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1. CVAR - BEKK - CC 

 

 

 

1.1 Introduction 
 

The portfolio selection problem is discussed through the introduction of 

tree new types of models, called respectively CVAR-BEKK-CC, Factor-

BEKK,  multiple bi-dimensional CVAR-BEKK,  that gradually increase 

the complexity of the solution while remaining computationally feasible. 

 

The use of bivariate cointegrated vector autoregressive models and 

Baba-Engle-Kraft-Kroner models ( Engle et al. 1995), is proposed for the 

selection of a stock portfolio (Markowitz type portfolio) based on estimates 

of average returns on shares and the volatility of share prices. The model 

put forward envisages the use of explicative variables. This article employs 

the intrinsic value of shares as a variable, which will make it possible to 

take the theory of value into account. The model put forward is applied to a 

series of data regarding the prices of 150 shares traded on the Italian stock 

market. 

The selection of a stock portfolio is broadly discussed in the literature, 

generally with reference to heteroskedastic regression models (Bollerslev 

et al., 1994). The model used in the case of multiple time series is of the 

vector autoregressive (VAR) type and rests on the predictability of the 

average return on shares (Brown and Reily, 2008, Hamilton, 1994). 

In particular this paper suggests the use of cointegrated vector 

autoregressive models (CVAR) and Baba-Engle-Kraft-Kroner models 

(BEKK) for the selection of a stock portfolio. In other words, it addresses 

the problem of estimating average returns and the associated risk on the 

basis of the prices of a certain number of shares over time. This estimate is 

then used to identify the assets offering the best performance and hence 

constituting the best investments. While Campbell et al. (2003) proposes 

the use of a VAR(1) model, it is suggested here that use should be made of 

VEC models, which make it possible to take into account any cointegration 

between the series employed and the market trend as measured by means 

of the Thomson Reuters Datastream Global Equity Italy Index (Datastream 

2008). 

Moreover, while Bollerslev, Engle and Wooldridge (1988) employ 

diagonal vectorization (DVEC) models to estimate share volatility, the use 
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of a BEKK model, as proposed here, makes it possible to extend the 

estimation procedure based on DVEC models so as to take into account 

also the correlation between the volatility of the series and the volatility of 

the market trend. 

The series considered regard the Italian stock market (BIT), and 

specifically the monthly figures for the top 150 shares in terms of 

capitalization, from 1 January 1975 to 31 August 2011.The estimation 

procedure proposed for portfolio selection involves two steps. 

In the first step, a two-dimensional CVAR model is developed for all of 

the 150 shares considered in order to obtain an estimate of the average 

stock market return. A BEKK model is then applied to the series of 

residuals thus obtained in order to estimate the volatility of the series. The 

BEKK model appears particularly suitable because it does not entail the 

condition of normality for the accidental componentof the model 

(Hamilton, 1994). 

The second step regards the selection of shares for inclusion in the 

portfolio. Only those identified as presenting positive average returns 

during the first phase are considered eligible. For the purpose of selecting 

the most suitable of these, a new endogenous variable is constructed as the 

product of two further elements, namely the price-to-earnings ratio (P/E) 

and earnings per share (EPS). This variable, which indicates the “intrinsic 

value” of the share in question, is not constructed for the entire set of 150 

shares but only for those presenting positive average returns in the first 

phase, as it would be pointless in the case of negative returns. 

The CVAR-BEKK model is applied once again to this new series in 

order to estimate the intrinsic value of the shares, and the top 10, (Evans 

and Archer, 1968), are selected for inclusion in the portfolio on the basis of 

the difference between this intrinsic value and the price estimated in the 

first phase (Brown and Reily, 2008). 

A quadratic programming model is then employed to determine the 

quantities to be bought of each of the 10 shares selected. 

It should be noted that the variable P/E  EPS is estimated for each 
industrial sector (Nicholson, 1960). 
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2. The Cointegrated Vector    
Autoregressive Models 

 
2.1 Models description 

 

A concise outline is now given of the phases involved in the selection of 

shares for inclusion in the portfolio as well as the quantity of shares to be 

bought for each type selected. The starting point is the       series, 

regarding the average returns      on the shares, and the average return of 

the market    ,         ,        . It should be noted in this 

connection that the length of the series considered is not homogeneous 

because not all of the joint-stock companies are quoted as from the same 

point in time. This aspect involves further complications in the estimation 

procedure. 

Step one : For each series, the model CVAR(p) is defined for the random 

vector                
 
                as: 

 

                                       
 

with           ,            
 

 is a  22  of the unknown 

coefficients, and                  is the vector of errors such that  

           . 
Model (1) can be rewritten as follows to take into account a possible 

cointegration of the variables considered:  

 

                                                

 

where  

 

                         

 

and 

 

 
                        

(1) 

(2) 

(3) 

(4) 
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2.2  Specification , test and forecast  

 

It has to be noticed that if   is singular,                  
 
and  

 ',, ,21,22 Tyyy   are cointegrated (Johansen, 1995, Lutkepohl, 2007). 

 

 

In specifying the CVAR model the lag order and the cointegration rank 

have to be determined. We start by determining a suitable lag length 

because, in choosing the lag order, the cointegration rank does not have to 

be known.  

The AIC criterion is used to estimate the plag ˆ , with reference to 

model (1): 

 

    
















 max,,1,0:

~
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T

mc
mmCp T

u
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       (5) 

 

where  mu
~

 is the maximum likelihood estimate (MLE) of  mu  for a 

VAR(m) of type (1) with a sample of breadth mtT k   and m values of 

initialization,with 10,8 max  pcT . 

Notice that, while we have considered specifying the VAR order p, the 

criterion is also applicable for choosing the number of lagged differences 

in a VEC model (2) because p-1 lagged differences in a VEC correspond to 

a VAR order p (Lutkepohl, 2007). 

In practice it is common to use statistical tests in specifying the 

cointegration rank. In this framework to ascertain the presence of 

cointegration in the model (2), the likelihood ratio test (LR) is used: 
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0
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where:   1,00  rkr  and j  are the eigenvalues of the matrix   
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The quantities tû , tv̂  are the residuals of the regressions of
 t

y  and 

1t
y  estimated by maximum likelihood (Johansen, 1995). 

However, the asymptotic distribution of the LR statistic is nonstandard, 

in particular it is not a chi-squared distribution. In other words, the limiting 

distribution is a functional of a standard Wiener process. Percentage points 

of the asymptotic distribution, thus, critical values for the LR test can be 

generated considering multivariate random walks (Johansen et al., 1990).  

 

Assessment of the presence of cointegration between the series by 

means of the LR test is followed by estimation of the parameters of the 

model.The result of the LR test is considered in deciding whether to adopt 

the model in form (1) or (2). In particular, if the test shows that the rank of 

matrix   is equal to 0 (hypothesis of stationarity of ty ), then 0  and 

the method of maximum likelihood is applied directly to (2) in order to 

estimate the parameters 10 ,   and 11 ,,  p . 

If it instead transpires that the rank of   is equal to 1 (hypothesis of 

cointegration of y1 and y2), then  . In this case, it is necessary to 

estimate model (2) in two stages. First, an MLE of   is obtained by 

concentrating the log-likelihood with respect to . Second, this estimate is 
inserted into (2) in order to obtain the MLE of the other parameters 

(Johansen, 1995). 

If   2rk , the method of maximum likelihoodis applied directly to 

(1) in order to obtain estimates of the parameters 0 , 1 and A1…, Ap. 

The portmanteau test is used to ascertain the presence of correlation of 

residuals, the generalized Lomnicki-Jarque-Bera test for the normality of 

residuals, and the ARCH test to determine heteroskedasticity 

In order to forecast it is convenient in this framework to use the levels 

VAR representation. Therefore we consider the model type (1) with 

integrated and possibly cointegrated variables replacing the coefficients 

with their estimates as calculated before: 

   

                                           

 

 

 
(7) 
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3. The BEKK model for 
heteroskedasticity 

 

3.1 BEKK model description 
 

In the event of the latter test revealing the presence of 

heteroskedasticity, the BEKK(1,1) model is used to estimate the 

conditional variance-covariance matrix 

 

     njitpastu jittt
,,1,cov .1



  

 

which has the following structure: 

 

 

 
          
          

   
      
          

  
          
      

                 

 

  
          
          

  
      
             

                  
   

          
          

   

  
          
          

  
      
       

            
   

          
          

  

 

The MLE of parameters jikc ,,  at time Tt   is obtained by maximizing 

the log-likelihood function: 

 

        
          

 
 

 

 
         

                       

 

 
 
3.2 ARCH-Test and Markowitz problem estimation 
 

Once the parameters have been estimated, the Generalized Portmanteau 

test (Hosking, 1980) is applied to ascertain that the model BEKK(1,1) has 

effectively eliminated the ARCH effects in the residuals of the CVAR 

model: 

(8) 

(9) 
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where p is the CVAR order, maxtTn  ,  ji ttt ,maxmax  ,  kk Gvecg ˆˆ  , 
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n

kt
kttk uunC

1

'1 ˆˆˆ , 
1

0
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Step two: The estimates obtained in phase one are used to select the shares 

for which positive average returns are predicted. For the shares thus 

selected and for each industrial sector (IS), the model CVAR(p)-

BEKK(1,1)  is estimated for the random vector 

  

          ',,

'

,2,1 ,, thISthttt EPSEPEPSEPyyy  , where Hh ,,1  is 

the index that identifies only the series with positive returns selected out of 

the initial 150. 

On the basis of the    1, ThEPSEP  and 1, ThR  forecasts obtained in 

phase two, the shares are listed for each industrial sector in decreasing 

order with respect to the values of the difference between intrinsic value 

and expected price. The first 10n  shares are thus selected to make up the 

portfolio. 

It should be stressed that the choice of 10n is made on the basis of the 

assertion of Evans and Archer (1968) that this quantity is sufficient for 

diversification of portfolio choices. In actual fact, the number of shares 

selected will vary in further developments of this work. 

In order to determine the quantities to be bought of each of the 10 shares 

selected, it is necessary to solve the Markowitz problem (Markowitz, 1952) 

by estimating the matrix of share volatility. To this end, let  tV̂  be the 

estimator of the matrix nn  of  volatility tV  for 1Tt , the elements of 

which are     njipastRtv tji ,,1,,cov,   

The elements of     are given by: 

 

            
          
             

                       
              

 

(10) 

(11) 
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with  
  




 


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T

tt

jtjiti

njiji
tT

RRRR
cC

max max

,,

,,1,,

~~

ˆˆ


,  ji ttt ,maxmax  , 

bekk
TTii 1,

ˆ


  and  i
T 1,11

ˆ
  in (8), nji ,,1,  , 10n . 

 

On the basis of  (11), the solution of the following quadratic  problem of 

Markovitz type, called global minimum variance portfolio, for the future 

time 1T  can be obtained with the approximation given by the dual 
method (Goldfarb, 1983, Higham,  2002): 

 

 01,1:V̂min '
1T

' 






 R

            

 

To obtain a better diversification we have also to find the solution of the 

quadratic  problem of Markovitz type (12) without the constraint 0 , 

for the future time 1T  using the explicit solution 
 

 111 1
1

'1
11,

ˆˆˆ 



  TTTopt VV          

 

Then we put to zero the 0i  and reprportionate the remaining i , 

ni ,,1  . 

We omit the constraint of a fixed value for the expected return to 

eliminate the sensitiveness of allocation optimization  to errors in predicted 

returns (Hlouskova et al., 2002). 

In cases where the matrix 1
ˆ

TV proves positive neither in (12) nor in 

(13), we approximate it with the closest matrixin the sense of Frobenius 

possessing the same diagonal given by the elements estimated with the 

BEKK model. 

 

 

 

(12) 

(13) 
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4. CVAR - BEKK - CC Financial 
application 

 

4.1 Results 
 

Application of the model proposed in this work to the monthly figures 

for the 150 BIT shares with the highest level of capitalization indicates the 

following results. 

On the basis of the minimum AIC, the optimal lag p is 2–9 months. Figure 

1 shows the empirical distribution of the lag. In particular, while the 

optimal lag is 2 months for 76% of the entire set of 150 shares it is 2 

months for 90% of the shares in the portfolio and 1 month for the 

remaining 10%. This means that at least 2 months of observations are 

sufficient to predict the average returns on the vast majority of the shares 

considered, instead of a random walk model. 

It was therefore decided to regard lag 9 as the maximum. 

 

 

 

Figure 1: Optimal lag 

 
 

 



Chapter 4. CVAR – BEKK – CC Financial 

 

13 

 

The results of the LR test for all of the shares considered, yields a 

degree of cointegration that proves equal to 2 for 91% of the 150 shares, 1 

for 7% and 0 for the remaining 2%.  

This means that in 7% of cases,when the rank of matrix   in (2) is 

equal to 1,use was made of the VEC model, which proves to be estimable 

(Johansen, 1995) and stationary, unlike the VAR model, which instead 

proves neither directly estimable nor stationary. 

The coefficients of the model estimated in both steps of the procedure 

prove significant for almost all of the series considered. Table 1 shows, for 

example, the values of the coefficients estimated for models (1) and (8) for 

time series number 159.  

 

 

 
Table 1: Parameters for models (1) and (8) – stock n°159 selected for the Portfolio. 

    
stock 

159     

  VAR   VAR   BEKK 

0,1 0,014 a5,1,1 -1,35 c0,1,1 0,037 

0,2 0,005 a5,2,1 -0,604 c0,2,1 0 

1,1 0 a5,1,2 0,286 c0,1,2 0,023 

1,2 0 a5,2,2 -0,026 c0,2,2 0,029 

a1,1,1 -1,353 a6,1,1 -0,935 c1,1,1 0,497 

a1,2,1 -0,472 a6,2,1 0,138 c1,2,1 -0,107 

a1,1,2 0,376 a6,1,2 0,226 c1,1,2 0,122 

a1,2,2 -0,213 a6,2,2 -0,143 c1,2,2 0,481 

a2,1,1 -1,368 a7,1,1 -1,108 c2,1,1 -0,015 

a2,2,1 0,023 a7,2,1 -0,564 c2,2,1 0,001 

a2,1,2 0,283 a7,1,2 0,171 c2,1,2 0,033 

a2,2,2 -0,517 a7,2,2 -0,287 c2,2,2 -0,001 

a3,1,1 -1,59 a8,1,1 -0,902   

a3,2,1 -0,836 a8,2,1 -0,692   

a3,1,2 0,549 a8,1,2 0,391   

a3,2,2 0,374 a8,2,2 0,265   

a4,1,1 -1,522 a9,1,1 -0,37   

a4,2,1 -0,516 a9,2,1 -0,458   

a4,1,2 0,203 a9,1,2 0,062   

a4,2,2 0,162 a9,2,2 0,075   
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The p value of F statistic is below 0.10 in 83% of cases and below 0.2 in 

86%. The model thus proves 90% significant for nearly all of the series. 

Table 2 shows diagnostic tests for models (1) and (8). The results of the 

portmanteau Test on the residuals of the CVAR and BEKK models are 

given in Table 2 (here too, for brevity, they regard only the ten series 

selected for the portfolio). As regards the presence of ARCH effects in the 

residuals of the CVAR model (column 5 of Table 2: pAR), the test leads to 

the conclusion that the hypothesis of the presence of a heteroskedastic 

component in the model estimated at a confidence level of 99% cannot be 

ruled out for 60% of the shares chosen. The  results of the Hosking test 

carried out in order to ascertain the presence of ARCH effects in the 

residuals of the BEKK model, which are shown in column 10 of Table 2 

(pHq), lead to the conclusion that the hypothesis of the absence of any 

heteroskedastic component in the model is to be accepted in 90% of cases. 

In other words, it can be concluded that the combination of the CVAR and 

BEKK models picks up the heteroskedastic component and includesthe 

informationderived from the same in the procedure. 

Column 9 (pH) of Table 2 shows the results of the portmanteau test 

carried out in order to ascertain the presence of autocorrelation of residuals 

in the BEKK model. They suggest that the hypothesis of autocorrelation 

can be ruled out and that the maximum lag considered is sufficient. 
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                  Table 2:  Test statistics - stocks selected for the portfolio 

Series R2.1 pFvalue pSC pAR pJB 

4 0,114 0 0,187 0 0 

34 0,085 0,006 0,717 0,475 0 

63 0,078 0,08 0,785 0 0 

130 0,014 0,894 0,347 0 0 

49 0,052 0,007 0,664 0,002 0 

109 0,041 0,736 0,502 0 0 

159 0,725 0,02 0,049 0,458 0,847 

85 0,179 0 0,2 0,056 0,001 

54 0,12 0,01 0,838 0,131 0,025 

60 0,113 0 0,423 0 0 

Series pSK pKU pH pHq intervalYN 

4 0 0 0,142 0,556 true 

34 0,127 0 0,233 0,606 true 

63 0,002 0 0,822 0,004 true 

130 0,054 0 0,303 0,566 true 

49 0,015 0 0,752 0,344 false 

109 0 0 0,887 0,266 true 

159 0,905 0,553 0,176 0,864 true 

85 0,161 0 0,459 0,103 true 

54 0,415 0,009 0,924 0,793 true 

60 0,108 0 0,877 0,042 true 

 
R2.1= goodness of fit stock equation1; 

pFvalue = P(F>Foss|H0: Ai=0 ,i=1,…,p)  zero coefficients of CVAR; 

pSC =P ( 
2
> 

2
oss  | H0 : E(ut ut-i’) = 0, i=1,..,h>p )  autocorrelations in VAR residuals  

test; 

pAR =P ( 
2
> 

2
oss  | H0 : no ARCH ) ARCH in CVAR  residuals test; 

pJB =P ( 
2
> 

2
oss  | H0 : normality ) CVAR normality test ; 

pSK =  P( 
2
> 

2
oss |  H0 : E(ut

3
)=0  ) CVAR skewness test; 

pKU=P( 
2
> 

2
oss   |H0 : E(ut

4
)=3  )  CVAR kurtosis test; 

pH =P ( 
2
> 

2
oss  | H0 : no autocorrelations ) autocorrelations in BEKK residuals test; 

pHq =P ( 
2
> 

2
oss  | H0 : no ARCH ) ARCH in BEKK residuals test; 

 

A OLS-based CUSUM test for stability of the market index was also 

carried out, and the results suggest that the hypothesis of stability of the 

series over the period considered is acceptable. 
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The BEKK estimate of volatility for each share is between 0.001 and 0.01 

for 93% of the series and never above 0.031. 

It can be concluded in the light of this result that for most of the series 

considered, the estimated value of the share does not differ from its real 

value at a confidence level of 95%by more than 0.2. 
In actual fact, the value at risk calculation put forward by J.P.Morgan 

(Longerstaey et al., 1995, Duffie et al., 1997). could be used in order to 

include the information deriving from the presence of correlation between 

the series considered and hence to assess the overall risk rather than the 

risk of the individual share. 

Further confirmation of the adequacy of the CVAR-BEKK model with 

respect to the series observed was sought before selecting the shares to be 

included in the portfolio. Specifically, the confidence interval at the level 

of significance of 95% contains the actual value T +1 in 94 % of the series. 

The CVAR-BEKK model can therefore be considered reliable for most of 

the series for the purposes of prediction.  

The next step after verification of the suitability of the model was 

prediction of the prices of the shares as well as their intrinsic values. Table 

3 shows the values predicted on the basis of model (7), once again 

restricted to the ten shares selected for the sake of brevity. 

 

 
           Table 3:  Forecast return, volatility, intrinsic value, potential value 

– stocks included in portfolio 

Series pf varf vinf indm vin_p 

4 0,008 0,082 3,622 10 3,614 

63 0,001 0,044 0,732 8 0,731 

130 0,011 0,063 0,611 8 0,6 

49 0,009 0,047 0,515 4 0,506 

109 0,012 0,044 0,229 3 0,217 

159 0,019 0,039 0,193 6 0,174 

85 0,031 0,09 0,204 3 0,173 

54 0,007 0,046 0,109 6 0,102 

60 0,006 0,079 0,05 10 0,044 

34 0,009 0,081 0,037 2 0,028 

 

pf= forecasted return ;  

varf= forecasted volatility  

vinf= forecasted intrinsic value; 

indm= sector index; 

vin_p= forecasted intrinsic value – price. 



Chapter 4. CVAR – BEKK – CC Financial 

 

17 

 

 

On the basis of potentials, understood as the difference between share 

price and intrinsic value, the ten shares with the highest potential returns 

were then selected. 

Two criteria of ranking were used, namely the partial criterion and the 

total criterion. 

The former involves arranging the values of potential of all the shares 

considered in decreasing order for every industrial sector (Goodman and 

Peavy III, 1983) and selecting the first share in each. 

In the latter, the values of potential of all the shares considered are 

arranged in decreasing order regardless of industrial sector and the first ten 

are chosen. 

The use of the partial criterion is connected with the relationship 

between P/E and share performance manifested most strongly in each 

industrial sector. As Goodman and Peavy III write,“firms in the same 

industry tend to cluster in the same relative P/E ranking, detected return 

differences between P/E groups may be attributable to industry 

performances rather than P/E level. This bias is eliminated by using P/E 

relative to its industry.” 

The total criterion has the advantage that the selection is unconnected 

with the industrial sector of the share in question and therefore not 

necessarily influenced by the possibly negative trend of individual sectors. 

Its application thus means selection of the ten best shares in absolute terms 

(Nicholson, 1960). 

The choice between these two criteria of ranking is obviously subjective 

in that it depends on the opinions of investors. This paper considers both, 

which evidently lead to the selection of different portfolios. 

Table 4 lists the optimal allocations, i.e. the solutions of the problems of 

optimization (12) and (13); column 4 shows the results for the best 

portfolio. It has a monthly average return of 1.9%, a monthly standard 

deviation of 0.655, and a Sharpe index of 0.029. 
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              Table 4: portfolios weights, volatility, return, Sharpe 

  

Total 

Ranking     

Partial 

Ranking   

Series w(i) prop. w(i) opt w(i) opt w(i) prop. Series 

4 0,462 0 0 0,299 142 

63 0 0,581 0 0 34 

130 0 0 0 0,225 109 

49 0,003 0 0 0 49 

109 0,216 0 1 0,344 159 

159 0,204 0 0 0,009 65 

85 0 0 0 0 63 

54 0 0 0 0,123 147 

60 0,004 0,419 0 0 4 

34 0,112 0 0 0 28 

Return 0,011 0,003 0,019 0,011 Return 

St. Dev.  1,185 0,77 0,655 0,913 St. Dev.  

Sharpe 0,009 0,004 0,029 0,012 Sharpe 

 

 

 

4.2 Comments 
 

The selection of a share portfolio has historically constituted a complex 

problem that has no single solution but depends both on market conditions 

and on the information available to investors. In other words, the choice of 

shares to invest in must be based on objective criteria making it possible to 

assess risk and return without ignoring investors’ opinions. To this end, the 

paper suggests the use of a model for the analysis of multiple historical 

series with a view to the prediction of share return and associated risk but 

also taking the indications of the market into account at the same time in 

the  specification of the model itself. Variables obtained as functions of 

P/E and EPS have thus been used together with the market index as 

regressors of the combined model (1) and (8). 

The innovative choices in the construction of a portfolio selection model 

put forward here regard two distinct aspects. The first concerns transition 

from a model of the VAR (1) type for the prediction of a multiple historical 

series (Campbell, 2003) to one of the CVAR (p) type, which makes it 
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possible to take into consideration any cointegration of the series 

considered and therefore constitutes an improvement of the information 

available for estimation purposes. The subsequent use of a combinationof 

CVAR and BEKK models, which extends the results of Bollerslev, Engle 

and Wooldrige (2), makes it possible to consider also the temporally 

variable correlation between the volatility of the series and the volatility of 

the market index within the estimation procedure. 

The second concerns the choice of criterion for the selection of 

shares,which is addressed here by seeking to insert a typical concept of 

finance such as intrinsic value into the primarily statistical context of the 

prediction of a multiple historical series. An intrinsic value estimated by 

means of the combined CVAR-BEKK model is used to obtain a “potential 

value” serving as a basis to rankthe different shares and then select the top 

ten. 

The method put forward was applied to the seriesof 150 shares with 

highest capitalization quoted on the Italian stock exchange and led to the 

selection of 10 shares constituting a portfolio with an average monthly 

return of 1.9% and a risk of 0.655. 

Comparison of the results of the CVAR-BEKK model put forward here 

and those obtained by means of models ofthe VAR (1) and DVEC type 

found in the literature was carried out on the basis of the values of log-

likelihood of the models themselves. In other words, since one model 

could produce a higher value of return than another but nevertheless prove 

less reliable, it was decided to assess the models’ performance in terms of 

correspondence to the series observed. The log-likelihood of the CVAR-

BEKK model always proves greater than that of the other models, thus 

indicating more accurate representation of the series observed and hence 

better predictions. 

Further developments of the work will regard the study of “value at 

risk”, understood as assessment of the greatest loss possible, as well as 

identification of possible structural breaks of the individual series of share 

returns with a view to making the model more adaptable.
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5. A Factor - BEKK model  

 

5.1 Introduction 
 

As the CVAR-BEKK-CC model cannot explain the covariance 

between pairs of variables, the following Factor - BEKK model is used to 

explain the covariance through the help of two manifest factors, while 

retaining the computational feasibility of constant covariance. 

 

The use of Factor Model combined with Baba-Engle-Kraft-Kroner 

(BEKK) model is proposed for the estimation of the volatility for stock 

portfolio (Markowitz type portfolio) The combined model uses esplicative 

variables as the instrisic value, which regards the value theory (Brown and 

Reily, 2008) and the market index (Sharpe 1970). The model put forward is 

applied to a subset of promising universe among the series of data 

regarding the prices of the best capitalized 150 shares traded on the Italian 

stock market (BIT) between 1 January 1975 and 31 August 2011. 

 

The problem that arises in the stock portfolio selection framework 

is the estimation of the stock volatility, that is to say the estimation of the 

variance - covariance matrix of the stocks, as through the volatility it is 

possible to evaluate the risk of investment in the stocks (Markowitz 1952). 

The diagonal elements and off - diagonal elements of the variance - 

covariance matrix are separately estimated: the former through  BEKK 

models while the latter through a type 1 Factor model (Connor 1995). 

 

In particular this paper suggests the use of  BEKK model (Engle 

Kroner 1995) applied to the residuals of the bivariate cointegrated vector 

autoregressive models (CVAR) (Johansen 1995) for the compound stock 

values and the market index value (Pierini, Naccarato, 2012) to estimate 

the diagonal elements of the volatility matrix. 

Per la stima degli elementi extra diagonali della matrice di volatilità 

si propone invece the use of a Factor model of type I (Connor G. 1995) 

with macroeconomic factor given by the market trend as measured by 

means of the Global Equity Italy Index (Datastream Global Equity Indices, 

2008) and fundamental factor given by the mean “intrinsic value”. 
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The Factor model utilization with respect to the use of sample 

covariance as an estimation of the off-diagonal elements of the volatility 

matrix has the following pros: it gives the possibility to estimate with fewer 

parameters, that’s to say using 2n+n+4 parameters instead of n(n+1)/2 

required otherwise. In doing so we obtain a more precise result because 

each parameter is estimted with error and with fewer parameters we 

accumulate less errors. 

Moreover having fewer parameters to estimate is easier to update or 

add other stocks to the portfolio. 

E’ comunque il caso di osservare che la stima della matrice di volatilità 

potrebbe risultare distorta poichè, se le stime degli elementi extradiagonali, 

derivano da un misspecified factor model, allora esse sono distorte 

(Ruppert, 2011). 

La scelta di utilizzare due differenti procedure di stima per gli 

elementi della matrice di volatilità è dovuta a problemi di complessità 

computazionale; sarebbe in effetti auspicabile poter utilizzare il modello 

BEKK per la stima di tutti gli elementi della matrice di volatilità – poiché 

esso presenta caratteristiche migliori in termini di stime (Lutkpol new) di 

altri modelli già proposti in letteratura quali ad esempio modelli DVEC, 

ARCH, GARCH (Bollerslev, Engle et al. 1994). Tuttavia, al crescere del 

numero n delle azioni incluse nel portafoglio la stima del modello BEKK 

diviene computazionalmente non risolvibile (lutkepol new); da qui la 

nostra proposta di utilizzare la combinazione di modelli diversi per la stima 

della matrice di volatilità. 

The series considered regard the Italian stock market (BIT), and 

specifically the monthly figures for the top 150 shares in terms of 

capitalization, from 1 January 1975 to 31 August 2011. 

Before solving the volatility estimation problem, it is necessary to select  

the stocks to include in the portfolio and estimate the volatility of each 

stock during the time span considered. Starting with 150 stocks, in order to 

select the stocks to include in the portfolio, the procedure in two steps 

in Pierini, Naccarato, (2012) is uesd. It starts with the estimation of the 

market value of the stock through a CVAR(p) model (Johansen, 1995)  

and then the estimation – based itself on a CVAR(p) model – of its "intrisic 

value". 

The intrinsic value is a new endogenous variable constructed as the 

product of two elements, namely the price-to-earnings ratio (P/E) and 

earnings per share (EPS). Si osservi che the “intrinsic value” of the share in 

question, is not constructed for the entire set of 150 shares but only for 

those presenting positive average returns in the first phase, as it would be 

pointless in the case of negative returns.  



Chapter 5. A Factor – BEKK model 

 

22 

 

As far as the single volatilities are concerned – that are the diagonal 

elements of the volatility matrix – BEKK models are applied. 

The n stocks included in the portfolio are then selected using a match 

between two estimated values, the intrinsic value and the market value. 

Only those identified as presenting positive average returns are considered 

eligible for the portfolio selection.  

It is then possible to employ a quadratic programming model to 

determine the optimal n and the quantities to be bought of each of the n 

shares selected after estimating the volatility matrix. 

 

 

5.2 BEKK model Estimates of the volatility matrix diagonal 
elements 
 

The estimation of the diagonal elements of the volatility matrix is divided 

in three steps. It is estimated by applying the BEKK model to the CVAR(p) 

residuals of the stocks. However to estimate this model for the stocks it is 

necessary to have selected the n stocks to include in the portfolio. So in 

order to obtain the estimation of the diagonal elements of the volatility 

matrix    in line with this methodology  it is necessary to implement a 
two step procedure: firstly two CVAR(p) models are estimated, the first one 

applied on the returns and the second one applied on the intrinsic values. 

Then through a match between the obtained values, the n stocks to include 

in the portfolio are selected (Pierini, Naccarato, 2012). Lastly the BEKK 

model is applied to the CVAR(p) residuals to estimate the off-diagonal 

elements of the volatility matrix related to the n selected stocks on the 

basis of the match between the intrinsic values and returns. 

 

To be noticed that  as the selection of the stocks to include in the portfolio 

is done on the basis of the match between return and intrinsic value  it is 
necessary that these two values are comparable. 

So the transformation of the intrinsic value in a return intrinsic value is 

needed. This transformation is defined as the difference between the 

logarithm of the intrinsic value in the two successive times: 

 

                          
 

                                                        
 

In altri termini, il modello CVAR è applicato al rendimento del valore 

intrinseco e non già al valore intrinseco. 

(14) 

(15) 
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The CVAR(p) models are briefly described hereafter as a preliminary step 

for the estimation of the volatility the diagonal elements. 

 

To estimate the time series of the return , the starting point is the K=150 

series, regarding the returns Rk,t on the shares, and the average return of the 

market RM,t , t=tk,…,T, k=1,…,K. 

For each series the model CVAR(p) is considered for the random vector yt 

=[y1,t , y2,t ]’=[Rk,t , RM,t ]’  as the equation (1). 

 

To be noticed that the CVAR type model for the estimation of the 

unknown coefficients in the equation (1) is selected because it can detect 

the presence of cointegration or integration between the two components of 

the random vector ty , for the returns and for the instrisic values too, by 

considering its alternative reparametrization, called VEC form as the 

equation (2). 

 

On the same 150 stocks, the bivariate time series of the intrinsic values and 

the intrinsic sector values is considered. 

The sector is intended as the industrial sector to which each stock belogns. 

  

 For each series the model CVAR(p) like the equation (14) is considered for 

the random vector yt =[y1,t , y2,t ]’=[ (P/E)(EPS) h,t , (P/E)(EPS) IS(h),t ]’, 
where  h=1,…H  is the index that identifies only the series with positive 

returns selected out of the initial 150. 

 

On the basis of the (P/E)(EPS) h,T+1  and  R h,T+1  forecasts obtained in 

phase 2, the shares are listed in decreasing order with respect to the values 

of the difference between intrinsic value and expected price. The first 

n{10,11,…,H} shares are thus selected to make up the portfolio. 
 

To take into consideration the presence of heteroskedasticity 

(Pierini Naccarato 2012), the BEKK(1,1) model is used to estimate the 

conditional variance-covariance matrix of ut given in phase 1 of the 

equation (1), t|t-1=cov(ut|past)=((i,j(t))i,j=1,…,n , which has the following 

structure in the equation (8). 

 

At the time t=T, the MLE (maximum likelihood estimations) of the 

parameters ck,i,j , k=0,1,2, i,j=1,2 are obtained  maximixing the  function 

in (9). 
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5.3 Factor model Estimates of the volatility matrix off-diagonal 
elements 
 

Moreover the following two Factor model is applied 

 

                                 , i=1,…,n, t=1,…,T 

 

where F1 is the market trend as measured by means of the Thomson 

Reuters Datastream Global Equity Italy Index and F2 is the fundamental 

factor given by the mean “intrinsic value”,k,i are parameters and i are 
uncorrelated mean-zero random variables. 

 

If we define , 0 =(0,1 ,…,0,n )
T
 , Rt =(R1,t ,…,Rn,t )

T
 , Ft =(F1,t , F2,t )

T
 ,  

=(1,t ,…,n,t )
T
 

 

   

              

  
              

  

 

The model (4) can be reexpressed as 

 

Rt = 0 +  
T
  Ft  +t  , t=1,…,T 

 

 

Then, with  j =(1,j , 2,j )
T
  and F  the 2 2 covariance matrix of Ft  

 

                  
      

 

We estimate the  with the regression coefficients using (6) and F with 
the sample covariance of the factors. By doing so we obtain an estimation 

      of di,j . 

 

In order to determine the quantities to be bought of each of the n shares 

selected, it to is necessary solve the Markowitz type problem (Markowitz 

1952) by estimating the matrix of share volatility. To this end, let     be the 

estimator of the matrix nn of  volatility Vt  for t=T+1, the elements of 

which are vi,j(t)=cov(Rt|past), i,j=1,…,n . 

We define the elements of     by: 

(16) 
 

(17) 
 

(18) 
 

(19) 
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with              
                

   
   in the equation (2)  i,j=1,…,n.   

 

 

 

 

5.4 Results 
 

Application of the model proposed in this work to the monthly figures for 

the 150 BIT shares with the highest level of capitalization indicates the 

following results. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(20) 
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In the following Table 5 we see the selected stocks with positive 

forecasted return: the number of this subset is H= 25 
                              Table 5: Stocks selected for the Portfolio. 

        

id pf varpf vinf indm vin_p var_vinf var_uf 

28 0,04 0,117 0,052 2 0,012 0,236 0,353 

113 0,034 0,096 -0,027 4 -0,061 0,162 0,258 

85 0,031 0,09 0,204 3 0,173 0,336 0,426 

44 0,029 0,085 -0,018 6 -0,047 0,82 0,905 

117 0,028 0,063 -0,089 4 -0,117 0,182 0,245 

38 0,022 0,071 -0,063 3 -0,085 0,326 0,397 

159 0,019 0,039 0,193 6 0,174 0,221 0,26 

109 0,012 0,044 0,229 3 0,217 0,237 0,281 

130 0,011 0,063 0,611 8 0,6 0,876 0,939 

45 0,01 0,103 -0,139 6 -0,149 0,305 0,408 

147 0,01 0,047 -0,03 9 -0,04 0,087 0,134 

34 0,009 0,081 0,037 2 0,028 3,682 3,763 

49 0,009 0,047 0,515 4 0,506 0,865 0,912 

4 0,008 0,082 0,943 10 0,935 1,385 1,467 

32 0,007 0,081 -0,02 2 -0,027 1,979 2,06 

54 0,007 0,046 0,109 6 0,102 0,32 0,366 

14 0,006 0,062 -0,027 4 -0,033 0,134 0,196 

60 0,006 0,079 0,05 10 0,044 0,114 0,193 

57 0,005 0,089 -6,769 4 -6,774 0,103 0,192 

156 0,004 0,069 -0,04 6 -0,044 0,341 0,41 

7 0,002 0,038 0,019 10 0,017 0,055 0,093 

104 0,002 0,095 -0,039 2 -0,041 0,309 0,404 

63 0,001 0,044 0,732 8 0,731 1,9 1,944 

65 0,001 0,063 -1,176 7 -1,177 1,617 1,68 

142 0,001 0,049 0,027 1 0,026 0,212 0,261 

 
column 1, called id, th ere is the identification number of the each stock; 

column 2 , called pf, there is the forecasted return of each stock ( > 0); 

column 3 , called varpf, there is the forecasted return variance of each stock ; 

column 4 , called vinf, there is the forecasted intrinsic value of each stock ; 

column 5 , called indm, there is the industrial sector of each stock ; 

column 6 , called vin_p, there is the difference between the intrinsic value and the   

                 return for each  stock ; 

column 7 , called var_vinf, there is the forecasted intrinsic value variance of each  

                stock ; 

column 8 , called var_uf, there is the forecasted potential variance of each stock ; 
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In the following Figure 2 we see the betas for the two factors in a portfolio 

of the first n=10 stocks among the subset selected before . 

 

 

 

                            Figure 2: β1 , β2 for factor 1,2 (n=10) 
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In the following Figure 3 we see the volatility matrix estimated with the 

Factor-BEKK model for a portfolio of the first n=10 stocks among the 

subset selected before : 

 

 

 

Figure 3: Volatility Estimation with Factor-BEKK (n=10) 
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In the following Figure 4 we see the betas for the two factors in a portfolio 

of the first n=15 stocks among the subset selected before: 
 

 

 

                        Figure 4: β1 , β2 for factor 1,2 (n=15) 
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In the following Figure 5 we see the volatility matrix estimated with the 

Factor-BEKK model for a portfolio of the first n=15 stocks among the 

subset selected before : 

 

 

 

Figure 5: Volatility Estimation with Factor-BEKK (n=15) 
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In the following Figure 6 we see the betas for the two factors in a portfolio 

of the first n=20 stocks among the subset selected before: 

 

 

 

                   Figure 6: β1 , β2 for factor 1,2 (n=20) 
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In the following Figure 7 we see the volatility matrix estimated with the 

Factor-BEKK model for a portfolio of the first n=20 stocks among the 

subset selected before : 

 

 

 

Figure 7: Volatility Estimation with Factor-BEKK (n=20) 
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In the following Figure 8 we see the betas for the two factors in a portfolio 

of the first n=25 stocks among the subset selected before: 

 

 

 

                        Figure 8: β1 , β2 for factor 1,2 (n=25) 
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In the following Figure 9 we see the volatility matrix estimated with the 

Factor-BEKK model for a portfolio of the first n=25 stocks among the 

subset selected before : 

 

 
 

Figure 9: Volatility Estimation with Factor-BEKK (n=25) 

 
 

The Figure 2,4,6,8 show that the sensitivity of the stocks to the two factors 

changes with different number of stocks n in the portfolio. Sometimes the 

i,j may be near to zero showing no sensitivity of their relative stocks. 
 

The Figure 3,5,7,9 show that increasing the number of stocks n in the 

portfolio has the effect of increasing also  the covariance among the stocks 

(smaller or higher picks). Therefore it can give a considerable amount of 

decreasing in the overall portfolio variance. 
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To be notice that we start from n=10 as indicated in Evans Archer 1968. 

 

5.5 Comments 
 

The application of the Factor-BEKK model is an improvement of the 

multivariate estimation of the volatility matrix in (Pierini Naccarato 2012) 

because it gives an insight of the variability between the stocks through the 

macroeconomic market movements by using the market index factor. 

Moreover by using the intrinsic value factor it gives an insight also through 

movements in the fundamentals  P/E (Nicholson, S. F., 1960) and EPS which 

make the intrinsic value. 

Nevertheless this model maintains the dimension tractability of its 

predecessor avoiding the strong numerical intractability of a crude BEKK 

application to the overall n stocks (Lutkephol 2007) or the unreal 

semplicity of a sample covariance application to the overall n stocks. 
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6.  Multiple bi-dimensional 
BEKK model 

 

6.1 Model description 
 

The previous two models have the advantage of being computationally 

feasible while retaining a certain amount of power in the description of the 

real data involved. If the variances are regarded as time-dependent, 

however, then it is more plausible to regard the covariances as time-

dependent too. This is supported by empirical results as well as the 

literature (Tsay 2010). Everything has its cost, however, and consideration 

also of time-varying covariances entails a considerable computational 

burden making BEKK infeasible for a dimension superior to 5 (Ding, 

Engle, 1994). A new method is put forward below to tackle this problem. 
  

A combination of bi-dimensional BEKK models is proposed for estimation 

of the volatility matrix of the Markowitz stock portfolio. Each diagonal 

element of volatility is estimated by taking the variance given by a bi-

dimensional BEKK model with stock i and the market index as variables. 

Each off-diagonal element of volatility is estimated by taking the 

covariance given by a bi-dimensional BEKK model with stocks i and j as 

variables. 

The model is applied to a subset of promising universes among the series 

of data regarding the prices of the 150 shares with the highest market 

capitalization traded on the Italian stock exchange between 1 January 1975 

and 31 August 2011. The volatility matrix of returns is required in order to 

select an optimal stock portfolio. 

The diagonal and off-diagonal elements are estimated separately, as stated 

above, and the efficient frontier given by the solution of the estimated 

Markowitz problem is then simulated, thus providing the optimal number 

of stocks, fractions and returns in order to obtain the minimum-risk 

portfolio. 

This approach gives a time-dependent overall estimation of the stock 

variances-covariances while resolving the computational burden through 

decomposition of the original problem without losing the strength of 

BEKK. 
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The application of a multiple bi-dimensional BEKK model is an 

improvement on the multivariate estimation of previous volatility-matrix 

models. Its purpose is to solve the infeasible problem of estimating the 

entire volatility matrix by breaking it down into multiple feasible bi-

dimensional estimations, as in the other two previous models. The full 

strength of the BEKK model is used here in such a way as to make every 

estimation time-dependent. The estimation of the variances is not different 

from the previous time-dependent estimations, as each variance of stock i 

at time t depends on the variance of the market index at time t – 1, its own 

variance at time t - 1 and the covariance between the stock and the market 

index at time t - 1 (Ruey Tsay, 2010). 

The market-index time series thus helps the forecast for each stock 

variance of interest. 

 

The new idea is that the estimation of the covariance elements is now 

different from the previous time-independent ones in that each covariance 

between stock i and stock j at time t depends on the variance of stock i at 

time t - 1, the variance of stock j at time t - 1 and their covariance at time  

t - 1. 

In this way the covariance forecast for each pair of stock is guided by past 

correlation information. 

 

The multiple bi-dimensional BEKK model is applied to the residuals of a 

bi-dimensional CVAR(p) model for each item in a set of n stocks. The 

CVAR(p) model also gives the predicted return for each stock. 

In order to select the n most promising stocks, they are sorted in decreasing 

order with respect to their potential values. The potential value of a stock is 

the difference between its return and its compound intrinsic value, where 

the intrinsic value is the P/E times EPS. 

The Markowitz portfolio is then solved and the dimension of the portfolio 

n is increased by 1 each time to find the minimum-risk choice among the 

best Markowitz portfolios. 

 

The starting point taken in order to estimate the time series of market 

returns is the K=150 series with respect to the returns on shares Rk,t and the 

average return of the market RM,t, t=tk,…,T, k=1,…,K. 

For each series, the model CVAR(p) is considered for the random vector yt 

=[y1,t, y2,t ]’=[Rk,t, RM,t ]’ as in equation (1). 

 

The CVAR model makes it possible to deal with cases of the integration 

and cointegration of ty  components whenever present. 
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For each series, as in equation (1), the model CVAR(p) is considered for 

the random vector yt =[y1,t, y2,t ]’=[ (P/E)(EPS) h,t, (P/E)(EPS) IS(h),t ]’, 
where h=1,…H is the index that identifies only the series with positive 

returns selected out of the initial 150. 

 

On the basis of the (P/E)(EPS) h,T+1 and R h,T+1 forecasts obtained in phase 

2, the shares are listed in decreasing order with respect to the values of the 

difference between intrinsic value and expected price. The first 

n{10,11,…,H} shares are thus selected to make up the portfolio. 
 

BEKK1 

In order to take into consideration the presence of variance 

heteroskedasticity (Pierini Naccarato 2012), the BEKK(1,1) model is used 

to estimate the conditional variance matrix of ut = [u1,t u2,t ]' = =[uk,t uM,t ]’ 

given in phase 1 of equation (1) for stock k and market index M, t|t-

1=cov(ut|past)=((i,j(t))i,j=1,…,n,, which has the same structure as in equation 
(8). 

 

In order to take into consideration the presence of time-varying 

autocorrelated disturbances (Pierini, Naccarato CFE 2013, Naccarato, 

Pierini 2014) for each series previously selected, the model CVAR(p) is 

considered for the random vector yt =[y1,t, y2,t ]’=[Rk,t, Rs,t ]’, as in equation 

(1). 

 

BEKK2 

The BEKK(1,1) model is then used to estimate the conditional variance 

matrix of ut = [u1,t u2,t ]' = [uk,t us,t ]’ given by the residuals of equation (1) 

for stock k and s, t|t-1=cov(ut|past)=((i,j(t))i,j=1,…,n,, which has the 

following structure: 
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At time t=T, the maximum likelihood estimations (MLE) of the parameters 

dk,i,j, k=0,1,2, i,j=1,2 are by obtained maximizing the following function: 

 

      
 
                  

          

 
 

 

 
         

                                  

 

It should be noted that the (Q)ML estimator of the parameter vector 

 

                
 

where the vec operator transforms a matrix into a vector by stacking its 

columns,                    , m = 0,1,2 , cannot be obtained analytically. 

An iterative optimization algorithm is therefore required. 

Use can be made of an algorithm of the Newton-Raphson type, which 

requires the first and second derivatives of (22), (Comte, Lieberman, 

2003): 
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where  A=(aik)i,k=1,...,n , tr(A) = a11+...+ ann ,           is the matrix 

containing the first order derivatives of each element of        with respect 

to    ,              is the matrix containing the second order derivatives of 

each element of        with respect to        . 

(23) 

(24) 

(25) 

(22) 
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A BHHH algorithm type (Brandt, Hall, Hall, Hausman, 1974) can be 

implemeted for the s-step as : 

 

                 

 

   

       

               
 

  

 

 

   

      

            
 

 

where  is the step length. 
 

Moreover the (Q)ML estimator     , as obtained above, is almost certainly 
consistent and  

 

                       
 

where      
       

     
 ,     

      

  

      

   
  , even if the distribution of ut 

is not normal as long as some regularity conditions are met (Comte, 

Lieberman, 2003). 

 

Finally, the procedure of estimation in two steps – where the parameters of 

the CVAR are estimated in the first and the residuals of this model are then 

used to estimate the BEKK parameters in the second – is justified because 

the estimators of CVAR end BEKK are asymptotically independent 

(Lutkepohl 2007). 

 

In order to determine the quantities to be bought of each of the n shares 

selected, it is necessary to solve the Markowitz problem iteratively with no 

shorting (Markowitz 1952) by estimating the matrix of share volatility: 

 

        
                            

 

where             ,                                          . 
 

 

To this end, let     be the estimator of the matrix nn of  volatility Vt  for 

t=T+1, the elements of which are vi,j(t)=cov(Rt|past), i,j=1,…,n . 

The elements of       are defined as follows: 

 

           
                         
             

          
                       

  (29) 
 

(28) 

(26) 

(27) 
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where            
                     

     
  are the estimates obtained respectively from 

equations (1) and (2) with i,j=1,...,n: 

 

 

 

 

         
   

         
 

   

  

          
                

     

   
          
                

     
  

 

Whenever    is not a positive definite n × n matrix, the Goldfarb-Idnani 

(1983) numerically stable dual method for finding the nearest positive 

definite n × n matrix        to    is used to ensure positive portfolio risk 

         . 

 

 
6.2. Multiple 2D- BEKK Results 
 

Application of the model put forward here to the monthly figures for the 

150 BIT shares with the highest level of capitalization gives the following 

results. The selected stocks with positive predicted returns are a subset of 

maximal dimension nmax = 25.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(30) 
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Figure 10 shows the volatility and the return obtained by solving the 

Markowitz optimization problem for variation in the expected return Rp;T+1 

and the dimension n of the portfolio (n = 10, 11,…, nmax), where nmax = 25 

is the maximum number of shares with positive predicted returns. The 

portfolio risk tends to decrease as n increases. 

A dimension n=12 would give the maximum return 0.01423 but with a 

high risk of 0.0859. 

 

 

                   Figure 10: Markowitz portfolio as n increases: 
sdP=portfolio volatility, muP portfolio return 

dimension n 
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Figure 11 shows the efficient frontiers obtained by solving the Markowitz 

optimization problem for variation in the expected return Rp;T+1 and the 

dimension n of the portfolio (n = 10, 11,…, nmax), where nmax = 25 is the 

maximum number of shares with positive predicted returns. 

 

 

 

Figure 11: Frontiers of Markowitz portfolio as n increases: 
sdP=portfolio volatility, muP portfolio return 

X=optimal portfolio of dimension n 

 
 

 

 

In overall terms, the portfolio risk tends to decrease as n increases. The 

optimal risk from a risk-averse standpoint (i.e. the least of all those 

calculated) corresponds to n = 25. This point is located closer to the origin 

of the axes and marked in figure 2 as X. This portfolio has a monthly 

average return of 0.00993, a monthly standard deviation of 0.0630 and a 

Sharpe index 0.15771. A portfolio is therefore selected of n = 25 shares 

with the optimal allocations shown in Table 6. 
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                              Table 6: Optimal weights n=25 
 

id op. w 

4 0,06 

7 0,03 

14 0,02 

28 0,04 

32 0,01 

34 0,05 

38 0,03 

44 0,02 

45 0,06 

49 0,05 

54 0 

57 0,04 

60 0,02 

63 0,06 

65 0,08 

85 0,04 

104 0,03 

109 0,02 

113 0,04 

117 0,06 

130 0,04 

142 0,07 

147 0,03 

156 0,03 

159 0,09 
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The selection for the portfolio of n = 25 shares with the optimal allocations 

is also shown in Figure 12. It can be seen that the allocation is quite 

diversified over the stocks. 

 

 

 

               Figure 12: Optimal weights n=25 for each stock 
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The optimal selection for the portfolio made up of n = 25 shares for each 

industrial sector is shown in Figure 13. It can be seen that the allocation is 

quite diversified over the stocks with a prevalence for the industrial (20%) 

and financial (20%) sectors. 

 

 

 

Figure 13: Optimal Selection weights n=25 for each stock for Sectors 
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The empirical evidence of time-varying covariance can be seen, for 

example, by considering two stocks as in figures 14 and 15. Figure 14 

shows the sample covariance between UCG and PMI using a moving 

window of 100 observations. This smoothing suggests that covariance 

changes over time. Figure 15 shows the same covariance estimated with a 

BEKK model so that it varies each time. 
 

 

 

Figure 14: Sample covariance UCG , PMI ( moving window of 100) 
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Figure 15:Estimated covariance UCG , PMI with BEKK 
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The estimation with equation (30), which is used to calculate the previous 

portfolio, is shown in Figure 16. 

 

 

 

                   Figure 16: Variance-Covariance estimation  
with  multiple bi-dimensional BEKK at T+1|T 

 
 

Some elements of the estimated covariance are larger than others and 

comparable with the variance. Let us call this subset As. Most of the 

covariances are instead lower than the ones in As and negligible with 

respect to the variance.  

This suggests that it would be possible to separate the statistical analysis of 

the shares belonging to set As from the analysis of those belonging to the 

complementary set CAs. 

 

 

 

 

 

 

 

 

 



Chapter 6. Multiple 2D BEKK model 

 

50 

 

On the basis of minimum AIC, the optimal CVAR lag is 2–9 months. 

There is thus empirical evidence of market inefficiency, as the past has 

information to explain the future. Figure 17 shows the empirical 

distribution of the optimal lags. As prediction is the primary objective, AIC 

is chosen as the lag criterion because it is asymptotically equivalent to the 

FPE (Final Prediction Error). 

 

 

 

             Figure 17: CVAR Minimum AIC lag distribution  
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The results of the LR test for all of the shares considered yield a degree of 

cointegration between 0 and 2. The 9% of instable time series (integrated 

and cointegrated) are taken into due consideration. Figure 18 shows the 

empirical distribution of the  matrix, defined in (4), in ranks. 
 

 

 

                       Figure 18: CVAR rank distribution  
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Figure 19 shows the empirical distribution of the p values of F statistics 

for testing H0 : ah,ij = 0 in equation (1). This is equivalent to verifying the 

hypothesis that the model estimated does not exist. 

 

It can be seen that H0 is rejected at a confidence level of 90% in 83% of the 

time series. The CVAR model is therefore adequate for most of the cases. 

 

 

 

              Figure 19: CVAR p values F distribution 
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Figure 20 shows the empirical distribution of the p value of the 

portmanteau statistics for testing H0: no correlation in the CVAR residuals. 

It can be seen that H0 is rejected at a confidence level of 90% in 6% of the 

time series. The CVAR model is therefore adequate for most of the cases 

even though some lags could be added. This is not done here because the 

prevailing criterion for lag selection is AIC. 

 

 

 

                   Figure 20: p values portmanteau distribution  
for no correlation in CVAR res 
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Figure 21 shows the empirical distribution of the p values of the 

portmanteau statistics for testing H0: no ARCH in the CVAR residuals. 

It can be seen that H0 is rejected at a confidence level of 90% for 79% of 

the time series. The CVAR residuals are therefore affected with ARCH 

effects in the majority of cases and GARCH modelling is required because 

it can represent this effects. 

 

 

 

                 Figure 21: p values portmanteau distribution 
 for no ARCH in CVAR res 
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Figure 22 shows the empirical distribution of the p values of the Jarque-

Bera statistics for testing H0: normality of the CVAR residuals. 

It can be seen that H0 is rejected at a confidence level of 90% for 86% of 

the time series considered. The CVAR residuals therefore have a non-

Gaussian distribution (mostly due to the leptokurtic effect) for the majority 

of cases and GARCH modelling is required because it can represent this. 
 

 

 

                              Figure 22: p values distribution 
 for normality in CVAR res 

 
 

Let            
    

    where                        and         as in equation 

(8), which are called BEKK residuals here.  

If A is a positive definite n × n and symmetric matrix then its spectral 

decomposition P'AP = diag(1,..., n) =  exists, where are the eigenvalues 

of A ( with i ≥ 0) and the columns of P are the corresponding 

eigenvectors. 

Therefore i
1/2

 exists and the matrix Q= P1/2
 P' is the square root of A and 

it is denoted as A
1/2

. As the BEKK builds a positive 2 × 2 and symmetric 

matrix         , the matrix        
   

 can be defined as above and        
    

 as its 

inverse matrix. 
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Figure 23 shows the empirical distribution of the portmanteau statistics of 

the p values for testing H0: no correlation in the    . It can be seen that H0 is 
rejected at a confidence level of 90% for 10% of the time series 

considered. While there is thus no correlation in the BEKK residuals in 

most of the cases, correlation does persist in some cases. More lags can be 

added but this means increasing the computational burden. A tentative 

solution to this problem will be put forward in the section on further 

development. 

 

 

 

                     Figure 23: p values portmanteau distribution 
 for no correlation in BEKK res 

 
 

 

Figure 24 shows the empirical distribution of the portmanteau statistics of 

the p values for testing H0: no ARCH in    . 
It can be seen that H0 is rejected at a confidence level of 90% for 24% of 

the time series considered. While there is thus no ARCH effect in the 

BEKK residuals in most majority of the cases, ARCH effects do persist in 

some cases. More lags can be added but these involve worsening the 

computational aspect. A multivariate Student-t distribution can also be 

tentatively used as the conditional distribution of ut (Fiorentini et al 2003). 

This approach has the disadvantage that if the assumption is wrong, the 

ML estimates are generally not even consistent. On the other hand, using a 

Gaussian likelihood, also known as quasi-maximum likelihood (QML), 

retains consistency under misspecification (Hafner, Herwartz 2013). A 
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tentative solution to this problem will be put forward in the section on 

further development. 

 

All in all, the models obtained prove adequate for most of the time series 

considered. 

 

 

 

                  Figure 24: p values portmanteau distribution 
for no ARCH in BEKK res 
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Figure 25 shows the 1   approximate interval forecast  

                  together with the forecast and the actual values       with   

= 0,05. The model’s adequacy is confirmed by the fact that only 6% of the 

actual values are outside the forecast intervals. It should be noted that the 

conditional normal quantile hypothesis could be relaxed by means of a 

bootstrap for the interval.  

 

 

 

                   Figure 25: 95% approximate interval forecast  
vs actual values for all the time series  
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7. Further Development 

 

7.1 Introduction  
 

As noticed before, the computational burden is one of the main problem 

one must deal with stock portfolio selection. 

To reduce the VAR parameter space it is possible to apply the following 

undirected gaussian graphical models. 

However, this new approach is tentatively applied to 31 EU index values 

and in a successive effort will be applied to the hole set of 150 stocks. This 

is due to the fact that indexes are less in number and smoother, being mean 

of stocks, than stocks themselves. 

 

7.2 Undirected Gaussian Graphical models for VAR parameters 
reduction 
 

Undirected Gaussian Graphical models are applied to non-parametric 

resampling of a multivariate time series of EU index returns, in order to 

construct graphs such that the edges included in the graphs are definitely 

present indicating a significant relationship between the variables. 

Moreover a convex optimization technique and a forward minimum AIC 

search is used to construct alternative UG graphs. VAR(1) models are 

constructed based only on the previous specified relationships 

and GARCH(1,1) models are applied to their residuals to estimate the 

immediate future return and variances for each index. 

To estimate the covariances between each pair of return a Latent Factor 

model is applied to the set of EU index returns. Finally the simulated 

portfolio returns and a probability of gain is calculated by 

solving the corresponding Markowitz problem. 

 

Stock Index portfolio selection is wildly discussed in the literature with 

reference to heteroskedastic models , Bollerslev et al. (1994). The model 

used in the case of multiple time series is of the vector autoregressive 

(VAR) type and rests on the predictability of the average 

return on stocks, Tiao G., Box G. (1981). 

The VAR type models suffer of computational burden as the number of 

parameters to be estimated are large with respect to univariate models. 
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This paper suggests the use of Gaussian Graphical Models (GM) to 

identify only the significant parameters to be estimated for the VAR models 

whenever a subset of the variables are considered connected. 

1. the simultaneous pvalue (SIN), which is a thresholding approach ; 
2. the glasso, which is a penalized log-likelihood maximization approach ; 

3. the decomposable stepwise search, which is a forward search through 

decomposable graphs minimizing AIC . 

A stepwise backward search from saturated graphs was tentatively used but 

it did not give results due to the NPhard complexity so that it was 

discarded. 

If case of connected variables, Restricted VAR(1) models are estimated 

taking into account only the connections identified before. 

As the residuals exhibit heteroskedasticity, tGarch(1,1) models are then 

applied to them in order to take this particular aspect into due 

consideration. 

For the subset of variables which are not connected at all, univariate AR(p) 

tGarch(p,0) are estimated. 

In this way a great reduction of calculation is obtained and a more efficient 

estimation is reached with respect to multidimensional full models. 

The orders p,P,Q of VAR(p) , tGarch(P,Q) can be augmented leaving the 

approach unchanged. 

Moreover the application of multidimensional models for the residuals, as 

BEKK or DVEC models, Engle (1982), in the case of detected connection, 

can be prohibitive due to the dimension of the problem. 

Lastly a Latent Factor Model (LMF), Connor (1995), is applied to estimate 

the covariances between each pair of index return. LMF has the advantage 

of being capable to deal with large dimension by considering only few 

latent factors to represent the whole dimension. 

However it may happen that the some (V)ARtGarch models result 

unstable.  

In this cases the LMF variance estimation is considered and the unstable 

models are discarded. 

Thus the problem of estimating future returns of indexes and the associated 

risk on the basis of past returns of the European Stock Indexes over time is 

tackled via the combination of GM 

and (V)ARtGarch, LFM models. 

Through this estimation the Markowitz problem, Sharpe (1970), is solved 

with quadratic optimization technique. 

A resampling is then applied for g = 500 times to obtain an empirical 

distribution of the optimal portfolio returns so that an estimation of the 

probability of gaining is calculated. 
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The time series considered regard the European Stock Indexes monthly 

figures from 1 January 1995 to 31 December 2012 taken by the Eurostat 

database. 

 

Let’s consider a multivariate time series where the log return for the stock 

index i at time t is ri,t i = 1,...,k and t = 1,...,T , that’s to say 

 ri,t = log(pi, t / pi,t1) , pi,t is the index value at time t. Then a back shift in 

time of length 1 is done, obtaining     
            , i = 1,...,k and 

t = 1,...,T where ri,0 = NA . A graph is defined as a couple G = (V,E) where 

V is a set of vertices or nodes and E is a set of edges, Lauritzen (1996). 

Undirected edges only are used and each edge is associated with a pair of 

nodes. 

A graph G0 = (V0,E0) is called subgraph if V0  V, E0  E. 

Let A,B,C be subset of V and f a joint density function of (Xv)vV then 

AB |C if f (xA,xB|xC)= f (xA|xC) f (xB|xC) for each possible value xA of XA  xB 

of XB , xC of XC. 

In the hypothesis of multivariate gaussian variables , f = N(μ,) , K =  

 
-1

, if V represents the set of this variables, it is possible to define a 

dependence graph GK =(V,EK) with ku,v =0 whenever there is no edge 

between a pair of vertices u,v  V .So if two vertices u,v  V are 

not adjacent, that’s to say there’s no edge, it holds that uv|V\{u,v} . 

The choice here is that V represents the set of variables Y given by ri , 

i = 1,...,k followed by   
    

 , i = 1,...,k with ri = (ri,1,..., ri,T ),   
     

     
           

      , f = N(μ,). 

 

The first method to select an undirected gaussian graphical model is to 

specify a threshold a for the partial correlations, defined as 

uv|V\{u,v} = ─kuv / (kuu kvv)
1/2

, so edges are not present for all u,v : |uv|V\{u,v} | 

<  . 

The special form of threshold here is the following: consider the set of 

hypotheses H ={ Hu,v : Yu  Yv|YV\{u,v} } and let P = {pu,v} be the pvalues. 

Using Fisher’s z transformation, P is transformed in simultaneous pvalues 

P = {pu,v} . So if we reject Hu,v whenever  

pu,v < , the probability of rejecting one or more true Hu,v is less or equal to 

. 

It follows that the graph G which include those edges with pu,v <  has a 

probability of not being the true one less or equal to . 

As this approach attempts to include only the edges that are definitely 

present, it empirically proved to give a lot of unconnected vertices. For this 

reason other approaches are applied too. 
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The second method to select an undirected gaussian graphical model is to 

maximize a log-likelihood for K which penalized by |K|: 

 

                         Lpen(K) = log(det(K)) ─ tr(KS) ─ |K| 
 

where det(K) is the determinant of K,  

Su,v = t=1,..n (yu,t  ─ yv)(yv,t ─ yv)' / T, tr(KS) is the trace of KS, |K| = u,vV  

|kuv| ,  ≥ 0. 

 

The the number of non-zero elements of K is penalized by the last term in 

Lpen. So the smaller the  value the denser the graph that results. In this 
way we can have more connected vertices than the first method with a 

relatively fast calculation. 

 

The third method to select an undirected gaussian graphical model, that can 

deal with high dimension in a better way than the approaches before, is to 

restrict the search among the decomposable graph. 

Decomposable models are graphs that are triangulated. Triangulated 

graphs have no chordless cycles of length  4. A cycle is a sequence of 

nodes v1,v2,…,vn1,v1 of length n. If a cycle has adjacent, elements, that’s to 

say with an edge between them , vi-vj and j {i1, i+1} then it is said to 

have a chord. If it has no cords it is said chordless. 

In this case the starting graph is the minimal AIC forest. A forest is an 

acyclic undirected graph, that is, an undirected graph with no cycle. Then 

the search the edge giving the minimal AIC reduction is added until further 

reduction are not possible. Here AIC = 2logL+ 
2dim(G), dim(G) is the number of independent parameters of G, L is the 

likelihood. 

 

Any method gives a final graph G
(2k)

 of 2k nodes that can be represented by 

its adjacency matrix. The adjacency matrix is an 2k 2k symmetric matrix 

A of 0,1 elements where ai,i =0 (no loop), ai.j = 1 if there’s an edge between 

vertex i and j, ai,j = 0 otherwise. 

To get only the connections among the variables ri, i = 1,…,k and    
     

i = 1,…,k,  the subgraph G
(k)

  G
(2k)

 of k nodes identified by the adjacency 

matrix A0, where A0 is the k  k given by the first k rows of A and the last k 

columns of A. 

Then it is possible to split the set of variables t = {ri : i = 1,…,k } in two 
parts: 

(31) 
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1. a subset of m < k variables C = {ri : i = i1,…,im } which are connected to 

some element of t-1 = {   
    

: i = 1,…,k } with the exception of their own 

past; 

2. a subset of km variables C = {rj : j = j1,…,jk-m } which are not 

connected to any element of  t-1 = {   
    

: i = 1,…,k }, with the exception 

of their own past. 

 

Let’s start with the time series modeling for the subset C. In this case it is 

possible to apply a restricted vector autoregressive model to the variables 

in C, as they are connected to their past. 

The following model is estimated: 
 

                
 

where                   
 
,                   

 
is a conditional gaussian 

error,    is a m-dimensional vector,    is a m  m matrix. 

The elements of    are restricted to 0 whenever no connection was 

founded between pair of variables and their past with the graph approach, 

Eichler (2012) . 

To restrict the VAR model above, it is necessary to rewrite and re 

parametrize it. It can be rewritten as follow: 

 

                                                   Y = BZ+U  

 

where               ,                   
 
,                , 

          
  ,           ,               ,               

 
. 

The linear constraint for f1 can be given in the form 

 

                                               = vec(B) = R + r  

 

for an opportune R fixed matrix of dimension m(m+1) M, with M the 

number of restrictions, r = 0 a vector of dimension m(m+1),  a M vector 

of unknown unrestricted parameters. 

The vec operator transforms a matrix B into a vector  by stacking its 
columns. 

So it is possible to impose the constraints for , by re parametrizing  as 

follow 

                            y = vec(Y ) = (Z'  I)vec(B) + vec(U) = 
                                          

                                       = (Z'  I)( R + r) + u = 

(32) 

(33) 



Chapter 7. Further Development 

 

64 

 

                                          

                                           = (Z'  I) R  + u  
 

Thus it possible to minimize the generalized sum of squared errors  

S() = u(I  )u', obtaining a generalized estimator     and so     which has 

smaller asymptotic variance than the unrestricted estimator    . 

 

As the financial data exhibit volatility cluster, that is, variance may be high 

for certain time periods and low for other periods, and variance jump are 

rare, for each     , i = 1,...,m the t  Garch(P,0) model is applied . To 
simplify the notation the index i of the time series is 

suppressed. For each time series let         then 

  

  
           

          
  

 

where a standardized Student-t distribution with n degree of freedom is 

assumed. 

So the parameters i can be estimated by maximizing recursively the 

conditional likelihood function                              
 

 
          

  
 
         

 

     

  
 

  
    

  
 

       
  

        

 

 

For the time series belonging to C the variables are connected at most to 

their own past. 

So m  k unidimensional AR(pi) model are separately applied: 

 

                                         

 

The parameters                         are estimated by maximizing the 

conditional log-likelihood or equivalently the following 

 

  
                                     

   
 

 

      

 

 

    , i = 1,...,m the t  Garch(P,0) model is applied . 
 

(34) 

(35) 

(36) 

(37) 

(38) 
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At last the estimation of        is              accordingly to the preceding 

modeling 

         

                                         

                                        

  

The estimation of       
                 is  

 

       
                 

                 
  

 

Let V be the conditional variance covariance matrix of ri,t  with dimension 

k × k . 

The diagonal elements of V are estimated by the tGarch models. 

For the estimation of the off-diagonal elements of V, it is 

assumed a time-constant association and a multivariate Factor model is 

applied as in equation (18), (19) but with 2 latent factors. 

Resampling of ri,t is done for  g  N times and the empirical distribution of 

the g iteration optimal portfolio return Rp
(g),opt

 is built. Thus the probability 

of Rp
(g),op

 > 0 is estimated. 

 

The combination of GM and (V)AR-tGarch, LFM models is applied to the 

time series of the European Stock Indexes monthly figures from 1 January 
1995 to 31 December 2012 taken by the Eurostat database. 

As the EU indexes are in number of 31, each graph has 62 nodes (present 

and past). 

The SIN approach ( = 0,3) gives only few (two if g = 1) edges that 

connect the past with the present variables, as expected. For the Glasso ( 
= 0,4) and the Decomposable search , Figure 26, there are a lot of edges 

that makes impossible to detect by eye the relationships among the 

variables. The empirical distributions of optimal portfolio returns given by 

the procedures are calculated for  g = 500 iterations of resampling. 

Thus the analysis shows a probability of gain between 56% and 91% 

depending on the graphical method used. The structure of dependence 

among the variables and their past seems to play a key role in portfolio 

making, changing the results of the forecast. However the SIN approach 

pushes the successive modeling towards a unidimensional prevalence. At 

the contrary the Glasso and Decomposable Search push the successive 

modeling towards a multidimensional prevalence. 

So it seems more appropriate Glasso and Decomposable Search 

approaches to get multidimensionality into the analysis. 

 
 

(39) 

(40) 
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                           Figure 26:gaussian graphical model 
Glasso and Decomposable Search 
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7.3 Mixture of Gaussian distribution 
 

As noticed before, the distributional aspect is the other main problem one 

must deal with stock portfolio selection. 

To get the normality we postulate that the whole dataset consists of  a 

number of clusters each having different variance-covariance matrix and 

mean with multivariate normal density function. 

This hypothesis results in a finite mixture of gaussian density for the whole 

dataset (Everitt, Hand 1981) 

 

                         

 

   

 

where                   and               with       
   . 

The parameters       can be estimated with log-likelihood maximization 
through EM or MCMC (Marin et al 2005). Then each observation can be 

associated to a cluster on the basis of the maximum value of the following 

estimated probability , j=1,...,c 

 

         
                 

           
 

 

However, this new approach is tentatively applied to bidimensional stock 

vector rt = [PMIt , UCGt ] (PMI = Popolare di Milano, UCG = Unicredit) 

and in a successive effort will be applied to the hole set of 150 stocks. 

There is the possibility to lose the time dependency, even if the 

experiments show that the clusters are almost formed by consecutive 

observations so representing the states of the system. This could be no 

longer true for bigger dimensions. 

However the successive application of the CVAR modeling in each cluster 

separately has shown a smaller AIC than the whole CVAR modeling. So 

the clustering seems a promising approach. 

In the Figure 27 c = 3 with a bidimensional ut and rt = [PMIt ; UCGt ]: 

 

 

 

 

 

 

 

 

(42) 

(41) 
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                                Figure 27: Gaussian Finite Mixture 
                for rt = [PMIt , UCGt ]

 
 

 

 

7.5 Multivariate Student-t conditional distribution 
 

A multivariate Student-t distribution is tentatively used as the conditional 

distribution of ut (Fiorentini et al 2003) for the bidimensional ut and rt = 

[PMIt ; UCGt ] (Popolare di Milano, Unicredit) in order to check 

experimentally the difference with a Gaussian conditional distribution of ut 

In this case the conditional distribution of          
    

   is 

 

       
  
   
  

  
 
    

         
   

     
   

 

        

 

 

where  > 2 ,  is the gamma function and the log likelihood is 

 

        
 
                         

    
              

       ))   

 

(44) 
 

(43) 
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The estimated variance covariance matrix           at time T+1 , 

indicated as                 , with the maximization of (29), (30) are shown in 

the following table 7 

 

 

Table 7: estimation of variance covariance matrix           

 Student-t Gauss Relative 

difference 

Log-

likelihood 

808,2082  802,2919  0,0074 

            0,0100 0,0042 0,0099 0,0038  

            0,0042 0,0072 0,0038 0,0071 

 

 

It can be seen from the table above that the relative difference in log-

likelihood is of 0,7%  . So it is possible to conclude that there is no 

difference in the use of the two kind of conditional distributions in getting 

the leptokurtosis of the data. Moreover there is almost no difference in the 

estimation of the variance covariance matrix too. 
 

Bauwens and Laurent (2005) found that the multivariate Student t density 

provides better, or at least not worse, out-of-sample VaR forecasts (Value 

at Risk, that is the maximal forecasted loss of a financial position) than a 

symmetric density. 

So there is no evident improvement in using the Student t instead of 

Gaussian conditional distribution for ut . 

 

7.6 Resampling and asymptotic test statistic distributions 
 

Asymptotic theory is applicable to the properties of the test statistics used 

here. As the observations range from about 200 to 400, the use of 

asymptotic theory, as is usual in similar problems (Lutkephol, 2010), is 

justified. 

A rigorous treatment of the properties of the statistics is not, however, 

available at present. This difficulty can be overcome through simulation of 

the properties, a method known as resampling or bootstrap, which can be 

used to investigate the distribution of functions of the time series involved. 

The values y1,..., yT of the time series and a pre-sample are available.The 

model (1) is fitted in the first step and the coefficient estimates              

and a series of residuals           are obtained. 
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The quantity of interest is the function                

                            which is estimated with 

                    . 

The bootstrap residuals    
         

 are obtained in the second step by means 

of random extraction with repetition from the set of the residuals obtained 

in the first step           . 
The bootstrap time series are then computed recursively in the third step as 

 

  
            

           
    

  

 

for t=1,...,T. 

The parameters           are re-estimated in the forth step using the 

bootstrap time series of the third step, say           
   
      

   
 . 

A bootstrap statistic, say      , is calculated in the fifth step by using the 

parameter estimates obtained in the forth :                   
         

    . 

The steps  2-5 are repeated N times and the distribution f of the function 

               is investigated by using the empirical distribution    

of the bootstrap statistic                 . 
 

In order to understand the quantile of the test statistics used here, let us 

consider the bi-dimensional time series rt = [PMIt ; UCGt ], that is the 

stocks Popolare di Milano and Unicredit. 

The idea is to compare the bootstrap quantile with the asymptotic 

theoretical quantile of the test statistic in order to see if there is difference 

that would result in a different decision in the test of interest. 

In order to lighten the computational complexity, parallel computation is 

employed with 2 CPUs at 1.8GHz. 

 

The first test statistic of interest is the normality test or Jarque-Bera test 

statistic. In this case, the function q for each time series is as follows: 

 

   
      

   
 
         

 

    
 

 

where             are the sample skewness and kurtosis and   
           and T the time series length. 

In the case of H0: normality of u, the asymptotic distribution of the test 

statistic JB is a chi-square with 2 degrees of freedom.  

(45) 

(46) 
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The comparison for the pair of stocks between the asymptotic and the 

bootstrap 95% quantile of JB is given in the following Table 8, where the 

bootstrap residuals u are obtained with N=1000 and the VAR model 

equation (1): 

 

 

               Table 8: Resampling and asymptotic JB 95% quantile  

 JB statistic JB sim. q.95% JB asy. q. 95% 

PMI 290.0622 5.5090 5.7780 

UCG 12.3813 5.9971 5.7780 

 

It can be seen from table 8 that there is no substantial difference between 

the asymptotic and the simulated JB quantile. 

The decision as regards the hypothesis H0 is therefore the same in both 

cases: the JB statistic is greater than the asymptotic and the simulated 95% 

quantile and the null hypothesis of normality is rejected for both the stocks 

with a type I error of 0.05. A multivariate Garch model is therefore needed 

to obtain the unconditional non-normality of u. 

 

The second test statistic of interest is the correlation test or Ljung-Box test 

statistic. In this case, the function q for each time series is as follows: 

 

          
   
 

   

 

   

 

 

where      is the lag-i sample autocorrelation of u and             , T 

the time series length, m =20. 

In the case of H0: no autocorrelation of u up to lag m, the asymptotic 

distribution of the test statistic Qm is a chi-square with m degrees of 

freedom.  

The comparison for the pair of stocks between the asymptotic and the 

bootstrap 95% quantile of Qm is given in the following Table 9, where the 

bootstrap residuals u are obtained with N=1000 and the VAR model 

equation (1): 

 

 

               Table 9: Resampling and asymptotic Qm 95% quantile  

 Qm statistic Qm sim. q.95% Qm asy. q. 95% 

PMI 20.0354 33.5425 31.4104 

UCG 15.7584 32.3931 31.4104 

(47) 
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It can be seen from the table 9 that there is no substantial difference 

between the asymptotic and the simulated Qm quantile. 

The decision as regards the hypothesis H0 is therefore the same in both 

cases: the Qm statistic is smaller than the asymptotic and the simulated 95% 

quantile and the null hypothesis of no autocorrelation cannot be rejected 

for both the stocks with a type I error of 0.05. This means that the VAR 

model adequately represents the time dependency of the two stocks. 

 

The third test statistic of interest is the ARCH effects test or Lagrange 

multiplier test statistic of Engle.  

It should be noted that the Ljung–Box statistic Qm to the u
2
 series could be 

used to detect ARCH effects, say Qm,2. Both test statistics are therefore 

simulated. 

In the case of the Lagrange multiplier, the function q for each time series is 

the F statistic for testing the null hypothesis H0 : 1 =... = m = 0 (no 
ARCH effects for u) in the auxiliary linear regression 

 

  
           

          
     

 

where  et is an error term, t=m+1,...,T . The F statistic has a chi-squared 

asymptotic distribution with m degree of freedom. 

The comparison for the pair of stocks between the asymptotic and the 

bootstrap 95 % quantiles of Qm,2 and F are given in the following Table 10, 

where the bootstrap residuals u are obtained with N=1000 and the VAR 

model equation (1): 

 

 

               Table 10: Resampling and asymptotic Qm,2, F 95% quantile  

 Qm,2 

statistic 

Qm,2 sim. 

q.95% 

F  

statistic 

F sim. q. 

95% 

Qm,2 ,F asy. 

q. 95% 

PMI 67.2705 31.3891 66.4221 29.6457 31.4104 

UCG 44.6883 30.8424 35.3372 29.4828 31.4104 

 

It can be seen from table 10 that there is no substantial difference between 

the asymptotic and the simulated Qm,2, F quantiles. 

The decision as regards the hypothesis H0 is therefore the same in both 

cases: the Qm,2, F statistics are larger than the asymptotic and the simulated 

95% quantiles and the null hypothesis of no ARCH effects for u is rejected 

for both the stocks with a type I error of 0.05. This means that a 

multivariate Garch model is needed. 

(48) 
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The fourth test statistic of interest is the cointegration test of Johansen. It 

should be noted that the Engle-Granger statistic could also be used to 

detect cointegration. Both test statistics are therefore simulated. 

In the Johansen case the function q for a cointegration rank     is as 
follows: 

 

                     
 
       

 

where     are the solution of a particular eigenvalue problem. Its 

distribution is non-standard but it is tabulated in Johansen, Juselius (1990). 

The comparison for the pair of stocks between the asymptotic and the 

bootstrap 95 % quantile of      is given in the following Table 11, where 
the bootstrap residuals u are obtained with N=1000 and the VAR model 

equation (1): 

 

 

               Table 11: Resampling and asymptotic      95% quantile  

         
statistic 

     asy. 
q.95% 

    sim. q. 
95% 

0 123.1729 15.4948   147.4535 

1 40.2240     3.8415    61.35 

 

It can be seen from the table 11 that there is substantial difference between 

the asymptotic and the simulated      quantile. 

If the asymptotic theory is applied, the      statistic for      is larger 

than the      critical value so that the null hypothesis of rank      , i.e. 

no cointegration, is rejected.       is also rejected. Therefore     . 

If empirical simulation is applied, however, the      statistic for      is 

smaller than the      simulated critical value so that the null hypothesis of 

rank      , i.e. no cointegration but integration, cannot be rejected. In the 

latter      but in the former      . 

This different in decision as regards cointegration  could be due to the 

Gaussian assumption of the      statistic test. 
 

The problem is, however, better solved by means of the Engle-Granger 

statistic. 

In the Engle-Granger case, the following regression is estimated: 

 

 

             

(49) 

(50) 
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where  = (1,1) is the cointegrating vector, zt is the error term. 
If zt is stationary  whenever yt is integrated, then y1t and y2t are 

cointegrated. 

The time series zt is stationary if it has constant mean and time- 

independent lag-covariances. If  zt is assumed to follow an AR(p) process, 

Dickey Fuller (1981) suggests testing the null hypothesis H0 :  = 0 (unit 

root) against the alternative H1 :  < 0 (stationary) by estimating the 
following linear regression by means of OLS (ordinary least-squares) and a 

Student t ratio, say tcadf 

                 
   
      

 

In this case, the function q is the usual Student t ratio even though its 

distribution is not Student t but non-standard and should also take into 

consideration the fact that zt are estimated values. It is, however, tabulated 

in Dickey Fuller (1981). 

The comparison for the pair of stocks between the asymptotic and the 

bootstrap 95 % quantile of tcadf is given in the following Table 12, where 

the bootstrap residuals u are obtained with N=1000 and the VAR model 

equation (1): 

 

 

               Table 12: Resampling and asymptotic tcadf  95% quantile  

   tcadf   

statistic 

tcadf  asy. q.95% tcadf  sim. q. 

95% 

1 -11.9254 -3.3563 -10.8860 

 

It can be seen from table 12 that there is substantial difference between the 

asymptotic and the simulated tcadf quantile. 

In this case, however, the decision for the null hypothesis H0 :  = 0 (no 

cointegration) as against the alternative H1 :  < 0 (cointegration) is the 
same in both the asymptotic and the simulated cases. The statistic value is 

in fact smaller than the critical value in both cases and the null hypothesis 

is therefore rejected.  

The decisions of the Engle-Granger test and the above Johansen test are 

respectively cointegration and no cointegration. The Johansen test thus 

appears to decide for cointegration less frequently than empirically 

required. 

The simulated and asymptotic decisions are the same when the Engle-

Granger test is used. 

 

(51) 
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The fifth and sixth test statistics of interest are the correlation test for the 

BEKK residuals and BEKK squared-residuals or Ljung-Box test statistic 

for BEKK correlation and ARCH effects, say     and      . In this case the 

functions q for each time series are the same as before (    and      ) but 

the residuals ut must be replaced with           
    

    in the formula. 

 

The comparison for the pair of stocks between the asymptotic and the 

bootstrap 95 % quantiles of      and       are given in the following  

Table 13, where the bootstrap residuals  are obtained with   =500 and the 

BEKK model equation (8): 

 

 

   Table 13: Resampling and asymptotic      and       95% quantile  

      
Statistic 

     
sim. 

q.95% 

    ,       

asy. q.95% 

      

statistic 

      

sim. 

q.95% 

PMI 13.3723 33.2883 31.4104            25.2894               32.2578 

UCG 13.9801          31.2223 31.4104            25.3153               30.3538 

 

It can be seen from the table 13 that there is no substantial difference 

between the asymptotic and the simulated for both     and       quantiles. 

 

The decision as regards the hypothesis H0 is therefore the same in both 

cases: the      and       statistics are smaller than the asymptotic and the 

simulated 95% quantiles and the null hypothesis of   
   

: no correlation 

and   
   
   no Arch effects for   cannot be rejected for both the stocks with 

a type I error of 0.05 . This means that the used multivariate Garch model  

employed adequately represents the dynamic of the dataset. 

 

All in all, it appears that with regard to the type of test used, the simulated 

and asymptotic critical values are the same, or at least that the decisions 

based on them are the same. 
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7.7 Full and proposed model comparison 
 

The last aspect of interest as regards the model put forward is matching 

with the full VARBEKK model (Lutkepohl, 2007) applied to the 

multivariate time series of interest as a whole. 

The latter entails a considerable computational burden. As a result, BEKK 

is unfeasible for a dimension superior to 5 (Ding, Engle, 1994) and cannot 

be applied to the universe of 150 time series involved here. 

 

Let us, however, now consider a comparison for the tri-dimensional time 

series rt = [PMIt ; UCGt, Markett], that is the Popolare di Milano and 

Unicredit stocks and the Bank Market Index. 

The Bank Market Index is obtained as the mean of five blue chip bank 

stocks, namely Unicredit, Popolare di Milano, Credito Emiliano, Intesa 

San Paolo and Mediobanca. 

 

 

The full model VARBEKK for    = [PMIt ; UCGt  ] consists of the following 
equations (52)-(53)-(54) : 

 

    
    
    
  

   

               
               
               

  
      
      
    

    

 

 

   

               
               
               

  

      
      
    

   

   
   
   

  

 

 

         
   

   

 

        

               
               
               

  

 

       

           

               

  

               
           
       

   

(54) 

(52) 

(53) 
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where       and       are parameters,            

 

The proposed VARBEKK model for    = [PMIt ; UCGt ] consists instead 
of the following (55)-(60): 

 

 

 
    
  

   
            
            

  
      
    

    

 

 

   
              
              

  
       
     

   
   
   

  

 

 

 
    
  

   
          
          

  
      
    

    

 

 

   
            
            

  
       
     

   
   

   
  

 

 

          
   

               
   

                                

 

(55) 

(57) 

(56) 
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where        ,       ,      ,        ,        are parameters,           , t1 is 

the information until the time t  1. 
The mean of the squared differences between the T back forecasts and 

actual values for the two stocks in question is shown in the following 

Table 14 for the VARBEKK 3D and the multiple VARBEKK 2D. In 

other words, the following quantities are calculated for both methods: 

 

        
 

 
           

  
              

 

 
           

  
    

(58) 

(59) 

(60) 

(61) 
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               Table 14: VARBEKK multi. 2D vs 3D:         values 

 3D         Multiple 

2D          

PMI 0.0015 0.0015 

UCG 0.0007695 0.0007260 

 

It can be seen from table 14 that the mean squared errors for both cases are 

very similar. The return forecasts are therefore as reliable in the multiple 

2D model proposed as in the 3D model. This can be also seen in the 

following figure: 

 

 

 

Figure 28: VARBEKK multi. 2D vs 3D: PMI (left), UCG (right)  

forecast values  green: multiple 2D, blue: 3D)
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As regards variance-covariances, the following Table 15 shows that there 

is a slight difference in the estimated variance of PMI and the covariance 

and a perfect match for the variance of UCG. 
 

 

               Table 15: VARBEKK 2D vs 3D: forecasted variance-  
                                                    covariance 

 3D  Multiple 2D  

Var(PMIt|t-1) 0.0077 0.0058 

Var(UCGt|t-1) 0.0060                           0.0060 

Cov(PMIt , UCGt|t-1) 0.0045                           0.0061 

 

To sum up, the two types of model give very similar results for the return 

forecasts and similar results for the volatility forecasts.  

The usefulness of the proposed model in terms of computation feasibility 

therefore seems to overweigh the possible slight difference in terms of 

forecasts. 
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8. Conclusions 

 

Suitable application of the BEKK model is capable of generating time 

series with higher unconditional kurtosis than the normal density. In other 

words, the conditional distribution of errors ut has more mass around 0 and 

on the tails than normal. Outliers are therefore more frequent than implied 

by normal random variables following the data-generating process. 

The phenomenon of volatility clusters, whereby variance may be high for 

certain periods and low for others, is embedded in the model specification. 

This approach gives a time-dependent overall estimation of the stock 

variances-covariances k,h(t) as well as of the returns rk,t. 

The computational burden of direct estimation of the original problem is 

solved by decomposition into feasible bi-dimensional problems without 

losing the strength of the CVAR – BEKK model. 

 

While the BEKK model estimator does not have normal density, it is 

almost certainly consistent and possesses asymptotic normal density. 

The asymptotic information matrix of VAR parameters and BEKK 

parameters is a block diagonal. The estimators of VAR and BEKK are 

therefore asymptotically independent. The two-step procedure adopted is 

therefore equivalent to the overall procedure. 

If an alternative density could be reasonably assumed, ML estimators 

outperform the QML used here in terms of efficiency. 

As the assumption of normality is not satisfied, it is not possible to provide 

exact forecast intervals by means of normal quantiles. 

The R
2
 goodness-of-fit index proved to be low for almost every CVAR 

model, as is customary for financial data. Explanatory variables should be 

found and included. The P/E  EPS time series is used to rank the stocks. 
 

Employment of the bi-dimensional multiple procedure using CVAR makes 

the problem of estimating 150 × 150 matrices of a VAR(p) manageable. 

It gives a description of the phenomenon by using the past stock return i 

and market index return to represent the time-dependent dynamics of the 

return i. 

The 7% of cases of cointegration are also taken into due consideration. 

Employment of the bi-dimensional multiple procedure using BEKK makes 

the resulting 25 × 25 volatility matrix estimation problem (70 × 70 

volatility matrix estimation in the case of shorting) manageable. 
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Multiple 2D-BEKK gives a complete description of the phenomenon by 

using the past stock return i and market index return to represent the time-

dependent dynamics of its diagonal element i and the past stock h and 

stock k to represent the time-dependent dynamics of its off-diagonal 

element h, k. 

Large datasets can therefore be handled with this method. 

A ranking of stocks to be included in the portfolio is obtained by using the 

P/E  EPS time series in conjunction with the multiple CVAR - BEKK 
approach. 

The optimal dimension of the portfolio is found by subsequently increasing 

the size and simulating the efficient frontier. 

The solution of the best (minimum-risk) Markowitz portfolio is finally 

obtained. 
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