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1. Introduction

During the last decades the field of the physics of the atmosphere obtained a rising interest by
research centres worldwidend by the general publicMeteorology and climate are of primary
importance for our lives, just think about the influence on see®rcivil protection, agriculture,
tourism, transport or industry. Furthermore, climate change is a matter of deep distarsbith
scientists and policymakers [1].

The study of climate requires long data sersesthis science rapidly grows habg hand
with the availability of meteorological dataypplied by weather stations, atmospheric soundings,
ships, buoys, satelliseand so on. Furthermore, thanks to the improvement of computer capabilities,
in the second part of the last century metéagicalclimatic models were born [2]. They can be
considered as a virtual laboratory in which (bemplex)climate system is repdoicedi with all its
sultomponents antklatedinteractionsi by the equations of fluid dynamics and thermodynamics
In the application of these models waust keep in mind the limitations typical of numerical
simulation of chaotic systems [3]. In genefalpics as weather, monthly and seasonal forecasts,
climate projections and related impacts are approached by dynamical modelling. Irespaws
for examplefor climate change attribution i.e. the effort to scientifically establish causes for the
recent warming of the Earth this approach is anatterof discussion. In fa¢tthe problem of
attribution is mainly addressed by thecadled Global Climate Models (GCMs) [4] a type of
meteoaclimatic model i and, although in last decades great improvements are achieved, these

modds still have some limitations.

In particular, the use of GCMs for attribution only partially akow apply a robustness
scheme. Robustness of the results relies on ditoam of independence among the different models
employed, i.e. reliability improves if the same results are obtained using different mibdels,
independence between them holds. As in many cases GCMs have a common ancestuditite
of independencesi questioned [5]. Furthermgréhe unavoidable abstraction and idealization
included inthe physics oflynamicalmodels does not make them able to completely represent the
climate system. GQusequently, in order to obtain strongesults, datalriven models have been
used in atmospheric sciences [6]. Among others, we underline the application of neural network
(NN) analysis [7] and Granger causality [8], which have been shown to be palyiaidaful in

many applications.



A multi-approach strategy permits to satisfy the just described condition of robustness
results obtained by different ways may complement edlclr and datariven models camlso
improve the performance of dynamical models [Bhsed onthese argumest datadriven
approachesdave found largepplication for the study of different topics related to climate and

meteorology.

An example isthe application ofrangerCausality (GC, [8])to the atmospheric sciences
GC establishes a criterion to find causal relations between time series. It is based on vector
autoregressive (VAR) models. In recent years diffestatiies inatmospleric sciences based on
GC have been developed ([9], [10], [11], [12]).

However, air interest is principally focused omather type of datdriven approachi.e.
neural network analysisan artificial intelligencemethod NNs can find nonlinear relationships
between a set of predictors and a fixed targée use of different set gfredictorspermits to
investigate the causes that may have generated the behaviour of the target. Several works that make
use of neural network analysisrfdimatic topics can be find in the scientific literature ([13], [14],
[15], [16]). In many cases in atmospheric sciences we are faced with relatively short data sets. So,
these problems are not deal witbep learnin@sfor big datatopics. In particula, a tool for small

datasets has been recently developed [17].

Another field of applicatiorf statistical modelling is that of meteorological and/or seasonal
forecasts. Usually dynamical models are used to obtain this kind of fore&kstsin this cag
some limitations exist, so one step further is necessary to improve forecasts, especially for local
area. Numerical models for meteorological/seasonal forecasts can suffer for their poor resolution
and for the necessary oversimplifications that do eoinit to well represent physical mechanisms
at the basis of the observed variability. @avnscalingechniques have been developed in order to
solve these problems. Downscaling can be divided in dynamical and statistical ([18], [19]). The first
one is basd on the use of dynamical models with improved resolution and parameterizations, for
example Regional Climate Models [20], to be nested into global models. The latter uses statistical
techniques, in particular past data arealysedn order to find a reltionship able to improve the
performance of GCMs [19]. Sdn this case we need long series of data. Often statistical
downscaling makes use of neural network analysis, as for example in a model recently developed
for seasonal forecast over the Italiamipsula [21], or for the downscaling of GCMs to a spatial
scale comparable to that of RCMs [22]. Despite of its relative simplicity, statistical downscaling

often overcome dynamical downscaling performances [19].
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Finally, as last example about the usenetiral network models in climate sciences, we
mention some works that make use of NN model s
for a very restricted area (at limit for one point) for a particular meteorological event. Pasini et al.
[23] developed a model for forecasting local visibility over Northern Italy. Marzban focuses on the
application of neural network models for phenomena as tornadoes in a series of papers ([24], [25],
[26], [27], [28]).

In the light of what has been said, theedbive of this PhD thesis is tevelop aneural
networktool able toinvestigate some open topics about atmospheric sciences. In the context of the
rapid changes to which we are witnessing, physical information of great usefulness can be achieved.
We will see that this tool can be applied to a wide range of topics, cgvenmide spatial scale
from global to localln fact we will face with topicsuchas climate change attribution (Chapter 3),
the analysis of a general circulation problem related to thealfed Atlantic Multidecadal
Oscillation (Chapter 4) andinally, the analysis of impastrelated to climate/weather conditions
(Chapters 5 and 6Furthermore, the consideration of miitiear regression analysis parallelly to
the neural network tool will be useful to both underline the goodness of the choice ofimeaon

method and to analyse the importance of linear o+lim@ar mechanisms.
So, this thesis is structured in the following way:

In Chapter 2 we introduce the climate system. Here we furnish some generalities about
climate, with considerationan its energy budgeandthe subcomponents in which it can be divided
T obviously from a theoretical point of viewhen we introduce also the hot topic of climate
change, related to the greenhouse efféf.conclude the first Chapter by introducing also tha ite

of weather and climate modelling.

In Chapter 3 we will explain the Neural Network tool. Due to the central importance of
neural analysis for this thesis, we start with a historical explanation of the development of this kind
of method, from the origins up to the typology related to this research.altechnical Chapter,
useful to fix the idea about neural network analysis. It is closed by a section that eixptietail

the tool developed during this thrgear activity, with its peculiarities and novel characteristics.

In Chapter 4 we start to Bow the results obtained with our analysis. Here we will show the
application to the debated theme of attribution of the mean global temperature beba\toeitast
150 years We find a lot of interesting resultsith the confirmation of results obtainedth a

completelyindependentmean of investigation. Our tool widllso beable to investigate about the
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causes that have determined the behaviour of global temperasuteimervals into the considered

period.

Chapter 5 is dedicated to thanalysis of the causes behind the behaviour of the Atlantic
Multidecadal Oscillation (AMO). AMO is a mode of variability of the sea surface temperature
anomalies over the North Atlantic Ocean. For many years it has appeared as a natural component of
the cimate system, but recently several worksdidk to anthropogenic activity appears. We insert
in this open debate with a completely different approacithis chapter we will show interesting

results.

In Chapter 6 we will show the first application ajur neural network tool to study impacts
related to weather/climate conditions. Here we focus on the analysis of the causes that could
influence forced migrations from the Sahelian countries to Italy. It is a hot topic in the political
agenda of many Eurepn countries. We will see impressive results, that relate climate variables

and harvest yields to the migration rate to ltaly

Finally, in Chapter 7 we conclude this work with an application of our ttmktudying the
impact ofmeteorological variablesn the dynamis of the observed quantity of a kind of sandfly
responsible for the leishmanias sprdadact, in recent years we observed an unuskpansion of
such sandflies over areas previously considered immune. Interesting results are achieved, showing

the power of our model.



2. The climate system

An introduction abouthe physics of theclimate system is necessary to face with tetes
discussed in this thesi€limate is defined as the average weather conditions on a long period for a
certain areaAs prescribed by the World Meteorological Organization (WM#&d)east 30 years of
data are necessary to define a climatic medimne availability of longtime data series for
meteorologicaparameters@s temperature, humidity, wind, cumulated raindadtl so onprovides
information aboutthe climate In these terms climate might seem sonmghchangelessand
stationary but, it is nato. In fact, climate has changéddue to different causésin all the history
of our planet and it will continue to change. Mxl-knownrecentclimate changes an example of

these changes.

Starting from a historical point of view, the study of the hurmavironment (our Earth) and
of the broader astronomic environment (t8en, theMoon, the planets)has giventhe first strong
impulse to the birth of the science of physisfierwards for a long pend the earth sciences have
had less influence in comparison to the physics ofiitifeitesimalb (quantum mechanics) and that
of the finfinitec (astr onomy) . Dur i otlg theloratisal and teahrnological , d
developmerg earth sciencek and inparticular atmospheric science®btainednew attention by
the physical andhe mathematical communities. The work by Lorenz of 1963 [3] on the chaotic
behaviour shown by simple deterministic nonlinear flomasy be considered as the Rosetta Stone
for the development ofhe modernphysics of climateAlso, the availability of a rising amount of
measuremestof the various meteorological parametevas a fundamental ingredient for this
developmentFurthermore, the bint of computinghas started thBeld of numerical modelling for
weather and climate forecasthanks to all these achievemertaringthelast decadethe physics
of the atmosphere hasbtainedvery important results and continuously risinginterest.In fact
weather and climate are fundamental actors in the everyday life of each of us, just think about on

sector as agriculture, civil protection, industry and tourism.

Saq in the following sectionan introductive description dhe climate system igrnished

while in section2.2 we introduce the topic of weather anlimatedynamicalmodelling.

10



2.1 Climate system descriptioni physics, feedbacks, equilibrium states.

In order to understand the complexity of the climate system just loBlgate 1 The main

driver in the climate systens the Sunin fact,it is thanks toits different heating betweethne

equatoral areasand the polethatthe atmospheric dynangmay exist.

The climate systermustbe considered as uiquestructure, but for scientific purposesist
convenient to idealize it asomposed by subystems that continuously interach otherThese
are theatmospherge the hydrospherg the cryosphere the lithosphere and thebiosphere The
atmospherds the aeriform part, from the Earth surface up to the open space. The part strictly
involved in the observedveather phenomen# the troposphere. Extended up to about 11
kilometres, it is thelensesportion of the atmosphere and it containgst ofthewater vapour. The
hydrosphereregardsthe liquid water on our planet Oceans, lakes, riversubterranean water
strongly influence the systerm@ wide spatial and temporal scaldsst think abouéat the heat
storage rolef the oceanic masses at the local influence of a lak€hecryospheras related to the
water inits solid phase (ice). Mountain and land ices, marine ices, permafrost qartalf this
component.The lithosphere consists in the rocky surface of the Eaghd its manifstations

(volcanoes in particular)Finally, the biosphereis all that concern the lively thingthat actively

interact with the climate system
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These five components as shown in Figure I are strictly related, with a continuous
exchange of energy and mass due to heaes| matterphase changes, radiative transfer, chemical
reactions, anthropogenic emissions, and so on. In order to understand all these ipbsgtsictibns,
thewealth of knowledgenustbe large This is understandable by the following li$tsomeof the
physical fnenomena related to the climate sysiestarting from the surup to the microphysicsf
the cloudd and the knowledge necessary to understand them:

=

the inner processes of the Sun, necessary to explain its electromagnetic spectrum;

the interactions bet@en the solar radiationi.e. the photon$ and the Earth atmosphere,
including the radiative transfer and the effects on the atmospheric chemical composition
(named photochemistry);

theprocesses of radiative transfesansmissionabsorptionemission

the dynamical processes of the atmosphere and the oceans;

the thermodynamic procesdbat happelin the atmospherand oceans

the microphysics of the clouds

= =2 =4 A -

the part inherent to the measurements of the meteorological paraimeteasher statins,
buoys, probe balloons, remote sensing (radar, satellite measuremesmsl so on;
1 the part related tadhe numerical modelling, for the past climate reconstructions and

forecasts.

In addition tothese physical processes, the climate syswns a peculiarity related to the presence

of manyfeedbackmechanisms. Ifact, the modification of a parameter can bring to a series of
changesn the system up tofartheralteration of the parameter itself/e now fix the idea with two
simplified exampleslust think to a rising in the mean global temperature. This variation leads to an
increasedevaporation from the hydrosphere that in turn leads to a greater cloudiness in the
atmosphereThe resulis a decrease in the solar radiatiahthe surfacedue to this cloudiness with a
consequent temperature reduction. This is a typical exampleeghtive feedback i.e. an
attenuation of the initial variation. On the other hand, for example, suppose a decreasing of the
polar icesdue to melting This leads to thdeaeasing of the surface albedo and so to a higher solar
radiationabsorption by the surfaces under the atklte. The final consequence is a risimgheair
temperature with an even larger ice melting. This positive feedback an improvement of the

initial variation. These two simple examples of feedbastksuld beenoughto understand the

complexity anl the variety oftheprocesses involved intiec onst ructi ono .of t he
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Furthermore, in the climate system multigjeasistable equilibrium states may existt
first, assume that wecan calculate an equilibrium state starting from certain fixed boundary
conditions. The question is if that state is stable or not. Generally, a complex system with feedbacks
shows a chaotic behaviour and climate lies in this category. We remember thati@ ketaviour
for a system means that we are not able to predict its state for a long time ahead. In fact, even if we
know with arbitrary accuracy the initial state, after a certain time the system loses the knowledge of
its initial conditions and goes t@nd unknown solutiondn the context of a chaotic behaviour,
climate system can also have gestsible equilibrium states. We know that a stable state is one in
which a small perturbation brings in any case to the restore of the initial cond@ortheother
hand,in a quasistable state even a small perturbation can leauhtabrupt change of the state of
the systemin summary, similar boundary conditionsy meanvery differentstates of equilibrium,
it is a real trouble in the case a strong modifan of one or more of the boundary conditions
happengas is the case for the anthropogenic emissions over last 150/200 gearsectio2.1.4).

In this context, appears clear that modelling and forecasting meteorological and climate dynamics is
a formidable challengdn the sectior2.2 we deal with the issue of modellingneanwhile other
generalities about the climate system supplied Again, we underline that herenly a preliminary
introductionon the matters furnished for morequantitativedetails we refer to tweextsi [29] and

[30].

2.1.1The Earth energy budget

The sun is thenainsource of energy in the climate systerhe engine for the atmospheric
motion is due to the differential heating of the Earth surfagdhe solar radiationThe solar
spectrum presents its maximum at the visible wavelengths),(W8h a wide percentage of
radiation reaching the Eartisoin the ultraviolet (UV) bandin this context thesolar radiation is
also called Shoftvave radiation (SW)At the mean Eardsundistancearrives an averagamount
of about 137@o 7& : it is the so calledolar-constant This quantity is noteally constantasthe
orbit of the Earth with its eccentricity leads to @annualvariation of the incident solar radiation on
the Earth surface about 143%0 & on January and about 13dbfa on July This difference is
not relevant for everyday life, as the seasonal cycle is dominated by the tilt of the Earth rotation
axis. Also, the eleveryearssunspotcycle leads talight variatiors of the solar radiationStarting
from the instrumental era the observed variation of solar radiation is a very smallinfrafctioe

total (lower than 1%).
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A fundamental variable related to the incoming solar radiation is the percentage that is
absorbed by auplanet. In average, the fraction that is reflected or {saektered towards the space
T i.e. not absorbed is about 0.300f the totals this quantity is the saalled albedo (a perfect
reflector has unitary albedo, while a perfect absorber haslieltld. The remaining fraction of the
solar radiation is available as energy for the climate system. In particular, about 20% of the total is
absorbed by the atmosphere (principally in the stratosgiyetiee Ozone layerand the remaining
50% is absorbedt the surfaceObviously,these numbers are indicative as thaktime situation
may be very different dumainly to variations in the cloud cover of the Ear8ince a reatime
measure of the planetary albedo is a difficult issue, we do not have-getom series of data and

the actual trend is unknown.

At equilibriumi considering long time periodthe absorbe@nergyby the climate system
mustbe equal tdhe energyeleased towasithe spaceThe latte is due totheradiationre-emitted
by the Earth surfacend by the atmosphereit has its maximumin the infrared part of the
electromagnetic spectruinit is generallycalled LongWave (LW) radiation Furthermoreas we
have more solar radiation at low latitudes respect to the polar areas while the teresstnigkion
happensiot in the same wafgFigure 2), some mechanism of transport of energy must exists.
transport of this equatorial surplus of energyluein equal percentag® both atmospheric and

oceanic circulation.

Detailed knowledge of the energy budget aridthe related temperatureertical profile
requires a deep knowledge of thdiedive transfeprocessesTr hes e are based on P
law. Application of radiative transfer theory permits better understand sources and sinks of
energy in the atmospher® simplify concepts as the atmosphere in radiative equilibramd to
understand the energpudgetat top of the atmosphere (TOA3boutthelatterpoint, the knowledge
of the wavelength spectrum of the LW radiation leaving the Earth is fundamental for the energy
balance. In fact, each gaseous component of the atmosphere interacts with L\dhraejp¢inding

on the wavelength of the radiation itself.

Some gaseous specia® responsible for the wedhown greenhouseffect the process to
which is due the habitability of the Earth.

the resulto increase the global mean temperafae® sectio2.1.4 for more details)
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the atmosphere in annual mean (in W#A). (b) Zonalmean of the difference between the absorbed solar radiation and the
outgoing longwave radiation at the top of the atmosphere in annual mean (in Wnfrom B1].

2.1.2 Atmosphere

The atmosphere is the central component of the climate system. It is a relatively thin layer of
a gaseous mixture, distributed over the Earth surfAcéarge percentage of the mass of the
atmosphere is found in the first kilometres of heights. More mgcmbout 99% of the mass is
Acontai nedod b ethedearth Suffacek @onsadyimgvthe horizontal dimensions of our
planeti about 20000 km from pole to poiethe atmosphere is aarrowlayer. Despite to this a
great amount of detail and a lot oftéresting and often complex physical phenomena are present

into this thin layer.

The classical division of the atmospherev@mticd layers (Figure3) is possible thanks tine
different properties abouhe chemicalcomposition,the temperature gradienthe stability of the
layer and energy consideratioi$arting fom the surface we find the troposphere, the stratosphere,
the mesosphere and the thermosphere. They are conceptually separatedsdogatleel pauses.
Below the mesopsse (about 80 km) we find constant concentrations for the inert gases as nitrogen
and oxyger(that together constitute the 99% of the tgtal¥o carbon dioxide is well mixed below
this height. Variable components are present at different heights. The wegiour is presenh
most partin the troposphere (especially in the lower part) and the ozone in the middle of the
stratosphere. The situation is complicated by the presence of rapidly changing substances as water
in liquid and solid phases, dust peleis, sulphate aerosols, volcanic ashes and so on. With a highly

15


http://www.climate.be/textbook/glossary_z.html#zonal
http://www.climate.be/textbook/glossary_z.html#zonal

variableconcentrationn time and space, aerosols pkay important and not well understoot
role in the climate systenbue tothe gravity force, the atmosphere is verticalbtratified (denser
layersare presennear the surface)it is the expression of thevell-known hydrostatic equilibrium.
Despite to theitow percentagevith respect tahe main components, the minor constituemntay
play a very important role. Water vapo carbon dioxide, and methane at®i1sg absorbers of the
LW radiationi i.e. thewell-known greenhouse gasested in the previous subsectioBo, the
atmosphere is important not only for the dynamact but also for the radiative transfer tife
radigion and then for the Earth energy budget.

The troposphere, in which the temperature drops off thigtheight up to about 10 km, is
the placeof the main meteorological phenomena. dhows a wide variety of phenomena at very
different spatial and temporal scales. Starting ftbedargest Rossby waves (abou6600 km) up
to local turbulent phenomena in the planetary boundary layers (on the scale of centimetres or less),
the troposphee showscomplex and often unstable dynamic€onvectionis a phenomenon of
fundamental importance in the troposphere, such as the vertical temperature profile at equilibrium is

driven by both radiative transfer and convection.

At higher heights the strabtsphere shows a rising temperature gradient in the vertical
direction. This is due to the absorptibg the UV component of the solar radiation by molecular
oxygen that brings to the formation of thell-known Ozone layefi triatomic oxygeni a minor
but fundamental constituent of the planetary atmosph@rene is a photochemically produced
specie, it is present in all the atmospheric column, but it has a maximum around 25 km of altitude as
said, in the stratosphere. The dDe is tke responsible for the already mentioned inverse
temperature gradient of the stratosphere and has a role of fundamental importance as shield for the
life-dangerous ultraviolet radiatioAlso, the gases responsible for the Ozone layer disruptien (t
so-called ChlorofluorocarbonsCFCs) are minor componernitsof the order of part for billion or
less.Despite tosuchvery low concentration, CFCs are responsible fomitel-known Ozone layer
depletion.Even a minor constituent of the atmosphere mayeha fundamental role for climate
dynamics it is the same for thabovementionedgreenhouse gases (in sectidi.4 we will see
deeper details)Furthermore, n the stratosphere also very interesting phenomena related to the
observedcirculation T i.e. the winter polar stratospheric vortéxmay have an influence on

tropospheric dynamics.
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Even higher, due to very low air density, we have no more absorption of the solar radiation,
so in the mesosphere temperature drops again with tgathEinally, in the upper atmosphere

temperature rises again due to phdigsociation of the air molecules.

As said, the engine of the atmospheric mdtics the differential heating by the solar
radiation on the Earth surface. Due to tlgenerallywe have air convection at low latitudes and
descending motion in the polar regions. I n t e
Earthatmosphere, we are faced wdtstratified fluid subject to convecti@nd in rotation with the
planet Things are made more complex due to irregular boundary conditicaigernation of
different surfaces as land and ocean, presence of orographic obstdabkgsbring to different
thermodynamic and mechanic properties. Desgit@l this complexityi that ses its expression in
the weather featurédswhen we consider long time average, atmospheric dyisdmga globally
coherent structurg Figure 4 Due to the combined effect of convection and Coriolis force, we have
three big circulation cells in the atnpdgere. To fix the ideas think about the northern hemisphere.
Starting from the equator, we have convection of air masses up to the tropopause, here the motion is
forced to proceeds toward therth Pole buti due to the Coriolis force the route is brokewith
descending motion at tropical latitudes (around 30M)is is the so calletadley cell It brings to
the weltknown subtropical high-pressuresystems. Then we have tlkerrel cell up to middle
latitudes, where we have again convection in corredgrace with theso-calledpolar front Finally,
with the polar cell the path is completed, with descending motion &tdtib Pole. In proximity of
the tropopause, at the latitude correspondent at the closure of the Hadley and Ferrel cells, we find a
pecular i relatively narrowi belt of strong winds, the subtropical and the p@astreamsThe jet

streamsre around 11 kilometeend can reach speeds of more tB@@km/h.
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Subtropical jet

Polar Jet

North Pole Equator

Figure4 A representation of the mean globatmosphericcirculation, from the equator to the north pa¢ (the same is for
southern Hemisphere)Here we can find the Hadley, Ferrel and Polar cells, a highlight of the jet stream is also represented. More
details in the text.From United States National Weather Servidetps://www.weather.gov/jetstream/jet

2.1.3Hydrosphere

The hydrosphere consists in all the watethe liquid stateon the Earth surfacéDceans,
interior seas, lakesjvers and subterranean wateesr e t he fAcomponentso o
Obviously, the oceans play the most important role. They cover almost two thirds of the Earth
surface, so the solar radiation arrives mostlylem Due to theirhugemass and to thehigh heat
capacity theymustbe considered as the climate system energy rese@o@éansare considered as
thermal regulators for the global temperature. In terms of dymsamscwater is denser than the
atmosphere, the most active part of the oceans isutti@ce mixed layer the first 100 meter3.
Below this one another layer with peculiar characteristicd.e. the thermocling is present.
Further dowrnwe find the deep oceait has more constant properties respect to the layers above, in
fact it reactsto the external perturbations in a very long time (on the ordedechdesup to

centurie$.

Oceans show a slower circulation thiwat ofthe atmosphere, a global circulatiggre is
present,and a complete cycle is accomplished in about one century. The ocean circulation in
average conveyheat from topical areas to the poles dtm the different heatindpy the solar
radiationi see again Figure.2Ve have ot only horizontal circulation. Overturning of big ocean
masses is present at several locaionthe ocean and in the interior sekese motiog with
descending and rising currents are the engines for the ocean circutdlbandthey are due to
mechanisma related to temperature and salinity features of the oceanic masses. So, a strong

influence in these phenomena is due to events as ice melting and rain precipita@aah both
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modify the surfacesalinity conditions.Circulation at smaller scale is presanrtd it influences
climate at a regional level’he esponse time to an external perturbation varies from weeks in the

mixed layer up to centigsfor thedeep ocean.

Ocean and atmosphere are strongly coupledsg¥rinteractions occur at several temporal
and spatial scaldbrough exchange of matter, energy and momentum. Evaporation of water vapour
is a relevant component of the hydrological cycle, together with cloud formation, preaipaati
runoff towards theocears. The global amount of water vapour depends strictly on the balance

between evaporation and precipitation over the oceans.

Inner waters, as lakes, rivers and subterranean waters are addevant part of the
hydrological cycle and furthermore can have an impact on climate at the local scale, e.g. rivers are
important for the salinityf waternear the coast or a lake can influenceng termprecipitation

and tenperaturdrendin theneighbouring areas

We conclude this subsection by talking aboutt@oimportant role for thecears. They
may be source,sink or reservoirfor other important atmospheric components as, for example,
carbon dioxideSince CQ is slightly soluble in watergbout onethird of the total global emissions
from fossil fuels burnings washed out of the atmosphekeith a consequent reductiasf the
greenhouse warming due to this gas. However, we do not knamwlongthe oceans wiltontinue
to provide this serviceWe know that the solubility of C®in water decreases with increasing
temperatures. So, ocescould become saturated with a consequkntdown or everaninversion
of this uptakelf at lastit will become a sourcef carbon dioxide, a strongositive feedbackor

global warming will occur.

2.1.4Greenhouse effect

The abovementionedgreenhouse effect is a popular term given torthe of the atmosphere
in the energy budgetfdhe Earth, that brings to @aing of the meamlobal surfacetemperature.
This name derives from the analogy with the garden greenhibymamits to the sak radiation to
enter and warm the gobut the LW radiation emitted by this latter is entrappetausethe
greenhouse is opaque to the infrared wavelengths. Obvjdlislparallelism is a bit forced but this

term is widely useih boththe scientificand the popular lexicon.

The role of the panels of glass of the garden greenhouse is replaced by some gases in the Earth
atmosphere Almost all the atmospheric gases are transparent to the SW radi@hienmain
constituents (molecular Oxygen and Nitrogen) are fairly transpalsmto the terrestrial radiation,
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butsomei minori componentsrenot. This opacity is dumainly to the absorption bands of water
vapour, carbon diade, methane, ozone anchet minor componentshat are really present in the

IR frequencies. Although they represembw percentage of the total of the atmosphere, these gases
canbe easily measured except for the water vapour due to its very ldetime 1 and all of them

shav an unequivocal increase starting from the industrial era

Reconstructions from ice core analysis sh@luesfor carbon dioxide comprises between 180
and 280 parts per milliom volume (ppmv) during at least the last 400 thousands of yed#§ [
while for methane on the same period we are between 400 and 700 parts per billion in volume
(ppbVv)[32]. In the last 150 years weassed by 280 ppmv up to 410 ppmv for-@@d by 700 ppbv
up to 1850 ppbv for methaneAlso, for other greenhouse gasgaHGs)we see similar increases.
Furthermore this rising is unequivocally due to human activities, since the origin of the
atmospheric carbon can béscernedby isotopes measuremen&3]. These two gases are twb o
the more powerful GHGs, as they have strong infrared absorption bands located in correspondence
to wavelengths typical of the terrestrial and low atmosphere emission specthey block part of
the radiation emitted towards the space.

Other pollutantsin particular sulphucontaining gases like S@ndH-S, are responsible for
aerosol production that is reldteo global cooling production and in part have limited the warming
during last decades. Sthe situation iscomplex we have various conflicting contributes to the

global mean temperature behaviour.

Il n term of physics, simple energy budget c
contributions of greenhouse gases at the levels einprestrial era, is respsible for around 30
35K of increasewith respect to an Earth without atmosphefde greenhouse effect is a
fundamentall and positivei ingredient for the birth of life on our planet as we knowntfact,
without atmosphere the Earth would be compjefebzen. If a minority percentage of gases is
responsible for an effect of around-3BK, it should be evident that a strong modification of their
atmospheric concentrations it is enough to have serious problems. Furthermore, the climate system
doesnot kehave in a linear wayn the contrary it is a complex system with dioear dynamis
and many feedbacks, so even the rising of concentratfothe GHGs does not involve a
proportional temperature increase. A strong modification of the boundary coaditiaid bring to

unexpected new equilibrium states as mentioned in the introduction of s&dtion
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Thetheoryrelated taheincrease of the GHG#ds confirmation in the observed temperature,
that shows a warming trend starting from the-ipdustrial era, although with some exception
(Figure 5)[34], [39], [36].
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Figure5 Global mean surfacegmperatures from 1850 up t@019. Yearly (black dots with uncertainty bars) and decadal
smoothed (blue curve) temperature series are shown. Data from HadCRUT4 dataset. Image by Tim Osborn (CRU, UEA).

If global warming it is due to the rising in GHGs concentration is a questionaradiy faced
with the global climate models (see sect@d2 for a description about tinefunctioning. The
scientific communityagreedo attribute the recent warming to GHGs emissions by anthropogenic
emissions. As said in the introduction, a discussin the theme of the attribution is faced with an

original method in chaptet.

2.1.5Climate Observations

As is typical for many sectors of physics, measurements are of fundamental importance for the
development of meteorological and climate research. For both past climate analysis and for future
climate forecasts we need the data. Historically the first quanétatieasures related to
atmospheric sciences have been that of temperatures. Up to the middle of ten@0y, data

were furnished by in situ measurements or, at most, by atmospheric soundings by beiaibes

In order to determine past climate tdsri in particular temperature variatiofisa lot of
indirect proxies exist as ring trees analysis, geological analysis prabably the most importaint
ice coremeasurementsEspecially the last, as said in the previous subse&ibd [32], are a
fundamental instrument fdhe temperature determinaticover the lashundreds of thousanas

years.
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The measure of actual climate parameters is important aldorfarasting.Sincethe system
under observation is huge and very compthg meaures should span the globe, as in the vertical
that in the horizontal dimensions, in the deep of the oceans and should alsohigiveemporal
resolution. Of fundamental importance for these purposes is the birth of the satellite era in the
1960s nowadys most of the climate research is based on satellite measurehtentschniques in
use involve the field ofemote sensingThe measure of the parameter of interest is performed
remotelyi in an indirect wayi exploitingthe properties of thelectromagnetic radiation. This last
can be reflected or scattered sunlight, thermal emission by the earth surface or by the atmosphere
molecules or even backscattered by a laser source on the satelliteMisadiures of vertical

profiles of temperaturdgumidity, chemical composition and so arepossible.

Once obtained the radiometric measure another complex field floégngame, that of the
retrieval theory In order to obtain the measure for the parameter of interesfhuseapply some
complex invesion techniques to thenathematicalformulae that relate the radiation to the

parameter itself.

In this chapter a basic description of the climate system supplied. Obviously here we
cannot be exhaustive on this topic, so we again rematitetaibliography for more details2p),
[30]. In the nextsectionwe face with the topic ofveather and climatsodelling This will give us

a clearer viewon thedifferences betweemeteorology and climate.

2.2 Weather and climatemodelling

Despite to theistrong relationshiy climate and weather preseaso strong differencesThe
objective of the scientists is to understand the phyditke two systemi orderto makemodels
able to do weath@slimate forecastandto reconstruct the pasflthoughthey are strictly related,
some differences exist, so also the approaches for modelling are diffdeezatwe want to give

some qualitativénformationon how it is possibléo perform such kind of forecasts

Weather and climate modédty to repoduce in dwvirtual laboratorg the behaviour of the two
systems by solving the equations that represent the physical mechanisms if8dvéds a real
demanding computational problem, in fact, it requires the resolitiofiten approximatedi of
complex, norlinear equations for each point of a global latitlmiegitudevertical gridand for
many time stepsBoth weather and climate modelling are related to da&saplay a doublerole;
they are used as initial condition in te&arting phase of the models and they are useail tals

validate the output of the models themselves.

23



Weather forecasts try to simulate the future weather conditions up to a maximurilsf 10
days.In fact, aswritten at the beginning of this chapter [3het system is chaotic with a strong
dependence on the initial conditions. Furthermemme of the equatisrare solvable only in an
approximate way, so we have thecstled predictability barrier. Even if weould knowwith
absolute precision the initial conditiofise. the most important meteorological parametefsjur
systemi and it is not our casewe annot perform reliable weather forecasts up td83@ays.The
equation of motion regards temperature, pressure, wind, air humidity and they arecétiedso

primitive equations:
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In these equation® Oh ando are, respectively, the horizontal and the vertical wind,
"Q ¢mO Phis the Coriolis term” is the air densityr) is the atmospheric pressuf®encloses the
forcing terms and finally— “Yn jn ® is the potential temperaturdt is a deterministic
eguations system, if we know its state at a fixed (tweecancalculate the state for a future time.
We note that for the weather forecasts the conditions of the oceans are fixed at the starting time, in
fact the changes isucha shortrange (57 days)do not modifyin a significant way the atmospheric

circulation.

Climate modellingmustconsider more lpysical processes than weather forecasts. In riagt
the evolution of the ocean is important as the interactions with the biosphere, the variation in the
chemical composition of the atmosphenatters we have also to consider the radiative transfer
proaesses and so 080, for this topic we have a different model for each component of the climate

system wit h ccncdodioatemll tieercampdndnis in order to represent properly all the
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physical interactions between them. Thelkaate models i@ also called Global Itnate Models
(GCMs).

A guestion ismmediatelyraised by the comparison with the weather forecasts. If the latter are
possible only up to X@5 days, how we can perform forecasts up to decades? First dfeall
request is different, while weather forecasts concern the knowledge of the detailed weather
conditions for a very small spatial scale, with a climate forecast we are interested in a mexdn state
a variable as, for example, the global mean temperatughermore, if weather forecasts are a
initial conditions problem, climate forecasts are a boundary conditions one. For climate forecasts
the initial conditions are not important as the systeas said loses quickly memory of the initial
state. Instad, a fundamental role is played by the boundaoy externali conditions as the solar
radiative forcing, the greenhouse gases concentrations, the features of the Eaatfdosbiton. In
this terms not only climate forecasts make sense, but they lace pssibleThe most important
climate forecasts are that related to the global mean temper@tweral climate models show a
good agreement with the past temperatures [1]. Furthermise somdests have been performed
for future projections. In p#cular, the idea is tahang the value of some of the most influential
variables as the greenhouse gases concentiiagon keeping fixed the concentration of GHGs at
the preindustrial leveli and perform the forecast [1]. The results confirm thatrdoent warming

of our planet seems due to the increasing of the GHGs concentrations.

As we said in the introductiorand how we will see ilfChapter 3, a note moved agaitisé
GCMs is that they have a common ancestor andusgtbe considered too similar to consider their
results sufficiently reliable. In Chapter 3 we focus on this point and show that with a completely
different and independent approach we are able torotitaisame results and also deeper details in
the same and also in other open topics of climate sci€asese will see in the following of this

thesis)

To conclude this introductive chapter about the climate system, we want to underline the
complexity d the problem that is generally faced with the dynamical models. Also related problems
are generally faced with this type of model, although the goodness of this approadussiies
are raised, so the idea at the basis of this thesis is to follow@eteiy independent waiyi.e. with

datadriven neural network modeisto gain knowledgén this field of research.
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3. Methodsi Neural Network analysis

The djective of this thesis is tetudy open poblemsof the atmospheric sciencesing
artificial intelligencemethodsThe ideasto make use oNeural Network (NN) analysi$o in this
chapter NNmodelling is explained, starting from fastorical point of view up to the detailed

description of thédN modelused for thisvork.

Neural Network modéig is inspired by neurosciencel fact the human brain with its
p T interconnecting neural cells (or neurongpresentthe mos efficient parallel calculatogven
if asingle neuron can be compared to a processor with a modest calculationDym®etd to its
rel at i vcotkgpeefil, o w ed h u meomputegona mamy tdsksotitsextraordinary
capabiliy consiss on the presence of a massive network connection between the neurons
themselves.So, what computational capabifitcould be reachedwith a massive network of
conneckd neuronsThis questiorhas inspired a lot of scientisihdit is at the basis othe lively
field of neural network modelling. Frospeech andnage recognition up tgeophysical research
applicatiors, NN modellinghas beena hot topic during last decadés.particular, physistslook at

NNsfor data analysis, modelling and prediction.

NNs can be separated into twiarge categorieshased orthe learningtypology. We talk

aboutsupervised learningrhen we try to reproduce a ser@flatac o ho f8 o starting from a

set of (predictorse & Foo B o - ¢ is the number of observatiariBhe output of the NN h
w M ho is supervisedn order to reproducthe responséor target)data« , minimizing anerror
function (or objective or cost functiof. Usually, egression problemare approached with
supervised learningAt the opposite, iunsupervised learninghe model isupplied only with the
input data and then tries to investigate about the nature esie thata Cluster analysis or

classification problems are typicahsupervisedearning applications

There are many types diNs. The most common type is theedforward one, in which the
signal proceeds forward from the input to the output (passing through intermediate layers) without
any feedback. This typologig the most suitable for the purposes of this woirk particular tle
multilayer perceptron consisting in one or more hidden layer(s) inserted between the input and the

output (see next sectioin)is thetypical approach for regression problensse [7] for a review of
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similar geophysical applicationsith artificial intelligence methodsOther types of NNs exist
Among otherswe cite recurrent neuralnetworks(RNN), in which internal loops are present i
order to keep memory of previous computations. In this way previous informatiqrecsist and
drive trainng of NN towards better results, so RNhay bea good instrument especially for

forecasting.

This chapter is organized as follow: in sect®h weintroduce the argument of NN from a
historical point of view, this is necessary in order to introduce the arguwtm@ criterion of
increagng difficulty order; in section3.2 some generalities about the central problenthef
nonlinear optimization in NN analysis are givamdwe also talk about the problem of overfitting
and on the methods for prevent then in section3.3 several optimization methodgill be
described in section3.4, we will talk on howwe mayorganizethe avidlable data forobtaining
betterNN training; finally in sectior8.5 a deep discussion on the general structure of the NN model

in use for this thesis supplia.

3.1 From McCulloch and Pitts to multi -layer perceptron: a historical summary

The model ofMcCulloch and Pitts in 194838 can be considered the first NN model.
Following the rationale of neurosciences, we know that a neuron is physically connected to its
neighbours, each of which sends an electric impulse Ibthe total stimulus (given by the sum of
the single impulses)vercome a certain teshold, the neuron becomactive andin turn send a
signal in outputln a similar way aneuron in the McCulloch and Pitts model corsadta binary
thresholdl i.e. it receives a weighted sum of inputs from its neighbours and if this sum is higher than
a fixed threshold the neuron gives 1 as output, otherwise 0. In formulaeisithe signal from the

Q  GOneighbourtheneuron will giveasoutput:

where0 are the weights angis thebias or offset parameterOis the Heaviside step function:
'O4 pifa mandOd mif & T With a tuning on the bia®we can change the level of
the threshold An algorithm for the calculation of the best weights and bias still did not exist so,

from a practical point of viewthe model was not very useful.

The next step of NN modelling was achieved thanks tgéneeptronmodel of Rosenblatt

[39], [40] and by a similar work by Widrow and Hoff4fl]. This perceptron model conssh a
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layer of input neurons connected to an output lajfggufe 6). The improvementrespectto the
McCulloch and Pitts model consssh the introduction of &arning algorithm thanks to which the

weights and the bias parameteas eiowbe calculated.

Input layer
_—
Output layer
_— _—

Xk

Figure6 An example ofperceptron model with four inputs and two outputs.

An output neuron igivenby:

wherew is an input,"Qis thetransfer(or activation) function to be specified) are the weights
connecting the inpufXto the outpufandw is the offset reladto the outpufQOnce the inputs and
outputs are fixed, the NN is trained to give the outpuds close as possible to the target This

is done ly adjusting the weights iaquation(2), sothatthe problem consisin the minimization of
the error function with respect to the weights and bidsemselves More details about the

minimization(also calledptimizatior) will follow in thenext.
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It is important to highlight the possibility to use different transfer function lan the
Heaviside step one. Thatter is useful when the outpstabinary variable, for example categorical
(rain/no rain). So, in general diffent transfer functionsan beused, as thiogistic function that is
aso-calledS-shapedunction:

w - Pe o

Forw© Hbthis functionhas an asymptotic value of 0, while@® Hbit approaches the
value of 1. The transition from 0 to 1 is graduas,the logistic function is alsmonlinearand
differentiableit is more useful than the Heaviside st&prthermorenowwe cananalysethe role of
the weights and bias. Consideritfge univariate formQ0 & @, we see thalarge values ob
give a steeper transition from 0 to 1, andva® Hb the activation function approaches the
Heaviside stepFurthermore, small values of givesa quasiinear transition While increasingo
slides our function along negative values of tkexisand viceversa Analogous considerations can
be done with different transfer functions. Another commonly used sigmoidal shaped function is the
hyperbolictangent

Qw 0 dRw H8 T
Q Q

For w© Hb this function has an asymptotic value of +1, while o? Hb it tends
towards-1. So, the range of the hyperbolic tangent is betwgent can be demonstrateddgCun
et al, [42]) that the use of the logistic function brings to a slower convergence in comparison to the

use of the hyperbolic tangent, the latteris usually preferred.

After an initial excitementsome limitations of the perceptranodel appea&d In particulag
this approach was useful for linearly separable problems onlyinB@ance the perceptron model
fails if it is applied to the Boolean logical operator XOR (the exclusive OR), a detailed explanation
can be found in43]. Sa scientists realized that a further step was necesharyarticular the
placement of additional layer(s) of neurons between the input and output layes pegie nore
power to the neural netwarkn particular to fit any nonlinedunction the multi-layer perceptron
(MLP) was born.

At this point of the history the problem was again the lack of an algorithm for the
minimization of theerrorfunction for this new architecture. So, the interest aboutviiNsh until

1986, when Rumelhar#fl] rediscovered an old algorithm by Werbd$][and apply it to thenulti-
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layer perceptron problenmin reference td-igure7, in a MLP with one hidden layer the input signal

@ is mapped into the hidden layer of neur&aby:

where™Qand"Qare the transfer functierfor the hidden and output layer respectivélyandy are

the respective weights assand®the biagparameters

Input layer Hidden layer
_—
Output layer
_— _—
- = _—
VITI
_—
Xy hj

Figue 7 A Multi-LayerPerceptron NN with onénidden layer
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As said, asupervised NN is traineoh orderto reproduce a fixed target. This is done by
minimizing an error function, that can be defined in different ways. For example, a good choice is
theMean Squared Erro(MSE) calculated on the output of the NN model and the target:

0 0w W h X

LI
v C

here,® is the output of the NN model whilé@ is the target data with phg8 h) different
observatios, & is the summatioron the number of outpsit The constanpf¢is traditionally
adopted,it is helpful in the calculation of the derivative @f In fact, he problem is to have an
optimization algorithm in order to minimize resgect to the weights and the bias, i.e. to find the

best value for tbseparameterand so thébestregression law. fierwards wewill talk about the

details for this optimization procedure, now we can say that it is a very difficult problem. In fact, it
consiss in the researclof the minimumfor a multivariable functiorand such a research can be
performed analyticallyonly in a low number of casesurthermore, depending on the input
variables scaling, the convergence appdar be inaccurate and/or too slow for operational
purposesSo,acommon procedure is toastdardize data before to apply thearNN analysisMore
scalingtypologiesexist for examplethefic | assi ¢ 0 n or n(a lordez @ ohtam rdatao f d
with zero mean and unitary variancbyt in several casedso a rescalingf datais used(in order

to obtain a series betweerm or between 0 and)1In the following we will show also another good

reason fomormalizingdata.

The scaling of the output @lsoimportant, in particular the best choice is related to the
probleminto exam i.e. if it is a regression or @assification.This is related tahe choice of the
transfer function for the output layer (tlgein formulae6). For example, if we try to classify the
output into two classes, it would be useful pl&@é> O A T ¢k. On the other side, if the output
datk is unbounded, it could be a problem limit data betweerbecause these limit values are only
asymptotic fotanh In this case is good practice to normalize data betweg@® 1o in orderto
improve the convergence velocityAnother possibility is to make use of a linear output transfer
function, for example for the MLP with one hidden layer it means that the output will be a linear

combination of sigmoidal shaped functions.

In literature, a univocal definition for counting the number of hiddeersdoesnot exist
This number is considered sometimes as the effective number of hidden layers, while in other cases

it is obtained as the sum of the effective number and the output layer. In this thesis the first
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convention is adopted. An immediatepresentation of the sitture of aNN can be giverby
sequentially listing the number of neuroof each layer for example a 4-1 NN is a neural

network with 4 input, 4 neurons in the hidden layer and 1 output.

The total number of weights and bias coefficients in a NN witlceire¢ € € can

be calculated as:
0 € pé¢ € pes Y

Wherethe number of weights is ¢ € € ¢ ,andthe number of biasés ¢
¢ . In a multilinear regression withpredictors, the corresponding number of coefficienés isp.
As we can see from the above formulae, the number of parametMLR NN&¢ & pis
widely ogreater t han the @ c dNotrexdss  law tha fixed themu | t
optimal rumber of parameter to be used in relationship to the number of the observation in a
dataset) . Generally, it is better to fix a NN structure withL 0 , but in many cases (especially
in geophysical applications) this in not possible, aswesfacd with limited datases Furthermore,
we can have strong correlations between predictors, so a Principal Component Analysis [6] is
sometimes applied before NN analysisorder to work with a smaller (the leading few Principal
Components) number of inputse any casewe underline that geradty it is a good practice to fix

oL O .

Regarding the case with more than one output, two approaches are possible. A NN with
multiple output or more NN with one single output. The choice degp@mdhe correlation between
the outputghenseles for exanple if they have zeracorrelationthenthe best choice is to work
with more NN with a single outpu®bviously,the multiple output architecture is the best in case of

correlated output in this case the NN can be ablectmsidersuchrelation$ip.

Finally, we notean interesting factlf in a NN with one hidden layer we place two linear
transfer function, therhe output will be simply a linear combination of the inputs. V& see that
the presence of a nonlinear transfer function, at feashe hidden layer, is fundamental to obtain

regression law witmonlinear characteristics.

3.2 Optimization T generalities

As said, the central problem in NN analysis cossisthe researcbf the optimal value for
the weights and the offset parameters. This is digneinimizing the error functionC, so it is a

mathematical analysis problem, i.e. the research of the minimum for a multivariable fiyimctan

32



case these variables are theights and biag) it is anonlinear optimizatiorproblem Generally,it

is addressed with theell-known backpropagationalgorithm It consists of two different steps: the
first one permits the estimation of the gradienCpfust thanks to the bagkopagationof the NN
model error; whilethe second step is the descent towards the minimu@ Bbr a multivariable
function it is a complex problerihile the first part of the algorithm is a standard one, the second
can be performed with several methods, this section we describe the most importamg from
both a historical and gractical point of viewUsually he term back propagation ieferedto the
entire algorithm (independently from the method used fod#seent or only for the first part of it

(the computation of the gradient so it could bring to some ambiguitieblere with back
propagatiorwe refer to the first part of the algorithm.

First, to show what is the meaning of nonlinear optimization, we now describettmmth
linear (e.g. the research for the coefficients of a polynomial fit) and nonlinear optimization
problems. Consider theelation:

"Q Q oM ® is a function (also nonlinear) of the predictor varialold® o andv B 0 are
the parameters (the analogous of weights for NN) to be determined. As we cdniseelinear
function of the parameter®) . So, in this case the error function to be minimimed quadratic

function of the parameters
0 W W h p T

so, it has only one global minimum. For NMe have seen that the weiglits are the variables of

a more complex function as the hyperbolic tangent (in any case a nonlinear function) so, the error
function is related in a nonlinear way to the wesghemselves. Itheseterms, appears clear that

will present a more complex shape, with a lot of secondary minjreathatwe have no guarantee

that the optimization algorithm will be able to find the right minimiuire. the correct value for the
weights.For NN analysis the research forthe vatud t he firegression coef f

issue.

Historically, for the descent thevell-known gradient or steepest descanethodis used It
is aslow methodnot more used for computational purpqsest for its historical importance we

now describe itIn the next sectiomve will describe other interesting (and more used) optimization
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algorithms.For the sake of simplicityn the following derivationt is convenient to define the error
functiond in reference to a single observation of the trainingsdta

P , , -
— w w h
C PP

t he @ oC (equation@)) i® the mean ob over theN observationsd is the summation on
the number of output€onsidering now the MLP with one hidden layer defined above by equations
(5) and(6). If we placed ®, 0 ® ande Q p, we can redefintheseequations in a

more usefuformat:;

M Q O w h P C

now the summation ovdrandj starts from zero (the bias term). Furthermore, we can represent all
the weights and bias of the two lagef our NN with a vector: . So, in backpropagation first of all

the weighs and bias are randomly fixed (generdtiffowing a certain algorithm, as weill specify
successively)and then are updated of the quan¥ity related to the gradient of the error function

0 by:

— is a scale factor callel@arning rate it is the stepfixed by the algorithmalong the direction of

the gradient 0b . Explicitly for the hidden and the output laggf14) can be rewri as:
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Now we see how to explicitly calculai€: , for both the hidden and the output layers. Firsalbf

we define

In this wayequations (12and(13) beamme:

~

Q Q6 h w Qo 8 P W
Now, in order to calculat¥:: , we can start with the explicit calculationtbe derivatives ob:

1o T 160 : To

O T6 10 5 N ¢n

here we have used theell-known chain rule for the derivative calculatiofrurthermorewe have
defined , that is callegsensitivityof thed  GQoutput neuronAgain, applyingthe chain rule we

can calculate the sensitivity:

To T0 Tw

73 5o ® O @ h cCp

—

where we explicitly differentiate the error function (equation (1)). Consideringthe second of

theequatiors (18):.

1o
1o

Q8 CC

At this point we have all the ingredients to complete our recipe, asjngtions (20), (21),
and (22)into (16) we obtain the expression for the weights and bias update relative to the output

layerfor our MLP network:
Y0 49 Q - w @ 08 ¢Oo

If we use as transfer function for the output layer a linear one, we"Qavep. Following
the same rationalei.e. applying the chain rulewe can calculate also the expression for the update

of the weights connecting the input to the hidden layer of the MLP:
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The equation$23) and(24) permit to complete our algorithm. At the first iteration, the MLP
model starts with random values for the weights, it gives as outpytfrom which the error is
calculated byd . At this point the error is back propagated in order to update thghtsei
connecting the hidden to the output layer and then again back propagated to update tlse weight
connecting the input to the hidden lay@&he procedure is iteradeuntil a certain convergence
criterion is reachedthe single iterationis calledepoch So, the process consists in mapping the
inputsforward and therback propagatinghe error to update the weigldadthis is repeated until
0 satisfies a fixed convergence criterioks said, we have applied throcedure to a single
pattern of data, i.e. data relative to a single observation. We can also consider more observations in
order to better exploit all the information contained in the dataset (we see deeper this aspect in the
following). The procedure reairs the same, with the global error functi@n calculated by
averaging on all the single error functiahs (each calculate separately for evedy What was said

above holdsilsofor a more complex NN with more than one hidden layer.

The convergenceriterionis related to the value @he error functioro: it is a very subtle
matter A MLP with asingle hidden layer andsafficient number of hidden neurons is able to fit a
training dataset with arbitrary accuraky.e. until reaching & 1 value But we have to keep in
mind that data contain both signal and noise, so we do not need for a NN able to reproduce both (a
condition known asoverfitting) but we search for modelable to reproduce quite welhe signal
and mostly to generalize to data not used in the training proceborprevent overfitting, the
classical procedure conssh dividing the data into two patt®ne for training and the other for
validation The error function for the weightslculation is estimated on the training set, so at each
epoch its value will be decreasing. Correspondirigig calculated also on the validation ¢ett
used for training) on which it will first have a decrease and starting from a certain epoch an
increas€Figure8). This indicate that, outdated the epoch corresponding to the minimum, we are in
overfitting. So, that epoch is considered a good choice for stopping the training, this&lyhe
stoppingapproach. A fixed law for the fraction of ddtabe dedicated for validatiadoes not exist
empirically about 10% of data is used as validation(setre details about the question of the

dimension of validation set will be given is secti®a).

A further training relatedoroblem isdueto the presence of several secondary minimum in
the error function. The risk is to income in onetluk relative minimumwith a consequent poor
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fitting. On the other handreaching the absolute minimum can give overfitting. One way to
approach this probm is using an ensemble strategy. The trammglation procedure is repeated
several times, each with differenitial values for the weights of the NN, in order to better explore
the multidimensional space of the error function. The choice of thalimeights can be done
randomly or following an algorithm as that of Nguyen and Widfd@. In this way there is a high
probability toobtaina goodregressionaw with no noise fitting.

CA

/ validation

training

-

epochs

Figure8 Cost function calculatedespect tothe number of epochs for training (black curve) and validation (blue curve) sots.
the training setCis a monotonically descendent function, while on the validation set it has a minimum. In order to prevent
overfitting, it is a good practice to stop the training at the epoch correspondent to this minimum (early stopping procedure).

The number of hiddemayers andneurons haslso an influence on overfitting. In this
chapter we have described a MLP with one hidden layer, but the same reasoning holds for more
complex structures. So, the questions are: how many hidden layers are necessary? How many
hidden nerons for each layer? Several studies [52], [53] and ia&E shown that a MLP with one
single hidden layers able toreproduce arbitrarily well any continuous function, provided that a
sufficient number of hidden neurons is used. A singohgle hidderlayer MLP can be a universal
approximator However,there is no generaheoretical indication on the exact number of neurons,

only with empirical tests is possible to fix a congruous number. Intuitively a high number of
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neurons will bring to better inteopation capabilities but also to a higher riskad into overfitting.

So, the practical indication is to performaveral tests with the same trainimglidation procedure
earlier described, making use afifferent number of neurons in order to fix tdeal numberin

the next suksection,we introduce also the most common approach used for overfitting preyention

theso-calledregularization

Overfitting is the most delicate issue of NN analysis. As explaisederal cautionary
methods existnow we introduce the most common approach, named regularization of the error
function. This method acts in a direct way on the error function previously define@h&)idea is
to add penaltyparametes to the error furt@n. In terms of formulaeequation (7) is modified as
W
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hereD is a fixed positive constant called the penalty parameter (or regularization parameter or
hyperparameter)) are all the weights/bias of NN. We see that with a positive and comstaet
selection of larger0 is not encouraged because this would increase the valGe lof other
words, if we fix a large) we penalize larger weight3.he effect of the penalty can be better
understood in terms of the transfer function. For example, considering the hypeabgkntt if

0 @BL p we can approximate the function with its first term of Taylor expansion:
w OATEDG 0o

So, if we adopt small weights, the nonlinear activation function become a limeatsing larged
for penalizev brings to decrease the nonlinear capabilities of the NN model and so to prevent

overfitting.

The scaling of the predictor variablalsohasa strong importancen fact, if we have two
predictors, the first of which is much larger in magnitude that the second one, this latter must have
higher weights than the first in order to hawveomparablénfluence in the NN model. But the
penalty parametay is the same for all the weights (7b) and then it will act more strongly on the
second input, not allowing it to take large weights. A similar analysis holds for multiple target
cases. So, the generabpedure is tatandardize datheforeto usethemfor NN training. Classical
standardization (zero mean and unitary variance) may be used, but also other methdds.gxist
the normalization of data betweerp or between p#1t Using thisshrewdnessywe may be sure
that the regularization will works properly.
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A way to fix the value of the penalty parameter isdoyapproachike the early stopping
previously described. The dataset is divided into training and validagwearal trials are performed
with different values of). Again, the value ob correspondent to the minimum on the validation
set will be the optimal one.

In this section we have presenteduate exhaustive introducticaboutNN analysis, starting
from the structuref the network ugo the methods fopreventoverfitting. Now, in the next one,
we will go deeper into the details of the methods for the optimization of the error function, the core
of NN analysis.

3.3 Optimization methods

As seen in the last sectiorhet minimization of the error functiod with respect to the
weights/bias: is a problem of nonlinear optimization. Usually it is common to solve this problem
with an iterative approach (usefidr computational purposes). Now, a general description of this
approach is shomw then, in the next subsections, a detailed description ohtst usednethods is
suppled. Here we show optimization methods callddterministi¢ in that each step of the iterative
procedure of optimization is well fixed by deterministic formulatso, stochastic optimization

methodsexist(see 3] and references therein for more details).

Consicering an iterative approach, wv\ame:: the actual value of our weights/bias. If we

expandd as a Taylor series around we have:

0 o 0 o oo ne o

p -
L, o0 8h v
q L °

herend is the gradient of the functidd, 5 is the Hessian matrix composed by all the second
derivatives of. If we apply the gradient operator 25):
no o no o 3 o o 8 ()
For theoptimalvaluesof <>, 0 « 1tand ignoring the higher order terms we have:
3 0o 8 C X
In these terms, we obtain the formulae for the iterative computation: of

3 6o 8 C Y
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This is thewell-known Newton methodwe will go in deeper details in secti@8.3) When we are
faced with a multidimensional probleim.e. when we have many weights and bias paramitiies
explicit calculation of thenverse of theHessian matx is a complicated issueoSin order to limit
the computational effort, several approximation methwie been developeNow, once fixedhe

general problemwe will describe several optimization methods adopted in NN analysis.

3.3.1Gradient descent method

This methodhas beeralreadydescribed into sectioB.2. Also named steepest descent, the
parameters of the NN are updated by the relation:

-0 < h Cw

where— is the learning rateBy comparison with (28) & see that is replacing the inverse of the
Hessian matrix, so the steepest descent repseaesimplification of the more general Newton
method. In practice, one tries todithe minimumi i.e. the optimal value for the weights and bias
< - by descending along the negative gradient oThisis the direction of the steepest descent (so,
this is the origin of the name of the metho#l).a first glancethis could appear as a very efficient

way for searching the minimum but it is not so.

The value of- canbe a fixed constant or calculated byiree minimization algorithmThe
first approach simply consists in proceeding along the negative gradient direction with a fixed step
at each iteratiorin the second one, we proceed along the direction of the weggtidient and stop
when the minimum along that direction is achieved. In detail, atestep have the estimation

for the parameters. From this point we move along the negative gradient diredtientified by
< no < 8 o
So, we move along the direction:

— 48 o ™

We move along the directiom until the minimum- along this direction is reachedthis is

individuated by the condition:

that permits to fix the value ef, explicitely:
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from which it is clear thaie U N6 . Since that« ng o , we finally have:
< < ™ o0

Sao the directions individuated #he steps n andn+1 are orthogonal, this resslin an inefficient
zig-zag path for this approagkigure9). Using a fixed step- bring to a similar bad situatiotoo
small size for could result in too many stegBigure 10a), while too largesize brings toan ezen
more strong zigag patternKigure10b)

Figure 9 The gradient descent method with line minimizatiohe research of the minimum is in this case very slow du¢ht®
zigzag path. Adaptedrom Hsieh 3]
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Figurel0 Example othe gradient descent witha too small fixed step siz€a), andwith a too big fixed step size (b). Adapted from
Hsieh B3].

Ultimately, the wayfor optimize the methodn order tomake the steepest descent an efficient

algorithmis to add theso-calledmomentum to the direction of descent:
< ng o ‘4 8 ot

The rationale is thdt prevents the new direction to be orthogonal to the prevooasdecreasing
the total length of thepath So, thesteepest descent method is generally uséd the momentum
coefficient Figure 11). Using the equation (34) into (29) gives the steepest descent method with

momentum.
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Figurell Example of the gradient descent method with momenturAdapted from Hsieh43].

3.3.2Conjugate gradient method

This methodhas beerdeveloped thanks to the work$ Hestenes and Stiefel 1952[47]
and by Fletcher and Reevies1964[48]. It consists in a gradient descent method with momentum
(equation (34)), wherthis lastis automaticallyfixed as we can see in the followingtarting from
the weights determination ~ we want to fix the next directiom for the descent in such a way
that the gradient a¥ in the direction< remains0 (at first order), as we go along the directian |,

this is expressed by the condition:
o o — < T ov

where—, as said, is the learning rate that tells us how much we are moving along the direction

Usingtheequation (26ppportunely adapted, we can rewrite
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ng o —< ng o 7—-< 8 (o)

Then (35) becomes:

no o 19 « T8 o X
As €« U ng o , we have the condition for the conjugate direction:
ER h oy

where, indeed,« is said to be conjugate t&. The next step is to estimate the momentum

parametef , now we show three different methods.

To obtain the Hesten&tiefel method, we define:

+ kn6 o 8 ow
Making use of the equation (34) rewritten fod T i.e. <« no ‘ < into the
condition (38):
T 4 ‘<4 T8 T T
From which we have:
ER "Iﬂ-H- -H- ﬂ<ﬁ TP

asq 7 - Equation (41) is the relation that permits to obtain the value of the momentlihe
last step consistin the approximate calculatiaf the Hessian matrix, cause its exact determination
could be computationally expensive. Using the equation (26) igndrigiger order terms, the

definition (39) and the equation (30b), we have:

_H_ -H- 3 © 0 — <8 TC

Usingthis relation into (41), we finally obtain the estimation for the momentum, named Hestenes
Stiefel method:

-

Now two other methods are shown, without derivation (further detaét3).[In the Polak

Ribiere method49 and B0], the momentum is given by:
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Findly, the Fletcher and Reeves methd@||
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In all these approximate derivations the higher order terms in the expansion of the gradient
of 0 have been neglected, so the several methods differ from eachGénerally,with (44) better

performancegare achieved

To concludethe conjugate gradient method explanationmusstfind the optimal value for
the learning rate- along the search directiom. This is done by minimizing the error function
0 o —<« in function of- itself, along such path. For simplicity wewawrite only 0 — in
order to underline the dependence-orGenerally an iterative algorithm is adop{€igure12), as
step 1) three point& ¢y ware fixed along the search direction, in such a waytthat 0 @ and
0® V. Asd is a continuous function a minimum exists in the interédito; 2) a parabolic
curve is fitted on these three points, the correspondent to the mirlihafithe parabola is fixed on
& 3) three points among @ ®andQwith the minimum value ob are fixed and the procedure is

iterated until convergends reached
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Figurel2 Example of the line search algorithm for the optimal value of the leamgate. Detailed description of the procedure is
in the text. Figure from Hsieh43].

3.3.3QuasiNewtonian methods

At the beginningof this section with the equation @, we have introducedhe Newton
method Thanks to the definition (3@nd by defining the inverse of the Hessian matri>ﬂ asve

can rewrite (28) in a more compdotm:

| +8 T o

The derivation of this formulaassumeghat the terms above the quadratic in the Taylor
series of the error functiom can be ignored. This is certainly trudhen we are in the nearby of a
minimum, but in generalt is not true. So, in order to obtain generalizattapabilities,the so

called learning rate is added:

o - ” -H- 8 TOQ



Also in this more accurate form, the Newton method is not so useful because at each iteration it
requres the estimation of the inverse of the Hessian matrix. So-bleagiorian methods have

been developed using a simpler estimation||for For example, also treEbovementionedgradient
descent and conjugate gradient methods are related to-MNpasrian methods in fact if we
replace| with the identity matrixkwe obtain the gradient descent. While the gddsivtorian

methods preserve also the conjugate condition (38)eotonjugate gradient method.

Herg two quasiNewtonian methods are presented, for more details about their derivation we
refer to the respective referenc&be first method is the DavidefletcherPowell (DFP) b1], [52].
It is an iterative procedure, fd® Ttit starts by placing a random value for the initial weights

and a random symmetric positive definite matrif|asThen the iterative procedustarts

1. We assume thaa || 4.
2. The error functiono — <« is minimized respect to not negative. Then we can

compute updated weights == k — < andff

3. Setting} 4  a, we also have the updating for the approximate Hessian matrix:
— | A A
” ” - A Al a 8 X

4. We updatéQand return to point 1. (if convergence is not reached).

Again, we note that if we choose #s the identity matrix, the DFP methambincide with the

conjugategradient.

The most widespreaguastNewton methodis the BroyderFletcherGoldfarbShanno (BFGS)
method b3], [54], [55] and [B6]. The update for the estimator of the inverse of the Hessian matrix

is:
| | ooh Ty
| is given by (47) and is defined as:

-— 'ﬂA
- A A A

o A”AT

In BFGS method the conjugate direction property (38panpreserved.
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We have seen that both the conjugate and the-tieagiorian methodsdo not make use of
the explicit inverse Hessian matrix. Furthermore, the secondri@sdo approximate the inverse
Hessian matrix as well as preserving the conjugate direction properties. Sdlgwasn methods
are a further step respect to the conjugatelignt. The use of an approximate Hessian matrix
bringsto faster convergence, furthermore the line search for the estimation of the learningsrate
not more necessary. However, the major drawlsdthke large storage necessary for the maﬂtrix
which has dimension8 0 where( is the total number of weights and bi&m, the quasi
Newtorian methods require a memory of order0 instead of acapabilityof 0 0  for the

conjugate. In order to reduce memory requirements, a mathsgroposed by Shanne/].

In any case, for problems related to smallaget (as is the case for the argumédsd in
this thesis) the quadiewtornian methods in general, and the BFGS in particulengd a wide
application.

3.3.4Nonlinear leastsquares methods

All the optimization methods illustrated up to now are of general applicabilig. they are
not related to theexplicit form of the error function. In amy caseghe error function consists in a
sum of squares, as for example the Meguased Error. In general terms:
. P P -
O —_—
C
here,- is the error associated to tf@®observationk is thevector of all these error$), is the

number of observationdlow, two optimization methods relatedttus type of error functions will

be showed.

At the ¢ ®@step we have the weights and we fimowve aWea aawaerite dhe

Taylor expansion fok in function of the weights:

¢

E o E o L up

here, L is the Jacobian matrix calculated at ¢hé@step. Explicitly it has elements:

L Q

(@)
—a
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¢
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so, Lhasdimensiond 0 - i.e. (number of observatiohs (number of weights/bidsUsing (51)

into equation (50) the error function at thé&Xstep can be approximated as:

EAEt o y:3 E/E o L~ o A
S S
E/Et £ £ o L. -
q
E o ; Le -~ - 8 Vo
q
In order to find the minimum ab in function of:: and so, the weights themselves, we

differentiate the right hand side of (53) respect to and set the result equal to zero:
Lg o L o mh U T
from which we obtain

L 1L Lg o

¢
C
Cc

this is thewell-known GaussNewton method. We show how this last equai®melated to the
Newton method28). In fact, for the errofunctions given by the sum of squares as (50), we can

write the gradient:
ng Lo 8 L@
The Hessian matrix isomposed by the elements

18 t-1- 1~
T 15710 TO 10 TOT0

L X

If 6 is a linear function of the weights the second term in the summation of (57) is equal to
zero. If 0 is not a linear function of: we can however neglect this term so, we obtain an

approximation for the Hessian matrixterms of the Jacobian:

3 L lg vy
It is clear that (55ppproximateshe Newton metho@28) withn# given by (56) andhe Hessian
matrix given by(58).

To resume, byheequation (55)he weights are updated up to convergence to the minimum.

The biggestproblem of the Gausdewton method is that the step size cob&tome too large and
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so the assumption done time equation (51) can fallSo, an evolution of this method is proposed,
the so-called Levenbergiarquardt methodgg], [59]. The idea is to add a penalty term to the

approximated version of the error function:

—AE o £ —A o o)
C C -

The last term penalizes largstes, in fact with larger_ we obtain a smaller size for the
step. If we minimize (59) respect to , as done for the derivation of (55), we have a new

expression for the weights update formulae:

L L E Lo R QT

Lis the identity matrix. For small values we come back to the Gabmwvton formulae, while for
large_ we have the gradient descent method. So, the Leveiemguardt method takes the best
from both these methods. It preserves the convergezioeity of the Gausdlewton but also the

robustness of the gradient descent when we are far from a minimum.

To conclude thisubsection, we note that the Jacobian matrix has dimerisiorb, where
0, thetotal number ofweights and bigscan be higher thab, the number obbservations of our
datasetSo, we need for even higher storage capabilities than that necessary for the Hessian matrix,

- i.e. for quasiNewton methods.
3.4 On the use of available data

In this sectiorwe want to focus on the aspect of htmweserve data for validation purposes.
In the last part of sectidh2 we introduced the earstoping method. In order to limit the problem
of overfitting the availablalatafor the training of theNN model are divided into two parts, one
(bigger) for the training and the other for thecsdled validation. As the number of iterations
increases, the error function calculated on the training data will be a monotonically decreasing
function, while if we calculate the error function on the validataata,we obtain a function that
exhibits a minimum in correspondence to a certain epoch. This minimusitigev&leal number of
iterations at which stop the NN training in order to avoid overfitting. In fact, when the error
function starts to rise on the validation set means that our NN moddbsvag its generalization
capabilities on data not involved inetltraining.So, in next subsection veee howto calculate the
bestfraction of data to dedicafer validation then in3.4.2 we illustrate more refined methods in

order to use at best the available data for training purposes.
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3.4.1Choice ofthe fraction of validation data

Considering a dataset composediobbservations, which fraction of data weistuse as
validation data? Intuitively, if we reserve too much datavalidation, we will have a poorer
model, while if we reserve tofew daa, we will fall into overfitting. So, an ideal fraction should
exist Amari et al. Q] introduced a theoretical derivation for this ideal fraction. For what has been
said, a fraction'Q0 of data is used for validation, whef@ represents this ideal fraon.
Consequently,p  "Q0 represents the fraction of the dataset to be used for training. The ideal
fraction can be defined in two ways depending on the number of the weights and bias of the NN.
Named0 this number, il o 1 , the ideal value foiQs:

GO p pg
. h
0 o ®p

andif0 1 pwe have:

Q  —=h ?q

For example, ify ¢ m,7rom (62) we havéQ 18t yonly a fraction of 5% of data hasheen

dedicated for validation.

The second case, for o 1 , it may be shownd0] that a small difference exists between
using”™Q or not using validation data at @lli.e. the entire dataset is dedicated to training. So, when
we have a number of data much higher than the numbgarametersywe can also avoid the early
stoppingprocedure, as overfitting is moore a problemBut in the case of relatively small dataset,
as is the case for many physical applications, st adopt the early stopping procedure.
Furthermore, there is the need to use at best the availablesal@athe next subsectionve will
explainthe crossvalidation technique. Alimit case of this technique is ttse-calledleaveoneout

cross validation, used for this thesis.
3.4.2Crossvalidation

For many physical applications data are not plentiful, in particidameteorology and climatology
reserving part of a dataset for validation can leave us with a small amount of data for the training of
the NNmodel,furthermore keeping fixed the validation set can bring to a bad representation of the

variability of data.These problems are not presemthen there are plentiful data. In order to
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optimize the use of the available d&a the NN model constructigrthe best approach is by the
crossvalidation techniquand related variants

The ideaconsists individe the data record i segment®f (approximately) equal length
the so-calledK-fold crossvalidation. One segment is used for validation while the remainingp
for training. Iteratingon all the segmentgermits to all the datt beused for validation improving
the generalization capabilities of the NN. At this point one can chose the bestbaséélorthe
minimum error on the validation segment. Obviously, the use of the ensemble technigque

perform multipleruns for each ggment with different initial weightsis yet recommended.

To fix the ideas, suppose a data record of 100 elements, and divide it in 10 segments. Se, years 1
10, 1220, 2130, and so on, are usedce at a timas validation set. The first iteration makese

of data 110 for validation, while data 1100 are used as training set. The second iteration takes
data 1120 for validation and -0 and 21100 as training.This is repeated slidingn all the
segments up to use data-Ba0 for validation and-90 for training at the tenth iteration. One can

also increase the number sgments up to arriva 100 segments) this case the 16fold cross
validation will coincide with theso-called leaveoneout crossvalidation, where a single

observation will be th valdation seiteratively.

Care must be taken for time series data. In this case we could have autocorrelation inside the
series. For example, considering a daily time series, suppose an autocorrelation time of 15 days. So
if we apply theleaveoneout technique our NN will not have gogéneralization capabilities as in
the training phase we will make use of data strictly related to our validggarent so, the use of
crossvalidation can bring to an underestimation of the validatioore@eneral prescription for

these cases is to take a validationesptal olonger than the autocorrelation time.

A successive step is done when we consider the error to be associated to the NN model. In
fact, the error calculated on the validation Eehot a good estimation of the model error, because
these dat are however involved in the model determination. The model srustbe estimated on
independent data, not used nor for validation nor for traiffihgs,a further division of the dataset
iS necessary in training, validation atedtset, on the last we can determine the model error. We
can consider this procedure asfidouble crossvalidation. Considering the dataset of 100
observations, we could havel@-fold crosstest Data 110 are ued for testing and 1100 for
training and validation. So, waustdivide this last in training and validation, for example we use
11-20 for validation and 2100 for training. This procedure is iterated with a double loop, the first

inordertousealldaa as test set and the second (inner)
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remaining data as validation set. Again, an ensemble strategy is recommanslezh a way, the
forecastmodel error can be calculated over the entire dataset and it will be the real, reliable, error of
our NN model. At limit we arrive at thieaveoneout crosstesting in which each single data of

our dataset is used as test set while the remaining aréardeaining and validationThis last will

be the technique used for our model, as we describe foltb@ing section

3.5 Model description

In this work several open topics of the atmospheric sciences havesthdesg obviously
eachwith its proper NN model, butlespite some small differencegbe various modeldave a
common structurdn this section tb general structure of the NN modeffisnished, inthe chapters
dedicated to thanalysis of thevarious topicsany variation resped¢bt h ibasi® descriptionwill
be specifiedThanks to the introductioan NN modellingsupplied in the previous sections of this
chapter thdollowing explanation should result quite simplehis NN modelis built in such a way
that it canperform realistici i.e. not affected by overfitting multiple nonlinear regression laws.
Furthermorethe results can be considered reliablee. not affected by peculiarities of tineodel
or of the data themselves. Both these aspedt be clearer when the various applications will be
described in the next chaptei®his model was gradually developed irethourse of the years,
starting fromt h e mi d ddl]epassirig byotli®e Girst [years of the new century [23] and [13], up
to its descriptionwith a dedicated papdf7]. Respect to [17], here the model has been further

developed and refined in relation to the different problems faced.

The model adopted is multi-layer perceptronfeedforward NN with backpropagation
training, It i s t he rMNoregtessiGnpapppcatiorm gedpphysicsév@ use e c t u
a single hidden layer causes said, alsan this relatively simple casee can appioximate any
continuous functionFurthermore keeping the compléty of the NN limited helg usto avoid
overfitting. As we considerregressionproblemseach model haa single output i.e. one single
output neuron. In summarthe NN modein useis schematicallyshown in the previouBigure7,
each problem will have different number of input and/or hidden neurons depending on the
problemitself. The transfer function for the hidden layisra hyperbolic tangent, any different
choice foreachNN model will be specified in the following. The output transfer funcisom linear

one.

As far asthe optimization algorithnis concernedempirical testallow usto choose from
time to time the best one for each problem. &ample for the attribution problem ofhapter 3

the LevenbergMarquardt algorithms used (see sectiah3.4) while for the Atlantic Multidecadal
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Oscillation problem Chapter 4) theBroydenFletcherGoldfarbShanno (BFGS, see secti8r8.3)
is used. The optimization algorithin useis specifial from time to time in the following chapters.

Regardless of these importaintt e c hni c al aspect so, we want
available data for training, validation and test. As stated, here we handle limited length ,dsaasets
the NN algorithmis developectonsidering this aspecthe probability to income into overfittg is
reduced by takg a low number of hidden neurons and by adopting a leae®ut training
validationtest proceduré already described into secti@. To betterfix the ideas we consider a
100 years length series of data (for example mean aneogletature)The procedure can be
described by the following steps:

1. Each yearonce at a time, is used as testssatting from the first one

2. Of the remaining@9 datg about 10% igandomly selected angsed as validation séti.e. more
or less 10 years of dat@he initial value of the weightand bias of the NN are fixed (pseudo
randomly) withthe Nguyerwidrow algorithm f6], this is done in order tbuild an ensemble
of models.

3. The adopted backpropagation algorithm is applied on the training set, at each iteration the
performance of the NN constructed using this training set is evaluated on the validation set. The
procedures iterateduntil the value of he error on the validation set starts to rise (the already
describedearly stoppingapproach). Furthermore, in order to have even better performances
with limited overfitting,we insert two further control conditions:
3.1.we consider the sobtained NN as aapd one ifthe meanerror calculated on the training

setis lesser than a fixed threshold (dependent optbelem) and
3.2. we consider the sobtained NN as a good oifehe number of epochs of training is higher

than a fixed threshold at least 100 epochs

The first condition is related to the need of obtain a good performancgedbed one tavoid
falling into a local minimum. In fact, we could have convergence with a low number of epochs
of trainingbut in this case the probability to get trapped into a secondary minimum is very high.
If even one of this two conditiorare not satisfied,we return at thegoint 2. andthe training
procedure is repeatedhis can berepeatedup to 100 times, in the case none of the two
conditions is even satisfigdbut it is an unlikely situation)the NN between the 10With the

minimum error on the training setdhosen as the best one.

4. Once the weights and bias of the NN are fixed thanks to the traialitation procedurethe

NN error on the test sét calculatedlIt is an error calculated on datat involved in the NN
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determinatiori the test data is compédy unknown to the NNt it is usedfor the mean squared
error calculationNow we return tadhe point 2 and the procedure repeated 20 times in order
to construct the first ensemble of values for the first year ofidaé 20 different NN models
for each test data

5. Finally, we return at the point 1. and the next year is selected as test set.

This complex procedure permiis construct an ensemble of NN models that give us an estimation
of each single data of the target. The algorithm is constructeccinaswvay that the NN models
ignore the value of the test set, giving us a strong guarantee of model generalizationtizeg) &)

the reconstruction of the target data can be considered as a real forecast of the tar@etaestie

target estimation is obtained, all the statistics can be calculated

In parallel to the NN training also a multilinear regression law is calcul@teslinear law
is obtained using data involved in training aradidationof the NN. To fix the ideas if we have 100
data that law is calculated on 99 dd&aving onetest déa for the calculation of the associated
error. In this way a parallel comparison between NN and linear regression is possible using the
same data-urthermorean advantages givento the linear regression, in fact it makes use of more
data respect to hNN cause now we have not need for validation data. In the next Chapters we can
see that despite thisBIN performs always better than linear regression strengthening the goodness
of our choiceFurthermorewe see also that the comparison betweenlimear and linear methods

permits to deduce very interesting information on the dynamic involved in the topics addressed.

Now we are at the end dhis chapter Here an explanation of NN modellingas been
supplied for regression problems and relatively snddkasets. The final focus of this last section
has beermn the model used for this research activityvill permit us to introduce nexthaptersn

a simple and immediate way.
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4. Attribution of the last 150 years temperature variations

As defined by théPCC [1], attribution ighe process of evaluating the relative contributions
of multiple causal factors to a change or evéidgre we are interestenh the attribution of the last
150 years temperature variatiokdp to now the studies on recent global warmingraostly faced
with GCMs.

As said in Chapte®, the climate system is strongly dependemthe boundary conditions
if we modify one of them &ariation of the statef the system iexpected. Using GCMs to simulate
the complexity of the climate system permits also to perform experiments. In order to investigate
the last 150 years, the ideatdsset some of the boundary conditidnalso called forcing to their
preindustrial valuessnd use these fdAartificial o data in
experiments$ also performed with different modédi<learly indicate that anthropogeniar€ing (in
particular GHGs) are the responsible for the recent global warmindjig]. GCMs used by the
scientific community have some differences, but also pertain to the same dynamical approach and
come from a common ancestor, so the robustness of shk itself is subject of debate [5KZ].
Robustness is achieved when we have a common result from independent means of investigation
and GCMs do not seem so independent from each @bghe idea is to use a completely different
approach i.e. by neural network analysidn recent years several works making use of-dataen
models as neural network and Granger causality have been proposed [9], [10], [11], [12] but a

comparison that follow the same rationale of the GCMs is lacking.

In this framewok here we present the resutistained by the application of a neural network
model of the type described in Secti®b, these results va already been accepted by the scientific
community [16] Analysing the last 160 yeardijrst we perform the reconstruction of the
temperature trend making use of some predictor®. the fundamental drivers of the climate
systemi after, different attribution experiments are performed. Our findings show tee¢nt
warming may be attributed basically to anthropogenic forcing (see next sections for more details),
while the Sun seems to influence the period 1PA05. The use of indices of natural variability
permits to reproduce also the interannual variabilitye application obur NN model permits to
corroborate the previous knowledge given by GGivld permits to obtain further details about the

role of the external forcing and on the internal variability of climate system.
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4.1 Data and method

We focuson annual datai since the middle of the ¥9centuryi of mean global
temperature, of radiative forcingRF) of several drivers for the climate system aiddata about
indices of natural variabilitln order to perform sensitivity tests, two alternative scenarios for data
about anthropogenic radiative forcing are ugedist of all the data used is shawn Table t in the
next sections we will show how these data have been used, hprevidea list and the sourcef

them

List of variables

1 Global annual mean temg€rature
2 Radiative forcing of greenhouRE&Gates
3 Radiative forcing of blackURIFED

4 Radiative forcing of anthropogenit/R&pxtes

5 Radiative forcing of solar GRFSPLAR
6 Radiative forcing of voltiRIOéSL

Total RF of anthropogenic &ktivities
7

RFANTH = RFGHG+RFBC+RFSOX
8 Total natural BIFNAT RFSOLAR+RFVOL
9 Southern OscillationUSEx
10 Pacific Decadal OscilliD
11 Atlantic Multidecadal Osdilfsitian

Tablel List of the potential predictors for our NN analysis

For global mean temperature we consider land and marine temperature anomalies since
1850 of the HadCRUT4 databa%ig], from the Met Office Hadley Centre, freely available on the

web.
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As far as radiatie forcing datare concernedve use the freely available dataset collected at
http://lwww.sterndavivi.com/datasite.htrfil2]. In particular, the data about GHGs are taken from
the NASA/GISS website and the calculation of RF are performed udassical formulae
developed in scientific literaturé4], [65]. (See Figure 13)

Data relative to the emissions of sulphates are available only till 288|1 [67]. The
calculation of related radiative forcing is based on slight modification of prestadges [12], $8],
[69]. Data about radiative forcing of black carbon come from the RCP8.5 scér@ri&ee Figure
13).

Solar irradiance is obtained by an index available at
https://data.giss.nasa.gov/modelforce/solar.irradiafi€f/ The related RF is calculate following

standard formulagb]. Furthermorea synthetic series (RFSOLSTAT) was built for &tition test.
It is built with a firstorder Fourier series based on the first observed 65 y®aesFigure 14)The
observed series shows a transition toward a high energy regime at the beginning Bfciet 29,

so our idea is to consider a low energy regime for attribution purposes (see next section).

Volcanic radiative forcing is calculated by the optical thickness dél @vailable from
https://data.giss.nasa.gov/modelforce/stratdRFVOL is 27 times the optical thickness [1&Eee
Figure 15)

The three indices representing the natural variability are the Atlantic Multidecadal
Oscillation (AMO) available since 1856 atww.esrl.noaa.gov/psd/data/timeseries/AM@he
Pacific Decadal Oscillation (PDO) available since 1854 at

https://www.ncdc.noaa.gov/teleconnections/pattd the Southern Oscillation Index (SOI) available
since 1866 atvww.cru.uea.ac.uk/cfdata/soi/soi.daiSee Figure 147-18).

The data relative to the alternative scenarios for the sensitivity(sestsection 3.3re that
of CMIP5 [73] available athttps://data.giss.nasa.gov/modelforce/Fi_Miller_et_all4 updid

that of Hansen et al7f] available athttps://data.giss.nasa.gov/modelforce/Fe_H11 PERA .txt

As the first available year for the latter is 1880, it was extended backward to 1850 filling the first

years by zero values for the anthropogenic RF.
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Figurel3 External forcings usedsainput for the NN models: anthropogenic forcing anomalies [WAm

Figue 14 External forcings usedsainput for the NN models: observed (black line) aretonstructed (red line) solar radiative
forcing anomalies [W/nd]. The latter is synthetic time series under the assumption of stationarity (for attribution tests).
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