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1. Introduction  
 

 

During the last decades the field of the physics of the atmosphere obtained a rising interest by 

research centres worldwide and by the general public. Meteorology and climate are of primary 

importance for our lives, just think about the influence on sectors as civil protection, agriculture, 

tourism, transport or industry. Furthermore, climate change is a matter of deep discussion for both 

scientists and policymakers [1].  

The study of climate requires long data series, so this science rapidly grows hand by hand 

with the availability of meteorological data, supplied by weather stations, atmospheric soundings, 

ships, buoys, satellites and so on. Furthermore, thanks to the improvement of computer capabilities, 

in the second part of the last century meteorological-climatic models were born [2]. They can be 

considered as a virtual laboratory in which the (complex) climate system is reproduced ï with all its 

subcomponents and related interactions ï by the equations of fluid dynamics and thermodynamics. 

In the application of these models we must keep in mind the limitations typical of numerical 

simulation of chaotic systems [3]. In general, topics as weather, monthly and seasonal forecasts, 

climate projections and related impacts are approached by dynamical modelling. In some respects, 

for example for climate change attribution ï i.e. the effort to scientifically establish causes for the 

recent warming of the Earth ï this approach is a matter of discussion. In fact, the problem of 

attribution is mainly addressed by the so-called Global Climate Models (GCMs) [4] ï a type of 

meteo-climatic model ï and, although in last decades great improvements are achieved, these 

models still have some limitations. 

In particular, the use of GCMs for attribution only partially allows to apply a robustness 

scheme. Robustness of the results relies on a condition of independence among the different models 

employed, i.e. reliability improves if the same results are obtained using different models, if  

independence between them holds. As in many cases GCMs have a common ancestor, the condition 

of independence is questioned [5]. Furthermore, the unavoidable abstraction and idealization 

included in the physics of dynamical models does not make them able to completely represent the 

climate system. Consequently, in order to obtain stronger results, data-driven models have been 

used in atmospheric sciences [6]. Among others, we underline the application of neural network 

(NN) analysis [7] and Granger causality [8], which have been shown to be particularly useful in 

many applications.  
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A multi-approach strategy permits to satisfy the just described condition of robustness: 

results obtained by different ways may complement each other and data-driven models can also 

improve the performance of dynamical models [6]. Based on these arguments, data-driven 

approaches have found large application for the study of different topics related to climate and 

meteorology.  

 An example is the application of Granger Causality (GC, [8]) to the atmospheric sciences. 

GC establishes a criterion to find causal relations between time series. It is based on vector 

autoregressive (VAR) models. In recent years different studies in atmospheric sciences based on 

GC have been developed ([9], [10], [11], [12]).  

However, our interest is principally focused on another type of data-driven approach, i.e. 

neural network analysis, an artificial intelligence method. NNs can find nonlinear relationships 

between a set of predictors and a fixed target. The use of different set of predictors permits to 

investigate the causes that may have generated the behaviour of the target. Several works that make 

use of neural network analysis for climatic topics can be find in the scientific literature ([13], [14], 

[15], [16]). In many cases in atmospheric sciences we are faced with relatively short data sets. So, 

these problems are not deal with deep learning as for big data topics. In particular, a tool for small 

datasets has been recently developed [17].  

Another field of application of statistical modelling is that of meteorological and/or seasonal 

forecasts. Usually dynamical models are used to obtain this kind of forecasts. Also, in this case 

some limitations exist, so one step further is necessary to improve forecasts, especially for local 

areas. Numerical models for meteorological/seasonal forecasts can suffer for their poor resolution 

and for the necessary oversimplifications that do not permit to well represent physical mechanisms 

at the basis of the observed variability. So downscaling techniques have been developed in order to 

solve these problems. Downscaling can be divided in dynamical and statistical ([18], [19]). The first 

one is based on the use of dynamical models with improved resolution and parameterizations, for 

example Regional Climate Models [20], to be nested into global models. The latter uses statistical 

techniques, in particular past data are analysed in order to find a relationship able to improve the 

performance of GCMs [19]. So, in this case we need long series of data. Often statistical 

downscaling makes use of neural network analysis, as for example in a model recently developed 

for seasonal forecast over the Italian peninsula [21], or for the downscaling of GCMs to a spatial 

scale comparable to that of RCMs [22]. Despite of its relative simplicity, statistical downscaling 

often overcome dynamical downscaling performances [19].  
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Finally, as last example about the use of neural network models in climate sciences, we 

mention some works that make use of NN models in order to obtain a ñpoint forecastò, i.e. forecast 

for a very restricted area (at limit for one point) for a particular meteorological event. Pasini et al. 

[23] developed a model for forecasting local visibility over Northern Italy. Marzban focuses on the 

application of neural network models for phenomena as tornadoes in a series of papers ([24], [25], 

[26], [27], [28]).  

In the light of what has been said, the objective of this PhD thesis is to develop a neural 

network tool able to investigate some open topics about atmospheric sciences. In the context of the 

rapid changes to which we are witnessing, physical information of great usefulness can be achieved. 

We will see that this tool can be applied to a wide range of topics, covering a wide spatial scale 

from global to local. In fact, we will face with topic such as climate change attribution (Chapter 3), 

the analysis of a general circulation problem related to the so-called Atlantic Multidecadal 

Oscillation (Chapter 4) and, finally, the analysis of impacts related to climate/weather conditions 

(Chapters 5 and 6). Furthermore, the consideration of multi-linear regression analysis parallelly to 

the neural network tool will be useful to both underline the goodness of the choice of a non-linear 

method and to analyse the importance of linear or non-linear mechanisms.  

So, this thesis is structured in the following way: 

In Chapter 2 we introduce the climate system. Here we furnish some generalities about 

climate, with considerations on its energy budget and the subcomponents in which it can be divided 

ï obviously from a theoretical point of view. Then we introduce also the hot topic of climate 

change, related to the greenhouse effect. We conclude the first Chapter by introducing also the item 

of weather and climate modelling. 

 In Chapter 3 we will explain the Neural Network tool. Due to the central importance of 

neural analysis for this thesis, we start with a historical explanation of the development of this kind 

of method, from the origins up to the typology related to this research. It is a technical Chapter, 

useful to fix the idea about neural network analysis. It is closed by a section that explains in detail 

the tool developed during this three-year activity, with its peculiarities and novel characteristics. 

 In Chapter 4 we start to show the results obtained with our analysis. Here we will show the 

application to the debated theme of attribution of the mean global temperature behaviour on the last 

150 years. We find a lot of interesting results with the confirmation of results obtained with a 

completely independent mean of investigation. Our tool will also be able to investigate about the 
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causes that have determined the behaviour of global temperature in sub-intervals into the considered 

period. 

 Chapter 5 is dedicated to the analysis of the causes behind the behaviour of the Atlantic 

Multidecadal Oscillation (AMO). AMO is a mode of variability of the sea surface temperature 

anomalies over the North Atlantic Ocean. For many years it has appeared as a natural component of 

the climate system, but recently several works linked it to anthropogenic activity appears. We insert 

in this open debate with a completely different approach: in this chapter we will show interesting 

results. 

 In Chapter 6 we will show the first application of our neural network tool to study impacts 

related to weather/climate conditions. Here we focus on the analysis of the causes that could 

influence forced migrations from the Sahelian countries to Italy. It is a hot topic in the political 

agenda of many European countries. We will see impressive results, that relate climate variables 

and harvest yields to the migration rate to Italy. 

 Finally, in Chapter 7 we conclude this work with an application of our tool to studying the 

impact of meteorological variables on the dynamics of the observed quantity of a kind of sandfly 

responsible for the leishmanias spread. In fact, in recent years we observed an unusual expansion of 

such sandflies over areas previously considered immune. Interesting results are achieved, showing 

the power of our model.  
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2. The climate system 
 

 

An introduction about the physics of the climate system is necessary to face with the themes 

discussed in this thesis. Climate is defined as the average weather conditions on a long period for a 

certain area. As prescribed by the World Meteorological Organization (WMO), at least 30 years of 

data are necessary to define a climatic mean. The availability of long-time data series for 

meteorological parameters as temperature, humidity, wind, cumulated rainfall and so on, provides 

information about the climate. In these terms climate might seem something changeless and 

stationary but, it is not so. In fact, climate has changed ï due to different causes ï in all the history 

of our planet and it will continue to change. The well-known recent climate change is an example of 

these changes. 

Starting from a historical point of view, the study of the human environment (our Earth) and 

of the broader astronomic environment (the Sun, the Moon, the planets) has given the first strong 

impulse to the birth of the science of physics. Afterwards, for a long period the earth sciences have 

had less influence in comparison to the physics of the ñinfinitesimalò (quantum mechanics) and that 

of the ñinfiniteò (astronomy). During last century, due to both theoretical and technological 

developments, earth sciences ï and in particular atmospheric sciences ï obtained new attention by 

the physical and the mathematical communities. The work by Lorenz of 1963 [3] on the chaotic 

behaviour shown by simple deterministic nonlinear flows may be considered as the Rosetta Stone 

for the development of the modern physics of climate. Also, the availability of a rising amount of 

measurements of the various meteorological parameters was a fundamental ingredient for this 

development. Furthermore, the birth of computing has started the field of numerical modelling for 

weather and climate forecasts. Thanks to all these achievements, during the last decades the physics 

of the atmosphere has obtained very important results and a continuously rising interest. In fact, 

weather and climate are fundamental actors in the everyday life of each of us, just think about on 

sector as agriculture, civil protection, industry and tourism. 

So, in the following section an introductive description of the climate system is furnished 

while in section 2.2 we introduce the topic of weather and climate dynamical modelling. 
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2.1 Climate system description ï physics, feedbacks, equilibrium states. 

In order to understand the complexity of the climate system just look at Figure 1. The main 

driver in the climate system is the Sun, in fact, it is thanks to its different heating between the 

equatorial areas and the poles that the atmospheric dynamics may exist.  

The climate system must be considered as a unique structure, but for scientific purposes it is 

convenient to idealize it as composed by sub-systems that continuously interact each other. These 

are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. The 

atmosphere is the aeriform part, from the Earth surface up to the open space. The part strictly 

involved in the observed weather phenomena is the troposphere. Extended up to about 11 

kilometres, it is the densest portion of the atmosphere and it contains most of the water vapour. The 

hydrosphere regards the liquid water on our planet. Oceans, lakes, rivers, subterranean water 

strongly influence the system on a wide spatial and temporal scales. Just think about at the heat 

storage role of the oceanic masses or at the local influence of a lake. The cryosphere is related to the 

water in its solid phase (ice). Mountain and land ices, marine ices, permafrost are all part of this 

component. The lithosphere consists in the rocky surface of the Earth and its manifestations 

(volcanoes in particular). Finally, the biosphere is all that concern the lively things that actively 

interact with the climate system. 

 

Figure 1 Representation of the climate system components and their interactions, see details into the text. From Max Planck 
Institute for Meteorology. 
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These five components ï as shown in Figure 1 ï are strictly related, with a continuous 

exchange of energy and mass due to heat fluxes, matter phase changes, radiative transfer, chemical 

reactions, anthropogenic emissions, and so on. In order to understand all these physical interactions, 

the wealth of knowledge must be large. This is understandable by the following list of some of the 

physical phenomena related to the climate system ï starting from the sun, up to the microphysics of 

the clouds ï and the knowledge necessary to understand them:  

¶ the inner processes of the Sun, necessary to explain its electromagnetic spectrum; 

¶ the interactions between the solar radiation ï i.e. the photons ï and the Earth atmosphere, 

including the radiative transfer and the effects on the atmospheric chemical composition 

(named photochemistry); 

¶ the processes of radiative transfer: transmission, absorption, emission; 

¶ the dynamical processes of the atmosphere and the oceans; 

¶ the thermodynamic processes that happen in the atmosphere and oceans; 

¶ the microphysics of the clouds; 

¶ the part inherent to the measurements of the meteorological parameters ï weather stations, 

buoys, probe balloons, remote sensing (radar, satellite measurements, ...) and so on; 

¶ the part related to the numerical modelling, for the past climate reconstructions and 

forecasts. 

In addition to these physical processes, the climate system owns a peculiarity related to the presence 

of many feedback mechanisms. In fact, the modification of a parameter can bring to a series of 

changes in the system up to a further alteration of the parameter itself. We now fix the idea with two 

simplified examples. Just think to a rising in the mean global temperature. This variation leads to an 

increased evaporation from the hydrosphere that in turn leads to a greater cloudiness in the 

atmosphere. The result is a decrease in the solar radiation at the surface due to this cloudiness with a 

consequent temperature reduction. This is a typical example of negative feedback ï i.e. an 

attenuation of the initial variation. On the other hand, for example, suppose a decreasing of the 

polar ices due to melting. This leads to the decreasing of the surface albedo and so to a higher solar 

radiation absorption by the surfaces under the melted ice. The final consequence is a rising in the air 

temperature with an even larger ice melting. This is a positive feedback ï an improvement of the 

initial variation. These two simple examples of feedbacks should be enough to understand the 

complexity and the variety of the processes involved in the ñconstructionò of the climate system.  
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Furthermore, in the climate system multiple quasi-stable equilibrium states may exist. At 

first, assume that we can calculate an equilibrium state starting from certain fixed boundary 

conditions. The question is if that state is stable or not. Generally, a complex system with feedbacks 

shows a chaotic behaviour and climate lies in this category. We remember that a chaotic behaviour 

for a system means that we are not able to predict its state for a long time ahead. In fact, even if we 

know with arbitrary accuracy the initial state, after a certain time the system loses the knowledge of 

its initial conditions and goes toward unknown solutions. In the context of a chaotic behaviour, 

climate system can also have quasi-stable equilibrium states. We know that a stable state is one in 

which a small perturbation brings in any case to the restore of the initial conditions. On the other 

hand, in a quasi-stable state even a small perturbation can lead to an abrupt change of the state of 

the system. In summary, similar boundary conditions may mean very different states of equilibrium, 

it is a real trouble in the case a strong modification of one or more of the boundary conditions 

happens (as is the case for the anthropogenic emissions over last 150/200 years ï see section 2.1.4). 

In this context, appears clear that modelling and forecasting meteorological and climate dynamics is 

a formidable challenge. In the section 2.2 we deal with the issue of modelling; meanwhile other 

generalities about the climate system are supplied. Again, we underline that here only a preliminary 

introduction on the matter is furnished; for more quantitative details we refer to two texts ï [29] and 

[30]. 

2.1.1 The Earth energy budget 

The sun is the main source of energy in the climate system. The engine for the atmospheric 

motion is due to the differential heating of the Earth surface by the solar radiation. The solar 

spectrum presents its maximum at the visible wavelengths (VIS), with a wide percentage of 

radiation reaching the Earth also in the ultraviolet (UV) band. In this context the solar radiation is 

also called Short-Wave radiation (SW). At the mean Earth-Sun distance arrives an average amount 

of about 1370 ὡȾά : it is the so called solar-constant. This quantity is not really constant, as the 

orbit of the Earth with its eccentricity leads to an annual variation of the incident solar radiation on 

the Earth surface ï about 1435 ὡȾά  on January and about 1345 ὡȾά  on July. This difference is 

not relevant for everyday life, as the seasonal cycle is dominated by the tilt of the Earth rotation 

axis. Also, the eleven-years sunspot cycle leads to slight variations of the solar radiation. Starting 

from the instrumental era the observed variation of solar radiation is a very small fraction of the 

total (lower than 1%). 
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A fundamental variable related to the incoming solar radiation is the percentage that is 

absorbed by our planet. In average, the fraction that is reflected or back-scattered towards the space 

ï i.e. not absorbed ï is about 0.30 of the totals, this quantity is the so-called albedo (a perfect 

reflector has unitary albedo, while a perfect absorber has null albedo). The remaining fraction of the 

solar radiation is available as energy for the climate system. In particular, about 20% of the total is 

absorbed by the atmosphere (principally in the stratosphere by the Ozone layer) and the remaining 

50% is absorbed at the surface. Obviously, these numbers are indicative as the real-time situation 

may be very different due mainly to variations in the cloud cover of the Earth. Since a real-time 

measure of the planetary albedo is a difficult issue, we do not have a long-term series of data and 

the actual trend is unknown.  

At equilibrium ï considering long time period ï the absorbed energy by the climate system 

must be equal to the energy released towards the space. The latter is due to the radiation re-emitted 

by the Earth surface and by the atmosphere: it has its maximum in the infrared part of the 

electromagnetic spectrum ï it is generally called Long-Wave (LW) radiation. Furthermore, as we 

have more solar radiation at low latitudes respect to the polar areas while the terrestrial re-emission 

happens not in the same way (Figure 2), some mechanism of transport of energy must exists. The 

transport of this equatorial surplus of energy is due in equal percentage to both atmospheric and 

oceanic circulation. 

Detailed knowledge of the energy budget and of the related temperature vertical profile 

requires a deep knowledge of the radiative transfer processes. These are based on Planckôs radiation 

law. Application of radiative transfer theory permits to: better understand sources and sinks of 

energy in the atmosphere; to simplify concepts as the atmosphere in radiative equilibrium; and to 

understand the energy budget at top of the atmosphere (TOA). About the latter point, the knowledge 

of the wavelength spectrum of the LW radiation leaving the Earth is fundamental for the energy 

balance. In fact, each gaseous component of the atmosphere interacts with LW radiation depending 

on the wavelength of the radiation itself. 

Some gaseous species are responsible for the well-known greenhouse effect, the process to 

which is due the habitability of the Earth. In fact, these gases ñtrapò part of the LW radiation, with 

the result to increase the global mean temperature (see section 2.1.4 for more details). 
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Figure 2 (a) Zonal mean of the absorbed solar radiation (blue) and the outgoing longwave radiation (dashed red) at the top of 
the atmosphere in annual mean (in Wm-2). (b) Zonal mean of the difference between the absorbed solar radiation and the 

outgoing longwave radiation at the top of the atmosphere in annual mean (in Wm-2). From [31]. 

 

2.1.2 Atmosphere 

The atmosphere is the central component of the climate system. It is a relatively thin layer of 

a gaseous mixture, distributed over the Earth surface. A large percentage of the mass of the 

atmosphere is found in the first kilometres of heights. More precisely about 99% of the mass is 

ñcontainedò below 30 km above the Earth surface. Considering the horizontal dimensions of our 

planet ï about 20000 km from pole to pole ï the atmosphere is a narrow layer. Despite to this a 

great amount of detail and a lot of interesting and often complex physical phenomena are present 

into this thin layer. 

The classical division of the atmosphere in vertical layers (Figure 3) is possible thanks to the 

different properties about the chemical composition, the temperature gradient, the stability of the 

layer and energy considerations. Starting from the surface we find the troposphere, the stratosphere, 

the mesosphere and the thermosphere. They are conceptually separated by the so-called pauses. 

Below the mesopause (about 80 km) we find constant concentrations for the inert gases as nitrogen 

and oxygen (that together constitute the 99% of the total), also carbon dioxide is well mixed below 

this height. Variable components are present at different heights. The water vapour is present in 

most part in the troposphere (especially in the lower part) and the ozone in the middle of the 

stratosphere. The situation is complicated by the presence of rapidly changing substances as water 

in liquid and solid phases, dust particles, sulphate aerosols, volcanic ashes and so on. With a highly 

http://www.climate.be/textbook/glossary_z.html#zonal
http://www.climate.be/textbook/glossary_z.html#zonal
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variable concentration in time and space, aerosols play an important ï and not well understood ï 

role in the climate system. Due to the gravity force, the atmosphere is vertically stratified (denser 

layers are present near the surface) ï it is the expression of the well-known hydrostatic equilibrium. 

Despite to their low percentage with respect to the main components, the minor constituents may 

play a very important role. Water vapour, carbon dioxide, and methane are strong absorbers of the 

LW radiation ï i.e. the well-known greenhouse gases cited in the previous subsection. So, the 

atmosphere is important not only for the dynamic part but also for the radiative transfer of the 

radiation and then for the Earth energy budget. 

The troposphere, in which the temperature drops off with the height up to about 10 km, is 

the place of the main meteorological phenomena. It shows a wide variety of phenomena at very 

different spatial and temporal scales. Starting from the largest Rossby waves (about 5-6000 km) up 

to local turbulent phenomena in the planetary boundary layers (on the scale of centimetres or less), 

the troposphere shows complex and often unstable dynamics. Convection is a phenomenon of 

fundamental importance in the troposphere, such as the vertical temperature profile at equilibrium is 

driven by both radiative transfer and convection. 

At higher heights, the stratosphere shows a rising temperature gradient in the vertical 

direction. This is due to the absorption by the UV component of the solar radiation by molecular 

oxygen that brings to the formation of the well-known Ozone layer ï triatomic oxygen ï a minor 

but fundamental constituent of the planetary atmosphere. Ozone is a photochemically produced 

specie, it is present in all the atmospheric column, but it has a maximum around 25 km of altitude as 

said, in the stratosphere. The Ozone is the responsible for the already mentioned inverse 

temperature gradient of the stratosphere and has a role of fundamental importance as shield for the 

life-dangerous ultraviolet radiation. Also, the gases responsible for the Ozone layer disruption (the 

so-called Chlorofluorocarbons, CFCs) are minor components ï of the order of part for billion or 

less. Despite to such very low concentration, CFCs are responsible for the well-known Ozone layer 

depletion. Even a minor constituent of the atmosphere may have a fundamental role for climate 

dynamics, it is the same for the above-mentioned greenhouse gases (in section 2.1.4 we will see 

deeper details). Furthermore, in the stratosphere also very interesting phenomena related to the 

observed circulation ï i.e. the winter polar stratospheric vortex ï may have an influence on 

tropospheric dynamics. 
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Even higher, due to very low air density, we have no more absorption of the solar radiation, 

so in the mesosphere temperature drops again with the height. Finally, in the upper atmosphere 

temperature rises again due to photo-dissociation of the air molecules.  

As said, the engine of the atmospheric motions is the differential heating by the solar 

radiation on the Earth surface. Due to this, generally we have air convection at low latitudes and 

descending motion in the polar regions. In terms of fluid dynamics, to solve the ñproblemò of the 

Earth atmosphere, we are faced with a stratified fluid subject to convection and in rotation with the 

planet. Things are made more complex due to irregular boundary conditions ï alternation of 

different surfaces as land and ocean, presence of orographic obstacles ï that bring to different 

thermodynamic and mechanic properties. Despite of all this complexity ï that sees its expression in 

the weather features ï when we consider long time average, atmospheric dynamics has a globally 

coherent structure ï Figure 4. Due to the combined effect of convection and Coriolis force, we have 

three big circulation cells in the atmosphere. To fix the ideas think about the northern hemisphere. 

Starting from the equator, we have convection of air masses up to the tropopause, here the motion is 

forced to proceeds toward the North Pole but ï due to the Coriolis force ï the route is broken with 

descending motion at tropical latitudes (around 30N) ï this is the so called Hadley cell. It brings to 

the well-known sub-tropical high-pressure systems. Then we have the Ferrel cell up to middle 

latitudes, where we have again convection in correspondence with the so-called polar front. Finally, 

with the polar cell the path is completed, with descending motion at the North Pole. In proximity of 

the tropopause, at the latitude correspondent at the closure of the Hadley and Ferrel cells, we find a 

peculiar ï relatively narrow ï belt of strong winds, the subtropical and the polar jet streams. The jet 

streams are around 11 kilometers and can reach speeds of more than 300 km/h. 
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Figure 3 A schematic representation of the vertical structure of the atmosphere. From Max Planck Institute for 
Meteorology website. 
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Figure 4 A representation of the mean global atmospheric circulation, from the equator to the north pole (the same is for 
southern Hemisphere). Here we can find the Hadley, Ferrel and Polar cells, a highlight of the jet stream is also represented. More 

details in the text. From United States National Weather Service: https://www.weather.gov/jetstream/jet  

 

2.1.3 Hydrosphere 

The hydrosphere consists in all the water in the liquid state on the Earth surface. Oceans, 

interior seas, lakes, rivers and subterranean waters are the ñcomponentsò of the hydrosphere. 

Obviously, the oceans play the most important role. They cover almost two thirds of the Earth 

surface, so the solar radiation arrives mostly on them. Due to their huge mass and to their high heat 

capacity they must be considered as the climate system energy reservoir. Oceans are considered as 

thermal regulators for the global temperature. In terms of dynamics, as water is denser than the 

atmosphere, the most active part of the oceans is the surface mixed layer (the first 100 meters). 

Below this one, another layer with peculiar characteristics ï i.e. the thermocline ï is present. 

Further down we find the deep ocean: it has more constant properties respect to the layers above, in 

fact it reacts to the external perturbations in a very long time (on the order of decades up to 

centuries). 

Oceans show a slower circulation than that of the atmosphere, a global circulation gyre is 

present, and a complete cycle is accomplished in about one century. The ocean circulation in 

average conveys heat from tropical areas to the poles due to the different heating by the solar 

radiation ï see again Figure 2. We have not only horizontal circulation. Overturning of big ocean 

masses is present at several locations in the ocean and in the interior seas. These motions, with 

descending and rising currents are the engines for the ocean circulation itself and they are due to 

mechanisms related to temperature and salinity features of the oceanic masses. So, a strong 

influence in these phenomena is due to events as ice melting and rain precipitation, in fact, both 

https://www.weather.gov/jetstream/jet
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modify the surface salinity conditions. Circulation at smaller scale is present and it influences 

climate at a regional level. The response time to an external perturbation varies from weeks in the 

mixed layer up to centuries for the deep ocean.  

Ocean and atmosphere are strongly coupled. Air-sea interactions occur at several temporal 

and spatial scales through exchange of matter, energy and momentum. Evaporation of water vapour 

is a relevant component of the hydrological cycle, together with cloud formation, precipitation and 

runoff towards the oceans. The global amount of water vapour depends strictly on the balance 

between evaporation and precipitation over the oceans. 

Inner waters, as lakes, rivers and subterranean waters are also a relevant part of the 

hydrological cycle and furthermore can have an impact on climate at the local scale, e.g. rivers are 

important for the salinity of water near the coasts, or a lake can influence long term precipitation 

and temperature trend in the neighbouring areas. 

We conclude this subsection by talking about another important role for the oceans. They 

may be source, sink or reservoir for other important atmospheric components as, for example, 

carbon dioxide. Since CO2 is slightly soluble in water, about one-third of the total global emissions 

from fossil fuels burning is washed out of the atmosphere, with a consequent reduction of the 

greenhouse warming due to this gas. However, we do not know how long the oceans will continue 

to provide this service. We know that the solubility of CO2 in water decreases with increasing 

temperatures. So, oceans could become saturated with a consequent slowdown or even an inversion 

of this uptake. If at last it will become a source of carbon dioxide, a strong positive feedback for 

global warming will occur. 

2.1.4 Greenhouse effect 

The above-mentioned greenhouse effect is a popular term given to the role of the atmosphere 

in the energy budget of the Earth, that brings to a rising of the mean global surface temperature. 

This name derives from the analogy with the garden greenhouse. It permits to the solar radiation to 

enter and warm the soil, but the LW radiation emitted by this latter is entrapped because the 

greenhouse is opaque to the infrared wavelengths. Obviously, the parallelism is a bit forced but this 

term is widely used in both the scientific and the popular lexicon. 

The role of the panels of glass of the garden greenhouse is replaced by some gases in the Earth 

atmosphere. Almost all the atmospheric gases are transparent to the SW radiation. The main 

constituents (molecular Oxygen and Nitrogen) are fairly transparent also to the terrestrial radiation, 
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but some ï minor ï components are not. This opacity is due mainly to the absorption bands of water 

vapour, carbon dioxide, methane, ozone and other minor components that are really present in the 

IR frequencies. Although they represent a low percentage of the total of the atmosphere, these gases 

can be easily measured ï except for the water vapour due to its very low lifetime ï and all of them 

show an unequivocal increase starting from the industrial era. 

Reconstructions from ice core analysis show values for carbon dioxide comprises between 180 

and 280 parts per million in volume (ppmv) during at least the last 400 thousands of years [32], 

while for methane on the same period we are between 400 and 700 parts per billion in volume 

(ppbv) [32]. In the last 150 years we passed by 280 ppmv up to 410 ppmv for CO2 and by 700 ppbv 

up to 1850 ppbv for methane. Also, for other greenhouse gases (GHGs) we see similar increases. 

Furthermore, this rising is unequivocally due to human activities, since the origin of the 

atmospheric carbon can be discerned by isotopes measurements [33]. These two gases are two of 

the more powerful GHGs, as they have strong infrared absorption bands located in correspondence 

to wavelengths typical of the terrestrial and low atmosphere emission spectra, so they block part of 

the radiation emitted towards the space. 

Other pollutants, in particular sulphur-containing gases like SO2 and H2S, are responsible for 

aerosol production that is related to global cooling production and in part have limited the warming 

during last decades. So, the situation is complex, we have various conflicting contributes to the 

global mean temperature behaviour.  

In term of physics, simple energy budget calculations permit to estimate that the ñnaturalò 

contributions of greenhouse gases at the levels of pre-industrial era, is responsible for around 30-

35K of increase with respect to an Earth without atmosphere. The greenhouse effect is a 

fundamental ï and positive ï ingredient for the birth of life on our planet as we know it. In fact, 

without atmosphere the Earth would be completely frozen. If a minority percentage of gases is 

responsible for an effect of around 30-35K, it should be evident that a strong modification of their 

atmospheric concentrations it is enough to have serious problems. Furthermore, the climate system 

does not behave in a linear way; on the contrary it is a complex system with non-linear dynamics 

and many feedbacks, so even the rising of concentration of the GHGs does not involve a 

proportional temperature increase. A strong modification of the boundary conditions could bring to 

unexpected new equilibrium states as mentioned in the introduction of section 2.1. 
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The theory related to the increase of the GHGs finds confirmation in the observed temperature, 

that shows a warming trend starting from the pre-industrial era, although with some exception 

(Figure 5) [34], [35], [36].  

 

Figure 5 Global mean surface temperatures from 1850 up to 2019. Yearly (black dots with uncertainty bars) and decadal 
smoothed (blue curve) temperature series are shown. Data from HadCRUT4 dataset. Image by Tim Osborn (CRU, UEA). 

If global warming it is due to the rising in GHGs concentration is a question traditionally faced 

with the global climate models (see section 2.2 for a description about their functioning). The 

scientific community agrees to attribute the recent warming to GHGs emissions by anthropogenic 

emissions. As said in the introduction, a discussion on the theme of the attribution is faced with an 

original method in chapter 4. 

2.1.5 Climate Observations 

As is typical for many sectors of physics, measurements are of fundamental importance for the 

development of meteorological and climate research. For both past climate analysis and for future 

climate forecasts we need the data. Historically the first quantitative measures related to 

atmospheric sciences have been that of temperatures. Up to the middle of the 20th century, data 

were furnished by in situ measurements or, at most, by atmospheric soundings by weather balloons. 

In order to determine past climate trends ï in particular temperature variations ï a lot of 

indirect proxies exist as ring trees analysis, geological analysis and ï probably the most important ï 

ice core measurements. Especially the last, as said in the previous subsection 2.1.4 [32], are a 

fundamental instrument for the temperature determination over the last hundreds of thousands of 

years. 
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The measure of actual climate parameters is important also for forecasting. Since the system 

under observation is huge and very complex, the measures should span the globe, as in the vertical 

that in the horizontal dimensions, in the deep of the oceans and should also have a high temporal 

resolution. Of fundamental importance for these purposes is the birth of the satellite era in the 

1960s: nowadays most of the climate research is based on satellite measurements. The techniques in 

use involve the field of remote sensing. The measure of the parameter of interest is performed 

remotely ï in an indirect way ï exploiting the properties of the electromagnetic radiation. This last 

can be reflected or scattered sunlight, thermal emission by the earth surface or by the atmosphere 

molecules or even backscattered by a laser source on the satellite itself. Measures of vertical 

profiles of temperature, humidity, chemical composition and so on are possible. 

Once obtained the radiometric measure another complex field joins the game, that of the 

retrieval theory. In order to obtain the measure for the parameter of interest, we must apply some 

complex inversion techniques to the mathematical formulae that relate the radiation to the 

parameter itself. 

In this chapter a basic description of the climate system was supplied. Obviously here we 

cannot be exhaustive on this topic, so we again remand to the bibliography for more details [29], 

[30]. In the next section we face with the topic of weather and climate modelling. This will give us 

a clearer view on the differences between meteorology and climate. 

2.2 Weather and climate modelling 

Despite to their strong relationships, climate and weather present also strong differences. The 

objective of the scientists is to understand the physics of the two systems in order to make models 

able to do weather/climate forecasts and to reconstruct the past. Although they are strictly related, 

some differences exist, so also the approaches for modelling are different. Here we want to give 

some qualitative information on how it is possible to perform such kind of forecasts. 

Weather and climate models try to reproduce in a ñvirtual laboratoryò the behaviour of the two 

systems by solving the equations that represent the physical mechanisms involved [37]. It is a real 

demanding computational problem, in fact, it requires the resolution ï often approximated ï of 

complex, non-linear equations for each point of a global latitude-longitude-vertical grid and for 

many time steps. Both weather and climate modelling are related to data. Data play a double role; 

they are used as initial condition in the starting phase of the models and they are used also to 

validate the output of the models themselves.  
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Weather forecasts try to simulate the future weather conditions up to a maximum of 10-15 

days. In fact, as written at the beginning of this chapter [3], the system is chaotic with a strong 

dependence on the initial conditions. Furthermore, some of the equations are solvable only in an 

approximate way, so we have the so-called predictability barrier. Even if we could know with 

absolute precision the initial conditions (i.e. the most important meteorological parameters) of our 

system ï and it is not our case ïwe cannot perform reliable weather forecasts up to 10-15 days. The 

equation of motion regards temperature, pressure, wind, air humidity and they are the so-called 

primitive equations: 
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In these equations ὠ όȟὺ and ὡ are, respectively, the horizontal and the vertical wind, 

Ὢ ςɱÓÉÎ‰ is the Coriolis term, ” is the air density, ὴ is the atmospheric pressure, Ὂ encloses the 

forcing terms and finally — Ὕὴ ὴϳ Ȣ  is the potential temperature. It is a deterministic 

equations system, if we know its state at a fixed time, we can calculate the state for a future time. 

We note that for the weather forecasts the conditions of the oceans are fixed at the starting time, in 

fact the changes in such a short range (5-7 days) do not modify in a significant way the atmospheric 

circulation. 

Climate modelling must consider more physical processes than weather forecasts. In fact, now 

the evolution of the ocean is important as the interactions with the biosphere, the variation in the 

chemical composition of the atmosphere matters, we have also to consider the radiative transfer 

processes and so on. So, for this topic we have a different model for each component of the climate 

system with a ñcouplerò that can coordinate all the components in order to represent properly all the 
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physical interactions between them. These climate models are also called Global Climate Models 

(GCMs).  

A question is immediately raised by the comparison with the weather forecasts. If the latter are 

possible only up to 10-15 days, how we can perform forecasts up to decades? First of all, the 

request is different, while weather forecasts concern the knowledge of the detailed weather 

conditions for a very small spatial scale, with a climate forecast we are interested in a mean state of 

a variable as, for example, the global mean temperature. Furthermore, if weather forecasts are a 

initial conditions problem, climate forecasts are a boundary conditions one. For climate forecasts 

the initial conditions are not important as the system ï as said ï loses quickly memory of the initial 

state. Instead, a fundamental role is played by the boundary ï or external ï conditions as the solar 

radiative forcing, the greenhouse gases concentrations, the features of the Earth orbit and so on. In 

this terms, not only climate forecasts make sense, but they are also possible. The most important 

climate forecasts are that related to the global mean temperature. Several climate models show a 

good agreement with the past temperatures [1]. Furthermore, also some tests have been performed 

for future projections. In particular, the idea is to change the value of some of the most influential 

variables as the greenhouse gases concentration ï e.g. keeping fixed the concentration of GHGs at 

the pre-industrial level ï and perform the forecast [1]. The results confirm that the recent warming 

of our planet seems due to the increasing of the GHGs concentrations.  

As we said in the introduction, and how we will see in Chapter 3, a note moved against the 

GCMs is that they have a common ancestor and so must be considered too similar to consider their 

results sufficiently reliable. In Chapter 3 we focus on this point and show that with a completely 

different and independent approach we are able to obtain the same results and also deeper details in 

the same and also in other open topics of climate sciences (as we will see in the following of this 

thesis). 

To conclude this introductive chapter about the climate system, we want to underline the 

complexity of the problem that is generally faced with the dynamical models. Also related problems 

are generally faced with this type of model, although the goodness of this approach some questions 

are raised, so the idea at the basis of this thesis is to follow a completely independent way ï i.e. with 

data-driven neural network models ï to gain knowledge in this field of research. 
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3. Methods ï Neural Network analysis  

 

 

The objective of this thesis is to study open problems of the atmospheric sciences using 

artificial intelligence methods. The idea is to make use of Neural Network (NN) analysis. So, in this 

chapter NN modelling is explained, starting from a historical point of view up to the detailed 

description of the NN model used for this work. 

Neural Network modelling is inspired by neurosciences. In fact, the human brain with its 

ρπ interconnecting neural cells (or neurons), represents the most efficient parallel calculator, even 

if  a single neuron can be compared to a processor with a modest calculation speed. Despite to its 

relatively slow óclock speedô, yet human brain beats computers on many tasks. So, its extraordinary 

capability consists on the presence of a massive network connection between the neurons 

themselves. So, what computational capability could be reached with a massive network of 

connected neurons? This question has inspired a lot of scientists and it is at the basis of the lively 

field of neural network modelling. From speech and image recognition up to geophysical research 

applications, NN modelling has been a hot topic during last decades. In particular, physicists look at 

NNs for data analysis, modelling and prediction. 

NNs can be separated into two large categories based on the learning typology. We talk 

about supervised learning when we try to reproduce a series of data ◐ ώȟώȟȣȟώ  starting from a 

set of Ὦ predictors ● ὼȟὼȟȣȟὼ  - ὲ is the number of observations. The output of the NN ◐ᴂ ώȟ

ώȟȣȟώ  is supervised in order to reproduce the response (or target) data ◐, minimizing an error 

function (or objective or cost function). Usually, regression problems are approached with 

supervised learning. At the opposite, in unsupervised learning, the model is supplied only with the 

input data and then tries to investigate about the nature of these data. Cluster analysis or 

classification problems are typical unsupervised learning applications. 

There are many types of NNs. The most common type is the feed-forward one, in which the 

signal proceeds forward from the input to the output (passing through intermediate layers) without 

any feedback. This typology is the most suitable for the purposes of this work, in particular the 

multilayer perceptron ï consisting in one or more hidden layer(s) inserted between the input and the 

output (see next section) ï is the typical approach for regression problems, see [7] for a review of 
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similar geophysical applications with artificial intelligence methods. Other types of NNs exist. 

Among others, we cite recurrent neural networks (RNN), in which internal loops are present in 

order to keep memory of previous computations. In this way previous information can persist and 

drive training of NN towards better results, so RNN may be a good instrument especially for 

forecasting. 

This chapter is organized as follow: in section 3.1 we introduce the argument of NN from a 

historical point of view, this is necessary in order to introduce the argument with a criterion of 

increasing difficulty order; in section 3.2 some generalities about the central problem of the 

nonlinear optimization in NN analysis are given and we also talk about the problem of overfitting 

and on the methods for prevent it; then, in section 3.3 several optimization methods will be 

described; in section 3.4, we will  talk on how we may organize the available data for obtaining 

better NN training; finally in section 3.5 a deep discussion on the general structure of the NN model 

in use for this thesis is supplied. 

3.1 From McCulloch and Pitts to multi -layer perceptron: a historical summary 

The model of McCulloch and Pitts in 1943 [38] can be considered the first NN model. 

Following the rationale of neurosciences, we know that a neuron is physically connected to its 

neighbours, each of which sends an electric impulse to it. If the total stimulus (given by the sum of 

the single impulses) overcome a certain threshold, the neuron becomes active and in turn sends a 

signal in output. In a similar way a neuron in the McCulloch and Pitts model consists of a binary 

threshold, i.e. it receives a weighted sum of inputs from its neighbours and if this sum is higher than 

a fixed threshold the neuron gives 1 as output, otherwise 0. In formulae, if ὼ is the signal from the 

Ὧ ὸὬ neighbour, the neuron will give as output: 

ώ Ὄ ύὼ ὦ ȟ                ρ 

where ύ  are the weights and ὦ is the bias or offset parameter. Ὄ is the Heaviside step function: 

Ὄᾀ ρ if ᾀ π and Ὄᾀ π if ᾀ π. With a tuning on the bias ὦ we can change the level of 

the threshold. An algorithm for the calculation of the best weights and bias still did not exist so, 

from a practical point of view, the model was not very useful. 

 The next step of NN modelling was achieved thanks to the perceptron model of Rosenblatt 

[39], [40] and by a similar work by Widrow and Hoff [41]. This perceptron model consists in a 
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layer of input neurons connected to an output layer (Figure 6). The improvement respect to the 

McCulloch and Pitts model consists in the introduction of a learning algorithm, thanks to which the 

weights and the bias parameters can now be calculated. 

 

 

Figure 6 An example of perceptron model with four inputs and two outputs. 

 

An output neuron is given by: 

ώ Ὢ ύ ὼ ὦ ȟ                ς 

where ὼ is an input, Ὢ is the transfer (or activation) function to be specified, ύ  are the weights 

connecting the input Ὧ to the output Ὦ and ὦ is the offset related to the output Ὦ. Once the inputs and 

outputs are fixed, the NN is trained to give the output ώ as close as possible to the target ώ . This 

is done by adjusting the weights in equation (2), so that the problem consists in the minimization of 

the error function with respect to the weights and bias themselves. More details about the 

minimization (also called optimization) will follow in the next.  
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It is important to highlight the possibility to use a different transfer function than the 

Heaviside step one. The latter is useful when the output is a binary variable, for example categorical 

(rain/no rain). So, in general different transfer functions can be used, as the logistic function, that is 

a so-called S-shaped function: 

Ὢὼ  
ρ

ρ Ὡ
Ȣ                σ 

For ὼO Њ this function has an asymptotic value of 0, while as ὼO Њ it approaches the 

value of 1. The transition from 0 to 1 is gradual, as the logistic function is also nonlinear and 

differentiable it is more useful than the Heaviside step. Furthermore, now we can analyse the role of 

the weights and bias. Considering the univariate form Ὢύὼ ὦ, we see that large values of ύ 

give a steeper transition from 0 to 1, and as ύᴼ Њ the activation function approaches the 

Heaviside step. Furthermore, small values of ύ gives a quasi-linear transition. While increasing ὦ 

slides our function along negative values of the x-axis and vice versa. Analogous considerations can 

be done with different transfer functions. Another commonly used sigmoidal shaped function is the 

hyperbolic tangent: 

Ὢὼ  ὸὥὲὬὼ  
Ὡ Ὡ

Ὡ Ὡ
Ȣ                τ 

For ὼO Њ this function has an asymptotic value of +1, while for ὼO Њ it tends 

towards -1. So, the range of the hyperbolic tangent is between ρ. It can be demonstrated (LeCun 

et al., [42]) that the use of the logistic function brings to a slower convergence in comparison to the 

use of the hyperbolic tangent, so the latter is usually preferred. 

After an initial excitement, some limitations of the perceptron model appeared. In particular, 

this approach was useful for linearly separable problems only. For instance, the perceptron model 

fails if it is applied to the Boolean logical operator XOR (the exclusive OR), a detailed explanation 

can be found in [43]. So, scientists realized that a further step was necessary. In particular the 

placement of additional layer(s) of neurons between the input and output layer permits to give more 

power to the neural network, in particular to fit any nonlinear function, the multi-layer perceptron 

(MLP) was born. 

At this point of the history the problem was again the lack of an algorithm for the 

minimization of the error function for this new architecture. So, the interest about NN vanish, until 

1986, when Rumelhart [44] rediscovered an old algorithm by Werbos [45] and apply it to the multi-
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layer perceptron problem. In reference to Figure 7, in a MLP with one hidden layer the input signal 

ὼ is mapped into the hidden layer of neurons Ὤ by: 

Ὤ Ὢ ύ ὼ ὦ ȟ                υ 

And then it is mapped on the output ώ : 

ώ Ὣ ύ Ὤ ὦ ȟ                φ 

where Ὢ and Ὣ are the transfer functions for the hidden and output layer respectively; ύ and ύ are 

the respective weights and ὦ and ὦ the bias parameters. 

 

 

Figure 7 A Multi -Layer Perceptron NN with one hidden layer 
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As said, a supervised NN is trained in order to reproduce a fixed target. This is done by 

minimizing an error function, that can be defined in different ways. For example, a good choice is 

the Mean Squared Error (MSE) calculated on the output of the NN model and the target: 

ὅ
ρ

ὔ

ρ

ς
ώ ώ  ȟ                χ 

here, ώ is the output of the NN model while ώ is the target data with ὲ ρȟςȟȣȟὔ different 

observations, ά is the summation on the number of outputs. The constant ρȾς is traditionally 

adopted, it is helpful in the calculation of the derivative of ὅ. In fact, the problem is to have an 

optimization algorithm in order to minimize ὅ respect to the weights and the bias, i.e. to find the 

best value for these parameters and so the best regression law. Afterwards we will talk about the 

details for this optimization procedure, now we can say that it is a very difficult problem. In fact, it 

consists in the research of the minimum for a multivariable function and such a research can be 

performed analytically only in a low number of cases. Furthermore, depending on the input 

variables scaling, the convergence appears to be inaccurate and/or too slow for operational 

purposes. So, a common procedure is to standardize data before to apply them to NN analysis. More 

scaling typologies exist, for example the ñclassicò normalization of data (in order to obtain data 

with zero mean and unitary variance), but in several cases also a rescaling of data is used (in order 

to obtain a series between ρ or between 0 and 1). In the following we will show also another good 

reason for normalizing data. 

The scaling of the output is also important, in particular the best choice is related to the 

problem into exam, i.e. if it is a regression or a classification. This is related to the choice of the 

transfer function for the output layer (the g in formulae 6). For example, if we try to classify the 

output into two classes, it would be useful place Ὣὼ ÔÁÎÈ ὼ. On the other side, if the output 

date is unbounded, it could be a problem limit data between ρ because these limit values are only 

asymptotic for tanh. In this case is good practice to normalize data between πȢω πȢω in order to 

improve the convergence velocity. Another possibility is to make use of a linear output transfer 

function, for example for the MLP with one hidden layer it means that the output will be a linear 

combination of sigmoidal shaped functions. 

In literature, a univocal definition for counting the number of hidden layers does not exist. 

This number is considered sometimes as the effective number of hidden layers, while in other cases 

it is obtained as the sum of the effective number and the output layer. In this thesis the first 
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convention is adopted. An immediate representation of the structure of a NN can be given by 

sequentially listing the number of neurons of each layer, for example a 4-4-1 NN is a neural 

network with 4 input, 4 neurons in the hidden layer and 1 output.  

The total number of weights and bias coefficients in a NN with structure ὲ ὲ ὲ can 

be calculated as: 

ὔ ὲ ρὲ ὲ ρὲȢ                ψ 

Where the number of weights is ὲ ὲὲ ὲὲ, and the number of bias is ὲ ὲ

ὲ. In a multilinear regression with n predictors, the corresponding number of coefficients is ὲ ρ. 

As we can see from the above formulae, the number of parameters in a MLP NN ὲ ὲ ρ is 

widely greater than the ñcorrespondentò multilinear regression. Not exist a law that fixed the 

optimal number of parameters N to be used in relationship to the number of the observation in a 

dataset ὔ . Generally, it is better to fix a NN structure with ὔḺὔ , but in many cases (especially 

in geophysical applications) this in not possible, as we are faced with limited datasets. Furthermore, 

we can have strong correlations between predictors, so a Principal Component Analysis [6] is 

sometimes applied before NN analysis in order to work with a smaller (the leading few Principal 

Components) number of inputs. In any case, we underline that generally it is a good practice to fix 

ὔḺὔ . 

Regarding the case with more than one output, two approaches are possible. A NN with 

multiple output or more NN with one single output. The choice depends on the correlation between 

the outputs themselves, for example if they have zero correlation then the best choice is to work 

with more NN with a single output. Obviously, the multiple output architecture is the best in case of 

correlated outputs, in this case the NN can be able to consider such relationship. 

Finally, we note an interesting fact. If in a NN with one hidden layer we place two linear 

transfer function, then the output will be simply a linear combination of the inputs. So, we see that 

the presence of a nonlinear transfer function, at least for the hidden layer, is fundamental to obtain a 

regression law with nonlinear characteristics.  

3.2 Optimization ï generalities 

 As said, the central problem in NN analysis consists in the research of the optimal value for 

the weights and the offset parameters. This is done by minimizing the error function C, so it is a 

mathematical analysis problem, i.e. the research of the minimum for a multivariable function (in our 
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case these variables are the weights and bias) ï it is a nonlinear optimization problem. Generally, it 

is addressed with the well-known back-propagation algorithm. It consists of two different steps: the 

first one permits the estimation of the gradient of C, just thanks to the back-propagation of the NN 

model error; while the second step is the descent towards the minimum of C. For a multivariable 

function it is a complex problem. While the first part of the algorithm is a standard one, the second 

can be performed with several methods, in this section we describe the most important one, from 

both a historical and a practical point of view. Usually the term back propagation is referred to the 

entire algorithm (independently from the method used for the descent) or only for the first part of it 

(the computation of the gradient), so it could bring to some ambiguities. Here, with back 

propagation we refer to the first part of the algorithm. 

First, to show what is the meaning of nonlinear optimization, we now describe both the 

linear (e.g. the research for the coefficients of a polynomial fit) and nonlinear optimization 

problems. Consider the relation: 

ώ ύ ύ Ὣȟ                ω 

Ὣ Ὣ ὼȟȣὼ  is a function (also nonlinear) of the predictor variables ὼȟȣὼ and ύȟȣύ  are 

the parameters (the analogous of weights for NN) to be determined. As we can see, ώ is a linear 

function of the parameters ύ . So, in this case the error function to be minimized is a quadratic 

function of the parameters: 

ὅ ώ ώ ȟ                ρπ 

so, it has only one global minimum. For NNs we have seen that the weights ύ  are the variables of 

a more complex function as the hyperbolic tangent (in any case a nonlinear function) so, the error 

function is related in a nonlinear way to the weights themselves. In these terms, appears clear that ὅ 

will present a more complex shape, with a lot of secondary minimum, so that we have no guarantee 

that the optimization algorithm will be able to find the right minimum ï i.e. the correct value for the 

weights. For NN analysis the research for the value of the ñregression coefficientsò is not a trivial 

issue. 

Historically, for the descent the well-known gradient or steepest descent method is used. It 

is a slow method not more used for computational purposes, but for its historical importance we 

now describe it. In the next section we will  describe other interesting (and more used) optimization 
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algorithms. For the sake of simplicity, in the following derivation it is convenient to define the error 

function ὅ  in reference to a single observation of the training dataset: 

ὅ
ρ

ς
ώ ώ ȟ                ρρ 

the ñoriginalò C (equation (7)) is the mean of ὅ  over the N observations, ά is the summation on 

the number of outputs. Considering now the MLP with one hidden layer defined above by equations 

(5) and (6). If we place ύ ὦ, ύ ὦ  and ὼ Ὤ ρ, we can redefine these equations in a 

more useful format: 

Ὤ Ὢ ύ ὼ ȟ                ρς 

ώ Ὣ ύ Ὤ ȟ                ρσ 

now the summation over k and j starts from zero (the bias term). Furthermore, we can represent all 

the weights and bias of the two layers of our NN with a vector ◌. So, in back propagation first of all 

the weights and bias are randomly fixed (generally following a certain algorithm, as we will specify 

successively), and then are updated of the quantity Ў◌ related to the gradient of the error function 

ὅ  by: 

Ў◌ –
ὅ

◌
ȟ                ρτ 

– is a scale factor called learning rate, it is the step, fixed by the algorithm, along the direction of 

the gradient of ὅ . Explicitly for the hidden and the output layers, (14) can be rewrite as: 

Ўύ –
ὅ 

ύ
ȟ                ρυ 

Ўύ –
ὅ 

ύ
Ȣ                ρφ 

So, at the n+1 step the weights and bias are updated as: 

◌ὲ ρ ◌ὲ Ў◌ὲȢ                ρχ 
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Now we see how to explicitly calculate Ў◌, for both the hidden and the output layers. First of all, 

we define: 

όḳ ύ ὼȟ            ό ḳ ύ ὬȢ                ρψ 

In this way equations (12) and (13) become: 

Ὤ Ὢό ȟ            ώ Ὣό Ȣ                ρω 

Now, in order to calculate Ў◌, we can start with the explicit calculation of the derivatives of ὅ: 

ὅ 

ύ

ὅ 

ό

ό

ύ

ό

ύ
ȟ                ςπ 

here we have used the well-known chain rule for the derivative calculation. Furthermore, we have 

defined  , that is called sensitivity of the ά ὸὬ output neuron. Again, applying the chain rule we 

can calculate the sensitivity: 


ὅ 

ό

ὅ 

ώ

ώ

ό
ώ ώ  Ὣᴂό ȟ                ςρ 

where we explicitly differentiate the error function ὅ  (equation (11)). Considering the second of 

the equations (18): 

ό

ύ
ὬȢ                ςς 

At this point we have all the ingredients to complete our recipe, using equations (20), (21), 

and (22) into (16) we obtain the expression for the weights and bias update relative to the output 

layer for our MLP network: 

Ўύ Ὤ– –ώ ώ Ὣᴂό ὬȢ                ςσ 

If we use as transfer function for the output layer a linear one, we have Ὣ ρ. Following 

the same rationale - i.e. applying the chain rule - we can calculate also the expression for the update 

of the weights connecting the input to the hidden layer of the MLP: 
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Ўύ ὼ– –  ύ Ὢ ίȢ                ςτ 

The equations (23) and (24) permit to complete our algorithm. At the first iteration, the MLP 

model starts with random values for the weights, it gives as output ώ , from which the error is 

calculated by ὅ . At this point the error is back propagated in order to update the weights 

connecting the hidden to the output layer and then again back propagated to update the weights 

connecting the input to the hidden layer. The procedure is iterated until a certain convergence 

criterion is reached; the single iteration is called epoch. So, the process consists in mapping the 

inputs forward and then back propagating the error to update the weights and this is repeated until 

ὅ  satisfies a fixed convergence criterion. As said, we have applied this procedure to a single 

pattern of data, i.e. data relative to a single observation. We can also consider more observations in 

order to better exploit all the information contained in the dataset (we see deeper this aspect in the 

following). The procedure remains the same, with the global error function ὅ calculated by 

averaging on all the single error functions ὅ  (each calculate separately for every ὲ). What was said 

above holds also for a more complex NN with more than one hidden layer. 

The convergence criterion is related to the value of the error function ὅ: it is a very subtle 

matter. A MLP with a single hidden layer and a sufficient number of hidden neurons is able to fit a 

training dataset with arbitrary accuracy ï i.e. until reaching a ὅ π value. But we have to keep in 

mind that data contain both signal and noise, so we do not need for a NN able to reproduce both (a 

condition known as overfitting) but we search for a model able to reproduce quite well the signal 

and mostly to generalize to data not used in the training procedure. To prevent overfitting, the 

classical procedure consists in dividing the data into two parts, one for training and the other for 

validation. The error function for the weights calculation is estimated on the training set, so at each 

epoch its value will be decreasing. Correspondingly ὅ is calculated also on the validation set (not 

used for training), on which it will first have a decrease and starting from a certain epoch an 

increase (Figure 8). This indicate that, outdated the epoch corresponding to the minimum, we are in 

overfitting. So, that epoch is considered a good choice for stopping the training, this is the early 

stopping approach. A fixed law for the fraction of data to be dedicated for validation does not exist, 

empirically about 10% of data is used as validation set (more details about the question of the 

dimension of validation set will be given is section 3.4). 

A further training related problem is due to the presence of several secondary minimum in 

the error function. The risk is to income in one of this relative minimum with a consequent poor 
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fitting. On the other hand, reaching the absolute minimum can give overfitting. One way to 

approach this problem is using an ensemble strategy. The training-validation procedure is repeated 

several times, each with different initial values for the weights of the NN, in order to better explore 

the multidimensional space of the error function. The choice of the initial weights can be done 

randomly or following an algorithm as that of Nguyen and Widrow [46]. In this way there is a high 

probability to obtain a good regression law with no noise fitting. 

 

Figure 8 Cost function calculated respect to the number of epochs for training (black curve) and validation (blue curve) sets. On 
the training set C is a monotonically descendent function, while on the validation set it has a minimum. In order to prevent 
overfitting, it is a good practice to stop the training at the epoch correspondent to this minimum (early stopping procedure). 

 

The number of hidden layers and neurons has also an influence on overfitting. In this 

chapter we have described a MLP with one hidden layer, but the same reasoning holds for more 

complex structures. So, the questions are: how many hidden layers are necessary? How many 

hidden neurons for each layer? Several studies [52], [53] and [54] have shown that a MLP with one 

single hidden layer is able to reproduce arbitrarily well any continuous function, provided that a 

sufficient number of hidden neurons is used. A simple single hidden layer MLP can be a universal 

approximator. However, there is no general theoretical indication on the exact number of neurons, 

only with empirical tests is possible to fix a congruous number. Intuitively a high number of 
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neurons will bring to better interpolation capabilities but also to a higher risk to fall into overfitting. 

So, the practical indication is to perform several tests with the same training-validation procedure 

earlier described, making use of a different number of neurons in order to fix the ideal number. In 

the next sub-section, we introduce also the most common approach used for overfitting prevention, 

the so-called regularization. 

Overfitting is the most delicate issue of NN analysis. As explained, several cautionary 

methods exist; now we introduce the most common approach, named regularization of the error 

function. This method acts in a direct way on the error function previously defined (7). The idea is 

to add penalty parameters to the error function. In terms of formulae, equation (7) is modified as: 

ὅ
ρ

ὔ

ρ

ς
ώ ώ ὖ

ρ

ς
ύ ȟ                χὦ 

here ὖ is a fixed positive constant called the penalty parameter (or regularization parameter or 

hyperparameter), ύ are all the weights/bias of NN. We see that with a positive and constant ὖ the 

selection of larger ύ  is not encouraged because this would increase the value of ὅ. In other 

words, if we fix a large ὖ we penalize larger weights. The effect of the penalty can be better 

understood in terms of the transfer function. For example, considering the hyperbolic tangent, if 

ȿύὼȿḺρ we can approximate the function with its first term of Taylor expansion: 

ώ ÔÁÎÈ ύὼ ύὼ 

So, if we adopt small weights, the nonlinear activation function become a linear one. Using large ὖ 

for penalize ύ brings to decrease the nonlinear capabilities of the NN model and so to prevent 

overfitting.  

The scaling of the predictor variables also has a strong importance. In fact, if we have two 

predictors, the first of which is much larger in magnitude that the second one, this latter must have 

higher weights than the first in order to have a comparable influence in the NN model. But the 

penalty parameter ὖ is the same for all the weights (7b) and then it will act more strongly on the 

second input, not allowing it to take large weights. A similar analysis holds for multiple target 

cases. So, the general procedure is to standardize data before to use them for NN training. Classical 

standardization (zero mean and unitary variance) may be used, but also other methods exist ï e.g. 

the normalization of data between ρ or between ρȾπ. Using this shrewdness, we may be sure 

that the regularization will works properly. 
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A way to fix the value of the penalty parameter is by an approach like the early stopping 

previously described. The dataset is divided into training and validation, several trials are performed 

with different values of ὖ. Again, the value of ὖ correspondent to the minimum on the validation 

set will be the optimal one. 

In this section we have presented a quite exhaustive introduction about NN analysis, starting 

from the structure of the network up to the methods for prevent overfitting. Now, in the next one, 

we will go deeper into the details of the methods for the optimization of the error function, the core 

of NN analysis. 

3.3 Optimization methods  

As seen in the last section, the minimization of the error function ὅ with respect to the 

weights/bias ◌ is a problem of nonlinear optimization. Usually it is common to solve this problem 

with an iterative approach (useful for computational purposes). Now, a general description of this 

approach is shown, then, in the next subsections, a detailed description of the most used methods is 

supplied. Here, we show optimization methods called deterministic, in that each step of the iterative 

procedure of optimization is well fixed by deterministic formulas. Also, stochastic optimization 

methods exist (see [43] and references therein for more details). 

Considering an iterative approach, we name ◌  the actual value of our weights/bias. If we 

expand ὅ as a Taylor series around ◌  we have: 

ὅ◌ ὅ◌ ◌ ◌ ὅɳ◌
ρ

ς
◌ ◌ ╗◌ ◌  ȣȟ                ςυ 

here ɳ ὅ is the gradient of the function ὅ, ╗ is the Hessian matrix composed by all the second 

derivatives of ὅ. If we apply the gradient operator to (25): 

ὅɳ◌ ὅɳ◌ ╗◌ ◌  ȣ                ςφ 

For the optimal values of ◌, ɳ ὅ◌ π and ignoring the higher order terms we have: 

◌ ◌ ╗ ὅɳ◌ Ȣ                ςχ 

In these terms, we obtain the formulae for the iterative computation of ◌: 

◌ ◌ ╗ ὅɳ◌ Ȣ                ςψ 
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This is the well-known Newton method (we will go in deeper details in section 3.3.3). When we are 

faced with a multidimensional problem ï i.e. when we have many weights and bias parameters ï the 

explicit calculation of the inverse of the Hessian matrix is a complicated issue. So, in order to limit 

the computational effort, several approximation methods have been developed. Now, once fixed the 

general problem, we will  describe several optimization methods adopted in NN analysis. 

3.3.1 Gradient descent method 

This method has been already described into section 3.2. Also named steepest descent, the 

parameters of the NN are updated by the relation: 

◌ ◌ –ɳὅ◌ ȟ                ςω 

where – is the learning rate. By comparison with (28) we see that – is replacing the inverse of the 

Hessian matrix, so the steepest descent represents a simplification of the more general Newton 

method. In practice, one tries to find the minimum ï i.e. the optimal value for the weights and bias 

◌ - by descending along the negative gradient of ὅ. This is the direction of the steepest descent (so, 

this is the origin of the name of the method). At a first glance this could appear as a very efficient 

way for searching the minimum but it is not so.  

The value of – can be a fixed constant or calculated by a line minimization algorithm. The 

first approach simply consists in proceeding along the negative gradient direction with a fixed step 

at each iteration. In the second one, we proceed along the direction of the negative gradient and stop 

when the minimum along that direction is achieved. In detail, at step ὲ we have the estimation ◌  

for the parameters. From this point we move along the negative gradient direction ◄ identified by: 

◄ ὅɳ◌ Ȣ                σπ 

So, we move along the direction ◄: 

◌  –◄Ȣ                σπὦ 

We move along the direction ◄ until the minimum - along this direction - is reached, this is 

individuated by the condition: 



–
ὅ◌  –◄ πȟ                σρ 

that permits to fix the value of –, explicitely: 
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◄ ὅɳ◌  –◄ ◄ ὅɳ◌ πȟ                σς 

from which it is clear that ◄Ṷ ɳὅ◌ . Since that ◄ ὅɳ◌ , we finally have: 

◄◄ πȢ                σσ 

So, the directions individuated at the steps n and n+1 are orthogonal, this results in an inefficient 

zig-zag path for this approach (Figure 9). Using a fixed step – bring to a similar bad situation, too 

small size for – could result in too many steps (Figure 10a), while too large size brings to an even 

more strong zig-zag pattern (Figure 10b) 

 

Figure 9 The gradient descent method with line minimization. The research of the minimum is in this case very slow due to the 
zig-zag path. Adapted from Hsieh [43] 
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Figure 10 Example of the gradient descent with a too small fixed step size (a), and with a too big fixed step size (b). Adapted from 
Hsieh [43]. 

 

Ultimately, the way for optimize the method in order to make the steepest descent an efficient 

algorithm is to add the so-called momentum ‘ to the direction of descent: 

◄ ὅɳ◌ ‘◄ Ȣ                στ 

The rationale is that ‘ prevents the new direction to be orthogonal to the previous one, decreasing 

the total length of the path. So, the steepest descent method is generally used with the momentum 

coefficient (Figure 11). Using the equation (34) into (29) gives the steepest descent method with 

momentum. 
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Figure 11 Example of the gradient descent method with momentum. Adapted from Hsieh [43]. 

 

3.3.2 Conjugate gradient method 

This method has been developed thanks to the works of Hestenes and Stiefel in 1952 [47] 

and by Fletcher and Reeves in 1964 [48]. It consists in a gradient descent method with momentum 

(equation (34)), where this last is automatically fixed as we can see in the following. Starting from 

the weights determination ◌  we want to fix the next direction ◄  for the descent in such a way 

that the gradient of ὅ in the direction ◄ remains 0 (at first order), as we go along the direction ◄ , 

this is expressed by the condition: 

Ἴ ὅɳ◌ –◄ πȟ                συ 

where –, as said, is the learning rate that tells us how much we are moving along the direction  ◄ . 

Using the equation (26) opportunely adapted, we can rewrite: 
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ὅɳ◌ –◄ ὅɳ◌ ╗–◄ Ȣ                σφ 

Then (35) becomes: 

Ἴ ὅɳ◌ –Ἴ╗◄ πȢ                σχ 

As ◄Ṷ ɳὅ◌ , we have the condition for the conjugate direction: 

Ἴ╗◄ πȟ                σψ 

where, indeed, ◄  is said to be conjugate to ◄. The next step is to estimate the momentum 

parameter ‘, now we show three different methods.  

To obtain the Hestenes-Stiefel method, we define: 

╫ ḳ ὅɳ◌ Ȣ               σω 

Making use of the equation (34) rewritten for ◄  ï i.e.  ◄ ὅɳ◌ ‘◄ into the 

condition (38): 

Ἴ╗ ╫ ‘◄ πȢ                τπ 

From which we have: 

‘Ἴ╗◄ Ἴ╗╫ ╫ ╗◄ȟ                τρ 

as ╗ ╗ . Equation (41) is the relation that permits to obtain the value of the momentum ‘. The 

last step consists in the approximate calculation of the Hessian matrix, cause its exact determination 

could be computationally expensive. Using the equation (26) ignoring higher order terms, the 

definition (39) and the equation (30b), we have: 

╫ ╫ ╗◌ ◌ –╗◄Ȣ                τς 

Using this relation into (41), we finally obtain the estimation for the momentum, named Hestenes-

Stiefel method: 

‘
╫ ╫ ╫

Ἴ ╫ ╫
Ȣ                τσ 

Now two other methods are shown, without derivation (further detail in [43]). In the Polak-

Ribiere method [49] and [50], the momentum is given by: 
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‘
╫ ╫ ╫

Ἢ╫
Ȣ                ττ 

Finally, the Fletcher and Reeves method [48]: 

‘
╫ ╫

Ἢ╫
Ȣ                τυ 

In all these approximate derivations the higher order terms in the expansion of the gradient 

of ὅ have been neglected, so the several methods differ from each other. Generally, with (44) better 

performances are achieved. 

To conclude, the conjugate gradient method explanation, we must find the optimal value for 

the learning rate – along the search direction ◄. This is done by minimizing the error function 

ὅ◌ –◄  in function of – itself, along such path. For simplicity we now write only ὅ– in 

order to underline the dependence on –. Generally an iterative algorithm is adopted (Figure 12), as 

step 1) three points ὥ, ὦ, ὧ are fixed along the search direction, in such a way that ὐὥ ὐὦ and 

ὐὦ ὐὧ. As ὅ is a continuous function a minimum exists in the interval ὥȟὧ; 2) a parabolic 

curve is fitted on these three points, the correspondent to the minimum Ὠ of the parabola is fixed on 

ὅ; 3) three points among ὥ, ὦ, ὧ and Ὠ with the minimum value of ὅ are fixed and the procedure is 

iterated until convergence is reached. 
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Figure 12 Example of the line search algorithm for the optimal value of the learning rate. Detailed description of the procedure is 
in the text. Figure from Hsieh [43]. 

 

3.3.3 Quasi-Newtonian methods 

At the beginning of this section, with the equation (28), we have introduced the Newton 

method. Thanks to the definition (39) and by defining the inverse of the Hessian matrix as ║  we 

can rewrite (28) in a more compact form: 

◌ ◌ ║╫Ȣ                τφ 

The derivation of this formulae assumes that the terms above the quadratic in the Taylor 

series of the error function ὅ can be ignored. This is certainly true when we are in the nearby of a 

minimum, but in general it is not true. So, in order to obtain generalization capabilities, the so-

called learning rate – is added: 

◌ ◌ –║╫Ȣ                τφ 
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Also in this more accurate form, the Newton method is not so useful because at each iteration it 

requires the estimation of the inverse of the Hessian matrix. So quasi-Newtonian methods have 

been developed using a simpler estimation for ║ . For example, also the above-mentioned gradient 

descent and conjugate gradient methods are related to quasi-Newtonian methods, in fact if we 

replace ║  with the identity matrix ╘ we obtain the gradient descent. While the quasi-Newtonian 

methods preserve also the conjugate condition (38) of the conjugate gradient method. 

Here, two quasi-Newtonian methods are presented, for more details about their derivation we 

refer to the respective references. The first method is the Davidon-Fletcher-Powell (DFP) [51], [52]. 

It is an iterative procedure, for Ὧ π it starts by placing a random value for the initial weights ◌  

and a random symmetric positive definite matrix as ║ . Then the iterative procedure starts: 

1. We assume that ◄ ║╫ . 

2. The error function ὅ◌ –◄  is minimized respect to not negative –. Then we can 

compute updated weights ◌ , ▬ ḳ–◄ and ╫ . 

3. Setting ╫ ╫ ▲ , we also have the updating for the approximate Hessian matrix: 

 

║ ║
▬▬

▬▲

║▲▲║

▲║▲
Ȣ                τχ 

4. We update Ὧ and return to point 1. (if convergence is not reached). 

Again, we note that if we choose as ║  the identity matrix, the DFP method coincide with the 

conjugate gradient. 

The most widespread quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method [53], [54], [55] and [56]. The update for the estimator of the inverse of the Hessian matrix 

is: 

║ ║ ○○ȟ                τψ 

║  is given by (47) and ○  is defined as: 

○ ▲║▲ Ⱦ
▬

▬▲

╖▲

▲╖▲
Ȣ                τω 

In BFGS method the conjugate direction property (38) is again preserved. 
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We have seen that both the conjugate and the quasi-Newtonian methods do not make use of 

the explicit inverse Hessian matrix. Furthermore, the second one tries to approximate the inverse 

Hessian matrix as well as preserving the conjugate direction properties. So quasi-Newton methods 

are a further step respect to the conjugate gradient. The use of an approximate Hessian matrix 

brings to faster convergence, furthermore the line search for the estimation of the learning rate – is 

not more necessary. However, the major drawback is the large storage necessary for the matrix ║ , 

which has dimensions ὔ ὔ  where ὔ  is the total number of weights and bias. So, the quasi-

Newtonian methods require a memory of order ὕὔ  instead of a capability of ὕὔ  for the 

conjugate. In order to reduce memory requirements, a method was proposed by Shanno [57]. 

In any case, for problems related to small dataset (as is the case for the arguments faced in 

this thesis) the quasi-Newtonian methods in general, and the BFGS in particular, find a wide 

application. 

3.3.4 Nonlinear least squares methods 

All the optimization methods illustrated up to now are of general applicability ï i.e. they are 

not related to the explicit form of the error function. In many cases the error function consists in a 

sum of squares, as for example the Mean Squared Error. In general terms: 

ὅ
ρ

ς
‐

ρ

ς
ᴁⱠᴁȟ                υπ 

here, ‐ is the error associated to the ὯὸὬ observation, Ⱡ is the vector of all these errors, ὔ is the 

number of observations. Now, two optimization methods related to this type of error functions will 

be showed. 

At the ὲὸὬ step we have the weights ◌  and we ñmoveò towards ◌ . We can write the 

Taylor expansion for Ⱡ in function of the weights: 

Ⱡ◌ Ⱡ◌ ╙ ◌ ◌ ȟ                υρ 

here, ╙ is the Jacobian matrix calculated at the ὲὸὬ step. Explicitly it has elements: 

ὐ
‐

ύ
ȟ                υς 
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so, ╙ has dimension ὔ ὒ - i.e. (number of observations)  (number of weights/bias). Using (51) 

into equation (50) the error function at the ὲὸὬ step can be approximated as: 

ρ

ς
ᴁⱠ◌ ᴁ

ρ

ς
ᴁⱠ◌ ╙ ◌ ◌ ᴁ

ρ

ς
ᴁⱠ◌ ᴁ Ⱡ ◌ ╙▪◌ ◌

ρ

ς
◌ ◌ ╙╙ ◌ ◌ Ȣ                υσ 

In order to find the minimum of ὅ in function of ◌  and so, the weights themselves, we 

differentiate the right hand side of (53) respect to ◌  and set the result equal to zero: 

╙Ⱡ◌ ╙╙ ◌ ◌ πȟ                υτ 

from which we obtain: 

◌ ◌ ╙╙ ╙Ⱡ◌ ȟ                υυ 

this is the well-known Gauss-Newton method. We show how this last equation is related to the 

Newton method (28). In fact, for the error functions given by the sum of squares as (50), we can 

write the gradient: 

ὅɳ ╙Ⱡ◌Ȣ                υφ 

The Hessian matrix is composed by the elements: 

╗
ὅ

ύύ

‐

ύ

‐

ύ
‐
‐

ύύ
Ȣ                υχ 

If ὅ is a linear function of the weights the second term in the summation of (57) is equal to 

zero. If ὅ is not a linear function of ◌ we can however neglect this term so, we obtain an 

approximation for the Hessian matrix in terms of the Jacobian: 

╗ ╙╙Ȣ                υψ 

It is clear that (55) approximates the Newton method (28) with ɳ # given by (56) and the Hessian 

matrix given by (58). 

To resume, by the equation (55) the weights are updated up to convergence to the minimum. 

The biggest problem of the Gauss-Newton method is that the step size could become too large and 
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so the assumption done in the equation (51) can fall. So, an evolution of this method is proposed, 

the so-called Levenberg-Marquardt method [58], [59]. The idea is to add a penalty term to the 

approximated version of the error function: 

ρ

ς
ᴁⱠ◌ ᴁ

ρ

ς
ᴁⱠ◌ ╙ ◌ ◌ ᴁ ‗ᴁ◌ ◌ᴁȢ                υω 

The last term penalizes larger steps, in fact with larger ‗ we obtain a smaller size for the 

step. If we minimize (59) respect to ◌ , as done for the derivation of (55), we have a new 

expression for the weights update formulae: 

◌ ◌ ╙╙ ‗╘ ╙Ⱡ◌ ȟ                φπ 

╘ is the identity matrix. For small ‗ values we come back to the Gauss-Newton formulae, while for 

large ‗ we have the gradient descent method. So, the Levenberg-Marquardt method takes the best 

from both these methods. It preserves the convergence velocity of the Gauss-Newton but also the 

robustness of the gradient descent when we are far from a minimum.  

To conclude this sub-section, we note that the Jacobian matrix has dimension ὔ ὒ, where  

ὒ, the total number of weights and bias, can be higher than ὔ, the number of observations of our 

dataset. So, we need for even higher storage capabilities than that necessary for the Hessian matrix, 

- i.e. for quasi-Newton methods. 

3.4 On the use of available data 

 In this section we want to focus on the aspect of how to reserve data for validation purposes. 

In the last part of section 3.2 we introduced the early-stopping method. In order to limit the problem 

of overfitting the available data for the training of the NN model are divided into two parts, one 

(bigger) for the training and the other for the so-called validation. As the number of iterations 

increases, the error function calculated on the training data will be a monotonically decreasing 

function, while if we calculate the error function on the validation data, we obtain a function that 

exhibits a minimum in correspondence to a certain epoch. This minimum gives the ideal number of 

iterations at which stop the NN training in order to avoid overfitting. In fact, when the error 

function starts to rise on the validation set means that our NN model was losing its generalization 

capabilities on data not involved in the training. So, in next subsection we see how to calculate the 

best fraction of data to dedicate for validation; then in 3.4.2 we illustrate more refined methods in 

order to use at best the available data for training purposes. 
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3.4.1 Choice of the fraction of validation data 

  

Considering a dataset composed of ὔ observations, which fraction of data we must use as 

validation data? Intuitively, if we reserve too much data for validation, we will have a poorer 

model, while if we reserve too few data, we will fall into overfitting. So, an ideal fraction should 

exist. Amari et al. [60] introduced a theoretical derivation for this ideal fraction. For what has been 

said, a fraction Ὢὔ of data is used for validation, where Ὢ represents this ideal fraction. 

Consequently, ρ Ὢὔ represents the fraction of the dataset to be used for training. The ideal 

fraction can be defined in two ways depending on the number of the weights and bias of the NN. 

Named ὔ  this number, if ὔ σπὔ , the ideal value for Ὢ is: 

Ὢ
ςὔ ρ ρ

ςὔ ρ
ȟ                φρ 

and if ὔ ḻρ we have: 

Ὢ
ρ

ςὔ
ȟ                φς 

For example, if ὔ ςππ, from (62) we have Ὢ πȢπυ, only a fraction of 5% of data has to been 

dedicated for validation.  

 The second case, for ὔ σπὔ , it may be shown [60] that a small difference exists between 

using Ὢ  or not using validation data at all ï i.e. the entire dataset is dedicated to training. So, when 

we have a number of data much higher than the number of parameters, we can also avoid the early 

stopping procedure, as overfitting is no more a problem. But in the case of relatively small dataset, 

as is the case for many physical applications, we must adopt the early stopping procedure. 

Furthermore, there is the need to use at best the available data, so in the next subsection we will  

explain the cross-validation technique. A limit case of this technique is the so-called leave-one-out 

cross validation, used for this thesis. 

3.4.2 Cross-validation 

For many physical applications data are not plentiful, in particular for meteorology and climatology, 

reserving part of a dataset for validation can leave us with a small amount of data for the training of 

the NN model, furthermore, keeping fixed the validation set can bring to a bad representation of the 

variability of data. These problems are not present when there are plentiful data. In order to 
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optimize the use of the available data for the NN model construction, the best approach is by the 

cross-validation technique and related variants. 

 The idea consists in divide the data record in ὑ segments of (approximately) equal length - 

the so-called K-fold cross-validation. One segment is used for validation while the remaining ὑ ρ 

for training. Iterating on all the segments permits to all the data to be used for validation improving 

the generalization capabilities of the NN. At this point one can chose the best model based on the 

minimum error on the validation segment. Obviously, the use of the ensemble technique ï i.e. 

perform multiple runs for each segment with different initial weights - is yet recommended.  

To fix the ideas, suppose a data record of 100 elements, and divide it in 10 segments. So, years 1-

10, 11-20, 21-30, and so on, are used once at a time as validation set. The first iteration makes use 

of data 1-10 for validation, while data 11-100 are used as training set. The second iteration takes 

data 11-20 for validation and 1-10 and 21-100 as training. This is repeated sliding on all the 

segments up to use data 91-100 for validation and 1-90 for training at the tenth iteration. One can 

also increase the number of segments up to arrive at 100 segments, in this case the 100-fold cross-

validation will coincide with the so-called leave-one-out cross-validation, where a single 

observation will be the validation set iteratively. 

 Care must be taken for time series data. In this case we could have autocorrelation inside the 

series. For example, considering a daily time series, suppose an autocorrelation time of 15 days. So 

if we apply the leave-one-out technique our NN will not have good generalization capabilities as in 

the training phase we will make use of data strictly related to our validation element so, the use of 

cross-validation can bring to an underestimation of the validation error. General prescription for 

these cases is to take a validation set equal or longer than the autocorrelation time.  

 A successive step is done when we consider the error to be associated to the NN model. In 

fact, the error calculated on the validation set is not a good estimation of the model error, because 

these data are however involved in the model determination. The model error must be estimated on 

independent data, not used nor for validation nor for training. Thus, a further division of the dataset 

is necessary in training, validation and test set, on the last we can determine the model error. We 

can consider this procedure as a ñdoubleò cross-validation. Considering the dataset of 100 

observations, we could have a 10-fold cross-test. Data 1-10 are used for testing and 11-100 for 

training and validation. So, we must divide this last in training and validation, for example we use 

11-20 for validation and 21-100 for training. This procedure is iterated with a double loop, the first 

in order to use all data as test set and the second (inner) in order to use at each ñtest iterationò all the 
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remaining data as validation set. Again, an ensemble strategy is recommended. In such a way, the 

forecast model error can be calculated over the entire dataset and it will be the real, reliable, error of 

our NN model. At limit we arrive at the leave-one-out cross-testing, in which each single data of 

our dataset is used as test set while the remaining are used for training and validation. This last will 

be the technique used for our model, as we describe in the following section. 

3.5 Model description 

 In this work several open topics of the atmospheric sciences have been studied, obviously 

each with its proper NN model, but despite some small differences, the various models have a 

common structure. In this section the general structure of the NN model is furnished, in the chapters 

dedicated to the analysis of the various topics any variation respect to this ñbasicò description will 

be specified. Thanks to the introduction on NN modelling supplied in the previous sections of this 

chapter the following explanation should result quite simple. This NN model is built in such a way 

that it can perform realistic ï i.e. not affected by overfitting ï multiple nonlinear regression laws. 

Furthermore, the results can be considered reliable ï i.e. not affected by peculiarities of the model 

or of the data themselves. Both these aspects will be clearer when the various applications will be 

described in the next chapters. This model was gradually developed in the course of the years, 

starting from the middle of ô90 [61], passing by the first years of the new century [23] and [13], up 

to its description with a dedicated paper [17]. Respect to [17], here the model has been further 

developed and refined in relation to the different problems faced. 

 The model adopted is a multi-layer perceptron feedforward NN with backpropagation 

training, it is the most ñpopularò architecture for NN regression applications in geophysics. We use 

a single hidden layer cause, as said, also in this relatively simple case we can approximate any 

continuous function. Furthermore, keeping the complexity of the NN limited helps us to avoid 

overfitting. As we consider regression problems each model has a single output - i.e. one single 

output neuron. In summary, the NN model in use is schematically shown in the previous Figure 7, 

each problem will have a different number of input and/or hidden neurons depending on the 

problem itself. The transfer function for the hidden layer is a hyperbolic tangent, any different 

choice for each NN model will be specified in the following. The output transfer function is a linear 

one. 

As far as the optimization algorithm is concerned, empirical tests allow us to choose from 

time to time the best one for each problem. For example, for the attribution problem of Chapter 3 

the Levenberg-Marquardt algorithm is used (see section 3.3.4) while for the Atlantic Multidecadal 
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Oscillation problem (Chapter 4) the Broyden-Fletcher-Goldfarb-Shanno (BFGS, see section 3.3.3) 

is used. The optimization algorithm in use is specified from time to time in the following chapters. 

Regardless of these important ñtechnical aspectsò, we want to focus on the use of the 

available data for training, validation and test. As stated, here we handle limited length datasets, so 

the NN algorithm is developed considering this aspect. The probability to income into overfitting is 

reduced by taking a low number of hidden neurons and by adopting a leave-one-out training-

validation-test procedure ï already described into section 3.4. To better fix the ideas we consider a 

100 years length series of data (for example mean annual temperature). The procedure can be 

described by the following steps: 

1. Each year, once at a time, is used as test set starting from the first one. 

2. Of the remaining 99 data, about 10% is randomly selected and used as validation set ï i.e. more 

or less 10 years of data. The initial value of the weights and bias of the NN are fixed (pseudo-

randomly) with the Nguyen-Widrow algorithm [46], this is done in order to build an ensemble 

of models. 

3. The adopted backpropagation algorithm is applied on the training set, at each iteration the 

performance of the NN constructed using this training set is evaluated on the validation set. The 

procedure is iterated until the value of the error on the validation set starts to rise (the already 

described early stopping approach). Furthermore, in order to have even better performances 

with limited overfitting, we insert two further control conditions:  

3.1. we consider the so-obtained NN as a good one if the mean error calculated on the training 

set is lesser than a fixed threshold (dependent on the problem) and 

3.2.  we consider the so-obtained NN as a good one if the number of epochs of training is higher 

than a fixed threshold ï at least 100 epochs.  

The first condition is related to the need of obtain a good performance, the second one to avoid 

falling into a local minimum. In fact, we could have convergence with a low number of epochs 

of training but in this case the probability to get trapped into a secondary minimum is very high. 

If even one of this two conditions are not satisfied, we return at the point 2. and the training 

procedure is repeated. This can be repeated up to 100 times, in the case none of the two 

conditions is even satisfied (but it is an unlikely situation) the NN between the 100 with the 

minimum error on the training set is chosen as the best one.  

4. Once the weights and bias of the NN are fixed thanks to the training-validation procedure, the 

NN error on the test set is calculated. It is an error calculated on data not involved in the NN 
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determination ï the test data is completely unknown to the NN! ï it is used for the mean squared 

error calculation. Now we return to the point 2 and the procedure is repeated 20 times in order 

to construct the first ensemble of values for the first year of data ï i.e. 20 different NN models 

for each test data. 

5. Finally, we return at the point 1. and the next year is selected as test set. 

This complex procedure permits to construct an ensemble of NN models that give us an estimation 

of each single data of the target. The algorithm is constructed in such a way that the NN models 

ignore the value of the test set, giving us a strong guarantee of model generalization capabilities. So, 

the reconstruction of the target data can be considered as a real forecast of the target itself. Once the 

target estimation is obtained, all the statistics can be calculated. 

 In parallel to the NN training also a multilinear regression law is calculated. The linear law 

is obtained using data involved in training and validation of the NN. To fix the ideas if we have 100 

data that law is calculated on 99 data, leaving one test data for the calculation of the associated 

error. In this way a parallel comparison between NN and linear regression is possible using the 

same data. Furthermore, an advantage is given to the linear regression, in fact it makes use of more 

data respect to the NN cause now we have not need for validation data. In the next Chapters we can 

see that despite this, NN performs always better than linear regression strengthening the goodness 

of our choice. Furthermore, we see also that the comparison between non-linear and linear methods 

permits to deduce very interesting information on the dynamic involved in the topics addressed. 

Now we are at the end of this chapter. Here an explanation of NN modelling has been 

supplied, for regression problems and relatively small datasets. The final focus of this last section 

has been on the model used for this research activity. It will permit us to introduce next Chapters in 

a simple and immediate way. 
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4. Attribution of the last 150 years temperature variations 

As defined by the IPCC [1], attribution is the process of evaluating the relative contributions 

of multiple causal factors to a change or event. Here, we are interested in the attribution of the last 

150 years temperature variations. Up to now the studies on recent global warming are mostly faced 

with GCMs. 

As said in Chapter 2, the climate system is strongly dependent on the boundary conditions: 

if we modify one of them a variation of the state of the system is expected. Using GCMs to simulate 

the complexity of the climate system permits also to perform experiments. In order to investigate 

the last 150 years, the idea is to set some of the boundary conditions ï also called forcing ï to their 

pre-industrial values and use these ñartificialò data in GCMs simulations. The results of these 

experiments ï also performed with different models ï clearly indicate that anthropogenic forcing (in 

particular GHGs) are the responsible for the recent global warming [1]. The GCMs used by the 

scientific community have some differences, but also pertain to the same dynamical approach and 

come from a common ancestor, so the robustness of the result itself is subject of debate [5], [62]. 

Robustness is achieved when we have a common result from independent means of investigation 

and GCMs do not seem so independent from each other. So, the idea is to use a completely different 

approach ï i.e. by neural network analysis. In recent years several works making use of data-driven 

models as neural network and Granger causality have been proposed [9], [10], [11], [12] but a 

comparison that follow the same rationale of the GCMs is lacking.  

In this framework here we present the results obtained by the application of a neural network 

model of the type described in Section 3.5, these results have already been accepted by the scientific 

community [16]. Analysing the last 160 years, first we perform the reconstruction of the 

temperature trend making use of some predictors ï i.e. the fundamental drivers of the climate 

system ï after, different attribution experiments are performed. Our findings show that recent 

warming may be attributed basically to anthropogenic forcing (see next sections for more details), 

while the Sun seems to influence the period 1910-1975. The use of indices of natural variability 

permits to reproduce also the interannual variability. The application of our NN model permits to 

corroborate the previous knowledge given by GCMs and permits to obtain further details about the 

role of the external forcing and on the internal variability of climate system. 
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4.1 Data and method 

We focus on annual data ï since the middle of the 19th century ï of mean global 

temperature, of radiative forcing (RF) of several drivers for the climate system and of data about 

indices of natural variability. In order to perform sensitivity tests, two alternative scenarios for data 

about anthropogenic radiative forcing are used. A list of all the data used is shown in Table 1: in the 

next sections we will show how these data have been used, here we provide a list and the source of 

them. 

 List of variables 

1 Global annual mean temperature Ù T  

2 Radiative forcing of greenhouse gases - RFGHG 

3 Radiative forcing of black carbon Ù RFBC 

4 Radiative forcing of anthropogenic sulphates Ù RFSOX  

5 Radiative forcing of solar activity Ù RFSOLAR  

6 Radiative forcing of volcanoes Ù RFVOL  

7 
Total RF of anthropogenic activities Ù  

RFANTH = RFGHG+RFBC+RFSOX 

8 Total natural RF Ù RFNAT = RFSOLAR+RFVOL 

9 Southern Oscillation Index Ù SOI  

10 Pacific Decadal Oscillation Ù PDO  

11 Atlantic Multidecadal Oscillation Ù AMO  

Table 1 List of the potential predictors for our NN analysis 

 

For global mean temperature we consider land and marine temperature anomalies since 

1850 of the HadCRUT4 database [63], from the Met Office Hadley Centre, freely available on the 

web. 
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As far as radiative forcing data are concerned, we use the freely available dataset collected at 

http://www.sterndavivi.com/datasite.html [12]. In particular, the data about GHGs are taken from 

the NASA/GISS website and the calculation of RF are performed using classical formulae 

developed in scientific literature [64], [65]. (See Figure 13) 

Data relative to the emissions of sulphates are available only till 2011 [66], [67]. The 

calculation of related radiative forcing is based on slight modification of previous studies [12], [68], 

[69]. Data about radiative forcing of black carbon come from the RCP8.5 scenario [70] (See Figure 

13). 

Solar irradiance is obtained by an index available at 

https://data.giss.nasa.gov/modelforce/solar.irradiance/ [71]. The related RF is calculate following 

standard formula [65]. Furthermore, a synthetic series (RFSOLSTAT) was built for attribution test. 

It is built with a first-order Fourier series based on the first observed 65 years (See Figure 14). The 

observed series shows a transition toward a high energy regime at the beginning of the 20th century, 

so our idea is to consider a low energy regime for attribution purposes (see next section). 

Volcanic radiative forcing is calculated by the optical thickness data [72], available from 

https://data.giss.nasa.gov/modelforce/strataer/, RFVOL is 27 times the optical thickness [12] (See 

Figure 15).  

The three indices representing the natural variability are the Atlantic Multidecadal 

Oscillation (AMO) available since 1856 at www.esrl.noaa.gov/psd/data/timeseries/AMO; the 

Pacific Decadal Oscillation (PDO) available since 1854 at 

https://www.ncdc.noaa.gov/teleconnections/pdo/ and the Southern Oscillation Index (SOI) available 

since 1866 at www.cru.uea.ac.uk/cru/data/soi/soi.dat (See Figure 16-17-18). 

The data relative to the alternative scenarios for the sensitivity tests (see section 3.3) are that 

of CMIP5 [73] available at https://data.giss.nasa.gov/modelforce/Fi_Miller_et_al14_upd.txt and 

that of Hansen et al. [74] available at https://data.giss.nasa.gov/modelforce/Fe_H11_1880-2011.txt. 

As the first available year for the latter is 1880, it was extended backward to 1850 filling the first 

years by zero values for the anthropogenic RF. 

 

https://data.giss.nasa.gov/modelforce/solar.irradiance/
https://data.giss.nasa.gov/modelforce/strataer/
http://www.esrl.noaa.gov/psd/data/timeseries/AMO
https://www.ncdc.noaa.gov/teleconnections/pdo/
http://www.cru.uea.ac.uk/cru/data/soi/soi.dat
https://data.giss.nasa.gov/modelforce/Fi_Miller_et_al14_upd.txt
https://data.giss.nasa.gov/modelforce/Fe_H11_1880-2011.txt
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Figure 13 External forcings used as input for the NN models: anthropogenic forcing anomalies [W/m2]. 

 

 

Figure 14 External forcings used as input for the NN models: observed (black line) and reconstructed (red line) solar radiative 
forcing anomalies [W/m2]. The latter is synthetic time series under the assumption of stationarity (for attribution tests). 

 






































































































