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Abstract

Background. Over the last ten years biomedical data daily produced by
Next Generation DNA Sequencing (NGS) techniques has doubled every seven
months. Nowadays genomics plays a relevant role in the field of Big Data,
because of the large amount of biomedical data being produced, analyzed,
and stored in many public databases. Currently, the storage of this data is
performed by many different organizations and their acquisition methods are
highly distributed and involve heterogeneous formats.
Methods. In this dissertation the problem of biomedical data heterogeneity
is addressed by proposing new standardization methods and pipelines, which
permit to easily integrate genomic and clinical data of cancer related to differ-
ent NGS experiments. Moreover, novel methods for querying them are defined:
(i) use cases of the GenoMetric Query Language, a high-level domain-specific
query language, are presented to demonstrate the efficiency of the data stan-
dardization in terms of information retrieval; (ii) a new data model that mini-
mizes the amount of redundant information is defined, allowing the creation of
an Application Programming Interfaces (API) for data retrieval; (iii) methods
for discovering and querying large datasets through taxonomy-based method-
ologies are proposed. Finally, thanks to biomedical data standardization, it is
possible to easily apply machine learning techniques for the analysis of genomic
data and their interpretation. In particular, knowledge extraction experiments
are shown on big biomedical datasets of cancer with promising performance
and models.
Results. The main results of the dissertation are new software tools and
methods: i) OpenGDC, which allows to automatically standardize and extend
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genomic and clinical data of cancer; OpenGDC software is freely available
at http://geco.deib.polimi.it/opengdc/, and additionally, a publicly accessible
repository, containing homogenized and enhanced data (resulting in more than
1.5 TB) is released;
ii) OpenOmics, which provides a flexible collection of Application Programming
Interfaces (APIs), in particular a set of implemented endpoints are available at
http://bioinformatics.iasi.cnr.it/api/routes; An ontological software layer that
allows users to interact with experimental data and metadata without knowl-
edge about their representation schema;
iii) new software pipelines for gene-oriented data preprocessing are imple-
mented, and a large knowledge base of classification results (datasets, logic
formulas, performance, and statistics) obtained by the application of different
machine learnings algorithms on a big repository of public available RNA se-
quencing and DNA methylation of Cancer. iv) CamurWeb, a web service that
aims to make the CAMUR machine learning software easily accessible and us-
able.
Conclusions. The aim of the dissertation is to provide tools for the man-
agement and analysis of Big Biomedical Data and to allow the definition of a
framework for standardization, querying, and knowledge extraction from clini-
cal and genomic data. The obtained experimental results confirm the soundness
of the proposed approaches.
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Introduction

In the last decades computer science has given important contributions to
healthcare. This fact is also confirmed by the increasing investments for real-
izing health information systems. The need to improve health services and the
diagnosis of many diseases fosters the design and development of new systems
able to record clinical history of patients.

Bioinformatics is the subject at the crossroads between biology and com-
puter science; it aims to collect, consult and analyze biological data in order
to understand the biological insights of diseases and to identify more accurate
diagnoses. The main subject of study of bioinformatics is DNA. In particular
the analysis of DNA mapping is the most faced theme, because the study, the
therapy and the prevention of many diseases starts from the analysis of the
genetic makeup of an individual. The DNA, deoxyribonucleic acid, is the main
molecule of genetic information, in all cells. It is composed of four chemical
bases: adenine (A), thymine (T), guanine (G) and cytosine (C). Particular
DNA sequences determine the genes, which constitute the whole genetic her-
itage, i.e. the human genome. Genome sequencing is a very important field
whose study has started since 70s with the Sanger’s method and evolved in
recent years with the development of Next Generation Sequencing (NGS), an
“high throughput” technique able to extract DNA sequences with high speed
and low cost. The NGS techniques are nowadays applied to many research
fields, e.g., cancer research, non invasive prenatal diagnosis. Next generation
sequencing is the set of sequencing technologies of the nucleic acids which are
able to sequence, in parallel, thousands of DNA fragments. These technologies
marked a revolutionary turning point in terms of genome characterization with
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respect to the first generation DNA sequencing technique (Sanger sequencing),
thanks to the ability to generate genetic information millions of times faster
and at lower cost. Nowadays NGS techniques allow to sequence the human
genome in one day with a 800 dollars cost outputting more than 100 GB of
DNA sequences that have to be assembled with bioiformatics algorithms. For
these reasons, genome sequencing and the resulting quantity of data produced
constitute the main source of “Big Biological Data” processed in bioinformat-
ics.

Bioinformatics provides the tools to deal with large amounts of NGS data
produced, with the objective to manage data effectively and to extract knowl-
edge about biological processes. Accessing and sharing genomic data, experi-
ments and results obtained allows to broaden knowledge about diseases caused
by genetic alterations or mutations. Therefore, in order to infer reliable results
from the data, it is necessary to access many complex datasets and then to
extract and integrate large amounts of heterogeneous data. Indeed, NGS data
produced by organizations and research groups are often available with differ-
ent formats and semantics; heterogeneous data integration through complex
workflows and pipelines becomes crucial.

Big Biological Data production, management and access are the first steps
for the achievement of the final objective, i.e., meaningful interpretation of
them. Instruments for data knowledge extraction are provided in this disser-
tation with computer science, mathematics, statistics, and other quantitative
techniques. The ”Biological Data Science“ paradigm, which aims to apply ad-
vanced algorithms and techniques toward understanding biological data [Sch15]
is exploited.

In this dissertation three main aspects of the “big genomic data” manage-
ment are deepened: genomic and clinical data standardization, data accessibil-
ity and querying, and finally biological knowledge extraction.

In Chapter 1 NGS technologies are deeply described, and the challenges
that the amount of NGS data brings with it are introduced. Additionally
the main genomic databases, repositories and data portals are described. In
particular, the Genomic Data Commons (GDC), whose data are considered for
the following chapters, is deeply investigated.

Chapter 2 deals with automated extraction, integration, extension, and
standardization of genomic and clinical data of The Cancer Genome Atlas
(TCGA) program from the GDC portal. A standardization pipeline to model
heterogeneous genomic data is proposed. Expertimental data and their biospec-
imen and clinical data are modelled by applying a state of the art data model,
the Genomic Data Model (GDM) [CKM+16]. According with the GDM rep-

4



CONTENTS

resentation, NGS experiments are represented by their genomic regions, and
the related biological and clinical features, which are described with a set of
attribute-value pairs, called metadata. The mapping of these data into a stan-
dardized common schema allows supporting the integration and analysis of
different types of NGS experiments.

In Chapter 3 the issues about accessability and querying biomedical data
is considered, which turns out to be an important step before the analysis pro-
cess, i.e., knowledge extraction. Different tools for accessing these standardized
data are shown. The strong usability of the data model, proposed in Chap-
ter 2, is demonstrated by applying the Genometric Query Language (GMQL)
[MPV+15]. Afterward a framework for accessing genomic and clinical data is
proposed, which provides a more efficient model of data in a document-oriented
no-SQL database and the definition of an Application Programming Interface
(API) for fast and effective access to data. Additionally, domain-specific on-
tologies are exploited and a new ontological software layer is implemented,
which allows users to interact with experimental data and metadata without
knowledge about their representation schema.

Finally, Chapter 4 deals with the topic of knowledge extraction from NGS
data. Here techniques of data preparation are shown and different machine
learning algorithms are applied. The goal is to provide a gene-oriented rep-
resentation of datasets and to extract classification models able to distinguish
between tumoral and normal samples.

Section “Conclusions” describes the obtained results from the application
of proposed methods, concludes the dissertation and mentions future develop-
ments.
In Appendix A bioinformatics, genomics, and the fundamentals of biological
sciences are defined. In particular, the components of the human genome are
described and how they interact with each other in the process of gene expres-
sion.

5





Chapter 1

Big data in bioinformatics

1.1 Introduction

The attention to Big Data in bioinformatics is steadily increasing, proportion-
ally to the growth of the amount of biological data obtained through sequencing
or “omics” techniques. With the advent of Big Science (i.e., the study of stor-
age of huge amounts of data and the knowledge discovery process), Big Data
technologies and approaches have been applied to several scientific domains.
In particular, with respect to large collections of genomic data, the scientific
field of bioinformatics (Appendix A.8) stands out. In the last few years, bioin-
formaticians are faced with large amounts of biomedical data, and need tools
and techniques in order to handle them. We consider Big Biological Data,
because of their volume (amount of data generated), variety (type of data
generated), speed (speed of data generation), variability (data inconsistency)
and truthfulness (quality of the data acquired) [LC14]. Sequencing data is the
most spread example of Big Data in the field of bioinformatics, because of the
advancement in next generation sequencing (NGS) technology. The concept
of Big Data associated with biological and medical databases becomes even
more realistic from a personalized medicine perspective, where each one can
request an analysis of his DNA (Appendix A.3) to learn either about his ge-
netic predispositions to diseases, or his personal attitudes, or his susceptibility
to drugs. Genomics, the science that studies the genome of living beings, is
based on bioinformatics for processing and displaying the enormous amount of
data it produces. In fact, the sequencing of the human genome (Appendix A.1)
has produced large amounts of information and bioinformatics aims to manage
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them in two ways. On one hand, it must provide automated and cost-effective
methodologies for data analysis, and on the other it must optimize the search
algorithms to improve data management and accessibility.

In this chapter, we describe the NGS technologies and the data produced,
the databases that collect these data, and the challenges that bioinformatics
have to face to manage and analyze them.

1.2 Next Generation Sequencing data analysis

In the Big Data era the human life sciences are playing a leading role, thanks
to the recent technological and experimental advances that have led to the in-
crease of biological data. The definition “Big Biological Data” is mainly linked
to “omics” fields, such as genomics, epigenomics, proteomics or metabolomics,
sciences that study molecular biology. Today, the high-throughput technolo-
gies, like NGS, have revolutionized the sequencing of genomes, producing large
quantities of DNA and RNA data [Hay14, She14, WSF+14, SJ08]. These data
represent the main source of Big Biological Data, providing the development
of omics fields and bioinformatics methodologies.

An important task of bioinformatics is to support the analysis of the com-
plex biological data with effective and efficient computer science techniques.The
main aim is to support the genomic analysis by means of latest and innovative
information technologies. In particular DNA sequencing is one of the most
relevant topic in the field of genomic and it leads to other correlated topics:
(i) genome’s assembly starting from million of DNA fragments [CPT04, CP08];
(ii) DNA fragments’ alignment along a reference genome [KTN04, LHW+09,
HME12]; (iii) analysis of variants between genomes (Variant calling) [PKP+14,
KLW13]; (vi) annotation of genomes [HFG+12]; (v) analysis of gene expres-
sion (Appendix A.2) by the sequencing of transcripts (RNASeq) [OM11]. Once
the sequencing has been completed, the data is analyzed with a bioinformat-
icsanalysis pipeline that is completely automized and made up of three steps:
alignment, variant calling, filtering and annotation.

The outcome of the sequencing is composed of little fragments of DNA called
reads, that must be assembled to obtain gene sequences. Assembling the reads
is a computationally difficult task since the part of the gene where the fragments
come from is unknown. Thus the most used technique consists in aligning the
reads along a reference sequence. Once the sequences of the sample’s gene
(Appendix A.6) are reconstructed by aligning the reads, the subsequent step
is to detect the points in which the sample’s gene differ from the reference

8
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sequences of the human genome stored in the databases. This phase is called
variant calling and it is carried out through specific softwares. The precision of
the outcomes obtained in this phase is a very important parameter to consider.
In particular the probability to identify a variant that can have a pathogenic
effect depends on the quality of the outcome of the variant calling procedure.
The variant with pathogenic effect is also known as disease mutation. The
variants obtained are thousands thus a further phase is needed. In this phase
the variants are filtered and annotated, that is they are stored in the databases
with all the information needed to describe them.

Thanks to next generation sequencing techniques, the number of sequenced
genomes has considerably grown up and this has lead to the need of further
bioinformatics analyses of these sequences that are suitable to the amount of
data involved. The genome sequencing consists in detecting the location, the
structure and the functionalities of the composing element. The goal is to
determine the order of the nucleotides and thus of the four nitrogenous bases
A-C-T-G that made the DNA up. Since the 70s and 80s different sequencing
techniques have been developed. One of the most common is the Frederick
Sanger’s strategy [SNC77] also called chain terminator method or Sanger’s
method. It is still largely in use but it is very challenging, even if very effective.
It is related to the use of radioactive enzymatic substances since it requires the
use of an enzyme. This technique is grounded on the use of modified nucleotides
(dideoxynucleotide, ddNTPs) in order to interrupt the synthesis reaction in
particular position and thus obtain a fragment.

The Sanger method had been considered as a reference standard in diagnos-
tic molecular genetics for many years, but the uprising demand of low sequenc-
ing leads to the development of new technologies highthroughput sequencing
(also known as Next-generation sequencing). Next generation sequencing rep-
resents a paradigm shift in the clinical diagnostic field [Sch07, Met10]. It allows
to parallelize the sequencing procedure and make thousands or even million of
sequences simultaneously. The Sanger’s technique is still in use nowadays,
however the new generation sequencing technologies are able to analyze big
amounts of sequences and have the great advantage of being cost-effective,
lowering the costs of DNA sequencing with respect to the standard methods.
Differently from the traditional Sanger’s method, the NGS is also called high-
throughput sequencing since it allows to sequence lots of fragments in parallel.
Comparing traditional and new generation techniques the amount of bases that
comes out from the analysis is considerably higher with the NGS. In fact the
daily outcome of a capillary sequencer with the Sanger’s method is in the order
of thousands of bases, the output of high-throughput sequencing machines is in

9
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the gigabase order. However it has to be considered that these new techniques
have some drawbacks with respect to the traditional methods. In particular
they reduce the reads’s length (50-400 nucleotide compared to 1000 nucleotide
of Sanger’s read) and they also are less precise in reading the bases. The NGS
can be done by different sequencing systems and there are different kind of
NGS sequencing platforms commercially available, which use different tech-
niques. All the different technologies included in the NGS techniques have
three common steps (Figure 1.1):

1. The preparation and immobilization of the DNA, the so-called sequencing
library. In this step the DNA sample undergoes a fragmentation proce-
dure. Then some adaptor are added to the fragments. The adaptors
are particular sequences that allow the fragment’s immobilization on the
support where the sequencing reaction will take place. The length of the
fragment tied to the adaptor depends on the kind of the analysis and the
platform or NGS technology used.

2. Amplification reaction. In this phase a fragment from the sequencing
library is incorporated in a microscopic water bubble together with some
tiny spheres, the so called enrichment beads, to which the adaptors can
bind. The amplification reaction (PCR) [IGSW12] takes place in this
water bubble, in which the DNA fragment is amplified many times.

3. Sequencing reaction. The sequencing consists in adding a solution with
a specific nucleotide to the immobilized DNA. If the nucleotide is com-
plementary to the sequence, it is incorporated. Then the molecular event
is recorded with an imaging system that depends on the used technology.

The sequencing procedure provides a lot of complementary copies of each frag-
ment, that are the reads. The NGS sequencing is considered to be effective if
the obtained reads for each fragments are 30 at least. Gathering the reads is
needed to achieve a signal that is strong enough to be detected and to cover
the reads signal containing mistakes. In fact the new generation sequencing
can be inaccurate but making an high number of reads can soften the error
signals introducing clean ones. The output of a sequencing machine is there-
fore composed of millions of reads, i.e. short character sequences, for a human
genome 100 GB for plants 10000 GB ( 10 TB).

10



NGS experiments and applications

Figure 1.1: Next Generation Sequencing steps.

1.3 NGS experiments and applications

This abundance of data allow to perform analyses on the genetic makeup
of many human subjects, studying the predisposition to diseases like cancer
[Mar08, MDT11, KSL+13, ALK17]. NGS techniques are not only applied
to DNA sequencing [MHB+10], but also to other types of experiments, e.g.:
transcriptome profiling (RNA sequencing) [MWM+08, LD11], microRNA se-
quencing (miRNA-seq) [ZC03], Copy Number Variation (CNV) [CPR+10b],
and characterization of the epigenome or chemical changes in the DNA (DNA
methylation) [Bir85, Bir02] (Figure 1.2). The DNA methylation and RNA
sequencing experiments have been proven to play an important role in knowl-
edge discovery of cancer [Jon86, Ehr02, Bay05, LLL+15, PMP+10, EHG+13,
YTS+12, DCHW16, XWOZ11, CFW18]. Indeed NGS data are actually use in
early disease diagnosis especially in cancer [WV18, CL13, WCCF16] because
with this sequencing appoach it is possibile to identify mutations as these tech-
nologies are able to sequence the whole genome, exome or transcriptome.

11
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Figure 1.2: NGS Applications.

RNA sequencing is a transcriptome (see Appendix A.2) analysis and quan-
tification technique. It is used for detecting the presence and the quantity of
RNA (see Appendix A.4) in a biological sample at a given moment in time
During a RNA-seq experiment the gene expression is measured in terms of
counts that is the number of reads mapped on the genes of a genome or tran-
scriptome reference for quantifying the transcriptome abundance. In fact the
reads alignment phase over the reference is a very critical aspect to consider
since the position of the genome where the reference is identical to the read will
never be univocal. This is due to the fact that the reference is never perfectly
equal to the biological sample. Thus in this phase the reads’ positions over the
reference are defined and it is possible to count the number of aligned reads
for each gene. This measured amount is representative of the gene expression’s
level. Two main methods for measuring gene expression are used in practice:
the first approach is based on the Reads Per Kilobase per Million mapped reads
(RPKM) [MWM+08] method for quantifying gene expression by RNA sequenc-
ing data, normalizing for the total length of the reads and for the number of

12
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reads sequenced. Another method (also known as RNASeqV2), uses a com-
bination of two algorithms, MapSplice [WSZ+10] to make the alignments and
RNA-Seq by Expectation-Maximization (RSEM) [LD11] to perform the quan-
tification. Newer versions of RSEM call the scaled estimate value Transcripts
Per Million (TPM) [WKL12], independent from the transcript length. Fur-
thermore, several other normalization techniques are available. The Fragments
Per Kilobase per Million mapped (FPKM) [TWP+10] computes the expected
fragments (pairs of reads) per kilobase of the transcript per million sequenced
fragments. The RPKM value is really close to the FPKM value, indeed, if all
mapped reads are paired, the two values will be coincident. However, the latter
is able to handle a higher number of reads from single molecules.

The RNA sequencing techniques are mainly made of the three steps al-
ready reported in the previous section, and they characterize these new tech-
nologies. It has to be noticed that the available sequencers are not able to
sequence directly the RNA, but only the DNA. In this vein, a further phase
has to be added after the the fragmentation. This supplementary phase is
the reverse transcription and consists in synthesizing a complementary DNA
filament (cDNA) starting from an RNA template. For further details about
RNA sequencing we point the reader to [OM11], where the authors perform a
comprehensive overview of this NGS technique.

miRNA sequencing. MicroRNAs (miRNAs) are small single-stranded non-
coding RNA molecules found in the transcriptome of plants, animals and some
DNA viruses. They are mainly active in the regulation of gene expression
at the transcriptional and post-transcriptional level. Dysregulated miRNAs
play a role in diseases such as cancer, through the regulation of onco- and tu-
mor suppressor gene expression. The development of high-throughput profiling
methods, led the identification of miRNAs as biomarkers for cancer classifica-
tion, response to therapy, and prognosis [BGT+07, IFL+05, CPW11].

Copy Number Variation is a variation in the number of copies of a given
genomic segment (DNA fragment) per cell, with respect to a reference sequence.
They can be classified into: Copy Number Loss or Deletion, the number of
copies of a given region is less than the reference sequence, and Copy Number
Gain or Duplication, the number of copies of a given region is greater than
the reference sequence. Thanks to technological progress in sequencing, the
number of CNVs is increased exponentially [DZDW13, WNY14]. The Database
of Genomic Variants (DGV) [MZY+13] has collected and edited more than

13
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2,000,000 of CNVs that globally map in about 200,000 chromosomal regions
(Copy Number Variation Regions). The 70% of CNVRs are affected by Copy
Number Loss, the 13% from Copy Number Gain.

CNVs cover a large and important slice of human genetic variability.
The main challenge linked to CNVs is the evaluation of which CNVs are neutral
and which instead affect vital biological functions and therefore result in a
pathology [SMLS+14, MST+10].

Somatic Mutation. A mutation is an accidental, random and heritable
modification which involves a change in the nucleotide sequence in the DNA,
caused by an error in replication process, occurring often due to environmental
conditions. Somatic mutations are changes in genes that affect cells in tissues
such as skin or blood, and are not transmitted to descendants. In tumor genet-
ics, somatic mutations specifically refer to mutations that originate in tumors
(which are not present in healthy tissues). Such mutations are often respon-
sible for leading to tumor growth. Next-generation sequencing is becoming
more widely adopted as a valuable method for somatic mutation analysis in
cancer, in order to characterize the mutations and identify biomarkers that are
prognostic or predictive [BDF+04].

DNA Methylation. In the next-generation sequencing technologies era,
techniques for epigenetics (Appendix A.7) are growing. In cancer research,
sequencing evolve with the aim to find novel biomarkers, factors of prognosis
and prediction, and targets for achieving personalized treatments [SRAV+16].
DNA Methylation is one of the most studied epigenetic modification in human
cells. The changes in DNA methylation patterns are crucial in the development
of diseases such as multiple sclerosis, diabetes, schizophrenia, and many forms
of cancer [LMT+10, TAK+12, MTK+08, YGZ16, ZLW+17, LTN+17].

Methylation is a biochemical modification that involves the addition of a
methyl group in correspondence of carbon-5 in cytosine. This happen almost
only in the dinucleotide CpG, that is the cytosine followed by a guanine [Bir02].
This phenomenon is so common in DNA that it can be assessed that among
all the CpG islands, the 80% of all them is methylated in mammals [JB04].
CpG islands, are preferentially localized to the promoter of the many genes,
particular DNA regions where gene transcription begins. This epigenetic mod-
ification is associated with the transcriptional repression of a gene, therefore,
when present, it is an epigenetic mark and it prevents the expression of the
gene (inactive gene), i.e. the inactivity of the transcripts of the promoter gene.

14
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We can speak of hypo- or hyper-methylation, which regulate the turning on or
off of genes that, for example, act as oncosuppressors.

In the latest years the rising interest in DNA methylation leads to strong
changes in the analysis method and consequently in deep modification in the
DNA sequencing technologies. Many methods used in the methylation analysis
take advantage of the high quality and sensitivity of the NGS. The DNA methy-
lation experiment consists in deep sequencing of bisulfite-treated DNA. It can
be obtained as the covalent modification of cytosine bases at the C-5 position,
generally within a CpG sequence context. The Bisulfite Sequencing technique
(BS) turns the non methylated cytosine into uracil, during the preparation of
the sequencing library. After the amplification reaction, the converted bases
are detected as thymine in the sequenced data, then the reads count is used to
determine the percentage of methylated cytosine in a CpG island. This mea-
sure is called beta value [DZH+10]. The beta value is defined as the ratio of the
methylated allele intensity and the overall intensity (i.e. the sum of methylated
and unmethylated allele intensities). It is worth to note that beta value is a
measure in the range of 0 – 1, where 1 represents full methylation and 0 no
methylation at all. For more details about the DNA methylation experimental
techniques the reader may refer to [PE10, HER10].

1.4 Big biological databases

One of the most important task of bioinformatics is to define and maintain
a variety of databases, where the biological information is collected and an-
notated with all the additional data needed to understand its functionalities
[HCF+08]. The databases allow to better understand the bioinformatics field
and to manage and to store different kind of information such as bibliography,
nucleotide and amino acid sequences and protein structures.

The use of bioinformatics portals is the easiest way to get acquainted with
this field. In fact they allow to consult many different databases. The NCBI
(National Center for Biotechnology Information), created in 1988 in the United
States, is the biggest bioinformaticsportal and it contains 35 databases that can
be consulted simultaneously in an integrated way, using Entrez [TKMO99], a
text search engine. Some of the databases containing nucleotide sequences are:

– GenBank, created in 1983 and managed by NCBI. It has a extremely fast
growth doubling its size every 18 months. It contains up to 116,5 million
sequences and 112,3 billion bases [BKML+08];
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– EMBL Nucleotide Sequence Database, also known as EMBL-Bank
[SBvdB+02];

– DDBJ (DNA Data Bank of Japan) whose databases contain more than
110 million sequences each [MKK+15].

These are the largest databases available. GenBank contains sequences ob-
tained from 250.000 different organisms. However the annotations are scarce,
so the sequences description is inaccurate and there can be multiple voices
regarding the same genes. Other databases available, such as RefSeq (Refer-
ence Sequence) [OWB+15], managed from NCBI, contain a smaller number
of sequences, but they are better annotated and the choice of the included
informations is based on quality rather than quantity.

The amount of information contained in the database and the variety of ter-
minologies used to describe genes and proteins, make the research of these data
very difficult. Thus a uniform terminology is needed to make the interrogation
of the different database easier. In this context the project Gene Ontology
(GO) [Con14] has been created. It is a recognised and shared ontology, that
can be consulted from a database. GO assigns to each gene attributes that
determine its functions, the biological processes in which they participate and
the cellular components.

A database to refer for the study of cancer is The Cancer Genome Atlas
(TCGA) [WCM+13]. This project aims to catalog the genetic mutations re-
sponsible for cancer, applying the NGS to improve the ability to diagnose, treat
and prevent cancer through a better understanding of the genetic basis of this
disease. This database contains the genomic characterization and analysis of
sequences of 33 types of tumors, including 10 rare tumors. Patient samples
are processed through different types of techniques such as gene expression,
methylated DNA and microRNA profiling, and exon sequencing of at least
1,200 genes. Additionally TCGA collects and analyzes high quality cancer
samples and makes the following data available to the research community:

– clinical information on the patients participating in the program;

– samples metadata (for example the weight of the sample, etc.);

– histopathological images of portions of the sample.

On July 15th 2016, the TCGA data portal was officially closed, which
since 2006 made available to researchers numerous genomic and clinical data
of affected patients. With the NGS technologies and the increase of data, the
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TCGA turned out to be inefficient in storing methods and in data extraction
methods by researchers.

Thus the GDC (Genomic Data Commons) [JFGS17] project was born to
collect and standardize all data produced not only by the TCGA project, but
also by other research institutes. The GDC is born from an initiative of the
National Cancer Institute (NCI) with the aim of creating a unified data system
that can promote the sharing of genomic and clinical data among researchers.
The GDC allows access to a high quality set of data derived from programs
supported by NCI, and recommends guidelines for organizations providing per-
sonal data sets. High quality data is guaranteed by a list of procedure that the
GDC strictly observes:

– Maintenance of high quality samples of tissues. The GDC gets
most of the data from the previously listed NCI programs; these guaran-
tee high quality because the only accepted tissues that have annotated
sources and that have been subjected to rigorous quality controls through-
out the entire course of processing. For organizations not supported by
the NCI, on the other hand, the GDC provides recommended collection
strategies, and before accepting the data, submits the samples to exam-
ination to make sure they adhere to the high quality standards used by
the BCR (Biospecimen Core Resource) .

– Implementation of data validation procedures. Data validation is
performed both on data imported from NCI programs and on data sent
by external organizations; The data is made available by the GDC Portal
only if they pass the validation.

– Ensure the production of reliable and harmonized derivative
data. The GDC uses the genomic sequence data available to create
derived data such as somatic DNA mutations, tumor gene expression,
and copy number variation. The bioinformatics pipelines described in
the GDC Data Harmonization are developed with the continuous con-
tribution of experts from the cancer genomics community. Pipelines are
implemented using techniques that make them reproducible, interoper-
able on multiple platforms, and shareable with all interested members
of the community. GDC receives all the pipeline suggestions, and keeps
them constantly updated by replacing old tools and technologies to keep
up with new discoveries.

The GDC distinguishes between open access data and controlled access
data; open access data do not require authorization and are generally high-
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level genomic data that cannot be individually identified, therefore aggregated
data both clinical and biological samples; data with controlled access require
authorization to access it and are generally individually identifiable data such
as genomic sequencing data, and some clinical data.

1.5 NGS data Integration

In Section 1.3 and 1.4 we described the different NGS experiment data types
and diverse biological databases for storing them. This assumption allow us
to introduce the concept of NGS data integration, which represents one of the
main challenges of bioinformatics. We define NGS data integration the pro-
cedure of joining different experiments (possibly extracted from heterogeneous
databases) sharing common features (e.g., same disease / patient under study)
in order to extract knowledge. The aim of integration is to aggregate genomic
data in an unique schema that provides querying capabilities for retrieving data
from a multitude of heterogeneous experiments and databases.
Heterogeneous data are the first problem of NGS, because the structure of data
is different in diverse experiments and can be different in diverse databases.
Therefore, the term integration in NGS data can have different meanings
[GCAM+14]. On one hand, we consider integration for a need to have a uni-
form language that facilitates the access to different genomic databases. On
the other hand data heterogeneity is caused by the experiment types and by
the information that they bring. It is worth noting that dis-uniformity of the
data schema is present not only when considering different databases, but also
when dealing with a single one. We distinguish four conditions, where NGS
data integration can be performed: (i) different databases represent the same
NGS experiment (e.g. RNA-Seq) with different data schemas; (ii) different
experiments (e.g., DNA methylation and RNA-Seq) in distinct databases; in
this case there are two different data schemas, because the experiments need a
different representation, but no standardization of the schemas is defined that
allows the access to these experiments; (iii) the same problem exists even in the
same databases, which contains different experiments and different data repre-
sentation schemas. Finally, we consider an ideal case (iv) where a previously
defined schema standardization allows to integrate different experiments that
come from different databases or from the same database, and it allows also
to provide interoperability between the same experiments but with different
schemas. An example of this type of standardization is provided by [MKPC16]
with the Genomic Data Model (GDM) that supports many NGS formats
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Data integration (i.e., providing a unified access to heterogeneous and inde-
pendent data sources as a single source) is the key problem to allow everyone to
store, organize, access, and analyze the information available on the web. The
Heterogeneous Database Systems (HDBS) try to unify these databases pro-
viding conceptual schemes that solve the heterogeneity of representations and
providing querying capabilities that aggregate and integrate distributed data,
in order to guarantee a complete transparency. The process of heterogeneous
databases integration can be defined as the creation of a single querying inter-
face for the data collected and stored in a multitude of heterogeneous databases
[DGLLR07, LMMS+07]. The features of an HDBS are summarized in [Has00].
These systems are very similar to the Distributed Database Systems (DDBS)
as described in [SL90], i.e., a set of multiple logically interconnected databases
distributed through a computer network. The idea of both approaches is to pro-
vide a common interface to the data stored in different physical locations. The
DDBS implement the same language and querying data model of the HDBS
and these use the same software for data management of distributed databases.
Moreover, in DDBS, the fragmentation of data is designed to achieve advan-
tages in terms of efficiency and autonomy of distributed computing.

Other important elements in the integration of heterogeneous data are ex-
pressed by the variety with which similar data are represented in different
databases. This multitude of schemes is called representational heterogeneity
(RH). The most general type of heterogeneity stems from the data: to aggregate
data from relational, hierarchical, object-oriented, and flat-file databases into a
single representation is the first activity in the integration of schemes. However,
although different systems use the same model, such as the relational one, sig-
nificant differences remain in terms of the representation of heterogeneity with
regard to the structures, content, and semantics. Several efforts have been
made on NGS data formats and standards. The authors of [EGFF16] provide
the reader with an overview of the most widespread data formats for NGS and
describe a set of standardization approaches for them. In [TKMO99] the NCBI
Entrez search and retrieval system used at the National Center for Biotechnol-
ogy Information to access distributed heterogeneous data is described. Also
the authors of [SPB+15] present a text search engine to access data resources
in the European Bioinformatics Institute (EMBL-EBI) and to help understand
the relationship between different data types. Other implementations for bioin-
formatics data integration include retrieval systems like SRS [EUA96], integra-
tion tools for information fusion such as BioData Server [FHL+02], federated
databases (BioKleisli [DOTW97]), multi-databases (TAMBIS [SBB+00]) and
data warehousing systems (BioWarehouse [LPW+06]). Despite of several ef-
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forts made in this direction [MPGC14, MMBR+14], many problems remain
unsolved. The integration of genomic data involves multiple fields, i.e., bioin-
formatics, statistics, data mining, and classification. The integration of differ-
ent types of NGS experiments may offer additional knowledge about a disease
like cancer [ZSX+15].

1.6 Big data challenges in bioinformatics

The growth of biological data has led biologists and bioinformatics to face new
challenges, and to approach them served by methodologies, tools and technolo-
gies typically used to handle Big Data.
Genomics and bioinformatics technologies have allowed the development of
knowledge in the biomolecular field, expecially thanks to the enormous amounts
of data analyzed. The analysis of these data is possible when they are cata-
loged, stored and processed in large collections, databases that make them
available. As described in Section 1.4, there are many biological databases
that provide public access to genomic experiments. TCGA is an important
example considering the study of cancer in the genomic field. Through its data
portal it offers access to clinical information, to the genomic characterization of
tumor genomes of over 11,000 cases involving about 30 different types of cancer.

Data modeling and querying Data management problems are inevitable
because of the big amount of data, different platforms, different formats, model-
ing and storing of genetic data, data accessibility. Therefore the critical points
in this field are not only characterized from the massive amount of data, but
also from the heterogeneity of both the NGS machines that generate them, the
repositories that manage them, and the type of generated data.

In this scenario, a new generation of computer systems, data formats and
languages for querying heterogeneous data, which ensure scalability and per-
formance even in a distributed environment, are required. A data model must
be defined, supported by querying, research and analysis systems of genomic
data.

Biological data come from many heterogeneous sources (Figure 1.3), thus
in order to make them reliable and understandable, they must be integrated
with clinical data that represents the phenotype of each individual, their origin
must be monitored, and their privacy must be protected.
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Figure 1.3: Distributed Heterogeneous data.

Additionally it is necessary to define a unique and global platform for the
effective storage, search and retrieval of genomic data, with the aim of linking
and organizing genomic data spread around the world. The data must be
automatically standardized in order to be usable through a unified platform.

The creation of a reference standard with the aim of storing all these data,
makes querying easier and allows a more effective analysis. In particular the
data can be considered to be heterogeneous due both to the sources they come
from and the kind of experiment they represent.

A considerable contribution is given by the GeCo [CBC+17, KGM+17]
(Data-Driven Genomic Computing) project, which has defined a single
and global platform for the effective storage, the research and recovering of the
genomic data by means of distributed computing (we refer to http://bioinformatics.deib.polimi.it/geco
for further details). The GeCo project has changed the paradigm of genomic
informatics with the goal of connecting and organizing genomic data that are
spread all over the world. The main components of this platform are the data
modeling, Genomic Data Model (GDM) [CKM+16], and the query language,
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GenoMetric Query Language (GMQL) [MPV+15]. The GDM defines a gold
standard for storing and dealing with Big Biomedical Data, i.e., genomic and
clinical data. It provides abstractions for the samples DNA regions and for
the metadata that describe its characteristics, in order to simplify the data
format. It is based on the idea of genomic region, that can be compared to
million of other regions, and it describes the samples through both the genomic
regions and the metadata linked to them. The GMQL uses this data model
(GDM) and it support an efficient query elaboration level on thousand of data
experimental samples. GMQL is structurally consistent with the traditional
database management techniques, but it also aims improving the interaction
between biologists and biomedical data. GMQL algebraic operations are de-
signed for the management of genomic data, specifically for the bioinformatics
domain. It is a declarative language and its operators admit parameters based
on metadata or on the attributes of the schema of the genomic regions. In
particular this last operations are related to the distances between the genomic
regions.

The GDM allows the integration of multiple heterogeneous data sets from
different sources and GMQL computes massive operations on genomic data,
which take into account regions, relative positions, and distances.

Data interpretation. In the interpretation of genomic data coming from
new generation sequencers, machine learning techniques stand out. The ma-
chine learning algorithms have deeply transformed the diagnosis processes and
the therapies of many diseases, especially cancer [Saj06, CHH+17]. The com-
plexity of the biologic phenomena leads to a variety of the data types produced
by the new generation sequencers. However thanks to this high availability
of different types of NGS data, coming from numerous genomes of different
individuals, it is possible to examine many different genomic features simul-
taneously, in order to characterize their functional role and to clarify genetic
and epigenetic phenomena. The analysis of these data is effective only if dif-
ferent kind of data are considered together at the same time, in other words
the study of the data is useful if it considers the whole heterogeneity of the
genomic experiments [SBT+19]. In this context bioinformatics has important
tasks to understand the complex biological mechanisms: the integration and
the analysis of genomic data.

Eventually, although storing, querying and management are very important
steps in the analysis process, in the latest years the interpretation of genomic
data has turned out to be one of the most challenging topic within bioinfor-
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matics.

1.7 Conclusions

The DNA molecule that contains precious information to create and model a
living organism is considered one of the main emerging characters of the Big
Data world. Genomics and new generation sequencing technologies have deeply
transformed scientific research and the amount of data generated with NGS is
constantly growing at an incredible rate, also as a result of the lower costs. On
the grounds of these consideration, the Big Genomics Data age has been defined
and within this context the management, the storage and the sharing of this
huge amount of data have become a very important chokepoint. Acquiring
and sharing the genetic data from million people has the important goal to
realize new reliable diagnosis models for specific diseases as well as develop
new therapies suitable for each patients elaborated on the grounds of genetic
heritage of the patient himself. Maintaining such a big amount of data clearly
needs the use of proper systems. Thus the scientific world takes advantage of
the Big Data field, with the goal to manage biomedical data in an effective
way, using technologies and algorithms suitable in this context. The genomic
analysis requires suitable algorithms that can sustain the huge amount of data
generated by NGS. These algorithms come from the combination of both big
data technologies, and the analysis of sequencing data techniques.

But, before developing new sophisticated computational methods for data
analysis and applying machine learning techniques for data interpretation,
bioinformatics has to deal with the integration of complex heterogeneous ge-
nomic data.

In the field of cancer, the Genomic Data Commons (GDC) addressed the
issue of integrating NGS data provided by different sources, defining restric-
tive procedures and schemas for representation of each NGS experiments.
GDC partially solves the NGS data integration, aggregating data from dif-
ferent databases and representing the same NGS experiment with unique data
schema. The GDC experiments are standardized depending on NGS data type,
but NGS data from different experiments are provided in different data formats
and schemas. A new level of standardization is necessary to allow the integra-
tion of several NGS experiments and to connect more biological information
before applying a learning algorithm.

23





Chapter 2

Automated biomedical data

standardization

2.1 Introduction

Thanks to NGS techniques, different types of experimental data are produced,
whose storage and analysis can be very demanding [OM11, ZJ10, AKMB+09].
More and more often researchers have to face with Big Biological Data [Bel14,
LWGZ16], frequently lacking of integrated data models and accessible schema
representations. Thus, storing, retrieving, integrating, comparing, and analyz-
ing heterogeneous biomedical data becomes a major challenge. Therefore new
models and methods to easily access, integrate, and search them effectively are
needed. In cancer research, several organizations are involved in the collection,
management, and publication of genomic and clinical data. In particular, the
Genomic Data Commons (GDC) supports several programs and defines bioin-
formatics pipelines: it provides clinical / biospecimen supplements and genomic
data harmonization procedures related to DNA-sequencing [TKR+10], RNA-
sequencing [MWM+08, TWP+10], miRNA-sequencing [ZC03], Copy Number
Variation [CPR+10a], and DNA-methylation [BBT+11]. The processed data
is publicly available through the GDC portal, which deals with different cancer
programs, and also through its application programming interface (API), (as
described in Section 1.4).

In this chapter, we enhance GDC harmonization by applying a state of the
art data model, the Genomic Data Model (GDM) [CKM+16] composed of two
components: the genomic data, in Browser Extensible Data (BED) format, and
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the related metadata, in a tab-delimited key-value format. We extend the GDC
genomic data with information extracted from other public genomic databases
(i.e., GENCODE, HGNC, miRBase, and NCBI). For creating metadata, we im-
plement automatic procedures to recognize redundant clinical / biospecimen
supplements that are present on the two different sources of GDC (i.e., data
portal and API). Moreover, we developed and release the OpenGDC software
[CCB+18], which is able to extract, integrate, extend, and automatically stan-
dardize genomic and clinical data of The Cancer Genome Atlas (TCGA) from
GDC.

2.2 The Genomic Data Model

The Genomic Data Model (GDM) represents each genomic sample through two
fundamental concepts, the genomic regions and their metadata. The genomic
regions are described by coordinates and some high-level properties. For exam-
ple to represent DNA-sequencing are not included DNA sequences, but rather
they are storing some properties, such as the sequences involved in mutations
and their categorization. Conversely, the metadata describes the biological and
the clinical properties associated with each sample, not specifically related to
the genomic regions. The metadata associated with the sample are extremely
heterogeneous and they are represented as attribute-value pairs. They include
the experiment type, the sequencing and analyzing method that have been
used, and other patient-related information. Each pair of files is part of a
dataset that has the same features: dataset is a collection of samples with the
same region scheme. Therefore datasets can be considered as homogeneous
collections of samples, generally produced within the same project with the
same technology and the same tools [CKM+16].

A sample is defined as < id, { < ri,vi > }, { Mj } > :

– id, is the sample identifier;

– ri, is the i− th genomic region, or portion of the genome defined by four
coordinates < chr, left, right, strand >. chr is typed string and repre-
sents the chromosome, left and right are the extremes of the region along
the DNA coordinates and are typed integer, strand is typed string and
symbolizes the reading direction of the DNA, and can therefore assume
+ or − values, and ∗ if the direction is not specified;

– vi, is the i − th value associated with the i − th region of the sample.
Indeed each region is a pair of coordinates ri and values vi, which are
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attributes that describe the properties of the regions and can be of any
types: boolean, string, integer, long, etc.;

– mj , is the j − th attribute-typed value pair, typed string, and is part of
a collection of pairs that compose the sample’s metadata.

The model allows the integration of heterogeneous data coming from dif-
ferent sources, standardizing them with a single data representation.

2.3 The transition from TCGA to GDC data portal

The Cancer Genome Atlas (TCGA) is the most relevant project within GDC,
collecting genomic and clinical data of 33 different tumor types of over 11000
patients [LLH+18].

TCGA data were available at its own portal until late 2016, but since early
2017 they were migrated to the new GDC portal, resulting in a major change of
genomic and clinical / biospecimen formats and schema. In the GDC portal, ex-
perimental data (i.e., DNA-sequencing, RNA-sequencing, miRNA-sequencing,
Copy Number Variation, and DNA-methylation) are produced from harmoniza-
tion procedures applied on different analysis strategies, improving the quality
of data available at the old TCGA portal. Indeed, GDC provides a program-
matic access to interact with these harmonized data through APIs, e.g., to
obtain aliquot UUIDs that identify uniquely GDC experiments. The harmo-
nization procedures provide standardized and comparable data, depending on
the type of NGS experiment, regardless of the program which was used in the
generation.

For what concerns metadata, clinical / biospecimen supplements were rep-
resented in an unstructured format in the TCGA portal; conversely, GDC
introduced a new structured data model (i.e., the GDC Data Model). The
transition is however still incomplete: GDC provides some relevant clinical /
biospecimen information in the old unstructured format and some other in the
new format. Correspondingly, GDC exposes two different methods for retriev-
ing clinical and biospecimen information. The first one is the direct download
of supplements from the portal in XML format, which is semi-structured and
does not adhere to a specific data model. The second one is through the GDC
APIs, which allow to download structured information according to the GDC
Data Model and which provide output in the JSON format. These methods al-
low to reach two different materializations of the metadata, partly overlapping
with each other.
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GDC is proceeding with the migration from the first representation to the
second one, importing and inserting the data contained in the first within the
second. However, in this transitory phase (that has lasted for several months
and that will probably last for a long time), much of the information in the
first model is not yet replicated to the second, and there is no single source that
provides information from both models. In order to obtain a comprehensive
representation of such information, it is therefore necessary to extract data
using a pipeline that deals with model differences and identifies/manages the
overlapping information. The first contribution of our work is the design and
development of such a pipeline, such that the clinical and biospecimen data
(referred as metadata) are represented with a common format.

We solve the issues arisen in the transition from the TCGA data por-
tal to the GDC one, providing genomic data and their associated clinical /
biospecimen data in a standardized format, making both of them seamless,
straightforward, and easy to be used. We enhance GDC harmonized data
by defining a new data model, in order to uniform genomic and clinical /
biospecimen data. We automatically standardize data by mapping to such
unique common schema, thereby supporting scientists in integration and anal-
yses [CFW18, CCW18, WCCF16]. We widely exploit the GDC API to interact
with GDC data and extract them; for experimental data we apply the extension
and standardization procedures defined in Section 2.5. We also integrate infor-
mation extracted from external public databases, i.e., GENCODE [HFG+12],
HGNC [EDS+06], miRBase [GJSvDE07], and Genome annotation of NCBI
[BWL+12], enriching the content of the experiments.

We consider this work as an evolution of another project, TCGA2BED
[CFC+17], where we faced similar issues, but focusing on the old TCGA portal;
unlike TCGA2BED, we widely exploit the GDC API to interact with GDC data
and extract them. Our main contribution is the representation of experimental
and clinical / biospecimen data by applying the Genomic Data Model (GDM).

GDM consists of two parts, one describing processed datasets with a region-
based format, and one describing the metadata. For the former, we map the
content of GDC data to GDM, thereby transforming the experimental data
of GDC into a new data collection, that we denote as OpenGDC, which are
harmonized and extended by linking with other public databases. For the
latter, the clinical and biospecimen supplements (which are semi-structured,
not part of a data model) are extracted and merged with all the information
on clinical and biospecimen data available through the GDC API (which is
structured and adheres to the GDC Data Model) and finally converted to the
metadata format of GDM, used by OpenGDC.
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Other works have dealt with the problem of storing, retrieving, and enhanc-
ing data of GDC, almost all of them are focused on the TCGA program. Among
them, we mention: i) TCGA Assembler 2 [WJY+17], a software pipeline, which
allows to download TCGA data from GDC defining filtering criteria to merge
the extracted data files of samples into a single data table, and finally to process
them; ii) The International Cancer Genome Consortium (ICGC, [ZBC+11]),
which provides a data portal to characterize genomic abnormalities in differ-
ent cancer types including data from TCGA; iii) The Seven Bridges Cancer
Genomics Cloud (CGC, [LLS+17]), which allows to access data from public
cancer genomic datasets (e.g., TCGA) and to analyze them in the cloud by
using bioinformatics tools and workflows. All these tools are of great interest
and improve the access to GDC data, in particular they aggregate them, they
identify important genomic features, and they analyze them with cloud com-
putating resources. Our solution is different, as it aims at facilitating the use
of TCGA data of GDC by providing it in a standardized and extended format.
For a more detailed overview of these tools we refer to the work [SC18], where
the authors identify two main categories of TCGA tools, for Extraction and for
Integrative data analysis. We can use this distinction and classify our system
in the first category.

2.4 Genomic and clinical data modeling

The main aim of our work is the standardization of GDC experimental data
and clinical / biospecimen supplements through the application of the Genomic
Data Model (GDM), which provides a representation of the genomic experi-
ments (i.e., data) in the Browser Extensible Data (BED) format [QH10] and its
biological / clinical properties (i.e., metadata) in a key-value format. Moreover,
we extend genomic data with additional information extracted from external
public databases, i.e., GENCODE, HGNC, miRBase, and genome annotations
of NCBI. Thanks to GDM, experimental data are unified to a single format
and thus become homogeneous, coherent, and comparable. The GDM meta-
data format is also unified, as the original TCGA metadata formats become all
associated to a single format of key-value pairs, although with different choices
of keys and with a variable number of pairs. Because of the heterogeneous
nature of the data, it is not possible to know a priori all the clinical, biological,
and experimental properties of the experimental samples; these are produced
as result of metadata mapping. Futhermore, to generate the metadata we de-
velop intelligent procedures for identifying redundant information in clinical /
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biospecimen supplements that are present on the two different sources of GDC
(i.e., data portal and API).

In Sections 2.5 and 2.6 we describe the genomic data and metadata format
that we obtain applying the Genomic Data Model to eight different GDC data
types.

2.5 Genomic data format

For genomic data, we use a free-BED data representation, in which we have
fixed coordinate fields (chromosome, start position, end position, strand) and
then included additional fields according to the specific type of experiment;
for every data type we provide a specific ready-to-use schema in XML for-
mat. We implemented automatic procedures for converting the original GDC
genomic data into such free-BED format; to index our BED output files, we
introduce opengdc id, an extension of the aliquot Universal Unique Identifier
(UUID) (i.e., the unit of analysis for GDC genomic data identifying a sam-
ple analyzed portion). Since in GDC an aliquot corresponds to different data
types, opengdc id concatenates the aliquot uuid with the specific data type. In
the following, we provide an overview of the input and outputs data of our
standardization procedures. For a detailed description of all input and output
fields of each data type, the reader may refer to the OpenGDC format definition
(http://geco.deib.polimi.it/opengdc/data/OpenGDCformatdefinition.pdf).

Gene expression quantification data (Paragraph RNA sequencing in Sec-
tion 1.3) are provided in GDC for each aliquot in three tab-delimited files, each
of which presents the Ensembl ID [FAB+11] of the gene and one of the follow-
ing values: i) FPKM, the number of Fragments Per Kilobase of transcript per
Million mapped reads; ii) FPKM-UQ, the Upper Quartile normalized FPKM
value; iii) counts, the number of reads aligned to each gene, calculated by
HT-Seq. We merge the content of these files using the common Gene Ensembl
field. Then, we extract additional information to describe the genomic regions.
In the final free-BED structure we include the genomic coordinates (i.e., chro-
mosome, start position, end position, and strand), the gene symbol from GEN-
CODE (human genome version GRCh38 annotation), and the corresponding
entrez gene id from the Genome annotation of NCBI.
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Isoform Expression Quantification data contain expression profiles cal-
culated for each isoform of the miRNA sequence (Paragraph miRNA sequenc-
ing in Section 1.3). GDC provides one file for each aliquot, where each row
refers to a single isoform. For the free-BED structure, all input fields are left
unchanged with the exception of the isoform coords field, which is parsed to
obtain genomic coordinates. As an addition, we retrieve the entrez gene id and
the gene symbol from HGNC.

MiRNA Expression Quantification data (Paragraph miRNA sequencing
in Section 1.3) are derived from the sequencing of micro RNAs (i.e., miRNA).
They contain information about the nucleotide sequence and the miRNA ex-
pression. One file per aliquot is provided by GDC, where each row refers to a
single isoform, containing the expression computed on all reads aligning to a
particular miRNA. In the free-BED output we consider the fields provided in
input with the addition of genomic coordinates extracted from miRBase, the
entrez gene id, and the gene symbol extracted from HGNC.

Copy Number Segment and Masked Copy Number Segment (Para-
graph Copy Number Variation in Section 1.3). GDC provides two data types
related to CNVs: Copy Number Segment (including both germline and somatic
CNVs) and Masked Copy Number Segment (including only somatic CNVs).
The internal representation is the same for both data types. A single experi-
ment is represented by a tab-delimited file, where each row refers to a single
CNV. For the free-BED representation we reuse all fields except for the sample
id; we add the strand — required from the BED standard — which is always
set to ‘unknown’, using the wildcard character ‘*’.

Masked Somatic Mutation (Paragraph Somatic Mutation in Section 1.3)
experiments discover mutations by aligning DNA sequences derived from tumor
samples to sequences derived from normal samples and a reference sequence. A
Mutation Annotation Format (MAF) file is used to specify, for each sample, the
discovered putative or validated mutations and to categorize those mutations
(SNP, deletion, or insertion) as ‘somatic’ (i.e., originating in the tissue) or
‘germline’ (i.e., originating from the germline), as well as to specify additional
information about the mutations. Four MAF files for each tumor are provided
by GDC, each representing DNA-sequencing data. Each file is generated by a
specific analysis pipeline [FXH+16, LHC+11, CLC+13, KZL+12] and includes
125 attributes. By merging the four input fils, we defined a free-BED structure
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with 18 fields, including genomic coordinates, gene symbol and entrez gene id,
the type of mutation, the tumor and matched normal sequencing alleles 1 and
2, and the aliquot barcode/UUID for tumor and matched normal samples.

Methylation Beta Value (Paragraph DNA methylation in Section 1.3).
We consider both Illumina Infinium HumanMethylation27 (HM27) and Hu-
manMethylation450 (HM450) DNA methylation platforms, used for measuring
the level of methylation at 27,578 and 485,577 known CpG sites as beta values
(respectively for HM27 and HM450). Using probe sequence information pro-
vided in the manufacturer manifest, HM27 and HM450 probes are remapped
to the GRCh38 reference genome. These probes coordinates are then used
to identify the associated transcripts from GENCODE, the associated CpG
island (CGI), and the distance of the CpG sites from each of these features.
For each methylated site GDC reports a list of gene symbols. The genes that
fall within 1500 bp (base pairs) from the methylated site are used, considering
the gene as starting from the transcription start site (TSS) to the end of the
gene body. For each Methylation Beta Value data aliquot GDC provides a
tab-delimited file with 11 fields. We define a free-BED structure composed of
18 fields, which includes all original fields with the addition of the strand, the
entrez gene id retrieved from GENCODE and HGNC, the ensembl transcript
id, the position to tss (distances in base pairs of the CpG site from each associ-
ated transcript start site; negative values indicate that the CpG site is located
downstream with respect to the TSS), and the cgi coordinate (i.e., the start
and end coordinates of the CpG island associated with the CpG site). More-
over, we filtered out the methylation sites with missing beta values (i.e., not
measured or with unreliable measurement) and reported the gene symbol that
is at minimum bp distance from the CpG dinucleotide, in case this is outside
a gene region.

2.6 Metadata format

Each experimental BED file is associated to a metadata file containing a list
of key-value pairs. Also metadata files are indexed with the opengdc id, which
identifies the BED-META files pair. To populate the OpenGDC metadata
files, we retrieve clinical / biospecimen information from the GDC data type
called Clinical and Biospecimen Supplements. In addition, we consider other
properties retrieved using the GDC APIs (specifying aliquot uuid and data type
as parameters).
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Clinical and Biospecimen Supplements are a special data type which con-
tains data documentation; their information is stored in two different XML
format files, originally provided by Biospecimen Core Repositories (BCRs) un-
der contract of the National Cancer Institute (NCI). A clinical supplement [1] is
a collection of information about demographics, medical history (i.e., diagno-
sis, treatments, follow ups, and molecular tests), and family relationships (i.e.,
exposure and history) of a particular patient. A biospecimen supplement [2] in-
cludes information associated with the physical samples taken from a patient
and its processing.

2.7 Metadata analysis

The content of an OpenGDC metadata file is obtained by taking into account:
i) the GDC clinical and biospecimen supplements, ii) the information retrieved
through the GDC APIs, iii) additional manually curated attributes computed
within our standardization pipelines. Given a converted experimental data file
in free-BED format, identified by the opengdc id, the corresponding metadata
file is generated as shown in Figure 2.1.

On the top left corner, we consider Biospecimen and Clinical sup-
plements. They are organized by patient (identified by the bcr patient uuid
attribute)— one patient is typically related to many aliquots. Multiple OpenGDC
metadata files are created, one for each aliquot reported in the biospecimen file.
We replicate the full content of the Clinical supplement over all metadata files
regarding the aliquots included in the patient. The resulting attribute keys
start with the clinical prefix. A Biospecimen supplement, instead, contains a
unique section on the patient, but also distinct sections on multiple samples,
their portions, and the resulting aliquots. In each aliquot metadata file we
replicate the common parts about the patient (and possibly sample/portion),
while the remaining content of the Biospecimen file is divided among the dif-
ferent files according to the specific aliquot. The resulting keys start with the
biospecimen prefix.

On the bottom left corner of Figure 2.1, we query GDC Data Model el-
ements using their RESTful APIs. We call the services once for each aliquot
listed in the Biospecimen supplement, by specifying the aliquot uuid and the

[1]
https://gdc.cancer.gov/about-data/data-harmonization-and-generation/

clinical-data-harmonization
[2]

https://gdc.cancer.gov/about-data/data-harmonization-and-generation/

biospecimen-data-harmonization
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data type, and then associate to each OpenGDC data file all information re-
trieved in the obtained response. The extracted attributes describe a data
file along different GDC Data Model conceptual areas (i.e., analysis, adminis-
trative, biological, and clinical). Relevant administrative entities include the
Program (i.e., the broad framework of goals to be achieved by multiple ex-
periments, such as TCGA), the Project (i.e., the specifically defined piece of
work that is undertaken or attempted to meet a single requirement, such as
TCGA-LAML), the Case (i.e., the collection of all data related to a specific
subject in the context of a specific project, such as a patient). Among Biologi-
cal entities there are Sample (i.e., any material sample taken from a biological
entity for testing, diagnostic, propagation, treatment or research purposes) and
Aliquot (i.e., pertaining to a portion of the whole; any one of two or more
samples of something, of the same volume or weight). Clinical entities include
Treatment (i.e., therapeutic agents provided—or to be provided—to a pa-
tient to alter the course of a pathologic process) and Diagnosis (i.e., data
from the investigation, analysis and recognition of the presence and nature of
disease, condition, or injury from expressed signs and symptoms). Analysis en-
tities include harmonization pipelines such as “Copy Number Variation” and
“Methylation Liftover”, each related to one data type.

In case the OpenGDC data file corresponds to n original GDC files, the
API JSON response is divided in n partitions, containing information both on
the single GDC original file and on the related aliquot (these are replicated in
each partition). In one OpenGDC final metadata file, we group the information
from the original files (by concatenating multiple values in a single pair) while
we consider the aliquot information only once. Attribute names are prefixed
with gdc and obtained by flattening the hierarchical structure of the JSON
responses, i.e., through concatenation of json keys at each traversed level.

As an addition to GDC inputs, we generate a set of extra manually cu-
rated key-value pairs (gathered in the group of keys prefixed with manu-
ally curated ). These contain information that is missing in GDC and derived
from other sources or specified by our system. We add the data format (e.g.,
BED file textual format), URLs of the data and metadata files on the FTP
server offered by OpenGDC (see Section Results and Discussion for details
about OpenGDC software and the FTP Repository), the genome built (i.e.,
reference assembly), the id, checksum, size and download date of the data file,
and the status of the tissue, which indicates if it is of normal or control sample.

Combining clinical / biospecimen information with GDC API information
has led to value redundancy, which is due to the fact that there does not exist a
specific data model for the Supplements data and it is impossible to determine
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a priori which information are non-overlapping. We ascertained the presence of
attributes holding different names but same semantics and associated values.
We profiled all input data, obtaining sets of different keys that typically present
same values within a same metadata file. Example groups of pairs with the
same value and the corresponding chosen candidate is shown in Table 2.1. We
defined a list of heuristics to remove the redundant attributes from metadata,
which is applied by the Data Redundancy Solver (at the center of Figure 2.1):

1) verify mappings on the official GitHub repository[3] specifying which BCR
fields correspond to the API fields: when redundant, keep the second;

2) when BCR biospecimen fields are redundant w.r.t. clinical, keep the first;

3) when fields belonging to the case group are redundant w.r.t. case.project
fields, keep the first;

4) when fields belonging to the analytes group are redundant w.r.t. ana-
lytes.aliquots fields, keep the second.

To facilitate key-value pairs use, in case keys are very long and cumber-
some, we simplify them with the Data Renaming Module, which applies re-
naming rules based on a regular expressions match-and-replace strategy. With
respect to the original keys retrieved from the APIs, we usually leave un-
changed the rightmost part (i.e., last subgroup and name of the attribute), thus
it is ensured that the attributes remain uniquely identified. As an example,
gdc cases samples portions analytes aliquots aliquot id becomes gdc aliquots aliquot id.
The three levels of the resulting attribute, separated by double underscore,
identify an attribute retrieved through the APIs (“gdc”), belonging to the
“aliquots” Data Model entity, and indicating specifically the identifier of the
represented aliquot (i.e., “aliquot id”). Examples of renaming rules and their
results are shown in Table 2.2.

2.8 OpenGDC software solution

Part of this section was published in [CCB+18]

In this Section we present the OpenGDC software, which implements the
data models and the retrieval, extension, standardization procedures described
in previous sections.

[3]
https://github.com/NCI-GDC/gdcdatamodel/tree/release/horton/gdcdatamodel/xml mappings
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Figure 2.1: Metadata pipeline overview. The procedure starts with the down-
load of the Biospecimen and Clinical Supplement files by exploiting the GDC API
according to a patient uuid. Aliquot uuids are extracted from the Biospecimen file,
whose content is split by the aliquot. Based on these aliquot uuids and their asso-
ciated data types, the GDC Data Model is queried through the GDC API in order
to obtain additional metadata information. Finally, inside a unique metadata file,
we merge together: Clinical data, a portion of Biospecimen data, GDC data model
metadata, and manually curated attributes (automatically generated by the pipeline).
The obtained attributes, which compose the final metadata file, are previously pro-
cessed by two additional components: the Data redundancy solver that deals with
removing redundant attributes, and the Data renaming module that applies rules for
renaming attributes.

Preserved Different attributes Example values

biospecimen bio analyte type RNA
× gdc cases samples portions analytes analyte type RNA

× biospecimen admin day of dcc upload 31
clinical admin day of dcc upload 31

× gdc cases primary site Ovary
gdc cases project primary site Ovary

× gdc cases samples portions analytes aliquots concentration 0.17
gdc cases samples portions analytes concentration 0.17

Table 2.1: Example of choices produced by the Data Redundancy Solver.
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GDC naming OpenGDC flattened OpenGDC renamed

cases.diagnoses.age at diagnosis gdc cases diagnoses age at diagnosis gdc diagnoses age at diagnosis
analysis.input files.data category gdc analysis input files data category gdc input files data category
cases.project.program.name gdc cases project program name gdc program name

Table 2.2: Column 1 shows the attribute names as they are specified in GDC APIs
parameters; Column 2 shows the OpenGDC naming convention; Column 3 shows the
results of the renaming phase applied to the attribute in Column 2.

OpenGDC is an open-source and cross-platform software written in Java,
which allows the extraction, extension, and standardization of public available
data from GDC. The software is available as a standalone desktop applica-
tion with a friendly user interface and supports the BED, GTF, CSV, JSON,
and XML standard formats as output. Its architecture has been implemented
following the Model-View-Controller (MVC) design pattern as shown by the
flowchart in Figure 2.2.

The software is composed of two main pipelines: (i) the GDC data download
procedure and (ii) the data conversion one.

The whole system can be summarized by three software components:

- Controller : it redirects the user instructions to the correct module and
initializes an instance of the software able to download and/or convert
the GDC data;

- Data Download System: it manages the process of search and retrieval of
the public GDC data exploiting the GDC APIs;

- Data Standardization Module: it allows to easily convert and standardize
data according to a specific data type. The process is facilitated by an
ad-hoc class BioParser, which provides an abstract representation for all
GDC data types; this class can be extended to support new data types
in case of future extensions of the GDC repository.

OpenGDC exploits the public GDC APIs during the data download proce-
dure, to retrieve the original genomic, clinical, and biospecimen data. It also
makes use of the GDC APIs during the conversion procedure of the Clinical
and Biospecimen supplements to extract additional information such as the
size of the downloaded files, their MD5 checksum, as well as the last creation
and update timestamps that will be added in the metadata files.

Data conversion uses a different parser depending on the type of converted
data. Additionally, the process retrieves complementary information from a
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Figure 2.2: OpenGDC architecture.This is a graphical organization of the
flowchart representing the OpenGDC software architecture. Every feature has been
differentiated in two pipelines, i.e., Download and Convert, highlighted by red and
green arrows, respectively. Every software module has been additionally surrounded
to delineate its function (i.e.: User Interface, Instruction Redirection, Genomic Data
Commons APIs, External Data Sources, and the List of Parsers).

set of external data sources like NCBI, GENCODE, HGNC, and miRBase, to
extract the genomic coordinates, the entrez gene ID, and the gene symbols
starting from information are already existing in the original data.

Interacting with the GDC public APIs

We search and extract data and other information from GDC through their
public APIs. In particular we exploit three main endpoints:

• cases: to find all files related to a specific case (i.e., sample donor);

• files: to find all files with specific characteristics such as the file name,
MD5 checksum, and data format;

• data: to download GDC data files.
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To understand the interplay of the three endpoints, consider a scenario
where we want to download all public available Gene Expression Quantifi-
cation data for the tumor Breast Invasive Carcinoma in the context of the
TCGA program. First we need to query GDC for all the file unique iden-
tifiers (UUIDs) related to this particular case. To this end, we make an
HTTP POST request to the files endpoint with a payload in Listing 2.1.
As a result, GDC returns a list of file UUIDs (file id fields) as shown in
Listing 2.2. Starting from this list, we then download the associated files;
this is done by querying the data endpoint (i.e, one HTTP GET request for
each result in the previous query response) specifying a single file UUID, e.g.,
http://api.gdc.cancer.gov/data/1837ad2a-4edf-4d80-9050-f78115e54454. For a
detailed description about the syntax of the payload and the other ways to
query GDC, the reader may refer to the GDC APIs documentation available
at https://docs.gdc.cancer.gov/. For additional details about the OpenGDC
software tools and its usage we point the reader to our user guide available at
http://geco.deib.polimi.it/opengdc/versions/OpenGDC-v1.0.zip. We applied
the OpenGDC to TCGA program and created the OpenGDC repository de-
scribed in Section 3.3.

{

"op":"and",

"content":[

{

"op":"=",

"content":{

"field":"cases.project.project_id",

"value":[

"TCGA-BRCA"

]

}

},

{

"op":"=",

"content":{

"field":"files.data_type",

"value":[

"Gene Expression Quantification"

]

}

},

{

"op":"=",

"content":{

"field":"access",

39



2. Automated biomedical data standardization

"value":[

"open"

]

}

}

]

}

Listing 2.1: JSON representation of the payload required to query GDC
for all public available Gene Expression Quantification data about the Breast
Invasive Carcinoma in the context of the TCGA project.

{

"hits":[

{

"data_type":"Gene Expression Quantification",

"updated_datetime":"2018-08-07T15O59O14.863537+00O00",

"file_name":"bb12bb45-2c4a-46dc-98dd-9acbe2a0c4ee.FPKM.txt.gz",

"submitter_id":"bb12bb45-2c4a-46dc-98dd-9acbe2a0c4ee_fpkm",

"file_id":"1837ad2a-4edf-4d80-9050-f78115e54454",

"file_size":490684,

"id":"1837ad2a-4edf-4d80-9050-f78115e54454",

"created_datetime":"2016-05-29T10O25O44.747424-05O00",

"md5sum":"236e7f21947de1053d99c0c16c8f494c",

"data_format":"TXT",

"access":"open",

"data_category":"Transcriptome Profiling",

"type":"gene_expression",

"experimental_strategy":"RNA-Seq"

},

{

"data_type":"Gene Expression Quantification",

"updated_datetime":"2018-08-07T15O59O14.863537+00O00",

"file_name":"4dcd18d6-b7b2-4a92-bcbe-361c7278e84e.FPKM.txt.gz",

"submitter_id":"4dcd18d6-b7b2-4a92-bcbe-361c7278e84e_fpkm",

"file_id":"b9610459-bd3e-4d65-92cd-8eb34541f259",

"file_size":500108,

"id":"b9610459-bd3e-4d65-92cd-8eb34541f259",

"created_datetime":"2016-05-30T18O29O36.681823-05O00",

"md5sum":"a4cef437e5523efb4f60f50386065534",

"data_format":"TXT",

"access":"open",

"data_category":"Transcriptome Profiling",

"type":"gene_expression",

"experimental_strategy":"RNA-Seq"

}

],

"pagination":{

"count":2,

"sort":"",
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"from":1,

"page":1,

"total":3669,

"pages":734,

"size":2

}

}

Listing 2.2: GDC JSON response corresponding to the query in Listing 2.1.
The number of hits is limited to 2 results for brevity, however the software
automatically scrolls over all the files listed in the result.

2.9 Conclusions

In this chapter, we presented a new data model for biomedical data and de-
fined automatic procedures able to extract, integrate, extend and standardize
genomic and clinical data of The Cancer Genome Atlas (TCGA) as included
in the Genomic Data Commons portal. Our model and software was applied
to data types that are obtained from different NGS experiments (i.e., Gene-,
miRNA-, Isoform Expression Quantification, Masked Somatic Mutation, Copy
Number Segment, Masked Copy Number Segment, Methylation Beta Value).
Additionally, we considered clinical and biospecimen information about the
experimental data.

To reach our objective, we exploited the Genomic Data Model (GDM),
that allowed us to represent an experimental sample by its genomic regions
and its related metadata. The genomic regions are defined by genomic coordi-
nates (chr, left, right, strand) and genomic features which are produced by the
specific NGS experiment. Conversely, metadata report clinical and biological
properties in attribute-value pairs format.

Based on GDM representation, we implemented OpenGDC, a software for
retrieving TCGA experimental data, which is then processed with ad-hoc pro-
cedures for each data type. Our standardization procedure provides all the
data in free-BED format, which contains a set of experimental-specific fields
in addition to the genomic coordinates. In order to obtain this standardized
format, the software is able to extract additional features from external data
sources (i.e., GENCODE, HGNC, and miRBase), which are not provided in
the original GDC files. The software is also integrating experimental data with
clinical and biospecimen information derived from different GDC sources.

Our pipeline extracts metadata attributes from the original Clinical and
Biospecimen Supplements and from the GDC RESTful APIs. The obtained
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attributes are merged in a single metadata file, using a tab-delimited key-value
format. We then used two software components in the metadata pipeline: (i)
the Data Redundancy Solver, to detect and remove redundant metadata at-
tributes, and (ii) the Data Renaming Module to redefine the attribute names.
In particular, we performed data profiling activity to identify redundant at-
tributes, i.e., with the same values and different attribute names.
All these procedures and the input/output data types are thoroughly described
in the OpenGDC Format Definition document available at
http://geco.deib.polimi.it/opengdc/data/OpenGDC format definition.pdf.

Future work concerns the application of our data representation and soft-
ware pipeline to other projects integrated in the GDC portal and to other
cancer-related repositories in order to facilitate knowledge discovery over can-
cer data. Additionally, we plan to use our model and software in order to
further enhance the data integration among the different biomedical public
repositories. Finally, we are going to exploit the standardized data, which is
easily processable by several state of the art bioinformatics tools, in order to
perform new knowledge extraction analyses about cancer.
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Chapter 3

Biomedical data accessibility and

querying

3.1 Introduction

Public and private repositories of genomic data have been created with the aim
of spreading NGS data [SMB+17, BWL+12, BKML+08]. Unfortunately, these
databases often lack of standardization and of efficient storage models, result-
ing in waste of storage space, usually related with data redundancy. Nowadays,
browsing all these data and retrieving significant insights from them is a big
challenge that has been already faced with different techniques in order to
facilitate their accessibility and interoperability. Repositories and databases
have to provide discoverability, availability and accessibility of data resources
in order to promote and facilitate data sharing for the genomics research com-
munity [LDC+19, vSKP+14]. These represent significant steps to improve data
sharing, which ensure continued progress in understanding diseases.

In Chapter 2 we proposed an automatic standardization pipeline [CCB+18]
to model heterogeneous genomic data, applying novel methodologies that in-
volve the most modern technological innovations in data management [KGM+17].
This model can be the base for the development of advanced software solutions
for efficiently querying these data [FLM+15] in order to retrieve potentially rel-
evant insights. Unfortunately, for querying these data, is often required a deep
knowledge about (i) the strategies with which the experiments are produced
and (ii) the technical terminology adopted by domain-experts used to define
the metadata associated to the experimental data.



3. Biomedical data accessibility and querying

In this Chapter, we face with the problem of modeling genomic and clin-
ical data in order to minimize the amount of redundant information [CZV17]
(therefore also storage space), describing a possible solution [CWC19].
We address followed biomedical data management issues: (i) how to reduce the
redundancy of genomic and clinical data, (ii) how to make this big amount of
data easily accessible, and finally (iii) which tools to use to extract and query
these data.

We introduce data source which we consider as the beginning starting point
to treat this topic, i.e., the repository that contains the standardized genomic
data and metadata obtained by applying OpenGDC to The TCGA program
as reported in Chapter 2. Then we describe the GenoMetric Query Language
(GMQL, [MPV+15]), a high-level domain-specific query language, and its ap-
plication on the standardized data in order to highlight the advantages of our
representation in terms of information retrieval. Therefore, we show how this
data can be accessed, and a language to be able to query them.

From Section 3.5 we move a step forward. We propose an approach to
organize the standardized genomic and clinical data by taking into account
data redundancy and a method able to save space by exploiting the no-SQL
technologies. We suggest principles for organizing biomedical data and make
them easily accessible.

Finally we face with the issue of querying these data by external users who
do not know the specific nature of these records, the granularity of the query
may not always correspond to what is present in the database. This last issue
occurs when the structure of data is not formally defined usually due to the
heterogeneous nature of the this kind of data. The metadata represent the
most significant case of data variability on structure and content. Thanks to
the application of taxonomies, we can figure out what kind of relationship
exists between the information sought by a given user through a query and the
data that are actually present in the records, which may not be exactly the
requested ones. In Section 3.10 we exploit domain-specific ontologies in order
to allow executing taxonomy-based relaxed queries. We apply the upward and
downward query extension methods, to obtain a finer or coarser granularity of
the requested information.

3.2 Biomedical Data management

Recently, many efforts have been made towards a better management of ge-
nomic and clinical data through harmonization procedures for standardiza-
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tion and improved accessibility. Concrete examples of these methods are
TCGA2BED and OpenGDC, two software tools for the automatic extrac-
tion, extension, and standardization of public available genomic and clini-
cal data from the The Cancer Genome Atlas (TCGA) portal, and the Ge-
nomic Data Commons (GDC) portal, respectively. With these tools we pro-
vide also open-access FTP repositories with standardized data in free-BED,
which is widely used format in the bioinformatics community, available at
ftp://bioinf.iasi.cnr.it/tcga2bed/ and at ftp://geco.deib.polimi.it/opengdc/.
In the following section, we describe the OpenGDC repository that is constantly
syncronyzed and updated with more recent GDC data.

3.3 Standardized cancer genomic data repository

The OpenGDC repository contains all the public available data of the TCGA
program of GDC in the standardized and extended version (BED format and
key-value format) described in Chapter 2, thanks to the application of the
OpenGDC software.. The data are firstly divided in two branches, original
GDC data / extended BED ones (original and bed folders, respectively). The
structure of the FTP space is then organized within the two branches using
the following structure: program (e.g., TCGA), tumor (e.g., TCGA-BRCA,
TCGA-KIRP, TCGA-OV, etc.), and finally data type (e.g., gene-expression-
quantification, methylation-beta-value, clinical-and-biospecimen-supplements,
etc.). For each data type the genomic and meta data are provided for each
aliquot. Currently, a total volume of 2.7 TB of data (1.2 TB of original GDC
data and 1.5 TB of converted one) of 33 different tumors is maintened.
Table 3.1 shows the details about the number of aliquots, patients, and samples
the reader may refer to

The FTP repository also includes an automatic data update procedure to
maintain the original and converted data always up to date with the latest
data version available at GDC. It consists in a subroutine that exploits the
GDC APIs to search for updates or new data availability once a month, and
eventually synchronizes them with our repository.

3.4 Querying OpenGDC Data with GMQL

In this Section, we show the application of the GenoMetric Query Language
(GMQL, [MPV+15]) on the standardized data in order to highlight the advan-
tages of our representation in terms of information retrieval. GMQL is a high-
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Tumor Aliquots Samples Patients

Adrenocortical Carcinoma 770 770 595
Bladder Urothelial Carcinoma 3787 3763 2874
Breast Invasive Carcinoma 10301 10276 7522
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 2706 2706 2118
Cholangiocarcinoma 401 401 267
Colon Adenocarcinoma 4350 4236 3117
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 415 415 323
Esophageal Carcinoma 1705 1701 1271
Glioblastoma Multiforme 3325 3260 2178
Head and Neck Squamous Cell Carcinoma 4938 4934 3627
Kidnay Chromophobe 615 615 429
Kidnay Renal Clear Cell Carcinoma 5315 5147 3495
Kidnay Renal Papillary Cell Carcinoma 2812 2784 2023
Acute Myeloid Leukemia 1215 1215 927
Brain Lower Grade Glioma 4670 4670 3588
Liver Hepatocellular Carcinoma 3604 3602 2610
Lung Adenocarcinoma 5246 5147 3723
Lung Squamous Cell Carcinoma 4780 4736 3460
Mesothelioma 775 775 603
Ovarian Serous Cystadenocarcinoma 4727 4699 3538
Pancreatic Adenocarcinoma 1659 1659 1267
Pheochromocytoma and Paraganglioma 1650 1650 1251
Prostate Adenocarcinoma 4777 4777 3472
Rectum Adenocarcinoma 1456 1449 1122
Sarcoma 2241 2335 1797
Skin Cutaneous Melanoma 4197 4197 3242
Stomach Adenocarcinoma 4107 4079 3018
Testicular Germ Cell Tumors 1311 1311 1013
Thyroid Carcinoma 4827 4827 3523
Thymoma 1120 1120 862
Uterine Corpus Endometrial Carcinoma 5066 5036 3838
Uveal Melanoma 720 720 560

Table 3.1: List of processed tumors with the related number of involved aliquots,
samples, and patients.

level domain-specific query language. It can be executed in the architecture de-
scribed in [MCP+18], which is specific for genomic data processing. Every oper-
ation in GMQL is strictly connected to the data structure. The operations are
based either on the genomic regions or the metadata. A GMQL query has the
following structure: < variable >= operator(< parameters >) < variables >.
The variables represent the GDM dataset and they are used as input for the
transformations and as output in order to maintain the resulting dataset and
in order to use the dataset itself in the consequent transformations. The opera-
tors determine what kind of transformation is to be obtained and some of them
can be applied to one or more variables. The parameters are peculiar for every
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operator and may include predicates, based on boolean expressions which have
the task to select or merge samples. Moreover, depending on the kind of oper-
ator, the predicates can be applied to every attribute of the metadata or to the
genomic region of the samples thus applying the data scheme attributes. The
attributes mainly describe the operation on the distances between the genomic
regions, that represent the fundamental point of the whole language.

The current available version of the GMQL system uses Apache Spark[1]

as its backbone; along with other design choices, this provides high scalabil-
ity in cloud computing. GMQL system contains a multiplicity of public ge-
nomic datasets ready to be used within tertiary analysis pipelines (as shown in
[MCP+18]); among other sources, it features all the datasets available in the
OpenGDC FTP service, providing an interface for browsing and processing
curated data in OpenGDC.

In this Section, we propose three GMQL use cases along with their queries;
we focus on query aspects, acting on both region data and metadata, which
highlight the strengths of the datasets produced by OpenGDC: 1) enabling the
combined use of metadata derived from GDC Data Model, from the submitters
clinical / biospecimen supplements, and from manually curated additions;
2) providing positional information (i.e., genomic coordinates) in a standard-
ized structure, which encourages data inter- and intra-source interoperability;
3) allowing joined use of different data types (e.g., gene expression and methy-
lation) based on common gene identifiers (e.g., the HUGO gene symbol).

Use case 1. For kidney cancer, find the frequency of mutations in the exons
of genes.

For this example, we consider public somatic mutation data samples of Kid-
ney Adenomas and Adenocarcinomas patients; such partition contains three
projects, i.e., Kidney Chromophobe (KICH), Kidney Renal Clear Cell Carci-
noma (KIRK), and Kidney Renal Papillary Cell Carcinoma (KIRP); and select
novel mutations (i.e., not listed in dbSNP [SWK+01]). For each sample, we
count the mutations occurring in each exon and filter-out the exons without
any mutation. We then return such samples together with the number of exons
remaining in each sample and the maximum number of mutations in a single
exon.

In this example: 1) we use GDC mutation data in combination with a GEN-
CODE annotation dataset—demonstrating the interoperability of OpenGDC
curated data with other sources; 2) we use seamlessly metadata from GDC

[1]
http://spark.apache.org/
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API (i.e., first and second conditions in the selection) and clinical supplements
(third and fourth conditions)—this is not possible on GDC portal, where only
the former are supported; 3) we select three TCGA projects together by us-
ing the characterization of the tissue and the classification of diseases (note
that the attribute gdc disease type represents the type of malignant disease[2],
while gdc project disease type is contains the full name for the project. The
output dataset contains 230 samples with 19,270 regions.

#Select mutation data based on both region and metadata attributes

MUT = SELECT(gdc__primary_site=="Kidney" AND gdc__disease_type=="Adenomas and

Adenocarcinomas" AND clinical__shared__history_of_neoadjuvant_treatment == "No" AND

clinical__clin_shared__followup_treatment_success == "Complete Remission/Response";

region: dbsnp_rs=="novel") GRCh38_TCGA_somatic_mutation_masked_2018_12;

#Select known human protein−coding and non−protein−coding exon regions of the GENCODE

annotation release 22

EXON = SELECT(annotation_type=="exon" AND release_version=="27")

GRCh38_ANNOTATION_GENCODE;

#Map the mutations to the exon regions and counts how many they are in each sample

EXON_MUT = MAP(count_name: MUT_count) EXON MUT;

#Remove exons that do not contain mutations

EXON_MUT_SELECT = SELECT(region:MUT_count>0) EXON_MUT;

#In the metadata of each sample add the count how many exons remain and the maximum number of

mutations in an exon

EXON_RES = EXTEND(exon_count AS COUNT(), max_mut AS MAX(MUT_count)) EXON_MUT_SELECT;

MATERIALIZE EXON_RES INTO result1_exons_mutations;

Listing 3.1: Example of GMQL query to find exons with somatic mutations.

Use case 2. In Breast Invasive Carcinoma, find the regions that are present
in at least 10% miRNA expression tumoral samples whose miRNA counts result
above average.

We translate these specifications into selecting samples corresponding to
patients who are affected by primary tumors and exhibit a value for
reads per million mirna mapped [3] above the average of the dataset. We first
use a simple query to evaluate the average of miRNA normalized reads. In
order to obtain the lightest query possible in terms of computational time,
we PROJECT only the required field, MERGE all samples into one, compute
the average as a metadata and MATERIALIZE a tiny dataset in order to get

[2]The disease is categorized by the World Health Organization’s (WHO) Inter-
national Classification of Diseases for Oncology (ICD-O).
[3]In miRNA Expression Quantification data type, it is the read normalized
count in reads-per-million-miRNA-mapped associated to each miRNA ID.
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the required value (in this case 531.6). We then perform a query to filter out
regions that present a reads per million mirna mapped value equal or below
the average of the dataset. Then, we use COVER to combine in one sample
only regions that are present in at least 10% of dataset samples and equip each
region with: 1) the number of miRNA regions that contribute to create the
result region; 2) the list of co-located genes, using specifically the entrez gene id
region attribute, which is an additional attribute w.r.t. original GDC data. The
output dataset contains 1 samples with 102 regions.

#This query materializes a set from whose metadata we read the average reads value to be used as

threshold

S0 = SELECT(gdc__project__disease_type=="Breast Invasive Carcinoma" AND

gdc__samples__sample_type=="Primary Tumor") GRCh38_TCGA_miRNA_expression_2018_12;

P = PROJECT(reads_per_million_mirna_mapped; metadata:none) S0;

M = MERGE() P;

E = EXTEND(avg_reads AS AVG(reads_per_million_mirna_mapped)) M;

MATERIALIZE E INTO result2_reads_threshold;

#Find regions with reads above threshold

S = SELECT(gdc__project__disease_type=="Breast Invasive Carcinoma" AND

gdc__samples__sample_type=="Primary Tumor"; region: reads_per_million_mirna_mapped

> 531.6) GRCh38_TCGA_miRNA_expression_2018_12;

#Find regions present in more than 10% samples; for each region report a list of overlapping genes and

number of samples

C = COVER(ALL/10,ANY;aggregate: all_genes AS BAGD(entrez_gene_id), num_samples AS

COUNT()) S;

MATERIALIZE C INTO result2_cover;

Listing 3.2: Example of GMQL query that finds regions with miRNA
expression levels above average that are present in more than 10% samples
with associated genes.

Use case 3. For follow-up comparative analysis, extract for all genes the
expression and methylation levels for both control and tumoral cases for each
patient affected by “Cholangiocarcinoma”.

Using the manually curated tissue status attribute with value “normal”
we can select samples with different sample types at once (i.e., Blood Derived
Normal, Solid Tissue Normal, Buccal Cell Normal, EBV Immortalized Normal,
Bone Marrow Normal—corresponding to codes 10-14 in http://gdc.cancer.gov/resources-
tcga-users/tcga-code-tables/sample-type-codes).
Similarly, “tumor” includes 10 different types (codes 01-09 and 40). To combine
meaningfully the gene expression regions with methylation ones, we expand
the former’s coordinates from 4000 bases upstream to 1000 bases downstream
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around the gene TSSs, since the methylation sites of interest may be located
in the surroundings of the gene (Lines 3 and 12). For expression data, we only
keep the fpkm values and the gene symbol. For methylation data we keep the
beta value.

Note that the code described in Lines 1-8 for normal samples is repeated in
Lines 10-17 for tumoral samples. With the MAP at Line 8 we associate to each
gene expression region (reference) the average of beta values of their overlap-
ping methylated regions (experiment). Reference and experiment are matched
only if belonging to the same patient (uniquely identified by the gdc case id).
At Line 20 the datasets resulting from line 8 and 17 are combined using a JOIN
operation, which allows to associate to each region, the gene symbol that in-
cludes its coordinates, and the fpkm and avg beta value from both normal and
tumoral cases. Note that the equi predicate on attribute can only be applied
thanks to the addition of gene symbol attribute in the gene expression dataset
(original GDC data did not provide it). Lines 23-24 are only needed for shap-
ing results into a convenient format, as it can be observed in Table 3.2, which
contains an excerpt from the result dataset.

1 #Select Cholangiocarcinoma gene expression normal samples

2 N0_EXPR = SELECT(gdc__project__disease_type == "Cholangiocarcinoma" AND

manually_curated__tissue_status == "normal") GRCh38_TCGA_gene_expression_2018_12;

3 N_EXPR = PROJECT(fpkm,gene_symbol; metadata:gdc__case_id; region_update: start AS start

- 4000, stop AS start + 1000) N0_EXPR;

4 #Select Cholangiocarcinoma methylation normal samples

5 N0_METH = SELECT(gdc__project__disease_type == "Cholangiocarcinoma" AND

manually_curated__tissue_status == "normal") GRCh38_TCGA_methylation_2018_12;

6 N_METH = PROJECT(beta_value; metadata:gdc__case_id) N0_METH;

7 #For each patient, for each reference gene region (in normal data) add the average of beta values of the

regions that overlap it

8 N_EXPR_METH = MAP(avg_beta_value AS AVG(beta_value); joinby: gdc__case_id) N_EXPR N_METH;

10 #Select Cholangiocarcinoma gene expression tumor samples

11 T0_EXPR = SELECT(gdc__project__disease_type == "Cholangiocarcinoma" AND

manually_curated__tissue_status == "tumoral") GRCh38_TCGA_gene_expression_2018_12;

12 T_EXPR = PROJECT(fpkm,gene_symbol; metadata:gdc__case_id; region_update: start AS start

- 4000, stop AS start + 1000) T0_EXPR;

13 #Select Cholangiocarcinoma methylation tumor samples

14 T0_METH = SELECT(gdc__project__disease_type == "Cholangiocarcinoma" AND

manually_curated__tissue_status == "tumoral") GRCh38_TCGA_methylation_2018_12;

15 T_METH = PROJECT(beta_value; metadata:gdc__case_id) T0_METH;

16 #For each patient, for each reference gene region (in tumor data) add the average of beta values of the

regions that overlap it

17 T_EXPR_METH = MAP(avg_beta_value AS AVG(beta_value); joinby: gdc__case_id) T_EXPR T_METH;

19 #For each region see corresponding gene and normal/tumor expression values/average beta values

20 J = JOIN(DLE(0); on_attributes: gene_symbol; joinby: gdc__case_id) N_EXPR_METH
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T_EXPR_METH;

22 #Format results as a matrix with only significant columns

23 J1 = PROJECT(region_update: gene_symbol AS N_EXPR_METH.gene_symbol, normal_fpkm AS

N_EXPR_METH.fpkm, normal_avg_beta_value AS N_EXPR_METH.avg_beta_value, tumor_fpkm

AS T_EXPR_METH.fpkm, tumor_avg_beta_value AS T_EXPR_METH.avg_beta_value;

metadata_update: patient AS N_EXPR_METH.N_EXPR.gdc__case_id) J;

24 J2 = PROJECT(gene_symbol, normal_fpkm, normal_avg_beta_value, tumor_fpkm,

tumor_avg_beta_value; metadata: patient) J1;

25 MATERIALIZE J2 INTO result3_matrix_normal_tumor;

Listing 3.3: Example of GMQL query that builds a matrix comparing, for
each gene symbol, the average fpkm expression values and methylation meta
values for normal and tumoral tissues.

In the column names of Table 3.2 we use the subscripts n and t for normal
and tumoral, respectively. Occurrences of null in the average beta values
correspond to cases where no methylation points are located in the specified
gene. Overall, the output dataset contains 9 samples with in total more than
500k regions.

chr left right strand gene symbol fpkmn avg beta valuen fpkmt avg beta valuet

chr1 166971581 166976581 + MAEL 0.27401479 0.07428182 0.19981536 0.06583118
chr1 166974482 166979482 - ILDR2 0.13031929 0.11815327 0.06208503 0.13756338
chr3 38949561 38954561 - SCN11A 0.04643162 0.88310268 0.01814642 0.73347131
chr6 152746797 152751797 + VIP 0.50472323 0.13604175 0.11766157 0.35010738
chr11 114558895 114563895 - NXPE1 0 0.80843122 0.0161897 0.82677058
chr4 8955627 8960627 + UNC93B8 0 null 0 null
chr12 126615554 126620554 - RP11-407A16.8 0 0.96168949 0 0.97617533
chr1 154205333 154210333 - C1orf189 0.16309294 0.8960085 0 0.9050279
chr10 88786061 88791061 - RCBTB2P1 0 null 0 null
... ... ... ... ... ... ... ... ...

Table 3.2: Excerpt from Example 3 output matrix.

3.5 Genomic and clinical data redundancy

Part of this section was published in [CWC19]

We took into account the free-BED representation of data provided by the
OpenGDC public FTP repository. In particular, although these data are well
organized following a clear conceptual data division schema — according to the
tumor, experimental data type, and finally the most atomic data represented by
the single experiment denoted by its universal unique identifier — they suffer
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of data redundancy issue caused by the requirements imposed by the adopted
standard.

Starting from the data representation described above, we extract all the
free-BED data and we model them to minimize their content redundancy. In
particular, we focus on Gene Expression Quantification (GEQ) and Methy-
lation Beta Value (MBV) data, which are the main experimental data types
affected by the problem of redundant information (see the Paragraphs about
these experiments in Section 2.5).
Every GEQ experiment contains indeed the same information about the genes
— genomic coordinates of the involved genes (chromosome, start position, end
position, strand), the ensembl gene id, the entrez gene id, and type related to
the corresponding ensembl id of the gene, according to the previously cited
OpenGDC format definition — except for the those values that character-
ize an experiment from all the others (htseq count, fpkm, and fpkm uq, that
correspond to the number of reads aligned to each gene (calculated by HT-
Seq), the number of Fragments Per Kilobase of transcript per Million mapped
reads (FPKM), and the upper quartile normalized FPKM value respectively).
Also MBV data contains redundant information consisting the genomic coor-
dinates of the involved methylated sites (also called CpG islands) that corre-
spond to a single nucleotide position in this case (chromosome, start position,
end position, andstrand), the composite element ref (the CpG site identifier),
gene symbol, entrez gene id, gene type, ensembl transcript id, position to tss,
all gene symbols, all entrez gene ids, all gene types, all ensembl transcript ids,
all positions to tss, cgi coordinate, and feature type. We may suggest the reader
to have a look at the previously cited format definition document for a detailed
explanation of the information listed above. As in GEQ experiments, also for
MBV experiments the beta value identifies the information that characterized
every single experiment. It is worth noting that redundant fields are repeated
for each experiment, because of the sequencing technology and the related chips
adopted to generate these data. This allows us to consider two distinct annota-
tions, which describe GEQ and MBV experiments and that we use in order to
reduce the size of the data involved in these two types of experiments. Other
experimental data types are available at the OpenGDC public FTP repository,
i.e., Isoform Expression Quantification [TWP+10], miRNA Expression Quan-
tification [ZC03], Masked Somatic Mutation [TKR+10], Copy Number Segment,
and Masked Copy Number Segment [CPR+10a], but, conversely to GEQ and
MBV, every experiment contains different characterizing information. Thus,
we could not consider annotations for these cases.
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3.6 Genomic and clinical data persistence

Part of this section was published in [CWC19]

For dealing with data persistency, we adopt a no-SQL document-based
Database Management System (DBMS), i.e., MongoDB, to represent all the
previously described data types. We use a document-based DBMS both to
avoid the problem of being tied to a fixed structure of the data, to vertically
and horizontally scale, and to obtain rapid access capabilities. Through this
system we are able to represent both semi-structured data as those related to
genomic regions, since each type of experiment is defined by specific features,
and unstructured data such as clinical data, since the attributes do not follow
a well defined schema. Additionally, MongoDB allows us to organize data in
different collections, one for each experimental data type. Every collection is
defined as a set of documents that are represented as JavaScript Object Nota-
tion (JSON) standardized objects. We structured a document to contain one
row of the original free-BED files only, which corresponds to an experimental
feature on the considered sample. For instance, when taking into account a
Copy Number Segment experiment (represented by a specific .bed file in the
OpenGDC repository) with 355 rows, we added 355 JSON documents to the
Copy Number Segment collection. In this particular case, every row (i.e., every
JSON document) contains a set of information like the genomic coordinates
(i.e.: chromosome, start position, end position, and strand), the number of
probes (num probes), and the segment mean (segment mean), as in the exam-
ple shown in Listing 3.4.
It is worth noting that we added three more fields to every document: the
experiment identifier aliquot, the tumor tag tumor (the name of the specific
tumor related to the considered experiment), and the source field that denotes
the data source where data have been extracted. These fields have been added
to guarantee the correct reconstruction of the original experimental data.

{

"chrom": "chr1",

"start": 62920,

"end": 15827002,

"strand": "*",

"num_probes": 8317,

"segment_mean": 0.0031,

"aliquot": "01175aae-ce8c-4b95-9293-f73329673009",

"tumor": "tcga-acc",

"source": "gdc"

}
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Listing 3.4: JSON representation of a document containing information
related to a single row of a Copy Number Segment experiment standardized
in free-BED and retrieved from the OpenGDC public FTP repository.

Conversely to all other experimental data types, GEQ and MBV are man-
aged differently. In order to minimize the amount of redundant information
we create two additional annotations collections. We split every row in the
GEQ and MBV free-BED experiments between the annotation collection and
that one with the information that characterizes the experiment, like in the
examples shown in Listing 3.5 and Listing 3.6 respectively. It is worth noting
that a field in common between both documents is required to allow the recon-
struction of the original row. To make an analogy with a classical relational
model, the collections represent distinct tables and this shared field is a foreign
key.

{

"chrom": "chr1",

"start": 14404,

"end": 29570,

"strand": "-",

"ensembl_gene_id": "ENSG00000227232.5",

"entrez_gene_id": "653635",

"gene_symbol": "WASH7P",

"type": "gene"

}

Listing 3.5: Example of JSON document in the collection representing the
annotation of the Gene Expression Quantification experiments. It containing
the identified redundant information. The same structure is applied to every
documents of the same collection.

{

"ensembl_gene_id": "ENSG00000227232.5",

"htseq_count": 76,

"fpkm_uq": 28588.2994297,

"fpkm": 1.21544115087,

"aliquot": "0ffc0b01-bc1c-4277-8fc4-865590dcc461",

"tumor": "tcga-acc",

"source": "gdc"

}

Listing 3.6: Structure of a JSON document in the collection containing
the Gene Expression Quantification experiments rows. The same structure is
applied to every documents of the same collection.
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We also include clinical and biospecimen information in a separate collec-
tion called metadata. In this case, every meta file in the OpenGDC repository
is represented as a document in the metadata collection (Figure 3.7. Here,
the procedure of representing these kind of data as documents is pretty sim-
ple because of their original key-value structure. The data representation de-
scribed above allowed us to reduce the size of the whole bed/tcga branch of
the OpenGDC public FTP repository from ∼ 1.3TB to ∼ 0.3TB, producing
a gain of ∼ 77% of storage space also thanks to the built-in data compression
features natively provided by the adopted DBMS.

{

...,

"biospecimen__bio__year_of_creation": "2013",

"biospecimen__bio__year_of_shipment": "2013",

"biospecimen__shared__bcr_patient_barcode": "TCGA-PK-A5HC",

"biospecimen__shared__patient_id": "A5HC",

"clinical__acc_shared__mitoses_count":"19",

"clinical__acc_shared__mitotane_therapy":"YES",

"clinical__acc_shared__mitotane_therapy_adjuvant_setting":"NO".

"clinical__acc_shared__mitotic_rate": "Mitotic Rate > 5/50 HPF Present",

"gdc__access": "open",

"gdc__aliquots__aliquot_id": "01175aae-ce8c-4b95-9293-f73329673009",

"gdc__aliquots__concentration": "0.15",

"gdc__aliquots__source_center": "23",

"gdc__aliquots__submitter_id": "TCGA-PK-A5HC-11A-11D-A309-01",

...

}

Listing 3.7: Structure of a JSON document in the collection containing the
metadata.

3.7 Data Accessibility

Part of this section was published in [CWC19]

To guarantee an easy, fast, and programmatic access to all the information
stored and organized in MongoDB, we designed and developed the framework
OpenOmics in order to provide a flexible collection of Application Programming
Interfaces (APIs). The complete set of implemented endpoints is available
at http://bioinformatics.iasi.cnr.it/api/routes. Our APIs are differentiated in
three main groups, reflecting the same collections organization of MongoDB.
We indeed release (i) a set of endpoints responsible for the interaction with
the collections related to the experimental data types, (ii) another group of
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endpoints able to operate on the annotations collections, and finally (iii) one
additional set of endpoints for the interaction with the metadata collection. In
the following, we describe the main implemented endpoints for each of these
groups.
Experiment Endpoints
This set of endpoints is able to interact with the collection containing the
experimental data. In particular, it allows to:

i. retrieve the complete list of aliquot ids that represent the whole set of
processed experiments:
/experiment/source/<source>/program/<program>/tumor/<tumor>/datatype/<datatype>/aliquots

ii. extract (a) one single row of the original processed free-BED files or (b)
the complete experiment according to the specified data source, program,
tumor, datatype, aliquot, and a particular entity id (e.g.: a methylated
site id, a specific ensembl gene id, etc.):

(a) /experiment/source/<source>/program/<program>/tumor/<tumor>/datatype/<datatype>/

aliquot/<aliquot>/id/<elem\_id>

(b) /experiment/source/<source>/program/<program>/tumor/<tumor>/datatype/<datatype>/

aliquot/<aliquot>/all

iii. extract a list of overlapping genomics coordinates in a specific experiment
according to the specified chromosome, start position, end position, and
strand :
/experiment/source/<source>/program/<program>/tumor/<tumor>/datatype/<datatype>/aliquot/

<aliquot>/overlap/chrom/<chrom>/start/<start>/end/<end>/strand/<strand>

Annotation Endpoints
This group of endpoints is related to the GEQ and MBV experimental data
only. It allows to interact with the redundant information identified in Section
2. In particular, according to a specifiedannotation name (i.e.: geneexpression
or humanmethylation), it allows to:

i. extract one single document representing the annotation of a specific
entity id (i.e.: the methylated site id and the ensembl gene id for the
MBV and GEQ data respectively):
/annotation/<annotation_name>/id/<elem_id>

ii. retrieve the complete annotation:
/annotation/<annotation_name>/all
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Metadata Endpoints
By exploiting this set of endpoints, we are able to extract clinical and biospec-
imen information related to the experimental data stored in set of experiments
and annotations collections. In particular, these endpoint are able to:

i. retrieve the list of all possible values associate to a specific attribute:
/metadata/attribute/<attribute>/all

ii. extract the list of all aliquots related to a specific attribute-value couple:
/metadata/attribute/<attribute>/value/<value>/aliquots

iii. extract a list of all metadata related to a specific attribute-value couple:
/metadata/attribute/<attribute>/value/<value>/list

By releasing these APIs, we aim to extend the features that characterize
similar software tools like IRIS-TCGA [CWBF16] and GDCWebApp [CF17].
This can represent a preliminary step towards analyses of integrated genomic
data as descibed in [WCC+18, CFW18, WDLC+18].

3.8 APIs use cases

Exploiting our data organization and the implemented sets of endpoints pre-
sented in Section 3.7 and deeply described in the official APIs documenta-
tion available at http://openomics.docs.apiary.io/, we are able to build smart
queries to MongoDB and retrieve potentially relevant insights from the stored
data. In this Section we illustrate how we made this process quite easy for
a researcher with minimal computer science background. In particular, List-
ing 3.8, Listing 3.9, and Listing 3.10 show three simple use cases in which we
adopt the Python 3 programming language to interact with our APIs.

The first one shows how to count the distinct DNA somatic mutations in
each group of ethnicity independently from the programs and related tumors.
It exploits only three endpoints for (i) the identification of the ethnicities of the
patients related to experiments stored in our database, (ii) the retrieval of the
aliquots related to the experiments conducted on patients with the previously
extracted ethnicities, and (iii) the extraction of the DNA somatic mutation
experiments related to the extracted aliquots, and finally count the distinct
number of DNA somatic mutations.

The second use case shows instead how to easily find the methylated sites
(targets) overlapped to a specified genomic coordinate (source), exploiting only
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one endpoint. It is worth noting that both the source and targets coordinates
can refer to particular gene, or isoform, or somatic mutation regions.

The last use case illustrates a scenario in which, starting from a given
experimental aliquot id, all the experiments conducted on the same patient
related to the specified aliquot are retrieved.

import json, urllib.request

apis_base_url = ’http://bioinformatics.iasi.cnr.it/’

source = ’gdc’

datatype = ’maskedsomaticmutation’

# retrieve all the ethnicities in the ’metadata’ collection

ethnicity_attribute = ’gdc__demographic__ethnicity’

ethnicities = json.loads( urllib.request.urlopen(

apis_base_url+

’/metadata/source/{}/attribute/{}/all’

.format(source, ethnicity_attribute)

).read() )

for ethnicity_value in ethnicities[’values’]:

distinct_somatic_mutations = list()

# retrieve aliquots related to the current ethnicity

aliquots = json.loads( urllib.request.urlopen(

apis_base_url+

’/metadata/source/{}/attribute/{}/’+

’value/{}/aliquots’

.format(source, ethnicity_attribute,

ethnicity_value)

).read() )

for aliquot_url in aliquots[’hits’]:

if ’/datatype/’+datatype in aliquot_url:

coords_position = aliquot_url.rfind(’all’)

coords_url = aliquot_url[:coords_position]+

’coordinates’

# extract the somatic mutation positions available

# in the experiment related to the current aliquot

coords_list = json.loads( urllib.request.urlopen(

apis_base_url+

coords_url

).read() )

for coordinates in coordinates_list[’coordinates’]:

coords_arr = [

coordinates[’chrom’], coordinates[’start’],

coordinates[’end’], coordinates[’strand’]

]

if coords_arr not in distinct_somatic_mutations:

distinct_somatic_mutations.append(coords_arr)

print( ’Number of distinct somatic mutation for the ’+
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’ethnicity {} is {}’.format( ethnicity_value,

str( len(distinct_somatic_mutations) ) ) )

Listing 3.8: APIs use case able to count the number of distinct DNA somatic
mutations available on all the experimental data in our database. This count
is grouped by the ethnicity of the patients on which a this kind of experiment
has been performed.

import json, urllib.request

apis_base_url = ’http://bioinformatics.iasi.cnr.it/’

annotation = ’humanmethylation’

# genomic coordinates of the WASH7P gene

wash7p = [ ’chr1’, 14404, 29570, ’-’ ]

# extract methylated site coordinates overlapped to WASH7P

for overlap in = json.loads( urllib.request.urlopen(

apis_base_url+

’/annotation/{}/overlap/chrom/{}/’+

’start/{}/end/{}/end/{}/strand/{}’

.format(annotation, wash7p[0], wash7p[1],

wash7p[2], wash7p[3])

).read() )[ ’hits’ ]:

print( str( hit ) )

Listing 3.9: This use case show how to exploit our APIs to identify the
methylated sites overlapped to a specific genomic region. This is performed
by providing a chromosome, start position, end position, and strand of the
such region.

import json, urllib.request

apis_base_url = ’http://bioinformatics.iasi.cnr.it/’

aliquot_attribute = ’gdc__aliquots__aliquot_id’

aliquot_value = ’00168e86-d23a-48ae-8c60-36d970051907’

patient_attribute = ’biospecimen__shared__bcr_patient_barcode’

# retrieve the patient id related to the specified aliquot

patient_barcode = json.loads( urllib.request.urlopen(

apis_base_url+

’/metadata/attribute/{}/value/{}/list’

.format(aliquot_attribute,

aliquot_value)

).read() )[ ’hits’ ][ 0 ][ patient_attribute ]

# extract all the experiments related to the patient barcode

for aliquot in json.loads( urllib.request.urlopen(

apis_base_url+

’/metadata/attribute/{}/value/{}/aliquots’
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.format(patient_attribute, patient_barcode)

).read() )[ ’hits’ ]:

print( aliquot )

Listing 3.10: Use case scenario in which the patient id related to a provided
experimental aliquot id is extracted. This patient id is used to retrieve all the
experiments conducted on the same patient.

3.9 Taxonomy-based relaxed queries: upward and

downward extension

In this Section we consider an extension to query functionalities presented
above. We are able to facilitate the accessibility of experimental data and
metadata even with a small knowledge about how these data have been mod-
elled. This method is based on the use of domain-specific ontologies (i.e. fo-
cusing on the biological domain) able to describe the data provided by GDC
and modelled by OpenOmics framework. We implemented this feature by re-
vising the concept of taxonomy-based relaxed query applied to domain-specific
ontologies.

Taxonomy-based relaxed queries Following this vision, we based our
method accordingly to the upward and downward theoretical concepts of taxonomy-
based relaxed queries [MT14, CW17]. Formally, starting with a taxonomy T ,
a set of levels L = l1, ..., ln of T , a dataset S, and an attribute a of S, if a is
provided at a level li, T can be used to extend the dataset to a level lj with:

• lj > li: moving to a high level results in a coarser data granularity;

• lj < li: traversing the taxonomy from the top to the bottom to achieve
a lower level results in a finer granularity of the data.

In particular, we refer to the concept of upward extension with the first case in
which lj > li. The main goal is to store new information in the original dataset
providing a higher level in the taxonomy, i.e., at a less fine granularity than
the one that is available. On the other hand, the second case in which lj < li is
called downward extension. The goal here is the same of the upward extension
(i.e., extend the original dataset with new information) but by providing a
more detailed level, i.e., at a finer granularity than that available before.
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3.10 SPARQL queries on domain-specific ontologies

Starting from the analysis of metadata treated by the OpenOmics framework,
we selected a set of attributes that can represent a specific biological topic.
In particular, we exploited the metadata set of endpoints to investigate the
metadata attributes together with all their possible associated values (i.e., data
dictionary), and identify a list of metadata that can be described through
domain-specific ontologies. Here we reported some of the selected metadata
attributes:

• clinical acc shared metastatic neoplasm initial diagnosis anatomic site:
it describes the anatomical site in which a neoplasm is identified for the
first time;

• clinical rx drug name: it is the name of the pharmaceutical drug dis-
pensed to a patient affected by a specific type of cancer;

• gdc center name: it represents the name of the clinic or hospital in
which a particular sample extracted by tumoral-affected patients has been
sequenced and analyzed;

• gdc demographic ethnicity : it describes the ethnicity of the patients;

• gdc demographic race: it is the race of the involved patients (e.g., asian,
white, black or african american);

• gdc diagnoses primary diagnosis: it is the first diagnosis, including the
type of cancer.

We repeated the same process for the experimental data, where we identified
the gene names and related synonyms as the most atomic descriptive concept
that characterize these kind of data.

Each of them represent a concept that can be modelled through a specific
ontology. We focused on The Open Biological and Biomedical Ontology (OBO)
Foundry [SAR+07], which is a repository of ontologies that explain different
sides of the biological world domain. In particular, we extracted from this
repository five distinct Web Onotlogy Language (OWL) standardized ontolo-
gies:

• the Geographical Entity Ontology (GEO), able to describe geographical
relations between regions and countries (for the identification of a par-
ticular sample sequencing site, or the original country of the patients
involved in the experiments);
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Figure 3.1: The Ontological (OWL) Layer in the OpenOmics Framwork is marked
with the orange area. We adopted GraphDB for the management and querying of
the OWL-defined ontologies retrieved from The OBO Foundry (i.e., the Geographical
Entity, Uberon multi-species Anatomy, Drug, Human Disease, and Gene ontologies).
The new application layer is a bridge between the the endpoints and the data model
with which data are organized in MongoDB.

• the Uberon multi-species Anatomy Ontology (UAO), essential to identify
the anatomical regions of some pathologies;

• the Drug Ontology (DO), able to identify the chemical components of
pharmaceutical drugs dispensed to the patients followed during the whole
process of disease development;

• the Human Disease Ontology (HDO), for the definition of causes and
effects of a series of diseases that affect humans (included different cancer
types);

• the Gene Ontology (GO), able to describe the function of genes and gene
products.

We adopted GraphDB, a no-SQL graph-oriented database management sys-
tem, to organize the selected ontologies in the same environment, merging them
together in a single graph ontological representation. Through GraphDB, we
were able to query the produced graph exploiting the integrated SPARQL query
engine. SPARQL is for Simple Protocol and Resource Description Framework
(RDF) Query Language, which is a SQL-like query language able to efficiently
search this kind of relational data. This produced a new application layer in
the OpenOmics framework, as shown in Figure 3.1.

According to the previously described concept of Taxonomy-based relax-
ation queries, here we report some promising results based on a couple of char-
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acterizing use cases, which make use of two of the selected ontologies (i.e.: the
Human Disease Ontology and the Gene Ontology). We exploit the SPARQL
query language to interact with both of them. We also consider UniProt
knowledgebase [uni16], a large resource of protein sequences and associated
detailed annotation. In particular we expolit the SPARQL endpoint, that al-
lows complex queries of the more than 22 billion triples of data in UniProt
(http://sparql.uniprot.org). It is worth noting that no SPARQL queries have
to be written by the users in order to interact with the selected ontologies. A
set of pre-implemented flexible queries are defined in a new software layer op-
erating after the user request through URLs and directly before the interaction
with the OpenOmics endpoints. Here we report a couple of these SPARQL
query schemas in order to show a practice use case of both the upward and
downward extension concepts.

Upward extension Here we interact with the Human Disease Ontology
and the Uberon multi-species Anatomy Ontology entities through a upward-
extended SPARQL query that is shown in Listing 3.11. In this particular case,
we are searching for the anatomical region related to a specific type of can-
cer (i.e. the Breast Invasive Carcinoma (BRCA), called breast cancer in the
query). We used on the result of this query to retrieve all tumors located in a
particular anatomical region (the same of BRCA) and focus on tumor-related
experiments exploiting the set of endpoints provided by the OpenOmics APIs.
In particular, we extended the metadata endpoints with this feature that is
automatically used everytime the attributes specified into the URL request are
not known metadata attributes.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?obouberon WHERE {

?obodoid rdfs:subClassOf ?relation;

rdfs:label ’breast carcinoma’;

rdfs:subClassOf ?cancer.

?cancer rdfs:label ’cancer’.

?relation owl:onProperty ?property;

owl:someValuesFrom ?obouberon.

?property rdfs:label ’located_in’.

?obouberon rdfs:label ?property_value.

}
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Listing 3.11: Upward-extended SPARQL query on the Human Disease
Ontology and the Uberon multi-species Anatomy Ontology to retrieve the
anatomical region (i.e. located in) in which a specific type of tumor (i.e. breast
cancer) occurs on.

Downward extension This scenario shows an example of downward-extended
SPARQL query. Here we interacted with the Gene Ontology (GO) to retrieve
the properties of a specific gene in the ontological graph. In particular, as shown
in Listing 3.12, we extracted the GO IDs of the gene functions, and their re-
lated domains, called namespaces (i.e., biological process, molecular function
and cellular component) starting from the gene-product (i.e., protein name) re-
trieved through querying the UniProt SPARQL endpoint with a specific gene
name. This kind of query has the scope to retrieve the biological function re-
lated to a gene of interest. Thus, the same query can be used reversing the
arguments order, i.e. retrieving a set of genes involved in a particular biological
function. These information is powerful to deeply analyze the extracted group
of genes and investigate their properties exploiting the set of experiments end-
points of the OpenOmics framework (e.g., retrieving their expression values, or
obtaining information about the methylated sites that occur in their genomic
regions).

PREFIX up: <http://purl.uniprot.org/core/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX oboInOwl: <http://www.geneontology.org/formats/oboInOwl#>

SELECT DISTINCT ?goid ?namespace WHERE {

SERVICE <https://sparql.uniprot.org/> {

?protein a up:Protein .

?protein up:encodedBy ?gene ;

up:classifiedWith ?go.

?gene skos:prefLabel ’EAF3’ .

?go rdfs:label ?golabel.

}

?go oboInOwl:id ?goid;

oboInOwl:hasOBONamespace ?namespace.

}

Listing 3.12: Downward-extended SPARQL query on the Gene Ontology
and the UniProt SPARQL endpoint to retrieve GO functions of a specific
gene name (i.e., EAF3 in this case).
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3.11 Upward and downward extension of the GDM for

taxonomy-based relaxed query with the GMQL

Part of this section was published in [CW17]

Here we apply the Upward and Downward extensions operators, to the
GDM, basing on the integration of external taxonomies to provide an extended
data schema and to allow taxonomy-based relaxed GMQL queries. As shown
in Section 3.4, GMQL operators could be apply to metadata attributes, or to
genomic region features. This property allows us to relax GMQL queries ex-
tending the GDM, traversing taxonomies upward or downward. In this Section
we describe a use case for the upward extension, which involve extension of
metadata and two use cases for downward extension, which involve extension
of genomic region features.

We explain the intentional meaning of the upward extension application
based on metadata, as which defined by the Genomic Data Model. In GDM,
for each sample, an attribute-value list is associated. To upward extend this
data structure, consider the i − th pair < ai, vi > for the sample s, and a
taxonomy for the attribute ai, Ta. We query the taxonomy to identify the
value v, and starting from that level, l(v) which corresponds to a, we cross it
upward, up to the level l(v)−n. The reached level represents the new attribute
to be included in the metadata, and the associated value is that obtained going
through the taxonomy values starting from v.

For the extensional meaning we consider NGS metadata extracted from the
OpenGDC FTP repository (3.3), and the following use case:

Prerequisites. The metadata of the samples for TCGA program have an
attribute that represents the processing center, which has executed the se-
quencing of a given tissue. In particular, there are at most two attributes of
this type:“center”, which as the name of the processing center;“center id”, with
the identifier value of the center.

Use Case. Add, to each metadata of each experiment and tumor, the state
where the sequencing center is located.

Solution. Consider the geographycal taxonomy in Figure 3.2 of the se-
quencing centers which provides information about name, city and state of
the centers. We will traverse the levels of the taxonomy starting from bottom
(center name) to top (state of the center) performing an upward extension, for
upgrading the information about the sequencing centers to a coarser grain.

Implementation. Retrieve and store the cities of each center, and then
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Figure 3.2: Sequencing center taxonomy.

query geographical ontologies such as GeoNames [WIC12], to get the state
from the city. GeoNames provides access to geographic information (features),
represented by the Resource Description Framework (RDF) data model which
can be queried using SPARQL language. As example we report in Listing 3.13
a RDF/XML serialization of GeoNames feature.

<rdf:RDF

...

xmlns:gn="http://www.geonames.org/ontology#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

...

<gn:Feature rdf:about="http://sws.geonames.org/6955119/">

<gn:name>St. Louis</gn:name>

...

<gn:parentADM1 rdf:resource="http://sws.geonames.org/4398678/"/>

...

</rdf:RDF>

Listing 3.13: RDF/XML serialization of GeoNames feature

This feature represent the city and its properties like the name (“name”) and
the state (“parentADM1”). In Listing 3.14 with the SPARQL query we request
the state name of a city whose we specify the name. For the execution of this
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Figure 3.3: Example of a metadata Upward-extended file, with the state where
the sequencing center is located.

query we used a SPARQL Endpoint, http://factforge.net/sparql [BKO+11],
which integrates some linked RDF datasets, including GeoNames.

PREFIX geo: <http://www.geonames.org/ontology#>

SELECT DISTINCT ?namestate

WHERE {

?o geo:name ’St. Louis’;

geo:parentADM1 ?state.

?state geo:name ?namestate.

}

Listing 3.14: SPARQL query on the GeoNames feature

Result. The metadata of each sample is extended, inserting the new at-
tribute, as show in Figure 3.3.

We explain the intentional meaning of the downward extension application
based on genomic region features, as which defined by the Genomic Data Model.
In GDM, for each sample, a genomic regions list is associated. A schema
defines specific features for each genomic region. To downward extend this
data structure, consider the i− th pair feature-value < ri,vi > for the sample
s, and a taxonomy for the feature ri, Tr. We query the taxonomy to identify
the value v, and starting from that level, l(v) which corresponds to r, we cross
it downward, down to the level l(v) + n. The reached level represents the new
attribute to be included in the genomic region schema, and the associated value
will be added in all the genomic region of the sample.

For the extensional meaning we consider NGS experiment extracted from
the OpenGDC FTP repository (Section 3.3), and two following use cases.

Prerequisites. Consider the gene identifiers of all genomic regions of the
samples of Gene Expression Quntification experiment of TCGA program. The
schema defines for each genomic region the gene symbol (gene symbol) and the
gene identifier (entrez gene id):

67



3. Biomedical data accessibility and querying

Figure 3.4: Gene taxonomy (1).

< field type = “STRING′′ > gene symbol < /field >
< field type = “STRING′′ > entrez gene id < /field >.

Use Case 1. Extend the schema of the genomic regions with a field that
corresponds to a possible synonym for the gene related to a given genomic
region.

Solution. Consider the gene taxonomy in Figure 3.4 and starting from the
entrez gene id of a gene, retrieve synonyms corresponding to it. The taxonomy
is traversed from top to bottom in order to increase the level of detail and to
consider the characteristics of the gene to a finer grain.

Implementation. The schema of each experiment is subjected to downward
extensions by addition of a new field corresponding to the synonym for the
gene: < field type = “STRING′′ > gene symbol synonyms < /field >.
For each line of each sample the gene id has been selected in order to obtain
all the possible synonyms. The data source used for the recovery of synonyms
is NCBI, and through the Entrez search engine, it is possible to access the
Gene database in NCBI, which collects information on individual genes; this
database has been used to obtain synonyms of genes available in the various
samples. Entrez uses the API Entrez uses Entrez Programming Utilities (E-
utilities), to access different databases. The E-utilities use a fixed URL-based
syntax to recover the requested data. In this case the Java language has been
used to send the URL to NCBI with following parameters: the Gene database,
to which we request the information, the id of the gene, and the desired output
format (xml). From the received xml file it has been possible to get all the
synonyms of the input gene, thus obtaining for each sample, a corresponding
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Figure 3.5: Gene taxonomy (2).

list with all the gene ids and its synonyms. Then these synonyms are integrated
in each sample file of genomic regions (Table 3.3).

Chrom Start End Strand Symbol Symbol syn Gene id

chr8 144801161 144801161 + MAPK15 ERK7 225689
chr8 144801161 144801161 + MAPK15 ERK8 225689
chr7 20824445 20824445 + SP8 BTD 221833
chr9 32988092 32988092 + APTX AOA 54840
chr9 32988092 32988092 + APTX AOA1 54840
chr9 32988092 32988092 + APTX AXA1 54840

Table 3.3: The original genomic regions are duplicated n times, how many syn-
onyms are associated with the gene related to that region.

Use Case 2. Extend the schema of the genomic regions with a field that
corresponds to a possible funtion of the gene related to a given genomic region.

Solution. Consider a taxonomy of genes (Figure 3.5) that provides the in-
formation about the functions of a particular gene, having his entrez gene id
as input. The goal is to be able to extend the genomic regions with the infor-
mation on elementary activities of the gene product at molecular level.

Implementation. The schema of each experiment is subjected to downward
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extensions by addition of a new field corresponding to the synonym for the
gene: < field type = “STRING′′ > gene function id < /field >
< field type = “STRING′′ > gene function name < /field >.
We exploit the Gene Ontology, a bioinformatics project that unifies all the
descriptions of the characteristics of the products of the genes in all species. The
databases that mainly populate the information exposed by Gene Ontology are
the ones of the UniProt project, the largest bioinformatics database for protein
sequences of all living organisms. It is necessary to access to UniProt identifiers
of each gene and then take advantage of the Gene Ontology web services to
get names and identifiers of the molecular functions of the gene. Then these
identifiers and names of the functions are integrated in each sample file of
genomic regions (Table 3.4).

Chrom Start End Strand Symbol Gene id Func id Func name

chr1 94548962 94548962 + ABCA4 24 GO:0005215 transporter activity
chr1 94548962 94548962 + ABCA4 24 GO:0000166 nucleotide binding
chr1 94548962 94548962 + ABCA4 24 GO:0016887 ATPase activity
chr11 14510132 14510132 + COPB1 1315 GO:0005515 protein binding
chr11 14510132 14510132 + COPB1 1315 GO:0005198 structural mol activity
chr17 11772554 11772554 + DNAH9 1770 GO:0003774 motor activity
chr17 11772554 11772554 + DNAH9 1770 GO:0016887 ATPase activity

Table 3.4: The original genomic regions are duplicated n times, how many functions
are associated with the gene related to that region.

3.12 Conclusions

In this chapter we have addressed two aspects of biological Big Data man-
agement: accessibility and querying. These features are not always carefully
considered in the data management cycle, but are required for information
sharing. Data sharing is the most effective means for the evolution in the
study and treatment of diseases. Furthermore, to make data accessible and
easily queried, also allows non-computer scientists to be able to get data from
different sources. A critical point in the field of genomics is the imprecise and
redundant annotation of clinical and genomic information that is often not con-
nected, and that blocks the advancement of precision cancer care [SLH+16].
Here we have shown two simple genomic data access points: (i)The OpenGDC
open access FTP repository, containing all the public accessible genomic
and clinical data of the TCGA program of GDC, both as originally provided
by GDC and converted into the BED format; the latter ones, resulting in more
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than 1.5 TB of data. This data are organized by tumor type, and for each tumor
we provide genomic data of 7 different experiments, and the respective clinical
/ biospecimen data (metadata). We also have shown a usage example of these
data through the application of GMQL queries to highlight the validity of our
approach. These queries demonstrate that our data representation facilitates
the analyses, especially thanks to the combination of the filtering on specific
clinical / biospecimen attributes and the extraction of genomic features. (ii)
we also presented an efficient data organization method applied on genomic
and clinical data extracted from the OpenGDC FTP repository exploiting the
most recent no-SQL technologies. This method allowed us to detect redundant
information and to reduce the size of all the considered data by more than
70%. Additionally, we presented a set of open-source APIs able to facili-
tate genomic data access and extract potentially significant insights from them.
We plan to maintain our system constantly synchronyzed with the OpenGDC
repository, and to extend our database and APIs by modeling new data from
other sources. This is straightforward because of the document oriented and
non structured format of our data model. This system represent a step towards
the realization of a unified access point to multi-diseases omics data belong-
ing with their clinical and biospecimen information. We rely on this solution
to finally converge on a landmark system able to highlight complex biological
systems through the integration of different kind of experimental data. Consid-
ering this streamlined data representation, we presented different application
of the upward and downward extension methodologies, to query a set of data
and metadata with no a priori knowledge about how they are modelled and
organized. We focused on the biological ontologies domain, in particular on
data derived by experiments aimed at investigating the cancer development in
humans, obtaining promising results. Exploiting these ontologies leads to a
lot of advantages. One of these is the ability to unlock the potential of eas-
ily grouping data according to attributes and criteria that are not originally
available in the dataset. Additionally, extending the dataset by adding new
information produces positive side-effects (e.g., the creation of a new more in-
formative dataset that can be analyzed through machine learning algorithms
to better classify data according to new potentially relevant features). We will
further investigate the adoption of other domain-specific ontologies to improve
The Ontological (OWL) Layer that is in the middle between the user interface
and the conceptual schema with which data are modelled.

Additionally we established how it is possible to apply the upward and
downward methodologies also to the data previously considered. We extended
data in BED format, exploiting the GDM model, obtaining information that
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are not previously found in the original dataset (e.g., synonyms of a gene, gene
functions, the state in which a sample is sequenced, etc.). The final aim was to
enable a user to perform a GMQL taxonomy-based relaxed query to a database
that can automatically activate this extension process. A future improvement
is to apply the defined extensions to GMQL operations such as selection or
join as explained in [MT14]. The relaxation of the query can be provided
by introducing the derived operators in taxonomy-based relaxation modalities,
i.e., by considering the upward and downward extension of the data.
The extension is based on the field requested by the user, using a specific
operator in the relaxed query: the user is guided in the selection of the field
that is most suitable to his needs, then an appropriate taxonomy is queried to
proceed with the data extension.
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Chapter 4

Biological Knowledge Extraction

4.1 Introduction

Interpreting and extracting knowledge from data is one of the primary objec-
tives in bioinformatics. The current applications of machine learning in the
field of genomics, combined with NGS technologies, are fostering research of
personalized medicine and patient care. In cancer research many computa-
tional methods deal with classification problems, e.g., disease characterization,
prognosis, treatment response of patients, mutation pathogenicity, biomarker
prediction, and sample malignancy. Indeed machine learning has been used for
cancer diagnosis and detection and also applied towards cancer prediction and
prognosis [CW06]. A recent effort has achieved good performance using state of
the art machine learning methods [CWT+14], including Adaboost [PYOA16]
and decision trees [MGR+98, LTBD16].

NGS can be applied for case control studies, i.e., specific studies that aim
to identify subjects by outcome status at the outset of the investigation, e.g.,
whether the subject is diagnosed with a disease. Subjects with such an outcome
are categorized as cases. Once outcome status is identified, controls (i.e., sub-
jects without the outcome but from the same source population) are selected.
In this chapter, we propose to analyze NGS data with supervised machine
learning methods [WFB13, PWD+14, WVFB13, WFB12, CFF+16]. The aims
are to distinguish the case and the control samples in an effective way.
Classification problems are intended to identify the characteristics that indi-
cate the group to which each sample belongs [TSK05]. A classification model
can be used to understand the existing data and to predict to which class a
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new sample belongs. The performance of a classifier is measured on the gener-
alization ability, i.e., the ability to give to each new experimental observation
the correct class.

Here we consider rule-based classifiers, where the pattern to be found is a
set of conditions for which a certain class can be assigned to a sample. The
rules are therefore logic formulas that bind a subset of features of the sam-
ples to their class label. Example of a logic formula or (“if then” rule) on
gene expression data is the following “if ENSG00000167676.3 < 16.15 OR
ENSG00000166819.10 < 15.28 then the sample can be classified as tumoral”.
Among rule-based machine learning methods, we focus on a new supervised
learning method that is able to extract more knowledge in terms of classifica-
tion models than state of the art ones, called Classifier with Alternative and
MUltiple Rule-based models (CAMUR) [CFF+16]. CAMUR is designed to
find alternative and equivalent solutions for a classification problem building
multiple rule-based classification models. In particular we propose CamurWeb,
a web implementation of CAMUR that is able to extract multiple rule-based
classification models from RNA sequencing experiments and to create a large
knowledge base of these rules. Moreover, we apply CamurWeb to all public
RNA sequencing datasets extracted from The Cancer Genome Atlas database,
obtaining a large open access knowledge base of classification rules related to
several cancer types. Thanks to its user friendly interface, the tool allows to
execute the software CAMUR, to query the results, and to manage the ana-
lyzed experiments.

Additionally, we address preprocessing, a required step of data mining, and
a prerequisite for accessing to the machine learning step. The elaboration and
organization of a biological dataset is defined by several procedures, all grouped
together in a step called data pre-processing [Chi17], which allows to prepare
and structure the data with a well-defined logic.

In the next sections we describe two different methods for data pre-processing,
and the application of different machine learning algorithms. We are going to
focus on DNA methylation and RNA sequencing, as these two NGS experi-
ments have been proven to play an important role in knowledge discovery of
cancer. We extracted all the samples of these experiments from TCGA, consid-
ering different tumor types. For data extraction we consider the TCGA2BED
repository that contains genomic, clinical, and biospecimen data in BED for-
mat, Every BED file is related to an experiment on a given sample identified
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by its TCGA barcode [1], which contains several information about the sample
including the type [WJZ16]. The sample type permits to distinguish between
normal and tumoral samples, which are the two classes used for classifying the
experiments.

For the first method [WCC+18] we extract DNA methylation data, focusing
on three types of tumors, i.e., Breast Invasive Carcinoma (BRCA), Prostate
Adenocarcinoma (PRAD), and the Thyroid Carcinoma (THCA). We select the
samples for which we have the experiments conducted on both case and control
tissues, and we perform a processing of data in order to map the methylated
sites to the genes where they are located. Additionally, we analyze the pro-
cessed data with supervised machine learning (i.e., classification) algorithms
for identifying the case and the control samples. We select the best performing
genes for studying the three types of cancer and therefore we identify many
potential oncogenes.

In the second method [CFW18] we address the issue of combining RNA se-
quencing and DNAmethylation experiments, which have different data schemas
containing heterogeneous information. Our aim is to obtain a gene oriented
organization of both experiments, and therefore we define a new measure on
DNA methylation data called gene methylation quantity. We consider exper-
iments of three tumors: the Breast Invasive Carcinoma (BRCA), the Kidney
Renal Papillary Cell Carcinoma (KIRP), and the Thyroid Carcinoma (THCA).
Furthermore we apply machine learning algorithms, and we show the advantage
of combining DNA methylation and RNA sequencing data, i.e., the increase of
extracted knowledge resulting in combinations of genes from both experimen-
tal strategies. Finally, we study the three types of cancer and identify sets of
relevant genes. The intersection of them results in a smaller set of genes that
should be considered for further investigation.

4.2 Machine learning algorithms for bioinformatics

In bioinformatics, machine learning can be used to analyze multi-omics data
sets, through the use of specific algorithms. Machine learning techniques can
be divided into two main categories: supervised and unsupervised learning.
In supervised learning a model is defined starting from labeled training data,
with which we try to make predictions about unavailable or future data. Su-
pervision therefore means that in our set of samples or datasets (e.g. omics-
data), the desired output signals (e.g. presence of a disease or not) are already

[1]
https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA Barcode/
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known as previously labeled. In this type of learning, based on labels of dis-
crete classes, we will therefore have a task based on classification techniques
[WCC+18, CFW18, WCCF16, PWD+14]. In unsupervised learning, unlike the
supervised one the data are not labeled or are not structured, and the algorithm
has to develop all the possible pathway that link inputs and output in order to
find the general rule that link them. In bioinformatics clustering, i.e. unsuper-
vised learning technique, is widely used. It is an exploratory technique that al-
lows to aggregate data within groups (called clusters) on which we have no pre-
vious knowledge of belonging to groups. Large datasets or clusters are defined,
each with data that has many similar features [WFB12, ABN+99, OIO+16].
Between the supervised and the unsupervised methods there are several in-
termediate techinques, such as the semi-supervised learning. In this kind of
machine learning categories the initial information are limited, e.g few data in
the training set have been labeled [PYKM18].

In the next sections we consider supervised learning, where the class labels
of samples (e.g. disease or normal) are given and are used for training the
machine learning classification algorithms.

4.3 Supervised data analysis

The aims of our works are to assign an unknown instance to a given class by
analyzing its features and to compute a compact and clear classification model.
For instance the “if-then” rules (e.g., if featureM > 2.3 and featureX < 0.65
then the sample is tumoral). The supervised learning approach is adopted:
unknown objects are automatically assigned to a class by analyzing their at-
tributes (features) by using a classification model computed from objects with
a known class (training set). The classification model can then be applied on a
test set for verifying the soundness of it or for classifying new instances whose
class is unknown. For further details about supervised classification the reader
may refer to [WFF14]. In this section we describe, function-, tree- and rule-
based classifiers, which we use for our experiments because they provide the
investigator with a compact, clear, and human readable classification model,
which permits to identify the features (genes) that are related to the particular
cancer under study.

Decision trees: C4.5. Decision Trees are supervised classifiers, which are
composed of nodes and edges: internal nodes in the tree are associated to the
predicate of the objects of the data set, whereas each edge represents a splitting
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rules over one attributes (typically, binary splitting rules). Indeed, every node
has two (or more) outgoing branches: one is associated with objects whose
attributes satisfy the predicate, whereas the other to the ones which do not.
The attribute classes are represented in the tree by leaf nodes. The classification
is given by a model that predicts the class of the object by learning simple
decision rules inferred from the data features. The class attribute is then
assigned to the object by means of a path from the root to the output leaf
node, where the predicates are applied to the object attributes and each node
defines the path split. The widespread tree decision classifiers, such as C4.5
[Qui14], rely on entropy rule or information gain.

Rule-based classifiers: RIPPER. Rule-based classifiers [WFF14] assign
a given class to each object according to a specific function r : condition →
c (called classification rule), such that the rule r covers an object x if the
attributes of x satisfy the condition of r. Therefore, in this type of classification
the classifier uses logic propositional formulas in disjunctive or conjunctive
normal form (“if then rules”) for classifying the given samples.
A rule-based classifier classifies on the basis of the formula triggered by the
sample. For extracting a set of classification rules there are two main classes
of methods: direct extraction from data and indirect extraction, which extract
the rules from other classification models, like Decision Trees. As example for
indirect method we can derive from a decision tree the logic formulas whose
clauses are represented by the paths from the root to the leaves. RIPPER
[Coh95] is a direct rule extraction method based on a pruning procedure, whose
aim is to minimize the error on the training set; it performs the following steps:
i) growth of the rules; ii) pruning of the rules; iii) optimization of the model;
iv) selection of the model. In the first step, thanks to a greedy procedure,
RIPPER extracts many classification rules. Then, the rules are simplified and
optimized in step two and three, respectively. Finally, the best model (i.e., set
of rules) is selected.

Random Forest [Bre01] is an ensemble machine learning method that uses
decision trees as basic classifiers. Each tree refers to a class and relies on a
random and independent vector, which is generated with the same distribution
of the others. The decision trees are trained thanks to the contribution of
these random vectors. Random Forest generates distinct decision trees, because
it varies the training sets selection and the selected features for each model.
The trees are grown to the maximum depth on different training data using a
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combination of features, and these trees are not pruned unlike other decision
tree methods. For missing or not valid data, the prediction is based on the last
preceding node (not a leaf) in the tree. The classification results of a Random
Forest execution are computed by counting the votes for the most popular class
predicted by the different trees and by assigning that class to the considered
instance.

Support Vector Machines [CST00] are a set of supervised learning meth-
ods that can be used for both classification and regression. This algorithm,
given labeled training data (training set), labeled with the class to which they
belong, builds a model (optimal hyperplane) which categorizes new examples
into one of the two classes. The algorithm goal is to find an hyperplane with
the maximum margin, which is the maximum distance between the data points
of both classes.

CAMUR (Classifier with Alternative and MUltiple Rule-based models) is
a new supervised method and software package able to extract multiple, al-
ternative, and equivalent classification models [CFF+16]. CAMUR iteratively
computes a rule-based classification model, calculates the power set (or a par-
tial combination) of the features present in the rules, iteratively eliminates
those combinations from the data set, and performs again the classification
procedure until a stopping criterion is verified. CAMUR includes an ad-hoc
knowledge repository (database) and a complete querying tool. CAMUR can
be successfully applied on genomic and clinical data for the classification of
patients (samples).

4.4 Combining DNA methylation and RNA sequencing

data

Part of this section was published in [CFW18]

Data processing and combination

We create data matrices of RNA sequencing and DNA methylation experiments
in the following way. Consider n samples (tissues) each one with m features
(genes) and a class label (condition), which indicates whether the sample is
normal or tumoral.
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A data matrix is composed by n vectors as Fi = (fi,1, fi,2, ..., fi,m, fi,c), which
represent sample i, where
fi,j ∈ R; i = 1, ..., n; j = 1, ...,m; fi,c ∈ {normal, tumoral}.
When considering RNA sequencing, the rows represent the samples, the columns
the genes (except the last that represents the class labels) and the items of the
matrix contain the RSEM gene expression values for each gene. The structure
of this matrix is shown in Table 4.1. When considering DNA methylation,

Sample ID Gene1rnaSeq Gene2rnaSeq .. GeneMrnaSeq class

S1 val1,1 val1,2 .. val1,m normal
.. .. .. .. .. ..
Si vali,1 .. .. vali,m ..
.. .. .. .. .. ..
Sn valn,1 .. .. valn,m tumoral

Table 4.1: Structure of the RNA sequencing matrix.

the corresponding matrix is composed by the rows that represent the samples,
the columns that represent the genes, while the items contain a new measure
that represent the quantity of methylation associates to each gene and that is
explained in the following. Indeed, for DNA methylation TCGA encloses the
beta values for each methylated site, so each sample has s methylated sites, l
of them belonging to a given gene. For aggregating the methylation quantity
at gene level, we consider the sum of the beta values as a measure of the overall
intensity of the methylation on a gene. Let aijh be the methylation quantity
associated to the sample i with i = 1, .., n, to the gene j with j = 1, ....m, and
to the methylated site h with h = 1, .., l. Then we have bi,j =

∑l

h=1 aijh, ∀i, j.
In the following, we refer to this new measure as gene methylation quantity. It
is worth noting that we consider the beta values of CpG sites with a related
gene symbol, i.e., the symbol of the gene where the methylation occurs. If a
methylation occurs on other genomic regions it is not considered in our data
processing procedure, whose aim is to provide a gene oriented data organi-
zation. In Table 4.2 we show the structure of the DNA methylation matrix.
A software tool, which performs the data extraction and the creation of the
matrices, is freely available at http://bioinf.iasi.cnr.it/genint. The flowchart
that reports the computational steps of the software is depicted in Figure 4.1.
In order to perform our analysis on both gene oriented measures (RSEM for
RNA sequencing and gene methylation quantity for DNA methylation) at the
same time, we propose a combination of these two experiments by applying
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Sample ID Gene1dnaMeth Gene2dnaMeth .. GeneMdnaMeth class

S1 b1,1 b1,2 .. b1,m normal
.. .. .. .. .. ..
Si bi,1 .. .. bi,m ..
.. .. .. .. .. ..
Sn bn,1 .. .. bn,m tumoral

Table 4.2: Structure of the DNA methylation matrix.

Figure 4.1: The flowchart of the computational steps for creating the RNA se-
quencing and DNA methylation matrices. The first step represents the parsing of
the input dataset of TCGA. The samples are read for the extraction of the features
(genes) and their related values, which are the gene expression measures in case of
RNA sequencing, or the methylation quantities for each gene in case of DNA methy-
lation. Subsequently, the samples and the related gene-value pairs are unified in a
single file. From this file the header (columns) and the values (rows) of the matrix
are created. In the final matrix (comma separated values format), the header reports
all the genes, while the rows are identified by the sample id and report the related
values.

an intersection of the matrices on common sample IDs and a union of those
not in common (this result trace over the full outer join in SQL language),
keeping both experimental data and performing a union of the genes that are
present in RNA sequencing and DNA methylation as features. The resulting
matrix is shown in Table 4.3. Let i be the i-th sample, j the j-th gene, with
i = 1, .., n and j = 1, ..,m in case of a gene of the DNA methylation experiment,
j = m + 1, ...., z in case of a gene of the RNA sequencing experiment. Fur-
thermore, we have bi,j and vali,j ∈ {R,?}, ∀j, i, where the “?” symbol means
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Sample ID G1dnaMeth G2dnaMeth .. G1rnaSeq G2rnaSeq .. class
S1 b1,1 b1,2 .. val1,m+1 val1,m+2 .. normal
.. .. .. .. .. .. .. ..
Si bi,1 .. .. vali,m+1 .. vali,z ..
.. .. .. .. .. .. .. ..
Sn bn,1 .. .. valn,m+1 .. .. tumoral

Table 4.3: Structure of the combined matrix.

Figure 4.2: Flowchart for creating the combined matrices. Firstly, a parser reads
the DNA methylation and RNA sequencing matrices in input (computed as described
in Figure 4.1), and sends the next elaborations to two distinct processes. A step is
responsible of the creation of the full header of the combined matrix with all the genes,
of both the DNA methylation and RNA sequencing. The other step takes the parsed
sample IDs to modify the identification of the sample (TCGA barcode) deleting the
details of the performed experiments. After the creation of the sample IDs, the join
step follows: the initials matrices are joined on the modified IDs and the new rows of
the matrix are created, including both gene expression and gene methylation quantity.
The join defines the rows with the values of the two experiments (on which the join is
made because the sample id is present in both input matrices), and also the rows with
values of only one experiment (if the sample is not available in both input matrices
of DNA methylation and RNA sequencing).

that there is no value associated to the gene j for the sample i. We release
also a software that is able to perform the combination of the experiments,
available at http://bioinf.iasi.cnr.it/genint. Finally, we report the main steps
of the procedure in Figure 4.2.
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Analysis method

The classification that we perform has the objective of being able to determine
a set of rules for each type of tumor (composed of the genes and their related
values), which can define if a tissue is in tumoral or in normal condition.

It is worth noting that also in previous works [MAOP01, BLZ+06, MWZG13,
STSC14, WCCF16, PRP+17] DNA methylation has been used to classify data
samples (and patients) of cancer, but only a subset of single methylated sites
have been used as features. Recently, the authors of [CCW18] perform the clas-
sification task by considering all the single methylated sites in the genome with
Big Data techniques. Conversely, we use the previously defined gene methyla-
tion quantity and not the single methylated sites. Also gene expression data
of RNA sequencing has been widely used for cancer classification [GST+99,
KWR+01, SNM+03, WFB12, MdRD+13, NRE14, WFFB15, CFF+16] and
proven to be effective in distinguishing normal from tumoral samples. Our
aim is to combine both information in order to extract a wider knowledge and
to better focus on those genes that are related to the disease.

For performing the task of knowledge discovery, we used four different clas-
sification algorithms (C4.5, Ripper, Random Forest, CAMUR).

Performed tests

We describe the performed experiments to test our method and the results of
the classification algorithms applied to the RNA sequencing and DNA methy-
lation data of three cancer types (BRCA, THCA, KIRP).
For each type of tumor, we created three data matrices, the first containing
only the gene expression values (RNA sequencing), the second containing only
the gene methylation quantities, and the third combining both experiments
according to the procedure described in Methods. Table 4.4 and Table 4.5
show an example of the RNA sequencing and of the DNA methylation data
matrices of BRCA. The numeric values shown in Table 4.5 are obtained as
sums of the beta values associated with the same gene. For example for the
TCGA-A7-A4SD-01A-11D-A268-05 sample, the 1.6 value, associated with the
GDA gene, is the result of the sum of all the beta values of the methylation
sites associated with this gene. Table 4.6 shows an example of the BRCA com-
bined matrix, where each column represents a gene of the DNA methylation
and then a gene of the RNA sequencing; the first row represents a sample only
with data about the RNA sequencing experiment, and the second row has only
data for the DNA methylation experiment, whereas the last row is an example
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RNA sequencing GDA rna SCN3A rna SCN3B rna class
TCGA-A1-A0SD-11A-11R-A115-07 0.6 28.4 43.6 normal
TCGA-A7-A4SD-01A-11R-A266-07 0.0 6.4 1.9 tumoral
.. .. .. .. ..
TCGA-3C-AALK-01A-11R-A41B-07 0.0 5.3786 18.2044 tumoral

Table 4.4: Example of RNA sequencing matrix on breast cancer data. The columns
represent genes, and the last shows the class. For each row, we consider the full TCGA
identifier of the sample. The full identifiers is called TCGA aliquot and reports the
type of the performed NGS experiment (RNA sequencing). The gene expression
values are reported for all samples.

DNA methylation GDA dMeth SCN3A dMeth SCN3B dMeth class
TCGA-A7-A4SD-01A-11D-A268-05 1.6 2.3 2.0 tumoral
TCGA-GI-A2C9-01A-11D-A21R-05 1.9 2.7 2.3 tumoral
.. .. .. .. ..
TCGA-3C-AALK-01A-11D-A41Q-05 3.8 2.1 3.8 tumoral

Table 4.5: Example of DNA methylation matrix on breast cancer data. Also in
this case, rows are represented by the TCGA aliquot of samples, reporting the type of
the performed NGS experiment (DNA methylation). The gene methylation quantity
values are reported for all samples.

of a sample with both experiments. Details about the combined matrices of

Combined GDA dMeth SCN3A dMeth ... GDA rna SCN3A rna class
TCGA-A1-A0SD-11A ? ? ... 0.6 28.4 normal
TCGA-GI-A2C9-01A 1.9 2.7 ... ? ? tumoral
.. .. .. .. .. .. ..
TCGA-A7-A4SD-01A 1.6 2.3 ... 0.0 6.4 tumoral

Table 4.6: Example of combined matrix on the breast cancer data. In the com-
bined matrix, rows are identified by the TCGA Barcode (excluding the part that
identifies the type of experiment carried out on a sample). In this way it is possible
to recognize the sequenced sample with both NGS techniques (RNA sequencing and
DNA methylation). In this case the matrix has as many rows as the total samples
(union of RNA sequencing samples and DNA methylation samples), counting only
one time those samples in common, on which both experiments were preformed.

BRCA, THCA, and KIRP tumors are summarized in Table 4.7, while details
about the datasets are depicted in Table 4.8: with the column ‘Experiment’
we specify the sequencing experiment (RNA sequencing or DNA methylation),
followed by the ’Cancer’ column where we indicate with a code the considered
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types of cancer for the two experiments. The last four columns represent the
number of tumor samples, the number of normal samples, the total number
of genes and the size of the matrices in MB, respectively. We performed bi-
nary classifications (two classes, normal and tumoral), and we considered three
cancers with both normal and tumoral samples.

KIRP THCA BRCA

# RNA sequencing samples 28 9 346
# DNA methylation samples 22 8 23
# DNA methylation and RNA sequencing samples 295 563 872

Table 4.7: Details of the number of samples in the combined matrices. # RNA
sequencing samples represent the number of samples having only RNA sequencing
data, # DNA methylation samples represent the number of samples having only
DNA methylation data, # DNA methylation and RNA sequencing samples represent
the number of samples having both information.

Experiment Cancer tumoral normal features MB

RNA sequencing BRCA 1104 114 20485 198,5
THCA 513 59 20489 93
KIRP 291 32 20489 52,6

DNA methylation BRCA 799 98 20045 330
THCA 515 56 20045 210,2
KIRP 274 43 20045 116,9

Combined BRCA 1114 127 40530 542,5
THCA 515 65 40534 303,9
KIRP 292 53 40534 171,4

Table 4.8: Overview of the datasets.

The data matrices of the different experiments and tumors have been ana-
lyzed with the above-mentioned classification algorithms (C4.5, Random For-
est and RIPPER) through the use of the Weka software package [HFH+09].
For the application of these algorithms, we adopted a parameter tuning pro-
cess to prevent overfitting and to optimize the classification results in term
of accuracy. We used the Cross-Validated Parameter selection (CVParame-
terSelection) [Koh95], that can optimize an arbitrary number of parameters
according to input data and number of cross validation folds. We have chosen
this meta-classifier for performing parameter selection by cross-validation for
all our classifiers. For example, if we consider the RNA-sequencing matrix for
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KIRP tumor, and the different classifiers (RIPPER, C4.5 and Random Forest),
we obtain the following results:

• J48 (C4.5), -C (confidence threshold for pruning.) 0.1, -M (minimum
number of instances per leaf) 1, -U (use unpruned tree) false;

• JRip (RIPPER), -F (the number of folds for Reduced Error Pruning) 5,
-N (the minimal weights of instances within a split) 1, -O (the number
of runs of optimizations) 2 -S (the seed of randomization) 1;

• RandomForest, -I (number of iterations) 30, -K (number of attributes
to randomly investigate) 0, -S (seed for random number generator) 1,
-num-slots (number of execution slots) 1.

In addition, we performed the classifications with multiple rule-based mod-
els obtained by CAMUR. Therefore four different classification algorithms were
applied on three data matrices (RNA sequencing, DNA methylation, and their
combination) of each considered cancer, resulting in 36 different knowledge
discovery analyses. For evaluating the classifiers we take into consideration
the F-measure, which is defined as F -measure = 2P ·R

P+R
, where R stands for

Recall and P is for Precision. Considering True Positives (TP) objects of a
given class recognized in this class; False Positives (FP) objects recognized in
a class but not belonging in this class; True Negatives (TN) objects not be-
longing and not recognized in a given class; False Negatives (FN) objects in a
given class but not recognized in that, we can then define Recall = TP

TP+FN
and

Precision = TP
TP+FP

. We performed the tuning of parameters also for CAMUR
adopting the Cross-Validated Parameter selection described above [Koh95] for
its internal RIPPER algorithm, and we finally set the execution mode to loose,
the maximum number of iterations to 100, the minimum F-measure value to
0.8, and the maximum time to 30 days.

In Table 4.9 we show the average of the resulting F-measures for the per-
formed classifications of each algorithm in 10-fold cross validation scheme. It
is worth noting that all values are greater than 95%. Proper parameter tuning
was performed with a large set of tests in order to prevent potential overfitting
of the classification models. The results obtained on the combined datasets
are slightly lower due to the increase in features and missing values that make
the job of the classification algorithms harder. In order to clarify this point
we also applied the classification algorithms on the combined matrices, delet-
ing the samples for which only one NGS experiments is available. In this way
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Experiment Cancer C4.5 RIPPER CAMUR Random Forest

RNA sequencing BRCA 98.5 98.1 98.2 97.3
THCA 97.7 97.2 97.6 98.4
KIRP 98.8 98.8 95.2 99.4

DNA methylation BRCA 97.2 97.5 97.4 98.3
THCA 96.1 96.3 95.1 97.0
KIRP 97.8 96.5 98.0 99.0

Combined BRCA 97.2 97.5 97.8 98.9
THCA 96.4 95.2 97.2 97.3
KIRP 98.0 96.8 98.4 98.2

Table 4.9: Average performance (F-measure) of the classification algorithms.

we reduced the missing values and the resulting classification performance (F-
measure) improved with all the classifiers (i.e., on BRCA +0.2% with C4.5,
+0.1% with RF, +1% with RIPPER; on KIRP +0.7% with C4.5, +0.8% with
RF, +2,1% with RIPPER; on THCA +0.1% with C4.5, +0.5% with RF, +0.2%
with RIPPER).

The performance of the algorithms are important in order to validate the
classification, but the main purpose of the work is to extract more and different
genes from diverse experiments. The improvement given by the classification
of the combined data is that the resulting classification models do not only
consider the genes and their associated values for a single experiment, but
both from gene expression and DNA methylation data in a single model, pro-
viding multiple related genes. In Table 4.10 we show the number of genes
obtained with the execution of RIPPER, C4.5 and Random Forest classifica-
tion algorithms on all tumors for DNA methylation, RNA sequencing and their
combination. It is worth noting that one extracted gene is in common among
the three algorithms. The reason is that the algorithms operate differently and
use diverse extraction functions of the models, so the extracted features are
disjoint. It is important to distinguish between Random Forest that extracts
multiple classification models, while RIPPER and C4.5 extract a single clas-
sification model. We obtain almost 5000 genes with Random Forest, 38 genes
with RIPPER, and 26 with C4.5; we also report that 17 genes are in common
between RIPPER and Random Forest, 9 between C4.5 and Random Forest,
and 4 between RIPPER and C4.5. Further details and the complete list of
extracted genes are at http://bioinf.iasi.cnr.it/genint. We also investigated if
the algorithms misclassify the same samples by comparing the predictions of
each one. We found out that only some instances are misclassified by all the
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Algorithm RNA-Seq and DNA methylation Combination

RIPPER 26 12
C4.5 22 4

Random Forest 2098 2471

Table 4.10: Number of genes obtained with the different classification algorithm .
We show the number of genes obtained with RNA sequencing and DNA methylation
data matrices, and the number of genes obtained thanks to the combination of the
two experiments.

three algorithms.

Finally, in order to prove the validity of the extracted models we performed
random permutations of class membership for each classification problem and
each combination. We tested if our procedure is able to extract meaningful
classification models regardless of the class partition imposed on the training
set. This would be verified only in the presence of a marked overfitting be-
havior. For validating our results and the extracted classification models, we
applied the procedure to data with random permutations of class labels. This
validation test was performed on 100 different random permutations for each
classification problem. In particular, we obtain low values of F-measure and
we report the resulting averages in Table 4.11. We obtain a low overall average
classification accuracy on permutated data, whose values are halved when com-
pared to the ones obtained on original data. This confirms the reliability of our
classification models and suggesting the absence of overfitting when consider-
ing the correct classes. We ran more than 2000 classification procedures with

Experiment Cancer C4.5 RIPPER CAMUR Random Forest

RNA sequencing BRCA 51.1 51.6 50.2 50.9
THCA 49.5 50.8 49.6 50.7
KIRP 55.4 48.8 50.3 50.1

DNA methylation BRCA 50.0 49.7 51.1 49.1
THCA 51.1 50.2 53.2 47.9
KIRP 50.2 49.6 52.0 50.8

Combined BRCA 51.9 49.4 52.6 49.9
THCA 52.4 50.7 50.1 51.3
KIRP 50.1 50.4 50.3 50.2

Table 4.11: Average performance (F-measure) of the classification algorithms on
random permutated class labels.
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CAMUR, obtaining rules, literal and conjuncion lists, feature pairs and liter-
als statistics for each tumor and each considered dataset. Detailed results are
described at http://bioinf.iasi.cnr.it/genint. In Table 4.12 we summarize the
results obtained with CAMUR, in particular the table shows the total number
of extracted rules and all the features (i.e., genes) that appear. In Table 4.13 we

Experiment Cancer rules list genes

RNA sequencing BRCA 1866 920
THCA 1880 695
KIRP 3 2

DNA methylation BRCA 2658 1543
THCA 3778 1918
KIRP 159 53

Combined BRCA 895 1045
THCA 3703 1450
KIRP 310 88

Table 4.12: Rules and genes obtained with CAMUR. This results summarize the
obtained output for each considered tumor and experiment.

report the execution times, the number of iterations and the execution mode of
CAMUR. The execution of the classifications procedures were run on a 4-Core
3 giga hertz Intel-7 processor with 24 gigabytes RAM and Linux Debian Kernel
Version 2.6.26-2-amd64. The classifications obtained with the implementations
of C4.5, Random Forest, and RIPPER algorithms, are executed with two soft-
ware tools available at http://bioinf.iasi.cnr.it/genint. In Table 4.14 we report
the execution times of the classification procedure for each tumor in 10-fold
cross-validation sampling scheme [TSK05]. Conversely to CAMUR, the execu-
tion times are in the order of minutes, because those algorithm extract just a
single classification model. We also compared the execution times of Random
Forest to those of CAMUR, which extract both multiple solutions. We note
that CAMUR has higher running times than Random Forest, which are in the
order of hours for CAMUR and in the order of minutes for Random Forest.
We can justify this differences by considering the amount of logic formulas ex-
tracted from both classifiers, indeed CAMUR extracts many more rule-based
models w.r.t. Random Forest tree-based ones.
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Experiment Cancer CAMUR time iterations mode

RNA sequencing BRCA 14d:20h:59m:20s 60 loose
THCA 05d:04h:00m:51s 100 loose
KIRP 00d:00h:01m:22s 100 loose

DNA methylation BRCA 29d:00h:21m:19s 44 loose
THCA 29d:00h:19m:52s 39 loose
KIRP 00d:00h:25m:51s 100 loose

Combined BRCA 29d:20h:21m:25s 7 loose
THCA 07d:20h:53m:16s 100 loose
KIRP 00d:01h:34m:08s 100 loose

Table 4.13: Timing of the CAMUR executions, number of iterations and execu-
tion mode. We specified different maximum number of iterations according to the
computation time, 80% as minimum threshold value for the classification reliabil-
ity, and loose as execution mode. It is worth noting that only 7 iterations in 29
days have been performed for the combined matrix of BRCA, because the extracted
classification models are composed of a high number of genes.

Experiment Cancer C4.5 time RIPPER time RandomForest time

RNA sequencing BRCA 04m:07s 09m:09s 00m:48s
THCA 01m:28s 02m:30s 00m:30s
KIRP 00m:27s 00m:46s 00m:16s

DNA methylation BRCA 02m:53s 06m:10s 00m:37s
THCA 01m:34s 03m:12s 00m:34s
KIRP 00m:45s 01m:02s 00m:22s

Combined BRCA 06m:31s 10m:20s 6m:38s
THCA 01m:58s 3m:35s 00m:28s
KIRP 01m:10s 01m:45s 02m:55s

Table 4.14: Execution time of C4.5, RIPPER and Random Forest algorithms.

Gene methylation quantity

In previous studies, efforts have been made for aggregating DNA methylation
at gene level. In [SRD+15] a methylation index is defined as the mean percent
methylation across all CpG sites in the gene. In [VHSE+13] another methyla-
tion index is defined as the ratio of methylated and unmethylated copy num-
bers measured by absolute quantitative assessment of methylated alleles. Our
measure differs from previous attempts to represent DNA methylation at gene
level, because it takes into account both the number and the values of methy-
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lated sites for each gene. In order to validate the gene methylation quantity
we provide a qualitative and a quantitative explanation: (i) the defined gene
methylation quantity index represents how much a gene is methylated, because
it is defined as the sum of the methylation values of the sites that are within
the genomic coordinates of the gene, therefore if the gene methylation quantity
is low/high, than the gene will be low/high methylated; (ii) we have shown
that four classification algorithms are able to successfully distinguish tumoral
from non tumoral samples by considering the gene methylation quantities as
features. In addition, the index provides a gene oriented data representation
of the DNA methylation experiment.

Correlation between DNA methylation and RNA sequencing

An interesting problem is to investigate if there is correlation between gene ex-
pression and DNAmethylation. The authors of [MNB+10, AGBK+12, KHB+12,
CZC+14, KME+15, LLDS18]) address the question if there is correlation be-
tween the expression values and the methylated sites of a gene in cancer data
and prove that a correlation exists only for a few set of genes. Specifically
for the Breast Invasive Carcinoma, in [FFJ+14] the correlation between DNA
methylation and gene expression of almost 3,000 genes is discussed, and in
[SBJ+17] it is shown how the CpG-SNP (partnership between DNA methyla-
tion and Single Nucleotide Polymorphism) pairs are strongly associated with
differential expression of genes. Indeed, DNA methylation has been related also
to mutations, and it has been proven that Single Nucleotide Polymorphism at
specific loci can result in different patterns of DNA methylation [SKK+14].

Tree-based classification models of C4.5

We extracted a classification model for each experiment and each cancer with
C4.5, resulting in 9 decision trees composed of 26 genes (16 for DNA methy-
lation and 10 for RNA sequencing). We show some examples on the Kidney
Renal Papillary Cell Carcinoma (KIRP) data, in Figure 4.15 we report the
RNA sequencing decision tree, and Figure 4.16 shows it for the combined data.
The classification models on the other tumors and experiments are available at
http://bioinf.iasi.cnr.it/genint.
In the leaves of the trees the total weight of instances reaching that leaf, and
the total weight of misclassified instances are specified. In each leaf a fractional
weight representing the instances with a missing value is considered. We can
then see how missing values are handled by comparing the Figures 4.15 and
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4.16. In Figure 4.15, the weights of instances are integers, whereas in Table 4.16
weights are all fractional values, due to the fact that in the combined matrix
most of the instances contain missing values. As we can see the model ob-
tained from the combined data provides additional knowledge in the resulting
classification rules, compared to that obtained from RNA sequencing data. In
particular, the first rule of the model in Table 4.15 is enriched with additional
rule conditions on the genes of the DNA methylation data, as shown in Figure
4.16.

UMOD rnaSeq ≤ 2370.6675: tumoral (291.0)
UMOD rnaSeq > 2370.6675: normal (32.0)
Number of leaves: 2
Size of the tree: 3

Table 4.15: The decision tree for full training set, obtained from the RNA se-
quencing KIRP data matrix, with 319 correctly classified instances and 4 incorrectly
classified instances.

UMOD rnaSeq ≤ 2370.6675
‖ VMP1 dnaMeth ≤ 5.468451: tumoral (291.59/1.8)
‖ VMP1 dnaMeth > 5.468451: normal (19.23/2.11)
UMOD rnaSeq > 2370.6675: normal (34.18/0.1)
Number of Leaves: 3
Size of the tree: 5

Table 4.16: The decision tree for full training set, obtained from the combined
KIRP data matrix, with 338 correctly classified instances and 7 incorrectly classified
instances. The two experiments are considered, then tumor and normal tissues are
defined, both by RNA sequencing RSEM measures and DNA methylation beta values.

Finally, we validated the tree-based RNA-sequencing classification models
on two external datasets extracted from Gene Expression Omnibus [EDL02]
(GSE56022 and GSM1308330), obtaining 90% correct classification.

Tree-based classification models of Random Forest

We applied Random Forest to all matrices, extracting 9 classification models,
each one composed of 30 trees. The total number of genes obtained is 2301 for
RNA sequencing and 2574 for DNA methylation of which 306 are in common
between two experiments. Thanks to their combination, we extracted 2471
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genes with the execution of this algorithm. As example, we show in Table 4.17
a random tree obtained with the application of Random Forest on the DNA
methylation matrix of Breast Invasive Carcinoma (BRCA) data. The Random

DNM2 dnaMeth < 3.68
‖ CRYAB dnaMeth < 2.01
‖ ‖ AUNIP dnaMeth < 1.51 : tumoral (27/0)
‖ ‖ AUNIP dnaMeth ≥ 1.51
‖ ‖ ‖ NPY dnaMeth < 4.85
‖ ‖ ‖ ‖ SACM1L dnaMeth < 2.65
‖ ‖ ‖ ‖ ‖ LINC00336 dnaMeth < 4.05 : tumoral (2/0)
‖ ‖ ‖ ‖ ‖ LINC00336 dnaMeth ≥ 4.05 : normal (8/0)
‖ ‖ ‖ ‖ SACM1L dnaMeth ≥ 2.65 : normal (76/0)
‖ ‖ ‖ NPY dnaMeth ≥ 4.85
‖ ‖ ‖ ‖ PLEKHM2 dnaMeth < 20.49 : tumoral (9/0)
‖ ‖ ‖ ‖ PLEKHM2 dnaMeth ≥ 20.49 : normal (5/0)
‖ CRYAB dnaMeth ≥ 2.01 : tumoral (114/0)
DNM2 dnaMeth ≥ 3.68
‖ SPRYD4 dnaMeth < 1.3 ‖ ‖ DAP3 dnaMeth < 2.21
‖ ‖ ‖ MYOG dnaMeth < 11.05 : tumoral (646/0)
‖ ‖ ‖ MYOG dnaMeth ≥ 11.05
‖ ‖ ‖ ‖ GMEB2 dnaMeth < 9.57 : tumoral (1/0)
‖ ‖ ‖ ‖ GMEB2 dnaMeth ≥ 9.57 : normal (1/0)
‖ ‖ DAP3 dnaMeth ≥ 2.21 : normal (1/0)
‖ SPRYD4 dnaMeth ≥ 1.3
‖ ‖ LBX1-AS1 dnaMeth < 10.63 : normal (5/0)
‖ ‖ LBX1-AS1 dnaMeth ≥ 10.63 : tumoral (2/0)
Size of the tree: 25

Table 4.17: Model A tree of the classification model for full training set, obtained
by the execution of Random Forest on DNA methylation data of Breast Invasive
Carcinoma. The full output is composed by 30 trees with different sizes with multiple
leaves containing also the total weight of instances.

Forest algorithm is particularly suited for knowledge extraction on combined
data (which presents a high number of features), because of its randomized and
multiple model extraction.

For the validation of the classification models on the external datasets
GSE56022 and GSM1308330, we consider all trees generated for the RNA-
sequencing experiment, and the samples are classified with an average accuracy
of 80%.
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Rule-based classification models of RIPPER

The RIPPER algorithm provides 9 rule-based classification models composed
of 38 genes, 22 for DNA methylation and 16 for RNA sequencing. Below we
show some examples of the rule-based classification models obtained with the
RIPPER algorithm on the Kidney Renal Papillary Cell Carcinoma (KIRP).
We show some rules for the DNA methylation dataset in Table 4.18, and
for the combined dataset in Table 4.19. For example the rule depicted in
Figure 4.19 can be interpreted as: classify the considered sample into nor-
mal, if the gene methylation quantity of MAP3K11 is lower-equal then 12.3
and the one of PIP5KLI is greater-equal then 2.1 or the RSEM RNA-Seq
value of NELL1 is greater-equal then 437.3. Conversely, assign the sample
to the tumoral class. The reader may find all the classification models in
http://bioinf.iasi.cnr.it/genint.

(MAP3K11 dnaMeth ≤ 12.3) and (PIP5KL1 dnaMeth ≥ 2.1) → class=normal
→ class=tumoral
Number of Rules: 2

Table 4.18: Rule-based model for full training set, obtained from the DNA methy-
lation KIRP data matrix, with 306 correctly classified instances and 11 incorrectly
classified instances.

(MAP3K11 dnaMeth ≤ 12.3) and (PIP5KL1 dnaMeth ≥ 2.1) → class=normal
(NELL1 rnaSeq ≥ 437.3)→ class=normal
→ class=tumoral
Number of Rules: 3

Table 4.19: Rule-based model for full training set, obtained from the combined
KIRP data matrix, with 334 correctly classified instances and 11 incorrectly classified
instances. Also in this case, features of both experiments appear in the extracted rule.

The rules in the resulting model obtained from the combined matrix, con-
firm the added value. In this model we can find the same rule obtained from
the single DNA methylation data, enriched with a new rule-based on a feature
derived from RNA sequencing data.

We also applied the rule-based RNA-sequencing model extracted on the
Gene Expression Omnibus datasets, obtaining a correct classification rate of
90% on average.
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Rule-based classification models of CAMUR

By running more than 2000 classification procedures, we extracted 15.252 rules
composed of 1758 genes from RNA sequencing and 3655 genes from DNA
methylation. From those genes 509 are in common in both experiments. The
reader may find the gene lists at http://bioinf.iasi.cnr.it/genint. In this sub-
section, we show some example of the rules obtained through the execution of
CAMUR on the Thyroid Carcinoma (THCA) data. CAMUR extracts many
multiple classification models (available at http://bioinf.iasi.cnr.it/genint), as
example we report only those with the highest level of accuracy in Table 4.20.
The rules for the combined data classification model confirm what is derived

(TMEM127 dnaMeth ≥ 1.99) and (IRGM dnaMeth ≥ 1.79) and (SCN3A dnaMeth ≥ 2.88) OR
(TMEM2 dnaMeth ≥ 1.206751) and (IL2RA dnaMeth ≤ 6.32) and (NENF dnaMeth ≥ 1.88) OR
(AWAT2 dnaMeth ≥ 3.62) and (SNORA69 dnaMeth ≤ 1.89)
→ class=normal

(TNFRSF12A dnaMeth ≥ 0.53) and (SGK2 dnaMeth ≤ 11.15) OR
(TMEM127 dnaMeth ≥ 2.07) and (OR10J1 dnaMeth ≥ 2.96) and (SCN3A dnaMeth ≥ 2.92)
→ class=normal

(TNFRSF12A dnaMeth ≥ 0.53) and (CDKN1C dnaMeth ≤ 12.92) OR
(TMEM127 dnaMeth ≥ 2.04) and (ADH4 dnaMeth ≤ 0.79) and (GFER dnaMeth ≥ 2.07)
→ class=normal

Table 4.20: Three classification models shown for full training set, of DNA methy-
lation experiment for Thyroid Carcinoma, with about 100% level of accuracy.

from the model for DNA methylation data, and also provide a further classifi-
cation rule-based on RNA sequencing genes that is not obtained by performing
classification on data of single experiment of RNA sequencing. It is worth
noting that CAMUR can be successfully adopted for knowledge extraction on
combined data (which presents a high number of features), because it is able
to extract multiple rule-based models.

For the validation of CAMUR we selected ten BRCA rules extracted by
CAMUR and used them on the Gene Expression Omnibus datasets, noting
that with these rules 80% of the samples are correctly classified, confirming
the validity of the extracted models.
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Genes extracted by CAMUR

In this subsection we analyze the large quantity of classification models ex-
tracted by CAMUR, focusing on the sets of genes that occur in the rules. We
summarize the common genes that appear in the different tumors and exper-
iments with six Venn diagrams, which report the intersections of the genes
among the considered tumors and the intersections among each considered ex-
periment.

In Figure 4.3 we show the intersections between the tumors sets of genes for
the DNA methylation experiment, the RNA sequencing experiment and their
combination.
The classification models obtained for the DNA methylation experiment of
Breast Cancer (BRCA) and of Thyroid Carcinoma (THCA) result in 324 com-
mon genes, while the intersections with the sets of genes for the Kidney Renal
Carcinoma (KIRP) result in fewer genes (5 for BRCA and KIRP intersection
and 6 for THCA and KIRP intersection). Furthermore, 20 genes are in com-
mon between all tumors. For RNA sequencing we have 150 genes in common
for the BRCA and the THCA tumors. Only 2 genes are extracted for the KIRP
tumor that are not in common with the other tumors. In the combined Venn
diagram 19 genes are in common between all the tumors, 146 between BRCA
and THCA, and less than 10 genes for the intersection of THCA and BRCA
with the KIRP set. In Figure 4.4 we consider a Venn diagram for each tumor,
where the set on the left reports the number of genes calculated from the union
of genes of RNA sequencing and DNA methylation experiments, and the set on
the right stands for the number of genes extracted from the combined matrix.
In each tumor different and common genes are extracted from the combined
matrices. For example, in BRCA 733 genes are in common, and 312 are the
new genes obtained thanks to the combination of RNA sequencing and DNA
methylation. We report also 1730 genes that do not appear in the combined
dataset of genes. For the THCA tumor 861 gene are in common, 589 belong to
the combined dataset of genes, and 1752 genes are extracted from DNA methy-
lation and RNA sequencing matrices. Finally, the KIRP diagram reports 53
new genes for the combined matrix, 35 in common, and 20 present in the union
of the two experiments. In this case, the combination produced more genes
than those extracted from the single experiments. The combination leads to
the extraction of new genes, which are not computed when analyzing single
experiments.
The goal of this work is also to study the different types of cancer and iden-
tify many genes related to the disease. By performing the intersection it is
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Figure 4.3: Venn diagrams representing the number of genes and their intersection
that appear in the DNA methylation experiments, RNA sequencing experiments and
in the combined experiments. In the DNA methylation Venn diagram, THCA, BRCA
and KIRP sets have 20 common genes, 6 genes are in common between THCA and
KIRP, 5 genes between BRCA and KIRP, and 324 between THCA and BRCA. In
the RNA sequencing Venn diagram, BRCA and THCA have 150 genes in common,
whereas the intersections with the KIRP set of genes are empty, therefore they are
not represented.In the combined Venn diagram THCA, BRCA and KIRP sets have
19 common genes, 8 genes are in common between THCA and KIRP, 7 genes between
BRCA and KIRP, and 146 between THCA and BRCA.

possible to reduce the number of them and to focus on a number of potential
oncogenes. At http://bioinf.iasi.cnr.it/genint we provide all the gene lists that
are in common and not in common for each tumor and experiment. Thanks
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Figure 4.4: The Venn diagrams representing the number of genes and their inter-
section in each tumor. In KIRP 35 genes are in common between the set of genes
extracted from the combined matrix and the union of the genes sets extracted from
the DNA methylation and RNA sequencing matrices. We obtain 861 common genes
for THCA and 733 for BRCA matrices.

to the intersections, we are able to detect 509 genes in common among DNA
methylation and RNA sequencing experiments. From these genes we extract
a subset of 13 genes, which are in common among the different tumors. In or-
der to check biological relevance of the obtained subset of genes, we compared
our result with the Entrez Gene database of NCBI [MOPT10], which provides
information about oncogenes, tumor suppressor genes, the over-expression or
lower-expression of gene regulation of cancer cells growth, and also hyper-
methylation and hypo-methylation closely associated with the progression of
cancer. This analysis led to the detection of 5 and 279 cancer related genes,
from the subsets of 13 and 509 genes discussed above, respectively.
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4.5 Gene-Oriented Approach for big DNA Methylation

Data

Part of this section was published in [WCC+18]

Another knowledge extraction approach is applied on NGS data, to which
an efficient data processing procedure is applied that permits to obtain a gene-
oriented organization. This approach is described in the following subsection.

Data extraction and preparation

DNA methylation data of TCGA can be organized as follows. We collect
n samples each one with its m features and their class labels (conditions),
e.g., normal and tumoral. We represent every sample i by the vector bvi =
(bvi1, bvi2, · · · , bvim, bvic), where bvij ∈ R, i = 1, · · · , n, j = 1, · · · ,m and
bvic ∈ {normal, tumoral}.
We build the data matrix with the vectors bv1, f2, · · · , bvn, where the rows
represent the samples and the columns the features. In DNA methylation
experiments the features are the methylated sites and their values represent
the percentages of methylated cytosines in a CpG island. This percentage is
called beta value (bv). The DNA methylation matrix is represented in Table
4.21. A DNA methylation experiment extracts more than 450 thousand sites

Sample Site1 Site2 · · · Sitem Class

Sa1 bv11 bv12 · · · bv1m normal
Sa2 bv21 bv22 · · · bv2m tumoral
· · · · · · · · · · · · · · · · · ·
San bvn1 bvn2 · · · bvnm normal

Table 4.21: DNA-methylation data matrix.

on hundreds of samples. Therefore the DNA methylation matrix is composed
of a large number of features (> 450 thousand) and is not easily tractable
with state of the art data analysis methods, which are not able to handle such
big datasets. We propose to analyze these large data matrices by dividing
them into S sub-matrices, with S representing the number of genes, where the
methylated sites can be mapped. Indeed, each methylated site can be assigned
to a specific gene region, where the site is located. The processing procedure
is composed of following steps:
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1. find the number S of distinct genes where the methylated sites can be
mapped;

2. order the methylated sites according to their associated gene symbol;

3. extract the S sub-matrices with n samples and h features (h <<< n),
whose site are located within the same gene region, i.e. with the same
gene symbol.

So we obtain S sub-matrices, one for each gene, with the same format of Ta-
ble 4.21, but with only h features (with 2 ≤ h ≤ 20). We propose to an-
alyze each sub-matrix with supervised machine learning methods [WFB13,
PWD+14, WVFB13, WFB12, CFF+16], This procedure permits to reduce
substantially the number of features in each matrix and to perform a gene-
oriented analysis, because each matrix is associated to a gene. We report in
section 4.5 the list of the genes, whose matrices obtain the best performances
when analyzed with classification algorithms.

Performed test

In this work, we adopt Support Vector Machines (SVM) [CST00], C4.5, RIP-
PER, and CAMUR, in order to evaluate the best performing method and to
identify the genes whose DNA methylation data has the most discriminating
power.

The application of the classification algorithms on the S sub-matrices (each
one associated to a gene) allows us to select for each tumor the best performing
genes according to the obtained accuracy.

A synthetic representation of the results is shown in Table 4.22, where we
report for each tumor (i) the number of genes that perform with an accuracy
≥ 90% for all the three considered classifiers, and the number of analyzed
experiments (one half tumoral samples, one half on normal samples). It is
worth noting that the total number of considered genes per tumor is always in
the range of ∼ 25 thousand and the number of considered methylated sites is in
the range of > 450 thousand, because of the used Illumina DNA methylation
technique.

For BRCA the number of extracted genes is still high, see 4.5 for details
regarding the number of genes extracted by each algorithm.
This means that the beta value is a good metric to establish the discriminant
power of a gene for this particular tumor. Therefore, we further investigate the
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Cancer Samples Selected Genes

BRCA 192 2392
PRAD 100 103
THCA 112 42

Table 4.22: Number of samples and of genes obtained from the classification pro-
cedures for each tumor.

Figure 4.5: Number of genes in BRCA where the classifiers (SMO, J48, and Jrip)
reach more than 90% of accuracy. All classifiers obtain more than 90% of accuracy
in 2392 genes.

Breast Invasive Carcinoma (BRCA).

In particular, for further reducing the selected genes we apply CAMUR on
gene expression data of the same samples and extract a list of logic formulas
highlighting the genes that appear in the rules. We subsequently intersect this
set of genes with the previously generated set obtained from the other classifiers
(SVM, C4.5, and RIPPER) on DNA methylation data generating a new set of
72 common genes. Finally, we highlight a list of logic formulas (shown in Table
4.23) with a classification rate ≥ 90% that contain the genes in this new set.
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(SDPR|8436 ≥ 10.53) and (SLC44A4|80736 ≤ 47.42)

(SDPR|8436 ≥ 10.53) and (SLC44A4|80736 ≤ 51.96)

(SDPR|8436 ≥ 11.64) and (SLC44A4|80736 ≤ 47.69)

(TMEM220|388335 ≥ 2.51) and (ITIH5|80760 ≥ 9.74)

or (MYOM2|9172 ≥ 29.70)

(TMEM220|388335 ≥ 2.52) and (LIMS2|55679 ≥ 10.72)

(TMEM220|388335 ≥ 2.52) and (LIMS2|55679 ≥ 10.92)

(TMEM220|388335 ≥ 2.62) and (LIMS2|55679 ≥ 10.72)

or (SDPR|8436 ≥ 17.55) and (A2BP1|54715 ≥ 0.019)

(TMEM220|388335 ≥ 2.62) and (LIMS2|55679 ≥ 10.72)

or (TRIM59|286827 ≤ 1.23) and (A2BP1|54715 ≥ 0.019)

Table 4.23: Examples of classification rules extracted by CAMUR for BRCA with
a classification rate ≥ 90%, each rule is able to distinguish tumoral from normal
samples.

Gene enrichment analysis

In order to validate the classification results, we perform an enrichment analysis
on the previous selected genes. We exploit the NCBI [MOPT10] Entrez Gene
database to find a relationship between the extracted genes and the analyzed
tumors. In particular, we highlight all the genes that could potentially cause
the development of a neoplastic phenotype in the cell, as shown in Table 4.24.

In the case of the BRCA, 23 genes are known in literature to be related
to the Breast Invasive Carcinoma, 16 genes in the PRAD gene set are related
to the Prostate Adenocarcinoma, and only one gene in the THCA gene set, is
related to the Thyroid Cancer. The final result of this enrichment analysis is
reported in Table 4.25.

The remaining genes in the three extracted gene sets could be of course
considered in future experiments as new targets for those specific diseases. It
is worth noting that the highlighted genes are also involved in other diseases
(e.g., Obesity, Spinal Muscolar Atrophy, Hypotension, etc).
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Tumor Abbreviation Cancer related genes

BRCA A2M, ABCB1, ABCC1, ABCG1,
ACOT7, ACOX2, ADAM19, ADAM33,
ADAMTS16, ADAMTS17, ADCYAP1R1,
ADORA2A, AKAP2, ALDH1A2, AQP1,
ATXN1, B4GALNT3, CA12, CD300LG,
CDCP1, CPA1, CREB3L1, CRYAB, DENND2D,
DST, FAM92A1, FGF1, FHL1, HEPACAM,
HOXA7, IGFBP6, IL11RA, INHBA, ITIH5,
KIF26B, LGI4, LIMS2, LRRC3B, MEG3,
MUC1, PPP1R14A, PRKD1, SDPR, SPRY2,
SSTR1, TMEM220, TNXB, TRIM59

PRAD ADORA3, AKAP2, ARHGEF2, CA9,
CASC2, CAV2, CCDC8, CCK, CD8B,
CDH23, CHST11, CLIC3, CNTN1,
COL3A1, COL4A5, COL4A6, CYBA,
CYP2A13, DAB1, DOCK2, EFEMP2,
FEV, FZD7, GALNT6, GATA3, GGT5,
GJA1, HAPLN3, HIF3A, HVCN1, IL1B,
IL2RB, INCA1, KCNJ3, KCTD8, LRRC4,
LTC4S, MASP1, MCAM, MIR1258,
MIR130B, MIR301B, MIR575, NBR1,
NISCH, PDZD2, PFKP, PRR5, PYCARD,
RASL10B, RBM38, SALL2, SEPT4, SIX2,
SLC2A5, SLC6A2, SND1, TLX1,
TMEM106A, TOM1L2, UBE4B, ZNF154,
ZNF385B, ZNF577

THCA AFAP1, BMPR1B, CAMP, CD96,
CDH23, CHRNB4, CMIP, COX5B,
DDAH2, ELOVL5, FCGR3B, IL23R,
ITIH2, KIFC3, KLHDC8A, LOH12CR1,
MAP3K6, MGAT5, NCOR2, PLA2G3,
RARA, SCTR, STRA6, TCL1B, TMEM127,
TNFRSF12A, ZBTB20

Table 4.24: Subset of extracted genes, which are generally related to cancer, for
each investigated tumor dataset.
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Tumor Abbreviation Cancer related genes

BRCA A2M, ABCB1, ABCC1, ACOT7, ACOX2,
ADAMTS16, ADAMTS17, ADORA2A, AQP1,
CA12, CDCP1, CREB3L1, CRYAB, FGF1,
IL11RA, INHBA, ITIH5, KIF26B, LRRC3B,
MEG3, MUC1, PRKD1, SDPR

PRAD ADORA3, AKAP2, CA9, CNTN1,
COL4A6, DOCK2, FZD7, GATA3,
GJA1, IL1B, MCAM, MIR130B,
MIR301B, PDZD2, PYCARD, SND1

THCA NCOR2

Table 4.25: Subset of extracted genes, which are specifically related to the cancer
under study, for each investigated tumor dataset.

4.6 CamurWeb

Part of this section was published in [WDLC+18]

Implementation

This section introduces CamurWeb, the application designed and developed in
this work. CamurWeb is a web service that aims to make the CAMUR software
easily accessible and usable. CAMUR was developed in 2015 for the analysis
and classification of genomic data, in particular to classify RNA-seq experi-
ments and to extract an interesting body of rule-based classification models.
For the software and its algorithm the reader may refer to Section 4.3. CA-
MUR has two main innovative aspects with respect to many machine learning
algorithms: i) it derives many possible classification models and ii) it stores
them to allow further and deeper analyses.

CamurWeb is designed to support these two aspects, making easy to exploit
these two powerful functionalities even for a non specialized user. Before the
release of CamurWeb, in order to run CAMUR the following tasks had to be
performed by the user:

• install and configure a valid Java Virtual Machine [java];

• install and configure a MySQL database management system [mys];
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• download the CAMUR software package composed of the Multiple Solu-
tions Extractor (MSE) and the Multiple Solutions Analyzer (MSA);

• start the MSE via the command line with its parameters;

• wait for the execution to complete;

• start MSA via the command line, and save the results of CAMUR by
querying the interface.

These steps require time and effort and a good knowledge of computer usage.
Conversely, CamurWeb allows using CAMUR in a fast and an intuitive way
with a simple interface, directly through the browser without the need to in-
stall software or dealing with configurations. In the next paragraphs, we will
describe the application requirements, and then deepen the architecture and
its development.

CamurWeb portal. The CamurWeb portal supports three main tasks:

• it permits to freely access, query, and visualize the large knowledge base
of classification results (datasets, logic formulas, performance, and statis-
tics) obtained running CAMUR on all public available RNA sequencing
datasets of TCGA extracted from GDC;

• it enables the users to run the software online and to view the results of
their classification analyses;

• it allows to download the CAMUR software package.

Therefore, CamurWeb home page is composed of three main sections, as
depicted in Figure 4.6: in the first one the users can perform the classification
analyses, in the second one they can view the public analyses performed on the
cancer datasets extracted from TCGA, and in the third one they can download
the CAMUR software package. The main users of CamurWeb can be of two
types: the unregistered user, who can mainly access to the public results and
repository about cancer; the registered one, who can run the classification
software, save the performed analyses, and view her private as well as the
public results.
In particular, the unregistered user can (i) learn and deepen the CAMUR
classification tool: a section of the website is dedicated to briefly present the
software and the web platform, and redirects the user to the bibliographic and
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Figure 4.6: The homepage of CamurWeb.

web resources that deepen CAMUR; (ii) view the results of the classification
analyses performed on 21 cancer datasets extracted from the Genomic Data
Common (GDC) portal (detailed results of these analyses will be presented in
section Results and Discussion); (iii) ask for additional information or custom
solutions through a simple form; (iv) sign up to the system simply by specifying
an email and a password.
The registered user can perform all the previous operations and additionally has
the possibility to: (i) perform a classification analysis with CAMUR by using
a wizard, which allows to upload a dataset or choose from a set of existing
ones containing data extracted from the GDC portal, set the parameters, and
run the classification; (ii) view the classification results, i.e., the rule-based
classification formulas, charts, and tables; then the user can query the database
to see the results and export them; (iii) see a personal section with a report
of the analyses started on the system and with her profile information. In
order to run a classification task on a private dataset (see Figure 4.7) the user
must be registered. The system alerts the user with an e-mail at the end of
the execution. This is another strength of CamurWeb, because processing a
dataset with CAMUR can take few minutes to hours; so the user does not
have to wait for the end of the execution connected to the system or with
her computer turned on. The input file format of the CamurWeb classification
online procedure is a standard comma separated values (csv) text file containing
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Figure 4.7: The classification section of CamurWeb.

the data matrix of the RNA-seq experiments. For further details about the
input format, we point the reader to the user guide of CAMUR available at
http://dmb.iasi.cnr.it/camur.php. The results of the access to the knowledge
base, either the public or the private ones produced by running CAMUR, are
reported on a results page (see Figure 4.8). In this page CamurWeb shows:
(i) a table with information about the uploaded file and the experiment, in
particular the number of rows, which corresponds to the number of samples;
the number of columns, which corresponds to the number of features; the size
of the file; the time it took for the classification; the number of iterations chosen
for the classification, and the number of extracted rules; (ii) a pie chart with the
classes in the dataset with the percentage and number of samples; (iii) another
table with the list of features extracted by the classifier and their number
of occurrences; if the features are genes contained in the Ensembl database
[FAB+11], the link leads to the page at www.ensembl.org with a description of
the genes. Additionally, in the same page the user can perform the following
knowledge extraction queries:

1. Features List: extracts the list of genes and their occurrences in all the
classification models obtained in the considered analysis;

2. Literals and conjunctions list: identifies the conjunctions of the literals
present in the rules; for each one the number of correct and incorrect
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Figure 4.8: The results page of CamurWeb.

instances and their percentages are returned;

3. Rules list: extracts the literal disjunctions with their precision and accu-
racy;

4. Literals statistics: returns more detailed statistics on the extracted genes
and their thresholds;

5. Feature pairs: extracts the pairs of genes present in the same rule and
counts how many times they appear together.

The results of such queries can be visualized or downloaded.

Tools and technologies

This section briefly presents the technologies and tools used for the CamurWeb
application development.

CamurWeb is written in the Javascript programming language [javb], which
is suited not only for client-side applications but also for server-side ones. The
Node.js framework [nod] is adopted in this project. Node.js is a platform cre-
ated on the Javascript engine, which allows to create fast and scalable web
applications. The main features of Node.js are (i) an orientation towards the

107



4. Biological Knowledge Extraction

development of asynchronous code; (ii) a modular architecture; (iii) an opti-
mized transmission of information through the HTTP connection. In addition
to the APIs provided by Node.js, we use the Express.js library [exp], a Node.js
based framework that offers a robust set of functionalities to easily build single-
page, multi-page, and hybrid web applications. It is a mature framework that
offers several features including middleware, routing, the ability to manage
application configurations in an easy way, and a template engine. Moreover,
JQuery [jqu], a JavaScript library for web applications, is adopted in Camur-
Web. It is born with the goal of simplifying selection, manipulation, event
management, and animation in HTML pages. The jQuery library allows us to
simplify JavaScript by writing complex instructions in one line. Additionally,
the Bootstrap JavaScript library [boo] is used for the development of the web
interface. For managing the different executions of CAMUR, we adopt the
REmote DIctionary Server (REDIs) [red], which is one of the most popular
key-value databases. In CamurWeb, REDIs is used in Node.js for supporting
the development of execution queues. It is used to handle a queue for CAMUR
executions requested by the users. The maximum number of parallel execu-
tions of CAMUR is set in the application configuration file: a job being in
the queue only starts if the number of active runs of CAMUR is less than the
maximum number, otherwise the job is entered in the queue. Finally, Camur-
Web uses MySql [mys] as database management system in order to store the
users identification data and the results of their analyses. In particular, the
structure designed and used by CAMUR has been extended with new tables
for the purposes. The MySql library is integrated in Node.js.

Software architecture

CamurWeb follows the standard client-server model, i.e., the reference archi-
tecture for web applications [Han00]. In particular, CamurWeb uses is the
Model-View-Controller (MVC) architectural pattern that allows to decouple
the different components of the application to gain benefits in terms of reusabil-
ity and maintenance [BHS07]: Model contains data access methods; View takes
care of displaying data to the user and manages the interaction between the
user and the underlying infrastructure;

Controller receives user commands across View and reacts by performing
operations that may affect the Model and which generally lead to a View state
change. The software architecture of CamurWeb is shown in Figure 4.9 and
described in the following. The software is composed of four main components
and six other stand alone software modules.
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Figure 4.9: The software architecture of CamurWeb.

The Controllers component contains the routes of the application. Routes
play a primary role: their job is to translate the different request urls by
addressing the call to the correct function on the server.

The Views component contains the software modules that constitute the
web application interface described more in detail in subsection CamurWeb
portal.

The Models component contains the software modules that interact with
the database. All operations that need to retrieve data from the database,
insert, or update it, are handled by these modules.

The Helpers component contains support software modules for the web ap-
plication, e.g., the statistics functions, the send email facility, and the CAMUR
executor. Finally, six additional stand alone modules are part of the software
architecture: the node modules, which group the system libraries of Node.js;
the config module, which contains the configuration files of the software; the
CAMUR module, which contains the CAMUR software package; the public
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module, which contains useful files for the GUI; the file module, which man-
ages the storage of the users’ file and of the public datasets; and lastly the test
module, which manages the public analyses and the private ones performed by
the different users.

Analyzed data

In order to prove the validity of CamurWeb, we performed a classification anal-
ysis on all public available RNA sequencing datasets of The Cancer Genome
Atlas database extracted from the Genomic Data Commons portal. For each
dataset we obtain a large body of accurate classification models, which are com-
posed of rule-based classification formulas containing many genes and their as-
sociation to a particular cancer type. With these models we build a large knowl-
edge base about cancer focusing on the extracted genes. Interested researchers
and medical doctors can access these knowledge on our public section “See
cancer classification” available at http://bioinformatics.iasi.cnr.it/camurweb.
In the following, we describe the analyzed data and some of the obtained re-
sults.

The data selected for the analyses are extracted from the Genomic Data
Commons (GDC) portal through its APIs [gdc] (scripts to download ad process
data are available upon request).

In this study we focus on data of RNA-seq, which provides a comprehensive
view of the transcripts of a cell, can identify new transcripts, is able to monitor
splicing events, and permits to quantify gene expression. For this reason RNA-
seq is considered a valid tool for a deep understanding of tumor processes.
Therefore we select from the GDC portal all publicly available RNA-seq TCGA
data, which are composed of gene expression measures on 9030 diseased and
healthy tissues (92.6% and 7.4%, respectively). These data are obtained by
adopting the Illumina HiSeq 2000 RNA Sequencing Version 2 (RNA-seq V2)
platform [ill] and are collected in GDC by the Cancer Genomic Characterization
Center (CGCC) University of North Carolina. The public available tumors
are 30, each one consisting of a set of samples taken from healthy tissues or
diseased ones: healthy tissues are labeled in GDC with the term “normal” and
diseased ones with the term “tumoral”. For each tissue GDC provides 60,483
gene expression values expressed with the Fragments Per Kilobase per Million
mapped (FPKM) measure..

In order to be classified, the downloaded data are processed and transformed
into a matrix format. We build a matrix for each tumor containing the FPKM
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gene expression values: the rows correspond to the samples, which range from
45 for the CHOL tumor to 1222 for BRCA; the first column represents the
sample identifier; the central columns correspond to the 60,483 genes, whose
expression is measured and which are identified by their Ensembl ID [FAB+11];
the last column represents the class of the sample (normal or tumoral); the
element cij contains the FPKM value of the sample i measured on the gene j.
An example of data matrix is shown in Table 4.26. Scripts for the conversion
and assembly of the GDC data to a matrix format are available upon request.
The input of CamurWeb is am RNA-seq matrix encoded in a comma separated
values (csv) text file. In Table 4.27 we show the main characteristics of the

Aliquot
ENSG00000

130309.9

ENSG00000

101189.6
...

ENSG00000

260597.1
Class

TCGA-4G.. 0 9,7872338 .... 0,141 tumoral
TCGA-W5.. 0,0323 1,4725 ... 0,62107 normal

...... ..... ..... ..... ..... ....
TCGA-ZH.. 0,06223 8,7757 ..... 0,4818 tumoral

Table 4.26: An example of RNA-seq data matrix. Rows are indexed by the tissues,
columns by the genes (except the last one containing the class). Each element of the
matrix represents the FPKM gene expression value associated to the respective gene
and tissue.

obtained matrices. As the reader can see, RNA-seq experiments of cancers
ACC, DLBC, LAML, LGG, MESO, OV, TGCT, UCS, and UVM only include
samples of tumoral tissues. Therefore it is not possible to perform a supervised
classification analysis of such cancer datasets.

Classification analyses and creation of the knowledge base

We performed the classification analyses through the CamurWeb platform on
all datasets containing normal and tumoral tissues. The parameters of CA-
MUR have been set as follows: the execution mode to loose, the maximum
number of iterations to 100 and the minimum F-measure value to 0.8. The ex-
ecution mode indicates how CAMUR runs, the loose mode is slower than the
strict one, because computational complexity grows exponential to the number
of features. On the other hand the loose mode permits to extract more knowl-
edge with greater accuracy (F-measure). The maximum number of desired
iterations of CAMUR is set to 100; this means that CAMUR is going to per-
form 100 runs each one with several classification procedures. The minimum
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Cancer # of tissues # of tumoral # of normal % of tumoral File size (MB)
ACC 79 79 0 100 45,08
BLCA 433 414 19 95,61 250,69
BRCA 1222 1102 120 90,18 592,77
CESC 309 304 5 98,38 180,67
CHOL 45 36 9 80,00 26,49
COAD 521 478 43 91,75 293,15
DLBC 48 48 0 100 28,62
ESCA 173 161 12 93,06 117,00
GBM 174 156 18 89,66 107,08
HNSC 546 500 46 91,58 317,43
KICH 89 65 24 73,03 52,83
KIRC 611 538 73 88,05 372,75
KIRP 321 288 33 89,72 187,99
LAML 173 173 0 100 98,28
LGG 534 534 0 100 319,55
LIHC 424 371 53 87,50 233,13
LUAD 594 533 61 89,73 353,07
LUSC 551 502 49 91,11 333,09
MESO 86 86 0 100 50,96
OV 309 309 0 100 238,69

PAAD 182 177 5 97,25 108,34
PCPG 186 178 8 95,70 107,82
READ 177 166 11 93,79 100,34
SARC 265 259 6 97,74 152,34
STAD 407 375 32 92,14 268,86
TGCT 156 156 0 100 95,25
THYM 121 119 2 98,35 72,01
UCEC 587 551 36 93,87 336,61
UCS 56 56 0 100 34,28
UVM 80 80 0 100 43,96

Table 4.27: The considered data of The Cancer Genome Atlas extracted from the
Genomic Data Commons portal. The number of tissues, the ratio of tumoral and
normal ones, and the file size in MB is reported for each cancer dataset.

F-measure is the value below which the classification results are not considered.
CAMUR will stop after the maximum number of iterations has been reached
or if the F-measure of all current runs is below the given threshold. For further
details about the parameters setting, the reader may refer to [CFF+16]. The
classification analyses have been performed on an Intel i7 workstation with 24
GB of RAM and by using the CentOs 7 64bit linux operating system with
kernel 3.10.0-514.26.2.el7.x86 64. We executed 3 analyses concurrently. A to-
tal of 21 analysis tasks have been accomplished, resulting in more than 10,000
classification procedures.
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Table 4.28 shows the results in terms of running time, number of inferred
rules, and number of extracted genes (features). By comparing the results
reported in Table 4.28 with the characteristics of the datasets shown in Table
4.27, we can draw some considerations regarding the link between the number of
samples of the dataset and the execution time. The running time of CAMUR is
not directly proportional to the number of samples (the number of rows) of the
considered dataset. The number of samples actually affects only execution time
of a single iteration of the CAMUR classifier; what determines the total time of
the execution is the number of iterations. CAMUR continues its iterations since
one of the stopping criteria is verified: (i) the maximum number of iterations
imposed by the user is reached; (ii) the F-measure values are smaller than the
threshold set by the user; (iii) all possible combinations are eliminated from
the set of features.
The fastest analyses, where not all 100 iterations are executed, are CESC,

CHOL, KICH, KIRP, LUSC, READ, and THYM. In fact, in these analyses a
small number of rules are extracted and consequently a small set of relevant
genes is obtained. The cause can be a combination of the stopping criteria (ii)
and (iii): it is possible that the rules extracted after the first iterations do not
exceed the minimum value of F-Measure (0.8), and hence all their genes are
not considered. The consequence is that the set of genes does not increase and
the combinations to be eliminated from the original dataset quickly becomes
empty.

It is worth to note that for the BLCA, BRCA, GBM, HNSC, KIRK, LIHC,
LUAD, PCPG, SARC, STAD, UCEC tumors CAMUR extracted a high num-
ber of rules and many features (genes) that are potentially involved in the
tumoral processes. For the other tumors CAMUR extracted a smaller set of
genes that are related to the cancer under study.

As an example Figure 4.10 shows the results page of the classification anal-
ysis on the LUSC tumor. The reader can see that among the extracted features
the ADGRF5 gene with Ensembl ID ENSG00000069122.17 is the one that oc-
curs most in the classification rules. Previous studies have already shown that
mutations within this gene are possible causes of lung cancer (LUSC) [LSB16].
Similarly, many other genes extracted from the classification rules of LUSC are
listed in several publications that concern this tumor [UFH+15]. The CHOL
and KICH tumors are characterized by a small set of tissues (45 and 89) though
with a percentage of normal ones greater than others. The classification anal-
yses on these two tumors did not produce many rules, but for all the extracted
ones the F-Measure and the accuracy was 1, i.e., no classification errors oc-
curred.
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Cancer Execution time # of iterations # of rules # of genes

BLCA 4:36:52 100 334 164
BRCA 190:29:57 30 3015 1847
CESC 0:01:50 20 5 3
CHOL 0:00:13 47 3 2
COAD 1:48:12 100 90 32
ESCA 0:56:09 100 229 122
GBM 14:21:12 100 1487 832
HNSC 84:27:30 100 3201 1363
KICH 0:00:52 26 8 5
KIRC 6:36:45 100 470 183
KIRP 0:01:17 9 3 2
LIHC 24:08:10 100 1890 854
LUAD 12:06:36 100 775 298
LUSC 0:06:23 32 8 5
PAAD 0:29:37 100 132 71
PCPG 6:35:40 100 348 173
READ 0:01:11 23 6 5
SARC 7:42:24 100 358 164
STAD 2:04:16 100 416 243
THYM 0:00:19 14 3 3
UCEC 3:52:26 100 496 209

Table 4.28: Results of the classification analyses with CamurWeb. We report for
each considered cancer the execution time, the number of performed iterations, the
number of extracted rules and genes by CAMUR.

Figure 4.10: The results page of the classification analyses on the LUCS tumor.

Other examples and some considerations are reported in the following.
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Head and Neck squamous cell carcinoma (HNSC) HNSC is one of the
analyses with higher execution time, because the CAMUR software was able to
run 3201 classification procedures producing rules with accuracy values ranging
from 0.95 to 1 and extracting 1363 genes. In Table 4.29 we report the genes
that are most represented in the rules. We can see that the COLGALT1 gene
with Ensembl ID ENSG00000130309.9 is the one that appears in the largest
number of rules (1934 rules out of 3201). By examining more deeply the rules,
this gene has an FPKM value above 18.16 in all tumoral tissues. Similar obser-
vations can be made for the genes COL13A1 (ENSG00000197467.12), MRGBP
(ENSG00000101189.6), and following. Such examinations can be at a basis for

Gene Occurrences

ENSG00000130309.9 1934
ENSG00000197467.12 467
ENSG00000101189.6 354
ENSG00000260597.1 250
ENSG00000197766.6 218

... ...

Table 4.29: Most represented genes in the rules extracted from the HNSC tumor.

targeted research and studies about cancer. Another investigation can be made
with CamurWeb by studying pairs of genes that appear often together in the
classification rules. This information can be obtained from the CamurWeb
database with a simple query called “feature pairs”. We report part of the
results for the HNSC tumor in Table 4.30. As the reader can see, the genes
COLGALT1 (ENSG00000130309.9) and AC012531.25 (ENSG00000260597.1)
is the most frequent couple that appears in the rules occurring 250 times. In
particular, AC012531.25 is always extracted together with COLGALT1, be-
cause its number of occurrences as single gene is exactly 250. Even this inves-
tigation generates important results in helping to understand the genetics of
cancer.

Liver hepatocellular carcinoma (LIHC) For this tumor CAMUR has
identified 854 genes by running 1890 classification procedures. In this dataset
the percentage of normal tissues (12.5%) is higher than in other tumors. In Ta-
ble 4.31 we show the most represented genes that occur in the rules. It is worth
noting that the GABRD (ENSG00000187730.7) gene is the most represented
one, followed by the TOMM40L (ENSG00000158882.11) gene. Existing studies
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Gene 1 Gene 2 occurrences

ENSG00000260597.1 ENSG00000130309.9 250
ENSG00000130309.9 ENSG00000197766.6 203
ENSG00000256229.6 ENSG00000130309.9 167
ENSG00000164114.17 ENSG00000130309.9 165

... ... ...

Table 4.30: Pairs of genes that occur most in the classification rules related to the
HNSC tumor.

on the GABRD gene confirm that alterations in its expression can play a key
role in differentiating tumor cells. In particular, an abnormal regulation leads
to its overexpression that can cause the proliferation of tumor cells [GKI15].
Regarding the second gene, a study has been published that relates the alter-
ation of TOMM40L expression to the excess of smoke in humans [LVRF13]. In
this study, the authors relate the effect of smoke and the elevated expression of
TOMM40L by concentrating on neurodegenerative diseases such as Alzheimer’s
and Parkinson’s. The findings of CamurWeb can be objective of future studies
on this gene (and on other ones) that focus on cancer.

Gene occurrences

ENSG00000187730.7 413
ENSG00000158882.11 376
ENSG00000231856.2 295
ENSG00000164283.11 229

... ...

Table 4.31: Most represented genes in the rules extracted from the LIHC tumor.

Breast Invasive Carcinoma (BRCA) Analyses on the BRCA dataset are
particularly interesting for the large number of available tissues (1,222, 1,102
tumoral, and 120 normal). Breast cancer is the most common tumor in the
female population and represents 29% of all tumors affecting women. For
this reason it is deeply studied, and we can find in literature a lot of find-
ings about it. CAMUR executed 30 iterations on the BRCA dataset produc-
ing 3,015 rules and extracting 1,847 genes with a running time of 190 hours
and 29 minutes. In Table 4.32 we report the most frequent genes that are
present in the obtained classification rules. We highlight that previous research

116



Conclusions

confirms the relationship between the alteration of the expression of the first
three most occurring genes - SPRY2 (ENSG00000136158.9) [SIH+13], VEGFD
(ENSG00000165197.4) [NYT+03], and MMP11 (ENSG00000099953.8) [RCDV+14]
- and the predisposition to Breast Cancer.

Gene occurrences

ENSG00000136158.9 1078
ENSG00000165197.4 993
ENSG00000099953.8 725
ENSG00000157766.14 515

... ...

Table 4.32: Most frequent genes in the rules extracted from the BRCA tumor.

4.7 Conclusions

In this chapter we presented a methodology to efficiently extract a list of rel-
evant genes in NGS data of cancer exploiting consolidated machine learning
algorithms. We analyze these data by means of supervised classification al-
gorithms, extracting classification models, which are able to distinguish the
samples in two classes (tumoral and normal) and which are composed of fea-
tures that represent the genes related to the disease and the different NGS
experiment. In particular we proposed two methods for data pre-processing,
in order to extract different insights.

We proposed a method for the combination of two distinct NGS experi-
ments with different data schemas. The NGS experiments considered in this
study were DNA methylation and RNA sequencing and were extracted from
TCGA. We focused on three forms of tumors, i.e. BRCA, KIRP, and THCA.
We defined the data matrices, one for each NGS experiment, with samples in
the rows and genes in the columns, and a third matrix for representing the
combination of DNA methylation and RNA sequencing samples. In particular
the objective of the combination was the creation of data matrices indexed on
the genes that are related to both NGS experiments. In the RNA sequencing
matrices the items are the RNA-Seq by Expectation-Maximization (RSEM)
values that quantify the gene expression, whereas in DNA methylation matri-
ces we defined a new gene-wide measure based on the beta value, that we call
gene methylation quantity for denoting the quantity of methylation associates
to each gene. After the combination of RNA sequencing and DNA methylation,
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we proposed the application of supervised analyses. We were able to extract
many classification models containing the genes and their quantification values
by applying different supervised algorithms (decision trees, rule-based classi-
fiers, and multiple rule-based ones). The classifications were performed on all
matrices for each tumor, with the objective to obtain models to separate the
normal from the tumoral samples. All the classification models have an accu-
racy greater than 95%. In particular we obtained 9 decision trees with C4.5,
9 rule-based classification models with RIPPER, and 9 classification models
(each one composed of 30 decision trees) with Random Forest. Moreover,
thanks to the execution of more than 2000 classification procedures with CA-
MUR, we extracted 15.252 classification models, from which we derived 5413
genes related to DNA methylation and RNA sequencing. 509 genes are in com-
mon among the different experiments and 13 genes among the different tumors.
Through the NCBI Entrez gene database we performed functional analysis of
those genes. We found 279 out of 509 and 5 out of 13 of them already marked
as oncogenes. CAMUR was applied in order to extract possible oncogenes and
to find new ones. Many of the extracted genes have been already classified as
oncogenes,and this confirms that our method is able to identify relevant genes
and justifies further analyses. Indeed, we suggest as future direction a further
biological investigation of the classifications models and the extracted sets of
genes to confirm their relation with the considered tumors. As other future
work, we suggest the application of our method to other forms of tumors and,
we plan to define new gene wide measures on different NGS experiments (e.g.,
mutations, copy number variations, chip-sequencing) in order to consider the
combination of them for a comprehensive knowledge extraction.

We presented a second methodology which consider for each gene the beta
values of all its methylated sites aggregated in a matrix. This data repre-
sentation allowed us to create good performing classification models able to
discriminate tumoral and non tumoral samples and to select the best accurate
genes. To confirm our methodology, we applied our procedure to three different
types of cancers (breast, prostate, and thyroid carcinomas) obtaining promising
results. Finally, we executed an enrichment analysis in order to highlight the
genes related to the development of a particular tumor as a final validation of
our procedure. In this simple approach, each gene is considered independently
of the others and some genes that act simultaneously in the tumoral process
may be ignored by this approach. Therefore, in future we are going to improve
the method for considering many methylated sites of different genes simultane-
ously as in [CCW18]. As additional future directions, we suggest to extend the
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number of applied machine learning algorithms for retrieving a stricter list of
relevant genes thanks to the combination of their results. This will allow one
to drastically reduce the number of genes to guide a smarter design of future
experiments. To conclude, we propose to apply our procedure to many other
DNA methylation datasets related to different cancer types in order to extend
our analysis, further validate the methodology, and discover novel biological
insights in tumor studies.

Finally we proposed CamurWeb, a new web portal for classifying NGS data
of RNA sequencing and for sharing the obtained results. CamurWeb is a web
application based on NodeJs, ExpressJs, and MySQL, which makes use of the
CAMUR classification software. CAMUR is able to compute a large body of
knowledge by finding a high number of genes that are likely to be involved in
the processes that cause the formation of tumors. Conversely, state of the art
rule-based classifiers extract from a dataset a set of two or three rules that
describe it. However, this small set of rules may be insufficient to describe the
data in a comprehensive way and to extract sufficient knowledge from it.

In order to prove the validity of CamurWeb and to release a large knowl-
edge base of classification rules about cancer, we performed a wide supervised
analysis on gene expression data belonging to more than 9,000 patients and 21
different tumor types of The Cancer Genome Atlas extracted from the Genomic
Data Commons portal. The obtained results were evaluated in terms of perfor-
mance, execution times, and extracted features (genes related to a particular
type of tumor). Among those genes, we identified a part of them already linked
to the literature about cancer, confirming our classification procedure, and an-
other part that still has to be investigated; this could be the starting point
for new research studies. The identified genes can act as possible diagnostic
and prognostic markers or therapeutic targets. All the extracted knowledge,
the classification results, and the selected genes have been made public on the
CamurWeb platform and can be consulted or queried for further investigation
by biologists, medical doctors, and bioinformaticians in order to prove their
association to a particular cancer.

Topics of future work may concern both the extension of the performed
analyses and the development of new features for the CamurWeb application.
Regarding the analyses, we plan to (i) investigate the role of the extracted
genes for the different analyzed tumors and to compare them with existing
studies; (ii) perform a set theoretic analysis of the extracted logic formulas in
order to find common biomarkers among the studied cancers; (iii) repeat the
classification analyses with the same data, but using different parameters, and
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then compare the results both in terms of extracted features, execution time,
and accuracy of the rules; (vi) perform other classification analyses with new
data extracted from other gene expression databases (e.g., GEO [EDL02]) or
projects (e.g., TARGET); (v) increase the number of public analyses, using
other input or other classification parameters.

Regarding the CamurWeb platform we plan to: (i) design and develop
automatic procedures able to integrate, compare, and analyze the logic classi-
fication formulas stored in the database; (ii) add a feature that allows users to
share their own analyses; (iii) expand the user profile page by entering a field
that allows the user to add observations or personal considerations about the
analyses; (iv) increase the number of queries that can be made on the results
database produced by CAMUR.

To conclude, we wish to highlight that the CamurWeb software and the
published knowledge base are promising research tools for performing analyses
on new released data and for discovering novel insights about cancer.
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In this dissertation big biomedical data modeling, accessing and querying for
knowledge extraction with machine learning techniques have been investigated.
In particular, GDC, a large repository of genomic and clinical data about cancer
containing different formats and schemes has been standardized. Therefore a
framework able to automatically extract, extend, and convert all public clinical
and genomic data of the Genomic Data Commons, with the aim to standard-
ize data of different Next Generation Sequencing experiments (i.e. Somatic
Mutations, DNA methylation, Copy Number Variations, Gene-, Isoform-, and
miRNA- Expression Quantification) to the Browser Extensible Data (BED)
format. The framework is called OpenGDC, an open-source Java software able
to standardize public accessible GDC genomic and clinical data allowing re-
searchers to easily perform ad-hoc integrated genomic analyses. The OpenGDC
converted data are fully supported by bioinformatics frameworks like the Geno-
Metric Query Language (GMQL) system that exploits a SQL-like declarative
language to make integrative queries on heterogeneous genomic data; a valid
example about how our data standardization approach makes integrative anal-
yses easy to be performed by ad-hoc bioinformatics frameworks.

Additionally, in order to make easily accessible these data, a collection of
Application Programming Interfaces (APIs) have been provided and integrated
in a flexible framework that we called OpenOmics. In this framework a new
ontological software layer has been defined. It allows users to interact with ex-
perimental data and metadata without knowledge about their representation
schema. Domain-specific ontologies have been exploited in order to allow exe-
cuting taxonomy-based relaxed queries. In particular, the upward and down-
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ward query extension methods have been applied to obtain a finer or coarser
granularity of the requested information. Different use cases proved that a user
can perform a query specifying particular attributes related to metadata or ge-
nomic data, even if they are not available in the considered repository. Thus,
the requested data have been extracted through the use of domain-specific
ontologies of The Open Biological and Biomedical Ontology (OBO) Foundry
[SAR+07].

Finally knowledge extraction methods and different methodologies for the
integration and manipulation of NGS data of cancer in order to obtain sig-
nificant insights from them have been proposed. A first method provides the
combination of two different information at gene level: the RNA sequencing
gene expression values and the gene methylation quantity, a new measure de-
fined for representation tof he methylation quantity associated to a gene. The
integrated data have been analyzed through tree- and rule-based classification
algorithms (C4.5, Random Forest, RIPPER, and CAMUR) and 5000 classifi-
cation models (composed of gene sets) from the integrated experiments have
been obtained. These models consider both the gene measures related to RNA
sequencing and DNA methylation experiments, and allow to distinguish the
tumoral samples from the normal ones, with an average accuracy of 95%. An-
other method, is focused on the NGS experiment of DNA methylation, whose
data matrices are composed of hundred thousands of features (i.e., methylated
sites). A gene-oriented organization of data has been proposed, in particu-
lar this procedure divides the original data matrices into several sub-matrices,
each one containing the sites located within the same gene. Tumoral and nor-
mal samples have been successfully discriminated using function-, tree-, and
rule-based classifiers. From the obtained models the best performing genes
have been selected ranking them according to the accuracy of the classifiers.
Those genes can be further investigated by domain experts for proving their
relation to the cancers under study. In order to facilitate knowledge extrac-
tion a classification software (CamurWeb) has been implemented. It provide a
user-friendly interface for the execution of the CAMUR algorithm on a chosen
genomic data matrix, the resulting data models visualization, and additionally
a large knowledge base for gene expression data of cancer from GDC repository
is provided.

Future work concerns the definition of a framework that, starting from stan-
dardized data in OpenOmics, allows (i) the extraction of datasets of interest
by querying the data through the different access endpoints of the Openomics
APIs collection, (ii) the creation of integrated data structures derived from the
combination of different biological experiments, and finally (iii) the execution
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of machine learning algorithms for the interpretation of the integrated data.
Another future perspective of the dissertation is the application of the pre-
sented methodologies and software tools to new and different datasets in order
to foster additional knowledge about biological processes and about important
diseases for aiding medical diagnosis.
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Appendix A

Bioinformatics, genomics and

fundamentals of biological sciences

A.1 Human Genome

The human genome is in part composed of all the DNA contained in the cells’
nucleus and folded on itself to form the chromosomes. Each DNA molecule
is packaged in a separate chromosome and the total genetic information of an
organism is stored in the chromosomes and it constitutes its genome. The DNA,
deoxyribonucleic acid, makes up the main part of the genomes, which contain
the biologic information needed to build and maintain a living organism. The
DNA is made up of a nucleotide chain and every nucleotide is composed of a
sugar, a phosphate group and a nitrogenous base (A adenine, T thymine, G
guanine, C cytosine). The DNA has a is double helix shaped structure since it
is made up of two strand which weave together. Each single strand is the lateral
filament of the DNA molecule and it is put together by sugar-phosphate bonds,
while the double helix structure is stabilized by hydrogen bond between the
nitrogenous base (A, T, G, C) on the two strands, in particular the hydrogen
bonds are A-T, G-C. The genome of an organism characterize the species and
it includes both the genes, which are the coding part, and the non-coding
material. The human genome is made up of these elements:

– nuclear genome, a set of nucleotides grouped in 23 pairs of molecules
called chromosomes. In particular 22 autosomes, that are chromosomes
which do not contain genetic information related to the individual sexual
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characterization, plus two chromosomes that determine sex, the X and Y
chromosomes;

– mitochondrial genome, circular double helix shaped molecule. The mito-
chondrial DNA is inherited only by the mother while the nuclear DNA
comes from both parents.

The main goal of the genome is to express the biological information by means
of a process called genes expression. The gene expression allows the transfor-
mation of these biological information into proteins. Within the cellular genes
expression system, three main aspect can be detected and they represent the
fundamental direction of the information flow:

– the genetic information is stored in the DNA, which can be duplicated
to transmit the information;

– the DNA is transcribed into RNA in order to be expressed in the cell;

– the RNA is translated into proteins, which are the operative and final
form of the information contained in the genome.

A.2 Central Dogma

In the gene expression, the central dogma ([Sha01]) is a particular process
which determines that the information flow is unidirectional and it starts from
the DNA up to the proteins, without considering any inverse path. This means
that the protein does not contain any information to produce other proteins.
The main steps of the central dogma are:

1. Transcription: the first step of the process takes place in the nucleus and
produces the transcriptome, which represents the gene expression in the
messenger RNA (mRNA) of a whole organism or of a particular organ,
tissue or cell. Thus the transcriptome is the set of mRNAs produced
by a specific cell population. For each different cell type, around 10,000
different genes are expressed.

2. Translation: the second phase of the gene expression process takes plane
in the cytoplasm where the information contained in the genes is con-
verted into proteins. The final result is then the proteome, that is the
set al all the proteins expressed by the genome of a cell or tissue. Here-
inafter the main aspects of these phases are reported together with the
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description of some functions and the fundamentals characteristics of the
protagonists involved in the central dogma: the DNA, the RNA and the
proteins, which constitute essential elements of the living organisms.

A.3 DNA

During the transcription process only one strand of the double helix of the
DNA is transcripted. The strand which manage the synthesis thanks to the
complementary coupling of the bases is called template strand, while the other
strand, which has the same sequence of the mRNA with the substitution of
the thymine (T) with the uracil (U), is called coding strand. The nucleotides
sequencing of RNA is determined by the sequence of the nucleotides in the tem-
plate DNA, according to the following pairs, which will form a polynucleotide
strand complementary to the DNA: C-G, A-U, T-A.

A.4 RNA

RNA, ribonucleic acid, is composed of a nucleotide chain and it is common to
find it in nature as a single strand folded on itself. There are different kind of
RNA, each of them has a different task within the process of gene expression.

The messenger RNA (mRNA), it is the first product of the gene expression
process. It codes and transfer the informations from DNA in the nucleus to
the cytoplasm, where the protein synthesis takes place and where it undergoes
to the translation process. The short life of a mRNA molecule starts with the
transcription and ends with the degradation.

The functional RNA, transport RNA (tRNA) and ribosomal RNA (rRNA).
The tRNA is a molecule with a clover-shaped structure that allows to activate
the information translation mechanism, in the form of transcriptome, into pro-
teins.It acts as an adapter between the sequence of mRNA and the amino acid.
The tRNA has a bond site for the amino acid and a region with three bases
(nucleotides), called anticodon, which recognizes the corresponding three-base
codon mRNA through pairing complementary bases. Each specific tRNA an-
ticodon contains a (triplet) sequence which can match one or more codons for
the same amino acid. However the genetic code is redundant, and some amino
acids are correspondent to more codons of mRNA (hence more anticodons of
tRNA) This means that different codons can code for the same amino acid, or
that the pairing is accurate for the first two bases while for the third there can
be a tolerance to the “wrong” matches In fact, some anticodons can pair with
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more than one codon, thanks to the wavering of the bond between the anti-
codon and the codon; this phenomenon is called wobble pairing. The rRNA
is an essential component of ribosomes and it manages the translation that
occurs between mRNA and tRNA in order to create the amino acid chain.
The ribosome put itself together on the mRNA and it moves on it until it is
all read, recruiting the tRNA in the correct positions to create the different
peptide bonds between the amino acids; the ribosome catalyzes the binding
reaction between the amino acids and gradually releases the tRNAs until the
chain is created and released.

A.5 Protein

The proteins synthesis end with the formation of a polypeptide chain, which is
the primary structure of a protein. Proteins are made up of one or more long
amino acid chains of 20 different structures and they differ one from another
mainly because of their amino acid sequence. The amino acid sequence is
determined by the nucleotides sequence stored in the gene and it is commonly
translated into a protein folding in a tridimensional structure which determines
the protein task.

A.6 Genome sequence

The genome sequence is the sorted succession of the nitrogenous bases included
in the genome. In the genome of every organism the four nitrogenous bases
(Adenine, Thymine, Cytosine, Guanine) are organized in a a highly precise and
sorted scheme and are grouped in different combination to form the genes, the
basic units of genetic information. Every gene does not work independently,
but it depends on other elements for the replication and expression. Within
the genome sequence all the instructions needed to the development and the
operation of the organism are included. For this reason the knowledge of the
complete sequence is very important. Due to these consideration it is clear the
the sequencing of the human genome represent a fundamental issue (more than
three billion of nucleotide bases). It has been carried out by two independent
groups between the end of 80s and the beginning of 90s in the previous century.
However, even if almost 98% of the genomic sequence has been sequenced
thanks to the Human Genome Project, the global genome structure is not yet
completely clear. The genomic sequence, in fact, is not only made up of coding
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sequences, but also of regulatory sequences, repetitive sequences (called junk
DNA) and of introns, which often have unknown functions.

A.7 Epigenetics

The word “epigenetics” was introduced by the biologist Conrad Waddington
for the first time in 1942 in order to describe the inheritance of a particular
characteristic acquired within a population in response to an environmental
stimulus. The epigenetics is the study of the changes in gene expression (active
genes versus inactive ones). It studies the changes in the phenotype that are
not caused by change in the genotype. In fact the individuale genotype is given
by his genetic makeup, that is written in the DNA contained in the nucleus of
every cell and thus it is unchangeable. The phenotype instead is given by the
set of characters that the individual shows: it depends on his genotype, on the
genes interaction but also on external causes and thus it may vary. The so called
epigenetic changes can be inherited, then can be stable and can be transmitted
to the future generations, however the most relevant aspect is given by the
dynamisms of these changes that quickly vary in response to the environmental
stimulus. Almost every aspect of the cellular life is influenced by epigenetics
and this is why it is one of the most important field of modern biology. The
epigenetic changes of a cell tells the genes whether to be active or not and
their outline is given by the set of all the signals that the cell has received
during all its life and these signals act such as a kind of cellular memory. The
epigenetic changes record the cell experiences on the DNA, contributing to
regulate the genes expression. Generally the variations of the epigenetic state
of a cell (epigenome) allow us to adapt ourself to the changing of the world that
surround us. However in some case the epigenetic change may have damaging
effects on the cells and can cause serious diseases, like cancer.

A.8 Bioinformatics

Bioinformatics is a scientific branch which tries to face up to biological problem
related to a molecular level, in particular it elaborates the biological informa-
tion by means of computer science tools. Some kind of information which are
of interests in this field are reported in the following:

– the analysis of -ome data, such as genome, transcriptome, proteome,
metabolome, epigenome;
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– molecular interaction (systems biology);

– structural biology, which studies protein folding;

– chromatin conformation, molecular docking;

– imaging, which includes cells tracking under a microscope, automatic
diagnosis from histological images.

The genomic, which studies the genome of living beings, is the branch that
mainly bases its considerations on bioinformatics to elaboration and visualiza-
tion of the huge amount of data produced. In fact the the birth of bioinformat-
icsis related to the high amounts of significant data produced by biotechnology.
These data were no more analyzable only by hand and some automatic tools
were needed. At the beginning of the millennium, within the Human Genome
Project ([CMP03]), it was possible to sequence the human genome for the first
time and then to determine the sequence of pairs of nitrogenous bases, which
make up the DNA and also to identify and map genes of the human genome
(the expected data was about one hundred, and about 20-25 thousand have
been found). The sequencing of human genome has produced big amount of
biological data and the goal of bioinformatics is to manage, classify and analyze
them. As a matter of fact such a huge amount of information give rise to many
problems like storing, creating complex querying systems and analysis.
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