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INTRODUCTION AND MOTIVATION

The word “spintronics” has become a ubiquitous term to define a new field of study in mater-
ial science and in electronics. Its use has been spreading in the last decade, as can be seen in
figure I. It is “an emerging technology that exploits both the intrinsic spin of the electron and
its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state
devices” [107]; in a broader sense, it is “a multidisciplinary field whose central theme is the act-
ive manipulation of spin degrees of freedom in solid-state systems” [102], with full application
of experimental characterisation techniques and theoretical models.

Spintronics promises large enhancements to present day information and communication
technologies, to fulfil the requirements of reduction in size and power consumption and en-
hancement in speed from industries and consumers. Moreover, it gives to scientists the possib-
ility to investigate fascinating physical phenomena.

The starting point of spintronics can be pinpointed with the discovery of giant magnetore-
sistance in the 1980s. This effect, observed in metallic systems, is now exploited in commercial
applications such as hard drives. Other effects in metals (e.g., spin torque) are still being inves-
tigated.

Beside metals, semiconductors spintronics has also been tackled. The interest in semicon-
ductors is of course related to the electronic industry: sophisticated spin-based devices which
can be implemented in semiconductors can bring new features to electronics [9].

This thesis deals with what lies behind the devices, i. e. materials. In particular, the proper-
ties of nitrides semiconductors will be addressed.

Before introducing these materials, let me describe the paradigm of the semiconductor spin-
tronic device, the spin transistor. A number of devices have been proposed (see Ref. [39, chap.
V]), but the seminal idea was presented in a 1990 paper by Datta and Das [34]. This paper is
often referred to as the motivation of studies related to the spin effects in semiconductors (see
figure I); feasibility of their device has been questioned [20], but the working principle was
recently demonstrated in a device similar to that of the original proposal [62]. I will use it to
introduce the points of interest for this thesis.

The spin field effect transistor they proposed is an “electronic analog of the electro-optic
modulator”. The spin polarisation plays the role of the photon polarisation: the suggested
device has a polariser–analyser pair formed by ferromagnetic contacts, and a two dimensional
or one dimensional channel where the spin precedes by defined amount, tuned by an external
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Fig. I: Survey of “spintronics” papers using the on-line database Scopus (www.scopus.com). Full
symbols: number of papers containing the word spintronics or spintronic in title, abstract and
keywords, since 1999 to 2010; the counts from a query on all records fields (including full text) is
about four times larger. Empty symbols: number of citations of the paper by Datta and Das about
the spin transistor [34].

electric field. The two ferromagnetic contacts are magnetised in the same direction; if, at the
end of the channel, the spin points in the same direction of this magnetisation, the device is in
the “on” state; if it is in the opposite direction, the device is “off”.

The fabrication of such a device, as proposed by the authors themselves, requires: (1) re-
liable spin polarising junctions; (2) semiconductor materials where the spin polarisation is not
relaxed (so that the electron spin is transported “ballistically”); (3) tuning of the spin-orbit inter-
action in the channel through the Rashba mechanism, an effect which yields (in principle) the
externally controlled spin precession. These features (spin injection, transport, manipulation
and detection) are basic requirements for spintronics devices, independently of the particular
design.

The actual implementation of these requirements has proved to be difficult. The direct spin
injection (or extraction) from ferromagnetic metals into semiconductors is demonstrated to be
inefficient because of the so-called “conductivity mismatch problem”; it has been bypassed
using composite metal-oxide-semiconductor structures or magnetic semiconductors [39, chap.
II].

As for the spin manipulation, spin-orbit interaction is the physical mechanism which may
make it possible. The spin-orbit interaction is a well known effect in atomic and solid state phys-
ics. However, in the standard atomic picture for solids, the spin degeneracy is not completely
removed. In the spin transistor, the required precession needs the two spin states to be non-
degenerate. Additional terms to the standard spin-orbit coupling can yield such a degeneracy
removal; one of these terms is the Rashba effect. To fulfil the spin manipulation requirement,
the effect should be large enough to rotate the spin by π rad within a mean free path; thus, the

www.scopus.com
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spin-splitting energy is often taken as a figure of merit for spintronics materials. This thesis
will deal with these additional effects, and in the following of this introduction I will use the
expression “spin-orbit interaction” with this special meaning.

Spin-orbit interaction has been investigated in several materials, mainly III-V semiconduct-
ors, demonstrating that narrow gap semiconductors and large carrier densities yield large spin
splitting [39, chap. III]. Manipulation of its intensity has been demonstrated to be operative
with an external electric field [54, 53, 78].

Experimental evaluation of the spin-splitting energy on gallium nitride has given instead
conflicting results. This problem has been addressed in this thesis.

Gallium nitride (GaN) and the related alloys (InGaN, AlGaN) have attractive properties for
the semiconductor industry, such as a wide bandgap, high mobility, high breakdown field; its
use is assessed for high-power, high-frequency devices and in UV optoelectronics. Hetero-
junctions between GaN alloys yield a two dimensional electron gas (2DEG), and this feature
is exploited in high electron mobility transistors (HEMT). The industrial interest has led to a
reliable technology for material and device fabrication [27, 81, 87].

Moreover, the 2DEG is interesting for fundamental research as well. Integer and fractional
quantum Hall effect [75], quantisation of conductance [25], single electron transistors [26] have
been demonstrated on this system.

On the spintronics side, two features have highlighted GaN as a suitable material. Room
temperature ferromagnetism has been predicted and measured for dilute magnetic alloys of
GaN [70, 86]. This property is useful for the implementation of the spin injector and detector in
the spin transistor paradigm. The second feature is related to the possibly large spin-orbit effect
in 2DEGs, useful for the spin manipulation.

The interest in nitrides semiconductors for spintronics is shown in figure II. The observed
decrease after 2005, different from the general interest on spintronics (see figure I), could be
related to the complicated nature of spin-orbit coupling in it.

The issue of spin-orbit coupling in gallium nitride is intriguing both experimentally and theor-
etically. The most common lattice for gallium nitride is the wurtzite lattice, differently from the
more common (in semiconductors) zinc-blende lattice; this lattice is at the origin in several dif-
ferent terms in the spin-orbit coupling. Moreover, despite its large bandgap, large spin-splitting
values comparable with those of narrow gap materials have been reported. Nevertheless, also
small values have been reported, and a clear dependence on sample parameters has not been
determined as yet.

As for the experimental techniques capable of measuring the strength of spin-orbit interac-
tion, the behaviour of the resistivity as a function of a magnetic field has proved to be a suitable
method for these investigations. However, a careful data analysis is required to exclude parasitic
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Fig. II: Survey of “spintronics on GaN” papers with the words GaN, AlGaN or InGaN in title, abstract
or keywords using the on-line database Scopus. Full squares: number of papers with the words
spintronics or spintronic in title, abstract or keywords; empty squares: number (divided by two)
of papers with spintronics or spintronic in all the fields. Empty circles: number of papers citing
the paper by Datta and Das [34].

effects and to achieve a reliable extraction of the parameters.

This work aims at the study of the spin degeneracy removal due to spin-orbit interaction
in GaN-based 2DEGs. The effect was investigated performing magnetotransport experiments.
The data were analysed in depth to get further information beyond the usual analysis.

The organisation of the thesis mirrors the ideal steps toward the study of spin-orbit interaction
in two dimensional electron gases. First, a 2DEG is needed; the properties of this system
and its achievement in GaN-based heterostructures are described in chapter 1. Second, the
system should have a non-negligible spin-orbit coupling: the mechanisms of this interaction are
discussed in chapter 2 (again with regard to GaN), together with a review of literature results.
Then, some phenomena affected by spin-orbit interaction needs to be observable: consequently,
the magnetotransport phenomena investigated in this thesis, i.e. the Shubnikov–deHaas and the
weak antilocalisation, and are described in chapter 3. Finally, the sample and the experimental
set-up used, the experiments made, and the methods developed to analyse the data are the
subject of chapter 4. In the Appendixes, some further details of the data analysis are reported.

Beside the main topic of this thesis, i.e. the spin-orbit interaction in GaN 2DEGs, other
characterisations of this material have been made during this work. In particular, a study of
one dimensional devices, such as split gates and quantum point contacts, was used to verify the
quality of the material, and was a useful training in the electric measurements techniques; the
results of this investigation is presented in appendix E.

In the last period of the thesis work, I have also been involved in an activity aimed at the in-
vestigation of spin injection using junctions between ferromagnetic metals and semiconductors,
in particular silicon and germanium. However, presently, only preliminary results have been
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found, and I have chosen not to include them in this presentation, where I have chosen to focus
on magnetotransport experiments on GaN.

The results of the research activity on gallium nitride have been reported in research papers
and communications in conferences, as listed below.

Publications:

• D. Spirito, L. Di Gaspare, F. Evangelisti, A. Di Gaspare, A. Notargiacomo E. Giovine,
“Weak antilocalisation in a two-dimensional electron gas”, to be submitted to Physical
Review B

• D. Spirito, L. Di Gaspare, G. Frucci, F. Evangelisti, A. Di Gaspare, A. Notargiacomo,
E. Giovine, S. Roddaro, F. Beltram, “Magnetotransport investigation of conducting chan-
nels and spin splitting in high-density AlGaN/AlN/GaN two-dimensional electron gas”,
Physical Review B, 83, 155318 (2011), doi: 10.1103/PhysRevB.83.155318

• D. Spirito, G. Frucci, A. Di Gaspare, L. Di Gaspare, E. Giovine, A. Notargiacomo,
S. Roddaro, F. Beltram, F. Evangelisti, “Quantum Transport in Low-Dimensional Al-
GaN/GaN Systems”, Journal of Nanoparticle Research, 13, 5699 (2011), doi: 10.1007/s11051-
010-0136-7

Presentations:

• Oral presentation: 35th WOCSDICE (Workshop on Compound Semiconductors Devices
and Integrated Circuits), Catania, 29/05/2011-01/06/2011, “Spin properties and ballistic
transport in low-dimensional AlGaN/AlN/GaN systems”, D. Spirito, L. Di Gaspare, G.
Frucci, A. Di Gaspare, A. Notargiacomo, E. Giovine, S. Roddaro, F. Beltram, F. Evan-
gelisti

• Poster presentation: X International Conference on Nanostructured Materials, Roma, 13-
17/09/2010, “Quantum Transport in Low-Dimensional AlGaN/GaN Systems”, D. Spirito,
G. Frucci, A. Di Gaspare, L. Di Gaspare, E. Giovine, A. Notargiacomo, S. Roddaro, F.
Beltram, F. Evangelisti

• Poster presentation: 2nd Transalp’ Nano 2010 Conference, Como, 3-5/06/2010, “Quantum
Transport in Low -Dimensional AlGaN/GaN Systems”, D. Spirito, G. Frucci, A. Di Gas-
pare, L. Di Gaspare, E. Giovine, A. Notargiacomo, S. Roddaro, F. Beltram, F. Evangelisti

• Poster presentation: IEEE Nano 2009, Genoa, 26-30/07/2009, “Conductance Anomalies
in Quantum Point Contacts”, G. Frucci, A. Di Gaspare, L. Di Gaspare, A. Notargiacomo,
E. Giovine, D. Spirito, F. Evangelisti

http://dx.doi.org/10.1103/PhysRevB.83.155318
http://dx.doi.org/10.1007/s11051-010-0136-7
http://dx.doi.org/10.1007/s11051-010-0136-7




1. TWO DIMENSIONAL ELECTRON GAS IN
GAN

1.1 Two dimensional electron gases

Two dimensional electron gases (2DEGs) are fundamental building blocks for semiconductor
devices and nanoelectronics.

A 2DEG is the result of an engineered heterostructure, designed to have a band alignment
suitable for confining electrons in a potential well and to have free carriers to be collected in
the well. The case of gallium nitride based heterostructures — of interest for this thesis work
— is treated in section 1.2. In this section, I will briefly review the general features of a two
dimensional electron system, in particular the energy spectrum, the density of states and the
effect of a magnetic field. Detailed discussions, derivations and reviews on this topic can be
found in a number of books and review articles (see, for example, [35, 7, 18]).

The two dimensional system in a semiconductor heterostructure is described on the basis of a
three dimensional crystal in the effective mass approximation. The confining potential is taken
along the z direction; the electrons are free in the xy plane. In the following, a single electron
scheme is also assumed, and the effective mass is assumed to be the same in the different layers
of the heterostructure.

With these assumptions, the time-independent Schrödinger equation for this problem reads:[
−
~2

2m

(
∂2

∂x2 +
∂2

∂y2

)
−
~2

2m
∂2

∂z2 + V(z)
]
ψ(x, y, z) = Eψ(x, y, z), (1.1)

where V(z) is the confining potential. The wavefunction can be separated as

ψ(x, y, z) = eikxxeiky yun(z), (1.2)

and the energy eigenvalues are given by

En(kx, ky) =
~2k2

x

2m
+
~2k2

y

2m
+ εn =

~2k2

2m
+ εn, (1.3)

so that the quantum numbers are kx, ky (two-dimensional wavevector components, and k =
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(kx, ky)) and n (quantum number of the confinement potential); m is the effective mass suitable
for the investigated system.

The eigenfunction un(z) and the eigenvalues εn are the solution of the z-part of the equation:[
−
~2

2m
∂2

∂z2 + V(z)
]

un(z) = εnun(z). (1.4)

In this discussion, a discrete spectrum will be assumed. The total energy is thus given by
parabolic subbands, whose minima are the εn values.

The density of states (DOS) per unit area D(E), for one subband and for a system with
degeneracy gs, is constant and equal to gsm/2π~2 when the energy is greater than εn. The DOS
is a step-like function when more subbands are considered.

The electron density per unit area is the integral of the DOS multiplied by the Fermi–Dirac
distribution f (E,EF) (EF being the Fermi energy):

n2D =

+∞∫
0

D(E) f (E,EF)dE, (1.5)

and, in the low temperature limit,

n2D =
m
π~2

∑
j

(EF − ε j)Θ(EF − ε j), (1.6)

where the sum runs over the subbands with minimum at ε j, and spin degeneracy is assumed
(gs = 2).

1.1.1 Landau levels in a magnetic field

Let’s consider the effect of a magnetic field parallel to the confinement direction z, and thus
perpendicular to the plane containing the 2DEG.

The magnetic field B is included through the vector potential and the minimal substitution
in the Schrödinger equation. The vector potential can be chosen in the Landau gauge as A =

(0,Bx, 0), and the hamiltonian becomes

H =
~2

2m
k2

x +
1

2m

(
~ky + eBx

)2
+
~2

2m
k2

z + V(z). (1.7)

The separation of z-part yields again the discrete eigenvalues εn; the xy-part solution is modified
by the magnetic field. The Hamiltonian does not depend on y, but has a quadratic term in x; the
y-part of the wavefunction is a plane wave exp(ikyy), so that the solution is a product of this
plane wave and a function v(x). Then, after rearranging the terms, and substituting the y-part
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of the wavefunction, we can find that the x-part is a harmonic oscillator Hamiltonian:− ~2

2m
∂2

∂x2 +
1
2

mω2
c

(
x −
~k
eB

)2 v(x) = E v(x), (1.8)

where the angular frequency

ωc ≡
eB
m

(1.9)

is known as cyclotron frequency. The magnetic field acts as a parabolic confinement potential
in the x direction. The centre of the cyclotron orbit is k-dependent: xk = ~k/eB = l2

Bk, where the
length scale is lB =

√
~/eB; the energy however is not affected by this parameter. The discrete

energies are

En = ~ωc

(
n +

1
2

)
, n = 0, 1, 2 . . . (1.10)

These discrete levels are called ”Landau levels“; the wavefunction is vnk(x) ∝ Hn−1((x −
xk)/lB) exp(−(x − xk)2/2l2

B), where Hn(x) is the n-th Hermite polynomial.

The effect of the Landau states on the electrical properties of the 2DEG, as well as issues on
their lineshape, are described in details in section 3.2.

1.2 GaN-based heterostructures and 2DEGs

Nitride semiconductors can crystallise in the zinc-blende structure and in the wurtzite structure;
all the samples investigated in this thesis have the wurtzite structure; its properties will thus be
described in details.

The lattice is shown in figure 1.1. This lattice belongs to C6v point group; it can be described
as two interpenetrating hexagonal close-packed lattices, an is defined by three parameters: a,
c and u. a is the hexagon side, c the height of the prism, and u is an adimensional parameter
equal to the ratio of the inter-ion distance d‖ in the [0 0 0 1] direction (parallel to the height) and
c, u = d‖/c; in the ideal structure, u = 0.375 and c/a = 1.633. Every ion is surrounded by a
tetrahedron of ions of different species, as shown in figure 1.1b. The tetrahedra are piled up as
in figure 1.1a, and form hexagonal lattice layers alternating anion (N) and cation (Al, Ga, In)
layers. As a reference, table 1.1 reports the main parameters for GaN and AlN.

This lattice is non-centrosymmetric, since the layer sequence is reversed along the [0 0 0 1]
and [0 0 0 1] directions; correspondingly, the surfaces (0 0 0 1) and (0 0 0 1) have different polar-
ity, and are labelled as Ga-(Al-)face and N-face.

The crystal grows with a Ga- or N-face depending on the details of the growth process [4, 6].
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(a) (b)

Fig. 1.1: (a) Wurtzite crystal lattice for GaN, in the two different polarity: Ga-face and N-face; (b)
alignment of tetrahedra.

GaN AlN

a (Å) 3.189 3.112
c (Å) 5.185 4.982

u 0.376 0.380
EG(eV) 3.42 6.13
m (me) 0.22 0.22
εr 10.4 10.1

Tab. 1.1: Lattice parameters (a, c, u), energy gap EG, effective mass m (in units of the electron mass),
relative dielectric constant εr of gallium nitride and aluminium nitride (from Ref. [6] and ref-
erences therein).
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1.2.1 Two dimensional gas formation

In wurtzite nitride heterostructures, grown in the [0 0 0 1] direction (or c-direction), a 2DEG
can originate because of the internal electric polarisation only, without intentional doping [5].
This polarisation is the sum of spontaneous polarisation PSP, due to the ionic bonds, and of
piezoelectric polarisation PPE, due to layers deformation.

The spontaneous polarisation depends on structural parameters; the polarisation vector al-
ways points toward the N-face. This sense of the vector is defined as negative, thus PSP is
always negative. For Ga-face heterostructures it points toward the substrate, while for N-face it
points toward the surface.

Piezoelectric polarisation depends on the strain of the heterostructure layers. For GaN/AlGaN
heterostructures there are three cases (sketched in figure 1.2): (i) relaxed AlGaN on relaxed
GaN, without piezoelectric polarisation; (ii) tensile-strained AlGaN on relaxed GaN; (iii) compressive-
strained GaN on relaxed AlGaN.

Piezoelectric polarisation is calculated from piezoelectric coefficients ei j as:

PPE = e33εz + e31(εx + εy), (1.11)

where εz = (c− c0)/c0 is the strain in the growth direction and εx = εy = (a− a0)/a0 is the strain
in the plane; these values are related by

εz = −2
C13

C33
εx, (1.12)

where C13 and C33 are the elastic coefficients. Inserting this formula in (1.11), we get

PPE = 2
a − a0

a0

(
e31 − e33

C13

C33

)
. (1.13)

Since the quantity in brackets is negative both for AlxGa1−xN (independent of Al content x)
and GaN, piezoelectric polarisation is negative for a tensile strain and positive for a compressive
strain (case (iii), GaN on AlGaN).

Since the spontaneous polarisation is negative, the two polarisations are parallel for tensile
strain and antiparallel for compressive strain. If the surface polarity changes, both polarisations
change their sign. Figure 1.2 describes the polarisation configurations in the case of an Al-
GaN/GaN structure [5]. In the case of more complex structures, analogous considerations can
be made.

In general, the total polarisation is different in a AlGaN layer and in a GaN layer; following
the electrostatic relation ∇ · P = ρpol, which relates an induced charge density to a non-zero
polarisation divergence, when a polarisation discontinuity is present at an interface there is an
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Fig. 1.2: Polarisation charge induced in a AlGaN/GaN heterostructure, in different cases of strain and
polarity. The formation of a 2DEG is marked. (Adapted from Ref. [5]).

induced sheet charge.

The induced charge density is thus given by:

σ = Pu
− Pl = (Pu

SP − Pl
SP) − (Pu

PE − Pl
PE), (1.14)

where superscripts u e l refer to the upper and lower layer, respectively.

When the induced charge is positive, electrons accumulate and a two dimensional electron
gas forms; when the induced charge is negative, a two dimensional hole gas can form. The
induced charge sign depends both on the absolute value of polarisations in the two layers and on
their alignment (parallel or antiparallel); these properties depend on the heterostructure polarity,
on the aluminium content in the AlGaN layer and on the pseudomorphic or relaxed growth of
this layer [6]. These parameters thus determine the gas formation and its density; the conditions
when a 2DEG can form are marked in figure 1.2.

In a pseudomorphic AlGaN on GaN heterostructure, charge density is given by

|σ(x)| = |PPE(AlxGa1−xN) + PSP(AlxGa1−xN) − PSP(GaN)|. (1.15)

In Ga-face heterostructures the sign is positive, and an electron gas forms. Thus, the total



1.2. GaN-based heterostructures and 2DEGs 7

Fig. 1.3: Charge density due to spontaneous and piezoelectric polarisation, as a function of AlGaN com-
position (from Ref. [5]).

polarisation in the AlGaN layer as a function of aluminium content x is

|σ(x)| =

∣∣∣∣∣∣2a(0) − a(x)
a(x)

(
e31(x) − e33(x)

C13(x)
C33(x)

)
+ PSP(x) − PSP(0)

∣∣∣∣∣∣ , (1.16)

where the dependence of the different parameters on x can be approximated by a linear inter-
polation of GaN and AlN parameters.

Figure 1.3 shows the charge density as a function of x, calculated for a AlGaN/GaN hetero-
structure in the [0 0 0 1] direction.

The sheet carrier density at the interface can be calculated with the polarisation charge density
in equation (1.16) and with an electrostatic analysis [111]:

n2D(x) = +
σ(x)

e
−

(
ε0ε(x)

de2

) [
eφb(x) + EF(x) − ∆EC(x)

]
(1.17)

where d is the AlGaN layer thickness, ε the permittivity, EF the Fermi energy (with respect to
the GaN conduction band edge at the interface), and ∆EC is the conduction band discontinuity;
eφb represents the barrier at surface, due to the pinning of the Fermi level because of surface
states, or to the formation of a Schottky junction with a gate electrode, if present.

AlGaN parameters ε(x) and eφb(x) can be approximated, as function of x, by linear inter-
polation of GaN and AlN parameters.

The conduction band discontinuity is given by

∆EC = 0.7
[
Eg(x) − Eg(0)

]
, (1.18)
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Fig. 1.4: Sketch of the conduction band edge for (a) AlGaN/AlN/GaN heterostructure, with exclusion
layer, (b) AlGaN/GaN heterostructure. Wavefunctions are drawn as dashed lines. The conduc-
tion band discontinuity ∆Ec and the effective conduction band discontinuity are also marked.
(Adapted from Ref. [90]).

where Eg is the bandgap, given by [17]:

Eg(x) = xEg(AlN) + (1 − x)Eg(GaN) − x(1 − x)1.0 eV

= x 6.13 eV + (1 − x) 3.42 eV − x(1 − x)1.0 eV.
(1.19)

The Fermi level is calculated as

EF(x) = E0(x) +
~2π
m

n2D(x), (1.20)

where E0 is the energy level in the potential well; the effective mass m is assumed to be inde-
pendent on x.

1.2.2 Heterostructures with exclusion layer

An improvement in charge density and mobility can be attained in AlGaN/GaN heterostructures
by inserting a thin AlN layer between the other two layers, the so-called exclusion layer [90, 92].

Figure 1.4 shows a comparison of AlGaN/GaN and AlGaN/AlN/GaN structures with a
sketch of the conduction band edge and of the wavefunction of the first quantum well energy
state.

Since AlN bandgap is 6.13 eV, it creates at the interface a barrier, which increases the
electron confinement; moreover, also the effective conduction band discontinuity (defined as the
difference between band edge in AlGaN and in GaN at the respective interfaces with AlN, see
also figure 1.4a) is increased, because of the AlN polarisation-induced electric dipole [90, 60],
as shown in figure 1.4.
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These effects allow to have a large carrier density. Moreover, the thin AlN layer reduces the
alloy scattering, that is the scattering mechanism due to disordered distribution of aluminium
and gallium in the lattice sites of AlGaN: since penetration of wavefunction in the AlGaN layer
is reduced because of the barrier, this mechanism is less effective. Mobility is thus largely im-
proved in this kind of heterostructure: for example, in Ref. [10] is reported (at 77 K) an increase
in the mobility from 2991 cm2V−1s−1 (in a sample without exclusion layer) to 8080 cm2V−1s−1

in sample similar to the first, but with the exclusion layer. Since the mobility is found to be
a decreasing function of the carrier density [5, 40], the exclusion layer allows to have a large
mobility at the largest densities.





2. SPIN-ORBIT INTERACTION IN GAN-BASED
HETEROSTRUCTURES

2.1 Spin-orbit interaction in solids and heterostructures

Spin-orbit interaction (SOI) is an effect related to the motion of an electron in an electric field.
In the rest frame of the electron, the electric field is seen as a magnetic field, which acts on the
magnetic dipole of the electron (due to the spin). This effective magnetic field for a particle
moving with velocity v in a field E is given, in SI units, by

B = −
( v
c2 × E

)
, (2.1)

c being the speed of light.

The SOI Hamiltonian for a given electric potential V(x) can be calculated classically as
H = −µ · B; this is correct in its form, but a relativistic theory is required to have the correct
proportionality constant.The Dirac equation in the non-relativistic limit [51, chap. 5] yields

HSO =
e~

4m2c2 p · (σ × ∇V(x)) , (2.2)

where m is the electron mass, and σ is the Pauli matrices vector.

In the atomic case, i.e. in a central potential, we can rewrite ∇V(x) = (dV/dr)(r/r), and,
rearranging the triple product, find HSO ∝ (r × p) · σ = L · S, (L, S being the orbital angular
momentum and the spin); this Hamiltonian is usually treated using the total angular momentum
J. In solids, the description of spin-orbit interaction is complicated by the details of the crystal
lattice. Qualitatively, if the electronic states are represented in an atomic orbitals picture, one
can say that the p-like (L = 1) bands are affected by the spin-orbit, while the s-like (L = 0) are
not. This “atomic” part of the SOI is usually taken into account in band structure calculations,
and is found to affect mainly the valence band.

Valence bands of semiconductors are (at the zone centre) p-like states. The 3-fold degener-
acy is removed by SOI, and the j = 3/2 and j = 1/2 states are split. A simple model to describe
this band structure is the 4-band Kane model (for an introduction see Ref. [35, chap X]). Within
this model, atomic-like states are utilised as basis functions. The SOI effect on s-like conduc-
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tion band is only in the value of the effective mass. In analogy with the atomic case, the SOI
affects the “orbital motion” of electrons, but retains the Jz degeneracy.

Extended models and more sophisticated band structure calculations can give a better es-
timation of this effect [109]; in the case of GaN, a removal of spin degeneracy in the conduction
band is also found, as discussed below.

To remove the spin degeneracy, an inversion-asymmetric potential is required [109, chap.
6]. Such a potential can be related to asymmetry in the bulk lattice (referred as BIA, bulk
inversion asymmetry), or, in the case of a quantum well, to the confinement potential (SIA,
structural inversion asymmetry). These terms can be included in band structure calculations.

The subject of the thesis is indeed this degeneracy removal as effect of the spin-orbit inter-
action.

Finally, note that the degeneracy removal is described in terms of an effective magnetic
field, which leads to an energy splitting as in the Zeeman effect; often, also the vector Ω is
defined to describe the spin precession in this effective field (after rewriting the Hamiltonian as
HSO = ~σ ·Ω).

2.2 Spin-orbit interaction in wurtzite semiconductors

The spin-orbit interaction in semiconductors with the wurtzite structure, such as GaN and AlN,
and in 2DEGs hosted in them, is a somewhat puzzling topic. On the theoretical side, the in-
volved mechanisms are different and more subtle than those acting in the more common (and
more widely investigated, both theoretically and experimentally) zinc-blende semiconductors
(see Ref. [39, chap. III] for a review of SOI in zinc-blende). On the experimental side, the
measured spin-splitting energy has been found to differ markedly, from 0 (i.e., non detectable)
to 13 meV, without a clear correlation of the energy values with the sample parameters.

In this section, a summary of the theoretical studies of SOI in wurtzite is reported, with a
particular attention to the case of 2DEGs. The experimental results are summarised in section
2.4.

As mentioned above, the terms leading to spin splitting in conduction band can be classi-
fied as BIA or SIA, according to their origin; the latter is usually called “Rashba effect” or
“Byckhov-Rashba effect”, while the former is called “Dresselhaus term”. Before describing
the physical mechanisms behind SOI in details, I will briefly mention the angular dependence
of the vector Ω, and remark the differences between wurtzite and zinc-blende. A comparison
of the different terms is shown in table 2.1. The Rashba term is the same in the two lattices;
in wurtzite, Rashba and Dresselhaus have the same angular dependence, while in zinc-blende
Rashba and Dresselhaus have different angular dependence.

In the case of a 2DEG in the xy-plane, only the x and y components are retained, and the kz is



2.2. Spin-orbit interaction in wurtzite semiconductors 13

Wurtzite Zinc-blende
Rashba αR(ky,−kx, 0) αR(ky,−kx, 0)

Dresselhaus γ(bk2
z − k2

‖
)(ky,−kx, 0) γ

(
kx(k2

y − k2
z), ky(k2

z − k2
x), kz(k2

x − k2
y)
)

Tab. 2.1: Comparison of the vector ~Ω in the case of bulk wurtzite and zinc-blende for the different SOI
terms [42, 78].

(a) (b)

Fig. 2.1: Energy spectrum for a 2DEG with Rashba spin-orbit interaction. Panel (b) reports the depend-
ence on the k in the radial direction, and a comparison with the energy spectrum without the
interaction. The construction of the energy splitting, as described in section 2.4, is also shown.

replaced by its average value in the quantum well. If we introduce the expressions kx = k‖ cosθ
and ky = k‖ sinθ, for the case of wurtzite it is found that

Ω ∝ k‖(sinθ,− cosθ), (2.3)

with k‖ = (k2
x + k2

y)1/2. This angular dependence shows that the Rashba interaction is isotropic.
Figure 2.1 shows the energy dispersion of a 2DEG with a spin-orbit interaction of the Rashba
type. The original parabolic band splits in two concentric bands for the two spin projection; the
Fermi surface in the kxky plane, which is a single, spin-degenerate circumference without SOI,
becomes two concentric circumferences.

In the case of a 2DEG, for the zinc-blende the Rashba term has the angular dependence
of equation (2.3), while the Dresselhaus term can be rewritten, with the help of trigonometric
identities, as
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Ω =γk2
z(−kx, ky) + γ(kxk2

y,−kyk2
x) =

=γk2
zk‖(− cosθ, sinθ) + γ

k3
‖

4
(cosθ − cos 3θ,− sinθ − sin 3θ) =

=γ

k2
z −

k2
‖

4

 k‖(− cosθ, sinθ) + γ
k3
‖

4
(− cos 3θ,− sin 3θ);

(2.4)

the first term is usually referred as linear Dresselhaus term, the second being the cubic Dressel-
haus (or Dresselhaus tout court) term. The SOI in zinc-blende is thus anisotropic, and this
feature has been observed experimentally [78, 46]. This does not occur in wurtzite.

Byckhov-Rashba effect This effect, in its original formulation [19], originates from the pres-
ence of an electric field which creates an asymmetric potential for the electrons. In a hetero-
structure, the electric field is the internal built-in field, as well as any external field, in particular
the one due to a bias on a gate electrode. The magnitude of this effect depends on the material.
In the case of nitride semiconductors, the electric fields due to spontaneous and piezoelectric
polarisation are relevant as well.

For an electron in the xy plane, the Hamiltonian is

HBR = αBR(σ × k) · ẑ = αBR(σxky − σykx). (2.5)

The coefficient αBR depends both on the details of the heterostructure (width and shape of
the well, composition of the barriers) and on the band structure of the underlying materials. For
wurtzite semiconductors it can be calculated according to the theory developed by Litvinov in
Refs. [68, 69]. This theory obtains the coefficient in the framework of a k ·p 8×8 band structure
calculation. It takes into account external electric fields, electric fields in the heterostructure
(including polarisation fields), strain, crystal field and spin-orbit interaction in the valence band.
The coefficient αBR can be written as

αBR = P1P2

∣∣∣∣∣∣
〈

dβ(z)
dz

〉∣∣∣∣∣∣ , (2.6)

where P1,2 are the momentum matrix elements. In a heterostructure, the function β(z) is the sum
of terms describing the Rashba effect for the different layers. It depends on the band structure
and the material parameters, and on the external fields. The triangle brackets represent the
average over the ground state of the quantum well (〈 f 〉 ≡

∫
Φ∗ fΦ dz, Φ being the ground state

envelope function).

As an example, we can consider the case of a quantum well W with two barriers L and R
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Fig. 2.2: Sketch of the quantum well considered in equation (2.7).

(see figure 2.2). In the chosen reference frame, the well extends from 0 to w. In this case〈
dβ(z)

dz

〉
= Φ2(0)(βW − βL) + Φ2(w)(βR − βW) + e〈BLFL〉 + e〈BWFW〉 + e〈BRFR〉. (2.7)

In this equation, the triangle brackets represent the average over the corresponding region.
The coefficients Bi and βi are involved functions of the band structure and material parameters
of the i-th layer; the exact formulae can be found in Ref. [68]. Fi is the electric field in the layer.

This formulation highlights that the Rashba coefficient is determined mainly by the electric
field inside the quantum well; this field is determined by the charge density in the well. How-
ever, the charge is a function of the barriers composition, especially in the case of polarisation
doped heterostructures (see figure 1.3); in particular, the electric field increases with x [47], and,
from equation (2.7), the Rashba parameter is expected to increase accordingly. Moreover, the
contribution of the barriers is proportional to the penetration of the wavefunction in them.

In Ref. [68] the spin-splitting energy of a 2DEG hosted in an AlGaN/GaN heterostructure
is calculated, comprising both the effect of doping and polarisation. The splitting is found
to be strongly dependent on x, but does not exceed 1 meV (figure 2.3). However, in actual
samples (as those reviewed in section 2.4) the Al content and the density do not exceed 0.35
and 1.2·1017 m−2, respectively. From the calculated carrier density it is possible to recover the
Rashba parameter αBR. It depends on x with an approximately linear relation; it is also found
that αBR depends approximately linearly on the carrier density too (αBR = gn), with a coefficient
g ≈ 0.57 · 10−30eV m3. This linear relation is indeed expected since α is proportional to the
electric field in the channel, which is proportional to the carrier density.

Dresselhaus effect in bulk wurtzite and WSIA The bulk inversion asymmetry (BIA) of
lattices such as wurtzite and zinc-blende contributes to the spin splitting with an additional
term. In zinc-blende this yields, for electrons in conduction band, a term proportional to k3 (see
also table 2.1), namely the Dresselhaus effect.

In wurtzite, Lew van Voon et al. [66] found, in addition to the Dresselhaus cubic term,
a linear term called wurtzite structural inversion asymmetry (WSIA) or Rashba effect in bulk
wurtzite. These terms have been investigated in band structure calculation using the k · p
approximation and the tight binding method.
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Fig. 2.3: Calculation of Rashba parameter α and spin-splitting energy ∆E as a function of the aluminium
content x in the barrier in a AlxGa1−xN/GaN heterostructure. The barrier is 10-nm-thick with
doping concentration of 1018 cm−2. Inset shows the shape of the quantum well considered in
this calculation. Adapted from Ref. [68].

In particular, in Ref. [42] an 8×8 Kane model is constructed, and the two terms are retrieved.
The chosen basis functions are given by linear combination of four band edge states with s-like
and p-like symmetry, taken with spin-up and spin-down. The Dresselhaus term is

HD = γwz(bk2
z − k2

‖
)(σxky − σykx). (2.8)

The linear WSIA term can be written as

HWSIA = αWSIA(σxky − σykx). (2.9)

To calculate the parameters b, γwz and αWSIA, the linear combination of atomic orbital
(LCAO) method has been applied. In the case of ideal wurtzite lattice, in a first-neighbours
LCAO approximation, only the Dresselhaus term is found. Second-neighbours interaction of
cations and anions leads to an s-pz mixing in the conduction band, which yields the WSIA.
Deviations from the ideal structure (caused by crystal field and strain) also lead to a WSIA-
like term [103]. The model in Ref. [42] includes these effects as well. From calculations in
Refs. [42, 104], the values of the parameters are found to be b ≈ 4, γwz=0.32 ·10−30 eV m3 and
αWSIA=0.9·10−12 eVm.

Conduction bands coupling When the band structure of a wurtzite material is calculated
from that of a zinc-blende material, a band folding effect arises, as remarked by Lo et al. [72].
They calculated the band structure with the LCAO method for gallium nitride, shown in figure
2.4.

From a single zinc-blende band, two wurtzite bands (C1 and C3) are generated; along the ΓA
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Fig. 2.4: Band structure of gallium nitride with wurtzite lattice (from Ref. [72]). (a) Band structure in
the first Brillouin, along the directions shown in the inset (b) Detail of the zone centre (c) Detail
of the aluminium nitride bands.

direction (i.e., along the kz direction in the first Brillouin zone), they are labelled ∆C1 and ∆C3;
∆C1 is an s-like state, while ∆C3 has a large p-component. These calculations show that these
two bands are separated at k = 0. In GaN, the bands are actually coupled, and an anticrossing
appears at a point along the ΓA direction with k‖ , 0. Because of this coupling, the p-like
component is enhanced in the lowest conduction band; this is shown in figure 2.5b. This hybrid
configuration enhances the spin-orbit interaction in the lowest conduction band, and causes
spin-splitting in it, as shown in the figure 2.5c. It is found that the spin-splitting is a function of
kz. In particular, as shown in figure 2.5a there is a discontinuity at the value of kz corresponding
to the anticrossing point: before this point, the energy splitting is increasing and smaller than
2 meV; at the discontinuity the energy splitting jumps to 6 meV, but then it has a decreasing
trend. According to Ref. [73], this effect is taken into account in the Hamiltonian with a
coefficient γband which sums to the γwz coefficient.

In the case of a quantum well, the ∆C1 − ∆C3 coupling is enhanced by the presence of the
electric field, and is inversely proportional to the well width; in Ref. [72] a spin splitting energy
between 2 and 5 meV is calculated for a AlN/GaN quantum well.

2.2.1 Total spin-orbit interaction and spin splitting in 2DEGs

In summary, the spin-orbit Hamiltonian for a 2DEG in a wurtzite lattice can be written as a sum
of the different terms described in the previous section [103]:

HSO =
[
αBR + αWSIA − (γwz + γbands)

(
b〈k2

z〉 − k2
‖

)]
(σxky − σykx), (2.10)
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Fig. 2.5: (a) Energy dispersion and spin-splitting for the ∆C1 and ∆C3 bands as a function of the
wavevector kz (along the ΓA direction). The labels “ideal” and “wz” refer to a calculation
with or without the WSIA effect, respectively. (b) Probabilities of s- and p-components for the
∆C1 and ∆C3 bands. (c) Details of the band structure near the anticrossing point. From Ref.
[72].
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where αBR describes the effect of the electric field, both external (if tuned with a gate electrode)
and internal, αWSIA the WSIA effect, the coefficient γwz describes the Dresselhaus term and
γbands the ∆C1 − ∆C3 coupling. 〈k2

z〉 is the mean square of the momentum in the direction z,
calculated for the ground state of the quantum well. The interaction depends on the quantum
well shape and on the 2DEG density (through k‖ and 〈k2

z〉, because of the electric field due to
the 2DEG).

The total energy splitting is

∆E = 2
[
αBR + αWSIA − (γwz + γbands)

(
b〈k2

z〉 − k2
‖

)]
k‖. (2.11)

The parameters αWSIA, γwz, γbands and b can be estimated from band structure calculation,
as reported above; moreover, calculations for a specific heterostructure should be considered,
as described in Ref. [72].

As for the Rashba parameter αBR, its dependence can be calculated for every heterostructure
using the theory developed by Litvinov and reported above.

The value of 〈k2
z〉 should be evaluated by solving the coupled Schrödinger and Poisson

equation for the quantum well. It is given by
∫
|∂Φ/∂z|2dz, Φ being the wavefunction.

When all the terms are taken into account, the energy splitting dependence on k‖ can be
more complex than those sketched in figure 2.1. If either the linear or the cubic term dominates,
the energy splitting will be monotone; in this case, ∆E is zero only at k‖=0. In intermediate
configurations, the spin splitting can be zero at finite k‖; this condition is found when

αBR + αWSIA − (γwz + γbands)
(
b〈k2

z〉 − k2
‖

)
= 0. (2.12)

In this case, the Fermi surfaces of the two non-spin-degenerate subbands are two distinct circles
in the kxky plane.

In magnetotransport measurements, to be discussed in the following, the energy split is
measured at the Fermi wavevector kF. Indeed, when different samples are compared, the para-
meter assumed to control the spin splitting is the carrier density n, or kF =

√
2πn. In the

estimation of ∆E as a function of n (or kF), it is necessary to take into account the dependence
of αBR and 〈k2

z〉 on n itself. Moreover, discontinuities may appear, since the spin splitting due
to the conduction band coupling is discontinuous as a function of kz (see figure 2.5a).

However, since the entity of different contributions to SOI can differ from sample to sample,
a comparison of a group of samples as a whole to the theoretical estimations reported above may
only be approximate, and a simple parametrisation of the experimental data could be hard.
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2.3 Observable effects of spin-orbit interaction

Different effects bearing traces of the spin-orbit interaction have been experimentally investi-
gated in semiconductor heterostructures (for a review see Ref. [112]): resonant Raman scat-
tering, where a split peak in intrasubband excitation reveals the SOI [58]; photogalvanic effect
experiments, where a peculiar dependence of the photocurrent on the incidence angle of the
light is the SOI signature [44]; and magnetotransport experiments, which is the subject of this
work. In nitrides semiconductors, in particular, circular photogalvanic effect [106] and mag-
netotransport have been exploited.

The presence of SOI can be observed in the magnetoconductance through two different
effects and in two different magnetic field regimes: the weak antilocalisation effect (WAL) at
low field, and a double frequency component in Shubnikov–deHaas (SdH) oscillations at high
field. SOI affects these two kinds of measurement in two very different ways.

WAL is an effect of interference between the 2DEG electrons scattered by impurities (details
in sections 3.3); the SOI can affect it in two ways. First, it can lead to a relaxation of spin, i.e. the
spin is randomly changed during the electron trajectory, changing the interference amplitude.
This relaxation occurs through the so-called D’yakonov-Perel’ mechanisms [39, chap. IV]: the
electron feels the SOI effective field, which depends on the momentum; upon scattering, the
effective field changes randomly with the momentum; this random effective field relaxes the
spin. As for the second way, SOI affects WAL acting as a spin-dependent vector potential. In
particular, this effect is relevant when the impurity scattering is very small, as in high mobility
2DEGs, where the SOI can rotate the spin without randomising it. The WAL experiment reveals
the change in the relative orientation of interfering electrons, and allows extracting the SOI
parameters.

SdH effect (described in details in section 3.2) manifests itself as oscillations of the mag-
netoresistivity whose frequency spectrum is sensitive to carrier density and to the presence of
parallel conductive channels in the sample. The effect of SOI is to split the conduction band
(as shown in figure 2.1); the two spin channels will have slightly different carrier density, and
thus they will be revealed by a SdH measurements as two frequency oscillations (beatings pat-
tern). The energy splitting between the two spin levels, referred as zero-field spin splitting (to
distinguish from Zeeman splitting), or simply spin splitting, is then directly measured.

The observation of the double frequency in Shubnikov–deHaas effect imposes strict require-
ments on the electron mobility and the carrier density. The mobility damps the oscillations at
low field, and thus it is required to be high enough in order to see the effect at reasonably low
fields. As for the carrier density, at low carrier density the frequency can be too low to allow an
observation of a sufficient number of oscillations and detect the two frequencies behaviour.
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2.4 Literature review

Table 2.2 is a summary of the magnetotransport experiments reported in the literature on spin-
orbit interaction in AlGaN/GaN heterostructures. In figures 2.6, 2.7, 2.8 I show the values
reported in the literature for the energy splitting and the Rashba parameter as a function of the
carrier density and mobility. Note that the mobility values are not reported for all samples.

The strength of the spin-orbit interaction is usually reported as spin-splitting energy ∆E or
as the Rashba coefficient α; note that α an effective parameter, since, as described previously,
∆E depends on several mechanisms; the two quantities are related by ∆E = 2αkF, taking kF as
the Fermi vector in the absence of spin-orbit interaction (see figure 2.1).

Small splitting is usually reported from WAL measurements, whereas SdH gives larger val-
ues; only Zhou et al. [115] reported a value smaller than 2 meV from SdH, and verified it in
WAL measurements. Thillosen et al. [98] found a small splitting in WAL measurements and
beatings in SdH, which would yield a larger splitting value; however, they attributed the SdH
beatings to inhomogeneities in the sample (these values are marked in table 2.2 with a question
mark).

Note also that in two cases reported in the table the value of the spin splitting could not be
measured, in the limit of the employed experimental technique; that is, in the case of SdH, no
beatings or no double frequency in the Fourier transform can be resolved, and, in the case of
WAL, only weak localisation observed. In this case the symbol “n.d.” (not detected) is used in
the table.

The spin splitting is usually reported as a function of carried density, and referred to be pro-
portional to n [67]; nevertheless, small values have been reported at the highest carrier density.
Olshanetsky et al. [82] could not measure the splitting at the highest carrier density reported for
this kind of studies.

To combine the information about carrier density, mobility and energy splitting, figure 2.9
reports the density and the mobility on the x and y axes, respectively, while the different marker
types depend on the splitting ∆E. The energy values are arbitrarily classified as “small” (∆E <
2 meV), “medium” (2 < ∆E < 5 meV), and “large” (∆E > 5 meV). In figure 2.6 the three
groups are separated by dotted lines.

We note that some authors [89, 64, 98, 101] changed the carrier density in the sample
through a gate bias; for two of them [89, 64], the results are reported in the table. However, the
Rashba parameter is found to be constant in the investigated density range. Lo et al. [73] repor-
ted the control of the density via persistent photoconductivity effect; while they could control
the density in a narrow range, the energy splitting was varied from zero (in the dark) to about
10 meV.
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Fig. 2.6: Energy splitting as a function of carrier density for samples in table 2.2. Empty symbols mark
WAL measurements, solid symbols SdH measurements; different symbols refer to different
references: see table 2.2. Horizontal lines separate three groups of samples according to their
splitting energy as described in the text.

Fig. 2.7: Rashba coefficient as a function of carrier density for samples in table 2.2. Legend: see fig-
ure 2.6.
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Fig. 2.8: Energy splitting as a function of electron mobility for samples in table 2.2. Legend: see fig-
ure 2.6.

Fig. 2.9: Mobility as a function of carrier density for samples in table 2.2. Symbols are defined by
measurement type and energy splitting.
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3. MAGNETOTRANSPORT IN 2DEGS

The main part of this work involves the investigation of transport in 2DEGs in presence of a
magnetic field, to measure the spin-orbit interaction in these systems. In this chapter, the theory
of the investigated phenomena is reported.

First, the classical magnetotransport, described by the Drude model, will be presented: this
is the standard tool for the basic characterisation of a material. Then, the Shubnikov–deHaas
effect will be described: this effect allows both to investigate the standard properties of a 2DEG
and to determine the spin-splitting energy. Finally, the weak localisation phenomenon will be
presented: it probes the interference properties of electron waves, and can be strongly affected
by the spin-orbit interaction, yielding a distinctive pattern called “antilocalisation”.

3.1 Classical magnetotransport

The properties of charge carriers in materials are usually investigated through the analysis of
the magnetoresistance. Fundamental characteristics such as carrier density and mobility in bulk
semiconductors and 2DEGs can be determined from the combined measurements of Hall effect
voltage and resistivity, at fixed magnetic field or as a function of the magnetic field magnitude,
in the framework of the classical Drude model for conductivity [52, chap. XV]. In particular,
this kind of measurements are important for the study of systems where more than one carriers
type or conductive channels are present.

We will consider a two dimensional system in the xy plane; the current can flow along x, and
the electric field can be along x and y; the magnetic field will be along z. This geometry is that
of the standard “Hall bar”, sketched in figure 3.1. The x direction is referred as longitudinal
direction, and y is the transverse direction.

When a magnetic field B is applied, the Hall effect gives rise to an electric field perpendicular
to the current and to the magnetic field. Then, the resistivity (or conductivity) scalar must be
replaced by a 2×2 tensor. The transverse component of the resistivity is ρxy = Rxy = Vxy/I.

In the following, we will consider the case of a single type of carriers, with a single a
scattering time τ1 (and thus a single mobility µ1 = eτ1/m1), and a carrier density per unit area
n1; such a system is a single channel system. Then, the multiple channels system (or multicarrier
system) will be considered. In all the cases, the system will be considered isotropic, so that
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Fig. 3.1: Hall bar geometry.

effective masses are scalars. The scattering times are assumed to be constant (independent of
energy) or to have a narrow distribution in energy (so that the average value can be taken); this
hypothesis is well suited for 2DEGs and degenerate systems.

The Hall effect will be derived using the Drude phenomenological approach, suitable for
the above hypotheses; a more rigorous treatment would require, in a semiclassical framework,
the solution of the Boltzmann equation.

In the Drude approach, the electron with charge −e moves classically in an electric field
E and in a magnetic field B, in a dissipative medium described by the scattering time τ. The
equation of motion is

mv̇ = −eE − ev × B −
m
τ

v. (3.1)

The system is investigated in the steady state, hence v̇ = 0. Arranging the above equation, and
inserting the current density as J = −env and the mobility as µ = eτ/m, the equation can be
written as 

Jx =
enµ

1 + (µB)2

(
Ex − µBEy

)
Jy =

enµ
1 + (µB)2

(
µBEx + Ey

)
,

(3.2)

and the conductivity components are

σxx = σyy =
enµ

1 + (µB)2 , (3.3a)

σxy = −σyx = −
enµ2B

1 + (µB)2 . (3.3b)

The resistivity is recovered inverting the conductivity tensor:

ρxx =
σxx

σ2
xx + σ2

xy
, ρxy =

σxy

σ2
xx + σ2

xy
. (3.4)

The longitudinal resistivity is then ρxx = 1/enµ, independent of B, and the transverse is a
linear function of B: ρxy = B/en. Figure 3.2 shows an example of longitudinal and transverse
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conductivity and resistivity for a channel with n = 1 · 1017 m−2 and µ = 5 m2/Vs.

The above two relations allow to determine n and µ with a single measurement of ρxx and
ρxy at a fixed finite field.

When two or more conductive channels are present, the experimental determination of the
parameters is not straightforward. Assuming that the channels feel the same electric fields (i.e.,
they are parallel channels), the total conductivity tensor is given by the sum of tensors whose
components are analogous to those in equation (3.3). For an N-channel system they are given
by

σxx = e
N∑

j=1

n jµ j

1 + (µ jB)2 , (3.5a)

σxy = eB
N∑

j=1

s jn jµ2
j

1 + (µ jB)2 . (3.5b)

where the carrier density n j and µ j are the j-th carrier density and mobility, e is the (positive)
electron charge, and s j is -1 for electrons and +1 for holes; the mobility is always positive. Note
that this convention is not standard; the elementary charge can be taken with a definite sign for
each channel, then giving the mobility a sign (positive for holes, negative for electrons); in the
following, a convention where both n j and µ j have sign will be applied: in this case, the symbol
s j is dropped. The resistivity is found using equations (3.4).

The presence of multiple channels affects the conductivity and the resistivity markedly; in
particular, the longitudinal resistivity is not a constant as a function of the magnetic field. An
example for the case of two channels is shown in figure 3.2; the two channels parameters are
n1 = −1 · 1017 m−2, µ1 = −5 m2/Vs and n2 = −0.8 · 1017 m−2, µ2 = −0.8 m2/Vs.

Finally, it is worth noting that the parameter which distinguishes two channels is the mobil-
ity; indeed, since equations (3.5) are linear in n j, two channels with µ1 = µ2 and n1 , n2 will
contribute as a single channel with total density n1 + n2.

Although this behaviour of the resistivity components as a function of B can be a qualitative
indication of a multicarrier system, when there are more than one conductive channels a quant-
itative extraction of the transport parameters (n j and µ j) from the data is difficult because of the
large number of parameters. The procedure can be eased by the “reduced conductivity tensor”
(RCT) formalism [61]. In this approach a normalisation of the data reduces the numbers of fit
parameters by 1, assuming the zero-field longitudinal conductivity as a known parameter. This
value is given by

σxx(B = 0) = σ0 = e
N∑

j=1

n jµ j (3.6)

Note that the transverse conductivity is always zero at zero field.



30 3. Magnetotransport in 2DEGs

(a) (b)

Fig. 3.2: Calculated (a) conductivity and (b) resistivity for the cases of one and two channels, with n1 =
−1 · 1017 m−2, µ1 = −5 m2/Vs and n2 = −0.8 · 1017 m−2, µ2 = −0.8 m2/Vs.
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Fig. 3.3: Calculated RCT X and Y components for the cases of one and two channels, with n1 = −1 ·
1017 m−2, µ1 = −5 m2/Vs ( f1 = 0.89) and n2 = −0.8 · 1017 m−2, µ2 = −0.8 m2/Vs ( f2 = 0.11).

This formalism was developed in the hypothesis of the van der Pauw geometry. However, a
measurement in a Hall bar device allows the measurements of the two components ρxx and ρxy,
from which the resistivity tensor can be reconstructed, and inverted to get the conductivity and
apply the RCT formalism.

The reduced components are:

X =
σxx

σ0
=

N∑
j=1

f j

1 + (µ jB)2 , (3.7a)

Y = 2
σxy

σ0
= 2B

N∑
j=1

f jµ j

1 + (µ jB)2 . (3.7b)

The conductivity channels are defined by their mobility µ j; the parameters f j are the con-
ductivity fractions due to each channel, and are given by

f j =
en jµ j

σ0
(3.8)

The f js satisfy the relations 0 ≤ f j ≤ 1 and
∑

f j = 1.

In figure 3.3 the RCT components are reported for the one channel and two channels systems
already shown in figure 3.2.

This formulation gives a criterion to verify if only one channel is present. In this case, the
Y component has a maximum value (or a minimum value, according to the sign of the carriers)
of -1, and this maximum is found at B = µ−1. Moreover, at this field value, the X component
has the value of 0.5.
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The fitting procedure requires the minimisation of a χ2 function defined as

χ2(µ, f) =
1

2(L + 1)

L∑
n=0

[(
X(Bn;µ, f) − Xn

)2
+

(
Y(Bn;µ, f) − Yn

)2
]
, (3.9)

where Xn, Yn, Bn are the L experimental values of the RCT components and of the magnetic
field, respectively.

From the fitting procedure the values of f j and µ j are retrieved. The carrier density n j is
found from

n j =
f j

µ j

σ0

e
. (3.10)

In Ref. [61] this analysis is estimated to be reliable for channels with f > 0.01.

3.2 Shubnikov–deHaas effect

The Drude conductivity requires corrections to include quantum effects. In a magnetotransport
experiment, two prominent effects should be considered: Shubnikov–deHaas effect and weak
localisation or antilocalisation; the latter dominates at very low fields, while the former can be
observed at higher fields.

Both these corrections are calculated in the linear response theory, using the Kubo formula
[74, chap. 3][36]. This formula allows the calculation of the response function (the conductivity
in the case of electronic transport experiments) through the calculation of a retarded two-particle
correlation function of current operators; for this reason it is called current-current of four-
current1 correlation function. It can be calculated using Green functions and diagrammatic
expansions techniques.

Both these effects bear signatures of the spin splitting in the conduction band. The weak an-
tilocalisation itself is a consequence of the spin-orbit interaction; it will be discussed in section
3.3.

The Shubnikov–deHaas (SdH) effect gives oscillations in the longitudinal resistivity (or
conductivity) as a function of magnetic field, both in 3D and in 2D samples. The effect involves
conducting electrons (or holes) which move in a plane perpendicular to the applied field. Then,
a 2DEG offers a simpler system for the study of such effect, and its experimental investigation
is easier than in 3D system; indeed, the SdH effect is a standard test to verify the actual presence
of a 2DEG in a heterostructure.

The distinctive pattern of the presence of spin-orbit interaction are beatings in these oscilla-
tions. However, other phenomena may lead to similar beatings, so that the SdH measurements
require a careful analysis to correctly evaluate the spin splitting in the investigated system.

1 The four-current is defined, in the four dimensional relativistic notation, as Jµ = (c%, j), where % is the charge
density and j the current density
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The main feature, i.e. the oscillatory behaviour, of SdH effect is described in this section.
Other details will be discussed in connection to the experimental results in section 4.2.3.

3.2.1 Main features of the Shubnikov–deHaas effect

The SdH oscillations are periodic and damped in the inverse magnetic field. Figure 3.4 shows
examples of experimental magnetoresistivity curves. In this figure different features of the
SdH effect can be observed: oscillatory behaviour, damping, temperature effect, effect of spin
splitting.

The oscillatory behaviour results from the emptying of the Landau levels as a function of an
increasing magnetic field. The energy of the n-th Landau level is given by (see section 1.1.1)

En(B) = ~ωc

(
n +

1
2

)
=
~e
m

B
(
n +

1
2

)
, n = 0, 1, . . . , ∆E(B) =

~e
m

B, (3.11)

It is important to determine the filling condition of Landau levels, in particular, the num-
ber of filled levels, and if the last level is completely filled or not, to determine the transport
properties. The filling factor ν (also called filling index, or Landau index) is given by the ratio
between the number of electrons in the system and the number of states in each Landau level.
The Landau levels degeneracy is a function of the magnetic field; indeed, the density of states
of the 2DEG at zero field rearranges in a series of discrete levels, whose spacing increases with
increasing magnetic field. Using the densities per unit area, the filling factor is ν = n2D/nB,
where n2D is the 2D carrier density and nB is the degeneracy of the Landau level per unit area;
its value can be calculated from the DOS of the 2DEG at zero field D0 = gsm/(2π~2) (where
gs = 2 counts the two spin states in the same Landau level):

nB = D0∆E(B) = gs
e
h

B, (3.12)

so that the filling factor is

ν =
n2D

nB
=

h
e

n2D

gs

1
B
. (3.13)

If the total number of electrons is fixed, the Fermi energy is pinned to the highest occupied
Landau level while the magnetic field varies. In figure 3.5a the position of the Fermi energy is
marked as a function of magnetic field. The Fermi energy switches from one level to the other
at critical values of the field, which correspond to integer values of the filling factor.

This is explained in figure 3.5b, which sketches the density of states as a function of energy;
note that in the figure the Landau levels have a finite width, to ease the understanding of the
picture, while in this discussion the DOS is assumed to be a series of delta function. When
the number of filled Landau levels is an integer n, the Fermi level EF lies between the n- and
n + 1-level, and the DOS at EF is then 0. When EF lies inside a level, the DOS will be different
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(a)

(b)

Fig. 3.4: Examples of Shubnikov–deHaas oscillations in (a) GaN 2DEG [2] and (b) InGaAs 2DEG [32].
Note the different magnetic field scale, due to the different mobility of the two samples. In
(a), two measurements at different temperature (0.70 K and 5.0 K) are shown; the inset reports
the position of the extrema of the oscillations. In (b), beating nodes are visible, related to a
two-spin-subbands occupancy; a curve (marked with B‖) taken with the magnetic field parallel
to the 2DEG is also reported: no effect is seen in this case.



3.2. Shubnikov–deHaas effect 35

(a) (b)

Fig. 3.5: (a) Variation of the Fermi level (thick line) in a 2DEG with the magnetic field. The energy
scale is the Fermi energy at zero magnetic field E0

F = ~2πn2D/m, the magnetic field scale is
B0 = 2e/hm; on the upper scale the filling factor ν is reported. The thinner lines are the Landau
levels dispersions, En/E0

F = (n + 1/2)B/B0. (b) Sketch of the density of states as a function
of energy in a magnetic field, with integer filling factor (upper panel) and half integer (lower
panel). The vertical lines mark the Fermi level. The Landau levels are plotted with an arbitrary
lineshape.

from 0 and have a maximum for half integer values of the filling factor.

Since the conductivity is proportional to the DOS at EF, it will be zero2 when EF lies between
two levels, and have a maximum when the DOS has a maximum. Actually, the minimum value
of the conductivity is not 0, because, in real samples, the DOS is finite between the Landau
levels.

The periodicity of the maxima (or minima) in the conductivity with the magnetic field is
then given by the periodicity of the filling factor. In particular, the condition ν = n is fulfilled at

1
Bn

=
e
h

gs

n2D
n. (3.14)

In the inset of figure 3.4a an experimental result for the position of the extrema as a function of a
sequence of integers is reported, illustrating this relation. This equation shows that the minima
are evenly spaced in the inverse magnetic field:

1
Bn+1

−
1

Bn
=

e
h

gs

n2D
. (3.15)

The carrier density can then be calculated from the position of the extrema, or from the oscilla-
tion frequency f :

f =
h

gse
n2D ⇔ n2D = gs

e
h

f . (3.16)

Note that analogous arguments explain the oscillations in the magnetisation (deHaas–vanAlphen

2 In this field range σxx ∝ ρxx, so that also the resistivity is 0.
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effect) and are at the basis of the theory of the integer quantum Hall effect.

When two parallel conductive channels with different carrier density are present in the sample,
the sum of the two oscillations causes a modulation in the magnetoresistance (beatings).

In the case of a spin-split conduction band, interesting for this work, there are two conduct-
ive channels with very similar density (frequency) and amplitude; hence, a beatings pattern with
node is expected; an example can be found in figure 3.4b.

In general, if the two conductive channels are two subbands in the quantum well, their
density difference and the frequency difference are proportional

n2 − n1 = ∆n = gs
e
h

∆ f , (3.17)

gs being the spin degeneracy.

The energy separation ∆E = E2 − E1 between the subband minima is related to ∆n by

n2 − n1 = kBT
gsm

2π~2 ln
1 + e(EF−E2)/kBT

1 + e(EF−E1)/kBT
. (3.18)

Hence, in the limit kBT � ∆E� EF

∆n =
gsm

2π~2 ∆E ⇔ ∆E =
2π~2

gsm
∆n =

e~
m

∆ f . (3.19)

In the last formula equation (3.17) is inserted.

The two frequencies can be extracted from the Fourier spectrum of the SdH oscillations,
or from the position of the minima of the envelope of the oscillations. The latter method is
well suited when the two frequencies are very close (as expected for spin-split channels), since
in this case many nodes may be observed in a small magnetic field range (further formulae
on nodes and beatings can be found in appendix A). Furthermore, the Fourier spectrum of the
experimental data may not be able to resolve two close frequencies. The node method for
extracting the spin-splitting energy is reported in the following.

According to Ref. [32], the node analysis considers two spin-split levels with equal amp-
litude; in this case, the amplitude modulation is given by (see also Appendix A)

Amplitude ∝ cos(πκ), κ =
δ
~ωc

=
δm
~eB

, (3.20)

where δ is the total spin-splitting (spin-orbit and Zeeman); it can be written, as a function of
magnetic field B, as:

δ = δ0 + δ1(~ωc) + δ2(~ωc)2 + . . . (3.21)

The coefficient δ0, i.e. the zero-field spin-splitting, is the spin-orbit term (δ0 = ∆Eso). In
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AlGaN/GaN heterostructures, because of the large effective mass (with respect to other more
common materials, such as GaAs), the 0-th order term is assumed to be the most important up
to large fields [96].

The node, or null point, is found for half-integer values of κ; inserting κ = n/2 in the
previous equation, the corresponding magnetic field value is found:

Bn =
2m
~e
δ
n
⇔ δ =

~e
2m

nBn, n odd. (3.22)

The highest-field node corresponds to κ = 1/2 (n = 1), and then

δ =
~e
2m

Blast. (3.23)

The larger the splitting, the higher the Blast value.

Since it is impossible to define a node as the “last one” (in a measurement up to a finite
field), it is useful, when a number of nodes is observed, to perform a linear fit, according to the
relation

1
Bn

=
~e

2mδ
n, (3.24)

where the n are a sequence of odd integers.

If δ = δ0 is assumed, this procedure directly yields the spin-orbit energy splitting. If the first
order term in the expansion (3.21) is retained, the function to be fitted is

n
2

=
δ0m
~e

1
Bn

+ 2δ1. (3.25)

When no node is found, and the oscillations start at Bmin, equation (3.23) can give an upper
limit to δ:

δ <
~e
2m

Bmin. (3.26)

Otherwise, if nodes cannot be found in an inverse magnetic field range T, the condition can be
set as

δ <
~e

2m T
. (3.27)

3.3 Low-field quantum corrections: weak localisation and
antilocalisation

In this section the weak localisation and antilocalisation effects will be discussed. The quantum
corrections due to these phenomena, and their dependence on magnetic field, are the signature
of the quantum interference of electrons in disordered systems.

Experimentally, weak localisation is observed as a negative magnetoresistance (defined as
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Fig. 3.6: Magnetoresistance curves in a copper thin film, at different temperatures. At the lowest tem-
perature the weak antilocalisation dip can be seen, while at higher temperature only the weak
localisation peak is observed [15].

ρ(0) − ρ(B)) with a peak at zero field; the weak antilocalisation, which occurs when there is a
significant spin-orbit interaction, is revealed as positive magnetoresistance, with a minimum at
zero field and possibly a maximum at finite field. Figure 3.6 shows one of the first experimental
observation (1984) of both these phenomena in metal thin films [15].

In the real space, the interference causing the weak localisation involves an electron which
undergoes multiple scattering, and finally returns to the origin (see figure 3.7a). This closed path
can be followed in two time-reversed directions (clockwise and anticlockwise); the electron
waves in the two paths finally interfere. In an electric measurement, this interference manifests
itself as an increase of the resistance.

A dual description of the phenomenon can be given in the momentum space [15]. An
electron in a state k is scattered at an impurity in a state k1a, and after n scattering events
through a sequence of momentum states; it has a finite probability to be in a final state with
momentum −k. It can reach the final state also through another sequence starting with k1b,
experiencing the same changes in momentum, but in reverse order (figure 3.7b). So, one can
see the original electron wave at k split in two different paths in the momentum space; the
two waves propagate (and may experience phase and spin changes) and finally interfere at −k.
Since the total change in the momentum they experience is the same, they will have the same
phase and interfere constructively.

As long as the two waves remain coherent, the recombination is described in terms of a sum
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(a) (b)

Fig. 3.7: (a) Closed scattering trajectories in the real space; the electron can follow the two time-reversed
paths (marked by solid and dashed line). (b) Interfering paths in the momentum space. The
momentum states have the same intensity (hence, they lie on a circumference); in the two paths
(that in upper side of the circumference and that in the lower) the electrons undergo the same
changes in momentum gi, but in reverse order.

of amplitudes rather than intensities, so that the backscattering is enhanced for constructive
interference and leads to the increase in the resistance3.

When spin-orbit interaction is present in the system, the spin part of the electrons states will
contribute to the amplitude of the interference. The spins in two time-reversed paths undergo
the same rotation but in opposite direction. Then, at the recombination of the waves, their
orientation will differ by a finite amount, so that the interference amplitude is reduced with
respect to the case without spin interactions. This reduction leads to the antilocalisation.

Moreover, note that since the electrons are spin-1/2 fermions, the spin has to be rotated by
4π to be brought into itself. Then, a relative rotation of 2π would give two antiparallel spins,
and make the interference of the two waves destructive, so that the enhanced backscattering
responsible for weak localisation is reduced, and the magnetoresistance changes its sign. In this
sense, the measure of the spin-orbit coupling through the weak antilocalisation is an experiment
on the fundamental properties of spin-1/2 particles [14].

A signature of the weak localisation (or antilocalisation) is found in the dependence on the
magnetic field. An external magnetic field breaks the time-reversal symmetry by changing the
relative phase of the two opposite trajectories. This reduces the interference and, at large field,
restores the resistance to its classical value.

The change in the phase ∆φ is given by the magnetic flux through the area S enclosed by the
trajectory as 2πBS/Φ0, where Φ0 = 2h/e is the magnetic flux quantum; since the time-reversed
paths are followed in opposite directions, ∆φ will be the same, but with different sign.

The typical magnetic field scale (the so-called transport field) in weak localisation experi-

3 The enhanced backscattering is a common phenomenon for waves scattering in disordered systems; see also
Refs. [11][33, chap. 5].
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ments is given by

Btr =
~

4eDτ
=
~

2el2 , (3.28)

where l =
√

2Dτ = vFτ is the mean free path, τ the transport time and D the diffusion coeffi-
cient. At this field, the magnetic flux through an area S = l2 is Φ0.

Weak localisation correction requires the scattered electrons to keep their phase coherence
along the trajectories; the phase breaking rate is thus an important scale in the description of this
phenomenon. In magnetoresistance studies, it is introduced through a characteristic magnetic
field, the phase coherence field (or phase field) Bϕ; it is defined similarly to the transport field
Btr as

Bϕ =
~

4eDτϕ
, (3.29)

The phase relaxation rate is 1/τϕ, and τϕ is the phase coherence time; note that, since τ < τϕ,
Btr > Bϕ. Corresponding to this time scale, the phase coherence length is defined as lϕ =√

Dτϕ. This length sets a cut-off to the length of the paths contributing to the coherent backs-
cattering.

The magnetic field itself can be expressed as a time scale:

τB =
~

4eDB
. (3.30)

A magnetic field B cancels the contribution of trajectories corresponding to times larger than
τB. For a discussion of the weak localisation in terms of time scales, see Ref. [15].

The weak localisation is found to be constant as a function of the magnetic field when
B < Bϕ (see figure 3.8)4. Here, it is interesting to report the qualitative derivation of this feature
of the weak localisation in terms of time scales. When B < Bϕ, τB > τϕ; in this case, the
number of paths that contribute to the coherent backscattering is not limited by B, but by the
Bϕ: the conductance is thus not affected by the magnetic field. When τB < τϕ, this number
of paths begins to shrink, and the conductance varies toward the full restoration of its classical
value (i.e., without the quantum correction). This value will be reached when the field is so
large that no coherent scattering paths exist.

3.3.1 Theoretical models for weak localisation and antilocalisation

Several models have been developed to pass from the above qualitative considerations to quant-
itative evaluations.

When the magnetic field is small compared to the transport field, and Btr � Bϕ (τ � τϕ),

4 This flat trend is not easily noticeable in experimental data such as those in figure 3.6, because Bϕ is often
very small as compared with the magnetic field range of experiments.
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the problem is simplified using the diffusion approximation; that is, the length of the trajectories
involved in quantum interference is assumed to be much longer than the mean free path, so that
the electrons scatter many time before they interfere. The characteristic magnetic field scales
defined above include the diffusion coefficient D, and are thus well defined in this regime.

In this approximation, the magnetoconductance is usually described with the theory of Hi-
kami, Larkin and Nagaoka (HLN) [55]; the magnetoconductance is given by

∆σwl(B) = −
e2

πh

[
ψ

(1
2

+
1
b

)
− ψ

(
1
2

+
bϕ
b

)]
, (3.31)

where b = B/Btr, bϕ = Bϕ/Btr = τ/τϕ and ψ(x) is the digamma function.

When the diffusion approximation is not valid, the system is in the so-called ballistic regime.
The validity of the magnetic field scales, as defined above, may be questioned in this case;
indeed, also the phase coherence length is defined differently in this regime, when the phase
coherence time is close to the scattering time [33, chap. I]. However, the conductance correction
depends only on the reduced variables b and bϕ, and thus only on the ratio between the transport
time τ and the phase coherence time τϕ.

Different models have been developed for the ballistic regime, when the diffusion approx-
imation fails [59, 110, 113, 37]. A review of these models, together with a comparison to
experimental data, is given by McPhail et al. [76]. Despite the different approaches, it is found
that the ballistic models give similar magnetoconductance trends for the same values of the
parameters.

The first method was developed by Kawabata [59]; this model, however, suffers because
of a diverging term, which needs to be compensated by adding “by hand” a suitable term.
These weaknesses led to the development of other models. Among them, I mention the model
by Zduniak et al. [113], and the model by Dmitriev et al.[37]; the latter comprises diagrams
usually not included in the standard diagrammatic expansion (the so-called “nonbackscattering
correction”). Refer to Ref. [76] for the explicit formulae for these models; the result of Zduniak
et al. is also reported in equation (4.41), page 82.

A comparison of curves obtained with the diffusive model (HLN) and with the ballistic
model by Zduniak et al. is shown in figure 3.8; the value bϕ = 0.01 was chosen, since at large
bϕ the diffusion approximation is not valid. The two models agree for small values of b; for
B < Bϕ both models give a nearly constant correction. As expected, the models depart for large
b, where the diffusion approximation does not hold.

When spin-orbit interaction is also present, the spin coherence must be addressed. If the spin
rotates appreciably or dephases during the time τ, i.e. τso < τ (τso being the spin relaxation
time due to spin-orbit interaction), the spin transport is also diffusive. This approximation is
often considered also in theories which treat the ballistic case of the weak localisation, as will
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Fig. 3.8: Comparison of weak localisation in the diffusive (HLN) model and in the ballistic model by
Zduniak et al., with bϕ = 0.01.

be discussed in the following.
Similarly to the other characteristic fields, the spin-orbit field is defined as:

Bso =
~

4eDτso
. (3.32)

The relative magnitude of Bϕ, Btr and Bso defines the actual magnetoresistance pattern as a
function of the magnetic field. Figure 3.9 sketches the expected patterns, as a function of the
reduced variable bϕ and bso = Bso/Btr. When the spin-orbit interaction is small (bso is small
compared to bϕ), only a weak localisation (WL) maximum in the magnetoresistance is found5.
At very high spin-orbit interaction, only the antilocalisation (AL) minimum is observed (this
case is sometimes referred as “antilocalisation” in contrast to “weak antilocalisation”, where a
maximum at finite field is observed). Between these extrema, the pattern with a change in the
magnetoresistivity sign is found (WAL).

The physics behind these behaviours can be understood in terms of the time scales. When
bso < bϕ, τso > τϕ, the spin is not much affected along the trajectories that contribute to the
quantum correction, and only the “standard” weak localisation shows up. When bso > bϕ, τso <

τϕ, the spin rotates appreciably during the trajectories. In this case the destructive interference
is reduced and the antilocalisation maximum appears.

Different models have been proposed, as summarised in table 3.1. Some of them are valid
in the diffusion approximation only, as defined above; some are valid only for small spin-orbit
coupling. They have been developed to be applied to the study of the spin-orbit interaction in
zinc-blende, which, as discussed in section 2.1, has a linear (Rashba) and cubic (Dresselhaus)
term in k; the case of wurtzite is simpler since the interaction has only a linear Rashba-like term

5 For example, in Ref. [82] is observed a weak localisation curve in a GaN 2DEG, claiming that the different
spin-orbit terms exactly cancel each other (see section 2.2): indeed, from the reported phase coherence time, one
can estimate the spin splitting to be smaller than 0.4 meV.
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Fig. 3.9: Sketch of the magnetoresistance patterns as a function of the parameters bϕ = Bϕ/Btr = τ/τϕ
and bso = Bso/Btr = τ/τso. bϕ has an upper bound at 1 since τ cannot exceed τϕ. The diffusive
region, when Btr is much larger than the other field scale, is also marked.

(see section 2.2).

Finally, the different models consider different aspects of the spin-orbit interaction. In the
first attempts, the spin-orbit coupling was treated only as a spin relaxation effect, which reduces
the coherence of the interfering waves; in this sense, the spin-orbit interaction is described as
a relaxation rate τ−1

so to be added to the phase relaxation, regardless of the details of the spin-
orbit mechanism. The actual Hamiltonian of the interaction is not explicitly considered. This
approach was followed in the earlier work by Hikami et al. [55] and Kawabata [59], and later
by Zduniak et al. [113].

Subsequently, it has been shown that the spin-orbit interaction can be described through a
spin-dependent vector potential [8], which contributes as a spin-dependent Berry phase (also
referred as Berry-like spin phase, or spin-dependent Aharonov–Bohm effect). In the case of
Rashba interaction, the hamiltonian can be rewritten as [78, 84]:

H =
~2k2

2m
+ ~ασ · (ẑ × k) =

~2

2m
(k − 2eAS)2 , (3.33a)

AS =
mα
2e~2 (−σy, σx). (3.33b)

The inclusion of the spin-orbit coupling via the complete hamiltonian in weak antilocalisa-
tion calculation yields a correct formula. One of the first and most used model which uses expli-
citly the spin-orbit hamiltonian was derived by Iordanskii, Lyanda-Geller and Pikus (ILP) [56],
in the diffusion approximation (both Bϕ and Bso are much smaller than Btr); it includes both
linear and cubic interactions.

Their result was finally simplified, for the case of linear spin-orbit only, in a closed-form
formula by Punnoose [84]. The author noted that his result can be interpreted in terms of both
spin relaxation and spin Berry phase; indeed, when B � Bso, the equation reduces to the HLN
model, and Bso describes spin relaxation; when B� Bso the SOI acts as a gauge field.

In the ballistic regime, the effect of spin-orbit interaction can be included again as a relaxa-
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Model (year)
Diffusive/
ballistic

SOI
description

SOI strength SOI type

HLN [55] (1980) diffusive relaxation
Kawabata [59] (1984) ballistic relaxation

ILP [56] (1994) diffusive full weak
linear +
cubic

Zduniak et al. [113] (1997) ballistic relaxation weak

Miller et al. [78] (2003) ballistic full (2 par.) full
linear +
cubic

Golub [50] (2005) ballistic full full linear

Glazov & Golub [48] (2006) ballistic full full
linear +
cubic

Punnoose [84] (2006) diffusive full weak linear

Tab. 3.1: Comparison of weak antilocalisation models. In the “SOI description” column the interpret-
ation as time relaxation only or with the complete hamiltonian (“full”) is marked. The range
of validity for different intensity of the SOI is indicated in the column “SOI strength” as weak
(small SOI only) or full range.

tion rate which sums to the phase relaxation; Kawabata [59] and Zduniak et al. [113] followed
this procedure.

The model by Miller et al. [78] explicitly considers the Aharonov–Bohm-like effect. This
effect comes out to be dominant in a first order approximation, and is described by a parameter
Be f f ; the spin relaxation is a higher orders correction, described by Bso. Referring to figure 3.9,
both Be f f and Bso must be small in order to observe only the weak localisation maximum.

Finally, the model by Golub [50] extends the ILP model to the ballistic region and to ar-
bitrary strength of the spin-orbit interaction, for linear SOI only; it was extended to the case
with both linear and cubic terms by Glazov and Golub [48]. This model includes also the terms
which are interpreted as “nonbackscattering” corrections. If the weak localisation is described
in terms of angular dependence of an effective scattering cross section for a single impurity,
the enhanced backscattering implies that the cross section has a peak at an angle θ = π. This
peak is derived, in a diagrammatic expansion, from the contribution of the so-called maximally
crossed diagrams, which are usually the only ones retained. When other kinds of diagrams are
taken into account, they contribute to a reduction of the cross section at θ , π: these are the
nonbackscattering corrections.

The theory of weak (anti)localisation is usually treated in the Green function formalism, with
diagrammatic expansions, and the conductivity is then calculated using the Kubo formula [41,
chap. 7.5][33, chap. 5][43, 15, 36].

To deal with the spin-orbit interaction, the problem is decomposed in the S,Sz basis, where
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Fig. 3.10: Comparison of the diffusive, Miller, Zduniak and Golub models for weak antilocalisation, as
a function of the magnetic field B. The 2DEG has density n = 1 · 1017 m−2 and mobility
µ = 0.5 m2/Vs (τ = 0.63 ps), the energy splitting is ∆E = 1 meV, and the phase coherence
time τϕ is 50 ps (bϕ ≈ 0.01); for the Miller model, the additional spin-orbit relaxation time is
120 ps.

S is the total spin of the two particles and Sz its z component; the singlet and triplet parts
are treated separately. It is found that the singlet term has an “antilocalising” behaviour (i.e.,
it would give a maximum at zero field in the magnetoconductance), while the triplet part is
“localising”.

The spin-orbit interaction affects the triplet only. When spin-orbit is important, the singlet
part can dominate, at least at the lower fields, and the antilocalisation is observed. When the
spin-orbit is small, the triplet part dominates, since it has a triple multiplicity.

The formulae for the weak antilocalisation models are reported in section 4.3.3.1, to be
discussed with the experimental results.

I calculated the magnetoconductivity for the different models described above for the same
set of physical parameters; in particular, an energy splitting of ∆E = 1 meV is chosen. Figure
3.10 shows this comparison.

Finally, in figure 3.11, conductance curves are reported for different strengths of the spin-
orbit interaction (parametrised by the precession angle Ωτ), as calculated with the model of
Golub. At small Ωτ (small SOI), only the weak localisation minimum is found; moreover, it
can be seen that at large field the curves are close to the Ωτ = 0 curve. For Ωτ → ∞ only the
antilocalisation peak is found. For B → ∞ the correction is given by a universal curve (which
depends only on B/Btr), marked by σh f .
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Fig. 3.11: Conductivity correction calculated with the Golub model for different strengths of spin-orbit
interaction, for fixed τ/τϕ = 0.01. The curve σh f is the high field approximation. From Ref.
[50].



4. EXPERIMENTAL RESULTS AND DATA
ANALYSIS

In this chapter, the results of magnetotransport experiments will be presented and discussed.
The three effects — classical magnetoresistance, Shubnikov–deHaas, weak antilocalisation —,
described in the previous chapter, have been investigated. Classical magnetoresistance provided
a characterisation of the samples, while the others are aimed at the study of spin-orbit interac-
tion.

4.1 Experimental details

Two different samples of GaN-based 2DEG have been investigated during this work (figure
4.1).

Sample A is a heterostructure with exclusion layer (see section 1.2.2); it has a carrier density
close to 1 · 1017 m−2 and a mobility of about 2 m2/Vs at 0.25 K.

Sample B does not have an exclusion layer. The carrier density is again close to 1 ·1017 m−2,
but the mobility is about 0.5 m2/Vs at 0.25 K.

The properties of the 2DEG were studied in devices with the Hall bar layout (as shown in
figure 4.2), with two ohmic contacts for injection and extraction of the current and four ohmic
voltage probe contacts. These devices were defined by optical lithography. Ohmic contacts
were obtained through Ti/Al/Ni/Au deposition followed by rapid thermal annealing at 850 °C.

SiN (passivation) 50 nm

Al0.23Ga0.77N 23 nm
AlN (exclusion) 2 nm

GaN  1800 nm

AlN (nucleation) 80 nm

SiC (substrate)

(a)

SiN (passivation) 50 nm

Al0.29Ga0.71N 24.5 nm

GaN  4000 nm

SiC (substrate)

(b)

Fig. 4.1: Layers sequence for Sample A and B.
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Fig. 4.2: Diagram of the four wire measurements configuration.

Electrical isolation was achieved via ion implantation.

Magnetotransport properties were measured either by a low frequency lock-in technique or
by DC technique, in presence of a perpendicular magnetic field. Two cryogenic apparatus
have been employed. A helium compression cryostat, available in the Laboratorio di Fisica
e Tecnologia dei Semiconduttori (Laboratory of Physics and Technology of Semiconductors)
at Università Roma Tre, measures from room temperature to 15 K. An external magnet al-
lows magnetotransport experiments up to 0.7 T. An 3He condensation cryostat (the Heliox from
Oxford Instruments), capable of a lower temperature of 0.25 K, was employed for the lowest
temperature. The cryostat is dipped in liquid helium, in a dewar vessel equipped with a super-
conducting magnet whose maximum field is 12 T. This apparatus could be used thanks to the
collaboration with the NEST laboratory of the Scuola Normale Superiore in Pisa.

The lock-in technique uses an AC excitation and detects it through lock-in amplifiers. The
frequency is chosen to be small enough to avoid any low-pass effect from the device, and to
be far enough from the power line noise at 50 Hz and its integral multiples; since the lock-in
amplifiers used during this work have notch filters for these frequencies, whose band-stop width
is about 10 Hz, a frequency smaller than 40 Hz is chosen; in particular, a value of 17 Hz was
employed.

The measurements were performed using a four wire, current bias configuration (figure 4.2).
The current bias is obtained with a voltage source and a series resistor Rs. This resistance value
is much larger than the resistance of the device, so that the current is nearly constant during
device characterisation.

4.2 Sample A

The AlxGa1−xN/AlN/GaN heterostructure was grown by metal-organic chemical vapour depos-
ition (CVD) on a SiC substrate. The layer sequence consists of an 80 nm-thick AlN nucleation
layer followed by a 1.8 µm-thick GaN buffer, a 2 nm-thick AlN exclusion layer and 23 nm-
thick Al0.23Ga0.77N layer. Finally, the heterostructure was passivated by depositing a 50 nm-
thick SiN layer using plasma enhanced CVD. The 2DEG forms in the GaN layer thanks to the
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Fig. 4.3: 2DEG carrier density (open symbols) and mobility (full symbols) as a function of temperature,
as obtained from classical Hall effect measurement in Sample A. Lines are guides for eyes.

large spontaneous and piezoelectric polarisation present in the heterostructure, as described in
section 1.2.1.

Four Hall bars, different in size and in the geometry, were investigated on this sample. Of
them, device 1 is a standard 100×200 µm2 Hall bar; device 2 is a 10×20 µm2 Hall bar partially
covered by split-gate electrodes (less than 5% on the surface), whose geometry was designed for
the study of transport in quantum point contact; devices 3 is a 100×200 µm2 Hall bar completely
covered by a gate electrode; device 4 is a 100×200 µm2 Hall bar with a 1 µm wide transverse
gate.

Classical Hall effect measurements at low fixed magnetic field allowed a characterisation of
the main features of the 2DEG. The four devices showed similar results. In figure 4.3 typical
carrier density and mobility as a function of temperature are reported. The carrier density is
constant at about 1.04 · 1017 m−2, as expected and reported [92] in the case of a 2DEG due
to polarisation effects, without intentional doping. The mobility at room temperature is about
0.2 m2/Vs and rises to 2.2 m2/Vs at the lowest temperature.

The high mobility and high carrier density of the sample imply a long mean free path (1.2
µm) and thus allows the investigation of transport in the ballistic regime [12], i.e. in devices
whose length is smaller than the mean free path1. The experiments on these devices confirm the
quality of the material, and are described in appendix E.

4.2.1 Classical magnetotransport characterisation

In this section, prior to the discussion of Shubnikov–deHaas effect, an analysis of the clas-
sical Drude magnetoresistance, investigated in the reduced conductivity tensor formalism (see
section 3.1), is presented.

1 Note that also in the discussion of the weak localisation a “ballistic regime” is defined (section 3.3); although
the two concepts are similar in principle (both refer to the reduced effect of scattering), they have a slightly different
meaning in the two contests.
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Fig. 4.4: Components X and Y (circles) of the reduced conductivity tensor as a function of magnetic field
for device 1, measured at T=0.25 K and least-square fits of data (continuous lines) obtained in
the hypothesis of only one conducting channel in the sample. The number of experimental
points shown in the graph is reduced (for representation purpose only) with respect to the ac-
quired points, with a ratio of 1:40.

The two experimental RCT components are reported in figure 4.4. Note that, although the
magnetic field reaches 12 T, SdH oscillations are barely visible on this scale.

A model with only one channel has been fitted to the data; it is shown in the figure as
continuous lines. It can be seen to reproduce very well the experimental data; the obtained
value for the mobility is 2.2 m2/Vs is in excellent agreement with the fixed field measurements.
Attempts to fit a model with two channels result in theoretical curves similar to those reported
in the figure, provided that the channels have similar conductivity and mobilities differing less
than 10%.

Therefore, these data are compatible with the presence of two parallel channels, but put
severe constraints on their carrier density and mobility values.

4.2.2 Shubnikov–deHaas effect

At the lowest temperatures Shubnikov–deHaas effect can be observed in the longitudinal mag-
netoresistance of all the devices. In figure 4.5 two curves are reported, taken at 0.25 K, on
device 1 and 2; devices 3 and 4 show results similar to that of device 1 and are not shown.

In all devices the oscillations are clearly seen at field higher than 3 T. In device 2 a beating
node (marked by an arrow in the figure) can be observed at about 5 T, while in devices 1, 3 and
4 this feature is not visible by inspection. The SdH oscillations are superimposed to a slowly
varying background; the procedure for its subtraction and its physical origin is further discussed
in appendix C.
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(a)

(b)

Fig. 4.5: Longitudinal resistivity as a function of magnetic field for device 1 (a) and device 2 (b).
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(a) (b)

Fig. 4.6: Fast Fourier Transform spectra of the magnetoresistivity of devices 1 (a) and 2 (b). Insets are
details of the main peak.

4.2.2.1 Frequency domain analysis

The investigation of the oscillations in the frequency domain was performed through a standard
Fast Fourier Transform (FFT) operation on the data, taken as a function of the inverse magnetic
field. Since the data were acquired in equal spacing in B, an interpolation of the data was
performed prior to the transformation. The number of points in the interpolation was chosen to
be close to the number of actual experimental points. Moreover, the background was subtracted
from the curve before the transformation. The window function for the FFT was the rectangular
function, since this window function is expected to give the maximum resolution, as discussed
in the following. The FFT for devices 1 and 2 are shown in figure 4.6; devices 3 and 4 gave
results similar to those of device 1.

In device 1 spectrum, a single, slightly asymmetric peak at frequency f = 221.8 T is found.
The corresponding carrier density, assuming spin degeneracy, is n = 1.07·1017 m−2, in excellent
agreement with the value determined by the Hall measurement.

As for device 2, a split peak is seen, corresponding to the beating visible in the data. The
two peak frequencies are 215.8 T and 220.6 T.

The small peak found for both devices at higher frequency (close to 440 T) is related to the
second harmonic component of SdH oscillations.

The data have been investigated in the time-frequency domain also, through a spectrogram
(figure 4.7). It can be seen that the frequency peak position is constant in the magnetic field
range where the oscillations can be observed. In device 2 the position of the null point is clearly
visible at about 0.2 T−1. Note that the frequency resolution of spectrograms is worse than the
resolution of standard FFT, because the data are split in a number of shorter segments, that are
then Fourier transformed.
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(a) (b)

Fig. 4.7: Spectrogram of the SdH data for (a) device 1 and (b) device 2. The line marks the position of
the maximum in the FFT as a function of the inverse magnetic field. Darker regions have the
highest spectrum amplitude.

To explain the different behaviour of devices 1, 3 and 4 and device 2, we can consider that the
main difference between device 2 and the other devices is in the Hall bar area, the former being
almost two orders of magnitude smaller than the latter. It is reasonable to argue, therefore, that
the oscillation frequency of the larger devices had a broader distribution due to the average on
a larger area, resulting in wider FFT components that could not be resolved.

The upper bound to resolution and ability of the FFT technique to detect two channels
comes from the finiteness and discreteness of the signal to be transformed. For a generic signal
extended in the time domain between tmin and tmax, the frequency step is given by

step( f ) =
1

tmax − tmin
. (4.1)

In the SdH case the formula is:

step( f ) =
1

(1/B)max − (1/B)min
=

[ 1
Bmin

−
1

Bmax

]−1

. (4.2)

The maximum field is limited by the experimental set-up and by the onset of the quantum Hall
effect regime, while the minimum field is related to the damping of the oscillations, i.e. to
mobility and temperature.

In the present case, Bmax is 12 T, and Bmin is 3 T. The resulting frequency step is 4.5 T; the
splitting found in device 2 is very close to the limit posed by the measuring frequency step.
Furthermore, these arguments set a limit to the energy resolution, according to the relation
step(E) = e~ step( f )/m = 2.1 meV.

Moreover, the width of the peak, given by the convolution of the natural lineshape with
the Fourier spectrum of the window function applied in the transformation, further reduces the
resolution.
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The so-called “zero-padding” (i.e., the extension of the signal to an arbitrary length by ap-
pending zeroes to it) can be applied to have a better sensitivity, but cannot result in a better
resolution, i.e. in the ability to discriminate between closer frequencies, because of the limita-
tion due to the window function. Indeed, if one assumes to measure a finite part of a signal on a
infinite time range, the resulting spectrum with the zero-padding is a better numerical approx-
imation of the convolution of the spectra of the window function and the infinitely long signal,
not of the infinitely long signal itself.

Thus, in order to resolve two close frequencies, the zero-padding is not required, while
a window function whose spectrum has a narrow main lobe is needed. The better window
function for this purpose is the rectangular function, or rect.

In summary, the analyses of magnetotransport data we have reported thus far —using clas-
sical magnetoresistance and frequency analysis of the SdH effect— are compatible with the
existence of two parallel channels with similar conducting characteristics but do not prove un-
ambiguously their presence. Therefore, a more subtle scrutiny is required based on the amp-
litude and phase of the SdH oscillations, which is very sensitive to the presence of multiple
conducting channels.

4.2.3 Amplitude and phase modulation of SdH effect

The SdH oscillations contain more information than that given by a frequency domain analysis
only. Their damping depends on the density of states of the 2DEG in a magnetic field, and, as
will be shown in the following, can give a deeper knowledge of the investigated system. Besides
the amplitude, the phase modulation provides further evidences on these details. This kind of
analysis can be applied to the search of the two spin-split channels.

In particular, the analysis should be applied to devices 1, 3 and 4, which do not exhibit clear
signatures of the two channels in the standard analysis.

Before starting the analysis of the experimental data, I will recall some details on lineshape
of Landau levels and damping of the SdH oscillations.

4.2.3.1 Landau level lineshape and amplitude damping

The lineshape of a Landau levels is not a delta function, as assumed in section 3.2. It has a finite
width due to temperature and lifetime, i.e., an electron has a finite probability to be scattered
out of a Landau level2.

2 At higher field, in the quantum Hall regime, this probability is heavily affected by the topological nature of
the states of a 2DEG in these conditions (for a general introduction, see [41, chap. 4]). This problem will not be
treated in this work, and the formulae given in this section are not valid in that regime.
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The associated lifetime, referred to as single particle lifetime, or total scattering time, or
“quantum lifetime” τq, is given by the inverse of the integral of the scattering probability W(θ):

1
τq

=

π∫
0

W(θ)dθ. (4.3)

It is different from the “transport lifetime” τt, which is considered in the Drude theory and is
related to the transport mobility:

1
τt

=

π∫
0

W(θ)(1 − cosθ)dθ. (4.4)

The transport lifetime defines the relaxation of the momentum of the electron through scattering.

The quantum lifetime defines also the “quantum mobility” µq = eτq/m, analogous to the
transport mobility µt = eτt/m.

Qualitatively, SdH oscillations are visible when the Landau levels are sufficiently distinct,
i.e. when their separation is larger than their broadening; this limiting condition is commonly
taken as ωcτq = µqB > 1.

The functional form of the Landau level lineshape has been the subject of a large debate. In
the study of the SdH effect, a lorentzian lineshape with field-independent broadening is usually
considered. This lineshape is obtained from theoretical calculation using the self-consistent
Born approximation and assuming the broadening to be larger than the level spacing. This
lineshape has also been experimentally verified [57, 31, 83, 30, 38] (see also Ref. [83] for a
discussion of proposed functional forms for the lineshape and its experimental investigation).
Elliptic or gaussian lineshape have also been considered [7].

The density of states of the Landau levels is usually written as [38]

D(E) =
2e
h

B
∞∑

n=0

P(E − En). (4.5)

P(E) is the lineshape and En is the energy of the n-th Landau level. The lorentzian lineshape is

PL(E) =
ΓL

π
1

E2 + Γ2
L

, ΓL =
e~

2mµq
. (4.6)

This DOS can be written as a sum of a constant and an oscillating part, using the Poisson
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summation formula3[85, 38]. The oscillating resistivity is found using the relation [31]

δρ

ρ0
= DT

δD(EF)
D0

, (4.7)

where the δρ and δD(EF) are the oscillating parts of resistivity and DOS at the Fermi energy,
respectively, and ρ0 and D0 are the non-oscillating part; DT account for the thermal damping.
For the series in equation (4.5) the Poisson formula yields a cosine series, and the lorentzian
function is mapped onto an exponential damping for each cosine term.

From the above formulae, the complete expression for the Shubnikov–deHaas oscillations
has been derived through diagrammatic techniques in the self-consistent Born approximation
for short range scattering and at finite temperature [7, 57]; it is given by [31]

δρxx

4ρ0
=

∞∑
s=1

DT(sx) exp
(
−

sπ
ωcτq

)
cos

(2πsEF

~ωc
+ sπ

)
, (4.8)

where ρ0 is the zero-field value. DT(sx) is the thermal damping factor:

DT(sx) =
sx

sinh sx
, x =

2π2kBT
~ωc

. (4.9)

From this summation, only the first harmonic is usually retained, so that the oscillating part of
the resistivity is given by

δρxx

4ρ0
= DT(x) exp

(
−
π
µqB

)
cos

(
2π f

B
+ π

)
. (4.10)

In order to investigate the amplitude damping, having removed the temperature dependence,
the quantity

ln
(

∆ρxx

4ρ0DT(x)

)
= −

π
µqB

(4.11)

is considered, where ∆ρxx is the amplitude of the oscillations.

Upon extracting the values in the left-hand side of this equation from the experimental data,
the so-called “Dingle Plot”, this linear relation allows the extraction of µq (and then τq).

As will be shown, deviations from linear behaviour in the Dingle plot can be due to non-
lorentzian lineshape, carrier density disomogeneity, or parallel channels [29]. Suitable models
can be developed to take into account these effects and extract the respective parameters.

3 The formula
∞∑

n=−∞

g(n) =

∞∑
k=−∞

ĝ (k)

relates the series of functions g to the series of its Fourier transforms ĝ.
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Fig. 4.8: (a) Dingle plots and (b) residual phases as a function of the inverse of magnetic field of the four
investigated devices.

Figure 4.8a reports the Dingle plots for the investigated devices. All the curves exhibit a non-
linear dependence on B−1 and a slope variation between 0.2 T-1 and 0.25 T-1, which becomes a
pronounced dip in the case of device 2. The different lineshape of device 2 reflects the presence
of the beating node in the SdH curve. The behaviour observed in figure 4.8a is not consistent
with the presence of a single conducting channel.

To gain further information we have also analysed in details the phase of the SdH oscilla-
tions. The residual phase φ0 can be extracted from the oscillations, as described in appendix
A.2, using the formula

2π f0/Bm + φ0 = 2πm, m = 0, 1, 2 . . . , (4.12)

where 1/Bm are the positions of the maxima and f0 a trial frequency. The residual phase is
reported in figure 4.8b. The trial frequency is determined from a least-square fit, and is very
close to the FFT peak frequency.

The main features of the measured phase behaviour as a function of B−1 are the jumps
concomitant with the variation of slope in the Dingle plots. Similarly to the dip in the Dingle
plot, device 2 exhibits a sharper feature than the other devices in the phase behaviour. The
variation of the residual phase requires the presence of two frequency components in the SdH
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oscillations pattern: indeed, in case of a single conducting channel (thus a single frequency
component) the phase should be constant and equal to π rad.

The non-linear behaviour of the Dingle plots and the phase variation bear conclusive evid-
ence that these SdH oscillations cannot be described in terms of a simple one-channel model
that leads to equation (4.11).

4.2.3.2 Extension of the Dingle plot analysis

A second conducting channel in the Shubnikov–deHaas effect can be introduced by considering
a sum of terms of the same kind of equation (4.10) [91].

Assuming the standard lorentzian lineshape, the sum is

δρxx

DT
∝σ1 exp

− π

µ(q)
1 B

 cos
(

2π f1

B
+ π

)
+

+ σ2 exp

− π

µ(q)
2 B

 cos
(

2π f2

B
+ π

)
+

(4.13)

and the resulting Dingle plot is

ln
∆ρxx

DT
=const −

π

µ(q)
1 B

+
1
2

ln

1 +

1 − ∆ f
/
2 f0

1 + ∆ f
/
2 f0

µ(t)
2

µ(t)
1

2

exp

− 2π

µ(q)
2 B

+
2π

µ(q)
1 B

+
+2

1 − ∆ f
/
2 f0

1 + ∆ f
/
2 f0

µ(t)
2

µ(t)
1

 exp

− π

µ(q)
2 B

+
π

µ(q)
1 B

 cos
(

2π∆ f
B

) ,
(4.14)

where f0 = ( f1 + f2)/2 and ∆ f0 = f1− f2. Details of the derivation of the formulae can be found
in Appendix A.

This equation can be simplified if the ratio between the transport mobility µ(t)
1,2 and the

quantum mobility µ(q)
1,2 is assumed to be the same for the two channels.

The important feature of a SdH pattern with two components with different amplitudes
is that the resulting oscillations may have an envelope which does not show clearly the null
point expected in a beating pattern, because of the natural amplitude damping. In figure 4.9
simulated Dingle plots and phase plots are presented for the case of two components, with
different average quantum mobility and µ1/µ2 = 0.9; panels (a) and (c) report the case of the
lorentzian lineshape. For comparison the simulation is also shown for the case of two channels
with µ1/µ2 = 0.99 and µ1 =0.5 m2/Vs. Panels (b) and (d) are discussed in the following.

It can be seen that a large mobility is required to observe a clear minimum in the amplitude.
In the phase plots, we can observe that at high mobility a sharper step is found, although it is
not as sharp as the case of equal mobility.
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(a) (b)

(c) (d)

Fig. 4.9: Comparison of different Dingle plots and phase plots in the case of two channels for different
quantum mobilities, for lorentzian and gaussian lineshape. Black, solid lines are calculated for
two channels with µ1/µ2 = 0.9, and f1 = f0 + ∆ f/2, f2 = f0 − ∆ f/2, with f0=200 T, ∆ f =2 T.
The red, dashed lines are calculated for µ1/µ2 = 0.99 and µ1 =0.5 m2/Vs.
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Fig. 4.10: (a) Dingle plot (squares) and data fits (lines) for device 1 obtained using models with lorent-
zian lineshape with one (LL1) and two channels (LL2). (b) Residual phase of the SdH oscil-
lations (squares). The vertical line marks the change in the slope of the Dingle plot and in the
phase.

In figure 4.10 is reported the result of the fitting procedure for the two-channels model in
equation (4.14) to the Dingle plot for device 1 and the calculated residual phase. The fitting
parameters are quantum mobilities µ(q)

1,2, the frequency difference ∆ f , the constant const. As a
comparison, a fit with a single channel model is also shown.

The introduction of two conducting channels (LL2 model) leads to a curve which correctly
reproduces the change of slope, but departs slightly from the data at small B−1. Note that this
discrepancy cannot be attributed to the condition µ(t)

1 /µ
(q)
1 = µ(t)

2 /µ
(q)
2 which was imposed in the

model. Attempts to fit the data without this constraint did not change the fits significantly. Fits
of similar quality were obtained for the other devices.

The two-channels model also brings about the residual phase variation; however, it gives a
phase increase, while the experimental phase decreases.

Gaussian lineshape The quality of the fits was substantially improved by introducing a gaus-
sian lineshape (GL model), instead of the lorentzian one, for the density of states of the Landau
levels.

The gaussian lineshape, to be inserted in equation (4.5), is given by [30, 38]

PG(E) =
1

√
2πΓG

exp
(
−

E2

2Γ2
G

)
. (4.15)
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The procedure to obtain the resistivity is the same as reported before. For the single channel
case, the oscillations amplitude modulation is

∆ρ = 4ρ0 exp
(
−2π2Γ2

G

~2ω2
c

)
. (4.16)

Depending on the scattering mechanism, the width ΓG can or cannot be a function of the
magnetic field. According to Coleridge [30], three length scales should be compared to choose
the correct description. The first is the correlation length of the scattering potential Λ; the
second is the cyclotron radius Rcycl =

√
2π~2n2D/eB; the third is the de Broglie length for

electrons in a circular orbit in a magnetic field λdB = 2πRcycl/ν, where ν is the filling factor.

In the hypothesis Λ� λdB, the following cases are found:

• Rcycl � Λ: ΓG =
(
~2ωc/2πτq

)1/2
∝ B1/2; the Dingle plot is ln(∆ρxx)/(4ρ0DT(x)) =

−(π/µq)(1/B), thus it is linear (and identical to the lorentzian case)

• Rcycl � Λ: ΓG is independent of B; the Dingle plot is

ln
(

∆ρxx

4ρ0DT(x)

)
= −

π2

2µ2
qB2

, (4.17)

thus it is quadratic.

If Λ� λdB, the Dingle plot is again quadratic as in eq. (4.17).

In the regime Λ� λdB the scattering potential can be considered, in the real space, to give a
fluctuation, which sums to the conduction band; this can be treated semiclassically, neglecting
the quantum confinement effects of these fluctuations. In the opposite condition, the quantum
confinement is not negligible; the DOS has the same gaussian shape, but the width is independ-
ent of the magnetic field. In this regime, the transport can be described as occurring through a
“network of channels”, whose width is ≈ Λ.

When a particular scattering model is chosen, the analysis of the transport properties allows
an estimation of disorder parameters such as the correlation length. An example, applied to
roughness scattering, is described in Appendix B.

A second gaussian-lineshape channel can be included in the Dingle plot using the same
procedure which led to equation (4.14); the starting point is

δρxx

DT
∝σ1 exp

− π2

2µ(q)
1

2

B2

 cos
(

2π f1

B
+ π

)
+

+ σ2 exp

− π2

2µ(q)
2

2
B2

 cos
(

2π f2

B
+ π

)
,

(4.18)
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Fig. 4.11: (a) Dingle plot (squares) and data fit (line) for device 1 obtained using the model with gaussian
lineshape with two channels (GL). (b) Residual phase of the SdH oscillations (squares) and
calculated phase. The vertical line marks the change in the slope of the Dingle plot and in the
phase.

which leads to

ln
∆ρxx

DT
=const −

π2

2µ(q)
1

2
B2

+
1
2

ln [1+

+

1 − ∆ f
/
2 f0

1 + ∆ f
/
2 f0

µ(t)
2

µ(t)
1

2

exp

− π2

µ(q)
2

2
B2

+
π2

µ(q)
1

2
B2

+

+2

1 − ∆ f
/
2 f0

1 + ∆ f
/
2 f0

µ(t)
2

µ(t)
1

 exp

− π2

2µ(q)
2

2
B2

+
π2

2µ(q)
1

2
B2

 cos
(

2π∆ f
B

) .
(4.19)

Simulations of the Dingle plots calculated using this formula are shown in panels (b) and (d)
of figure 4.9. Again, the minimum is suppressed for small mobility; in the gaussian lineshape
case, this suppression occurs at higher mobility than the corresponding lorentzian case.

Figure 4.11 shows that the fit obtained using this equation (labelled GL) reproduces very
well the data. Also, the calculated phase behaves as the experimental data.

This different behaviour of the phase is due to a quantitative difference in the parameters
extracted from the fits with the lorentzian and the gaussian model. Indeed, in the GL model the
channel with the higher carrier density is found to have the smaller mobility, while in the LL
model the opposite occurs.
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Density distribution The visible effect of the gaussian lineshape on the Dingle plot is the
bending due to the quadratic dependence on B−1. Another 2DEG feature possibly leading to
this pattern is related to fluctuations of carrier density. In Refs. [63, 94] it is reported that such
inhomogeneous density can heavily damp the SdH oscillations, alter the Dingle plot, and hinder
a correct extraction of the quantum lifetime.

The simplest model for an inhomogeneous density is a gaussian distribution around an av-
erage value n0 and standard deviation δn. In the analysis of the experimental data, the problem
of calculating the Dingle plot for this case must be handled. The formulation can be generalised
to every distribution; this general formula will be derived in the following, and then applied to
the gaussian distribution.

The basic idea is to consider the “total oscillation” SdHt(B−1, f0) (i.e., the oscillation which
is actually measured) as a sum of “partial oscillation” SdHp(B−1, f ), given by

SdHp(B−1, f ) = −4DT(x) exp
(
−
π
µqB

)
cos

(
2π f

B
+ π

)
, (4.20)

where a lorentzian lineshape is chosen for the Landau level.

The sum of the SdHp(B−1, f ) is weighted by a distribution function g( f − f0); here, f0 is the
average frequency. Since the distribution is possibly continuous, the sum is actually an integral:

SdHt(B−1, f0) =

+∞∫
−∞

d f g( f − f0)SdHp(B−1, f ) =
[
g ∗ SdHp(B−1)

]
( f0), (4.21)

where ∗ is the symbol for convolution.

It can be noted that, since the SdHp(B−1, f ) depends on f only through the cosine, a relation
can be found with the Fourier transform of the distribution, i.e. its characteristic function. The
expression for SdHt(B−1, f0) is then proportional the real part of the characteristic function g̃ of
g( f ), multiplied by the thermal and lifetime damping factors (the mobility is assumed constant):

SdHt(B−1, f0) = −4DT(x) exp
(
−
π
µqB

)
Real

[
g̃(B, 2π f0)

]
, (4.22)

where the minus sign comes from the π phase; the 2π factor depends on the definition of the
characteristic function as Fourier transform. Note that this is still an application of the Poisson
summation formula to the broadened density of states of the 2DEG in a magnetic field; again,
only the first harmonic is retained.

In the case of a unit area gaussian distribution, with variance δ f 2

g( f ) =
1

√
2πδ f

exp
(
− f 2

2δ f 2

)
(4.23)
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Fig. 4.12: (a) Dingle plot (squares) and data fit (line) for device 1 obtained using the model with lorent-
zian lineshape and gaussian density distribution with two channels (LL+DD). (b) Residual
phase of the SdH oscillations (squares) and calculated phase. The vertical line marks the
change in the slope of the Dingle plot and in the phase.

the total oscillation is

SdHt(B−1, f0) = −4DT(x) exp
(
−
π
µqB

)
exp

(
−2π2δ f 2

B2

)
cos

(
2π f

B
+ π

)
, (4.24)

and the Dingle plot acquires the quadratic term4
−2π2δ f 2/B2. The result can be extended to the

two-channels case, assuming the same δ f for both channels.

As shown in figure 4.12, a fit for the Dingle plot resulting from this model, with two channels
with lorentzian lineshape for the Landau level and gaussian density distribution, can reproduce
very well the data; indeed, the calculated curve would completely overlaps that of the GL model
in figure 4.11a. However, the extracted values of the mobilities are similar to those from the LL2
model, and the phase behaviour is similar to that in figure 4.10b, i.e. it increases with increasing
B−1.

Magnetointersubband scattering Finally, another effect which gives an amplitude modula-
tion was investigated: magnetointersubband scattering (MIS).

4 It is worth noting that, if δ f is small or if the investigated magnetic field range is narrow, a linear Dingle plot
can occur also when a distribution is present. In this case, a 1st-order expansion in a neighbourhood of the central
magnetic field 1/B0 gives DinglePlot ' −2π2δ f 2/B2

0 − (4π2δ f 2/B0 +π/µq)/B. It can be seen, from this formula,
that the density spreading can lead to an erroneous evaluation of µq. Of course, it is not simple to discriminate
these situations from the SdH experimental data only.
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When two subbands are occupied in a 2DEG, MIS gives two other oscillating terms that add
to the magnetoresistance. The frequency of the first is given by the difference of those of the
two subbands. Therefore, if the two subbands have similar carrier density, the MIS frequency
is very small. If the second subband has a small carrier density, the MIS frequency is close to
that of the first subband, and thus can give beatings similar to those expected for a spin-split
configuration [28, 65, 85, 88]. The second frequency is the sum of those of the two subbands.

The MIS effect is an increased elastic intersubband scattering, which occurs when the two
Landau levels ladders are alined. This condition is satisfied at magnetic fields given by [88]:

Bl1,l2 =
(E1 − E2)m
~e(l1 − l2)

, (4.25)

l1,2 being the Landau level indices for the two subbands. The expression for the resistivity
becomes (assuming a lorentzian lineshape for the Landau levels):

δρxx

ρ0
=2A1DT(x) exp

(
−
π
µ1B

)
cos

(
2π f1

B
+ π

)
+

+2A2DT(x) exp
(
−
π
µ2B

)
cos

(
2π f2

B
+ π

)
+

+2B12 exp
(
−
π
µ1B
−

π
µ2B

)
cos

(
2π( f1 − f2)

B

)
+

+2B12DT(2x) exp
(
−
π
µ1B
−

π
µ2B

)
cos

[
2π( f1 + f2)

B

]
.

(4.26)

The coefficients A1, A2, B12 are related to intra- and inter- subband scattering probability.
The first two terms are the standard SdH oscillations for the two subbands. The fourth term,
proportional to DT(2x) is heavily damped with temperature, while the third, is not damped. At
low temperature and high field, the approximation DT(x) ≈ 1 can be made, and the all the four
terms should be retained. In figure 4.13 are shown the damping factors, at 0.25 K and 4.2 K.
In the limit B−1

→ 0 the damping factor is 1, and, at the lowest temperature, both DT(x) and
DT(2x) are very close to this limit (panel (b)); also at 4.2 K, the factors are always larger than
0.9 down to 1 T−1.

The case n2 � n1 ( f2 � f1) is interesting because can give a beatings pattern similar to
that expected for two spin-split subbands. In this case, the oscillation with frequency f2 yields a
slowly varying background. If the thermal damping factor are neglected, a pseudo Dingle plot
can be constructed for the oscillations including MIS:

ln
(
∆ρxx

ρ0

)
= const −

π
µ1B

+ ln
[
1 −

B12

A1

(
−
π
µ2B

)
cos

(
2π f2

B

)]
. (4.27)

This formula is valid in the case of lorentzian lineshape for the Landau levels. The gaussian
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(a) (b)

Fig. 4.13: (a) Comparison of damping factors DT(x) and DT(2x) at T=0.25 K and 4.2 K.(b) Detail of the
T=0.25 K case.

Fig. 4.14: Dingle plot (squares) and data fit (line) for device 1 obtained using the MIS model.

lineshape can be taken into account by suitably substituting the damping factors proportional
to B with those proportional to B2, as in equation (4.17). The density distribution effect can be
added as described above.

An attempt to fit with the magnetointersubband scattering model is shown in figure 4.14,
including a lorentzian lineshape; the second subband would have a density of 5.4·1014 m−2, 200
times smaller than the first.

The results are not as good as for the other models, and introduction of a density distribution
or gaussian lineshape does not give a better result. The MIS hypothesis is thus discarded.

In summary, a model with two channels and a gaussian lineshape for the Landau levels well
reproduces the experimental data for device 1; the same results are found for device 3 and 4.
The result of the fits of this model are reported in table 4.2 and discussed in section 4.2.4. Other
possible mechanisms which could explain the experimental amplitude and phase modulation,
namely a bending and a change of slope in the Dingle plot and a variation in the residual phase,
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Fig. 4.15: (a) Dingle plot (squares) and data fits (lines) for device 2 obtained using the models discussed
in the text. (b) Residual phase of the SdH oscillations (squares); lines are the phase calculated
with the LL (dash-dot) and GL (continuous) models. The vertical line marks the position of
the node in the slope of the Dingle plot and in the phase.

are excluded because they cannot reproduce these features.

Dingle plot for device 2 In figure 4.15 the Dingle plot and the residual phase are reported for
device 2. This device exhibits a different behaviour with respect to the other three investigated
devices. First, it shows in the SdH curve a clear beating, which suggests the presence of a two
channels. Second, the residual phase has a variation at a position corresponding to the node
of the beatings, but this variation is an increase of the phase, while the other devices have a
decrease (see figure 4.8b).

The fit with two channels and gaussian and lorentzian lineshape for the Landau levels are
also shown in figure 4.15a. The Dingle plot fit well reproduces the data; the residual phase is
reproduced qualitatively, as in device 1.

In conclusion, the analysis of the Shubnikov–deHaas data with two-channels models can
satisfactorily explain the data.

4.2.3.3 Measurements at 4.2 K

The magnetotransport properties have been also measured at liquid helium temperature, i.e.
4.2 K, for devices 1 and 3. SdH oscillations can still be observed at this temperature, and are
reported in figure 4.16.

Well developed SdH oscillations are observed to start at a higher field than in the lowest tem-



68 4. Experimental results and data analysis

Fig. 4.16: Longitudinal resistivity as a function of magnetic field for device 1 at 4.2 K.

(a) (b)

Fig. 4.17: (a) FFT and (b) spectrogram of the SdH data for device 1 at 4.2 K. The line marks the position
of the maximum in the FFT as a function of the inverse magnetic field. Darker regions have
the highest spectrum amplitude.

perature acquisitions, because of thermal damping. This can be clearly seen in the spectrogram
(figure 4.17b): the oscillation ends at about 0.22 T−1.

The Hall effect and the FFT analysis of the SdH oscillations show that the carrier density
and the mobility have the same values (within 1%) as the 0.25 K values.

The reduced magnetic field range where the oscillations are visible impedes the observation
of a change of slope in the Dingle plot or a phase variation as at 0.25 K.

Figure 4.18 reports the Dingle plot and the residual phase for device 1, a vertical line marks
the expected position for the node, if this position is assumed to be the same as at 0.25 K (i.e.,
the frequency difference is assumed to be independent of temperature); note that this position
is beyond the limit of the experimental data. In this range, we can see that the Dingle plot has a
bending, but not the change of slope. The residual phase is also nearly constant.

To give an estimate of the quantum mobility at this temperature, we can assume that the
gaussian lineshape is still suitable for the data. In figure 4.18 the result of this procedure is
shown for device 1, together with the experimental data. Table 4.1 reports the numerical values
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Ch. f µ(q) µ(t) τq τt µ(t)/µ(q)

T m2/Vs m2/Vs ps ps

Device 1
1 223.2 0.23 2.11 0.29 2.63

9.1
2 220.9 0.25 2.29 0.33 2.86

Device 3
1 218.2 0.24 1.97 0.31 2.46

8.1
2 215.8 0.26 2.12 0.33 2.65

Tab. 4.1: Extracted parameters for two-channels, gaussian lineshape model of SdH amplitude modula-
tion at 4.2 K; channels labelled as “1” have the largest carrier density.

Fig. 4.18: (a) Dingle plot (squares) and data fits (lines) for device 1 at 4.2 K, obtained using the GL
model. (b) Residual phase of the SdH oscillations (squares); the line is the phase calculated
with the GL models. The vertical line marks the position expected for a node.

of the parameters extracted from the two devices. The model can again reproduce the data very
well.

4.2.4 Discussion

Finally, I will discuss in details the results from the measurements at 0.25 K.

In table 4.2 the resulting parameters for the four devices are reported. In this table, the
transport mobilities are evaluated from the quantum mobilities and the ratio S = µ(t)/µ(q). This
ratio was calculated by comparison of the Hall mobility µH and the quantum mobility. The
effective Hall mobility in the case of two channels, when µ1,2B � 1, or, as in our case, when
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Ch. ∆ f f µ(q) µ(t) τq τt µ(t)/µ(q)

T T m2/Vs m2/Vs ps ps

Dev. 1
1

2.2
222.9 0.27 2.15 0.34 2.69

7.9
2 220.7 0.29 2.27 0.36 2.83

Dev. 2
1

2.6
219.5 0.34 2.41 0.43 3.01

7.0
2 216.9 0.33 2.30 0.41 2.88

Dev. 3
1

2.5
217.2 0.29 2.04 0.36 2.55

7.1
2 214.7 0.30 2.12 0.37 2.65

Dev. 4
1

2.2
223.7 0.27 2.11 0.34 2.63

7.7
2 221.5 0.29 2.23 0.36 2.79

Ave.
1

0.29 2.17 0.36 2.72
2.4 ±0.03 ±0.16 ±0.04 ±0.20 7.4

2
± 0.2 0.30 2.23 0.38 2.79 ±0.4

±0.02 ±0.08 ±0.02 ±0.10

Tab. 4.2: Extracted parameters for two-channels, gaussian lineshape model of SdH amplitude modula-
tion at 0.25 K; channels labelled as “1” have the largest carrier density.

µ1 ≈ µ2, is given by

µH =
n1µ2

1 + n2µ2
2

n1µ1 + n2µ2
=

f1µ2
1 + f2µ2

2

f1µ1 + f2µ2
(4.28)

The linear dependence of both numerator and denominator on the densities n1,2 allows the
substitution of them with the frequencies f1,2, without inserting the spin degeneracy factor;
hence, this relation is independent of the spin degeneracy. In this formula µ1,2 are the transport
mobilities. The ratio S is thus found simply inserting µ1,2 = Sµ(q)

1,2.

From the investigation of amplitude and phase modulation, it is possible to assert the pres-
ence of the two components in the SdH oscillations. In principle, they can originate from spin
splitting, but also from the occupation of two subbands in the 2DEG, from parallel parasitic
channels or from carrier density inhomogeneities. We discuss in the following these possible
different origins.

The presence of two conducting channels with almost equal oscillation frequency, i.e. with
almost equal charge density (n1 ≈ n2), such as those found by the previous analysis, strongly
support the lifting of the spin degeneracy, since n1 + n2 ≈ 2n1 must be equal to the total carrier
density nH obtained from the classical Hall effect. Indeed, assuming spin degeneracy the total
carrier density would be twice the experimental nH.

Moreover, the intersubband energy separation extracted from the measurement would be of
the order of 1 meV; simulations of the coupled Schrödinger–Poisson equations [95] yield, for
this separation, a value in the range from 150 to 200 meV, thus much larger; also, experimental
separations reported for GaN-based 2DEG are much larger than 1 meV (for example, in Ref.
[114] is reported a value of 77 meV).
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We can, therefore, rule out the hypotheses of the occupation of two subbands and the pres-
ence of a parasitic channel parallel to the 2DEG [93].

Another possibility is that fluctuations of geometrical parameters (e.g. well thickness) give
rise to the presence of two macroscopic regions having different carrier density, and thus to beat-
ings [16]. We believe that this effect is highly unlikely in our case. First of all, the fluctuations
should be such as to produce identical regions in four devices differing in size, gate presence
and geometry. Furthermore, we notice that a diffuse inhomogeneity in the heterostructure may
give rise to a carrier density distribution; in this case, a bending in the Dingle plot is expected,
without beatings.

We conclude that the two conducting channels in the heterostructure can be identified as
spin-split subbands. The formula ∆E = e~∆ f/m allows the evaluation of the spin-splitting
energy and of the Rashba coefficient α = ∆E/2kF. Taking the average values from table 4.2,
the extracted values are ∆E = 1.2 ± 0.1 meV and α = 0.76 ± 0.06 · 10−12 eVm.

As for the small difference of mobility found for the two channels, an asymmetry in the
spin-flip relaxation [45] can explain it.

Finally, we discuss the gaussian lineshape model, which well describes the Dingle plot of
the investigated devices. Gaussian lineshape describes the density of states of Landau levels
when the correlation length of the disorder scattering potential is smaller than the de Broglie
length. To check this condition, the correlation length was calculated assuming that the domin-
ant scattering mechanism is due to roughness scattering, as in Ref. [23]; the model is described
in Appendix B. With this model, a correlation length of 5.4 nm is estimated, while the de Broglie
length is 15 nm: the condition for the validity of the gaussian lineshape is fulfilled.

Referring to the 4.2 K data, we note that the assumption that was made in the previous
section, that the frequency difference is independent on temperature, is reasonable when the
two channels are attributed to spin-splitting. The comparison with the results obtained at 4.2 K
(reported in table 4.1) shows that the quantum mobility is slightly reduced in comparison with
the 0.25 K value, while the transport mobility is closer.

Concluding this section, I remind that, besides Shubnikov–deHaas effect, also the weak an-
tilocalisation effect is directly affected by the spin-orbit interaction.

This effect was investigated, but the quality of the experimental data is not sufficient to draw
firm conclusions. This result will be discussed in section 4.3.4, after the discussion of the results
from sample B, which instead exhibited a clear weak antilocalisation signal.
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SiN (passivation) 50 nm

Al0.23Ga0.77N 23 nm
AlN (exclusion) 2 nm

GaN  1800 nm

AlN (nucleation) 80 nm

SiC (substrate)

(a)

SiN (passivation) 50 nm

Al0.29Ga0.71N 24.5 nm

GaN  4000 nm

SiC (substrate)

(b)

Fig. 4.19: Layers sequence for Sample A and B.

Fig. 4.20: 2DEG carrier density (open symbols) and mobility (full symbols) as a function of temperature
as obtained from classical Hall effect measurement in Sample B. Lines are guides for eyes.

4.3 Sample B

Sample B is an AlxGa1-xN/GaN heterostructure, grown on a SiC substrate (see figure 4.19b).
The Gan layer has a thickness of 4 µm, and the barrier of Al0.29Ga0.71N is 24.5 nm thick. The
heterostructure was passivated with a 50 nm-thick SiN layer grown by plasma enhanced CVD.

The properties of the 2DEG were investigated in 100×200 µm2 Hall bar devices.

4.3.1 Classical magnetotransport characterisation

Classical Hall effect measurements at low fixed magnetic field show (figure 4.20) that the carrier
density is constant at the lowest temperature at 1.08 · 1017 m-2, and has a small increase at high
temperature to about 1.10 · 1017 m-2; the mobility at room temperature is 0.13 m2/Vs and rises
to 0.48 m2/Vs at the lowest temperature.

Following the same procedure as in the Sample A, the Drude magnetoresistance has been
investigated at 0.25 K to check if the transport occurs through a single channel; the two experi-
mental RCT components are reported in figure 4.21. A single channel model well reproduces
the data, with an evaluated mobility of 0.48 m2/Vs, in agreement with fixed field measurements.
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Fig. 4.21: Components X and Y (circles) of the reduced conductivity tensor as a function of magnetic
field for Sample B, measured at T=0.25 K and least-square fits of data (continuous lines)
obtained in the hypothesis of only one conducting channel in the sample. The number of
experimental points shown in the graph is reduced (for representation purpose only) with
respect to the acquired points, with a ratio of 1:40.

Again, the data are also compatible with a two-channels model, provided that the channels have
similar conductivity and the mobilities differ less than 10%.

The value of n was verified also with the slope of the transverse resistivity using the relation
ρxy = B/en, valid for the single channel system. These two measurements allow the determ-
ination of µ and n independently of the zero-field value, which can be affected by low field
quantum correction.

At the lowest temperature Shubnikov–deHaas effect and, at very low field, weak antilocal-
isation can be observed in this sample. These features are investigated in the following sections.

4.3.2 Shubnikov–deHaas effect

In the discussion of the results of sample A the Shubnikov–deHaas effect has proved to be an
effective method for the determination of spin-splitting in 2DEGs. Therefore, sample B was
first of all investigated with this method.

Figure 4.22 reports the magnetoresistivity curve up to 12 T taken at 0.25 K. The oscillations
are observable for fields higher than 4 T. Clear signatures of a beating pattern are not visible in
this experimental curve.

The frequency of the oscillation was investigated through standard FFT of the data taken as
a function of the inverse magnetic field, using a rectangular window. The data were acquired in
equal spacing in B, and were interpolated (before the transformation) to have equal spacing in
B−1; the points in the interpolation are close to the actual experimental points. The background
was subtracted from the curve. The FFT is shown in figure 4.23a.

A single peak at frequency f = 225.5 T is found. The corresponding carrier density, assum-
ing spin degeneracy, is n = 1.09 · 1017 m−2, in excellent agreement with the determination of
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Fig. 4.22: Longitudinal resistivity as a function of magnetic field in Sample B.

(a) (b)

Fig. 4.23: (a) Fast Fourier Transform spectrum of the magnetoresistivity of sample B. Inset is a detail of
the main peak. (b) Spectrogram of the SdH data for sample B. The line marks the position of
the maximum in the FFT as a function of the inverse magnetic field.
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Fig. 4.24: Dingle plot (upper panel) and residual phase (lower panel) as a function of the inverse of
magnetic field for Sample B. The dashed line is a fit with a one-channel model, the continuous
line is a two-channels model fit with the assumption of ∆E =0.77 meV.

the classical Hall effect. The spectrogram of these data (figure 4.23b) reveals that oscillations
with this frequency can be found down to a field of 2.5 T. It also verifies that the peak frequency
remains constant.

No evidence of spin-split channels is present in the data and in the FFT analysis, although we
have verified that both raw data and FFT analysis could be compatible with the presence of two
conducting channels, provided that their energy splitting is smaller than 0.8 meV. However, as
will be discussed in detail in section 4.3.3, in this sample a clear antilocalisation peak, relating to
the spin-orbit effect, was detected. Furthermore, by considering the layer characteristics of the
sample and of the resulting 2DEG, it was expected that a spin-orbit effect similar in magnitude
to that of sample A should be present. To shed light into this apparent contradiction we have
proceeded to the analysis of the SdH data with the more refined scrutiny of amplitude and phase
modulation in the Dingle plot.

The amplitude modulation is reported in figure 4.24a; phase modulation is in figure 4.24b.

It is apparent that the amplitude is linear in the whole range, while the phase deviates slightly
from the π rad value at higher B−1 values.

In the figures, along with a fit with the single channel model, the result of a fit with a two-
channels model with lorentzian lineshape are also reported, assuming a spin-splitting energy
of 0.77 meV, which would correspond to a node at the end of the observed oscillations. Both
models satisfactorily reproduce the data.
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(a)

(b)

Fig. 4.25: Experimental magnetoresistivity of Sample B at very low fields, at 0.25 K, 1 K and 4.2 K. (a)
∆ρ = ρxx(B) − ρxx(0), (b) ∆ρ = ρxx(B) − ρxx(1.8 mT).

In conclusion, all the analyses of the SdH oscillations are compatible with the presence of
two conductive channels, whose energy separation can not exceed 0.77 meV, although they do
not provide any definite evidence for it.

4.3.3 Weak antilocalisation

In this sample magnetotransport measurements at very low magnetic fields have shown a clear
signature of the weak antilocalisation effect at low temperature (0.25 K and 1 K). Figure 4.25
shows the measured magnetoresistivity as a function of magnetic field in the range from −10
to 10 mT at 0.25 K, 1 K and 4.2 K. We can see in the 0.25 K and 1 K curves a local minimum
at zero field and two symmetric maxima at about +2 and −2 mT. The height of the maxima is
smaller at 1 K; the field value corresponding to the maxima is independent of the temperature.
At higher fields the two curves are parallel. At liquid helium temperature (4.2 K) only the weak
localisation is visible.

To acquire these curves a lock-in technique at constant current was employed. To reduce
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(a) (b)

Fig. 4.26: (a) Comparison of a single magnetoresistivity trace (red, dashed line) and the average of 80
traces (solid line). (b) Average curve (solid line) with the 1-standard deviation band (marked
by dotted lines).

the noise in the measurements, several curves were acquired as a function of magnetic field and
then averaged. Figure 4.26a compares the average curve and a single experimental curve for the
0.25 K measurement; figure 4.26b shows the average and the standard deviation band at 0.25
K; the 1 K case is similar. The standard deviation obtained from this procedure was taken into
account as weighting factor in the least-square fitting of the data.

The average resistivity curve was converted to conductivity as σxx = ρxx/(ρ2
xx + ρ2

xy); since
the transverse component ρxy was simultaneously acquired, this procedure does not need any
further assumptions. Then, an offset in the magnetic field (about 5.0 mT) was corrected; this
correction is justified since the longitudinal resistivity must be an even function of magnetic
field. Then, the classical Drude contribution to the conductivity is subtracted from the data; in
this low field range the magnetoconductance is very small, and the subtracted Drude conduct-
ivity amounts to a constant.

The output of this procedure can be directly compared with the models described in sec-
tion 3.3.1. However, in the fitting procedure an additive constant is left as a free parameter to
account for experimental errors and other effects which can contribute as a conductivity con-
stant, such as electron-electron interaction. Indeed, this constant, as extracted from the fit, is of
the order of 0.1% of the zero-field conductivity, and is of the same order of the electron-electron
interaction correction, calculated according to Ref. [23] (this interaction is further discussed in
appendix C.1); note, however, that a systematic error in the measured current of less than 1%
can give the same correction. Finally, the data are symmetrised, i.e. they are transformed as

σsymm(B) =
σ(−B) + σ(+B)

2
. (4.29)

This procedure removes residual asymmetries in the four wire measurements [105]. As seen in
the previous figures, the experimental data are already symmetric, so that the symmetrisation
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has a little effect.

4.3.3.1 Models used for the analysis of the weak antilocalisation signal

To extract the physical parameters from the data, a suitable theoretical formula is required.

A number of models have been developed to describe quantitatively the weak antilocal-
isation. As summarised in section 3.3.1, some of them are valid only within the diffusion
approximation, i.e, in small magnetic field and for small spin-orbit; furthermore, they assume a
different picture of the spin-orbit effect. In this section, four of these models will be described
and compared through least-square fit to the experimental data; indeed, among the models de-
scribed, only two are usually considered in the literature to fit the experimental data, the “dif-
fusive” model and the “Golub” model. Thus, it is interesting to compare them and discuss their
validity.

I recall that the weak antilocalisation correction arises from interference of time-reversed
trajectories, when the interference is strongly affected by the spin part of the wavefunction
because of spin-orbit interaction. The amplitude of the interference is called Cooperon, and is
calculated using the Green function technique and diagrammatic expansions.

I recall also that, since in the wurtzite lattice the spin-orbit interaction has the Rashba form
(section 2.2), only this kind of interaction will be considered; the Rashba coefficient α will be
actually an effective coefficient, given by α = αBR + αWSIA − (γwz + γbands)

(
b〈k2

z〉 − k2
‖

)
.

Diffusive model When the magnetic length lB =
√
~/2eB is longer than the mean free path

l = vFτ, the trajectories contributing to the quantum correction involve many collisions. In this
limit the diffusion approximation is valid. In the magnetic field scale, the condition corresponds
to B < Btr, Btr = ~/2el2 being the so-called transport field.

In Sample B, Btr = 4.8 mT, and the investigated magnetic field range reaches 10 mT. Thus,
a diffusive model could not fit the data in the whole range. However, the main feature of these
data is the minimum at about 2 mT, which is below the transport field; then, a diffusive model
could reproduce it, or at least give an estimation of the parameters. Hence, a first tentative fit
can be done in this approximation.

In particular, Punnoose [84] provided a closed-form formula for the weak antilocalisation.
This allows a simple use of it, while the other models, described in the following, require a
careful numerical evaluation.

This model is based on the theory of Iordanskii, Lyanda-Geller and Pikus (ILP) [56], in the
particular case of a spin-orbit interaction given in the form of a Rashba interaction (see equation
(2.5)), i.e. H = ασ × k. It is then suitable for the case of GaN.

The Hamiltonian of the system can be rewritten as H ∝ (k − 2eAS)2 (see also equation
(3.33), page 43), so that the spin-orbit effect can be interpreted as a spin-dependent Aharonov–
Bohm (AB) effect.
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The Cooperon in this case is proportional to the Green function of the operator

H = D
(
−i∇ −

2e
~

A −
2mα
~
Σ
)2

+
1
τϕ
. (4.30)

Here, D is the diffusion coefficient, Σ contains the total spin of the interfering waves as Σ =
1
2 ẑ × (σ1 + σ2), and the term 1/τϕ describes the phase relaxation.

From this starting point, the conductance correction, as a function of the magnetic field, is

∆σ(B) =
e2

2πh


 ∑

s=0,±1

usψ
(1
2

+ βϕ − vs

)−
−ψ

(1
2

+ βϕ

)
+

1
(bso + βϕ)2 − 1/4

− 2 ln βϕ

}
,

(4.31)

where
vs = 2δ cos

[
θ −

2π
3

(1 − s)
]
, (4.32a)

us =
3v2

s + 4βsovs + (5β2
so + 4βsoβϕ − 1)∏

s′,s(vs − vs′)
, (4.32b)

δ =

√
1 − 4βsoβϕ − β2

so

3
, (4.32c)

θ =
1
3

arccos

− (
βso

δ

)3 (
1 +

2βϕ
βso

) , (4.32d)

where βso = Bso/B, βϕ = Bϕ/B and ψ(x) is the digamma function.

The field Bso is related to the parameter α by

Bso =
m2

e~3α
2, (4.33)

and the energy splitting is ∆E = 2αkF.

The phase field is defined as

Bϕ =
~

4eDτϕ
. (4.34)

The model was fitted to the data using only the magnetic field range with B < Btr. The
result is shown in figure 4.27 for 0.25 K and 1 K; the extracted values are reported in table 4.3.
We can see that the model can well reproduce the data in this range. Attempts to fit in the full
range (not shown) did not give any better results. The model reproduces the data in its range of
validity, but fails, as expected, outside it.
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Fig. 4.27: Experimental symmetrised magnetoconductivity (symbols) and fit (lines) with the diffusive
model for 0.25 and 1 K. The vertical line marks the transport field Btr.

Zduniak model To verify if the ballistic models can improve the fits, or can give significantly
different values of the parameters, I tried first to fit the data with the model by Zduniak et

al. [113].

This model includes spin-orbit interaction as a spin relaxation effect, i.e. as an additive
coherence relaxation rate. Previously, the same procedure was followed by Hikami et al. [55]
and Kawabata [59]. The Hikami model is valid only in the diffusive regime, and indeed the
Zduniak model reduced to it in this limit. As for the Kawabata model, the Zduniak model is a
reformulation of it.

To calculate the Cooperon, the authors consider the probability of an electron to return
in the origin after n scattering events; then, all these contributions are summed. Terms with
n = 1, 2 are not summed, since the effect of the magnetic field depends on the flux through the
area enclosed by the path, and these paths have zero area. The return probability is calculated
following Kawabata [59].

The Cooperon C(x, z) is given by

C(b, z) = x
∞∑

N=0

P3
N(b, z)

1 − PN(b, z)
, (4.35a)

PN(b, z) =

√
2
|b|

∞∫
0

exp

−√
2
|b|

(1 + z)t −
t2

2

 LN

(
t2
)

dt, (4.35b)

where LN(x) are the Laguerre polynomials; the correction to the conductance is given by

∆σ(B) = −
e2

4π2~
[2C(b, z1±1) + C(b, z10) − C(b, z00)] , (4.36)
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Fig. 4.28: Experimental symmetrised magnetoconductivity (symbols) and fit (lines) with the Zduniak
model for 0.25 and 1 K. The vertical line marks the transport field Btr.

where b = B/Btr; the factors zSSz are

z00 =
Bϕ
Btr
, z10 =

Bϕ + 2Bso

Btr
, z1±1 =

Bϕ + Bso

Btr
. (4.37)

The first two terms in equation (4.36) represent the triplet part: C(b, z1±1) is the contribution
of the spin projections with Sz = +1 or −1 and C(b, z10) represents the Sz = 0 states; the last
term is the singlet part. It does not depend on the spin-orbit interaction, and contributes with an
opposite sign with respect to the triplet (i.e., the singlet is “antilocalising”).

Because of the integrals and the series involved in this model, a numerical calculation is
needed to evaluate it. The approach for this calculation used in this work, based on Ref. [76],
is described in Appendix D.1.

The energy splitting and the Rashba parameter are defined as in the previous diffusive model.

The model depends on the reduced variables bso = Bso/Btr, bϕ = Bϕ/Btr; hence, in the fitting
procedure, these variables were considered, keeping Btr fixed.

Attempts to fit the data with this model did not succeed. It reproduces the data in the
different magnetic field ranges with very different sets of parameters. In table 4.3 is reported
one of these possible sets, and in figure 4.28 the corresponding curve is drawn: it reproduces
only the zero field maximum.

According to the interpretation of Punnoose [84], the explanation for the poor fit could be
that when B < Bso the weak antilocalisation can be described in terms of spin relaxation, as in
the Zduniak model, but when B > Bso the Aharonov–Bohm analogy, not included in this model,
gives a better description of the effect.
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Miller model The model by Miller et al. [78] describes the weak antilocalisation in the bal-
listic regime, and considers explicitly the spin-orbit interaction as a spin-dependent vector po-
tential (and thus as an Aharonov–Bohm-like effect).

The Cooperon term is the same as in the Zduniak model, but, to account for the effective
vector potential, the variable b is substituted by xSz = (B − SzBe f f )/Btr. The parameter Be f f is
an effective spin-orbit field, which defines the spin-orbit energy splitting; in this formulation,
the variable x effectively describes the Aharonov–Bohm-like effect. This field is given by

Be f f = 2
m2

e~3α
2 (4.38)

for a spin-orbit interaction of the Rashba form with strength α; the energy splitting is then
calculated as ∆E = 2αkF.

The conductivity correction is given by:

∆σ(B) = −
e2

4π2~
[C(x1, z1±1) + C(x−1, z1±1) + C(x0, z10) − C(x0, z00)] . (4.39)

The field Bso, used in the definition of zSSz , is related to the spin relaxation through spin-flip,
and is given by:

Bso =
~

4eDτso
. (4.40)

This model is valid for B > Be f f , but, as was shown in figure 3.10, at lower fields its curve
is close to those of the other models.

The numerical evaluation requires the same procedure as the evaluation of the Zduniak
model.

Note also that, for negligible spin-orbit interaction or for B � Bso (i.e., when the weak
localisation dominates) the Miller and Zduniak model reduce to the same formula:

∆σ(B) = −
e2

2π2~
C(x0, z00). (4.41)

In this case, the zero field correction is

∆σ(0) = −
e2

2π2~
ln

(
1 +

1
z00

)
. (4.42)

The model was fitted to the data via the three parameters Bso/Btr, Bϕ/Btr and Be f f/Btr. As
shown in figure 4.29, it can reproduce the data and gives a good approximation to the experi-
mental conductance in the whole magnetic field range, although the cusp at the conductivity
minimum is quite different from the experimental result.

Although this model is valid when B > Be f f , attempts to fit the data in this range only
(assuming the Be f f to be defined by the conductance minimum) or in the complete magnetic
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Fig. 4.29: Experimental symmetrised magnetoconductivity (symbols) and fit (lines) with the Miller
model for 0.25 and 1 K. The vertical line marks the field Be f f .

field range give the same results.

Golub model The models described above do not include the nonbackscattering correction
to conductivity. This correction gives another term which sums to the backscattering term.
A theory, which includes this terms in the ballistic regime, for arbitrary values of B/Btr and
Bso/Btr, was developed by Golub in Ref. [50] for the case of Rashba interaction only. The
Cooperon is calculated using an expansion in the basis of the Landau levels states.

The conductivity correction is calculated as the sum of a backscattering correction σa and
a nonbackscattering correction σb. The former accounts for the so-called “maximally crossed”
terms in a diagrammatic expansion; the latter, which is neglected in other derivations, accounts
for other terms. The two terms are given by

σa = −
e2

2π2~

b
2

∞∑
N=0

{
Tr

[
A3

N(1 − AN)−1
]
−

P3
N

1 − PN

}
, (4.43a)

σb = −
e2

4π2~

b
2

∞∑
N=0

{
Tr

[
KNKT

NAN(1 − AN)−1
]

+ Tr
[
KT

NKNAN+1(1 − AN+1)−1
]
−

−Q2
N

( PN

1 − PN
+

PN+1

1 − PN+1

)}
.

(4.43b)

The matrices AN and KN are defined as [50, 49]

AN =


PN−2 − S(0)

N−2 R(1)
N−2 S(2)

N−2

R(1)
N−2 PN−1 − 2S(0)

N−1 R(1)
N−1

S(2)
N−2 R(1)

N−1 PN − S(0)
N ,

 , (4.44a)
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KN =


QN−2 − S(1)

N−2 R(2)
N−2 S(3)

N−2

−R(0)
N−1 QN−1 − 2S(1)

N−1 R(2)
N−1

−S(1)
N−1 −R(0)

N QN − S(1)
N

 . (4.44b)

The symbols PN, QN, R(m)
N and S(m)

N are the integrals:

PN =

√
2
|b|

∞∫
0

exp

−√
2
|b|

(1 + z)t −
t2

2

 LN

(
t2
)

dt, (4.45a)

QN =
1

√
N + 1

√
2
|b|

∞∫
0

exp

−√
2
|b|

t −
t2

2

 tL(1)
N

(
t2
)

dt, (4.45b)

R(m)
N =

√
N!

(N + m)!
×

×

√
1
|b|

∞∫
0

exp

−√
2
|b|

t −
t2

2

 tmL(m)
N

(
t2
)

sin

2Ωτ

√
2
|b|

t

 dt,
(4.45c)

S(m)
N =

√
N!

(N + m)!
×

×

√
2
|b|

∞∫
0

exp

−√
2
|b|

t −
t2

2

 tmL(m)
N

(
t2
)

sin2

Ωτ√
2
|b|

t

 dt,
(4.45d)

where L(m)
N (x) is the generalised Laguerre polynomial, and z = Bϕ/Btr.

The parameter Ω is the spin-orbit frequency. The product Ωτ plays, in this model, the role
of Bso/Btr in the other models, and weights the intensity of the spin-orbit with the scattering
rate. The energy splitting is given by ∆E = 2~Ω, and the Rashba parameter is α = ∆E/2kF.

The methods for numerical evaluation of this model were developed during this thesis work;
they are described in Appendix D.2.

As can be seen in figure 4.30, this model reproduced very well the data in the whole mag-
netic field range; the parameters Ωτ and z are found through the fit, and are reported in table
4.3.

The 4.2 K data were fitted only with the Miller and the Golub models, assuming for the α
parameter the same value at 1 K, since the WAL minimum is not observable at this temperature.
The results are reported in table 4.3 and in figure 4.31. In this case, a larger magnetic field range
was swept; for the Miller model, only the points with B > Be f f were fitted.

A comparison of the four different models is reported in figures 4.32 and 4.33 for 0.25 K and
1 K, respectively. Table 4.3 reports all the extracted parameters.
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Fig. 4.30: Experimental symmetrised magnetoconductivity (symbols) and fit (lines) with the Golub
model for 0.25 and 1 K. The vertical line marks the field Btr.

Fig. 4.31: Experimental symmetrized magnetoconductivity at 4.2 K (symbols) and fits with the Golub
(continuous line) and Miller (dashed line) models.
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Fig. 4.32: Experimental symmetrised magnetoconductivity and fitted models for 0.25 K. The vertical
lines mark the transport field Btr and, for the Miller model, the effective field Be f f .

We can see that the diffusive, Miller and Golub models give similar parameter values, while
they are different for the Zduniak model.

The diffusive model reproduces the data only in its range of validity, i.e. at low magnetic
fields. The failure of the Zduniak model can be attributed to the fact that it treats the spin-orbit
interaction only in terms of spin relaxation. On the contrary, the Miller model adds explicitly
a spin dependent Aharonov–Bohm-like term to the weak antilocalisation formula, and gives a
better approximation to the data.

The best fit is obtained with the Golub model; in addition to incorporate the spin-orbit effect
completely, this model also includes the nonbackscattering contributions.

To quantify the relevance of the nonbackscattering correction for the case of our sample,
we have compared the fit to the data with and without the nonbackscattering correction, i.e.,
using σa + σb or σa only (see equation (4.43)). The quality of the fit, as seen in figure 4.34, is
comparable. The parameters extracted from the two procedures are very similar: the Rashba
parameter is the same, while the phase coherence time is smaller for the case with σa only (it is
69 ps, about 10% smaller than in the σa + σb case). Thus, we can conclude that the procedure
followed to derive the Golub model leads to a good fit, and the addition of the nonbackscattering
correction only affects the extracted value of the phase coherence time, without distorting very
much the overall trend of the curve and the extracted SOI strength.

These considerations are valid for both 0.25 K and 1.0 K data. Comparing the extracted
values at the two temperatures, we note that the resulting spin-splitting energy is the same; this
is expected, since the spin-orbit interaction should be weakly dependent on temperature. The
phase relaxation time is decreasing with temperature, as expected. In the Miller model, where
two different parameters describe the interference effect (related to the actual spin-splitting
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Diffusive Zduniak Miller Golub

0.25 K
Bso (mT) 1.6 0.25 0.058 2.1
Bso/Btr 0.32 0.053 0.012 0.45
Be f f (mT) 1.9
Be f f /Btr 0.40
∆Eso (meV) 0.88 0.35 0.69 0.97
α (10−12 eV m) 0.53 0.21 0.41 0.59
Bϕ (mT) 0.068 0.030 0.048 0.036
Bϕ/Btr 0.014 0.0062 0.010 0.0076
τϕ (ps) 43 96 60 79

1 K
Bso (mT) 1.5 0.25 0.046 2.1
Bso/Btr 0.32 0.053 0.0095 0.45
Be f f (mT) 2.0
Be f f /Btr 0.41
∆Eso (meV) 0.88 0.35 0.70 0.98
α (10−12 eV m) 0.53 0.21 0.42 0.60
Bϕ (mT) 0.12 0.045 0.093 0.59
Bϕ/Btr 0.026 0.0094 0.019 0.012
τϕ (ps) 23 64 31 49

4.2 K
Bso (mT) 0.019 2.1
Bso/Btr 0.044 0.47
Be f f (mT) (2.0)
Be f f /Btr (0.41)
∆Eso (meV) 0.70 0.98
α (10−12 eV m) (0.42) (0.60)
Bϕ (mT) 0.27 0.83
Bϕ/Btr 0.049 0.18
τϕ (ps) 10 3.4

Tab. 4.3: Parameters extracted from the different models for WAL and WL at 0.25 K, 1 K and 4.2 K. The
fitting parameters were Bso/Btr, Bϕ/Btr, and Be f f /Btr for the Miller model only; for the Golub
model, Bso/Btr ≡ Ωτ. At 4.2 K the α value was fixed. The other parameters are extracted as
described in the text.
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Fig. 4.33: Experimental symmetrised magnetoconductivity and fitted models for 1 K. The vertical lines
mark the transport field Btr and, for the Miller model, the effective field Be f f .

Fig. 4.34: Comparison of conductance fit for the complete Golub model with nonbackscattering cor-
rection (σa + σb, continuous line) and for the case without nonbackscattering correction (σa,
dashed line).
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Fig. 4.35: Experimental magnetoconductance at low field for sample A, at 0.25 K (symbols). Lines are
the calculated mangetoconductance with the Golub model, with energy splitting ∆E = 1.2
meV, for different values of bϕ = Bϕ/Btr (in the range from 0.01 to 1, with logarithmic
spacing).

energy) and spin relaxation, we note that this second effect is actually more efficient at the
lowest temperature (i.e., Bso is larger, and the spin relaxation time is smaller).

The energy splitting, as calculated from the models (excluding the Zduniak model) is thus
between 0.7 and 1.0 meV.

4.3.4 Weak antilocalisation in sample A

The measurement of weak localisation, which has been very useful for the study of spin-orbit
interaction in sample B, was attempted also in sample A. The results are shown in figure 4.35.

The reported data are the average of 100 curves, elaborated with the same procedure de-
scribed for sample B.

We can see that the curve shows a dip around zero Tesla; however, the data are much noisier
than in the case of sample B.

In the figure some magnetoconductance curve calculated with the Golub model5 are also
reported, assuming the energy splitting as extracted from the Shubnikov–deHaas measurements
(∆E = 1.2 meV). The parameter bϕ = Bϕ/Btr was varied from 0.01 to 1. The curves show, at
small bϕ, the antilocalisation pattern with minima at finite field, while at larger bϕ only the weak
localisation minimum at zero is present.

This latter configuration is qualitatively similar to the experimental results; indeed, large
values of bϕ are expected in high mobility samples [76]. However, the simulated curves do not
reproduce completely the data. Attempts to use other models, or to change the value of the spin
splitting, does not give any better approximation to the data.

5 The transport field in sample A is 0.24 mT, so the data can only be interpreted with a ballistic model.
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In conclusion, the quality of the low field data of sample A is not sufficiently good to be
analysed in the same manner as sample B, then we rely on the SdH measurements for the
measured value of the spin-splitting in sample A.

4.4 Discussion

The features of the two samples investigated in this work and the parameters extracted from the
magnetotransport measurements are reported in table 4.4.

The two samples have similar carrier density, but the mobility of sample A is about four
times larger than that of sample B. This difference can be attributed to the presence of the AlN
exclusion layer in Sample A, which enhances the mobility at large density reducing the alloy
scattering, as explained in section 1.2.2.

The high mobility sample A revealed the spin splitting through Shubnikov– deHaas effect;
this measurement was not conclusive in sample B. Conversely, weak antilocalisation measure-
ments were conclusive for sample B, but could not give a clear result for sample A.

The extracted spin-splitting energy is of the order of 1 meV for both samples.

These results should be compared with those collected from the literature survey in table
2.2, page 25.

We can see that the samples investigated in this work are among those with the largest carrier
density. As for the mobility, sample A is among the sample with large mobility, while sample
B has a small mobility.

Samples A and B are among the samples with small spin-splitting energy. For samples with
carrier density similar to them, both very large values (close to 13 meV) and non detectable
values are found.

To directly compare these data, I report in figure 4.36 the spin-splitting energy as a function
of the Fermi wavevector kF =

√
2πn. In the figure, the measurements using the Shubnikov–

deHaas effect and the weak antilocalisation are marked as full and empty symbols, respectively.
It can be observed that SdH measurements systematically give larger splittings, while WAL
yields smaller values. Indeed, as discussed in the previous sections, there are many possible
mechanisms which may give beatings patterns similar to the spin splitting; in particular, mag-
netointersubband scattering and spatial inhomogeneities can be mistaken for the spin splitting
signal. The data reported in the literature are not always discussed taking into account these
alternatives.

In fact, we note that Thillosen et al. [98], for samples with kF = 4.7 · 108 m-1 and 5.1 · 108

m-1, discarded the SdH measurements, since the beatings pattern is interpreted as an effect of
inhomogeneity in the samples. The only work which reports similar values from Shubnikov–
deHaas and antilocalisation measurements (by Zhou et al.[115]) was made in a sample with
kF = 5.9 · 108 m-1.
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Sample A Sample B

Heterostructure

dAlGaN (nm) 23 24.5
x (Al content) 0.23 0.29
dAlN (nm) 2 0
Doping Si (cm−3) 0 0

2DEG
n (1016m−2) 10.4 10.8
µ (m2V−1s−1) 2.2 0.48

SdH
µ/µq 7.4 3
∆E (meV) 1.2 <0.8
α (10−12eV m) 0.76 <0.5

WAL
τϕ (ps) 79
∆E (meV) 0.97
α (10−12eV m) 0.60

Tab. 4.4: Sample parameters and measurements results for Sample A and B at 0.25 K.

Fig. 4.36: Energy splitting as a function of the Fermi wavevector for samples A and B and for data from
literature. Data from Thillosen et al. [98] and Zhou et al. [115], discussed in the text, are
marked.
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g 0.57 · 10−30/2π eV m3

γwz 0.32 · 10−30 eV m3

αWSIA 0.9 · 10−12 eV m
b 4
p 6.1 · 105 m-2/3

Tab. 4.5: Parameters used in the estimation of the spin splitting energy as a function of kF.

Among the reported Shubnikov–deHaas determinations, only the one in this thesis gives a
value in agreement with those of weak antilocalisation at large kF.

We have tried to compare the theories for spin-orbit interaction in GaN 2DEGs (reported in
section 2.2) to the experimental data. As discussed in that section, the interplay between the
different mechanisms which contribute to the spin-orbit interaction in GaN 2DEGs can make
difficult this kind of comparison, and each sample should be treated individually.

We have taken the estimations of the different terms of the spin-orbit energy to calculate
the total energy splitting and check how the theory compares with the experimental data (those
obtained in this work and those reported in the literature).

The total energy splitting at the Fermi wavevector is given by the formula (see also equation
(2.11))

∆E = 2
[
αBR(kF) + αWSIA − (γwz + γbands)

(
b〈k2

z〉 − k2
F

)]
kF. (4.46)

αBR(kF) = gk2
F accounts for the spin-orbit interaction arising from the structural inversion

asymmetry of the quantum well (Rashba effect); the coefficient g = 0.57 · 1030/2π eVm is
estimated in Ref. [68].

The coefficients αWSIA, γwz and b are related to the band structure (wurtzite structural in-
version asymmetry and Dresselhaus effect) of the GaN; the estimations reported in section 2.2
(also recalled in table 4.5) will be used.

The parameter γband, which describes the energy splitting due to the coupling between the
conduction bands ∆C1 − ∆C3, is more problematic, since its value has not been estimated.
Moreover, since the energy splitting expected from this mechanism is found to have a dis-
continuity as a function of k (see figure 2.5a, page 18), the value for the parameter may depend
critically on the details of the heterostructure.

As a consequence, we have chosen to evaluate equation (4.46) for different values of γband

(γband = 0, γwz, 5γwz, 10γwz), and to explore its effect parametrically.

As for the estimation of 〈k2
z〉, we can use the same considerations used in Ref. [73]. For

the first subband of a one-dimensional square quantum well kz = π/d, d being the width of the
well; if 〈z〉 is the average distance from the barrier, d = 2〈z〉; hence kz = π/2〈z〉. In the case
of a heterojunction, d is not constant because of the band bending, and depends on the Fermi
level. The quantity 〈k2

z〉 is estimated as 〈k2
z〉 = (π/2〈z〉)2.
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Then, the value of 〈z〉 must be estimated. The simplest approximation for this value can be
found using a variational approach with a Fang-Howard test wavefunction [35, chap. 9], which
describes a triangular quantum well. The wavefunction is defined to be 0 in the barrier layer
(i.e., no barrier penetration). In this approximation, 〈z〉 depends only on the carrier density as

〈z〉 = 3
(

33me2

8~2ε0εr
n
)−1/3

, (4.47)

so that 〈k2
z〉, using n = k2

F/2π, is

〈k2
z〉 =

(
π
6

)2
(

33
16π

me2

~2ε0εr
k2

F

)2/3

=
(
π
6

)2
(

33
4

1
a∗B

k2
F

)2/3

≡ p k4/3
F . (4.48)

The parameter p is, in this approximation, a constant, and depends only on the material
parameters m (effective mass) and εr (relative permittivity); a∗B is the effective Bohr radius. The
value of p is reported in table 4.5.

With these relations, equation (4.46) becomes

∆E = c3k3
F + c2k7/3

F + c1kF, (4.49)

with
c3 = 2(g + γwz + γbands), (4.50a)

c2 = −2(γwz + γbands)b p, (4.50b)

c1 = 2αWSIA. (4.50c)

The results of this calculation are shown in figure 4.37. For small or large γband, when the
linear or the cubic term dominates, we see that the behaviour is monotone. In the case of small
γband, the maximum energy splitting is of the order of 1 meV, while for large γband can exceed
10 meV. For intermediate values of γband, the spin splitting has a zero at finite kF, as discussed
in section 2.2.1.

It is worth noting that the contribution of the Rashba effect is indeed very small compared
to the WSIA contribution. With the parameters value reported in the table 4.5, the ratio between
the energy splitting due to the WSIA only and that due to Rashba only is ∆EWSIA/∆ER =

αWSIA/(2πgn) ≈ 1.6 · 1018m−2/n; the largest carrier density are of the order of 1 · 1017 m−2, so
the WSIA can be more than ten times larger than Rashba term.

Furthermore, by inspecting table 4.5, we can see that the parameters g and γwz are similar,
so that the contributions of Rashba and Dresselhaus effect are similar.

This consideration may explain why in Refs. [64, 98] the spin splitting was found to be
described by a linear dependence on kF, with a constant α.
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Fig. 4.37: Estimations of the spin splitting energy in a AlGaN/GaN heterostructure, as a function of the
Fermi wavevector, calculated using equation (4.46). The values of the parameters are reported
in table 4.5. The wavevector range covers carrier density from 0.64 · 1016 m−2 to 36 · 1016

m−2.

In figure 4.38 some of the simulated curves are reported, together with the data collected
from the literature and in this work.

As expected, the effect of the ∆C1 −∆C3 coupling (through γband) is necessary to explain the
larger splitting energies, but the smallest splittings reported can be understood assuming a small
γband.

A more thorough analysis of the band structure of gallium nitride and its dependence on the
heterostructure parameters should help understand if such a large spread in the parameter γband

is justified.
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Fig. 4.38: Energy splitting as a function of the Fermi wavevector for samples A and B and for data from
literature (symbols) and calculated energy splitting for different values of γband (lines).





5. CONCLUSIONS

In this thesis, two-dimensional electron gases in gallium nitride based heterostructures have
been investigated with magnetotransport measurements. The aim of the study has been the
determination of the spin-splitting energy in the conduction band. Two effects have been ex-
ploited: Shubnikov– deHaas effect and weak antilocalisation. The motivation has been the
interest in testing this system as a suitable material for spintronics, since prior results were not
conclusive.

Two samples have been investigated. Both have a large carrier density; one of the two has
also high mobility. Their electric properties were measured at a cryogenic temperature, down
to 0.25 K; the maximum magnetic field was 12 T.

In the high magnetic field range Shubnikov–deHaas oscillations could be observed. In this
effect, the spin-splitting manifests itself as a beatings pattern in resistivity oscillations. At very
low magnetic field, another effect of the spin splitting, the weak antilocalisation, could be ob-
served.

To study in details the Shubnikov–deHaas data, not only the frequency domain analysis has
been considered, but also the amplitude and phase modulation.

Models suitable to account for different lineshapes for the density of states, inhomogeneity
in the samples, and intersubband scattering were developed.

The comparison of these models to the data allowed a quantification of the transport para-
meters, and gave indication on the scattering mechanism operative in the sample.

The splitting energy was determined; other possible mechanisms which may give rise to
the beatings patterns were excluded by comparison with classical Hall effect measurements or
thanks to the developed models.

For the interpretation of the weak antilocalisation measurements theoretical models reported
in the literature, based on different assumptions or approximations, were considered.

Their numerical evaluation was performed with tailored algorithms.

The validity of these models is discussed in comparison with the experimental data.

These analyses established a spin-splitting energy of the order of 1 meV in both samples.

A survey of literature reveals that the values of this energy in gallium nitride are reported to
be of this order of magnitude when determined with weak antilocalisation, while the analysis
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of the Shubnikov–deHaas oscillation give larger values.
One result of this work is that the Shubnikov–deHaas data should be analysed with great

care, to exclude that effects other than spin splitting are responsible for the observed features,
while the weak antilocalisation measurements are more reliable.

In the comparison with theoretical models, the effect of the parameter γband was found to be
crucial for the estimation of the spin-splitting energy.



APPENDICES





A. BEATINGS

Beatings patterns arise when two (or more) harmonic components are present in a signal. In this
appendix the two cases of two components of equal and different amplitude will be considered.

When the two amplitudes are the same, the signal can be analysed with the help of trigono-
metric relations:

x(t) = cos
(
ω1t + φ1

)
+ cos

(
ω2t + φ2

)
=

=2 cos
(
ω1 − ω2

2
t +

φ1 − φ2

2

)
· cos

(
ω1 + ω2

2
t +

φ1 + φ2

2

)
,

(A.1)

where ω = 2π f is the angular frequency.

In formula (A.1), the first, low-frequency, factor is an envelope determining the null points
(nodes) and the maximum amplitude points, while the second determines the actual maxima and
minima. The nodes are found when the argument of the envelope is equal to an odd multiple of
π/2:

ω1 − ω2

2
t +

φ1 − φ2

2
=

2n + 1
2

π, n = 0, 1 . . . (A.2)

The position of the n-th node is thus:

tn =
2n + 1
ω1 − ω2

π −
φ1 − φ2

ω1 − ω2
, (A.3)

and the distance between two consecutive nodes is

tn+1 − tn =
2π

ω1 − ω2
=

1
f1 − f2

. (A.4)

The frequency difference can be extracted from the nodes positions:

f1 − f2 =
2n + 1

2tn
−
φ1 − φ2

2πtn
. (A.5)

The actual maxima and minima are found when

ω1 + ω2

2
t +

φ1 + φ2

2
= mπ, m = 0, 1 . . . (A.6)
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Their positions are given by

tm =
2πm
ω1 + ω2

−
φ1 + φ2

π(ω1 + ω2)
. (A.7)

If the signal has two components with different amplitude, for example

x(t) = A1 cos
(
ω1x + φ1

)
+ A2 cos

(
ω2x + φ2

)
= |x(t)| cosϕ(t), (A.8)

it is easier to use the complex numbers to calculate the amplitude and the phase of this signal.

The amplitude modulation is given by

|x(t)| =
√

A2
1 + A2

2 + 2A1A2 cos
(
(ω1 − ω2)t + (φ1 − φ2)

)
. (A.9)

The “nodes” (i.e., the point where the minimum amplitude is found) are at the same positions
as in the case of equal amplitude (equation (A.3)). At this minimum the amplitude is |A1 −A2|,
while at the maximum is A1 + A2.

The phase is given by

ϕ(t) = arctan

 A1 sin
(
ω1t + φ1

)
+ A2 sin

(
ω2t + φ2

)
A1 cos

(
ω1t + φ1

)
+ A2 cos

(
ω2t + φ2

) =

=
(ω1 + ω2)t + φ1 + φ2

2

+ arctan
[
A1 − A2

A1 + A2
tan

(ω1 − ω2)t + (φ1 − φ2)
2

]
.

(A.10)

A.1 Analytical representation formalism

The same results can be found through the analytical representation of the signal. This formal-
ism is also more rigorous for more complicated signals.

The analytical representation of a signal x(t) is [3, chap. 9.6]

xA(t) = x(t) + ix̂(t), (A.11)

where x̂(t) is the Hilbert transform of the signal. The envelope is calculated from the amplitude
of this representation as

|xA(t)| =
√

x(t)2 + x̂(t)2, (A.12)

and the instantaneous phase as

ϕx(t) = arctan
x̂(t)
x(t)

. (A.13)
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The Hilbert transform is defined as

x̂(t) =
1
π

p.v.

∞∫
−∞

x(τ)
t − τ

dτ. (A.14)

This integral is easily calculated for functions like A(t) cos(ωt + π) by residue integration.
If the damping function A(t) is limited in a neighbourhood of t, then the integral is

x̂(t) = −
1
π

p.v.

∞∫
−∞

A(τ)
t − τ

cos(ωτ) dτ =

=Imag
[
Resτ=t

A(τ)
(t − τ)

exp(iωτ)
]

= A(t) sin(ωt).

(A.15)

Because of the linearity of the Hilbert transform, this formalism can be directly extended to
the sum of two functions, and hence the same formulae of the previous section are recovered.

The numerical, discrete Hilbert transform can be applied to the extraction of the envelope
and the phase of experimental data.

The derivation of the formulae for the Dingle plot in section 4.2.3 makes use of the formulae
reported in this appendix.

The functions involved in the study of the Shubnikov–deHaas effect are of the kind SdH(t) =

A(t) cos(ωt + π), with

A(t) = σDT(t)h(t), DT(t) =
ct

sinh ct
, h(t) = exp(−βt) or exp(−βt2). (A.16)

These functions satisfy the hypothesis for A(t).

When the Dingle plots are calculated, the amplitude modulation of the oscillation must
be calculated, for example with equation (A.9). In particular, in the case of the two-channels
models, it is found that

ln
∆ρ

DT
∝

1
2

ln
[
(σ1h1(t))2 + (σ2h2(t))2 + 2σ1σ2h1(t)h2(t) cos ((ω1 − ω2)t)

]
= ln σ1 + ln h1(t) +

1
2

ln

1 +

(
σ2h2(t)
σ1h1(t)

)2

+ 2
σ2h2(t)
σ1h1(t)

cos ((ω1 − ω2)t)

 . (A.17)

Application of this formula, with the suitable choice for h1,2(t) yields equations (4.14) and
(4.19).
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Fig. A.1: Comparison of the residual phase extracted from the position of the maxima (square symbols)
and from the Hilbert transform (line).

A.2 Extraction of the residual phase from the experimental
data

The investigation of oscillatory phenomena can require the extraction of the residual phase from
the data.

In the case of a simple cosine wave x(t) = cos (ωt + α) the instantaneous phase is ϕ(t) =

ωt + α, and α = ϕ(t) − ωt is the initial phase.
In the case of two components, a suitable test frequency has to be chosen, for example

ω = (ω1 +ω2)/2; then, the quantity ϕ(t) −ωt is the residual phase. From equation (A.10), it is
given by a step-like arctangent function.

In the case of the Shubnikov–deHaas effect, this quantity can be calculated from the position
of the maxima 1/Bm and using a trial frequency f0, through the relation

2π f0/Bm + φ0 = 2πm, m = 0, 1, 2 . . . (A.18)

The value φ0 can then be extracted using the integer part function. An alternative method uses
directly the Hilbert transform of the signal.

A comparison of the two procedures (direct calculation and Hilbert transform) to extract
φ0 is given in figure A.1, the experimental data being those of device 1 described in section
4.2. The phase calculated through the Hilbert transform shows oscillations superimposed to the
trend with the jump. They are related to the higher harmonics components. At large B−1, where
the oscillations are damped, the signal is noisier.



B. MODEL FOR ROUGHNESS SCATTERING

The roughness scattering potential can be written as [23]

U2
q = π∆2Λ2

(
e2n2D

4εrε0

)2

exp
(
−q2Λ2/4

)
, (B.1)

where ∆ is the roughness height (root mean square), and Λ is the correlation length; n2D is the
carrier density and q = 2kF sin Θ/2.

Quantum and transport lifetimes are given by

1
τq

=
m
π~2

π∫
0

U2
q

ε2
q

dΘ, (B.2a)

1
τt

=
m
π~2

π∫
0

(1 − cos Θ)
U2

q

ε2
q

dΘ, (B.2b)

where εq = 1 + qs/q is the permittivity in the Thomas-Fermi model, and qs = me2/2πεrε0~2.
The ratio τq/τt is a function of Λ, of the 2DEG density (through kF) and of the material

parameters (m and εr):

τq

τt
= 1 −

π∫
0

cos Θ
exp(−q2Λ2/4)

ε2
q

dΘ

π∫
0

exp(−q2Λ2/4)
ε2

q
dΘ

. (B.3)

A numerical integration allows to find Λ from τq/τt (see also figure B.1); ∆ can be evaluated
form one of the two lifetimes.
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Fig. B.1: Numerical simulation of τt/τq as a function of the correlation length Λ for a 2DEG in GaN
with n2D = 1017 m−2.



C. SHUBNIKOV–DEHAAS OSCILLATIONS
BACKGROUND

The Shubnikov–deHaas oscillations are commonly superimposed to a slowly varying back-
ground. This background is usually removed before the analysis of the oscillations. This elab-
oration can be simply performed with numerical (possibly multiple) differentiation of the raw
signal, or with a high-pass Fourier filter; however, these techniques have their drawbacks, such
as noise enhancement or distortion of the signal, and, of course, all the information on the
background is discarded.

In this work, the background was extracted with the following procedure:

1. Maxima and minima of the oscillations are determined.

2. A “maximum curve” and a “minimum curve” are calculated by interpolation.

3. The average curve is calculated between maximum and minimum. In the range where no
oscillation is visible, interpolations of the data (or the data itself) are taken. The resulting
curve is the “background magnetoresistance”.

4. The background is finally subtracted from the data.

Different terms can contribute to the magnetoresistance background. In particular, electron-
electron interaction and disorder contribution to magnetoresistance will be discussed here.

In this appendix the data from sample A will be discussed in details; at the end, also the data
of the sample B are reported.

Although in the discussion of the Shubnikov–deHaas data the presence of two spin-split
conductive channels has been assessed, for the sake of simplicity in the following analysis a
single, spin-degenerate conductive channel will be considered. This simplification has no effect
on the derived background.

C.1 Electron-electron interaction

Electron-electron interaction gives rise to a negative magnetoresistance, with quadratic depend-
ence on the magnetic field (in the simplest picture) [23].

The conductance correction is independent of the field, and is given by
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(a) (b)

Fig. C.1: (a) Data from device 1 in sample A before and after the subtraction of the electron-electron in-
teraction correction. (b) Magnetoresistance background before and after the subtraction of the
electron-electron interaction correction; inset: Extraction of the magnetoresistance background
from the SdH oscillations. Data are taken at 0.25 K.

∆σee =
e2

πh

[
4 − 3

ln(1 + Fσ0)
Fσ0

]
ln

(
kBTτ
~

)
, (C.1)

where Fσ0 is the Fermi liquid constant. In terms of the adimensional radius rs = m/(εraB
√
πn2D),

and in the limit rs � 1, it is given by

Fσ0 = −
1

2π
rs√

2 − r2
s

ln

 √2 +
√

2 − r2
s

√
2 −

√
2 − r2

s

 . (C.2)

The magnetoresistance is

ρxx(B)
ρ0

' 1 −
∆σee

σ0
+

∆σee

σ0
(µB)2. (C.3)

The correction to the transverse resistivity ρxy is negligible.

Following Ref. [23], the following procedure is applied to subtract this contribution from
the experimental data: resistivity data are converted to conductivity, then ∆σee is subtracted, and
data are converted back to resistivity. The parameters needed for this procedure are the carrier
density, the transport lifetime, and the temperature; using the experimental values for these
parameters, ∆σee is calculated. The result of the subtraction of the electron-electron interaction
correction from the experimental data is shown in figure C.1 for the data at 0.25 K.

We can see that a background variation is still observable. In particular, a negative magneto-
resistance is found, followed by a positive trend in the highest field range. In the data taken at
4.2 K (figure C.4) only the negative magnetoresistance is found. To explain both these features
of the residual magnetoresistance, models describing disorder effects are considered.
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(a) (b)

Fig. C.2: Comparison of experimental data at 250 mK to the model for disorder-induced magnetoresist-
ance. Panel (b) is a detail of the low field region.

C.2 Disorder-induced magnetoresistance

Lorentz Gas A Lorentz gas is an electron gas moving in the presence of strong scatterers;
this model predicts a negative magnetoresistance [23]. The resistivity tensor components are

ρxx

ρ0
=

1 − P
1 + P2/β2 ,

ρxy

ρ0
= β

1 − P2/β2

1 + P2/β2 , (C.4)

where

P = exp
(
−

2π
β

)
, β = µB. (C.5)

The only parameter in this model is the transport mobility, which is already known from
previous measurements. The calculated magnetoresistance is shown in figure C.2, along with
the experimental data. The model reproduces the data only in a narrow range at low magnetic
field, and definitely cannot account for the positive trend at high field.

Two-components disorder In Ref. [80] Mirlin et al. developed a model for the magnetore-
sistance of non-interacting electrons in a two-components disorder: an array of strong scatterers
(impurities or interface roughness) and a weak and smooth random potential (remote impurit-
ies). In the limit with strong scatterers only the Lorentz gas is found, while in the limit with
only the smooth potential a positive magnetoresistance is found, as will be shown at the end of
this section.

The scatterers have radius a and density nS, while the smooth potential has a correlation
length Λ. The scattering rate is respectively τ−1

S and τ−1
L ; we assume τ−1

S � τ−1
L : in this case,

the transport scattering time is τ ≈ τS, and the mean free path is l ≈ vFτS.

Note that the model is valid only if the motion in the disorder is not adiabatic, that is, the
centre of the orbit moves in a diffusion regime (rather than drift); the condition to be satisfied is
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that the orbit centre displacement during a cyclotron orbit is much greater than Λ.
The frequency scales for this model, to be compared with the cyclotron frequency ωc =

eB/m, are:

• ωτ = 2π/τ: only fields such as ωc � ωτ are considered;

• ω0 = (2πnS)1/2vF(2γlS/lL)1/4, γ ∼ 1, lS,L = vFτS,L;

• ωperc = 1.67vFn1/2
S : percolation threshold;

• ωcross = vF(4πn2
Sl2

Sl−1
L ): two-components/Lorentz gas crossover;

• ωad = vF(4π/Λ2lL)1/3: adiabatic transport limit: the non-adiabatic motion condition is
ωc � ωad.

In the following, characteristic magnetic fields Bi rather than frequencies ωi are considered;
the conversion is given by Bi = mωi/e.

For B� B0 there is a parabolic negative magnetoresistance:

ρ(B)
ρ0

= 1 −
B2

B2
0

. (C.6)

For B� B0 the magnetoresistance is:

ρ(B)
ρ0
∼

(B0

B

)4

. (C.7)

Three regimes can be distinguished according to the relative values of the frequency scales,
as in figure C.3:

A: B0 � Bτ: Lorentz gas regime (contribution to the magnetoresistance only from the strong
scatterers);

B: Bτ � B0 � Bcross � Bperc: Lorenz gas regime for B < Bcross;

C: Bτ � B0 � Bperc � Bcross: the Lorenz regime is never reached.

The quadratic model for magnetoresistance has been fitted, in the low magnetic field range,
to the experimental data after subtraction of electron-electron interaction. The results are shown
in figures C.2 and C.4 for data measured at 250 mK and 4.2 K, respectively.

In table C.1 the parameters extracted from the data are summarised. They are calculated as
follows:

• Fσ0 , rs, ∆σee, Bτ from transport parameters (carrier density and mobility) calculated from
classical Hall effect.
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Fig. C.3: Comparison of different magnetoresistance regimes in two-components disorder model. See
text for details.

(a) (b)

Fig. C.4: Comparison of experimental data at 4.2 K to the model for disorder-induced magnetoresist-
ance. Panel (b) is a detail of the low field region.
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Quantity Value (250 mK) Value (4K)

rs 0.80 0.82
Fσ0 −0.25 −0.26

∆σee (10−5Ω−1) −1.58 +0.23
Bτ (T) 2.8 3.0
B0 (T) 14 11.8
lS (µm) 1.1 1.1
a (nm) 5.4 5.7

nS (1013 m−2) 7.9 8.2
Bperc (T) 7.9 7.9
lL (µm) 1.2 2.2

Bcross (T) 8.2 7.5

Tab. C.1: Important quantities and their estimated values for the study of magnetoresistance background.

• B0 from fit to the data (in the low field range) of equation (C.6).

• a is assumed to be the correlation length of the roughness, as calculated from the model
in appendix B. From this value nS is calculated, assuming lS ≈ l.

• nS and lL as [80]

nS =
1

2lSa
, (C.8)

lL = 2lS

( √
2πnSvF

ω0

)4

. (C.9)

• Bperc, Bcross using the formulae given above, with a, nS and lL.

• Bad is assumed to be much larger than the other fields scales, assuming the correlation
length of the smooth potential to be much longer than the other length scales.

The quadratic approximation describes the data up to 5 T. Since an analytical expression is
not available at higher fields, we only note, comparing figure C.3 with the data, that the model
qualitatively reproduces the data.

Smooth random potential When the electron gas moves in a smooth random potential whose
correlation length is Λ, a positive magnetoresistance is found [79]; when ωcτ � (l/Λ)2/3 it is
given by

ρ(B)
ρ0

=
2ζ(3/2)
π

(
Λ

l

)3

(µB)9/2 (C.10)

where ζ(x) is the Riemann Zeta function, and ζ(3/2) ' 2.612.
This positive contribution to magnetoresistance has to be added to the negative term de-

scribed in the previous section; because of the power-law dependence as B9/2, the positive term
is relevant at higher fields than the negative term.
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The positive magnetoresistance at high field at 0.25 K (figure C.2) can be explained, at least
qualitatively, as due to this origin.

C.3 Sample B

Figure C.5 reports the extracted magnetoresistance background for sample B. The Lorenz gas
model is also shown in the figure. It reproduces the negative magnetoresistance of the data only
qualitatively. The other models described in the previous section can be applied only for field
larger than Bτ = 2π/µt; in this sample its value is 13 T, which is beyond the experimental range.

Fig. C.5: Extracted magnetoresistance background for Sample B (solid line) and background after the
subtraction of the electron-electron interaction correction (dashed line). The dash-dot line
represents the Lorentz gas model.





D. NUMERICAL EVALUATION OF THE WEAK
ANTILOCALISATION

The models of Zduniak et al., Miller et al. and Golub, described in section 3.3.1, require a
numerical evaluation. In this appendix, I will report on how this problem can be approached.

Chronologically, I ran first into the models by Miller and Zduniak; as described below, the
integrals PN involved in them can be calculated using a composition of different methods, as
proposed by McPhail et al. [76]; for these models, I applied directly this technique. Later, I
had to deal with the Golub model, which involves other integrals in addition to PN. For their
evaluation, I have developed another calculation procedure, which could be applied also to PN;
it is simpler in the implementation, but slower in the execution.

These algorithms were implemented in PYTHON, using the packages NUMPY (for array
handling), NUMEXPR (which boosts numerical evaluations involving very large arrays), MP-
MATH (for arbitrary precision arithmetic and special functions), and SCIPY.WEAVE to include
C/C++ code. For algebraic manipulations and model fitting the MATHEMATICA software was
utilised.

D.1 Evaluation of the Cooperon term

Both Zduniak and Miller models describe the weak antilocalisation in terms of the Cooperon
function

C(x, z) = x
∞∑

N=0

P3
N(x, z)

1 − PN(x, z)
, (D.1)

where PN(x, z) is

PN(x, z) =

√
2
x

∞∫
0

exp

−
√

2
x

(1 + z)t −
t2

2

 LN

(
t2
)

dt, (D.2)

LN(t) being the N-th Laguerre polynomial. Here, x is related to the magnetic field, and z to the
phase and spin relaxation. To simplify the notation, it is possible to define s = (1 + z)

√
2/x, so
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Fig. D.1: Diagram of the evaluation methods of PN.

that the integral to be evaluated is

PN =
s

1 + z

∞∫
0

exp(−st − t2/2)LN(t2)dt. (D.3)

It is found that both the integral and the series are slowly converging, so that their numerical
evaluation can be tricky [77]. Kawabata [59] gives a recursive formula for PN; however, this
formula needs a very high numerical precision at large N and small x. Wittmann and Schmid
[110] use a series expansion of PN, which results to be not very accurate at small x. For a review
of these methods and their limits, see Ref. [76, app. B].

Miller [77] proposed a procedure suitable for the use of these formulae in the case of a
least-square fit, i.e., when several values of the parameters x and z have to be explored: he
calculates the Cooperon for a wide range of the parameters space, and uses this table for the
function evaluation. In the present work, this approach has been applied: a table of the values
of the series in equation (D.1) was evaluated for a several values of x and z, and used through
linear interpolation. The values in the table were evaluated following the method described by
McPhail et al. [76]: PN is evaluated using the most suitable technique for the different values
of x, z and N. In particular, the recursion relation is applied only up to a small N, and then
the faster series approximation is applied. The series is then evaluated up to a (large) Nmax, and
then with an asymptotic formula. The numerical results from this algorithm have been checked
with the curves reported in Refs. [76, 113].

The different approximations are summarised in figure D.1 and listed below. The employed
formulae are described in the following. Note that the value of z is ignored in choosing the
technique, because the evaluation reveals to be not very sensitive to it.

• x ≤ 0.01: approximated with the zero-field value
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• 0.01 < x ≤ 0.25:

– N ≤ 4: Kawabata recursive formula

– 5 ≤ N ≤ 1000: series approximation

– 1000 < N ≤ 1000000: approximated series

– N > 1000000: asymptotic approximation

• 0.25 < x ≤ 10:

– N ≤ 25: Kawabata recursive formula

– 26 ≤ N ≤ 1000: series approximation

– 1000 < N ≤ 1000000: approximated series

– N > 100000: asymptotic approximation

• x > 10:

– N ≤ 250: Kawabata recursive formula

– 251 ≤ N ≤ 100000: approximated series

– N > 100000: asymptotic approximation

Low field approximation At very low field, the theory of weak localisation (section 3.3) pre-
dicts that the conductivity is constant at the zero-field value for B � Bϕ; this approx-
imation can be applied to the evaluation of the Cooperon, since the weak localisation
conductivity is proportional to it (see equation (4.41), page 82). The numerical evalu-
ation of the Cooperon at low field is shown in figure D.2, together with the zero field
limit. The constant value is given by

C(0, z) = ln
(
1 +

1
z

)
. (D.4)

Kawabata recursive formula Referring to equation (D.3), and defining ΨN = PN(1 + z)/s,
the recursive formula is given by [59]

ΨN+1 =
1

N + 1

2 N−1∑
n=0

ΨN − (2N + s2)ΨN −NΨN−1 + s

 , (D.5)

with

Ψ0 =

√
π
2

exp
(

s2

2

)
erfc

( s
2

)
, (D.6)

erfc(x) being the error function. The “seed” Ψ0 needs to be calculated with the highest
precision, since the stability of the recursion is very sensitive to the initial value.
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Fig. D.2: Numerical evaluation of the Cooperon at small x, for z=0.05. The horizontal line marks the
zero-field value, the vertical line the z value.

Series approximation The series expansion for PN, developed by Wittmann and Schmid [110],
reads

PN =
1

(1 + z)2

1√
1 + (2N + 1)x

∞∑
k=0

Mk
N

(−1)k

2kk!

(1
2

)
k

[
x

1 + (2N + 1)x

]k

, (D.7)

where (a)k = Γ(a + k)/Γ(a) is the Pochhammer symbol and Γ(x) the gamma function; the
series can be safely truncated at small k; according to the original work, the maximum k
is set to 7. The coefficients Mk

N are given by:

Mk
N = (−1)k dk

dpk

{
(1 − p)N

2pN+1 exp
[
(4N + 2)(p − 1/2)

]}∣∣∣∣∣∣
p=1/2

. (D.8)

The coefficients up to k = 7 are

M0
N = 1, M1

N = 0, M2
N = 4,

M3
N = 8(4N + 2), M4

N = 144, M5
N = 704(4N + 2)

M6
N = 640(4N + 2)2 + 14400, M7

N = 118656(4N + 2).

(D.9)

Approximated series At large N, the sum is calculated using the approximation

PN ≈
1√

x + 2xN + (1 + z)2
. (D.10)

Large N asymptotic At very large N, PN � 1; using the equation (D.10), the series can be
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rewritten using the Hurwitz zeta function as

∞∑
N=NL

P3
N(x, z)

1 − PN(x, z)
≈

∞∑
N=NL

P3
N(x, z) =

1
(2x)3/2ζ

(
3
2
,

(1 + z)2

2x
+

1
2

+ NL

)
. (D.11)

D.2 Evaluation of the Golub model

The Golub model [50] requires the evaluation of the integrals given in equations (4.45), page
84. They can be all rewritten in terms of the function

A(m,N, s) =
1√

(N + 1)m

∞∫
0

exp(−st − t2/2)tmL(m)
N

(
t2
)

dt, (D.12)

where (N + 1)m is the rising factorial (or Pochhammer symbol, equal to 1 if m = 0).

The trigonometric identity sin2 x = (1 − cos(2x))/2 can be applied to S(m)
N . The integrals

with the sine and cosine can then be calculated as real and imaginary parts of an integral with
an exponential function with imaginary argument.

The integrals to be calculated are then given by

PN =

√
2
x

A

0,N,

√
2
x

(1 + z)

 , (D.13a)

QN =

√
2
x

A

1,N,

√
2
x

 , (D.13b)

R(m)
N =

√
1
x

Imag

A m,N,

√
2
x
− 2iΩτ

 , (D.13c)

S(m)
N =

1
2

√
2
x

A

m,N,

√
2
x

 − Real

A m,N,

√
2
x
− 2iΩτ


 . (D.13d)

For the numerical implementation, it is useful to rewrite the Laguerre polynomials in equation
(D.12) using its properties.

The N-th generalised Laguerre polynomials L(m)
N (t2) is

L(m)
N (t2) =

N∑
k=0

(−1)k

(
N + m
N − k

)
t2k

k!
. (D.14)

Thus, the integral in equation (D.12) can be rewritten as a sum of integrals involving only
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powers and exponential functions. The result is

A(m,N, s) =

N∑
k=0

(
N + m
N − k

) [
(−1)k 2−1−k−m

2 (k + 1)m+1s U
(
1 + k +

m
2
,

3
2
,

s
2

)]
, (D.15)

where U(a, b, z) is the confluent hypergeometric function of the second kind.

The terms in equation (D.15) in square brackets are independent of N, and can be calculated
only once (for a given s), and then summed (after multiplication with the binomial coefficients)
to yield the N-th term.

This formula could be applied for every value of N. With the use of this formula, the recur-
sion relation described in the previous section is not needed, to bypass the requirements of the
high precision initial value. However, for large N, it is possible to use an asymptotic approxim-
ation [48, 21], which leads to a simpler formula. In my implementation the approximation has
been applied for N > 25.

In the limit N→∞, the Laguerre polynomial is [1, eq. 13.8.9]

L(m)
N

(
t2
)
≈

(
N + m

N

)
m! exp

(
t2/2

) (m + 1
2

+ N
)−m

2

t−mJm

(√
2(1 + m + 2N)t

)
, (D.16)

where Jm(z) is the Bessel function. The integral in equation (D.12) is given by [1, eqs. 10.22.49
and 15.4.18]

A(m,N, s) ≈
√

(N + 1)m

(m + 1
2

+ N
)−m

2
∞∫

0

exp(−st)Jm

(√
2(1 + m + 2N)t

)
dt =

=
√

(N + 1)m2m

(
s +
√

s2 + 2 + 2m + 4N
)−m

√

s2 + 2 + 2m + 4N
.

(D.17)

Once the integrals are calculated, the terms are inserted in the matrices in equation (4.44) and
then summed as in equation (4.43); the infinite sum is truncated at a large integer (Nmax = 5 ·105

is chosen). As before, the weak antilocalisation correction has been calculated for a region in
the parameters space, and interpolations of the calculated values are used for fitting. I noted that
the table of calculated conductance should be dense with respect to the parameter Ωτ to have
a good approximation through interpolation, while the interpolation seems less sensitive to the
density of x and z.

At small x (x < 0.1), it is convenient to use the low field approximation given by Golub in
Ref. [50].

Finally, I report in figure D.3 the calculated values of the integral PN and their evaluation
time, at different values of N, using a numerical integration (referred as “exact” integral), the
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Fig. D.3: Comparison of different methods for the evaluation of the integral PN (see text for details) at
different values of N. (a) Value of the integral, calculated with numerical quadrature (“exact”
value). (b) Relative error of the numerical evaluation and of the approximated formula (as com-
pared with the numerical result). (c) Evaluation time for numerical, series and approximated
method; t0 is the time of the exact evaluation of P1.

formula (D.15) (referred as “series”) and the formula (D.17) (referred as “approximation”), at
x = 0.2 and z = 0.01.

The numerical integration was performed using the quad function in the MPMATH package,
which uses a “tanh-sinh” method, with 60 decimal digits precision.

I report in panel (b) the relative error referred to the exact integral, defined as |P(appr)
N −

P(exact)
N |/P(exact)

N , where P(appr)
N is the approximated calculation and P(exact)

N the numerical result.
The relative error in the numerical integration (evaluated by the quadrature function itself) is
reported in the graph only for the largest values of N, since it is much smaller at small N
(< 10−30 for N < 50, < 10−16 for N ≤ 100).

The series method is found to be numerically unstable for N > 50, probably because of the
large integers calculations due to the factorials involved in it; in the region where the formula
works, it gives the same value as the “exact” integration, within the error in the numerical
integration.

The error in the large N approximation is expected to decrease with N, but it is found to rise
at the largest N: this is due actually to the error in the “exact” value, which is shown to be very
large at this large N values. The error of the approximation is smaller than 10−3 even at small
N, and can be estimated to decrease as 0.01N−3/2.
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Finally, consider the evaluation time for the different methods, reported in figure D.3c. They
are normalised to the evaluation time of P(exact)

1 . Both the exact and the series times are increas-
ing with N, the series being a little faster. The approximated function is much faster (more than
100 times), and nearly constant with N.



E. EXPERIMENTS ON GAN ONE
DIMENSIONAL DEVICES

Devices for the study of one-dimensional transport were fabricated on Sample A. These meas-
urements can demonstrate the quality of the 2DEG, and also give further information on the
scattering mechanisms assumed to be effective in the sample.

These devices, the so-called quantum point contacts (QPCs), have the split-gate design. Two
gate electrodes are fabricated (by electron beam lithography) close to each other; a negative bias
applied to them locally depletes the 2DEG and only a narrow channel is open to the electron
flow. In the constriction, electrons are free to move only in one direction, being confined by
a potential well in the transverse direction: their energy spectrum has, therefore, quantised
subbands (modes). The energy spectrum of such one-dimensional system [41, chap. 2] can be
calculated similarly to the 2DEG spectrum, as described in section 1.1.

The lateral confinement is provided by a potential U(x); the electrons flow in the y direction.
The energy eigenvalues are

Enm(ky) =
~2k2

y

2m
+ Em + εn, (E.1)

where εn is the eigenvalue of the z part of the Schrödinger equation (the quantum well) and Em

that of the x part. For a fixed value of εn (usually only the first level of the quantum well is
occupied), the spectrum is a sequence of modes with quadratic dispersion relations.

The transport through the 1D channel occurs via these discrete modes [41, chap. 3]. The
conductance G is proportional to the number of modes M passing across the channel, and is
calculated using the Landauer-Büttiger formula

G = gs
e2

h
M, (E.2)

where gs = 2 counts the degeneracy. The quantity G0 = 2e2/h is referred as quantum of
conductance. This phenomenon is called “quantisation of conductance”. In a split-gate device,
the voltage applied to the gates tunes the number of the modes by modulating the confinement
potential.

The above formula assumes the full transmission of all the modes. If the i-th mode has a
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Fig. E.1: Linear conductance as a function of gate voltage in a quantum point contact. The measurement
was performed at T = 0.3 K. Inset: scanning electron microscopy of the device. The quantum
point contact was defined by biasing the gates marked by circles.

transmission probability Ti, then the formula is

G = gs
e2

h

∑
i

Ti. (E.3)

Figure E.1 reports the linear conductance as a function of gate bias in a QPC, whose scanning
electron microscopy image is shown in the inset; the gate voltage was applied to the electrodes
marked with a circle.

Two well-defined plateaus are visible at G0 and 2G0, corresponding to one and two propagat-
ing modes, respectively. The length of the plateau is proportional to the energy separation of
the modes.

Plateaus at higher values are found at non-perfectly quantised conductance values: this
finding may be simply due to a reduction of transmission because of scattering centres.

We cannot clearly observe the so-called 0.7 anomaly [100][41, chap. 5], an additional
plateau at 0.7G0, which is generally attributed to electron-electron interactions. It is possible
that in our high density 2DEG these interactions are screened and thus the observation of the
anomaly is precluded. Indeed, these interactions are parametrised by the adimensional radius
rs = m/(εraB

√
πn2D), where m is the effective mass in units of the electron mass, εr the relative

permittivity, aB the Bohr radius and n2D the carrier density; the larger is rs, the stronger is
the interaction. In the investigated system (GaN, m = 0.22, εr = 10, and ns ≈ 1017 m-2),
rs ≈ 0.7, while in sample where this phenomenon is observed it is larger (e.g., Ref. [100],
GaAs, m = 0.067, εr = 13, and ns ≈ 1015 m-2, rs ≈ 1.4).

To study the scattering in more detail, a configuration where voltage difference is applied to
the two gates was used (asymmetric voltage configuration).

This configuration allows to move the channel laterally with respect to the gate electrodes
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Fig. E.2: Map of the conductance histograms as a function of gate voltage asymmetry and conductance;
the grey scale is calculated from the number of points per conductance value: white corres-
ponds to high counts (plateaus), black to low counts. Temperature of the measurements was
equal to 0.25 K. Conductance measurements were acquired in a different run respect to the
ones reported in figure E.1.

[108]. In this manner, scattering centres, if any, will affect the conductance plateau values
differently for different lateral position of the channel.

The results of these measurements are reported in figure E.2, which shows in grey scale
the conductance histograms, i.e. the number of points per each conductance value from meas-
urements as a function of gate voltage at different values of the voltage asymmetry. The peak
values correspond to plateaus. The positions of the peaks (and thus the conductance values of
the plateaus) move as a function of the asymmetric bias, suggesting the presence of scattering
effects in our material

This kind of device was investigated also with magnetotransport measurements.

When a magnetic field perpendicular to the 2DEG is applied, an effective confining potential
appears in the hamiltonian, as described in section 1.1.1; it sums to the lateral potential U(x).
In the simplest approximation, U(x) is a harmonic potential with angular frequency ω0: in this
case the effective potential is that of a harmonic oscillator, with angular frequency ω(B) =

(ω2
0 + ω2

c )1/2, where ωc = eB/m is the cyclotron frequency. Then, as a function of the magnetic
field, the spacing between the modes widens, and the plateaus become wider as a function of
the gate voltage.

The relative increase in the energy separation as a function of the magnetic field can be
written as

~ω(B) − ~ω0

~ω0
=

√
1 +

ω2
c

ω2
0

− 1 =

√
1 +

B2

B2
0

− 1, (E.4)
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Fig. E.3: Conductance as a function of the gate voltage at different values of the perpendicular magnetic
field at 0.25 K. Curves are vertically shifted for clarity.

where B0 = mω0/e.

In figure E.3 a set of measurements on the split gate device at magnetic fields up to 12 T
is reported. As the magnetic field intensity increases, we cannot see the plateaus become sig-
nificantly wider. This suggests that the confining potential is much stronger than the magnetic
confinement (ω0 � ωc), and then the effect of the field is negligible (ω(B) ≈ ω0).

The strong confinement potential can be provided by the “network of channels” which were
assumed to explain the quadratic Dingle plot in the discussion of Shubnikov–deHaas measure-
ments (section 4.2.3.2). A picture of this kind of system is shown in figure E.4.

The width Λ of these channels has been estimated, from the transport measurements (see
section 4.2.4 and appendix B) to be of the order of 5 nm. From this value, an estimation
of ω0 can be given, assuming that n levels are confined in the well, comparing a potential
U(x) = mω2

0x2/2 at Λ/2 and the value of the n-th energy level of the harmonic potential:

1
2

mω2
0

(
Λ

2

)2

=
(
n −

1
2

)
~ω0 ⇒ ω0 =

8~
mΛ2

(
n −

1
2

)
, B0 =

8~
eΛ2

(
n −

1
2

)
. (E.5)

If only the first level is considered, for Λ = 5 nm, B0 ≈ 100 T. Thus, at 12 T, the increase
calculated with equation (E.4) is less than 1%.

Referring to the experimental data, the plateau length (which proportional to the energy
separation) is about 1 V, while the transition region between two plateaus is about 0.5 V; thus,
the effect of magnetic field can be hardly visible.
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Fig. E.4: Sketch of the QPC potential profile for different applied gate voltage with a further confinement
due to an impurity potential.

We can discuss this transport through small channels also in connection with the measure-
ments with asymmetric voltage.

When the two gates are biased such as they deplete the 2DEG underneath, only a few of
these channels, in the middle of the gates, will be opened. When the constriction between the
two depletion regions is of the order of some correlation lengths, the electron can flow in only
a single channel (see figure E.4). In such a narrow constriction the quantisation of conductance
is observed. The effect of an asymmetric bias is to change the particular channel where the
conduction occurs, which may have a different transmission coefficient, and thus give a peak at
a different position in the map in figure E.2.
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