G has the 1-restoration property to checking whether T has
the 1-exchange property:

Lemma 1. Let G = (V,E) be an undirected network. A spanning tree T has
the 1-restoration property if and only if T has the 1-exchange property.

Proof. Necessity is trivial.
Sufficiency. Choose r arbitrarily. Number arbitrarily all edges f ∈ E(G) \

E(T ) from 1 to k = |E(G)\E(T )| and let if be the index, or number, associated
to edge f . Consider the following cost function on the edges:

w(e) =
{

1 if e ∈ E(T )
n · ie if e ∈ E(G) \ E(T )
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CHAPTER 3. SINGLE LINK FAILURE RESTORATION 15

We first show that the following statements hold, with respect to the cost
function w: (i) T is the unique shortest path tree rooted at r of G; (ii) for
each e ∈ E(T ), there exists f ∈ E(G) \ E(T ) such that (T \ {e}) ∪ {f} is the
unique shortest path tree rooted at r of the network G \ {e}.

Proof of (i). Assume that T is not the unique shortest path tree rooted at
r of G. Then, there must exist a path from r to some node v that is no longer
than the (r, v)-path in T and uses at least one edge f not belonging to E(T ).
This yields to a contradiction, since such path has a cost greater than n − 1,
while (r, v)-path in T has cost less or equal than n− 1.

Proof of (ii). Let e be an edge of T and let Se and S̄e be the nodes in the
two components of T \ {e}, with r ∈ Se. Let f be the minimum cost edge in
δG{e}(Se). We claim that T (e) = (T \ {e}) ∪ {f} is the unique shortest path
tree rooted at r of G \ {e}. Suppose the contrary. Then, in G \ {e} there must
exist a path P from r to some node v that is no longer than the (r, v)-path in
T (v) and uses at least one edge h not belonging to E(T (e)). If v ∈ Se, P has a
cost greater than n− 1 while the (r, v)-path in T (e) has cost less than or equal
to n − 1, a contradiction. Viceversa, if v ∈ S̄e, P must use at least one edge
from δG\{e}(Se) and its cost is greater than (if + 1)n − 1: this is trivial if P
uses some edge from δG\{e}(Se) different from f , else it follows from the fact
that P uses f and an edge in E(G) \ E(T ). Since the (r, v)-path in T (e) has
cost less or equal than ifn+ n− 1, we have again a contradiction.

Finally, it is easy to see that (i) and (ii) imply that the pair (r, w) has the
1-restoration property, and since T is the primary tree defined by (r, w), also
T has the 1-restoration property.

Hence, Lemma 1 proves that the 1-restoration property is equivalent to the
1-exchange property.

An example of an undirected network (and a spanning tree) with the 1-
restoration property is depicted in Figure 3.1.

The next lemma shows that the 1-exchange property holds indeed for every
spanning tree T , when G is 2-connected. Also 2-connection of G is a necessary
condition for the 1-exchange property to hold. We recall that checking whether
a network is 2-connected can be easily performed in linear time with a Depth-
First-Search of the network [83].

Lemma 2. Let G(V,E) be an undirected network. If G is 2-connected then
each spanning tree T has the 1-exchange property. Vice versa, if there exists
a spanning tree T , over G, that has the 1-exchange property, then G is 2-
connected.
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Figure 3.1: An undirected network with the 1-restoration property.

Proof. First suppose that G is 2-connected and let T be a spanning tree of G.
Let e be an edge of T and (Se, S̄e) the subsets of nodes in the two components
of T \ {e}. Since G is 2-connected, there exists f ∈ δG(Se), f 6= e. Then,
T (e) = (T \ {e}) ∪ {f} is a spanning tree and we are done.

Now suppose that there exists a spanning tree T , over G, that has the 1-
exchange property. If G is not 2-connected, then there exists an edge e ∈ E
such that G \ {e} is not connected. Therefore, e must belong to T . Trivially,
T can not have the 1-exchange property, a contradiction.

If we put together Lemma 1 and Lemma 2 we get the main result of this
section:

Theorem 1. An undirected network has the 1-restoration property if and only
if is 2-connected. Moreover, each spanning tree of a 2-connected network has
the 1-restoration property.

We want to emphasize that the proof of Lemma 1 shows a simple proce-
dure for endowing, in 2-connected networks and through the SPT protocol, a
spanning tree T with the 1-restoration property. We recap this procedure in
the following.

First, we arbitrarily choose a root r. Then we arbitrarily number all edges
f ∈ E(G) \ E(T ) from 1 to k = |E(G) \ E(T )| and let if be the number
associated to edge f . Finally, we define the following cost function on the
edges:

w(e) =
{

1 if e ∈ E(T )
n · ie if e ∈ E(G) \ E(T )
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3.2 1-restoration property for directed networks

In this section we extend the 1-restoration property to the scenario in which
the communication network is modeled as a directed graph G = (N,A). Our
definitions directly extend to the case in which G is directed. In this case, we
assume that each traffic demand is directed from a root r to a node v and
therefore, instead of spanning trees, we deal with spanning arborescences, i.e.
directed spanning trees, rooted at r (note that r is now given from the outset
and cannot be chosen).

Definition 4. Given a directed graph G = (N,A) and T a spanning arbores-
cence over G, rooted at r ∈ N . We say that T has the 1-restoration property,
with respect to G, if there exists a cost function w : A→ Z+ such that:

• T is T (∅) (T is the unique shortest path arborescence over G respect to
w);

• for each a ∈ T there exists b ∈ G \ T such that T (a) = T \ {a} ∪ {b}
(T \{a}∪{b} is the unique shortest path arborescence over G\{a} respect
to w).

Finally, we provide the definition of the 1-restoration property for directed
graphs.

Definition 5. Given a directed graph G = (N,A) and a root node r ∈ N , we
say that G has the 1-restoration property if there exists a spanning arborescence
T over G, rooted at r, such that T has the 1-restoration property respect to G.

As in the previous section, we start with an equivalent definition to the
1-restoration property that does not involve the definition of the arc costs.

Definition 6. Let G = (N,A) be a directed network and T a spanning ar-
borescence over G. We say that T has the 1-exchange property if, for each
edge a ∈ A(T ), there exists b ∈ A(G) \ A(T ) such that T (a) = (T \ {a}) ∪ {b}
is a spanning arborescence.

Lemma 3. Let G = (N,A) be a directed network and r ∈ N . A spanning
arborescence T , rooted at r, has the 1-restoration property if and only if T has
the 1-exchange property.
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Proof. Necessity is trivial.
Sufficiency. Number the arcs in A(G) \ A(T ) from 1 to |A(G) \ A(T )| so

that the following property holds: for each sub-arborescence Tv of T with root
v 6= r, the number, or index, ia associated to every arc a ∈ δ−G(v) is smaller
than the index if associated to every arc f ∈ δ−G(u), if u is a descendant of v
in Tv. Notice that this can be easily done in polynomial time, e.g. considering
first all nodes v having distance 1 from r in the tree T and numbering the arcs
a ∈ δ−G(v), then all the nodes v having distance 2 from r, and so on. With this
numbering, we apply the same cost function w of Lemma 1.

Let us prove that w is such that (i) T is the unique shortest path ar-
borescence with root r for network G and (ii) for each a ∈ A(T ), there exists
f ∈ A(G) \A(T ) such that T (a) = (T \ {a}) ∪ {f} is the unique shortest path
arborescence rooted at r for the network G \ {a}.

Proof of (i). It is a simple extension of the proof of Lemma 1.
Proof of (ii). Let a be an arc of T and let Sa and S̄a, with r ∈ Sa, be the

subsets of nodes respectively in the first and second component of T \ {a}. Let
v ∈ S̄a be the root of the sub-arborescence Tv that is the second component of
T \ {a}.

We know that there exists an arc f such that T (a) = (T \ {a}) ∪ {f} is an
arborescence: necessarily, f ∈ δG\{a}(v), since an arborescence must have one
arc incoming in v. Let f be the minimum cost arc in δG\{a}(v). Notice that
f is also the minimum cost arc in δ−G\{a}(S̄a): in fact, an arc in δ−G\{a}(S̄a)
either ends in v or it ends in a descendant of v, but in the latter case, the
cost function w implies that this arc has cost greater than w(f). With this
observation, proving that T (a) is the unique shortest path arborescence in
G \ {a} rooted at r is then an extension of the proof of Lemma 1.

An example of a directed network (and a spanning arborescence) with the
1-restoration property is illustrated in Figure 3.2.

Building upon the previous lemma, we define another reformulation of the
1-restoration property for some spanning arborescence T of a directed network
G.

Lemma 4. Let G = (N,A) be a directed network and T a spanning arbores-
cence rooted at a node r of G. T has the 1-restoration property if and only
if, for each v ∈ N(T ), there exists (u, v) ∈ A(G) \ A(T ) such that u is not a
descendant of v in T .
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Figure 3.2: A directed network with the 1-restoration property.

Proof. We prove that the above statement is equivalent to requiring that, for
each a ∈ A(T ), there exists f ∈ A(G)\A(T ) such that T (a) = (T \{a})∪{f} is
a spanning arborescence rooted at r. Then one can use Lemma 3 to conclude.

First we prove necessity. Let a = (u, v) ∈ A(T ) and Sa, S̄a be the sets
of nodes in the two components associated to the removal of a from T , with
r ∈ Sa. If in G \ {a} all the arcs incoming in v come from a descendant of v
in T , then there exists no arc (u, v) ∈ A(G) \ A(T ), with u ∈ Sa. Therefore,
in any spanning arborescence of G \ {a}, rooted in r, there are at least two
arcs that do not belong to T , namely, one connecting Sa and S̄a, and the other
entering v. So, in this case, there is no arc f : (T \{a})∪{f} is an arborescence
rooted at r.

Now we prove sufficiency. Let f = (u, v) be an arc such that u is not
a descendant of v in T . Note that u ∈ Se, therefore (u, v) reconnects the
components Se and S̄e. It follows that T (a) = T \ {a} ∪ {f} is a spanning
arborescence. The result follows.

We point out that both the previous lemmas provide an easy way to check
in polynomial time if a given arborescence T of a directed network G has the
1-restoration property. Also, when T has the 1-restoration property, the proof
of Lemma 3 also provides a simple procedure for assigning weights to the arcs
of G as to define T through the SPT protocol.

Existence of arborescences with 1-restoration property

In this section we provide our complexity results, regarding the identification
of 1-restoration property in directed graphs. In order to prove the hardness
results, we provide a lemma regarding the existence of peculiar arborescences
with the 1-restoration property.
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Lemma 5. Let G = (N,A) be a directed graph, and r ∈ N the root node. G
has the 1-restoration property if and only if there exists an arborescence T with
the 1-restoration property such that, for each node u at distance one from r,
we have that (r, u) ∈ A(T ).

Proof. Sufficiency is trivial.
Necessity. We show how to construct such an arborescence T , given any

arborescence T̄ that has the 1-restoration property. Suppose that there is a
node v : dG(r, v) = 1 6= dT̄ (r, u) (otherwise we are done). Let f = (r, v) /∈
A(T̄ ), and let a ∈ A(T̄ ) be the arc incoming in v in the tree T . Finally, let
T := (T̄ \ {a}) ∪ {f}. It is easy to see that T is an arborescence rooted at r.
We claim that T has the local tree-restoration property. Then, we one can use
induction to conclude.

Using Lemma 4, it is enough to check if every node v 6= r has an incoming
arc (u, v) for some u that is not a descendant of v in T . Notice that, for each
node u ∈ N , the set of nodes DT (u) that are descendant of u in T is contained
in the set of nodes DT̄ (u) that are descendant of u in T̄ (i.e. DT (u) ⊆ DT̄ (u)).
Therefore, since T̄ satisfies the hypothesis of Lemma 4, it follows that this holds
also for T . The result follows.

Now, we prove that deciding if a directed graph G, with a given root r, has
the 1-restoration property, is, in general, an intractable problem.

Theorem 2. Let G = (N,A) be a directed network and r ∈ N . Deciding if
(G, r) has the 1-restoration property is NP-hard.

Proof. In Lemma 4 we have shown that a spanning arborescence T has the
1-restoration property if and only if for each v ∈ V \ {r} there is an arc
(u, v) ∈ E(G) \ E(T ) such that u is not a descendant of v. We will prove here
that, given a network G = (V,E) and a node r ∈ V , deciding if there exist a
spanning arborescence T rooted at r with the latter property is NP-complete,
by using a reduction from k-coloring problem. Let us restate both problems as
decision problems.

Problem LTR: Given a directed graph G = (V,E) and a root
node r ∈ V , is there an arborescence T such that the following
holds: for each v ∈ V \ {r} there is an arc (u, v) ∈ E(G) \ E(T )
such that u is not a descendant of v in T?
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Problem k-COL: Given an undirected graph B = (V,E) and an
integer k > 0, does there exist a function cl : V 7→ {1, 2, . . . k} such
that cl(u) 6= cl(v) for each {u, v} ∈ E?

Given an instance (B, k) of k-COL problem, let |V (B)| = n be the number
of vertices and |E(B)| = m the number of edges. We build the corresponding
instance (G, r) of LTR problem as follows. The set of nodes V (G) includes,
besides all the nodes vh ∈ V (B), a root node r, a node c0j , for each color
j = 1, . . . , k, and a node cij for each edge ei, i = 1, . . . ,m, and each color j,
j = 1, . . . , k. Formally,

V (G) = {r} ∪ {v1, . . . , vn} ∪
{cij : j = 1, 2, . . . k and i = 0, 1, . . .m}.

The set of arcs E(G) is defined as follows:

E(G) = {(r, c0j ) : j = 1, 2, . . . , k} ∪
{(c0j , c0j+1) : j = 1, . . . , k − 1} ∪ {(c0k, c01)} ∪
{(cij , ci+1

j ) : i = 0, 1, . . . ,m− 1; j = 1, . . . k} ∪
{(cmj , vh) : j = 1, . . . , k;h = 1, . . . , n} ∪
{(vh, cij) : vh is an endpoint of ei ∈ E(G),
h = 1, . . . , n; j = 1, 2, . . . , k}.

Suppose k ≥ 2 (otherwise k-COL problem is trivial). We show that a
solution for the instance (B, k) of k-COL implies the existence of a solution for
the instance (G, r) of LTR and vice versa.

Given a solution of k-COL, we build a spanning arborescence T rooted at
r with the 1-restoration property in the following way. T will include (i) arcs
(r, c0j ) for j = 1, . . . , k; (ii) arcs (cij , c

i+1
j ) for i = 0, . . . ,m− 1 and j = 1, . . . , k;

(iii) an arc (cmj , vh) for each node vh, h = 1, . . . , n, if and only if vh is colored
with color j in the solution of k-COL on B, i.e. if and only if c(vh) = j.
Trivially, T is a spanning arborescence on G rooted at r.

Now we show that for each node v ∈ V (G)\{r} there exist an arc f = (u, v)
such that u is not a descendant of v in T . For a node c0j , such an arc is
f = (c0j−1, c

0
j ) if j 6= 1, else, f = (c0k, c

0
1). For a node vh, such an arc can

be (cmj , vh) for some j 6= c(vh). Finally, for a node cij , with i ≥ 1, we can
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choose f as one between the two arcs (vl̄, cij) and (vh̄, cij) incoming cij , since by
construction at least one among vl̄ and vh̄ is not a descendant of cij in T : in
fact, recall that ei = {vh̄, vl̄} ∈ E(B) and at most one can have the color j in
the solution of k-COL.

Now we show that a solution for the instance (G, r) of LTR implies the
existence of a solution for the instance (B, k) of k-COL. Suppose we have an
arborescence T ⊆ G rooted at r that is a solution of LTR. It follows from
Lemma 5 that, without loss of generality, we can assume that (r, c0j ) ∈ E(T )
for j = 1, . . . , k. Let Prvh

be the path from node r to a node vh defined by
T . Observe that this path must contain all the arcs (c0j , c

1
j ), . . . (c

m−1
j , cmj ) for

exactly one j in 1, .., k (in general, j depends on vh). We claim that assigning
the color j to the node vh, for each h = 1, . . . , n, leads to a feasible solution for
the instance (B, k) of the k-COL problem. Suppose the contrary. Then there
must be at least a pair of nodes (say vh and vl) that have been assigned to a
same color j and that are connected by an edge ei = {vh, vl} ∈ E(B). This
means that both nodes vh and vl are descendant of cij in T . Since the only
arc incoming node cij , different from (vh, cij) and (vl, cij), is (ci−1

j , cij) ∈ E(T ),
it follows that there is not any arc (u, cij) ∈ E(G) \ E(T ) such that u is not
a descendant of cij in T , i.e. T is not a solution for the instance (G′, r), a
contradiction.

After this hardness result, we have investigated the problem searching for
some special cases that can be polynomially solvable. Therefore, we have
strengthened the previous complexity result, considering the “distance” from
the root node. For a directed network G = (N,A) the distance of a node v ∈ V
from r is the minimum number of arcs (hops) in a directed path from r to v.
We denote by k(G, r) the maximum distance of a node v ∈ V from r.

We show in the following that, deciding whether a pair (G, r) has the 1-
restoration property can be done in polynomial time if k(G, r) = 1, while it
is NP-hard otherwise, even for k(G, r) = 2. Firstly, we restrict our study to
instances of the LTR problem with k(G, r) = 1.

Theorem 3. Let G = (N,A) be a directed network and r ∈ N such that
k(G, r) = 1. Deciding if (G, r) has the 1-restoration property can be done in
polynomial time.

Proof. Let T be the arborescence rooted at r, such that A(T ) :=
{(r, u), for all u ∈ N \ {r}}. From Lemma 5, we know that if (G, r) has
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the 1-restoration property, then T has the 1-restoration property. We check
in polynomial time if T has the 1-restoration property using Lemma 4. The
result follows.

We close the analysis with the following hardness result.

Theorem 4. Let G = (N,A) be a directed network and r ∈ N such that
k(G, r) ≥ 2. Deciding if (G, r) has the 1-restoration property is NP-hard.

Proof. We prove the NP-hardness of our problem by reducing it from the hard
combinatorial problem SAT-3 (see [21]) defined as follows.

Instance: a boolean expression in conjunctive normal form with
m clauses, C = {C1, C2, . . . , Ch, . . . , Cm}, and n variables, X =
{x1, x2, . . . , xj , . . . , xn}, such that each variable occurs in the
clauses at most three times.

Question: is there a truth variables assignment that satisfies the
boolean expression?

Let us recall that a clause is a set of literals, where a literal is either one of
the variables xj or the negation of one of the variables, x̄j .

Let ISAT−3 be an instance of SAT-3. Consider the following simplification
procedure: for each variable xj that occurs in the boolean expression only in
the form xj (and never in the form x̄j), we delete all the clauses containing
it. Similarly, for each variable xj that occurs only in the form x̄j (and never
in the form xj), we delete all the clauses containing it. After this procedure,
we have a new instance of SAT-3, that we denote I ′SAT−3 such that ISAT−3

is a YES-instance if and only if I ′SAT−3 is a YES-instance. In fact, a solution
for ISAT−3 is a simple extension of a solution of I ′SAT−3. We extend the truth
assignment that satisfies I ′SAT−3 by fixing to TRUE the deleted variables that
occur only in xj form, and fixing to FALSE the deleted variables that occur
only in x̄j form.

Therefore, without loss of generality, we consider only ISAT−3 instances
where each variable appears at least one time as xj and one as x̄j . So we say
that a variable xj is of Type A if it occurs two times as xj and one time as
x̄j , it is of Type B if it occurs two times as x̄j and one time as xj , it is of
Type C if it occurs one time as xj and one time as x̄j .

Let us show how to build an instance ILTR of our problem from ISAT−3. Let
us recall that a instance ILTR is a directed graph G = (N,A) with a specified
root node r ∈ N . In the following we show how to construct G step by step, by
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assigning nodes and arcs to the clauses and variables of ISAT−3. Let us denote
by N [Ch] and N [xj ] the sets of nodes associated to clause Ch and variable xj ,
respectively, for all h = 1, 2, . . . ,m and j = 1, 2 . . . , n. The node set of G is

N = {r} ∪
⋃

h∈{1,...,m}

N [Ch] ∪
⋃

j∈{1,...,n}

N [xj ].

We define the sets of nodes associated to clauses as N [Ch] = {ch, c′h}, for
h = 1, 2, . . . ,m. Likewise, we define the sets of nodes associated to the variables
in the following way: for j = 1, 2, . . . , n if xj is a variable that occurs three
times in the boolean formula we set

N [xj ] = {vj1, v
j
2, v

j
3, f

j
1 , f

j
2 , f

j
3 , a

j
1, a

j
2, a

j
3, a

j
4, r

j
1, r

j
2, b

j
1, b

j
2, b

j
3, g

j}

otherwise if xj occurs two times we set

N [xj ] = {vj1, v
j
2, f

j
1 , f

j
2 , a

j
1, a

j
2, r

j
1, b

j
1}.

Let us denote by A[Ch], for h = 1, 2, . . . ,m, the set of the arcs that are
incident to couples of nodes in N [Ch] ∪ {r}, and let us denote by A[xj ], for
j = 1, 2, . . . , n, the set of arcs that are incident to couples of nodes in N [xj ].
Let us denote by AC [xj ], for j = 1, 2, . . . , n, the set of arcs that go from a node
in
⋃
h∈[1,m]N [Ch] to a node in A[xj ] or viceversa. The arc set for G is

A =
⋃

h∈{1,...,m}

A[Ch] ∪
⋃

j∈{1,...,n}

A[xj ] ∪
⋃

j∈{1,...,n}

AC [xj ].

For h = 1, 2, . . . ,m, we define:

A[Ch] = {(ch, c′h), (c′h, ch), (r, c′h)}.

For j = 1, 2, . . . , n, we define:

A[xj ] = A1[xj ] ∪A2[xj ] ∪A3[xj ] ∪B[xj ] ∪R[xj ].

From now on, we refer to cα(j), cβ(j) and cγ(j), respectively as the node asso-
ciated to the clause where the first, the second and the third occurrence of a
variable xj . More precisely, if variable xj is of Type A, we refer to Cα(j) and
Cβ(j) as the clauses that contain the literal xj , with α(j) < β(j), and to Cγ(j)

as the clause that contains the literal x̄j . If variable xj is of Type B, we refer
to Cα(j) and Cβ(j) as the clauses that contain the literal x̄j , with α(j) < β(j),
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Figure 3.3: The structure built for each variable xj of Type A. In the figure,
all the arcs coming from above are outgoing r.

and to Cγ(j) as the clause that contains the literal xj . If variable xj is of Type
C, we refer to Cα(j) as the clause that contains the literal xj and to Cβ(j) as
the clause containing the literal x̄j .

If a xj variable is of Type A we define (see Figure 3.3):

A1[xj ] = {(vj1, a
j
1), (f j1 , g

j), (gj , aj1)}
A2[xj ] = {(vj2, a

j
2), (f j2 , a

j
2)}

A3[xj ] = {(f j3 , a
j
3), (aj3, a

j
4), (vj3, a

j
4), (bj3, a

j
4), (aj4, b

j
3)}

B[xj ] = {(rj1, v
j
1), (aj1, r

j
1), (rj1, a

j
3), (aj4, r

j
1), (bj1, r

j
1), (rj1, b

j
1),

(rj2, v
j
2), (aj2, r

j
2), (rj2, f

j
3 ), (aj3, r

j
2), (bj2, r

j
2), (rj2, b

j
2), (aj4, g

j)}

R[xj ] = {(r, vj1), (r, f j1 ), (r, vj2), (r, f j2 ), (r, f j3 ), (r, vj3), (r, bj1), (r, bj2), (r, bj3)}

AC [xj ] = {(aj1, cα(j)), (cα(j), f
j
1 ), (aj2, cβ(j)), (cβ(j), f

j
2 ),

(aj4, cγ(j)), (cγ(j), v
j
3)}.

If a xj variable is of Type B we define the arc sets in same way of the previous
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Figure 3.4: The structure built for each variable xj of Type C. In the figure,
all the arcs coming from above are outgoing r.

case, except that we exchange nodes vji and f ji :

A1[xj ] = {(f j1 , a
j
1), (vj1, g

j), (gj , aj1)}
A2[xj ] = {(f j2 , a

j
2), (vj2, a

j
2)}

A3[xj ] = {(vj3, a
j
3), (aj3, a

j
4), (f j3 , a

j
4), (bj3, a

j
4), (aj4, b

j
3)}

B[xj ] = {(rj1, f
j
1 ), (aj1, r

j
1), (rj1, a

j
3), (aj4, r

j
1), (bj1, r

j
1), (rj1, b

j
1),

(rj2, f
j
2 ), (aj2, r

j
2), (rj2, v

j
3), (aj3, r

j
2), (bj2, r

j
2), (rj2, b

j
2), (aj4, g

j)}

R[xj ] = {(r, f j1 ), (r, vj1), (r, f j2 ), (r, vj2), (r, vj3), (r, f j3 ), (r, bj1), (r, bj2), (r, bj3)}

AC [xj ] = {(aj1, cα(j)), (cα(j), v
j
1), (aj2, cβ(j)), (cβ(j), v

j
2),

(aj4, cγ(j)), (cγ(j), f
j
3 )}.

Finally if variable xj is of Type C, we define (see Figure 3.4):

A1[xj ] = {(vj1, a
j
1), (f j1 , a

j
1)}

A2[xj ] = {(f j2 , a
j
2), (vj2, a

j
2)}

A3[xj ] = ∅

B[xj ] = {(rj1, v
j
1), (aj1, r

j
1), (rj1, f

j
2 ), (aj2, r

j
1), (bj1, r

j
1), (rj1, b

j
1)}

R[xj ] = {(r, vj1), (r, f j1 ), (r, vj2), (r, f j2 ), (r, bj1)}

AC [xj ] = {(aj1, c
j
α(j)), (cα(j), f

j
1 ), (aj2, cβ(j)), (cβ(j), v

j
2)}.
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This ends the construction of ILTR. We must now show that G has the 1-
restoration property if and only if ISAT−3 is satisfiable.

Let us assume that ISAT−3 instance is a YES-instance, we must show that
also ILTR is a YES-instance. Using Lemma 4 we will provide a solution for
ILTR, e.g. we will build a rooted arborescence such that for each node there
is a backup arc, (u, v), with u not descendant of v. We name primary arc for
node v an arc incoming in v that belongs to the arborescence and backup arc for
node v an arc incoming in v that is outgoing a node u, that is not descendant
of v respect to the arborescence (Lemma 4). The idea is that a node ch is
descendant of a node in N [xj ] in our ILTR solution if and only if variable xj
satisfies clause Ch in solution of ISAT−3.

Let us consider a truth assignment which satisfies the ISAT−3 instance. We
associate to each clause Ch the variable that satisfies it, say xj . If there is more
than one variable satisfying it, then we pick one arbitrarily.

If xj is of Type A, we identify five subcases:

(a) literal xj satisfies the clause Cα(j),

(b) literal xj satisfies the clause Cβ(j),

(c) literal x̄j satisfies the clause Cγ(j),

(d) literal xj satisfies both the clauses Cα(j) and Cβ(j) ,

(e) variable xj does not satisfy any clause.

When building the solution of ILTR, for subcase (a) we choose the primary and
backup arcs associated to xj , i.e. those incoming each node in N [xj ]∪N [Cα(j)],
in the following way (see Figure 3.5):

vj1 : arc (r, v1) is a primary arc and (rj1, v
j
1) is a backup arc;

f j1 : (r, f j1 ) is a primary arc and (cα(j), f
j
1 ) is a backup arc;

aj1 : (vj1, a
j
1) is a primary arc and (gj , aj1) is a backup arc;

cα(j) : (aj1, cα(j)) is a primary arc and (c′α(j), cα(j)) is a backup arc;

c′α(j) : (r, c′α(j)) is a primary arc and (cα(j), c
′
α(j)) is a backup arc;

vj2 : (r, vj2) is a primary arc and (rj2, v
j
2) is a backup arc;
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Figure 3.5: The fragment of the solution of ILTR, for the structure of xj , if xj
is of Type A and, in ISAT−3, literal xj satisfies the clause Cα(j). In the figure,
all the arcs coming from above are outgoing r. The solid arcs are primary arcs,
and the dotted arcs are backup arcs.

f j2 : (r, f j2 ) is a primary arc and (cβ(j), f
j
2 ) is a backup arc;

aj2 : (f j2 , a
j
2) is a primary arc and (vj2, a

j
2) is a backup arc;

f j3 : (r, f j3 ) is a primary arc and (rj2, f
j
3 ) is a backup arc;

vj3 : (r, vj3) is a primary arc and (cγ(j), v
j
3) is a backup arc;

aj3 : (f j3 , a
j
3) is a primary arc and (rj2, a

j
3) is a backup arc;

aj4 : (vj3, a
j
4) is a primary arc and (bj3, a

j
4) is a backup arc;

rj1 : (aj4, r
j
1) is a primary arc and (bj1, r

j
1) is a backup arc;

rj2 : (aj2, r
j
2) is a primary arc and (bj2, r

j
2) is a backup arc;

bj1 : (r, bj1) is a primary arc and (rj1, b
j
1) is a backup arc;

bj2 : (r, bj2) is a primary arc and (rj2, b
j
2) is a backup arc;

bj3 : (r, bj3) is a primary arc and (aj4, b
j
3) is a backup arc;

gj : (f j1 , g
j) is a primary arc and (aj4, g

j) is a backup arc;
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Figure 3.6: The fragment of the solution of ILTR, for the structure of xj , if xj
is of Type A and, in ISAT−3, literal xj satisfies the clause Cβ(j). In the figure,
all the arcs coming from above are outgoing r. The solid arcs are primary arcs,
and the dotted arcs are backup arcs.

Analogously, for subcase (b), the primary and backup arcs associated to xj
that are incoming each node in N [xj ] ∪N [Cβ(j)] are (see Figure 3.6):

vj1 : (r, vj1) is a primary arc and (rj1, v
j
1) is a backup arc;

f j1 : (r, f j1 ) is a primary arc and (cα(j), f
j
1 ) is a backup arc;

aj1 : (gj , aj1) is a primary arc and (vj1, a
j
1) is a backup arc;

vj2 : (r, vj2) is a primary arc and (rj2, v
j
2) is a backup arc;

f j2 : (r, f j2 ) is a primary arc and (cβ(j), f
j
2 ) is a backup arc;

aj2 : (vj2, a
j
2) is a primary arc and (f j2 , a

j
2) is a backup arc;

cβ(j) : (aj2, cβ(j)) is a primary arc and (c′β(j), cβ(j)) is a backup arc;

c′β(j) : (r, c′β(j)) is a primary arc and (cβ(j), c
′
β(j)) is a backup arc;

f j3 : (r, f j3 ) is a primary arc and (rj2, f
j
3 ) is a backup arc;

vj3 : (r, vj3) is a primary arc and (cj3, v
j
3) is a backup arc;

aj3 : (rj1, a
j
3) is a primary arc and (f j3 , a

j
3) is a backup arc;
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Figure 3.7: The fragment of the solution of ILTR, for the structure of xj , if xj
is of Type A and, in ISAT−3, literal x̄j satisfies the clause Cγ(j). In the figure,
all the arcs coming from above are outgoing r. The solid arcs are primary arcs,
and the dotted arcs are backup arcs.

aj4 : (vj3, a
j
4) is a primary arc and (bj3, a

j
4) is a backup arc;

rj1 : (aj1, r
j
1) is a primary arc and (bj1, r

j
1) is a backup arc;

rj2 : (aj3, r
j
2) is a primary arc and (bj2, r

j
2) is a backup arc;

bj1 : (r, bj1) is a primary arc and (rj1, b
j
1) is a backup arc;

bj2 : (r, bj2) is a primary arc and (rj2, b
j
2) is a backup arc;

bj3 : (r, bj3) is a primary arc and (aj4, b
j
3) is a backup arc;

gj : (f j1 , g
j) is a primary arc and (aj4, g

j) is a backup arc;

We also define, for subcase (c), the primary and backup arcs associated to xj
that are incoming each node in N [xj ] ∪N [Cγ(j)] as follows (see Figure 3.7):

vj1 : (r, vj1) is a primary arc and (rj1, v
j
1) is a backup arc;

f j1 : (r, f j1 ) is a primary arc and (cα(j), f
j
1 ) is a backup arc;

aj1 : (gj , aj1) is a primary arc and (vj1, a
j
1) is a backup arc;

vj2 : (r, vj2) is a primary arc and (rj2, v
j
2) is a backup arc;
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f j2 : (r, f j2 ) is a primary arc and (cβ(j), f
j
2 ) is a backup arc;

aj2 : (f j2 , a
j
2) is a primary arc and (vj2, a

j
2) is a backup arc;

f j3 : (r, f j3 ) is a primary arc and (rj2, f
j
3 ) is a backup arc;

vj3 : (r, vj3) is a primary arc and (cj3, v
j
3) is a backup arc;

aj3 : (f j3 , a
j
3) is a primary arc and (rj1, a

j
3) is a backup arc;

aj4 : (aj3, a
j
4) is a primary arc and (bj3, a

j
4) is a backup arc;

cγ(j) : (aj4, cγ(j)) is a primary arc and (c′γ(j), cγ(j)) is a backup arc;

c′γ(j) : (r, c′γ(j)) is a primary arc and (cγ(j), c
′
γ(j)) is a backup arc;

rj1 : (aj1, r
j
1) is a primary arc and (bj1, r

j
1) is a backup arc;

rj2 : (aj2, r
j
2) is a primary arc and (bj2, r

j
2) is a backup arc;

bj1 : (r, bj1) is a primary arc and (rj1, b
j
1) is a backup arc;

bj2 : (r, bj2) is a primary arc and (rj2, b
j
2) is a backup arc;

bj3 : (r, bj3) is a primary arc and (aj4, b
j
3) is a backup arc;

gj : (f j1 , g
j) is a primary arc and (aj4, g

j) is a backup arc;

We also define, for subcase (d), the primary and backup arcs associated to
xj that are incoming each node in N [xj ] ∪N [Cα(j)] ∪N [Cβ(j)] as follows (see
Figure 3.8):

vj1 : (r, vj1) is a primary arc and (rj1, v
j
1) is a backup arc;

f j1 : (r, f j1 ) is a primary arc and (cα(j), f
j
1 ) is a backup arc;

aj1 : (vj1, a
j
1) is a primary arc and (gj , aj1) is a backup arc;

cα(j) : (aj1, cα(j)) is a primary arc and (c′α(j), cα(j)) is a backup arc;

c′α(j) : (r, c′α(j)) is a primary arc and (cα(j), c
′
α(j)) is a backup arc;

vj2 : (r, vj2) is a primary arc and (rj2, v
j
2) is a backup arc;
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Figure 3.8: The fragment of the solution of ILTR, for the structure of xj , if xj
is of Type A and, in ISAT−3, literal xj satisfies both the clauses Cα(j) and
Cβ(j). In the figure, all the arcs coming from above are outgoing r. The solid
arcs are primary arcs, and the dotted arcs are backup arcs.

f j2 : (r, f j2 ) is a primary arc and (cβ(j), f
j
2 ) is a backup arc;

aj2 : (vj2, a
j
2) is a primary arc and (f j2 , a

j
2) is a backup arc;

cβ(j) : (aj2, cβ(j)) is a primary arc and (c′β(j), cβ(j)) is a backup arc;

c′β(j) : (r, c′β(j)) is a primary arc and (cβ(j), c
′
β(j)) is a backup arc;

f j3 : (r, f j3 ) is a primary arc and (rj2, f
j
3 ) is a backup arc;

vj3 : (r, vj3) is a primary arc and (cγ(j), v
j
3) is a backup arc;

aj3 : (rj1, a
j
3) is a primary arc and (f j3 , a

j
3) is a backup arc;

aj4 : (rj1, a
j
4) is a primary arc and (bj3, a

j
4) is a backup arc;

rj1 : (aj4, r
j
1) is a primary arc and (bj1, r

j
1) is a backup arc;

rj2 : (aj3, r
j
2) is a primary arc and (bj2, r

j
2) is a backup arc;

bj1 : (r, bj1) is a primary arc and (rj1, b
j
1) is a backup arc;

bj2 : (r, bj2) is a primary arc and (rj2, b
j
2) is a backup arc;
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Figure 3.9: The fragment of the solution of ILTR, for the structure of xj , if
xj is of Type A and, in ISAT−3, variable xj does not satisfy any clause. In
the figure, all the arcs coming from above are outgoing r. The solid arcs are
primary arcs, and the dotted arcs are backup arcs.

bj3 : (r, bj3) is a primary arc and (aj4, b
j
3) is a backup arc;

gj : (f j1 , g
j) is a primary arc and (aj4, g

j) is a backup arc;

We also define, for subcase (e), the primary and backup arcs associated to xj
that are incoming each node in N [xj ] as follows (see Figure 3.9):

vj1 : (r, vj1) is a primary arc and (rj1, v
j
1) is a backup arc;

f j1 : (r, f j1 ) is a primary arc and (cα(j), f
j
1 ) is a backup arc;

aj1 : (vj1, a
j
1) is a primary arc and (gj , aj1) is a backup arc;

vj2 : (r, vj2) is a primary arc and (rj2, v
j
2) is a backup arc;

f j2 : (r, f j2 ) is a primary arc and (cβ(j), f
j
2 ) is a backup arc;

aj2 : (vj2, a
j
2) is a primary arc and (f j2 , a

j
2) is a backup arc;

f j3 : (r, f j3 ) is a primary arc and (rj2, f
j
3 ) is a backup arc;

vj3 : (r, vj3) is a primary arc and (cγ(j), v
j
3) is a backup arc;

aj3 : (rj1, a
j
3) is a primary arc and (f j3 , a

j
3) is a backup arc;
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aj4 : (vj3, a
j
4) is a primary arc and (bj3, a

j
4) is a backup arc;

rj1 : (aj4, r
j
1) is a primary arc and (bj1, r

j
1) is a backup arc;

rj2 : (aj3, r
j
2) is a primary arc and (bj2, r

j
2) is a backup arc;

bj1 : (r, bj1) is a primary arc and (rj1, b
j
1) is a backup arc;

bj2 : (r, bj2) is a primary arc and (rj2, b
j
2) is a backup arc;

bj3 : (r, bj3) is a primary arc and (aj4, b
j
3) is a backup arc;

gj : (f j1 , g
j) is a primary arc and (aj4, g

j) is a backup arc;

Let us consider case in which xj is of Type B. As we have pointed out
during the graph construction, this case is symmetrical to case in which xj is
of Type A. So we build our solution by fixing primary and backup arcs in the
same way as the previous case. The only difference is that we must exchange
the roles of the nodes vji and f ji .

Let us consider case in which xj is of Type C. In this scenario we identify
three subcases:

(a) literal xj satisfies the clause cα(j),

(b) literal x̄j satisfies the clause cβ(j),

(c) variable xj does not satisfy any clause.

For subcase (a), when building the solution of ILTR, we choose the primary and
backup arcs associated to xj , i.e. those incoming each node in N [xj ]∪N [cα(j)],
in the following way (see Figure 3.10):

vj1 : (r, vj1) is a primary arc and (rj1, v
j
1) is a backup arc;

f j1 : (r, f j1 ) is a primary arc and (cα(j), f
j
1 ) is a backup arc;

aj1 : (vj1, a
j
1) is a primary arc and (f j1 , a

j
1) is a backup arc;

cα(j) : (aj1, cα(j)) is a primary arc and (c′α(j), cα(j)) is a backup arc;

c′α(j) : (r, c′α(j)) is a primary arc and (cα(j), c
′
α(j)) is a backup arc;

f j2 : (r, f j2 ) is a primary arc and (rj1, f
j
2 ) is a backup arc;
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Figure 3.10: The fragment of the solution of ILTR, for the structure of xj , if xj
is of Type A and, in ISAT−3, literal xj satisfies the clause cα(j). In the figure,
all the arcs coming from above are outgoing r. The solid arcs are primary arcs,
and the dotted arcs are backup arcs.

Figure 3.11: The fragment of the solution of ILTR, for the structure of xj , if xj
is of Type A and, in ISAT−3, literal x̄j satisfies the clause cβ(j). In the figure,
all the arcs coming from above are outgoing r. The solid arcs are primary arcs,
and the dotted arcs are backup arcs.

vj2 : (r, vj2) is a primary arc and (cβ(j), v
j
2) is a backup arc;

aj2 : (vj2, a
j
2) is a primary arc and (f j2 , a

j
2) is a backup arc;

rj1 : (aj2, r
j
1) is a primary arc and (bj1, r

j
1) is a backup arc;

bj1 : (r, bj1) is a primary arc and (rj1, b
j
1) is a backup arc.

For subcase (b), for each node in N [xj ] ∪N [cβ(j)], we choose the primary and
backup arcs as follows (see Figure 3.11):

vj1 : (r, vj1) is a primary arc and (rj1, v
j
1) is a backup arc;
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Figure 3.12: The fragment of the solution of ILTR, for the structure of xj , if
xj is of Type A and, in ISAT−3, variable xj does not satisfy any clause. In
the figure, all the arcs coming from above are outgoing r. The solid arcs are
primary arcs, and the dotted arcs are backup arcs.

f j1 : (r, f j1 ) is a primary arc and (cα(j), f
j
1 ) is a backup arc;

aj1 : (f j1 , a
j
1) is a primary arc and (vj1, a

j
1) is a backup arc;

f j2 : (r, f j2 ) is a primary arc and (rj1, f
j
2 ) is a backup arc;

vj2 : (r, vj2) is a primary arc and (cβ(j), v
j
2) is a backup arc;

aj2 : (f j2 , a
j
2) is a primary arc and (vj2, a

j
2) is a backup arc;

cβ(j) : (aj2, cβ(j)) is a primary arc and (c′β(j), cβ(j)) is a backup arc;

c′β(j) : (r, c′β(j)) is a primary arc and (cβ(j), c
′
β(j)) is a backup arc;

rj1 : (aj1, r
j
1) is a primary arc and (bj1, r

j
1) is a backup arc;

bj1 : (r, bj1) is a primary arc and (rj1, b
j
1) is a backup arc.

For subcase (c), for each node listed below (nodes in N [xj ]), we select the
primary and backup arcs as follows (see Figure 3.12):

v1 : (r, vj1) is a primary arc and (r1, v
j
1) is a backup arc;

f j1 : (r, f j1 ) is a primary arc and (cα(j), f
j
1 ) is a backup arc;

aj1 : (f j1 , a
j
1) is a primary arc and (v1, a

j
1) is a backup arc;

f j2 : (r, f j2 ) is a primary arc and (r1, f
j
2 ) is a backup arc;
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vj2 : (r, vj2) is a primary arc and (cβ(j), v
j
2) is a backup arc;

aj2 : (f j2 , a
j
2) is a primary arc and (v2, a

j
2) is a backup arc;

rj1 : (aj1, r
j
1) is a primary arc and (b1, r

j
1) is a backup arc;

bj1 : (r, bj1) is a primary arc and (r1, b
j
1) is a backup arc.

The above illustrated procedure completely defines the solution of ILTR. In
fact, all the primary arcs constitute a spanning arborescence rooted at r, and
all the backup arcs satisfy Lemma 4.

Let us assume that ILTR is a YES-instance, we must show that also ISAT−3

is a YES-instance. To prove this we build a truth variables assignment, t : X →
{TRUE,FALSE}, which satisfy all the clauses in ISAT−3.

Without loss of generality, by Lemma 5, we may consider a solution of
ILTR in which all arcs outgoing the root node r are primary arcs. We build
a corresponding truth assignment as follows. For each clause Ch, with h =
1, 2, . . . ,m, if node ch is a descendant of a node vji , for some i ∈ {1, 2, 3} and
j ∈ {1, 2, . . . , n}, we define t(xj) = TRUE. Else, if node ch is a descendant
of a node f ji , we define t(xj) = FALSE. For each variable, xj , that has no
clause node descendant from its structure (i.e. from a node in N [xj ]), we fix
t(xj) to an arbitrary value. To prove that t is a solution for ISAT−3, we have
to show that the following two properties hold:

Property 1. Every clause is satisfied by t.

Property 2. The definition of t is consistent, i.e. for each variable xj , either
t(xj) = TRUE or t(xj) = FALSE (not both).

Proof of Property 1. In order to prove this property we first consider the
structure of a solution of a ILTR YES-instance and then perform a case analysis
to show that for every clause there is at least one literal value set to TRUE, by
proving that each clause node ch is a descendant of either a node vji for some
literal xj that occurs in Ch or a node f ji for some literal x̄j that occurs in Ch.

First we show that in the solution of ILTR, the nodes bji ∈ N and c′h ∈ N
(with i ∈ {1, 2, 3}, j ∈ {1, 2, . . . , n} and h ∈ {1, 2, . . . ,m}) are leafs in the
primary arborescence. We prove this statement for nodes bj1, for j = 1, 2, . . . , n.
The same reasoning can be easily applied to nodes bj2, b

j
3 (for xj of Type A

and B) and c′h with j = 1, 2, . . . , n and h = 1, 2, . . . ,m. Each node bj1, with
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j = 1, 2, . . . , n, has two incoming arcs, (r, bj1) and (rj1, b
j
1), and one outgoing arc,

(bj1, r
j
1). In particular, (r, bj1) is a primary arc for j = 1, 2, . . . , n, thus (rj1, b

j
1) is

a backup arc for bj1. Therefore, the only arc outgoing bj1, (bj1, r
j
1) cannot be an

arc of the primary arborescence (due to Lemma 4) and hence, bj1 cannot have
any child. The same argument applies to nodes bj2, bj3 and c′h by considering,
in place of rj1, nodes rj2, aj4 and ch, respectively.

Now, for h = {1, 2, . . . ,m}, let Ch be a clause in ISAT−3 and let ch be the
corresponding node in N [Ch]. In the solution of ISAT−3, since c′h is a leaf, ch
must be a child of an aji node, for some i ∈ {1, 2, 4} and some j ∈ {1, 2, . . . , n}.
Let us now consider three different cases depending on whether variable xj is
of Type A, B or C.

Case A: variable xj is of Type A. In this case we identify three subcases:
the first in which ch is a child of aj1, the second in which ch is a child of aj2 and
the third in which ch is a child of aj4.

Subcase A.1. When ch is a child of a node aj1 we have that, by construction,
the literal xj occurs in Ch and h = α(j). Moreover, aj1 must be a child of vj1
or gj . If aj1 is a child of vj1, this means that ch is a descendant of vj1, so Ch is
satisfied since we have defined t(xj) = TRUE. Otherwise, if aj1 is a child of gj ,
observe that gj can not be a child of f j1 (in this case ch would be a descendant
of f j1 and, since (ch, f

j
1 ) is the backup arc for f j1 , we would have a contradiction

due to Lemma 4). So, gj must be a child of aj4. Now, aj4 can be a child of
vj3 or aj3. If it is a child of vj3, we are done (ch is a descendant of a vji node).
Differently, assume aj4 a child of aj3. This latter node can be a child of f j3 or
rj1. In the first situation we have that arc (rj1, a

j
3) must be the backup arc for

aj3. Since rj1 must be a child of aj1 or aj4, in both cases, by Lemma 4, we get a
contradiction. So, aj3 can not be a child of f j3 . Therefore, assume aj3 is a child
of rj1. Since rj1 must be a child of aj1 or aj4, in such solution there would be
a cycle (contradiction). Thus aj3 can not be a child of rj1. This concludes the
proof when ch is a child of a aj1 node.

Subcase A.2. When ch is a child of a node aj2 we have that, by construction,
the literal xj occurs in Ch and h = β(j). Then, necessarily aj2 must be a child of
f j2 or vj2. If aj2 is a child of f j2 , then ch would be a descendant of f j2 . But, since
(ch, f

j
2 ) is the backup arc for node f j2 , we contradict Lemma 4. Thus aj2 can

not be a child of f j2 . Differently, if aj2 is a child of vj2, then ch is a descendant
of vj2 and therefore, t(xj) = TRUE. This truth assignment satisfies Ch.
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Subcase A.3. When ch is a child of a node aj4 we have that, by construction,
the literal x̄j occurs in Ch and h = γ(j). Then aj4 must be a child of vj3 or aj3.
If it is a child of vj3, then ch would be a descendant of vj3. But this contradicts
Lemma 4 because (ch, v

j
3) is the backup arc for vj3. Thus aj4 must be a child of

aj3 node. Moreover, aj3 must be a child of f j3 or rj1. If aj3 is a child of f j3 then
t(xj) = FALSE, and we are done. If aj3 is a child of rj1, then rj1 can not be
a child of a4, because in such solution there would be a cycle (contradiction).
So, rj1 must be a child of aj1. Furthermore, aj1 can be a child of vj1 or gj . If
aj1 is a child of vj1, rj1 would be a descendant of vj1, that is a contradiction of
Lemma 4 (because (rj1, v

j
1) is the backup arc for vj1). Thus aj1 must be child of

gj . Now, gj can be a child of f j1 or aj4. If gj is a child of f j1 , then the arc (aj4, g
j)

would be the backup arc for gj , and this contradicts the Lemma 4 as well. If
gj is a child of aj4, then in such solution there would be a cycle (contradiction).
Therefore, if ch is a child of aj4 (subcase A.3), then ch must be a descendant of
f j3 . In conclusion, in Case A, if ch is a child of aj1, it must be a descendant of
vj1 or vj3, else, if ch is a child of aj2, it must be a descendant of vj2, otherwise, if
ch is a child of aj4, it must be a descendant of f j3 . Hence, if in Ch there is the
literal xj , it will be set t(xj) = TRUE, else, if in Ch there is the literal x̄j , it
will be set t(xj) = FALSE, so that Ch is satisfied in Case A.

Case B: variable xj is of Type B. In this case we proceed in the same
way of the previous, except that the nodes vji and f ji are exchanged. In this
case we conclude that if ch is a child of aj1, it must be a descendant of f j1 or
f j3 . If ch is a child of aj2, it must be a descendant of f j2 . If ch is a child of
aj4, it must be a descendant of vj3. Thus, if in Ch there is the literal xj , it
will be set t(xj) = TRUE, else, if in Ch there is the literal x̄j , it will be set
t(xj) = FALSE, so that Ch is satisfied in Case B.

Case C: variable xj is of Type C. In this case we identify two subcases:
the first in which ch is a child of aj1 and the second in which ch is a child of aj2.

Subcase C.1. When ch is a child of a node aj1 we have that, by construction,
the literal xj occurs in Ch and h = α(j). In this case aj1 can be a child of vj1
or f j1 . If aj1 is a child of f j1 , ch would be a descendant of f j1 . Since (ch, f

j
1 ) is

the backup arc for f j1 we get a contradiction with Lemma 4. Thus aj1 must be
a child of vj1. Therefore, ch is a descendant of vj1.

Subcase C.2. When ch is a child of a node aj2 we have that, by construction,
the literal x̄j occurs in Ch and h = β(j). In this case aj2 can be a child of vj2
or f j2 . If aj2 is a child of vj2, ch would be a descendant of vj2. Since (ch, v

j
2) is
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the backup arc for vj2 we get a contradiction with Lemma 4. Thus aj2 must be
a child of f j2 . Therefore, ch is a descendant of vj2.

In conclusion, in Case C, if ch is a child of aj1, it must be a descendant of
vj1, else, if ch is a child of aj2, it must be a descendant of f j2 . Therefore, if in
Ch there is the literal xj , it will be set t(xj) = TRUE, else, if in Ch there is
the literal x̄j , it will be set t(xj) = FALSE, so that Ch is satisfied in Case C.

Proof of Property 2. The Property 2 states that, for each variable xj for
j = 1, 2, . . . , n, our definition of t can not assign both t(xj) = TRUE and
t(xj) = FALSE. We structure the proof in the following way: for each variable
xj , for j = 1, 2, . . . , n, we perform a case analysis on the variable types, to show
that two clause nodes ck and cl, with k, l ∈ {1, 2, . . . ,m}, can not descend from
vji and f ji′ , respectively, for some i, i′ ∈ {1, 2, 3}.

In order to prove Property 2, we recall that, if there is a clause node ch,
with h = 1, 2, . . . ,m, that is a descendant of vji , for some i ∈ {1, 2, 3} and
j ∈ {1, 2, . . . , n}, we define t(xj) = TRUE, else, if ch is a descendant of f ji ,
for some i ∈ {1, 2, 3} and j ∈ {1, 2, . . . , n}, we define t(xj) = FALSE. Now,
consider a variable xj with j ∈ {1, 2, . . . , n}.

Case A: variable xj is of Type A. In this case, as shown in the proof of
Property 1, a node ch, with h ∈ {1, 2, . . . ,m}, can be a descendant of nodes
vji or f ji belonging to N [xj ] in the solution of ILTR only in the following ways
(see Figure 3.13):

• if h = α(j), then, the directed path from r to ch in the primary arbores-
cence is either p1(h) = (r, vj1, a

j
1, ch) or p′1(h) = (r, vj3, a

j
4, g

j , aj1, ch)

• if h = β(j), then, the directed path from r to ch in the primary arbores-
cence is p2(h) = (r, vj2, a

j
2, ch)

• if h = γ(j), then, the directed path from r to ch in the primary arbores-
cence is p3(h) = (r, f j3 , a

j
3, a

j
4, ch)

Let us consider two clauses Ck and Cl, with k, l ∈ {1, 2, . . . ,m}, such that
the literal xj occurs in Ck and the literal x̄j occurs in Cl. To prevent multiple
truth assignments, we have to prove that, in the solution of ILTR, at the same
time paths p1(k) and p3(l) or p′1(k) and p3(l) or p2(k) and p3(l) can not coexist.
Now, consider a ILTR solution in which there are both p1(k) and p3(l), and
consider the node rj1. The arcs (rj1, v

j
1) and (rj1, a

j
3) are backup arcs, respectively,

for vj1 and aj3. So, rj1 must be a child of aj1 or aj4. If rj1 is a child of aj1, this
contradicts the Lemma 4. If rj1 is a child of aj4, this contradicts the Lemma 4
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Figure 3.13: All the possible paths from r to ch trough N [xj ] nodes, where xj
is of Type A.

again. So we conclude that, in solution, node rj1 can not be a child of any node
(contradiction). Hence, in a ILTR solution p1(k) and p3(l) can not coexist. Let
us consider a solution in which there are both p′1(k) and p3(l). This case is
impossible, because there will be a node, aj4, that would be a child of two nodes
and the solution could not be a rooted arborescence (contradiction). Hence, in
a ILTR solution p′1(k) and p3(l) can not coexist. Finally, consider a solution in
which there are p2(k) and p3(l) both, and consider node rj2. The arcs (rj2, v

j
2)

and (rj2, f
j
3 ) are backup arcs, respectively, for vj2 and f j3 . Now, rj2 must be a

child of aj2 or aj3. If rj1 is a child of aj2, this contradicts the Lemma 4. If rj1
is a child of aj3, this contradicts the Lemma 4 again. So we conclude that, in
solution, node rj2 can not be a child of any node (contradiction). Hence, in a
ILTR solution p2(k) and p3(l) can not coexist.

Case B: variable xj is of Type B. The proof that, for variables of this
type, there are no multiple truth assignments, is the same of Case A, except
that the nodes vji and f ji are exchanged.

Case C: variable xj is of Type C. In the proof of the Property 1 we
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have shown that, in this situation, a node ch, with h ∈ {1, 2, . . . ,m} can be
a descendant of nodes vji or f ji belonging to N [xj ] only in the following ways
(see Figure 3.14):

Figure 3.14: All the possible paths from r to ch trough N [xj ] nodes, where xj
is of Type C.

• if h = α(j), then, the directed path from r to ch in the primary arbores-
cence is p4(h) = (r, vj1, a

j
1, ch)

• if h = β(j), then, the directed path from r to ch in the primary arbores-
cence is p5(h) = (r, f j2 , a

j
2, ch)

Let us consider two clauses Ck and Cl, with k, l ∈ {1, 2, . . . ,m}, such that
the literal xj occurs in Ck and the literal x̄j occurs in Cl. To prevent multiple
assignments in this situation we have to prove that, in solution of ILTR, at same
time paths p4(k) and p5(l) can not coexist. To prove this consider node rj1.
The arcs (rj1, v

j
1) and (rj1, f

j
2 ) are backup arcs, respectively, for vj1 and f j2 . Now,

rj1 must be a child of aj1 or aj2. If rj1 is a child of aj1, this contradicts the Lemma
4. If rj1 is a child of aj2, this contradicts the Lemma 4 again. Thus we conclude
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that, in solution, node rj1 can not be a child of any node (contradiction). Hence,
in a ILTR solution p4(k) and p5(l) can not coexist. This completes the proof
that there are no multiple truth assignments in our definition of t, so Property
2 also holds.

Thus, both Property 1 and Property 2 guarantee that if ILTR is a YES-
instance, also ISAT−3 is a YES-instance, so that the theorem hods.

3.3 Directed Two-level graphs

In this section we focus our attention to a special case in which the problem of
determining whether a graph has the 1-exchange property becomes solvable in
polynomial time. Namely, we consider the case in which the instance graphs
are such that k(G, r) = 2, i.e. all nodes are at distance at most 2 from r. We
have proved that in general, for k(G, r) = 2, the problem is NP-hard, however,
as we will see hereafter, it becomes polynomially solvable when there are no
arcs between nodes at the same distance from r.

Definition 7. A directed graph G = (N,A) is a two-level-sparse graph if all
nodes in G are at distance at most 2 from r and there are no arcs between
nodes at the same distance from r.

Let us denote by xi, with i = 1, 2, . . .m, and yj , with j = 1, 2, . . . , n, re-
spectively, the nodes in N at distance 1 and 2 from r. Let X = {x1, x2, . . . xm}
and Y = {y1, y2, . . . yn}. Thus, we refer to a two-level-sparse graph with the
notation G = (X,Y, r,A). Furthermore, in such a graph we require that each
node in X has at least one incoming arc from a node in Y and each node in Y
has at least two incoming arcs from X (note that this is a necessary condition
for admitting the 1-exchange property). In order to prove that it is simple
to identify if a two-level-sparse graph has the 1-exchange property (1-exchange
problem), we introduce an auxiliary problem, the bipartite backup problem, and
prove, firstly, that the bipartite backup problem is a polynomial time solvable
problem, and, secondly, that the bipartite backup problem and the 1-exchange
problem are polynomially equivalent.

First, we need the following definition:

Definition 8. A 2-cycle is a directed cycle of length 2.

Hence, we state the bipartite backup problem:
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Definition 9. Bipartite backup problem (BB): Given a directed bipartite graph
G = (X,Y, F ) such that d−(xi) ≥ 1 and d−(yj) ≥ 2 for each xi ∈ X and
yj ∈ Y , find Q ⊆ F such that ∀v ∈ (X ∪ Y ), d−Q(v) = 1 and Q contains no
2-cycles.

In order to prove that the BB problem is solvable in polynomial time, we
provide a procedure (see Algorithm 1) that returns the required set Q. The
idea of the algorithm is to first mark all nodes belonging to a cycle (which is
not a 2-cycle) and then mark all nodes reachable from a marked node through
a directed path. If all nodes are marked, then a set of arcs Q is built.

Algorithm 1 Solve Bipartite Backup Problem
Input: G = (X,Y, F )
Output: If it exists, Q ⊆ F
1: initialize Q = ∅;
2: initialize all the nodes to unmarked;
3: while there exists a directed cycle of length > 2 with all unmarked nodes

do
4: mark all the nodes of the cycle;
5: put all the arcs of the cycle in Q;
6: for each arc from a marked node to an unmarked node do
7: mark the unmarked endpoint of the arc;
8: put the arc in Q;
9: if all the nodes are marked then

10: return Q

Lemma 6. Algorithm 1 solves the bipartite backup problem.

Proof. First, we show that if the algorithm produces an output, then the bi-
partite backup problem admits a solution. Let Q be the output of Algorithm 1.
By construction, every node has been marked once (and only once), therefore
in Q there is only one incoming arc for each node. We must show that in Q
there are no 2-cycles. Assume there is a 2-cycle involving nodes u and v, then
in the subgraph GQ of G induced by Q, {u, v} is a connected component. In
this case, the only way Algorithm 1 could add both (u, v) and (v, u) in Q is by
considering the 2-cycle as a cycle in Step 3 of the algorithm. Clearly, this is a
contradiction.

We now have to show that if the bipartite backup problem has a solution
Q′, then Algorithm 1 outputs a feasible solution. To prove this we only need to



i
i

“thesis” — 2009/2/24 — 17:51 — page 45 — #55 i
i

i
i

i
i

CHAPTER 3. SINGLE LINK FAILURE RESTORATION 45

show that Algorithm 1 will mark every node. In fact, in this case the algorithm
outputs a set of arcs Q and we have already seen that Q represents a feasible
solution. By hypothesis, there exists exactly one arc (u, v) in Q′ for every node
v. Let us consider an arbitrary node u1 and let u2 be its only predecessor in Q′.
Analogously, let u3 be the predecessor of u2 in Q′. By iterating this process we
may obtain a sequence of nodes u1, u2, u3, . . . uh, such that (ui+1, ui) ∈ Q′ for
all i = 1, 2, . . . h−1 and uh = ui for some i = 1, 2, . . . h−2 (since the number of
nodes in the graph is finite). Then, C = (uh, uh−1, . . . ui) is a simple directed
cycle (which is not a 2-cycle). Hence, C is either (i) found by Algorithm 1 in
Step 3 or (ii) it has an arc in common with another directed cycle C ′ found
by the algorithm. In case (i) the algorithm marks all the nodes in C and then
during Step 6 it marks all the nodes in the directed path connecting cycle C
to u1, including u1. In case (ii) the algorithm first marks the nodes in C ′ (and

Figure 3.15: The cycle C not found by Algorithm 1. The cycles C ′ and C ′′ are
found.

possibly in other cycles) from G. This implies that, as it can be seen with
an example in Figure 3.15, there always exists a directed path from a marked
node of C, e.g. uj , to u1. Therefore, the algorithm during Step 6 marks all the
nodes in the directed path from uj to u1, including u1. Hence, in both cases
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u1 is marked by the algorithm and, by the arbitrariness of u1, all the nodes
will be marked. So Algorithm 1 outputs a feasible solution for the bipartite
backup problem.

Lemma 7. A directed two-level-sparse graph G = (X,Y, r, A) admits the 1-
exchange property if and only if the instance G′ = (X,Y,A) of the bipartite
backup problem admits a solution.

Proof. Firstly, we prove that if the instance G′ = (X,Y,A) of the BB problem
admits a solution, then graph G = (X,Y, r, A) has the 1-exchange property. If
the instance G′ = (X,Y,A) admits a solution then there exists Q ⊆ A such
that ∀v ∈ (X ∪ Y ), d−Q(v) = 1 and Q contains no 2-cycles. So, consider the
following rooted arborescence T over G:

T = {(r, xi) for all 1 ≤ i ≤ m} ∪ {(xi, yj) ∈ Q for all 1 ≤ j ≤ n}.

T is an arborescence because each node in X and Y has only one incoming arc
and there are no directed or undirected cycles. T is rooted in r because each
node in X and Y has exactly one incoming path, outgoing r. Let us prove
that T has the 1-exchange property. By Lemma 4, we only need to prove that
for each node v in X and Y there must exist an incoming arc coming from a
node u which is not a descendant of v in T . Hence, consider a node yh ∈ Y .
Since yh does not have descendant nodes in T and has at least two incoming
arcs in G, there exists an arc, entering yh, that does not belong to T . Consider
a node xk ∈ X. Let a = (yj , xk) be the only arc, incoming xk that belongs
to Q. By hypothesis, there are no arcs among the nodes of X in G and, by
construction, there are no arcs from nodes in Y to nodes in X in T , so that the
only descendants of node xk, in T , are its children. Now, if we assume that yj is
a descendant (child) of xk, then arc a′ = (xk, yj) of T , by construction, belongs
to Q. This implies that a belongs to Q as well as a′. This means that in Q
there is a 2-cycle (contradiction). Therefore, yj can not be a descendant of xk,
so that the arc a is an arc incoming xk, outgoing from a node not descendant
of xk.

Now, we prove that if graph G = (X,Y, r, A) has the 1-exchange property
then the instance G′ = (X,Y,A) of the BB problem admits a solution. If
G admits a spanning arborescence that has the 1-exchange property, the by
Lemma 3 and Lemma 5, G must admit a spanning arborescence, T ′, with the
1-exchange property such that for each node u at distance one from r, we have
that (r, u) ∈ A(T ′). By Lemma 4, for each node u there exists an arc incoming
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u, outgoing a node not descendant of u in T ′. Consider, for each xi, with
1 ≤ i ≤ m, an arc ai = (yj , xi) such that yj is not a descendant of xi. We
define the following set as a solution for the BB problem:

Q = {(xi, yj) ∈ T ′ for all 1 ≤ j ≤ n} ∪ {ai for all 1 ≤ i ≤ m}.

Obviously, for each node in X and in Y there exists exactly one incoming arc
in Q. Further, by construction, if in Q there is an arc (u, v), then (v, u) can
not belong to Q, so that Q does not contain 2-cycles.

Let us analyze the complexity of the Algorithm 1. The while loop, in
Step 3, searches for a cycle with length greater than 2 over the unmarked nodes.
This can be done by performing a depth-first search on the graph induced by
the unmarked nodes, possibly starting from every node of such graph. This
procedure is obviously polynomial. For every iteration of Step 3, in Step 4
the algorithm marks at least 3 nodes, so that the total number of iterations
of the while loop can not be greater than n/3. The statements in Step 4 and
Step 5 have a computational complexity of at most O(n), depending on the
data structures used to represent the graph and the set Q. The for loop at
Step 6 has a number of iterations strictly less than the number of the arcs
in the graph. It is simple to observe that also the statements in Step 7 and
Step 8 have a computational complexity of at most O(n). Clearly, the whole
algorithm has a polynomial complexity. So, we may conclude that the problem
to identifying if a two-level-sparse graph has the 1-exchange property or the
1-restoration property is a problem solvable in polynomial time.

3.4 Conclusions

In this chapter we have addressed the problem of verifying whether a directed
or undirected network has the 1-restoration property. We have proved that for
undirected networks this can be done in polynomial time, while for directed net-
works the problem is NP-hard, even on networks with a very special structure.
For directed graphs, we have provided a particular case, the two-level-sparse
graphs, in which the problem becomes polynomially solvable.

A natural extension for further research is to check whether our results for
the survivable networks apply to the case where more links fail at the same
time. We investigate this topic in the next section.
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Chapter 4

Multiple links failure restoration

In survivability network design literature, it is satisfactory to develop restora-
tion procedures that guarantee the functionality of the communication network,
after a single link failure. This is mainly due to the fact that it seems negligible
the possibility that more than one link breaks at the same time. Further, it
is considered that, between a link failure and the next one, there is enough
time to permit to a network operator to repair the first break, so that, at the
successive break, the network is completely working. In this analysis, we also
consider, as the worst case, that multiple links failure can happen.

In this chapter, we extend the properties proved for the case of single link
failure. Firstly, we consider the case of undirected graph. We are given a
network G = (V,E) where at most q ∈ Z+ edges may fail. We assume that
there are traffic demands between each pair of vertices. In order to route the
traffic demands, we select a spanning tree T within the STP protocol.

Since we research the maximum efficiency of the network, in case of multiple
links failure, we require that if at most q edges fail, there must exist a spanning
tree, over the residual network, that share, with the initial communication
topology, each path that is not affected by the failure. This amounts to require
that the initial routing topology has the following property:

Definition 10. Given an undirected network G = (V,E), and a spanning tree
T over G, we say that T has the q-exchange property, if, for each F ⊆ E with
|F | ≤ q, there exists H(F ) ⊆ E \F such that (T \F )∪H(F ) is a spanning tree
over G \ F .

We observe that the q-exchange property is the natural extension of the 1-

48
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exchange property. Note also that G has a spanning tree with the q-exchange
property only if it is (q + 1)-connected.

4.1 The undirected graphs scenario

The following step, after understanding the utility of q-exchange property in
survivability network area, is the research of which networks guarantee a rout-
ing topology T , that has the property.

In the undirected graphs scenario, the following lemma gives us a criterion
for identifying, in polynomial time, such kind of networks.

Lemma 8. Let G = (V,E) be an undirected graph. G has a spanning tree T
with the q-exchange property if and only if G is (q + 1)-connected. Moreover,
in this case, each spanning tree of G has the q-exchange property.

Proof. The only-if part is trivial. Suppose the contrary. Then there exists a
set F ⊆ E, with at most q edges, such that G \ F is not connected: trivially,
there is no spanning tree for G \ F .

For the if part, let T be any spanning tree of G and F a subset of at most
q edges of E. Let S1, . . . , Sp the connected components of T \ F ; note that
p ≤ q + 1. Since G is (q + 1)-connected, it follows that G \ F is connected:
in particular, for every i = 1..p − 1, δG\F (

⋃
j=1,...,i Sj) is non-empty. We can

also assume without loss of generality that, for every i = 1, . . . , p − 1, there
exists an egde {ui, vi} ∈ G \ F , such that ui ∈ (

⋃
j=1,...,i Sj) and vi ∈ Si+1.

Therefore, if we add to T \ F the edges {ui, vi}, i = 1, . . . , p − 1, we obtain a
spanning tree of G \ F . Since this holds for every set F and spanning tree T ,
the result follows.

We recall that the interest in this survivability analysis is sparkled by the
study of the STP protocol family. Thus, we extend the 1-restoration property
(i.e. the routing topology built by edge weights assignment is resilient, see
previous chapter) to the case of q simultaneous failures.

Definition 11. Given an undirected graph G = (V,E) and T a spanning tree
over G. We say that T has the q-restoration property, respect to G, if there
exists a cost function w : E 7→ Z+ such that:

• T is T (∅) (T is the unique shortest path tree over G respect to r and the
weight function w);
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• for each F ⊆ E, with |F | ≤ q and F 6= ∅, there exists H(F ) ⊆ E \ F
such that T (F ) = (T \F )∪H(F ); (T (F ) = (T \F )∪H(F ) is the unique
shortest path tree over G \ F respect to r and the weight function w).

In this case, we say that w defines T .

Now, let T be a spanning tree of a (q + 1)-connected network G. The next
question we want to investigate is whether is possible to define a suitable cost
vector w : E → Z+ such that T has the q-restoration property.

Theorem 5. Let G = (V,E) be a (q+1)-connected graph and T be a spanning
tree. The following cost function defines T :

w(ei) =


2i−1 · n if 1 ≤ i ≤ q
n+

∑i−1
j=i−q w(ej) if q + 1 ≤ i ≤ m− n+ 1

1 if i > m− n+ 1, i.e. if ei ∈ E(T )

where {e1, e2, . . . , em} is any ordering of E(G) with em−n+2, . . . , em ∈
E(T ).

Proof. Suppose that T is a spanning tree of G. Choose r arbitrarily. Observe
that, by construction, the following holds, for each i ≤ m− n+ 1, i.e. for each
ei 6∈ E(T ):

w(ei) = n+
i−1∑

j=max(1,i−q)

w(ej). (4.1)

We show that the following statements hold, with respect to the cost func-
tion w: (i) T is the unique shortest path tree rooted at r of G, i.e. T = T (∅)
; (ii) for each F ⊆ E(G), with |F | ≤ q, there is a shortest path tree in G \ F
and it contains all the edges in E(T ) \ F .

Proof of (i). Assume that T is not the unique shortest path tree rooted at r
of G. Then, there must exists a path from r to some vertex v that is no longer
than the (r, v)-path in T and uses at least one edge f not belonging to E(T ).
This yields to a contradiction, since such path has a cost greater than n − 1,
while the (r, v)-path in T has cost less or equal than n− 1.

Proof of (ii). Let F be a subset of at most q edges of G. We show that
every shortest path tree T (F ) of G \F must contain all the edges in E(T ) \F .

Suppose the contrary, and let {u, v} be an edge such that: {u, v} ∈ E(T )
but {u, v} /∈ E(T (F )). In the following, we denote by Pxy the unique path



i
i

“thesis” — 2009/2/24 — 17:51 — page 51 — #61 i
i

i
i

i
i

CHAPTER 4. MULTIPLE LINKS FAILURE RESTORATION 51

from a vertex x to a vertex y on T (F ) (we let Pxx = ∅), and by w(Pxy) its cost.
Notice that u /∈ Prv, since otherwise we might replace the sub-path Puv, with
cost w(Puv) > 1, with the edge {u, v}, and get a shorter path of G \ F from r
to v. Similarly, v /∈ Pru.

Let s ∈ V be such that Pru = Prs ∪ Psu, Prv = Prs ∪ Psv and E(Psu) ∩
E(Psv) = ∅. The following holds:

w(Psv) ≤ w(Psu) + w(uv) and w(Psu) ≤ w(Psv) + w(uv). (4.2)

Let e := argmax{w(e), with e ∈ E(Psu) ∪ E(Psv)}, and without loss of
generality let e ∈ Psv. Note that e /∈ E(T ), since otherwise the edges in
E(Psu) ∪ E(Psv) ∪ {u, v} would define a cycle of unit cost edges, while by
construction the set of unit cost edges defines a tree.

Now observe that Psu contains at most n − 2 edges in E(T ). Then, let
Z := {E(Psu) ∩ (E(G) \E(T ))}. We also claim that |Z| ≤ q. Otherwise, since
T \F is a forest with at most q+1 connected components, it follows that there
are at least two vertices x and y such that E(Pxy)∩Z 6= ∅, with x and y in the
same component of T \ F : in this case there would be a shorter path of G \ F
from r to either x or y.

Now recall that w(e) > w(e) for each e ∈ Z. Since |Z| ≤ q and, by
construction, w(e1) ≤ w(e2) ≤ . . . ≤ w(em−n+1), it follows from (4.1) that
w(e) ≥ n+

∑
e∈F w(e). Then w(Psu) +w(uv) ≤

∑
e∈Z w(e) + n− 1 < w(ē) ≤

w(Psv), a contradiction to (4.2).

4.2 The directed graphs scenario

When we move to the case in which G is directed, we consider that there are
traffic demands only from some common source r ∈ V to every other node.
Thus, a routing topology must be a spanning arborescence rooted at r (in the
following, for sake of shortness, we often simply refer to spanning arborescences,
assuming that they are rooted at r). In this case, we need to define a slightly
weaker exchange property. Let T ⊂ G be a spanning arborescence rooted at r
and F ⊂ E(G). We denote by cl(F, T ) the union of the set of failed arcs and
the set of the arcs that do not belong to the arborescence rooted at r in the
graph T \ F , i.e.:

cl(F, T ) = F ∪
⋃

(u,v)∈E(T )∩F

E(Tv)

where Tv is the sub-arborescence of T rooted at v.
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Then, we want that if at most q edges fail, there must exist a spanning
arborescence, over the residual network, that share, with the initial communi-
cation topology, each path that is not affected by the failure. This amounts to
requiring that the initial routing topology has the following property:

Definition 12. A spanning arborescence T rooted at r of a directed graph G
has the weak q-exchange property, if, for each F ⊆ E with | F |≤ q, there
exists H(F ) ⊆ E \F such that (T \cl(F, T ))∪H(F ) is a spanning arborescence
rooted at r.

In fact, when some set of arcs F fail, we may route the traffic on the
spanning arborescence T (F ) := (T \ cl(F, T )) ∪ H(F ) , since, by definition,
T and T (F ) share every directed (r, v)-path on T that is not affected by the
failure of F . Note also that G has a spanning arborescence rooted at r with
the weak q-exchange property only if, for each node v 6= r, there are at least
(q + 1) arc-disjoint directed (r, v)-paths: G is (q + 1)-arc-connected (in the
sequel we refer to a (q + 1)-arc-connected graph as a (q + 1)-connected graph
for shortness).

The first question we investigate is in which case, given a directed graph G
and a root node, r ∈ V , there is a spanning arborescence T rooted at r with
the weak q-exchange property.

Lemma 9. Let G = (N,A) be a directed graph and r ∈ V be the root node.
Let T be a spanning arborescence, rooted at r. We say that T has the weak q-
exchange property if and only if G is (q+ 1)-connected. Moreover, in this case,
each spanning arborescence of G rooted at r has the weak q-exchange property.

Proof. Let us prove that if G is (q + 1)-connected then T has the weak q-
exchange property. Suppose the contrary. Then there exists a set F ⊆ E,
with at most q edges, and a node v 6= r such that G \ F does not contain any
(r, v)-path: trivially, there is no spanning arborescence rooted at r for G \ F .

Let us prove that if T has the weak q-exchange property then G is (q + 1)-
connected. Let T be any spanning arborescence rooted at r and F a subset
of at most q edges of E. Let S1 be the connected component in T \ cl(F, T )
that contains r, and S2, . . . , Sp the connected components correspondent to
singletons (i.e. isolated nodes) of T \ cl(F, T ); note that p here could be ≥
q + 1. Since G is (q + 1)-connected, it follows that G \ F is connected: in
particular, for every i = 1, . . . , p− 1, δ+

G\F (
⋃
j=1,...,i Sj) is non-empty. We can

also assume without loss of generality that that, for every i = 1, . . . , p − 1,
there exists an arc (ui, vi) ∈ G \F , such that ui ∈ (

⋃
j=1,...,i Sj) and vi ∈ Si+1.
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Therefore, if we add to T \ cl(F, T ) the arcs (ui, vi), i = 1, . . . , p− 1, we obtain
a spanning arborescence of G\F . Since this holds for every set F and spanning
arborescence T , the result follows.

For directed graphs, q-restoration property definition is analogous to the
case of undirected graphs. Here, we investigate for a criterion to iden-
tify whether a network routing topology (spanning arborescence) has the q-
restoration property or not.

Lemma 10. Let G = (V,E) be a (q+ 1)-connected graph and T be a spanning
arborescence rooted at r. The following weight function defines T :

w(e) =
{

1 if e ∈ E(T )
n otherwise.

Proof. Suppose that T is a spanning arborescence of G rooted at a node r. We
show that the following statements hold, with respect to the weight function w:
(i) T is the unique shortest path arborescence rooted at r of G ; (ii) for each
F ⊆ E(G), with |F | ≤ q, every shortest path arborescence in G \ F contains
all the directed (r, v)-paths that are not affected by the failure of F .

Proof of (i). Assume that T is not the unique shortest path arborescence
rooted at r of G. Then, there must exists a path from r to some node v that
is no longer than the (r, v)-path in T and uses at least one arc f not belonging
to E(T ). This yields to a contradiction, since such path has a weight greater
than n− 1, while the (r, v)-path in T has weight less or equal than n− 1.

Proof of (ii). Let F be a subset of at most q arcs of G, and suppose there
exists a shortest path arborescence in G \ F that does not contain all the
directed (r, v)-paths in T \ F . Then, there must exists in G \ F a path from r
to some node v that is no longer than the (r, v)-path in T , a contradiction to
(i).

The q-exchange property for directed graphs

To improve the survivability faculties of a communication network, we require
that the communication topology, after multiple links failure, preserves un-
changed the traffic flows that are routed over paths that are not affected by
breaks. This survivability requirement is assured if the communication topol-
ogy has the weak q-exchange property. But, also in directed graphs scenario,
we can require the q-exchange property for the network. We point out that,
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while if a spanning arborescence T has the weak q-exchange property, to restore
a set of fault arcs, we may replace a set of working arcs, if T has the q-exchange
property, in the event of k link failures, with k ≤ q, we can restore the routing
topology simply by taking other k new arcs from the communication network.

We provide a lemma to identify directed graphs that admit the q-exchange
property.

Lemma 11. Let G = (V,E) be a directed graph and r ∈ V a node such that,
for each w ∈ V \ {r}, there is (r, w) ∈ E. G admits a spanning arborescence,
rooted at r, with the q-exchange property, if and only if the in-degree of each
node v 6= r is at least q + 1.

Proof. Necessity is trivial. Sufficiency: consider the spanning arborescence T
with arc set E(T ) := {(r, v), for each v ∈ V \ {r}}. Since there are at least
q+ 1 arcs incoming in each node, after the failure of q arcs, each node still has
the backup arc.

The problem to identify if a directed graph G has the q-exchange property
is a generalization of the problem to identify if G has the 1-exchange property.
Since we have shown, in the previous chapter, that checking 1-exchange prop-
erty on directed graphs is a NP-hard problem, the same hardness result also
holds for the q-exchange property.
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Chapter 5

Introduction to broadcast
problems

A fundamental issue, in telecommunication and computer networks, is the in-
formation transmission. Since, from the birth of the first telegraph network,
there was the primary need to communicate important news from a source to
all the connected devices, the researchers start to analyze the information dis-
semination problems. Broadcast is a process used in communication networks
to deliver an information from a source to all the peers. There are broadcasting
processes in which the source of the information, in the network, is a single peer
or, otherwise, we have a set of originators, knowing all together the information
at the beginning of the procedure. In a broadcast process we require that the
time of the procedure is minimized and that, at the end of the process, all the
peers are informed.

Different problems on broadcasting in communication networks have been
well studied in the past. Depending on the communication model, an informed
peer can communicate with only one peer at time (telephone model) or with
all its neighbors simultaneously (wireless model).

In a wireless scenario, since the communication is provided by an antenna,
through the air medium, a device communicates always with all its neighbors.
Moreover, in a wireless network, we consider that each peer is connected to all
the other devices that are in its transmission range. But, since the wireless
devices, during the network activity, are free to move, we consider that the
wireless network topology changes in a fast way. In this setting there is a large
possibility that more communications can happen at the same time, so that
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some of them complete in an erroneous way. In this case, we say that the trans-
missions make a collision. This type of interferences are very unusual in wired
network. In a wired system, each communication link is shared only between
two system components, that are often synchronized in their communications.
The analysis of broadcast problems in a wired network is usually modeled with
the telephone model. Since we are interested in study this latter model, also
known as telegraph or whispering model, we explain broadcast issues in this
setting, distinctly, in the following section.

5.1 Broadcasting in telephone model

In broadcast research area, the most primitive and known communication
model is the telephone model. In this communication setting we have that
the broadcast network is represented by an undirected graph G = (V,E). The
set of information originators is denoted by V0 and, in the case in which the
process starts from a single vertex, we have that V0 = {r}. There is only one
kind of message sent in the process. In a broadcast procedure we denote the
time in which a vertex v receives the message with t(v). If we consider, at the
same time, more broadcast procedures, we will use t(v), t′(v) and t′′(v). In the
telephone model we are restricted to the following constraints:

1. only the informed vertices can communicate;

2. the time duration of a message communication along any edge in the
graph is one round;

3. each vertex can partecipate to only one communication per round.

Now, we formally define a broadcast process P :

Definition 13. A broadcast process P is a sequence:

V0, E1, V1, E2, V2, . . . , Eh, Vh

where:

• ∀i = 1, . . . , h, Vi ⊆ V (Vi is the set of vertices who are informed at time
i with transmissions along the edges in Ei),

• ∀i = 1, . . . , h, Ei ⊆ E,
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• ∀i = 1, . . . , h, Ei composed by only edges with exactly one endpoint in
Vi−1,

• Vi = Vi−1 ∪ {v : (u, v) ∈ Ei, u ∈ Vi−1},

• Vh = V ,

In this case we say that P has a time duration of h rounds.

Therefore, we state the problem of Minimum Broadcast Time: given an
undirected network G = (V,E), a set of information originators V0, find the
minimum k such that there exists the broadcast process P over G, starting
from V0, with length k.

In literature, among the broadcast problems, the Minimum Broadcast Time
is the more basic and studied question. It has received a lot of interest, and is
treated in the past in a great number of works, [15, 24, 27, 26, 28, 29, 41, 44,
46, 59, 74, 85, 89].

The first analysis on the minimum broadcast problem were done on tree
networks. In 1981, Slater, Cockayne and Hedetniemi [79] consider broadcast-
ing on trees and provide an optimal polynomial algorithm for the minimum
broadcast time problem. They also showed that the minimum broadcast time
problem with a unique originator is a NP-hard problem. In the same year,
also Farley and Proskurowski (see [29]) have considered the problem in trees.
Given a tree network T and an integer q, they provide an algorithm to identify
the smallest vertex set V ′0 , such that there are |V ′0 | subtrees with the following
properties: (i) the subtrees are a covering for the T ; (ii) each vertex of V ′0
belongs to a different subtree; (iii) for each subtree there exists a broadcasting
process of length lesser or equal to q.

Also other important network structures were analyzed by researcher to find
fast broadcast procedure. While Farley and Hedetniemi, in [28], have analyzed
broadcasting in grid-graphs, Feige, Peleg, Raghavan, and Upfal in [30] deal
with hypercubes and random graphs.

In the area of network broadcasting, a substantial portion of the work re-
gards constructing good broadcast graphs. A broadcast graph G = (V,E) is a
graph that allows a broadcast process that terminates in the quickest way, that
is dlog |V |e. A minimum broadcast graph on n vertices is a broadcast graph
with the minimum number of edges over all broadcast graphs on n vertices.
There are many papers on designing broadcast graphs, we limit to cite only
some of them. While, in [34], the authors propose methods for reducing the
maximum degree of the vertices in graphs that maintain optimal broadcast
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time, the problem to design fault-tolerant broadcast graphs were considered
in [15, 58].

For the minimum broadcast problem there is a large number of papers re-
garding approximation theory. An approximation algorithm for the minimum
broadcast time problem was developed, in 1992, by Kortsarz and Peleg [54].
They provide an O(

√
n) additive approximation algorithm in an n-node graph.

They give better approximation algorithms for chordal graphs, outerplanar
graphs, seriesparallel graphs, and trees of cliques. The best approximation
algorithm, for minimum broadcast time, was provided by Ravi [72], that guar-
antees an approximation ratio of O(log2 n/ log log n) for general graph. Ravi
provided, also, an approximation algorithm for the case in which the degree of
the network is bounded by a constant. We also mention the heuristic algorithm,
without guarantee, of Scheuermann and Wu, proposed in [77].

In the field of network broadcasting, an important variant of the broad-
cast problem is the gossip problem, wherein every node has its own message
that must be disseminated to every other node. If we have a network with n
peers, we may consider that a gossip process is a composition of n different
broadcast processes, each one originated by a different node. We recall [46] as
a comprehensive survey of the literature related to the broadcast and gossip
problem.

5.2 Minimum Service Time

Our interest on broadcast problems is focused on a variant of the Minimum
Broadcast Problem in the telephone model. We call this broadcast problem
version, the Minimum Service Time problem. Formally, we define the service
time in a broadcast process P that has the “information time” function t :
V 7→ Z+ (the function that indicate the time in which a vertex receive the
information with respect to P ).

Definition 14. Given an undirected graph G = (V,E). Given a broadcast
process P over G, defined by its information time function t. The Service
Time of P is:

ST (P ) =
∑
v∈V t(v)
n

.

We investigate, in the following chapters, the problem of minimizing the
service time over an undirected graph G.
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Chapter 6

Broadcast in centralized scenario

In this chapter, we investigate the problem of minimizing the service time
in a communication network. We have, in this setting, that the network is
represented by an undirected graph G = (V,E) and, the communication rules
follow the formerly cited telephone model. In order to find the minimum service
time, we deal with a centralized scenario, i.e. there is a complete knowledge of
the network topology for each algorithm that provide a broadcast solution. In
the sequel we refer to minimum service time problem as ST-r. In the follows,
we will provide an hardness result for the problem ST-r: we prove that the ST-
r problem is a NP-hard problem, by reducing the well known NP-hard problem
3-Dimensional Matching (see [39]) to it. After, we show that problem ST-r,
given a tree network, is polynomial time solvable.

6.1 Minimizing the Service Time is NP-hard

In this section we discuss the complexity of problem ST-r. We show that the
problem of minimizing the service time is NP-hard.

In our way to proceed, we introduce the sum of the information times of a
broadcast P :

SUMt(P ) =
∑
vV

t(v).

Note that, if we have a communication network, the problem of minimizing
the service time is the same of minimizing the sum of the information times,
over all the peers, except a normalization factor related to the instance size
(the number of the vertices in the graph). Indeed, given a network G, the

59
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broadcast scheme P that minimize the SUMt(P ) is the same that minimize
ST (P ). In our analysis, we deal with the sum of the information times as
objective function, since we prefer to handle an integer function instead of a
rational valued one.

In order to prove the hardness result, we introduce the generalized version
of the minimum service time problem, in which the source of the information
is more than one vertex. We formally state the decision version of the problem
of minimizing the service time in the general case, ST, i.e. the case in which
a set of vertices, V0, know the information at the beginning of the broadcast
process.

Instance: Let G = (V,E) be an undirected graph and let V0 ⊆ V
be the set of information source vertices. Let k be a positive integer.

Question: Does there exist a sequence:

V0, E1, V1, E2, V2, . . . , Eh, Vh

where:

• ∀i = 1, . . . , h, Vi ⊆ V (Vi is the set of vertices who are informed
at time i with transmissions along the edges in Ei),

• ∀i = 1, . . . , h, Ei ⊆ E,

• ∀i = 1, . . . , h, Ei composed by only edges with exactly one
endpoint in Vi−1,

• Vi = Vi−1 ∪ {v : (u, v) ∈ Ei, u ∈ Vi−1},
• Vh = V ,

• k ≥
∑
v∈V t(v), where t(v) = min{i : v ∈ Vi} (t(v) represents

the time in which v is informed)?

Note that in every graph all the edges that partecipate to an arbitrary
broadcast procedure, create a spanning tree over the graph. This observation
is underlined by the example in Figure 6.1, where the labels represent the
instants in which the nodes receive the message. In this case, a broadcast
process defines a broadcast spanning tree.

In order to prove that problem ST-r is NP-hard, we provide a lemma re-
garding the sum of the information times of the vertices that compose a path.
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Figure 6.1: A broadcast process that defines a spanning tree on the network.

Lemma 12. Let G = (V,E) be a graph. Let P = {v1, v2, . . . , vp} such that
P ⊆ V and d(vi) = 2 for all i ∈ {1, 2, . . . , p − 1} and d(vp) = 1. Let B a
broadcast process that starts from vertices in V0 ⊆ V . Let V0 ∩ P = ∅. We
have: ∑

i∈{1,2,...,p}

t(vi) = p(t(v1)− 1) +
p(p+ 1)

2
.

Proof. Vertices v1, v2, . . . , vp create a path in G that is connected to the other
vertices of the graph by an unique edge, adjacent to v1. Since in our model is
not allowed that an informed vertex, that has an adjacent not informed vertex,
does not transmit, the information time of a vertex vi is t(vi) = t(vi−1 + 1).
Hence, we have that:∑
i∈{1,2,...,p}

t(vi) =
∑

i∈{1,2,...,p}

(t(v1)+j−1) =
∑

i∈{1,2,...,p}

(t(v1)−1)+
∑

i∈{1,2,...,p}

j =

= p(t(v1)− 1) +
p(p+ 1)

2
.

To prove that problem ST-r is NP-hard, firstly, we reduce 3-Dimensional
Matching to ST, with a technique similar to the one presented in [79], and
secondly, we reduce problem ST to problem ST-r.

Theorem 6. Problem ST is NP-hard.
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Proof. We will reduce the well known NP-complete problem 3DM [39] to the
decisional version of ST. We state, formally, problem 3DM:

Instance: let X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , ym}, Z =
{z1, z2, . . . , zm} and let C ⊆ X × Y × Z
Question: Does there exist a subset of C of size m such that each
pair of elements of the subset disagree in all three coordinates?

We will prove that given any instance I3DM of 3DM we can build, in poly-
nomial time, an instance IST of ST such that I3DM is a YES-Instance if and
only if IST is a YES-Instance. Now we explain how to build IST−r from I3DM .
Let m = |X| = |Y | = |Z| and M = |C|. Let us take, arbitrarily, five positive
integers, namely p1, p2, p3, p4, p5, such that:

p1 > M(p2 + 2p3 + 4) +m(3p4 + 4p5 + 6)
p2 > M(2p3 + 4) +m(3p4 + 4p5 + 6)
p3 > 4M +m(3p4 + 4p5 + 6)
p4 > 4M +m(4p5 + 6)
p5 > 4M + 6m.

Now, we build the graph G = (V,E) of IST (see Figure 6.2). The set of the
vertices is:

V = V0 ∪ V1 ∪X ∪ Y ∪ Z ∪ U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5

where

• V0 = {v0
i : i = 1, 2, . . . ,M}

• V1 = {v1
i : i = 1, 2, . . . ,M}

• X = {vXi : i = 1, 2, . . . ,m}

• Y = {vYi : i = 1, 2, . . . ,m}

• Z = {vZi : i = 1, 2, . . . ,m}

• U1 = {u1
i,j : i = 1, 2, . . . ,M, j = 1, 2, . . . , p1}

• U2 = {u2
i,j : i = 1, 2, . . . ,M, j = 1, 2, . . . , p2}

• U3 = {u3
i,j : i = 1, 2, . . . ,M, j = 1, 2, . . . , p3}
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• U4 = {u4
i,j : i = 1, 2, . . . ,m, j = 1, 2, . . . , p4}

• U5 = {u5
i,j : i = 1, 2, . . . ,m, j = 1, 2, . . . , p5}

Let us define the edge set of the graph of the IST .

E = KV0,V1 ∪ EX ∪ EY ∪ EZ ∪ E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5

where each edge set shown in the formula is defined in the following list:

• KV0,V1 = {(v0
i , v

1
j ) : i = 1, 2, . . . ,M, j = 1, 2, . . . ,M}

• EX = {(vXi , v1
j ) : if there is a clause cj ∈ C such that xi ∈ cj}

• EY = {(vYi , v1
j ) : if there is a clause cj ∈ C such that Yi ∈ cj}

• EZ = {(vZi , v1
j ) : if there is a clause cj ∈ C such that Zi ∈ cj}

• E1 = {(u1
i,j , u

1
i,j+1) : i = 1, 2, . . . ,M, j = 1, 2, . . . , p1 − 1}

∪ {(vXi , u1
i,1) : i = 1, 2, . . . ,m}

∪ {(v0
i , u

1
i,1) : i = m+ 1,m+ 2, . . . ,M}

• E2 = {(u2
i,j , u

2
i,j+1) : i = 1, 2, . . . ,M, j = 1, 2, . . . , p2 − 1}

∪ {(v0
i , u

2
i,1) : i = 1, 2, . . . ,M}

• E3 = {(u3
i,j , u

3
i,j+1) : i = 1, 2, . . . ,M, j = 1, 2, . . . , p3 − 1}

∪ {(v0
i , u

2
i,1) : i = 1, 2, . . . ,M}

• E4 = {(u4
i,j , u

4
i,j+1) : i = 1, 2, . . . ,m, j = 1, 2, . . . , p4 − 1}

∪ {(vYi , u2
i,1) : i = 1, 2, . . . ,m}

• E5 = {(u5
i,j , u

5
i,j+1) : i = 1, 2, . . . ,m, j = 1, 2, . . . , p5 − 1}

∪ {(vZi , u2
i,1) : i = 1, 2, . . . ,m}

The edge sets E1, E2, E3, E4, E5 represent sets of paths of length, respectively,
p1, p2, p3, p4, p5. We define the value of k as:

k =
M

2

(
p1(p1 + 1) + p2(p2 + 1) + p3(p3 + 1)

)
+
m

2

(
p4(p4 + 1) + p5(p5 + 1)

)
+

+M(p2 + 2p3 + 4) +m(2p1 + 3p4 + 4p5 + 6).
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Figure 6.2: The construction of IST .
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First we prove that if I3DM is a YES-Instance then IST is a YES-
Instance. Consider a solution, CSOL ⊆ C, of I3DM , such that CSOL =
{cs1 , cs2 , . . . , csm

}. We name the clauses that are not in the solution as
C \ CSOL = {ct1 , ct2 , . . . , ctM−m

}. Let us consider the following broadcast,
B∗, on IST :

Round 1:
send the message through (v0

i , v
1
si

) for all i = 1, 2, . . . ,m such that the
vertex v1

si
corresponds to the clause csi

in the solution CSOL;
send the message through (v0

i , u
1
i,1) for all i = m+ 1,m+ 2, . . . ,M ;

Round 2:
send the message through (v0

i , u
2
i,1) for all i = 1, 2, . . . ,M ;

send the message through (v1
si
, vXi ) for all i = 1, 2, . . . ,m;

send the message through (u1
i,1, u

1
i,2) for all i = m+ 1,m+ 2, . . . ,M ;

Round 3:
send the message through (v0

i , u
3
i,1) for all i = 1, 2, . . . ,M ;

send the message through (v1
si
, vYi ) for all i = 1, 2, . . . ,m;

send the message through (vXi , u
1
i,1) for all i = 1, 2, . . . ,m;

send the message through (u1
i,2, u

1
i,3) for all i = m+ 1,m+ 2, . . . ,M ;

send the message through (u2
i,1, u

2
i,2) for all i = 1, 2, . . . ,M ;

Round 4:
send the message through (v0

i , v
1
ti−m

) for all i = m+ 1,m+ 2, . . . ,M ;
send the message through (v1

si
, vZi ) for all i = 1, 2, . . . ,m;

send the message through (vYi , u
4
i,1) for all i = 1, 2, . . . ,m;

send the message through (u1
i,3, u

1
i,4) for all i = m+ 1,m+ 2, . . . ,M ;

send the message through (u1
i,1, u

1
i,2) for all i = 1, 2, . . . ,m;

send the message through (u2
i,2, u

2
i,3) for all i = 1, 2, . . . ,M ;

send the message through (u3
i,1, u

3
i,2) for all i = 1, 2, . . . ,M ;

Round 5
send the message through (vZi , u

5
i,1) for all i = 1, 2, . . . ,m;

send the message through (u1
i,5, u

1
i,6) for all i = m+ 1,m+ 2, . . . ,M ;

send the message through (u1
i,2, u

1
i,3) for all i = 1, 2, . . . ,m;

send the message through (u2
i,3, u

2
i,4) for all i = 1, 2, . . . ,M ;

send the message through (u3
i,2, u

3
i,3) for all i = 1, 2, . . . ,M ;

send the message through (u4
i,1, u

4
i,2) for all i = 1, 2, . . . ,m;



i
i

“thesis” — 2009/2/24 — 17:51 — page 66 — #76 i
i

i
i

i
i

CHAPTER 6. BROADCAST IN CENTRALIZED SCENARIO 66

Round 6 and the followings:
send the message through each edge (vhi,j , v

h
i,j+1) such that, at round 6,

the vertex vhi,j knows the message and the vertex vhi,j+1 does not know
the message.

Let us count the sum of the times t(w) for all w ∈ V . For each i = 1, 2, . . . ,M
we have t(v0

i ) = 0 and t(v1
i ) = 1. For each i = m + 1,m + 2, . . . ,M we have

t(v1
i ) = 4. For each i = 1, 2, . . . ,m we have t(vXi ) = 2, t(vYi ) = 3 and t(vZi ) = 4.

Thus the sum of the times in which the vertices in V0, V1, X, Y, Z receive the
message is 4M − 6m. The sum of the times for each vertex in U1 is:∑

w∈U1

t(w) =
∑

i∈{1,...,m}
j∈{1,...,p1}

t(u1
i,j) +

∑
i∈{m+1,...,M}

j∈{1,...,p1}

t(u1
i,j) =

since, for all i ∈ {1, . . . ,M}, the vertices u1
i,1, u

1
i,2, . . . , u

1
i,p1

create a path in IST
connected to the graph through a unique edge, adjacent to u1

i,1, by Lemma 12
we have:

=
∑

i∈{1,...,m}

(
2p1 +

p1(p1 + 1)
2

)
+

∑
i∈{m+1,...,M}

p1(p1 + 1)
2

=

= m
(p1(p1 + 1)

2
+ 2p1

)
+ (M −m)

p1(p1 + 1)
2

= M
p1(p1 + 1)

2
+ 2mp1.

Similarly, we observe that, for all i ∈ {1, . . . ,M} and h ∈ {2, 3}, the vertices
uhi,1, u

h
i,2, . . . , u

h
i,ph

create a path in IST connected to the graph through a unique
edge, adjacent to uhi,1, and, for all i ∈ {1, . . . ,m} and h ∈ {4, 5}, the vertices
uhi,1, u

h
i,2, . . . , u

h
i,ph

create a path in IST connected to the graph through a unique
edge, adjacent to uhi,1. Hence, by Lemma 12, we obtain the sums of the times
of the vertices of the sets U2, U3, U4, U5,∑

w∈U2

t(w) = M
(
p2 +

p2(p2 + 1)
2

)
,

∑
w∈U3

t(w) = M
(

2p3 +
p3(p3 + 1)

2

)
,

∑
w∈U4

t(w) = m
(

3p4 +
p4(p4 + 1)

2

)
,
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∑
w∈U5

t(w) = m
(

4p5 +
p5(p5 + 1)

2

)
,

thus, the sum of the information times for each vertex of V in B∗ is:∑
w∈V

t(w) =
M

2

(
p1(p1+1)+p2(p2+1)+p3(p3+1)

)
+
m

2

(
p4(p4+1)+p5(p5+1)

)
+

+M(p2 + 2p3 + 4) +m(2p1 + 3p4 + 4p5 − 6).

We conclude that there is a broadcast for IST with a total time equal to k,
hence IST is a YES-Instance.

Now we show that if IST is a YES-Instance then I3DM is a YES-Instance.
This proof is organized in the following way: initially, we prove five statements,
Claim I,II,III,IV,V, finally, we conclude the proof using the statements.

Claim I: if IST is a YES-Instance then, in any broadcast that satisfies
the instance, t(u1

i,1) = 3, for all i ∈ {1, . . . ,m}, and t(u1
i,1) = 1, for all i ∈

{m+ 1, . . . ,M}.
Proof. In order to prove Claim I, we observe that, for all i ∈ {m +

1, . . . ,M}, t(u1
i,1) can not be lesser than 1, because u1

i,1 /∈ V0. We also ob-
serve that, for all i ∈ {1, . . . ,m}, t(u1

i,1) can not be lesser than 3, because
minw∈V0 d(w, u1

i,1) = 3, where d(a, b) means the distance between vertices a
and b in the graph. So, we have:

t(u1
i,1) ≥ 3 ∀i ∈ {1, . . . ,m}

t(u1
i,1) ≥ 1 ∀i ∈ {m+ 1, . . . ,M}.

Now, consider a vertex u1
a,1, with a ∈ {1, . . . ,M}, that does not receive the

information as soon as possible, but with a delay of at least 1. Consider the
following cases: (i) a ∈ {1, . . . ,m} or (ii) a ∈ {m + 1, . . . ,M}. In case (i) we
have t(u1

a,1) ≥ 4. So that, by Lemma 12, the sum of information times for U1

is bounded as follows:∑
i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) =

∑
j∈{1,...,p1}

t(u1
a,j)+

∑
i∈{1,...,m},i 6=a

j∈{1,...,p1}

t(u1
i,j)+

∑
i∈{m+1,...,M}

j∈{1,...,p1}

t(u1
i,j) ≥

3p1 +
p1(p1 + 1)

2
+

∑
i∈{1,...,m},i6=a

(
2p1 +

p1(p1 + 1)
2

)
+

∑
i∈{m+1,...,M}

p1(p1 + 1)
2

=
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= 3p1 +
p1(p1 + 1)

2
+ (m− 1)

(
2p1 +

p1(p1 + 1)
2

)
+ (M −m)

p1(p1 + 1)
2

=

= 3p1 +
p1(p1 + 1)

2
+ 2mp1 +m

p1(p1 + 1)
2

− 2p1+

−p1(p1 + 1)
2

+M
p1(p1 + 1)

2
−mp1(p1 + 1)

2
=

= M
p1(p1 + 1)

2
+ 2mp1 + p1.

Let us analyze the case (ii). In this case we have t(u1
a,1) ≥ 2. Again, by

Lemma 12, the sum of information times for U1 is bounded as follows:∑
i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) =

∑
i∈{1,...,m}
j∈{1,...,p1}

t(u1
i,j)+

∑
j∈{1,...,p1}

t(u1
a,j)+

∑
i∈{m+1,...,M},i 6=a

j∈{1,...,p1}

t(u1
i,j) ≥

∑
i∈{1,...,m}

(
2p1 +

p1(p1 + 1)
2

)
+p1 +

p1(p1 + 1)
2

+
∑

i∈{m+1,...,M},i6=a

p1(p1 + 1)
2

=

= m
(

2p1 +
p1(p1 + 1)

2

)
+ p1 +

p1(p1 + 1)
2

+ (M −m− 1)
p1(p1 + 1)

2
=

= 2mp1 +m
p1(p1 + 1)

2
+ p1 +

p1(p1 + 1)
2

+

+M
p1(p1 + 1)

2
−mp1(p1 + 1)

2
− p1(p1 + 1)

2
=

= M
p1(p1 + 1)

2
+ 2mp1 + p1.

Hence, in both the cases, (i) and (ii), we have:∑
i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) ≥M

p1(p1 + 1)
2

+ 2mp1 + p1.

Now, for all w ∈ U2 ∪ U3 ∪ U4 ∪ U5, we observe that t(w) ≥ 1, because w /∈
V0. Furthermore, in IST , for all i ∈ {1, . . . ,M} and h ∈ {2, 3}, the vertices
uhi,1, u

h
i,2, . . . , u

h
i,ph

create a path, connected to the graph through a unique
edge, adjacent to uhi,1, and, for all i ∈ {1, . . . ,m} and h ∈ {4, 5}, the vertices
uhi,1, u

h
i,2, . . . , u

h
i,ph

create a path, connected to the graph through a unique edge,
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adjacent to uhi,1. Hence, by Lemma 12, we bound the sums of the times of the
vertices of the sets U2, U3, U4, U5 as follows:∑

i∈{1,...,M}
j∈{1,...,p2}

t(u2
i,j) ≥

∑
i∈{1,...,M}

p2(p2 + 1)
2

= M
p2(p2 + 1)

2
,

∑
i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) ≥

∑
i∈{1,...,M}

p3(p3 + 1)
2

= M
p3(p3 + 1)

2
,

∑
i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) ≥

∑
i∈{1,...,m}

p4(p4 + 1)
2

= m
p4(p4 + 1)

2
,

∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

∑
i∈{1,...,m}

p5(p5 + 1)
2

= m
p5(p5 + 1)

2
.

Therefore, the sum of all the information times is:∑
w∈V

t(w) =
∑

w∈V0∪V1∪X∪Y ∪Z
t(w) +

∑
i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) +

∑
i∈{1,...,M}
j∈{1,...,p2}

t(u2
i,j)+

+
∑

i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

M
p1(p1 + 1)

2
+ 2mp1 + p1 +M

p2(p2 + 1)
2

+M
p3(p3 + 1)

2
+

+m
p4(p4 + 1)

2
+m

p5(p5 + 1)
2

=

=
M

2

(
p1(p1+1)+p2(p2+1)+p3(p3+1)

)
+
m

2

(
p4(p4+1)+p5(p5+1)

)
+2mp1+p1.

Thanks to our choice of p1, we bound the previous term substituting the last
occurrence of p1:∑
w∈V

t(w) >
M

2

(
p1(p1+1)+p2(p2+1)+p3(p3+1)

)
+
m

2

(
p4(p4+1)+p5(p5+1)

)
+

+M(p2 + 2p3 + 4) +m(2p1 + 3p4 + 4p5 + 6) = k
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that is a contradiction (IST is a YES-Instance). Thus, we conclude the proof
of Claim I, i.e. if IST is a YES-Instance then in any broadcast that satisfies
the instance t(u1

i,1) = 3, for all i ∈ {1, . . . ,m}, and t(u1
i,1) = 1, for all i ∈

{m+ 1, . . . ,M}.

Therefore, the broadcast process that satisfies IST must be as the following
partial broadcast B1:

Round 1:
send the message through (v0

i , v
1
si

) for all i = 1, 2, . . . ,m for some sequence
s1, s2, . . . , sm such that in I3DM the clauses cs1 , cs2 , . . . , csm

are a cover
for the elements x1, x2, . . . , xm;
send the message through (v0

i , u
1
i,1) for all i = m+ 1,m+ 2, . . . ,M ;

Round 2:
send the message through (v1

si
, vXi ) for all i = 1, 2, . . . ,m;

send the message through (u1
i,1, u

1
i,2) for all i = m+ 1,m+ 2, . . . ,M ;

Round 3:
send the message through (vXi , u

1
i,1) for all i = 1, 2, . . . ,m;

send the message through (u1
i,2, u

1
i,3) for all i = m+ 1,m+ 2, . . . ,M ;

Round 4 and the followings:
send the message through each edge (vhi,j , v

h
i,j+1) such that, at round 4,

the vertex vhi,j knows the message and the vertex vhi,j+1 does not know
the message.

Claim I implies that, if IST is a YES-Instance, in a broadcast that satisfies it,
the sum of the information times of U1 is:∑

i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) ≥M

p1(p1 + 1)
2

+ 2mp1. (6.1)

Claim II: if IST is a YES-Instance then, in any broadcast that satisfies the
instance, t(u2

i,1) = 2, for all i ∈ {1, . . . ,M}.
Proof. Firstly, we note that t(u2

i,1), for all i ∈ {1, . . . ,M}, can not be lesser
than 2, because at time 1, as we shown in B1, only vertices in U1 or V1 can be
informed. Secondly, if there is a vertex u2

a,1 such that t(u2
a,1) ≥ 3, we consider
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the path composed by the vertices u2
a,j , with j ∈ {1, . . . , p2}. By Lemma 12,

we have that: ∑
j∈{1,...,p2}

t(u2
a,j) ≥ 2p2 +

p2(p2 + 1)
2

.

For all the other i ∈ {1, . . . ,M} with i 6= a, since it must be t(u2
i,1) ≥ 2, again

by Lemma 12, we have: ∑
j∈{1,...,p2}

t(u2
i,j) ≥ p2 +

p2(p2 + 1)
2

.

So we can bound the sum of the information times of U2 as follows:∑
i∈{1,...,M}
j∈{1,...,p2}

t(u2
i,j) =

∑
j∈{1,...,p2}

t(u2
a,j) +

∑
i∈{1,...,M},i 6=a

j∈{1,...,p2}

t(u2
i,j) ≥

2p2 +
p2(p2 + 1)

2
+

∑
i∈{1,...,M},i6=a

(
p2 +

p2(p2 + 1)
2

)
=

= 2p2 +
p2(p2 + 1)

2
+ (M − 1)

(
p2 +

p2(p2 + 1)
2

)
=

= M
p2(p2 + 1)

2
+Mp2 + p2.

Now, for all w ∈ U3 ∪ U4 ∪ U5, we observe that t(w) ≥ 1, because w /∈ V0.
Furthermore, in IST , for all i ∈ {1, . . . ,M}, the vertices u3

i,1, u
3
i,2, . . . , u

3
i,p3

create a path, connected to the graph through a unique edge, adjacent to u3
i,1,

and, for all i ∈ {1, . . . ,m} and h ∈ {4, 5}, the vertices uhi,1, u
h
i,2, . . . , u

h
i,ph

create
a path, connected to the graph through a unique edge, adjacent to uhi,1. Hence,
by Lemma 12, we bound the sums of the times of the vertices of the sets
U3, U4, U5 as follows:∑

i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) ≥

∑
i∈{1,...,M}

p3(p3 + 1)
2

= M
p3(p3 + 1)

2
,

∑
i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) ≥

∑
i∈{1,...,m}

p4(p4 + 1)
2

= m
p4(p4 + 1)

2
,
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∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

∑
i∈{1,...,m}

p5(p5 + 1)
2

= m
p5(p5 + 1)

2
.

Therefore, using (6.1), we calculate the sum of all the information times:∑
w∈V

t(w) =
∑

w∈V0∪V1∪X∪Y ∪Z
t(w) +

∑
i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) +

∑
i∈{1,...,M}
j∈{1,...,p2}

t(u2
i,j)+

+
∑

i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

M
p1(p1 + 1)

2
+ 2mp1 +M

p2(p2 + 1)
2

+Mp2 + p2 +M
p3(p3 + 1)

2
+

+m
p4(p4 + 1)

2
+m

p5(p5 + 1)
2

=

=
M

2

(
p1(p1 + 1) + p2(p2 + 1) + p3(p3 + 1)

)
+
m

2

(
p4(p4 + 1) + p5(p5 + 1)

)
+

+2mp1 +Mp2 + p2.

Thanks to our choice of p2, we bound the previous term substituting the last
occurrence of p2:∑
w∈V

t(w) >
M

2

(
p1(p1+1)+p2(p2+1)+p3(p3+1)

)
+
m

2

(
p4(p4+1)+p5(p5+1)

)
+

+M(p2 + 2p3 + 4) +m(2p1 + 3p4 + 4p5 + 6) = k

that is a contradiction (IST is a YES-Instance). Thus, we conclude the proof
of Claim II, i.e. if IST is a YES-Instance then in any broadcast that satisfies
the instance t(u2

i,1) = 2, for all i ∈ {1, . . . ,M}.

Therefore, the broadcast process that satisfies IST must be as the following
partial broadcast B2:

Round 1:
send the message through (v0

i , v
1
si

) for all i = 1, 2, . . . ,m for some sequence
s1, s2, . . . , sm such that in I3DM the clauses cs1 , cs2 , . . . , csm are a cover
for the elements x1, x2, . . . , xm;
send the message through (v0

i , u
1
i,1) for all i = m+ 1,m+ 2, . . . ,M ;
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Round 2:
send the message through (v0

i , u
2
i,1) for all i = 1, 2, . . . ,M ;

send the message through (v1
si
, vXi ) for all i = 1, 2, . . . ,m;

send the message through (u1
i,1, u

1
i,2) for all i = m+ 1,m+ 2, . . . ,M ;

Round 3:
send the message through (vXi , u

1
i,1) for all i = 1, 2, . . . ,m;

send the message through (u1
i,2, u

1
i,3) for all i = m+ 1,m+ 2, . . . ,M ;

send the message through (u2
i,1, u

2
i,2) for all i = 1, 2, . . . ,M ;

Round 4 and the followings:
send the message through each edge (vhi,j , v

h
i,j+1) such that, at round 4,

the vertex vhi,j knows the message and the vertex vhi,j+1 does not know
the message.

Claim II implies that, if IST is a YES-Instance, in a broadcast that satisfies
it, the sum of the information times of U2 is:∑

i∈{1,...,M}
j∈{1,...,p2}

t(u2
i,j) ≥M

p2(p2 + 1)
2

+Mp2. (6.2)

Claim III: if IST is a YES-Instance then, in any broadcast that satisfies
the instance, t(u3

i,1) = 3, for all i ∈ {1, . . . ,M}.
Proof. Initially, we observe that t(u3

i,1), for all i ∈ {1, . . . ,M}, can not
be lesser than 3, because at time 1 amd 2, as we shown in B2, vertices in V0

transmit towards vertices U1 and U2. Instead, if there is a vertex u3
a,1 such

that t(u3
a,1) ≥ 4, we consider the path composed by the vertices u3

a,j , with
j ∈ {1, . . . , p3}. By Lemma 12, we have that:∑

j∈{1,...,p3}

t(u3
a,j) ≥ 3p3 +

p3(p3 + 1)
2

.

For all the other i ∈ {1, . . . ,M} with i 6= a, since it must be t(u3
i,1) ≥ 3, again

by Lemma 12, we have:∑
j∈{1,...,p3}

t(u3
i,j) ≥ 2p3 +

p3(p3 + 1)
2

.
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So we can bound the sum of the information times of U3 as follows:∑
i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) =

∑
j∈{1,...,p3}

t(u3
a,j) +

∑
i∈{1,...,M},i 6=a

j∈{1,...,p3}

t(u3
i,j) ≥

3p3 +
p3(p3 + 1)

2
+

∑
i∈{1,...,M},i6=a

(
2p3 +

p3(p3 + 1)
2

)
=

= 3p3 +
p3(p3 + 1)

2
+ (M − 1)

(
2p3 +

p3(p3 + 1)
2

)
=

= M
p3(p3 + 1)

2
+ 2Mp3 + p3.

Now, for all w ∈ U4 ∪ U5, we observe that t(w) ≥ 1, because w /∈ V0.
Furthermore, in IST , for all i ∈ {1, . . . ,m} and h ∈ {4, 5}, the vertices
uhi,1, u

h
i,2, . . . , u

h
i,ph

create a path, connected to the graph through a unique
edge, adjacent to uhi,1. Hence, by Lemma 12, we bound the sums of the times
of the vertices of the sets U4, U5 as follows:∑

i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) ≥

∑
i∈{1,...,m}

p4(p4 + 1)
2

= m
p4(p4 + 1)

2
,

∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

∑
i∈{1,...,m}

p5(p5 + 1)
2

= m
p5(p5 + 1)

2
.

Therefore, using (6.1), (6.2), we calculate the sum of all the information times:∑
w∈V

t(w) =
∑

w∈V0∪V1∪X∪Y ∪Z
t(w) +

∑
i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) +

∑
i∈{1,...,M}
j∈{1,...,p2}

t(u2
i,j)+

+
∑

i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

M
p1(p1 + 1)

2
+ 2mp1 +M

p2(p2 + 1)
2

+Mp2 +M
p3(p3 + 1)

2
+

+2Mp3 + p3 +m
p4(p4 + 1)

2
+m

p5(p5 + 1)
2

=
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=
M

2

(
p1(p1 + 1) + p2(p2 + 1) + p3(p3 + 1)

)
+
m

2

(
p4(p4 + 1) + p5(p5 + 1)

)
+

+2mp1 +Mp2 + 2Mp3 + p3.

Thanks to our choice of p3, we bound the previous term substituting the last
occurrence of p3:∑
w∈V

t(w) >
M

2

(
p1(p1+1)+p2(p2+1)+p3(p3+1)

)
+
m

2

(
p4(p4+1)+p5(p5+1)

)
+

+M(p2 + 2p3 + 4) +m(2p1 + 3p4 + 4p5 + 6) = k

that is a contradiction (IST is a YES-Instance). Thus, we conclude the proof
of Claim III, i.e. if IST is a YES-Instance then in any broadcast that satisfies
the instance t(u3

i,1) = 3, for all i ∈ {1, . . . ,M}.

Therefore, the broadcast process that satisfies IST must be as the following
partial broadcast B3:

Round 1:
send the message through (v0

i , v
1
si

) for all i = 1, 2, . . . ,m for some sequence
s1, s2, . . . , sm such that in I3DM the clauses cs1 , cs2 , . . . , csm

are a cover
for the elements x1, x2, . . . , xm;
send the message through (v0

i , u
1
i,1) for all i = m+ 1,m+ 2, . . . ,M ;

Round 2:
send the message through (v0

i , u
2
i,1) for all i = 1, 2, . . . ,M ;

send the message through (v1
si
, vXi ) for all i = 1, 2, . . . ,m;

send the message through (u1
i,1, u

1
i,2) for all i = m+ 1,m+ 2, . . . ,M ;

Round 3:
send the message through (v0

i , u
3
i,1) for all i = 1, 2, . . . ,M ;

send the message through (vXi , u
1
i,1) for all i = 1, 2, . . . ,m;

send the message through (u1
i,2, u

1
i,3) for all i = m+ 1,m+ 2, . . . ,M ;

send the message through (u2
i,1, u

2
i,2) for all i = 1, 2, . . . ,M ;

Round 4 and the followings:
send the message through each edge (vhi,j , v

h
i,j+1) such that, at round 4,

the vertex vhi,j knows the message and the vertex vhi,j+1 does not know
the message.
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Claim III implies that, if IST is a YES-Instance, in a broadcast that satisfies
it, the sum of the information times of U3 is:∑

i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) ≥M

p3(p3 + 1)
2

+ 2Mp3. (6.3)

Claim IV: if IST is a YES-Instance then, in any broadcast that satisfies
the instance, t(u4

i,1) = 4, for all i ∈ {1, . . . ,m}.
Proof. At first, we prove that t(u4

i,1), for all i ∈ {1, . . . ,m}, can not be
lesser than 4. Consider a path P , from a vertex w ∈ V0 to u4

i,1. We observe
that, in IST , P must be long at least 3. Moreover, if P is long 3, then it must
be like w, v1

a, v
Y
b , u

4
i,1, for some a ∈ {1, . . . ,M} and b ∈ {1, . . . ,m}. By Claim

I we know that, at time 1, exactly m vertices of V1 know the information and,
at round 2, the m informed vertices of V1 must transmit towards X. Thus, vYb
can not receive the message at time 2 and, thereby, u4

i,1 can not receive the
message at time 3. So t(u4

i,1), for all i ∈ {1, . . . ,m}, can not be lesser than 4.
Let us prove that t(u4

i,1), for all i ∈ {1, . . . ,m}, can not be greater than 4. If
there is a vertex u4

a,1 such that t(u4
a,1) ≥ 5, we consider the path composed by

the vertices u4
a,j , with j ∈ {1, . . . , p4}. By Lemma 12, we have that:

∑
j∈{1,...,p4}

t(u4
a,j) ≥ 4p4 +

p4(p4 + 1)
2

.

For all the other i ∈ {1, . . . ,m} with i 6= a, since it must be t(u4
i,1) ≥ 4, again

by Lemma 12, we have:∑
j∈{1,...,p4}

t(u4
i,j) ≥ 3p4 +

p4(p4 + 1)
2

.

So we can bound the sum of the information times of U4 as follows:∑
i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) =

∑
j∈{1,...,p4}

t(u4
a,j) +

∑
i∈{1,...,m},i 6=a

j∈{1,...,p4}

t(u4
i,j) ≥

4p4 +
p4(p4 + 1)

2
+

∑
i∈{1,...,m},i6=a

(
3p4 +

p4(p4 + 1)
2

)
=
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= 4p4 +
p4(p4 + 1)

2
+ (m− 1)

(
3p4 +

p4(p4 + 1)
2

)
=

= m
p4(p4 + 1)

2
+ 3mp4 + p4.

Now, for all w ∈ U5, we observe that t(w) ≥ 1, because w /∈ V0. Furthermore,
in IST , for all i ∈ {1, . . . ,m}, the vertices u5

i,1, u
5
i,2, . . . , u

5
i,p5

create a path,
connected to the graph through a unique edge, adjacent to u5

i,1. Hence, by
Lemma 12, we bound the sum of the times of the vertices of the sets U5 as
follows: ∑

i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

∑
i∈{1,...,m}

p5(p5 + 1)
2

= m
p5(p5 + 1)

2
.

Therefore, using (6.1), (6.2), (6.3), we calculate the sum of all the information
times:∑

w∈V
t(w) =

∑
w∈V0∪V1∪X∪Y ∪Z

t(w) +
∑

i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) +

∑
i∈{1,...,M}
j∈{1,...,p2}

t(u2
i,j)+

+
∑

i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

M
p1(p1 + 1)

2
+ 2mp1 +M

p2(p2 + 1)
2

+Mp2 +M
p3(p3 + 1)

2
+

+2Mp3 +m
p4(p4 + 1)

2
+ 3mp4 + p4 +m

p5(p5 + 1)
2

=

=
M

2

(
p1(p1 + 1) + p2(p2 + 1) + p3(p3 + 1)

)
+
m

2

(
p4(p4 + 1) + p5(p5 + 1)

)
+

+2mp1 +Mp2 + 2Mp3 + 3mp4 + p4.

Thanks to our choice of p4, we bound the previous term substituting the last
occurrence of p4:∑
w∈V

t(w) >
M

2

(
p1(p1+1)+p2(p2+1)+p3(p3+1)

)
+
m

2

(
p4(p4+1)+p5(p5+1)

)
+

+M(p2 + 2p3 + 4) +m(2p1 + 3p4 + 4p5 + 6) = k
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that is a contradiction (IST is a YES-Instance). Thus, we conclude the proof
of Claim IV, i.e. if IST is a YES-Instance then in any broadcast that satisfies
the instance t(u4

i,1) = 4, for all i ∈ {1, . . . ,m}.

Therefore, the broadcast process that satisfies IST must be as the following
partial broadcast B4:

Round 1:
send the message through (v0

i , v
1
si

) for all i = 1, 2, . . . ,m for some sequence
s1, s2, . . . , sm such that in I3DM the clauses cs1 , cs2 , . . . , csm

are a cover
for the elements x1, x2, . . . , xm;
send the message through (v0

i , u
1
i,1) for all i = m+ 1,m+ 2, . . . ,M ;

Round 2:
send the message through (v0

i , u
2
i,1) for all i = 1, 2, . . . ,M ;

send the message through (v1
si
, vXi ) for all i = 1, 2, . . . ,m;

send the message through (u1
i,1, u

1
i,2) for all i = m+ 1,m+ 2, . . . ,M ;

Round 3:
send the message through (v0

i , u
3
i,1) for all i = 1, 2, . . . ,M ;

send the message through (v1
si
, vYi ) for all i = 1, 2, . . . ,m;

send the message through (vXi , u
1
i,1) for all i = 1, 2, . . . ,m;

send the message through (u1
i,2, u

1
i,3) for all i = m+ 1,m+ 2, . . . ,M ;

send the message through (u2
i,1, u

2
i,2) for all i = 1, 2, . . . ,M ;

Round 4 and the followings:
send the message through (vYi , u

4
i,1) for all i = 1, 2, . . . ,m;

send the message through each edge (vhi,j , v
h
i,j+1) such that, at round 4,

the vertex vhi,j knows the message and the vertex vhi,j+1 does not know
the message.

Claim IV implies that, if IST is a YES-Instance, in a broadcast that satisfies
it, the sum of the information times of U4 is:∑

i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) ≥ m

p4(p4 + 1)
2

+ 3mp4. (6.4)

Claim IV: if IST is a YES-Instance then, in any broadcast that satisfies
the instance, t(u5

i,1) = 5, for all i ∈ {1, . . . ,m}.
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Proof. Initially, we prove that t(u5
i,1), for all i ∈ {1, . . . ,m}, can not be

lesser than 5. Consider a path P , from a vertex w ∈ V0 to u5
i,1. We observe

that, in IST , P must be long at least 3. Moreover, if P is long 3, then it must
be like w, v1

a, v
Z
b , u

5
i,1, for some a ∈ {1, . . . ,M} and b ∈ {1, . . . ,m}. By Claim I

we know that, at time 1, exactly m vertices of V1 know the information and, at
round 2, the m informed vertices of V1 must transmit towards X. By Claim
IV we know that, at time 3, the m informed vertices of V1 must transmit
towards Y . Thus, vZb can not receive the message at time 3 and, thereby, u5

i,1

can not receive the message at time 4. So t(u5
i,1), for all i ∈ {1, . . . ,m}, can

not be lesser than 5. Let us prove that t(u5
i,1), for all i ∈ {1, . . . ,m}, can not

be greater than 5. If there is a vertex u5
a,1 such that t(u5

a,1) ≥ 6, we consider
the path composed by the vertices u5

a,j , with j ∈ {1, . . . , p5}. By Lemma 12,
we have that: ∑

j∈{1,...,p5}

t(u5
a,j) ≥ 5p5 +

p5(p5 + 1)
2

.

For all the other i ∈ {1, . . . ,m} with i 6= a, since it must be t(u5
i,1) ≥ 5, again

by Lemma 12, we have:∑
j∈{1,...,p5}

t(u5
i,j) ≥ 4p5 +

p5(p5 + 1)
2

.

So we can bound the sum of the information times of U5 as follows:∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) =

∑
j∈{1,...,p5}

t(u5
a,j) +

∑
i∈{1,...,m},i 6=a

j∈{1,...,p5}

t(u5
i,j) ≥

5p5 +
p5(p5 + 1)

2
+

∑
i∈{1,...,m},i6=a

(
4p5 +

p5(p5 + 1)
2

)
=

= 5p5 +
p5(p5 + 1)

2
+ (m− 1)

(
4p5 +

p5(p5 + 1)
2

)
=

= m
p5(p5 + 1)

2
+ 4mp5 + p5.

Therefore, using (6.1), (6.2), (6.3), (6.4), we calculate the sum of all the infor-
mation times:∑

w∈V
t(w) =

∑
w∈V0∪V1∪X∪Y ∪Z

t(w) +
∑

i∈{1,...,M}
j∈{1,...,p1}

t(u1
i,j) +

∑
i∈{1,...,M}
j∈{1,...,p2}

t(u2
i,j)+
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+
∑

i∈{1,...,M}
j∈{1,...,p3}

t(u3
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p4}

t(u4
i,j) +

∑
i∈{1,...,m}
j∈{1,...,p5}

t(u5
i,j) ≥

M
p1(p1 + 1)

2
+ 2mp1 +M

p2(p2 + 1)
2

+Mp2 +M
p3(p3 + 1)

2
+

+2Mp3 +m
p4(p4 + 1)

2
+ 3mp4 +m

p5(p5 + 1)
2

+ 4mp5 + p5 =

=
M

2

(
p1(p1 + 1) + p2(p2 + 1) + p3(p3 + 1)

)
+
m

2

(
p4(p4 + 1) + p5(p5 + 1)

)
+

+2mp1 +Mp2 + 2Mp3 + 3mp4 + 4mp5 + p5.

Thanks to our choice of p5, we bound the previous term substituting the last
occurrence of p5:∑
w∈V

t(w) >
M

2

(
p1(p1+1)+p2(p2+1)+p3(p3+1)

)
+
m

2

(
p4(p4+1)+p5(p5+1)

)
+

+M(p2 + 2p3 + 4) +m(2p1 + 3p4 + 4p5 + 6) = k

that is a contradiction (IST is a YES-Instance). Thus, we conclude the proof
of Claim V, i.e. if IST is a YES-Instance then in any broadcast that satisfies
the instance t(u5

i,1) = 5, for all i ∈ {1, . . . ,m}.

Therefore, the broadcast process that satisfies IST must be as the following
partial broadcast B5:

Round 1:
send the message through (v0

i , v
1
si

) for all i = 1, 2, . . . ,m for some sequence
s1, s2, . . . , sm such that in I3DM the clauses cs1 , cs2 , . . . , csm are a cover
for the elements x1, x2, . . . , xm;
send the message through (v0

i , u
1
i,1) for all i = m+ 1,m+ 2, . . . ,M ;

Round 2:
send the message through (v0

i , u
2
i,1) for all i = 1, 2, . . . ,M ;

send the message through (v1
si
, vXi ) for all i = 1, 2, . . . ,m;

send the message through (u1
i,1, u

1
i,2) for all i = m+ 1,m+ 2, . . . ,M ;

Round 3:
send the message through (v0

i , u
3
i,1) for all i = 1, 2, . . . ,M ;

send the message through (v1
si
, vYi ) for all i = 1, 2, . . . ,m;
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send the message through (vXi , u
1
i,1) for all i = 1, 2, . . . ,m;

send the message through (u1
i,2, u

1
i,3) for all i = m+ 1,m+ 2, . . . ,M ;

send the message through (u2
i,1, u

2
i,2) for all i = 1, 2, . . . ,M ;

Round 4
send the message through (v1

si
, vZi ) for all i = 1, 2, . . . ,m;

send the message through (vYi , u
4
i,1) for all i = 1, 2, . . . ,m;

send the message through each edge (vhi,j , v
h
i,j+1) such that, at round 4,

the vertex vhi,j knows the message and the vertex vhi,j+1 does not know
the message.

Round 5 and the followings:
send the message through (vZi , u

5
i,1) for all i = 1, 2, . . . ,m;

send the message through each edge (vhi,j , v
h
i,j+1) such that, at round 4,

the vertex vhi,j knows the message and the vertex vhi,j+1 does not know
the message.

At this point, broadcast B5 implies that, in IST , there are m vertices of
V1, v1

s1 , v
1
s2 , . . . , v

1
sm

, such that, in round 2 they transmit, simultaneously, the
message to all the m vertices in X, in round 3 they transmit, simultaneously,
the message to all the m vertices in Y , and in round 4 they transmit, simultane-
ously, the message to all the m vertices in Z. Since the vertices of V1 represent
the clauses and X,Y and Z represent the three elements sets in I3DM , we have
that C∗ = {cs1 , cs2 , . . . , csm

} must be a solution for I3DM , so that I3DM is a
YES-Instance.

Theorem 7. Problem ST-r, i.e. the problem ST in which in V0 there is only
one vertex, named r, is NP-complete.

Proof. We will reduce the problem ST to the problem ST-r. Given an instance
IST of the problem ST, we build an instance of IST−r of the problem ST-r.
Then, we prove that, IST−r is a YES-Instance if and only if IST is a YES-
Instance. The idea of the proof is to build the instance IST−r like the instance
IST , but with a further structure such that, any broadcast must disseminate
the message so that the vertices in V0 receive it at the same time. After that
vertices in V0 have received the message, the broadcast continues as a broadcast
in IST .

Consider an instance IST in which we have a graph G = (V,E), a set
V0 ⊆ V and a positive integer k. We build IST−r, i.e. G′ = (V ′, E′), r ∈ V ′, k′,
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as follows (see Figure 6.3). Let q = |V0|, n = |V | and V0 = {a1, a2, . . . , aq}.
Consider an arbitrary integer p, such that:

p > k + n(q + 1) +
q(q2 + 1)

3
+
q(q − 1)

2
.

We define the following sets of vertices:

• S = {s1, s2, . . . , sq},

• U =
⋃

i∈{1,...,q−1}{u
1
i , u

2
i , u

3
i , . . . , u

q−i
i },

• P = {w1, w2, . . . , wp},

so that V ′ = S ∪ U ∪ P ∪ V . Consider the following sets of edges:

• ES = {(s1, s2), (s2, s3), . . . , (sq−1, sq)},

• EU =
⋃

i∈{1,...,q−1}{(si, u
1
i ), (u

1
i , u

2
i ), (u

2
i , u

3
i ), . . . , (u

q−i−1
i , uq−ii ), (uq−ii , ai)},

• EP = {(sq, w1), (w1, w2), (w2, w3), . . . , (wp−1, wp)},

so that E′ = ES ∪ EU ∪ EP ∪ E′. We define r = s1 and k′ as:

k′ = k + n(q + 1) +
q(q2 + 1)

3
+ p(q − 1) +

p(p+ 1)
2

+
q(q − 1)

2
.

Let us prove that, if IST is a YES-Instance then IST−r is a YES-Instance.
Let B be a broadcast that satisfies IST . Let us define a broadcast B′, over
IST−r, and a function t′ : V ′ → N (the function of the information times
for B′). In B′ each vertex si, with i ∈ {1, . . . , q − 1}, after receiving the
information, firstly sends the message to si+1 and, secondly, sends the message
to u1

i . The vertex sq, after receiving the information, sends it, before, to w1,
and, after, to u1

q. Vertices in U and in P \ {wp}, since have degree 2, after
receiving the message, coming from one of the two incident edges, forward it
towards the other. Thus, a vertex ai, with i ∈ {1, . . . , q}, receives the message
after it has passed through the path r = s1, s2, . . . , si, u

1
i , u

2
i , . . . , u

q−i
i . The

delay collected by the message, while it is passing that path, is 1: only the
delay introduced by the vertex si (it sends first to si+1). Thus, we have in B′,
for all i ∈ {1, 2, . . . , q}:

t′(ai) = length(s1, s2, . . . , si, u
1
i , u

2
i , . . . , u

q−i
i , ai) + delay =
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Figure 6.3: The construction of the graph G′.

= i+ (q − i) + 1 = q + 1.

Therefore, all the vertices of V0 receive the message at the same time in B′.
So, we define the rest of the broadcast B′, among the vertices in V , as B. Let
us count the sum of the information times, in B′, of vertices in S:∑

i∈{1,...,q}

t′(si) =
∑

i∈{1,...,q}

(i− 1) =
∑

i∈{1,...,q}

i−
∑

i∈{1,...,q}

1 =

=
q(q + 1)

2
− q =

q2 + q − 2q
2

=
q(q − 1)

2
.

Let us count the sum of the information times, in B′, of vertices in U :∑
i∈{1,...,q−1}

∑
j∈{1,...,q−i}

t′(uji ) =
∑

i∈{1,...,q−1}

(
(q − i)i+

(q − i)(q − i+ 1)
2

)
=

=
∑

i∈{1,...,q−1}

2qi− 2i2 + q2 − qi+ q − qi+ i2 − i
2

=
∑

i∈{1,...,q−1}

q2 + q − i2 − i
2

=
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=
1
2

( ∑
i∈{1,...,q−1}

(q2 + q)−
∑

i∈{1,...,q−1}

i2 −
∑

i∈{1,...,q−1}

i
)

=
1
2

(
(q − 1)(q2 + q)− (q − 1)q(2(q − 1) + 1)

6
− q(q − 1)

2

)
=

=
1
2

(
q3 + q2 − q2 − q − 2q3 − q2 − 2q2 + q

6
− q2 − q

2

)
=

=
6q3 − 6q − 2q3 + 3q2 − q − 3q2 + 3q

12
=

4q3 − 4q
12

=
q(q2 − 1)

3
.

Let us count the sum of the information times, in B′, of vertices in P , using
Lemma 12: ∑

i∈{1,...,p}

t′(wi) = p(q − 1) +
p(p+ 1)

2
.

Since, in B′, each vertex of V0 receives the message at time q + 1 and the
broadcast continues as in B, each vertex in V \V0 will receive the message with
the same delay of the vertices of V0, q + 1. So, for all v ∈ V , we have that
t′(v) = t(v)+q+1. Let us count the sum of the information times of broadcast
B′.∑
v∈V ′

t′(v) =
∑

i∈{1,...,q}

t′(si)+
∑

i∈{1,...,q−1}

∑
j∈{1,...,q−i}

t′(uji )+
∑

i∈{1,...,p}

t′(wi)+
∑
v∈V

t′(v) =

=
q(q − 1)

2
+
q(q2 − 1)

3
+ p(q − 1) +

p(p+ 1)
2

+
∑
v∈V

(t(v) + q + 1) =

=
∑
v∈V

t(v) +
∑
v∈V

(q + 1) +
q(q2 − 1)

3
+ p(q − 1) +

p(p+ 1)
2

+
q(q − 1)

2
=

=
∑
v∈V

t(v) + n(q + 1) +
q(q2 − 1)

3
+ p(q − 1) +

p(p+ 1)
2

+
q(q − 1)

2
≤

since IST is a YES-Instance

k + n(q + 1) +
q(q2 − 1)

3
+ p(q − 1) +

p(p+ 1)
2

+
q(q − 1)

2
= k′.

Hence, B′ is a broadcast that satisfies IST−r, so that, if IST is a YES-Instance
then IST−r is a YES-Instance.
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Let us prove that, if IST−r is a YES-Instance then IST is a YES-Instance.
We, firstly, prove a claim that is necessary to conclude the proof.

Claim I: if IST−r is a YES-Instance then, in any broadcast that satisfies
IST−r, t(w1) = q. Proof. Consider a broadcast that satisfies IST−r. In order
to prove Claim I, we observe that, since d(r, w1) = q, the message can not
arrive in w1 before q. Instead, consider that the message arrives in w1 after q,
so that t(w1) ≥ q + 1. In this broadcast, the sum of all the information times
is: ∑

v∈V ′
t′(v) =

∑
i∈{1,...,q}

t′(si) +
∑

i∈{1,...,q−1}

∑
j∈{1,...,q−i}

t′(uji )+

+
∑

i∈{1,...,p}

t′(wi) +
∑
v∈V

t′(v) ≥
∑

i∈{1,...,p}

t′(wi) ≥

that by Lemma 12 becomes

pq +
p(p+ 1)

2
= p(q − 1) +

p(p+ 1)
2

+ p >

thanks to our choice of p, we can bound the previous as:

p(q − 1) +
p(p+ 1)

2
+ k + n(q + 1) +

q(q2 + 1)
3

+
q(q − 1)

2
= k′.

This is a contradiction (IST−r is YES-Instance). So, we conclude that if IST−r
is a YES-Instance then, in any broadcast that satisfies IST−r, t(w1) = q.

Consider a broadcast B′ that satisfies IST−r. By Claim I, we know that,
if a vertex si, with i ∈ {1, . . . , q − 1}, receives the information, first it sends
the message to si+1, and, after, it sends the message to u1

i . In this case, as we
have shown formerly, all the vertices in V0 receives the message at the same
time, q + 1. Moreover, at time q + 1, no one vertex in V \ V0 has received the
message. Let us define a broadcast B for IST as a broadcast that transmits
the message among vertices of V , in the same way of the transmissions of B′

among vertices of V . Let t : V → N the function of the information times in
B. Since each vertex in V0 receives the message at time q+1, each vertex in V ,
respect to B′, receives the message with a delay of q + 1, respect to B. Thus
we have that, for all v ∈ V , t(v) = t′(v) − (q + 1). Therefore, the sum of the
information times over all the vertices in V , respect to B, is:∑

v∈V
t(v) =

∑
v∈V

(t′(v)− (q + 1)) =
∑
v∈V

t′(v)− n(q + 1) =
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=
∑
v∈V ′

t′(v)−
∑
v∈S

t′(v)−
∑
v∈U

t′(v)−
∑
v∈P

t′(v)− n(q + 1) =

=
∑
v∈V ′

t′(v)− q(q − 1)
2

− q(q2 − 1)
3

− p(q − 1) +
p(p+ 1)

2
− n(q + 1) ≤

since B′ is a broadcast that satisfies IST−r, we can bound the previous as:

k′ − q(q − 1)
2

− q(q2 − 1)
3

− p(q − 1) +
p(p+ 1)

2
− n(q + 1) =

= k + n(q + 1) +
q(q2 + 1)

3
+ p(q − 1) +

p(p+ 1)
2

+
q(q − 1)

2
+

−q(q − 1)
2

− q(q2 − 1)
3

− p(q − 1) +
p(p+ 1)

2
− n(q + 1) = k.

Hence, we have that the sum of the information times over all the vertices of
V , respect to B, is lesser or equal than k, so that, if IST−r is a YES-Instance,
then IST is a YES-Instance.

6.2 Minimum service time in trees

Minimum broadcast time has been studied in case the underlying network is a
tree [79, 29]. In this section we extend the analysis on minimum service time
problem to trees. We provide an algorithm to solve, in polynomial time, the
ST-r problem on trees. Consider a tree T = (V,E), and a root node r ∈ V .
Let v ∈ V be a vertex, we define Tv the subtree of T rooted at v, and |Tv| the
number of the vertices belonging to the subtree rooted in v. The algorithm is
the following: for each round,

• each vertex v sends the message to the adjacent vertex u, such that u does
not know the information and |Tu| is the maximum among the adjacent
vertices of v.

In order to prove the correctness of the algorithm, we provide some formal
definition.

We say that a broadcast BT has an inversion if there is a node in T having
two children u and v such that |Tu| > |Tv| and t(u) > t(v). In this section,
we consider the possibility that, in a broadcast process, a vertex can be idle
also if it has an adjacent that does not have received the message. Formally,
the broadcast BT has idle times if there is a node v having a child u such that
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t(u) > d(v) + t(v), where d(v) is the number of children of v respect to T (i.e.
there is work to be done, but the node is sitting idle).

Note that the broadcast produced by our algorithm has no inversions and
no idle times.

Lemma 13. All the broadcasts with inversions or idle times are not optimal,
over trees.

Proof. Let BT be a broadcast with inversions and, the function t : V → N
the information time function for BT . We will construct a new broadcast B′T
such that the sum of all the information times of B′T is lesser or equal than
the sum of all the information times in BT . Consider an inversion in which u
is informed before v and |Tu| < |Tv|. Consider the new broadcast B′T in which
the father of u and v sends the message first to v and, after, to u. All the other
vertices, in B′T , do the same of BT . Let t′ : V → N be the function of the
information times in B′T . Therefore, we have that:∑

w∈V
t′(v) =

∑
w∈V \{Tv∪Tu}

t′(w) +
∑
w∈Tv

t′(w) +
∑
w∈Tu

t′(w) =

since, for each vertex w ∈ V \ {Tv ∪ Tu}, t′(w) = t(w), we rewrite the previous
one as

=
∑

w∈V \{Tv∪Tu}

t(w) +
∑
w∈Tv

(t′(v) + t′(w)− t′(v)) +
∑
w∈Tu

(t′(u) + t′(w)− t′(u)) =

=
∑

w∈V \{Tv∪Tu}

t(w) +
∑
w∈Tv

t′(v) +
∑
w∈Tv

(t′(w)− t′(v)) +
∑
w∈Tu

t′(u)+

+
∑
w∈Tu

(t′(w)− t′(u)).

Each vertex transmits, in B′T , in the same way as in BT , except the father of
v and u. Consider a vertex w descendant of v. Since the father of v can not
be in any path between v and w, the delay between the information time of v
and the information time of w, in B′T , is the same of BT . The same statement
holds for u and its descendants. So we have that:∑

w∈Tv

(t′(w)− t′(v)) =
∑
w∈Tv

(t(w)− t(v))
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and also ∑
w∈Tu

(t′(w)− t′(u)) =
∑
w∈Tu

(t(w)− t(u)).

Thus we can write:∑
w∈V

t′(v) =
∑

w∈V \{Tv∪Tu}

t(w) + |Tv|t′(v) +
∑
w∈Tv

(t(w)− t(v)) + |Tu|t′(u)+

+
∑
w∈Tu

(t(w)− t(u)) =

thanks to t′(v) = t(u) and t′(u) = t(v), we have:

=
∑

w∈V \{Tv∪Tu}

t(w)+ |Tv|t(u)+
∑
w∈Tv

(t(w)−t(v))+ |Tu|t(v)+
∑
w∈Tu

(t(w)−t(u)).

Since |Tv| > |Tu| and t(v) > t(u), we bound the sum in B′T as:∑
w∈V

t′(v) <
∑

w∈V \{Tv∪Tu}

t(w) +
∑
w∈Tv

(t(w)− t(v)) +
∑
w∈Tu

(t(w)− t(u))+

+|Tv|t(u) + |Tu|t(v) + (|Tv| − |Tu|)(t(v)− t(u)) =

=
∑

w∈V \{Tv∪Tu}

t(w) +
∑
w∈Tv

(t(w)− t(v)) +
∑
w∈Tu

(t(w)− t(u))+

+|Tv|t(u) + |Tu|t(v) + |Tv|t(v)− |Tv|t(u)− |Tu|t(v) + |Tu|t(u) =

=
∑

w∈V \{Tv∪Tu}

t(w) +
∑
w∈Tv

(t(w)− t(v)) +
∑
w∈Tu

(t(w)− t(u))+

+|Tv|t(v) + |Tu|t(u) =

=
∑

w∈V \{Tv∪Tu}

t(w) +
∑
w∈Tv

(t(w)− t(v)) +
∑
w∈Tu

(t(w)− t(u))+

+
∑
w∈Tv

t(v) +
∑
w∈Tu

t(u) =

=
∑

w∈V \{Tv∪Tu}

t(w) +
∑
w∈Tv

(t(w)− t(v) + t(v)) +
∑
w∈Tu

(t(w)− t(u) + t(u)) =

=
∑

w∈V \{Tv∪Tu}

t(w) +
∑
w∈Tv

t(w) +
∑
w∈Tu

t(w) =
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=
∑
w∈V

t(v).

Hence, we have a broadcast, B′T , that has the value of the service time lesser
than BT . This contradicts the thesis that BT has minimum service time. Thus,
we conclude that in a broadcast that has minimum service time, there are no
inversion.

We also affirm that in a broadcast that has minimum service time, there are
no idle times. Consider BT a broadcast with minimum service time that has an
idle time. Let v be the node having a child u such that, in BT , t(u) > d(v)+t(v).
We can construct a broadcast B′T , and its information time function t′, such
that t′(u) ≤ d(v) + t′(v). We get this solution if v, in B′T , transmits towards
u during the time in which it is sitting idle. Therefore, all the other nodes,
in B′T , can not receive the message later than in BT . Thus the service time,
in B′T , is lesser than the service time in BT . This is a contradiction with the
thesis that BT is a broadcast that has minimum service time over T .

Theorem 8. Broadcast produced by our algorithm is optimal.

Proof. Lemma 13 says that the optimal broadcast has no inversions and no
idle times. The broadcast produced by our algorithm has no inversions and
no idle times. Hence to prove the theorem it is sufficient to show that all the
broadcast without inversions and idle times have the same cost. If two different
broadcasts have neither inversions nor idle times, then they might not produce
exactly the same informing times for all the nodes. They can only differ in
the order in which children of some node are informed, if these children are
roots of subtrees with the same size. Anyway by an induction on the number
of such pseudo-inversions, using the same exchange argument of Lemma 13 we
can prove that such broadcast may be converted into an other without modify
its cost.

6.3 Local search algorithms

Until now, we have analyzed special cases in which the Minimum Service Time
problem is polynomially solvable. In this section we provide a local search
algorithm for the general version of the problem. This heuristic has sparkled
out by considering that a broadcast over a network, in the telephone model, is
always a spanning tree. In fact, each vertex receives the information from only
one predecessor, while it can send, in different rounds, to many other successor
vertices. The broadcast tree is always rooted at the message originator. Thus,
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we discussed which kind of tree could minimize the service time. We recall
the general local search algorithm with the following scheme, where f(x) is the
value of the objective function on the solution x.

1. Choose a starting solution x;

2. generate the neighborhood solution set N(x);

3. if there is a solution y ∈ N(x) such that f(y) < f(x), set y := x and go
to Step 2, else STOP.

In our local search algorithm we start from a random spanning tree of the
graph and consider the neighborhood solution set as the set of all the spanning
trees that differ from the current spanning tree by one edge. Since there are
many approaches to examine the solution neighborhood, we have implemented
the local search algorithm with two opposite techniques: the first improvement
and the steepest descent. In the first (see Algorithm 2), when we find a better
solution in the neighborhood, with respect to the current solution, this becomes
the new current solution. In the second version of our local search algorithm
(see Algorithm 3), the current solution is updated with the best solution of the
neighborhood (if it corresponds to an improvement).

Instances description

In our computer implementation of the algorithms, we have generated several
sets of problem instances. Each instance is a random graph, built following the

Algorithm 2 Local Search v.1
Input: G, r;
Output: a broadcast tree;
1: build a random spanning tree T over the instance graph G;
2: let T ′ be a spanning tree with one swapped edge respect to T ;
3: if ST (T ′) < ST (T ) then
4: set T to T ′ and go to 2;
5: else
6: if there are other possible moves then
7: go to 2;
8: else
9: return the current broadcast tree.
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Algorithm 3 Local Search v.2
Input: G, r;
Output: a broadcast tree;
1: build a random spanning tree T over the instance graph G;
2: let T ′ be a spanning tree with one swapped edge respect to T ;
3: if minT ′∈N(T ) ST (T ′) < ST (T ) then
4: set T to minT ′∈N(T ) ST (T ′) and go to 2;
5: else
6: if there are other possible moves then
7: go to 2;
8: else
9: return the current broadcast tree.

Erdős-Rényi model (see [11]), denoted by G(n, p), where n is the number of
the vertices of the instance, and p is the probability that every edge may occur
independently from the others. We have generated two kinds of instances:
sparse graphs, in which we fix p = 0.1, and dense graphs in which p = 0.4.
Furthermore, we have generated graphs with different sizes. We have built
instance sets with 25, 50, 75 and 100 vertices. For each instance set we have
built 20 graphs. In Table 6.1 we list all the instance sets, showing, in the
column AVG edges, the average number of the edges in the instance set.

Table 6.1: Instance sets.

instance set type n.vertices AVG edges
is1 sparse 25 33.80
is2 dense 25 119.95
is3 sparse 50 122.05
is4 dense 50 489.35
is5 sparse 75 277.75
is6 dense 75 1,121.85
is7 sparse 100 497.80
is8 dense 100 1,974.15



i
i

“thesis” — 2009/2/24 — 17:51 — page 92 — #102 i
i

i
i

i
i

CHAPTER 6. BROADCAST IN CENTRALIZED SCENARIO 92

Table 6.2: Average objective function (ST over instances).

instance set Algorithm 2 Algorithm 3
is1 107.35 105.30
is2 94.75 94.00
is3 246.70 245.00
is4 238.55 237.00
is5 401.05 399.95
is6 401.50 398.00
is7 574.30 573.20
is8 577.65 573.00

Computational results

The two local search algorithms have been tested on all the generated instances.
Since the algorithms results on a single random generated instance is insignif-
icant for our study, we propose the computational results as aggregate values.
For each instance set we show the average value, over the twenty instances, of
the results obtained by the algorithms execution. In the same way, we propose
the average running time, on each instance set, of the two algorithms. We
can see in Table 6.2 the Service Time values of the solutions provided by the
two local search algorithms, while in Table 6.3 the running time values are
presented.

Table 6.3: Average running time (seconds).

instance set Algorithm 2 Algorithm 3
is1 0.04 0.05
is2 0.50 0.74
is3 2.40 2.92
is4 21.81 27.86
is5 22.14 24.15
is6 243.89 233.27
is7 115.38 120.79
is8 1,289.13 1,275.89
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Performance analysis

In this section we carry out a performance analysis between the two local
search algorithms. Evaluating the computational results, we discuss a trade-
off between the quality of the obtained solution and the running time. We
analyze the cases of sparse graphs and dense graphs separately.

Sparse graphs

The analysis, over sparse graphs, is provided by the comparison of the two
objective function values and by the comparison of the two running times. In
Figure 6.4 we can see the percentage difference between the results obtained by
the two algorithm. We underline that the difference decreases with the size of
the instance. This suggests that the steepest descent method of neighborhood
analysis does not seem to be a winning choice. But, if we consider Figure 6.5,
we note also that the running time of the algorithms, when the number of
vertices increases, becomes roughly the same. Therefore, we need to compare
the decreasing trends of the to differences to understand which technique is the
better. It seems that the percentage difference of the running times is always

Figure 6.4: The difference between the service times of the two algorithms
solutions in sparse graphs.
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Figure 6.5: The difference between the running times of the two algorithms in
sparse graphs.

greater than the percentage difference of the broadcast service times provided
by the algorithms. Hence, we may conclude that it would be better to use the
first variant of the local search, in case of sparse instances, because the second
technique of neighborhood analysis has larger costs in term of computation
time.

Dense graphs

In this section, we analyze the computational results for the case of dense
graphs. In Figure 6.6 we can see the percentage difference between the first
algorithm with respect to the second one. This chart shows that, in general,
the second algorithm outputs better solutions than the first one. On the other
hand, in Figure 6.7, the percentage difference between the second algorithm
and the first one is depicted. In this case, like in the sparse graphs scenario,
with the growth of the instance, the difference approaches to zero. Rather,
in the case of graphs with 75 vertices, the steepest descent technique is more
efficient than the other one. This is due to the fact that the number of the step
needed by the second algorithm to reach the local minimum, is strictly less
than that of the first heuristic. Thus, we may conclude that, in case of dense
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graphs, the second version of the local search is better than the first version.

Figure 6.6: The difference between the service times of the two algorithms
solutions in dense graphs.
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Figure 6.7: The difference between the service times of the two algorithms in
dense graphs.
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Chapter 7

Broadcast in distributed scenario

In this section we deal with the problem of minimizing the service time, assum-
ing that each peer does not know the complete topology of the communication
network. Here, we do not consider a central algorithm that produces a broad-
cast process over the network, but each peer follows its own communication
rules to send the message. We analyze a technique which approximate the
solution.

7.1 Jabber Algorithm

Idea. The idea behind the Jabber algorithm is very simple. Every vertex,
which knows the information, sends it to a random neighbor which does
not knows it.

We consider, in this first version of the algorithm, that, for each time, each
vertex knows the information status of its adjacent vertices (i.e. for every
adjacent vertex, if it has received the message). The pseudocode of the Jabber
algorithm is provided in the table Algorithm 4.

Analysis

Lemma 14. Let T be a tree rooted in r. The ratio between the solution provided
by Algorithm 4 and the optimal solution of the minimum service problem is
lesser than O(

√
n).

97
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Algorithm 4 (Jabber)
Input: G = (V,E), r ∈ V .
1: hasInformation(r) := TRUE
2: for w ∈ V \ {r} do
3: hasInformation(w) := FALSE
4: for each round t do
5: for v ∈ V do
6: if hasInformation(v) then
7: for u ∈ V : u ∈ neighborhood(v) do
8: if not hasInformation(u) then
9: hasInformation(u) := TRUE (send information from u to v)

10: Break for

Proof. Consider a tree T . We will prove the lemma by induction on the height
of the tree. Let h be the height of T . It is simple to observe that the lemma
holds if h ≤ 1. So that, we consider h ≥ 2. Let c be the number of the children
of r. Let n be the number of the tree. Consider f1, f2, . . . , fc the children of
the root such that, |Tf1 | ≥ |Tf2 | ≥ · · · ≥ |Tfc |. Let us define ni = |Tfi |, for each
i ∈ {1, 2, . . . , c}. We name S∗ the sum of the information times in an optimal
broadcast and S the sum of the information times in the broadcast provided
by the algorithm. In the same way, we denote with S∗i and Si the sums of the
information times, respectively, in an optimal broadcast and in the broadcast
provided by the algorithm, respect to instance Tfi

, for each i ∈ {1, 2, . . . , c}.
Therefore we have:

S∗ =
c∑
i=1

S∗i +
c∑
i=1

ini

and

S ≤
c∑
i=1

Si +
c∑
i=1

(c− i+ 1)ni =
c∑
i=1

Si + (c+ 1)(n− 1)−
c∑
i=1

ini.

Consider the term
∑c
i=1 ini. This term is minimized when all the vertices

are in Tf1 and all the other subtrees Tf2 , Tf3 , . . . , Tfc contain only the root,
respectively, f2, f3, . . . , fc. In this case we have n1 = n− c and ni = 1, for all
i ∈ {2, 3, . . . , c}. Therefore, we write:

c∑
i=1

ini ≥ (n− c) +
c∑
i=2

i = (n− 1) +
c(c− 1)

2
= n+

c2

2
− c

2
− 1.
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Now, we can rewrite the values S∗ and S as follows:

S∗ ≥
c∑
i=1

S∗i + n+
c2

2
− c

2
− 1

and

S ≤
c∑
i=1

Si + (c+ 1)(n− 1)− n− c2

2
+
c

2
+ 1.

Let us analyze the approximation ratio of the Algorithm 4:

S

S∗
≤
∑c
i=1 Si + (c+ 1)(n− 1)− n− c2

2 + c
2 + 1∑c

i=1 S
∗
i + n+ c2

2 −
c
2 − 1

≤

and using the inductive hypothesis

≤
∑c
i=1

√
niS

∗
i + (c+ 1)(n− 1)− n− t2

2 + c
2 + 1∑c

i=1 S
∗
i + n+ c2

2 −
c
2 − 1

.

Now, we focus our attention to bound the value of
√
ni. Since, in T , the

root has c children, we have that ni ≤ n− c, so that:

√
ni ≤

√
n− c ≤

√
(2n− c)2

4n
=
√
n− c

2
√
n
.

Hence, we have:

S

S∗
≤

(
√
n− c

2
√
n

)
∑c
i=1 S

∗
i + (c+ 1)(n− 1)− n− c2

2 + c
2 + 1∑c

i=1 S
∗
i + n+ c2

2 −
c
2 − 1

≤

≤
√
n
∑c
i=1 S

∗
i − c

2
√
n

∑c
i=1 S

∗
i + cn− c2

2 −
c
2∑c

i=1 S
∗
i + n+ c2

2 −
c
2 − 1

.

Since the sum of the solution in the subproblems is:
c∑
i=1

S∗i ≥ n− c− 1

we conclude

S

S∗
≤
√
n
∑c
i=1 S

∗
i −

c(n−c−1)
2
√
n

+ cn− c2

2 −
c
2∑c

i=1 S
∗
i + n+ c2

2 −
c
2 − 1

=
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=
√
n+

√
n(−n− c2

2 + c
2 + 1)− c(n−c−1)

2
√
n

+ cn− c2

2 −
c
2∑c

i=1 S
∗
i + n+ c2

2 −
c
2 − 1

=

=
√
n+
−n
√
n−

√
nc2

2 +
√
nc
2 +

√
n− c

√
n

2 + c2

2
√
n

+ c
2
√
n

+ cn− c2

2 −
c
2∑c

i=1 S
∗
i + n+ c2

2 −
c
2 − 1

=

=
√
n+
−2n2 − nc2 + nc+ 2n− nc+ c2 + c+ 2n

√
nc−

√
nc2 −

√
nc

2
√
n(
∑c
i=1 S

∗
i + n+ c2

2 −
c
2 − 1)

=

=
√
n+
−(n+

√
n− 1)c2 + (2n

√
n−
√
n+ 1)c− 2n2 + 2n

2
√
n(
∑c
i=1 S

∗
i + n+ c2

2 −
c
2 − 1)

.

Consider, in the last formula, the second term. We will prove that it is always
negative. It is simple to observe that the denominator is positive. Let us
analyze the numerator. We compute the derivative, in c, to find the maximum:

N(t, n) = −(n+
√
n− 1)c2 + (2n

√
n−
√
n+ 1)c− 2n2 + 2n,

thus
∂N(c, n)

∂c
= −2c(n+

√
n− 1) + 2n

√
n−
√
n+ 1.

We put ∂N(c,n)
∂c = 0:

−2c(n+
√
n− 1) + 2n

√
n−
√
n+ 1 = 0,

so, it results

cmax(n) =
2n
√
n−
√
n+ 1

2(n+
√
n− 1)

.

Now we analyze the function N(cmax(n), n), considering the maximum respect
to c:

N(cmax(n), n) = −(n+
√
n− 1)(

2n
√
n−
√
n+ 1

2(n+
√
n− 1)

)2+

+(2n
√
n−
√
n+ 1)(

2n
√
n−
√
n+ 1

2(n+
√
n− 1)

)− 2n2 + 2n =

= − (2n
√
n−
√
n+ 1)2

4(n+
√
n− 1)

+
(2n
√
n−
√
n+ 1)2

2(n+
√
n− 1)

− 2n2 + 2n =

=
(2n
√
n−
√
n+ 1)2

4(n+
√
n− 1)

− 2n2 + 2n =
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=
(2n
√
n−
√
n+ 1)2 + (−8n2 + 8n)(n+

√
n− 1)

4(n+
√
n− 1)

=

=
−4n3 − 8n2

√
n+ 12n2 + 12n

√
n− 7n− 2

√
n+ 1

4(n+
√
n− 1)

=

= −4n2(n− 3) + 8n
√
n(n− 3/2) + (6n+ 2

√
n) + (n− 1)

4(n+
√
n− 1)

,

that, considering our hypothesis n ≥ 2 is always negative. Therefore, it results
that:

S

S∗
≤
√
n+
−(n+

√
n− 1)c2 + (2n

√
n−
√
n+ 1)c− 2n2 + 2n

2
√
n(
∑c
i=1 S

∗
i + n+ c2

2 −
c
2 − 1)

≤
√
n.

Lemma 15. Let T be a tree rooted in r. The ratio between the solution provided
by Algorithm 4 and the optimal solution of the minimum service problem is
lesser than ∆(G), (maximum degree over G).

Proof. Let p(v) = (r, u1, u2, . . . , uh, v) be the path from r to v in T . At the
beginning of the procedure, the root sends the message to all its adjacent
vertices, without idle times. Therefore, the vertices u1 receives the message
until d(r), the degree of r. Thus we have t(u1) ≤ d(r). For the same reason,
t(u2) ≤ t(u1) + d(u1) ≤ d(r) + d(u1). Hence, it follows that t(v) ≤ d(r) +
d(u1) + d(u2) + · · · + d(uh). Now, since every vertex in the graph has degree
lesser or equal than ∆(G), it holds that t(v) ≤ lv∆(G), where lv is the number
of the edges in the path p(v). Furthermore, the minimum number of rounds
required to transmit the information from r to a vertex v is at least lv. Let us
define t : V → N the information time function for the broadcast provided by
the algorithm. Let t∗ : V → N the information time function of a broadcast
that minimizes the service time. Putting all together, it results that:

S

S∗
=
∑
v∈V t(v)∑
v∈V t

∗(v)
≤
∑
v∈V lv∆(G)∑

v∈V lv
=

∆(G)
∑
v∈V lv∑

v∈V lv
= ∆(G).
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Conclusions

In this dissertation we have analyzed several communication network issues.

Regarding the study of the survivability networks field, our analysis started
from routing protocols that are used in the Ethernet based networks, the SPT
protocols (Shortest Path Tree protocols). Since the routing topologies gener-
ated by this kind of protocols are trees, structures that are very vulnerable
to failures, even a single link failure causes the disconnection of the routing
topology. Our aim is to provide, in case of link failures, an auxiliary link which
has not been used until now in order to have a connected routing topology at
any time. Hence, we asking for networks that have, for each link of the routing
topology that may fail, an other link that works as backup link with respect
to the former one.

In detail, the routing topologies derived by SPT protocols family are short-
est path spanning trees, with respect to links weights set by network operators.
We investigated in which cases, given a communication network and a desired
routing topology (spanning tree), it is possible to assign links weights so that
the routing topology is the unique shortest path tree over the network and, in
the event of a single link failure, there is a link that, if swapped with the broken
one, brings to a new routing topology that is again the unique shortest path
tree (1-restoration property). Due to the complexity of 1-restoration property,
we provided a further property, the 1-exchange property, that does not involve
the links weights and the network shortest paths. The 1-exchange property is
a combinatorial property regarding only the structure of the communication
network and the routing topology.

By modeling the communication network as a graph, we have analyzed
undirected graphs as well as directed graphs, discussing in which cases there
have the 1-restoration property and the 1-exchange property. We showed that,
while for undirected graphs the problem is polynomially solvable, to identify if a
directed graph has the two above mentioned properties, is a NP-hard problem.
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We proved that the problem remains NP-hard even if the instance is a directed
graph in which nodes have distances at most equal to 2 from the root. Finally,
we also have extended our analysis to the case in which multiple links failures
may occur.

Among the possible future directions of research, on one side it is of interest
to develop strategies that allow to build networks with the q-exchange property.
Furthermore, heuristic algorithms can be proposed to solve the optimization
version of the general problem in which we want to minimize the number of
arcs without backup.

Regarding the study of communication networks broadcasting, we analyzed
a new version of the well known Minimum Broadcast Time problem. Firstly,
we formalized in detail the mathematical model underlying the broadcast pro-
cedure. We considered the so-called telephone model (also called whispering
model), in which, for each communication round, a node can communicate with
at most one neighbor.

Differently from the minimum broadcast time problem, in which the goal
is to find a broadcast procedure with the minimum duration, in our version
of the problem, named the Minimum Service Time, we minimize the average
time in which a node receives the message. From the computational complexity
point of view, we proved that the Minimum Service Time problem is an NP-
hard problem. We also have analyzed some special cases in which the problem
becomes solvable in polynomial time. Finally, by considering the possibility
that the nodes in a communication network do not know the whole topology
of the network, we provided a distributed approximation algorithm for the
Minimum Service Time problem and analyzed its performance.

A possible topic for further research is to develop smarter distributed algo-
rithms that guarantee better solution for the general case, as well as for special
graph instances.
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