
1 
 

 

 

 

 

CORSO DI DOTTORATO DI RICERCA IN ELETTRONICA APPLICATA 

 

 

 

 

 

XXXII CICLO DEL CORSO DI DOTTORATO 
 

 

 

 

NEW INSTRUMENTAL APPROACHES FOR 

QUANTITATIVE ASSESSMENT OF BIOMECHANICAL 

RISK IN OCCUPATIONAL FIELD 
 

 

 

 

 

 

PhD Student: Tiwana Varrecchia 
 

 

 
Tutors: 

Prof.ssa Silvia Conforto 

Prof. Maurizio Schmid 

 

 

Coordinator: Prof. Enrico Silva 
                                     
 

  



2 
 

  



3 
 

ABSTRACT 
  

This PhD project deals with the study of new instrumental approaches for quantitative 

assessment of biomechanical risk in occupational field. 

Worker health is an issue of fundamental importance in the ergonomic field: it is a duty to 

protect and guarantee the health of workers, in particular those exposed to occupational risk 

factors. In this context, of particular interest are the work-related musculoskeletal disorders 

(WMSDs) which represent the most common disorder in the occupational field and the main cause 

of absence from work in the industrialized world. During my PhD work I focused on two main groups 

of WMSDs: work-related low-back disorders (WLBDs), mainly caused by manual lifting tasks, and 

work-related neck and upper limb disorders (WRNULDs), mainly caused by computer use and use 

of touch screen devices that require static neck and shoulder posture or forward head posture. 

Previously, in the attempt to reduce the risk of WMSDs several methods have been 

developed, accepted by the international literature and used in the workplace. Specifically, 

regarding WLBDs, the National Institute for Occupational Safety and Health (NIOSH) published the 

Revised NIOSH Lifting Equation (RNLE), an approach widely used throughout the world to assess 

two-handed manual lifting demands but cannot be used in all work conditions. Regarding WRNULDs, 

there are few quantitative studies for work activities associated with use of computer and touch 

screen devices. Indeed, the majority of studies is founded on the questionnaire to evaluate self-

reported pain, discomfort at the neck, at the shoulder and at the upper extremity and muscle fatigue 

due to the daily use of computer and touch screen devices.  

Therefore, the risk assessment methods currently used for WLBDs and WRNULDs have 

different limitations that inhibit their applicability to all work activities; hence the idea of using an 

instrumental and quantitative approach to evaluate the biomechanical risk in any work environment 
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improving the risk assessment, adapting it to all the work conditions and overcoming the limits of 

the current standardized methods. Particularly, it is useful to introduce quantitative indices related 

to biomechanical risk because when the risk factors are analysed by means of quantitative methods, 

the possibility of identifying the relationship between pathologies and risk increases significantly. 

Furthermore, thanks to the technological advances that have allowed the development of 

miniaturized and non-invasive devices, such as the sEMG and wearable sensors, it will be possible 

to provide a method of assessing the biomechanical commitment applicable directly in the field 

without interfering with the work activity. Indeed, these devices can be performed both in the 

laboratory and in the workplace allowing the estimation of biomechanical risk in real-time providing 

a direct feedback to the end-user who would be constantly monitored directly while at work. That 

quantitative approach could allow to prevent and reduce the onset of these disorders but also the 

reintegration of workers affected by these and other disorders. 

Therefore, I tried to introduce quantitative approaches to evaluate biomechanical risk of 

certain work activities estimating the biomechanical commitment required by these activities with 

a computerized multifactorial motion analysis system (kinematics, kinetics and surface 

electromyography) and with new methodologic approaches to analyse muscle activity of weak and 

noisy myoelectric signals. Thesis’ results show that these instrumental approaches could be used to 

classify the risk. Particularly, regarding WLBDs, this thesis dealt with biomechanical risk assessment 

during lifting tasks, showing that kinematic features (i.e. lifitng energy consumption or jerk) and 

time and frequency sEMG features (max, average rectified value, mean and median frequency) have 

been seen significantly change in relation to the risk levels during these activities and they also 

correlate with spinal load variables (force and moment) in the L5-S1 region. Furthermore, the 

erector spinae longissimus was identified as the most sensitive trunk muscle with respect to changes 

in the lifting conditions. Additionally, these kinematic and sEMG features have been used as input 
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variables of artificial neural networks for the prediction of WLBDs during lifting tasks. This approach 

has been proved to be able to improve the biomechanical risk estimation suggesting that an 

IMU/Inertial sensor or sEMG based lifting recognition tool using these features and designed 

according to the revised RNLE lends itself to the estimation of biomechanical risk. These 

instrumental methods could be integrated with methods already used for biomechanical risk 

assessment (i.e. NIOSH protocol) or used when the standardized methods cannot be used due to 

the equation and parameters restrictions.  

Moreover, my thesis’ work also dealt with weak and noisy signals allowing to quantify the 

muscle activity during some typical work activities that cause WRNULDs (i.e. use of computer and 

mobile touch screen devices by office workers). Indeed, the muscles involved in these work activities 

are often difficult to analyse being the signals produced by these muscles weak and noisy 

myoelectric signals which are characterized by low amplitudes, low firing rate, low number of 

recruited motor units and low signal to noise ratio. Two methods tested on synthetic and 

semisynthetic signals were developed so highlighting the possibility to identify the muscle activation 

also in these conditions evaluating biomechanically some work activities that aren’t evaluable with 

classical methods. 

Therefore, the use of new innovative technologies for biomechanical risk assessment is only 

at its initial stage, but this process seems to be unstoppable, as it is happening in all the other areas 

of medicine and beyond. Obviously, it will be necessary for any validation to follow evidence-based 

medicine/policy/legislation multistep scientific approaches by designing rigorous laboratory and 

epidemiologic studies, by replicating them by independent research groups and by systematically 

evaluating them through transparent review processes. I am however convinced that, even if such 

use should fail in ergonomic practice, the huge knowledge that will derive from its experimentation 
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will allow the optimization of the current standardized methods or the developments of the new 

ones. 
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CHAPTER I 

1. INTRODUCTION AND PURPOSE OF THE STUDY 
  

Worker health is an issue of fundamental importance in the ergonomic field: it is a duty to 

protect and guarantee the health of workers, in particular those exposed to occupational risk factors 

[1].  

In this context, of particular interest are the work-related musculoskeletal disorders 

(WMSDs) which represent the most common disorder in the occupational field and the main cause 

of absence from work in the industrialized world [2-4]. The two main groups of WMSDs are work-

related low-back disorders and upper limb disorders (WLBDs e UL-WMSDs). Studies on this topic [5] 

have shown that WLBDs are mainly caused by manual lifting tasks while UL-WMSDs are caused by 

repeated movements of the upper limbs. 

In recent years, among WMSDs, work-related neck and upper limb disorders (WRNULD) are 

increasingly common. Particularly, biomechanical, physiological and psychophysical evidences 

suggest that static neck and shoulder posture or forward head posture, such as that frequently 

assumed by office workers, as a possible risk factor in WRNULD [6]. These disorders are mainly 

caused by increasing computer use and use of touch screen devices which may be used in various 

non-traditional workstations and postures [7]. 

Previously, in the attempt to reduce the risk of WMSDs while handling materials, handling 

people in the healthcare sector or while maintaining fixed postures, several methods have been 

developed, accepted by the international literature and used in the workplace. 

Specifically, in an attempt to prevent and reduce the risk of WLBDs, a growing effort has 

been made over the past three decades to identify work associated with a high risk of low back 

disorders (LBD) and to evaluate the effectiveness of ergonomic interventions [2,4,8]. Particularly, 
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the National Institute for Occupational Safety and Health (NIOSH) published the Revised NIOSH 

Lifting Equation (RNLE), a pioneering and noteworthy approach widely used throughout the world 

by safety and health practitioners to assess two-handed manual lifting demands [5,8-9]. This 

approach is also suggested by the International Standard ISO 11228-1 and part of the technical 

report 12-295 [10].  

To reduce the risk of UL-WMSDs, different methods have been developed to identify high-

risk jobs of UL-WMSDs. The International Standard ISO 11228-3 and part of the technical report 12-

295 suggest, among other methods, the use of the OCRA checklist [11] to assign a level of risk to the 

performed task.  

As regard WRNULD, there are few studies quantifying the musculoskeletal exposures 

through mathematical model or laboratory measurements [7]. Indeed, the majority of studies is 

founded on the questionnaire to evaluate self-reported pain, discomfort at the neck, at the shoulder 

and at the upper extremity and muscle fatigue due to the daily use of computer and touch screen 

devices [7]. There aren’t quantitative approaches for reduce or prevent WRNULD caused by work 

activities associated with use of computer and touch screen devices because the muscles involved 

in these work activities are often difficult to analyze. Indeed, the involved muscles produce weak 

and noisy myoelectric signals that are characterized by amplitudes lower than 5% of the Maximal 

Voluntary Contraction (MVC), and they are generally associated with a low firing rate (i.e. 8-12 

pulses per second, pps), a low number of recruited motor units (i.e. 50-100 MU)). 

The risk assessment methods currently used for UL-WMSDs or WLBDs have different 

limitations that inhibit their applicability to all work activities [12-18]; hence the idea of using an 

instrumental and quantitative approach to evaluate the biomechanical risk in any work 

environment. Particularly, it is useful to introduce quantitative indices related to biomechanical risk 

because when the risk factors are analyzed by means of quantitative methods, the possibility of 
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identifying the relationship between pathologies and risk increases significantly [10]. Furthermore, 

thanks to the technological advances that have allowed the development of miniaturized and non-

invasive devices, such as the sEMG and wearable sensors, it will be possible to provide a method of 

assessing the biomechanical commitment applicable directly in the field without interfering with 

the work activity. In particular, sEMG is widely used in ergonomics, because it can be performed 

both in the laboratory and in the workplace [19], but inertial sensors in recent years are also finding 

different applications in this field [20-21]. 

This approach could allow to prevent and reduce the onset of these disorders but also the 

reintegration of workers affected by these and other disorders. 

Therefore, the aim of this research project is to introduce quantitative approaches to evaluate 

biomechanical risk of certain work activities estimating the biomechanical commitment required by 

these activities with a computerized multifactorial motion analysis system (kinematics, kinetics and 

surface electromyography) and with new methodologic approaches to analyze muscle activity of 

weak and noisy myoelectric signals. 

 

Thesis outline 

Chapter II: describes the work-related musculoskeletal disorders and the both the traditional and 

new instrumental methods used for risk assessment.  

Chapter III: describes studies based on kinematic, kinetic data and neural networks for risk 

assessment during lifting activities. 

Chapter IV: describes studies based on sEMG features and neural networks for risk assessment 

during lifting activities. 

Chapter V: describes the assessment of fatiguing lifting activities using inertial measurement units, 

bipolar and high-density sEMG in both healty subjects and people with low back pain. 
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Chapter VI: describes biomechanical assessment in works associated to WRNULD. 

Chapter VII: methodological aproches for the detection of muscular activity for signals characterized 

by low amplitude and low signal-to-noise ratio – weak and noisy – that is a challenge in biomedical 

data processing.  

Chapter VIII: general conclusions of this PhD work.  
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CHAPTER II 

2. WORK RELATED MUSCULOSKELETAL DISORDERS 
AND RISK ASSESSMENT 
 

Musculoskeletal disorders (MSDs) include a wide range of inflammatory and degenerative 

conditions affecting the muscles, tendons, ligaments, joints, peripheral nerves, cartilages and spinal 

discs. Body regions most commonly involved are the low back, neck, shoulder, forearm and hand. 

MSDs have multiple risk factors, both non-occupational and occupational [1]. In this first chapter 

the causes and incidence of work-related musculoskeletal disorders (WMSDs) are described to give 

a detailed explanation of this problem that cause suffering and disability among workers. We 

focused our attention on work-related low back disordes (WLBDs) and work-related neck and upper 

limb disorders (WRNULD).  

Particularly, as regards WLBDs, a revision of the state of art is done to understand the 

limitations of methods used to identify high risk jobs and to propose a new instrumental approach 

designed to prevent and therefore cut down the injury phenomenon (see 1.1). 

As regard WRNULD, we analyse the exponential growth of the use of mobile handheld devices, 

including touchscreen smartphone, tablet and keypad phones [2]. Particularly, I highlighted the 

presence of few quantitative studies regarding the relashionship between WRNULD and work 

activities associated with use of computer and touch screen devices, introducing the possibility to 

study, with specific methods, the weak and noisy myoelectric signals of the muscles involved in 

these work activities (see 1.2). 

Furthermore, the necessity to introduce instrumental approacches to evaluate biomechanical risks 

related to these work activities must be underlined (see 1.3).  
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2.1 WORK-RELATED LOW BACK DISORDES (WLBDs): LIFTING ACTIVITY 

2.1.1 Epidemiology 

According to the National Institute for Occupational Satefy and Health (NIOSH), several 

epidemiological studies have demonstrated evidence of a cause between physical exertion at work 

and WMSDs. They are the reason of an impaired work capacity and are defined as multi-factorial 

disorders among workers [1].  

Since WMSDs are growing and the burden is likely to become an even more serious threat to 

occupational health, there has been an increasing effort in recent years to investigate the causes of 

WMSDs and to take action to prevent them. Furthermore, WMSDs, as well as being a personal 

problem leading to long and serious disability that have substantial impact on quality of life, are also 

considered a social issue because of their high incidence, in terms of cost, on the national health 

system and on the employment sphere, i.e. lost of productivity, sickness absence and job loss [3-6]. 

Annual incidence of WMSDs accounts for a third of all occupational disorders estimated in the USA, 

the Nordic countries and Japan, and for 23% in the European Union [7-8]. The cost of WMSDs was 

estimated to be 17 billion pounds in 2009 in the UK, 38 billion euros in 2002 in Germany, 26 billion 

Canadian dollars in 1998 in Canada and 215 billion dollars in the USA [9]. In Italy, WMSDs are the 

most frequent disorders, with almost 31.000 complaints being made in 2011. Their overall 

percentage is rising, with a steady increase from 40% in 2007 to 66% in 2011 [10]. Furthermore, 

several studies indicated gender differences in the prevalence of WMSD with higher risk of 

developing these disorders for the women than their male counterparts [11-14]. The women and 

men differ in terms of the types of injuries they experience, their symptoms, or level of disability in 

relation to WMSDs [12, 15,16] due to physiological differences in the gener i.e. in relation to 



22 
 

perception of pain [17], fatigability [18], tendon properties [19], hormonal differences (Sullivan), 

anthropometry and muscular entities [20].  

WMSDs include work-related low back disorders (WLBDs), which are mainly caused by manual lifting 

tasks and are the most common and costly musculoskeletal problem [21]. WLBDs and injuries 

attributed to manual lifting activities continue as one of the leading occupational health and satefy 

issues facing preventive medicine [5].  WLBDs can occur when spinal load exceeds tissue tolerance 

[22]. National standards advising against spinal compression in excess of 6400 N [23]. One of the 

mechanisms increasing the spinal load is the simultaneous activation (co-activation) of many of the 

main muscle groups of the trunk during dynamic liftings [24]. 

WLBDs also can occur by direct trauma, a single exertion (‘overexertion’) or potentially as the result 

of multiple exertions. Several other work-related factors including pushing or pulling activities, 

repetitive tasks, excessive force, awkward and/or sustained postures, prolonged sitting and 

standing extreme postures, and whole-body vibrations are also associated with development of 

WLBDs and impairment. Finally, scientific literature highlights that work-related psychological stress 

and lifestyle factors also may increase the risk of WLBP and the subsequent risk of prolonged 

impairment or disability [6]. Psychosocial factors, appropriate medical treatment, and job demands 

may be particularly important in influencing the transition of acute low back pain to chronic 

disabling pain [5].  

WLBDs account for almost 20% of all workplace injuries and illness, for almost 25% of workers’ 

yearly compensation expenses and for almost 25% of all lost work days, with a yearly prevalence of 

about 18% [25, 26]. In Italy, over 11,000 out of 31,000 complaints related to all WMSDs involve 

WLBDs, with a threefold increase being recorded over a 5-year observation period [10]. In Italy, 

diseases of the intervertebral discs show an incidence grewing systematically going through, year 

after year, from almost 11% in 2007 (over 3 thousand complaints on total of almost 28 thousand) 
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to 24% in 2011 (over 11 thousand complaints on total of almost 46 thousand) [10]. In particular, the 

proportion of the population exposed to ergonomic risk factors for WLBDs is 87% according to the 

Global Burden of Disease 2016 [27].  

 

2.1.2 State of the art 

To reduce the risk of WLBDs while lifting materials, several methods have been developed in field 

of surveillance studies to identify high-risk jobs that will probably be associated with an elevated 

risk of LBD and to evaluate the effectiveness of potential ergonomic interventions. 

Among the methods used by safety and health practitioners to asses two-handed manual lifting 

demands, the Revised National Institute for Occupational Safety and Health (NIOSH) Lifting Equation 

(RNLE) [5-6] is widely used in overall the world to prevent or reduce the occurrence of lifting-related 

LBD because it provided an empirical method for computing a weight limit for manual lifting.  

Historically, the National Institute for Occupational Safety and Health (NIOSH) has recognized the 

problem of work-related back injuries and published the Work Practices Guide for Manual Lifting 

(WPG) in 1981. The NIOSH WPG contained: i) a summary of the lifting-related literature before 1981; 

ii) analytical procedures and a lifting equation for calculating a recommended weight for specified 

two-handed, symmetrical lifting tasks; iii) an approach for controlling the hazards of low back injury 

from manual lifting [28]. 

The pioneering original 1981 equation, developed to assist safety and health practitioners in 

evaluating lifting demands in the sagittal plane [29], could only be applied to a limited number of 

lifting tasks, namely sagittal lifting tasks. So, it was revised and expanded in 1991 to be applied to a 

larger percentage of lifting tasks.  

In 1985, NIOSH convened an ad hoc committee of experts who reviewed the current literature on 

lifting, including the NIOSH WPG.  The ad hoc committee recommended criteria for defining the 
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lifting capacity of healthy workers and they used the criteria to formulate the revised lifting 

equation. 

The 1991 lifting equation (for this thesis, the revised 1991 NIOSH lifting equation will be identified 

simply as ‘the revised NIOSH lifting equation, (RNLE)) reflects new findings, provides methods for 

evaluating asymmetrical lifting tasks, objects with less than optimal hand-container couplings, and 

offers new procedures for evaluating a larger range of work durations and lifting frequencies than 

the earlier equation [6]. 

The objective of RNLE is to prevent or reduce the occurrence of lifting-related back injuries among 

workers and to reduce other musculoskeletal disorders associated with some lifting tasks such as 

shoulder or arm pain [5-6]. 

RNLE is based on three criteria (biomechanical, physiological, and psychophysical) derived from the 

scientific literature and combined judgment of experts from the fields of biomechanics, 

psychophysics, and work physiology [5-6]. 

 
In general, the criteria chosen by the NIOSH ad hoc committees were used as a basis to develop an 

equation for determining a recommended weight limit for a specific task. The recommended weight 

limit for a task represents a load value that nearly all healthy workers can lift over a substantial 

period of time without an increased risk of developing lifting-related LBP. Several criteria were used 

to develop the equation because each lifting task imposes different biomechanical and physiological 

requirements on the worker. As a result, the limiting factor or criteria in each lifting task may vary. 

The concept behind the RNLE is to start with a recommended weight that is considered safe for an 

‘ideal’ lift and then reduce the weight as the task becomes more stressful. RNLE predicts a 

Recommended Weight Limit (RWL) defined, for a specific set of task conditions, as the weight of the 

load that nearly all healthy workers (workers who are free of adverse health conditions that would 
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increase their risk of musculoskeletal injury) could perform over a substantial period of time without 

an increased risk of developing lifting-related low back pain (LBP) [28]. 

The RWL compared to the weight of lift in the task of interest, yields a lifting index (LI). RWL is an 

equation in which a constant load is mediated (reduced) by several multipliers based on measured 

parameters (See Appendix A):  

𝑅𝑊𝐿 = 𝐿𝐶𝑥𝐻𝑀𝑥𝑉𝑀𝑥𝐷𝑀𝑥𝐴𝑀𝑥𝐹𝑀𝑥𝐶𝑀 

 

The measured parameters (Figure 2.1) that define the level of physical stress associated with specific 

characteristic of a lifting task are: 

• Horizontal Location (H): is measured from the mid-point of the line joining the inner ankle 

bones to a point projected on the floor directly below the mid-point of the hand grasps;  

• Vertical Location (V): is the distance of the hands above the floor; 

• Vertical Travel Distance (D): is the absolute value of the difference between the vertical 

heights at the destination and origin of the lift; 

• Asymmetry Angle (A): is defined by the location of the load relative to the worker’s mid-

sagittal plane;  

• Lifting frequency (F): refers to the average number of lifts made per minute, as measured 

over a 15-minute period; 

• Coupling quality: classifies the quality of the hand-to-object coupling [5-6]. 

 

The RWL is the principal product of the RNLE. The RWL is defined for a specific set of task conditions 

as the weight of the load that nearly all healthy workers could perform over a substantial period of 

time (e.g., up to 8 hours) without an increased risk of developing lifting-related LBP. By healthy 
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workers, we mean workers who are free of adverse health conditions that would increase their risk 

of musculoskeletal injury [5]. 

The LI is an index that provides a relative estimate of the level of physical stress associated with a 

particular manual lifting task. The estimate of the level of physical stress is defined by the 

relationship of the actual weight of the load lifted (L) and the recommended weight limit [5]. 

 

Figure 2.1. Graphic Representation of NIOSH Parameters. 

LI is calculated dividing the actual object load lifted by the RWL: 

LI =
Load Weight

Recommended Weight Limit
=

L

RWL
 

 

The aim of the RNLE approach is to design tasks such that the LI is less than 1.0. In fact, LI values 

greater than 1.0 but lower than 3.0 are assumed to represent tasks posing risk for some fraction of 

the worker population while LI values greater than 3.0 are referred to highly stressful lifting tasks 

implying an elevated risk of work-related injury for many workers (Table 2.1).  
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Table 2.1. Interpretation of Lifting Index values (ISO/TR 12295 2014). 

The legislation deals with the activity of manual handling of loads. In decree 81/08 the norms of 

Title VI shall apply to work activities of manual handling of loads involving risks to workers of 

biomechanical overload disorders, especially back injury. In this title there are two important 

definitions: 

• manual handling operations: transporting or supporting of a load, by one or more workers, 

including lifting, putting down, pushing, pulling, carrying or move a load, which, for their 

characteristics or as a result of unfavorable ergonomic conditions, involve risks of biomechanical 

overload disorders, particularly of back injury; 

• biomechanical overload disorders: disorders of the musculoskeletal structures, muscle-tendon 

and nerve vascular.  

2.1.3 Niosh: RNLE strengths and restrictions 
 

The LI has been shown to be a valid indicator of the risk of WLBDs for manual lifting [20]. In 

particular, its strength lies in the fact that the risk of WLBDs increases significantly as the LI increase 

from 1.0 to 3.0 with a statistically significant odd ratio (OR) occurring when 1 < LI ≤ 2 and when 2 < 

LI ≤ 3 [30-31]. 

The RNLE does, however, also have some weaknesses [32] that have been clearly summarized in a 

paper by Dempsey [33]. These include the fact that the parameters and equation upon which the 

Lifting Index 

Value 
Exposure level 

LI≤1 Acceptable 

1<LI≤2 Moderate level of risk 

2<LI≤3 High level of risk 

LI>3 Very high level of risk 
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RNLE is based restrict its usability. Indeed, the value ranges of some of the RNLE parameters are so 

stringent as to exclude many existing manual lifting tasks [34-37], with approximately 35% of the 

lifting tasks having at least one parameter outside the accepted ranges [33]. Moreover, the equation 

should not be applied to a number of conditions [5], including lifting: with one hand, for over eight 

hours, while seated or kneeling, in a restricted work space, unstable objects, with high speed 

motion, while carrying, pushing, or pulling, with wheelbarrows or shovels, with an unreasonable 

foot-floor coupling, and in unfavorable environments (i.e. temperature out of the range 19-26° C). 

Approximately 63% of workers perform lifting tasks that are in contrast with the assumptions made 

when the RNLE was developed. Some of the aforementioned issues are partially, though never 

exhaustively, addressed in the Technical Report TR 12295 [38]. Other critical aspects are the 

misidentification of jobs [31-32] and the accuracy of the RNLE [28, 32]. 

 

2.1.4 From semi-quantitative to quantitative approach 

To overcome these restrictions that reduced the applicability of the NIOSH Lifting Equation, comes 

the need to move from a this semi-quantitative to a quantitative approach.  

The developing of an instrumental-based tool built on data acquired in perfectly controlled lifting 

conditions could be helpful in expanding the knowledge that is the basis and directly supports the 

NIOSH methods. Indeed, when the risk factors are analyzed by the use of quantitative 

methodologies for exposure assessment, the ability to identify relationship between LBD and risk 

occurrence increases significantly [33]. Given today’s technologic advances, it is now possible to 

describe exposure to physical risk factors with a degree of accuracy that has not been previously 

available [32]. The development of a kinematic and surface electromiographic (sEMG)-based tool 

built on data acquired in perfectly controlled lifting conditions (from LI=0.5 to LI=3) could increase 

the chances to well identify any significant relationship with LBD. Parameters extracted from sEMG, 
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acquired during the execution of LI=1 and LI=3 lifting tasks, could be used as reference indexes in 

identifying the risk of the lifting task. Moreover, these sEMG indices, if well parameterized on sex, 

age, work experience, lifting type (lifting and lowering), speed, one hand-jobs, lifting while seated 

or kneeling, lifting in a restricted work space, lifting unstable objects, lifting while carrying, pushing 

or pulling, lifting with wheelbarrows or shovels, lifting with unreasonable foot-floor coupling, lifting 

in an unfavorable environment, could be used in a larger number of lifting tasks. sEMG is capable of 

quantify muscular involvement caused by lifting tasks and could be helpful in expanding the 

knowledge about NIOSH methods. sEMG [39-40], relevant in ergonomics because it can be used 

both in the laboratory and at a workplace in the field [41-43], is one of the most important objective 

and non-invasive approaches offering direct information on muscle involvement. 

Furthermore, the possibility to use these technologies connected to electronic smart devices 

(smartphones, phablets, tablets and smartwatches) via wireless protocols such as Wi-Fi and 

Bluetooth, would allow a simplified analysis in the worker-centered environments and distributed 

computing environments. 

 

2.2 WORK-RELATED NECK AND UPPER LIMB DISORDERS (WRNULD): WEAK AND NOISY 
MYOELECTRIC SIGNALS  
 

In the last twenty years the use of mobile handheld devices, including touchscreen smartphone, 

tablet and keypad phones, has grown exponentially, for both adolescents and adults. Recent surveys 

have shown that the users spend approximately more than three hours daily [2] on their mobile 

device to text, read e-mail, surf the internet and game (excluding voice activities). These data are 

expected to continue to increase in the next years showing an important social change: due to their 

portability and simplicity of use, these devices are recently introduced in education, in healthcare 

and also in various working environments. 
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The effect of an intensive and daily use of mobile hand-held devices – smartphones and tablets, in 

particular – on one’s health is still a matter of research: while several reviews [44-45] have deeply 

investigated the association between electromagnetics field exposure and some non-specific 

symptoms such as fatigue, sleep disturbance, headache and earache, few studies have targeted the 

relationship between the daily use of smartphones and modifications to motor outcomes (such as 

alterations of gait patterns while walking [46]); in particular, posture taken when using touch-screen 

devices has been investigated together with the potential associated risks to develop 

musculoskeletal complaints and disorders [47-48]. Moreover, since children extensively use digital 

devices, the topic regarding possible alterations to the development of motor and stance control 

mechanisms [49-51] is worth being investigated. 

Most studies in this research area make use of questionnaires to evaluate self-reported pain, 

discomfort at the neck, at the shoulder and at the upper extremity and muscle fatigue. Among these, 

Berolo et al. [2] used a questionnaire to collect some self-reported measures of smartphone use and 

symptoms of pain on a population of university students and observed a relationship between the 

use of a mobile device and some symptoms of the upper extremity and neck. Hakala et al. [52] found 

that the use of the smartphone for more than five hours daily was associated with neck-shoulders 

pain, while the effect of sustained static postures and repetitive movements of the finger has been 

investigated by Barr et al. [53]. Xie and colleagues [54] showed that the participants to their study 

felt a neck discomfort after using a smartphone for more than ten minutes when they were sitting.  

While several studies have been based on kinematic analysis of some tasks to deal with a functional 

assessment (see for example [55]), the musculoskeletal exposure of head and trunk districts has 

been rarely studied through mathematical models or laboratory measurements (e.g. motion 

analysis systems, electro-goniometers): Hansraj [56] developed a mathematical model to simulate 

the effect of the neck tilt on the cervical spine, and showed that the equivalent weight suffered by 
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the spine depends on the neck angle, so becoming a potential cause of cervical pathology. Lee et al. 

[57], evaluated head flexion during common smartphone tasks showing that the messaging 

produced the highest effect on the neck tilt. Guan et al. [58] investigated gender differences in the 

cervical posture when using mobile phone. Ning et al. [59] explored the kinematics of the cervical 

spine while typing and showed a high level of risk to develop neck pain. Other experimental studies 

have also shown the postural difference between natural standing and the posture assumed while 

focussing upon the smartphone.  Only one study analysed head flexion while using a smartphone in 

sitting compared to standing [60] and indecisive results have been found about the effect of the 

task on the neck and trunk posture.   

The limited evidence regarding the relationship between mobile handheld device and 

musculoskeletal symptoms and exposures, due to few studies, does not permit the development of 

clinical management and ergonomics guidelines to facilitate prevention strategies.  

When studying how reducing or preventing WRNULD caused by work activities associated 

with use of computer and touch screen devices, quantitative approaches based on sEMG activity 

could be usefull but they are missing expecially because the muscles involved in these work activities 

are often difficult to analyze. Indeed, the involved muscles produce weak and noisy myoelectric 

signals. These signals are characterized by a low activity level due to low firing rate, low number of 

motor units recruited, low activation threshold and very low signal-noise ratio (SNR) [61]. In this 

context, in this thesis I focused my attention on these signals trying to introduce some 

methodological approaches that can allow to analyze the muscles involved in these work activities. 

 

 

2.3 QUANTITATIVE APPROCHES FOR BIOMECHANICAL RISK ASSESSMENT 
 

As highlighted in the work “Wearable Monitoring Devices for Biomechanical Risk Assessment 

at Work: Current Status and Future Challenges-A Systematic Review.” (Ranavolo A, Draicchio F, 
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Varrecchia T, et al. 2018.) pubblished on International Journal of Environmental Research and Public 

Health, in recent years, wearable sensors have been used for quantitative instrumental-based 

biomechanical risk assessments in the prevention of work-related musculoskeletal disorders 

(WMSDs). The past approaches have without doubt facilitated prevention activities during the last 

decades by improving occupational health and safety of people at work but, on the other hand, 

need a significant update based on two main aspects. First, the standardized methods commonly 

used for biomechanical risk assessment are still mainly based on observational and subjective 

approaches [62-65] and don’t include instrumentation-based tools. Second, the recent widespread 

use of robots, automation and mechanization in industry for the reduction of the physical effort has 

modified manual handling work activities. One of the key technologies driving this epochal change, 

the human-robot collaboration (HRC) technology [66-67], is invading several areas of the industry 

and small-medium enterprises. The nascent nature of HRC in the workplace conceives the safe 

coexistence and interaction of workers and robots within the same environment allowing a 

significant transformation of the current static automation paradigms into adaptive, flexible and 

reconfigurable ones. In particular, the presence of the most advanced remotely controlled robot, 

occupational collaborative robots [68] and wearable trunk and upper-limb exoskeletons [69-72] will 

assist more and more workers in performing their tasks reducing their exposure to the associated 

physical demands. 

In view of this new workplace setup there are some questions to ask: are the standardized 

biomechanical risk assessment methods able to take into account all these new factors? Are the most 

recent electronic wearable technologies used for biomechanical risk assessment? And again, can they 

be considered the answer to the aforementioned advanced “Industry 4.0” manufacturing solutions? 

The authors of this review propose that while advances in wearable wireless sensor networking and 

ubiquitous computing have paved the way for new possibilities in sport performance measures [73-
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75] and clinical applications [76-78], today their potential for biomechanical risk assessment is still 

largely underexploited and the state of the art lags dramatically behind the expectations. The 

hypothesis underlying in this chapter is that the most innovative wearable technologies and electronic 

smart devices such as smartphones and tablets may improve the biomechanical risk assessment by 

adapting it to all the work conditions and overcoming the limits of the current standardized methods. 

For instance, intelligent work environments [79] may represent the new scenario in which smart 

wearable sensors with computational capabilities and network connection are sensitive, responsive, 

adaptive and transparent [80] to workers’ movements allowing online, real-time monitoring of work 

activities. 

Thus, these devices, without interfering with the typical movements performed by workers 

at the workplace thanks to the miniaturization process and wireless protocols, would allow the 

estimation of biomechanical risk in real-time providing a direct feedback to the end-user who 

would be constantly monitored directly at work. In this way, the workers could modify their 

movements during the execution of work tasks thereby reducing and preventing their exposure 

to the risk of WMSDs. 

To shed light on this issue, the aim of this chapter was, through a literature research, to describe 

recent implementations of wearable sensors for quantitative instrumental-based biomechanical risk 

assessments in the prevention of WMSDs. To do this, we have provided: an explanation of how 

wearable sensors work and measurements are performed, with particular attention to inertial 

measurement units (IMUs), hand-held dynamometers and grip force devices, and surface 

electromyography (sEMG) sensors (see 1.3.1); a description of quantitative instrumental-based 

biomechanical risk assessment methods, which have proved themselves significant for physicians, 

ergonomists and researchers. These proposed tools have been analyzed for: (i) direct instrumental 

evaluations [81-83] providing real-time measures of risk of exposure, requiring simple hardware 
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setup and allowing easy analysis and interpretation of data by workers (see 1.3.2); (ii) rating 

standard methods for biomechanical risk assessment (see 1.3.3). 

2.3.1 IMUs, Hand-Held Dynamometers and Grip Force Devices, sEMG Sensors: How They Are Made 
and Measure 
 

Movement analysis systems allow the quantification of motor functions, motor abilities, 

pathological conditions, compensatory motor strategies and improvements due to rehabilitation 

treatments and ergonomic interventions. However, these systems can be easily used only within 

the laboratory and more difficult in the field. This difficulty has led to the development, in the last 

decade, of accurate and reliable wearable human body sensor-based tools for easy human motion 

analysis directly in the workplace. The main factor allowing the abovementioned use has been, 

without doubt, the miniaturization of devices which has allowed huge benefits over traditional 

approaches. Other factors are wireless connectivity, light weight, small-size, low power 

consumption, portability, low-cost, comfort, and the possibility to monitor subjects remotely and to 

provide feedback to the end-user [84-89]. 

Among wearable human body sensors, inertial measurement units (IMUs), dynamometers and 

surface electromyography (sEMG) sensors allow a detailed estimation (compared to traditional 

observational methods) of kinematics, kinetics and muscle behaviors without interfering with the 

typical movements performed by workers in the workplace [90-91]. 

In experimental settings, IMUs, dynamometers and sEMG sensors are placed and fixed on the 

appropriate body segments to measure joint angles, forces and muscle behaviors, respectively. All 

the sensors are commonly synchronized for data alignment in time [92]. Connection is always 

performed by implementing one of two wireless protocols: Wi-Fi or Bluetooth. The former has an 

increased power consumption, but a greater transmission speed and distance with respect to the 
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latter. The sampling frequency of these sensors varies between 50 and 1000 Hz while the minimum 

number of bit is 12 [93]. 

 

2.3.2 Direct Instrumental Evaluations 

Several papers have proposed instrumental-based tools for biomechanical risk classification without 

using measured/calculated indices as input to standardized methods. Instrumental approaches 

based on wearable sensors have been used to classify lifting tasks into low and high risk categories.  

In a very recent study [94], IMUs and sEMG sensors have been used to monitor trunk inclination and 

trapezius and erector spinae muscle activity, respectively, during the execution of several types of 

lifting tasks with different weights, horizontal distance and technique executed by male office 

workers. The method proposed in this study allows, with an acceptable accuracy, the automatic 

identification of the risk levels associated with the lifting activities. Indeed, the lifting tasks were 

characterised by a feature vector composed of the 90th, 95th or 99th percentile of sEMG activity 

level and trunk inclinations during the task. Linear Discriminant Analysis and a subject-specific 

threshold scheme were applied and lifting tasks were classified. The authors highlighted how the 

strength of this study lies on its objective instrumental approach based on subject-specific 

thresholds and on the possibility to complement the current standardized approaches usually used 

to detect biomechanical hazard. 

Furthermore, muscle coactivation has deeply been investigated [95] because it, being a 

neuromuscular pattern needed to stabilize the trunk [96], represents one of the causal pathways 

for WLBDs. The behavior of the cervical and lumbar spine has also been investigated in complex 

multiplanar dynamic motions including lifting and pushing [97]. sEMG has been used to develop a 

sEMG-based multi-muscle coactivation index that resulted usable to continuously assess the 

neuromuscular effort and significantly sensitive to several factors. In particular, the higher the 
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speed, complexity of the motion and head control are, the higher the coactivation index value is. 

Also, in this case this simple approach has been proposed to be used for ergonomic assessments. 

Another tool developed to calculate the simultaneous activation of trunk muscles is the time-varying 

multi-muscle co-activation index (TMCi) which includes a sigmoid-weighting factor dependent on 

relative differences between muscles that do not rely on a priori definitions of agonist or antagonist 

behavior [21]. This index was evaluated during the execution of lifting task in controlled conditions 

considering trunk muscles [21]. It has been shown that heavier lifting conditions resulted in higher 

TMCi values and that significant correlations exist between the TMCi and other agonist–antagonist 

methods.  

Manual lifting has also been assessed by using muscle fatigue estimation. In a recent review 

regarding this issue a list of methods was given, though the authors concluded that there are still 

many gaps to be filled and further studies are needed to find better fatigue indices and improved 

techniques [98]. 

Besides lifting activities, wearable sensors have been used for direct instrumental evaluations in 

handling of low loads during high frequency activities. For instance, local myoelectric manifestation 

of muscle fatigue [98] has been estimated in several conditions to investigate several groups of 

workers. Kinematic and sEMG assessments have also been performed in biomechanical evaluation 

of supermarket cashiers before and after a redesign of the checkout counter, in analysis of post 

office employees’ workstations and in manual handling on a supermarket greengrocery shelf [99-

101]. 

Finally, the usefulness of wearable sensors has also been investigated in many work tasks which 

require intensive and repetitive production of forces on the upper extremities in manipulating 

external loads, wrists, palms, fingers and tendons [102-103]. In these cases, the role of wearable 

sensors, in most cases hand-held dynamometers devices, is to measure the normal and shear forces 



37 
 

created between fingers and handles to assess muscle integrity and to determine the level of any 

strength deficits [104] associated to clinical physical examination tests (i.e., the diagnosis of 

shoulder pain [105]). A wearable, unobtrusive, wireless and accurate system (Activity Tracking with 

Body Area Network) has been designed to operate autonomously and to quantitatively measure 

postures and body motions of workers. This system is meant to be used by workers to autonomously 

monitor themselves on actual job sites over long periods of time. Different working processes in a 

wood workshop have been evaluated by using three accelerometers and two microphones and by 

correlating the worker’s motion and frequency and intensity of sounds [107]. IMUs were also used 

in several work activities such as car assembly, hammering, screwing and drilling [107]. In 

construction activities IMUs [98-99] and sEMG has been used to monitor lifting and holding loads 

activities to detect potential sources of WMSDs at neck [110] lower back levels [111]. 

 

2.3.3 Risk Assessment in the Context of Rating of Standard Methods 

As done for direct instrumental evaluations, in this section tentative ratings of standard methods 

using wearable technologies are analyzed. 

An innovative “on-body wireless sensors network”-based approach for real-time ergonomic 

assessment in industrial manufacturing has been proposed by Vignais and colleagues [112]. The 

sensor network was composed by IMUs and goniometers and the body posture (joint angles) was 

assessed by using a rigid, ten segments, twenty degrees of freedom biomechanical model. IMUs 

were placed bilaterally on the upper arm and forearms, on the head, trunk (on the chest) and pelvis 

(on the sacrum). Goniometers were placed on the hands and forearms to measure wrist motions. 

Angle values were used as input within the Rapid Upper Limb Assessment (RULA) method, whose 

global and local scores were continuously computed by a mobile processing unit (a standard laptop) 

and fed back to the user via a see-through head-mounted display. 
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Moreover, a real-time body sensors network composed by IMUs and sEMG sensors has also been 

used in real-time to monitor workers by measuring muscular efforts and postures (upper limbs have 

been modeled as a 7-DoF kinematic chain) for WMSD prevention according to the RULA index and 

the Strain Index (SI) [74]. The accuracy, expressed as the number of correct assessments (with 

respect to those performed by two human evaluators) of the system was 95% for RULA and 45% for 

SI, indicating that the body sensor network is able to give a RULA score estimation congruent to the 

one given by the human evaluators. As far as the SI score is concerned, the system gives a score 

congruent to the evaluators’ evaluation in almost the 50% of the cases. 

sEMG has also been used for complementing the RULA scoring system [113] and as an alternative 

to the visual inspection according to the BORG scale. It is in fact demonstrated that the two 

assessments are strongly correlated [114]. An example of the latter application has been studied by 

Cabeças [115] where sEMG was used as an alternative to observational methods in computing the 

SI score. The authors concluded that, once appropriate trigger levels for the muscular activation are 

defined, sEMG is a valid alternative to visual inspection in SI computation. This is true in particular 

when efforts are not clearly associated to hand/wrist movements and when non-cyclical high-

frequency activities are assessed. 
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CHAPTER III 

3. KINEMATIC, KINETIC DATA AND NEURAL 
NETWORKS FOR RISK ASSESSMENT DURING LIFTING 
ACTIVITY 
 

Recently, in order to overcome equation and parameter restrictions [1-8], to increase the 

accuracy and minimize job misidentification [1,9] and to enhance the ability to identify the 

relationship between WLBDs and risk factors [10], wearable monitoring devices have been proposed 

for biomechanical risk assessment [11]. The use of these instrumental techniques has been 

facilitated by the enormous technological advances that led to increased measurement accuracy, 

device miniaturization, and more efficient connections via wireless protocols (i.e. Wi.Fi and 

Bluetooth).  

Among the instrumental and quantitative approaches proposed to evaluate different tasks and 

classify the biomechanical risk, those based on artificial neural networks (ANNs) are particularly 

promising [12-13]. An ANN is a mathematical model that represents a distributed adaptive system 

built using multiple interconnecting processing elements (neurons) and mimics the behavior of real 

neuronal networks. In layered ANNs, the neurons are distributed in several layers: each neuron 

receives signals processed and transmitted by neurons in the preceding layer and in turn processes 

and transmits them to the next layer. ANNs are used in many fields of research (psychology, 

robotics, biology, computer science, ergonomics) due to their ability to adapt, learn, generalize, 

organize, or cluster data. For the WLBD problem the predictive capacity of this model has been 

proven to be greater than that achieved by statistical methods [14]. Researchers who attempted to 
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use ANNs to predict the risk of developing WLBDs, have performed many tests with different 

topological configurations in terms of number of neurons and hidden layers to determine the most 

appropriate network architecture. The ANN approaches proposed by Zurada et al. [11] and Chen et 

al. [12-13], aimed at classifying the risk (low-risk and high-risk), according to the associated 

likelihood of causing WLBDs, using mechanical parameters associated with risk factors (e.g. lift rate, 

peak twist velocity average, peak moment, peak sagittal angle, peak lateral velocity maximum) as 

input signals.  

An instrumental-tool to evaluate the biomechanical risk during lifting activities could be based 

on kinematic measurements: kinematic features as ANN input could predict the risk levels during 

the execution of controlled lifting tasks expressed in terms of LI identified by the NIOSH equation 

[15-16] in a controlled environment. 

Particularly, the considered kinematic parameters are: 

1) the mechanical lifting energy consumption (LEC) in relation to the center of mass (CoM) of the 

system involved in the lifting task. Mechanical energy consumption, previously used in both 

normal [17-18] and abnormal gait patterns [19-20], provides information on the mechanical 

energy consumed by the whole skeletal muscle system during the movement task. Higher values 

are indicative of greater energy expenditure. We hypothesize that this parameter may be used 

as an index that is sensitive to the LI and is closely related to the compression and shear forces 

at the L5-S1 joint.  

2) The jerk parameter as index of smoothness of movement. 

 It may be possible to study this approach in the laboratory by means of optoelectronic systems 

[21-24] and apply it to indoor and outdoor work environments by means of wearable sensors [25]. 

Indeed, the recent development of microelectromechanical systems, such as inertial measurement 
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units (IMUs) (i.e. combined accelerometers and gyroscopes), has paved the way for some 

noteworthy scientific breakthroughs that may be applied to a range of research areas [26-27].  

 In this thesis a research study was carried on to: i) calculate the Lifting Energy Consumption (LEC) 

during the execution of controlled lifting tasks designed on the basis of the RNLE and with an 

increasing lifting index (LI=l, LI=2 and LI=3); ii) verify the sensitivity of LEC to the risk level and to 

evaluate its relationship with forces at the L5-S1 joint; iii) verify the sensitivity of kinematic data to 

the risk level and to test whether machine-learning techniques (ANNs) used for mapping kinematic 

features on LI levels can lead to a reliable biomechanical risk estimation.   

In this chapter, text and figures have been taken from or adapted from the articles “Mechanical 

lifting energy consumption in work activities designed by means of the “revised NIOSH lifting 

equation”” [2017, Industrial Health], and “Lifting activity assessment using kinematic features and 

neural networks” [the work has been submitted on Applied Science] which were co-authored by me. 

 

3.1 MATERIALS AND METHODS 
 

3.1.1 Subjects  

Twenty male subjects (mean age 33.30±7.39 years, height 1.80±0.07 m, body mass index (BMI) 

24.37±2.67 kg/m2) were enrolled in the study (see Table 3.1). The workers had no history of 

musculoskeletal disorders, upper limb, lower limb and trunk surgery, or orthopedic and neurological 

diseases. All the participants gave their informed consent to the study, which complied with the 

Helsinki Declaration and was approved by the local ethics committee. 
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Subject Age range Sex Weight [kg] Height [m] 

S1 30-40 Male 68 1.71 

S2 30-40 Male 85 1.84 

S3 40-50 Male 94 1.85 

S4 20-30 Female 52 1.58 

S5 20-30 Female 57 1.58 

S6 40-50 Male 92 1.73 

S7 40-50 Male 76 1.76 

S8 20-30 Female 54 1.6 

S9 40-50 Female 50 1.64 

S10 20-30 Male 80 1.86 

S11 20-30 Male 72 1.82 

S12 30-40 Female 50 1.62 

S13 20-30 Female 52 1.68 

S14 20-30 Male 73 1.78 
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S15 20-30 Male 82 1.77 

S16 40-50 Female 57 1.63 

S17 30-40 Male 58 1.68 

S18 20-30 Male 85 1.95 

S19 40-50 Male 75 1.78 

S20 30-40 Male 85 1.84 

Table 3.1. Summary of subjects enrolled in the study with place experiments and tasks performed. 

 

3.1.2 Kinematic and kinetic recordings 

  An eight infrared cameras (sampling frequency 340 Hz) optoelectronic motion analysis system 

(SMART-DX 6000 System, BTS, Milan, Italy) was used to detect the movements of 33 spherical 

markers (15 mm in diameter) covered with aluminum powder reflective material placed over the 

spinous processes of the seventh and tenth cervical vertebrae, suprasternal notch (between the 

clavicular notches), sternum, sacrum and, bilaterally, over the temple, posterior-superior parietal 

bone, acromion, olecranon, ulnar styloid and radial processes, head of the third metacarpal bone, 

anterior superior iliac spine, great trochanter, lateral femoral condyle, fibula head, lateral malleoli, 

metatarsal head and heel [28-30] (Figure 3.1). Four markers were also placed over the 4 vertexes of 

a load consisting of a plastic crate (Figure 3.1). Acquisitions were performed using Smart Capture 

software (BTS, Milan, Italy). 

The analysis is based on the recognition and three-dimensional reconstruction of passive markers 

positioned on the anatomical landmarks (Figure 3.1 (A)) using a kinematic model (Figure 3.1 (B)).  
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  Ground reaction forces were acquired by using four dynamometric platforms embedded in 

the floor. Data was sampled at 680 Hz (P 6000, BTS, Milan, Italy).  

Data acquisition from the infrared cameras and force platforms was integrated and synchronized. 

 

3.1.3 Experimental Procedures  

  The subjects were asked to perform some lifting tasks in a movement analysis laboratory 

(Figure 3.2), a quiet room with normal indoor lighting and temperature. The environmental data in 

the laboratory were collected using a portable multi-channel (sampling frequency 0.033 Hz) data 

logger (Lsi – Lastem, Babuc A, Permenugo, Italy). Air temperature and relative humidity were 

23.30±0.95 °C and 40.60±5.03 % respectively.  
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Figure 3.1. Anatomical and load marks (A) and kinematic model (B) used in the study. 
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  Spatial accuracy after the calibration procedure was 0.2 mm in the x, y and z dimensions. A 

global reference system (GRS) in the laboratory was adopted in accordance with the International 

Society of Biomechanics [31-32]. 

  The subjects were asked to perform the manual material lifting task standing in a neutral body 

position and lifting a plastic crate with handles using both hands in three different lifting conditions, 

according to the RNLE [16]. The six lifting conditions were chosen in order to obtain LI values of 1, 2 

and 3. The task factors were arbitrarily chosen among a large number of combinations to have these 

three fixed LI values. Table 3.2 shows, for each lifting condition, the values of the load weight (L), 

horizontal (H) and vertical (V) locations, vertical travel distance (D), asymmetry angle (A) and lifting 

frequency (F), as well as the corresponding values of the multipliers. The hand-to-object coupling 

was defined as “good” for all three lifting conditions. Each participant was required to perform a 

total of 30 trials (5 repetitions X 6 lifting tasks). The order of each condition was randomly assigned. 

 

 

Figure 3.2. Structure of gait analysis laboratory used for the experiments. 
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Task LC (kg) H (cm) HM V (cm) VM D (cm) DM A (°) AM F (lift/min) FM C CM L (kg) RWL LI 

A 23 kg 25 1 75 1 25 1 30 0.9 ≤2 1 good 1 20.7 20.7 
1 

B 23 kg 25 1 75 1 25 1 0 1 ≤2 1 good 1 23 23 

C 23 kg 50 0.5 75 1 25 1 30 0.9 ≤2 1 good 1 20.7 10.35 
2 

D 23 kg 50 0.5 75 1 25 1 0 1 ≤2 1 good 1 23 11.5 

E 23 kg 60 0.42 30 0.87 45 0.92 0 0.9 ≤2 1 good 1 20.9 6.96 
3 

F 23 kg 63 0.4 30 0.87 45 0.92 0 1 ≤2 1 good 1 22.09 7.36 

 

Table 3.2. For each task (A, B, C, D, E and F), the values of the load weight (L), the horizontal (H) and vertical 

(V) locations, the vertical travel distance (D), the asymmetry angle (A), the lifting frequency (F) and the 

hand-to-object coupling (C) and the corresponding values of the multipliers and recommended weight limit 

(RWL). 

 

 

Fig 3.3. Experimental set-up and four representative subjects who performed the lifting tasks. 
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3.1.4 Data analysis 
 
 The tracking procedure and data computing were performed by Smart Tracker (BTS, Milan, Italy), 

Smart Analyzer (BTS, Milan, Italy) and Matlab (version 8.0.0.783, MathWorks, Natick, MA, USA) 

software. 

3.1.4.1 Lifting cycle detection 
 

 A reconstruction of the tridimensional position of each marker, from the images of each camera, 

is necessary to process data (Figure 3.4).  This procedure is carried out through the software SMART 

Tracklab (BTS, Milan, Italy), which allows you to apply the anatomical model (in our case our Lifting 

Model, Figure 3.1 (B) and match the individual points of this scheme to the markers detected in the 

acquisition assigning them a specific label (labeling).  

 

Figure 3.4. Reconstruction of the 3D position of each marker and tracking procedure.  

 

After rebuilding the 3D position of each marker at each instant of time, next step is to calculate their 

trajectory (tracking), from which it is possible to estimate the joint kinematics and, consequently, 

the relative position and orientation of the reference system with respect to the bone segment 
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under examination. The operation of tracking is the first stage of data processing: it represents the 

logical connection of two successive frames, so as to identify the time curve of each single marker. 

Thus, from the trajectories of the markers, the kinematic speed and acceleration are obtained by 

derivation. In this step, you can also assign a label to force signals from the platform, displayed as a 

vector with the origin in the center of pressure and magnitude and direction equal to the vector 

sum of the three components of force. 

 

Figure 3.5. Start and Stop of Lifting. 

  

 Then, the vertical displacement and velocity of one of the four markers placed over the vertexes 

of the crate were evaluated. Velocities were obtained by applying finite difference derivatives and 

a Butterworth filtered 4-Hz cut-off low-pass frequency. The onset of the lifting task was defined as 

the time point at which the crate marker velocity exceeded the velocity threshold by 0.025 m/s on 

the vertical axis. Termination of the lifting task was defined as the point on the graph at which the 
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crate marker velocity fell below the velocity threshold in the opposite direction. So, we have defined 

the Start and Stop of trials and calculated the lifting duration (Figure 3.5). Kinematic and kinetic data 

were time normalized to the duration of the lifting tasks and reduced to 101 samples using a 

polynomial procedure.  

 

3.1.4.2 CoM calculation 

 We calculated three different CoM values referring respectively to the load (CoML), the 

multi-segment upper body model (head, trunk, upper arms, forearms and hands) and load together 

(CoMUpp+L) as well as to the whole body (multi-segment upper body model, pelvis, thighs, shanks 

and feet) and load together (CoMTot). In all the three cases, the CoM was computed as the centroid 

of a set of elements composed by n body segments and the load. The computation was carried on 

by considering kinematic and anthropometric data together with the body segment parameters [30, 

33-34], according to the weighted average of the individual body segments’ center of mass [28, 35]. 

  

𝐶𝑜𝑀𝑥 =
1

𝑚
∑ 𝑥𝑖 ∗ 𝑚𝑖

𝑛
𝑖=1  ; 𝐶𝑜𝑀𝑦 =

1

𝑚
∑ 𝑦𝑖 ∗ 𝑚𝑖

𝑛
𝑖=1  ;  𝐶𝑜𝑀𝑧 =

1

𝑚
∑ 𝑧𝑖 ∗ 𝑚𝑖

𝑛
𝑖=1   

 where CoMx, CoMy and CoMz are, respectively, the instantaneous x, y and z components of the 

CoM position, m is the mass of the system being considered (load, upper body+load and whole 

body+load, respectively), n is the number of parts being considered (n=1, n=9 and n=16, 

respectively), xi, yi and zi are the components of the CoM position of the ith part, and mi is the mass 

of the ith segment or load.  

  

3.1.4.3 Lifting energy consumption (LEC)  

 For each of the CoMs calculated, the kinetic energy (Ek) during the lifting tasks was calculated as 

the sum of the kinetic energy on the x (Ekx), y (Eky) and z (Ekz) axes as follows: 
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                    𝐸𝑘 = 𝐸𝑘𝑥 + 𝐸𝑘𝑦 + 𝐸𝑘𝑧 =
1

2
𝑚(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)          

 where m and vx, vy and vz are, respectively, the mass and velocity components on x, y and z of the 

CoM being considered. Furthermore, the potential energy (Ep) was calculated using the following 

equation:  

                                                                         𝐸𝑝 = 𝑚𝑔ℎ        

 where h is the vertical (y) component of the CoM of the system being considered and 𝑔 is the 

acceleration of gravity.  

 Lastly, the mechanical energy (EM) was calculated as the sum of Ek and Ep. For each CoM, the 

difference between maximum and minimum values of each Ek, Ep and EM within the lifting cycle 

were considered as LEC (LECk, LECp and LECM, respectively). In particular, we calculated LECk_L, LECp_L, 

and LECM_L for CoML, LECk_Upp+L, LECp_Upp+L and LECM_Upp+L for CoMUpp+L, and LECk_Tot, LECp_Tot and 

LECM_Tot for CoMTot. 

 

3.1.4.4 Jerk  

The flexion-extension angles of trunk, elbow and knee were evaluated using the kinematic data. 

The jerk value, that is the rate of change of acceleration and represents the third derivative of 

position/angle [m/ s3 or degrees/s3]) [36], was calculated for the trunk (Jtrunk), elbow (Jelbow) and knee 

(Jknee) angles ([degrees/s3]).  

Then we computed the jerk square mean (JSM) values for trunk (JSMtrunk), elbow (JSMelbow) and 

knee (JSMknee), defined as follows:  

𝐽𝑆𝑀 =
1

𝑛
∑ 𝐽𝑖

𝑛
𝑖=1       

where 𝐽𝑖  is the jerk and n is the number of data points (101). The JSM is an index of smoothness of 

movement: the lower the Jerk is, the smoother the movements are [36]. 
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3.1.4.5 Force calculation  

 According to the multi-segment upper body model, the net forces (𝐹𝐿5−𝑆1) at the L5-S1 joint were 

calculated, in the local reference system (LRS) placed on the trunk in which the 𝑦′ axis is oriented as 

the vector C7-sacrum and 𝑥′ − 𝑧′ represents the orthogonal plane to y, by using the following 

formula [37]: 

𝐹𝐿5−𝑆1 = − ∑ 𝐹𝑗 − ∑ 𝑚𝑖𝑔 + ∑ 𝑚𝑖𝑎𝑖
𝑝
𝑖=1

𝑝
𝑖=1

𝑞
𝑗=1         

 where q is the number of external forces, 𝐹𝑗 is the jth external force, p is the number of body 

segments being considered, 𝑚𝑖 and 𝑎𝑖  are respectively the mass [29-30] and the acceleration of the 

ith segment.  

In this LRS, the components of 𝐹𝐿5−𝑆1 on the 𝑦′ axis and the 𝑥′ − 𝑧′ plane were called compression 

(𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1) and shear (𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1) forces, respectively.  

 
Figure 3.6. Representation of the human body with different cylinders and representation of load with 

parallelepiped. 
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3.1.4.6 Selection of the neural networks (chosen machine-learning technique) and mapping of 
kinematic features on LI levels 
 

A neural network approach (ANNs) was used to estimate the biomechanical risk in terms of LI 

on the basis of kinematic features. We used feedforward ANNs trained using different feature 

combinations. The networks differ in the topology showing different numbers of hidden layers (HL) 

and different numbers of neurons (N) in each HL. The output set (OS) consisted of an orthogonal 

coding of the three LI levels: L1 = [1 0 0], L2 = [0 1 0], and L3 = [0 0 1]. The entire system is 

schematically described in the Figure 3.7. 

The number of hidden layers varied in the range of 1–3, while the number of neurons in each 

HL varied based on the number of nodes N in the first hidden layer (NHL1); N was set to three 

different values (12, 20 and 50, respectively), and the number of nodes in the other hidden layers 

(when defined) was 1/2 and 1/3 of N for the second (NHL2) and third (NHL3) hidden layer, respectively. 

Thus, the combination of HL and N nodes in the first HL led to the following nine different network 

architectures ([dim(SET) NL1 OS], [dim(SET) NL1 NL2 OS], [dim(SET) NL1 NL2 NL3 OS]): [dim(SET) 12 3], 

[dim(SET) 20 3], [dim(SET) 50 3], [dim(SET) 12 6 3], [dim(SET) 20 10 3], [dim(SET) 50 25 3], [dim(SET) 

12 6 4 3], [dim(SET) 20 10 7 3], and [dim(SET) 50 25 17 3], where dim(SET) defines the size of the 

ANN input layer (depending on the number of features). 

Figure 3.7. A schematic description of the lifting task and artificial neural network method used to map 
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kinetic features on the Lifting Index (1, 2, and 3) levels. C, hand-to-object coupling; D, vertical travel 

distance; H, horizontal location; L, load weight; V, vertical location; N, number of nodes in the first hidden 

layer (HL). 

 

Eight different training sets were used: SETi, i=1,…8 (Figure 3.7). Each set was defined as a 

combination of different kinematic features derived by different parts of the body. 

SET1 contained data derived from  CoM of all body (LECk_Tot, LECp_Tot and LECM_Tot), SET2 

contained data derived from CoM of upper body and load (LECk_Upp+L, LECp_Upp+L and LECM_Upp+L), SET3 

contained only jerk data derived from lower limb (Jknee), SET4 contained only jerk data derived from 

upper limb (Jelbow),  SET5 contained only jerk data derived from trunk (Jtrunk), SET6 contained all data 

derived from jerk (Jknee, Jelbow, Jtrunk), SET7 data derived from upper body and load (LECk_Upp+L, 

LECp_Upp+L, LECM_Upp+L, Jelbow and Jtrunk) and SET8  data derived from all body and load (all extracted 

features). 

Networks were trained with a supervised approach using the Levenberg-Marquardt back-

propagation algorithm [38]. The training was stopped when at least one of the following conditions 

was met: 1000 iterations, 10-6 mean square error, or six consecutive fails on the validation set. 

Each of the nine network topologies was trained ten times for each of the 8 training sets so as 

to obtain a total of 720 trained ANNs. Each training was performed by using a random 10% of 

samples as the validation set and a random 10% as the testing set. This approach was used in order 

to verify the repeatability of our results. For each trained network, a confusion matrix was calculated 

based on the real LI and the one estimated on the randomly extracted testing set. 

The mean 3 × 3 confusion matrix was then obtained by averaging the confusion matrixes of the 

trained ANNs. A performance parameter (P) was calculated as the mean (%) of the elements on the 

diagonal of the mean confusion matrix, where 100% indicates the absence of misclassifications. 
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3.1.4.7 Statistical analysis 

All the analyses were performed using SPSS 17.0 software (SPSS Inc. Chicago, IL, USA). The 

Shapiro-Wilk and Kolmogorov-Smirnov test were used to analyze the normal distribution of the 

data. For each LEC and for each J, we performed a one-way repeated-measures ANOVA to 

determine whether there were any significant differences between the three risk levels. Post-hoc 

analyses were performed using a paired t test with Bonferroni’s corrections when significant 

differences were observed in the ANOVA. The Pearson test was used to investigate any correlations 

between LECk, LECp and LECM and the forces.  

As regard statistical analysis of ANNs performance, we performed a three-way ANOVA test 

(with SET, L, N as factors) to determine possible significant effects on ANN performance caused by 

the listed factors. Post-hoc analysis with Bonferroni’s corrections were performed when significant 

differences were observed in the ANOVA results. The statistical significance was set for p values < 

0.05. 

 

3.2 RESULTS  

3.2.1 Kinematic feature analysis 

  A description of the vertical displacements of the three CoMs considered, Ek, Ep and EM during 

the execution of the lifting tasks in the three conditions is provided in Figure 3.8: the qualitative 

analysis of energy expenditure revealed differences in both the Ep and EM curves among the three 

lifting conditions (Figure 3.8 (D) and Figure 3.8 (E)) for each CoM considered. Figure 3.9 shows the 

means and standard deviation values of LEC.  

As reported in Table 3.3, the repeated measures ANOVA revealed a significant effect of the lifting 

condition on LECp and LECM for all the CoMs considered. Statistically significant effects were also 

detected for LECk_Upp+L and LECk_Tot. Particularly, post hoc analysis showed significant differences (all 
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p<0.001) between each pair of lifting conditions for LECp and LECM for all the CoMs considered and 

also for LECk_Upp+L. Furthermore, as regard LECk_Tot significant differences were found between each 

pair of lifting conditions (LI=1 vs LI=2: p=0.001; LI=1 vs LI=3: p= 0.005; LI=2 vs LI=3: p=0.021). 

The results of the correlation analysis between each LEC with 𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1, 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 (scatter 

plots, regression line, correlation coefficients and p values) are reported in Figure 3.10.  Particularly, 

the correlation analysis highlighted i) a strong correlation (r>0.7) between each LEC relating to 

CoMUpp+L and 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1, ii) a moderate correlation (0.3<r<0.7) between each LEC relating to 

CoMUpp+L and 𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1, iii) a moderate correlation (0.3<r<0.7) between each LEC relating to 

CoMTot and only 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1, iv) a strong correlation (r>0.7) between LECp_L and LECM_L and 

𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1, v) a moderate correlation (0.3<r<0.7) between LECp_L and LECM_L and 𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1.  

As regards J, for Jtrunk significant differences (p<0.05) were found between LI=1 vs LI=2 and 

between LI=1and LI=3, for Jelbow significant differences (p<0.05) were found between LI=1 vs LI=3 

and between LI=2 and LI=3 and for Jknee significant differences were found between each pair of 

lifting conditions (p<0.05 for LI=1 vs LI=2 and LI=2 vs LI=3; p <0.001 for LI=1 vs LI=3; see Figure 3.11). 
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Figure 3.8. A qualitative description in a representative subject of vertical displacements of CoML, CoMUpp+L 

and CoMTot (B) (in meters), Ek (C), Ep (D) and EM (E) (in Joule) for each CoM investigated during the execution 

of the three lifting conditions (LI=1, LI=2 and LI=3). Black curves represent the mean values, with the SDs of 

the means shown in grey. Data are normalized to the lifting cycle duration and reduced to 101 samples over 

the cycle. 
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Figure 3.9. Means and standard deviations of the LECk (a), LECp (b) and LECM (c) calculated while performing 

manual material lifting tasks in the three different conditions (LI=1, LI=2 and LI=3) for the three CoMs 

(CoML, CoMUpp+L, CoMTot). * and ** Significant differences at the post hoc analysis with p<0.05 and p<0.001 

respectively. 

 

    CoML CoMUpp+L CoMTot 

LECk 

F  3.847 73.469  16.043  

df  1.118 1.081   1.047 

p 0.075   <0.001  0.003 

LECp 

F 150.992  173.479  65.755  

df 1.349   1.027 1.049  

p  <0.001   <0.001   <0.001   

LECM 

F 126.454  146.276  67.219  

df  1.154 1.012  1.050  

p  <0.001   <0.001   <0.001   

Table 3.3. The F, df and p-values of the repeated-measures ANOVA considering the Lk, Lp, and LM  in the three 

lifting conditions for the CoML, CoMUpp+L and CoMTot. Bold type indicates statistical significance. 
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Figure 3.10. Correlation between the LECk_L, LECp_L, LECM_L, LECk_Upp+L, LECp_Upp+L, LECM_Upp+L, LECk_Tot, LECp_Tot 

and LECM_Tot and the maximum values of 𝐹𝑐𝑜𝑚𝑝𝐿5−𝑆1 (a) and 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 (b). Each plot contains 60 points, 
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which correspond to the 20 subjects performing the three different lifting conditions (LI=1, LI=2 and LI=3). 

Green, yellow and red triangles represent the mean of the twenty points for each lifting condition. Each plot 

shows the r and p values. Bold type indicates statistical significance. 

 

 

 

Figure 3.11. Means and standard deviations of the jerk square mean (JSM) values evaluated 

considering angles of trunk, elbow and knee while performing manual material lifting tasks in the 

three different conditions (LI=1, LI=2 and LI=3) and statistical significance (* means p<0.05; ** 

means p<0.001). 

3.2.2 Mapping of kinematic features on LI levels 
The results of the detection expressed as P (mean ± SD) for each combination of HL and N, for 

each of the nine architectures of the ANNs, and with different training sets are reported in Figure 

3.12. Furthermore, Figure 3.12 shows also the best confusion matrix for each SET (confusion matrix 

with highest value of P). 

Three-way ANOVA showed significant effects of the training set (df=7; F=174.01; p<0.001), N 

(df=2; F=6.07; p=0.002) and HL (df=2; F=5.2; p=0.01) on the performance. 
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Figure 3.12. Performance of artificial neural networks considering different features (SETi, i=1,…8). 

Nine different architectures of neural networks were represented by varying the numbers of 
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hidden layers (1, 2, or 3) and the numbers of neurons in each hidden layer based on the numbers 

of nodes N in the first hidden layer. For each SETi, the best mean confusion matrix was reported. 

 

Particularly, significant differences (p<0.05) emerged from post-hoc analysis comparing SET1 

with all SET; comparing SET2 with SET3, SET4, SET5, SET6; comparing SET3 with SET1, SET2, SET7, SET8; 

comparing SET4 with SET1, SET2, SET7, SET8; comparing SET5 with SET1, SET2, SET7, SET8; comparing 

SET6 with SET1, SET2, SET7, SET8; comparing SET7 with all SET excepted SET2; comparing SET8 with all 

SET excepted SET2. As regards N, particularly significant differences (p<0.05) emerged from post-

hoc analysis comparing N=12 and N=50 and comparing N=20 and N=50 As regards HL, no significant 

differences (p>0.05) emerged from post-hoc analysis. In general, SET2, SET7 and SET8 showed higher 

mean values of performance with lower standard deviations (Figure 3.12). 

 

3.3 DISCUSSIONS AND CONCLUSIONS 

In this study, energy consumption, the forces at the L5-S1 joint and the relationship among these 

parameters were investigated during the execution of lifting tasks designed in such a way as to exert 

a growing biomechanical load using the RNLE. Furthermore, ANNs and kinematic data have been 

used to classify the biomechanical risk. The feed-forward ANNs were trained with different training 

sets, numbers of hidden layers, and numbers of neurons in each hidden layer using as input LEC 

indices and Jerk. The training set were selected considering different combinations of the body 

segments necessary to extract kinematic features (i.e. only upper body, only upper limb, total body, 

etc.). 

The rationale behind this investigation is that an instrumental tool based on kinematic data may be 

used as risk assessment method to combine with the NIOSH protocol.  

Qualitative analysis of the results revealed differences in both the Ep and EM curves among the three 

lifting conditions for each CoM considered and in Ek curves for the CoMs referred to the upper-body 
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and whole body multi-segments systems (Figure 3.8). Furthermore, a significant effect of the lifting 

condition was found on each lifting energy consumption for the CoMUpp+L and CoMTot and also on 

LECP and LECM in relation to the CoM referring to the load (Figure 3.9). 

This is likely to be due to the fact that CoMUpp+L and CoMTot take into account the dynamic of subject 

body during the execution of the lifting tasks and are, consequently, more sensitive to the RNLE 

factors that influence the risk level. By contrast, CoML is influenced above all by the motor strategy 

at the end effectors (hands), and does not take into account the dynamic of subject body during the 

execution of the lifting tasks. Indeed, for a given L, an equal D and different LI, CoML might not yield 

any differences in lifting energy consumption because the total movement dynamic would not be 

considered in the same way as for CoMUpp+L and CoMTot, nor would the relevance of the other RNLE 

factors be considered, i.e. H and A.  

The results also highlighted that lifting energy consumption grew significantly with the LI and that 

all the lifting condition pairs are discriminated (Table 3.3 and Figure 3.9): these trends indicate that 

the lifting energy consumption correctly represents the greater energetic requirements due to the 

increased level of physical stress, and thus suggest that lifting energy consumption may be used as 

a risk assessment biomechanical index. In particular, it may be possible to use each lifting energy 

consumption related to CoMUpp+L and COMTot to correctly interpret low-, medium- and high-risk jobs. 

Certainly, the validity of lifting energy consumption method depends on the lifting conditions we 

set so depending on the multipliers of RNLE equation. On the other hand, findings of this study show 

the presence of a significant effect of LI on lifting energy consumption calculated by considering 

CoMUpp+L and CoMTot, even if obtained within the boundaries of our experimental setup. These 

results allow us to comprehend that lifting energy consumption, although calculated by a different 

equation with respect to LI, is sensitive to the RNLE factors and to the risk level because centers of 

mass are linked to the dynamic body geometry during the execution of the lifting tasks.  
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The above considerations are supported by the correlation analysis (Figure 3.10), which highlights 

a close relationship i) between each lifting energy consumption and 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 and 𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1 

when we considered the CoMUpp+L, ii) between each lifting energy consumption and only 

𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 when we considered CoMTot and iii) between LECp_L and LECM_L and both the forces 

𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 and 𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1. In particular, these findings point to the need to calculate the 

CoMUpp+L for the lifting energy consumption analysis. For against a low correlation between LECk 

and forces was detected when we considered CoML. From a global point of view, mechanical energy 

expenditure during the execution of lifting tasks is always closely related to the shear forces because 

spinal loads are affected by lifting dynamics, i.e. flexed lifting [39]. 

 The experimental data allowed to identify the lifting energy consumption indices that are sensitive 

to an increasing LI (LI=l, LI=2 and LI=3) designed on the basis of the RNLE. These indices would be 

particularly useful as an instrumental risk assessment method if referred to the set of conditions 

studied to support the NIOSH protocol or to evaluate a varied range of conditions in which the 

NIOSH protocol cannot be used (lifting with one hand, for over eight hours, while seated or kneeling, 

in a restricted work space, unstable objects, while carrying, pushing or pulling, with wheelbarrows 

or shovels, in high speed motion, with unreasonable foot-floor coupling, in an unfavourable 

environment).  

In literature, there are many studies considering the mechanical energy consumption and/or the 

body energy consumption [40,41] during lifting tasks. Furthermore, a linear relationship between 

mechanical work and body energy consumption was found in different activities [42-44]. 

Particularly, in lifting tasks, for the same increase in absolute mechanical work there is a higher 

increase in body energy consumption for positive compared with negative work [44]. 

This relationship strengthens the choice of the index to risk assessment during lifting task. Certainly, 

the mechanical energy consumption method is easier to apply in work environments than the body 
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energy consumption. In fact, measurements of oxygen consumption (VO2) are generally carried out 

by using a portable system for pulmonary gas exchange measurement. In this kind of measurement, 

the subject needs to wear a mask that can interfere with the working activities and can introduce 

psychological stress in the works [45]. 

Indeed, once these indices have been identified in the laboratory in controlled lifting conditions by 

means of the optoelectronic system, they could be applied in indoor and outdoor work 

environments by means of IMUs. In addition to being able to measure single- or multi-point motion 

trajectories of single or multiple body segments of the subject during the movement task, IMUs 

have become widely used in all activities that address complex motion analysis because of their 

interconnectivity, light weight, small size, low power consumption, portability and low cost. 

Moreover, since IMUs are included in smart devices (i.e. smartphones and tablets), which are now 

used in every walk of life, inertial sensor-based movement recognition has attracted increasing 

interest in a number of research fields, including biomechanics [46-52]. Such research might lead to 

an IMU-based lifting recognition tool built on data acquired in controlled lifting conditions that 

would increase the likelihood of detecting the risks associated with WLBDs.  

 For instance, a LEC-based lifting recognition tool could be designed by considering one criterion 

of risk classification based on LECM, as shown in Figure 3.13.  

 The LEC-based lifting recognition tool was built considering: low risk jobs as the interval between 

0 and [mean+SD of LI=1] (all values under [mean-SD of LI=1] were associated with low risk jobs); 

medium risk jobs as the interval between [mean-SD of LI=2] and [mean+SD of LI=2]; high risk jobs 

as the interval between [mean-SD of LI=3] and [mean+SD of LI=3]. The values included in two 

different intervals or in any interval (grey histogram in Figure 3.13), represent ranges for which it is 

not possible to make a choice because they should be associated with two different types of risk 

jobs. Values above the high-risk zone indicate very high-risk jobs (purple histogram in Figure 3.13). 
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In particular, LECM_L values within the range 0-[mean+SD of LI=1], [mean-SD of LI=2]-[mean+SD of 

LI=2] and [mean-SD of LI=3]-[mean+SD of LI=3] indicate low- (green histogram), medium- (yellow 

histogram) and high- (red histogram) risk jobs, respectively (Figure 3.13 (a)). Instead, as regards 

LECM_Upp+L and LECM_Tot values within the range 0-[mean-SD of LI=2], [mean+SD of LI=1]-[mean+SD 

of LI=2] and [mean-SD of LI=3]-[mean+SD of LI=3] indicate low-, medium- and high- risk jobs, 

respectively (Figure 3.13 (b and c)). Others ranges for which it is not possible to make a choice are 

shown as grey histograms. Finally, values above the red zone indicate very high-risk jobs (purple 

histogram).    

 

 

Figure 3.13. An IMU-based lifting recognition tool designed by considering one criterion of risk classification 

(LECM_L (a) or LECM_Upp+L (b) or LECM_Tot (c)). The error bars represent the mean ± SD values. 

 

  Furthermore, findings of this study show that a quantitative machine-learning approach based on 

ANNs and kinematic data is able to predict the biomechanical risk in lifting activities. A proper 

combination of kinematic features and network architectures can lead to a good classification. In 

particular, the training sets, the numbers of hidden layers, and the numbers of neurons in each 

hidden layer influence the ANNs performance. The best performances were obtained by using SET2 
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(containing data derived from upper body and load), SET7 (containing data derived from upper body, 

load and smoothness) and SET8 (containing data derived from the whole body and load and 

smoothness). 

ANNs trained by using SET2 show a high performance. However, SET2 takes into account the 

kinematic behavior of the multi-segment upper body (head, trunk, upper arms, forearms and hands) 

and load together (CoMUpp+L) and it could fail in presence of human-robot collaboration (HRC) 

technologies such as wearable assistive devices worn by the workers. For instance, the use of a 

spinal exoskeleton could strongly reduce the muscle effort without modifying the lifting kinematics, 

thus implying a misclassification.  

This limit linked to the use of HRC technologies could be completely eliminated, or at least 

greatly reduced, by using SET7 and SET8. Both SETs allow the best performance with the advantage 

to take into account also information about the smoothness of the motion, the only index that, 

unlike the other kinematic indices, could be sensitive to the use of assistive devices, changing it 

when the worker wears them. 

Among these, SET7 shows a reliable performance also in terms of variability, meaning that 

biomechanical risk estimation using this specific SET is reliable and repeatable at the same time. 

Furthermore, it is worth highlighting that errors never imply misclassification between LI=1 and 

LI=3 that represent the lowest and the highest risk classes respectively, and this constitutes a desired 

and acceptable behavior of an LI classifier. 

Moreover, it has been shown that the best performance is almost always obtained with only 

one hidden layer (see Figure 3.12), and the increase of the network complexity does not improve 

the risk estimation. This aspect is of importance when dealing with applications in real scenarios 

using wearable sensors, since the reduced network complexity lowers the overall computational 

cost needed to train the ANNs.  
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3.3.1 Limitations and future developments 
 
 One limitation of this method may be its suitability for the assessment of composite or sequential 

[53] manual lifting jobs in which the lifting tasks are significantly different. Another limitation of this 

study is the use of only male workers; indeed, gender aspects are important, and they may lead to 

different results.  

 This study may be developed further by: i) widening the range of lifting task types with the same LI 

but changing the multiplier values; ii) testing also lifting conditions with LI values lower than 1, 

between 1 and 2, and between 2 and 3; iii) analyzing changes in the criteria selected due to 

temperature and humidity, sex, age, work experience, etc. The study could also be extended by 

using, in addition to the optoelectronic motion analysis system, wearable inertial sensors during 

manual material lifting tasks in the laboratory in different lifting conditions.  

  The study could also be extended by using wearable inertial sensors during manual material 

lifting tasks in the laboratory in different lifting conditions to compare the results obtained using the 

optoelectronic system with those provided by inertial sensors, thereby validating and strengthening 

the applicability of this method in indoor and outdoor work environments. An instrumental lifting 

recognition tool could be further implemented by using surface electromyography-based indices 

that would provide additional criteria of classification and enhance the power of the test.  
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CHAPTER IV 

4. SEMG FEATURES AND NEURAL NETWORKS FOR 
RISK ASSESSMENT DURING LIFTING ACTIVITY  
 

As highlighted in the previous chapter, to overcome NIOSH restrictions, there is a need to move 

from a semi-quantitative to a quantitative assessment of the risks posed by a lifting task.  

Surface electromyography (sEMG) has been widely demonstrated as a technique for improving 

human movement analysis; sEMG has been shown to provide significant information from time and 

frequency domain features [1-3]. Several features extracted from the sEMG signal have a 

neurophysiological correlation, mainly for what concerns the amount of neural drive to muscle, the 

kind of recruited fibers and the muscle fiber conduction velocity [4]: for example, the muscle co-

activaction index [5], the root mean square, the averaged rectified value [1], and the median or 

mean frequency [2], have been successfully and widely used in ergonomics, both in the laboratory 

and at the workplace. 

Based on the previous considerations, sEMG features as artificial neural networks (ANNs) input 

have been used for predicting LBDs expressed in terms of LI during the execution of controlled lifting 

tasks.  

The sEMG activity from a variety of trunk muscles was recorded with the following aims: 1) to 

identify the most sensitive trunk muscles with respect to changes in lifting conditions based on the 

selected sEMG features; 2) to evaluate the relationship between the indices extracted by identified 

muscles and forces (𝐹𝐿5−𝑆1) and moments (𝑀𝐿5−𝑆1) at the L5-S1 joint. 3) to test whether machine-

learning techniques (ANNs) used for mapping time and frequency sEMG features on LI levels can 

improve the biomechanical risk estimation. Indeed, techniques such as sEMG for risk assessment 
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could be integrated with methods already used for the biomechanical risk assessment, with the aim 

of quantifying the risk also when the RNLE cannot be applied. In addition, this integrated approach 

could overcome one of the main limits of RNLE, consisting in jobs misidentification based on risk [6].  

Furthermore, the possibility to implement the integrated approach on electronic smart devices 

(smartphones, phablets, tablets and smartwatches) would allow a simplified analysis in the 

workplace as compared to the analysis based on mechanical factors control. 

In this chapter, text and figures have been taken from or adapted from the articles “Surface 

electromyography for risk assessment in work activities designed using the “revised NIOSH lifting 

equation””” [2018, International Journal of Industrial Ergonomics], and “Lifting activity assessment 

using surface electromyographic features and neural networks” [2018, International Journal of 

Industrial Ergonomics] which were co-authored by me”. 

  

4.1 STUDY N°1: SURFACE ELECTROMYOGRAPHY FOR RISK ASSESSMENT IN WORK 
ACTIVITIES DESIGNED USING THE RNLE 
 

The aims of this study were: to identify surface electromyography (sEMG)-based indices of trunk 

muscles acquired during the execution of lifting tasks designed using the revised NIOSH lifting 

equation and featuring a progressively increasing lifting index (LI); to study changes of these indices 

in relation to the LI; to evaluate the relationship between the identified indices and forces 

(𝐹𝐿5−𝑆1) and moments (𝑀𝐿5−𝑆1) at the L5-S1 joint. 

 
4.1.1 Materials and Methods 

4.1.1.1 Subjects 

Twenty male subjects (mean age 33.30±7.39 years, height 1.80±0.07 m, body mass index (BMI) 

24.37±2.67 kg/m2) were recruited in the study (the subjects’ sample is the same of 3.1.1).  
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4.1.1.2 Kinematic, kinetic and electromyographic recordings 
 

The kinematic and kinetic data were recording as in 3.1.2. Furthermore, a 16-channel Wi-Fi 

transmission surface electromyograph (FreeEMG300 System, BTS, Milan, Italy) was used to acquire 

the surface myoelectric signals at a sampling rate of 1000 Hz.  After skin preparation, bipolar Ag/AgCl 

surface electrodes (diameter 2 cm, H124SG Kendall ARBO, Tyco healthcare, Neustadt/Donau, 

Germany), prepared with electroconductive gel, were placed over the muscle belly in the direction 

of the muscle fibers (distance of 2 cm between the center of the electrodes) according to the 

European recommendations for surface electromyography [7] and the atlas of muscle innervation 

zones [8]. Twelve bipolar electrodes were placed bilaterally on the erector spinae longissimus (ESL), 

erector spinae iliocostalis (ESI), multifidus (M), latissimus dorsi (LD), rectus abdominis superior (RAS) 

and rectus abdominis middle (RAM) muscles (Figure 4.1). The first four muscles were chosen 

because of their role as trunk extensors, the last two because of their role as flexors. 

 
 

Figure 4.1. Muscles recorded by EMGs. 

 

Data acquisition from the optoelectronic cameras, dynamometric platforms and surface 

electromyography were integrated and synchronized. Particularly, all the data were managed by a 

unique data station which collected them. Optoelectronic cameras and force platforms were 
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connected via Ethernet while the sEMG system via Wi-Fi. The synchronization was guaranteed by a 

unique internal clock that manages optoelectronic, kinetic and sEMG signals by means of a high-

quality synchronization protocol for networked devices [9].  

 

4.1. 1.3 Experimental Procedures 

The experimental procedures were the same of in 3.1.3. 

 

4.1.1.4 Data analysis 

The Lifting Cycle definition was performed as in 3.1.4.1 then the following kinematic and 

electromioraphic parameters were taken in the account. 

Force and moment calculation 

The net reaction forces (𝐹𝐿5−𝑆1) and moments (𝑀𝐿5−𝑆1) at the L5-S1 joint were calculated in the 

GRS according to the dynamic multi-segment upper body model (hands, forearms, arms, head and 

trunk) using the formulas in 3.1.4.5 and the following formula [10]: 

𝑀𝐿5−𝑆1 = − ∑(𝑟𝑗 − 𝑟𝐿5−𝑆1) 𝑥 𝐹𝑗

𝑛

𝑗=1

 

− ∑(𝑟𝑖 − 𝑟𝐿5−𝑆1) 𝑥 𝑚𝑖𝑔 + ∑(𝑟𝑖 − 𝑟𝐿5−𝑆1) 𝑥 𝑚𝑖𝑎𝑖

𝑝

𝑖=1

𝑝

𝑖=1

 + ∑
𝑑

𝑑𝑡
(𝐼𝑖𝜔𝑖)

𝑝

𝑖=1

 

where: n is the number of external forces; 𝐹𝑗 is the jth external force; p is the number of body 

segments considered; 𝑔 is the acceleration of gravity; 𝑟𝑗 is the position of the jth external force; 

𝑟𝐿5−𝑆1 is the position of the L5-S1 joint; 𝑟𝑖, 𝑚𝑖 𝑎𝑖, 𝐼𝑖, and 𝜔𝑖 are the position of the centre of mass, 

the mass [10-11], the acceleration, the moment of inertia and the angular velocity of the ith segment, 

respectively. The moments of inertia 𝐼𝑖 were calculated by modelling the overall system as follows: 

one cylinder for the trunk and head, two cylinders for the right and left upper arms, two cylinders 
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for the right and left forearms and hands and one parallelepiped for the load. The formulas used for 

the calculation of the 𝐼𝑖 are reported below:  

 

𝐼𝑖 =
1

2
𝑚𝑖 (3 (

𝑑𝑖

2
)

2

+ ℎ𝑖
2) 

𝐼𝑖 =
1

12
𝑚𝑙(𝑑𝑙

2 +  ℎ𝑙
2) 

where 𝑚𝑖 is the mass of the ith segment, ℎ𝑖  and 𝑑𝑖 are the height and diameter of the ith cylinder, 

while 𝑚𝑙 is the mass of the load, ℎ𝑙  and 𝑑𝑙  are the height and depth of the parallelepiped.  

The projections of 𝐹𝐿5−𝑆1 on the y axis and on 𝑥- 𝑧 plane were called longitudinal (𝐹𝑙𝑜𝑛𝑔𝐿5−𝑆1) and 

transversal (𝐹𝑡𝑟𝑎𝑛𝑠𝐿5−𝑆1) forces, respectively. We also considered 𝐹𝐿5−𝑆1 in a local reference 

system (LRS) on the trunk in which the 𝑦′ axis is oriented as the vector C7-sacrum and 𝑥′-

𝑧′represents the orthogonal plane to 𝑦′. In this LRS, the components of 𝐹𝐿5−𝑆1 on the 𝑦′ axis and 

the 𝑥′-𝑧′ plane were called compression (𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1) and shear (𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1) forces, 

respectively.  

sEMG parameters 

Before the time normalization was performed, sEMG signals were processed as follows: 

• the iMVC and the sEMG raw data of each lifting trial were band-pass filtered using a fourth-order 

Butterworth filter between 20 and 450 Hz, in order to reduce motion artifacts and other 

components of high frequency noise and to remove the ECG artefacts from all the trunk muscles 

[12-13]; 

• subsequently, to extract the envelope of muscle activity, full-wave rectification of signals was 

performed and low-pass filtering using a fourth-order Butterworth filter at 5 Hz [14] was applied;  

• the rectified and filtered sEMG data related to each lifting trial were expressed as a percentage 

of the sEMG peak value [7, 15-17] calculated as the mean of the maximum values detected for 



84 
 

each of the two iMVCs [7, 17-21]. In detail we normalized the sEMG amplitude to a 0–100% 

range through dividing the instantaneous amplitude by the value obtained when performing a 

maximum voluntary contraction in static conditions. 

From the elaborated sEMG signals of each lifting trial, in order to characterize differences in the 

sEMG activity between different conditions, we computed the average rectified value (ARV), the 

root mean square (RMS) and the maximum value (Max) within the cycle. ARV and RMS were 

calculated as follows: 

𝐴𝑅𝑉 =
1

101
∑ 𝑠𝐸𝑀𝐺𝑘

100

𝑘=0

 

𝑅𝑀𝑆 = √
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101
∑ 𝑠𝐸𝑀𝐺𝑘

2

100

𝑘=0

 

where sEMGk is the kth sample value of the envelope of each muscle. Furthermore, the simultaneous 

activation of the trunk muscles (co-activation) was calculated by considering the time-varying multi-

muscle co-activation function (TMCf) proposed by Ranavolo and colleagues [5]: 

𝑇𝑀𝐶𝑓(𝑑(𝑘), 𝑘) = (1 −
1

1 + 𝑒−12(𝑑(𝑘)−0.5)
) .

 (∑ 𝑠𝐸𝑀𝐺𝑚(𝑘)/(100𝑥𝑀)) 𝑀
𝑚=1

2

𝑚𝑎𝑥𝑚=1…𝑀[𝑠𝐸𝑀𝐺𝑚(𝑘)]
 

 

where d(k) is the mean of the differences between each pair of sEMGm(k), M is the number of 

muscles considered in the analysis, sEMGm is the sEMG signal of the mth muscle. As co-activation 

indices, the area of total TMCf (TMCfArea) and the maximum (TMCfMax) within the cycles were 

considered. We calculated the TMCf, TMCfArea and TMCfMax by considering all twelve trunk muscles 

(TMCf_12, TMCfArea_12 and TMCfMax_12) as well as only four trunk muscles (right and left ESL and 

right and left RAS; TMCf_4, TMCfArea_4 and TMCfMax_4) to verify the possibility to reduce the number 

of muscles included in the analysis to simplify the acquisition protocol. The data from the ten lifting 
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tasks (5 repetitions for symmetric and 5 repetitions for asymmetric tasks) for each condition (LI=1, 

2 and 3) were averaged for each subject. 

 

4.1.1.5 Statistical Analysis 

All the analyses were performed using SPSS 17.0 software (SPSS Inc. Chicago, IL, USA). The Shapiro-

Wilk and Kolmogorov–Smirnov test were used to analyze the normal distribution of the data. For 

each lifting condition and for each parameter, a parametric paired samples t-test was applied  to 

detect any differences between the right and left muscles and between co-activations calculated 

with both twelve and four muscles. We performed a one-way repeated-measures ANOVA to 

determine whether there was any significant difference between the three low back pain risk levels. 

Post-hoc analyses, with Bonferroni’s corrections, were performed when significant differences were 

observed in the ANOVA. The Pearson test was used to investigate any correlation between each of 

the sEMG parameters and forces and moments. The Pearson test was also used to investigate the 

correlations between each of the sEMG parameters (ARV, RMS, TMCfArea_12, TMCfMax_12, 

TMCfArea_4 and TMCfMax_4) and the LI levels. A p value of less than 0.05 was considered statistically 

significant. 

 

4.1.2. Results 
 
No statistical differences emerged between the right and left muscles in any of the sEMG 

parameters, ARV, RMS or Max (all p>0.05). Thus, the results were pooled across sides.  

The repeated measures ANOVA revealed a significant effect of the LI on ARV and Max for all the 

muscles except RAM, and on RMS for ESL, ESI and LD (Table 4.1).  

Table 4.2 shows the p-values of the paired t test with Bonferroni’s corrections for the ARV, RMS and 

Max of all the muscles investigated, which highlight the differences between pairs of LI. Significant 

differences and means with standard deviations are shown in Figure 4.2.  
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ESL ESI M LD RAS RAM 

ARV 

F 33.404 9.044 15.874 11.923 31.268 5.120 

df 2 2 2 2 2 2 

p <0.001 0.002 <0.001 0.001 <0.001 0.017 

RMS 

F 24.003 8.851 15.791 21.894 30.552 5.139 

df 2 2 2 2 2 2 

p <0.001 0.002 <0.001 <0.001 <0.001 0.077 

Max 

F 53.850 24.501 17.256 7.307 13.053 1.906 

df 2 2 2 2 2 2 

p <0.001 <0.001 <0.001 0.006 <0.001 0.181 

Table 4.1. The F, df and p-values of the repeated measures ANOVA considering the ARV, RMS and Max in 

the three lifting conditions (LI=1, LI=2 and LI=3) for the six muscles ESL, ESI, M, LD, RAS and RAM. Bold type 

indicates statistical significance. 

 
 

 

 LI ESL ESI M LD RAS RAM 

ARV 
1 vs 2 0.001 <0.001 0.001 0.002 0.004 0.226 
1 vs 3 <0.001 0.019 0.003 0.017 <0.001 0.143 
2 vs 3 0.017 0.482 0.971 0.086 0.003 0.130 

RMS 
1 vs 2 0.006 <0.001 0.001 <0.001 0.004 . 
1 vs 3 0.001 0.020 0.003 0.002 <0.001 . 
2 vs 3 0.019 0.485 0.959 0.555 0.004 . 

Max 
1 vs 2 0.001 <0.001 0.002 0.006 0.689 . 
1 vs 3 <0.001 0.001 0.003 0.066 0.011 . 
2 vs 3 0.002 0.113 0.476 0.271 0.018 . 

Table 4.2. The p-values of the paired t test with Bonferroni’s corrections between pairs of different LI levels 

for the ARV, RMS and Max for the six muscles ESL, ESI, M, LD, RAS and RAM. Bold type indicates statistical 

significance. 
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Figure 4.2. Surface electromyographic parameters of the trunk muscles 

Means and standard deviations of 20 subjects’ ARV (a), RMS (b) and Max (c) of the bilateral trunk muscles 

ESL, ESI, M, LD, RAS and RAM, while performing manual lifting tasks of three low back pain risk levels (LI=1, 

2 and 3). N=20 for each lifting risk level. * Significant differences at post hoc analysis. 
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As regards the co-activation indices in each lifting task with same LI, no significant differences were 

observed either between TMCfArea_12 and TMCfArea_4 (p=0.626) or between TMCfMax_12 and 

TMCfMax_4 (p=0.352).  

The repeated measures ANOVA revealed a significant effect of the LI on TMCfArea_12 and TMCfArea_4 

(F=36.642, df=1.504, p<0.001 and F=23.756, df=1.742, p<0.001 respectively) and TMCfMax_12 and 

TMCfMax_4 (F=47.717, df=1.323, p<0.001 and F=79.055, df=1.310, p<0.001 respectively). When 

investigating differences in co-activation between pairs of the 3 low back pain risk levels, significant 

differences were observed in both TMCfArea and TMCfMax between LI 1 and 2 (TMCfArea_12: p=0.001; 

TMCfArea_4: p=0.007; TMCfMax_12: p<0.001; TMCfMax_4: p<0.001), LI 2 and 3 (TMCfArea_12: p=0.008; 

TMCfArea_4: p=0.027; TMCfMax_12: p=0.010; TMCfMax_4: p=0.001) and LI 1 and 3 (TMCfArea_12: 

p<0.001; TMCfArea_4: p=0.001; TMCfMax_12: p<0.001; TMCfMax_4: p<0.001). Mean and SD values and 

significant differences are shown in Figure 4.3. 

 

Figure 4.3. TMCfArea (a) and TMCfMax (b) calculated while performing manual material lifting trials in the 

three different conditions (LI=1, LI=2 and LI=3) for all the muscles investigated (TMCfArea_12 and 

TMCfMax_12) and for right and left ESL and RAS (TMCfArea_4 and TMCfMax_4). N=20 for each lifting risk level. 

* Significant difference at post hoc analysis. 

 

A qualitative description of a representative subject of FL5−S1 and ML5−S1, the trunk flexion-

extension, sEMG activity and TMCf_12 during the execution of the lifting tasks in the different lifting 

conditions (LI=1, 2 and 3) is provided in Figure 4.4. This figure shows mean curves (with shaded SDs) 
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of combined 10 trials of different lifting tasks (no lift asymmetry and lift asymmetry) with the same 

LI for one subject sample.  

 

Figure 4.4. A qualitative description of a representative subject of the trunk flexion-extension (a), 

𝐹𝑙𝑜𝑛𝑔𝐿5−𝑆1 (b),  𝐹𝑡𝑟𝑎𝑛𝑠𝐿5−𝑆1 (c),  𝐹𝑐𝑜𝑚𝑝𝐿5−𝑆1 (d),  𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 (e), 𝑀𝐿5−𝑆1 (f), sEMG activity (g) and 

TMCfMax_12  (h) during the execution of the lifting tasks in the three different conditions (LI=1, LI=2 and LI=3). 

Curves represent the mean values with shaded SDs. Data are normalized to the lifting duration and reduced 

to 101 samples over the cycle. 

 

Figure 4.5 illustrates correlations between 𝐹𝑙𝑜𝑛𝑔𝐿5−𝑆1, 𝐹𝑡𝑟𝑎𝑛𝑠𝐿5−𝑆1, 𝐹𝑐𝑜𝑚𝑝𝐿5−𝑆1, 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 

and 𝑀𝐿5−𝑆1 and the sEMG parameters (ARV, RMS, Max, TMCfArea_12, TMCfMax_12, TMCfArea_4 and 

TMCfMax_4). Each plot contains 60 points, which correspond to the 20 subjects performing the 

different lifting conditions (points represent LI=1, 2 and 3). Triangles represent the mean of the 

twenty points for each lifting condition (LI=1, 2 and 3). This figure also shows the r and p values. 



90 
 

 

Figure 4.5. Correlation between the ARV, RMS, Max (all calculated on ESL), TMCfArea_12, TMCfMax_12, 

TMCfArea_4 and TMCfMax_12 and the maximum values of 𝐹𝑡𝑟𝑎𝑛𝑠𝐿5−𝑆1 (a), 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 (b) and 𝑀𝐿5−𝑆1, (c). 

The number of sample size is 60. Each plot contains 60 points, which correspond to the 20 subjects 

performing the lifting tasks in the three different conditions (LI=1, LI=2 and LI=3). Triangles represent the 

mean of the twenty points for each lifting condition. Each plot shows the r and p values. Bold type indicates 

statistical significance. 

 

Table 4.3 shows the r and p values of the Pearson test carried out between each of the sEMG 

parameters (ARV, RMS, TMCfArea_12, TMCfMax_12, TMCfArea_4 and TMCfMax_4) and the LI levels. 

 

  R p 

LI vs ARV 0,608 < 0.001 

LI vs RMS 0,687 < 0.001 

LI vs Max 0,844 < 0.001 

LI vs TMCfArea_12 0,828 < 0.001 

LI vs TMCfMax_12 0,803 < 0.001 

LI vs TMCfArea_4 0,643 < 0.001 

LI vs TMCfMax_4 0,800 < 0.001 

Table 4.3. The r and p-values of the Pearson test carried out between each of the sEMG parameters, ARV, 

RMS (all calculated on ESL), TMCfArea_12, TMCfMax_12, TMCfArea_4 and TMCfMax_4 and the LI levels. Bold type 

indicates statistical significance. 
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4.1 3 Discussions and Conclusions 
 

In this study, the sEMG activities of the trunk extensor and flexor muscles and forces and moments 

at the L5-S1 joint during the execution of three-dimensional dynamic lifting trials designed using the 

RNLE were investigated. In particular, three lifting conditions with a progressively increase of LI 

(LI=1, LI=2 and LI=3) were analyzed. A correlation analysis was also performed between the sEMG 

parameters and forces and moments at the L5-S1 joint, hypothesizing that a quantitative sEMG-

based Lifting Risk Recognition Tool can be used as a risk assessment method in association with the 

NIOSH protocol. sEMG has previously been used in sEMG-assisted models and methods developed 

for continuous estimates of low back compression during whole-body free dynamic lifting [22-23]. 

Ranavolo and colleagues [5] showed that the sEMG-based indices, particularly co-activation values, 

increased with LI increment. Furthermore, Le et al. [24] developed an EMG-based coactivation index 

for the lumbar spine to assess complex dynamic tasks (i.e. task ergonomics) and to develop 

rehabilitation strategy. 

Furthermore, sEMG is increasingly being applied in ergonomic investigations throughout the world 

[1] thanks to miniaturization process and the introduction of wireless probes.  

The results of this study did not reveal any differences, in any of the lifting conditions, between the 

right and left trunk muscle sEMG activities. Indeed, even though the analysis took into account both 

symmetrical and asymmetrical tasks, no differences emerged between the right and left sides of the 

trunk in the ARV, RMS or Max calculated on the same muscles. 

No differences between right and left side in asymmetric tasks with the same LI, may be caused by 

the small 30 degree asymmetry angle. This finding suggests that, for symmetric and asymmetric 

tasks (with small 30 degree asymmetry angle), an instrumental sEMG-based tool designed for risk 

assessment purposes could take into consideration a halved number of trunk muscles parameters 

(six instead of twelve).  
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Furthermore, the statistical analysis performed on our data highlighted that the ARV and Max, 

calculated for all the trunk extensor muscles and for the flexor muscle RAS, are influenced by the 

risk levels and that they significantly increased with the LI (Table 4.1 and Figure 4.2). Similar findings 

were observed for the RMS of the ESL, ESI and LD. These trends show that the ARV, RMS and Max 

are reliable indicators of the greater muscle involvement resulting from the increased level of 

physical stress. In particular, when we compared the three different lifting conditions (LI 1 versus 2, 

1 versus 3 and 2 versus 3), the ESL proved to be the only trunk extensor muscle for which every ARV, 

RMS and Max amplitude parameter discriminates each of pairs with different LI level (Table 4.2 and 

Figure 4.2). The ARV and RMS of the flexor muscle RAS were found to be the parameters that 

discriminate each of the risk level pairs. With a view to further reducing the number of muscles to 

be acquired, these findings suggest that the ESL and RAS may be used to correctly interpret low-, 

medium- and high-risk jobs. Indeed, it may be possible to calculate the ARV, RMS and Max for the 

ESL, and the ARV alone for RAS, to obtain reliable results, thereby restricting the analysis required 

to only two muscles. Obviously, the attained results, as well as the possibility of reducing the 

number of muscles to be acquired to only two muscles, must be strengthened by other experiments 

in which the same values of LI (LI=1, 2 and 3) are obtained based on other several combinations of 

multiplier values (i.e. by exploring higher values of asymmetry). The appropriateness of the ARV, 

RMS and Max as sEMG signal amplitude estimators has previously also been reported in the 

scientific literature [1, 15, 25]. The ARV and RMS are linearly related in case of a Gaussian signal 

distribution and provide an overall estimate of the muscle activity within the cycle. The ARV is widely 

used because of its high precision [25] and linear relationship to force [26], and the RMS because of 

its direct relationship to signal power [27]. The Max provides a local estimate of sEMG activity 

related to the maximal effort of the muscle within the cycle. In the light of these considerations, we 
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think that the ARV and RMS could be particularly useful to discriminate globally the low-, medium- 

and high-risk jobs. 

The systematic increased activity of both the extensor and flexor muscles of the trunk related to an 

increasing LI is congruous with the need for improved spinal stability achieved by recruiting 

antagonistic co-activation (Figure 4.3) [5, 22-23,28-30]. Unfortunately, co-activation contributes to 

a reduction in the net moments at the L5-S1 joint and to a 12-18% increase of the spinal load, which 

in turn increases the risk of LBDs [5, 22, 27]. However, trunk muscle co-activation is generally 

recruited to balance the risk of injury associated with tissue overload and the risk of spinal 

instability. We calculated the co-activation by using TMCf [5] and considering both twelve and four 

muscles (right and left ESL and RAS). The statistical inference made on the co-activation indices 

TMCfArea and TMCfMax did not reveal any differences between TMCfArea_12 and TMCfArea_4 or 

between TMCfMax_12 and TMCfMax_4. These findings indicate that it may be possible to reduce the 

number of muscles included in the analysis, focusing on only the ESL and RAS, though it would be 

necessary to acquire data from both the right and left sides in this case. Like some of the sEMG 

parameters, TMCfArea and TMCfMax increased significantly in parallel with the risk levels (Figure 4.3), 

thereby showing that these indices also correctly represent the greater co-activation resulting from 

the increased level of physical stress. The post-hoc analysis performed on TMCfArea and TMCfMax also 

showed that the algorithm used to calculate the co-activation discriminates all the pairs with 

different LI (1 versus 2, 1 versus 3 and 2 versus 3). This result suggests, as it has previously been 

recommended [5], that the co-activation index should be included in the construction of any sEMG-

based Lifting Risk Recognition Tool.    

Lastly, the Pearson test highlighted a moderate linear correlation between some sEMG parameters 

considered and some kinetic variables at the L5-S1 joint level. In more detail, the Max correlates with 

all the longitudinal (p=0.037), transversal, compression (p=0.041) and shear forces and moments 
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(Figure 4.5). This indicates that the maximum value of the ESL activity detected within the lifting 

cycle mildly correlates with the factors that damage the L5-S1 joint and that a higher Max value 

corresponds to an increased load at the L5-S1 joint (Figure 4.5). The other parameters, i.e. the ARV, 

RMS, TMCfArea and TMCfMax, correlate with 𝐹𝑡𝑟𝑎𝑛𝑠𝐿5−𝑆1, 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1 and 𝑀𝐿5−𝑆1, though not with 

𝐹𝑙𝑜𝑛𝑔𝐿5−𝑆1, and 𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1 (Figure 4.5). The lack of any correlation between the sEMG 

parameters and longitudinal and compression forces is probably due to the fact that lifting trials 

generate spinal loads that are influenced by lifting dynamics (i.e. flexed liftings) [22]. An increased 

LI may be a function of the trunk flexion (Figure 4.4 a)) and of the transverse force component. 

Figure 4.4 shows the kinematics (trunk flexion-extension), kinetics (forces and moments at L5-S1 

joint) and electromyography in the cycle of a representative subject. These curves strengthened the 

obtained results. Indeed, the figure clearly shows that trunk flexion-extension,  𝐹𝑙𝑜𝑛𝑔𝐿5−𝑆1, 

𝐹𝑡𝑟𝑎𝑛𝑠𝐿5−𝑆1, 𝐹𝑐𝑜𝑚𝑝𝑟𝐿5−𝑆1, 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1, 𝑀𝐿5−𝑆1, sEMG activity and co-activation increase with 

increasing LI.   

Moreover, it also shows that the forces that most clearly represent the risk levels are 𝐹𝑡𝑟𝑎𝑛𝑠𝐿5−𝑆1 

and 𝐹𝑠ℎ𝑒𝑎𝑟𝐿5−𝑆1, which are those that correlate most closely with the other parameters 

investigated.   

The experimental data support the proposed hypothesis by demonstrating that a sEMG-based lifting 

risk recognition tool based on the ARV and/or RMS and/or Max (calculated on ESL) and TMCf, as 

well as the instrumental tool based on kinematic measurements (see chapter 3) would serve as an 

extremely useful instrumental risk assessment method if referred to the set of conditions studied.  

According to our experimental setup, a sEMG-based Lifting Risk Recognition Tool could be designed 

in a number of ways, one of which is to consider one (i.e. RMS or Max or TMCfMax_4), two (i.e. RMS 

and Max) or three (i.e. RMS, Max and TMCfMax_4) criteria of risk classification, as shown in Figure 

4.6 and 4.7.  
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Figure 4.6. A sEMG-based Lifting Risk Recognition Tool designed by considering one criterion of risk 

classification: RMS (a), Max (b) or TMCfMax_4 (c). Low-, medium- and high- risk jobs are recognized by error 

bars (in the left side of each panel). Real low-, medium-, high and very high-risk jobs are identified by 

histograms. LI=? histograms denote ranges for which it is not possible to make a choice of risk jobs. 

 
 

Figure 4.7. A sEMG-based Lifting Risk Recognition Tool designed by considering two and three criteria of risk 

classification: RMS-Max (a) and RMS-Max-TMCfMax_4 (b). Areas and volumes associated to low-, medium- 

and high- risk jobs are built according to the criterion used in the definitions of intervals in Figure 4.6. 

 

The Lifting Risk Recognition Tool was built considering: low risk jobs as the interval between 0 and 

[mean+SD of LI=1] (all values under [mean-SD of LI=1] were associated with low risk jobs); medium 

risk jobs as the interval between [mean-SD of LI=2] and [mean+SD of LI=2]; high risk jobs as the 

interval between [mean-SD of LI=3] and [mean+SD of LI=3]. The values included in two different 

intervals or in any interval (LI=? in Figure 4.6), represent ranges for which it is not possible to make 

a clear choice because they should be associated with two different type of risk jobs. Whereas values 

above the high risk zone indicate very high-risk jobs (LI=Very high-risk in Figure 4.6).  

In particular, considering one criterion based on RMS (Figure 4.6 (a)) or TMCfMax_4 (Figure 4.6 (c)), 

values within the range 0-[mean-SD of LI=2], [mean+SD of LI=1]-[mean-SD of LI=3]  and [mean+SD 
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of LI=2]-[mean+SD of LI=3]  indicate real low-(LI=1 in Figure 4.6), medium-(LI=2 in Figure 4.6) and 

high-(LI=3 in Figure 4.6) risk jobs, respectively. Values included in two intervals ([mean-SD of LI=2]-

[mean+SD of LI=1] and [mean-SD of LI=3]-[mean+SD of LI=2]) represent ranges for which it is not 

possible to make a clear choice. As regards Max (Figure 4.6 (b)), values within the range 0-[mean-

SD of LI=2], [mean+SD of LI=1]-[mean+SD of LI=2] and [mean-SD of LI=3]-[mean+SD of LI=3] indicate 

real low-(LI=1 in Figure 4.6), medium- (LI=2 in Figure 4.6) and high-(LI=3 in Figure 4.6) risk jobs, 

respectively. Values included in two intervals ([mean-SD of LI=2]-[mean+SD of LI=1]) and values not 

included in any intervals ([mean+SD of LI=2]-[mean-SD of LI=3]) represent ranges for which it is not 

possible to make a clear choice.  

Methods with two and three criteria of classification should adopt different areas and volumes, as 

shown in Figure 4.7. Values of two (Figure 4.7 (a)) or three (Figure 4.7 (b)) parameters are reported 

on the axes in order to build areas and volumes associated to low-, medium- and high- risk jobs 

according to the definitions of intervals of above mentioned.  It goes without saying that the power 

of the approach, defined as the ability of the test to detect an effect, if any effect does exist, would 

increase in parallel with the number of risk classification criteria.       

 

4.1.3.1 Limitations and developments 

A possible limitation of this method may be its application to the assessment of composite or 

sequential [31, 32] manual lifting jobs in which there are significant differences in lifting trials 

performed concurrently or in which workers rotate between a series of manual lifting rotation slots 

or elements. Furthermore, EMG-based indices would be considered as frequency-independent and 

single-task. This limitation may, however, be regarded as negligible because although the 

mechanical load on the body is not the only causative factor, it is likely to be by far the most 

important [1]. Another limitation of this approach is the impossibility to acquire all the trunk muscles 

involved in the lifting task, which would yield a more detailed analysis. Indeed, European 
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Recommendations for Surface Electromyography [7] and the atlas of muscle innervation zones [8] 

do not allow the internal and external abdominal obliques to be recorded, as has previously been 

done in other studies [33]. The technical limitations of the study are largely related to the sEMG 

approach, and include the presence of crosstalk muscle signals, electrode-skin impedance, noise 

and other problems linked to the electrode location, size, configuration and distance [34]. To 

minimize these problems, the European Recommendations for Surface Electromyography [7] and 

the atlas of muscle innervation zones [8] as references were used. Finally, another limitation of this 

study is the use of only male workers, although gender aspects are important, and they may lead to 

different results.  

This study could be further developed by: i) enlarging the sample recruited; ii) widening the range 

of lifting task types with the same LI but changing the multiplier values; iii) testing lifting trials with 

LI values lower than 1, between 1 and 2, and between 2 and 3; iv) analyzing the choice criteria 

changes due to lifting while seated or kneeling, in a restricted work space, unstable objects, with 

high speed motion, with unreasonable foot-floor coupling, temperature and humidity, work 

experience, sex, age,  etc. For instance, a faster lifting pace increases the demands made on trunk 

muscle recruitment above all in the initial phase [35].  

Finally, as already done in other studies, task and evaluation methods [36-37], a real-time body 

sensors network including IMUs and sEMG sensors could be tested to monitor workers during lifting 

activities by measuring muscular efforts and postures for WLBDs prevention according to the RNLE.  

 

4.2 STUDY N°2: LIFTING ACTIVITY ASSESSMENT USING SURFACE ELECTROMYOGRAPHIC 
FEATURES AND NEURAL NETWORKS 
 
The aims of this work were to: 1) identify the most sensitive trunk muscles with respect to changes 

in lifting conditions based on the selected sEMG features and 2) test whether machine-learning 
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techniques (artificial neural networks) used for mapping time and frequency sEMG features on LI 

levels can improve the biomechanical risk assessment. 

 

4.2.1 Materials and Methods 

4.2.1.1 Subjects 

Ten male participants (mean age = 32.50 ± 7.63 years, body mass index [BMI] = 25.00 ± 2.57 kg/m2) 

were recruited in the study. The participants had no history of musculoskeletal disorders; upper-

limb, lower-limb, or trunk surgery; orthopedic or neurological diseases; vestibular system disorders; 

visual impairments; or back pain. All participants provided informed consent prior to participating 

in the study, which complied with the Helsinki declaration. No information regarding the expected 

results was provided to avoid bias.  

4.2.1.2 Data recordings 

An optoelectronic motion analysis system (SMART-DX 6000 System, BTS, Milan, Italy) consisting of 

eight infrared cameras (sampling frequency, 340 Hz) was used to track the movements of one 

spherical marker (15-mm diameter) covered with an aluminum powder reflective material placed 

over the vertex of a load consisting of a plastic crate.  

Surface myoelectric signals were acquired as in 4.1.1.2.  

Data acquired from the optoelectronic cameras and surface electromyography were synchronized. 

4.2.1.3 Experimental Procedures 
 
The experimental procedures were the same of in 3.1.3 with the Task B, D and F of Table 3.2. 

4.2.1.4 Data analysys  

The Lifting Cycle definition was performed as in 3.1.4.1. Then the sEMG signals were processed as 

follows: the iMVC and the sEMG raw data of each lifting task were band-pass filtered using a fourth-
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order Butterworth filter of 30–400 Hz to reduce artifacts and other components of high-frequency 

noise [12, 13]. 

From these signals, analyses of time and frequency domains were performed. 

As regards time domain, from the processed sEMG signals of each lifting task (see 4.1.1.4), the Max 

and the ARV within the cycle where calculated to characterize differences in the sEMG activity 

among the different lifting conditions.  

As regards, frequency domain, using the band-pass filtered sEMG data recorded during lifting tasks 

and iMVC, the power spectral density was estimated by using the Yule-Walker’s approach on the 

signal portion recorded during the detected lifting cycle: the autoregressive parameters were 

estimated using Levinson Durbin recursion with a model order p = 15 [38]. For each muscle, the 

mean frequency (MNF), defined as the gravity center frequency of the power spectrum (it gives 

information on physiological phenomena that occur in the muscle during contraction) of the signal, 

was calculated as: 

𝑀𝑁𝐹 =
∫ 𝑓 ∗ 𝑃(𝑓)𝑑𝑓

∞

0

∫ 𝑃(𝑓)𝑑𝑓
∞

0

 

 

and the median frequency (MDF), which divides the spectrum into two parts of equal power: 

 

∫ 𝑃(𝑓)𝑑𝑓 = ∫ 𝑃(𝑓)𝑑𝑓 =
∞

𝑀𝐷𝐹

𝑀𝐷𝐹

0

1

2
∫ 𝑃(𝑓)𝑑𝑓

∞

0
. 

 
where P(f) is the power spectral density and f is the frequency vector. 

For each muscle, both MNF and MDF related to the lifting tasks were normalized to the MNFMVC 

and MDFMVC calculated from the iMVC power spectral densities for each participant, respectively.  
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4.2.1.5 Statistical analysis of sEMG features  

All of the statistical analyses were performed using SPSS 17.0 software (SPSS Inc., Chicago, IL, USA). 

The Shapiro-Wilk and Kolmogorov-Smirnov tests were used to analyze the normality of the data. 

For each muscle, we performed one-way repeated-measures analysis of variance (ANOVA) to 

determine whether LI levels determine significant changes in time and frequency features. Post-hoc 

analyses were performed using a paired t-test with Bonferroni’s corrections when significant 

differences were observed in the ANOVA results. p values < 0.05 were considered statistically 

significant. Furthermore, for each lifting condition and feature, we applied a parametric paired-

samples t-test to detect any differences between the right and left muscles. 

  

4.2.1.6 Selection of the neural networks (chosen machine-learning technique) and mapping of 

sEMG features on LI levels 

A neural network approach based on sEMG features was used to estimate the biomechanical risk in 

terms of LI. To reach this objective in a parsimonious and computationally efficient way, ANNs were 

trained using only the most significant features/muscles identified in the analysis described in the 

previous paragraph 2.6. All of the trained networks are feedforward ANNs that were trained using 

different feature combinations. The networks differ in the topology showing different numbers of 

hidden layers and different numbers of neurons in each hidden layer. The output set (OS) consisted 

of an orthogonal coding of the three LI levels: L1 = [1 0 0], L2 = [0 1 0], and L3 = [0 0 1]. The entire 

system is schematically described in the Figure 4.8. 

The number of hidden layers varied in the range of 1–3, while the number of neurons in each 

hidden layer varied based on the number of nodes N in the first hidden layer (NL1); N was set to two 

different values (20 and 50, respectively), and the number of nodes in the other hidden layers (when 

defined) was 1/2 and 1/3 of N for the second (NL2) and third (NL3) hidden layer, respectively. Thus, 
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the combination of L layers and N nodes in the first hidden layer led to the following six different 

network architectures ([dim(SET) NL1 OS], [dim(SET) NL1 NL2 OS], [dim(SET) NL1 NL2 NL3 OS]): [dim(SET) 

20 3], [dim(SET) 50 3], [dim(SET) 20 10 3], [dim(SET) 50 25 3], [dim(SET) 20 10 7 3], and [dim(SET) 50 

25 17 3], where dim(SET) defines the size of the ANN input layer (depending on the number of sEMG 

features). 

Six different training sets were used: SETi, i=1,…6. Each set was defined as a combination of 

different sEMG features. SET1 contained only time features (ARV and Max), SET2 contained only 

frequency features (MNF and MDF), and SET3 contained both time and frequency features. SET4, 

SET5, and SET6 were defined in the same way as SET1, SET2, and SET3 but contained one additional 

feature related to the participants’ BMI. Networks were trained with a supervised approach using 

the Levenberg-Marquardt back-propagation algorithm [39]. The training was stopped when at least 

one of the following conditions was met: 1000 iterations, 10-6 mean square error, or six consecutive 

fails on the validation set. 

 
Figure 4.8. A schematic description of the lifting task and artificial neural network method used to map 

surface electromyography features on the Lifting Index (1, 2, and 3) levels. 

C, hand-to-object coupling; D, vertical travel distance; H, horizontal location; L, load weight; V, vertical 

location. 
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Each of the six network topologies was trained ten times for each of the six training sets so as to 

obtain a total of 360 trained ANNs. Each training was characterized by a different random 

initialization (i.e. weights and bias values), and by using a random 10% of samples as the validation 

set and a random 10% as the testing set. This approach was used in order to verify the repeatability 

of our results. For each trained network, a confusion matrix was calculated based on the real LI and 

the one estimated on the randomly extracted testing set. 

The mean 3 × 3 confusion matrix was then obtained by averaging the confusion matrixes of the 

trained ANNs. A performance parameter (P) was calculated as the mean (%) of the elements on the 

diagonal of the mean confusion matrix, where 100% indicates the absence of misclassifications. 

 

4.2.1.8 Statistical analysis of ANNs performance 

We performed a three-way ANOVA test (with training set, L, N as factors) to determine possible 

significant effects on ANN performance caused by the listed factors. Post-hoc analysis with 

Bonferroni’s corrections were performed when significant differences were observed in the ANOVA 

results. P values < 0.05 were considered statistically significant.  

 

4.2.2 Results  

4.2.2.1 Time and frequency feature analysis 

The repeated-measures ANOVA revealed a significant effect of LI on ARV and Max for all muscles 

except RAM on both sides. A significant effect of LI was also observed on both MNF and MDF for 

ESL, M, and RAM on both sides (Table 4.4).  

Table 4.5 shows the p values of the paired t-test with Bonferroni’s corrections for ARV, Max, 

MNF, and MDF of all the investigated muscles, which highlight the differences between pairs of LI. 

Significant differences and means with standard deviations of the ESL are shown in Figure 4.9. 
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From Table 4.5 emerges that the most significant difference between pairs of LI (1 versus 2, 1 

versus 3, 2 versus 3) is explained by right and left ESL. Since no statistically significant differences 

were found between the right and left muscles in any of the sEMG features (p > 0.05), the following 

results will refer only to the right ESL (Figure 4.9). For what concerns ANNs, based on the results of 

the statistical analysis, the size of the corresponding input layer was 2 for SET1 and SET2, 4 for SET3, 

3 for SET4 and SET5, and 5 for SET6. 

 

 
 RIGHT LEFT 

 
 

ESL ESI M LD RAS RAM ESL ESI M LD RAS RAM 

Max 

F 149.027 7.490 6.653 11.579 7.147 2.782 56.869 24.394 11.844 17.889 8.685 1.124 

df 2 2 2 2 2 2 2 2 2 2 2 2 

p <0.001 0.004 0.007 0.001 0.005 0.089 <0.001 <0.001 0.001 <0.001 0.002 0.320 

ARV 

F 39.122 6.668 5.978 13.427 28.705 2.431 28.014 5.203 15.789 14.556 17.330 2.824 

df 2 2 2 2 2 2 2 2 2 2 2 2 

p <0.001 0.007 0.010 <0.001 <0.001 0.116 <0.001 0.016 <0.001 <0.001 <0.001 0.051 

MNF 

F 60.557 0.359 55.692 1.040 0.995 3.042 48.995 1.291 14.177 1.107 1.519 11.759 

df 2 2 2 2 2 2 2 2 2 2 2 2 

p <0.001 0.703 <0.001 0.374 0.389 0.052 <0.001 0.299 <0.001 0.352 0.246 0.001 

 F 39.056 1.027 30.902 1.405 1.263 2.999 31.095 0.711 10.903 0.340 2.490 8.191 

MDF df 2 2 2 2 2 2 2 2 2 2 2 2 

 p <0.001 0.341 <0.001 0.271 0.298 0.105 <0.001 0.504 0.004 0.716 0.056 0.003 

 
Table 4.4. The F, df and p-values of the repeated measures ANOVA considering the Max, ARV, MNF and 

MDF in the three lifting conditions (LI=1, LI=2 and LI=3) for the twelve muscles bilaterally. Bold type 

indicates statistical significance. Max, maximum value; ARV, average rectified value; MNF, mean frequency; 

MDF, median frequency; LI, Lifting Index; ESL, erector spinae longissimus; ESI, erector spinae iliocostalis; M, 

multifidus; LD, latissimus dorsi; RAS, rectus abdominis superior; RAM, rectus abdominis middle muscles. 
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Figure 4.9. Means and standard deviations of time (ARV and Max) and frequency (MNF and MDF) features 

related to right erector spinae longissimus (ESL) during the manual lifting tasks with three LI levels. 

*Significant differences on post-hoc analysis. ARV, average rectified value; Max, maximum value; MNF, 

mean frequency; MDF, median frequency; ESL, erector spinae longissimus; LI, Lifting Index. 

 
 

 
 

RIGHT LEFT 

 LI ESL ESI M LD RAS RAM ESL ESI M LD RAS RAM 

Max 

1 vs 2 <0.001 0.001 0.012 0.002 0.849 - <0.001 0.001 0.001 0.002 0.128 - 

1 vs 3 <0.001 0.058 0.008 0.017 0.047 - <0.001 <0.001 0.009 0.003 0.030 - 

2 vs 3 <0.001 1.000 1.000 0.257 0.007 - 0.005 0.109 0.255 0.722 0.082 - 

ARV 

1 vs 2 <0.001 <0.001 0.102 0.009 0.001 - 0.001 0.001 <0.001 0.001 0.001 - 

1 vs 3 <0.001 0.093 0.015 0.014 <0.001 - <0.001 0.202 0.007 0.007 0.003 - 

2 vs 3 0.035 1.000 1.000 0.041 0.012 - 0.048 1.000 1.000 0.799 0.069 - 

MNF 

1 vs 2 <0.001 - 0.004 - - - 0.001 - 0.162 - - 0.480 

1 vs 3 <0.001 - <0.001 - - - <0.001 - 0.007 - - 0.016 

2 vs 3 0.003 - <0.001 - - - <0.001 - 0.002 - - 0.012 

 
1 vs 2 0.002 - 0.025 - - - 0.032 - 0.504 - - 1.000 

MDF 
1 vs 3 <0.001 - <0.001 - - - <0.001 - 0.014 - - 0.020 

 
2 vs 3 0.001 - <0.001 - - - 0.001 - 0.001 - - 0.035 

 
Table 4.5. The p-values of the paired t test with Bonferroni’s corrections between pairs of different LI levels 

for the Max, ARV, MNF and MDF for the twelve muscles bilaterally. Bold type indicates statistical 

significance. Max, maximum value; ARV, average rectified value; MNF, mean frequency; MDF, median 
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frequency; LI, Lifting Index; ESL, erector spinae longissimus; ESI, erector spinae iliocostalis; M, multifidus; LD, 

latissimus dorsi; RAS, rectus abdominis superior; RAM, rectus abdominis middle muscles. 

 

4.2.2.2 Mapping of sEMG features on LI levels 

Three-way ANOVA showed significant effects of multiple factors on the performances considering 

training set (p<0.001), L (p<0.001) and N (p<0.001).  

Significant differences (p<0.001) emerged from post-hoc analysis when comparing each topology 

performance when trained with SET1, SET2 and SET3 with the corresponding topology performance 

when trained with SET4, SET5 and SET6. Further details are reported in the following paragraphs. 

Mapping with time features  

The results of the detection expressed as P (mean ± SD) for each combination of L and N, for each 

of the six architectures of the ANNs, and with SET1 (only time features) and SET4 (time features and 

BMI) as training sets are reported in Figure 4.10. SET4 shows higher performance values (P(L=1, 

N=20)=72.17±5.76; P(L=1, N=50)=75.30±4.87; P(L=2, N=20)=75.24±5.70; P(L=2, N=50)=77.44±5.13; P(L=3, 

N=20)=75.20±5.55; P(L=3, N=50)=76.64±4.21) than SET1 (P(L=1, N=20)=64.80±6.47; P(L=1, N=50)=67.94±4.62; 

P(L=2, N=20)=66.34±5.58; P(L=2, N=50)=67.80±6.79; P(L=3, N=20)=66.15±7.78; P(L=3, N=50)=66.38±5.63) 

suggesting that BMI information leads to a higher predictive value for the ANNs. 

Mapping with frequency features 

The results of the detection expressed as P (mean ± SD) for each of the six ANN architectures, with 

SET2 (with only frequency features) and SET5 (with frequency features and BMI) as training sets, are 

reported in Figure 4.10. Regarding the frequency analysis, BMI features, in addition to frequency 

features in the input set, slightly improved the network performance (SET5: P(L=1, N=20)=67.07±4.98; 

P(L=1, N=50)=74.33±5.07; P(L=2, N=20)=67.37±7.01; P(L=2, N=50)=75.10±4.84; P(L=3, N=20)=70.61±6.38; P(L=3, 

N=50)=74.48±5.04; SET2: P(L=1, N=20)=63.43±3.72; P(L=1, N=50)=64.10±4.45; P(L=2, N=20)=62.55±5.87; P(L=2, 

N=50)=63.37±4.47; P(L=3, N=20)=65.10±2.63; P(L=3, N=50)=64.34±4.50). Furthermore, the network 
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configuration with three layers and 50 neurons in the first layer led to higher P values than the other 

architectures. 

 

 
Figure 4.10. Performance of artificial neural networks considering only time features (ARV and Max), only 

frequency features (MNF and MDF), and both time and frequency features. One additional feature related 

to the participants’ BMI was considered for each combination of different kinds of sEMG features. Six 

different architectures of neural networks were represented by varying the numbers of hidden layers (1, 2, 

or 3) and the numbers of neurons in each hidden layer based on the numbers of nodes N in the first hidden 

layer. For each SETi, the best mean confusion matrix was reported. ARV, average rectified value; BMI, body 

mass index; Max, maximum value; MDF, median frequency; MNF, mean frequency; sEMG, surface 

electromyography. 
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Multi-domain mapping 

For each of the six network architectures, considering SET3, which contained frequency and time 

features, and SET6, which contained time, frequency, and BMI features, the performances (P = mean 

± SD) for each combination of L and N are reported in Figure 4.10. SET6 (P(L=1, N=20)=77.19±6.72; P(L=1, 

N=50)=79.13±5.52; P(L=2, N=20)=79.42±6.26; P(L=2, N=50)=81.83±4.67; P(L=3, N=20)=78.45±6.55; P(L=3, 

N=50)=83.10±4.28) performed better than SET3 (P(L=1, N=20)=72.51±5.49; P(L=1, N=50)=73.50±5.86; P(L=2, 

N=20)=75.83±6.52; P(L=2, N=50)=76.74±4.59; P(L=3, N=20)=77.15±5.16; P(L=3, N=50)=75.90±4.61). In particular, 

the best network configuration is composed of three layers and 50 neurons in the first hidden layer 

with SET6 as the input set. 

  

4.2.3 Discussions and Conclusions 

In this study, the sEMG activities of the trunk extensor and flexor muscles during the 

execution of three-dimensional dynamic lifting trials designed using the RNLE were investigated. 

Starting from lifting tasks with a specific LI identified by the NIOSH equation [32] in a controlled 

environment, each above-mentioned lifting task was characterized in terms of biomechanical risk 

using the sEMG features analysis. The results obtained in this work from sEMG time and frequency 

features are significantly related to LI for specific trunk muscles. Based on these findings, a 

quantitative machine-learning approach based on artificial neural networks was used to predict the 

biomechanical risk directly from sEMG features, showing that proper combinations of input features 

and network architectures can lead to good classification results. 

 

4.2.3.1 Neuromechanical aspects related to the findings 

Three lifting conditions with a progressive increase of LI (LI = 1, LI = 2, and LI = 3) were analyzed 

and the statistical analysis performed on the data highlighted that the ARV, Max, MNF, and MDF are 
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reliable indicators of the greater involvement of erector spinae longissimus muscle and different 

muscle fiber recruitment strategies. The study results did not reveal any differences in any of the 

lifting conditions between the right and left trunk muscles regardless of dominant side. This finding 

suggests that an instrumental sEMG-based tool, designed for risk assessment purposes, could 

consider a halved number of trunk muscles (six instead of twelve). In particular, when comparing 

the three different lifting conditions (LI 1 versus 2, 1 versus 3, and 2 versus 3), the ESL proved to be 

the only trunk extensor muscle for which every feature (ARV, Max, MNF, and MDF) was able to 

significantly discriminate each pair of LI (Table 4.5 and Figure 4.9).  

This result might indicate that ESL is a functional muscle with high sensitivity to the risk 

conditions during lifting and largely contributes to the different phases of the analyzed task. The 

erector spinae muscles are described as extensors of the trunk that remained relaxed during the 

initial lifting of the weight and became vigorously active when the weight was lifted. This activity 

continued with diminishing intensity until the upright position was reached. Its proper activation is 

critical to maintain trunk posture without pain and further injury to complete the movement [40]. 

With the aim of further reducing the number of muscles to be acquired, these findings suggest 

that the ESL may be used to correctly classify low, medium-, and high-risk jobs/lifting tasks. Indeed, 

it may be possible to calculate the ARV, Max, MNF, and MDF for the ESL to obtain reliable results, 

thereby reducing the required analysis to only one muscle.  

 

4.2.3.2 Use of machine-learning for automatic LI classification 

The sEMG features in the time and frequency domains were successfully used to classify human 

motor activities in different applications. The use of ARV and Max as sEMG signal amplitude 

estimators as well as MDF and MNF as sEMG frequency features have also been reported previously 

in the scientific literature [1, 16, 25, 41]. 
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The potentially complex function linking sEMG time and frequency features to LI levels justifies 

the use of machine-learning techniques for the identification of the input-output relationship. For 

this reason, a neural network approach has been used to solve this problem and thus classify 

different biomechanical risks associated with lifting tasks.  

Zurada et al. [42] and Chen et al. [43-44] used ANN approaches to predict musculoskeletal 

disorder risks by analyzing work activities and using mechanical variables representing potentially 

risky factors for developing LBDs as input. In our study, to reach this objective in a parsimonious and 

computationally efficient way, neural networks were trained using only sEMG features extracted 

from a single muscle (right ESL) coming from the analysis of all of the recorded muscles with the 

advantage of having information on the neurophysiological signal strictly related to the mechanical 

outcome.  

All the networks are feed-forward neural networks trained with different training sets, numbers 

of hidden layers, and numbers of neurons in each hidden layer. Considering SET4 as the input set, 

which contained time features with the additional feature related to the BMI, the results in terms 

of classification accuracy suggest that the neural network is more powerful than the one obtained 

considering SET1 as the input set, containing only time features without BMI (Figure 4.10). This result 

suggests that BMI correction helps neural network performance, indicating that a sole amplitude 

normalization of sEMG data is insufficient. Indeed, the experimental protocol was defined according 

to the RNLE (equation (1)) which does not take into account the anthropometric features of the 

participants when defining the parameters (i.e. load constant is always 23 kg independently from 

anthropometric features) and the subject-specific link between the amount of muscular activation 

and the lifted load. Participants with a significantly different BMI might have a substantially different 

MVC, so that the percentage of muscular activity for performing the same task might not be 

indicative of the biomechanical risk. 
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The frequency analysis results (Figure 4.10) confirm the importance of considering the BMI and 

frequency features (SET5) to estimate the biomechanical risk in terms of LI. These results seem to 

suggest that, since BMI influences fiber recruitment, as changes in muscle activity are influenced by 

BMI values [45], using frequency features in combination with BMI values helps improve 

classification power.  

The combination of both time and frequency features (SET3) led to significantly higher 

performance than SET1 and SET2 (Figure 4.10). Furthermore, considering the additional feature of 

BMI as input (SET6), the predictive power of the networks significantly increased with respect to the 

other input sets (Figure 4.10). SET6 showed the best results with a network architecture of three 

hidden layers and 50 neurons composing the first hidden layer. This result suggests that, when using 

only multi-domain features, more complex network architectures lead to an improved 

biomechanical risk classification during lifting tasks. 

From a general point of view, it is worth highlighting that errors never imply misclassification 

between LI 1 and LI 3 that represent the least and riskiest situations. Particularly, considering that 

SET6 showed the best performance, the real LI = 1 is well recognized for 89.1% and is misclassified 

with LI = 3 accounting for only 0.7%, while the real LI = 3 is correctly recognized for 76.4%, and it is 

misclassified with LI = 1 accounting for only 5.6%, which constitutes a desired and acceptable 

behavior of the LI classifier. 

 

4.2.3.3 Limitations 

The possibility of reducing the number of muscles to only one must be certified by another 

experimental setup in which the same values of LI (LI = 1, 2, or 3) are created playing with different 

combinations of parameters as defined in the RNLE equation. For instance, asymmetrical tasks could 
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imply the presence of differences in sEMG features between the right and left sides of the body. 

This could lead to a generalization of the used approach for practical application on the field. 

In the experimental set-up, the effect of muscle fatigue on the sEMG features was not 

considered. Indeed, the muscle fatigue phenomenon might occur after a prolonged or repetitive 

working activity characterized by high lifting frequencies, while our lifting task has a very low 

frequency (≤2 lifts/min) and is executed in a short period of time. The change of sEMG time and 

frequency features with the development of muscle fatigue [46] might require real-time adaptation 

of the classifier. 
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CHAPTER V 

5. ASSESSMENT OF FATIGUING LIFTING ACTIVITY 
USING INERTIAL MEASUREMENT UNITS, BIPOLAR 
AND HIGH-DENSITY sEMG IN BOTH HEALTY SUBJECTS 
AND PEOPLE WITH LOW BACK PAIN 
 

In several studies carried on during this thesis work kinematic (see chapter 3) and surface 

electromyography (sEMG) (see chapter 4) indices extracted from signals acquired during the 

execution of lifting tasks and analysed via machine-learning techniques (artificial neural networks, 

(see chapter 4), have been used to classify the biomechanical risk. Findings of these studies show 

how the instrumental-based indices are positively correlated with unitary increments of LI (Lifting 

Index calculated by using the revised NIOSH lifting equation, [1,2]) and compression and shear 

forces at the lumbar and sacral level of the spine (5th lumbar and 1st sacral vertebra). These results 

suggest a promising use of Inertial Measurement Units (IMUs) and sEMG sensors in developing 

instrumental-based risk assessment tools in either the laboratory or workplace.  

However, the quantitative indices, introduced in the previous studies, would be considered as 

frequency-independent and single-task without considering, among the others, fatigue 

phenomenon. The measurement of sEMG parameters to estimate muscle fatigue have been 

hypothesized to take into account the effect of lifting frequencies and fatigue on the risk classes.  

Furthermore, the previous studies dealt with healthy subjects without considering what’s happen 

when the worker are people affected by low back pain: can they perform lifting task? Which are the 

limitations for them? Is the biomechanical risk different for them?  
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Indeed, numerous studies have shown changes in trunk muscle activation in LBP, during walking [3-

4], repetitive arm movements [5] and unexpected multidirectional translation perturbations [6]. 

Falla and collegues [7] showed that LBP alters (reducing the variability of muscle activity) the normal 

adaptation of lumbar erector spinae muscle activity to exercise, which was observed when pain-

free individuals performed a repetitive lifting task. 

Thus, in this study conducted in collaboration with the University of Birmingham (where I spent 6 

months of my PhD period), I tried: 1) to define biomechanical risk classes parametrized by 

frequency; 2) to compare the parameter in two population of subjects: healthy subjects (HS) and 

subjects with low back pain (LBP).  

In the following paragraphs the methodology of this study and the first results are reported. 

5.1 MATERIALS AND METHODS 

5.1.1 Subjects 

15 healthy and physically active subjects (HS) and 8 subjects with low back pain (LBPS) were 

recruited in this study according with the following inclusion and exclusion criteria. 

Inclusion criteria:  

• Both females and males are eligible for the study.  

• The age range will be restricted to 18- 60 years to limit age effects on physical measures of the 

lumbar region.  

• Healthy and LBP participants must have the capacity to give the consent at his/her own will. 

• Pain-free participants will be included if they have no relevant history over the last three years 

of back or lower limb pain or injury that limited their function and/or required treatment from 

a health profession. 
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• Individuals with LBP will be considered for the study. 

  

The following definition for Non Specific Low Back Pain (NSLBP) is low back pain which is not related 

to serious pathology and/or does not have a specific cause (also known as simple or mechanical low 

back pain). Chronic refers to a sub type where back pain problem may have persisted at least 3 

months and has resulted in pain on at least half the days in the past 6 months. If possible, 

participants should be willing to refrain from analgesic medication on the day of testing. 

 

Exclusion criteria:  

• Concurrent systemic, rheumatic or neuro-musculoskeletal disorders which may confound 

testing or being currently pregnant.  

• Radicular low back pain or pain related to trauma, fractures, spinal stenosis.  

• Participants with higher doses of opioids (> 30 mg of morphine equivalent dose) will be excluded. 

Participants under active management of LBP by a GP, consultant or therapists (physiotherapist, 

osteopath, chiropractor) less than 3 months before enrolment. 

All the participants gave their informed consent prior to take part in the study, which was complied 

with the Helsinki Declaration and it was approved by the local ethics committee. No information 

regarding the expected results will provide in order to avoid biasing the results. 

Two different analysis were conducted: first only the HS were analyzed to discriminate the levels of 

LI (see paragraph 5.2); then a subgroup of 8 HS (age-sex matched with LBPS) was selected to 

compare the 2 groups of subjects aiming to discriminate the level of risk but also understand how it 

changes when back pain is present (see paragraph 5.3).  
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5.1.2 Questionnaires data 

Questionnaires data were obtained from the participants using REDCap system. Both HS and LBP 

completed the SF-36 Health Survey [8], the Depression, Anxiety, Stress Scales (DASS) [9] and the 

International Physical Activity Questionnaires (IPAQ) [10]. Futhremore the Numeric Rating Scale on 

Low Back Pain intensity and duration, the Pain Catastrophizing Scale (PCS) [11], the Oswestry 

Disability Index [12], the Fear Avoidance Believe Questionnaire [13] and Tampa Scale of 

Kinesiophobia [14] were completed by LBP. Additionally, LBP reported the area where the pain is 

felt by completing a pain drawing through sketch software on an iPad. They drew the area of 

habitual pain in the first session, and the pain before to start the acquisition and after the acquisition 

in each session. Finally, the Visual Analogue Scale (VAS) was used to rate the pain in low back. It was 

used in both Healthy Controls and LBP after the experimental session and before the session and 

each minute during lifting task in LBP. 

5.1.3 Experimental procedures 

The experimental procedure is schematized in the following Figure 5.1. The participants performed 

lifting tasks in three different lifting conditions chosen to obtain the Lifting Index (LI) values of 1, 2, 

and 3 according to the Revised National Institute for Occupational Safety and Health (NIOSH) Lifting 

Equation (RNLE) [2].  

Table 5.1 shows, for each lifting condition, the values of the load weight (L), the horizontal (H) and 

vertical (V) locations, the vertical travel distance (D), the asymmetry angle (A), the lifting frequency 

(F) and the corresponding values of the multipliers (HM, VM, DM, AM, FM, CM). The hand-to-object 

coupling was defined “good” for all 3 lifting tasks. The frequency parameter is (FM) <1 in the 

calculation of LI. Tasks were performed with the subjects standing in a neutral body position and 

lifting a plastic crate (34x29x13) with handles using both hands in three different lifting conditions.  
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The subjects performed the lifting tasks in three different sessions organised on three different days, 

one for each LI. The different lifting trials were randomly executed across the three sessions. The 

three sessions were 78 hours apart and conducted at the same time of the day for each subject to 

avoid confounding effects due to fatigue or daily habits. 

 

Figure 5.1. Experimental procedure. 
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Task LC (kg) H (cm) HM V (cm) VM D (cm) DM A (°) AM F (lift/min) FM C CM L (kg) RWL LI 

A 23 44 0,57 75 0,99 40 0,93 0 1 4 0,83 good 1 10 15 1 

B 23 44 0,57 75 0,99 40 0,93 0 1 11 0,41 good 1 10 7,5 2 

C 23 44 0,57 75 0,99 40 0,93 0 1 15 0,28 good 1 10 5 3 

Table 5.1. For each task (A, B, and C), the values of the load weight (L), the horizontal (H) and vertical (V) 

locations, the vertical travel distance (D), the asymmetry angle (A), the lifting frequency (F) and the hand-to-

object coupling (C) and the corresponding values of the multipliers (HM, VM, DM, AM, FM, CM), the 

recommended weight limit (RWL) and the lifting index (LI). 

 

The lifting tasks duration were 15 minutes or until exhaustion of the subject. The number of 

repetitions was determined by the frequency parameter used to obtain the specific LI of the session. 

We used a timer to monitor the duration of lifting and an acoustic feedback to monitor the 

frequency of tasks. 

In each of the 3 sessions, before the lifting tasks, the subjects performed specific exercises to record 

the isometric maximum voluntary contractions (iMVCs) for both flexor and extensor trunk muscles. 

Particularly, subjects were seated comfortably on an isokinetic dynamometer (Biodex System 3, 

Biodex Medical Systems Inc., Shirley, NY, USA) in an adjustable chair with their trunk reclined to 90°. 

iMVC contractions were exerted two times, each over a period of 5 s for [15]. These trials were 

separated by 2 min of rest.  

After the MVC measurement, 4 minutes of rest were provided. Then, for ES, the highest MVC value 

were used as a reference for the definition of the submaximal force levels, expressed in each of the 

three experimental sessions as 50% of the MVC measured during the same session. The contraction 

at 50% was sustained for 20 s and it was performed 2 times per session and the 2 repetitions were 

separated by 4 min of rest to avoid confounding fatiguing effects. In each trial, the subjects received 

visual feedback of their force, which was displayed as a trapezoid with 5 s ramps and with 20 s hold-

phase durations (see Figure 5.2). 
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In each of the 3 sessions, after the lifting tasks, as soon as possible (to see the fatigue effect), the 

subjects performed iMVCs for extensor trunk muscles in the same way performed before the task 

but only 1 repetition was performed. 4 minutes of rest were provided after the MVC measurement. 

Then, considering the highest MVC value in the exercise after the lifting task, 2 repetitions of the 

contraction at 50% of iMVC were sustained for 20 s and they were separated by 4 min of rest in the 

same way used before the lifting task.  

 

 
Figure 5.2. Trapezoidal feedback for 50% of MVC. 

 

5.1.4 Kinematic, kinetic and electromyographic recordings 

5.1.4.1 Kinematic recording 

MyoMotion Reseach inertial sensors were used to acquire movements of the following body 

segments (Figure 5.3): the head (in the middle of the back of the head), upper thoracic (below C7 

along the spinal cord, but high enough not to be affected by upper trapezius muscle movement), 

lower thoracic (on the spinal cord at approximately L1/T12, the strap belt on the front body side 

positioned on lower ribs), pelvic (bony area of sacrum), right arm (half of humerus bone) and right 

forearm (half of ulna/radio bone). One IMU was placed also on the load (z axis in vertical direction). 

Calibration was carried out in an upright position of the subject in order to determine the value of 

the 0o angle in the joints studied. Sampling frequency for the inertial sensors was set at 200 Hz.  
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Figure 5.3. IMUs position. 

5.1.4.2 Kinetic recording 

Nintendo Wii Balance Board (rectangular in shape; weighs 3.5 kilograms; capable of supporting up 

to 150 kg; powered by four AA batteries allowing for 60 hours of operation, Figure 5.4), was used 

to acquires forces and Center of Pressure (CoP) during lifting task. 

The Balance board was released in 2007 as an accessory to the Wii console, but now it is being used 

as an instrumental tool in many research projects [16]: the board operates similarly to a force plate 

by containing four transducers (strain gauges) in each of the four cylindrical legs (Figure 5.4) that 

assess force distribution and the resultant movements in COP.  

 

Figure 5.4. The Nintendo Wii Balance Board: frontal side (A) and dorsal side with the four legs each with a 

transducer. 
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Open source code from the University of Colorado’s Neuromechanics Lab was utilized as the base 

of the code to acquire the data. The interface involves the Wii Balance Board communicating with 

a PC via Bluetooth and a computer program written in MATLAB.  

It has the capabilities to display the CoP collected by the Wii Balance Board in real time, as well as 

the capability to record the CoP data. To run the program, the board must be calibrated by placing 

an object with a known weight on it and then entering the weight in kilograms into the appropriate 

window. The object is then removed, and the interface appears as seen in Figure 5.5.  

The interface lists the location of the CoP, the force sensed by each quadrant, and information 

regarding time for recording. The white grid (Figure 5.5), represents the top platform of the Wii 

Balance Board. The x and y axes are the length and width, respectively, of the active part of the 

board with the origin located at the center of board. The center of the board is physically marked 

on the Wii Balance Board by lines differentiating the four panels. When the board senses a load, a 

red cursor appears in the white graph area. The size of the cursor is proportional to the amount of 

the load.  

 

Figure 5.5. Balance Board Interface. 
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5.1.4.3 Bipolar and HD sEMG recording 

Muscle activity were acquired via 8 wireless bipolar sEMG amplifiers (Ultimium EMG system, 

Noraxon, USA Inc. Scottsdale, AZ) bilaterally from the rectus abdominis superior (RAS), external 

oblique (EO), latissimus dorsi (LD) and erector spinae longissimus (ESL). Bipolar AgCl electrodes for 

EMG measurements were placed following guidelines provided by the SENIAM project [17-18].  

High Density superficial electromyography (HD-sEMG, OTBioelettronica, Torino, Italy) were 

acquired via two 64 channels grids placed 2.5 cm away from the spinous process, between the 2rd 

and 5th lumbar vertebra (Figure 5.6) [7,19].  

The grid consisted of 13 rows and 5 columns of electrodes (1-mm diameter, 8-mm interelectrode 

distance in both directions), with one electrode absent from the upper right corner (Figure 5.6). The 

position corresponding to the missing electrode was used as the origin of the coordinate system to 

define the electrode location.  

Prior to the application of electrodes, the skin in the region lateral to the lumbar spine was 

prepared by shaving the area if needed and then applying an abrasive paste (SPES Medica, Italy), 

and finally washing and drying the region. The electrodes were prepared by applying a thin custom 

double-sided adhesive foam pad 

to the electrode grid (SPES Medica, Genoa, Italy). The cavities of the electrode grids were then filled 

with an electroconductive paste (SPES Medica). 

Reference electrodes were placed on prepared skin over the sacrum, posterior and anterior superior 

iliac spines.  

The EMG signals were amplified (128-channel surface EMG amplifier, OT Bioelettronica; #3 

dB bandwidth 10-500 Hz) by a factor of 2000 and sampled at 2048 Hz.  

A Biodex System 3 dynamometric device (Biodex, USA) was used to acquire the peak torque during 

iMVCs and submaximal isometric contraction at 50% MVC before and after the lifting activity.  
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All the acquisition devices were synchronised together during lifting tasks and during iMVC with a 

trigger signal generete by MyoSync (Noraxon) (Figure 5.7). 

 

 

Figure 5.6. Description of the approximate positioning of the HDEMG grids 2.5 cm lateral to the L5 

spinous process on the lumbar ES of the participant and a schematic of the electrode grids showing 

the x- and y-axes, reference electrode and inter-electrode distance. 

 

 

Figure 5.7. Hardware setup. 
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5.1.5 Data Analysis 

After acquisition, data were processed using Matlab (version 8.0.0.783; MathWorks, Natick, MA, 

USA) software.  

Kinematic, kinetic and electromyographic data during lifting task were normalized to the duration 

of the lifting, lowering and whole (lifting+cycle) cycles. The data were interpolated to 100 samples 

for lifting cycle and 100 for lowering cycle using a polynomial procedure. 

 

5.1.5.1 Lifting and lowering cycles detection 

The vertical displacement and velocity of the IMU placed over the load were calculated. To estimate 

vertical velocity and displacement, the filtered acceleration of IMU load (3th order low-pass 

Butterworth filtered by applying a 10Hz cut-off frequency) is integrated one and two times 

respectively, and the drift is corrected assuming that before and after lifting the vertical acceleration 

and speed are zero (Figure 5.8). 
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Figure 5.8. Accerelation, vertical displacement and velocity of the IMU placed over the load. 

 

The onset of the lifting task was defined as the time point at which the IMU load velocity exceeded 

a velocity threshold of 0.025 m/s on the vertical axis. Termination of the lifting task was defined as 

the maximum point on the graph of the vertical displacement of IMU load (z axis). Termination of 

lowering cycle was defined as the point on the graph at which the IMU load velocity fell below the 

velocity threshold in the opposite direction after the minimum value (See Figure 5.9). 

 

 
Figure 5.9. Cycles definition. 

 

After cycles definition, cross-correlation analysis between each curve of elbow flexion-extension 

(see 2.5.2) and mean curve of elbow flexion-extension was applied to delete some cycles (Figure 

5.10). Particularly, if the cross-correlation of mean curve and the single curve was less than 0.9 the 

curve was deleted. 
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Figure 10. Cross-correlation between the cycle. 

5.1.5.2 Kinematic data 

Joint Angles 

Anatomical angles for cervical segment, lumbar segment, thoracic segment, pelvis and right 

shoulder joint in the three planes (frontal, sagittal, and transverse) and the right elbow joint angle 

in the sagittal plane were extracted from Noraxon Software.  

From these variables, we derived the Range of Motion (RoM) at each joint or segment, defined as 

the difference between the maximum and minimum value during the lifting cycles. 

Acceleration and Jerk 

Starting from the accelerations acquired from each sensor during the lifting tasks, we evaluated the 

stability parameters: the RMS of each component of the acceleration, the RMS of the acceleration 

magnitude (RMSacceleration) and the RMS of the jerk (i.e. the derivative of the acceleration) magnitude 

(RMSjerk) [20]. 

 

5.1.5.3 Kinetic data 

Starting from CoP data (Figure 5.11), the following parameters were calculated: 

• COP length: represents the total trajectory in mm followed by the COP from its initial position 

to its maximal position; 
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• Total excursion of the COP: is defined as the total distance travelled by the COP over the 

course of the trial duration; 

• COP velocity: represents the total distance travelled by the COP over time. 

 

Figure 5.11. The feet position on Balance Board and an example of CoP acquisition. 

5.1.5.4 Bipolar sEMG processing 

The sEMG signals were processed as follows: the iMVC and the sEMG raw data of each lifting task 

were band-pass filtered using a fourth-order Butterworth filter of 20–400 Hz to reduce artifacts and 

other components of high-frequency noise [21-22]. From these signals, the analysis of time and 

frequency domains was performed. 

 

Time domain features 

As regards time domain, from the processed sEMG signals of each lifting task, the average rectified 

value (ARV), the root mean square (RMS) and the maximum value (Max) within the cycle where 

calculated to characterize differences in the sEMG activity among the different lifting conditions 

(see 4.1.1.4 for details).  

 

CoA and FWHM 

To characterize timing and duration of the the sEMG curves, the center of activity (CoA) and the full 

width at half maximum (FWHM) were calculated. The CoA of the sEMG waveform during the cycle 
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was calculated using circular statistics [23]. It was evaluated as the angle of the vector (1st 

trigonometric moment) that points to the center of mass of that circular distribution using the 

following formulas: 

𝐴 = ∑ cos θ𝑖

𝑇

𝑖

× 𝐸𝑀𝐺𝑖  

𝐵 = ∑ sin θ𝑖

𝑇

𝑖

× 𝐸𝑀𝐺𝑖  

𝐶𝑜𝐴 = tan−1( 𝐵 𝐴⁄ ) 

Where θ is one of 100/200 samples (lifting or lowering/whole) of EMG converted to a common 

angular scale in radians by: 

𝛼 =
2𝜋𝑥

𝑘
 

where 𝑥 is the representation of the data in the original scale, 𝛼 is its angular direction and 𝑘 is the 

total number of steps (100/200) on the scale that 𝑥 is measured in. The EMG and the CoA were 

plotted in polar coordinates (polar direction denoted the phase of the gait cycle, with angle θ that 

varies from 0 to 360°).  

The FWHM for EMG waveform was calculated as the sum of the durations of the intervals in which 

the EMG activity exceeded the half of its maximum: 

𝐹𝑊𝐻𝑀 = ∑ 𝛥𝑡𝑗𝑗 . 

 

Particularly for each subject, the FWHM for the EMG curve of each trunk muscles considering the 

lifting cycle, the lowering cycle and the whole cycle, were extracted. 
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Co-activation function 

Furthermore, the simultaneous activation of the trunk muscles (co-activation) was also computed 

by considering the time-varying multi-muscle co-activation function (TMCf) proposed by Ranavolo 

and colleagues [23] (see 4.1.1.4 for details). 

 

Frequency domain features 

As regards the frequency domain, using the band-pass filtered sEMG data recorded during lifting 

tasks and iMVC, only for extensor muscle, the power spectral density was estimated [24] and for 

each muscle, we computed the mean frequency (MNF) and the median frequency (MDF) (see 

4.1.1.4 for details).  

For each muscle, both MNF and MDF related to the lifting tasks were normalized, to the MNFMVC 

and MDFMVC calculated from the iMVC spectra for each participant, respectively.  

 

5.1.5.5 HD EMG system data 

Before data analysis, the EMG signals were digitally band-pass filtered in the frequency bandwidth 

10–350 Hz (2nd order Butterworth filter). 

Fifty-nine bipolar EMG signals were obtained from each grid (12 longitudinal bipolar recordings in 

each column except the first column of the grid, which had 11 electrode pairs).  

 

Spatial distribution of muscle activity before, during and after lifting task 

Then, to characterize the spatial distribution of muscle activity, the following variables were 

extracted from the 59 bipolar signals. Mean power spectral frequency (MF) and root mean square 

(RMS) values were computed from each bipolar recording from adjacent, nonoverlapping signal 

epochs of 0.5 second duration, as described in [25]. For graphical representation, the 59 values were 
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interpolated by a factor of 8, but only the original values were used for data processing and 

statistical analysis.  

The individual RMS and MNF values for each bipolar signal were averaged to produce the mean RMS 

and MNF values across the grid. The RMS values for each bipolar signal were used to create a 

topographical map of ES activity. This map was used to determine the location of the x- and y-

coordinates of the centroid as described previously [26-28]. Particularly, the two coordinates of the 

center of gravity of the root mean square map (Gx and Gy for the lateral–medial and cranial–caudal 

direction, respectively) are defined as: 

𝐺𝑥 =
1

𝑅𝑀𝑆𝑡𝑜𝑡𝑎𝑙
∑ 𝑅𝑀𝑆𝑖𝑥𝑖

59
𝑖=1  𝐺𝑦 =

1

𝑅𝑀𝑆𝑡𝑜𝑡𝑎𝑙
∑ 𝑅𝑀𝑆𝑖𝑦𝑖

59
𝑖=1  

where 𝑅𝑀𝑆𝑡𝑜𝑡𝑎𝑙 is the sum of RMS values, 𝑅𝑀𝑆𝑖 is the RMS value at the ith position which 

corresponds to the coordinates (𝑥𝑖, 𝑦𝑖). The center of gravity corresponds to the point where the 59 

RMS values are concentrated on average. The power spectrum for mean frequency estimation was 

computed with Welch periodogram with Hanning window and no zero-padding [29]. 

To characterize heterogeneity in spatial EMG potential distribution at individual torque 

levels, coefficient of variation (CoV) and modified entropy were used in the present study. CoV was 

defined as the quotient of standard deviation among 59 RMS and averaged value of 59 RMS at a 

torque level. Modified entropy of the spatial distribution of EMG amplitude was calculated for 59 

RMS values (in space) of single differential signals computed over a 500 ms epoch taken at 50% of 

MVC. 

As done by Farina et al. [30] in a previous work, modified entropy was defined as entropy of 

the signal power, that is  

𝐸 = − ∑ 𝑝(𝑖)2𝑙𝑜𝑔2𝑝(𝑖)2

59

𝑖=1
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where p(i) is the square of the RMS value of channel i divided by the sum of the squares of all the 

59 RMS values, at the given force level. Therefore, p(i)2 represents the normalized power of each 

channel. It is E = 0 when all the p(i) are zero except one and is maximal and equal to log2 59 = 5.884 

when the p(i) values are identical and equal to 1/59 (all channels have the same energy). Increase 

in CoV and decrease in modified entropy, respectively, mean an increase of heterogeneity in the 

spatial EMG potential distribution within an electrode grid. 

Correlation coefficients were calculated from the 59 pairs of RMS values at the same regions 

between 20% of MVC and those of all other torque levels to compare the spatial EMG potential 

distribution pattern. Decrease of correlation coefficient indicates a change in spatial EMG potential 

distribution pattern [31]. 

The RMS and MF were expressed as a percentage relative to the initial value (first minute of 

the task) [7]. These parameters were evaluated during submaximal contractions before and after 

the lifting task and during lifting task within each lifting cycle (see “Lifting cycle detection” 

paragraph). 

 

5.2 RESULTS ON 15 HS  

5.2.1 Characteristics of subjects and questionnaires 

The characteristic of the investigated sample is reported in Table 5.2 while the values of VAS and 

Borg scale at the end of each session are reported in Table 5.3. 

Characteristic  Control (N=15) 

Age (years)  27.87±3.98 

Gender 

(female) 
9 

Height (m) 1.68±0.09 

Weight (kg)  71.88±14.01 

BMI (kg/m^2) 25.26±3.21 

SF-36 (Total) 119.88±6.61 

Table 5.2. Subjects’ characteristics. 
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scale LI Control 

VAS at the end of 

session 

1 0.69±1.44 

2 4±10.83 

3 7.64±17.49 

Borge Scale at the end 

of session 

  

1 7.44±1.55 

2 9.44±2.71 

3 10.19±2.66 

Table 5.3. Pain and fatigue scale of the subjects.VAS, visual analogue scale (0-100); LI, Lifting Index. Values 

are presented as mean ± SD. 

 

 

5.2.2 Kinematic Angles 

Figure 5.12 shows the mean curves (± SD) for each lifting condition of anatomical angles for cervical 

segment, lumbar segment, thoracic segment, pelvis and right shoulder joint in the three planes and 

the right elbow joint angle in the sagittal plane during the lifting (100 samples) and lowering cycles 

(100 samples).  

 

5.2.3 RMS of acceleration and Jerk  

Figure 5.13 shows the means and standard deviation values of RMS of acceleration and jerk for each 

IMU and for each LI considering lifting cycles, lowering cycles and whole cycles (lifting+lowering). 

The repeated measures ANOVA revealed a significant effect of the LI on all parameters (p<0.05) 

except RMSacc_z of Forearm and RMSacc_z, RMSacc_magnitude and RMSjerk of Load.  

The significant differences of post hoc analysis between the pair of lifting conditions are shown in 

Figure 5.13. 
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Figure 5.12. Kinematic curves. 
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Figure 5.13. Mean and standard deviation values of RMS of acceleration and jerk for each IMU and for each LI 

considering lifting cycles, lowering cycles and whole cycles. 

 

5.2.4 CoP  

Figure 5.14 shows the mean curves (± SD) for each lifting condition of x and y coordinations of CoP 

and forces (4 transductor) during the lifting (100 samples) and lowering cycles (100 samples).  

Figure 5.15 shows the means and standard deviation values of COP length, Total excursion of the 

COP and COP velocity for each LI considering lifting cycles, lowering cycles and whole cycles 

(lifting+lowering).  

Two-way ANOVA showed significant effects on CoP excursion caused by LI (p < 0.05) and phase (p < 

0.05). The statistical significance of post hoc analysis is reported on Figure 5.15. 
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Figure 5.14. Mean and standard deviation of the curves of CoP in the anteroposterior and medio-lateral 

directions and of the curves on the four transductor of Balance Board. 

 

Figure 5.15. Mean and Standard deviation of COP, COP length, Total excursion of the COP and COP velocity 

for each LI considering lifting cycles, lowering cycles and whole cycles (lifting+lowering). 
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5.2.5 Bipolar sEMG 

Figure 5.16 shows an example of the EMG signals for each acquired muscle: the raw data (in blue), 

the envelopes (in red) and the events (red, green and blue vertical lines are the start and stop of 

lifting phase and the stop of lowering phase) are reported.  Figure 5.17 shows the mean envelopes 

(± SD) for each lifting condition of right and left trunk muscles during the lifting (100 samples) and 

lowering cycles (100 samples). In the following paragraphs the parameters extracted starting from 

these envelope: the means in each minute normalized with the value in the first minute were 

considered. 

 

Figure 5.16. An example of raw sEMG signals of right and left trunk muscles during the lifting task. RESL and 

LESL: right and left erector spinae longissimus; RLD and LLD: right and left latissimus dorsi; RRAS and LRAS: 

right and left rectus abdominis superior; REO and LEO: right and left external oblique. 
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Figure 5.17. Mean envelopes (± SD) for each lifting condition of right and left trunk muscles during the 

lifting (100 samples) and lowering cycles (100 samples). RESL and LESL: right and left erector spinae 

longissimus; RLD and LLD: right and left latissimus dorsi; RRAS and LRAS: right and left rectus abdominis 

superior; REO and LEO: right and left external oblique. 

5.2.5.1 Lifting: mean in each minute normalized with the value in the first minute 

Time domain features  

Since no statistically significant differences were found between the right and left muscles in any of 

the sEMG features (p > 0.05), the following results are referred considering the two sides togheter.  

Figure 5.18 shows the means and standard deviation values of RMS (A), ARV (B) and Max (C) of ESL 

and LD muscles for each LI considering lifting cycles, lowering cycles and whole cycles 

(lifting+lowering).  
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Figure 5.19 shows the means and standard deviation values of RMS (A), ARV (B) and Max (C) of RAS 

and EO muscles for each LI considering lifting cycles, lowering cycles and whole cycles 

(lifting+lowering).  

These values are the mean during each minute normalized by the mean in the 1st minute of lifting 

task. 

Two-way ANOVA showed significant effects of multiple factors on sEMG parameters considering 

training LI (p < 0.05), and phase (p < 0.05). 

The statistical significance of post hoc analysis are reported on Figures 5.18 and 5.19. 

Co-activation function 

Figure 5.20 shows the means and standard deviation values of TMCfArea for each LI considering lifting 

cycles, lowering cycles and whole cycles (lifting+lowering).  

These values are the mean during each minute normalized by the mean in the 1st minute of lifting 

task. 

Two-way ANOVA showed significant effects of multiple factors considering LI (p < 0.05) and 

considering phase (p < 0.05). The statistical significance of post-hoc analysis is reported on Figure 

5.20. 
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Figure 5.18. Mean and standard deviation values of RMS (A), ARV (B) and Max (C) of ESL and LD for each LI 

considering lifting cycles, lowering cycles and whole cycles. *statistical significance. 
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F

 

Figure 5.19. Mean and standard deviation values of RMS (A), ARV (B) and Max (C) of RAS and EO for each LI 

considering lifting cycles, lowering cycles and whole cycles. *statistical significance. 
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Figure 5.20. Mean and standard deviation values of TMCfArea.for each LI considering lifting cycles, lowering 

cycles and whole cycles. *statistical significance. 

Frequency domain features  

Figure 5.21 shows the means and standard deviation values of MNF (A) and MDF (B) of ESL and LD, 

muscles for each LI considering lifting cycles, lowering cycles and whole cycles (lifting+lowering). 

These values are the mean during each minute normalized by the mean in the 1st minute of lifting 

task. 

The statistical significance of post-hoc analysis is reported on Figure 5.21. 
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Figure 5.21. Mean and standard deviation values of MNF (A) and MDF (B) of ESL and LD for each LI 

considering lifting cycles, lowering cycles and whole cycles. *statistical significance. 

 

5.2.5.2 MVC pre and post lifting tasks  

Figure 5.22 shows the delta for Max and FMD between 50% MVC pre and post lifting tasks. No 

significant statistical differences were found. 
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Figure 5.22. delta for Max and FMD between 50% MVC pre and post lifting tasks.  

 

5.2.6 HD sEMG  

5.2.6.1 Lifting: mean in each minute normalized by the value in the first minute 

Since no statistically significant differences were found between the right and left muscles in any of 

the HD sEMG features (p > 0.05), the following results will refer considering the two side together.  

Figure 5.23 shows the means and standard deviation values of RMS and MNF of ESL for each LI 

considering lifting cycles, lowering cycles and whole cycles (lifting+lowering). These values are the 

mean during each minute normalized by the mean in the 1st minute of lifting task. 

The statistical significances are reported in Figure 5.23. 

For x and y coordinate of baricenter, Entropy, CV RMS and Correlation Coefficient RMS of ESL no 

significant differences were found. 
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Figure 5. 23. Mean and standard deviation values of RMS and MNF of HD-sEMG for each LI considering 

lifting cycles, lowering cycles and whole cycles. *statistical significance. 

 

5.2.6.2 MVC pre and post lifting tasks 

Figure 5.24 shows an example of RMS topographical maps of the EMG amplitude. 

 
Figure 5.24. Representative RMS topographical maps for one HS participant during the 50 %MVC test. The 

centriod is depicted by * and the scale is indicated in µV. 
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RMS, MNF, Entropy, CV RMS, Correlation Coefficient, x and y coordinate of baricenter, CV Torque 

during 50% of MVC for each LI are shown in Figure 5.25. The statistical differences are reported in 

the Figure 5.25. 

 
Figure 5.25. HD sEMG parameters for Erector Spinae Muscles in Healty subjects. 

 

5.3. RESULTS ON 2 MATCHED GROUPS: HS AND LBP 

5.3.1 Characteristics of subjects and questionnaires 

The 2 groups are matched for age and gender. The Table 5.4 reports the characteristics of the 2 

matched groups while the values of VAS and Borg scale at the end of each session are reported in 

Table 5.5. 
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Characteristic LBP (n=8) Control (n=8) 

Age (years) 25.17±6.43 25.25±6.43 

Gender (female) 4 4 

Height (m) 1.68±0.06 1.71±0.10 

Weight (kg) 65.38±13.82 74.75±11.99 

BMI (kg/m^2) 23.21±4.39 25.38± 2.45 

Oswestry Disability Score (%) 15.39±9.81  

Duration of pain (years) 3.45±3.07  

SF-36 (Total) 113±8.01 121.5±3.16 

TSK 36.88±4.97  

PCS 8.88.±7.48  

Table 5.4. Baseline characteristics of the LBP and control groups. 

n, number of subjects; LBP, low back pain; SF-36, Short-Form-36 Health Survey; TSK, Tampa Scale for 

Kinesiophobia; PCS, Pain Catastrophizing Scale.  Values are presented as mean ± SD. 

 

 

scale LI LBP (n=8) Control (n=8) 

VAS baseline 1 36.5±21.46  

 2 21.38±8.94  

 3 23.75±14.01  

VAS at the end 

of session 
1 42.25±28.48 1.14±1.77 

 2 45.71±11.70 2±2.51 
 3 45.37±17.02 5.42±7.72 

Borge Scale at 

the end of 

session 

1 10.13±2.47 7.75±3.10 

 2 13.13±1.96 9.37±1.60 
 3 13.5±2.78 10.5±2.73 

Table 5.5. Pain and fatigue scale of the LBP and control groups. VAS, visual analogue scale (0-100); LI, 

Lifting Index. Values are presented as mean ± SD. 

 

 

A two-way ANOVA test with LI and subjects (LBP vs Control) as factors was carried on to determine 

possible significant effects on Borg scale caused by the listed factors: significant effect caused by LI 

(F=8.12, p=0.01)., significant effect caused by subjects (F=22.11, p<0.001). 

VAS during each minute of lifting for LBPs is reported in the Figure 5.26. 
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Figure 5.26. The mean value of pain scale score of the LBP group at each minutes during 15 minutes of 

lifting task. VAS, visual analogue scale (0-100).  

 

5.3.2 Kinematic Angles 

Figure 5.27 shows the RoM of Trunk for the 2 groups during the lifting tasks: 

 
 

Figure 5.27. Results in LBP subjects (A) and Healthy subjects (B). 

 

5.3.3 RMS of acceleration and Jerk 

Figure 5.28 shows the means and standard deviation values of RMS of acceleration and jerk for each 

IMU and for each LI considering lifting cycles, lowering cycles and whole cycles (lifting+lowering) for 

both Controls (A) and LBPs (B). 
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A three-way ANOVA test with LI, cycles (Lifting, Lowering and Whole Cycle) and subjects (LBP vs 

Control) as factors was carried on to determine possible significant effects on each parameter 

caused by the listed factors. Post-hoc analysis with Bonferroni’s corrections were performed when 

significant differences were observed in the ANOVA results. The statistical significance was set for p 

values < 0.05.  

Results show: significant effect caused by subjects (p<0.05) for each considered parameter 

except for RMSAcc_y of Head; significant effect caused by LI (p<0.05) for each considered parameter 

except for RMSAcc_z of Head and Upper Spine, for RMSAcc_x of Lower Spine and Pelvis and for 

RMSAcc_magnitude of Pelvis. Furthermore, results show: significant effect caused by phase (p<0.05) for 

RMSAcc_x of Upper Arm and Forearm; for RMSAcc_y of Upper Arm, Forearm and Load; for RMSAcc_z of 

Lower Spine, Upper Arm, Forearm and Load; for RMSmagnitude of Upper Arm, Forearm and Load; for 

RMSjerk of Head, Upper Spine, Arm, Forearm and Load. 

The significant differences of post hoc analysis between the pair of lifting conditions (LI) are shown 

in Figure 5.28. 
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Figure 5.28. Mean and standard deviation values of RMS of acceleration and jerk for each IMU and for each 

LI considering lifting cycles, lowering cycles and whole cycles in HS (A) and in LBP (B). 

 

5.3.4 Bipolar sEMG 

5.3.4.1 Lifting: mean in each minute normalized with the value in the first minute 

Time domain features  

Since no statistically significant differences were found between the right and left muscles in any of 

the sEMG features (p > 0.05), the following results are referred considering the two side togheter.  
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Figure 5.29 shows the means and standard deviation values of RMS for HS (A) and LBP (B) of ESL 

and LD muscles for each LI considering lifting cycles, lowering cycles and whole cycles 

(lifting+lowering).  

 

Figure 5.29. Mean and standard deviation values of RMS for HS (A) and LBP (B) of ESL and LD for each LI 

considering lifting cycles, lowering cycles and whole cycles. *statistical significance. 

 

Figure 5.30 shows the means and standard deviation values of RMS for HS (A) and LBPs (B) of RAS 

and EO muscles for each LI considering lifting cycles, lowering cycles and whole cycles 

(lifting+lowering).  
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These values are the mean during each minute normalized by the mean in the 1st minute of lifting 

task. 

Three-way ANOVA showed significant effects of multiple factors on each parameter (RMS, ARV, Max 

for each muscle and MNF, MDF for ESL and LD) considering LI (p < 0.05), on RMS, ARV and Max of 

ESL and LD considering phase (p < 0.05) and on ARV for LD, RAS and EO, Max of ESL and OE, MNF 

and MDF of LD considering subjects (p < 0.05). 

The statistical significances of post-hoc analiysis are reported on Figures 5.29 and 5.30. 

 

Figure 5.30. Mean and standard deviation values of RMS for HS (A) and LBP (B) of RAS and EO for each LI 

considering lifting cycles, lowering cycles and whole cycles. *statistical significance. 
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5.3.5 HD sEMG  

5.3.5.1 MVC pre and post lifting tasks 

RMS, MNF, Entropy, CV RMS, Correlation Coefficient, x and y coordinate of baricenter, CV Torque 

during 50% of MVC for each LI and for both groups are shown in Figure 5.31.  

Three-way ANOVA showed no significant effects of multiple factors on each parameter RMS, MNF, 

Entropy, CV RMS, Correlation Coefficient, x and y coordinate of baricenter, CV Torque considering 

LI, considering time and subjects (p > 0.05). 

 
Figure 5.31. HD sEMG parameters for Erector Spinae Muscles in Healty subjects (A) and LBPs (B). 

 

5.4 DISCUSSIONS 

The preliminary results of this study show that most of the calculated indexes, both kinematic and 

sEMG, are significantly affected by changes in LI. Particularly, it is possible to distinguish the lower 

and higher level of risk (LI=1 and LI=3) while it is not always possible to discriminate the medium 

level (LI=2) from the other two. 
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Furthermore, the results show that it is possible to see differences between HS and LBPS considering 

both kinematic and sEMG parameters. 

Regarding LBPs for sEMG analisys it is important take into account that the assessment of MVC is a 

real issue in this population [32] as patients are less prone to make maximal force exertion due to 

pain. We tried to encourage the participant to make the maximal possible effort and we repeated 

two times the execution of each iMVC to consider the maximum effort performed.In the future, the 

machine-learning techniques (see Figure 5.32) will be used to estimate the biomechanical risk in 

terms of LI starting with kinematic and sEMG features but also to distinguish LBP and HS. This 

approach could lead to a reliable biomechanical risk classification related to lifting tasks.   

Furthermore, considering that there is a gender differences in the prevalence of WMSD [33], further 

analysis could be done to see if there are any differences in the gender from a biomechanical point 

of view. 

 

 

Figure 5.32. Machine learning approach.  
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CHAPTER VI 

6. BIOMECHANICAL ASSESSMENT IN WORKS 
ASSOCIATED TO WRNULD 
 

Epidemiological and biomechanical evidence suggest that static neck and shoulder posture 

or forward head posture, such as that frequently assumed by office workers, as a possible risk factor 

in work-related neck and upper limb disorders (WRNULD) spread [1]. These disorders are mainly 

caused by increasing computer use and use of touch screen devices which may be used in various 

non-traditional workstations and postures [2]. 

In this chapter, a study on the biomechanics of some activities related to WRNULD is 

reported. 

In this chapter, text and figures have been taken from or adapted from the articles “Comparison 

of two post office workstation layouts by means of an optoelectronic motion analysis system” 

[Applied Human Factors and Ergonomics. AHFE 2017], “Analisi Cinematica di una postazione di 

interfaccia cliente/operatore” [2016, XI Congresso Nazionale SIE Napoli], and “Effect of different 

smartphone uses on posture while seating and standing” [2018, IEEE International Symposium on 

Medical Measurements & Applications] which were co-authored by me.  

 

6.1 STUDY N°1: COMPARISON OF TWO POST OFFICE WORKSTATION LAYOUTS BY MEANS 
OF AN OPTOELECTRONIC MOTION ANALYSIS SYSTEM 

 

Notwithstanding the technological evolution and digitalisation of many operations, which, 

nowadays, can be carried out through our smartphones, some public services (i.e. banks, post 

offices, private postal services, public institution help desks, shops, etc.) cannot be completely 

digitalised. In most cases, customer/operator interfaces have specific short-term functional 
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requirements for the customer, not taking into account the long-term postural needs of the 

operators. Excessive digitalisation has also led to a paradox: the amount of equipment has increased 

at the workstation, thus reducing the already limited availability of space at the traditional 

workstations. Various guidelines and checklists [3-6] underline the importance of correct positioning 

for the most frequently used equipment, allowing easy access for the operator. In the services sector 

(banks, shops, supermarkets, etc.), when designing a workstation, both the movements related to 

the use of the various equipment (POS, scales, scanners, cash, monitors etc.) as well as the 

movements related to customer interaction shall be considered. Every modification to a workstation 

and equipment affects not only the performance, but also the biomechanical risk. Sengupta [7] 

noted that energy expenditure was closely related to the reach zone breadth (reach envelope). 

Several studies have investigated the reach envelope under static conditions but without taking 

trunk movements into account [7-11]; more recent studies have also considered dynamic conditions 

[12]. This study aims at comparing two customer/operator interfaces: (1) the operator is sitting in 

front of the customer; (2) the operator is sitting at a 45° angle to the customer, in line with the 

monitor and keyboard. For this comparative study, starting with a workstation prototype to analyse, 

some modifications were suggested, whose efficacy was assessed through a motion analysis system. 

 

6.1.1 Materials and methods 

This study focuses on the two most frequent tasks, which appear to be also the most critical ones 

from a biomechanical point of view: (1) payment of a bill (2) weighing and taking payment for 

sending a registered letter. For greater ease of analysis, the two tasks were broken down into the 

following sub-tasks. Task 1 was broken down as follows: (1a) withdrawal of the bill by the customer 

and put on the scanner; (1b) typing data and picking up the bill from the scanner; (1c) taking the 

money from the customer and typing in the amount; (1d) getting the change (banknotes and coins) 

and the bill and returning it to the customer. Task 2 was broken down as follows: (2a) taking the 
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customer’s envelope and placing it on the scales; (2b) picking up and scanning the tracking form and 

placing it on the printer; (2c) removing the envelope from the scales and inserting/removing it from 

the franking machine and placing it in the outgoing post box (2d) taking the receipt from the printer, 

sticking the receipt to the envelope and placing the letter in the outgoing post box. 

For each sub-task, the Range of Motions (RoM) for the trunk and the shoulders in three spatial 

planes (frontal, sagittal, transverse), the elbows extension and the head torsion were calculated. 

The chair rotation angle, in respect to the table, was also measured. 

Analysis of two different working desk types was made: 

(1) Front-facing positioning of the operator in respect to the customer, leaving spaces and 

equipment placement unaltered, as during daily operations, with the original counter. 

(2) 45° positioning of the operator in respect to the customer, made possible by the addition of a 

triangular structure connecting the working desk and a board of extended size on the left side of 

the operator. 

The images below illustrate, respectively, the operator’s starting position for front-facing 

positioning (Figure 6.1) and at 45° (Figure 6.2) at the modified workstation. 

 

Figure 6.1. The image shows a kinematic reconstruction of the operator’s starting position at the unaltered 

workstation. The rectangles with a darker border represent the position of the monitor and keyboard (the 

latter are not to scale). 
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Figure 6.2. The image shows a reconstruction of the operator’s starting position at the modified 

workstation. For this, the operator is aligned with the keyboard and monitor (the rectangles with the darker 

borders are not to scale in this reconstruction). The areas with dashed borders represent the modifications 

made to the workstation addition of a triangular part to align the monitor and keyboard and to allow 

forearm support together with lengthening the board to allow equipment placement (not to scale in this 

reconstruction). 
 

6.1.1.1 Participants 

Four workers with more than 5 years of experience in the activity sector participated in the study. 

Their average age was 49 (±5.2), an average height of 177 cm (±3.9) and average weight of 81 kg 

(±3.1). None of the participants had ever suffered from musculoskeletal disorders. 

 

6.1.1.2 Equipment 

An optoelectronic system for the kinematic motion analysis was used (SMARTDX6000, BTS, Milan, 

Italy) [13], consisting of eight infrared cameras (sampling frequency 340 Hz), for recognising passive 

reflective markers coated with aluminium dust and positioned in specific anatomical landmarks in 

accordance with Rab protocol [14]. Other markers were positioned on the two temporal regions, in 

the centre of the forehead and on the edges of the chair, in order to investigate trunk and head 

torsion. 
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6.1.1.3 Detailed Description of the Analysed Sub-tasks 

Bill Payment Task 

• Task 1a. Starting with their hands on the keyboard, they take the bill, check the bill, place it on 

the scanner and return hands to the keyboard; 

• Task 1b. Starting with their hands on the keyboard, they type 08081959, two tabs and send to 

the numeric keypad, wait two seconds, take the bill from the scanner and put it in front of the 

keyboard, return hands to the keyboard; 

• Task 1c. Starting with their hands on the keyboard they take the customer’s money, check the 

money, put the money on the keyboard, type 50, tab and send on the numeric keypad, return 

hands to keyboard; 

• Task 1d. Starting with their hands on the keyboard and the bill in front of the keyboard, take a 

banknote from the draw to the furthest right, move the banknote to the left, take the change 

(20 cent more) from the till with the right hand and pass it to the left, take the bill with the right 

hand, pass the change and the bill to the right, give them back to the customer, return hands to 

the keyboard. 

 

Registered Letter Acceptance Task.  

• Task 2a. Starting with their hands on the keyboard, they take the envelope from the customer 

with the right hand, pass the envelope to the left hand and place it on the scales, return hands 

to the keyboard; 

• Task 2b. Starting with their hands and the registered letter in front of the keyboard, take the 

form with their right hand, place the form on the scanner with the right hand and put it in the 

right hand side of the printer; 
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• Task 2c. Starting with their hands on the keyboard, take the envelope from on top of the scales 

with their left hand and put it in the left hand side of the franking machine, take the envelope 

from the right hand side of the franking machine with the right hand, pass the envelope to the 

left hand and place it in the box, return hands to the keyboard; 

• Task 2d. Starting with their hands on the keyboard, take the return receipt from the printer, 

detach the return receipt tabs with the right hand, stick the return receipt to the envelope with 

both hands, take the envelope with the left hand and put it in the box, return hands to the 

keyboard. 

6.1.1.4 Kinematic Analysis 

Following a frame by frame reconstruction procedure, to assign each track the respective marker 

(Smart Tracker, BTS, Milan, Italy), the acquired data was processed using Analyzer software (Smart 

Analyzer, BTS, Milan, Italy). 

The movement always started from the same position (sitting in front of the customer in position 1 

in front of the monitor in position 2). The RoMs were calculated for: trunk torsion, flexion and lateral 

bending; abduction, horizontal abdo-adduction and flexion-extension of the shoulders; elbow 

extension and head torsion. The chair rotation angle, in respect to the table, was also measured. 

The kinematic signals were finally processed using a low pass filter with 5 Hz frequency. Five tests 

were carried out on each sub-task. 

6.1.1.5 Statistical Analysis 

The statistical analysis was performed using SPSS 17.0 software (SPSS Inc., Chicago, IL, USA). For 

each RoM, the average and standard deviation were calculated, to which the Student t-test was 

applied for paired data. P-values lower than 0.05 (p < 0.05) were considered statistically significant. 
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6.1.2 Results 

Below are the results of the kinematic analysis of each investigated subtask, were a statistically 

significant difference was reported (p < 0.05). 

Task 1a: complete torsion (trunk + head) remained essentially unaltered (about 37° overall), but 

differently distributed. The modified workstation allowed for minor torsion of the trunk (10.5° Vs 

22.6°), but higher torsion of the head (27.5° Vs 14.9°). The modified workstation allowed for a 

reduced RoM value for the right shoulder in all three of the spatial planes: abduction (41.8° Vs 54.1°), 

horizontal abdo-adduction (28.4° Vs 33.2°) and flexion-extension (55.1° Vs 61.8°). Moreover, at the 

modified workstation the trunk torsion and lateral bending values were lower (17.4° Vs 24.6°), 

(26.7° Vs 37.4°). 

Task 1b: The modified workstation allowed for reduced rotation of both the trunk (value of 11.1° Vs 

17.2°) and head (7.9° Vs 12.9°). Statistically significant reductions were also noted in flexion (4.8° Vs 

13.7°) and lateral bending (11.2° Vs 31.6°), in the right shoulder (39.9° Vs 59.2°) and the left shoulder 

(10.6° Vs 14.5°) flexion, abduction of the right shoulder (33.5° Vs 49.9°), horizontal abdo-adduction 

of the right shoulder (26.7° Vs 38.6°) and left shoulder (9.1° Vs 19°) and left elbow extension (20.1° 

Vs 25.6°). Finally, the modified position allowed for reduced chair rotation (value of 2.2° Vs 6.6°). 

Task 1c: This task was almost exclusively carried out with the operator’s right arm. Overall, the 

modified workstation showed high rotation values (trunk and head) in comparison to the original 

position (33.2° Vs 27.5°). Similarly, to what reported for task 1a, in this task the operators adopted 

a different motor strategy when rotating. In fact, the modified workstation showed lower values of 

trunk torsion (6.9° Vs 11°), but higher head torsion values (26.3° Vs 16.5°). The modified workstation 

also showed lower values for trunk flexion (4.8° Vs 13.7°) and trunk lateral bending (11.2° Vs 
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31.6°), right shoulder flexion (38.1° Vs 50.4°), right elbow extension (63.4° Vs 93°), right shoulder 

abduction (33.5° Vs 49.9°) and finally, right shoulder horizontal abdo-adduction (26.7° Vs 38.6). For 

this task, chair rotation was lower in the unaltered workstation (1.8° Vs 5.3°). 

Task 1d: This task actively involved both upper limbs. Here, the modified workstation showed higher 

chair rotation values (18.6° Vs 15.4°) but lower overall torsion values for body parts, both for the 

trunk (21.6° Vs 33.8°), and the head (26.7° Vs 34.9°). The changed position showed reduced RoM 

and reduced abduction values for both shoulders (right 47.5° Vs 62.3° and left 7.9° Vs 12.9°), 

reduced horizontal abdo-adduction for the right shoulder (43.2° Vs 61.7°) and left elbow extension 

(39.2° Vs 52.3°). A significant reduction was also reported, although not statistically significant, 

of the extension of both elbows. Flexion and trunk lateral bending remained substantially 

unchanged.  

Task 2a: the task in the modified workstation showed a statistically significant reduction in head 

torsion (27.8° Vs 33.5°), extension of both elbows (right 56.6° Vs 83.3°; left 47.1° Vs 62.7°), right 

shoulder flexion (31.7° Vs 50.8°) and horizontal abdo-adduction of the right shoulder (23.7° Vs 

46.9°). The unaltered workstation showed lower statistically significant values of left shoulder 

abduction (30.5° Vs 41.3°). The modifications made to the workstation did not lead to statistically 

significant differences in the RoMs related to trunk, in any of the three spatial planes for this task. 

Task 2b: Contrary to those previously described, this task was carried out entirely on the right side 

of the operator. The modifications introduced produced an overall increase in rotation (48.9° Vs 

42°) trunk torsion was reduced in the modified workstation (9.9° Vs 29.3°), but head rotation was 

significantly increased (39.1° Vs 12.7°). 

In this task, chair rotation was reduced in the modified workstation, although slightly, (4.3° Vs 7.7°). 

The modified workstation also showed higher RoM values for the operator’s right side, in 

particularly for elbow extension (84.8° Vs 58.6°), shoulder flexion (69.1° Vs 48.2°) and shoulder 
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abduction (43.9° Vs 20.2°). However, the modified workstation showed reduced RoM values for 

horizontal abdo-adduction of 

the right shoulder (46° Vs 61.8°). 

Task 2c: This task was carried out exclusively on the operator’s left side. The modified workstation 

showed lower values for chair rotation (32.2° Vs 50.2°), trunk rotation (16.2° Vs 21.5°) and trunk 

lateral bending (35.2° Vs 54.5°) and right elbow extension (51.7° Vs 60.9°). However, the modified 

workstation showed higher values of flexion for shoulders (right 39.6° Vs 28°; left 60.8° Vs 38.8°), 

left shoulder abduction (44.2° Vs 34.9°) and left elbow extension (70.6° Vs 63°). 

Task 2d: In this task – unlike all the abovementioned tasks – the operator moved on both sides of 

the workstation. The modified workstation showed high RoM values with regards to trunk torsion 

(23.1° Vs 16.4°) and left shoulder flexion (35.4° Vs 26.8°), but reduced RoM values for chair rotation 

(18.1° Vs 39.3°), trunk lateral bending (30.5° Vs 50°), left shoulder abduction (12.5° Vs 19°) and 

horizontal adduction of the right shoulder (26° Vs 35.7°). The modified workstation showed higher 

values, although not statistically significant, in terms of extension for both elbows (right 63.7° Vs 

57.2°; left 72.2° Vs 69°).  

Tables 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6 summarise the abovementioned results, along with relevant 

statistical analysis (statistically significant differences p < 0.05 are reported in bold) for chair rotation 

and for each movement under investigation. 

Task 
Chair rotation 

Front facing 45° p 

1a 4.2 ± 0.9 4.3 ± 0.9 0.807 

1b 6.6 ± 1.9 2.2 ± 0.4 <0.001 

1c 1.8 ± 0.4 5.3 ± 3.7 0.008 

1d 15.4 ± 4.2 18.6 ± 1.6 0.037 

2a 3.8 ± 2.8 3.1 ± 0.8 0.457 

2b 7.7 ± 2 4.3 ± 2.1 0.002 

2c 50.2 ± 8.7 32.2 ± 7.8 0.001 

2d 39.3 ± 8 18.1 ± 6.2 <0.001 

 

Table 6.1. The table shows the average chair rotation (±SD) achieved relating to the desk and the relevant 

statistical analysis for each of the eight sub-tasks analysed. 
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Task 
Head torsion 

Front facing 45° p 

1a 14.9 ± 1.2 27.5 ± 2.7 <0.001 

1b 12.9 ± 1.8 7.9 ± 1.4 <0.001 

1c 16.5 ± 2.2 26.3 ± 2.6 <0.001 

1d 34.9 ± 3.2 26.7 ± 8.7 0.012 

2a 33.5 ± 2.9 27.8 ± 2.2 <0.001 

2b 12.7 ± 1 39 ± 1.1 <0.001 

2c 41.3 ± 3.7 41.7 ± 3.1 0.796 

2d 41 ± 13.1 42.8 ± 2.1 0.673 

Table 6.2. The table shows the average RoMs (±SD) achieved for head torsion and the relevant statistical 

analysis for each of the eight sub-tasks analysed. 
 

 

 

Task 
Trunk flexion Trunk lateral bending Trunk torsion 

Front facing 45° p Front facing 45° p Front facing 45° p 

1a 24.6 ± 3.5 17.4 ± 3.3 <0.001 37.4 ± 2.1 26.7 ± 4.4 <0.001 22.6 ± 1.5 10.5 ± 1.3 <0.001 

1b 13.7 ± 4.7 4.8 ± 0.9 <0.001 31.6 ± 2.8 11.2 ± 2.7 <0.001 17.2 ± 2.7 11.1 ± 1.1 <0.001 

1c 22.3 ± 3.7 15.9 ± 1.8 <0.001 31.6 ± 6.1 22.2 ± 2.7 <0.001 11 ± 1.9 6.9 ± 1.7 <0.001 

1d 29 ± 3.3 27.7 ± 10.4 0.711 34.5 ± 2.6 28.3 ± 10 0.0074 33.8 ± 2.8 21.6 ± 7.3 <0.001 

2a 19.2 ± 2.7 19.8 ± 3.2 0.656 31.2 ± 2.5 31.4 ± 3 0.873 11.3 ± 1.8 10.1 ± 1.8 0.153 

2b 8.5 ± 1.8 7.2 ± 3.3 0.289 17.4 ± 2.7 17.5 ± 4.2 0.950 29.3 ± 1.5 9.9 ± 1.1 <0.001 

2c 35.4 ± 4.1 32.6 ± 5.8 0.229 54.5 ± 5.5 35.2 ± 3.4 <0.001 21.5 ± 1.5 16.2 ± 3.4 <0.001 

2d 25.8 ± 8.6 19.9 ± 4.6 0.072 50 ± 14.7 30.5 ± 5.5 0.001 16.4 ± 5.3 23.1 ± 2.4 0.002 

Table 6.3. The table shows the average RoMs (±SD) achieved for the three spatial planes of the trunk and 
the relevant statistical analysis for each of the eight sub-tasks analysed. 

 
 
 

 

Task 
Trunk flexion Trunk lateral bending Trunk torsion 

Front facing 45° p Front facing 45° p Front facing 45° p 

1a 54.1 ± 2.2 41.8 ± 2.8 <0.001 33.2 ± 4.5 28.4 ± 2.8 0.010 61.8 ± 3.8 55.1 ± 14.7 0.003 

1b 49.9 ± 4.4 33.5 ± 2.1 <0.001 38.6 ± 5 26.7 ± 2.6 <0.001 59.2 ± 4 39.9 ± 2.9 <0.001 

1c 48 ± 2.9 32.7 ± 3.1 <0.001 23.1 ± 5.4 17.5 ± 2.5 0.008 50.4 ± 3.8 38.1 ± 5.2 <0.001 

1d 62.3 ± 3.3 47.5 ± 16.1 0.011 61.7 ± 4.8 43.2 ± 14.7 0.001 47.8 ± 2.6 46.5 ± 15.7 0.799 

2a 37.5 ± 5.8 34 ± 4.3 0.143 46.9 ± 6.3 23.7 ± 4.5 <0.001 50.8 ± 4.1 31.7 ± 2.8 <0.001 

2b 20.2 ± 2.8 43.9 ± 2.6 <0.001 61.8 ± 3.3 46 ± 3.3 <0.001 48.2 ± 2.5 69.1 ± 2 <0.001 

2c 14.8 ± 2.3 16.2 ± 4.7 0.409 44 ± 4.9 46.1 ± 8.7 0.514 28 ± 3 39.6 ± 5.5 <0.001 

2d 20.5 ± 6.5 21.3 ± 2.8 0.725 35.7 ± 9.6 26 ± 4.4 0.009 24.6 ± 6.8 26.7 ± 3 0.383 

Table 6.4. The table shows the average RoMs (±SD) achieved for the three spatial planes of right (R) 
shoulder and the relevant statistical analysis for each of the eight sub-tasks analysed. 
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Task 
L shoulder abduction L shoulder horizontal abdadduction L shoulderflexion 

Front facing 45° p Front facing 45° p Front facing 45° p 

1a 7.6 ± 1.6 12.4 ± 2.7 <0.001 25.8 ± 6.2 21.8 ± 6 0.159 14.4 ± 3.5 16.7 ± 3.9  0.182 

1b 7.3 ± 4  7.6 ± 1 0.879 19 ± 3.5 9.1 ± 1.2 <0.001 14.5 ± 2.8 10.6 ± 1.3 0.001 

1c 9.5 ± 2.1 12.5 ± 3.3 0.026 19.1 ± 3.4 20.3 ± 3.2 0.427 17.4 ± 3 25.8 ± 3.5 <0.001 

1d 12.9 ± 3.2 7.9 ± 2.8 0.002 50.9 ± 2.8 42.2 ± 14.3 0.075 33.9 ± 3 28.4 ± 9.9 0.110 

2a 30.5 ± 11.2 41.3 ± 4.5 0.011 42.5 ± 17.6 36.4 ± 4 0.299 25.1 ± 9.9 27.6 ± 2.4 0.448 

2b 10.6 ± 1.9 5.5 ±1.2 <0.001 20.8 ± 1.2 17.4 ± 5.3 0.063 11.4 ± 2.1 11.3 ± 5.4 0.957 

2c 34.9 ± 3.8 44.2 ± 2.9 <0.001 49.3 ± 3.1 49.5 ± 4.2 0.905 38.8 ± 6 60.8 ± 6.9  <0.001 

2d 19 ± 7.1 12.5 ± 1.7 0.012 39.5 ± 11 46.9 ± 2.8 0.054 26.8 ± 8.1 35.4 ± 4.7 0.009 

 
 

Table 6.5. The table shows the average RoMs (±SD) achieved for the three spatial planes of left (L) shoulder 
and the relevant statistical analysis for each of the eight sub-tasks analysed. 

 

Task 
R Elbow Extension L Elbow Extension 

Front facing 45° P Front facing 45° p 

1a 94.9  ± 6.8 94.8 ± 6.9 0.974 36.3 ± 5.7 32 ± 3.4 0.055 

1b 69.1 ± 5 68.9 ± 4.9 0.929 25.6 ± 6.2 20.1 ± 3 0.021 

1c 93 ± 2.3 63.4 ± 3.5 <0.001 35.8 ± 4.1 27.8 ± 3.5 <0.001 

1d 109.7 ± 7.7 103 ± 34.6 0.558 52.3 ± 7.9 39.2 ± 13.5 0.016 

2a 83.3 ± 6.4 56.6 ± 11.4 <0.001 62.7 ± 10.8 47.1 ± 5.5 <0.001 

2b 58.6 ± 3.8 84.8 ± 3.2 <0.001 22.4 ± 4.7 17.5 ± 5.8 0.053 

2c 6.9 ± 7.6 51.7 ± 5.2 0.005 63 ± 2.6 70.6 ± 6.9 0.004 

2d 57.2 ± 17 63.7 ± 5.1 0.262 69 ± 22.8 72.2 ± 9 0.685 

Table 6.6. The table shows the average RoMs (± SD) achieved for extension of both of the elbows and the 
relevant statistical analysis for each of the eight sub-tasks analysed. 

 

6.1.3 Discussions and conclusions 

The changes made to the workstation, especially the introduction of a connecting board 

allowing for the alignment of the operator with the monitor and keyboard, appeared to bring 

improvement in the sub-tasks 1a, 1b, 1c 1d and 2a, which is in those where the operator carried out 

operations mainly in the central and left side of the workstation and involved interaction with 

customers. According to the data provided to us, these tasks are among those most frequently 

performed by operators. In particular, the RoMs for lateral bending and flexion were reduced, while 

as regards rotation, it was noticed that the workers adopted a different motor strategy, which 

provided for a broader movement of the head rather than the trunk. This change appeared to lead 

to a worsening in the case of sub-tasks 2b and 2c. In fact, in sub-task 2b, the re-design intervention 

moved the operator further away from the right side of the workstation, where the printer was 

located, thus leading to an increase of ROMs for elbow extension, as well as for right shoulder flexion 
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and abduction. Nevertheless, according to the data provided to us, this subtask resulted in being 

the least frequent among those actually performed. Meanwhile, in subtask 2 the change lead to a 

worsening for upper limb movements, in that the operator, in order to place the envelope on the 

scales/franking machine, had to raise their shoulder and extend their elbow further because of the 

machine overall size. However, the alteration involved improvements to the transverse plane 

resulting in reduced chair rotation and reduced trunk torsion. The modifications to the workstation 

in sub-task 2d, the only one involving actions performed on both sides of the operator, resulted in 

advantages and disadvantages. In fact, the RoM values were reduced in regard to trunk lateral 

bending, left shoulder abduction and right shoulder horizontal abdo-adduction, but were greater 

for trunk torsion and right shoulder flexion. However, the increase in trunk torsion by 6.7° was 

largely offset by the reduction in chair rotation by 21.2°. 

The activities carried out in the laboratory showed the need to remove the solid metal footrest fixed 

and permanently joint to the counter because it interfered with the base of the operator’s chair. 

As a conclusion, the change in the working desk, made with the introduction of a board joined to 

the original straight working desk, allowed the operator to align with the monitor and keyboard as 

well as providing adequate support for the forearms while typing, that, according to published data 

[15], also allowed for muscle engagement reduction while typing on the keyboard. The change 

appeared to bring improvement for most of the sub-tasks investigated, both in terms of trunk 

torsion and lateral bending, as well as in terms of interaction with the equipment located on the left 

side of the workstation. The flexion-extensions were also reduced in both upper limbs and trunk 

during customer interaction. Conversely, the change appeared to lead to worsening, when the 

operator worked on the right side of their workstation. 

To reduce overall head and trunk rotation, it would be appropriate to provide the operator with a 

seating that allows the operator to rotate the seating plan rather than their trunk and/or head. 
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Furthermore, it would be useful to provide a chair that allows for an easy transition between sitting 

and standing positions. This is in view of the fact that, from the information supplied to us, when 

working at the counter the operator often stands up (for example, taking forms from the cabinets, 

photocopying, picking up/consulting documents, processing manager requests, etc.) and moves 

therefore from sitting position. 

Finally, it would be appropriate to provide the workstation with devices that are less cumbersome 

as possible, to allow them to be better distributed on the working desk. 

This arrangement would lead to a better interaction of the worker with the equipment and would 

allow for a greater availability of space, thus providing a more correct positioning of the operator at 

the workstation. 

One limitation of this study is the presence of a very small sample: only four participants took part 

in the experiments. To strength the obtained results more analysis should be done.  

 

6.2 STUDY N°2: EFFECT OF DIFFERENT MOBILE DEVICE USES ON POSTURE WHILE SEATING 
AND STANDING 

 

In the last twenty years the use of mobile handheld devices, including touchscreen smartphone, 

tablet and keypad phones, has grown exponentially, for both adolescents and adults. Recent surveys 

have shown that the users spend approximately more than three hours daily [16] on their mobile 

device to text, read e-mail, surf the internet and game (excluding voice activities). These data are 

expected to continue to increase in the next years showing an important social change: due to their 

portability and simplicity of use, these devices are recently introduced in education, in healthcare 

and in various working environments. 

The effect of an intensive and daily use of mobile hand-held devices – smartphones and tablets, in 

particular – on one’s health is still a matter of research: while several reviews [17-18] have deeply 

investigated the association between electromagnetics field exposure and some non-specific 
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symptoms such as fatigue, sleep disturbance, headache and earache, few studies have targeted the 

relationship between the daily use of smartphones and modifications to motor outcomes (such as 

alterations of gait patterns while walking [19]); in particular, posture taken during touch-screen 

device use has been investigated, and the potential associated risks to develop musculoskeletal 

complaints and disorders [20-21]. Moreover, since children extensively use digital devices, the topic 

regarding possible alterations to the development of motor and stance control mechanisms [22-24] 

is worth being investigated. 

Most studies in this research area make use of questionnaires to evaluate self-reported pain, 

discomfort at the neck, at the shoulder and at the upper extremity and muscle fatigue. Among these, 

Berolo et al. [16] used a questionnaire to collect some self-reported measures of smartphone use 

and symptoms of pain on a population of university students and observed a relationship between 

the use of a mobile device and some symptoms of the upper extremity and neck. Hakala et al. [25] 

found that the use of the smartphone for more than five hours daily was associated with neck-

shoulders pain, while the effect of sustained static postures and repetitive movements of the finger 

has been investigated by Barr et al. [26]. Xie and colleagues [27] showed that the participants felt a 

neck discomfort after using a smartphone for more than ten minutes when they were sitting.  

While several studies have been based on kinematic analysis of some tasks to deal with a functional 

assessment (see for example [28]), the musculoskeletal exposure of head and trunk districts has 

been rarely studied through mathematical models or laboratory measurements (e.g. motion 

analysis systems, electro-goniometers): Hansraj [29] developed a mathematical model to simulate 

the effect of the neck tilt on the cervical spine, and showed that the equivalent weight suffered by 

the spine depends on the neck angle, so becoming a potential cause of cervical pathology. Lee et al. 

[30], evaluated head flexion during common smartphone tasks showing that the messaging 

produced the highest effect on the neck tilt. Guan et al. [31] investigated gender differences in the 
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cervical posture when using mobile phone. Ning et al. [32] explored the kinematics of the cervical 

spine while typing and showed a high level of risk to develop neck pain. Other experimental studies 

have also shown the postural difference between natural standing and the posture assumed while 

focussing upon the smartphone.  Only one study analysed head flexion while using a smartphone in 

sitting compared to standing [33] and indecisive results have been found about the effect of the 

task on the neck and trunk posture.   

The limited evidence regarding the relationship between mobile handheld device and 

musculoskeletal symptoms and exposures, due to few studies, does not permit the development of 

clinical management and ergonomics guidelines to facilitate prevention strategies. In this context, 

the present research main purpose is to assess, through laboratory sessions, the alteration of neck 

and trunk postures during smartphone use.  

 

6.2.1 Materials and methods 

6.2.1.1 Participants 

Fifteen healthy subjects aged between 21 and 25 years were recruited in this study (height: 

1.68 ± 0.5 m, weight: 71± 4.2 kg). The subjects had no history of musculoskeletal disorders and they 

have been using the smartphone for at least 6 years. All participants provided informed written 

consent before taking part in the study, which complied with the Helsinki Declaration and had local 

ethics committee approval (Ethics Committee of the Applied Electronics Section of the Department 

of Engineering). 

6.2.1.2 Experimental set-up and procedure 
An optoelectronic motion analysis system (SMART-DX 6000 System, BTS, Milan, Italy) consisting of 

eight infrared cameras (sampling frequency 250 Hz) was used to track the movements of four 

spherical markers (15 mm in diameter) covered with aluminum powder reflective material, placed 

over prominent anatomical bony landmarks according to the International Society of Biomechanics 
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recommendations [34]. The markers were attached using double-adhesive tape in such a way as to 

prevent them from falling out of place during the test. In detail, the markers were placed over the 

cutaneous projections of the spinous processes of the seventh cervical vertebra (C7), sacrum, right 

cyclops and right tragus (see Figure 6.3).  

A calibration procedure was executed before the first data capture was performed. Spatial accuracy 

in the reconstruction of the markers 3-D position was 0.2 mm in the x, y and z dimensions. A global 

reference system was adopted in accordance with [34].  

Before formal measurements were started, each subject answered a questionnaire concerning both 

demographic and anthropometric data and to assess the daily use of the smartphone. In particular, 

it has been requested: ‘On average, how long do you use a smartphone daily? (less than 3 h; 

between 3 and 4 h; more than 4 h)’; ‘Sort the activities carried out with the smartphone in order of 

frequency use from 1 to 4 (Messaging, Surfing, Gaming, Watching Video)’. 

Participants were instructed as follows: they were asked to use the smartphone in a natural way 

performing a set of activities with the smartphone. All the subjects were right-handed and used 

their own smartphone with their right hand. The same device was used for the all the experimental 

sessions. Thus, all the required applications were already installed on the smartphone, and were 

well known by the subjects, thus no familiarization for the activities was needed. The following 

activities were administered randomly, and they were performed both while standing and while 

seating: 

1. maintain posture in static conditions with no additional concurrent activities (Baseline) 

2. use an instant messaging app (WhatsApp), answering to general knowledge questions asked by 

the experimenter (Messaging) 

3. surf on a specific page of a social network (Surfing) 

4. play a game on the smartphone (Gaming) 
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5. watch a video (Video watching) 

Baseline tasks lasted 30 seconds, while the other tasks lasted 120 seconds. To avoid muscle fatigue, 

the tasks were separated by 1-min rest periods. After the end of the experiment, each subject was 

asked if he/she feelt neck and/or shoulder pain during the experiment.  

6.2.1.3 Data acquisition and processing 
After each acquisition performed by Smart Capture (BTS, Milan, Italy), three-dimensional marker 

trajectories were reconstructed using a frame-by-frame tracking system and a label to each marker 

was assigned. Data were processed using SMART Analyzer software and Matlab software. After a 

low pass filtering at 10 Hz of kinematic data, the following angles were extracted: 

• Neck flexion-extension angle (NA): angle between the horizontal plane passing through the 

marker placed on the seventh cervical vertebra subtended to the horizontal and the straight line 

passing through the markers placed in the seventh cervical vertebra and in correspondence with 

the tragus  

• Cranio-cervical angle (CCA): angle between the vector passing through the markers placed on the 

Tragus and on the Cyclops and the vector pointing from Tragus and C7. 

• Trunk angle (TA): angle between the line passing through the markers placed on the seventh 

cervical vertebra and on the sacrum and the vertical (Y) coordinate of the laboratory reference 

system 

For each condition and trial, the average value of each angle was computed; the percentage 

variation with respect to the baseline condition was calculated as in the following: 

baseline

activitybaseline

Angle

AngleAngle
angle

−
=100%var_  (1) 
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Figure 6.3. Markers placements: Sacrum, C7, Tragus and Cyclops. Kinematics angles: α (trunk angle), β 

(neck angle), γ (cranio-cervical angle) 

 

6.2.1.4 Statistical analysis 
Descriptive statistics were calculated for all the extracted parameters. To verify the normal 

distribution of data Kolmogorov-Smirnov test was done. All the parameters were then considered 

separately as dependent variables for a two-way ANOVA test considering Activity (Gaming, 

Messaging, Surfing, Video Watching) and Posture (Seat, Stand) as main factors and their interaction 

(Activity x Posture). Post-hoc analyses (with Bonferroni’s corrections) were performed when 

significant differences were found. The level of significance was set at p<0.05. 

 

6.2.2 Results  
Results obtained from statistical analysis showed an overall significant effect of the Activity 

(p=0.007, F=4.25) only for the NA%, while no difference was found for CCA% and TA%. Instead an 

overall effect was found for the Posture in all the parameters (NA% p<0.001, F=51.1; CCA% p<0.001, 

F=21.52; TA% p<0.001, F=59.71). No significant effect was found for interaction between Posture 

and Activity factor for NA%, CCA% and TA% (p>0.05). 

 

The post hoc analysis on NA% has shown a significant difference in Gaming vs Messaging (p=0.02, 

F=6.52), Gaming vs Video_Watching (p=0.008, F=9.56) and Surfing vs Video_Watching (p=0.007 
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F=9.76) during Stand. Instead during Seat a significant difference was found in Gaming vs 

Video_Watching (p<0.001, F=27.31) and Messaging vs Video_Watching (p=0.03, F=6.1). 

As it is shown in Figure 6.4, in both postures, the percentage variation of the neck angle with respect 

to the baseline condition is greater when an activity with a major cognitive load is performed 

(Gaming vs Video_Watching). 

The statistical analysis showed significant differences in NA% between the postures for all the 

activities. In particular: Gaming (p=0.005, F=10.28), Messaging (p=0.003, F=12.09), Surfing (p=0.04, 

F=4.73), Video Watching (p=0.003, F=12.4). For all activities, NA% is greater when the subjects are 

seated than when they are standing (See Figure 6.4). 
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Figure 6.4. Mean±standard error of the angle_var with respect to the baseline condition is shown for each 

activity in both posture condition. Significance is reported as *(p<0.05). In Neck_angle_var and 

Trunk_angle_var --* indicates significance difference among all activities. 

 
For CCA% a significant difference is shown only for Surfing (p=0.03, F=5.25) and Video Watching 

(p=0.004, F=11.64). Instead, for TA% a significant difference is showed for all the activities: Gaming 

(p=0.01, F=8.22), Messaging (p=0.01, F=8.28), Surfing (p=0.007, F=9.94) and Video_Watching 

(p=0.008, F=9.48) showed a significant increase of the mean values when the activities were 

performed while sitting (See Figure 6.4).  

Results of the questionnaire highlighted that two thirds of the sample use the smartphone for 

more than 3 hours in a day; all participants chose messaging as the most performed activity during 

the day, and the majority of them reported neck pain during the experiment. The details of the 

answers are given in Table 6.7.  

Hours of daily use 
< 3h >3h ^ <4h >4h 

33.3% 40% 26.7% 

Scores 
Activity preference 

Gaming Messaging Surfing Video Watching 

I 
 

 
100% 

 

 

 

 

II 20% 
 

 
53.3% 26.6% 

III 
 

 

 

 

 

 
53.4% 

IV 80% 
 

 
46.7% 20% 

Neck and/or shoulder pain during experiment 
Yes No 

66.7 % 33.3% 

 
Table 6.7. Summary of questionnaire answers. 

 

6.2.3 Discussions and conclusions 

The goal of this study was to evaluate the effect of smartphone use on neck and trunk kinematics, 

considering four different daily activities performed both standing and sitting.  
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With respect to the neutral condition, the percentage of variation of neck and trunk posture varied 

significantly between the two different postures (Stand, Seat). A clear increase of the neck and trunk 

angles when the subjects used the smartphone in a sitting position regardless of the performed 

activities was reported: in particular, with respect to standing, while sitting the percentage variation 

of both neck and trunk angles increased in average by 4.6% and 6.6% respectively. This evidence 

could depend on the incorrect posture taken by the subjects when using the smartphone while 

sitting: in fact, all of them tended to bend the trunk forward by resting their elbows on their knees. 

Instead, cranio-cervical angle varied slightly only during surfing and video watching, with a decrease 

of the angle value when sitting. This angle appears to be only partially influenced by the activities 

performed and by the posture taken during smartphone use. 

If on the one hand both trunk and neck angles are influenced by the posture taken by the 

participants, on the other one only the neck angle is influenced by the performed activity: among 

the four activities, gaming caused the largest neck flexion (15.6% stand, 20.3% seat), and video 

watching caused the smallest one in both standing and sitting. The analysis suggests that an activity 

involving subject’s attention affects the neck kinematics more than a passive activity, like watching 

a video.  

From the administered questionnaire, it emerged that the messaging activity is the activity most 

frequently carried out during daily life. Lee at al. [30] have shown that text messaging could cause 

neck pain symptoms in heavy smartphone users. By looking at our results, it comes to light that 

when the subjects stand, neck angle variations are comparable with those while watching videos 

and surfing, while when they seat, the values are significantly higher. This evidence could suggest 

that the alteration of the neck angle during text messaging may not primarily depend on the 

performed activity but rather on the posture conditions.  
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In this research almost 40% of the participants use the smartphone for more than three hours in a 

day, and at the end of the experimental session the 66.7% of the participants felt neck pain. This 

could be interpreted as follows: a) the prolonged use of the smartphone alters the kinematics of the 

neck and of the trunk; b) the performed activity influences the neck posture: in particular, the 

activities with a greater cognitive load, like gaming, determine a major alteration with respect to a 

passive activity (video watching). The study of correlation between the questionnaire data and the 

postural parameters will be one of the next step of the research, considering a large sample of 

subjects.  

These results could underline the importance of ergonomics interventions in work and school 

environments where smartphones and tablets are used daily, to monitor the posture flexion and to 

reduce the potential biomechanical symptoms.  

With the aim to define ergonomics guidelines to facilitate prevention strategies, future research 

should include recording cervical muscle activity, to better understand the relationship between 

kinematics and muscle activity, pain and biomechanics risks associated with long-term smartphone 

use.  
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CHAPTER VII 

7. SEMG FEATURES IN WRULD: MUSCLE ACTIVITY 
DETECTION IN WEAK AND NOISY MYOELECTRIC 
SIGNALS 
 

The muscles involved in work activities associated with use of computer and touch screen 

devices are often difficult to analyze because these muscles are weak and noisy myoelectric signals. 

Indeed, the detection of skeletal muscle activation is a critical issuein myoelectric signal (EMG) 

processing for clinical [1], motorcontrol [2], ergonomics [3] and sports applications [4]. Different 

approaches were developed to estimate EMG onset–offset based on several automatic computer-

based algorithms, including: single-threshold [5] and double-threshold [6] detection, adaptive 

threshold method [7], advanced statistical procedures [8], artificial neural network [9] and fuzzy 

logic [10] techniques. Unfortunately, these methods often fail when the muscle activity is recorded 

by damaged (i.e amputation) [11], pathological muscles (i.e myopathology) [12, 13], or in 

ergonomics studies, when looking at prolonged low-level sustained contractions (i.e. shoulder/neck 

muscles activity during computer work or upright stance) [14]. In these situations, the signals are 

weak and noisy, therefore they are characterized by a low activity level due to low firing rate, low 

number of motor units recruited, low activation threshold and very low signal-noise ratio (SNR) [15]. 

For these weak and noisy EMG signals, several approaches have been recently proposed to 

improve SNR and to minimize erroneous onset detection [16]: Xu et al. [17] developed an adaptive 

algorithm for the determination of the onset and offset of the muscle contractions based on the 

generalized likelihood ratio test(GLR); Merlo et al. [15] proposed a time-frequency analysis to 

identify the single motor unit activation potentials in noisy EMG, as they used the continuous 

wavelet transform (CWT), permitting to detect the intervals of activation through an optimal 
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threshold definition when the SNR is low (2 dB); Zhang and Zhou [18], instead, proposed an analysis 

based on Sample Entropy to distinguish the EMG signal from spurious background spikes. A method 

based on the non-linear properties of the Teager- Kaiser energy (TKE) operator, applied to surface 

EMG signal, was proposed for the first time by Liet al [16] considering simultaneously the amplitude 

and the instantaneous frequency of the signal: it improves SNR and favours a morerobust detection 

of the onset muscle activity. This method was perfected by Yang et al. [19] applying a filtering 

method that is borrowed from an advanced image enhancement technique in the TKE domain. 

Solnik and colleagues [20] compared the results obtainedby the application of the TKE with the three 

more-used classi-cal onset methods for detection (visual detection, threshold-based method and 

approximated generalized likelihood-ratio), showing that the application of TKE operator in signal 

conditioning significantly reduces the mean detection error with respect to the classical methods. 

However, all the mentioned methods depend, either fully (i.eGLR) or partially (i.e TKE or CWT), on 

the amplitude characteristicsof the weak EMG signal, and their performance often depends on the 

SNR level; this detrimentally affects the detection performance when SNR is less than 10 dB. 

In this context, during my PhD project, I focused the attention on weak and noisy EMG 

signals, typical of some work activities (i.e. use of computer and mobile touch screen devices by 

office workers) proposing 2 methods tested on simulated signals, to detect muscle activation of 

these signals. 

In this chapter, text and figures have been taken from or adapted from the articles “Using the 

frequency signature to detect muscular activity in weak and noisy myoelectric signals” [2019, 

Biomedical Signal Processing and Control], “Generalization of a wavelet-based algorithm to 

adaptively detect activation intervals in weak and noisy myoelectric signals” [2020, Biomedical 

Signal Processing and Control], and “Muscle activity detection in pathological, weak and noisy 
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myoelectric signals” [2018, IEEE International Symposium on Medical Measurements & 

Applications] which were co-authored by me.  

 

7.1 STUDY N°1: USING THE FREQUENCY SIGNATURE TO DETECT MUSCULAR ACTIVITY IN 
WEAK AND NOISY MYOELECTRIC SIGNALS 
 

The aim of this work is to introduce a method based only on the frequency characteristics of 

the weak and noisy EMG to detect muscular activity.  

Indeed, to date, despite the frequency analysis of the EMG is widely used to track muscular changes 

and to evaluate muscle fatigue [21,22], the possibility to extract the intervals of muscular activity 

only from the changes in frequency domain was only partially investigated: to our knowledge only 

one preliminary study was proposed in the literature, which uses frequency characteristics such as 

zero-crossings and mean instantaneous frequency to detect the muscular activity of a real EMG 

signal, by an empirical threshold approach [23]. 

In this work the aim is to evaluate the possibility to extract the intervals of muscular activation in 

weak and noisy signals, where amplitude-based parameters display a reduced efficacy driven by the 

low SNR characteristics, leveraging on frequency features only. In particular, we developed a cluster-

based algorithm which is based on the extraction of the number of zero-crossings and the mean 

instantaneous frequency [23], which we can comprehen-sively denote as frequency signature. This 

kind of approach to muscle activity detection allows to overcome the problems related to the 

definition of empirical thresholding, which in turns makes comparisons of results among different 

operators and laboratories harder. The algorithm was validated on a set of simulated EMG signals 

and the performance was assessed showing good results in terms of detection and robustness with 

respect to both noise level and implementation settings. 
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7.1.1 Materials and Methods 
 

7.1.1.1. EMG simulated signals 

The EMG signals were simulated using an EMG simulation soft-ware based on the model developed 

by Hamilton-Wright andStashuk [24,25]. The details of the theoretical bases of the EMG modelling 

method can be found in [24,25]. The EMG signals were supposed to be generated from a small 

muscle (100 motor units) with low firing rate (10 pps). The muscular contraction was generated in 

terms of percentage of the maximum voluntary contraction (5% MVC). The maximum recruitment 

threshold was set at 50% of the Motor Unit Action Potential(MUAP) and a neurological jitter with a 

variance of 25 µs wasinserted according to Yang et al. [19]. The main configurationparameters to 

generate the EMG signal are shown in Table 7.1.  

 

Parameters Value 

Electrode Type concentric needle 

Needle Position X/Y/Z [0 0 15] mm 

Number of MUs 100 

Contraction Level 5% 

Jitter (variance) 25 µs 

Muscle fiber density 10.0/mm2 

Area of 1 muscle fiber 0.0025 mm2 

Min/Max MU diameter 2.0/8.0 mm 

Firing rate 10pps 

Sampling Frequency  31250 Hz 

Table 7.1. Parameter configuration for generating the EMG signals. 

 

 

Segments of EMG signals were simulated: each segment wasconstituted by a 2 s long coloured 

Gaussian noise realization (obtained by filtering white Gaussian noise in the range 10 Hz-10 kHz) to 

which the simulated muscular activity (lasting 1 s) was added with onset instants randomly varying 

from 0 to 1 s in orderto randomise the onset in the data set. The power of the noise waschanged to 

obtain four levels of SNR (2 dB, 4 dB, 6 dB, 8 dB), whose values were chosen, following Merlo et al. 

[15], to obtain weak and noisy simulated signals, for each SNR level. A total of 320 trials (8 EMG 
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signals x 4 SNR x 10 noise replicas) of artificial EMG were generated. An exemplary trial is illustrated 

in Figure 7.1. 

 
Figure 7.1. Example of simulated EMG (SNR = 4 dB). 

 
 

 

7.1.1.2 Algorithm design to detect muscular activity 
The algorithm extracts the number of zero-crossings and the mean instantaneous frequency 

estimated by Hilbert transform [22,28], which are frequency characteristics of the EMG signal [27], 

and uses these parameters to build a function which will be then fedto a cluster-based technique to 

classify activation and no-activationphases of the muscular signals. The flow diagram of the 

algorithm is showed in Figure 7.2. 

Three principal steps were involved in the analysis: 

a. The original simulated EMG time series (EMG(t)) was segmented into a series of overlapped analysis 

windows with a windowlength from 200 to 3000 samples (6.4 to 96 ms) with steps of 200 samples 

(6.4 ms), and four window overlaps (0%, 25%, 50%,75%). 

b. For each segment the number of times that the signal crosses the zero line (number of zero-

crossings, NZC), the number of times that the signal crosses the line of the standard deviation (num-

ber of standard deviation-crossings, NSDC) [23], and the mean instantaneous frequency (MIF) were 

calculated and processed following the equation below.The MIF was calculated using the Hilbert 

transform, and it was divided by the mean instantaneous frequency calculated in absence of 

activity (MIFno act, noise only). 



186 
 

𝑠(𝑡) = (
𝑁𝑍𝐶𝑗∗ 𝑁𝑆𝐷𝐶𝑗

2
) ∗  

𝑀𝐼𝐹𝑗

𝑀𝐼𝐹𝑗𝑛𝑜_𝑎𝑐𝑡

      for j=1….number of windows    

An example of the original simulated signal and of the s(t) function is showed in Figure 7.3.   

 

c. To detect the muscular activation, the k-means clustering approach was applied (as in Lloyd’s 

algorithm) to s(t). The algorithm follows an iterative procedure in which the number of clusters 

was a priori set to two (activity /no_activity).  

The k-means algorithm follows the following steps:  

1. Initialization: initial estimation of C centroids randomly generated  

2. Data assignment: each input data point is assigned to a cluster based on the:  

                                           𝑉𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑖𝜖𝐶||𝑠𝑛 − 𝑐𝑖||
2
                                

 𝑖 = 1: 2       𝐶 = {𝑐1, 𝑐2}        𝑛 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ (𝑠(𝑡)) 

3. Centroid update: the centroids are recomputed, taking the mean of all data points to 

that centroid’s cluster:  

𝑐𝑖 =
1

|𝑆𝑖|
∑ 𝑠𝑖𝑠𝑖∈𝑉𝑖

                                      

The algorithm iterates between the last two steps (2-3) until the sum of the distances is 

minimized.  

4. Output: A 1-dimensional vector containing the clustering classification was stored to 

detect the muscular activity:  zero= “no-activity”, one= “activity”. 

5. Activity detection: after the clustering, the events assigned to the cluster “activity” and 

separated by a temporal distance higher than 100 ms (inverse of the firing rate 10 pps) 

were considered as not representative of a muscular activation, and thus attributed to 

the “no_activity” cluster. The same was applied if spurious events of no_activity within 

an activity phase were separated of more than 100 ms. 
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Therefore, the onset (tonset) and offset (toffset) times were detected: the first was defined 

as the first instant in which the data sample was classified to belong to the cluster 

“activity”, the second as the last.          

 

 

Figure 7.2.  Flow diagram of the algorithm.  

 

 

An example of the output of the complete algorithm is showed in Figure 7.3.            
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Figure 7.3. An example of the algorithm is showed on the same graph: EMG simulated signal (gray bold 

line), s(t) function (black dashed line), activity detection interval (redline) and true activity (green line). 

 
 

7.1.1.3 Performance algorithm evaluation 

To investigate the effect of the window length, the overlap, and the SNR level, respectively, on the 

algorithm performance, three performance parameters were calculated, and listed as in the 

following: 

- τ (ms) bias in onset detection defined as the absolute difference between the detected onset 

time, and the true onset/offset time, was calculated:  

𝜏 = |𝑡𝑜𝑛𝑠𝑒𝑡 − 𝑡𝑡𝑟𝑢𝑒𝑜𝑛𝑠𝑒𝑡
| 

- terror (%) the percentage of the error time detection defined as the absolute difference 

between the time interval in which the activity was detected and the real interval of EMG 

activity ( 𝑡𝑡𝑟𝑢𝑒 ): 

𝑡𝑒𝑟𝑟𝑜𝑟 = 𝛥𝑡𝑡𝑟𝑢𝑒 − |𝑡𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑡𝑜𝑛𝑠𝑒𝑡|𝑥100 

in which  𝛥𝑡𝑡𝑟𝑢𝑒 is the real interval of muscular activity.  

- F1score percentage, as a measure of accuracy, was calculated as following:  
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𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 𝑥 100 

in which recall is calculated as the ratio between the number of true positives (TP) and the 

sum of TP and the number of false negatives (FN); TP and FN were calculated on a sample 

by sample basis with respect to the s(t) function: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

and precision as the ratio between the TP and the sum of the TP and false positives (FP): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

7.1.1.4 Statistical analysis 

For each parameter, descriptive statistics was calculated (mean ± standard deviation) and statistical 

analysis was done: to verify the normal distribution of data, Kolmogorov-Smirnovtest was done. Bias 

and error time (τ, terror) parameters werethen considered separately as dependent variables for a 3-

way ANOVA test considering window length (win200, win400,win600,win800, win1000, win1200, 

win1400, win1600, win1800,win2000, win2200, win2400, win2600, win3000), overlap (0%, 25%, 

50%, 75%) and SNR (2 dB, 4 dB, 6 dB, 8 dB) as main factors; the two-way interactions (window length 

x overlap, window length x SNR,overlap x SNR) were also analysed.To check the effect of the window 

length, SNR and overlapping,one-way repeated measures ANOVA test and post-hoc analysis(with 

Bonferroni’s corrections) were performed. The level of significance was set at p < 0.01. 

 

7.1.2 Results 
 

For both τ and terror the statistical analysis has shown a global effect for window length, overlap, SNR 

and the interaction between window length and overlap, between window length and SNR and 

between overlap and SNR. The statistical values are reported in the following Table 7.2. 
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 bias (τ) error_time (terror) 

Window length   F=19.98; *p < 0.01   F=12.69; *p < 0.01 

Overlap   F=761.69; *p < 0.01   F=124.32; *p < 0.01 

SNR   F=60.94; *p < 0.01   F=56.88; *p < 0.01 

Window length x Overlap   F=19.12; *p < 0.01   F=10.67; *p < 0.01 

Window length x SNR   F=1.83; *p < 0.01   F=3.14; *p < 0.01 

Overlap x SNR   F=7.34; *p < 0.01   F=6.42; *p < 0.01 

 
Table 7.2. Three-way ANOVA test results: F-values and p values for bias (τ) and error time (terror) considering 

window length, overlap and SNR as main factors. The level of significance was fixed as *p < 0.01. 

 
 

7.1.2.1 Effect on bias (τ) 

The mean and the standard deviation values of the bias for each SNR and window length are shown 

in Figure 7.4, with each subplot representing a different level of overlap. For all the levels of 

overlapping, the decrease in the bias valuesas the SNR increases for all the window lengths is 

statistically significant (p < 0.01). In particular, for all overlap levels, the statistical difference is 

mainly due to the difference between very low value of SNR (2 dB) and the remaining ones (4 dB, 6 

dB, 8 dB) for all windows lengths except for the larger window (3000 samples).The comparison 

among the different values of window length was done considering each level of SNR and the results 

have shownsignificant effect of the factor for all the levels of overlap (p < 0.01). For 0% of overlap 

the length of the window influences the biasvalues with a significant decrease as the window length 

increases. No significant difference is shown among the values of window length greater than 1600 

samples for all SNR, with mean bias values between 60–100 ms. For 25% of overlap no significant 

difference is shown for window lengths between 1200 and 2000 samples for levels of SNR greater 

than 2 dB, with the bias values between 60 and 100 ms. Significant difference is shown only for 

window lengths greater than 2400 samples with very high mean bias values between 120–200 ms. 

Instead, for 50% of overlap the significant difference among the different window lengths resulted 
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for windows smaller than 1000 samples (p < 0.01) for very low SNR (2 dB); no significant difference 

resulted for window lengths greater than 800 samples for the remaining SNR levels.  

 

 
 
Figure 7.4. Mean and std of bias for each overlap (0%, 25%, 50% and 75%), SNR level (2 dB, 4 dB, 6 dB, 8 dB) 

and window length. 

 
 
For window lengths between 200 and 1600 samples, instead, the bias values stabilize at 15 ± 3 ms 

for all SNR levels. For 75% of overlap the significant difference for bias is showed only for window 

lengths smaller than 400 samples (p < 0.01), while the statistical analysis has shown no significant 
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effect for windows bigger or equal to 600 samples, with a stabilization of the bias values for window 

lengths greater or equal to 800 samples (τ= 12 ± 4 ms). In general, the bias values obtained for all 

overlapping configurations are well below the corresponding results obtained by implementing the 

detection technique introduced in [23] (τ= 191 ± 94 ms). 

 

7.1.2.2 Performance parameter: F1 score analysis 

For all the levels of overlap the mean and the standard deviation values of the terror for each SNR and 

window length are shown in Figure 7.5. The results of the statistical analysis have shown a significant 

effect of SNR for 0% and 25% of overlap for all the values of window length (p < 0.01), highlighting 

a decreasing trend for terror at the increase of SNR. In particular, the statistical effect for window 

length greater than 1000 samples is essentially due to the significant difference between very low 

negative SNR (2 dB) and the remaining ones (4 dB, 6 dB, 8 dB). Considering 50% of overlap no 

significant effect of SNR factor is present in window lengths larger than 1600 samples; significant 

effect (p < 0.01), with a decrease of the mean value at an increase of SNR, is showed for window 

lengths between 200 and 1000 samples. The results highlighted that with the increase of the 

window length the significant effect is essentially due to the difference among 2 dB and the 

remaining SNR levels. In the same way for 75% of overlap forwindow lengths smaller than 1200 

samples the effect is determined by the difference among the very low negative SNR value and the 

main ones. No significant effect of SNR is showed for window between 1200 and 2600 samples. 

Considering the effect of the window length on the parameter, for all the levels of overlapping and 

for SNR higher or equal to 2 dB, the results have shown no significant difference among the window 

lengths larger than 1000 samples. Comparing the terror mean values for all the overlapping levels, for 

window length values not affected by SNR, minimum values (2–3%) are highlighted for 50% of 

overlap and window length larger than 1400 samples. These values are very good, also if compared 

against the ones obtained with the method proposed in [23] (average terror = 34%). 
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7.1.2.3 Performance parameter: F1 score analysis 

The median of the F1 score is reported in the Figure 7.6, for each overlap, SNR and window length. 

The analysis of the results showed that the algorithm accuracy depends on the level of overlap and 

on the window length. In particular, except for the 25% of overlap, the accuracy improves increasing 

the length of the window and it is in the range between 90 and 100%. For 50% and 75% of overlap 

and for window length greater than 1200 samples the F1 score values are between 93% and 98%. 

 

 

 
Figure 7.5. Mean and std of terror for each overlap (0%, 25%, 50% and 75%), SNR level (2 dB, 4 dB, 6 dB, 8 dB) 

and window length. 
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Figure 7.6. Median values of the F1score for each overlap, SNR level and window length. 

 

7.1.3 Discussions and Conclusions 

The detection of the muscular activity in signals characterized by low amplitude and low 

signal-to noise ratio is a challenge in biomedical data processing for application in different fields 

such as prosthesis control and ergonomics. To date the main approaches proposed to detect 

muscular activity are essentially based either on the amplitude or on the combination of both 

frequency and amplitude characteristics of the signals, and their performance are strictly related to 

the SNR level. Therefore, when the electromyographic signal is very weak and noisy the accuracy in 

the muscular detection decreases for almost all the published techniques and often is not 

satisfactory. This study shows how the latter limitation can be overcome. The proposed algorithm 

works on the frequency characteristics of the weak and noisy EMG signals, essentially disregarding 

the amplitude charac-teristics, and is able to extract, with a good accuracy the onset and the 

percentage time of activation, regardless of the signal-to noise ratio. The detection is obtained by 

combining the extraction of the frequency features to a clustering approach without the need of 

using a thresholding procedure. This latter feature plays a relevant role, as it is also underscored by 

the higher performance, in terms of temporal accuracy, of the method introduced in this study, as 
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compared to the activity detection introduced in [23], which uses frequency characteristics only, as 

well. 

The analysis of the results, obtained by a set of simulated EMG signals with different levels of very 

low SNR, has highlighted a critical aspect, to study in deep, related to the implementation settings. 

In particular, it is important to examine how the window length and the overlap can influence the 

algorithm performance. The results show that both bias and time error can be improved by properly 

setting the window length and the overlap. In particular, window overlap determines an 

improvement of the algorithm performance, obtaining the best results for overlap between the 50% 

and 75%. As it happens in other time-frequency techniques [26], the overlap of the windows 

increases the number of observations and favours the timing detection accuracy (the function used 

for the detection is calculated over a greater number of samples). At this level of overlapping the 

best performance are for a window length of 1000 samples for 50% of overlap and of 800 samples 

for 75%, with bias values of about 13 ms and 8.5 ms, error in time detection of 1.5% and 2%, and 

accuracy of 96% and 98%, respectively. Considering the effect of the SNR levels for each window 

length and each overlap, the results show that for overlapping lower than 50% the difference in 

performance among the lower level of SNR (2 dB) and the remaining levels persists for all the 

window lengths, while this effect disappears for 50% and 75% of overlap when window lengths are 

larger than 30 ms and 25 ms, respectively.The obtained performance is satisfactory in the simulated 

conditions, with levels of bias well below 50 ms even under noisy conditions. The independence 

from the SNR level is also an important element that will favour the application of this technique in 

real situations characterized by weak signals such as the ones recorded, even by using sEMG, during 

sustained and prolonged activities (for instance, the upper trapezius activity during computer use), 

or from damaged and pathological muscles (i.e. limb muscle after an amputation). Future work will 

be devoted to i) improve the independence of the algorithm from the operator settings by adapting 
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the window size on the statistical characteristics of the signal, and ii) validate the technique on real 

signals by implementing ad-hoc experimental protocols (i.e. EMG signals acquired simultaneously 

to kinematic information to be used as a biomechanical reference for muscular onset detection). 

Some further investigations could study the effect of combining differently the frequency features 

used as input for the clustering and even comparing performance obtained by different classifiers. 

 

 

7.2 STUDY N°2: AN ADAPTIVE WAVELET-BASED ALGORITHM TO DETECT MUSCLE 
ACTIVITY IN WEAK AND NOISY SIGNALS 
 

The aim of this study is to present an approach for estimating the timing of muscular 

activation in weak and noisy myoelectric signals (EMG) starting from a method introduced in 

literature by Merlo and colleagues [15]. The work authored by Merlo and colleagues [15] has drawn 

the attention of the scientific community, as the method therein proposed showed accurate timing 

performance for low SNR values (i.e. around 2 dB). In that method, muscle activity is recognized by 

detecting the presence of activity in the EMG signal through the Continuous Wavelet Transform 

(CWT). In particular, a detection threshold is defined based on the statistical properties of an initial 

reference window where no muscular activity is hypothesized. This makes the algorithm unsuitable 

in cases when it is not guaranteed that myoelectric signals start without a muscular activation. 

Moreover, the method requires to calculate and to process all the wavelet decomposition levels 

with a relevant computational burden. 

In this manuscript we want to generalize this approach. In particular, the threshold for the detection 

is determined iteratively based on the estimation of the SNR. With this addition the algorithm can 

be used also in conditions where muscular activity is present in the reference window. Moreover, 

by introducing a stopping criterion for the number of decomposition levels it would be possible to 

reduce the computational burden.  
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Given the rather promising results of the original formulation of the CWT-based scheme on weak 

and noisy signals, we will test whether the modifications coming from this adaptive approach 

maintain (or possibly improve) the performance in that class of signals. To evaluate and compare 

the performance of the method against traditional threshold-based methods and the original 

formulation of the technique, both simulated and semi-synthetic EMG signals were used, as detailed 

in the following section. 

7.2.1 Materials and Methods 

7.2.1.1 Synthetic EMG dataset 

Very weak and noisy myoelectric signals have been simulated by a software based on the EMG 

mathematical model developed by Hamilton-Wright and Stashuk [25]. The simulation software 

allows the management of several parameters [30] whose values in this work are shown in Table 

7.3. 

 

 

 

Parameters Value 

Electrode Type concentric needle 

Needle Position X/Y/Z [0 0 15] mm 

Number of MUs 100 

Contraction Level 5% 

Max Recruitment Threshold 50% 

Jitter  25 µs 

Muscle fiber density 10.0/mm2 

Area of 1 muscle fiber 0.0025 mm2 

Min/Max MU diameter 2.0/8.0 mm 

Firing rate 12pps 

Sampling Frequency (Fc) 31250 Hz 

EMG Bandwidth 10-10kHz 

Activity Duration (RAD) 1s 
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Table 7.3. All parameters for simulating the EMG signal by a generation software based on an EMG 

mathematical models. 

 

To simulate weak static muscular contractions (Figure 7.7) – weakness is associated with a very 

low percentage (e.g. 5%) of the maximum voluntary contraction – we have chosen, as the source of 

the activity, a small muscle characterized by: 100 motor units, firing rate of 12 pulses per second 

(pps), 50% as the percentage of the maximum recruitment threshold, 25 µs as the variance of the 

neurological jitter [19]. 

The signals used for assessing the algorithm were built in order to evaluate the performance with 

respect to the detection of the activity onset by varying the SNR values.  

In particular, eight runs of the simulator were done to simulate eight different weak muscular 

contractions lasting 1 second. Then each of the latter contractions was used to build a set of 

simulated signals as in the following (see Figure 7.7 b): 

• 10 independent coloured Gaussian noise realizations (obtained by filtering white Gaussian 

noise in the range 10 Hz-10 kHz), lasting 2 seconds, were generated. Each of the realizations was 

differently magnified in order to obtain seven different values of the variance and then seven 

different levels of SNR (-2dB, 0dB, 2dB, 4dB, 6dB, 8dB, 10dB) in the final dataset; 

• the synthetic weak static muscular contraction was superposed to the previous 60 noise 

realizations and, in particular, it was located from 0.5 s to 1.5 s, so simulating a contraction both 

preceded and followed by a rest phase lasting 0.5 seconds.  

In sum a total of 560 trials (8 EMG x 10 noise replicas x 7 SNR) of artificial EMG simulated signals 

were processed. The real activity duration (RAD) is one second, while the entire signal (Signal 

Duration) lasts two seconds. 
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Figure 7.7. a) A trial of 1 second simulated muscular activity generated by the generation software. b) The 

simulated EMG signals obtained by superposing the muscular activity (from 0.5s to 1.5s) represented in a) 

to a 2 seconds long white Gaussian noise realization with varying power to obtain the following values of 

SNR (SNR=-2dB, SNR=0dB, SNR=2dB, SNR=4dB, SNR=6dB, SNR=8dB, SNR=10dB). 

 

7.2.1.2 Semi-synthetic EMG dataset 

The algorithms were also tested on a set of 280 semi-synthetic EMG signals generated from real 

EMG signals published by [31].  

In particular, to generate each semi-synthetic EMG signal, we carried on the following operations: 

1) a 6-s long sequence of coloured noise was synthetically generated, according to the same 

procedure described in the previous section; 

2) three different sections of muscular activations were extracted from the recorded signals 

taken from the database; 

3) the sections were added to the synthetic coloured noise, at different temporal intervals, 

so to create 3 different activation intervals. 
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This procedure was repeated 40 times by considering all the possible combinations of 10 different 

realizations of coloured noise and 4 real signals extracted from the database. The entire dataset of 

semi-synthetic EMG signals was then generated by considering the 7 different levels of SNR (-2dB, 

0dB, 2dB, 4dB, 6dB, 8dB, 10dB), summing thus at a total of 280 realizations. 

 

7.2.1.3 Generalized CWT-based estimation of muscle activation 
Continuous Wavelet Transform (CWT) [15] was applied to the EMG simulated signals s(t) to detect 

muscle activation. The CWT was defined as: 

  

𝐶𝑊𝑇(𝑎, 𝜏) =
1

√𝑎
∫ 𝑠(𝑡)𝑤∗+∞

−∞
(

𝑡−𝜏

𝑎
) 𝑑𝑡            

 

where w(t) is the prototype function called mother wavelet (Mexican Hat), τ is a translation index, 

and 𝒂 is a scale parameter that is related to the frequency content. From now on we will refer to 

the scale as the level of decomposition to better match better the iterative and discrete nature of 

the detection algorithm. 

The detection algorithm is based on the following three steps that are also represented in a 

graphical way in Figure 7.8: 

 

1) Definition of the minimum level of decomposition 𝒂𝒎𝒊𝒏: CWT is calculated from 𝑎=1 to 

𝑎=𝑎𝑚𝑖𝑛. Particularly, the level of decomposition 𝑎𝑚𝑖𝑛 is determined automatically as follows: 

the power of the CWT coefficients is estimated on windows lasting 200 ms and the 

coefficient of variation (CV) is evaluated. The level of decomposition 𝑎𝑚𝑖𝑛 is determined as 

the first level of decomposition presenting a CV value higher than a given threshold (0.1), 

chosen with experimental tests satisfying the detection for the lowest SNR (-2dB). 

2) Detection cycle (see bold box in Figure 7.8): 
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i. For each iteration i, starting from the value 𝑎𝑚𝑖𝑛 determined in the previous initialization 

step, an objective function η(t)i is calculated according to the following:  

 

𝜼(𝒕)𝑖 = 𝑚𝑎𝑥{𝐶𝑊𝑇(𝑎, 𝑡)}𝑎=𝑎𝑚𝑖𝑛

𝑖          

ii. 𝜼(𝒕)𝑖 is processed to extract power values calculated on windows lasting 200 ms [32]. The 

series of the power values allowed a first classification of the signal into noise and 

signal+noise contributions. The lowest value of the series is attributed to noise (P𝑛) so 

considering the relative window as the part of the signal characterized by noise only. The 

remaining signal is considered as containing a superposition of noise and signal and is used 

to calculate the signal+noise power (P𝑠+𝑛). With these values the SNR for the first iteration 

of the algorithm is calculated. 

 

iii. An inner cycle is then initialized, with a first-guess threshold (𝑡ℎ1) is estimated on the 𝜼(𝒕)𝑖  

function as: 

𝑡ℎℎ = 𝛾 ∗ 𝑚𝑎𝑥𝜂 ,    ℎ = 1 

 

where h is the current iteration of the algorithm, 𝑚𝑎𝑥𝜂 is the maximum value contained in 

the window of 𝜼(𝒕)𝑖 used to estimate Pn, and 𝛾 is calculated as follows:  

𝛾 = √
𝑃𝑠

𝑃𝑛
 =√

𝑃𝑠+𝑛−𝑃𝑛

𝑃𝑛
 

where P𝑠 is the power value evaluated as the difference between P𝑠+𝑛 and P𝑛. 

 

iv. Each time sample of the vector t is classified as either a burst or interburst by using the 

following rule: 
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𝒕𝑏𝑢𝑟𝑠𝑡 = 𝒕 | 𝜼(𝒕)𝑖 > 𝑡ℎℎ  

𝒕𝑖𝑛𝑡𝑒𝑟𝑏𝑢𝑟𝑠𝑡 = 𝒕 | 𝜼(𝒕)𝑖 ≤ 𝑡ℎℎ  

v. After the detection process, the SNR estimation is updated by considering the burst-

interburst classification obtained at step iv) as in [7].  

vi. The relative difference between two consecutive SNR estimations is evaluated. If it is higher 

than 10-3 [18], the algorithm goes into a new iteration: h = h+1, 𝑡ℎℎ  (equation 3) is updated, 

steps iv) and v) are repeated; if the relative difference between two consecutive SNR 

estimations is lower than 10-3, the inner iteration cycle ends. 

vii. Then the detection is refined by a post-processing manipulation as in [15] to reject or merge 

spurious transitions.  

 

3) Definition of the maximum level of decomposition 𝑎𝑚𝑎𝑥: the level of decomposition is 

increased automatically up to a maximum value (𝑎𝑚𝑎𝑥) (see Figure 7.8 dotted line). The stop 

criterion of the outer cycle is based on convergence: for level of decompositions greater than 

𝑎𝑚𝑎𝑥 the detection outcome, and then the estimation of the muscular activity (Estimated 

Burst Duration, EBD), doesn’t change significantly. To assess this convergence step, the 

relative duration of the estimated activation is used: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐸𝐵𝐷

𝑆𝑖𝑔𝑛𝑎𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
   

If the difference between 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 at the current iteration i and the value obtained 

at the previous iteration is higher than a given threshold (1%), the outer cycle iterates, while 

if it is lower, the outer cycle ends, and the maximum value of the level of decomposition 

(𝑎𝑚𝑎𝑥) is determined.  
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An example of the detection procedure is shown in Figure 7.9 for a trial of simulated EMG signal 

with SNR = 6db: panels 3b) and 3c) show the true (dotted line) and the estimated (solid line) 

activation intervals detected in correspondence to 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 level of decompositions, 

respectively. Panel 3d) shows the final outcome after processing step vii.  

 
Figure 7.8. Flow chart of muscle activity detection procedure. 
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Figure 7.9. Functions η(t) with range of a 3-6 (a), computed from a trial of simulated EMG signal with 

SNR=6db. The activation intervals estimated using the proposed method (solid line) at the 𝑎𝑚𝑖𝑛 ((b)) and 

𝑎𝑚𝑎𝑥x level of decompositions (c)) and for 𝑎𝑚𝑎𝑥 level of decompositions after post-processing (d)) and true 

activation intervals (dotted line). 

 

 

7.2.1.4 Evaluation of results 

Results for simulated signals were evaluated in terms of: 

• Bias on the onset (𝐵𝑖𝑎𝑠𝑜𝑛) calculated as the difference (in milliseconds) between the true and 

the estimated onset of the EMG activity. 

• Relative timing error of time of EMG activity (𝑅𝑇𝐸𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦): it is calculated as the magnitude of 

the difference between the duration of the nominal EMG activity (RAD) and the estimated 

burst duration EBD divided by the nominal duration:    

 

𝑅𝑇𝐸𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
|𝑅𝐴𝐷 −𝐸𝐵𝐷|

𝑅𝐴𝐷 
    

• Accuracy calculated as follows: 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    

 

where TN and TP represent the true negatives and true positives. FN and FP are the false 

negatives and false positives. 

In order to compare the performance of the proposed algorithm against techniques introduced 

in the literature, values of accuracy were calculated, on the same dataset, also for the 

estimation technique proposed in [16] (TKE), and for the original formulation of the CWT 

approach proposed by Merlo in [15]. For this latter case, the following parameters were used: 

the number of decomposition levels was set a-priori at 11; the threshold for timing detection 

was determined based on the variance of the first section of the signals (0.5 s), in the following 

defined denoted as reference window, hypothesized to be composed of noise only as in [15].  

Then, to highlight possible improvements coming from the adaptive nature of the formulation 

proposed in this work, a further analysis on synthetic signals was also performed as in the 

following: for the dataset obtained with SNR = 2dB, we modified the amount of activity for the 

reference window, by adding interference signal, with varying levels of amplitude, leading to an 

Interference to Noise Ratio (INRwindow) in the range (-14dB, 0dB). In this way it was possible to 

verify the robustness of both the original formulation of the method and that introduced in this 

study, when the hypothesis of absence of muscular activations in the reference window cannot 

be guaranteed. 

 

7.2.2 Results 

7.2.2.1 Synthetic EMG dataset 

The results regarding the minimum and maximum level of decomposition (𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥) are 

dependent on SNR. Particularly, the 𝑎𝑚𝑖𝑛 values resulted as 5, 5, 4, 4, 3, 3 and 3 for signals with SNR 
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equal to -2dB, 0dB, 2dB, 4dB, 6dB, 8dB and 10dB respectively. Instead, the 𝑎𝑚𝑎𝑥 values were 10, 9, 

8, 7, 6, 6 and 5 for signals with SNR equal to -2dB, 0dB, 2dB, 4dB, 6dB, 8dB and 10dB, respectively. 

Table 7.4 shows the results in terms of 𝐵𝑖𝑎𝑠𝑜𝑛 in milliseconds: the rows represent the results for 

different 𝑎𝑚𝑎𝑥 values, calculated as the mean and the standard deviation of 80 trials (8 simulated 

signals x 10 realizations of noise) for each SNR. The 𝐵𝑖𝑎𝑠𝑜𝑛 value decreases from 𝑎𝑚𝑖𝑛 to 𝑎𝑚𝑎𝑥 for 

each SNR value. The detections occur with a 𝐵𝑖𝑎𝑠𝑜𝑛 ranging from 8 ms (𝑎𝑚𝑎𝑥 = 5, SNR = 10dB) to 18 

ms (𝑎𝑚𝑎𝑥 = 10, SNR = -2dB). 

  SNR 

 a -2dB 0dB 2dB 4dB 6dB 8dB 10dB 

𝐵
𝑖𝑎

𝑠 𝑜
𝑛

  
(M

±
S

D
) 

[m
s]

 3 - - - - 504±2 503±3 500±4 

4 - - 503±2 502±3 501±3 444±147 141±195 

5 504±1.9 502±3 463±95 384±194 232±209 51±130 8±9 

6 498±13 400±173 365±191 72±129 9±11 9±11 - 

7 416±152 255±214 45±98 10±11 - - - 

8 330±181 44±80 11±15 - - - - 

9 102±151 12±16 - - - - - 

10 18±26 - - - - - - 

𝑅
𝑇

𝐸
𝑎

𝑐𝑡
𝑖𝑣

𝑖𝑡
𝑦

  

(M
±

S
D

) 
[%

] 

3 - - - - 99.9±0.3 99.9±0.4 98.7±4.6 

4 - - 99.9±0.3 96.8±7.8 99.3.3±4.1 80.4.3±27.1 14.3±18.1 

5 99.9±0.4 97.3±7.2 88.9±23.1 71.6±36.3 41.1±32.1 3.9±2.6 3.3±1.7 

6 97.2±6.5 80.1±30.6 62.9±33.1 10.2±14.8 3.3±2 3.3±2 - 

7 79.8±27.5 44.9±33.9 6.3±6.7 3.4±2.1 - - - 

8 52.9±35.2 6.1±5.9 3.8±2.5 - - - - 

9 17.1±17.9 3.7±2.6 - - - - - 

10 4.9±4.1 - - - - - - 

a
cc

u
ra

cy
 (

M
±

S
D

) 

[%
] 

3 - - - - 49.8±0.1 49.9±0.2 51±2.3 

4 - - 49.9±0.1 51.9±3.9 50.6±2 60±13.5 91.7±9.1 

5 49.9±0.2 51.6±3.6 55.6±11 64.4±17.9 79.0±15.7 97.8±1.8 98.3±0.8 

6 51.7±3.2 59.9±14.7 68.5±16.3 94.3±7.3 98.3±1 98.3±1 - 

7 60.1±13 77.2±16.6 96.5±3.2 98.3±1 - - - 

8 72.9±16.8 96.5±3.1 98.1±1.2 - - - - 

9 91.1±8.8 98.1±1.3 - - - - - 

10 97.5±2.0 - - - - - - 

 
 

Table 7.4. The M±SD of 80 trials (8 simulated signals x 10 noise) of Bias on the onset (𝐵𝑖𝑎𝑠𝑜𝑛), Relative 

timing error of EMG activity (𝑅𝑇𝐸𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) and accuracy for each η(t) and each SNR. 

 

Table 2 shows also the results concerning the 𝑅𝑇𝐸𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 with respect to the level of 

decomposition and the SNR. 𝑅𝑇𝐸𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 decreases with increasing values of the decomposition 

level, for every SNR value. At 𝑎𝑚𝑎𝑥, 𝑅𝑇𝐸𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is less than 4% for all the SNR values (from 3.3% to 
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3.7%) with the exception -2dB (around 5%). Furthermore, in Table 7.4 the values of accuracy 

obtained for the different levels of SNR and for each level of decomposition are reported.  

The accuracy value becomes higher when the number of decomposition levels increases, and its 

maximum is independent from SNR. The values are around 98%. 

 

7.2.2.2 Performance comparison 

The comparisons between the gCWT method, the TKE method described in [16] and the traditional 

CWT method described in [15] were reported in terms of accuracy (see Figure 7.9 for mean and 

standard deviation values). Mean and standard deviation were calculated, the normal distribution 

of the data was verified using Lilliefors test, and t-test was done to highlight the statistical difference 

between the methods. The level of significance was set at 0.05.   

The accuracy was compared considering the last level of decomposition for each SNR.  

The results of the method proposed in this study showed no significant difference from the original 

formulation (CWT) for all SNR values, while accuracy resulted significantly higher (p<0.05) than that 

displayed by TKE for all SNR values. 

 
Figure 7.9. Performance comparison. The M ± SD accuracy of proposed method and method of 

[25] and [29] for each η(t) and for each SNR. * statistically significance between gCWT and the 

other two methods (TKE and CWT). 

 



208 
 

Results with Interference signals are reported in the Figure 7.10. The gCWT method introduced in 

this study displayed significantly better accuracy results than CWT for every INR level, with the 

exception INR =-14db. 

 

 

 
Figure 7.10. The M ± SD accuracy of proposed method and method of [29] for SNR=2dB and for each INR (-

14dB to 0dB).  

 

7.2.2.3 Results on semi-synthetic dataset 

An exampe of the detection of muscular activation through gCWT on semi-synthetic EMG signals is 

showed in Figure 7.11. 

The results obtained on semi-synthetic signals are reported in terms of accuracy in Figure 7.12; for 

each level of SNR the accuracy value is reported from 𝑎𝑚𝑖𝑛  to 𝑎𝑚𝑎𝑥. 

The results obtained on semi-synthetic signals showed an accuracy higher than 92% for all SNR levels 

except for -2dB. In particular, for SNR higher than 0 dB, the accuracy values stabilize around 96% for 

the maximum level of decomposition. Further, the number of the decomposition levels decreases 

when SNR increases, obtaining for SNR of 10 dB only three levels of decomposition.  The accuracy 

results are showed in Figure 7.12. 
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Figure 7.11. An example of detection on semi-synthetic EMG (in black), in red the period of 

activation (SNR=2dB). 

 

 
Figure 7.12. The mean of 40 trials (4 semi-synthetic signals x 10 noise) of accuracy for each SNR and for 

each level of decomposition.  

 

 

7.2.3 Discussions and Conclusions 

The detection of muscular activity, when this latter one is feeble and leads to weak and noisy EMG 

signals, represents a challenging task in biomedical signal processing, and techniques able to 

accurately solve this task can be useful in different fields of application. 

The introduced algorithm takes advantage from the performance of the CWT-based technique in 

detecting muscle activity when SNR is low, as it is assented by the significant superior performance 

of both formulations of the algorithm with respect to TKE.  
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In particular, in terms of performance on synthetic signals, we want to stress the following points 

regarding the generalized algorithm: the bias is always lower than 18 ms and, for SNR higher than 

4dB, it is around 10 ms; 𝑅𝑇𝐸𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is independent from SNR and it is less than 5% for all the tested 

signals; accuracy is always higher than 97%. The obtained results are linked with the intrinsic nature 

of the CWT decomposition that, based on the observed shape correlation between MUAPs and 

wavelets, allows to be more sensitive to muscular activity and to minimize the detection 

inaccuracies associated with the presence of noise. The latter is an element of importance especially 

when dealing with weak and noisy signals. This aspect is confirmed by the results obtained on semi-

synthetic weak and noisy EMG signals, where accuracy of the muscular detection is around 96% for 

SNR higher than 0 dB.  

Moreover, the generalized algorithm can be implemented for real-time applications due to the 

reduced computational burden. The latter is reduced by optimizing the wavelet decomposition 

through a stopping criterion based on the convergence of the detection that prevents the need of 

calculating and processing all the decomposition levels. The optimization of the wavelet 

decomposition, indeed, allows the determination of the optimal values for both minimum and 

maximum level of decomposition. Choosing automatically the minimum level of decomposition 

guarantees the convergence of the procedure, while optimizing the maximum level reduces the 

computational burden and makes the results independent from the SNR. 

Regarding the comparison with the traditional threshold-based estimation techniques, accuracy 

for these former ones vary as a function of the SNR level, and when the EMG signal is weak and 

noisy, the detection accuracy decreases, and it is often not satisfactory. In the case of CWT-based 

methods, this dependence is reduced [15], and the generalized algorithm introduced in this work 

takes advantage from this better performance. With the generalized formulation of the CWT-based 

technique, we were able to widen the applicability of the method to a class of signals where the 



211 
 

hypotheses required by the traditional method could not be met, in particular that of having no 

muscular activation to define the threshold. Indeed, the algorithm introduced in this study is based 

on an iterative and adaptive estimation of the signal to noise ratio that is used to assess the 

threshold for the activity detection. The threshold value is computed iteratively on the basis of a 

burst-interburst classification that is updated during the algorithm execution. This makes it possible 

for the generalized algorithm to work accurately not only when the SNR is low, but also when it is 

not directly possible to establish a reference to be used to manually define a threshold: this may 

happen in those experimental conditions where muscular activity is low, as the result of a reduced 

motor unit recruitment, or while operating in a noisy environment and in presence of physiological 

artifacts, or when recruitment  cannot be accurately controlled, such as in the case of physical 

therapy sessions for people with reduced muscular strength. 

Based on the previously described three elements (good accuracy across a broad range of SNR 

values, ability to work with no reference windows, reduced computational complexity), the 

algorithm is then a good candidate for a variety of applications where these conditions are 

important: for instance, in prosthetic control from myoelectric data coming from the residual 

muscular groups (where real-time is a need, EMG data may be weak and noisy, and control of 

absence of muscular activation is not always feasible). Future work will thus need to include 

experimentations for this class of conditions, and a specific analysis on the choice of the mother 

wavelet that would better capture the nature of the muscular activation.  
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CHAPTER VIII 

8. GENERAL CONCLUSIONS  
 

In the attempt to reduce the risk of work-related musculoskeletal disorders several methods 

have been developed, accepted by the international literature and used in the workplace. In the last 

years, the most innovative wearable technologies and electronic smart devices, without interfering 

with the work activities performed by workers, have been introduced to improve the biomechanical 

risk assessment adapting it to all the work conditions and overcoming the limits of the current 

standardized methods. Indeed, these devices allow the estimation of biomechanical risk in real-time 

providing a direct feedback to the end-user who would be constantly monitored directly while at work. 

In fact, the use of the recent implementations of wearable sensors for quantitative instrumental-

based biomechanical risk assessments in the prevention of WMSDs is desirable also in view of the 

concerns regarding technical ISO standards on ergonomics and physical workloads [1]. 

In this thesis was underlined, among the others, that the risk assessment methods currently 

used for UL-WMSDs or WLBDs have different limitations that inhibit their applicability to all work 

activities.  For these reasons instrumental-based tool will play an increasingly important role in 

both direct evaluations and in the rating of standard methods, also in consideration that several 

factors, implying work-related musculoskeletal disorders, interact at the same time. Therefore, it 

will be crucial to monitor all of them by using more than one method at the same time ensuring a 

more thorough evaluation of risk factors. On the other hand, a lot of attention must be paid 

because the use of more than one method can rapidly lead to unacceptably high costs for the 

practitioner, both from a time and money viewpoint [2, 3]. 

In this context, the technologies accredited to be used are without doubt inertial 

measurement units (IMUs), instrumented gloves and surface electromyography (sEMG) sensors, 
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although other new tools are appearing in research laboratories and the workplace. Among these, 

smart footwear-based wearable systems [4] will surely be useful because they will permit, by 

recording ground reaction forces through integrated tri-axial force sensors, an inverse dynamics 

analysis [5-7]. For their simplicity, vision-based tracking systems are also potentially useful for the 

rating of standardized methods as proposed for assessing the movements of workers within quick 

exposure check tools [8]. Wearable miniaturized sensors can monitor workers’ motor behavior if 

individually placed on the body segments or embedded in elastic suits. The latter use is also the 

most probable because the research activity is working fast on the development of artificial muscles, 

materials able to reversibly contract, expand, and rotate due to an external stimulus [9-10]. These 

devices, that can be enriched by several material characteristics, textile layers, elastic components, 

diagonal and lateral seams and pneumatic mechanisms [11] are envisioned as actuators for silent, 

soft and compliant assistive devices [12] acting as force multiplier systems by helping workers to 

reduce their effort. These suits/devices can also embed miniaturized sensors which will also serve 

for their control through, for instance, effective feedforward anticipation mechanisms. 

Furthermore, numerous devices have been developed to support the trunk during dynamic lifting 

tasks. sEMG will allow the detection of the early preparatory muscle activities to classify muscle 

loading and to initiate appropriate device activation. It has been shown that preparatory muscle 

activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset [13]. 

The reduction of the effort will also be guaranteed by highly adaptive production processes. 

Although the use of new innovative technologies for biomechanical risk assessment is only 

at the beginning, the literature and our studies (see chapter 3-6) show that these instrumental 

approaches could be used to classify lifting tasks into low and high-risk categories. Particularly, this 

thesis dealt with wearable sensors, such as inertial measurement units, force platforms and surface 
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electromyography sensors, for biomechanical risk assessment during lifting tasks, which are strictly 

connected to work-related low-back disorders. 

  Particularly, in this work kinematic features (i.e. lifitng energy consumption or jerk) have 

been seen significantly change in relation to the risk levels. These kinematic features have been used 

as input variables of ANNs for the prediction of WLBDs during lifting tasks. This approach has been 

proved to be able to improve the biomechanical risk estimation suggesting that an IMU/Inertial 

sensor-based lifting recognition tool using LEC indices and designed according to the revised RNLE 

lends itself to the estimation of risk.  

In another study of this thesis work, lifting tasks where analysed by using ANNs and sEMG 

features. The erector spinae longissimus was identified as the most sensitive trunk muscle with 

respect to changes in the lifting conditions based on the time and frequency sEMG features (max, 

average rectified value, mean and median frequency). Furthermore, sEMG features have been used 

as input variables of artificial neural network for the prediction of LBDs during lifting tasks: a multi-

domain (time and frequency) approach proved able to improve the biomechanical risk estimation. 

These findings suggest the use of sEMG features to assess biomechanical risk associated. 

The correlation between both kinematic and sEMG parameters and spinal load variables (force 

and moment) in the L5-S1 region suggests some promise in developing the IMU and/or sEMG based 

Lifting Risk Recognition Tool. Furthermore, these instrumental methods could be integrated with 

methods already used for biomechanical risk assessment (i.e. NIOSH protocol; [14-15]) or used 

when the standardized methods cannot be used due to the equation and parameters restrictions.  

Moreover, the work also dealt with weak and noisy signals to allow to quantify the muscle 

attivity during some typical work activities that cause work-related neck and upper limb disorders 

(i.e. use of computer and mobile touch screen devices by office workers). Two methods tested on 
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synthetic and semisynthetic signals were developed so highlighting the possibility to identify the 

muscle activation also in these conditions. 

 

From a technological point of view for the IMUs, if a high number of units is required for whole-

body bio-mechanical studies in ergonomics, a high data transfer time could be required with both 

the Wi-Fi and Bluetooth protocols. Furthermore, IMUs fail to precisely measure translational motion 

and suffer from drift. Finally, IMUs can fail in the presence of magnetic fields in the workplace if they 

have embedded magnetic sensors. As regards limitations associated to sEMG, crosstalk muscle 

signals, electrode-skin impedance, noise and problems related to the electrode location, size, 

configuration and distance are the main critical factors [16]. To optimize the sEMG measures it is 

essential to use reference books such as the “Atlas of Muscle Innervation Zones” [17]. For both IMUs 

and sEMG sensors the energy consumption and the consequent battery discharge do not seem to 

be problems anymore, thanks to the long life of the most recent batteries.  

 

Therefore, the use of new innovative technologies for biomechanical risk assessment is only at 

its initial stage, but this process seems to be unstoppable, as it is happening in all the other areas of 

medicine and beyond. Obviously, it will be necessary for any validation to follow evidence-based 

medicine/policy/legislation multistep scientific approaches by designing rigorous laboratory and 

epidemiologic studies, by replicating them by independent research groups and by systematically 

evaluating them through transparent review processes. I am however convinced that, even if such 

use should fail in ergonomic practice, the huge knowledge that will derive from its experimentation 

will allow the optimization of the current standardized methods or the developments of the new 

ones. 
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APPENDIX A: Reference Tables NIOSH protocoll 

The Horizontal Multiplier, Vertical Multiplier, Distance Multiplier and Asymmetrical Multiplier 

(Waters et al. 1993,1994) are measured from the previous parameters (Tables A.1, A.2).   

MULTIPLIER  METRIC 

Load constant (LC) 23 kg 

Horizontal Multiplier (HM) 25/H 

Vertical Multiplier (VM) 1-(0.003|V-75|) 

Distance Multiplier (DM) 0.82+(4.5/D) 

Asymmetrical Multiplier (AM) 1-(0.0032A) 

Frequency Multiplier (FM) Table 4 

Coupling Multiplier (CM) Table 5 

Table A.1.  Multipliers of lifting equation. 

H HM  V VM  D DM  A AM 

cm   cm   cm   deg  

≤25 1.00  0 0.78  ≤25 1.00  0 1.00 

28 0.89  10 0.81  40 0.93  15 0.95 

30 0.83  20 0.84  55 0.90  30 0.90 

32 0.78  30 0.87  70 0.88  45 0.86 

34 0.74  40 0.90  85 0.87  60 0.81 

36 0.69  50 0.93  100 0.87  75 0.76 

38 0.66  60 0.96  115 0.86  90 0.71 

40 0.63  70 0.99  130 0.86  105 0.66 

42 0.60  80 0.99  145 0.85  120 0.62 

44 0.57  90 0.96  160 0.85  135 0.57 

46 0.54  100 0.93  175 0.85  >135 0.00 

48 0.52  110 0.90  >175 0.00    

50 0.50  120 0.87       

52 0.48  130 0.84       

54 0.46  140 0.81       

56 0.45  150 0.78       

58 0.43  160 0.75       

60 0.42  170 0.72       

63 0.40  175 0.70       

>63 0.00  >175 0.00       

           
Table A.2.  Horizontal, Vertical, Distance and Asymmetrical Multipliers of lifting equation. 
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 The Frequency Multiplier is defined by number of lifts per minute, the amount of time 

engaged in the lifting activity, and the vertical height of the lift from the floor. Lifting frequency (F) 

refers to the average number of lifts made per minute, as measured over a 15-minute period (Table 

A.3). 

 

Frequency 
Lifts/min (F) 

    
Work 

Duration       

≤1 Hour 1<Hours≤2 2<Hours≤8 

V<75 cm V≥75 cm V<75 cm V≥75 cm V<75 cm V≥75 cm 

≤0.2 1.00 1.00 0.95 0.95 0.85 0.85 

0.5 0.97 0.97 0.92 0.92 0.81 0.81 

1 0.94 0.94 0.88 0.88 0.75 0.75 

2 0.91 0.91 0.84 0.84 0.65 0.65 

3 0.88 0.88 0.79 0.79 0.55 0.55 

4 0.84 0.84 0.72 0.72 0.45 0.45 

5 0.80 0.80 0.60 0.60 0.35 0.35 

6 0.75 0.75 0.50 0.50 0.27 0.27 

7 0.70 0.70 0.42 0.42 0.22 0.22 

8 0.60 0.60 0.35 0.35 0.18 0.18 

9 0.52 0.52 0.30 0.30 0.00 0.15 

10 0.45 0.45 0.26 0.26 0.00 0.13 

11 0.41 0.41 0.00 0.23 0.00 0.00 

12 0.37 0.37 0.00 0.21 0.00 0.00 

13 0.00 0.34 0.00 0.00 0.00 0.00 

14 0.00 0.31 0.00 0.00 0.00 0.00 

15 0.00 0.28 0.00 0.00 0.00 0.00 

>15 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table A.3. Frequency Multiplier of lifting equation. 

 

  

Classification of the quality of the hand-to-object coupling: coupling quality is classified as good, fair, 

or poor. Based on the coupling classification and vertical location of the lift, the Coupling Multiplier 

is determined from Table A.4 (Waters et al. 1993,1994). 
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Coupling Type 
Coupling Multiplier 

V<75 cm V≥75 cm 

Good 1.00 1.00 

Fair 0.95 1.00 

Poor 0.90 0.90 

 
Table A.4. Coupling Multiplier of lifting equation. 
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APPENDIX B: Biomechanical evaluation during different activities 
 

During my PhD, I collabored in the other research projects using the instrumentation and 

methodologies of movement analysis. From these collaborations, pubblications in 3 research areas 

have been obtained: 

 
A. Biomechanical analysis of subjects suffering from orthopedic diseases (subjects with 

amputation of the lower limbs): 

1) Human Movement Science: “Common and specific gait patterns in people with varying 
anatomical levels of lower limb amputation and different prosthetic components”; T. 
Varrecchia, M. Serrao, M. Rinaldi, A. Ranavolo, S. Conforto, C. De Marchis, A. Simonetti, I. Poni, 
S. Castellano, A. Silvetti, A. Tatarelli, L. Fiori, C. Conte, F. Draicchio; 2019. 

2) XVIII Congresso SIAMOC Torino, 4-7 Ottobre 2017: ”Analisi Cinematica del Cammino in Amputati 
per la Valutazione Funzionale della Stabilità Dinamica”; M. Guaitolini, C. De Marchis, M. Rinaldi, 
T. Varrecchia, G. Chini, A. Silvetti, M. Serrao, A. Ranavolo, M. Schmid, F. Draicchio, S. Conforto.  

3) XVIII Congresso SIAMOC Torino, 4-7 Ottobre 2017: “Controllo motorio modulare dell’arto 
controlaterale nel cammino di amputati trans-femorali S. Ranaldi, C. De Marchis, M. Rinaldi, T. 
Varrecchia, A. Marchesi, A. Silvetti, M. Serrao, A. Ranavolo, M. Schmid, S. Conforto. 

4) ISEK International Society of Electrophysiology and Kinesiology, University College Dublin, 29 
Giugno-02 Luglio 2018 “Kinetic and kinematic patterns for prosthetic gait analysis”; S. Conforto, 
M. Serrao, T. Varrecchia, M. Rinaldi. 

 
B. Biomechanical analysis during walking: healthy subjects and subjects suffering from 

neurological diseases: 

1) Journal of Electromyografy and Kinesiology: “Global lower limb muscle coactivation during 
walking at different speeds: relationship between spatio-temporal, kinematic, kinetic, and 
energetic parameters”; T. Varrecchia, M. Rinaldi, M. Serrao, F. Draicchio, C. Conte, S. Conforto, 
M. Schmid, A. Ranavolo; 2018. 

2) Clinical Biomechanics: “Increased lower limb muscle coactivation reduces gait performance and 
increases metabolic cost in patients with hereditary spastic paraparesis”; autori: M. Rinaldi, A. 
Ranavolo, S. Conforto, G. Martino, F. Draicchio, C. Conte, T. Varrecchia, F. Bini, C. Casali, F. 
Pierelli, M. Serrao; 2017. 

3) PLOSONE: “Gait patterns in patients with hereditary spastic paraparesis””; M. Serrao, M. Rinaldi, 
A. Ranavolo, F. Lacquaniti, G. Martino, L. Leonardi, C. Conte, T. Varrecchia, F. Draicchio, G. 
Coppola, C. Casali, F. Pierelli; 2016. 

4) XX Congresso SIAMOC Bologna 9-12 October 2019: “The role of trunk on human locomotion: 
damper, generator or perturbator?”; M. Rinaldi, T. Varrecchia, A. Ranavolo, F. Draicchio, S.F. 
Castiglia, F. Pierelli, M. Serrao. 
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5) XX Congresso SIAMOC Bologna 9-12 October 2019: “Artificial neural networks for staging the 
gait deficit in Parkinson disease”; T. Varrecchia, A. Ranavolo, M. Rinaldi, F. Draicchio, SF. 
Castiglia, F. Pierelli, C. Conte M. Serrao. 

6) XX Congresso SIAMOC Bologna 9-12 October 2019: “Impairment of global lower limb muscle 
coactivation during walking in cerebellar ataxias”; L. Fiori, A. Ranavolo, T. Varrecchia, F. 
Draicchio, A. Tatarelli, C. Conte, C. Casali, M. Serrao. 

7) XX Congresso SIAMOC Bologna 9-12 October 2019: “Gait harmonic structure of walking in 
patients with neurological gait disorders”; A. Tatarelli, A. Ranavolo, T. Varrecchia, F. Draicchio, 
L. Fiori, C. Conte, C. Casali, M. Iosa, M. Serrao. 

8) 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), 2019; “Wearable-based temporal parameters of gait in circuitous routes under dual-
task conditions”; C. Caramia, D. Bibbo, C. D’Anna, C. De Marchis, S. Ranaldi, T. Varrecchia, S. 
Conforto, M. Schmid. 

9) ISPGR 2019 Edinburgh Scotland 30 Giugno-4 Luglio 2019; “Global lower limb coactivation during 
gait in patients with cerebellar ataxia”; M. Serrao, L. Fiori, T. Varrecchia, A. Tatarelli, A. Ranavolo, 
F. Draicchio, C. Conte, C. Casali. 

10) XIX Congresso SIAMOC Firenze 3-6 Ottobre 2018; “Wearable sensor use for assessing walking 
dynamic balance in gait ataxia: comparisons between different stability indexes”; G. Chini, M. 
Serrao, A. Ranavolo, T. Varrecchia, C. Conte, C. Casali, F. Pierelli, F. Draicchio. 

11) SIN XLIX Congresso SIN Roma, 27-30 Ottobre 2018: “The role of trunk in neurological gait 
disorders: damper, generator or perturbator?”; M. Rinaldi, M. Serrao, T. Varrecchia, C. Conte, 
A. Ranavolo, F. Draicchio, C. Casali, F. Pierelli. 

12) SIN XLIX Congresso SIN Roma, 27-30 Ottobre 2018: “Global lower limb co-activation in patients 
with cerebellar ataxia”; T. Varrecchia, M. Serrao, L. Fiori, M. Rinaldi, A. Ranavolo, C. Conte, F. 
Draicchio, C. Casali, F. Pierelli. 

13) SIN XLIX Congresso SIN Roma, 27-30 Ottobre 2018: “Gait harmonic structure of walking in 
patients with neurological gait disorders”; T. Varrecchia, M. Serrao, A. Tatarelli, M. Rinaldi, C. 
Conte, A. Ranavolo, F. Draicchio, C. Casali, F. Pierelli. 

14) 48° Congresso SIN Napoli, 14-17 Ottobre 2017: “Predictors of gait improvement in patients with 
Parkinson's disease after rehabilitation”; G. Chini, M. Serrao, G. Caramanico, M. Rinaldi, T. 
Varrecchia, C. Conte, E. Sinibaldi, G. Monari, F. Pierelli.  

15) 48° Congresso SIN Napoli, 14-17 Ottobre 2017: “Increased lower limb muscle coactivation and 
its relationship with gait performance and metabolic cost in patients with hereditary spastic 
paraparesis”; M. Rinaldi, M. Serrao, A. Ranavolo, C. Conte, T. Varrecchia, G. Chini, C. Casali, F. 
Pierelli.  

16) 48° Congresso SIN Napoli, 14-17 Ottobre 2017: “Trunk-lower limb coordination pattern during 
gait in patients with ataxia”; C. Conte, P. Caliandro, C. Iacovelli, C. Casali, A. Ranavolo, G. Chini, 
M. Rinaldi, T. Varrecchia, L. Padua, F. Pierelli, M. Serrao. 
 

C. Degenerative diseases: return-to-work process: 

1) Cerebellum: “The working life of people with degenerative cerebellar ataxia”; A. Ranavolo, M. 
Serrao, T. Varrecchia, C. Casali, A. Filla, A. Roca, A. Silvetti, C. Marcotulli, B. M. Rondinone, S. 
Iavicoli, F. Draicchio; 2019. 

2) 48° Congresso SIN Napoli, 14-17 Ottobre 2017: “The working life of people with degenerative 
cerebellar ataxia”; T. Varrecchia, A. Ranavolo, C. Casali, A. Filla, A. Silvetti, F. Pirelli, M. Rinaldi, 
C. Conte, G. Chini, A. Roca, C. Marcotulli, F. Draicchio, M. Serrao. 
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D. Biomechanical analysis in the sport: 

 
1) European Journal of Sport Science: “Biomechanical characterization of the Junzuki karate punch: 

indexes of performance”; M. Rinaldi, Y. Nasr, G. Atef, F. Bini, T. Varrecchia, C. Conte, G. Chini, A. 
Ranavolo, F. Draicchio, F. Pierelli, M. Amin, F. Marinozzi, M. Serrao; 2018. 
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