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Introduction

Statement of the problem

For any d ∈ Z and g, n ≥ 0 such that 2g − 2 + n > 0, denote by Picd,g,n
the stack whose sections over a scheme S consist of flat and proper families
π : C → S of smooth curves of genus g, with n distinct sections si : S → C
and a line bundle L of relative degree d over C. Morphisms between two
such objects are given by cartesian diagrams

C

π

��

β2 // C ′

π′

��
S

β1

//

si

II

S′

si′

UU

such that si′ ◦ β1 = β2 ◦ si, 1 ≤ i ≤ n, together with an isomorphism
β3 : L→ β∗2(L′).
Picd,g,n is endowed with a natural forgetful map ontoMg,n and it is, of

course, not complete.
In the present thesis we search for a compactification of Picd,g,n over

Mg,n. By this we mean to construct an algebraic stack Pd,g,n with a map
Ψd,g,n ontoMg,n with the following properties.

1. Pd,g,n and Ψd,g,n fit in the following diagram;

Picd,g,n

��

� � // Pd,g,n
Ψd,g,n
��

Mg,n
� � //Mg,n

2. Ψd,g,n is proper (or, ate least, universally closed);

3. Pd,g,n has a geometrically meaningful modular description.

Note that in order to complete Picd,g,n over Mg,n it is not enough to
consider the stack of line bundles over families of n-pointed stable curves,
since this is not complete as well. So, it is necessary to enlarge the category
either admitting more general sheaves than line bundles or a bigger class of
curves.
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Motivation

The problem of compactifying the (generalized) jacobian of curves or of fa-
milies of curves has been widely studied in the last decades, starting from
the work of Igusa [I56] and of Mayer and Mumford [MM]. Since then, several
solutions where found, specially in the case of irreducible curves (see [A04]
for an overview and comparison results on these constructions). For irre-
ducible curves a first answer was given by D’Souza in [DS79]. Later, Altman,
Kleiman and others extended this work to families of irreducible curves with
more general singularities than nodes (see [AK80] and also [Es01]). For re-
ducible curves the situation is more intricate since one has to deal also with
nontrivial combinatorial problems. A first solution, for a single reducible
curve, is given by Oda and Seshadri in [OS79]. Then, in [C94], Caporaso
constructs a compactification the universal Picard variety overMg and later,
in [P96], Pandharipande makes a more general construction that holds also
for vector bundles of higher rank and coincides with Caporaso’s in the case
of line bundles. We also recall Simpson’s general construction of moduli
spaces of coherent sheaves on projective schemes in [Si94] and Schmitt’s
construction of algebraic stacks compactifying the universal moduli space of
semistable vector bundles over smooth curves in [S04].

On the other hand, the construction of the moduli space of stable curves
with marked points was done by Knudsen in [K83], following ideas of Mum-
ford, with the scope of proving the projectivity of the moduli space of stable
curves. Since then,Mg,n itself became the subject of great interest, because
of its rich geometry, and because of several applications. In particular,Mg,n

has a central role in Gromov-Witten theory and enumerative geometry. In
fact, in part motivated by Witten’s conjecture ([W91]), the study of the co-
homology ring ofMg,n attracted the attention of several algebraic geometers
in the last decades and led to very important results.

We recall, for instance, Kontsevich’s first proof of the Witten conjec-
ture in ([K92]); the interaction between geometry and physics leading to
the development of quantum cohomoly and Gromov-Witten theory (see e.g.
[FP97]); the algebro-geometric inductive calculations on the cohomology ring
of Mg,n due to Arbarello and Cornalba in [AC98]; Faber’s conjectures on
the structure of the tautological ring of Mg and its pointed versions ([F99],
[P02]), the ELSV formulas relating intersection formulas inMg,n with Hur-
witz numbers ([ELSV1], [ELSV2]) and the recent proof by Faber, Shadrin
and Zvonkine in [FSZ] of the generalized Witten conjecture ([W93]).

So, it is natural to search for a compactification of Picd,g,n over Mg,n

and to study its applications. Nevertheless, at least to our knowledge, there
was no construction of compactified Picard varieties for curves with marked
points until now.
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Our interest in constructing such a space is also due to Goulden, Jackson
and Vakil’s “generalized ELSV formula”conjecturing a relation between the
intersection theory of a (4g − 3 + n)-dimensional space and certain double
Hurwitz numbers (see [GJV05] and [LV]). According to these authors, this
space should be a suitable compactification of Picd,g,n overMg,n supporting
particular families of classes satisfying certain properties. Unfortunately, we
do not know yet if our space supports such classes, except for what they call
ψ-classes, which turn out to be the pullback of the ψ-classes inMg,n. It is
certainly interesting to consider this as a future research problem.

Balanced Picard stacks over Mg

Let us start by considering the case n = 0 (and g ≥ 2). As we already
mentioned, the situation here is particularly fortunate since there are many
constructions of compactified Picard varieties of stable curves.

In particular, in [C94], Caporaso addresses the problem of compactifying
Picdg over Mg, where Picdg denotes the “universal Picard variety of degree
d”over M0

g , parametrizing isomorphism classes of line bundles of degree d
over automorphism-free nonsingular curves. We will now briefly describe
this construction.

Fix an algebraically closed field k and consider the Hilbert scheme H of
genus g curves defined over k embedded in Pr as nondegenerate curves of
degree d, where r = d − g. There is a natural action of PGL(r + 1) in H
corresponding to the choice of the coordinates used to embed the curves. For
d >> 0, define

P d,g := Hd/PGL(r + 1)

as the GIT-quotient of Hd, the locus of GIT-semistable points for this action
(under a fixed suitable linearization). By results of [G82] and [C94], we know
that, for g ≥ 2, points inHd correspond exactly to quasistable curves of genus
g embedded by balanced line bundles (of degree d), where quasistable curves
are semistable curves such that two exceptional components never meet, and
balanced is a combinatorial condition on the multidegree of the line bundle
on the curve (see Definition 2.1.1 below). In particular, given a quasistable
curve X, there are only finitely many balanced multidegrees summing up to
d.

By construction, P d,g is endowed with a proper morphism φd onto Mg

such that, for g ≥ 3, φ−1
d (M0

g ) is isomorphic to Picdg. Moreover, given
[X] ∈ Mg, φ−1

d (X) is a projective connected scheme with a finite num-
ber of components (that can not exceed a certain numerical invariant of the
curve) and, if X has trivial automorphism group, φ−1

d (X) is reduced and its
smooth locus is isomorphic to the disjoint union of a finite number of copies
of the jacobian of X, JX .
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Let d >> 0 such that (d − g + 1, 2g − 2) = 1. Then, the GIT-quotient
yielding P d,g is geometric (see [C94], Proposition 6.2) and the quotient stack
associated to it, [Hd/G], is a Deligne-Mumford stack with a strongly re-
presentable morphism onto Mg, where with G we will denote the group
PGL(r+1) (see [C05], 5.9). Moreover, it has the following modular descrip-
tion.

Consider the stack Pd,g over SCHk whose sections over a k-scheme S
consist on families π : X → S of genus g quasistable curves over S endowed
with a balanced line bundle of relative degree d over X and whose morphisms
consist on cartesian diagrams of the curves plus an isomorphism between
the line bundles (as in Picd,g,n above, ignoring the sections). There is a
natural action of Gm on Pd,g given by fiberwise scalar multiplication on the
line bundles, leaving the curves fixed. Then, [Hd/G] is isomorphic to the
rigidification (in the sense of [ACV01]) of Pd,g by the action of BGm (see
[C05] 5.10).

Let us now suppose that (d−g+1, 2g−2) 6= 1. Then, the quotient stack
[Hd/G] is not Deligne-Mumford and it is not possible to give a modular
description of it using the same reasoning of Caporaso’s in [C05], since it
uses the existence of the analogue of Poincaré line bundles for families of
stable curves, which does not exist in this general case. The main result of
the first part of the present thesis consists exactly in showing that, if d >> 0,
the quotient stack [Hd/G] has the same modular description as in the case
that (d − g + 1, 2g − 2) = 1. This follows from Theorem 2.3.1, where we
show that Pd,g is isomorphic to [Hd/GL(r + 1)], where GL(r + 1) acts by
projection onto G = PGL(r + 1). This implies that Pd,g is a smooth and
irreducible Artin stack of dimension 4g−3 endowed with a universally closed
map onto Mg. Since, for d and d′ such that d = d′ + m(2g − 2) for some
m ∈ Z, Pd,g is isomorphic to Pd′,g, we get that the same statement holds in
general for any d ∈ Z and for g ≥ 2.

Then, using the universal property of the notion of rigidification, we give
a modular description of the rigidification of Pd,g along the action of BGm,
Pd,g ( Gm, and we show that it is isomorphic to [Hd/G] (see section 2.4
below). It also follows that Pd,g is a Gm-gerbe over [Hd/G] (see 2.4.1).

In section 2.2 we consider the restriction of [Hd/G] to the locus Md
g

of d-general curves, i.e., the locus of genus g stable curves over which the
GIT-quotient above is geometric. In Prop. 2.2.2 we show that this restric-
tion, denoted by [Ud/G], is a Deligne-Mumford stack and is endowed with
a strongly representable map onto Md

g. In particular, it gives a functorial
way of getting a compactification of the relative degree d Picard variety for
families of d-general curves (see Corollary 2.2.4 below). By this we mean
that, given a family of stable curves f : X → S, the base change of the
moduli map µf : S → Mg by [Hd/G] → Mg is a scheme, P df , yielding a
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compactification of the relative degree d Picard variety associated to f (see
1.1 for the Definition of the Picard variety associated to a morphism). This
generalizes Proposition 5.9 of [C05] as observed in Remark 2.2.5. Instead, if
the fibers of the family f are not d-general, the fiber product of the moduli
map of f , µf : S →Mg, by the map [Hd/G]→Mg is not a scheme. Indeed,
it is not even an algebraic space. However, it is canonically endowed with a
proper map onto a scheme yielding a compactification of the relative degree
d Picard variety associated to f (see Prop. 2.4.12).

In section 2.2.2 we give a combinatorial description of the locus in Mg of
d-general curves,Md

g. For each d,M
d
g is an open subscheme ofMg containing

all genus g irreducible curves andMd
g = M

d′

g if and only if (d−g+1, 2g−2) =

(d′ − g + 1, 2g − 2). In Proposition 2.2.14 we also show that the Md
g’s yield

a lattice of open subschemes of Mg parametrized by the (positive) divisors
of 2g − 2.

Let B be a smooth curve defined over an algebraically closed field k with
function field K and XK a smooth genus g curve over K whose regular
minimal model over B is a family f : X → B of stable curves. Then, if
(d− g + 1, 2g − 2) = 1, the smooth locus of the map P df → B is isomorphic
to the Néron model of PicdXk over B (see Theorem 6.1 of loc. cit.). We
end chapter 2 by asking if, for any d, [Hd/G], parametrizes Néron models of
jacobians of smooth curves as it does if (d − g + 1, 2g − 2) = 1. In section
2.4.2 we show that the answer is no if (d − g + 1, 2g − 2) 6= 1, essentially
because [Hd/G] is not representable over Mg. We here focus on the case
d = g − 1, which is particularly important. In fact for this degree all known
compactified jacobians are canonically isomorphic and are endowed with a
theta divisor which is Cartier and ample (see [A04]).

Compactified Picard stacks over Mg,n

A consequence of what we have said so far is that, if we define Pd,g,0 to be
equal to Pd,g, it gives an answer to our initial problem for g ≥ 2 and n = 0.
Chapter 3 is devoted to the case n > 0.

We start by introducing the notions of n-pointed quasistable curve and
of balanced line bundles over these (see Definitions 3.1.3 and 3.1.4 below)
and by noticing that, for n = 0 and g ≥ 2, these coincide with the old
notions. It turns out that, for n > 0, n-pointed quasistable curves are the
ones we get by applying the stabilization morphism defined by Knudsen in
[K83] (see 3.4.3 below) to (n − 1)-pointed quasistable curves endowed with
an extra section without stability conditions. Moreover, balanced line bun-
dles on n-pointed quasistable curves correspond to balanced line bundles on
the quasistable curves obtained by forgetting the points and by contracting
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the rational components that get quasidestabilized without the points (see
Lemma 3.1.10).

As a consequence, we also get a definition of n-pointed quasistable curves
and of balanced line bundles over these for curves of genus 0 with at least
3 marked points and for curves of genus 1 with at least 1 marked point.
It turns out that, for genus 0 curves, the notion of n-pointed quasistable
coincides with the notion of n-pointed stable. Moreover, given an n-pointed
stable curve X of genus 0, for each degree d, there is exactly one balanced
multidegree summing up to d (see Remark 3.1.6).

We define Pd,g,n to be the stack whose sections over a scheme S are given
by families of genus g n-pointed quasistable curves over S endowed with a
relative degree d balanced line bundle. Morphisms between two such sections
are like in Picd,g,n above. We prove that Pd,g,n is a smooth and irreducible
algebraic (Artin) stack of dimension 4g − 3 + n, endowed with a universally
closed morphism ontoMg,n, giving a solution for our initial problem for all
g, n ≥ 0 such that 2g − 2 + n > 0 (see Theorem 3.2.2).

Our definitions imply that, for every integer d, Pd,0,3 is isomorphic to
M0,3 × BGm, that Pd,1,1 is isomorphic to M1,1 × BGm (see Propositions
3.2.7 and 3.2.10, respectively) and that Theorem 3.2.2 is true for g ≥ 2 and
n = 0 (see Theorem 2.3.1).

Then, for n > 0 and 2g − 2 + n > 1, we proceed by induction in the
number of marked points n. Our construction goes along the lines of Knu-
dsen’s construction of Mg,n in [K83], which consisted on showing that, for
n ≥ 0, Mg,n+1 is isomorphic to the universal family over Mg,n. In the
same way, we show that there is an isomorphism between Pd,g,n+1 and the
universal family over Pd,g,n, Zd,g,n (see theorem 3.2.5), where Zd,g,n is the
stack whose sections over a k-scheme S consist on families of n-pointed qua-
sistable curves over S, endowed with a balanced line bundle L and with an
extra section. Zd,g,n is naturally endowed with a universal line bundle L,
reason why it is universal over Pd,g,n (see Proposition 3.2.3 below). The iso-
morphism between Pd,g,n+1 and Zd,g,n is built explicitly and it generalizes
Knudsen’s notion of contraction and stabilization of n-pointed stable curves
in this more general context of quasistable curves endowed with balanced line
bundles. The main difference here is that we use the balanced line bundle
itself tensored with the sections to contract and stabilize the curves, instead
of the dualizing sheaf of the families used by Knudsen.

In order to make contraction work, we also need to prove some technical
properties for line bundles over nodal curves. For instance, we show that a
line bundle with sufficiently big multidegree is nonspecial, globally generated
and normally generated (see Propositions 3.3.3 and 3.3.10). In particular,
we get that, if L is a balanced line bundle of degree d >> 0 in an (n + 1)-
pointed quasistable curve X of genus g ≥ 0 with 2g − 2 + n > 0, then
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L(p1 + · · · + pn) is nonspecial, globally generated and normally generated,
where p1, . . . , pn, pn+1 are the marked points of X (see Corollaries 3.3.6 and
3.3.12). We also get that the same holds for (ωX(p1 + · · · + pn + pn+1))m,
for m ≥ 3, where ωX denotes the dualizing sheaf of X (see Corollaries 3.3.5
and 3.3.11).

In section 3.5 we show that Pd,g,n is endowed with a (forgetful) morphism
Ψd,g,n ontoMg,n, given on objects by taking the stable model of the families
and by forgetting the line bundle. We further study the fibres of Ψd,g,n.

Finally, in section 3.6, we study further properties of Pd,g,n. For instance,
we show that if d and d′ are such that 2g − 2 divides d − d′, then Pd,g,n is
isomorphic to Pd′,g,n. We also study the map form Pd,g,n+1 to Pd,g,n and
its sections and we show that these yield Cartier divisors on Pd,g,n+1 with
possibly interesting intersection properties.

Again, there is an action of BGm on Pd,g,n given by scalar product on the
line bundles, leaving the curves and the sections fixed, so Pd,g,n can never
be Deligne-Mumford. By construction, for n > 0 and 2g − 2 + n > 1, the
rigidification of Pd,g,n along this action of Gm, denoted by Pd,g,n ( Gm, is
Deligne-Mumford if and only if Pd,g,n−1 is and, in the same way, the natural
map from Pd,g,n ( Gm onto Mg,n, denote it again by Ψd,g,n, is proper and
strongly representable if and only if Ψd,g,n−1 is. So, we get that, for any
n ≥ 0 and g ≥ 2, Pd,g,n(Gm is a Deligne-Mumford stack proper and strongly
representable overMg,n if and only if (d−g+1, 2g−2) = 1 (see Proposition
3.6.3). For g = 0 and 1 we get that, for any integer d ∈ Z, Pd,0,n ( Gm is
isomorphic toM0,n for n ≥ 3 and that Pd,1,n(Gm is isomorphic toM1,n+1

for n ≥ 1 (see Proposition 3.6.4).

We would also like to observe that another possible approach to the cons-
truction of Pd,g,n would be to use Baldwin and Swinarski’s GIT construction
of the moduli space of stable maps and, in particular, of Mg,n, in [BS08],
and then proceed as Caporaso in [C94].
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Chapter 1

Preliminaries and notation

We will always consider schemes and algebraic stacks locally of finite type
over an algebraically closed base field k. We will always indicate schemes
with roman letters and stacks with calligraphic letters.

1.1 The relative Picard functor

Let X be an S-scheme with structural morphism π : X → S. Given another
S-scheme T , we will denote by πT : XT → T the base-change of π under the
structural morphism T → S.

XT := T ×S X
πT

��

// X

π

��
T // S

Given a family of nodal curves f , we will denote by Picf the relative
Picard functor associated to f and by Picdf its subfunctor of line bundles
of relative degree d. Picf is the fppf-sheaf associated to the functor P :
SCHB → Sets which associates to a scheme T over B the set Pic(XT ).
In particular, if the family f has a section, Picf (T ) = Pic(XT )/Pic(T ) (see
[BLR], chapter 8 for the general theory about the construction of the relative
Picard functor).

Thanks to more general results of D. Mumford and A. Grothendieck in
[M66] and [Gr], we know that Picf (and also Picdf ) is representable by a
scheme Picf , which is separated if all geometric fibers of f are irreducible
(see also [BLR], 8.2, Theorems 1 and 2). Picdg, the “universal degree d Picard
variety”, coarsely represents the degree d Picard functor for the universal
family of (automorphism-free) nonsingular curves of genus g, fg : Zg →
M0
g . Furthermore, it was proved by Mestrano and Ramanan in [MR85] for

char k = 0 and later on by Caporaso in [C94] for any characteristic that
Picdg is a fine moduli space, that is, there exists a Poincaré line bundle over
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Picdg ×M0
g
Zg, if and only if the numerical condition (d− g+ 1, 2g− 2) = 1 is

satisfied.

1.2 Curves

Let S be a scheme. By a genus g curve X over S (or a family of curves over
S) we mean a proper and flat morphism X → S whose geometric fibers are
connected projective and reduced curves of genus g over k having at most
nodes as singularities.

If we do not specify the base scheme S, by a curve X we will always
mean a curve over k.

1.2.1 Line bundles on reducible curves

We will denote by ωX the canonical or dualizing sheaf of X. For each proper
subcurve Z of X (which we will always assume to be complete), denote by
Z ′ := X \ Z, by kZ := ](Z∩Z ′) and by gZ its arithmetic genus. Recall that,
if Z is connected, the adjunction formula gives

wZ := degZ ωX = 2gZ − 2 + kZ . (1.1)

For L ∈ PicX its multidegree is degL := (degZ1
L, . . . , degZγ L) and its

(total) degree is degL := degZ1
L+ · · ·+ degZγ L, where Z1, . . . , Zγ denote

the irreducible components of X.
Given d = (d1, . . . , dγ) ∈ Zγ , we set PicdX := {L ∈ PicX : degL =

d} and PicdX := {L ∈ PicX : degL = d}. We have that PicdX =∑
|d|=d PicdX, where |d| =

∑γ
i=1 di.

The generalized jacobian of X is

Pic0 X = {L ∈ PicX : degL = (0, . . . , 0)}.

1.2.2 Stable and semistable curves

A stable curve is a nodal (connected) curve of genus g ≥ 2 with ample
dualizing sheaf. We will denote by Mg (resp. Mg) the moduli scheme (resp.
stack) of stable curves and by M

0
g ⊂ Mg the locus of curves with trivial

automorphism group.
A semistable curve is a nodal connected curve of genus g ≥ 2 whose

dualizing sheaf has non-negative multidegree.
It is easy to see that a nodal curve X is stable (resp. semistable) if, for

every smooth rational component E of X, kE ≥ 3 (resp. kE ≥ 2). If X is
semistable, the smooth rational components E such that kE = 2 are called
exceptional.

A semistable curve is called quasistable if two exceptional components
never meet.
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The stable model of a semistable curve X is the stable curve obtained by
contracting all the exceptional components of X.

A family of stable (resp. semistable, resp. quasistable) curves is a flat
projective morphism f : X → B whose geometrical fibers are stable (resp.
semistable, resp. quasistable) curves. A line bundle of degree d on such a
family is a line bundle on X whose restriction to each geometric fiber has
degree d.

1.2.3 n-pointed stable and semistable curves

An n-pointed curve is a connected, projective and reduced nodal curve X
together with n distinct marked points pi ∈ X such that X is smooth at pi,
1 ≤ i ≤ n.

Suppose that g and n are such that 2g − 2 + n > 0. Then, we will say
that an n-pointed curve of genus g is stable (resp. semistable) if the number
of points where a nonsingular rational component E of X meets the rest of
X plus the number of points pi on E is at least 3 (resp. 2).

Suppose that (X; p1, . . . , pn) is an n-pointed curve. It is easy to see that,
analogously to the case of curves without marked points, (X; p1 . . . , pn) is
stable (respectively semistable) if and only the dualizing sheaf of X ten-
sored with the marked points, ωX(p1 + · · ·+ pn), is ample (has non-negative
multidegree) (see for instance [HM]).

A family of n-pointed stable (resp. semistable) curves is a flat and proper
morphism π : X → S together with n distinct sections si : S → X such
that the geometric fibers Xs together with the points si(s), 1 ≤ i ≤ n, are
n-pointed stable (resp. semistable) curves.

1.3 Algebraic stacks

Let S be a category endowed with a Grothendieck topology.
Roughly speaking, a stack is a category fibered in groupoids over S such

that isomorphisms are a sheaf and every descent datum is effective.
We will not give any details about this definition since there are plenty

of good references; see, for instance [FGA] or [V89]. For a short introduction
to the subject see also [F] or [E00].

We will denote by SCH (resp SCHk) the category of schemes (resp.
schemes over k) endowed with the flat topology.

Remark 1.3.1. Given a scheme S, the category SCH /S of schemes over S is
a stack: the objects are morphisms of schemes with target S and a morphism
from f : T → S to f ′ : T ′ → S is a morphism of schemes g : T → T ′ such
that f ′ = f ◦ g; the projection functor sends the object T → S to T and a
morphism g to itself.
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1.3.1 Representability

Definition 1.3.2. A stack F is said to be representable if it is isomorphic
to the stack induced by a scheme (see Remark 1.3.1 above).

We say that a morphism of stacks f : F → G is representable (resp.
strongly representable) if, for any scheme Y with a morphism Y → G,
the fiber product F ×G Y is an algebraic space (resp. a scheme).

Note that morphisms of schemes are always strongly representable.

Example 1.3.3. The morphism φ : Mg,1 → Mg forgetting the section is
strongly representable. In fact, giving a map of Y to Mg is equivalent to
give a curve π : C → Y in Mg(Y ): the image of the identity morphism
IdY : Y → Y . Then, given any other morphism g : Z → Y , its image
under the map toMg is necessarily π∗(f). It follows that the fiber product
Y ×Mg

Mg,1 is isomorphic to C.

Definition 1.3.4. A strongly representable morphism of stacks f : F → G
has property P if for any map S → G, where S is a scheme, the morphism
of schemes F ×G S → S has property P.

1.3.2 Algebraicity

In what concerns to algebraic stacks, we will always follow the definitions of
[L-MB00].

Definition 1.3.5. A stack F is algebraic in the sense of Artin (resp. Deli-
gne-Mumford) if there exists a smooth (resp. étale) and surjective strongly
representable morphism S → F , where S is (the stack associated to) a
scheme. We will also say that S → F is a presentation or a smooth (resp.
étale) atlas of F .

Note that it makes sense to say that S → F is algebraic in virtue of
Definition 1.3.4 above.

1.3.3 Quotient stacks

Since almost all stacks that we will consider throughout this thesis are quo-
tient stacks, we will say something more about these now.

Let G be an algebraic group acting on a scheme S on the left. Let
[S/G] be the following category fibered over SCH: its objects are principal
homogeneous G-bundles with a G-equivariant morphism to S and morphisms
are those pullback diagrams which are compatible with the morphism to S.

It turns out that, in general, [S/G] is an algebraic Artin stack since there
is a natural map

S → [S/G]

which is a smooth and surjective presentation of [S/G] of relative dimension
dimG.
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Definition 1.3.6. A quotient stack is a stack of the form [S/G], for some
S and G as above.

If the stabilizers of the action of G on S are all finite and reduced (for
instance, if it is a GIT-geometric action), it turns out that [S/G] is indeed
Deligne-Mumford (see for instance [V89], 7.17).

Example 1.3.7. The satcksMg andMg are a quotient stacks for the action
of PGL(r+ 1) in suitable subschemes of a certain Hilbert scheme H (see for
instance [E00] for an overview about this construction).

1.3.4 Coarse moduli spaces for algebraic stacks

Definition 1.3.8. A coarse moduli space for a stack F is an algebraic space
F together with a morphism π : F → F satisfying the following properties:

• for any algebraically closed field Ω, π induces an isomorphism between
the connected components of the groupoid F(Spec Ω) and F (Spec Ω);

• π is universal for morphisms from F onto algebraic spaces.

Example 1.3.9. GIT-geometric quotients by the action of an algebraic
group in a scheme are coarse moduli spaces for the quotient stack associ-
ated to that action (see [V89] 2.1 and 2.11). So, for instance Mg and Mg are
coarse moduli spaces for the stacksMg andMg, respectively.
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Chapter 2

Balanced Picard stacks over
Mg

In the present chapter we will try to give an answer to our initial problem for
n = 0. So, we consider the stack Picd,g, parametrizing families of nonsingular
curves of genus g endowed with a line bundle of relative degree d over these
families and we try to get a modular compactification of it overMg.

As we already mentioned, this case is particularly fortunate since there
are already several constructions of compactified jacobians for families of
stable curves.

Our approach will be to consider Caporasos’s construction, which is made
by means of a GIT quotient, and try to give a modular description of the
quotient stack associated to it (see 1.3.3 above).

We will start by giving an overview of the whole construction and by
discussing some details associated to it. For example, we give, for every
integer d, a geometrical description of the locus of genus g stable curves over
which we get Deligne-Mumford stacks strongly representable over Mg. In
this case, our stacks parametrize Néron models of jacobians of smooth curves
in a sense that will be made precise (see 2.4.2 below). We also show that
this point of view allows us to get compactified Picard varieties (of degree d)
for families of stable curves in a functorial way. By this we mean that, given
a family of stable curves f : X → S, the fiber product of our stacks by the
moduli map µf : S →Mg is either a compactification of the relative degree
d Picard variety associated to f or has a canonical map onto it (see 1.1 for
the definition of Picard variety associated to a morphism).

2.1 Balanced line bundles over semistable curves

Recall that Gieseker’s construction of Mg consists of a GIT-quotient of the
action of SL(N), for some N ∈ Z, on a Hilbert scheme where it is possible to
embed all semistable curves of genus g (the “Hilbert point”of the curve) (see
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[G82]). Gieseker shows that in this Hilbert scheme, in order for the Hilbert
point of a curve to be GIT-semistable, it is necessary that the multidegree of
the line bundle giving its projective realization satisfies an inequality, called
the “Basic Inequality”. Later, in [C94], Caporaso shows that this condition
is also sufficient.

We will now give the definition of this inequality, extending the termi-
nology introduced in [CCC04].

Definition 2.1.1. Let X be a semistable curve of genus g ≥ 2 and L a
degree d line bundle on X.

(i) We say that L (or its multidegree) is semibalanced if, for every con-
nected proper subcurve Z of X the following (“Basic Inequality”) holds

mZ(d) :=
dwZ

2g − 2
− kZ

2
≤ degZ L ≤

dwZ
2g − 2

+
kZ
2

:= MZ(d). (2.1)

(ii) We say that L (or its multidegree) is balanced if it is semibalanced and
if degE L = 1 for every exceptional component E of X. The set of
balanced line bundles of degree d of a curve X is denoted by Bd

X .

(iii) We say that L (or its multidegree) is stably balanced if it is balanced
and if for each connected proper subcurve Z of X such that degZ L =
mZ(d), the complement of Z, Z ′, is a union of exceptional components.

The set of stably balanced line bundles of degree d on X will be denoted
by B̃d

X .

Remark 2.1.2. Balanced multidegrees are representatives for multidegree
classes of line bundles on X up to twisters (that is, to elements in the degree
class group of X, ∆X , which is a combinatorial invariant of the curve defined
in [C94]). More particularly, in [C05], Proposition 4.12, Caporaso shows that,
if X is a quasistable curve, every multidegree class in ∆X has a semibalanced
representative and that a balanced multidegree is unique in its equivalence
class if and only if it is stably balanced.

In [BMS1] and [BMS2] we have studied, together with Simone Busonero
and Lidia Stoppino, several geometrical and topological properties of stable
curves using exactly this invariant and its combinatorial properties. It is
remarkable how combinatorics give interesting tools to the study of reducible
nodal curves.

We now list some easy consequences of the previous definition.

Remark 2.1.3. (A) If a semistable curve X admits a balanced line bundle
L, then X must be quasistable.

(B) To verify that a line bundle L is balanced it is enough to check that
degZ L ≥ mZ(d), for each proper subcurve Z of X and that degEL = 1
for each exceptional component E of X.
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(C) If X is a stable curve, then a balanced line bundle L on X is stably
balanced if and only if, for each proper connected subcurve Z of X,
degZ L 6= mZ(d).

(D) Let X be a stable curve consisting of two irreducible components, Z
and Z ′, meeting in an arbitrary number of nodes. Then X admits a
degree d line bundle which is balanced but not stably balanced if and
only if d−g+1

2g−2 wZ ∈ Z (equivalently if d−g+1
2g−2 wZ′ ∈ Z).

(E) A line bundle is balanced (resp. stably balanced) if and only if L⊗ω⊗nX
is balanced (resp. stably balanced), for n ∈ Z. So, given integers d
and d′ such that ∃n ∈ Z with d ± d′ = n(2g − 2), there are natural
isomorphisms Bd

X
∼= Bd′

X (and B̃d
X
∼= B̃d′

X).

For (A) and (B) see [CE] Remark 3.3. (C) and (E) are immediate conse-
quences of the definition. For (D) note that, given a balanced γ-uple d ∈ Zγ
such that |d| = d, there exists a (balanced degree d) line bundle L in X
such that degL = d. Since kZ = wZ − 2gZ + 2, we can write mZ(d) as
d−g+1
2g−2 wZ + gZ − 1, which is an integer by hypothesis. In the same way,
MZ′(d) = d − mZ(d) is an integer too, so (mZ(d),MZ′(d)) is a balanced
multidegree which is not stably balanced.

2.1.1 Caporaso’s construction

Let P d,g → Mg be Caporaso’s compactification of the universal Picard va-
riety of degree d, Picdg →M0

g , constructed in [C94]. We will now recall some
basic facts about this construction.

For d >> 0, and g ≥ 2, P d,g is the GIT-quotient

πd : Hd → Hd/PGL(r + 1) =: P d,g

whereHd := (Hilbdt−g+1
Pr )ss, the locus of GIT-semistable points in the Hilbert

scheme Hilbdt−g+1
Pr , with r = d−g, which is naturally endowed with an action

of PGL(r + 1) leaving Hd invariant. P d,g naturally surjects onto Mg via a
proper map φd : P d,g →Mg such that, for g ≥ 3, φ−1

d (M0
g) is isomorphic to

Picdg.

Remark 2.1.4. Note that, even if Caporaso’s original results were stated for
g ≥ 3, the whole GIT construction holds also for g = 2. In fact, the universal
Picard variety Picdg overM0

g in [C94] exists only for g ≥ 3 (sinceM0
g is empty

otherwise), so it only makes sense to compactify it for g ≥ 3. However, the
description of the GIT-stable and semistable points of the Hilbert schemes
where we embed the curves, works also for g = 2 as we can see by analyzing
the proofs in [C94]. This description is all we need for our results.
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For [X] ∈ Mg, denote by P d,X the inverse image of X by φd. P d,X is a
connected projective scheme having at most ∆X irreducible components, all
of dimension g. In addition, if X is automorphism-free, the smooth locus of
P d,X is isomorphic to the disjoint union of a finite number of copies of JX .

Points in Hd correspond to nondegenerate quasistable curves in Pr em-
bedded by a balanced line bundle.

Let Hs
d ⊆ Hd be the locus of GIT-stable points. These correspond to

nondegenerate quasistable curves in Pr embedded by a stably balanced line
bundle of degree d.

Definition 2.1.5. Let X be a semistable curve of arithmetic genus g ≥ 2.
We say that X is d-general if all degree d balanced line bundles on X are
stably balanced. Otherwise, we will say that X is d-special.

Denote by Ud := (φd ◦ πd)−1(Md
g) the subset of Hd corresponding to

d-general curves. Ud is an open subset of Hd where the GIT-quotient is
geometric (i.e., all fibers are PGL(r + 1)-orbits and all stabilizers are finite
and reduced), invariant under the action of PGL(r + 1).

Ud = Hd if and only if (d−g+1, 2g−2) = 1, so the GIT-quotient yielding
P d,g is geometric if and only if (d− g+ 1, 2g− 2) = 1 (see Proposition 6.2 of
loc. cit.).

2.2 Balanced Picard stacks on d-general curves

By reasons that will be clear in a moment (see Section 2.2.1 below), call PNér
d,g

the GIT-quotient of Ud by PGL(r + 1), for g ≥ 2.
For the time being let

G := PGL(r + 1).

Let us now consider the quotient stack [Ud/G].
Recall that, given a scheme S over k, a section of [Ud/G] over S consists

of a pair (φ : E → S, ψ : E → Ud) where φ is a G-principal bundle and ψ is
a G-equivariant morphism. Arrows correspond to those pullback diagrams
which are compatible with the morphism to Ud.

Let Md
g ⊂ Mg be the moduli stack of d-general stable curves. There

is a natural map from [Ud/G] to Md
g, the restriction to d-general curves of

the moduli stack of stable curves, Mg. In fact, the restriction to Ud of the
stabilization morphism from Hd to Mg factors through Md

g and, since Ud is

invariant under the action of G, this yields a map from [Ud/G] to Md
g.

We will start by proving the following general result about representabil-
ity of morphisms of Deligne-Mumford stacks.
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Lemma 2.2.1. Let f : F → G be a representable morphism of Deligne-
Mumford stacks admitting coarse moduli spaces F and G, respectively. Then,
if the morphism induced by f in the coarse moduli spaces, π : F → G, is
strongly representable, also f is strongly representable.

Proof. We must show that, given a scheme B with a morphism to G, the
fiber product of f with this morphism, FB, is a scheme.

FB

��

// F //

f

��

F

π

��
B // G // G

Since f is representable, we know that FB is an algebraic space, so to show
that it is indeed a scheme it is enough to show that there is a projective
morphism from FB to a scheme (see [Vie94] 9.4). Consider the fiber product
of the induced morphism from B to G with π, FB. Since, by hypothesis, π
is representable, FB is a scheme and is endowed with a natural morphism to
FB, ρ : FB → FB, the base change over B of the map from F to F . Since F
is the coarse moduli space of F , this map is proper (see [V89] 2.1), so also ρ is
proper. Now, to show that ρ is projective it is enough to see that it has finite
fibers, which follows from the fact that the stacks are Deligne-Mumford.

Proposition 2.2.2. The quotient stack [Ud/G] is Deligne-Mumford for eve-
ry d ∈ Z and for every g ≥ 2 and its natural map onto Md

g is strongly
representable.

Proof. The fact that [Ud/G] is Deligne-Mumford comes from the well known
fact that a quotient stack is Deligne-Mumford if and only if the action of
the group on the scheme is GIT-geometric, that is, if all stabilizers are finite
and reduced. Since Ud is the locus of curves where balanced line bundles are
necessarily stably balanced, the Hilbert point of a d-general curve is GIT-
semistable if and only if it is GIT-stable, so the GIT-quotient of Ud by G is
geometric.

The proof of the strong representability of the natural map from [Ud/G]
toMd

g consists on two steps: first we prove that it is representable and then
we use it to prove strong representability.

To prove representability it is sufficient to see that given any section of
our quotient stacks over the spectrum of an algebraically closed field k′, the
automorphism group of it injects into the automorphism group of its image
in Md

g (see for example [AV02] 4.4.3). But a section of our quotient stack
over an algebraically closed field consists of a map onto a orbit of the action
of G in Ud. So, the automorphism group of that section is isomorphic to the
stabilizer of the orbit. The image of our section consists of a stable curve
X: the stable model of the projective curve associated to that orbit. As
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this must be d-general, it is GIT-stable and we can use [C94] section 8.2 to
conclude that the stabilizer of the orbit injects into the automorphism group
of X.

So, the map from [Ud/G] toMd
g is representable. It follows now imme-

diately that it is also strongly representable from Lemma 2.2.1 and the fact
that the GIT-quotients yielding PNér

d,g and Mg are geometric (see Example
1.3.9).

Definition 2.2.3. Let f : X → S be a family of stable curves. A com-
pactification of the relative Picard variety of degree d associated to f is a
projective S-scheme P whose fiber over closed points ξ of S corresponding to
automorphism-free fibers Xξ of f is isomorphic to φ−1

d (Xξ).

The following is an immediate consequence of the previous Proposition.

Corollary 2.2.4. The Deligne-Mumford stack [Ud/G] gives a functorial way
of getting compactifications of the relative Picard variety of degree d for fam-
ilies of d-general curves in the sense of Definition 2.2.3.

Remark 2.2.5. Consider [Hd/G], the quotient stack of the action of G =
PGL(r + 1) in Hd. Then, if (d − g + 1, 2g − 2) = 1, [Hd/G] = [Ud/G] and
all we said in this section was already proved in [C05], section 5, for [Hd/G].
Note also that in loc. cit. [Hd/G] is denoted by Pd,g.

2.2.1 Néron models of families of d-general curves

Recall that, given a DVR (discrete valuation ring) R with function field K
and an abelian variety AK over K, the Néron model of AK , N(AK), is a
smooth model of AK over B = SpecR defined by the following universal
property (cf. [BLR] Definition 1): for every smooth scheme Z over B with
a map uK : ZK → AZ of its generic fiber, there exists an unique extension
of uK to a B-morphism u : Z → N(AK). Note that N(AK) may fail to be
proper over B but it is always separated.

Let f : X → B be a family of stable curves with X nonsingular. Denote
byXk the closed fiber of the family and byXK its generic fiber. The question
is how to construct the Néron model of the Picard variety PicdXK in a
functorial way overMg. Even if it is natural to look at the Picard scheme
(of degree d) of the family, Picdf → B, which is smooth and has generic
fiber equal to PicdXK , it turns out to be non satisfactory since it fails to be
separated over B if the closed fiber Xk of f is reducible.

Consider the quotient stack [U std /G], where U std is the locus of points in
Ud that parametrize d-general stable curves.

It is clear that the statement of Proposition 2.2.2 holds for [U std /G] since
U std is a G-invariant subscheme of Ud. So, given a family of d-general stable
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curves f : X → B, the fiber product [U std /G]×Md
g
B, where B →Mg is the

moduli map associated to the family f , is a scheme over B, denoted by P df .

P df

��

// PNér
d,g

��

B //Md
g

Suppose X is regular. Then, from [C05], Theorem 6.1, we get that P df ∼=
N(PicdXK).

2.2.2 Combinatorial description of d-general curves in M g

Recall the notions of d-general and d-special curve from Definition 2.1.5.
Following the notation of [CE], we will denote by Σd

g the locus in Mg

of d-special curves. So, Σd
g consists of stable curves X of genus g such that

B̃d
X \ Bd

X 6= ∅ (see Definition 2.1.1). In particular, Σd
g is contained in the

closed subset of Mg consisting of reducible curves. Let us also denote by
M

d
g the locus of d-general genus g stable curves (so Σd

g ∪M
d
g = Mg, for all

d ∈ Z).
From [C94], Lemma 6.1, we know that Md

g is the image under φd of Ud,
so it is an open subset of Mg.

Recall that a vine curve is a curve with two smooth irreducible compo-
nents meeting in an arbitrary number of nodes. The closure in Mg of the
vine curves of genus g is precisely the locus of reducible curves.

In Proposition 2.2.10, we give a geometric description of Σd
g.

Example 2.2.6. Let d = 1. From [CE], Prop. 3.15, we know that, if g
is odd, Σ1

g is empty and that if g is even, Σ1
g is the closure in Mg of the

locus of curves X = C1 ∪C2, with C1 and C2 smooth of the same genus and
](C1 ∩ C2) = k odd.

Observe that, from the above example, we get that Σ1
g is the closure in

Mg of the 1-special vine curves of genus g. In what follows we will see that
this is always the case for any degree.

Lemma 2.2.7. Let d be an integer greater or equal than 1. Then Σd
g is the

closure in Mg of the locus of d-special vine curves.

Proof. Let X be a genus g d-special curve. As X is stable, using Remark
2.1.3 (C), this means that there is a connected proper subcurve Z of X and
a balanced line bundle L on X such that degZ L = mZ(d).
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So, let Z be a connected proper subcurve of X such that degZ L = mZ(d)
and such that wZ is maximal among the subcurves satisfying this condition.
The complementary curve of Z in X, Z ′ must be such that

degZ′ L = d− degZ L = d−mZ(d) = MZ′(d).

Let us see that Z ′ is connected as well.
By contradiction, suppose Z ′ = Z ′1 ∪ · · · ∪ Z ′s is a union of connected

components with s > 1. As degZ′ L = MZ′(d), also each one of its connected
components Z ′i, i = 1, . . . , s, must be such that degZ′iL = MZ′i

(d). In fact,
suppose one of them, say Z ′j , is such that degZ′jL < MZ′j

(d). Then,

degZ′ L =
s∑
i=1

degZ′i L <
s∑
i=1

dwZ′i
2g − 2

+
kZ′i
2

=
dwZ′

2g − 2
+
kZ′

2
= MZ′(d)

leading us to a contradiction. Note that the sum of the kZ′i ’s is kZ′ because,
being the Z ′i’s the connected components of Z ′, they do not meet each other.

Now, let us consider W := Z ∪ Z ′1. As s > 1, W is a connected proper
subcurve of X with wW = wZ + wZ′1 > wZ . Indeed, as X is stable,

0 < wY < 2g − 2 (2.2)

for every proper subcurve Y ofX, since there are no exceptional components.
Moreover,

degW L = degZ L+ degZ′1 L =
dwZ

2g − 2
− kZ

2
+

dwZ′1
2g − 2

+
kZ′1
2

=
dwW

2g − 2
− kW

2

because, being Z ′1 a connected component of Z ′, we have that

kZ − kZ′1 = kZ − ](Z ∩ Z ′1) = kW .

So, W is a connected proper subcurve of X with degW L = mW (d) and with
wW > wZ . This way, we achieved a contradiction by supposing that Z ′ is
not connected.

As both Z and Z ′ are limits of smooth curves and Σd
g is closed inMg, then

X lies in the closure in Mg of the locus of genus g d-special vine curves.

Given integers d and g, we will use the following notation to indicate
greatest common divisor

Gd := (d− g + 1, 2g − 2).

>From [C94], we know that Σd
g is a proper closed subset of Mg and that

Σd
g = ∅ if and only if Gd = 1 (see Prop. 6.2 of loc. cit.).
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Remark 2.2.8. >From Lemma 2.2.7 and Remark 2.1.3(D) we conclude
that a stable curve X is d-special if and only if there is a connected proper
subcurve Z of X such that X \ Z is connected and 2g−2

Gd
divides wZ .

Remark 2.2.9. If Gd = 2g−2, which means that d ≡ (g−1) (mod 2g−2),
an immediate consequence of the previous Remark is that all reducible curves
are (g − 1)-special. This is the opposite situation to the case Gd = 1.

>From Remark 2.2.8 we see that Σd
g depends only on Gd. This is evident

in the following proposition, where we give a geometric description of Σd
g.

Proposition 2.2.10. Let d be an integer greater or equal than 1. Then Σd
g

is the closure in Mg of vine curves X = C1 ∪ C2 such that

2g − 2
Gd

| wC1 .

More precisely, Σd
g is the closure in Mg of the following vine curves:

given integers m and k with

1 ≤ m < Gd

and

1 ≤ k ≤ min{2g − 2
Gd

m+ 2, 2g − 2g − 2
Gd

m}, k ≡ 2g − 2
Gd

m (mod 2),

then X = C1 ∪ C2, with ](C1 ∩ C2) = k, and

• g(C1) = g−1
Gd

m− k
2 + 1;

• g(C2) = g − g−1
Gd
− k

2 .

Proof. The first part of the proposition is an immediate consequence of
Lemma 2.2.7 and Remark 2.2.8.

Now, let X be a d-special genus g vine curve X = C1 ∪ C2 with ](C1 ∩
C2) = k. >From Remark 2.2.8 we know that there exists an integer m such
that

m
2g − 2
Gd

= wC1

with 1 ≤ m < Gd because, as X is a stable curve, wC1
2g−2 must be smaller than

1.
As wC1 = 2g(C1)− 2 + k, we get that k ≡ 2g−2

Gd
m (mod 2) and that

g(C1) =
g − 1
Gd

m− k

2
+ 1.
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Now, as g = g(C1)− g(C2) + k − 1, we get that

g(C2) = g − g − 1
Gd

− k

2
.

As g(C1) and g(C2) must be greater or equal than 0, we get, respectively,
that

k ≤ 2g − 2
Gd

m+ 2 and k ≤ 2g − 2g − 2
Gd

m.

It is easy to see that if g(C1) or g(C2) are equal to 0 then k ≥ 3. So, the
vine curves we constructed are all stable.

Remark 2.2.11. Since by smoothing a vine curve in any of its nodes we
get an irreducible curve, we see that the above set of “generators”of Σd

g is
minimal in the sense that none of them lies in the closure of the others.

The dependence of Σd
g on Gd gets even more evident in the following

proposition.

Proposition 2.2.12. For every d, d′ ∈ Z, Gd|Gd′ if and only if Σd
g ⊂ Σd′

g .

Proof. That Gd|Gd′ implies that Σd
g ⊂ Σd′

g is immediate from Remark 2.2.8.
Now, suppose Σd

g ⊂ Σd′
g . If Gd = 1 then obviously Gd|Gd′ . For Gd 6= 1

we will conclude by contradiction that Gd|Gd′ . So, suppose Gd′ - Gd. Then,
also 2g−2

G′d
- 2g−2

Gd
. We will show that there exists a stable curve X consisting

of two smooth irreducible components C1 and C2 meeting in δ nodes (δ ≥ 1)
which is d-special but not d′-special.

Take X such that wC1 = 2g−2
Gd

. If such a curve exists and is stable then
we are done because X will clearly be d-special and not d′-special. In fact,
by construction, 2g−2

Gd′
does not divide wC1 and 2g−2

Gd′
will not divide wC2 too

because wC2 = (2g − 2)− 2g−2
Gd

.
So, X must be such that

• g(C1) = g−1
Gd

+ 1− δ
2

• g(C2) = g − g−1
Gd
− δ

2

• δ ≥ 1 and δ ≡ 2g−2
Gd

(mod 2).

As g(Ci) must be greater or equal than 0 and the curve X must be stable,
we must check if such a construction is possible.

So, if 2g−2
Gd
≡ 1 (mod 2), take δ = 1. Then we will have that g(C1) =

g−1
Gd

+ 1
2 and g(C2) = g− g−1

Gd
− 1

2 , which are both greater than 1 because we
are considering Gd > 1.

If 2g−2
Gd
≡ 0 (mod 2), take δ = 2. Then we will have that g(C1) = g−1

Gd

and g(C2) = g− g−1
Gd
− 1, again both greater than 1. We conclude that X is

a stable curve.
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The following is immediate.

Corollary 2.2.13. For all d and d′, Σd
g = Σd′

g if and only if Gd = Gd′.

For each positive divisor M of 2g − 2 there is an integer d = M + g − 1
such that Gd = M . So, for each such M , we can define

Σg,M := Σd
g and MM

g = Mg \ Σg,M .

For example, M2g−2
g consists of irreducible curves of genus g and M1

g =
Mg.

The following is now immediate.

Proposition 2.2.14. The open subsets MM
g associated to the positive di-

visors M of 2g − 2, form a lattice of open subschemes of Mg such that
M

M
g ⊂M

M ′

g if and only if M ′|M .

2.3 Modular description of Balanced Picard stacks
over Mg

Suppose g ≥ 2 and (d− g + 1, 2g − 2) = 1. ThenMd
g =Mg and [Ud/G] =

[Hd/G] (see section 2.2.2). Moreover, from [C05], 5.10, we know that [Hd/G]
is the “rigidification”in the sense of [ACV01] (see section 2.4 below) of the
category whose sections over a scheme S are pairs (f : X → S,L) where f
is a family of quasistable curves of genus g and L is a balanced line bundle
on X of relative degree d. Arrows between such pairs are given by cartesian
diagrams

X

f

��

h // X ′

f ′

��
S // S′

and an isomorphism L ∼= h∗L′ ⊗ f∗M , for some M ∈ Pic S.
This description uses heavily the existence of Poincaré line bundles for

families of quasistable curves, established in loc. cit., Lemma 5.5. However,
this works only if (d− g + 1, 2g − 2) = 1.

In order to overcome this difficulty we will try to define the stack of line
bundles of families of stable curves.

We will start by recalling the definition of “Picard stack associated to a
morphism of schemes”. Roughly speaking, a Picard stack is a stack together
with an “addition”operation which is both associative and commutative. The
theory of Picard stacks is developed by Deligne and Grothendieck on Section
1.4 of Exposé XVIII in [SGA4]. We will not include here the precise definition
but we address the reader to [ibid.], [L-MB00] 14.4 and [BF], section 2.
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Given a scheme X over S with structural morphism f : X → S, the S-
stack of (quasi-coherent) invertible OX -modules, PicX/S , is a Picard stack:
the one associated to the complex of length one

τ≤0(Rf∗Gm[1]).

So, given an S-scheme T , PicX/S(T ) is the groupoid whose objects are in-
vertible OXT -modules and whose morphisms are the isomorphisms between
them (notation as in 1.1).
PicX/S fits in the exact sequence below, where, given an S-scheme T ,

PicX/S(T ) is defined as PicXT /f
∗
T (PicT ) and BGm(T ) is the group of line

bundles over T .

0→ BGm → PicX/S → PicX/S → 0

Now, let us consider the forgetful morphism of stacks π : Mg,1 → Mg.
The morphism π is strongly representable since, given a morphism Y with a
map h : Y →Mg, the fiber product Y ×Mg

Mg,1 is isomorphic to the image
of IdY under h, which is a family of stable curves of genus g, say C → Y
(see Remark 1.3.3).

So, we define the category PicMg,1/Mg
associated to π as follows. Given

a scheme Y , morphisms from Y toMg correspond to families of stable curves
over Y . So, the objects of PicMg,1/Mg

(Y ) are given by pairs (C → Y,L)
where C → Y is the family of stable curves of genus g associated to a map
Y →Mg and L is a line bundle on C ∼= Y ×Mg

Mg,1. Morphisms between
two such pairs are given by cartesian diagrams

C

��

h // C ′

��
Y // Y ′

(2.3)

together with an isomorphism L ∼= h∗L′.
We will now concentrate on the following full subcategory of PicMg,1/Mg

(and on a compactification of it).

Definition 2.3.1. Let Pd,g (respectively Pd,g) be the category whose objects
are pairs (f : C → Y, L) where f is a family of stable (respectively qua-
sistable) curves of genus g and L a balanced line bundle of relative degree d
over Y . Morphisms between two such pairs are defined as in PicMg,1/Mg

.

The aim of the present section is to show that both Pd,g and Pd,g are
algebraic (Artin) stacks. We will do it directly by showing that they are
isomorphic to the quotient stacks we are about to define.

Recall from the section before that GL(r + 1) acts on Hd, the locus of
GIT-semistable points in Hilbdt−g+1

Pr , with r = d − g, by projecting onto

18



PGL(r + 1). Consider also the open subset of Hd parametrizing Hilbert
points of stable curves and denote it by Hst

d . It is easy to see that Hst
d is a

GL(r + 1)-equivariant subset of Hd.
So, we can consider the quotient stacks [Hst

d /GL(r+1)] and [Hd/GL(r+
1)]. Given a scheme S, [Hst

d /GL(r+1)](S) (respectively [Hd/GL(r+1)](S))
consists of GL(r + 1)-principal bundles φ : E → S with a GL(r + 1)-
equivariant morphism ψ : E → Hd (respectively ψ : E → Hst

d ). Morphisms
are given by pullback diagrams which are compatible with the morphism to
Hd (resp. Hst

d ).

Theorem 2.3.2. Let d >> 0 and g ≥ 2. Then, Pd,g and Pd,g are isomor-
phic, respectively, to the quotient stacks [Hst

d /GL(r+1)] and [Hd/GL(r+1)].

Proof. Since the proof is the same for both cases, we will consider only the
case of [Hd/GL(r + 1)].

We must show that, for every scheme S ∈ SCHk, the groupoids Pd,g(S)
and [Hd/GL(r + 1)](S) are equivalent.

Let (f : X → S,L) be a pair consisting of a family f of quasistable curves
and a balanced line bundle L of relative degree d on X. We must produce a
principal GL(r + 1)-bundle E on S and a GL(r + 1)-equivariant morphism
ψ : E → Hd. Since we can take d very large with respect to g (see Remark
2.1.3 (E)), we may assume that f∗(L) is locally free of rank r+1 = d−g+1.
Then, the frame bundle of f∗(L) is a principal GL(r + 1)-bundle: call it E.
Now, to find the GL(r+ 1)-equivariant morphism to Hd, consider the family
XE := X ×S E polarized by LE , the pullback of L to XE . XE is a family of
quasistable curves of genus g and LE is balanced and relatively very ample.
By definition of frame bundle, fE∗(LE) is isomorphic to C(r+1) ×E, so that
LE gives an embedding over E of XE in Pr×E. By the universal property of
the Hilbert scheme H, this family determines a map ψ : E → Hd. It follows
immediately that ψ is a GL(r + 1)-equivariant map.

Let us check that isomorphisms in Pd,g(S) lead canonically to isomor-
phisms in [Hd/GL(r + 1)](S).

An isomorphism between two pairs (f : X → S,L) and (f ′ : X ′ → S,L′)
consists of an isomorphism h : X → X ′ over S and an isomorphism of line
bundles L ∼= h∗L′.

X
h //

f ��@
@@

@@
@@

X ′

f ′~~}}
}}

}}
}}

S

These determine an unique isomorphism between f∗(L) and f ′∗(L
′) as

follows
f∗(L) ∼= f∗(h∗L′) ∼= f ′∗(h∗(h

∗L′))) ∼= f ′∗(L
′).

As taking the frame bundle gives an equivalence between the category of
vector bundles of rank r+ 1 over S and the category of principal GL(r+ 1)-
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bundles over S, the isomorphism f∗(L) ∼= f ′∗(L
′) leads to an unique isomor-

phism between their frame bundles, call them E and E′ respectively. This
isomorphism must be compatible with the GL(r+1)-equivariant morphisms
ψ : E → Hd and ψ′ : E′ → Hd because they are determined by the induced
curves XE and X ′E′ embedded in Pr by LE and L′E′ .

Conversely, given a section (φ : E → S, ψ : E → Hd) of [Hd/GL(r + 1)]
over S, let us construct a family of quasistable curves of genus g over S and
a balanced line bundle of relative degree d on it.

Let Cd be the restriction to Hd of the universal family on Hilbdt−g+1
Pr .

The pullback of Cd by ψ gives a family CE on E of quasistable curves of
genus g and a balanced line bundle LE on CE which embeds CE as a family
of curves in Pr. As ψ is GL(r + 1)-invariant and φ is a GL(r + 1)-bundle,
the family CE descends to a family CS over S, where CS = CE/GL(r + 1).
In fact, since CE is flat over E and E is faithfully flat over S, CS is flat over
S too (see [EGA4], Proposition 2.5.1).

Now, since the action of GL(r+1) on Cd is naturally linearized (see [C94],
1.4), also the action of GL(r + 1) on E can be linearized to an action on
LE , yielding descent data for LE ([SGA1], Proposition 7.8). Moreover, LE
is relatively (very) ample so, using the fact that φ is a principal GL(r + 1)-
bundle, we conclude that LE descends to a relatively very ample balanced
line bundle on CS , LS (see proof of Proposition 7.1 in [GIT]).

It is straightforward to check that an isomorphism on [Hd/GL(r+1)](S)
leads to an unique isomorphism in Pd,g(S).

Remark 2.3.3. For a different proof that a section (φ : E → S, ψ : E → Hd)
of [Hd/GL(r + 1)] over S leads to a family of quasistable curves of genus g
over S and a balanced line bundle of relative degree d on it see the proof of
Proposition 3.2.6 below.

We will call Pd,g and Pd,g, respectively, balanced Picard stack and com-
pactified balanced Picard stack.

Remark 2.3.4. Since Gm is always included in the stabilizers at every point
of the action of G both in Hd and in Hst

d , the quotient stacks above are never
Deligne-Mumford. However, they are, of course Artin stacks with a smooth
presentation given by the schemes Hst

d and Hd, respectively.
Notice also that, since the scheme Hd is nonsingular, irreducible and

closed (see Lemmas 2.2 and 6.2 in [C94]), the algebraic stack Pd,g is a smooth
compactification of Pd,g.

Moreover, combining the statement of Theorem 2.3.2 with the Remark
2.1.3 (E) above, we conclude that, for g ≥ 2, Pd,g and Pd,g are smooth and
irreducible algebraic stacks for every d ∈ Z.

Let
dPd,g
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be the category over SCHk whose sections over a scheme S, dPd,g(S), consists
of pairs (f : X → S,L), where f is a family of d-general quasistable curves
of genus g and L is an S-flat balanced line bundle on X of relative degree d.
Arrows between two such pairs are given by cartesian diagrams like in (2.3).

Using the same proof of Proposition 2.3.2 we conclude that dPd,g is iso-
morphic to the quotient stack [Ud/G].

2.4 Rigidified Balanced Picard stacks

In what follows we will relate Pd,g and Pd,g, respectively, with [Hst
d /G] and

[Hd/G], where G denotes PGL(r + 1), using the notion of rigidification of
a stack along a group scheme defined by Abramovich, Vistoli and Corti in
[ACV01], 5.1 (recall that Hst

d ⊂ Hd parametrizes embedded stable curves).
Note that each object (f : X → S,L) in Pd,g have automorphisms given

by scalar multiplication by an element of Γ(X,Gm) along the fiber of L.
Since these automorphisms fix X, there is no hope that our stack Pd,g can
be representable over Mg (see [AV02], 4.4.3). The rigidification procedure
removes those automorphisms.

More precisely, the set up of rigidification consists of:

• a stack G over a base scheme S;

• a finitely presented group scheme G over S;

• for any object ξ of G over an S-scheme S, an embedding

iξ : G(S)→ AutS(ξ)

compatible with pullbacks.

Then the statement (Theorem 5.1.5 in [ACV01]) is that there exists a stack
G (G and a morphism of stacks G → G (G over S satisfying the following
conditions:

• For any object ξ ∈ G(S) with image η ∈ G (G(S), the set G(S) lies in
the kernel of AutS(ξ)→AutS(η);

• The morphism G → G (G above is universal for morphisms of stacks
G → F satisfying condition (1) above;

• If S is the spectrum of an algebraically closed field, then in (1) above
we have that AutS(η) = AutS(ξ)/G(S);

• A moduli space for G is also a moduli space for G (G.
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G (G is the rigidification of G along G.
By taking S = Spec k, G = Pd,g and G = Gm we see that our situation

fits up in the setting above. It is easy to see that, since GL(r + 1) acts on
Hd by projection onto PGL(r + 1), [Hd/PGL(r + 1)] is the rigidification
of [Hd/GL(r + 1)] ∼= Pd,g along Gm: denote it by Pd,g ( Gm. Naturally,
the same holds for [Hst

d /PGL(r + 1)] and Pd,g ( Gm. The following is now
immediate.

Proposition 2.4.1. The quotient stacks [Hst
d /G] and [Hd/G] are isomor-

phic, respectively, to Pd,g ( Gm and to Pd,g ( Gm.

Remark 2.4.2. The previous proposition holds, of course, also for the rigi-
dification along Gm of dPd,g, dPd,g(Gm, and [Ud/G], which we have studied
in section 2.2 (see the definition of dPd,g in the end of section 2.3).

Recall from the beginning of section 2.3 that, if (d− g + 1, 2g − 2) = 1,
[Hd/G] has a modular description as the rigidification for the action of BGm

in a certain category.
In order to remove from Pd,g the automorphisms given by the action of

BGm, we first consider the auxiliar categoryAd,g, whose objects are the same
of Pd,g but where morphisms between pairs (C → Y, L) and (C ′ → Y ′, L′) are
given by equivalence classes of morphisms in Pd,g by the following relation.
Given a cartesian diagram

C

��

h // C ′

��
Y // Y ′

(2.4)

and isomorphisms φ : L → h∗L′ and ψ : L → h∗L′, we say that φ is
equivalent to ψ if there exists α ∈ Gm such that α ◦ ψ = φ, where by α we
mean the morphism induced by α in L′ (fiberwise multiplication by α).

There is an obvious morphism of Pd,g → Ad,g satisfying property (1)
above and universal for morphisms of Pd,g in categories satisfying it. How-
ever, it turns out that Ad,g is not a stack. In fact, it is not even a prestack
since, given an étale cover {

∐
i Yi → Y } of Y , the natural morphism Ad,g(Y )

to Ad,g(
∐
i Yi → Y ), the category of effective descent data for this covering,

is not fully faithful but just faithful.
Let us now consider the category Cd,g, with the following modular de-

scription. A section of Cd,g over a scheme S is given by a pair (f : X → S,L),
where f is a family of quasistable curves of genus g and L is a balanced line
bundle on X of relative degree d. Arrows between two such pairs are given
by cartesian diagrams

X

f

��

h // X ′

f ′

��
S // S′
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and equivalence classes of isomorphisms L ∼= h∗L′ ⊗ f∗M , for some M ∈
Pic S, for the following relation. Isomorphisms φ : L → h∗L′ ⊗ f∗M and
ψ : L→ h∗L′⊗f∗N are equivalent if there exists an isomorphism g : N →M
of line bundles on S such that the following diagram commutes.

L
φ//

ψ %%JJJJJJJJJJJ h∗L′ ⊗ f∗M

h∗L′ ⊗ f∗N

id⊗f∗g

OO

Straightforward computations show that Cd,g is a prestack. Moreover, given
the étale cover (

∐
i Yi → Y ) of Y , we get that Ad,g(

∐
i Yi → Y ) is isomorphic

to Cd,g(
∐
i Yi → Y ).

So, we conclude that the stackification of Cd,g is the rigidification of Pd,g
by the action of BGm.

Proposition 2.4.3. The stack [Hd/G] (respectively [Hst
d /G]) is the stacki-

fication of the prestack whose sections over a scheme S are given by pairs
(f : X → S,L), where f is a family of quasistable (respectively stable) curves
of genus g and L is a balanced line bundle on X of relative degree d. Arrows
between two such pairs are given by cartesian diagrams

X

f

��

h // X ′

f ′

��
S // S′

and an isomorphism L ∼= h∗L′ ⊗ f∗M , for some M ∈ Pic S.

Remark 2.4.4. Let d >> 0. Then, as in the case (d − g + 1, 2g − 2) = 1,
there is a canonical map from [Hd/G] and [Hst

d /G] to P d,g and Pd,g, the
GIT-quotients of Hd and Hst

d , respectively, by the action of PGL(r + 1).
If (d − g + 1, 2g − 2) 6= 1, these quotients are not geometric, which implies
that these maps are universally closed but not separated. So, P d,g and Pd,g
are not coarse moduli spaces for those stacks since the associated maps from
the stacks onto them are not proper. However, at least if the base field has
characteristic 0, we have that the GIT-quotients are good moduli spaces in
the sense of Alper (see [A08]).

2.4.1 Gerbes

The content of this subsection is probably foreseeable to the experts.

Definition 2.4.5. Let X be an S-space. A gerbe over X is an S-stack G
endowed with a 1-morphism of S-stacks A : G → X, called the structural
morphism, such that:
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1. A is an epimorphism;

2. The diagonal ∆ : G → G ×X G is an epimorphism.

Remark 2.4.6. 1. To say that A is an epimorphism means that given U
in S and x ∈ X(U) there exists U ′ in S, x′ ∈ G(U ′) and η : U ′ → U
surjective and flat such that f(x′) ∼= η∗(x).

2. To say that ∆ is an epimorphism means that given U in S and x, x′ ∈
X(U) such that A(x) ∼= A(x′), ∃U ′ in S and η : U ′ → U surjective and
flat such that η∗(x) ∼= η∗(x′).

Let H be a scheme endowed with a left action of GL(m). Then we can
form the quotient stack [H/GL(m)]. Recall that the objects of [H/GL(m)]
are principal homogeneous GL(m)-bundles with a GL(m)-equivariant mor-
phism to H and the morphisms are pullback diagrams which are compatible
with the morphism to H.

Suppose this action has the property of being constant along Gm, mean-
ing that, given α ∈ Gm, αh = h ∀h ∈ H. This way we have naturally an
induced action of PGL(m) on H and, again, we can form the quotient stack
[H/PGL(m)]. Of course, even if set theoretically, both quotients H/GL(m)
and H/PGL(m) are the same, the quotient stacks are different. In fact, we
have the following exact sequence of quotient stacks:

0→ [∗/Gm]→ [H/GL(m)]→ [H/PGL(m)]→ 0 (2.5)

where the map [H/GL(m)] → [H/PGL(m)], call it p, associates to an ele-
ment (E → S, φ : E → H) in [H/GL(m)] the PGL(m)-bundle E/Gm → S
with the PGL(m)-equivariant map φp : E/Gm → H, which is well defined
as φ is GL(m)-equivariant and the action of GL(m) on H is Gm-invariant.

Note that [∗/Gm] is isomorphic to the classifying stack BGm.
The following lemma is an immediate consequence of a more general

well-known result. We include it here by lack of a reference.

Lemma 2.4.7. Under the above hypotheses, the quotient stack [H/GL(m)]
is a gerbe over [H/PGL(m)].

Proof. Let (E → S, φ : E → H) be an element in [H/PGL(m)]. As E → S
is a PGL(m)-bundle, ∃η : S′ → S surjective and flat such that η∗(E) is
isomorphic to the trivial PGL(m)-bundle PGL(m)×S′. So, the image under
p of the trivial GL(m)-bundle GL(m)× S′ → S′ is, of course, isomorphic to
η∗(E)→ S′. So, p is an epimorphism.

Now, suppose we have (F → T, φ : F → H) and (F ′ → T, φ′ : F ′ → H) in
[H/GL(m)] which image under p in [H/PGL(m)] are isomorphic. As both
F and F ′ are GL(m)-bundles over T , we can find η : T ′ → T , surjective
and flat, such that both η∗(F ) and η∗(F ′) are isomorphic to the trivial
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GL(m)-bundle over T ′, GL(m) × T ′, with equivariant maps to H given by
composition with φ and φ′, respectively. To conclude, we must see that these
maps are the same. But this follows from the fact that the image of φ and
φ′ image under p are isomorphic and the fact that they must be constant
along Gm.

Remark 2.4.8. Once we have the exact sequence (2.5) above, we will say
that [H/GL(m)] is a Gm-gerbe over [H/PGL(m)].

The folowing is now immediate.

Corollary 2.4.9. The compactified balanced Picard stack Pd,g, defined in
section 2.3, is a Gm-gerbe over [Hd/G]. Analogously, Pd,g is a Gm-gerbe
over [Hst

d /G].

2.4.2 Rigidified balanced Picard stacks and Néron models

Let us now consider the following question: does our balanced Picard stack
[Hst

d ] parametrizes Néron models of families of stable curves for every d as
[U std /G] does for families of d-general curves (see 2.2.1)?

Given a family of stable curves f : X → B = SpecR, we will denote by
Qdf the base-change of the map [Hst

d ] →Mg by the natural map B →Mg:
B ×Mg

[Hst
d ]. Is Qdf isomorphic to N(PicdXK)?

The problem here is that the map [Hst
d ] → Mg is not representable in

general. In fact, if it were, [Hst
d ] would be a Deligne-Mumford stack. Indeed,

it is easy to see that a stack with a representable map to a Deligne-Mumford
stack is necessarily Deligne-Mumford. As we already mentioned, [Hst

d ] is not
Deligne-Mumford in general since it is the quotient stack associated to a
non-geometric GIT-quotient.

As a consequence of this, if the closed fiber of f is not d-general, then
Qdf is not even equivalent to an algebraic space. In fact, from a common
criterion for representability (see for example [AV02], 4.4.3 or the proof of
Proposition 2.2.2), we know that Qdf would be equivalent to an algebraic
space if and only if the automorphism group of every section of [Hst

d ] over
k with image in Mg isomorphic to Xk → k injects into the automorphism
group of Xk. Since such a section corresponds to a map onto its orbit in
Hd by the action of PGL(r + 1), the automorphism group of such a section
is isomorphic to the stabilizer of that orbit. So, as Xk is not d-general, the
stabilizer of its associated orbit in Hd is not finite, which implies that it
cannot have an injective morphism to the automorphism group of Xk, which
is, of course, finite.

The following example will clarify what we have just said.

Example 2.4.10. Let d = g − 1 and f : X → B = SpecR be a family of
stable curves such that X is regular and Xk is a reducible curve consisting of
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two smooth components C1 and C2 of genus g1 and g2 respectively, meeting
in one point (of course, g = g1 + g2). Then, the fiber over k of Qdf is
a stack with a presentation given by a subscheme of the Hilbert scheme
Hd, consisting of two connected components of dimension r(r + 2) + g (see
[C94], Example 7.2). These correspond to projective realizations of Xk on
Pr given by line bundles with the two possible balanced multidegrees on Xk:
(g1, g2 − 1) and (g1 − 1, g2). By Proposition 5.1 of [C94], given a point h
in one of these components, there is a point in OPGL(r+1)(h) representing
the quasistable curve with stable model Xk embedded by a line bundle of
multidegree (g1 − 1, 1, g2 − 1).

So, as a stack, the fiber of Qdf over k is reducible but the GIT quotient of
the Hilbert scheme presenting it by the action of PGL(r + 1) is irreducible
and isomorphic to the Jacobian of Xk. As a consequence, Qdf can never be
isomorphic to the Néron model N(PicdXK).

This is an example of a situation where the GIT-quotient identifies two
components of the Hilbert scheme while in the quotient stack these two
components remain separated.

Proposition 2.4.11. Let f : X → B = SpecR be a family of stable curves
with X regular. Then, using the notation above, Qdf ∼= N PicdXK) if and
only if and only if Xk is a d-general curve.

2.4.3 Functoriality for non d-general curves

Let f : X → S be a family of stable curves. Denote by P df the fiber product
of [Hd/G] by the moduli map of f , µf : S →Mg.

Recall that, if (d − g + 1, 2g − 2) = 1, P df is a compactification of the
relative degree d Picard variety associated to f in the sense of 2.2.3 (see
Remark 2.2.5).

Let now (d− g+ 1, 2g− 2) 6= 1. Then, since [Hd/G] is not representable
overMg, we have just observed that the same cannot be true in general.

However, we have the following result.

Proposition 2.4.12. Notation as before. Then P
d
f has a canonical proper

map onto a compactification P of the relative degree d Picard variety asso-
ciated to f .

Proof. If all fibers of f are d-general, then from Corollary 2.2.4 it follows
that P df is a scheme and it gives a compactification of the relative degree d
Picard variety associated to f .

Suppose now that not all fibers of f are d-general. Then, P df is a stack
with a presentation given by the subscheme Hf

d of Hd corresponding to the
closure in Hd of the locus parametrizing curves isomorphic to the fibers of
f . Hf

d is naturally invariant for the action of PGL(r + 1) on it.
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Let P be the GIT -quotient of Hf
d by PGL(r + 1). P gives a compacti-

fication of the relative degree d Picard variety associated to f . The proper
map Hf

d → P factorizes through Hf
d → P

d
f , the presentation map. In fact,

even if P is not a coarse moduli space for P df , there is a canonical map from

P
d
f onto P , which is universal for morphisms of P df into schemes (see [V89]

section 2). Now, since the map Hf
d → P is proper, then P df → P must be

proper as well.
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Chapter 3

Compactifying the universal
Picard stack over Mg,n

The stacks Pd,g defined in Chapter 2 give an answer to our initial problem
for n = 0 and g ≥ 2. In fact, they are algebraic stacks with a geometrically
meaningful modular description and endowed with a universally closed map
Ψd,g ontoMg such that Ψ−1

d,g(Mg) = Picd,g,0. We will now try to generalize
this construction to curves with marked points.

Our strategy is inspired in Knudsen’s construction of Mg,n in [K83],
which is done by induction in the number of marked points n. The crucial
point of this construction is the definition of contraction, which yields a mor-
phism fromMg,n+1 ontoMg,n. Using the contraction morphism, Knudsen
shows that, for n ≥ 0 and 2g − 2 + n > 0,Mg,n+1 is isomorphic to the uni-
versal family over Mg,n. As a consequence, it follows that the contraction
morphism is representable, which implies that Mg,n+1 is algebraic if Mg,n

is.

After introducing the definitions of quasistable curve with marked points
and of balanced line bundle over it, we define, for all g, n ≥ 0 such that
2g − 2 + n > 0, Pd,g,n to be the stack whose sections over a scheme S are
families of n-pointed quasistable curves endowed with balanced line bundles
of relative degree d over these families (see Definition 3.2.1 below). Also in
our case, the crucial point will be to generalize the notion of contraction
in this more general context of n-pointed quasistable curves endowed with
balanced line bundles and prove that this yields an isomorphism between
Pd,g,n+1 and the universal family over Pd,g,n.
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3.1 n-pointed quasistable curves and balanced line
bundles

In the present section we will introduce the notions of quasistable curve and
of balanced line bundle for curves with marked points. Our definitions are
generalizations of the notions of quasistable and balanced for n = 0 and
g ≥ 2 introduced by Gieseker and Caporaso and that we dealt with in the
previous chapter (see Definition 2.1.1 and 1.2.2).

As a consequence, we also get the notions of quasistable curves and ba-
lanced line bundles for g = 0 and n ≥ 3 and for g = 1 and n ≥ 1. Then, for
n > 0 and 2g − 2 + n > 1, n-pointed quasistable curves turn out to be the
ones we get by applying the stabilization morphism defined by Knudsen in
[K83] (see 3.4.3 below) to (n − 1)-pointed quasistable curves endowed with
an extra section without stability conditions. Moreover, balanced line bun-
dles on n-pointed quasistable curves correspond to balanced line bundles on
the quasistable curves obtained by forgetting the points and by contracting
the rational components that get quasidestabilized without the points (see
Lemma 3.1.10).

Recall that, according to Paragraph 1.2.3, n-pointed (semi)stable curves
admit chains of smooth rational curves meeting the rest of the curve in one
or two points. Since these will be very important in the whole discussion,
we shall introduce the following notation for them.

Definition 3.1.1. Let g and n be non-negative integers such that 2g−2+n >
0 and let (X; p1, . . . , pn) be an n-pointed semistable curve of genus g.

• Let T be a proper subcurve of X with gT = 0 and kT = 1. Then T is
a rational tail of X either if g > 0 or if g = 0 and if T contains at
most one point among {p1, p2, p3};

• Let B be a proper subcurve of X with gB = 0 and kB = 2. Then B
is a rational bridge of X either if g > 1 or if g = 0 and B does
not contain any point among {p1, p2, p3} or if g = 1 and B does not
contain p1.

• A nonsingular rational component E such that the number of points
where E meets the rest of X plus the number of marked points pi on
E is exactly 2 is called a destabilizing component. An exceptional
component is a destabilizing component without marked points.

We will also say that a rational bridge (resp. a rational tail) of an n-
pointed semistable curve X is maximal if it is not contained in any other
rational bridge (resp. rational tail) of X.

Remark 3.1.2. Note that the condition that 2g − 2 + n > 0 implies that
curves of genus g = 0 must have at least 3 marked points and that curves
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Figure 3.1: Examples of 3-pointed semistable curves which are NOT qua-
sistable

of genus g = 1 curves must have at least 1 marked point, so the previous
definition makes sense.

Definition 3.1.3. An n-pointed quasistable curve is an n-pointed semi-
stable curve X such that

1. all destabilizing components are exceptional;

2. exceptional components can not be contained in rational tails;

3. each rational bridge contains at most one exceptional component.

A family of n-pointed quasistable curves is a proper and flat mor-
phism with n distinct sections whose geometric fibers are n-pointed qua-
sistable curves.

See Figure 3.1 for examples of pointed semistable curves which are not
quasistable.

Note that, in virtue of the previous definition, if X has genus g = 0,
then X is quasistable if and only if X is stable. In fact, since X is rational,
either it is irreducible or all proper subcurves of X that do not contain at
least two points among {p1, p2, p3} are contained in a rational tail of X, so
no exceptional components are allowed.

Suppose now that X is a 1-pointed quasistable curve of genus 1. Then X
can be of 3 distinguished topological types, as we can see in Figure 3.2, where
the numbers near the curves indicate the geometric genus of the respective
components.

For n > 1, all n-pointed genus 1 curves can be obtained from these by
attaching rational tails and rational bridges. So, all n-pointed genus 1 curves
will have at most one maximal rational bridge which is not contained in any
rational tail (recall that a rational component E intersecting the rest of the
curve in two points and with p1 ∈ E is not considered to be a rational bridge)
and, in particular, at most one exceptional component. The definition of
balanced line bundles on n-pointed quasistable curves of genus 1 that we
propose below is inspired by these facts.
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Figure 3.2: 1-pointed quasistable curves of genus 1.

To each proper subcurve Z of X, denote by tZ the number of rational
tails meeting Z.

Let us now define balanced line bundles on pointed quasistable curves.

Definition 3.1.4. Let X be an n-pointed quasistable curve of genus g with
2g − 2 + n > 0 and L a line bundle on X of degree d. We say that L (or its
multidegree) is balanced if the following conditions hold:

• degEL = 1 for every exceptional component E of X;

• the degree of L on rational bridges can be either 0 or 1;

• if T is a rational tail of X, then degTL = −1;

• if g 6= 1 and Z is a proper subcurve of X which is not contained in any
rational tail and in any rational bridge of X, then the degree of L on
Z must satisfy the following inequality

|degZL−
d(wZ − tZ)

2g − 2
− tZ | ≤

kZ − tZ − 2bLZ
2

(3.1)

where bLZ denotes the number of rational bridges where the degree of L
is zero meeting Z in two points.

• if g = 1 and Z is a proper subcurve of X which is not contained in any
rational tail and in any rational bridge of X, then degZ L must satisfy
the following inequality

|degZL− d− tZ | ≤
kZ − tZ

2
. (3.2)
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Note that, if g ≥ 2 and n = 0, tZ and bLZ are equal to 0 for all
proper subcurves Z of X, and inequality (3.1) reduces to the “Basic Ine-
quality”introduced by Gieseker in [G82]. In fact, for n = 0, Definition 3.1.4
coincides with the definition 2.1.1 of balanced multidegree for quasistable.

Notice also that if g = 0 and Z is an irreducible component of X which
is not contained in any tail of X, we have that kZ = tZ . So, for rational
curves, Definition 3.1.4 can be rewritten as follows.

Definition 3.1.5. Let L be a line bundle of degree d on an n-pointed (quasi)-
stable curve X of genus 0. We say that L is balanced if the following two
conditions hold.

1. degT L = −1 if T is a tail of X,

2. if Z is a proper subcurve of X which is not contained in any tail of X,
degZ L = d+ kZ .

Remark 3.1.6. >From Lemma 3.1.9 below and the previous Definition it
follows that if X is an n-pointed (quasi)stable curve of genus 0 then, for each
degree d ∈ Z, there is exactly one balanced multidegree summing up to d.

It follows also that the multidegree of a balanced line bundle on an n-
pointed quasistable curve of genus 1 is uniquely determined except if it has
rational bridges which are not contained in rational tails and no exceptional
component.

Remark 3.1.7. In [C1] there is a general notion of Balanced line bundles
for Binary curves, i. e., curves consisting of two nonsingular rational curves
meeting in an arbitrary number of points. In particular, if the curves meet
in two points, then the genus of the curve is equal to 1. We point out that
our definition of Balanced line bundles for n-pointed quasistable curves of
genus 1 is different from that one since ours takes into account the marked
points of the curve and works just for curves with at least one marking.

Using the notation of 3.1.4, denote by

mZ(d, L) :=
dwZ + (3g − 3− d)tZ

2g − 2
+ bLZ −

kZ
2

and by

MZ(d, L) :=
dwZ + (g − 1− d)tZ

2g − 2
− bLZ +

kZ
2
.

Then, inequality (3.1) can be rewritten in the following way

mZ(d, L) ≤ degZL ≤MZ(d, L)

Example 3.1.8. In figure 3.3 we can see an example of a 12-pointed qua-
sistable curve X consisting of two components of genus bigger than 0, C
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Figure 3.3: 12-pointed quasistable curve with assigned balanced multidegree
in rational tails and rational bridges.

and D, intersecting each other in 1 point and other rational components
belonging to rational tails or rational bridges. The numbers on the figure
indicate the multidegrees of a balanced line bundle on rational tails and on
rational bridges. They are uniquely determined with the exception of the
rational bridge where there is no exceptional component. In this case, other
possibilities would be either (1, 0) or (0, 1).

Consider d = 0. Then, from Inequality (3.1), we see that the only possi-
bility for a balanced line bundle of degree 0 on X completing the multidegree
of the figure is to assign to C degree 0 and to D degree −1. In fact, ine-
quality (3.1) states that the degree of L on C can be either 0, 1 or 2, while
on D it must be 0 or 1, so (0, 1) is the only possible choice in order to the
total degree sum up to 0. If, insted, we had chosen the degree in the rational
bridge with no exceptional component to be 1, then L should have degree
−1 on C. However, in this case inequality (3.1) would change to C: it would
give −1, 0, 1, 2, 3 as possible degrees.

Consider now the case d = g − 1. Then, since g = gC + gD + 2, we
can write g − 1 as gC + gD + 1. However, since the multidegrees assigned
in the figure to rational tails and rational bridges sum up to −1, the sum
of the degree of L on C with the degree of L on D must be gC + gD + 2.
Inequality (3.1) asserts that the degree of L on C must be in between gC + 1
and gC +4 while on D it must be gD or gD+1. So, we have two possibilities:
(gC + 2, gD) and (gD + 1, gD + 1). If, instead, we had chosen the degree on
the rational bridge to be 1, then the sum of the degree of L on C with the
degree of L on D should be gC + gD + 1. However, inequality (3.1) would
change to C, giving gC , . . . , gC + 5 as the possible degrees on C. So, also in
this case we would have two possibilities for the degrees of a balanced line
bundle of total degree g − 1 on C and D: (gC , gD + 1) and (gC + 1, gD).
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3.1.1 First properties

Lemma 3.1.9. Let X be an n-pointed quasistable curve and suppose X
admits a balanced line bundle L on X of degree d, for some d ∈ Z. Then,
if Z is a proper subcurve of X that is contained in a rational tail, then
degZ L = kZ − 2 and if Z is contained in a rational bridge, then degZ L is
either equal to kZ − 2 or kZ − 1.

In particular, the multidegree of L on rational tails is unique and is in-
dependent of d.

Proof. Let us begin by showing that the multidegree of L on rational tails
is uniquely determined. So, suppose T is a rational tail of X. If T is irre-
ducible, then the multidegree of L on T is just the degree of L on T , which
is necessarily −1.

Now, suppose T is reducible. Then there is exactly one irreducible com-
ponent E of T meeting the rest of the curve (in exactly one point). We will
call E the foot of the rational tail. E is a smooth rational curve meeting
the rest of T in kE − 1 points: denote by E1, . . . , EkE−1 the irreducible com-
ponents of T meeting E. Then, each Ei, i = 1, . . . , kE − 1 is the foot of a
rational tail contained in T . In fact, each one of these, if not irreducible, is
attached to another rational chain that cannot intersect the rest of the curve
since in that case T would contain cycles (which would force pa(T ) to be
bigger than 0). So, T is the union of E with kE − 1 rational tails meeting
E, and

−1 = degT L = degE L+ deg
T\E L = deg EL− (kE − 1)

which implies that
degE L = kE − 2.

Note that we don’t have to check if inequality (3.1) is satisfied since it does
not apply for subcurves of X contained in rational tails.

Now, iterating the same procedure, it is clear that the degree of each
irreducible component of T will be determined since T is the union of E
with other kE − 1 rational tails with foots E1, . . . , EkE−1.

Now, consider a rational bridge B. Then, B meets the rest of the curve in
two points, p1 and p2, and these are linked by a chain of (rational) irreducible
components of B, E1, . . . , ElB , each one meeting the previous and the next
one, for i = 2, . . . , lB−1. Moreover, each Ei can have rational tails attached.
Denote byB1, . . . , BlB respectively the proper subcurves ofB consisting of Ei
and the rational tails attached to it, for i = 1, . . . , lB. So, B = B1∪· · ·∪BlB
is the union of lB rational bridges of length 1.

By definition, the degree of L in B can be either 0 or 1, and the same
holds for each Bi, i = 1, . . . , lB. If degBi L = 0, then, in order to the
multidegree of L on Bi sum up to 0, degEi L must be equal to the number
of rational tails attached to it: tEi = kEi − 2. If, instead, the degree of L on
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Bi is equal to one, then degBiL must be equal to tEi + 1 = kEi − 1. Note
that inequality (3.1) gives that

tEi − 1 ≤ degEi L ≤ tEi + 1

for i = 1, . . . , lZ , so either tEi or tEi + 1 are allowed. The multidegree of
L on the rest of Bi is fixed since Bi \ Ei consists of rational tails (that, of
course, cannot intersect each other).

Now, if B contains one exceptional component E among the Ei’s, say Ej ,
the degree of B must be necessarily 1 (note that on each rational tail we can
have at most one exceptional component by definition of pointed quasistable
curve). In this case, we must have that kEj = 2, which implies that Ej has
no rational tails attached, and the degree of L on it must be 1. Moreover,
the degree of L on the other rational subcurves Bi, for i 6= j, must be 0.

If, instead, B does not contain any exceptional component, then we can
choose the degree of L in B to be either 1 or 0. If we choose it to be 0, then
the degree of L on each Bi must be 0, for i = 1, . . . , lB. If we choose it to
be one, we can freely choose one of the Bi’s where the degree of L is 1 and
in all the others the degree of L must be 0.

Lemma 3.1.10. Let X be an n-pointed quasistable curve with assigned mul-
tidegree on rational bridges. Let X ′ be the quasistable curve obtained by
contracting all rational tails and rational bridges with assigned degree zero
and by forgetting the points. Then, for each degree d, the set of balanced
multidegrees on X ′ summing up to d and the set of balanced multidegrees on
X summing up to d with the given assigned multidegree on rational bridges
are in bijective correspondence.

Proof. Let L′ be a balanced line bundle on X ′ with degree d. This means
that, given a proper subcurve Z ′ of X ′, inequality 2.1 holds for Z ′, that is,

−kZ
′

2
+

dwZ′

2g − 2
≤ degZ′ L

′ ≤ dwZ′

2g − 2
+
kZ′

2
(3.3)

and that the degree of L′ on exceptional components is equal to 1.
Let Ci be an irreducible component of X = C1 ∪ · · · ∪ Cγ such that Ci

is not contained in any rational tail and in any rational bridge. Define the
multidegree d = (d1, . . . , dγ) onX by declaring that di = degC′i L

′+tCi where
C ′i is the image of Ci on X ′. Then we easily see that this defines a balanced
multidegree on X (note that the multidegree of L on rational bridges is fixed
by hypothesis). In fact, since kCi = kC′i + tCi + 2rLCi and gCi = gC′i − b

L
Ci
, we

have that

di = degC′iL + tCi ≤
dwC′i

2g − 2
+
kC′i
2

+ tCi =

=
d(2gC′i − 2 + kC′i)

2g − 2
+
kCi − tCi

2
− bLCi + tCi =
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=
d(2gCi + 2bLCi − 2 + kCi − tCi − 2bLCi)

2g − 2
+
kCi
2

+
tCi
2
− bLCi =

=
dwCi

2g − 2
+
kCi
2
− d

2g − 2
tCi +

tCi
2
− bLCi =

=
dwCi

2g − 2
+
kCi
2

+
g − 1− d

2g − 2
tCi − bLCi

and also that

di ≥
dwC′i

2g − 2
−
kC′i
2

+ tCi =

=
dwCi

2g − 2
− kCi

2
+

3g − 3− d
2g − 2

tCi + bLCi

so inequality (3.1) holds for Ci if and only if inequality 2.1 holds for C ′i. It
is easy to see that this is true more generally for any proper subcurve Z of
X not contained in any rational tail and in any rational bridge.

3.2 Balanced Picard stacks over quasistable curves
with marked points

We will now generalize Definition 2.3.1 of balanced Picard stacks to curves
with marked curves.

Definition 3.2.1. For any integer d and g, n ≥ 0 with 2g − 2 + n > 0,
denote by Pd,g,n the following category fibered in groupoids over the category
of schemes over k. Objects over a k-scheme S are families (π : X → S, si :
S → X,L) of n-pointed quasistable curves over S and a balanced line bundle
L on X of relative degree d.

Morphisms between two such objects are given by cartesian diagrams

X

π

��

β2 // X ′

π′

��
S

β1

//

si

II

S′

ti

UU

such that ti ◦β1 = β2 ◦ si, 1 ≤ i ≤ n, together with an isomorphism β3 : L→
β∗2(L′).

We will refer to Pd,g,n as the degree d Balanced Picard stack for n-
pointed quasistable curves of genus g.

Note that Pd,g,n contains Picd,g,n for all n ≥ 0.
In what follows we will prove the following statement.

Theorem 3.2.2. The degree d Balanced Picard stack Pd,g,n is a smooth and
irreducible algebraic (Artin) stack of dimension 4g − 3 + n endowed with a
universally closed map ontoMg,n.
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Recall that, for n = 0 and g ≥ 2, Pd,g,0 coincides with the stack Pd,g
defined in Chapter 2, so Theorem 3.2.2 holds in this case.

The cases g = 0 and g = 1 must be treated separately: we will show that
Pd,0,3 ∼=M0,3×BGm and Pd,1,1 ∼=M1,2×BGm (see Propositions 3.2.7 and
3.2.10, respectively), so Theorem 3.2.2 clearly holds in this case.

Then, following Knudsen’s construction ofMg,n (see [K83]), we will show
that Theorem 3.2.2 holds for all d ∈ Z and g, n ≥ 0 such that 2g− 2 +n > 0
using the following induction argument. We will prove that, for n > 0 with
2g − 2 + n > 1, Pd,g,n+1 is isomorphic to the universal family over Pd,g,n.

By universal family over Pd,g,n we mean an algebraic stack Zd,g,n with
a map onto Pd,g,n admitting n-sections σid,g,n : Pd,g,n → Zd,g,n, i = 1, . . . , n
and endowed with an (universal) invertible sheaf L such that, given a family
f : C → S, si : S → C, i = 1, . . . , n of n-pointed quasistable curves and a
balanced line bundle L over C of relative degree d, the following diagram,
commuting both in the upward and downward directions,

C
π2 //

f

��

Zd,g,n

��
S µf

//

si

II

Pd,g,n

σid,g,n

TT
(3.4)

is cartesian and induces an isomorphism between π∗2(L) and L.
Let Zd,g,n be the category whose sections over a scheme Y are families

of n-pointed quasistable curves X → Y, ti : Y → X, i = 1, . . . , n endowed
with a balanced line bundleM of relative degree d and with an extra section
∆ : Y → X. Morphisms in Zd,g,n are like morphisms in Pd,g,n compa-
tible with the extra section. Zd,g,n is an algebraic stack endowed with a
forgetful morphism onto Pd,g,n admitting n sections given by the diagonals
δ1,n+1, . . . , δn,n+1.

It is easy to see that, given a family of n-pointed quasistable curves
f : C → S, si : S → C, i = 1, . . . , n and a balanced line bundle L over
C of relative degree d, diagram (3.4) is cartesian, where π2 is defined by
associating to the identity morphism 1C : C → C the fiber product of
f : C → S with itself

C ×S C
p2 //

p1

��

C

f

��
C

f
//

f∗si

II

S

si

VV (3.5)

endowed with an extra section ∆ : C → C ×S C given by the diagonal and
with the relative degree d line bundle p∗2(L). Given another object h : Y → C
of C, π2(h) is defined to be the fiber product of h and p1 defined in (3.5),
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naturally endowed with the n+ 1 pullback sections and with the pullback of
p∗2(L).

The universal sheaf over Zd,g,n, L, is defined by associating to each section
(X → Y, ti,M,∆) of Zd,g,n over Y , the line bundle ∆∗(M) over Y . It is easy
to see that this defines an invertible sheaf on Zd,g,n.

Now we easily check that L is the universal sheaf over Zd,g,n. Indeed,
given an object h : Y → C on C, π∗2(L)(h) = L(π2(h)) ∼= h∗(L), so it is
isomorphic to the sheaf defined by L on C, considered as a stack.

We have just proved the following.

Proposition 3.2.3. The algebraic stack Zd,g,n defined above endowed with
the invertible sheaf L is the universal family over Pd,g,n for the moduli pro-
blem of n-pointed quasistable curves with a balanced degree d line bundle.

Remark 3.2.4. >From propositions 3.2.7 and 3.2.10 we have that for n ≥ 3,
Zd,0,n ∼=M0,n+1 ×BGm and that for n ≥ 1, Zd,1,n ∼=M1,n+2 ×BGm.

Now, suppose we can show that, for all n ≥ 0, there is a forgetful mor-
phism Ψd,g,n from Pd,g,n ontoMg,n such that the image under Ψd,g,n of an
n-pointed quasistable curve X over S endowed with a balanced degree d line
bundle is the stable model of X over S forgetting the line bundle. These
morphisms would yield commutative diagrams as follows, for all n > 0 such
that 2g − 2 + n > 1.

Pd,g,n
Ψd,g,n

$$H
HHHHHHHH

Φd,g,n

yysssssssss

Pd,g,n−1

Ψd,g,n−1 %%KKKKKKKKK
Mg,n

Πg,nzzvvvvvvvvv

Mg,n−1

(3.6)

Since Πg,n and Φd,g,n are the morphisms from the universal families over
Pd,g,n−1 andMg,n−1, respectively, it follows that Ψd,g,n is universally closed
(or proper) if and only if ψd,g,n−1 is. For g ≥ 2 and n = 0, it follows from
Chapter 2 (see Remark 2.4.4), that ψd,g,0 is universally closed, so we have
that ψd,g,n is universally closed for all n ≥ 0 for all n ≥ 0 and g ≥ 2. For
g = 0 and g = 1 the result follows immediately in virtue of Propositions
3.2.7 and 3.2.10 and Remark 3.2.4.

So, Theorem 3.2.2 will follow from the following statement, that we will
prove in 3.4.3 bellow.

Theorem 3.2.5. For all d ∈ Z and n > 0 with 2g − 2 + n > 1, Pd,g,n+1 is
isomorphic to the algebraic stack Zd,g,n.
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Recall that, for g ≥ 2 and n = 0, our proof of Theorem 3.2.2 consisted on
showing that Pd,g,0 = Pd,g is isomorphic to the quotient stack [Hd/GL(r+1)]
(see Theorem 2.3.2 above). The action of GL(r + 1) in Hd naturally lifts
to an action in Zd, where Zd is the restriction to Hd of the universal family
over the Hilbert scheme. Using a similar proof we can show that Zd,g,1 is
isomorphic to the quotient stack [Zd/GL(r + 1)]. Nevertheless, we will now
give a proof of this fact that, in one direction, is slightly different of the proof
of Theorem 2.3.2 and that could be an alternative proof of it.

Proposition 3.2.6. Let d >> 0. Then the stack Pd,g,1 is isomorphic to the
quotient stack [Zd/GL(r + 1)].

Proof. We must show that, For every scheme S ∈ SCHk, the groupoids
Zd,g,1(S) and [Zd/GL(r + 1)](S) are equivalent. Let (f : C → S, s : S →
C,L) be a section of Zd,g,1 over S, i.e., a triple consisting of a family f of
quasistable curves with a section s and a balanced line bundle L of relative
degree d on C. Denote by G the group GL(r + 1). We must produce
a principal GL(r + 1)-bundle E on S and a G-equivariant morphism q :
E → Zd. We will proceed as in the proof of Theorem 2.3.2. Since we are
considering d to be very large, we may assume that f∗(L) is locally free of
rank r+1 = d−g+1. Then, the frame bundle of f∗L) is a principal GL(r+1)-
bundle: call it E. Now, to find the G-equivariant morphism to Zd, consider
the family CE := C ×S E polarized by LE , the pullback of L to CE . CE is a
family of quasistable curves of genus g, endowed with a section sE and LE is
balanced and relatively very ample. Moreover, the pullback of a morphism
endowed with a section is naturally endowed with a section, call it sE . By
definition of frame bundle, fE∗(LE) is isomorphic to C(r+1)×E, so that LE
gives an embedding over E of CE in Pr × E. By the universal property of
the Hilbert scheme H, this family determines a map ψ : E → Hd, which is
clearly G-equivariant. Furthermore, the following diagram is cartesian

CE
q //

fE
��

Zd
f
��

C
ψ
//

sE

II

Hd

(3.7)

Since q is naturally G-equivariant and sE is G-equivariant by construction,
qsE is a G-equivariant morphism from E to Zd. This way, we got a section
(E, qsE) of [Zd/G](S). It is easy to check that isomorphisms in Zd,g,1(S)
leads canonically to isomorphisms in [Zd/G](S).

Conversely, given a section (φ : E → S, q : E → Zd) of [Zd/G] over S, let
us construct a family of quasistable curves of genus g over S with a section
and a balanced line bundle of relative degree d on it. This part of the proof
is different of the proof of Theorem 2.3.2.
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The pullback of the identity morphism of Zd by q gives a family CE on E
of quasistable curves of genus g and a balanced line bundle LE on CE which
embeds CE as a family of curves in Pr. In fact, CE is obtained pulling back
Zd → Hd via ψ, where ψ is the composition of q with Zd → Hd, which is
naturally G-equivariant.

CE
p //

fE
��

Zd
f
��

S E
φ

oo
ψ
//

q
=={{{{{{{{
Hd

Moreover, by the universal property of the pullback, q induces a section
sE : E → CE .

As ψ is G-invariant and φ is a G-bundle, the family CE descends to a
family CS over S, where CS = CE/G. We must check that both the section
sE and the balanced line bundle LE also descend to CS and that CS is flat
over S.

Let us see that CS is a flat family by showing that CE is locally G-
equivariantly a product CW × G for some W -flat family CW for an open
W ⊂ S.

Since G = GL(r+1) is special (see [SC]), the principal bundle E is trivial
locally in the Zariski topology. So, let V ⊂ S be an open subset of S such
that E|V ∼= V ×G.

Let ψ0 : V → Hd be defined as follows:

ψ0(x) = ψ(x, 1G)

for each x ∈ V . As ψ is G-invariant, ψ|(V×G)(x, g) = ψ0(x).g, for every
x ∈ V and every g ∈ G and, similarly, q|(V×G)(x, g) = g.q(x, 1G).

Let fV : CV → V be the family of quasistable curves of genus g over
V induced by the morphism ψ0 and LV the balanced line bundle of relative
degree d embedding CV as a family of curves in V ×Pr. Since LV is relatively
very ample, fV ∗(LV ) is locally free of rank r+1. Up to restricting to an open
subset of V , we can assume fV ∗(LV ) is trivial. Let fV×G : CV ×G→ V ×G
be the pullback family and π∗(LV ) ∼= LV ×G the pullback of LV to CV ×G.

LV

}}{{
{{

{{
{{

LV ×G

xxrrrrrrrrrr

CV

fV

��

CV ×G
πoo

fV×G

��
V V ×G

φ|V×G

oo
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The frame bundle of fV ∗(LV ) is isomorphic to V × G, which is isomor-
phic to E|V . Furthermore, fV×G∗(π∗(LV )) is isomorphic to φ∗|V×G(fV ∗(LV ))
which is isomorphic to V ×G × Cr+1. So, fV×G∗(π∗(LV )) gives an embed-
ding of CV×G as a family of d-general quasistable curves in V × G × Pr.
By the universal property of the Hilbert scheme, such a family induces a
G-equivariant morphism to Hd. By construction, this morphism must be
equal to ψ|(V×G).

We conclude that, locally, CE is a G-equivariant product of a flat family
CV by G. In particular, we can apply Kempf’s descent lemma which states
that LE descends to a line bundle over CS if and only if, for every closed point
ξ ∈ E its stabilizer acts trivially on the fiber of LE in ξ (see, for example,
Theorem 2.3 of [DN]). From the local description of the family, we conclude
that LE descends to a line bundle LS on CS . Moreover, since q = psE and by
the local description of q, we get that also sE is G-equivariant, so it descends
to a section s : S → CS . So, (CS → S, s : S → CS , LS) ∈ Zd,g,1.

It is straightforward to check that an isomorphism on [Zd/G](S) leads
to an unique isomorphism in Zd,g,1(S).

3.2.1 Balanced Picard stacks over genus 0 curves

Recall that the notions of n-pointed stable and quasistable curve coincide
for curves of genus 0 (and n ≥ 3) (see Remark 3.1.6 above).

In the present section we describe Balanced Picard stacks over (families
of) n-pointed stable curves of genus 0. We will start by considering the case
n = 3.

Let (π : X → S, si : S → X) ∈M0,3, i = 1, . . . , 3. Then X is necessarily
a trivial family: a stable rational curve with 3 distinguished marked points
is necessarily smooth and has trivial automorphism group. Then, for any
d ∈ Z, OX/S(d) is a line bundle of relative degree d over X and it is clearly
balanced (since all fibers of the family are irreducible). Moreover, any other
line bundle of relative degree d over X is isomorphic to it, the isomorphism
being given by an element of Gm.

So, we have proved the following result.

Proposition 3.2.7. For any d ∈ Z, Pd,0,3 ∼=M0,3 ×BGm(∼= BGm).

Let now n > 3. In view of theorem 3.2.5, consider the universal family
over Pd,0,n−1, Zd,0,n−1. By applying an inductive argument based on the
previous Proposition we have that Zd,0,n−1

∼= M0,n × BGm. So, Theorem
3.2.2 will give the following result.

Proposition 3.2.8. Let d ∈ Z and n ≥ 3. Then Pd,0,n is isomorphic to
M0,n ×BGm.
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3.2.2 Balanced Picard stacks over genus 1 curves

In order to describe Balanced Picard stacks over genus 1 curves, analogously
to the case g = 0, we will start by considering n = 1. The general result will
then follow from the induction process in the number of marked points that
will be developed in section 3.4, yielding a proof of Theorem 3.2.2.

It is convenient to do a further assumption in this case: let us suppose
that d = 1. In fact, in virtue of the next Lemma, this assumption is not a
restriction at all.

Lemma 3.2.9. Let d, d′ be any integers. Then, Pd,1,1 ∼= Pd′,1,1.

Proof. It is enough to show that, for any d ∈ Z, Pd,1,1 ∼= Pd+1,1,1.
Let (π : X → S, s : S → X,L) be an 1-pointed quasistable curve over S

of genus 1 endowed with a balanced line bundle L of relative degree d over
X, i. e., an element of Pd,1,1(S). Then, (π : X → S, s : S → X,L(s)) is an
object of Pd+1,1,1(S). In fact, since n = 1, the geometric fibers of π must be
either irreducible genus 1 curves or curves consisting in two smooth rational
curves meeting in two points (see Figure 3.2 above). To check that L(s) is
a balanced line bundle (of degree d + 1) over (π : X → S, s : S → X), it is
enough to see that, given a geometric fiber Xs of π, L|Xs is balanced, so only
the later case when Xs is reducible matters. In this case, Definition 2.1.1
implies that the multidegree of L restricted to Xs is (d−1, 1), where 1 is the
degree on the exceptional component and d− 1 is the degree on the rational
component containing the marking. It follows immediately now that L is
balanced (of degree d) if and only if L(s) is balanced (of degree d+ 1).

One checks immediately that this defines an equivalence of (fibered) cat-
egories and the result follows.

Proposition 3.2.10. For any integer d, we have that Pd,1,1 ∼=M1,2×BGm.

Proof. >From Lemma 3.2.2 it is enough to consider the case d = 1.
Moreover, instead of showing directly thatM1,2×BGm is isomorphic to

P1,1,1, let us prove that Z1,1 × BGm is isomorphic to P1,1,1, where Z1,1 is
the universal family overM1,1.

Let (π : X → S, s : S → X,∆ : S → X) ∈ Z1,1(S) (∆ is the extra
section of π). Then, if ∆ lies in the smooth locus of X, it is easy to see
that (π : X → S, s : S → X,OX/S(∆)) is an element of P1,1,1(S). In fact,
all geometric fibers of π must be irreducible curves, so OX/S(∆) is certainly
balanced. Otherwise, using an analogous procedure to the proof of Theorem
3.2.5 in 3.4.3, we will construct an element of P1,1,1 out of this datum. Let
I be the OX/S-ideal defining ∆ and K the cokernel of the natural injective
map

OX/S → I−1.

Define
Xs := P(K)
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and consider the natural S-morphism p : Xs → X. Then, Xs is a family
of curves over S and it is not isomorphic to X → S if and only if ∆ meets
singular points of some geometric fibers of X over S. In this case, locally,
Xs is the total transform of the blow up of X at that point with the reduced
structure. Moreover, from Theorem 2.4 of [K83], the sections s and ∆ have
unique liftings to sections s′ and ∆′ of Xs → S compatible with the mor-
phism p. So, in the geometric fibers where the curve has been blown up, ∆′

must lie in a smooth point of the exceptional components of the blow up.
So, it is easy to see that (Xs → S, s′ : S → Xs,OXs/S(∆′)) ∈ P1,1,1(S).
In fact, in the geometric fibers were the curve is reducible, ∆′ must lie in
the exceptional component of the blow up, so OXs/S(∆′) restricted to those
fibers has degree 1 on the exceptional components and degree 0 in the com-
ponent containing the image of s′, so it satisfies the conditions of Definition
2.1.1.

Let now β be an automorphism of (π : X → S, s : S → X,∆ : S → X)
and α ∈ BGm(S). β is an S-automorphism of π : X → S leaving the
two sections fixed and α is just an element of Gm. It is easy to see that β
corresponds biunivocally to an automorphism β′ of (πs : Xs → S, s′ : S →
Xs,∆′ : S → Xs) leaving s′ and ∆′ fixed. In fact, this follows from the
fact that any automorphism of P1 fixing 3 distinct points is necessarily the
identity.

Xs

π′

  B
BB

BB
BB

B
β′ // Xs

π′

~~||
||

||
||

S
s′,∆′

XX

s′,∆′

FF

So, β′ induces an automorphism of (Xs → S, s′ : S → Xs,OXs/S(∆′)),
that is, an automorphism ofXs → S fixing s′ and inducing an automorphism
of OXs/S(∆′). So, we associate to (β, α) the automorphism β′ of Xs → S
and the isomorphism α : OXS/S(∆′) → β∗(OXs/S(∆′)) ∼= OXs/S(∆′) given
by fiberwise scalar multiplication by α.

Moreover, any other automorphism of (Xs → S, s′ : S → Xs,OXs/S(∆′))
must fix ∆′ because the isomorphism class of OXs/S(∆′) corresponds to the
linear equivalence class of ∆′, which is given just by ∆′ since the geomet-
ric fibers of Xs → S are genus 1 curves. So, automorphisms of (Xs →
S, s′ : S → Xs,OXs/S(∆′)) correspond to automorphisms of (Xs → S, s′ :
S → Xs,∆′ : S → XS) fixing the two sections and to an automorphism of
OXs/S(∆′) on itself, which is given by an element of Gm.

So, we constructed a functor from Z1,1 × BGm to P1,1,1 which is full
and faithful. In order to conclude that Z1,1 × BGm

∼= P1,1,1 it is enough
to check that this functor is essentially surjective. Let (π : Y → S, s :
S → Y,L) ∈ P1,1,1(S). Since L is a line bundle of degree 1 in a genus 1
curve, it is associated to an unique efective divisor (of degree 1): call it ∆.
Of course, ∆ can also be seen as a section of π. So, if all fibers of π are
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1-pointed stable curves, it follows immediately that (π : Y → S, s : S →
Y,∆ : S → Y ) ∈ Z1,1(S). Instead, if some of the geometric fibers of π
have exceptional components, the idea is to blow down these components
and endow this new curve with the extra section given by the image of
∆. The way to do it rigorously is standard: it is enough to define X :=
Proj(⊕i≥1π∗((ωY/S(s))3i)) → S. In fact, the fibers of ωY/S(s) over S have
degree 0 exactly in the exceptional components and positive degree in all
the others, so the result is that X → S is isomorphic to Y → S everywhere
except in the exceptional components, that get contracted to points in X
(see section 3.5 for a rigorous proof). Moreover, there is an S-morphism
γ : Y → X making the following diagram commute.

Y
γ //

π

��@
@@

@@
@@

X

��~~
~~

~~
~

S
s,∆

WW

So, X → S endowed with the sections γs and γ∆ is an object of Z1,1(S). It
is easy to check that the above functor applied to (X → S, γs, γ∆) yields an
object of P1,1,1(S) which is isomorphic to (π : Y → S, s : S → Y,L).

Let now n > 1. In view of theorem 3.2.5, consider the universal family
over Pd,1,n, Zd,0,n. By applying an inductive argument based on the previous
Proposition we have that Zd,0,n ∼= M1,n+1 × BGm. So, Theorem 3.2.2 will
give the following result.

Proposition 3.2.11. Let d ∈ Z and n ≥ 1. Then Pd,1,n is isomorphic to
M1,n+1 ×BGm.

3.3 Properties of line bundles on reducible nodal
curves

In this section we prove some technical properties of line bundles over (re-
ducible) nodal curves that will be used later in the proof of Theorem 3.2.5.

3.3.1 Nonspecialty and global generation

Lemma 3.3.1. Let X be a rational curve and L a line bundle on X such
that, for each irreducible component Z of X, the degree of L on Z is smaller
or equal to kZ − 2, except possibly for one component Z0, where the degree
of L can be equal to kZ0 − 1. Then, H0(X,L) = 0.

Proof. We will argue by induction on the number of irreducible components
γ of X.
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If X = Z is irreducible, then kX = 0 and degX L ≤ −1, which clearly
implies that H0(X,L) = 0.

Now, suppose that X has γ > 1 irreducible components. Let Z0 be an
irreducible component of X such that degZ0

L− (kZ0 −2) is maximal among
the irreducible components of X. In particular, if there is an irreducible
component Z of X with degZ L = kZ − 1, then necessarily Z0 = Z. Then,
X \ Z0 = X1 ∪ · · · ∪Xδ is a disjoint union of (rational) subcurves of X and
(Xi, L|Xi) satisfy the hypothesis, for i = 1, . . . , δ. So, since each Xi has a
number of irreducible components smaller than γ, we can apply the induction
hypothesis on each one of them and conclude that H0(Xi, L|Xi) = 0 for
i = 1, . . . , δ. So, a global section of L on X must be trivial along X \ Z0,
and in particular it must be equal to zero in each one of the kZ0 points where
Z0 meets the rest of X. Since degZ0

L ≤ kZ−1, we conclude that all sections
of L must be trivial also on Z. It follows that H0(X,L) = 0.

Corollary 3.3.2. Let X be an n-pointed rational curve, with n ≥ 3. Then,
X is semistable if and only if ωX(p1 + · · ·+ pn) is globally generated, where
p1, . . . , pn are the marked points of X.

Proof. Let ω denote ωX(p1 + . . . , pn). We will start by showing that if X is
semistable then ω is globally generated. So, for all x ∈ X, we must see that
there are sections of ω that do not annulate in x.

Start by assuming that x is a nonsingular point of X. We must show
that h0(X,ω(−x)) < h0(X,ω).

By Riemann-Roch, we have that

h0(ω) = h1(ω)− 2 + n+ 1 = h0(OX(−p1 − · · · − pn))− 1 + n

and, since (X; p1, . . . , pn) is semistable, (X,OX(−p1 − · · · − pn)) satisfies
the hypothesis of Lemma 3.3.1, so h0(X,OX(−p1 − · · · − pn)) = 0. In fact,
given an irreducible component Z of X, we have that degZ OX(−p1 − · · · −
pn) ≤ 0 ≤ kZ − 2 if Z is not a rational tail of X and for rational tails that
degT OX(−p1 − · · · − pn) ≤ −1 = kZ − 2.

So, again by Riemann-Roch, to show that h0(X,ω(−x)) < h0(X,ω), we
must show that h1(X,ω(−x)) = h0(X,O(−p1 − · · · − pn + x)) = 0. But it
is easy to see that, if (X; p1, . . . , pn) is semistable, then also (X,O(−p1 −
· · · − pn + x)) satisfies the hypothesis of Lemma 3.3.1, which implies that
h0(X,O(−p1 − · · · − pn + x)) = 0.

Now, suppose that x is a singular point ofX. To show that x is not a base
point of X we must show that h0(X,ω ⊗ Ix) < h0(X,ω). By contradiction,
suppose these are equal. Let ν : Y → X be the partial normalization of
X at x. Then, if p and q denote the preimages of x under ν, we have that
h0(Y, ν∗ω(−p − q)) = h0(X,ω). Since x is necessarily a disconnecting node
of X, Y = Y1 ∪ Y2 is the union of two rational curves. Arguing in the same
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way as before in Y1 and Y2 we easily see that h0(Y, ν∗ω(−p − q)) = n − 2,
which is a contradiction, and we conclude.

Now, suppose thatX is not semistable and let us see that ω is not globally
generated. X being semistable means that there is a tail T of X without
marked points; we will show that all x ∈ T are base points for ω. >From
what we have said so far it is enough to see that h0(X,OX(−p1−· · ·−pn)) <
h0(X,O(−p1−· · ·−pn+x)). Since h0(X,OX(−p1−· · ·−pn)) = 0, again by
Lemma 3.3.1, it is enough to see that OX(−p1− · · · − pn + x) has nontrivial
sections. But this follows by observing that OX(−p1 − · · · − pn + x)|T is
a line bundle of degree one in a rational curve, so its space of sections has
dimension 2. So, even if the node connecting T with the rest of X imposes
one condition, there is a section of OX(−p1− · · · − pn + x) that is nontrivial
on T and we conclude.

Note that the statement of 3.3.2 does not hold in the case of curves with
higher genus. In fact, if X is a nonsingular curve of genus greater or equal
than one with one marked point p, ωX(p) is not globally generated since p
itself is a base point for H0(X,ωX(p)).

Instead, for curves without marked points, the global generation of the
dualizing sheaf is indeed related to the connectivity of the curve. In fact,
from [BE91], we know that if X is a graph curve, i.e, a stable curve such
that all irreducible components are rational curves, then H0(X,ωX) has no
base points if and only if X has no disconnecting nodes (and analogously
that ωX is very ample if and only if X is 3-connected).

Lemma 3.3.3. Let X be a nodal curve of genus g and L ∈ PicdX. If
degZ L ≥ 2gZ − 1 for every connected subcurve Z ⊆ X, then H1(X,L) = 0.
Moreover, if strict inequality holds above for all Z ⊆ X, then L has no base
points.

To prove Lemma 3.3.3 we will use the following Lemma, which is Lemma
2.2.2 in [C2].

Lemma 3.3.4 (Caporaso,[C2]). Let X be a nodal curve of genus g and
L ∈ PicdX. If, for every connected subcurve Z of X, degZ L ≥ 2gZ − 1,
then h0(X,L) = d− g + 1.

Proof (of Lemma 3.3.3). The first assertion follows immediately by Serre du-
ality and by Lemma 3.3.4.

Now, assume that, for every Z ⊆ X, degZ L ≥ 2gZ . We must show that
L has no base points. Consider a closed k-rational point x in X. Suppose
that x is a nonsingular point of X. We must show that

h0(X,L(−x)) < h0(X,L).
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By our assumption on L, we can apply again Lemma 3.3.4 to L(−x) to get
that h0(X,L(−x)) = d− 1− g + 1 = h0(X,L)− 1.

Suppose now that x is a nodal point of X. We must show that

H0(X,L⊗ Ix) ( H0(X,L).

By contradiction, suppose these are equal. Then, if ν : Y → X is the partial
normalization of X at x, we get that

H0(X,L) = H0(Y, ν∗L(−p− q)),

where p and q are the preimages of x by ν.
Suppose that x is not a disconnecting node for X. Then, it is easy to

see that we can apply Lemma 3.3.4 to (Y, ν∗L(−p − q)). Let Z ′ ⊆ Y and
Z ⊆ X the subcurve of X such that Z ′ = ν−1(Z). In fact, since x is not
a disconnecting node for X, if Z ′ contains p and q, then gZ′=gZ − 1, so
degZ′ ν∗L(−p − q) = degZ L − 2 ≥ 2gZ − 2 = 2gZ′ − 1. If Z contains
only one among the points {p, q}, then gZ′ = gZ but degZ′ ν∗L(−p − q) =
degZ L− 1 ≥ 2gZ − 1 = 2gZ′ − 1. Finally, if Z does not contain none of the
points p and q, gZ′ = gZ and degZ′ ν∗L(−p − q) = degZ L ≥ 2gZ . So, we
get that h0(Y, ν∗L(−p− q)) = (d− 2)− (g − 1) + 1 = d− g, leading us to a
contradiction.

Suppose now that x is a disconnecting node for X. Then, Y is the union
of two connected curves, Y1 and Y2, of genus g1 and g2, respectively, with
g1 + g2 = g. Suppose that p ∈ Y1 and q ∈ Y2. Then,

h0(Y, ν∗L(−p− q)) = h0(Y1, ν
∗(L)|Y1

(−p)) + h0(Y2, ν
∗(L)|Y2

(−q)).

Also in this case, we can apply Lemma 3.3.4 to (Yi, h0(Y1, ν
∗(L)|Y1

(−p)))
and to (Y2, h

0(Y1, ν
∗(L)|Y2

(−q))). We get that

h0(Y, ν∗L(−p− q)) = (degY1
(ν∗L)− g1) + (degY2

(ν∗L)− g2) = d− g,

a contradiction.

Corollary 3.3.5. Let X be an n-pointed semistable curve of genus g with
2g − 2 + n > 0 and let M := ωX(p1 + · · · + pn), where p1, . . . , pn are the n
marked points of X. Then, for all m ≥ 2, we have that

1. H1(X,Mm) = 0;

2. Mm is globally generated.

Proof. According to Lemma 3.3.3, it is enough to show that, given a subcurve
Z of X, degZMm ≥ 2gZ , for all m ≥ 2. It is sufficient to prove the result
for m = 2.
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Let Z be a subcurve of X. Then,

degZ ωX = 2gZ − 2 + kZ

and
degZ(M2) ≥ 4gZ − 4 + 2kZ = (2gZ) + (2gZ − 4 + 2kZ).

So, if both gZ and kZ are bigger than zero or if one of them is bigger than
two, we are done. We must threat the remaining cases separately.

Start by supposing that gZ = 0 and kZ ≤ 1. Then either kZ = 0 and
Z = X has at least three marked points since 2g − 2 + n > 0 or kZ = 1
and Z has at least one marked point of X. In both cases we have that
degZ(M2) ≥ 2(−2 + 2) = 0 = 2gZ .

It remains to control the case when gZ = 1 and kZ = 0. Then X = Z
has genus one and since 2g − 2 + n > 0, we have that n > 0 which implies
that it has at least one marked point. So, degZ(M)2 ≥ 2(0 + 1) = 2 = 2gZ .

Corollary 3.3.6. Let d >> 0, n > 0 and X an n-pointed quasistable curve
of genus g with 2g − 2 + n > 0 endowed with a balanced line bundle L of
degree d. Denote by p1, . . . , pn the n marked points of X and let M be the
line bundle L(p1 + · · · + pn−1) ⊗ (ωX(p1 + · · · + pn−1))−k, for any k ≤ 1.
Then, we have that, for all m ≥ 1,

1. H1(X,Mm) = 0;

2. Mm is globally generated.

Proof. Again, accordingly to Lemma 3.3.3, the result follows if we prove
that, for every subcurve Z of X, degZMm ≥ 2gZ . It is enough to prove the
result for m = 1.

Let Z be a subcurve of X which is not contained in any rational tail or
in any rational bridge of X. Since degZ ωZ(p1 + · · · + pn−1) ≥ 0, we have
that degZM ≥ degZ L⊗ ω−1

Z . Then, if g = 0, degZM ≥ d+ tZ − (kZ − 2)
and if g = 1, degZM ≥ d+ tZ− kZ−tZ

2 −kZ (see Definitions 2.1.1 and 3.1.5).
In both cases, since we are considering d >> 0, clearly degZM ≥ 2gZ .

Now, suppose g ≥ 2. By definition of balanced (see 2.1.1 above), we have
that

degZ L ≥
d

2g − 2
(wZ − tZ) + iX,Z =

d

2g − 2
(2gZ − 2 + kZ − tZ) + iX,Z ,

where iX,Z is independent of d. If Z is rational, kZ−tZ ≥ 3, so degZ L >> 0 if
d >> 0. In fact, if kZ = tZ , X would be rational; by the other hand, if kZ−tZ
is 1 or 2 and g ≥ 2, Z should be contained in a rational tail or in a rational
bridge of X, respectively, which cannot be the case by our assumption on
Z. Suppose now that gZ = 1. Then, kZ − tZ ≥ 1, since otherwise X would
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have genus 1. So, also in this case, degZ L >> 0. Finally, if gZ ≥ 2, it
follows immediately that degZ L >> 0. The same holds for degZM , which
is asymptotically equal to degZ L since d >> 0.

Suppose now that Z is contained in a rational tail or in a rational bridge
of X. Then, from Lemma 3.1.9, we have that degZ L ≥ kZ−2, so degZM ≥
(kZ − 2)− (kZ − 2) = 0 = 2gZ and we conclude.

3.3.2 Normal generation

Recall the following definition.

Definition 3.3.7. A coherent sheaf F on a scheme X is said to be normally
generated if, for all m ≥ 1, the canonical map

H0(X,F)m → H0(X,Fm)

is surjective.

Note that if we take F to be an ample line bundle L on X, then if L
is normally generated it is, indeed, very ample (see [M70], section 1). In
this case, saying that L is normally generated is equivalent to say that the
embedding of X via L on PN , for N = h0(X,L)− 1, is projectively normal.

Normal generation of line bundles on curves has been widely studied. For
instance, we have the following theorem of Mumford:

Theorem 3.3.8 (Mumford, [M70], Theorem 6). Let X be a nonsingular
irreducible curve of genus g. Then, any line bundle of degree d ≥ 2g + 1 is
normally generated.

Mumford’s proof of Theorem 3.3.8 is based on the following Lemma.

Lemma 3.3.9 (Generalized Lemma of Castelnuovo, [M70], Theorem 2). Let
N be a globally generated invertible sheaf on a complete scheme X of finite
type over k and F a coherent sheaf on X such that

H i(X,F ⊗N−i) = 0 for i ≥ 1.

Then,

1. H i(X,F ⊗N j) = 0 for i+ j ≥ 0, i ≥ 1.

2. the natural map

H0(X,F ⊗N i)⊗H0(X,N)→ H0(X,F ⊗N i+1)

is surjective for i ≥ 0.

The proof of the following statement uses mainly the arguments of Knud-
sen’s proof of Theorem 1.8 in [K83].
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Proposition 3.3.10. Let X be an n-pointed semistable curve of genus g with
2g−2+n > 0 and L ∈ PicdX. If, for every subcurve Z of X, degZ L ≥ 2gZ ,
then L ⊗ ωX(p1 + · · · + pn) is normally generated, where p1 . . . , pn are the
marked points of X.

Proof. LetD denote the divisor p1+· · ·+pn. Let Z be a subcurve ofX. Since
the multidegree of ω(D) is non-negative, degZ L ⊗ ω(D) ≥ degZ L ≥ 2gZ ,
so both statements of Lemma 3.3.3 hold also for L ⊗ ω(D). So, we can
apply the generalized Lemma of Castelnuovo with F = (L ⊗ ωX(D))m and
N = L⊗ ωX(D), for any m > 1, and get that the natural map

H0(X, (L⊗ ωX(D))m)⊗H0(X,L⊗ ωX(D))→ H0(X, (L⊗ ωX(D))m+1)

is surjective. So, to prove that L⊗ωX(D) is normally generated, it remains
to show that the map

H0(X,L⊗ ωX(D))⊗H0(X,L⊗ ωX(D)) α→ H0(X, (L⊗ ωX(D))2)

is surjective.
Start by assuming that X has no disconnecting nodes. Then, if g = 0,

X is necessarily nonsingular and n ≥ 3, so degL⊗ ωX(D) ≥ 2g + 1 and the
result follows from Theorem 3.3.8.

Now, assume g ≥ 1 and consider the following commutative diagram

Γ(L⊗ ωX(D))⊗ Γ(ωX)⊗ Γ(L(D))

β
��

// Γ(L⊗ ωX(D))⊗ Γ(L⊗ ωX(D))

α

��
Γ(L⊗ ω2

X(D))⊗ Γ(L(D))
γ // Γ((L⊗ ωX(D))2)

where Γ(−) indicates H0(X,−).
If g = 1, then X is either nonsingular or it is a ring of P1’s. In both

cases ωX is isomorphic to OX , so it is globally generated. Instead, if g ≥ 2,
from the proof of Theorem 1.8 in Knudsen we have that, since X has no
disconnecting nodes, ωX is globally generated too.

Moreover, from Lemma 3.3.3 applied to L(D), we get that H1((L ⊗
ωX(D))⊗ ω−1

X ) = H1(L(D)) = 0. So, we can apply the Generalized Lemma
of Castelnuovo with F = L ⊗ ωX(D) and N = ωX to conclude that β is
surjective.

Now, since X has no disconnecting nodes, it cannot have rational tails.
So, we can see X as a semistable curve without marked points and apply
Corollary 3.3.5 to X and ωX and get that H1((L⊗ ω2

X(D))⊗ (L(D))−1) =
H1(ω2

X) = 0. Since L(D) is globally generated, again by Lemma 3.3.3, we
can apply the Generalized Lemma of Castelnuovo with F = L⊗ω2

X(D) and
N = L(D) to conclude that also γ is surjective.

Since the above diagram is commutative, it follows that also α is surjec-
tive and we conclude.
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Now, to show that α is surjective in general, let us argue by induction in
the number of disconnecting nodes of X.

Let x be a disconnecting node of X and X1 and X2 the subcurves of X
such that {x} = X1 ∩X2.

The surjectivity of α follows if we can prove the following two statements.

1. The image of α contains a section s ∈ H0(X, (L⊗ωX(D)2)) such that
s(x) 6= 0;

2. The image of α contains H0(X, (L⊗ ωX(D))2 ⊗ Ix)).

The first statement follows immediately from the fact that L⊗ωX(D) is
globally generated (once more by 3.3.3).

Let M denote L⊗ωX(D). To prove (2) let us consider σ ∈ H0(X,M2⊗
Ix). Then, σ = σ1 + σ2, with

σ1 ∈ H0(X,M2 ⊗ IX1) ∼= H0(X2, (M2 ⊗ IX1)|X2
) ∼= H0(X2, (M2)|X2

⊗ Ix),

σ2 ∈ H0(X,M2 ⊗ IX2) ∼= H0(X1, (M2 ⊗ IX2)|X1
) ∼= H0(X1, (M2)|X1

⊗ Ix).

By induction hypothesis, σ1 is in the image of

H0(X2,M|X2
)⊗H0(X2,M|X2

)→ H0(X2, (M2)|X2
)

and σ2 in the image of

H0(X1,M|X1
)⊗H0(X1,M|X1

)→ H0(X1, (M2)|X1
)

with both σ1 and σ2 vanishing on x.
Write σ1 as

∑r
l=1 ul⊗vl, with ul and vl in H0(X2,M|X2

), for l = 1, . . . , r.
Let ν : Y → X be the partial normalization of X in x and p and q be the
preimages of x on X1 and X2, respectively, via ν. Since M|X1

is globally ge-
nerated, there is s ∈ H0(X1,M|X1

) with s(p) 6= 0. Then there are constants
al and bl for l = 1, . . . , r and i = 1, . . . , k such that

als(p) = ul(q) and bls(p) = vl(q). (3.8)

Define the sections ūl and v̄l as ul (resp. vl) on X2 and as als (resp. bls) on
X1, for l = 1, . . . , r. By (3.8), these are global sections of M and

r∑
l=1

ūl ⊗ v̄l

maps to σ1. In fact,

σ1(x) =
r∑
l=1

ul(q)⊗ vl(q) =
r∑
l=1

(als(p)⊗ bls(p)) = (
r∑
l=1

albl)s(p)⊗ s(p)

and, by hypothesis, σ1(x) = 0 and s(p) 6= 0. This implies that
∑r

l albl = 0,
so (

∑r
l=1 ūl ⊗ v̄l)|X1

= 0. We conclude that σ1 is in the image of α.
In the same way, we would get that also σ2 is in the image of α, so (2)

holds and we are done.
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The next result follows from the proof of Theorem 1.8 in [K83], however
we include it here since we shall use it in the following slightly more general
form.

Corollary 3.3.11. Let X be an n-pointed semistable curve of genus g such
that 2g − 2 + n > 0 and let p1 . . . , pn be the marked points of X. Then, for
m ≥ 3, (ωX(p1 + · · ·+ pn))m is normally generated.

Proof. Is an immediate consequence of Proposition 3.3.10 and the proof of
Corollary 3.3.5.

Corollary 3.3.12. Let X be an n-pointed quasistable curve of genus g such
that 2g − 2 + n > 0 and L a balanced line bundle on X of degree d >> 0.
Then, if n > 0, L(p1 + · · ·+ pn−1) is normally generated.

Proof. Since X is an n-pointed quasistable curve, it is easy to see that X,
endowed with the first n − 1 marked points (p1, . . . , pn−1), is an (n − 1)-
pointed semistable curve. Moreover, by the proof of Corollary 3.3.6, we can
apply Proposition 3.3.10 to L(p1 + · · ·+ pn−1)⊗ ω−1

X (p1 + · · ·+ pn−1). The
result follows immediately now.

Corollary 3.3.13. Let d >> 0, n > 0 and X an n-pointed quasistable curve
of genus g, with 2g − 2 + n > 0, endowed with a balanced line bundle L. Let
M denote the line bundle L(p1 + · · ·+ pn), where p1, . . . , pn are the marked
points of X. We have:

1. M is normally generated;

2. M is very ample.

Proof. Statement (1) follows from the proof of the previous Corollary, which
obviously works for M = L(p1 + · · ·+ pn) as well.

To show (2) it is enough to observe that M is ample since its degree
on each irreducible component of X is positive. Since M is also normally
generated, it follows that M is indeed very ample (see [M70], section 1).

3.4 The contraction functor

The following definition generalizes the notion of contraction introduced by
Knudsen in [K83] to the more general case of pointed quasistable curves
endowed with balanced line bundles.

Definition 3.4.1. Let 2g − 2 + n > 0 and (π : X → S, si : S → X,L) be
an (n + 1)-pointed curve of genus g endowed with a line bundle of relative
degree d. A contraction of X is an S-morphism from X into an n-pointed
curve (π′ : X ′ → S, ti : S → X ′, L′) endowed with a line bundle of relative
degree d, L′, and with an extra section ∆ : S → X ′ such that
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1. for i = . . . , n, the diagram

X
f //

π

��

X ′

π′

~~||
||

||
||

S

si

HH

ti

FF

commutes both in the upward and downward directions,

2. ∆ = fsn+1,

3. f induces an isomorphism between L(s1 + · · ·+ sn) and f∗L′(t1 + · · ·+
tn),

4. the morphism induced by f in the geometric fibers Xs is either an
isomorphism or there is an irreducible rational component E ⊂ Xs

such that sn+1(s) ∈ E which is contracted by f into a closed point
x ∈ X ′s and

fs : Xs \ E → X ′s \ {x}

is an isomorphism.

3.4.1 Properties of contractions

Proposition 3.4.2. Let S = Spec k and f : X → X ′ a contraction from an
(n+1)-pointed curve (X; p1, . . . , pn+1) endowed with a degree d line bundle L
into an n-pointed curve (X ′; q1, . . . , qn), endowed with a degree d line bundle
L′ and with an extra point r. Then, if (X; p, . . . , pn+1) is quasistable, also
(X ′; q1, . . . , qn) is quasistable and, in this case, L is balanced if and only if
L′ is balanced.

Proof. Clearly, the assertion follows trivially if no irreducible component of
X gets contracted by f . So, assume that there is an irreducible component
E of X that gets contracted by f . Then, necessarily, pn+1 ∈ E, so no
exceptional component of X gets contracted. Moreover, the condition that
f∗L′(q1 + · · ·+ qn) ∼= L(p1 + · · ·+ pn) implies that L(p1 + · · ·+ pn) is trivial
on the fibers of f , so it must have degree 0 on E. Now, we have only two
possibilities: either f(E) = {r} is a smooth point of X ′ or it is nodal.

Start by considering the case when r is smooth. Since f(E) = {r}, we
must have that kE = 1, i. e., E is a rational tail of X. So, if X is quasistable,
E must contain exactly another special point pi, for some i = 1, . . . , n and
r = qi. Let F ′ be the irreducible component of X ′ containing r and F
the correspondent irreducible component of X (recall that f establishes an
isomorphism between F and F ′ away from r). If gF > 0, then it is clear
that also X ′ is quasistable. Instead, if F is rational, even if kF ′ = kF − 1, F ′

has one more marked point than F . So, X ′ has the same destabilizing and
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Figure 3.4: Contractions of quasistable pointed curves over k and balanced
degree d line bundles.

exceptional components as X. In fact, if X is quasistable, it cannot be an
exceptional component of X because F is would be contained in a rational
tail of X. It follows that, if (X; p1, . . . , pn+1) is quasistable, (X ′; q1, . . . , qn)
is a quasistable too.

Let us now check that, if we are contracting a rational tail of a quasistable
curve, L is balanced if and only if L′ is balanced. From the definition of
contraction, we get that the multidegree of L(p1 + · · ·+pn) in the irreducible
components of X that are not contracted must agree with the multidegree
of L′(q1 + · · · + qn) in their images by f . In our case, this implies that the
multidegree of L′ on the irreducible components of X ′ coincides with the
multidegree of L on the corresponding irreducible components of X, except
on F ′, where we must have that

degF ′ L
′ = degF L− 1.

So, given a proper subcurve Z ′ of X ′, if Z ′ does not contain r, the balanced
condition will be satisfied by L on Z if and only if it is satisfied by L′ on
Z ′ since mZ′(d, L′) = mZ(d, L), MZ′(d, L′) = MZ(d, L) and degZ′(d, L′) =
degZ(d, L). Now, suppose r ∈ Z ′ and let Z be the preimage of Z ′ by f .
Then, kZ′ = kZ − 1, wZ′ = wZ − 1, bLZ = bL

′
Z′ and tZ′ = tZ − 1, which implies
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that
mZ′(d, L) = mZ(d, L)− 1

and
MZ′(d, L′) = MZ(d, L)− 1.

Since also degF ′ L′ = degF L− 1, we conclude that, if L is balanced, then L′

is balanced too. Now, to conclude that the fact that L′ is balanced implies
that also L is balanced we have to further observe that the degree of L on
E is forced to be equal to −1 since E contains 2 special points and that the
inequality (2.1) is verified on X \ E (that does not correspond to any proper
subcurve of X ′), which follows since m

X\E(d, L) = M
X\E(d, L) = d + 1 =

deg
X\E L.
Now, suppose r is a nodal point of X. Then, pn+1 is the only marked

point of X in E (otherwise, the condition that f(pi) = qi for i = 1, . . . , n
would imply that one of these qi’s should coincide with r, which is nodal,
and (X ′, q1, . . . , qn) would not be a pointed curve). So, if (X; p1, . . . , pn+1)
is quasistable, we must have that kE = 2, i. e., E is a rational bridge of
X (note that if g = 1 then necessarily n > 0, so p1 /∈ E). We must do a
further distinction here. Suppose first that E intersects just one irreducible
component of X: call it F and F ′ its associated irreducible component on
X ′. Now, if X = E ∪ F , and if F is rational, X ′ is an irreducible genus
1 curve, which is clearly quasistable. If, instead, gF > 0 or if kF ≥ 3, we
see that all destabilizing and exceptional components of X ′ correspond to
destabilizing and exceptional components ofX and are contained in the same
type of rational chains.

If, instead, E intersects two distinct irreducible components of X, it is
easy to see that, also in this case, all destabilizing and exceptional compo-
nents of X ′ correspond to destabilizing and exceptional components of X
and are contained in the same type of rational chains. So, (X ′; q1, . . . , qn)
will be quasistable if (X; p1, . . . , pn+1) is.

Now, since pn+1 is the only marked point in E, all irreducible compo-
nents of X ′ have the same marked points as the corresponding irreducible
components of X, so f∗L′(q1 + · · ·+ qn) ∼= L(p1 + · · ·+ pn) implies that the
multidegree of L on the irreducible components of X ′ coincides to the mul-
tidegree of L on the corresponding irreducible components of X and that
the degree of L on E is zero. Let Z ′ be a proper subcurve of X ′ and Z
the corresponding proper subcurve of X. If Z does not intersect E or if it
intersects E in a single point, then it is immediate to see that inequality
(2.1) holds for L and Z if and only if it holds for L′ and Z ′. If, instead, Z
intersects E in two points, then g(Z ′) = g(Z) + 1, tZ′ = tZ , bLZ′ = bLZ − 1
and kZ′ = kZ − 2, so, we get that

mZ′(d, L) = mZ(d, L)
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and
MZ′(d, L′) = MZ(d, L).

Since also degZ′ L′ = degZ L, we conclude that if we are contracting a ra-
tional bridge, if L is balanced, L′ will be balanced too. Now, to conclude
that the fact that L′ is balanced implies that also L is balanced we have
to further observe that, by definition of contraction, the degree of L on E
is forced to be 0 and that the inequality (2.1) is verified on X \ E (that
does not correspond to any proper subcurve of X ′), which is true since
m
X\E(d, L) = M

X\E(d, L) = d = deg
X\E L.

The following lemma is Corollary 1.5 of [K83].

Lemma 3.4.3. Let X and Y be S-schemes and f : X → Y a proper S-
morphism, whose fibers are at most one-dimensional. Let F be a coherent
sheaf on X, flat over S such that H1(f−1(y)F ⊗OY k(y)) = (0) for each
closed point y ∈ Y . Then f∗F is S-flat, R1f∗F = 0 and, given any morphism
T → S, there is a canonical isomorphism

f∗F ⊗OS OT ∼= (f × 1)∗(F ⊗OS OT ).

If, moreover, F⊗OY k(y) is globally generated we have also that the canonical
map f∗f∗F → F is surjective.

Corollary 3.4.4. Let (π : X → S, si : S → X,L) be an (n + 1)-pointed
quasistable curve endowed with a balanced line bundle of degree d >> 0. Let
M be either the line bundle L(s1 + · · ·+ sn) or (ωX(s1 + · · ·+ sn))3. Then,
for all m ≥ 1, we have that

1. π∗(Mm) is S-flat;

2. R1(π∗(Mm)) = 0;

3. For all i ≥ 1, the natural map

αi : π∗M i ⊗ π∗M → π∗M
i+1

is surjective;

4. π∗π∗Mm →Mm is surjective.

Proof. (1) (2) and (4) follow immediately from Corollaries 3.3.6 with k = 0
and 3.3.5, which assert that we can apply Lemma 3.4.3 to π and M , in both
cases.

Let us now show that (3) holds. From Propositions 3.3.12 and 3.3.11, the
statement holds if S = Spec k. Since M satisfies the hypothesis of Lemma
3.4.3, the formation of π∗ commutes with base change. So, αi is surjective
at every geometric point of S and we use Nakayama’s Lemma to conclude
that αi is surjective.
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We now show that Knudsen’s main lemma also holds for quasistable
pointed curves and balanced line bundles of high degree.

Lemma 3.4.5. Let d >> 0 and consider a contraction f : X → X ′ as
in Definition 3.4.1. Denote by M and M ′, respectively, the line bundles
L(s1 + · · ·+ sn) and L′(t1 + · · ·+ tn). Then, for all m ≥ 1, we have that

1. f∗(M ′)m ∼= Mm and (M ′)m ∼= f∗(Mm);

2. R1f∗(Mm) = 0;

3. Riπ∗(Mm) ∼= Riπ′∗(M
′m) for i ≥ 0.

Proof. That f∗(M ′)m is isomorphic to Mm comes from our definition of
contraction morphism. So, also f∗f∗(M ′m) is isomorphic to f∗(Mm). So,
composing this with the canonical map from M ′m into f∗f∗(M ′m), we get a
map

M ′
m → f∗(Mm).

Since the fibers of f are at most smooth rational curves and M is trivial on
them, also Mm is trivial on the fibers of f , so we can apply Lemma 3.4.3 to
it. Since the previous morphism is an isomorphism on the geometric fibers
of f and f∗(Mm) is flat over S, we conclude that it is an isomorphism over
S.

That R1f∗(Mm) = 0 follows directly from Lemma 3.4.3 while (3) follows
from (1) and the Leray spectral sequence, which is degenerate by (2).

3.4.2 Construction of the contraction functor

>From now on, consider d >> 0. Using the contraction morphism defined
above, we will try to define a natural transformation from Pd,g,n+1 to Zd,g,n.
Let (π : X → S, si : S → X,L) be an (n+ 1)-pointed quasistable curve with
a balanced line bundle L of relative degree d. For i ≥ 0, define

Si := π∗(L(s1 + · · ·+ sn)⊗i)

Since we are considering d >> 0, then, by Corollary 3.4.4, R1(Si) = 0, so Si
is locally free of rank h0(L(s1 + · · ·+ sn)⊗i) = i(d+ n)− g + 1, for i ≥ 1, .
Consider

P(S1)→ S.

Again by Corollary 3.4.4, the natural map

π∗(π∗L(s1 + · · ·+ sn))→ L(s1 + · · ·+ sn)

is surjective, so we get a natural S-morphism

X
q //

π

��

P(S1)

||yy
yy

yy
yy

y

S

si

II

58



Define Y := q(X), N := OP(S1)(1)|Y , and, by abuse of notation, call q the
(surjective) S-morphism from X to Y . N is an invertible sheaf over Y and
q∗N ∼= L(s1 + · · ·+ sn).

Moreover, by Corollary 3.4.4 (3), we have that

Y ∼= Proj(⊕i≥0Si).

So, since all Si are flat over S (again by Corollary 3.4.4), also Y is flat
over S, so it is a projective curve over S of genus g (since the only possible
contractions are of rational components).

So, if we endow πc : Y → S with the sections ti := qsi, for 1 ≤ i ≤ n, the
extra section ∆ := qsn+1 and Lc := N(−t1 − · · · − tn) as above, we easily
conclude that q : X → Y is a contraction. Now, consider a morphism

X

π

��

β2 // X ′

π′

��
S

β1

//

si

II

S′

s′i

UU (3.9)

of (n + 1)-pointed quasistable curves with balanced line bundles L and L′

of relative degree d in Pd,g,n and let us see that (β1, β2, β3), where β3 is the
isomorphism between L and β∗2L

′, induces in a canonical way a morphism
in Zd,g,n between the contracted curves.

Define S ′ := π′∗L
′(s′1 + · · · + s′n). Recall that, to give an S′-morphism

from P(S1) to P(S ′) is equivalent to give a line bundle M on P(S1) and a
surjection

(β1π
c)∗(π′∗(L

′(s′1 + · · ·+ s′n)))→M

where by πc we denote the natural morphism P(S1)→ S.

P(S1)

πc
""E

EE
EE

EE
EE

))k i g c _ [ W U S
X

qoo

π

��

β2 // X ′
q′ //

π′

��

P(S ′)

π′c||yyyyyyyy

S
β1

//

si

II

S′

s′i

UU

Since we are considering d >> 0, for s′ ∈ S′, h0((π′)−1(s′), L′(s′1 + · · · +
s′n)|(π′)−1(s′)) is constant and equal to d + n − g + 1. So, we can apply the
theorem of cohomology and base change to conclude that there is a natural
isomorphism

β∗1π
′
∗L
′(s1 + · · ·+ s′n) ∼= π∗β

∗
2L
′(s′1 + · · ·+ s′n).

Now, since diagram 3.9 is cartesian and commutes un the upward direction
two, the isomorphism β3 : L→ β∗2L

′ induces

L(ss + · · ·+ sn) ∼= β∗2(L′(s′1 + · · ·+ s′n)),
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yielding a natural isomorphism

πc∗β∗1(π′∗(L
′(s′1 + · · ·+ s′n))) ∼= πc∗(π∗(L(s1 + · · ·+ sn))).

Composing this with the natural surjection

πc∗(π∗L(ss + · · ·+ sn))→ OP(S1)(1),

we conclude that there is a canonical surjection

πc∗β∗1(π′∗(L
′(s′1 + · · ·+ s′n)))→ OP(S1)(1)

defining a natural S′-morphism from P(S1) → P(S ′). This morphism natu-
rally determines a morphism from Xc to X ′c, where X ′c is the image of X ′

in P(S ′) via q′, inducing a natural isomorphism between Lc and the pullback
of L′c, which is defined analogously to Lc by restricting OP(S′)(1) to X ′c and
tensorizing with minus the sections of π′c. The fact that all these morphisms
are canonical implies that this construction is compatible with the composi-
tion of morphisms, defining a natural transformation. We have just proved
the following proposition.

Proposition 3.4.6. There is a natural transformation c from Pd,g,n+1 to
Zd,g,n given on objects by the contraction morphism defined in 3.4.1.

3.4.3 Proof of the main Theorem

We can now prove our main Theorem.

Proof. (of Theorem 3.2.5) We must show that the contraction functor is an
equivalence of categories, i. e., it is fully faithful and essentially surjective on
objects. The fact that it is full is immediate. We can also conclude easily that
it is faithful from the fact that a morphism of P1 fixing 3 distinct points is
necessarily the identity. In fact, contraction morphisms induce isomorphisms
on the geometric fibers away from contracted components and the contracted
components have at least 3 special points and it is enough to use flatness to
conclude.

In order to show that c is essentially surjective on objects we will use
Knudsen’s stabilization morphism (see [K83], Def. 2.3) and check that it
works also for pointed quasistable curves with balanced line bundles.

So, let π : X → S be an pointed quasistable curve, with n sections
s1, . . . , sn, an extra section ∆ and a balanced line bundle L on X, of relative
degree d. Let I be the OX -ideal defining ∆. Define the sheaf K on X via
the exact sequence

0→ OX
δ→ I−1 ⊕OX(s1 + · · ·+ sn)→ K → 0

where δ is the diagonal morphism, δ(t) = (t, t).
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Figure 3.5: Stabilization of pointed quasistable curves with balanced degree
d line bundles.

Define
Xs := P(K).

and let p : Xs → X be the natural morphism from Xs to X. Theorem
2.4 of [K83] asserts that, in the case that X is a pointed stable curve, the
sections s1 . . . , sn and ∆ have unique liftings s′1, . . . , s′n+1 to Xs making
Xs → S an (n + 1)-pointed stable curve and p : Xs → X a contraction.
One checks easily that the same construction holds also if X is a quasistable
pointed curve instead of a stable one. In fact, the assertion is local on S,
the problem being the points where ∆ meets non-smooth points of the fiber
or other sections since in the other points Xs is isomorphic to X. In the
case where ∆ meets a non-smooth point of a geometric fiber, locally Xs

is the total transform of the blow-up of X at that point with the reduced
structure and s′n+1 is a smooth point of the exceptional component. In the
case where ∆ coincides with another section si in a geometric fiber Xs of
X, then, locally, on Xs is the total transform of the blow-up of X at si(s),
again with the reduced structure, and s′i and s

′
n+1 are two distinct smooth

points of the exceptional component.
Let Ls := p∗(L(s1 + · · · + sn))(−s′1 − · · · − s′n). Then the multidegree

of Ls(s′1 + · · ·+ s′n) on a geometric fiber Xs
s coincides with the multidegree

of L(s1 + · · · + sn) in the irreducible components of Xs
s that correspond to

irreducible components of X and, in the possibly new rational components,
the degree is 0. So, Ls is balanced of relative degree d.

To conclude, we must check that c(Xs) is isomorphic to X. By definition,
c(Xs) is given by the image of Xs on P(πs∗(L

s(s′1 + · · ·+ s′n))). Consider the
line bundle L(s1 + · · · + sn) on X. By Corollary 3.4.4, there is a natural
surjection

π∗π∗(L(s1 + · · ·+ sn))→ L(s1 + · · ·+ sn).

But, since π∗(L(s1 +· · ·+sn)) is naturally isomorphic to πs∗p∗L(s1 +· · ·+sn),
we get a natural surjection

π∗(πs∗L
s(s′1 + · · ·+ s′n))→ L(s1 + · · ·+ sn)

so, equivalently, a morphism f fromX to P(Ls(s′1+· · ·+s′n)). Since p∗(L(s1+
· · · + sn)) = Ls(s′1 + · · · + s′n) induces the natural morphism q : Xs →
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P(πs∗(s
′
1 + · · · + s′n)), whose image is c(Xs), naturally the image of f is

c(Xs). It is easy to check that f is an isomorphism on the geometric fibers,
so, by flatness, we conclude that f gives an S-isomorphism between X and
c(Xs) as pointed quasistable curves and determines an isomorphism between
the respective balanced degree d line bundles.

3.5 The forgetful morphism from Pd,g,n onto Mg,n

Now, for each n > 0, we will try to construct a morphism Ψd,g,n : Pd,g,n →
Mg,n fitting in diagram (3.6) above.

Let (π : X → S, si : S → X), i = 1, . . . , n be an n-pointed quasistable
curve over S. Denote by ω the line bundle (ωX/S(s1 + · · ·+ sn))3. Then, by
Corollary 3.4.4, R1(π∗ω) = 0, so it is locally free and there is an S-morphism
γ : X → P(π∗ω) making the following diagram commute.

X
γ //

π

��?
??

??
??

? P(π∗(ω))

zzvvvvvvvvv

S
si

WW (3.10)

The restriction of γ to any fiber Xs of π maps Xs to its stable model
in P(ω), which is naturally endowed with the sections γsi, for i = 1, . . . , n.
This follows from the fact that ω is very ample on the stable components of
each fiber, whereas it has degree 0 on the exceptional components. Moreover,
γ(X) is flat over S. In fact, from Corollary 3.4.4, for any i ≥ 1, the natural
map

π∗ω
i ⊗ π∗ω → π∗ω

i+1

is surjective. It follows that γ(X) ∼= Proj(⊕i≥0π∗(ωi)), which is flat over S
because each π∗(ωi) is S-flat, again by Corollary 3.4.4.

Let us check that this yields a surjective morphism Ψd,g,n from Pd,g,n
ontoMg,n fitting in diagram (3.6) and making it commutative.

Let (π : X → S, si : S → X,L) be an (n+1)-pointed quasistable curve of
genus g endowed with a balanced line bundle L of relative degree d over X.
It is immediate to check that, restricting ourselves to the geometric fibers of
π, the diagram is commutative since in both directions we get the n-pointed
curve which is the stable model of the initial one, after forgetting the last
point. Now, since all families are flat over S, we conclude that the diagram
is commutative.

The surjectivity of Ψd,g,n follows from the fact that Ψd,g,0 is surjective
(see [C05], Proposition 4.12) and from the commutativity of the diagram
because Φd,g,n and Πg,n are the universal morphisms onto Pd,g,n−1 andMg,n,
respectively.

62



Moreover, the fibers of Ψd,g,n over a pointed curve X ′ ∈ Mg,n are the
quasistable pointed curves X with stable model X ′ endowed with balanced
degree d line bundles.

3.6 Further properties

Let X be an n-pointed quasistable curve over k. By applying the contraction
morphism we get an (n−1)-pointed quasistable curve with an extra section.
If we forget about this extra section and we iterate the contraction procedure
n times, at the end we get a quasistable curve with no marked points, call
it X0. Denote by f this morphism from X to X0.

Let ωX0 be the dualizing sheaf of X0. For each proper subcurve Z0 of X0,
the degree of ωX0 in Z0 is wZ0 = 2gZ0 − 2 + kZ0 . In particular, it has degree
0 on exceptional components of X0. Consider now the pullback of ωX0 via
f , f∗(ωX0). This is a line bundle on X having degree 0 on rational bridges
and on rational tails; moreover, given a proper subcurve Z of X whose image
under f is a proper subcurve Z0 of X0, f∗(ωX0) has degree wZ0 = wZ − tZ
on Z.

So, a line bundle L of degree d on X with given balanced multidegree
on rational tails and rational bridges of X is balanced on X if and only if
L ⊗ f∗(ωX0) is balanced on X of degree d + (2g − 2) and with the same
multidegree on rational tails and rational bridges. In fact, for each proper
subcurve Z of X which is not contained in rational tails or rational bridges,
we have that

degZ(L⊗ f∗(ωX0)) = degZL+ wZ − tZ ≤

≤ dwZ
2g − 2

+
g − 1− d

2g − 2
tZ − bLZ +

kZ
2

+ wZ − tZ =

=
(d+ 2g − 2)wZ

2g − 2
+
g − 1− (d+ 2g − 2)

2g − 2
tZ − bLZ +

kZ
2

and similarly that

degZ(L⊗ f∗(ωX0)) ≥ dwZ
2g − 2

+
3g − 3− d

2g − 2
tZ − bLZ −

kZ
2

+ wZ − tZ =

=
(d+ 2g − 2)wZ

2g − 2
+

3g − 3− (d+ 2g − 2)
2g − 2

tZ − bLZ −
kZ
2
,

so (L⊗ f∗(ωX0))|Z satisfies inequality (3.1) if and only if L|Z does.
In conclusion, we have the following result.

Proposition 3.6.1. Let d and d′ be integers such that there exists an m ∈ Z
such that d′ = d+m(2g − 2). Then, Pd,g,n and Pd′,g,n are isomorphic.
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Proof. We must show that there is an equivalence of categories between
Pd,g,n and Pd′,g,n. So, let (π : X → S, si : S → X,L), i = 1, . . . , n be an
object of Pd,g,n. Consider its image under Φd,g,0 ◦ Φd,g,1 ◦ · · · ◦ Φd,g,n and
denote it by (π0 : X0 → S,L0). According to 3.4.2, there is an S-morphism
q0 : X → X0. Then, by what we have seen above, L′ := L ⊗ q∗0(ωmX0/S

) is a
balanced line bundle of relative degree d′ over X, so (π : X → S, si : S →
X,L′) ∈ Pd′,g,n.

It is easy to check that this defines an equivalence between Pd,g,n and
Pd′,g,n.

Proposition 3.6.2. For all n > 0, there are forgetful morphisms Φd,g,n :
Pd,g,n+1 → Pd,g,n endowed with n sections σ1

d,g,n, . . . , σ
n
d,g,n yielding Cartier

divisors ∆i
d,g,n+1, i = 1, . . . , n such that σid,g,n gives an isomorphism between

Pd,g,n and ∆i
d,g,n+1.

Proof. The statement is true if we consider Zd,g,n instead of Pd,g,n+1 (the
sections are given by the diagonals δi,n+1, for i = 1, . . . , n, as we observed in
section 3.2). In virtue of Theorem 3.2.5 the result follows if we define σid,g,n
as c−1 composed with δi,n+1 for i = 1 . . . , n.

3.6.1 Rigidified balanced Picard stacks over quasistable cur-
ves with marked points

Analogously to the case g ≥ 2 and n = 0, each object (π : X → S, si : S →
X,L), i = 1, . . . , n, in Pd,g,n has automorphisms given by scalar multipli-
cation by an element of Γ(X,Gm) along the fibers of L leaving the curves
fixed. In other words, there is an action of BGm on Pd,g,n which is invariant
on the fibers of Ψd,g,n. So, there is no hope Pd,g,n can be representable over
Mg,n (see [AV02], 4.4.3). Recall that the rigidification procedure, defined in
[ACV01] (see section 2.4 above), fits exactly on our set up and produces an
algebraic stack with those automorphisms removed.

Denote by Pd,g,n(Gm the rigidification of Pd,g,n along the action ofBGm.
Exactly because the action of BGm on Pd,g,n leaves Mg,n invariant, the
morphism Ψd,g,n descends to a morphism from Pd,g,n(Gm ontoMg,n, which
we will denote again by Ψd,g,n, making the following diagram commutative.

Pd,g,n ( Gm

Ψd,g,n

%%LLLLLLLLLL
Φd,g,n

vvnnnnnnnnnnnn

Pd,g,n−1 ( Gm

Ψd,g,n−1 ((PPPPPPPPPPPP
Mg,n

Πg,nyyrrrrrrrrrr

Mg,n−1

(3.11)
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So, the same argument we used to show that Ψd,g,n is universally closed
for all n > 0 with 2g − 2 + n > 1 if and only if Ψd,g,0 is universally closed
holds also in this case. Moreover, since, for g ≥ 2 and n = 0, we have that
Ψd,g,0 : [Hd/G] → Mg is proper and strongly representable if and only if
(d− g+ 1, 2g− 2) = 1, we have that the same statement holds in general for
every n ≥ 0.

Proposition 3.6.3. Let g ≥ 2, n ≥ 0 and d ∈ Z. Then Pd,g,n ( Gm is a
Deligne-Mumford stack (of dimension 4g− 3 +n) with a proper and strongly
representable morphism ontoMg,n if and only if (d− g + 1, 2g − 2) = 1.

For curves of genus 0 and 1, propositions 3.2.8 and 3.2.11 immediately
give the following result.

Proposition 3.6.4. If g = 0 and n ≥ 3, Pd,0,n ( Gm
∼=M0,n and if g = 1

and n ≥ 1, Pd,1,n(Gm
∼=M1,n+1. In particular, for any integer d, Pd,g,n is

Deligne-Mumford and Ψd,g,n is proper and strongly representable for g = 0, 1
with 2g − 2 + n > 0.

Remark 3.6.5. Let d >> 0, g ≥ 2 and n = 0. Then, there is a canonical
map from Pd,g,0 ( Gm to P d,g (see 2.4.4 above). At least if the base field
has characteristic 0, we have that P d,g is a good moduli space for Pd,g,0 in
the sense of Alper (see 2.4.4) (if (d− g + 1, 2g − 2) = 1 it is indeed a coarse
moduli space). It would be certainly interesting to investigate if it is possible
to construct good moduli spaces for Pd,g,n in the general case, for example by
investigating if our stacks are quotients stacks in general and then applying
Theorem 13.6 of [A08].
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