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ABSTRACT 

This PhD project was focused on the study of motor coordination for the purposes of functional 

evaluation in the clinical and neurophysiological fields. 

Neurological diseases, as well as being a personal problem, are also a social issue because of their 

high incidence, in terms of cost, on the national health system and on the employment sphere.  

The study of postural and motor alteration in patients with pathologies associated with movement 

alterations allows to know the level of functional limitation consequent to the pathology and its 

evolution through time, and can provide useful elements to define an appropriate rehabilitative 

strategy. 

Since walking disorders are one of the first symptoms of these patients, gait analysis, which allows 

evaluating kinematics, dynamics and muscle activity, provides very important information in this 

context. 

It has been shown that the breakdown of the functional balance between the various circuits is the 

cause of extrapyramidal motor disorders. Furthermore. a progressive loss of muscle coordination 

has been found in diseases affected by a deficit in the cerebellum, which therefore makes it difficult 

to perform voluntary movements. Injuries at the level of the pyramidal system, on the other hand, 

result in a progressive spasticity in the lower limbs.  

In this scenario, a complete characterization of the locomotion of subjects affected by several 

neurological diseases could be a useful tool for identifying the motor strategies put in place in order 

to guarantee stability and ensure progression.  

Among the different aspects which are the object of debate in the scientific community on gait 

analysis in pathologic conditions, two main questions were deepened within this PhD: 
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• the assessment of gait patterns in patients with several neurological gait disorders 

(Hereditary spastic paraparesis, Parkinson's disease, cerebellar Atassia and Duchenne 

Muscular Dystrophy) and lower limb amputations. Some specific biomechanical features, 

that may not emerge because they are hidden within the global walking strategy, were 

highlighted by subgroups or cluster analysis. 

• the assessements of the role of muscle coactivation mechanisms during walking in 

pathologic conditions and its relstionship with gait performance. The influence of several 

factors in the sEMG measurement and pre-processing on the linear envelope profiles 

extraction, and therefore on the outcome of muscle co-activation were taken into account. 

Firstly, starting from a review of literature, I addressed my attention to a kinematic, kinetic, 

energetic and electromyographic characterization of the path of the aforementioned subjects with 

the aim of identifying the motor strategies to ensure stability and coordination during movement.  

As regard patients with Hereditary Spastic Paraparesis (HSP), several previous studies 

highlighted the clinical variability and heterogeneity of the pathology. In addition to general 

biomechanical characteristics of gait, one would expect some differential characteristics in distinct 

subgroups of patients according to clinical involvement of the pyramidal tract, given that patients 

with HSP exhibit different degrees of severity both within and between families. The analysis of 

limb joint kinematics revealed that, when subgrouping patients according to the hip, knee and ankle 

joint kinematic behavior, three clear gait patterns emerged HPS patients. Thus, the identification of 

several walking strategies among HSP patients provide useful elements to define an appropriate 

rehabilitative strategy. 

The progression of gait impairment in a group of patients with primary degenerative 

cerebellar ataxias (CA) over a period of 4 years revealed a progressive increase in gait variability 

which may directly reflect gait function deterioration. Interestingly, the increase in trunk rotation 

may represent a compensatory mechanism aimed at maintaining an adequate gait speed.  
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As regard patients affected by Duchenne Muscular Dystrophy (DMD), the progressive 

increase in gait variability observed at the 2-year follow-up may thus directly reflect a deterioration 

of the gait function, which leads to greater instability. Taking this into consideration, gait variability 

seems to anticipate the future loss of walking autonomy.  

The analysis of the trunk movement suggested that the abnormal trunk movement in 

neurological patients reflect either a primary deficit or a compensatory mechanism. Particularly, the 

trunk may be used as generator of movement to improve gait performance in some patients (e.g. in 

HSP) but not in other (e.g. in Parkinson's disease). Patients with whole body deficits may use trunk 

movement either as a perturbator, increasing its range of motion, either as a damper, decreasing its 

range of motion.  

Finally, in spite of common gait characteristics in subjects with lower limb prostheses, both 

the anatomical level of amputation and type of prostheses determine a specific gait pattern that 

should be taken into account when developing new and ergonomic prosthetic devices and when 

planning the rehabilitation programs aimed at improving the physiology of gait and reducing the 

gait asymmetries.  

Afterwards, I followed a methodological approach with the aim of identifying robust indices to 

characterize pathologic conditions. Specifically, the mechanism of muscle co-activation, which is 

important for providing adequate spine and joint stability, energy efficiency and for adapting to 

environmental demands, was investigated focusing on the influence of sEMG processing technique 

(such as the extraction of linear envelopes or signal to noise condition) on the outcome of muscle 

co-activation. The analysis of the results shows that the performance of the methodologies used to 

assess muscle co-activation are influenced by the choice of the low pass cut-off frequency, as well 

as by the level of signal to noise ratio. Thus, since the relevance of the analysis of muscle co-

activation to several fields is well known, it is important to correctly process myoelectric signals in 

order to extract this parameter by avoiding estimation bias. 
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During walking, muscle joint coactivation varies within the gait cycle according to the 

functional role of the lower limb joints. Our results show that muscle coactivation in healthy 

subjects is speed dependent and positively correlated with both energy consumption and balance-

related gait parameters. The investigation of the lower limb muscle coactivation in patients with 

HSP showed that the abnormal coactivation pattern may reflect both or either abnormal descending 

motor commands and/or plastic rearrangement of the spinal circuitries which, in turn, lead to a lack 

of selectivity of the descending motor drives to motoneuronal pools. In addition, these 

abnormalities influence the mechanisms of both energetic consumption and recovery during 

walking. Furthermore, in patients with DMD, since gait speed remained approximately unchanged 

over time, increased muscle co-activation at proximal level represents the most important strategy 

to compensate for a deterioration in both functional ability and increase in gait instability. 

The results highlight the importance of a methodological approach for testing the role of 

muscle co-activation mechanism during the execution of motor tasks avoiding possible bias due to 

sEMG processing techniques. Muscle coactivation in patients could be a useful measure of the 

motor control strategy, limb stiffness, postural stability, energy efficiency optimization, and several 

aspects in pathological conditions. 

In conclusion, the results obtained in this PhD project may provide important support to extend the 

knowledge about functional assessment in clinical and neurophysiological fields. 

In particular, these results suggested that both the characteristics of the pathology and the technique 

used for data elaboration are two important aspects to be considered in the design of tools for 

training and rehabilitation. 
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CHAPTER 1 

1. INTRODUCTION AND PURPOSE OF THE STUDY 

The research activity was focused on the study of motor coordination for the purposes of functional 

evaluation in the clinical and neurophysiological fields. Neurological diseases, as well as being a 

personal problem, are also a social issue because of their high incidence, in terms of cost, on the 

national health system and on the employment sphere.  

The study of postural and motor alteration in patients with pathologies associated with movement 

alterations allows to know the level of functional limitation consequent to the pathology and its 

evolution through time, and can provide useful elements to define an appropriate rehabilitative 

strategy. 

Since walking disorders are one of the first symptoms of these patients, gait analysis, which allows 

evaluating kinematics, dynamics and muscle activity, provides very important information in this 

context. 

It has been shown that the breakdown of the functional balance between the various circuits is the 

cause of extrapyramidal motor disorders [1]. Futhermore. a progressive loss of muscle coordination 

has been found in diseases affected by a deficit in the cerebellum, which therefore makes it difficult 

to perform voluntary movements [2]. Injuries at the level of the pyramidal system, on the other 

hand, result in a progressive spasticity in the lower limbs [3-5].  

In this scenario, a complete characterization of the locomotion of subjects affected by several 

neurological diseases could be a useful tool for identifying the motor strategies put in place in order 

to guarantee stability and ensure progression. The activities of the project are aimed at a deep 

characterization of the gait patterns of subjects suffering from disorders such as Hereditary spastic 

paraparesis, Parkinson's disease, cerebellar Atassia and Duchenne Muscular Dystrophy (DMD), as 
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well as amputees. Furtehrmore, the relationship between gait parameters abnormalities and the 

related muscle activity is provided.  

Firstly, starting from a review of literature, I addressed my attention to a kinematic, kinetic, 

energetic and electromyographic characterization of the path of the aforementioned subjects with 

the aim of identifying the motor strategies to ensure stability and coordination during movement.  

Afterwards, I followed a methodological approach with the aim of identifying robust indices to 

characterize pathologic conditions. Specifically, the mechanism of muscle co-activation, which is 

important for providing adequate spine and joint stability, energy efficiency and for adapting to 

environmental demands, was investigated focusing on the influence of sEMG processing technique 

(such as the extraction of linear envelopes or signal to noise condition) on the outcome of muscle 

co-activation. The results highlight the importance of a methodological approach for testing the role 

of muscle co-activation mechanism during the execution of motor tasks avoiding possible bias due 

to sEMG processing techniques. 

The mechanism of muscle co-activation was investigated in patients affected by Hereditary Spastic 

Parapareis, (HSP), Cerebellar ataxia (CA), Parkinson disease (PD) and Duchenne Muscular 

Dystrophy (DMD). This approach may be useful for a better interpretation of the pathologic 

mechanisms, in terms of muscle behavior, to address rehabilitation treatment.  

1.1 Thesis outline  

Chapter 2: describes the basis of gait analysis technique.  

Chapter 3: describes the kinematic, kinetic and electromyographic methods used to study motor 

patterns. 
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Chapter 4: describes the types of neurological disorders investigated, such as Hereditary Spastic 

Paraparesis, Cerebellar Ataxia, Parkinson, Duchenne Muscular Dystrophy and the the major results 

obtained in term of gait patterns.  

Chapter 5: describes the major results obtained from the characterization of gait patterns in subjects 

with lower limb amputation at several anatomical levels.  

Chapter 6,7,8,9,10: this chapter group represents the core of my thesis, describing the mechanisms 

of muscle co-activation in human locomotion. Muscle behaviour in patients affected by 

neurological disorders and in healthy subjects are presented in the Chapters 6,7,8, and a new 

approach for the muscle co-activation estimation is proposed. A comparison among algoritmhs 

performance are assessed in the Chapter 9. Algorithms for muscle synergy extraction are 

investigated in the Chapter 10.  

Chapter 11: this chapter reports the general discussions and the conclusion of the thesis, 

highlighting the most important contribution of this work in both clinical and neurophysiological 

field, especially in terms of muscular characterization during human locomotion.  

Appendix: describes secondary activities carried out during my PhD research activities, such as 

biomechanical characterization of both work-related disorders and sport activities. 
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CHAPTER 2 

2. GAIT ANALYSIS 

2.1 Fields of application  

Gait is characterized by a cyclic pattern of motor activity of the lower limbs and trunk that allows to 

transfer the weight on the limb support and advance against the limb-side forward [1]. Gait analysis 

provides very important information especially when it concerns the analysis of the step of 

pathological subjects. In fact, the study of the postural and motor alteration in patients with 

pathologies associated with alterations of the movement allows to know the level of functional 

limitation resulting from the disease and its evolvution over time, and may provide useful elements 

to define an appropriate rehabilitation strategy [2-3]. 

Gait analysis is a suitable discipline for the characterization of human movements and can be a very 

useful tool in a clinical and therapeutic context in order to optimize the rehabilitative strategies 

aimed at recovering motor skills. Gait is the most common type of movement performed by humans 

and the autonomy and safety during gait in several contexts represent for the individual an 

important aspect of daily life. For this reason, a deep characterization of gait is crucial to define 

motor ability.  

It represents a valid tool in the clinical field for diagnostics, rehabilitation and injury prevention as 

well as in the sports field as a support element for athletes and coaches for improving performance. 

The use of motion analysis begins in the nineteenth century, but the technological development has 

further automated measurement techniques. The development in the fields of electronics, 

information technology and computer combined with engineering efforts continue to provide 

solutions that continuously improve measurement techniques [4]. 
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Today motion analysis is based on count on vanguard detection systems, efficient sensors (of force, 

pressure, electromyography, inertia) and on modern computers that allow the integration of various 

types of information. Currently there are numerous systems of motion analysis that differ mostly on 

the type of sensor used. Motion analysis can be based on the use of stereo-photogrammetric 

techniques, or wearable inertial sensors or other sensors. In this thesis, stereo-photogrammetric 

techniques are described. 
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 CHAPTER 3 

3. INSTRUMENTATION 

3.1  Biomechanical characterization 

Motion analysis tools are usually based on the study of kinematic, kinetic and electromyographic 

parameters.  

Kinematics focuses on the variation in space of anatomical references and body segments involved 

in the execution of motor activities and describes human movement through the positions, angles 

and velocities of the various body segments. The reconstruction of the position of a point or set of 

points need the definition of the space. [1-3] 

The points of which the trajectory is to be reconstructed are typically the markers positioned on the 

body of the subject under examination [4]. The choice of the plan refers to standardized definitions 

built on the human body: three fundamental planes are defined, namely frontal or coronal, sagittal 

and transverse plane. The axes with origin are defined anteroposterior, mediolateral and 

longitudinal (or craniocaudal) (Fig. 3.1). 

 

Figure 3.1. Anatomical planes 



21 
 

The analysis of the kinematics in a three-dimensional space provides a complete observation of the 

joint movement. However, three-dimensional analysis with stereo-photogrammetric technique 

requires at least two cameras to reconstruct the position of a point in the space, thus it will be 

necessary to use an appropriate number of cameras positioned in the space such that each observed 

point is visible in every moment from at least two cameras. The positioning of the cameras is 

therefore strictly related to the task to be studied. Each camera captures a two-dimensional image 

(the projection of the acquired space on the image plane) and two images acquired from cameras are 

required to reconstruct three-dimensional space.  

The body is represented as a set of body segments, considered rigid segments for simplicity. This 

obviously represents an approximation with respect to the real nature of the body segments 

composed of bone (hypothesized as a rigid body) and soft tissues that can cause artifact [5]). The 

identification of a rigid body in space is possible from the position of three non-aligned points, 

while the geometric parameters are obtained through anthropometry and kinematics, while the mass 

of the segment is concentrated in the center of mass. The lengths of the anatomical segments ere 

reported in literature [6-7] and the figure represents the lengths of the various segments expressed 

as percentages of the height of the body, as defined by Drillis et al. [1,22] (Fig. 3.2) 

 

Figure 3.2. Body segments length as a function of height H 
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Kinetics describes the role of forces in generating movement by studying the forces and angular 

moments at the base of motor acts, [9]. Kinetics can be used to study the principles of segments 

interaction. The forces studied can be internal and external to the body and both types play a role in 

motor performance. 

For the study of kinetics, force transducers can be used. These instruments provide an electrical 

signal proportional to the applied force. The transducers can be piezoelectric, piezoresistive, 

capacitive or extensometric. These sensors are based on the deformation of the sensitive element 

following the application of a certain stress, with consequent variation of voltage or electric charge 

in output. 

The most common tool in the study of kinetics is represented by the force platform. It is equipped 

with piezoelectric or extensometric sensors capable of recording the forces acting on it following 

the interaction with the subject under examination. The force platforms are often integrated in the 

floor of the laboratory and the recorded signals provide information on how the weight of the body 

is distributed on the entire platform. The force platforms can be used for the study of posture [1,9], 

for diagnostics and rehabilitation. Furthermore, they represent a useful tool for the recognition of 

events and for the reconstruction of motor patterns [1]. 

The balance and body posture can be studied through the center of pressure (Center of Pressure, 

CoP), by the projection on the plane of the platform of the center of gravity of the body in static 

pose. The position of the CoP if related to that of the center of mass (Center of Mass, CoM) can 

provide very useful data in relation to the posture and balance of the subject, which is also very 

useful in the diagnostic field [2,10] . 

The dynamometric platforms can be used to integrate the kinematic information with the GRF 

(Ground Reaction Force) for the definition of the heel strike and toe-off events during gait. The 

observation of CoP oscillations can also be useful to obtain information on subject.  
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The use of surface electromyography (surface Electromyography, sEMG) is widespread due to the 

non-invasive characteristics and the potentialities offered by modern techniques for the 

electromyographic signal analysis.  

Although neurophysiopathology is the clinical field that historically has made the most use of for 

diagnostic purposes, recently surface electromyography has been used in clinical and research fields 

for the evaluation of muscular activity, performance of isometric tests, study of muscle fatigue, 

pain, movement control and performance analysis in sports medicine [3]. EMS is also used in the 

study of muscle tremors, biofeedback of muscle contraction, and muscle spasticity. 

Surface electromyography studies the electrical signals associated with muscle contraction. Muscles 

produce bursts of electrical potential associated with the activation of motor units. This signal 

propagates through the tissues and can be recorded on the surface through appropriate electrodes. 

To obtain a properly intelligible signal it is necessary to position the electrodes oriented according 

to the direction of the muscle fibers, ie along the direction of propagation of the electromyographic 

signal. It is also necessary to prepare the skin for the positioning of the electrodes, cleaning the 

affected surface in order to reduce its low-pass effect. The acquisition can be performed in a 

monopolar way (an active electrode and a reference one, positioned on a neutral point) or bipolar 

(two active electrodes both placed on the muscle) [1]. With technological progress small and 

wireless electromyographic sensors were developed, facilitating the study of muscular activity 

without influencing the naturalness of the movements. 

The use of multiple electromyographic probes and the simultaneous acquisition of different muscles 

can provide important information on the activity of the different muscle groups. 

In this sense, sEMG is a particularly useful tool for the study of muscular activity during gait 

analysis, since it provides the activation phases of the different muscle groups during the different 

phases of the gait and the role of muscles in stabilizing the body [2,3,9]. 
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3.2  Data recording and processing   

3.2.1 Stereo-photogrammetric systems  

3.2.1.1 Kinematics 

A stereo-photogrammetric system acquires kinematic data through video cameras used to record the 

movements that take place in the two- or three-dimensional acquisition space. The cameras can be 

based on different types of technology and consequently may require different types of 

experimental setup. Typically, markers are used for the reconstruction of the kinematics [1,4]. The 

position of the markers is recorded by the cameras and thy are recognized clear spots on a 

homogeneous background. The position of the markers in the space allows to reconstruct the 

position of the body, obtaining the so-called stick diagram. 

The most used type of marker is represented by reflective passive markers that combine simplicity 

and low cost with good operational reliability. Active markers, which emit light, may also be used. 

Stereo-photogrammetry is a type of analysis that is especially suited to indoor applications because 

the greater amount of light in outdoor environments makes it more difficult to recognize markers 

(both active and passive) 

The positioning of the markers must follow specific protocols in order to guarantee a standardized 

description of the motor activity; the number and position of the markers strictly depend on the type 

of movement studied. For a correct reconstruction, the mass and height of the subject and the length 

of the leg are used. 

In optical systems data is presented in an absolute spatial reference containing the cameras. Each 

camera records the movements on the basis of its own reference system. The data obtained from the 

cameras are reported in the global reference system by knowing the position of the cameras in the 

space and applying the appropriate roto-translation matrices. 
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The cameras record the movements that occurs in the space through images (frames) sampled over 

time. The sequence of images will allow us to reconstruct the trajectory of each marker and 

therefore of the body segments. For the acquisition of the movement in a three-dimensional space, 

multiple cameras are needed and typically in a motion analysis laboratory 6-12 cameras are used for 

the complete capture of the movements. Currently most of the stereo-photogrammetry systems 

consist of a set of optoelectronic cameras, suitable for operating in combination with reflective 

passive markers. The cameras are equipped with an infrared illuminator, typically composed of a 

series of LEDs, and with the camera sensor, typically CCD sensor. The capture volume is then 

illuminated with infrared light which is reflected by the markers and captured by the cameras [1]. 

The active infrared lights form a ring around the lens of the chamber and are pulsed at 120 Hz for a 

period of less than a millisecond. Since the light sent is pulsed, the images of the markers are 

captured in very precise moments of time. 

Before each acquisition, the space is firstly calibrated using special reference wands on which 

markers are placed at known distances along the three axes, which are positioned in the capture 

space and acquired for a few seconds. Then a capture volume calibration using a wand moved by an 

operator are performed. Once the entire procedure is finished, it is extremely important that the 

cameras do not undergo further movement, which would require a new calibration, Since 

calibration is a procedure that can be performed in few minutes, it is advisable to repeat it before 

each acquisition session. 

Thus, as the definition of the reference systems as well as the marker positioning is fundamental, for 

a correct and complete description of the kinematics. A specific protocol for the type of task 

investigated should be chosen. Specifically, as regards the gait analysis one of the most importante 

protocol are there are Davis protocol [8]. 

Davis protocol was developed in 1991 at the NCH (Newington Children 's Hospital, USA) [9]. In 

this protocol the number of markers used, 22, represents the minimum set-up for the 3D description 
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of the path. In the Davis protocol the markers are used to define the kinematics of the trunk and 

legs. First of all, the protocol requires the measurement of some anthropometric values such as 

height and body weight of the subject under examination and the measurement of the parameters 

related to the bone segments necessary for the estimation of joint centers (the distance between the 

anterior right and left iliac spines or the distance in the sagittal plane of the iliac spines anterior and 

the great trochanter). 

At the beginning of an experimental session the protocol provides for a static acquisition: the 

subject remains upright and stable within the capture volume for some seconds during which the 

data are acquired marker positions. These measures, integrated with the anthropometric ones, allow 

to build reference systems associated with bone segments and the position of the articular centers of 

the lower limbs. This protocol has the advantages of the marker being an essential and non-invasive 

device, and the consequent rapidity with which the subject can be prepared. 

In this work all the recording sessions were performed through SMART D Motion Capture system, 

BTS, Milan (Fig. 3.3), in particular through SMART Capture, the application of the system that 

allows you to capture images (static or dynamic) in order to be analyzed. With this system, 

synchronized and integrated kinematic, kinetic, sEMG and video signal acquisition was possible. 

 

Figure 3.3. Components of  SMART system. 
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In most recordings for the experiments described in this thesis, kinematic data were recorded 

bilaterally at 300 Hz using an optoelectronic motion analysis system (SMART-D System; BTS, 

Milan, Italy) consisting of eight infrared cameras spaced around the walkway that detect the motion 

of passive reflective markers (Fig.3.4). The marker-set (summarized in Table 3.1) consisted of 

twenty-two retro-reflective spherical markers (15 mm in diameter) attached on anatomical 

landmarks (Fig. 3.5), according to Davis et al. [8].  

 

 

Figure 3.4. Twenty-two retro-reflective spherical markers (left) and additional wands (right). 

In addition to markers directly applied to the skin, sticks, or wand, varying in length from 7 to 10 

cm, placed at 1/3 of the length of the body segment were used. In particular, a wand on the femur 

and on a leg was used, so that the plane containing the three points was parallel to the frontal plane.  

The requirements of easy identification and visibility of the markers were respected, as they were 

all identifiable by the cameras: the markers, spherical or semi-spherical, were placed on the subject 

under examination and the infrared reflected by these were seen by the cameras as a bright spot on 

the scene. 

Anthropometric measurements were collected for each subject in order to determine the joints offset 

angles; these included the mass and height of the subject and the length of the main segments of the 

body according to Winter [1]: height, weight, length of the shank of the subject, diameter of knee, 

diameter of ankle, distance between the anterior iliac crests and the thickness of the pelvis.  

A calibration procedure was executed before the first task, to define the volume in which the 

acquisition took place (the physical space in which the movements were made to acquire, in our 

case, the space necessary for the patient to take certain steps).  
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Body segment Marker acronym Marker name 

 

Trunk 

r should 

l should 

c7 

Right Acromion 

Left Acromion 

Spinous process c7 

 

Pelvis 

r asis 

l asis 

sacrum 

Right anterior superior iliac spine 

Left anterior superior iliac spine 

Sacrum 

 

 

Femur 

r thigh 

l thigh 

r bar 1 

l bar 1 

r knee 1 

l knee 1 

Right greater trochanter 

Left greater trochanter 

Right femur wand 

Left femur wand 

Right lateral femoral epicondyle 

Left lateral femoral epicondyle 

 

 

Leg 

r knee 2 

l knee 2 

r bar 2 

l bar 2 

r mall 

l mall 

Right head of the fibula 

Left head of the fibula 

Right tibia wand 

Left tibia wand 

Right lateral malleolus 

Left lateral malleolus 

 

Foot 

r met 

l met 

r heel 

l heel 

Right fifth metatarsal head 

Left fifth metatarsal head 

Right heel 

Left heel 

Table 3.1. Marker-set. 

The analysis was based on the recognition and three-dimensional reconstruction of passive markers 

positioned on the anatomical landmarks.  
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Figure 3.5.. Kinematic Davis model (A) and arrangement of markers according to Davis protocol (B). 
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Two different types of acquisitions, static and dynamic must be carried out: the first, the individual 

recordings of the twenty two reference points required for the construction of the protocol are 

recorded, while dynamics acquisitions are needed to record some samples of the subjects gait.  

3.2.1.2 Dynamometric platforms 

For most of the sessions acquired in this thesis, Ground reaction forces (GRFs) were recorded at 

1200 Hz by means of two force platforms (0.6 x 0.4 m; Kistler 9286B, Winterthur, Switzerland), 

placed at the center of the walkway, attached to each other in the longitudinal direction but 

displaced by 0.2 m in the lateral direction (Fig. 3.6). The use of force platforms allowed the analysis 

of reaction forces to the soil.  

The force platforms consisted of four load cells, each of which was placed in one of the four angles 

of the platform. They were constituted by three force transducers, each of which is idealized and 

designed to be able to detect only one of the three components of force or moment. The force 

transducers, also known as load cells, employing sensors that converted applied force in a 

deformation which, in turn, produced an electrical signal of output. The force platforms measured 

the resultant of the reaction of the soil at the time of the impact of the subject. The forces were 

analyzed in the three fundamental levels, decomposed in the vertical, anterior-posterior and medial-

lateral components (Fy, Fx, Fz). The measured forces in combination with the kinematic analysis 

allowed to study the moments at the level of hip, knee and ankle articulation.  

 

Figure 3.6. Force platforms. 
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Video recording of the subject, through 2 video cameras, is usually complementary to kinematic 

and kinetics analysis and provides qualitative information that support clinical investigation.  

3.2.1.3 Surface electromyography (sEMG) 

The electromyographic analysis is the electrical manifestation of muscle contraction: the muscle 

fibers, excited by the impulse of the nervous system through the motor neuron, contract. 

 

Figure 3.7. Bipolar Ag-AgCl surface electrodes. 

In most recordings for the experiments described in this thesis, sEMG data were recorded at 1000 

Hz using a 16-channel wireless system (FreeEMG300 System; BTS, Milan, Italy) and with band-

pass filtering between 10 and 400 Hz (Hamming filter) for the attenuation of the motion artifacts 

and high frequency noise. Bipolar Ag-AgCl surface electrodes (H124SG, Kendall ARBO, Donau, 

Germany) (Fig.3.7), prepared with electro-conductive gel (diameter 1 cm, distance between the 

electrodes 2 cm) and placed over the muscle belly in the direction of the muscle fibers were used to 

record EMG activity from body muscles  

A variation of the potential distribution during muscle contraction can be observed through bipolar 

electrodes: registering this variation, an indicative signal of muscle according to the movement 

performed is obtained. The use of surface electrodes greatly simplifies the sampling operations of 

the signal and, together with the non- invasiveness, makes possible the recordings in both 

conditions of isometric contraction and dynamic effort. 
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The correct placement of the electrodes is a critical point of the surface electromyography 

technique. sEMG signal makes possible the extraction of information related to skeletal muscle 

activity, but this information may be incorrect if electrodes are placed near the innervation zone 

(IZ), or tendon regions, strongly influencing sEMG amplitude and frequency. According to 

SENIAM guidelines (European Recommendations for Surface Electromyography) [11,12] we were 

able to locate innervation zone improving therefore the correct placement of sEMG electrodes and 

the quality of the electromyographic signal acquired.  

This allowed us to get information about the status of muscle activation during the movement; to 

record muscle interventions defining the sequence, the time intervention, duration, and intensity 

within certain limits without any invasive. Particularly suitable in gait analysis, also provides useful 

information on strategies to control the movement of the upper part of the central nervous system.  

Acquisition of the EMGs, kinematic, and kinetic data was synchronized 

3.2.2 Pre-processing 

Data acquisition from the integrated surface EMG system and from the optoelectronic cameras and 

force platforms were integrated and synchronized. 

A reconstruction of the tridimensional position of each marker, from the images of each camera, 

was necessary to process data (Fig. 3.8). This procedure was carried out through the SMART 

Software Tracker (BTS, Milan, Italy), which allowed you to apply the anatomical model (in our case 

the Davis model) and match the individual points of this scheme to the marker represented in the 

file acquisition, by assigning a label to each marker (labeling). Kinematic and electromyographic 

data were then normalized to the duration of the gait cycle. After rebuilding  the 3D position of each 

marker at each instant of time,  next step was to calculate their trajectory (tracking), from which it 

was possible to estimate the joint kinematics and, consequently, the relative position and orientation 

of the reference systems in agreement with the bone segment under examination. The operation of  
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tracking was the first stage of data processing: represents the logical connection of two successive 

frames, so as to identify the time curve of each single marker. Thus from the trajectories of the 

markers, the kinematic speed and acceleration were obtained by derivation. In this step, you could 

also assign a label to force signals from the platform, displayed as a vector with the origin in the 

center of pressure and magnitude and direction equal to the vector sum of the three components of 

force. 

 

Figure 3.8. Reconstruction of the 3D position of each marker according to Davis model (left) and tracking 

procedure (right). 

3.2.3 Data analysis  

After the procedure of tracking, data were processed using 3D reconstruction software (SMART 

Analyzer, BTS, Milan, Italy) and an algorithm  written in MATLAB software (MATLAB R2014a, 

MathWorks, Natick, MA, USA) which calculated all biomechanical and electromyographic 

parameters of interest, such as the relative angles between two segments body, speeds, distances, 

forces and moments acting on the joints. In particular, during this phase a temporal analysis of the 

signals was carried out to define manually events in the gait cycle. To correctly identify the instants 



34 
 

of support and toe-off, the user used the information from the signals of the force platforms (where 

possible), and the reconstruction of temporal trends of joint kinematics of lower limbs. 

3.2.3.1  Gait event estimation  

Gait is characterized by a cyclic pattern of motor activity of the lower limbs and trunk that allows to 

transfer the weight on the limb support and advance against the limb-side forward. Gait analysis 

provides very important information especially when it concerns the analysis of the step of 

pathological subjects. In fact, the study of the postural and motor alteration in patients with 

pathologies associated with alterations of the movement allows to know the level of functional 

limitation resulting from the disease and its evolution over time, and may provide useful elements to 

define an appropriate rehabilitation strategy. The gait cycle is the functional unit of reference for 

gait analysis and is defined as the time between two successive foot contacts of the same leg.  

In the studies described in this thesis, heel strike (HS) and toe-off (TO) events were determined by 

maximum and minimum excursions of the limb angle, defined as the angle between the vertical axis 

and the limb segment (from the greater trochanter to the lateral malleolus) projected on the sagittal 

plane (Fig. 3.9). When subjects step on the force platforms, these kinematic criteria can be verified  

using the information from the signals of the force platforms. 

 

Figure 3.9. Definition of the instants of  heel strike and toe-off: the reconstruction of lower limbs segments 

and force platforms (top); the trends of lower limbs angles (bottom). 
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Gait cycle is normally divided into eight steps (Perry 1992): initial contact (0%); loading response 

(0-10%); midstance (10-30%); terminal stance (30-50%); preswing (50-60%); initial swing (60-

70%); midswing (70-85%); terminal swing (85-100%) (Fig. 3.10) 

 

Figure 3.10. Normal gait cycle. 

Globally, the gait cycle can be divided into two phases: the stance phase (from the current initial 

contact to foot-off) and the swing phase (from foot-off to the successive initial contact). Finally, 

within the stance phase, the following  three subphases were considered: 

• initial double support (first double support): both feet are in contact with the ground; 

• single support: during which the reference foot is in contact with the soil and the counter-

side is swinging; 

• terminal double support (second double support): in which both feet are again contact with 

the ground. 
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3.2.3.2 Gait parameters 

The most important time-distance gait parameters are: walking speed (km/h), cycle and step 

duration (s), relative stance duration (s), stride and step length (m), first and second double support 

duration (s), cadence (step/min) and step width (m). The stride and step length and the step width 

were normalized to the limb length of each subject (Table 3.2). 

 

Time-distance parameters 

Walking speed 

Cycle duration: time interval between two successive initial contact of the same foot 

Step duration: time interval between the initial contact of a foot and the initial contact of 

the contralateral foot 

Stance duration: the entire period during which the foot is in contact with the ground 

Cycle length: distance between two successive supports of the same foot 

Step length: distance between the heel of one foot and the heel of the contralateral foot  

1st double support duration: time in which both feet are in contact with the ground after 

the initial contact 

2nd double support duration: time in which both feet are in contact with the ground after 

single standby 

Cadence: number of steps in the time unit 

Step width: mediolateral distance between the feet 

Table 3.2 . Summary of the general time-distance and kinematics evaluated parameters. 

Additional quantification of gait can be obtained by extracting the Coefficient of Variation (CV), 

which corresponds to the ratio of standard deviation of the parameter over its mean value (CV = 

100* SD/mean, where SD is the standard deviation). It is a measure of variability. 

The anatomical joint angles for hip, knee and ankle (sagittal plane), trunk and pelvis (frontal, 

sagittal and transverse plane) are useful to derive the joint range of motion (RoM), defined as the 

differences between the maximum and minimum values during the gait cycles.  

Kinetic data in combination with the kinematic analysis allow the study of the hip, knee and ankle 

internal moments as well as the support moment. 
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sEMG data are useful to study muscular parameters, such as muscle activation and co-activation, or 

center of muscular activity. 

3.2.3.3 Muscle coactivation  

Muscle co-activation is the mechanism that regulates simultaneous activity of agonist and 

antagonist muscles crossing the same joint [13]. It has been demonstrated to be important for 

providing adequate spine and joint stability, movement accuracy (such as in precision tasks) and 

energy efficiency [14,15] and for adapting to environmental demands [16] When substantial 

antagonist activations counteract the agonist actions, thus producing moments that do not contribute 

to the required net joint moments, co-activation may become functionally unfavourable, or even 

detrimental. It may, in fact, represents a factor that contributes to the inefficiency of human 

movement by increasing the physiological and metabolic cost, thereby reducing the net moment and 

power development. Furthermore, excessive muscle co-activation increases compressive loading 

across the joint, which may in turn lead to cartilage loss. [16-19].  

Robust measurement techniques are required for an accurate determination of the muscle co-

activation during functional movements [20].  

Surface electromyography (sEMG)  is able to give insights on muscular contractions in agonist and 

antagonist muscles and to monitor the relative modifications through time [21,22]; it thus represents 

one of the elective means to monitor co-activation, also in the case of functional movements, when 

robustness in the determination of muscle co-activation is necessary [23]. 

Muscle co-activation has been measured by means of surface electromyography (sEMG) through 

the analysis of the relative variations in agonist and antagonist muscles contraction through time 

[21].  

Several computational approaches have been used to quantify muscle co-activation: ratio, 

overlapping or cross-sectional areas of simultaneous activation of opposite muscles [21]. These 

mathematical tools derive from an agonist–antagonist approach on EMG signals recorded from two 
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antagonist muscles or between two antagonist muscles of the same joint. Outcomes of these tools 

are expressed in term of both the time of overlapping between the linear envelopes of two opposite 

muscles and the magnitude of muscle co-activation [24-23].  

Moreover, another approach, proposed by Ranavolo et al. 2015 [27], is based on the time-varying 

multi-muscle co- activation function (TMCf), allowing the characterization of the simultaneous 

work on multiple muscles or muscle groups. A global characterization of it may be helpful to 

understand the general strategy adopted by CNS to control the lower limb.  

More recently, an approach based on a Vector Coding Technique (VCT) has been proposed [28] to 

quantify co-activation and coordination: with this method, in addition to the analysis of each muscle 

activation phase, users are able to continuously monitor over time the co-activation between 

muscles. 

All measurement techniques may be liable to error that can reduce validity and reliability and 

confound the interpretation of the findings. Various factors in the sEMG measurement process, such 

as signal acquisition and signal analysis procedures, might influence the establishment of 

representative envelope profiles, and therefore the outcome of co-activation evaluated from the 

signal envelope. An important aspect is related to the variations of the signal to noise ratio (SNR) 

level: sensitivity of the algorithm performances may change with respect to SNR variations [29]. A 

further aspect that does not guarantee the estimation of stable and repeatable information from the 

algorithms is the arbitrary choice of the lowpass cut-off frequency used to obtain the classical 

envelope: the frequency used in the sEMG ranges from 3 Hz to 25 Hz [30].  

High levels of muscle coactivation in knee and in ankle joints during gait have been reported in 

elderly people [31], individuals who have undergone knee arthroplasty[32], patients with several 

central nervous system lesions including Parkinson’s disease [33], cerebellar ataxia [34] and 

multiple sclerosis [15]. Increased muscle coactivation in these neurological disorders seems to 

reflect different abnormalities of the motor control. On the one hand, muscle coactivation may be 

the result of balance-related adaptive compensatory mechanism aimed at reducing instability in the 
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lower limbs such as in cerebellar ataxia [34,35]. On the other hand, it is an expression of primary 

deficits reflecting either abnormal descending motor commands or lack of reciprocal inhibition of 

the neural circuits of the spinal cord such as in Parkinson’s disease [35]. 

During ground surface linear walking, muscle joint coactivation varies within the gait cycle, 

according to the functional role of the lower limb joints along gait phases, reaching higher values 

during weight acceptance and transition from stance to swing subphases [16] and lower values 

during mid-stance [37]. In addition to gait phases, several other factors influence the rate of the 

muscle coactivation during locomotion, including age [38], speed and motor context, i.e., stable vs. 

unstable conditions [39]. 

3.2.3.4 Muscle synergies 

The fundamental task of the nervous system is to interpret and interact with a highly complex, 

multidimensional environment. Both aspects of this task potentially involve monitoring the state of 

many thousands of variables, considering either the many individual sensory receptors or individual 

motor units. The multiarticular nature of the limb and its large number of muscles together imply 

many available degrees of freedom to accomplish motor tasks [40]. While this redundancy provides 

flexibility, it appears that generally the CNS utilizes preferred ways to achieve a given task [41]. 

One strategy for the nervous system to overcome this complexity might be to identify statistical 

regularities within the environment and then operate using these regularities rather than the 

individual variables of either sensation or action. One common hypothesis is that these regularities 

in the motor system might be represented as “muscle synergies,” each of which draws a specific 

balance of muscle activations. As a result of producing movements through a linear combination of 

muscle synergies, the number of degrees of freedom needed to be coordinated is substantially 

reduced. A muscle synergy consists in the activation of coordinated muscle groups characterized by 

a specific time profile [42]; each synergy is scaled in amplitude and shifted in time, independently 
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of each other, and the activation of the muscles comes from a number of different synergies 

combined with each other linearly. 

Evidence in favor of such a hypothesis has come from several studies, each examining the muscle 

activation patterns observed in a particular behavior: many behaviors can be well described in terms 

of combinations of a small number of muscle synergies [43]. While observed electromyographic 

patterns, muscles although not controlled individually, can be grouped in a flexible fashion by the 

CNS to accomplish the same general task. 

Throughout most of the last century, the scientific community believed that movement production 

and control were attributable to central brain structures, such as the cortex, basal ganglia and 

cerebellum. A passive role was attributed to the spinal cord, which was believed to receive 

commands from supraspinal systems. Furthermore, the coordination of motion was a unknown 

issue that aroused wonder given how the Central Nervous System (CNS) manages the high number 

of degrees of freedom of the musculoskeletal system to produce movements [40]. However, a vast 

pioneering literature in last two decades has led to a consensus on the active role of the spinal motor 

system, which is actively involved in various mechanisms that produce movement, ranging from 

basic reflexes to complex voluntary movements. These findings confirmed the hypothesis of the 

existence of spinal building blocks, discrete generators whose combinations produce movement. 

This modular organization of the spinal cord circuitry is based on functional units (called muscle 

synergy) that generate a specific motor output by imposing a specific pattern of muscle activations 

specified together. The first corroborative evidence supporting this modular architecture of the 

spinal cord came from examinations conducted by microstimulation of the spinal cord gray matter, 

N-methyl-d-aspartate ionophoresis or skin stimulation in animals [41,43,44]. To gain an insight into 

this discrete organization process, the outputs of modules were usually characterized as force fields 

or in terms of electromyographic muscle responses. It has thus been possible to understand how the 

CNS produces a wide range of complex movements using only a few functional units within the 

spinal cord combining them linearly.  
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When the field of forces recorded following co-stimulation were compared with those obtained by 

vector summation of the two individual fields, co-stimulation fields and the summation fields were 

equivalent in most cases . 

This principle of summation, which allows a wide range of motor responses in the computationally 

simplest manner, might also subserve the motor responses produced by supraspinal systems [45]. 

The force fields generated by the activation of supraspinal structures, such as the vestibular nerve, 

result from combinations of a small number of spinal modules. 

Further studies conducted on spinalized or intact and freely moving animals [42] are consistent with 

this hypothesis of a low-dimensional controller capable of simplifying control without degrading 

performance. In the last few years, this small alphabet of control signals and motor modules has 

also been directly investigated in humans. The first evidence of low-dimensional representation of 

motor output comes studies performed by d’Avella and colleagues [42,46]. The authors showed that 

the spatiotemporal characteristics of the phasic and tonic muscles patterns during upper limb goal 

directed reaching movements, in different directions, loads, postures and velocities, are determined 

by linear combinations of a small number of muscle synergies. 

A series of papers written by Ivanenko and colleagues [47-50] instead highlighted the spinal 

functional modular architecture during human locomotion in healthy subjects. The ability of spinal 

systems to contribute to the production and adaptation of movement has more recently led several 

neuroscientists to investigate of how nervous system diseases alter the organization of motor 

modules. This was done in stroke patients during walking and upper limb movement [51-54]. 

Finally, in recent times a study about the adjustments of the locomotor modules related to unstable 

walking conditions was carried out by Martino and colleagues [55]: comparing three different 

conditions, i.e. locomotion of healthy subjects on slippery ground and on narrow beam and of 

cerebellar ataxic patients on normal ground they assessed that the overall variation of EMG 

waveforms was accounted for by few motor modules. This suggests that nervous system adopts a 
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specific strategy to cope with unstable conditions resulting from either slippery ground, reduced 

support surface or pathology. 

Understanding the reorganization underlying neuronal drives of synergies might allow motor 

function to be recovered by means of specific rehabilitation strategies. 

Mathematically, every profile of muscle activation 𝑚𝑗 was assumed to be the linear combination of 

a small number of muscular synergies each of which is composed of  two positive components: a 

fixed component 𝑤𝑗𝑖 (vector of muscular synergies), which represents the relative weight of each 

muscle within each synergy, and a time-varying component 𝑐𝑖𝑘 (vector of coefficients of activation 

of the synergy), which represents the relative contribution of the synergy of muscle activation 

patterns, and since the muscle activation is not negative the two components must have both values 

always positive: 

𝑚𝑘𝑗 = ∑ 𝑐𝑘𝑖
𝑁
𝑖=1 𝑤𝑖𝑗    𝑐𝑘𝑖 , 𝑤𝑖𝑗 ≥ 0    

Thus the vector of muscle activation for each j-th muscle is hypothesized have the form:  

𝑚𝑗 = 𝐶1𝑤1𝑗 + 𝐶2𝑤2𝑗+…+ 𝐶𝑁𝑤𝑁𝑗        

where 𝑤1𝑗 is the j-th element of the synergy 𝑊1 and so on, for N synergies. 

Similarly muscle activation in each time instant can be expressed as a vector in which each element 

is the level of activation resulting in every muscle:  

𝑚𝑘 = 𝑐𝑘1𝑊1 + 𝑐𝑘2𝑊2+…+ 𝑐𝑘𝑁𝑊𝑁     

where 𝑐𝑘1 represents the k-th element of the corresponding coefficient 𝐶1; at the time instant k. The 

equations above may be represented in matrix notation: 

𝑀 = 𝐶𝑊 

where each row of the matrix M is a muscle, and each column represents a time instant (Fig. 3.11). 
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Figure 3.11. Generation model of muscle patterns as a linear combination of muscle synergies. 

 

Each element of W takes a value between 0 and 1 (after normalization with respect to the maximum 

value) representing the relative contribution of each muscle in the muscle synergy and muscle 

synergy can be seen as modulated by a set of independent neural commands C for each synergy and 

in each task: 

[

𝑚11 … 𝑚1𝑗

… … …
𝑚𝑘1 … 𝑚𝑘𝑗

] = [

𝑐11 … 𝑐1𝑖
… … …
𝑐𝑘1 … 𝑐𝑘𝑁

] [

𝑤11 … 𝑤1𝑗
… … …
𝑤𝑖1 … 𝑤𝑁𝑗

] 

Non-negative matrix factorization 

Different statistical methods have been developed to obtain a linear decomposition of the original 

set of data and extract synergies from muscle activation patterns based on different assumptions. In 
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general, factorization algorithms are used, for example ‘Principal Component Analysis (PCA)’, 

‘Factor Analysis (FA)’, ‘Indipendent Component Analysis (ICA)’, ‘Nonnegative Matrix 

Factorization (NMF)’. Based on several studies in literature, we chose to adopt the NMF algorithm. 

Nonnegative matrix factorization was implemented using the matrix multiplication update rules 

based on the Euclidean distance objective function described by Lee and Seung (2001) which it has 

been shown to be a good compromise between speed and ease of implementation. There are no 

explicit assumptions about the distributions of activation coefficients for NMF, other than that all 

the elements of the matrix of initial data and the factors that break it down must be greater than or 

equal to zero.  It is likely that the robust performance of NMF is to a large extent explained by the 

strong constraints imposed by its assumption of nonnegativity [43]. 

Given a nonnegative matrix M, the problem is to find two nonnegative matrices W and C, such that: 

𝑀~𝐶𝑊      

where W and C are a compressed version of the original matrix. Thus, each element of M is 

estimated by the linear combination of the columns of C weighted for the components of W (Fig. 

3.12). 

Thus, the problem is to minimize ||M −  CW||2 compared to C and W, with the constraint C,W≥0. 

It is unrealistic to think that the algorithm can solve the problem finding a global minimum of the 

cost function, however, there are numerical techniques that allow to find a local minimum. 
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Figure 3.12. From the sEMG processed, the figure shows a diagram of the iteration procedure of the NMF 

algorithm for the extraction of muscle synergies, and reconstruction made from this estimate (Cheung et al. 

2009). 

 

As convergence criterion in our study it was decided to apply the multiplicative rule proposed by 

Lee and Seung (2001) [56], which have shown that the Euclidean distance ||𝑀 − 𝐶𝑊|| does not 

increase under particular update rules:  

𝑐𝑛𝑘 = 𝑐𝑛𝑘
(𝑊𝑇𝑀)𝑛𝑘

(𝑊𝑇𝑊𝐶)𝑛𝑘
               𝑤𝑗𝑛 = 𝑤𝑗𝑛

(𝑀𝐶𝑇)𝑗𝑛

(𝑊𝐶𝐶𝑇)𝑗𝑛
     

The algorithm is then initialized with  non-negative random values  (between 0 and 1) for the matrix 

W and C and proceeds in the minimization of the  total reconstruction  error by alternating the rules 

described before until a convergence condition is satisfied (defined as the reaching a threshold in 

the  total reconstruction error  < 10-4). 

In order to minimize the probability to find a local minimum, the algorithm was repeated for 100 

times on each set of data, choosing the factorization that produced the lower mistake of total 

reconstruction. 
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The NMF algorithm requires that the number N of synergies that make up the set of data was 

determined a priori. In order to determine this number, we adopted a procedure based on the 

analysis of the amount of total variation explained (𝑅2). This value 𝑅2 is the result of the 

relationship between two variances, defined as:  

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ (𝑦𝑖−ŷ𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖− �̅�𝑖)
2𝑛

𝑖=1

     

where SSE is the sum of the quadratic residues, SST is the total variance, y is the observed data, ŷ is 

the estimate data and �̅� is the mean value. Therefore, 𝑅2 is the fraction of total variation explained 

by the reconstruction of the synergies and can take on values between 0 and 1 (1 in the case where 

the variance is fully explained and the reconstruction error is null, 0 in the opposite case). Thus, we 

repeated the extraction with a range of synergies from 1 to 8 and selected the minimum number of 

N synergies by examining the characteristic of 𝑅2 as a function of N. 

Then we adopted a procedure based on linear regression in order to identify the value of N after 

which the curve R2 remains essentially straight. A series of linear regressions was conducted, 

starting from a regression whole curve (with N from 1 to 8 synergies) of R2 and progressively 

removing the smallest value of N from the range of regression. The optimal number of synergies N 

was selected as the first value corresponding to a regression line from N to  𝑁𝑚𝑎𝑥 with a mean 

square error (MSE) <10-4. 

This procedure has been shown to be a good compromise between speed and ease of 

implementation. 

After identifying the number of synergies for each subject, a specific script was designed to identify 

and average the similar synergies across subjects, based on the best-matching scalar product of 

weighting coefficients normalized to the Euclidean norm. After assuming a threshold of 0.6 on this 

criterion, synergies were grouped in inter-individual sets and the correlation between the identified 

synergies was calculated. 
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3.2.3.5 MATLAB 

Matlab is a high-level language for scientific and engineering computing, a tool for matrix 

manipulations, signal processing, data classification and graphical visualization, and many other 

functionalities. 

In many processing sections of the studies described in this thesis, it was used for algorithm 

implementation (including all the methods for gait events and parameter estimation), graphical 

visualization and data classification. 
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CHAPTER 4 

4. GAIT ANALYSIS IN NEUROLOGICAL 

DISORDERS 

4.1  Characterization of investigated pathologies  

Gait analysis, which allows evaluating kinematic variables, dynamics or muscle activity, provides 

very important information especially when it is applied to individuals with pathologies. In fact, the 

study of postural and motor alteration in patients with pathologies associated with movement 

alterations allows to know the level of functional limitation consequent to the pathology and its 

evolution over time and can provide useful elements to define an appropriate rehabilitative strategy. 

The characterization of motor activity in the pathological population is important in order to 

identify effective rehabilitative programs. In particular, walking disorders are one of the first 

symptoms for these patients. It has been shown that the breakdown of the functional balance 

between the various circuits is the cause of extrapyramidal motor disorders. It follows, for example, 

that the first symptoms of patients suffering from Parkinson's disease are shown by a shorter and 

more crawled locomotion, with a decrease in the angular movements of the joints [1]. A progressive 

loss of muscle coordination has been found in diseases affected by a deficit in the cerebellum, such 

as cerebellar ataxia, which therefore makes it difficult to perform voluntary movements [2]. Injuries 

at the level of the pyramidal system, on the other hand, result in a progressive spasticity in the lower 

limbs, as occurs in hereditary spastic paraparesis [3-5]. For all these reasons, a complete 

characterization of the locomotion of such patients could be a useful tool for identifying the motor 

strategies put in place in order to guarantee stability and ensure progression. 
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4.1.1 Hereditary Spastic Paraparesis 

Hereditary spastic paraparesis is a heterogeneous group of inherited neurodegenerative disorders 

characterized by retrograde degeneration of the corticospinal axonal fibers [6]. Lower limb 

spasticity, usually more prominent than muscle weakness, is the key clinical feature in patients with 

hereditary spastic paraparesis [7] and impairs walking ability, autonomy, and quality of life [8,9]. 

No treatment is known to reduce disease progression, but antispastic drugs and physiotherapy [10–

13] may help reduce the functional impairment of gait. Quantifying and typifying the specific gait 

disorder in hereditary spastic paraparesis is crucial to designing individual pharmacological and 

rehabilitative treatments. Most descriptions of paraparetic gait are based on qualitative clinical 

observations [6,7,10]. Some studies have quantitatively evaluated gait impairment in hereditary 

spastic paraparesis patients, revealing several gait abnormalities of reduced step length, increased 

step width, reduced range of motion (RoM) at the knee joint [3,4,14], impaired knee torque and 

stiffness [4,14], and decreased activity of the rectus femoris muscle [4]. Despite the great relevance 

of such quantitative assessments, they remain generic without reflecting the wide clinical 

heterogeneity of gait disorders in hereditary spastic paraparesis patients.  

Furthermore, clinical experience suggests that spasticity may differentially affect distal and 

proximal muscles, which in turn can be related to impairments of specific motor pools. Spasticity is 

a complex feature involving several mechanisms. Central motor lesions lead to alterations in the 

excitability of spinal reflexes and changes of supraspinal drive [15,16]. Consequently, gradual 

lesion- and activity-dependent adaptive changes within the higher centres, the spinal cord, and the 

musculo-tendinous tissues occur, leading to spastic movement disorder. Furthermore, corrupting or 

removing descending input severely disrupts the functioning of spinal pattern generation circuits 

and contributes to motor dysfunction in conditions such as cerebral palsy, spinal cord injury and 

other movement disorders. Since degeneration of corticospinal fibers in HSP affects the state and 

excitability of the lumbosacral segments innervating lower limb muscles [14], it is important to 
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consider the impairments in the spinal locomotor output. The locomotor motoneuron activity is the 

end-product of the interaction between complex supraspinal and spinal circuitries under the 

influence of sensory feedback [17]. The output of this process can be evaluated by mapping the 

simultaneous activity from a large number of muscles during walking onto the anatomical 

rostrocaudal location of the motorneuron pools in the human spinal cord derived from published 

literature [18]. Thus, a comprehensive treatment of Hereditary Spastic Paraplegia should consider 

the specific pathophysiological changes in the spinal cord. 

In the study “Gait patterns in patients with hereditary spastic paraparesis”(M. Rinaldi et al. 2016), 

which was published on PLoS One, a description of the gait patterns in hereditary spastic 

paraparesis and with the identification of subgroups of patients according to specific kinematic 

features of walking was carried out. 

Furthermore, in the study “Differential changes in the spinal segmental locomotor output in 

Hereditary Spastic Paraplegia” (2018), which was published by Clinical Neurophysiology, a 

detailed characterization of the spinal motoneuronal output in HSP during locomotion was reported 

in order to investigate whether gait impairments in HSP patients are related to changes in the spinal 

activity. 

Patients’ subgroups classification 

Patients were classified on kinematic behavior during walking. In particular, we chose a z-score 

equal to the mean ± 1.5 SD of the range of motion (RoM) at the lower limb joints of the control 

group as the threshold for clustering HSP patients in subgroups. According to this criterion, the 

joint RoM of each patient could be either reduced (below threshold), increased (above threshold), or 

not significantly different from the corresponding value of the healthy controls. Thus, three 

subgroups of patients were identified. Subgroup one consisted of patients with hip joint RoM 

significantly increased, but ankle and knee joint RoMs not significantly different from the control 

values. Subgroup two included patients with knee and ankle joint RoMs significantly reduced, but 
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hip joint RoM not significantly different from the control value. Subgroup three included patients 

with a statistically significant reduction of RoM at hip, knee, and ankle joints. 

 

 

Figure 4.1. Patients' subgroups classification according to lower limb joint kinematic behavior. The 

threshold of mean±1.5*SD of the joint RoMs of the control group is reported. Each patient joint RoM could 

be either reduced (below the threshold), increased (above the threshold) or close to the values of healthy 

controls. It is possible to note that the subgroups' division corresponds also to the severity of the disease 

scored by SPRS scale (higher values of SPRS correspond to higher disease's severity). Each triangle 

represents a patient with different colors according to the SPRS scores. Each circle represents a qualitative 

characterization of subgroup of patients with different color shades corresponding, in the three spatial 

dimensions, to the SPRS scores. 

Time-distance parameters  

When comparing the whole sample of patients with the healthy participants, no significant 

differences were found in any time-distance parameters, except for step width and step length, 

whose values were significantly increased and reduced, respectively, in patients compared with 

controls. A significant effect of patients’ subgroup was found, using one-way ANOVA, on most of 

the time-distance parameters. Post-hoc analysis revealed significantly higher values of walking 

speed in subgroup three than in subgroup one, lower stance duration in subgroup three than in 

subgroup one, higher swing duration in both subgroups two and three than in subgroup one, lower 

second double support duration in subgroup three than in subgroup one and higher step length in 
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subgroup three than in both subgroups one and two and in subgroup two than in subgroup one (Fig. 

4.1,4.2). 

Kinematic parameters 

Significant lower values in knee and ankle RoMs and significant higher values in trunk lateral 

bending, flexion-extension, and rotation RoMs and pelvis rotation RoM were found in patients than 

in controls. A significant main effect of the subgroup was found, using one-way ANOVA, on hip, 

knee, ankle, and pelvis tilt RoMs. Post-hoc analysis revealed significant higher values in hip RoM 

in both subgroups two and three than in subgroup one, higher values of knee RoM in both 

subgroups two and three than in subgroup one and in subgroup three than in subgroup two, higher 

values of ankle RoM in subgroup three than in both subgroups one and two, and lower values of 

pelvis tilt RoM in both subgroups two and three than in subgroup one (Fig. 4.1,4.2). 

Kinetic parameters 

Significant differences were found only for knee first extensor angular impulse (AI1st_Knee) whose 

value was higher in patients than controls. A significant effect of the subgroup was found, using 

one-way ANOVA, on hip flexor angular impulse during the second double support subphase 

(AI1stDS_Hip). Post-hoc analysis showed lower values of this parameter in subgroup three than 

subgroup one (Fig. 4.3). No significant difference emerged for hip flexor angular impulse during 

the second double support subphase (AI2ndDS_Hip); knee first and second extensor angular impulse 

(AI1st_Knee and AI2nd_Knee respectively) during the stance phase; ankle dorsiflexor angular impulse 

during the first double support subphase (AI1stDS_Ankle); ankle plantar flexor angular impulse during 

the mid-stance subphase (AIMidStance_Ankle); ankle plantar flexor angular impulse during the second 

double support subphase (AI2ndDS_Ankle), and moment of support (MS). 
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Figure 4.2. Time-distance and joint and trunk kinematic parameters in HSP subgroups. 

(A) Mean values (±SD) of time distance parameters. (B) Mean (with SDs in light colors) kinematic plot of 

joint angular displacements during the gait cycle. (C) Mean values (±SD) of range of angular motion (RoM). 

Mean values of healthy controls for both time-distance and kinematic parameters, are reported in each bar 

graph (dotted line) and plot (black line). Asterisks indicate significant differences among the three subgroups 

at post hoc analysis (* p<0.05, ** p<0.001). 
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Figure 4.3: Joint kinetic and muscles parameters in HSP subgroups. 

(A) Mean (with SDs in light colors) kinetic plot of joint moments (hip, knee and ankle) and support moment. 

The patterns are normalized to body weight and plotted vs. normalized stance. (B) Mean values (±SD) of 

kinetic parameters. Mean values of healthy controls for kinetic parameters are reported in each bar graph 

(dotted line) and plot (black line). Asterisks indicate significant differences among the three subgroups at 

post hoc analysis (* p<0.05). 

Intersegmental Coordination. 

From the elevation angles, we derived the RoM and the covariation between thigh, shank, and foot 

segments [19]. Briefly, when these angles are plotted in three dimensions (3D), they describe a path 

that can be least-squares fitted to a plane over each gait cycle [19] A principal component analysis 

was applied to the group of three segment elevation angle trajectories to determine covariance loop 

planarity, width, and orientation. To this end, we computed the covariance matrix of the ensemble 

of time-varying elevation angles over each gait cycle. The three eigenvectors u1–u3, rank-ordered on 

the basis of the corresponding eigen values, correspond to the orthogonal directions of maximum 

variance in the sample scatter. The first two eigenvectors u1 and u2 lie on the best-fitting plane of 
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angular covariation, and the third eigenvector (u3) is the normal to the plane and thus defines the 

plane orientation. Covariance loop shape was determined using the percent variance (PV1 and PV2) 

explained by the first and second eigenvector u1 and u2, the greater the value of PV1 relative to PV2, 

the more eccentric (closer to a line segment) is the elliptic loop. The planarity of the trajectories was 

quantified by the percentage of total variation (PV3) accounted for by the third eigenvector of the 

data covariance matrix (for ideal planarity PV3 = 0%). To quantify the rotation of the plane, we 

analyzed the u3t parameter (the direction cosine of the normal to the plane with the axis of thigh 

elevation). For each participant, the parameters of planar covariation (PV1, PV2, PV3 and u3t) were 

averaged across strides. 

Motor output of the spinal segments 

To characterize the spatiotemporal organization of the total motor output, the recorded averaged 

profiles of EMG-activity were mapped onto the rostrocaudal location of MN-pools in the human 

spinal cord derived from published literature. This approach provides an interpretation of the motor 

pool activation at a segmental level rather than at the individual muscle level [20] It can be used to 

characterize the spinal locomotor output by considering relative intensities, spatial extent, and 

temporal structure of the spinal motor output. Briefly, each muscle is innervated by several spinal 

segments, and each segment supplies several muscles. To reconstruct the motor-pool output pattern 

of any given spinal segment of the lumbosacral segments (L2-S2) most active during locomotion, 

we subdivided each segment into six slices, according to the anatomical data, resulting in 36 

subsegments Sj.  

In order to compare the general spatiotemporal features of the lumbosacral enlargement activation 

in different groups of participants, and the relative activation of each segment, we computed the 

timing of the maximal activation and the 𝐹𝑊𝐻𝑀 throughout the gait cycle. Even though we 

recorded a limited set of muscles, we have previously shown that the muscles recorded here are 

those that contribute mostly to the overall spinal maps [21]. Furthermore, the recorded muscles 

contribute a large part of the total cross-sectional area of leg muscles [22].  



59 
 

Spinal maps of MN activation 

Mapping the EMG activity profiles onto the rostrocaudal location of the MN pools in the 

lumbosacral enlargement allowed us to reconstruct the spinal maps of MN activation. 

Figure 4.4A shows the average segmental MN output over the step cycle and figures 1B and C 

illustrate the mean timing of max activation and the mean FWHM of the spatiotemporal activation 

of MNs for each spinal segment in each group. 

The prominent feature of these maps in control participants consisted of a distinct activation of 

lumbar and sacral segments during early and late stance, respectively, as previously seen in other 

studies. In contrast, despite inter-individual variability (see individual spinal maps, Fig. 4.5), in HSP 

patients the activity timings in lumbar and sacral segments tend to be quasi-synchronous because of 

a progressive widening of the activity involving the sacral segments (already present in subgroup 1) 

and, in more severe subgroups, the lumbar segments (Fig. 4.4C). As a result, the timing of 

maximum activity of sacral segments was significantly different in subgroup 3 with respect to 

controls in S2, and in subgroup 2 and 3 with respect to controls and subgroup 1 in S1, while the 

timing of lumbar segments did not show any significant difference between groups (Fig. 4.4B). 

Overall, the spinal maps were characterized by a spread of the loci of activation in HSP, involving 

initially the sacral segments and, at more severe stages, the lumbar segments (Fig. 4.4). 

Correlations between gait parameters, spinal segment characteristics and clinical scores in HSP 

Figure 16A illustrates significant correlations between clinical SPRS measures and gait parameters. 

The following parameters correlated significantly with the SPRS score: walking speed, stride 

length, ankle RoM, knee RoM. We observed significant relationships between the SPRS score and 

the FWHM of spinal activation of lumbar segments L2, L3 and L4 (Fig. 4.6B). However, 

correlating the FWHM of spinal activation with the knee RoM, that was the most sensitive 

kinematic parameter among those used in the subgroups classification criterion (see Patients’ 

subgroups classification), we found significant values for all segments (Fig. 4.6C). 
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Figure 4.4. Spatiotemporal maps of motoneuron activity of the lumbosacral enlargement in controls and 

HSP subgroups. A: Output pattern of each segment is shown in the top panels (mean ± SD), while the 

same pattern is plotted in a color scale at the bottom. Motor output (averaged across participants in 

each group, reported in percent of maximum segment activation) is plotted as a function of gait cycle 

and spinal segment level (L2 − S2). Mean temporal activation across all segments (mean ± SD) at the 

bottom of each spinal map. B: Timing of maximum activation of each segment for each group. The 

values represent the mean + SD. C: Depicted are mean (+ SD) FWHM of each segment activity. Lines 

over bars denote significant differences. 

 

Spinal maps revealed a tendency for spreading the main loci of activation, involving initially the 

sacral segments and, at more severe stages, the lumbar segments. The degeneration of the 

corticospinal tract in HSP is associated with a widening of spinal locomotor output spreading from 

caudal to rostral segments. The findings highlight pathophysiologically relevant differential changes 

in the spinal locomotor output in HSP related to the specific innervation of muscles in the spinal 

cord, and might be helpful for developing future therapeutic strategies and identifying physiological 

markers of the disease. 
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Figure 4.5. Individual spatiotemporal maps of motoneuron activity of the lumbosacral enlargement in 

HSP patients (ordered by SPRS score). The pattern is plotted in a color scale. Motor output (averaged 

across strides, reported in units of % of maximum of EMG activity) is plotted as a function of gait cycle 

and spinal segment level (L2-S2). 
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Figure 4.6. Correlations between gait parameters, widening of spinal segment activations and clinical 

scores. Each point represents the stride-averaged value for the individual patient. Linear regression 

lines with corresponding r  and p values are reported. A: Relationships between walking speed, stride 

length, ankle and knee RoMs, and SPRS scores. B: mean FWHM of each spinal segment activation 

vs. SPRS scores. C: mean FWHM of each spinal segment activation vs. knee RoM. 

 

4.1.2 Cerebellar Ataxia 

Gait ataxia is a key characteristic of cerebellar disorders and is described as an unstable stumbling 

walk, with the need for an increased base of support [23,24]. Gait impairment greatly impacts a 

person’s autonomy and daily life activities and significantly increases the risk of falls [25,26]. 

Recently, modern motion analysis systems have been used to quantitatively characterize the nature 

and degree of walking dysfunction in patients affected by cerebellar ataxias. Several abnormalities 

in spatio-temporal parameters, joint kinematics and kinetics, muscle activation patterns, and upper 

body control together with increased variability in global and segmental gait parameters have been 

observed [27,28]. Almost all the previous studies on ataxic patients were transversal studies, and 
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therefore little information is available on the progression of gait impairment in these patients. It is 

well-known that patients with degenerative cerebellar ataxias, e.g., spinocerebellar ataxias, show a 

progressive course [29-30]. Consequently, the patient’s walking ability is expected to gradually 

decline over time. As walking is an essential function in everyday life, the longitudinal assessment 

of gait is critical to measure the actual progression of gait impairment, to determine if differences in 

the progression of gait impairment exist for different ataxic disorders and to identify which gait 

parameters are more sensitive to gait decline.  

The assessment of the extent and progression of gait impairment at the 2- and 4-year follow-up 

evaluations in a group of patients with degenerative cerebellar ataxias were performed in the study 

published on Cerebellum “Progression of Gait Ataxia in Patients with Degenerative Cerebellar 

Disorders: a 4-Year Follow-Up Study” (2016) in order to compare the obtained data with disease 

severity, and to compare gait decline among subgroups of patients with different clinical forms of 

cerebellar ataxia. 

We carried out a prospective longitudinal gait analysis study With 12 patients with degenerative 

cerebellar ataxias; recordings were done in our Motion Analysis LAB (Policlinico Italia, Rome, 

Italy). Gait analysis was performed with the use of an optoelectronic motion analysis system 

(SMART-DX 500 System, BTS, Milan, Italy). The scale for the assessment and rating of ataxia 

(SARA) was used to rate disease severity [31]. 

Time was found to have a significant effect on the SARA Scores. Post hoc analysis revealed 

significantly higher values at 2 and 4 years than at the baseline (Fig. 4.7). In particular, the SARA 

total score increased by 3.65 ± 1.92 points at the 2-year and 5.29 ± 3.23 points at the 4-year follow- 

up as compared to the baseline. No significant effect of group and time × group interaction were 

found on the SARA scores. Fisher’s test showed significant differences in frequency distribution 

between groups across the time evaluations. Particularly, independent patients were 10 out of 12 

(83.3%) at the baseline, 8 out of 12 (66.6%) at the 2-year follow-up, and 5 out of 12 (41.6%) at the 
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4-year follow-up, whereas dependent patients were 2 out of 12 (17.7%) at the baseline, 4 out of 12 

(33.4%) at the 2- year follow-up, and 7 out of 12 (58.4%) at the 4-year follow-up. Changes in gait 

variables over the 2- and 4-year follow-up evaluations are reported in Fig. 4.7. Time was found to 

have a significant effect on step length; hip, knee, ankle joint, and trunk rotation RoM; and on the 

stride-to-stride duration and step length CV values. 

Post hoc analysis revealed significantly lower step length and hip joint RoM values at the 4-year 

follow-up than at the baseline and 2-year follow-up, lower knee joint RoM values at the 4-year 

follow-up than at the 2-year follow-up, and lesser ankle joint RoM at the 4-year follow-up than at 

the baseline ( Fig. 4.7). Figure 4.7 shows hip, knee, and ankle joint angles at the baseline, 2-year 

follow-up, and 4-year follow-up. Significantly higher CV values for left step length and left hip 

flexion–extension were found at the 4-year follow-up than at the 2-year follow-up (Fig. 4.7,4.8). 

 
 

Figure 4.7. The time–distance parameters, trunk and lower limb joint kinematics, and coefficients 

of variation at the baseline and at the 2- and 4-year follow-up evaluations. The mean and 

standard deviation values of 12 patients are presented. All the values are expressed as a 

percentage of the mean values recorded for the group of healthy subjects. The asterisks denote 

significant differences 
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A significant effect of group was found on the ankle joint RoM. Post hoc analysis revealed reduced 

ankle joint RoM in SCA patients as compared to SAOA patients. Time × group interaction was not 

found to have a significant effect on gait parameters. 

 

 

 
 

Figure 4.8. Radar plot illustrating the pattern of the time–distance parameters at the baseline 

(dotted light grey line), at 2-year follow-up (middle grey line), and at 4-year follow-up (continuous, 

darkest grey line). The mean and standard deviation values of the 12 patients are presented. All the 

values are expressed as a percentage of the mean values recorded for the group of healthy subjects 

 
 

4.1.3 Parkinson’s disease 

Patients with Parkinson's disease show a gait disturbance which is considered as one of the most 

disabling aspect of the disease that strongly impacts on patients' autonomy and quality of life. The 

mechanism underlying gait impairment is multi-factorial, reflects the global motor impairment of 

patients with PD and is mainly related to a neurotransmitter deficiency inducing bradykinesia, 

rigidity, abnormal trunk control and postural instability. For this reason, and considering the impact 

of social and economic costs, one of the main foci of intervention in patients with PD should be 
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treating gait abnormalities. This need is further reinforced by the knowledge that gait outcomes are 

correlated with longevity, cognitive decline and adverse events. 

Besides the shorten-step gait clinical description of the gait disorder in PD, in the last years, studies 

using modern 3D motion analysis systems have further detailed the gait pattern in PD disclosing 

abnormalities in cadence, stance duration, swing duration, double support duration, leg length, step 

length, velocity, hip, knee and ankle ROMs. Such abnormal gait parameters seem to correlate with 

the clinical outcomes of UPDRS score, H-Y stage and milliequivalents of levodopa taken. 

Importantly, gait parameters can either normalize or improve after several rehabilitative treatment 

strategies including physiotherapy, assistive equipment, sensory cueing, treadmill training, physical 

activity, home base exercises. However, none of the previous studies specifically investigated 

which biomechanical factor can be modified after rehabilitation and which clinical characteristic 

can predict the rehabilitation-induced gait improvement. This would be extremely important to 

typifying, grouping and selecting patients, optimizing the rehabilitative strategies and cost 

management. 

The aims of the study “Predictors of gait improvement in patients with Parkinson's disease after 

rehabilitation” presented at 48° CONGRESSO SIN 2017 were to evaluate in a sample of patients 

with PD: i) which gait parameters can be modified after a short-term rehabilitation program; ii) 

which, if any, clinical variable can predict the improvement of the gait function after rehabilitation.  

Furthermore, in the work “Artificial neural networks for staging the gait deficit in Parkinson 

disease” presented at SIAMOC 2019, I developed a diagnostic algorithm based on machine-

learning technique (i.e. Artificial Neural Networks (ANNs)) able to automatically classify the gait 

deficit according to the disease severity staging. 

Seventy-six patients with PD were enrolled for the study (age, 69.68±8.92 years). The severity of 

PD was evaluated using the Hoehn and Yahr (H&Y) staging system [32] (H&Y=1: 20; H&Y=2: 17; 
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H&Y=3:27; H&Y=4:12). Patients were asked to walk barefoot at comfortable self-selected speeds 

along a walkway with twenty-two reflective spherical markers attached on the anatomical 

landmarks, in accordance with a validated biomechanical model [33]. Time-distance, joint and 

trunk kinematics (range of motion, RoM) were recorded using an optoelectronic motion analysis 

system. An ANNs approach based on Levenberg-Marquardt back-propagation algorithm [34], was 

used to estimate staging of the gait deficit in Parkinson disease in terms of H&Y scale starting with 

time-distance and kinematic features used in different combinations (see Fig. 4.9). Different 

topologies of networks with different numbers of hidden layers and different numbers of neurons 

(Fig. 1) were trained. For each trained network, a confusion matrix was calculated based on the real 

H&Y value and the one estimated on the randomly extracted testing set. The mean 4 × 4 confusion 

matrix was then obtained by averaging the confusion matrixes of the trained ANNs. A performance 

parameter (P) was calculated as the mean (%) of the elements on the diagonal of the mean 

confusion matrix, where 100% indicates the absence of misclassifications. 

  

Figure 4.9. A schematic description of experimental set-up and methodological approach based on ANNs 

method used to map time-distance and kinematic features on the H&Y levels. 

Three-way ANOVA showed significant effects of multiple factors on the performances considering 

training set, numbers of hidden layers and numbers of neurons.  
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The best performance was obtained with SETG, 3 hidden layers and 20 neurons on first layer (P = 

88.82% ± 5.58%), while the worst performance was obtained with SETB, 2 hidden layers and 20 

neurons on first layer (P = 55.02% ± 27.31%). 

ANNs, that recently have been used as diagnostic tool in several clinical conditions, could be used 

with gait analysis to identify the severity of gait deficit in PD. Indeed, a diagnostic algorithm based 

on ANNs technique can automatically classify the gait deficit according to the disease progression. 

4.1.4 Duchenne Muscular Dystrophy 

Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by a deficiency of a 

protein, dystrophin, which is responsible for supporting muscle fiber strength. DMD has an 

inherited origin in two thirds of cases while for the remaining one it is linked to a genetic mutation. 

It is characterised by a progressive muscular weakness that can compromise ambulatory status and 

cardiopulmonary function. The prevalence rate for DMD is around 63 per million and it affects 

children in the first years of life. It is generally diagnosed between the age of 3/4 years by physician 

observations, and it is confirmed through genetic tests [35,36]. Muscle weakness is more proximal 

than distal, it usually affects lower limbs more often than upper limbs, and it shows up more often 

on extensor muscles than in flexor ones [37].  

When DMD strikes very young individuals, motor, cognitive and language functions result poorer 

as compared to age-matched unaffected children. Furthermore, boys with DMD have clear 

difficulties in running and climbing and descending stairs [38]. Muscle weakness is a major 

determinant of the gait impairments in patients with DMD, followed by muscle and tendon 

retractions and joint deformities. The compensatory movements to maintain the motor function are 

needed through the selection of possible synergic movements at the hip, knee and ankle levels [39]. 

Biomechanical adaptations explain how children with DMD can walk for some period despite 

limited muscle strength [40,41].  
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Nowadays the only accessible cure involves the use of cortical-steroids, which are capable to slow 

down the course of the disease, and to prolong the walking autonomy time. The goal in children 

with DMD is to keep them ambulant as long as possible, aiming to postpone spinal deformities and 

muscle contractures [42]. One important aspect, in this scenario, is thus to delineate the mechanisms 

associated with abnormal gait patterns. Walking ability in DMD is generally evaluated by means of 

the six-minute walking test (6MWT) [43], which is usually able to assess walking endurance and 

aerobic capacity. Being an overall measure of functional capacity, it does not directly allow for a 

detailed analysis of neuromuscular and biomechanical determinants of walking function.  

Kinematics and kinetics extracted from gait data on convenience samples of children with DMD 

report that they usually modify their trunk and lower limb position during the stance phase; higher 

hip flexion is evidenced, as the result of a reduced muscular strength for hip and knee muscle 

extensors (i.e. gluteus maximus and quadriceps). Furthermore, to maintain the pelvic stability and 

alignment, DMD patients exploit hip flexion and abduction to compensate for an increased ankle 

plantar-flexion [40]. The observed shortening of the plantar flexor muscles (i.e. Soleus and 

Gastrocnemius) then leads to a more prominent lumbar curve during the years [44].   

The progression of the disease causes a decrease on walking parameters, such as gait cadence and 

speed, a reduction of the step length, and a concurrent increase of the base of support (step width) to 

maintain balance. Despite these compensating mechanisms, further disease progression makes most 

children become wheelchair-dependent when they are about 12 years old [40]. 

4.2  Comparison of gait features among patients 

4.2.1 Gait patterns  

Patients with degenerative neurological diseases such as cerebellar ataxia, spastic paraplegia, and 

Parkinson’s disease often display progressive gait function decline that inexorably impacts their 
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autonomy and quality of life. Therefore, considering the related social and economic costs, one of 

the most important areas of intervention in neurorehabilitation should be the treatment of gait 

abnormalities.  Patients affected by three different types of primary degenerative neurological 

diseases were studied in the work “Identification of specific gait patterns in patients with 

Cerebellar Ataxia, Spastic Paraplegia, and Parkinson’s disease: a non-hierarchical cluster 

analysis”, published from Human Movement Sciences (2017) with the aim to determine whether an 

entire dataset of gait parameters recorded in patients with degenerative neurological diseases can be 

clustered into homogeneous groups distinct from each other and from healthy subjects. These 

diseases were: i) cerebellar ataxia (28 patients), ii) hereditary spastic paraplegia (31 patients), and 

iii) Parkinson’s disease (70 patients). Sixty-five gender-age-matched healthy subjects were enrolled 

as a control group. An optoelectronic motion analysis system was used to measure time-distance 

parameters and lower limb joint kinematics during gait in both patients and healthy controls.  

When clustering single parameters, step width and ankle joint range of motion (RoM) in the sagittal 

plane differentiated cerebellar ataxia group from the other groups. When clustering sets of two, 

three, or four parameters, several pairs, triples, and quadruples of clusters differentiated the 

cerebellar ataxia group from the other groups. Interestingly, the ankle joint RoM parameter was 

present in 100% of the clusters and the step width in approximately 50% of clusters. In addition, in 

almost all clusters, patients with cerebellar ataxia showed the lowest ankle joint RoM and the 

largest step width values compared to healthy controls, patients with hereditary spastic paraplegia, 

and Parkinson’s disease subjects. 
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Figure 4.10.  Bar heights in panel A and B represent the percentage of CA, HSP, PD patients and control 

subjects clustered by step width and ankle joint RoM, respectively.The horizontal black arrows point towards 

the bar relative to CA patients who show the highest rate compared to both HSP and PD in clusters 3 and 2, 

respectively. Panels C, D, E and F. In these panels, the ankle joint RoM values respect to step width (m), 

double support duration (DSD,%), hip joint RoM (°) and speed (m/s) values of the CA (dots), HSP 

(rectangles), PD (triangles) patients and healthy controls (asterisks), inside each of these clusters, are 

represented. 

This study identified several clusters reflecting specific gait patterns in patients with degenerative 

neurological diseases. In particular, the specific gait pattern formed by the increased step width, 

reduced ankle joint RoM, and increased gait variability, can differentiate patients with cerebellar 

ataxia from healthy subjects and patients with spastic paraplegia or Parkinson’s disease. These 

abnormal parameters may be adopted as sensitive tools for evaluating the effect of pharmacological 

and rehabilitative treatments. 
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Figure 4.11. Panel A: in this 3D plot, the ankle joint RoM values respect to step width (m) and double 

support duration (DSD, %) values of the CA (dots), HSP (rectangles), PD (triangles) patients and healthy 

controls (asterisks), inside the cluster, are reported. Panel B: this 3D plot represents the ankle joint RoM 

values respect to step width (m) and hip joint RoM (°) values of the CA (dots), HSP (rectangles), PD 

(triangles) patients and healthy controls (asterisks) inside the cluster. Panel C: this 3D plot illustrates the 

ankle joint RoM values respect to step width (m) and normalized step length values of the of the CA (dots), 

HSP (rectangles), PD (triangles) patients and healthy controls (asterisks) inside the cluster. Panel D: in this 

3D plot the ankle joint RoM values respect to the hip joint RoM (°) and double support duration (DSD, %) 

of the CA (dots), HSP (rectangles), PD (triangles) patients and healthy controls (asterisks) inside the cluster 

are reported. Panel E: in this 3D graph, the ankle joint RoM (°) values respect to the hip joint RoM and 

normalized step length values of the CA (dots), HSP (rectangles), PD (triangles) patients and healthy 

controls (asterisks) inside the cluster are represented. Panel F: this 3D plot illustrates the ankle joint RoM 

values (°) with respect to the hip joint RoM (°) and knee joint RoM (°) values of the CA (dots), HSP 

(rectangles), PD (triangles) patients and healthy controls (asterisks) inside the cluster. 

 

Clustering findings and group comparisons 

Figs. 4.10-4.12 represent clusters as either single parameters or a set of parameters (couples, triples, 

and quadruples).  

Single parameters 

Among the gait parameters, step width and ankle joint RoM partitioned in cluster 3 and 2, 

respectively, showed both a good accuracy in detecting CA patients, who showed the highest rate 

compared to both HSP and PD (Fig. 20, panels A and B). In cluster 3, a significant group was found 

on step width, while in cluster 2 no significant effect was found on ankle joint RoM. Post-hoc 
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analysis revealed highest values of step width in CA compared to both PD and HC. We found 

significant higher SARA scores in patients inside the cluster 2 than those outside the cluster 2. 

 

 

 

Figure 4.12. Panel A: this figure illustrates the ankle joint RoM values (°) with respect to step width (m) and 

knee joint RoM (°) values of the CA (dots), HSP (rectangles), PD (triangles) patients and healthy controls 

(asterisks) inside the cluster. Each symbols color shade (from blue to red for higher values) is proportional 

to the corresponding subject’s double support duration (DSD, %). Panel B: this figure illustrates the ankle 

joint RoM values (°) respect to step width (m) and knee joint RoM (°) values of the CA (dots), HSP 

(rectangles), PD (triangles) patients and healthy controls (asterisks) inside the cluster. Each symbols color 

shade (from blue to red for higher values) is proportional to the corresponding subject’s stride-to-stride CV 

value. 

 

Pairs of parameters 

The following pairs, step width/ankle RoM, DSD/ankle RoM, hip RoM/ankle RoM, and gait 

speed/ankle RoM, partitioned in clusters 2,5,4, and 1, respectively, had good accuracy in detecting 

CA, which showed the highest rate compared to both HSP and PD (Fig. 4.10, panels C-F). In each 

of the four clusters, a significant effect of group was found on step width (cluster 2), ankle joint 

RoM (clusters 4 and 5), and hip RoM (cluster 4), while no significant differences were observed for 

the other variables. Post-hoc analysis revealed significantly high values of step width (cluster 2) and 

hip RoM (cluster 4) compared to PD, and the lowest values of ankle RoM in CA compared to both 

PD and HC (clusters 4) or PD (cluster 5). Significantly higher SARA scores were found for patients 

inside clusters 2 and 1 than for those outside these clusters. 
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Triples of parameters 

The following triples, step width/ankle RoM/DSD, ankle RoM/step width/step length, DSD/hip 

RoM/ankle RoM, hip RoM/ankle RoM/step length, hip RoM/ankle RoM/step width, and hip 

RoM/knee RoM/ankle RoM partitioned in clusters 5a, 3, 4, 5b, 1, and 2, respectively, had good 

accuracy in detecting CA patients, who showed the highest rate compared to both HSP and PD (Fig. 

4.11). In each of the six clusters, a significant effect of group was found on step width (clusters 1 

and 5a), ankle RoM (clusters 1, 2, 4, 5a and 5b), and hip RoM (cluster 4). Post-hoc analysis 

revealed the highest values of step width compared to both PD and HC (cluster 1) or to PD (cluster 

5a). It revealed the lowest values of ankle RoM occurred in patients with CA compared to HSP, PD, 

and HC (cluster 2) or both PD and HC (clusters 4 and 5b) or PD (clusters 1 and 5a). The analysis 

also revealed higher values of hip RoM compared to PD (cluster 4). SARA scores were found to be 

significantly higher for patients inside clusters 5a and 3, than for those outside. 

Quadruples of parameters 

The following quadruples, step width/ankle RoM/Knee RoM/stride-to-stride CV and step 

width/stride-to-stride CV/ankle RoM/Knee RoM, partitioned in clusters 4 and 3, respectively, had 

good accuracy in detecting CA patients who showed the highest rate compared to both HSP and PD 

(Fig. 4.12). In each of the two clusters, a significant effect of group was found on step width 

(clusters 3 and 4), ankle joint RoM (clusters 3 and 4), stride-to-stride-CV (cluster 3), and DSD 

(cluster 4). Post-hoc analysis revealed the highest values of step width in CA compared to either 

HSP, PD, and HC (cluster 3) or HSP and PD (cluster 4), the lowest values of ankle joint RoM 

compared to HSP, PD, and HC (clusters 3 and 4), the highest values of stride-to-stride CV (cluster 

3) compared to PD. No significant differences in SARA scores were found between patients inside 

the clusters and those outside. 
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4.2.2 Gait harmony   

Harmony is an important feature of physiological human gait warranting for efficient and smoothed 

movements during walking. Indeed, a recent study discovered an intrinsic fractal frame that is 

hidden below the orchestrated repetitive structure of physiological gait[45]. Particularly, if a straight 

line is drawn (the stride), the golden ratio represents the proportion of the whole to the longer part 

(stride/stance), which is the same as the proportion of the longer part to the shorter one 

(stance/swing) and it is the same as the proportion of this shorter part to the even shorter one 

(swing/double support) 

In the work “Gait harmonic structure of walking in patients with neurological gait disorders” 

presented at 49° CONGRESSO SIN 2018, gait harmonic structure of walking in patients with 

neurological gait disorders was investigated with the aim of determining if and how this harmonic 

structure is altered in these subjects. A total of 192 patients affected by different types neurological 

diseases (28 with cerebellar ataxia (CA); 49 with hereditary spastic paraparesis, HSP; 23 with 

hemiparesis, H; 12 with Charcot-Marie-Tooth, CMT; 80 with Parkinson’s disease, PD) and 67 

healthy controls were included. 

The three golden ratios, stride/stance, stance/swing and swing/double support, were evaluated. All 

the gait ratios of patients were compared with those of the respective control group, matched for 

gait speed. Higher values of gait ratios are found for subject respect to control groups. Significantly 

higher values of the three gait ratios are found in CA, HSP and PD; while in CMT second ratio 

(stance/swing) is significantly higher. While in H the first and third ratios are significantly higher.  

Data revealed that patients with neurological gait disorders show abnormal gait ratios which are 

impaired in a different way depending to the specific disease and the consequent involvement of the 

biomechanical determinants. 

The harmony of the human gait is not limited to an aesthetical and qualitative aspect of walking but 

seems to reflect the complex relationships among several biomechanical determinants (e.g. energy 
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consumption, gait speed, and balance control) which are altered in patients with neurological gait 

disorders [46]. In this light the gait ratio may represent a biomarker of the gait neurological 

disorders and thus a target to improve gait rehabilitation and management strategies. 

 

4.2.3 Trunk involvement   

Despite neurological pathologies have been investigated in literature and significant results have 

been obtained about lower limb kinematic, the evidence about the role of the trunk during walking 

has never been investigated. 

The trunk comprises over 50% of total body mass and significantly affects whole body dynamics. 

Although the relevance of spine movements in walking is widely recognised [47], most of the 

studies on human locomotion almost exclusively deal with kinematics and kinetics of the lower 

limb joints. Nevertheless, several authors have emphasized the importance of trunk movements in 

human gait [48, 49]. According to Gracovetsky et al, lumbar spine is a key structure in land 

locomotion, the pelvis being driven by the spine. This theory of locomotion requires the central 

nervous system to control the torque at intervertebral joints and suggests that a breakdown of the 

control system would result in torsional failure of the spine [47].  

It is well known that upper body segment minimising the magnitude of linear and angular 

displacement of the head and trunk has a great functional importance, ensuring clear vision, 

facilitating the integration of vestibular information,  contributing to the maintenance of balance and 

creating a more energy-efficient gait pattern, driving forces for locomotion [50]. In this light, a 

biomechanical involvement of the spine might result in an ineffective and energy-consuming 

locomotion. However, previous studies have reported that trunk and neck play an important role in 

damping gait-related oscillations to ensure head control is maintained, and they are believed to play 

an important role in dissipating the transmission of forces from the ground to the head. When the 

neck and/or trunk were singularly braced, an overall decrease in the ability of the trunk to attenuate 
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gait-related oscillations was observed, which led to increases in the amplitude of vertical 

acceleration for all segments. [51]. 

Several studies have demonstrated that trunk motor control is important during distal limb 

movement and unpredictable perturbations and is related to functional movements5, balance and 

performance of motor tasks [52]. 

Trunk impairment was found to be correlated with balance, and gait; therefore, any intervention that 

improves trunk performance will facilitate improvement in balance and gait in pathology.  

Improved trunk control helps to improve balancing abilities required for standing and walking in 

stroke patients and it was essential for coordinated limb movements and symmetrical trunk 

movement during gait in stroke patients [52].  

Interestingly, young and highly active people with lower limb amputation appear to maintain a 

similar trunk and upper body stability during walking as able-bodied individuals [53]. 

The purpose of the study “The role of trunk in neurological gait disorders: damper,generator or 

perturbator?”, presented at 49° CONGRESSO SIN, 2018 and 49° CONGRESSO SIN and 

SIAMOC 2019 was to investigate the role of the trunk during gait in healthy subject and thus in 

patients with pathology. The hypothesis is that trunk movement, especially trunk rotation, is strictly 

linked to gait performance leading to an active role of the trunk as movement generator. In detail, 

patients with neurological deficits which not directly involve trunk motion maintain the active role 

of the trunk as movement generator together with the involvement of pelvis motion. Conversely, 

patients with whole body deficits may use trunk movement either as a perturbator, increasing its 

range of motion, either as a damper, decreasing its range of motion. 

A total of 192 patients affected by different types neurological diseases (28 with cerebellar ataxia, 

CA; 49 with hereditary spastic paraparesis, HSP; 23 with hemiparesis, H; 12 with Charcot-Marie-

Tooth, CMT; 80 with Parkinson’s disease, PD) and 67 healthy controls (HS) were included in the 

study.  
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Time-distance, joint and trunk kinematics (range of motion, RoM) and energetic data were recorded 

using an optoelectronic motion analysis system. All the gait parameters of patients were compared 

with those of the respective control group, matched for gait speed.  

Significantly higher values of the trunk RoM were found in one, two or all the three spatial planes 

in CA, H, HSP and CMT patients, conversely, significantly lower values were found in PD patients 

(Fig. 4.13). No significant differences in energetic parameters were found. Significant correlations 

between trunk rotation and both time distance parameters and RoMs were observed in all patients.  

 

Figure 4.13. Trunk RoMs in the sagittal (sp), frontal (fp) and transverse (tp) plane for each group of 

patients. *Significant differences between patients and healthy subjects (p<0.05). 

Abnormal trunk movements were present in all patients irrespective to the trunk involvement due to 

the specific neurological disease. Furthermore, in all patients the trunk movement, i.e. the trunk 

rotation, was positively correlated with the gait performance parameters (e.g. gait speed, step 

length, joint RoMs). Overall, our findings suggest that the abnormal trunk movement in 

neurological patients reflect either a primary deficit or a compensatory mechanism. Particularly, 

beyond its role as damper, the trunk may be used as generator of movement to improve gait 

performance in some patients (e.g. in HSP, H and CMT) but not in other (e.g. in PD). Conversely, 

in CA patients, despite of their efforts to maintain stability, there is a sort of vicious circle that 

transforms the upper body into a generator of perturbations.  

The abnormal trunk control in patients with neurological gait disorders unveils the function of the 

trunk in human locomotion as damper, generator or perturbator. These findings may help the 

clinicians to optimize the rehabilitation and management strategies for improving gait function 

neurological diseases.  

 
          sp              fp         tp                     sp            fp          tp                      sp            fp          tp                     sp             fp          tp                      sp           fp           tp                               
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CHAPTER 5 

5.  GAIT ANALYSIS IN PATIENTS WITH LOWER 

LIMB AMPUTATION 

In this chapter, text and figures have been taken from or adapted from the article “Common and 

specific gait patterns in people with varying anatomical levels of lower limb amputation and 

different prosthetic components” [2017, Human Movement Science], which was co-authored by me 

and from Conference papers “Analisi Cinematica del Cammino in Amputati per la Valutazione 

Funzionale della Stabilità Dinamica” [2017, SIAMOC] and “Controllo motorio modulare dell’arto 

controlaterale nel cammino di amputati trans-femorali” [2017, SIAMOC], which were co-authored 

by me. 

5.1 Study N° 1: Common and specific gait patterns in people with varying anatomical 

levels of lower limb amputation and different prosthetic components.  

Prosthesis use in persons with lower limb amputation at different anatomic levels requires complex 

adaptation strategies, both in the prosthesis and in the sound sides, during gait [1,2] and other daily 

life locomotor tasks [3,4]. Indeed, prosthetic gait reflects a mixture of deviations from normal gait 

and adaptive and compensatory motions dictated by residual limb function after amputation. For 

this reason, quantifying and characterizing the gait of persons with a prosthesis is an essential 

prerequisite to improve our ability to develop new and ergonomic prosthetic devices, as well as to 

optimize the rehabilitation programs [5]. 

Many previous studies have been performed on gait kinematics and kinetics of people with 

amputation in order to characterize their typical walking patterns.  

It has been reported that the prosthetic limb shows a longer stride than the intact limb; however, the 

prosthetic limb’s stance phase lasts less than that of the unaffected one [1,6,7]. In addition, a greater 
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hip flexion in early stance of the prosthetic limb and a higher than normal knee flexion in the early 

stance phase of the intact limb have been reported to probably improve the overall stability and 

energy expenditure, respectively [1,8]. 

Regarding the force interaction, when increasing walking speed, the vertical ground reaction force 

increases, particularly in the intact limb [9]. This tendency to load the intact limb more than the 

prosthetic limb has been also reported during gait initiation [10].  

The two factors influencing the gait in people with amputation are the level of the amputation and 

the type of prostheses. Regarding the former factor, the gait in people with transfemoral amputation 

seems to be more asymmetric than that in people with transtibial amputation: they show wider steps 

of longer duration compared to people with transtibial amputation [11]. Concerning the latter factor, 

in recent years the prostheses have improved in design, materials, and technology [12] to be more 

effective in terms of efficiency of ambulation, minimization of the asymmetries, and reduction of 

compensatory movements, which, over time, may prove damaging to individuals. Actually, subjects 

with lower limb amputation wear different type of prostheses, such as the old concept mechanical 

prostheses or the most recent and technologically advanced prostheses (Microprocessor Controlled 

Knees (MPKs)), i.e. CLeg and Genium [13-15]. These differences are related to different aspects, 

including individuals’ preference and adaptation, time from the amputation/prosthesis implantation, 

local insurance laws for the prosthesis reimbursement. 

To date, no consistent study has evaluated the impact of the different types of prostheses on the gait 

function according to the anatomical level of amputation. Such analysis would allow better 

understanding of the advantages and disadvantages of the different types of prostheses. In addition, 

some limitations are present in many studies, since most of them included a small sample of 

subjects [16-18], had no control group [11,18,19] and did not match controls for the gait speed [20, 

21]. Since many kinematic and kinetic variables are speed-dependent [22, 23], not controlling for 

the speed (by not including a control group walking at matched gait speed) may create uncertainty 

in the interpretation of the pathologic gait pattern and may not allow detection of a reliable and 
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specific gait pattern in order to distinguish what is unique from what is common. Furthermore, the 

lack of a matched speed comparison between people with amputations and healthy subjects do not 

allow discriminating the primary deficits from compensatory mechanisms. 

The aim of the study “Common and specific gait patterns in people with varying anatomical levels 

of lower limb amputation and different prosthetic components” published from Human Movement 

Science, 2017, was to identify the kinematic and kinetic gait patterns and to measure the energy 

consumption in a large sample of people with amputations according to both the anatomical level of 

amputation and the type of prosthetic components in comparison with a control group matched for 

the gait speed.  

5.1.1 Materials and methods 

Subjects 

Fifty-five subjects with lower-limb amputation from the prosthetics center of Italian Workers’ 

Compensation Authority (INAIL) of Rome were enrolled in this study between September 2015 

and September 2018. All patients had a unilateral transtibial or transfemoral amputation as a 

consequence of a workplace traumatic accident. Among subjects with transfemoral amputation, 

mechanical prosthesis [2, 15], and two types of MPKs prosthesis: CLeg and Genium (Ottobock, 

Duderstadt, Germany)  [14]) were used. INAIL provided the same type prosthetic foot (Ossur 

Variflex foot), as well as the same sockets and suspensions for all participants (Ossur, Reykjavík, 

Iceland). All patients wore their prosthesis daily at least since 2 years, and were able to ambulate 

independently along level surfaces without mobility aids. None of the subjects had any chronic 

disease, cardiac complication, uncontrolled asthma or diabetes mellitus, severe osteoporosis, or 

cognitive disorder.  

The study group included 15 subjects with transtibial amputation (TTA) (15 men; age, 52.81 ± 

14.51 years; height, 176.44 ± 5.40 cm; mass, 87.44 ± 11.08 kg) and 40 subjects with transfemoral 

amputation (TFA) (37 men; age, 54.94 ± 12.31 years; height, 172.85 ± 7.95 cm; mass, 83.47 ± 
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15.69 kg). Among the 40 subjects with TFA, 9 wore a mechanical prosthesis (TFAM), 17 a CLeg 

prosthesis (TFAC), and 14 a Genium prosthesis (TFAG).  

Forty healthy subjects were recruited as the control group (C) and were age-sex-speed matched with 

subjects with TFA (CmTFA). A subgroup of 15 healthy subjects was age-sex-speed matched with 

subjects with TTA (CmTTA) and a subgroup of 13 age-sex-speed matched subjects with TFA (TFAm) 

was age-sex-speed matched with 13 subjects with TTA (TTAm) to analyze the effect of different 

anatomical levels of amputation.  

Gait analysis 

Gait was analyzed by using an optoelectronic motion analysis system (SMART-DX 6000 System, 

BTS, Milan, Italy), consisting of six infra-red cameras (sample frequency, 340 Hz) used to detect 

the movement of twenty-seven passive spherical markers placed over prominent bony landmarks 

[24, 25]. In detail, the markers were placed over the head, the cutaneous projections of the spinous 

processes of the seventh cervical vertebra and sacrum, and bilaterally over the acromion, olecranon, 

ulnar styloid process, anterior superior iliac spine, and greater trochanter for all the subjects with 

TTA and TFA and C. In addition, markers were placed, bilaterally in C and unilaterally on the 

amputated side of subjects with amputation, over the lateral femoral condyle, fibula head, lateral 

malleoli, fifth metatarsal head, and heel (for these last two points the markers were placed on the 

shoes). In subjects with TTA and TFA, amputated limb markers were placed over symmetrical 

points (no anatomical landmarks) with respect to the homologous marker’s position on the non-

amputated limb. Furthermore, wand markers were placed bilaterally on femurs and legs (Davis et 

al., 1991). Two dynamometric platforms (Kistler 9286AA, Winterthur, Switzerland), adjacent to 

each other in the longitudinal direction, but displaced by 0.2 m in the lateral direction, were used to 

acquire ground reaction forces (sampling rate, 680 Hz). Data acquisition from the optoelectronic 

cameras and dynamometric platforms was integrated and synchronized. 
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Experimental procedure 

Individuals in C and subjects with TTA and TFA underwent an initial training session to become 

familiar with the assessment procedures. Patients were asked to walk with their shoes at 

comfortable self-selected speeds along a walkway while looking forward. Because we were 

interested in natural locomotion, only qualitative instructions were provided, and each subject was 

free to choose his own cadence. On the other hand, subjects in C were requested to walk with their 

shoes at their preferred speed and at a lower speed to match the speed between groups. At least ten 

trials were recorded for each subject and for each speed. To avoid fatigue, groups of three trials 

were separated by 1-min rest periods in subjects with amputation.  

Data analysis 

After each acquisition performed by Smart Capture (BTS, Milan, Italy), data were processed using 

SMART Tracker and Analyzer software (BTS, Milan, Italy) and Matlab software (version 7.10.0, 

MathWorks, Natick, MA, USA). The gait cycle was defined as the interval between two successive 

foot contacts of the same leg. Kinematic and kinetic data were time-normalized to the duration of 

the gait cycle and interpolated to 101 samples using a polynomial procedure. In this study, heel 

strike and toe off instants were calculated from kinematic data. After this preprocessing procedure, 

time-distance, kinematic, and kinetic parameters were calculated. For people with amputations, 

each parameter was calculated for the amputated (A) and non-amputated (NA) side, while for C the 

parameters were evaluated without distinguishing between sides.  

Speed matching procedure 

Walking speed was matched between groups as follows: only the walking trials of C (preferred 

speed or at a lower speed) whose speed was near to a corresponding subject with amputation were 

considered. Furthermore, only a subgroup of subjects with TFA (TFAm) was age-sex matched with 

subjects with TTA. To have the speed match between the groups of TFAm and TTA, 2 subjects with 

TTA were excluded, leaving only 13 subjects (TTAm), because their speeds were far from those of 
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the age-sex matched subjects with TFAm. Paired two-sample t-test was used to investigate the 

differences in walking speed between patients and controls, both TTA vs. CmTTA and TFA vs. 

CmTFA, and between TTAm and TFAm. In this way, the mean speed values were not statistically 

different (the p value for statistical significance was set at 0.05) between groups (TTA 1.08 ± 0.16 

m/s, CmTTA 0.97 ± 0.20 m/s, p = 0.116; TFA 0.92 ± 0.20 m/s, CmTFA 0.93 ± 0.25 m/s, p = 0.813; 

TTAm 1.05 ± 0.15 m/s, TFAm 0.94 ± 0.16 m/s, p = 0.084). 

Time-distance parameters 

The following time-distance gait parameters were calculated for each subject: walking speed (m/s); 

cadence (step/s); step width (m); step length (m) (from the heel strike of a limb and the subsequent 

heel strike of the other limb); stance, swing, and double support phases durations (expressed as 

percentages of the gait cycle duration). Step length and the step width were normalized to the limb 

length of each subject.  

Kinematic data  

The anatomical and prosthetic joint angles for the hip, knee, ankle, trunk, and pelvis (frontal, 

sagittal, and transverse plane) were computed. Based on these variables, the joint range of motion 

(RoM) was calculated as the difference between the maximum and minimum values during the gait 

cycle.  

Kinetic data 

The vertical component of the ground reaction forces (Vertical Force, VF) provided by the 

dynamometric platforms, was normalized to the subject’s body weight [26]. 

For each subject and gait speed, the values of the 2 peaks of VF (Peak1VF and Peak2VF) were 

computed. Furthermore, the full width at half maximum (FWHM) and the center of activity (CoA) 

of VF (FWHMVF and CoAFV) were computed [27]. FWHM was calculated as the sum of the time 
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durations during which the VF curves were higher than their half maximum. The CoA was 

calculated using circular statistics as follow: 

A = ∑ (cos θt × VFi)
200
i=1        

B = ∑ (sin θt × VFi)
200
i=1        

CoA = tan−1(B A⁄ )        

where t is the angle that varies from 0° to 360° to plot in polar coordinates (polar direction denoted 

the phase of the gait cycle).  

Energy consumption measurement  

The mechanical behavior was measured in terms of energy recovery and energy consumption in 

relation to the whole-body center of mass (CoM). This methodology has been validated both in 

normal [28, 29] and abnormal gait patterns [30, 31], and gives information on the mechanical 

energy expenditure involving the whole skeletal muscle system during walking. 

The whole-body CoM was calculated as the centroid of a set of elements composed by 13 body 

segments (head, trunk, arms, forearms, pelvis, thigh, shanks, and feet). The computation was 

performed by considering kinematic and anthropometric data together with the body segment 

parameters [32, 33] according to the weighted average of the individual body segments’ center of 

mass [34]:  

𝐶𝑜𝑀𝑥 =
1

𝑚
∑ 𝑥𝑖 ×𝑚𝑖
𝑛
𝑖=1        

 𝐶𝑜𝑀𝑦 =
1

𝑚
∑ 𝑦𝑖 ×𝑚𝑖
𝑛
𝑖=1        

 𝐶𝑜𝑀𝑧 =
1

𝑚
∑ 𝑧𝑖 ×𝑚𝑖
𝑛
𝑖=1        

where CoMx, CoMy and CoMz are, respectively, the instantaneous x, y, and z components of the 

CoM position, m is the whole-body mass of the subject, n = 13 is the number of parts being 

considered, xi, yi, and zi are the components of the CoM position of the ith part, and mi is the mass of 

the ith segment or residuum or prosthesis components.  
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The kinetic energy (Ek) associated with CoM displacements during the gait cycle was calculated as 

the sum of the kinetic energy on the x (Ekx), y (Eky), and z (Ekz) axes as follows: 

Ek = Ekx + Eky + Ekz =
1

2
m(vx

2 + vy
2 + vz

2)     

where m and vx, vy, and vz are, respectively, the mass and the three velocity components of the CoM 

evaluated starting from its components (𝐶𝑜𝑀𝑥 , 𝐶𝑜𝑀𝑦  𝑎𝑛𝑑 𝐶𝑜𝑀𝑧). Furthermore, the potential 

energy (Ep) associated with CoM was calculated as follows: 

𝐸𝑝 = 𝑚𝑔ℎ        

where h is the vertical (y) CoM component and 𝑔 is the gravity acceleration. 

The total mechanical energy (Etot) associated with CoM was computed as the sum of Ek and Ep. 

The fraction of mechanical energy recovered during each walking step (R-step) [29] was calculated 

as follows: 

𝑅 − 𝑠𝑡𝑒𝑝 =
𝑊𝑝
++𝑊𝑘𝑓

+ −𝑊𝑡𝑜𝑡
+  

𝑊𝑝
++𝑊𝑘𝑓

+ = (1 −
𝑊𝑡𝑜𝑡
+  

𝑊𝑝
++𝑊𝑘𝑓

+ )      

where 𝑊𝑝
+,𝑊𝑘𝑓

+ ,  𝑊𝑡𝑜𝑡
+  represent the positive work (sum of the positive increments over one step) 

produced by the gravitational potential energy, by the kinetic energy of forward motion, and by the 

total mechanical energy, respectively. Additionally, the total energy consumption (TEC) was 

calculated as follows [28]: 

𝑇𝐸𝐶 =
𝑊𝑡𝑜𝑡
+  

0.21
         

TEC was then normalized to the body weight and step length. For each subject, R-step and the 

normalized TEC values of all the steps were averaged. 

Statistics 

The Shapiro-Wilk test was used to analyze the normal distribution of the data. The dependent t-test 

or the Wilcoxon’s signed-rank test were used to evaluate the differences between the A and NA 

sides of subjects with TTA and TFA for each time-distance, kinematic, kinetic, and energy 

consumption measurements. Furthermore, paired two-sample t-test or the Mann-Whitney test (two-

tailed) was used for each parameter to test for between-group differences (TFA vs. CmTFA, TTA vs. 

https://statistics.laerd.com/spss-tutorials/dependent-t-test-using-spss-statistics.php
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CmTTA, and TFAm vs. TTAm). To evaluate the effect of the gait speed on the CoA across the gait 

cycle, Watson-Williams test was used to test for circular data (Varrecchia et al., 2018). 

Furthermore, one-way ANOVA was used also to evaluate the differences among the three 

subgroups of subjects with TFA for each evaluated parameter. Post hoc analyses (with Bonferroni’s 

corrections) were performed when ANOVA showed significant differences.  

Significance level was set at p < 0.05. All analyses were performed using SPSS 20.0 (SPSS Inc., 

Chicago, IL, USA) and Matlab (version 8.3.0.532, MathWorks, Natick, MA, USA) software. 

5.1.2 Results 

Time-distance parameters 

The means, standard deviations, and statistical results for each time-distance parameter and for each 

group are presented in Table 5.1. 

People with amputation vs. controls 

Significantly increased step width, step length, and double support duration in both sides were 

found in both TTA and TFA groups compared to the C group (CmTTA and CmTFA). Stance duration 

was significantly increased in the NA side in both TTA and TFA groups, and significantly 

decreased in the A side in the TFA group. Conversely, the swing duration was significantly 

decreased in the NA side in both TTA and TFA groups, and significantly increased in the A side in 

TFA group (Table 5.1).  

Significantly shorter stance duration and longer swing duration were found in the A side than in the 

NA side (Table 5.1, Figure 5.2) in TTA and TFA groups. 

Type of prostheses (TFAM, TFAC and TFAG) 

A significant effect of the type of prosthesis on the step length of the NA side was detected. Post 

hoc analysis revealed higher values for the Genium prosthesis compared to mechanical prosthesis 

(Table 5.1). 
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A significantly shorter step length in A side than in the NA one (Table 5.1) was found in TFAG 

subgroup. Furthermore, significantly shorter stance duration and longer swing duration in the A side 

than in the NA one (Table 5.2) were found in all three TFAM, TFAC and TFAG subgroups. 

 TTAm vs. TFAm 

A significant effect of the type of amputation (TTAm vs. TFAm) on the stance and swing duration was 

found in both sides, with the stance significantly increased and the swing significantly decreased in 

the NA side in TFAm group compared to TTAm group, (Table 5.1). Conversely, the stance 

significantly decreased, and the swing significantly increased in the A side in TFAm group 

compared to TTAm group (Table 5.1).  

Significantly shorter stance duration and longer swing duration in the A side than in the NA one 

(Table 5.1) were found both in TTAm and TFAm. 

People with amputation vs controls 

Significantly increased hip and knee RoMs in NA side were found in TFA compared to CmTFA 

(Figure 5.1). Furthermore, significantly decreased ankle RoMs in A side were detected in both TTA 

and TFA compared to the speed-matched C group (CmTTA and CmTFA) (Figure 5.1).  

Significantly increased pelvic obliquity, trunk lateral bending, and trunk rotation RoMs of both 

sides were found in both TTA and TFA groups compared to C (Figs. 5.1, 5.2). Moreover, pelvic tilt, 

pelvic rotation, and trunk flection-extension RoMs of both sides were significantly increased in 

TFA group compared to CmTFA group (Figs. 5.1, 5.2). Figure 5.2 also shows that people with 

amputation walked with the pelvis and trunk ante-flexed (flexed in a forward direction) compared to 

controls. A significantly shorter hip and knee RoMs were found in the A side than in the NA side 

(Fig. 5.1) in TFA group. Furthermore, a significantly shorter ankle RoMs were found in the A side 

than in the NA side (Fig. 5.1) in both TTA and TFA groups. 
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Type of prostheses (TFAM, TFAC, and TFAG) 

A significant effect of the type of prosthesis on the hip and knee RoMs in the A side and on the 

pelvic obliquity RoM was found in both sides. Post hoc analysis revealed higher values of the hip 

and knee RoMs in the A side of TFAG subgroup compared to TFAM subgroup (Fig. 5.1) and lower 

values of the pelvic obliquity RoMs for the Genium prosthesis (TFAG) compared to mechanical 

prosthesis (TFAM) in both sides (Fig. 5.1).  

Significantly decreased knee and ankle RoMs in the A side than in NA side were found in TFAM, 

TFAC, and TFAG subgroups (Fig. 5.1). Furthermore, a significantly decreased hip RoM in A side 

than in NA side (Fig. 5.1) was detected in TFAG subgroup. 

 

Kinematic data  

The means, standard deviations and statistical results of RoM for the hip, knee, ankle, pelvic, and 

trunk for each group are shown in Fig. 5.1.  

TTAm vs. TFAm 

A significant effect of the type of amputation (TTAm vs. TFAm) on the knee, pelvic tilt, and trunk 

flexion-extension RoMs was found, with the knee RoM significantly decreased in the A side in 

TFAm subgroup compared to TTAm subgroup (Fig. 5.1) and the pelvic tilt and trunk flexion-

extension RoMs significantly increased in both sides in TFAm subgroup compared to TTAm 

subgroup (Fig. 5.1). 

A significantly shorter hip and knee RoMs were found in the A side than in the NA side (Fig. 5.1) 

in TFAm subgroup. Furthermore, a significantly shorter ankle RoM was found in the A side than in 

the NA side (Fig. 5.1) in both TTAm and TFAm subgroups. Significantly shorter trunk lateral 

bending, trunk flexion-extension, and trunk rotation RoMs were found in the A side than in the NA 

side (Fig. 5.3) in both TTAm and TFAm subgroups. 
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People with amputation vs controls Type of prostheses  TTAm vs TFAm 

Time-distance 

parameters 
CmTTA TTA p group CmTFA TFA p group TFAM TFAC TFAG p group TTAm TFAm p group 

Walking 

speed 

(m/s) 

  0.97±0.20 1.08±0.16 0.1163  0.93±0.25 0.92±0.20 0.813 0.82±0.20 0.91±0.23 1.01±0.12 0.064 1.05±0.15 0.94±0.16 0.084 

Cadence 

(cycle/s) 

A 
0.84±0.07 

0.83±0.07 0.52  
0.81±0.12 

0.78±0.08 0.289  0.75±0.07 0.79±0.09 0.80±0.06 0.309 0.82±0.10 0.77±0.07 0.077 

NA 0.82±0.07 0.481  0.78±0.08 0.397  0.74±0.07 0.79±0.09 0.80±0.06 0.16 0.81±0.07 0.77±0.07 0.11 

p 

side 
  0.083      0.439   0.269  0.158  0.619    0.114 0.973   

Step 

width 

(% limb 

length) 

  0.20±0.05 0.28±0.06 <0.001  0.19±0.06 0.30±0.09 <0.001  0.33±0.10 0.32±0.08 0.27±0.09 0.214 0.27±0.05 0.29±0.09 0.538 

Step 

length 

(% limb 

length) 

A 
0.61±0.12 

0.74±0.09 0.002  

0.60±0.10 
0.66±0.09 0.014  0.63±0.11 0.65±0.12 0.66±0.08 0.729 0.74±0.10 0.64±0.11 0.058 

NA 0.75±0.07 0.001  0.67±0.09 0.003  0.64±0.12 0.65±0.09 0.72±0.05 0.048 0.74±0.07 0.70±0.08 0.182 

p 

side 
  0.903      0.241   0.681  0.877  0.046    0.946 0.38   

Stance 

duration 

(% 

cycle) 

A 
61.78±1.78 

61.89±1.79 0.871  
62.38±2.88 

59.63±2.57 <0.001  60.14±2.31 60.09±3.02 58.74±2.02 0.285 61.68±1.80 58.71±0.88 <0.001 

NA 64.17±3.44 0.009  67.99±3.31 <0.001  67.21±3.02 69.27±3.92 66.94±2.14 0.107 64.68±3.42 67.99±3.15 0.017 

p 

side 
  0.014      <0.001    0.004  <0.001 <0.001    0.01 <0.01   

Swing 

duration 

(% 

cycle) 

A 
38.85±3.29 

38.09±1.80 0.648  
38.30±2.99 

39.88±2.98 <0.001  39.9±2.93 39.01±2.33 40.91±2.05 0.205 38.28±1.82 40.58±2.20 0.002 

NA 35.82±3.43 0.009  31.91±3.30 <0.001  31.6±2.53 31.11±4.24 33.08±2.04 0.25 35.3±3.4 31.64±3.18 0.011 

p 

side 
  0.015      <0.001    0.004  <0.001  <0.001    <0.01 <0.01   

Double 

support 

duration 

(% 

cycle) 

A 
23.17±3.15 

26.07±4.46 0.049  

23.54±5.76 
27.72±5.01 0.001  28.54±3.73 28.97±6.36 25.66±3.12 0.161 26.38±4.74 27.08±3.54 0.677 

NA 26.08±4.50 0.037  27.44±6.58 <0.001  24.28±9.03 30.26±6.47 26.04±2.98 0.05 24.4±4.77 27.41±4.09 0.568 

p 

side 
  0.670      0.367 b   0.125  0.081  0.298    0.672 0.698   

 

Table 5.1. The means, standard deviations, and statistical results (p value) of walking speed, 

cadence, step width, step length, stance duration, swing duration, and double support duration. 

CmTTA: healthy subjects age-sex-speed matched with TTA; TTA: subjects with transtibial 

amputation; CmTFA: healthy subjects age-sex-speed matched with TFA; TFA: subjects with 

transfemoral amputation; TFAM: subjects with transfemoral amputation with mechanical 

prosthesis; TFAC: subjects with transfemoral amputation with CLeg prosthesis; TFAG: subjects 

with transfemoral amputation with Genium prosthesis; TFAm: a subgroup of 13 age-sex-speed 

matched subjects with a subgroup of TTA; TTAm: a subgroup of 13 age-sex-speed matched subjects 

with a subgroup of TFA. 
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Figure 5.1. The means, standard deviations, and statistical results of range of motion for the hip, 

knee, ankle, pelvic, and trunk for each group. CmTTA: healthy subjects age-sex-speed matched with 

TTA; TTA: subjects with transtibial amputation; CmTFA: healthy subjects age-sex-speed matched 

with TFA; TFA: subjects with transfemoral amputation; TFAM: subjects with transfemoral 

amputation with mechanical prosthesis; TFAC: subjects with transfemoral amputation with CLeg 

prosthesis; TFAG: subjects with transfemoral amputation with Genium prosthesis; TFAm: a 

subgroup of 13 age-sex-speed matched subjects with a subgroup of TTA; TTAm: a subgroup of 13 

age-sex-speed matched subjects with a subgroup of TFA. 

 

 



95 
 

 

Figure 5.2.. Pelvic obliquity, pelvic tilt, pelvic rotation, trunk lateral bending, trunk flection-extension, and 

trunk rotation in both sides were found in both TTA and TFA groups compared to controls. CmTTA: healthy 

subjects age-sex-speed matched with TTA; TTA: subjects with transtibial amputation; CmTFA: healthy 

subjects age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation. 

 

Kinetic data  

The curves of the vertical force for CmTTA and TTA (Figure 5.3A) and for CmTFA and TFA (Fig. 

5.3B) are shown in Cartesian coordinates as mean curves (a.1 and b.1), and in polar coordinates as 

mean curve (a.2 and b.2), as well as single and mean CoA values (a.3 and b.3), all expressed as 

percentage of gait cycle. 

The means, standard deviations, and statistical results of VF for each group are reported in Table 

5.2. 

People with amputation vs. controls 

A significantly increased Peak1VF value in NA side and a significantly decreased Peak2VF value in 

A side were found in TTA group compared to CmTTA group (Table 5.1). Significantly increased 

Peak1VF, CoAVF, and FWHMVF values in NA side were found in TFA compared to CmTFA. 

Furthermore, significantly increased Peak1VF value and significantly decreased FWHMVF and 

CoAVF values in A side were found in TFA compared to CmTFA (Table 5.1).  

Peak1VF was significantly lower in the A side than in the NA side (Table 5.1) in TTA group. A 

significantly lower Peak2VF value was found in the A side than in the NA side (Table 5.1) in both 
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TTA and TFA groups. Furthermore, significantly higher Peak1VF and lower FWHMVF and CoAVF 

values were found in the A side than in the NA side (Table 5.1) in TFA.  

 

 
 

Figure 5.3. Curves of the vertical force for CmTTA and TTA and for CmTFA and TFA shown in Cartesian 

coordinates as mean curves (a.1 and b.1), and in polar coordinates as mean curve (a.2 and b.2), as well as 

single and mean CoA values (a.3 and b.3), all expressed as percentage of gait cycle. 

CmTTA: healthy subjects age-sex-speed matched with TTA; TTA: subjects with transtibial amputation; CmTFA: 

healthy subjects age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation 

 

Type of prostheses (TFAM, TFAC, and TFAG) 

No significant effects of the type of prosthesis on the VF values were detected for both sides (Table 

5.1). A significantly increased Peak1VF value was found in A side than in the NA side (Table 5.1) in 

TFAC and significantly decreased (p < 0.05) Peak2VF values were found in A side than in the NA 

side (Table 5.1) in TFAC and in TFAG subgroups. Furthermore, significantly decreased FWHMVF 

and CoAVF values were found in A side than in the NA side (Table 5.1) in all three TFAM, TFAC, 

and TFAG subgroups.  
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 TTAm vs. TFAm 

A significant effect of the type of amputation (TTAm vs. TFAm) on the VF values was detected. 

Peak1VF was significantly decreased in the NA side in TFAm group compared to TTAm group 

(Table 5.1). FWHMVF was significantly increased in the NA side and significantly decreased in the 

A side in TFAm group compared to TTAm group (Table 5.1). 

Significantly lower values were found in the A side than in the NA side for Peak1VF and Peak2VF in 

TTAm, for FWHMVF in both TTAm and TFAm group, and for CoAVF in TFAm (Table 5.1) 

 

Energy consumption measurement  

Fig. 5.4 shows means, standard deviations, and statistical results of R-step and TEC values. 

People with amputation vs controls 

A significantly lower value of R-step in TFA subgroup compared to CmTFA subgroup was found 

(Fig. 5.4). No significant differences of TEC values were detected. 

Type of prostheses (TFAM, TFAC and TFAG) 

No significant effects of the type of prosthesis were found on both R-step and TEC (Fig. 5.4). 

TTAm vs. TFAm 

A significant effect of the type of amputation on R-step was found, with R-step value of TTAm 

subgroup being significantly higher than that of TFAm. Instead, no significant effect of the type of 

amputation on TEC was detected (Fig. 5.4). 

.  
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People with amputation vs controls Type of prostheses  TTAm vs TFAm 

Kinetic parameters 
CmTTA TTA 

p 

group 
CmTFA TFA 

p 

group 
TFAM TFAC TFAG 

p 

group 
TTAm TFAm 

p 

group 

Peak1VF 

A) 
1.014±0.061 

1.049±0.083 0.125 
0.973±0.114 

1.04±0.064 <0.001 1.065±0.068  1.052±0.051 1.03±0.075 0.423 1.021±0.039 1.043±0.071 0.336 

NA) 1.109±0.10 0.005 1.016±0.062 0.1 1.002±0.056 1.008±0.043 1.03±0.083 0.421 1.094±0.103 1.001±0.07 0.014 

p 

side 
  0.029     0.011   0.098 0.013 0.883   0.02 0.1   

Peak2VF 

A) 

1.054±0.051 

0.985±0.032 
<0.00

1 
1.00±0.124 

0.989±0.048 0.355 0.997±0.054 0.986±0.043 0.987±0.054 0.838 0.982±0.032 0.976±0.046 0.538 

NA) 1.063±0.079 0.733 0.992±0.071 0.379 0.999±0.075 1.042±0.066 1.011±0.074 0.288 
1.0584±0.08

3 
1.007±0.063 0.084 

p 

side 
  <0.001     0.008   0.82 0.001 0.288   0.002 0.168   

CoAVF (% gait 

cicle) 

A) 
31.25±1.599 

30.87±1.68 0.654 
31.43±1.77 

30.09±1.67 <0.001 29.98±1.62 30.38±1.99 29.84±1.31 0.666 30.81±1.78 29.60±1.56 0.091 

NA) 31.40±2.45 0.475 33.57±1.74 <0.001 33.73±1.86 34.08±1.72 32.85±1.56 0.142 31.86±2.28 33.57±1.62 0.095 

p 

side 
  0.281     <0.001   <0.001 <0.001 <0.001   0.07 <0.001   

FWHMVF 

A) 
50±1.604 

47.667±3.45

7 
0.066 47.179±1.79

8 

44.051±3.80

9 
<0.001 

43.222±3.96

1 

43.941±4.32

2 

44.712±3.14

8 
0.659 

47.153±3.41

2 

43.231±3.67

8 
0.01 

NA) 50.47±2.446 0.652 56.72±2.611 <0.001 57.11±2.315 56.18±3.005 57.12±2.318 0.542 50.85±2.267 57.46±2.696 <0.001 

p 

side 
  0.076     <0.001   <0.001 <0.001 <0.001   0.03 <0.001   

 

Table 5.2. The means, standard deviations, and statistical results (p value) of parameters evaluated on vertical force (VF) curves (Peak1VF and Peak2VF: 2 peaks, 

CoAVF: center of activity and FWHMVF: full width at half maximum). CmTTA: healthy subjects age-sex-speed matched with TTA; TTA: subjects with transtibial 

amputation; CmTFA: healthy subjects age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation; TFAM: subjects with transfemoral 

amputation with mechanical prosthesis; TFAC: subjects with transfemoral amputation with CLeg prosthesis; TFAG: subjects with transfemoral amputation with 

Genium prosthesis; TFAm: a subgroup of 13 age-sex-speed matched subjects with a subgroup of TTA; TTAm: a subgroup of 13 age-sex-speed matched subjects 

with a subgroup of TFA. 
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Figure 5.4. Means, standard deviations, and statistical results of fraction of mechanical energy recovered 

during each walking step (R-step) and total energy consumption (TEC) values for each group. CmTTA: healthy 

subjects age-sex-speed matched with TTA; TTA: subjects with transtibial amputation; CmTFA: healthy 

subjects age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation; TFAM: subjects with 

transfemoral amputation with mechanical prosthesis; TFAC: subjects with transfemoral amputation with 

CLeg prosthesis; TFAG: subjects with transfemoral amputation with Genium prosthesis; TFAm: a subgroup 

of 13 age-sex-speed matched subjects with a subgroup of TTA; TTAm: a subgroup of 13 age-sex-speed 

matched subjects with a subgroup of TFA. 

 
 

5.1.3 Discussion and Conclusions 

The study described in this section aimed to identify both common and specific gait patterns in 

people with amputation, either regardless of, or according to their level of amputation and the type 

of prosthetic component. Furthermore, this study was focused on the symmetric and asymmetric 

aspects of these patterns. 

To have a global picture of all the gait deficits for both the common and the specific gait patterns, 

the data were summarized in Table 5.2.  

In general, regardless of the level of amputation and type of prosthesis, subjects with TTA and with 

TFA showed a common gait pattern characterized by a symmetric increase of step length, step 

width, double support duration, pelvic obliquity, trunk lateral bending, and trunk rotation range of 

motions with increased pelvis and trunk ante-flexed (flexed in a forward direction) posture. Almost 

all these gait deficits reflect compensatory mechanisms adopted by people with amputation 
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presumably to increase their stability in the frontal plane (increased step width), to maintain the 

most stable configuration (increased double support duration), to assist the lift of the affected limb 

(increased trunk lateral bending), while increasing the time of the stance and the force production 

during weight acceptance in the unaffected limb. Conversely, the reduced ankle joint range of 

motion in the prosthetic limb, which is the common prosthetic joint in both subjects with TTA and 

with TFA, is directly linked to the use of the prosthesis.  

The increased step length is likely related to a compensatory increased movement of the trunk and 

pelvis (Fig. 5.3), since both the knee and hip joint range of motions of the prosthetic limb were 

either not increased, in the TTA group, or even reduced, in TFA group. However, it is not possible 

to exclude that the lack of sensory feedback might have played a role in determining a hypermetric 

foot placement in the prosthetic limb, which, in turn, would have influenced the foot placement of 

the unaffected limb, as adaptive mechanism of the new support base schem [35, 36]. 

The subjects with TFA showed a specific gait pattern that differed from that of C and subjects with 

TTA in terms of kinematic, kinetic, and energetic behavior. The subjects with TFA reduced the 

duration of the stance and increased the duration of the swing in the prosthetic limb. Moreover, they 

increased the hip and knee joint range of motions in the unaffected limb. Interestingly, in the 

prosthetic limb of subjects with TFA, the Peak1 was increased, while the full width at half 

maximum was reduced. In general, the Peak and full width at half maximum parameters express 

two different spatio-temporal aspects of the force production. The first represents the maximal force 

produced in a given instant during the loading response subphase, while the second represents the 

amount of the force production (>50% of the maximum) maintained during the whole duration of 

the stance. In this view, the subjects with TFA seem to be unable to control the prosthetic limb 

during the heel strike, likely caused by a reduced deceleration of the prosthetic limb from the late 

swing to the initial contact, leading to an increase in the Peak1. At the same time, they are unable to 

produce and maintain an adequate force during the whole stance phase, leading to a decrease of the 

full width at half maximum. Such behavior is reflected by the shift of the center of activity toward 
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the initial contact event (initial part of the stance). Conversely, the full width at half maximum was 

increased in the unaffected limb, which compensated by producing a stronger force maintained for a 

longer time, determining, in this case, a shift of the center of activity toward the toe off event (final 

part of the stance). Altogether these findings deeply reflect the essence of the asymmetric gait  

revealing the greater effort achieved by subjects with TFA to compensate for the reduced motor 

performance by increasing both motion and force production in the unaffected limb. As a final 

result, this specific gait pattern makes the subjects with TFA unable to recover energy during the 

stance phase.  

People with amputation with Genium prosthesis (TFAG) showed a longer step length in NA side 

and increased hip and knee range of motions in the prosthetic side compared to subjects with 

mechanical prosthesis, who, conversely, showed a symmetric increased pelvic obliquity. These 

findings indicate that the type of prosthesis influences the gait pattern of people with amputation 

both in terms of gait performance and adaptation [14]. In this view, the increased step length and 

hip and knee ranges of motion, together with the trend of gait speed (Table 5.1), might reflect a 

better gait performance for the Genium vs mechanical prostheses. Conversely, the increased pelvic 

obliquity seems to reflect a greater compensatory effort in subjects with mechanical prostheses, 

likely aimed to lift the limbs during the gait progression.  

In conclusion, in spite of common gait pattern in subjects with lower limb prostheses, both the 

anatomical level of amputation and type of prostheses determine a specific gait pattern that should 

be taken into account when developing new and ergonomic prosthetic devices and when planning 

the rehabilitation programs aimed at improving the physiology of gait and reducing the gait 

asymmetries.  
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Gait 

parameters 
Common gait pattern* 

TTA and TFA compared to 

controls 

Specific gait pattern (amputation 

level) 

TFA compared to both control and 

TTA groups 

Specific gait pattern (type of prosthesis) 

TFAG vs TFAM   

 Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric 

  A side NA side  A side NA side  A side NA side 

Time-

distance 

Increased 

step width  
 

Increased 

step length 
 

Increased 
double 

support 

duration 
 

 Increased 

stance 
duration 

 

Reduced 
swing 

duration 

 Decreased 

stance 
duration   

 

Increased 
swing 

duration 

   Increased step 

length in TFAG 

compared to TFAM   

Kinematics Increased 
pelvic 

obliquity 

 

Increased 

trunk 

lateral 
bending 

and 

rotation  
 

Increased 

ante-
flexion of 

the pelvis 

and trunk 
 

Decreased 
ankle 

RoM 

 

   Increased 
hip and 

knee RoM  

 

Increased 
pelvic 

obliquity in 

TFAM 

compared 

to TFAG 

Increased 
hip e knee 

RoMs in 

TFAG 

compared 

to TFAM   

 

Kinetics   Increased 

Peak1 

 Increased 

Peak1 

Decreased 
CoA, 

FWHM 

Increased 

CoA and 

FWHM 

   

Energetic 

 

 

   Reduced 

Rstep 

     

 

Table 5.3 . Common and specific gait patterns in people with amputation. 

*irrespective of the amputation level 
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5.2 Study N. 2: Kinematic analysis during gait in amputees for functional evaluation of 

dymanic stability  

Stability and balance keeping are extremely important aspects of gait, for functional, safety and 

psychological reasons. In the field of rehabilitation medicine, the assessment of stability and the 

evaluation of the risk of fall could be of extreme importance. The study “Analisi Cinematica del 

Cammino in Amputati per la Valutazione Funzionale della Stabilità Dinamica” presented at 

SIAMOC 2017, aimed at finding an eligible analysis method for gait functional evaluation in lower 

limb amputees, able to provide an overall reliable information on stability and risk of fall also in 

short duration evaluation sessions, more adequate for amputees. 

5.2.1 Materials and methods 

Data were collected in a Gait Analysis Laboratory of CTO Hospital of Rome. The experimental 

setup consisted of 6 cameras (BTS Bioengineering, Smart DX) and passive markers positioned on 

participants’ bodies according to Davis protocol guidelines. Each participant performed walking 

trials at self-selected speed along a 9m straight path. Data were recorded from 19 trans-femoral 

amputees (TF, 29-74 years), 9 trans-tibial amputees (TT, 34-80 years) and 12 healthy controls (H, 

29-77 years). Kinematics were used to calculate the centre of mass (CoM) as the centroid of the 

pelvis triangle. Obtained CoM’s traectories were used to calculate the Margin of Stability (MoS), 

together with gait symmetry and regularity, calculated from CoM acceleration signals along the 

Antero-Posterior (AP), Medial-Lateral (ML) and Cranial-Caudal (CC) directions as in [2]. 

5.2.2 Results 

Amputees present a wider margin of stability than controls, both along AP and ML directions. 

Furthermore, amputees are characterized by a more asymmetric and irregular gait than controls 

(Fig. 5.5). 
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Figure 5.5: Means for populations of margin of stability and simmetry index (Ad1) and regularity (Ad2) 
 

5.2.3 Discussion and Conclusions 

MoS analysis might indicate differences in motor control strategies between amputees and healthy 

subjects: specifically, a wider MoS (resulting from a wider base of support and a lower gait speed) 

could compensate the lower balance control abilities in such patients. 

Furthermore, the higher gait asymmetry and irregularity in amputees showhow such patients have a 

reduced motor control, resulting in a noisier gait pattern (more irregular and more asymmetric). The 

studied parameters, although don’t represent effective estimator of the risk of fall, could give an 

overall functional characterization of gait, and could be used in clinical environment to improve 

therapies and design of prosthetic devices, starting from basic information such as stability and 

motor control. 
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5.3 Study N. 3: Modular motor control of the contralateral limb in trans-femoral 

amputees’ gait   

Muscular activity during walking is produced by the activation of a small set of motor modules 

(synergies) [37]. The analysis of the composition and time activation profiles of muscle synergies 

can help with the characterization of pathological gait. During the rehabilitation process, trans-

femoral amputees (TFA) adapt their walking pattern to their new physical conditions. Studies in this 

field have shown that the most significant differences in muscular activity are found during the 

swing phase of the prosthetic limb [38]. In the study “Controllo motorio modulare dell’arto 

controlaterale nel cammino di amputati trans-femorali” presented at SIAMOC 2017, modular 

motor control in trans-femoral amputees’ gait is investigated for the characterization of differences 

between TFA and healthy subject control strategies. 

5.3.1 Materials and methods 

8 healthy subjects (58.5 ± 12 years old) and 16 trans-femoral amputees (52.5 ± 15 years old) 

participated in the study. sEMG data were recorded from 12 muscles of the sound limb. Kinematic 

data was recorded with a stereophotogrammetric system and was used for the segmentation of 

stance and swing phases. The experiment consisted of 12 repetitions of walking along a 6m 

walkway. Muscle synergies were extracted by means of a non-negative matrix factorization 

algorithm (NNMF) applied on the matrix containing the envelope of the sEMG signal, as to obtain 

synergy vectors W and synergy activation coefficients H. 

5.3.2 Results 

Four modules accounted for more than 90% of the variability in muscle activation for each subject. 

All four mean synergy vectors W have been found to be similar between the two populations 

(average normalized scalar product = 0.8). Modules 1 and 2 showed significant differences in shape 
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of the time activation profiles H between populations, while all four modules showed a significantly 

delayed activation in amputees (Fig. 5.6). 

 

 

Figure 5.6. W and H, in arbitrary units. In grey data from control subject, in blue from TFA. In red the mean 

activation profiles for TFA. The vertical line represents the instant of toe off. 

 

5.3.3 Discussion and Conclusions 

Results suggest that both populations share the same set of synergies. The difference in the 

activation of the second module can be the result of a compensation, by means of an increased hip 

extension moment, of the decrease in the propulsion force during the swing of the prosthetic leg. 

The prolonged activation of the first module might reflect a stabilization mechanism of the ankle 

during the swing phase of the prosthetic leg. Further investigation is needed to differentiate the 

effect of different types of prostheses and different elapsed time from the first prosthesis implant, in 

order to provide a quantitative indication for a proper choice of the prosthetic device and for the 

most adequate treatment. 
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CHAPTER 6 

6. LOWER LIMB MUSCLE COACTIVATION AND 

GAIT PERFORMANCE IN PATIENTS WITH 

HEREDITARY SPASTIC PARAPARESIS  

In this chapter, text and figures have been taken from or adapted from the article “Increased lower 

limb muscle coactivation reduces gait performance and increases metabolic cost in patients with 

hereditary spastic paraparesis” [2017, Clinical Biomechanics] which was co-authored by me. 

The presence of spasticity in these patients greatly impairs their walking ability and thus their 

autonomy and quality of life. Coactivation may be somehow linked to spasticity. For instance, a 

rearrangement of the interneuronal circuits may be the common neural mechanism at the bases of 

both features. Otherwise, coactivation may reflect the lack of selectivity by descending drive in 

tuning the motoneurons of agonist/antagonist muscles. In order to clarify the role of muscle 

coactivation on the gait performance of HSP patients, a sample of 23 HSP patients was investigated 

from a kinematic, kinetic, electromyographic, and energetic point of view in the work published 

from Clinical Biomechanics: “Increased lower limb muscle coactivation reduces gait performance 

and increases metabolic cost in patients with hereditary spastic paraparesis”, which I drafted (M. 

Rinaldi et al., 2017). 

The first aim of this study was to determine the level of coactivation of agonist-antagonist muscles 

at the knee and ankle joints during gait. The second aim was to evaluate the relationship between 

muscle coactivation during gait and limb spasticity, energy consumption, and gait performance.  

Identifying the level of muscle coactivation may be helpful in individuating the rehabilitative 

treatments and designing specific orthosis that may provide a greater joint stability, thus restraining 

spasticity. 
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Patients Gender Heigth 

(cm) 

Body Wt. 

(kg) 

Age 

(yr) 

Diagnosis Onset 

(yr) 

Duration 

(yr) 
SPRS 

  
   

 
  

Ashworth        

ankle 

Ashworth                  

knee 
Total 

P1 F 156 66 57 SPG5 36 21 2 2 20 

P2 M 160 57 34 SPG4 1-2 33 4 3 25 

P3 M 164 76 67 __AR 45 22 2 3 21 

P4 M 170 73 58 SPG4 45 13 3 2 27 

P5 M 177 104 24 SPG4 14 10 1 2 11 

P6 M 170 88 48 __AR 10 38 2 2 13 

P7 M 180 85 25 __AD 13 12 1 0 3 

P8 M 182 109 49 SPG4 37 12 2 2 21 

P9 F 158 69 72 SPG4 40 32 4 3 31 

P10 F 162 58 43 SPG4 5 38 1 2 7 

P11 F 142 56 78 SPG4 45 33 3 3 28 

P12 F 159 73 56 __AR 35 21 2 3 20 

P13 F 158 61 64 SPG31 15 49 1 0 12 

P14 M 157 87 59 __AR 30 29 3 2 28 

P15 M 164 76 32 __AR 14 18 3 4 26 

P16 M 170 104 39 __AD 36 3 1 2 12 

P17 M 181 81 28 SPG4 13 15 1 2 12 

P18 M 161 78 58 SPG4 43 15 2 3 17 

P19 M 177 103 70 SPG4 60 10 2 2 23 

P20 M 165 69 28 __AD 20 8 2 3 16 

P21 M 186 136 39 SPG3A 20 19 2 2 27 

P22 M 161 84 62 SPG4 40 22 1 1 5 

P23 M 183 78 38 SPG4 30 8 3 4 27 

 

Table 6.1. Patients’ characteristics. AD = autosomal dominant; AR = autosomal recessive; F = female; M = 

male; SPRS = Spastic Paraplegia Rating Scale; __ = molecular diagnosis still not available. The table lists 

the SPRS scores; higher scores indicate higher disease’s severity.  
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 CI   

  r P 

Clinical variables    

Ankle spasticity TA-SOL 0.542 0.035 

Knee spasticity VL-BF 0.491 0.045 

Walking speed VL-BF -0.525 0.010 

Other time-distance parameters*   NS  

Kinematic parameters*  NS  

Kinetic parameters    

AWA* TA-SOL (ST) 0.565 0.006 

APS* TA-SOL (ST) 0.517 0.014 

Energetic parameters     

TEC* [kcal/km*kg] VL-BF 0.429 0.040 

  TA-SOL 0.549 0.007 

R-step* [%] VL-BF -0.609 0.002 

 TA-SOL -0.434 0.047 

 

Table 6.2. Significant correlations (with P values) between both the coactivation indexes and clinical 

variables, time-distance, kinematic, kinetic and energetic parameters in HSP patients. * partial correlation.  

NS no significant correlation 
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Figure 6.1. Time distance and joint kinematic parameters A: Values of each patient and control (small 

circles and triangles) and mean values (big circles and triangles) with SD of 23 patients and 23 controls for 

time distance and joint kinematic parameters. Asterisks indicate significant differences between patients and 

controls (P<0.05). B: Mean (with SDs in light colors) kinematic plot of lower limb joint angular 

displacements in the sagittal plane during the gait cycle of HSP patients (black curves) and controls (grey 

curves). 
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Figure 6.2. Kinetic parameters A: Mean (with SDs in light colors) kinetic plot of vertical ground reaction 

forces (GRF) of HSP patients (black curves) and controls (grey curves). The patterns are normalized to body 

weight and plotted vs. normalized stance. B: Values of each patient and control (small circles and triangles) 

and mean values (big circles and triangles) with SD of patients and controls for the area under GRF curves 

during weight acceptance (AWA) and pre-swing (APS) subphases. Asterisks indicate significant differences 

between patients and controls (P<0.05). (incollare originale) 
 

6.1 Materials and methods 

Subjects 

Twenty-three patients with HSP were recruited (6 women and 17 men, age: mean 49.04 (SD 16.31) 

years, height: mean 1.67 (SD 0.11) m, weight: mean 80.07 (SD 21.70) kg) (Table 6.1). All patients 

included in the study were able to walk without assistance or walking aids on a level surface. None 

of the patients showed any involvement of neurological systems other than the pyramidal one (e.g., 

cerebellar or sensory deficits). The severity of the disease was rated using the spastic paraplegia 

rating scale (SPRS). The spasticity of ankle and knee joint muscles was scored by the modified 

Ashworth scale included in the SPRS as a spasticity-related subscale [1]. Five of the twenty-three 

patients were taking oral antispastic drugs (baclofen or tizanidine) for 4 to 6 years. Their clinical 

assessment (SPRS) did not change over the last six months prior to the study. At the time of the 

evaluation, all patients were undergoing physical therapy, which included lower limb and stretching 

exercises, balance, and gait training. Twenty-three subjects were enrolled as a control group (HS): 
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(8 women and 15 men, age: mean 52.00 (SD 13.83) years, height: mean 1.67 (SD 0.06) m, weight: 

mean 71.53 (SD 11.90) kg).  

All participants provided informed written consents before taking part in the study, which complied 

with the Helsinki Declaration and had local ethics committee approval. 

 

 

Figure 6.3. Coactivation index A: Values of each patient and control (small circles and triangles) and mean 

values (big circles and triangles) with SD of patients and controls for CI (area under the coactivation curve) 

of the ankle and knee antagonist muscles calculated in the entire gait cycle. Each circle is plotted in different 

shades of gray according to knee and ankle Ashworth scores on VL-BF and TA-SOL graphs, respectively. 

Asterisks indicate significant differences between patients and controls (P<0.05). B: Values of each patient 

and control (small circles and triangles) and mean values (big circles and triangles) with SD of patients and 

controls for CI (area under the coactivation curve) of the ankle and knee antagonist muscles calculated in 

the two subphases of the gait cycle (stance and swing). Asterisks indicate significant differences between 

patients and controls (P<0.05). 
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Figure 6.4. Coactivation of ankle and knee joint antagonist muscles 

Mean (with SDs in light colors) plot of coactivation of ankle and knee joint antagonist muscles during the 

gait cycle of HSP patients (black curves) and controls (grey curves). 

 

Figure 6.5. Energetic parameters. Values of each patient and control (small circles and triangles) 

and mean values (big circles and triangles) with SD of patients and controls for TEC and R-step 

during walking. Asterisks indicate significant differences between patients and controls (P<0.05). 
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Gait analysis 

Kinematic data were recorded bilaterally at 300 Hz using an optoelectronic motion analysis system 

(SMART-D System, BTS, Milan, Italy) consisting of eight infrared cameras spaced around the 

walkway. Twenty-two reflective spherical markers were attached on the anatomical landmarks, in 

accordance with a validated biomechanical model [2]. In detail, the markers were placed over the 

cutaneous projections of the spinous processes of the seventh cervical vertebra and sacrum and 

bilaterally over acromion, anterior superior iliac spine, great trochanter, lateral femoral condyle, 

fibula head, lateral malleoli and metatarsal head. In addition to markers directly applied to the skin, 

sticks, or wand, varying in length from 7 to 10 cm, placed at 1/3 of the length of the body segment 

(femur and leg) were used. Anthropometric data were collected for each subject [3]. 

Ground reaction forces (GRFs) were acquired by two dynamometric platforms (Kistler 9286B, 

Winterthur, Switzerland), attached to each other in the longitudinal direction but displaced by 0.2 m 

in the lateral direction (sampling rate 1200 Hz).  

Surface myoelectric signals were recorded at 1000 Hz using a 16-channel wireless system 

(FreeEMG300 System, BTS, Milan, Italy). After skin preparation, bipolar Ag/AgCl surface 

electrodes (2 cm diameter) were placed over the muscle belly in the direction of the muscle fibers 

according to the European recommendations for surface electromyography (SENIAM) and the atlas 

of muscle innervation zones [4,5]. Four bipolar electrodes were placed on the right side of the body 

on the tibialis anterior (TA); soleus (SOL); vastus lateralis (VL), and biceps femoris (BF). The 

acquisition of kinematic, kinetic, and surface electromyographic (sEMG) data was synchronized. 

Experimental procedure 

The patients and controls were asked to walk barefoot at comfortable self-selected speeds along a 

walkway approximately 10 m in length while looking forward. Because we were interested in 

natural locomotion, only general, qualitative instructions were provided. Before the recording 

session, the subjects practiced for a few minutes to familiarize themselves with the procedure. 
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Given that typical walking speeds were on the slow side in patients, we instructed the control 

subjects to also walk at low speeds and to compare the parameters between groups without the 

potential velocity bias (see speed matching procedure). Ten trials per patient and 15 trials per 

control (10 trials self-selected speed and 5 trials slow walking) were recorded. To avoid muscle 

fatigue, groups of three trials were separated by 1 min rest periods.  

Speed matching procedure  

The speed was matched between groups as follows: for each control group subject we considered 

only those trials in which their walking speed fell within the range identified by HSP patients’ mean 

walking speed ± SD. On this basis, we selected two controls walking at self-selected speed and 21 

controls walking at low speed. The Student’s t-test was used to investigate differences in walking 

speeds between patients and controls; thus, the mean speed values were not statistically different 

between groups (HSP patients: mean 2.05 (SD 1.27) km/h; controls: mean 2.19 (SD 0.46) km/h; 

unpaired samples test, P > 0.05). 

Data analysis 

The data were processed using a 3D reconstruction software (SMART Tracker and SMART 

Analyzer, BTS, Milan, Italy) and MATLAB (version 8.3.0.532, MathWorks, Natick, MA, USA) 

software. Kinematic, kinetic, and electromyographic data were then normalized to the duration of 

the gait cycle and interpolated to 201 samples using a polynomial procedure. 

The gait cycle was defined as the time between two successive foot contacts of the same leg. In this 

study, heel strike and toe-off events were determined by maximum and minimum excursions of the 

limb angle, defined as the angle between the vertical axis and the limb segment (from the greater 

trochanter to the lateral malleolus) projected on the sagittal plane [6]. When participants stepped on 

the force platforms, these kinematic criteria were verified by comparison with foot strike and lift-off 

estimated from the vertical ground reaction force, namely when this force exceeded a threshold of 

7% of body weight. In general, the difference between the time events measured from kinematics 
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and kinetics was < 3%. Since spasticity and weakness in patients with HSP typically affect both 

lower limbs symmetrically , we focused our analyses on the right leg locomotor output.   

Time–distance parameters 

The walking speed (km/h), stance duration (% gait cycle), swing duration (% gait cycle), step length 

(% limb length), and step width (% limb length) were calculated for each subject.  

Walking speed was calculated as the modulus of the mean over the strides durations of the first 

derivative malleolus markers’ positions in the three spatial directions. The mean gait speed is the 

mean of the gait speeds among all the strides considered for each subject.  

Kinematic parameters 

We computed the anatomical angles of the hip, knee, and ankle joints in the sagittal plane. From 

these variables, we derived the RoM at each joint, defined as the difference between the maximum 

and minimum values during the gait cycles.  

Kinetic parameters 

The right vertical GRF was calculated and normalized to the body mass. We considered  the values 

of the area under GRF curve during weight acceptance (AWA) and pre-swing (APS) subphases of the 

gait cycle. 

sEMG parameters 

The raw EMG signals were band-pass filtered using a zero-lag third-order Butterworth filter (20–

450 Hz), rectified, and low-pass filtered with a zero-lag fourth-order Butterworth filter (10 Hz). For 

each individual, the EMG signal from each muscle was normalized to its peak value across all trials. 

From the elaborated sEMG signals, we calculated, sample by sample, the VL–BF and TA–SOL 

coactivation values as follows [7]: 

𝐶𝐴 = [(𝐸𝑀𝐺𝐻 + 𝐸𝑀𝐺𝐿)/2] ∗ (𝐸𝑀𝐺𝐿/𝐸𝑀𝐺𝐻) 

where EMGH and EMGL represented the highest and the lowest activity between the antagonist 

muscle pairs. A coactivation index (CI) during the two subphases of gait was then obtained by 
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calculating the area under the coactivation curve in each cycle window: the stance and swing. In 

order to obtain a global measure of the coactivation level, the CI was evaluated as well during the 

entire gait cycle. 

Energetic behavior  

We measured the mechanical behavior in terms of energy recovery and energy consumption of the 

entire skeletal muscle system in relation to the whole body center of mass (CoM) during walking. 

This methodology has been validated in both normal [8, 9] and abnormal gait patterns [10, 11]. The 

whole body CoM was calculated by means of the “reconstructed pelvis method” [12, 13] 

considering the kinematic data. Adopting this method, the CoM coincides with the pelvic centre, 

which is the geometric centre of the triangle formed by the markers over the two anterior superior 

iliac spines and sacrum. 

The kinetic energy (Ek) associated with CoM displacements during the gait cycle was calculated as 

the sum of the kinetic energy on the x (Ekx), y (Eky), and z (Ekz) axes as follows: 

Ek = Ekx + Eky + Ekz =
1

2
m(vx

2 + vy
2 + vz

2), 

where m and vx, vy and vz are the mass and velocity components of the CoM, respectively. 

Furthermore, the potential energy (Ep) associated with the CoM was calculated as 

𝐸𝑝 = 𝑚𝑔ℎ 

where h is the vertical (y) component of the CoM, and 𝑔 is the acceleration of gravity (m/𝑠2). 

The total mechanical energy (Etot) associated with the CoM was computed as the sum of Ek and Ep. 

We calculated the fraction of mechanical energy (R-step) recovered during each walking step [9], as 

follows: 

𝑅 − 𝑠𝑡𝑒𝑝 =
𝑊𝑝
++𝑊𝑘𝑓

+ −𝑊𝑡𝑜𝑡
+  

𝑊𝑝
++𝑊𝑘𝑓

+ 𝑥 100 = (1 −
𝑊𝑡𝑜𝑡
+  

𝑊𝑝
++𝑊𝑘𝑓

+ ) 𝑥 100, 

where 𝑊𝑝
+, 𝑊𝑘𝑓

+ ,  𝑊𝑡𝑜𝑡
+  represent the positive work (sum of the positive increments over one step) 

produced by the gravitational potential energy, kinetic energy of forward motion, and total 
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mechanical energy, respectively. We calculated as well the total energy consumption (TEC) as the 

sum of the negative ( 𝑊𝑡𝑜𝑡
− ) and positive work ( 𝑊𝑡𝑜𝑡

+ ), each divided by their respective 

efficiencies[8], as follows: 

𝑇𝐸𝐶 =
𝑊𝑡𝑜𝑡
+  

1.20
+
𝑊𝑡𝑜𝑡
−  

0.25
. 

Given the cyclic nature of walking, the positive work done at each step is equal to the negative 

work, which thus changes the previous formula to 

𝑇𝐸𝐶 =
𝑊𝑡𝑜𝑡
+  

0.21
. 

TEC was then normalized to the body weight and step length. For each subject, the R-step and 

normalized TEC values of all the steps were averaged. 

Statistical analysis 

The Kolmogorov–Smirnov and Shapiro–Wilk test were used to analyze the normal distribution of 

the data. Unpaired two-sample t-test or Mann–Whitney test were used to compare the kinematic, 

sEMG, and energetic data of HSP patients and controls. Cohen's d values were evaluated as well to 

estimate the effective size for comparison between the two means. The correlation between muscle 

coactivation patterns and clinical scores (knee and ankle-spasticity Ashworth score) was performed 

using Pearson’s rank correlation coefficient. 

Partial correlations were used to analyze correlations between muscle coactivation indexes and 

time–distance, kinematic, kinetic, and energetic parameters controlling the walking speed.  

Descriptive statistics included means and SD, and significance level was set at P < 0.05. All the 

analyses were performed using SPSS 20.0 (SPSS Inc. Chicago, IL, USA) and MATLAB (version 

8.3.0.532, MathWorks, Natick, MA, USA) software. 
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6.2 Results 

Demographic characteristics  

No significant differences were found between HSP patients and controls with respect to age, 

weight, and height values (P>0.05). 

Time–distance parameters  

Patients with HSP walked statistically slower than HS (HSP: mean 2.05 (SD 1.27) km/h, HS: mean 

2.83 (SD 0.67), P=0.005). At matched speed, HSP patients showed no significant differences in 

almost all time–distance parameters (P>0.05) except for step width (P=0.002, d=0.939), 

significantly increased in patients (n=23) than controls (n=23) (Fig.6.1A).  

Kinematic parameters 

At matched speed, significantly lower values in knee (P<0.001, d=1.664) and ankle (P<0.001, 

d=1.474) RoMs were found in patients compared with controls (Fig. 6.1A). Fig. 6.1B shows the 

mean joint kinematic traces of HSP patients and controls. 

Kinetic parameters  

Analysis of the vertical GRF (Fig. 6.2A) showed significantly lower values of AWA and APS 

(P=0.004, d=0.915 and P=0.042, d=0.630, respectively) in patients compared with controls at 

matched speed  (Fig. 6.2B).  

sEMG parameters 

At matched speed, HSP patients showed significantly higher values of coactivation index 

throughout the gait cycle both for the VL–BF (P=0.04, d=0.625) and the TA–SOL (P<0.001, 

d=1.343) pairs of antagonist muscles (Fig. 6.3A). Analysis of the CI in different gait subphases 

showed significantly higher values in HSP patients, compared with controls, in the stance (P<0.001, 

d=1.175) and swing (P<0.001, d=1.132) phases for the TA–SOL muscles and in the stance (P=0.04, 
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d=0.603) phase for the VL–BF muscles (Fig. 6.3B). In Fig. 6.4, the coactivation of ankle and knee 

joint antagonist muscles is plotted during the gait cycle. 

Energetic parameters 

Both TEC (P=0.016 and d=0.968) and R-step (P=0.033 and d=0.844) values were significantly 

higher in HSP patients than in controls at matched speed (Fig. 6.5). 

Correlations 

Regarding the clinical variables, significant positive correlations were found between the Ashworth 

score for both the knee and ankle joints and CI for VL–BF and TA–SOL muscles, respectively. A 

significant negative correlation was found between the CI for VL–BF muscles and walking speed, 

while no significant partial correlations were found between the CI and other time–distance 

parameters and kinematic variables. Significant positive partial correlations were found between CI 

for TA–SOL muscles during the stance phase and both AWA and APS. Significant positive partial 

correlations were observed between TEC and coactivation indexes for both VL–BF and TA–SOL 

muscles. Significant negative partial correlations were observed between R-step and coactivation 

indexes for both VL–BF and TA–SOL muscles.  

6.3 Discussion and Conclusions 

This study described the coactivation of the lower limb joint antagonist muscles and its relationship 

with biomechanics of locomotion in 23 patients affected by HSP.  

The main findings of this study are: i) the knee and ankle joint muscle coactivation is higher in HSP 

patients compared with controls, in both the entire gait cycle and subphases of gait; ii) both knee 

and ankle coactivation patterns are positively correlated with knee and ankle joints spasticity; iii) 

both knee and ankle coactivation patterns are positively correlated with energy consumption and 

negatively correlated with energy recovery. 
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In our study, we found that patients with HSP showed a significantly higher level of lower limb 

coactivation of both knee and ankle antagonist muscles compared with controls (Fig. 6.3A). 

Abnormal coactivation patterns at both knee and ankle joints during gait have been demonstrated in 

patients with several central nervous system lesions including Parkinson’s disease, cerebellar ataxia, 

and multiple sclerosis. In these diseases, muscle coactivation has been supposed, on one hand, to be 

the result of balance-related adaptive compensatory mechanisms aimed at reducing instability, such 

as in cerebellar ataxia. On the other hand, it reflects the expression of a primary deficit owing to 

either motor control impairment and joint rigidity such as in Parkinson’s disease. 

In our study, we found that higher values of Ashworth scores for both knee and ankle joint were 

associated with increased coactivation of knee and ankle antagonist muscles, respectively (Table 

6.1). This finding suggests that lower limb coactivation in patients with HSP reflects a primary 

deficit linked to lower limb spasticity. In this regard, spasticity and coactivation may share common 

physiopathological mechanisms. In patients with spasticity, e.g., stroke and spinal injury, plastic 

rearrangements have been demonstrated at several levels throughout the central nervous system 

including the motor cortex and spinal cord [14]. In patients with HSP, the abnormal coactivation 

pattern may reflect both or either abnormal descending motor commands and/or plastic 

rearrangement of the spinal circuitries [15, 16] which, in turn, lead to a lack of selectivity of the 

descending motor drives to motoneuronal pools. 

On analyzing the CI in the subphases of the gait cycle, we found that both the ankle and knee joint 

muscles were more coactivated in patients than in controls during the stance phase (Figs. 6.3B and 

6.4). Conversely, during the swing phase we observed only an increased ankle joint coactivation 

(Figs. 6.3B and 6.4). These findings suggest that in corticospinal tract lesions, the abnormal 

coactivation pattern mainly involves the distal lower limb muscles (ankle joint), as also happens for 

the upper limbs [17], and that there is a distal-proximal gradient in the coactivation pattern, related 

to the mechanical effort, e.g., unloading (swing phase) or loading (stance phase) of the limb. A 

decreased cortical inhibition after lesion of corticospinal tract, which mainly controls distal muscles 
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in more selective movements, may be bypassed by brain stem extrapyramidal pathways such as 

vestibulospinal, reticulospinal, and tectospinal tracts, thereby inducing the abnormal patterns of 

muscle contraction [18]. according to the mechanical demands of the locomotor task (Dierick et al., 

2002). In this regard, the increased lower limb joint coactivation reflects the inability of the 

neuromuscular system to modulate muscle activation according to the external requirements that 

differ depending on the gait phase [19].  

Our results showed that HSP patients increase both energy recovery and consumption during gait 

compared with healthy subjects (Fig. 6.5). The increased energy consumption might be caused by a 

greater mechanical effort achieved by patients to walk against a constant mechanical constraint 

provided by the lower limb spasticity [17, 20]. In addition, the positive correlation between 

coactivation indexes and the energy consumption strongly suggests that the unselective recruitment 

of the agonist and antagonist muscles, resulting in nonfunctional abnormal muscle activations, 

determine an excessive energy expenditure. Although a higher energy recovery was observed in 

HSP patients compared with controls, a negative correlation was found with the muscle 

coactivation. This seems to suggest that the basic energy recovery mechanism, which is an efficient 

way to reduce the energetic cost of walking [21], is still exploited by HSP patients, as also observed 

in parkinsonian patients [22]. In this aspect, the abnormal muscle coactivation is an unfavorable 

factor for the energy recovery in these patients.  

Furthermore, we investigated the relationships between lower limb muscle coactivation and kinetics 

during stance phase. We found that the increased ankle muscle coactivation during the stance phase 

was positively correlated with increased values of AWA and APS. According to these results, the 

increased ankle muscle coactivation might influence weight acceptance and push-off mechanisms in 

patients with HSP. However, the positive correlation might suggest that HSP patients try to increase 

the joint torque production through an increased of motor recruitment which, in turn, results in an 

increased co-activation due to the inability of the CNS in tuning antagonist muscles activity. 
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In conclusion, in the present study, we have investigated the lower limb muscle coactivation and its 

relationship with limb spasticity, energetic mechanisms, and gait performance in patients with HSP. 

Our findings clearly suggest that abnormal lower limb muscle coactivation in these patients reflects 

a primary deficit linked to lower limb spasticity. In addition, these abnormalities influence the 

mechanisms of both energetic consumption and recovery during walking. A comprehensive 

treatment of HSP should take into account also the changes in muscle properties [23]. To achieve 

adequate treatment, it is crucial to address the mechanisms underlying the impaired function. These 

results may be useful for evaluating the pharmacological and rehabilitative treatments aimed at 

reducing the requirement for excessive antagonist muscle coactivation and restraining spasticity. 
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CHAPTER 7 

7. LOWER LIMB MUSCLE COACTIVATION 

DURING WALKING AT DIFFERENT SPEEDS 

In this chapter, text and figures have been taken from or adapted from the article “Global lower 

limb muscle coactivation during walking at different speeds: relationship between spatio-temporal, 

kinematic, kinetic and energetic parameters” [2018, Journal of Electromyography and 

Kinesiology], which was co-authored by me. 

The motor system coordinates muscles, combines and hierarchically controls muscle synergies, 

regulates local spinal interneuronal reflexes, and synchronizes the neural systems, throughout the 

CNS, into an integrated and adaptive motor behavior. Thus, a global characterization of lower limb 

muscle coactivation during walking may be helpful to understand the general strategy adopted by 

the CNS to control the whole lower limb depending on the motor context i.e., gait phases, balance, 

speed, and metabolic cost. We hypothesized that the simultaneous activation of the lower limb 

muscles was modulated by gait speed and torque production and correlated with energy cost and 

gait stability. In the work published from Journal of Electromyography and Kinesiology, 2018: 

“Global lower limb muscle coactivation during walking at different speeds: relationship between 

spatio-temporal, kinematic, kinetic and energetic parameters”, we used a time-varying multi-

muscle coactivation function (TMCf) with the aim of investigating the relationship between global 

lower limb muscle coactivation and gait cycle, speed, ground reaction force (GRF), gait variability, 

and mechanical energy consumption in a sample of healthy subjects. 
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7.1 Materials and methods 

Subjects 

Twenty healthy subjects were recruited (8 women and 12 men, mean age: 40±13.81 years, BMI: 

24.86±3.35 kg/m2). None of the subjects had pathologies known to influence the normal gait 

pattern. All participants provided informed written consents, which complied with the Helsinki 

Declaration and had local ethics committee approval. 

Experimental procedure 

Surface myoelectric signals were recorded at 1000 Hz using a bipolar 16-channel wireless system 

(FreeEMG300 System, BTS). After skin preparation, Ag/AgCl surface electrodes (Kendall ARBO) 

were placed over the muscle belly in the direction of the muscle fibers according to the European 

Recommendations for Surface Electromyography [1]. A pre-processing filtering and denoising 

procedure was performed (Hamming filter between 10 and 400 Hz and common mode reaction ratio 

equal to 100 dB). Electrodes pairs (inter-electrodes distance 2 cm) were placed unilaterally on the 

dominant side of each participant on the gluteus medius, rectus femoris, vastus lateralis, vastus 

medialis, tensor fascia lata, semitendinosus, biceps femoris, tibialis anterior, gastrocnemius 

medialis, gastrocnemius lateralis, soleus and peroneus longus. 

Ground reaction forces (GRFs) were acquired at the sampling rate of 680 Hz by eight 

dynamometric platforms (P6000, BTS).  

Kinematic data were recorded by using an eight infrared cameras optoelectronic motion analysis 

system at a sampling frequency of 340 Hz (SMART-DX 6000 System, BTS). Twenty-two reflective 

spherical markers were attached on the anatomical landmarks [2]. Acquisition of sEMG, kinetic and 

kinematic data was synchronized. 

Subjects were asked to walk barefoot at comfortable self-selected (SS), low (L) and fast (F) gait 

speeds along a walkway approximately 10 m in length. Because we were interested in natural 

locomotion, only general, qualitative, verbal instructions (no analog or digital metronomes were 
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used) were provided. Before the recording session, the subjects practiced for a few minutes to 

familiarize themselves with the procedure. Ten trials per subjects and per gait speeds (total 30 trials) 

were recorded.  

 Data analysis 

The data were processed using a 3D reconstruction software (SMART Tracker and SMART 

Analyzer, BTS) and MATLAB (8.3.0.532, MathWorks). Electromyographic, kinetic and kinematic 

data were time-normalized to the duration of the gait cycle (time between two successive foot 

contacts of the same leg) and interpolated to 201 samples using a polynomial procedure. Heel strike 

and toe-off events were determined as in Serrao et al, 2016.  

Global coactivation of lower limb muscles  

The raw sEMG signals were band-pass filtered using a zero-lag third-order Butterworth filter (20–

400 Hz), full wave rectified, and low-pass filtered with a zero-lag fourth-order Butterworth filter (10 

Hz). For each individual, the sEMG signal from each muscle was normalized to its peak value 

across all trials [3]. From the processed sEMG signals, we calculated the simultaneous activation of 

the twelve lower limb muscles by considering the time-varying multi-muscle coactivation function 

(TMCf) [4]. This sigmoid-weighted, time-dependent function for the inclusion of multiple muscles 

during walking was designed to receive as input full wave rectified, low-pass filtered and 0-100 

amplitude normalized sEMG signals. Sample values of these function are ranged between 0 and 100 

and are calculated by the following equation:   

𝑇𝑀𝐶𝑓(𝑑(𝑖), 𝑖) = (1 −
1

1 + 𝑒−12(𝑑(𝑖)−0.5)
) .

 (∑ 𝐸𝑀𝐺𝑚(𝑖)/𝑀) 
𝑀
𝑚=1

2

𝑚𝑎𝑥𝑚=1…𝑀[𝐸𝑀𝐺𝑚(𝑖)]
 

where M is the number of muscles considered, 𝐸𝑀𝐺𝑚(𝑖) is the sEMG sample value of the mth 

muscle at the instant i, d(i) is the mean of the differences between each pair among the twelve 

𝐸𝑀𝐺𝑚(𝑖) samples at the instant i: 
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𝑑(𝑖) = (
∑ ∑ |𝐸𝑀𝐺𝑚(𝑖) − 𝐸𝑀𝐺𝑛(𝑖)|

𝑀
𝑛=𝑚+1

𝑀−1
𝑚=1

(𝑀!/(2! (𝑀 − 2)!))
) 

𝑀! 2! (𝑀− 2)!⁄  is the total number of possible differences between each pair of 𝐸𝑀𝐺𝑚(𝑖). The 201 

samples 𝑇𝑀𝐶𝑓(𝑑(𝑖), 𝑖) has the following properties: inverse relationship with the mean of the 

differences d(i), values close to the mean activation of the m(i) muscle sample values considered 

when d(i) is close to 0, and values close to 0 when d(i) is close to 1. In particular, the smaller the 

differences in muscle samples activation are, the closer the d(i) values become to 0 and the closer 

the sigmoid-coefficient values become to 1, leaving the 𝑇𝑀𝐶𝑓(𝑑(𝑖), 𝑖) value close to the value of 

its mean. Vice versa, the greater the differences in muscle activations are, the more d(i) increases 

and the more the sigmoid-coefficient decreases, thereby reducing the TMCf (d(i),i) values. For each 

subject and for each gait speed, data over individual strides were calculated and then averaged 

across cycles.  

Full width at half maximum and center of activity  

For each subject and for each gait speed, we computed the full width at half maximum 

(FWHMTMCf) and the center of activity (CoATMCf) to characterize in terms of time-amplitude the 

TMCf curves and to understand where most co-activation is concentrated within the gait cycle. 

FWHMTMCf was calculated as the sum of the time durations during which the TMCf curve is higher 

than its half maximum (see Fig. 7.1) and represent a measure of the width of the TMCf peak at the 

half height position. The CoATMCf was calculated using circular statistics as follow: 

𝐴 =∑(cos 𝜃𝑡 × 𝐸𝑀𝐺𝑖)

200

𝑖=1

 

𝐵 =∑(sin 𝜃𝑡 × 𝐸𝑀𝐺𝑖)

200

𝑖=1

 

𝐶𝑜𝐴 = tan−1(𝐵 𝐴⁄ ) 
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and plotted in polar coordinates to understand if the distribution of coactivation remains unaltered 

across different speed conditions. For each subject and for each gait speed, data over individual 

strides were calculated and then averaged across cycles. 

Coefficient of multiple correlation  

We used the coefficient of multiple correlation (CMC) as a measure of the overall waveform 

similarity of a group of curves [5]. The closer to 1 the CMC is, the more similar the waveforms are: 

in the range 0-0.3 the correlation is weak, in 0.3-0.7 the correlation is moderate and 0.7-1 it is 

strong. In particular, for each gait speed (L, SS, F), we calculated the intra-subject similarity 

(CMC_IS) for TMCf (CMCTMCf_IS) among all the TMCf curves of all strides for each subject. Then 

we computed the mean and standard deviation between the CMC_IS of all subjects within each gait 

speed. Furthermore, we evaluated the between-subjects similarity on the mean TMCf curves 

(CMCTMCf_BS) of all subjects to verify the repeatability between subjects within each gait speed. 

Finally, we calculated the similarity among the mean TMCf curves at the three gait speeds, 

evaluated among all the subjects (CMCTMCf_speed) to verify the repeatability among the three gait 

speed.  

Kinetic parameters 

The vertical component of GRFs (Vertical Force, VF) provided by the dynamometric platforms, for 

each gait speed were normalized to the subject’s body weight [4]. 

To characterize VF curves, we computed the full width at half maximum (FWHMVF) and the center 

of activity (CoAVF) during the gait cycle. 

Cross-correlation analysis  

In order to have information on the similarity of timing and shape of TMCf (relating to the stance 

phase) and VF curves at the three gait speeds (L, SS and F) we used the cross-correlation analysis 

[6].  
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A normalized cross-correlation function Rxy(k) was calculated as in Nelson-Wong et al, 2009. 

Rxy(k) revealed the shape similarity between the two signals as a scalar between 0 and 1.  

Specifically, the Rxy(k) curves were calculated between the mean TMCf curves and the mean VF 

curves (across the subjects) for each gait speed (RL, RSS, RF).  

The maximum value (Rmax) of the cross-correlation curves for each gait speed (RL_max, RSS_max, 

RF_max) was used as an index of TMCf and VF curves similarity in terms of shape.  

The temporal shift, or phase delay (τ*), indicates if similar events in the cross-correlated signals are 

either simultaneous (τ* =0) or time delayed. It has units of time, and can vary between 0 and the 

total duration of the record in both positive and negative directions [7]. The value of τ* where the 

maximal correlation occurs was used for determining similarities and differences in timing between 

the TMCf and VF curves at the three gait speeds (τ*L, τ*SS, τ*F). 

Energetic cost parameters  

In order to investigate the relationship between the TMCf and the mechanical energy behavior, we 

measured the energy recovery (R-step) during each walking step [8] and total energy consumption 

(TEC) of the entire skeletal muscle system in relation to the whole body center of mass during 

walking, calculated by means of the “reconstructed pelvis method”.  For each subject, the R-step 

and TEC (normalized to the body weight and step length) values of all the steps were averaged. The 

former is an index of storage capacity and reuse kinetic energy during walking, the latter is an index 

of energy expenditure per unit of distance traveled during walking. 

Spatio–temporal and kinematic parameters 

The walking speed, cadence, stride length, step width, stance duration, swing duration, first and 

second double support duration were calculated for each subject. We computed the anatomical 

angles of the hip, knee, and ankle joints in the sagittal plane and the anatomical angles of trunk and 

pelvis in the three planes of space. From these variables, the range of motion (RoM) were derived 

as the difference between the maximum and minimum values during the gait cycles.  
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Statistical analysis 

The Shapiro–Wilk test were used to test the normal distribution of the data. To evaluate the 

presence of significant differences between each gait speed pair (L vs SS, L vs F and SS vs F) and 

the effect of the gait speed on the kinetic, kinematic, sEMG (FWHM and CMCTMCf_IS) and 

energetic data, we performed a one-way ANOVA among the three walking speeds. Post-hoc 

analyses were performed using a paired t test with Bonferroni’s corrections when significant 

differences were observed in the ANOVA. To evaluate the effect of the gait speed on the CoA 

across the gait cycle we used the Watson-Williams test for circular data [9]. 

To investigate the relationship between the TMCf and kinetic curves we evaluated the similarity 

between TMCf and VF waveforms, by using the cross-correlation analysis. 

Correlation analysis was performed using Pearson’s rank correlation coefficient between CoA 

(evaluated on TMCf) and both R-step and TEC to investigate the relationship between the TMCf 

and the mechanical energy behavior. Furthermore, the partial correlation analysis was performed 

between CoATMCf and gait parameters, controlling for the effect of gait speed. Descriptive statistics 

included means ± SD, and significance level was set at p < 0.05. All the analyses were performed 

using SPSS 20.0 (SPSS Inc. Chicago, IL, USA) and MATLAB (8.3.0.532, MathWorks, USA). 

7.2 Results 

The values were 0.887 ± 0.174 for L speed, 1.121±0.173 for SS speed and 1.563±0.267 for F speed. 

A significant effect of gait speed condition was found on walking speed (main effect, F(2,57)=81.761, 

p<0.001. Post hoc analysis showed significant differences between L and SS, L and F and SS and F 

for walking speed (p<0.001). 

Lower limb global co-activation findings 

FWHMTMCf and CoATMCf  
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The global co-activation of the lower limb muscles, recorded at L, SS and F speeds, is shown in 

Cartesian coordinates as mean linear envelop (Fig. 7.2A) and, in polar coordinates, as mean circular 

envelop (Fig. 7.2B) and as single and mean CoA values (Fig. 7.2C), all expressed as percentage of 

gait cycle.  

A significant effect of gait speed was found on FWHMTMCf (main effect, F(2,57)=5.046, p=0.010). 

Post-hoc analysis revealed significant higher values at L than at SS (57.00 ± 24.28 vs 38.15 ± 20.24, 

p=0.016) and significant higher values at L than at F (57.00 ± 24.28 vs 40.30 ± 16.34, p=0.038). No 

differences were found between SS and F (57.00 ± 24.28 vs 40.30 ± 16.34, p>0.05) (Figure 8.2B). 

Significant differences were found in CoATMCf between L and SS (24.11 ± 6.64 % of gait cycle vs  

17.91 ± 5.81 % of gait cycle; F(1,38)=5.553; p=0.002) and L and F (24.11 ± 6.64 % of gait cycle vs  

18.21 ± 6.48 % of gait cycle;  F(1,38)=8.827; p=0.005). No significant differences were found 

between SS and F (17.91 ± 5.81 % of gait cycle vs 18.21 ± 6.48 % of gait cycle; F(1,38)=1.1013; 

p>0.05). (Fig. 7.2C).  

 

CMCTMCf  

The CMCTMCf_IS values were 0.844±0.061 for L speed, 0.867±0.065 for SS speed, 0.884±0.100 for F 

speed. No significant effect of gait speed on CMCTMCf_IS was found at Anova test (F(2,57)=0.490, 

p=0.614). Furthermore the CMCTMCf_BS values were 0.734 for L speed, 0.725 for SS speed and 0.714 

for F speed. Finally, the CMCTMCf_speed value was 0.944.  

Kinetic parameters  

FWHMVF and CoAVF 

The curves of vertical forces, recorded at L, SS and F speeds, are shown in Cartesian coordinates as 

mean curves (Fig. 7.3A), and in polar coordinates, as mean curve (Fig. 7.3B) and single and mean 

CoA values (Fig. 7.3C), all expressed as percentage of gait cycle. 
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A significant effect of gait speed was found on FWHMVF (main effect, F(2,57)=4.98, p=0.010). Post-

hoc analysis revealed significant higher values at L than at F (100.89 ± 3.01 vs 95.42  ± 10.20, 

p=0.047) and significant higher values at SS than at F (101.78 ± 4.02 vs 95.42  ± 10.20, p=0.016).  

No differences were found between L than at SS (100.89 ± 3.01 vs 101.78 ± 4.02, p>0.05) (Fig. 

7.3B).  

Significant differences were found in CoAVF between L and F (32.54 ± 1.65 % of gait cycle vs  

28.42 ± 2.07 % of gait cycle; F(1,38)=39.359; p<0.001), between SS and F (30.39 ± 1.52 % of gait 

cycle vs 28.42 ± 2.07 % of gait cycle; F(1,38)=13.446; p<0.001) and between L and SS (32.54 ± 1.65 

% of gait cycle vs 30.39 ± 1.52 % of gait cycle; F(1,38)=14.301; p<0.001). 

TMCf and VF Cross-correlation 

Figure 39A shows the adimensional (normalized to the own maximum value)  mean curves of 

TMCf and VF at L, SS and F, obtained from curves of subjects. In Fig. 7.4B are reported the curves 

of the strong cross-correlation between TMCf and VF at each gait speed. As regard the timing, the 

values of delay, in terms of samples between TMCf and VF curves, indicate that VF curves are 

delayed compared to TMCf waveforms at L (τ*L = 4.5%  of the gait cycle), SS (τ*SS = 4.5%  of the 

gait cycle) and F (τ*F = 3.5%  of the gait cycle).  

Energetic parameters 

A significant effect of gait speed was found for R-step (F(2,57)=4.449, p=0.016)  and TEC 

(F(2,57)=4.192, p=0.020). Mean (±SD) values and post hoc analysis results were shown in Table 8.1 

(p<0.01).  

TMCf and energetic cost parameters correlations 

Significant moderate negative correlation was found between CoATMCf and R-step (r=-0.374, 

p=0.003), while significant moderate positive correlation was found between CoATMCf and TEC 

(r=0.315, p=0.014).  
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 Parameters L SS F 

p value of Post hoc 
analysis  

 
L vs SS L vs F SS vs F 

E
n

er
g

et
ic

 

Rstep (%) 47.79±8.99 55.24±6.99 48.47±9.98 0.027 p>0.05 0.042 

Tec (kcal/km*kg) 0.71±0.17 0.61±0.14 0.75±0.19 0.023 p>0.05 0.042 

S
p

a
ti

o
-t

em
p

o
ra

l 

Walking speed (m/s) 2.58±0.62 4.04±0.63 5.63±0.96 p<0.001 p<0.001 p<0.001 

Cadence (cycle/s) 0.67±0.08 0.88±0.07 1.05±0.10 p<0.001 p<0.001 p<0.001 

Stride length (% limb length) 1.35±0.18 1.61±0.17 1.86±0.25 p<0.001 p<0.001 0.001 

Step width (% limb length) 0.29±0.03 0.29±0.04 0.29±0.03 p>0.05 p>0.05 p>0.05 

Stance duration (% cycle) 67.35±2.43 63.80±1.19 62.37±1.36 p<0.001 p<0.001 0.038 

Swing duration (% cycle) 32.65±2.43 36.20±1.19 37.63±1.36 p<0.001 p<0.001 0.038 

1st Double support duration (% 

cycle) 
16.98±2.20 13.88±1.38 12.61±1.41 p<0.001 p<0.001 p>0.05 

2nd Double support duration (% 

cycle) 
17.34±2.58 13.65±1.03 12.07±1.29 p<0.001 p<0.001 0.019 

K
in

em
a
ti

c 

Hip RoM (°) 35.02±4.32 39.42±4.29 44.04±6.00 0.020 p<0.001 0.013 

Knee RoM  (°) 57.93±6.15 63.34±5.00 64.20±3.66 0.004 0.001 p>0.05 

Ankle RoM  (°) 30.75±4.86 34.54±6.36 35.69±7.33 p>0.05 0.047 p>0.05 

Trunk lateral bending  (°) 4.05±1.66 4.59±1.46 5.47±1.54 p>0.05 0.049 p>0.05 

Trunk flexion-extension  (°) 2.92±0.76 2.95±0.92 3.03±0.72 p>0.05 p>0.05 p>0.05 

Trunk rotation  (°) 14.13±13.68 16.78±5.43 21.74±7.38 p>0.05 0.042 p>0.05 

Pelvis obliquity  (°) 5.13±1.42 6.44±1.63 8.53±2.62 p>0.05 p<0.001 0.004 

Pelvis tilt  (°) 
102.70±23.8

0 
92.31±26.1

7 
79.06±28.6

3 
p>0.05 0.018 p>0.05 

Pelvis rotation  (°) 14.79±5.01 17.15±5.38 23.43±8.87 p>0.05 p<0.001 0.013 

Table 7.1. Mean ±SD of energetic, spatio-temporal and  kinematic parameters in in subjects at L, SS and F. 

Post hoc analysis results test with Bonferroni’s corrections for energetic, spatio-temporal and  kinematic 

parameters. Bold type significant differences (p<0.05). 

Spatio-temporal and kinematic parameters  

A significant effect of gait speed was found on almost all spatio-temporal parameters: walking 

speed (F(2,57)=81.761, p<0.001), cadence (F(2,57)=103.088, p=<0.001), stride length (F(2,57)=32.204, 

p=<0.001), stance duration (F(2,57)=42.906, p<0.001), swing duration (F(2,57)=42.906, p<0.001), first 

(F(2,57)=34.710, p<0.001) and second (F(2,57)=46.930, p<0.001) double support duration. 

Table 8.1 shows mean (±SD) values and post hoc analysis results (p<0.01).  
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A significant effect of gait speed was found on all RoM values, except for trunk flexion-extension: 

hip RoM (F(2,57)=16.725, p<0.001), knee RoM (F(2,57)=9.064, p<0.001), ankle RoM (F(2,57)=3.396,  

p=0.040), trunk lateral bending (F(2,57)=3.304, p=0.044) and rotation (F(2,57)=3.303,  p=0.044), pelvis 

obliquity (F(2,57)=15.265, p<0.001), tilt (F(2,57)=4.069, p=0.022) and rotation (F(2,57)=9.012, 

p<0.001). Furthermore, Table 8.1 shows mean (±SD) values and post hoc analysis results (p<0.05). 

TMCf and gait parameters correlations  

Partial correlation analysis showed positive correlation between CoATMCf and stance duration 

(r=0.600, p<0.001), 1st double support duration (r=0.466, p<0.001), 2st double support duration 

(r=0.594, p<0.001), RoMs of ankle (r=0.291, p=0.025), pelvis obliquity (r=0.401, p=0.002) and 

pelvis rotation (r=0.398, p=0.002). Furthermore, negative correlation was found between CoATMCf 

and both swing duration (r=-0.600, p<0.001) and cadence (r=-0.265, p=0.043). 

 

 

Figure 7.1. Example of Full Width at Half Maximum (FWHM): the sum of the time durations during which 

the curve is higher than its half maximum (dotted area). 
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Figure 7.2. Lower limb global coactivation for subject at low (L), self-selected (SS) and fast (F) gait speeds. 

(A) Mean (with SDs in light colors) plot of coactivation of lower limb antagonist muscles during the gait 

cycle. (B) Time-varying multi-muscle coactivation function (TMCf) curves, center of activity (dot) and Full 

Width at Half Maximum (FWHM) (colored area of the curve) at the three gait speeds plotted in the polar 

coordinates. (C) TMCf centre of activity at three velocities. Each dot on the circle represents the subject’s 

centre of activity expressed as a percentage of the normalized gait cycle, polar direction denotes the relative 

time over the gait cycle, while the width of the sector represents angular SD across subjects. 
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Figure 7.3. Vertical Force (VF) for subject at low (L), self-selected (SS) and fast (F) gait speeds. (A) Mean 

(with SDs in light colors) plot of VF during the gait cycle. (B) VF curves, center of activity (dot) and Full 

Width at Half Maximum (FWHM)  (colored area of the curve) at the three gait speeds plotted in the polar 

coordinates. (C) VF centre of activity at three velocities. Each dot on the circle represents the subject’s 

centre of activity expressed as a percentage of the normalised gait cycle, polar direction denotes the relative 

time over the gait cycle, while the width of the sector represents angular SD across subjects. 
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Figure 7.4. Cross-correlation. (A) Mean curves of Time-varying multi-muscle coactivation function (TMCf) 

(continuous line) and Vertical Force (VF) (dashed line) at low (L), self-selected (SS) and fast (F) gait speeds. 

(B) Cross-correlation curves between TMCf and VF curves and values of  the maximum value (Rmax) of the 

cross-correlation curves at L, SS and F (RL_max, RSS_max, RF_max). The vertical dashed black lines show the 

temporal shift (τ*), in term of samples, of one signal relative to the other. 

 

7.3 Discussion and Conclusions 

This study describes for the first time the global lower limb coactivation of twelve muscles involved 

within the gait cycle at low, self-selected and fast gait speeds, using a time-varying multi-muscle 

co-activation function [4]. This approach has some technical and clinical strengths if compared with 

other methods. The formers lie on the fact that the algorithm used for TMCf accept as input also a 

number N ≥ 2 of muscles (in this case twelve) without requiring an a-priori sorting of the muscles 

depending on the moment generated at the ankle, knee and hip joints. Furthermore, it provides the 

possibility to analyze the global lower limb coactivation in each time point and sub-phase of the gait 

cycle (time-varying). Previous methods require as input only two muscles or muscle groups without 
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providing a time-varying analysis, with the exception of the original and modified methods 

proposed by Rudolph and collegues and Don and colleagues [10]. The latter lie on the fact that 

TMCf allows a global and simple description of a complex motor control mechanism providing 

useful information on how the CNS manage, for instance, the lower limb stiffness during walking. 

In summary, such a parameter lends itself to be used to evaluate the motor behavior differences 

between before and after any rehabilitative, pharmacological and surgical treatment.        

The statistical differences between each gait speed pair (L vs SS, L vs F and SS vs F) imply 

that there isn’t a confounding effect of gait speed on our results due to the fact that speed selected 

by a participant for a given condition could have considered for another condition by another 

participant. In order to control the gait speed within L, SS and F conditions and to minimize its 

influence on gait parameters we could have use a treadmill which allows advantages of long 

duration trials within a stationary motion capture volume [11] with a controlled walking speed 

compared with overground walking [12]. On the other hand, although literature also reports a 

qualitative and quantitative similarity of the treadmill gait compared with freely-performed 

overground walking [13] several studies comparing kinematic, kinetic and sEMG parameters 

reported controversial findings [11,12,14-16]. In particular treadmills: i) provide ongoing 

proprioceptive sensory cueing and modified visual flows with respect to that normal (the subject 

maintains the same place in space) [15] ; ii) impose systemic regulation on dynamic neuromuscular 

control [17] implying invariant gait patterns [12]; iii) force the adoption of a “cautious gait” in 

response to the possible inherent challenges to balance imposed by treadmill walking; iv) induce 

higher metabolic cost and muscle activation [11], larger step-width and smaller step-width 

variability [17]. For both the previous considerations and for the fact that we intend to use the 

TMCf mainly for the analysis of motor behaviors in pathological conditions, we have preferred the 

natural overground walking. 

The temporal profiles of the global muscle co-activation at the three gait speeds, 

characterized by a double peak in the stance phase, are shown in the Fig. 7.2A. As regard the co-
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activation pattern at SS speed, the first co-activation increase coincides with the "weight 

acceptance" sub-phase, which ranges from 0% to 10% of the gait cycle and represents the duration 

of the initial double support interval. Within this sub-phase the CNS maximizes the muscle co-

activation to increase the whole lower limb stiffness to absorb the load, stabilize the whole 

locomotor system and ensure the maintenance of progression. The second co-activation increase 

coincides with the terminal stance sub-phase (30-50% of the gait cycle). This sub-phase is the least 

stable (single support) since the center of pressure is crossing the ipsilateral toes anteriorly and the 

center of mass is falling (its vertical coordinate decreases rapidly) [18]. For this reason, the CNS 

coactivates the ipsilateral lower limb muscles to compensate for the reduced stability. Between the 

above-mentioned co-activation increases (mid-stance 10-30%) there is a lower amplitude co-

activation plateau. In the pre-swing sub-phase (50-60%) the rapid and definitive transfer of the load 

to the contralateral limb allows the decrease of the global coactivation whose low level remains 

active within the initial-swing (60-73%) and mid-swing (73-87%) sub-phases. The global co-

activation level regrows in the last sub-phase of the gait cycle (terminal-swing) in which the limb is 

preparing for the contact with the ground. These results reflect the main findings of previous studies 

that investigated the lower limb muscle co-activation at single joint level [4,19,20]. Indeed, these 

studies showed hip muscles coactivation in late stance and initial swing sub-phases, knee muscles 

coactivation in early stance, in push-off and in terminal swing sub-phases, ankle muscles co-

activation in early stance and mid-stance sub-phases.  

It is worth to note that, beside a similar temporal trends of TMCf curves was observed at 

three speeds, the global lower limb co-activation is speed-dependent showing differences in 

amplitude distribution during gait sub-phases among the three gait speeds, particularly between L 

and both SS and F (Fig. 7.2B). In fact, the representation in polar coordinates shows that, whereas at 

SS speed the global coactivation is essentially limited to the loading response sub-phase (Fig. 7.2B), 

at low gait speed the global coactivation is mainly present in the loading response (0-10%), mid-
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stance (10-30%) and terminal-stance (30-50%) sub-phases, while at F speed the global coactivation 

is mainly present in both the loading response and terminal-stance sub-phases.  

The findings of this study showed the presence of a high intra-subjects and between 

subjects, as well as among the three gait speeds, repeatability of TMCf curves, expressed by high 

values of the coefficient of multiple correlation. The intra-subjects and between subjects 

repeatability suggests that the co-activation function can be considered robust besides the variability 

associated to the high muscles number considered as input of the TMCf algorithm, the variability 

introduced by the measurement system and the inherent physiological variability related to the 

motor behaviors adopted by the subjects. 

In addition to global features of TMCf, both synthetic FWHM and CoA indices show higher 

values at L speed than at both SS and F speeds. The increased FWHM at L speed and its spreading 

all over the stance phase (Fig. 7.2B) suggests that the CNS co-activates many muscles to increase 

the whole lower limb stiffness to compensate for a reduced gait stability at lower speed [Fan et al, 

2016]. Although not significant, we found a trend for an increased FWHM also at F compared to SS 

speed. This may suggest that a low level of global co-activation is required during natural SS speed 

likely to minimize the energy expenditure and guarantee an effective gait. Indeed, it has been shown 

that both the energy consumption and muscle activation reach their minimum at SS speed. 

Interestingly, energy consumption, muscles activation and gait stability all tend to reach an 

equilibrium point, to ensure a functional gait at SS gait speed [4]. The increased CoA, according to 

L>SS>F gradient (Fig. 7.2C), as well as its clockwise shift from L to F speed, both indicate that the 

global co-activation is differently expressed according to sub-phases and gait speed. Further studies 

should be aimed at investigating in detail how the CNS modulates the global co-activation at 

progressive increments of gait speed until running. Nevertheless, it is possible to hypothesize that 

the increase of the global coactivation level in both the loading response and terminal-stance sub-

phases at faster speed, is due to an increase of interaction torques between the foot and the ground 

(Fig. 7.3). 
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Interestingly, we found that the global co-activation curve was similar to the VF curve in 

terms of temporal trend (Figs. 7.2A and 7.2B) and cross-correlation results (Fig. 7.4) at all three gait 

speeds. This finding suggests a very strict spatio-temporal relationship between global force 

production and global muscles coactivation. VF curves were delayed respect to TMCf curves, 

because the CNS, through a feedforward mechanism, anticipates the expected perturbation, given 

by the interaction between foot and ground, and thus stiffens and stabilizes the whole lower limb by 

activating simultaneously all the lower limb muscles in the loading response (first increase of TMCf 

and VF curves). Furthermore, the increased muscle co-activation (second increase of the TMCf 

curve) in the terminal-stance sub-phase determines the second peak on VF curve linked to a 

downward acceleration and lowering of the center of gravity as body weight falls forward over the 

forefoot rocker in terminal stance [18]. The global coactivation was positively correlated with the 

energy consumption and negatively correlated with energy recovery (Table 8.1). The higher the 

global coactivation, the higher the energy consumption. The less the global co-activation, the higher 

the energy recovery. These findings suggest that the CNS may either increase the global co-

activation level to stabilize the limb during the most unstable (e.g. L speed) or the most demanding 

(F speed) condition, or decrease the global co-activation level to optimize both the energy 

consumption and recovery at preferred gait speed (SS speed). This concept is further reinforced by 

the findings that the global co-activation is positively correlated with some balance-related 

parameters, i.e. first and second double support and stance durations.  

In conclusion, the novelty of this study lies in the fact that our results provide a time-varying 

characterization, within the gait cycle, of the global lower limb co-activation of twelve muscles at a 

multi-joint level. Furthermore, the used algorithm does not require an a-priori sorting of the muscles 

depending on the moment generated at the single joints. The global lower limb coactivation shows a 

representative temporal profile characterized by two humps within the stance-phase, as well as the 

ground reaction vertical forces profiles [18]. Furthermore, our findings suggest the applicability of 
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this method in investigating several aspects, such as motor learning strategies, limb stiffness, gait 

and postural stability, energy efficiency optimization, also in pathological conditions. 

  

Several factors in the sEMG measurement and pre-processing might influence the linear envelope 

profiles, and therefore the outcome of co-activation [21]. Particularly, the TMCf profile is strictly 

dependent on the normalization technique adopted: in our study, the global lower limb muscle 

coactivation curves were normalized with respect to the peak values across all trials. This choice of 

normalization procedure is linked to one of the future developments of this study that consists in the 

global lower limb co-activation analysis during motor tasks in pathologic conditions. Indeed, for 

patients with motor disorders, other normalization procedures, such as isometric maximum 

voluntary contraction, can be very long and hardly executable [3]. 

Furthermore, the analysis of other ranges of gait speeds, until running, could be useful to understand 

how the CNS modulates the global co-activation at progressive increments of gait speed.  
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CHAPTER 8 

8. PROGRESSION OF MUSCULAR 

COACTIVATION AND GAIT VARIABILITY IN 

CHILDREN WITH DUCHENNE MUSCULAR 

DYSTROPHY: A 2-YEAR FOLLOW-UP STUDY 

In this chapter, text and figures have been taken from or adapted from the article “Progression of 

muscular co-activation and gait variability in children with Duchenne Muscular Dystrophy: a 2-

year follow-up study” [2019 Submitted, Journal of Electromyography and Kinesiology], which was 

co-authored by me. 

Despite Duchenne Muscular Dystrophy being characterized by muscle weakness, no studies have 

investigated muscle co- activation in patients affected by DMD so far.  

In the study “Progression of muscular co-activation and gait variability in children with Duchenne 

Muscular Dystrophy: a 2-year follow-up study”, submitted on Clinical Biomechanics (October 

2019),  we analyzed the activation patterns of lower limb muscles in DMD children through surface 

electromyography signal (surface EMG) at different times from disease onset during unconstrained 

gait. Muscular co-activation of agonist-antagonist muscles at the knee and ankle joints was then 

linked it with motor function.  

The purposes of this study were therefore (i) to assess the role of lower limb muscle coactivation in 

a group of patients with Duchenne Muscular Distrophy taking into account the influence of both 

SNR and sEMG processing technique; (ii) to evaluate its extent and its relationship with the 

progression of gait impairment at the 1- and 2-year follow-up evaluations (iii) to compare the 

obtained data with functional capacity. 
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This approach may be useful for a better interpretation of the pathologic mechanisms, in terms of 

muscle behavior, to address rehabilitation treatmen 

 

8.1 Materials and methods 

Subjects 

Ten male children with DMD were recruited (mean age 5.51 (SD 1.35) years, mean height 1.20 (SD 

8.70) m, mean weight 27.16 (SD 8.19) kg). All of them were able to walk without assistance or 

walking aids on a level surface, and no one underwent surgical interventions at the level of the 

lower limbs. A preliminary visit performed right after the diagnosis included a first evaluation of 

the severity of the disease, and a battery of motor tests including the 6-minute walking test (6MWT) 

[1] and the North Star Ambulatory Assessment (NSAA). Pharmacological treatment was generally 

planned at the time of the first visit. After the first evaluation, a series of acquisition sessions were 

programmed: the first of them (identified as T0), happened generally two years after the first visit, 

so to ensure the effect of the pharmacological treatment. The two subsequent acquisition sessions 

(identified as T1 and T2) were scheduled with an interval of one year. Gait sessions were recorded 

at the MarLab – laboratory of robotics and analysis of the movements at the “Ospedale Pediatrico 

Bambino Gesù” in Palidoro, Rome, at T0, T1, and T2.    

Gait analysis 

In the three gait analysis sessions, kinematics data were recorded at 200 Hz using a stereo-

photogrammetric system (VICON – Nexus motion capture Software) consisting of eight infrared 

cameras spaced around the walkway. Thirty-five reflective spherical markers were attached on the 

anatomical landmarks, in accordance with a validated biomechanical model.  Anthropometric data 

were collected for each subject [2]. 
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Surface EMG signals were recorded at 1000 Hz using a Mini Wave sEMG wireless probe system 

(Cometa System). After skin preparation, bipolar Ag/AgCl surface electrodes (2 cm diameter) were 

placed over the muscle belly in the direction of the muscle fibres according to the European 

recommendations for surface electromyography (SENIAM) and the atlas of muscle innervation 

zones [3] . Electrodes were placed on the following muscles: Rectus femoris (RF); Vastus lateralis 

(LA); Biceps femoris (BF); Medial Hamstring (HS); Tibialis Anterior (TA); Gastrocnemius (GAS), 

Soleus (SOL) and Gluteus maximus (GM). 

Experimental procedure 

The children were asked to walk barefoot at comfortable self-selected speeds along a walkway 

approximately 8 m long while looking forward. Because we were interested in natural locomotion, 

only general, qualitative instructions were provided. Before the recording session, the subjects 

practiced for a few minutes to familiarize themselves with the procedure.   

Ten trials per patient were recorded. To avoid muscle fatigue, groups of three trials were separated 

by 1-minute rest periods. 

Data analysis 

Kinematic parameters  

The data were processed using MATLAB (version 8.3.0.532, MathWorks, Natick, MA, USA) 

software. Regarding kinematic data, the anatomical angles of the lower limb in the sagittal plane 

were computed from motion capture data. For each trial, every gait cycle was segmented and 

defined as the time between two successive foot contacts of the same leg. In this study, foot strike 

and foot-off events were determined by locating the maximum and minimum excursions of the limb 

angle, defined as the angle between the vertical axis and the limb segment (from the greater 

trochanter to the lateral malleolus), projected on the sagittal plane. Since the disease typically 

affects both lower limbs symmetrically, we focused our analyses on the right dominant leg. Gait 
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cycle segmentation was used to calculate the following spatiotemporal parameters of gait: gait 

velocity, gait cadence, step length, stride length, and step width. In addition, the duration of stance 

phase (expressed as a percentage of the cycle duration) was evaluated.  

To account for possible anthropometry variations [5] associated with growth, stride length, step 

length and stride width were expressed as a percentage of the limb length. The mean (denoted as 

mean in the following formula) and the standard deviation (denoted as SD in the following formula) 

were then computed for the step length, stride length and stride width.  

Using these the values of mean and standard deviation, the coefficient of variation (CV) was 

computed, since these parameters are known to be related to stability during gait:  

𝐶𝑉 =
100 ∗ 𝑆𝐷

𝑚𝑒𝑎𝑛
 

Thus, the greater is the CV value, the more instable is the gait.  

Surface EMG parameters   

Segmented portions of raw surface EMG data for each gait cycle were band-pass filtered using a 

Butterworth filter (20–400 Hz), rectified, and low-pass filtered with a Butterworth filter (cut-off 

frequency 10 Hz), to obtain the linear envelopes (LE) of each muscle. For each subject and muscle, 

this was normalized to its peak value across all trials from the same session. From the processed 

surface EMG signals, the co-activation index was calculated for the pairs of antagonist muscles 

VL–BF and TA–SOL by using the Vector Coding Technique (VCT) [4]. The advantage of this 

technique, as compared to amplitude-based indicators of co-activation, is its substantial 

independence from EMG amplitude. In the case of longitudinal studies, where muscle strength and 

weakness may play a relevant role, this independence from amplitude makes it possible to observe 

co-activation with no confounding effects coming from differences in the overall magnitude of 

muscle activity.  
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As a matter of fact, Vector Coding Technique is typically used to quantify the coordination among 

patterns of agonist and antagonist muscle pairs for different signals of equivalent type [4]. This 

algorithm divides the coordination patterns into 4 classes: In-phase or In-activation (when two 

signals simultaneously either increase or decrease their respective amplitudes); Anti-phase or Anti-

activation (when two muscles act in an opposite way – the first increases and the second decreases 

its amplitude or vice versa); One-only (when only one muscle is active), and Other-only (when only 

the other muscle is active) [6].  

To identify the co-activation pattern, a 2-D plot is thus constructed, where the horizontal axis 

corresponds to one surface EMG signal envelope LEM1 and the vertical axis corresponds to the 

other envelope LEM2. The coupling angle (γ) is then defined as the positive direction angle 

subtended from a vector adjoining two successive time points relative to the right horizontal:   

𝛾𝑖 =

{
 
 

 
 arctan (

𝐿𝐸𝑀2(𝑖 + 1)−𝐿𝐸𝑀2(𝑖)

𝐿𝐸𝑀1(𝑖 + 1)−𝐿𝐸𝑀1(𝑖)
) 𝑖𝑓 (𝐿𝐸𝑀1(𝑖 + 1)−𝐿𝐸𝑀1(𝑖)) ≥ 0

180° + arctan (
𝐿𝐸𝑀2(𝑖 + 1)−𝐿𝐸𝑀2(𝑖)

𝐿𝐸𝑀1(𝑖 + 1)−𝐿𝐸𝑀1(𝑖)
) 𝑖𝑓 (𝐿𝐸𝑀1(𝑖 + 1)−𝐿𝐸𝑀1(𝑖)) < 0

 

where i is the current time sample and 0°≤ γ ≤360°.   

When coupling angles are 45° and 225°, the two signals are perfectly in-phase (they increase or 

decrease of the same relative amount sample by sample). On the other hand, at 135° and 315°, a 

pure anti-phase coordination is present. When the segment adjoining two successive points is 

parallel to the horizontal (γ=0° or 180°) or vertical axis (γ = 90° or 270°), there is a pure one-only 

signal phase (one of the muscles increases or decreases its activity with no change on the other). 

When coupling angles do not relate to vertical, horizontal and diagonal vectors, the patterns are less 

pure.  
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For each time sample, muscle activity pattern is thus classified according to the following: One-

only activation if 67.5° ≤ γi < 112.5° or 247.5° ≤ γi < 292.5°; Other-only activation for 0° ≤ γi < 

22.5°, 157.5° ≤ γi < 202.5°, or 337.5° ≤ γi < 360°; In-activation if 22.5° ≤ γi < 67.5° or 202.5° ≤ γi 

< 247.5°; Anti-activation if 112.5° ≤ γi < 157.5° or 292.5° ≤ γi < 337.5°.   

CIVCT is then calculated as the total number of temporal indexes classified as either In- or Anti-

activation relative to the total duration of the multiplied by 100. Complete co-activation corresponds 

to a CIVCT = 100%.   

Statistical analysis  

To examine the differences among the co-activation, gait parameters, CV and motor test values at 

the three evaluation sessions, ANOVA test was performed using MATLAB (version 8.3.0.532, 

MathWorks, Natick, MA, USA) software. Furthermore, correlation analysis was performed in order 

to determine the relationship between the co-activation index and the level of functional ability 

(6MWT), parameters of gait performance and gait stability. Descriptive statistics included means 

and standard deviation (SD), and significance level was set at p < 0.05. 

8.2 Results 

Changes in gait variables over the 1- and 2-year follow-up evaluations are shown in (Figs. 8.1,8.2).  

Time had a significant effect on stride width, duration of stance phase, and on coefficients of 

variability for both stride length and stride width.  

Significant differences among the three evaluation sessions were observed on both stride width 

(F(2,27) = 8.37, p = 0.0019) and stance phase duration (F(2,27) = 3.99, p = 0.0326). Pairwise 

comparison between the sessions identified a significant increase of stride width passing from T0 to 

T2 (p = 0.0015) and a significant decrease of stance phase duration passing from T0 to T1 (p = 

0.0262).  
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Analysis of the CV of Stride length at the three evaluation sessions showed significant differences 

(F(2,27)=5.57, p = 0.0106). Pairwise comparison between the sessions identified a significant 

increase of CV passing from T0 to T2 (p = 0.0330) and from T1 to T2 (p = 0.0102). Furthermore, a 

significant effect of time on the CV of stride width was observed (F(2,27)=7.72, p = 0.0027). Pairwise 

comparison between the session identified a significant increase of stride width CV values passing 

from T0 to T2 (T0 vs T1 p = 0.0051; T0 vs T2 (p = 0.0134). 

 

Figure 8.1 (Time-distance parameters and CV values  at the baseline T0, at 1-year follow-up T1 and at 2-

year follow-up T2./ 
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Figure 8.2. Radar plot illustrating the pattern of the time-distance parameters at the baseline T0 (light gray 

line), at 1-year follow-up T1 (dark gray line), and at 2-year follow-up T2 (black line). Group mean values for 

each parameter are shown.  

 

Analysis of the CI at the three evaluation sessions, showed significant differences for both the VL–

BF (F(2,27)=5.44,P=0.012) and the TA–SOL (F(2,27)=7.84,P=0.002) pairs of antagonist muscles. 

 

Figure 8.3.  CI values at the baseline T0, at 1-year follow-up T1 and at 2-year follow-up T2 for both VL-BF 

and TA-SOL pairs of antagonist muscles. 
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In particular, pairwise comparison between the sessions identified a significant decrease of co-

activation from T0 to T1 (p = 0.045) and an increase of co-activation when passing from T1 to T2 

for the pair acting on the knee flexion-extension (p = 0.009), and a significant decrease of co-

activation passing from T0 to T1 (p = 0.002) and from T0 to T2 (p = 0.044) for the muscle pair 

acting on the ankle joint. (Fig. 8.3)  

Analysis of the 6MWT distance at the three evaluation sessions showed significant differences 

(F(2,27) = 3.56, p = 0.045). In particular, the distance significantly decreased when passing from T1 

to T2 (pairwise comparison p = 0.049). (Fig. 8.4) 

 

Figure 8.4. 6MWT values at the baseline T0, at 1-year follow-up T1 and at 2-year follow-up T2. 

From the correlation analysis, significant negative correlation (r=-0.382, P=0.049) between CI on 

VL-BF and 6MWT values was observed. Furthermore, the co-activation of TA-SOL was negatively 

correlated with the CV of stride width (r = -0.510 , p = 0.0077). 
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Figure 8.5. CI values for both VL-BF and TA-SOL pairs of antagonist muscles and CV Stride Width values 

at the baseline T0 (circles), 1-year follow-up T1 (triangles), and 2-year follow-up T2 (squares). Each dot 

represents a patient with different shades of gray according to the 6MWT values (see bar on the right). 

Large circle, large triangle and large square represent the mean values among subjects at the baseline T0, 

1-year follow-up T1, and 2-year follow-up T2, respectively 

 

8.3 Discussion and Conclusions 

Preserving gait autonomy is a priority in the rehabilitation of DMD children. In order to achieve this 

goal, many authors have contributed in recent years to the advances in the understanding of DMD 

children gait biomechanics. It is well-known that patients with DMD show a progressive course. 

The abnormal gait pattern of a child with DMD has been reported to be caused by both primary (e.g 

muscle weakness) and secondary deficits (e.g. muscle dystrophy), as well as the result of adaptation 

processes to diminished muscle strength and coordination [7]. Consequently, the patient’s walking 

ability is expected to gradually decline over time.  

However, changes in muscle activation during gait of these children related to disease progression 

during years, have not yet been well established. It has been suggested that muscle weakness has a 

direct influence on DMD gait [5,7]: regarding the muscles acting at the upper part of the lower 
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limb, the lower power generation at the hip is explained by weakness of the hip extensors (e.g. 

Biceps femoris), which might resulting in a pelvic anterior tilt [8], and a more flexed position of the 

hip. Furthermore, weakness of the hip flexors (e.g. rectus femoris) could contribute to this decrease 

in power at the hip joint. Regarding the effects at the ankle joint, abnormalities at the muscle groups 

acting on this joint may be linked to a diminished ability to produce an appropriate dorsiflexion 

torque at the beginning of stance, when children with DMD either place the foot in plantar flexed 

position or flat on the ground. However, even though lower limb muscle groups are severely 

involved in children with DMD [9], most of the results have been described qualitatively up to now, 

and no specific muscle parameters have been monitored longitudinally, nor they have been directly 

linked with gait performance parameters.  

Time distance parameters and CV  

As regard gait parameters, we found a further widening of the base of support at the 2-year follow-

up evaluation. A widened base of support reflects the adoption of compensatory mechanisms aimed 

at maintaining the dynamic balance on the frontal plane by increasing the safety margin between the 

center of gravity and the edge of the feet [10].   

In the present study, we observed a progressive increase in the variability of both stride length and 

stride width (Figs. 8.1,8.2). It has been discovered that both stride length and stride width variability 

are linked with locomotion stability [11-13]. The progressive increase in gait variability observed at 

the 2-year follow-up may thus directly reflect a deterioration of the gait function, which leads to 

greater instability. Taking this into consideration, gait variability seems to anticipate the future loss 

of walking autonomy. However, further studies are needed to clarify whether gait variability can be 

a predictor of the loss of walking autonomy. While we cannot exclude possible confounding factors 

associated with growth, the normalization of the spatial parameters of gait substantially minimized 

the direct effect of anthropometry variations on the spatial characteristics of gait.   
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Co-activation  

This study deeply investigated of the function of co-activation in patients with DMD, highlighting 

the relationship between muscle co-activation during gait and disability, gait performance and 

postural stability. Similar to spatiotemporal- and kinetic parameters, muscle activity data is also 

subjective to processing factors [5], which may determine a further variability in longitudinal 

studies. In this study, the choice of processing parameters, such as the cut-off frequency or the 

technique for evaluating muscle co-activation, was based on a preliminary study on a smaller 

sample [14].  

During gait, joint stiffness and postural stability [15] are regulated by variations in the forces 

produced by the simultaneous contraction of antagonistic lower limb muscles.   

It has been reported that increased knee and ankle muscle co-activation in pathologic conditions 

could compensate for the loss of selective muscle control, muscle weakness, abnormal muscle tone 

and fatigue in patients with central nervous system lesions [16], and this often leads to loss of 

balance and gait performance.  

For instance, in Multiple Sclerosis it has been found that the neuromuscular system simultaneously 

increases knee and ankle muscle co-activation to ensure stability during forward progression [15]. 

Furthermore, both in post stroke and hemiplegic patients increased muscle co-activation is a 

compensation strategy for enhancing postural stability and locomotor performance [17, 18].  

Our results revealed changes in lower limb co-activations values in relation to disease progression 

for both proximal and distal segments in children with DMD. Fig. 3.3 showed a significant decrease 

in co-activation values after a year, which is confirmed even after two years for distal segments 

muscles. Despite a decreasing trend from T0 to T1 on co-activation values at the proximal level, a 

significant increase of co-activation was reported at 2-year follow-up, when patients showed the 

lowest functional capacity (Figs. 8.3,8.4).  
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The absence of a common behaviour at T2 for proximal and distal muscles may be associated with 

a change in activation strategies, as the result of an adaptation to the disease progression, which 

brings to higher co-activation for the proximal muscles, associated with a lower one of distal ones.  

The reduction of co-contraction activities at the distal level might be directly related to the direct 

effect of the pathology, i.e. the muscle dystrophy that drives the pattern configuration towards the 

exploitation of the passive characteristics of soft tissues. Moreover, the co-activation of the ankle 

joint muscle pair was found inversely proportional to the stride width variability. This might 

indicate that a decreased co-activation over the time at the ankle and knee joints, due to the relevant 

presence of muscle dystrophy at the distal level, leads to a more unstable gait. The increased co-

activation al proximal level may be linked to the decrease in functional capacity. Despite the 

presence of a large inter-individual variability, this interpretation might be associated with the 

observed negative correlation between co-activation values at the muscle pair acting at the proximal 

level, and the gait functional outcomes during the years (Fig. 8.4). We observed a decrease in the 

6MWT values from the 1-year follow-up to the 2-year follow-up. Our results are in line with 

previous studies and this functional decline reflects the progressive nature of degenerative DMD 

over time [19]. However, while the functional capacity decreases, increase in co-activation at the 

proximal level at the 2-year follow-up suggests that patients try to maintain an effective gait despite 

disease progression, by increasing muscle co-activation, especially when the muscular 

manifestations of the pathology are more evident. Thus, since gait speed remained approximately 

unchanged over time (Figs 8.1,8.2), increased muscle co-activation at proximal level represents the 

most important strategy to compensate for a deterioration in both functional ability and increase in 

gait instability in patients with DMD.  

Possible compensatory mechanisms during functional tasks were also highlighted by Peeters 2019 

who investigated whether patients with DMD use trunk movement to compensate for reduced arm 

function when performing seated tasks. In that study, DMD children showed increased ROM in 
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trunk flexion-extension mainly in the extension direction, and increased muscle activity, thus they 

lean backwards in order to keep balance, or extend their spine from an initially more slumped 

posture.   

Also in healthy subjects, it has been reported that the CNS co-activates many muscles to increase 

the whole lower limb stiffness to compensate for a reduced gait stability at lower speed [20, 21]. 

Conversely, a low level of co-activation is required during natural self-selected speed to likely 

minimize the energy expenditure and guarantee an effective gait, indeed the co-activation is 

positively correlated with some balance-related parameters, i.e., first and second double support and 

stance durations. Furthermore, in older subjects with low postural control ability muscle co-

activation was significantly higher than in the elderly with high balance ability. Increased muscle 

co-activation could thus be a necessary change to compensate for a deterioration in postural control 

also in the sample observed in this study, in a similar way to what observed in healthy aging [22]. 
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CHAPTER 9 

9. THE EFFECT OF PRE-PROCESSING SETTINGS 

ON MUSCLE CO-ACTIVATION ASSESSMENT  

In this chapter, text and figures have been taken from or adapted from the article “Assessing the 

influence of SNR and pre-processing filter bandwidth on the extraction of different muscle co-

activation indexes from surface EMG data” [2018, Journal of Electromyography and Kinesiology], 

which was co-authored by me. 

The effects of both noise and pre-processing choices for envelope estimation on co-activation 

indexes were investigated, and results were presented to the conference ‘6th Congress of the 

National Group of Bioengineering (GNB) 2018. Further results are published in the Journal of 

Electromyography and Kinesiology in the paper “Assessing the influence of SNR and pre-

processing filter bandwidth on the extraction of different muscle co-activation indexes from surface 

EMG data”, which I drafted (M. Rinaldi et al., 2018).  

In this scenario, two elements are object of discussion in the scientific community: i) since an 

agreed definition of muscle co-activation is missing, the different indicators of muscle co-activation 

from EMG data may not be totally comparable as they may refer to a different physiological 

interpretation of the phenomenon; ii) while most co-activation indicators have been introduced and 

assessed in their specific application cases, to our knowledge a thorough performance comparison 

between indicators, including their sensitivity to the pre-processing parameters (e.g. cut-off 

frequency of the low-pass filter for envelope estimation) and to the different signal to noise ratio 

(SNR) levels, is missing.  

Focusing on the latter aspects, SNR strongly affects the performance of algorithms for EMG 

analysis and activation detection [1]; very variable is also the choice of the lowpass cut-off 
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frequency used to estimate the amplitude of EMG activity, as it ranges from 3 Hz to 25 Hz [2], and 

this operator-specific dependence does not guarantee the estimation of stable and repeatable 

information from the algorithms, unless operator-independent techniques are used [3]. 

For these reasons, we aim to compare the performance of the most used techniques proposed in 

literature to assess muscle co-activation [2], according to their respective definition, using a variety 

of simulated sEMG signals. Specifically: i) we used in-silico sEMG signals generated by the 

Hogan-Mann model; we used both rectangular and gaussian waveforms to modulate the noise; ii) 

we added noise to the previous signals with different levels of signal to noise ratio (SNR); iii) we 

simulated the co-activation by varying the amount of overlapping between the modulating 

waveforms; iv) we extracted the linear envelopes of each simulated signal by applying low-pass 

filters with a set of different cut-off frequency values; v) for each technique, we evaluated the 

performance by comparing the co-activation outcomes on the extracted envelopes with the co-

activation outcomes on the reference represented by ad-hoc generated modulating waveforms. 

9.1 Materials and methods 

• Simulation procedure 

A functional mathematical model of the myoelectric activity recorded from surface electrodes states 

that the sEMG signal e(i) can be expressed as: 

e(i)= wα(i) . n1(i) 

where e(i) is the i-th sample of the simulated sEMG signal, w is a modulating waveform 

representing muscular activity and n1 is a realization of random white Gaussian noise process.  

The constant α is an exponent relating the muscular activity to the electrical signal and has a value 

that may vary from 1 [4] to 1.7-2 [5,6]. In this simulation, it is further supposed that α is equal to 1. 

In this work the simulated dataset has been built by using two kinds of modulating waveform w: a 

rectangular (Rwave) and a gaussian (Gwave, standard deviation 50 ms) waveform. For each type of 
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modulating waveform, the agonist and antagonist muscles have been simulated by assigning fixed 

values of amplitude to the respective modulating waveforms: these values are 0.5 for agonist and 1 

for antagonist (Fig. 9.1). 

A further random white Gaussian noise realization n2, which is statistically independent from n1, 

was added to e to simulate typical SNR conditions (5, 10, 15 and 20 dB) [1]. A simulated sEMG 

signal is then expressed as:  

sEMG(i)= w(i) . n1(i) + n2(i) 

The linear envelopes (LE) of the simulated signals for each SNR condition and each modulating 

waveform were extracted, after rectification, by a fourth-order Butterworth low pass filter with four 

different values of cut-off frequency (fcut-off): 5, 10, 15 and 20 Hz..  

The performance of the main techniques used to assess muscle co-activation, which will be 

described in the next section, was then evaluated on the following signals: 

• rectangular (Rwave) and gaussian (Gwave) modulating waveforms, taken as reference; 

• Linear envelopes of sEMG as obtained by Rwave, LE_R, for each SNR condition and for 

each fcut-off; 

• Linear envelopes of sEMG as obtained by Gwave, LE_G, for each SNR condition and for 

each fcut-off. 

Levels of amplitude were set at 0.5 for the agonist and 1 for the antagonist muscle, respectively. 

Thus, the co-activation was simulated by pairs of signals mimicking agonist and antagonist activity, 

with specific amplitudes. For each combination obtained for a triplet of SNR level, fcut-off and 

degree of overlapping (25%, 50%, 75%, 100%), fifty independent realizations of a random white 

Gaussian process for n1 and fifty independent realizations of the same kind of process for the noise 

n2 were generated.  
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Figure 9.1. (a) Rectangular (Rwave at left) and gaussian (Gwave at right) modulating functions (w) used in the 

simulation procedure (amplitude equal to 1). (b) Rwave and Gwave function modulates the realization of a white 

Gaussian random process (n1). The obtained signal simulates the myoelectric activity due to muscle 

activation (e). The plots present the full wave rectified signals. (c) A second realization of a white Gaussian 

random process (n2), uncorrelated with the Rwave (left) and Gwave (right) obtained at the previous step, 

simulates additive noise. The plots report sEMG with SNR = 10 dB. (d) Linear envelopes extracted from 

sEMG with low pass filter (cut-off frequency 10 Hz). 
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Figure 9.2. (a) Rwave (with amplitude equal to 1 and 0.5) with overlaps of 25%, 50%, 75%, and 100%. (b) 

Examples of linear envelopes (cut-off frequency=10 Hz and SNR=10 dB), obtained from modulating 

waveforms in (a) and with overlaps of 25%, 50%, 75%, and 100%. (c) Gaussian modulating waveforms 

Gwave (with amplitude equal to 1 and 0.5) with overlaps of 25%, 50%, 75%, and 100%. (d) Examples of 

linear envelopes (cut-off frequency=10 Hz and SNR=10 dB), obtained from modulating waveforms in (c) 

and overlapped of 25%, 50%, 75%, and 100%.  Vertical lines represent the time support (between iM1start and 

iM2end ) considered for the co-activation analysis. The instants when the first modulating waveform returns to 

zero (iM1end) and when the second modulating waveform becomes higher than zero (iM2start) are also indicated. 

The proposed model has been chosen for two reasons: the simplicity in its implementation, which 

makes the dataset generation easier, and the independence from frequency signature that doesn’t 

affect the co-activation indexes; despite being rather old, it is still popular in the scientific 

community as an effective yet simple method to be used when comparing different estimation 

methods [7,8]. The physiological parameters embedded in the most recent models could be useful to 

study how muscle anatomy and geometry, motor unit distribution and volume conductor affect the 

muscle co-activation.  

• Techniques to assess muscles co-activation  

In the following the six computational techniques under comparison are grouped into three main 

categories: agonist-antagonist, multi-muscle, vector coding.  

 



168 
 

Agonist–antagonist approach 

The co-activation algorithms proposed by Kellis et al, 2003, and by Falconer et al, 1985, Unnithan 

et al, 1996, Rudolph et al, 2000 [9-12] are based on an agonist–antagonist approach, and require 

(except for Rudolph) an a-priori sorting of the muscles depending on the generated moment. In 

physiological movements, agonist and antagonist muscles contract in a non-simultaneous way. 

Indeed, when a muscle group (agonist) contracts to generate a moment and rotate a body segment 

around a joint, the antagonist muscle group remains inactive in such a way that it does not cause 

braking action through the production of an opposite force moment. In the following we will denote 

the two muscles as M1 and M2, and the corresponding linear envelopes LEM1 and LEM2 as lasting N 

samples. All the co-activation indexes introduced by these techniques assume values between 0 and 

100 (the lower the index value, the lower the level of muscle co-activation, except for Kellis). The 

time support used to calculate these indexes starts when the first modulating waveform becomes 

higher than zero (iM1start) and ends when the second one returns to zero (iM2end). iM1end and iM2start are 

referred to the instant when the first modulating waveform returns to zero and the instant when the 

second one becomes higher than zero, respectively. 

A) Kellis method 

The approach is based on the identification of the inter-relationships between antagonist muscles 

during movement: if M1 is a stabilizer/antagonist and M2 provides the main force for the movement, 

the co-activation index CIK provides a relative measure of the M1 contribution to the total activation 

during the task, and it is calculated as follows: 

𝐶𝐼𝐾 = 
∑ 𝐿𝐸𝑀1(𝑖)
𝑖𝑀2𝑒𝑛𝑑
𝑖=𝑖𝑀1𝑠𝑡𝑎𝑟𝑡

∑ (𝐿𝐸𝑀1(𝑖) +
𝑖𝑀2𝑒𝑛𝑑
𝑖=𝑖𝑀1𝑠𝑡𝑎𝑟𝑡

𝐿𝐸𝑀2(𝑖))
∙ 100 



169 
 

Low CIK values indicate low activation of the stabilizer/antagonist, values close to 50 indicate the 

same activation of agonists and antagonists, and values in the range 50-100 indicate an inversion of 

the behaviour. For this index, maximum co-activation corresponds to having an index of 50.  

B) Falconer and Winter method 

The co-activation index calculated by Falconer and Winter (CIFW) is expressed as: 

𝐶𝐼𝐹𝑊 = 
2𝐼𝑎𝑛𝑡
𝐼𝑇𝑜𝑡𝑎𝑙

∙ 100 

Where 

𝐼𝑇𝑜𝑡𝑎𝑙 = ∑ (𝐿𝐸𝑀1(𝑖) +

𝑖𝑀2𝑒𝑛𝑑

𝑖=𝑖𝑀1𝑠𝑡𝑎𝑟𝑡

𝐿𝐸𝑀2(𝑖)) 

and Iant is the area of total antagonistic activity: 

𝐼𝑎𝑛𝑡 = ∑ 𝐿𝐸𝑀2(𝑖)

𝑖𝑀2𝑠𝑡𝑎𝑟𝑡

𝑖=𝑖𝑀1𝑠𝑡𝑎𝑟𝑡

+ ∑ 𝐿𝐸𝑀1(𝑖)

𝑖𝑀2𝑒𝑛𝑑

𝑖=𝑖𝑀2𝑠𝑡𝑎𝑟𝑡

 

 

where in our simulation the vectors u = [iM1start:iM2start] and v = [iM2start:iM2end] correspond to the 

vector indexes where LEM2(u) < LEM1(u) and LEM1(v) < LEM2(v), respectively. In this case, 

maximum co-activation corresponds to having CIFW = 100. 

C) Unnithan method 

The co-activation index CIU is calculated by dividing the area overlapped by the linear envelopes of 

the agonist and antagonist muscles by the number of data points. 

𝐶𝐼𝑈 = 
1

(𝑖𝑀2𝑒𝑛𝑑 − 𝑖𝑀1𝑠𝑡𝑎𝑟𝑡 + 1)
( ∑ min[𝐿𝐸𝑀1(𝑖), 𝐿𝐸𝑀2(𝑖)]

𝑖𝑀2𝑒𝑛𝑑

𝑖=𝑖𝑀1𝑠𝑡𝑎𝑟𝑡

 ) ∙ 100 

This index will be maximum if linear envelopes of each muscle have always the same value, i.e. 

maximum co-activation. In this case, maximum co-activation corresponds to having CIU = 100. 
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D) Rudolph method 

 This method provides a time-dependent co-activation function C(i): 

𝐶(𝑖) =  
𝑚𝑖𝑛{𝐿𝐸𝑀1(𝑖), 𝐿𝐸𝑀2(𝑖)}

𝑚𝑎𝑥{[𝐿𝐸𝑀1(𝑖), 𝐿𝐸𝑀2(𝑖)}
∙ (𝐿𝐸𝑀1(𝑖) + 𝐿𝐸𝑀2(𝑖)) 

with i ranging from iM1start to iM2end. The mean value of C(i) over this activation range represents a 

summary co-activation index. Also in this case, the index is maximum when the minimum 

corresponds to the maximum for each sample, i.e. complete co-activation. The algorithm proposed 

by Rudolph and colleagues provides co-activation values ranging between 0 and 200; in order to 

obtain co-activation values within the range 0-100, as seen for the other methods, Don and 

colleagues slightly modified the equation by Rudolph et al, 2000, by replacing the second factor, 

consisting of the sum of the two samples, with the mean: 

𝐶(𝑖) =  
𝑚𝑖𝑛{𝐿𝐸𝑀1(𝑖), 𝐿𝐸𝑀2(𝑖)}

𝑚𝑎𝑥{𝐿𝐸𝑀1(𝑖), 𝐿𝐸𝑀2(𝑖)}
∙  (
𝐿𝐸𝑀1(𝑖) + 𝐿𝐸𝑀2(𝑖)

2
) 

with i ranging from iM1start to iM2end. Thus, the summary co-activation index (CIRU) can be expressed 

as: 

𝐶𝐼𝑅𝑈 = 
∑ 𝐶(𝑖)𝑖

(𝑖𝑀2𝑒𝑛𝑑 − 𝑖𝑀1𝑠𝑡𝑎𝑟𝑡 + 1)
∙ 100 

 

Time-varying Multi-muscle approach  

The Time-varying Multi-muscle Co-activation function (TMCf) extends the analysis to the 

simultaneous activity on multiple muscles or muscle groups and provides an index assuming values 

between 0 and 100 [13]:  

𝑇𝑀𝐶𝑓(𝑑(𝑖), 𝑖) = 𝐶(𝑑(𝑖)) ∙ 𝑚(𝑖) ∙ 𝑐𝑐(𝑖) 

Where i ranges from iM1start to iM2end and 
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𝐶(𝑑(𝑖)) = (1 −
1

1 + 𝑒−12(𝑑(𝑖)−0.5)
) 

is a sigmoid weight reduction coefficient, ranging between 0 and 1, that takes into account, within 

the exponential function, the mean of the differences between each pair of muscles: 

𝑑(𝑖) =  (
∑ ∑ |𝐿𝐸𝑘(𝑖) − 𝐿𝐸𝑗(𝑖)|

𝑀
𝑗=𝑘+1

𝑀−1
𝑘=1

(𝑖𝑀2𝑒𝑛𝑑 − 𝑖𝑀1𝑠𝑡𝑎𝑟𝑡 + 1) ∙
𝑀!

2! (𝑀 − 2)!

) 

Where M is the number of muscles (M = 2 in this work) and M!/2!(M-2)! is the total number of 

possible differences between each pair of muscles. 

The  TMCf (d(i),i) has the following properties: inverse relationship with the mean of the 

differences d(i), values close to the mean activation of the m(i) muscle sample values considered 

when d(i) is close to 0, and values close to 0 when d(i) is close to 1. In particular, the smaller the 

differences in muscle sample activation, the closer the d(i) values are to 0 and the closer the 

sigmoid-coefficient values are to 1, leaving the TMCf (d(i),i) value close to the value of its mean. 

Inversely, the greater the differences in muscle activations, the more d(i) increases and the more the 

sigmoid coefficient C(d(i) decreases, thereby reducing the TMCf (d(i),i) values 

𝑚(𝑖) =  (
∑ 𝐿𝐸𝑘(𝑖)
𝑀
𝑘=1

𝑀
) 

m(i) is a weighting factor that takes into account the mean activation behaviour of the muscles 

under analysis. 

𝑐𝑐(𝑖) =
(
∑ 𝐿𝐸𝑘(𝑖)
𝑀
𝑘=1
𝑀

)

max
𝑘=1,…𝑀

𝐿𝐸𝑘(𝑖)
 

while cc(i) is a correction coefficient introduced to adjust TMCf (d(i),i) in the trivial case of two 

muscles. The overall co-activation index (CIRA) is then obtained by calculating the mean value 

along the time support of the activation: 
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𝐶𝐼𝑅𝐴 = 
∑ 𝑇𝑀𝐶𝑓(𝑖)
𝑖𝑀2𝑒𝑛𝑑
𝑖=𝑖𝑀1𝑠𝑡𝑎𝑟𝑡

(𝑖𝑀2𝑒𝑛𝑑 − 𝑖𝑀1𝑠𝑡𝑎𝑟𝑡 + 1)
∙ 100 

Vector Coding approach 

An approach based on a Vector Coding Technique (VCT) is typically used to quantify the 

coordination among patterns of agonist and antagonist muscles for different signals of equivalent 

type [14]. The results divide the coordination patterns into 4 classes: In-phase or In-activation 

(when two signals simultaneously either increase or decrease their respective amplitudes); Anti-

phase or Anti-activation (when two muscles act in an antagonist way – the first increases and the 

second decreases its amplitude or vice versa); One-only (when only one muscle is active), and 

Other-only (when only the other muscle is active) [15].  

To identify the co-activation pattern, a 2-D plot is constructed where the horizontal axis 

corresponds to one sEMG signal envelope LEM1 and the vertical axis corresponds to the other 

sEMG signal envelope LEM2 overlapped with the previous one with a certain percentage of overlap. 

The coupling angle (γ) is then defined as the positive direction angle subtended from a vector 

adjoining two successive time points relative to the right horizontal [29]: 

𝛾𝑖 =

{
 
 

 
 arctan (

𝐿𝐸𝑀2(𝑖 + 1)−𝐿𝐸𝑀2(𝑖)

𝐿𝐸𝑀1(𝑖 + 1)−𝐿𝐸𝑀1(𝑖)
) 𝑖𝑓 (𝐿𝐸𝑀1(𝑖 + 1)−𝐿𝐸𝑀1(𝑖)) ≥ 0

180° + arctan (
𝐿𝐸𝑀2(𝑖 + 1)−𝐿𝐸𝑀2(𝑖)

𝐿𝐸𝑀1(𝑖 + 1)−𝐿𝐸𝑀1(𝑖)
) 𝑖𝑓 (𝐿𝐸𝑀1(𝑖 + 1)−𝐿𝐸𝑀1(𝑖)) < 0

 

where i ranges from iM1start to iM2end-1 and 0°≤ γ ≤360°.  

When coupling angles are 45° and 225°, the couple of the signals is in-phase. In-phase couples 

rotate in the same direction. On the other hand, at 135° and 315°, the coordination is anti-phase. 

Anti-phase couples rotate in opposite directions. When the segment adjoining two successive points 

is parallel to the horizontal axis (γ = 0° or 180°), there is a one-only signal phase. When the segment 

adjoining two successive points is parallel to the vertical axis (γ = 90° or 270°) indicate the other-
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only signal phase. When coupling angles do not relate to vertical, horizontal and diagonal vectors, 

the patterns are less pure (Fig. 9.3). 

 

Figure 9.3. Definition of muscle activity patterns depending on the range of coupling angle. 

 

Muscle activity pattern is then classified according to the following: One-only activation if 67.5 ≤ γi 

< 112.5 or 247.5 ≤ γi < 292.5; Other-only activation for 0 ≤ γi < 22.5, 157.5 ≤ γi < 202.5, or 337.5 ≤ 

γi < 360; In-activation if 22.5 ≤ γi < 67.5 or 202.5 ≤ γi < 247.5; Anti-activation if 112.5 ≤ γi < 157.5 

or 292.5 ≤ γi < 337.5 (Fig. 9.4).  

CIVCT is then calculated as the total number of temporal instants classified as either In- or Anti-

activation relative to the total duration of the activation (in the studied case, it is between iM1start and 

iM2end) multiplied by 100. Complete co-activation corresponds to a CIVCT = 100. 
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Figure 9.4. (a) Examples of linear envelopes (cut-off frequency=10 Hz and SNR=10 dB), obtained from Rwave 

overlapped for the 75% of their duration. (b) The analysis of co-activation on the signals in (a) by using 

VCT. Vertical lines represent the time support (between iM1start and iM2end ) considered for the co-activation 

analysis. Three different colors in the figure represent the result of: empty black circles for one-only 

activation, empty light gray circles for other-only activation, full black circles for co-activation. The 

Horizontal axis in the figure represents the changes of LEM1 and LEM2. The vertical axis represents the result 

of the VCT method to analyze by the changes of coupling angle. 

 

• Algorithms performance 

The performance of each algorithm (CIFW, CIU, CIRU, CIK, CIRA, CIVCT) was evaluated on a testing set 

of fifty simulated time series for each test case defined by the triplet of factors: SNR, overlapping 

percentage, fcut-off. 

The estimated co-activation values are expressed, for each test case, as the mean value of the co-

activation indexes calculated over the fifty test signals. The co-activation indexes obtained on the 

modulating waveforms were considered as reference.  

The following aspects were thus analysed:  

- the sensitivity of the different techniques with respect to the different SNR conditions;  

- the influence of the low pass cut-off frequency on co-activation estimation;  
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- the performance with respect to different overlapping between the two signals; 

- the influence of the modulating waveform (i.e. rectangular or gaussian). 

To investigate the ability of each technique to be sensitive to the amount of co-activation, indirectly 

expressed in terms of amount of overlapping, we linearly fitted the data across the different values 

of overlapping, and calculated the slope (s) of the fitting line obtained by using the value of CI as 

predictor of the amount of coactivation, after verifying that the linear model well approximated the 

data (R > 0.995). A value of s close to 1 may be considered as a good predictor. 

• Statistical analysis 

For each algorithm, to examine the differences between the co-activation value and the reference, a 

one-sample t-test for each level of overlap, SNR and fcut-off was performed using MATLAB (version 

8.3.0.532, MathWorks, Natick, MA, USA) software. Descriptive statistics included means ± SD, 

and significance level was set at p < 0.05.  

9.2 Results 

The results of each algorithm for both rectangular and gaussian modulating waveforms are shown in 

Fig. 9.5 and Fig. 9.6, respectively.  



176 
 

 

Figure 9.5. CI values (±SD) obtained, for each algorithm, by averaging the simulation results of fifty time 

series of linear envelopes extracted from sEMG generated by utilizing fifty independent realizations of a 

white Gaussian random process for n1, fifty independent realizations of the same kind of process for the noise 

n2 (SNR equal to 5, 10, 15, 20 dB), and a rectangular modulating waveform (Rwave). Every dot represents CI 

values obtained for each low pass frequency (5, 10, 15, 20 Hz) used to extract the liner envelopes of the 

simulated sEMG signals at every level of overlap (dashed vertical lines). Black horizontal dashes are the 

results of each algorithm obtained on the rectangular modulating waveforms (i.e. the reference). For each 

algorithm, the fitting lines with the values of the slope (s) were also reported. 

 

• Performance evaluation 

Rectangular modulating waveform 

From the analysis of Kellis method, significant differences between algorithm performances and the 

reference were observed only for overlap 50% for each fcut-off, independently from SNR (p<0.05) 

(Fig. 9.5). As suggested by the definition in the section 2.2.1, this method gives information only 

about the activation of one signal (a priori identified as the antagonist signal) compared to the total 

activation. Thus, we believe that CIK is not directly linked to an effective estimation of the co-

activation level between two signals, defined as the simultaneous activity of agonist and antagonist 

muscles. This independence is also visible from the almost flat regression line with the amount of 

overlapping. For this reason, Kellis method will not be examined further.  
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Figure 9.6. CI values (±SD) obtained, for each algorithm, by averaging the simulation results of fifty time 

series of linear envelopes extracted from sEMG(i) generated by utilizing fifty independent realizations of a 

white Gaussian random process for n1, fifty independent realizations of the same kind of process for the 

noise n2 (SNR equal to 5, 10, 15, 20 dB), and a gaussian modulating waveform (Gwave). Every dot represents 

CI values obtained for each low pass frequency (5, 10, 15, 20 Hz) used to extract the liner envelopes of the 

simulated sEMG signals at every level of overlap (dashed vertical lines). Black horizontal dashes are the 

results of each algorithm obtained on the gaussian modulating waveforms (i.e. the reference). For each 

algorithm, the fitting lines with the values of the slope (s) were also reported. 

 

As regards to CIFW and CIVCT, the t-test shows significant differences from the reference value for 

each fcut-off and for each overlap (p < 0.001) except for overlap 100% (p > 0.05) (Fig. 9.5). 

Furthermore, performances of these methods seem to be generally better for high levels of fcut-off.  

For each SNR and level of overlap, CIU, CIRU and CIRA show significant differences from the 

reference for each fcut-off (p < 0.001) (Fig. 9.5). Furthermore, an improvement in the algorithm 

performance with respect to the Rwave reference can be observed for high levels of SNR on both 

CIRU and CIU, while CIRA seems to be less sensitive to the SNR level.  

The analysis of the fitting line slope on the Rwave reference performance suggests that both CIFW and 

CIVCT are more sensitive to the level of overlap than the others, showing higher values of s (Fig. 

9.5). 
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Gaussian modulating waveform 

Results obtained with gaussian modulating waveform are similar to those obtained with the 

rectangular modulating waveform (Fig. 9.6). As observed for the Rwave reference, both CIFW and 

CIVCT are highly sensitive to the amount of co-activation, indirectly expressed in terms of amount of 

overlapping, showing high values of s. Nevertheless, for Gwave reference a decrease in s values, and 

thus a worsening of the ability to be sensitive to the amount of co-activation, was observed for the 

other indexes CIU, CIRU and CIRA. 

9.3 Discussion and Conclusion 

Signals recorded by means of surface electromyography contain useful information for a better 

understanding of the strategies underlying human movement. In particular, a practical contribution 

to those studies that investigate motor control mechanisms leading to the contemporary activation 

of muscular groups may be provided by a reliable estimation of the level of muscle co-activation 

because it has quantitative effects on body stability, muscles, and joints in human movements 

[16,17]. This information could, in fact, represent an assessment of the simultaneous activity of 

agonist and antagonist muscles crossing the same joint [18] obtained without using invasive 

measurements.  

Essentially, the Central Nervous System (CNS) exploits muscle co-activation as a motor control 

mechanism to modulate joint stiffness and postural stability, to optimize energy efficiency, to 

enhance movement accuracy so allowing adaptation to environmental demands [19]. Thus, since 

muscle co-activation is widely used in orthopedics, neurology, ergonomics and several other 

clinical fields [13,20] to understand the strategy exerted by the CNS in controlling and modulating 

the neuromuscular output, it is important to correctly process myoelectric signals in order to extract 

this information by means of algorithms that are as robust and as objective as possible.  
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The results obtained in this study demonstrated some practical elements: first, data recording 

conditions, and the relative amount of muscular activation with respect to the background noise (as 

simulated by different levels of SNR) play a relevant role in the ability of the indexes introduced by 

the studied techniques to follow muscular co-activation; then, operator choices for pre-processing 

(namely, the choice of the cut-off frequency for envelope estimation) seem to be relevant for most 

of the techniques analyzed in this study (Falconer and Winter, Unnithan, Rudolph, Ranavolo and 

Vector Coding methods); a rather minor effect is associated with the shape of the muscular 

activation, as differences between the two types of modulating functions are in general negligible. 

Some techniques (Unnithan, Rudolph and Ranavolo methods), however, showed a worse sensitivity 

to the amount of co-activation, when passing from rectangular to gaussian modulation, as shown by 

the decrease of s, which represents a reduction on the coactivation ability to track variations in 

terms of overlapping. 

Performances obtained from Kellis method seem to be independent from both SNR and cut-off 

frequency for both rectangular and gaussian modulating waveforms (Figs. 9.5, 9.6). Nevertheless, 

this technique showed the highest values of variability across the realizations. Furthermore, it is 

based on the anatomic and functional role of the two muscles, taking into consideration that one 

muscle is generally considered as the stabilizer whereas the other provides the main force for 

movement. In this way, the co-activation index provides a relative measure of the stabilizer muscle 

contribution to the total activation during the task, without directly providing an effective estimation 

of the simultaneous activity of agonist and antagonist muscles. 

Regarding Falconer and Winter method, performances are influenced by the values of both cut-off 

frequency and SNR. Furthermore, this method has a pretty good sensitivity to the amount of 

overlap, both for rectangular and gaussian modulating waveforms (Figs. 9.5 and 9.6). 
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The techniques proposed by Unnithan and Rudolph are moderately influenced by the value of the 

cut-off frequency. Furthermore, these methods seem to improve their performance for high levels of 

SNR, independently from the type of modulating waveform (Figs. 9.5, 9.6).  

Given its independence from SNR, the performance of the method proposed by Ranavolo is instead 

influenced by the value of the cut-off frequency: better performance for low levels of cut-off 

frequency are observed both for rectangular and gaussian modulating waveforms (Figs. 9.5, 9.6). A 

possible interpretation of this result can be found in the mathematical definition of the algorithm: 

the construction of the co-activation curve, as defined in the section 2.2.2, is strongly dependent on 

the level of smoothness applied on the signals used to estimate the co-activation.  

The sensitivity obtained with Unnithan, Rudolph and Ranavolo methods resulted lower with the 

gaussian modulating waveform than with the rectangular one (Figs. 9.5, 9.6). Thus, the use of a 

rectangular modulating waveforms improves the ability of these techniques to be sensitive to the 

amount of co-activation, indirectly expressed in terms of amount of overlapping.  

The Vector Coding Technique is influenced by the values of both cut-off frequency and SNR, and it 

achieves better performance for cut-off frequencies at least equal to 10 Hz, independently from the 

type of modulating waveform. Furthermore, this method is the most sensitive to the level of 

overlap, as suggested by the value of the fitting line slope (s) for both modulating waveforms (Figs. 

9.5, 9.6). Since with this method it is possible to temporally separate the coordination of two 

muscles into In- and Anti-activation phases, the relative interactions between the two muscles can 

be continuously monitored over time.   

The relevance of the analysis of muscle co-activation to several fields is well known, thus it is 

important to correctly process myoelectric signals in order to extract this parameter by avoiding 

estimation bias. In this study, the obtained performance of some popular techniques used to assess 

muscle co-activation was thus evaluated by means of simulated sEMG signals generated with 

varying SNR levels and different modulating functions, and processed with varying values of low-
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pass filtering. The sensitivity of each technique to capture variations in co-activation was tested by 

using different levels of simultaneous action of the muscles. The analysis of the results shows that 

the performance of the methodologies used to assess muscle co-activation are influenced by the 

choice of the low pass cut-off frequency, as well as by the level of signal to noise ratio.  

In particular, for low values of SNR, Ranavolo and Vector Coding are to be preferred and the 

Vector Coding Technique shows the highest performance when the SNR is higher. For the vector 

coding technique, it is to be highlighted that its performance improves with higher cut-off 

frequencies. These results may be used to choose the co-activation index that may better represent 

the extent and amount of co-activation based on the recording conditions (SNR level), and 

processing needs (cut-off frequencies).  

  



182 
 

9.4 Bibliography  

[1] Bonato P, D'Alessio T, Knaflitz M. A statistical method for the measurement of muscle activation intervals from 

surface myoelectric signal during gait. IEEE Trans Biomed Eng. 1998;45(3):287-99.  

[2] Rosa MC, Marques A, Demain S, Metcalf CD, Rodrigues J. Methodologies to assess muscle co-contraction during 

gait in people with neurological impairment – a systematic literature review. J Electromyogr Kinesiol 2014;24(2):179-

91.  

[3] D'Alessio T, Conforto S. Extraction of the envelope from surface EMG signals. IEEE Eng Med Biol 2001;20(6):55-

61. 

[4] Gottlieb GL, Agarwal G. Dynamic relationship between isometric muscle tension and the electromyogram in man. 

J. Appl. Physiol 1971;30:345-51. 

[5] Hogan N, Mann RW. Myoelectric signal processing: Optimal estimation applied to electromyography. Part I: 

Derivation of the optimal myoprocessor. IEEE Tran: Biomed. Eng 1980(27):382-95. 

[6] Hogan N, Mann RW. Myoelectric signal processing: Optimal estimation applied to electromyography. Part II: 

Experimental demonstration of optimal myoprocessor performances. IEEE Trans. Biomed. Eng 1980(27):396-410. 

[7] Hayashi, H,  Furui, A,  Kurita, Y,  Tsuji, TA. Variance Distribution Model of Surface EMG Signals Based on 

Inverse Gamma Distribution. IEEE Transactions on Biomedical Engineering 2017;64: 2672-2681. 

[8] Xu, Y,  McClelland, VM,  Cvetkovic, Z,  Mills, KR. Corticomuscular Coherence with Time Lag with Application to 

Delay Estimation. IEEE Transactions on Biomedical Engineering 2017;64:588-600. 

[9] Kellis E, Arabatzi F, Papadopoulos C. Muscle co-activation around the knee in  drop jumping using the co-

contraction index. J Electromyogr Kinesiol 2003 Jun;13(3):229-38.  

[10] Falconer FK., Winter D. Quantitative Assessment of Cocontraction at the Ankle Joint During Walking. 

Electromyography and Clinical Neurophysiology 1985;25 (2–3): 135–49. 

[11] Unnithan VB, Dowling JJ, Frost G, Volpe Ayub B, Bar-Or O. Cocontraction and phasic activity during GAIT in 

children with cerebral palsy. Electromyogr Clin Neurophysiol 1996;36(8):487–94. 

[12] Rudolph KS, Axe MJ, Snyder-Mackler L. Dynamic stability after ACL injury: who  can hop? Knee Surg Sports 

Traumatol Arthrosc 2000;8(5):262-69.  

[13] Ranavolo A, Mari S, Conte C, Serrao M, Silvetti A, Iavicoli S, Draicchio F. A new muscle co-activation index for 

biomechanical load evaluation in work activities. Ergonomics. 2015;58(6):966-79. 

[14] Yoo HJ, Sim T, Choi A, Park HJ, Yang H, Heo HM, Park KS, Mun JH. Quantifying coordination between agonist 

and antagonist muscles during a gait. Journal of Mechanical Science and Technology 2016;30(11)5321-28. 

[15] Chang R, Van Emmerik R, Hamill J. Quantifying rearfoot-forefoot coordination in human walking. J Biomech 

2008;41(14):3101-05.  

[16] Hug F. Can muscle coordination be precisely studied by surface electromyography?. Journal of Electromyography 

and Kinesiology 2011;21(1):1-12. 

[17] Arias P, Espinosa N, Robles-García V, Cao R,Cudeiro J. Antagonist muscle co-activation during straight walking 

and its relation to kinematics: Insight from young, elderly and parkinson's disease, Brain Research 2012;1455:124-131. 

[18] Busse ME, Wiles CM, van Deursen RWM. Muscle co-activation in neurological conditions. Phys Ther Rev 

2005;7(4):247–53.  

[19] Simmons RW, Richardson C. Peripheral regulation of stiffness during arm movements by coactivation of the 

antagonist muscles. Brain Res. 1988;473(1):134-40.  

[20] Le P, Best TM, Khan SN, Mendel E, Marras WS. A review of methods to assess 

coactivation in the spine. J Electromyogr Kinesiol 2017;32:51-60. 

 

  



183 
 

CHAPTER 10 

10. THE EFFECT OF NON-NEGATIVE MATRIX 

FACTORIZATION INITIALIZATION ON THE 

ACCURATE IDENTIFICATION OF MUSCLE 

SYNERGIES  

In this chapter, text and figures have been taken from or adapted from the Conference paper “The 

effect of Non-Negative Matrix Factorization initialization on the accurate identification of muscle 

synergies with correlated activation signals” [2018, MeMea], which was co-authored by me. 

The theory of modular motor control hypothesizes that muscle coordination during different motor 

tasks can be represented by the modulation of the activity of a limited set of motor modules, called 

muscle synergies [1-3]. In the synchronous synergies model, muscle coordination can be divided 

into a spatial component W, representing the contribution of each muscle on each synergy, and a 

series of temporal coefficients C, that are representative of the temporal activation profile of each 

motor module. 

The analysis of the spatio-temporal structure of muscle synergies has been widely used as a tool for 

the assessment of several features of muscle activity in the presence of different pathologies such as 

stroke. Given this, the correct identification of one or both components of this modular structure can 

help with the definition of synergy-based synthetic parameters for the quantitative description of the 

motor performances in patients. 

The correct identification of the modular structures (i.e. W and C) requires a series of necessary 

steps starting from the raw measured multi-muscle myoelectric signal, such as filtering, envelope 

extraction, amplitude and time scale normalization and decomposition. Up to now, a number of 

studies performing muscle synergy analysis have taken subjective and different methodological 
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choices leading to substantially different interpretations of the obtained results. In these regards, a 

complete understanding of how different choices in the processing steps influence those results is 

crucial for allowing the quantitative assessment of motor control strategies through muscle synergy 

analysis. 

Among the previously described processing steps for muscle synergy analysis, this study focuses on 

the limitation of the decomposition algorithm and its specific settings. Different methods of 

extracting muscle synergies from pre-processed sEMG data are compared in [4]. Among the various 

dimensionality reduction algorithms typically used for this purpose, Non-Negative Matrix 

Factorization (NNMF) is the most used, due to its low computational complexity and to its 

reliability [4,5]. This algorithm works by factorizing the original matrix D containing the sEMG 

envelopes into the two matrices, W, containing the spatial component of each synergy, and C, 

containing their temporal activation coefficients. NNMF works exploiting the statistical 

independence of data; in muscle synergy analysis, however, a high degree of correlation among 

activation coefficients may be present, in particular when dealing with post-stroke patients [6-7]. 

The presence of a correlated structure in the control scheme detrimentally affects the results of 

NNMF factorization, leading to the impossibility of accurately identifying the spatial structure of 

the underlying motor modules. 

The traditional NNMF implementation randomly initializes the two matrices W and C from a 

uniform distribution between 0 and 1; however, it has been shown that other initialization strategies, 

based on the structure of the original data, can significantly improve the performances of the 

algorithm, without the definition of different update rules [6]. Among these studies, Singular Value 

Decomposition (SVD) has been proved to be a reliable initialization choice for NNMF [7]. In 

addition, several studies have hypothesized that the implementation of several sparsity constraints 

into the NNMF update rules can lead to a better identification of the W component, suggesting the 

idea that a sparse initialization can improve the factorization performance.  
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The aim of the study “The effect of Non-Negative Matrix Factorization initialization on the 

accurate identification of muscle synergies with correlated activation signals” presented at MeMea 

2018, has been the comparison of three different initialization choices for NNMF (random uniform, 

SVD-based and sparse) when extracting muscle synergies from experimental surface 

electromyography data. To test the behavior of the algorithm in the presence of different levels of 

correlation, the temporal component of the motor coordination has been artificially corrupted, in 

order to simulate extremely challenging conditions for the identification of the correct W matrix, as 

it commonly happens in the factorization of EMG data from pathological subjects [8]. 

10.1 Materials and methods 

Muscle synergy model 

Among the different mathematical models for modular motor control [9], in this study we refer to 

the synchronous muscle synergy model (i.e. fixed spatial structures W) defined by the following 

equation: 

Let D be a matrix containing sEMG envelope data, each row of this matrix is a specific degree of 

freedom (DOF) (i.e. the envelope of each muscle), while each column represents the value of these 

DOFs in a specific sample in time.  

The synchronous model of synergies considers that those ratios of signals, characterizing different 

DOF, remain constant over time. This kind of interpretation is applied in the muscle space; in this 

description, different muscles are assumed to be activated simultaneously without muscle-specific 

time delays. The mathematical definition for this model is: 
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Figure 10.1 – Block diagram for the processing steps needed for muscle synergy 
extraction from raw sEMG data. 

 

 

𝑑(𝑡) =  ∑[𝑊𝑛𝐶𝑛(𝑡)] + 𝜀(𝑡)                           

𝑁

𝑛=1

 

 

In this model, the vector d(t) is a column of the matrix D. The column vector Wn corresponds to 

the time-invariant muscle groups, that are the spatial components of the model, while the Cn are the 

timing coefficients corresponding to each group. The error associated with this approximation is ε. 

The number N is the rank of the model, which corresponds to the number of muscle synergies to be 

used for the description of the movement. This model is often expressed in a matrix form  

 

𝐷 = 𝑊𝐶 + 𝜀                                         

 

where each letter corresponds to the matrix containing the D, W and C coefficients. This 

relationship is the one used in the most common algorithms for the extraction of synchronous 

synergies. It should be noted that both the mathematical expressions have the very same meaning.  

Processing steps for muscle synergy extraction 

The block diagram relative to the processing chain for muscle synergy identification is reported in 

Fig 10.1. Band-pass filtering is needed for artifact rejection, prior to any analysis on the experimental 
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data. Envelope is typically extracted by rectification and low pass filtering, although different 

choices for the time constant have been used in literature . 

Non-Negative Matrix Factorization 

NNMF is an iterative algorithm that aims at factorizing a non-negative matrix D into two matrices 

W (containing the synergy vectors) and C (containing the temporal activation coefficients) such that 

D ≈ WC. The algorithm works via the implementation of the following multiplicative rules: 

 

𝑊𝑖𝑘 ← 𝑊𝑖𝑘

(𝐷𝐶𝑇)𝑖𝑘
(𝑊𝐶𝐶𝑇)𝑖𝑘

     𝐶𝑘𝑗 ← 𝐶𝑘𝑗
(𝑊𝑇𝐷)𝑘𝑗

(𝑊𝑊𝑇𝐶)𝑘𝑗
                  

  

Updating the matrices with these rules ensures the non-increasing trend of the Frobenius norm of 

the error matrix D – WC at each iteration of the algorithm. 

Initialization techniques 

The typical initialization technique for NNMF has been implemented by extracting each element 

of the W matrix from a random uniform distribution between 0 and 1 (RAND), while the SVD based 

initialization has been achieved according to the procedure described in [7] (SVD). Sparse 

initialization (SPARSE) has been implemented by first initializing the W matrix with random 

uniform values in the range [0 0.05], and then changing the weight of one element for  each synergy 

to a random value in the range [0.7 0.8], so to maximize the sparseness for each synergy vector. For 

all the three initialization techniques for W, C has been initialized according to the RAND procedure. 
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Figure 10.2 – Mean E values for the identification of modules obtained by the extraction with the three 

different initialization choices. The three bar plots represent the three sets of modules obtained by 

decomposing the original data with RAND, SVD and SPARSE initialization. 

 

Experimental data 

For the assessment of the differences between the three initialization techniques sEMG data 

coming from the healthy population (11 subjects). Briefly, the subjects executed a 2min 

unconstrained pedaling task at 60 rpm on a cycle ergometer, while EMG data were recorded from 

the following eight lower limb muscles: Gluteus maximus (Gmax), Biceps Femoris long head (BF), 

Gastrocnemius Medialis (GAM), Soleus (SOL), Rectus Femoris (RF), Vastus Lateralis (VL), Vastus 

Medialis (VM) and Tibialis Anterior (TA). Details regarding the EMG pre-processing and 

synchronization with the pedal angle can be found in [10]. 

The three initialization techniques have been implemented to seed NNMF update rules for the 

extraction of 4 synergies from all subjects, defining three sets of factors Wtrue/INIT and Ctrue/INIT (where 

INIT can indicate RAND, SVD and SPARSE). Subsequently, the maxima of the coefficients Ctrue 

have been aligned in order to maximize the correlation between the activation profiles and obtaining 

a new matrix Ccorr. A corrupted data matrix has been defined as Dcorr = WtrueCcorr for each 
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initialization technique used for the definition of the synergy vectors Wtrue. Each matrix Dcorr has 

then been decomposed with all the three initializations, obtaining the estimated modules WRAND, 

WSVD and WSPARSE. The estimation procedure has been replicated 100 times for each simulated Dcorr. 

Performance assessment 

An error measure E for the estimation of the W matrix has been defined as 

𝐸 = √ (100
𝑚𝑒𝑎𝑛(𝑊𝑡𝑟𝑢𝑒 −𝑊)

𝑟𝑎𝑛𝑔𝑒(𝑊𝑡𝑟𝑢𝑒)
)
2

+ (100
𝑠𝑡𝑑(𝑊𝑡𝑟𝑢𝑒 −𝑊)

𝑟𝑎𝑛𝑔𝑒(𝑊𝑡𝑟𝑢𝑒)
)
2

  

This quantity represents the root mean squared error of the identification of the W vectors, expressed 

in percentage of the range of variation of each synergy vector. E values have been evaluated for each 

column of W (i.e. for each single synergy vector), and then a mean indicator across the four modules 

has been taken as representative of the estimation performance. Values for this parameter underwent 

statistical analysis, using a one-way ANOVA test with the estimation algorithm (RAND, SVD or 

SPARSE) as factor. 

 

Figure 10.3 – The four original (top) and correlated (bottom) mean activation profiles for a subject. 
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Figure 10.4 – An example of the Wtrue and the relative identification errors given by the 

three initialization techniques. Statistical significance has been highlighted (p<0.05, 

Wilcoxon Rank-Sum test). 

10.2 Results 

The artificial synchronization of the C coefficients has yielded a correlation value for the temporal 

component of the synergies of 0.86±cc. The mean correlated activation profiles are shown in Fig. 

10.3. Values of the quality factor obtained in our simulations are reported in Fig. 10.2. SPARSE 

initialization has been able to reach better estimation quality than RAND and SVD in the 

identification of all the three set of motor modules. ANOVA test confirmed a significant effect of the 

initialization on the estimation error; post-hoc analysis has shown a significant reduction of the error 

when SPARSE initialization is used (p values).  

An example of the modules extracted by the three methods is shown in Fig. 10.4. It can be seen 

how SVD and RAND initialization sometimes identify non-existent muscle weightings that can lead 

to a misinterpretation of the muscle synergy spatial composition.  
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10.3 Discussion and Conclusions 

The aim of this work has been the assessment of the effect of different initialization techniques on 

the extraction of muscle synergies in extremely challenging conditions. The artificial manipulation of 

the activation coefficients has been inserted to simulate the pathological condition in which the CNS 

is not able to control independently all the motor modules [8]. 

Our results suggest that the choice of a sparse structure in the initialization data for NNMF can 

improve the quality of the identification of the motor modules underlying the control schemes of the 

subject, even when the different synergies are activated simultaneously. SVD initialization has 

shown worse performance than the other two methods; however, the presented results refer to the 

mean error of the identification of all the four motor modules, so that a more detailed analysis of the 

quality in the identification of each single module is needed. In general, from the example in Fig. 

10.4, it can be hypothesized that SPARSE has the advantage of being able to estimate small weights 

better than RAND; SVD has the same performance of SPARSE in the identification of three 

modules, while for W4, it overestimates all the smallest weights. This last result is a possible 

explanation for the higher error values yielded by SVD initialization, and a more thorough analysis 

of the mathematical reason for this behavior can be useful for the understanding on the differences 

between SVD and SPARSE initialization techniques. 

In this study, the activation coefficients have been characterized by a single level of correlation; 

the analysis of how the three techniques behave in correspondence of different levels of correlation is 

needed in order to completely characterize the effects of different initialization strategies for NNMF, 

in solving the problem of muscle synergy extraction. In addition, the level of correlation that has 

been reached by synchronizing the peak activation of the C profiles can be not high enough for 

testing NNMF behavior in pathological conditions; it is reasonable to hypothesize that if the CNS is 

not able to control independently the four modules, correlation values in the activation coefficients 

are higher than 0.86. 
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In this work, we focused on the identification of the spatial structure of the modular control 

schemes, and we evaluated the performance in the identification of just the W matrix; although it is 

not ensured that a correct identification of W implies a correct identification of C, the presented 

results are valid when a synchronous model for muscle synergy is used, in which the fixed 

component of the control strategies is represented by the W vectors. Other studies [11] suggest that 

the fixed characteristics are contained in the C coefficients; when the focus is on the identification of 

the temporal component of the muscle synergies, it is possible that other initialization techniques, 

different from SVD or SPARSE, lead to a better identification of highly correlated structures. 

The choice of the rank of the NNMF approximation (i.e. the number of synergies to be extracted) 

has been made based on the previous results of the analyses carried on with the same experimental 

data [8]; the definition of a robust criterion for the selection of the correct number of synergies is still 

an open issue, and it is not clear whether the choice of different initialization techniques can help 

with its solution. 

In conclusion, these results show how muscle synergy analysis results are strongly dependent on 

the initialization choices for NNMF; because of this, the complete characterization of how different 

processing choices can affect the structure of the extracted muscle synergies is crucial for a correct 

interpretation of synergy-based results in the clinical environment. 
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CHAPTER 11 

11. GENERAL DISCUSSION AND CONCLUSIONS 

Gait analysis allows us to obtain important information of the status of health of an individual and 

his quality of life: Among the different aspects which are the object of debate in the scientific 

community on gait analysis in pathologic conditions, two questions were deepened within this PhD: 

• The assessement of gait patterns in patients with several neurological gait disorders and 

lower limb amputations. Some specific biomechanical features, that may not emerge 

because they are hidden within the global walking strategy, were highlighted by subgroups 

or cluster analysis. 

• The assessements of the role of muscle coactivation mechanisms during walking in 

pathologic conditions and its relstionship with gait performance. The influence of several 

factors in the sEMG measurement and pre-processing on the linear envelope profiles 

extraction, and therefore on the outcome of muscle co-activation were taken into account. 

The analyses carried out within this PhD have been designed to shed light on these two points, and 

the results obtained and presented in this dissertation extend the knowledge about them, and will be 

summarized in the following. 

Gait features in pathologic conditions 

Patients with degenerative diseases such as cerebellar ataxia (CA), spastic paraplegia (SP), 

Parkinson’s disease (PD) and Duchenne Muscular Dystrophy (DMD) often present a progressive 

gait function decline that inexorably impacts their autonomy, risk of falls, and quality of life [1,2]. 

For this reason, and considering the associated social and economic costs, one of the most important 

areas of intervention in neurorehabilitation should be the treatment of gait abnormalities. 

Consequently, evaluating gait to quantify and typify specific gait impairments in these conditions is 
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crucial when focusing on the specific factors in rehabilitation and thus for designing treatments 

tailored to individual needs. This need is further reinforced by the knowledge that gait outcomes are 

correlated with longevity [3], cognitive decline [4], and adverse events [5]. A deeper 

characterization of walking impairment in such different diseases might shed light on the nature of 

both the primary specific gait disorder and its ompensatory mechanisms. In addition, such deeper 

understanding might represent a reasonable prerequisite for establishing better-focused 

rehabilitation strategies. 

As regard HSP patients, several previous studies highlighted the clinical variability and 

heterogeneity of the pathology [6-8] As concerns the time-distance parameters, the results revealed 

a decrease of walking speed, stride length and step height, and an increase in stance duration that 

are related to the severity of the pathology. These modifications are mainly a consequence of the 

development of spasticity but in part also depend on a cautious compensatory strategy in order to 

achieve greater stability [7,9]. The analysis of limb joint kinematics revealed that HPS patients 

differ from controls in the amplitude of the RoMs. In particular, the knee kinematics provides the 

most significant information in order to characterize gait patterns in HSP. Higher leg stiffness was 

also associated with a reduced swing phase dorsiflexion and a smaller toe clearance [8,10]. This can 

be attributed to a lack of muscle strength and potentially higher passive stiffness in the knee 

extensors as a result of changes to the connective tissue as the HSP progresses [8]. 

In addition to general biomechanical characteristics of gait, one would expect some differential 

characteristics in distinct subgroups of patients according to clinical involvement of the pyramidal 

tract, given that patients with hereditary spastic paraparesis exhibit different degrees of severity 

both within and between families. Thus, some specific biomechanical features may not emerge 

because they are hidden within their global walking strategy. 

When subgrouping patients according to the hip, knee and ankle joint kinematic behavior, three 

clear gait patterns emerged. The gait pattern of subgroup one was characterized by reduced RoMs at 
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hip, knee and ankle joints. Patients of this subgroup were the most severely affected (highest SPRS 

score), and walked at the slowest speed. The gait pattern of subgroup three was characterized by 

increased hip joint RoM and knee and ankle joint RoMs close to control values. These patients were 

themost mildly affected (lowest SPRS score) and showed the highest walking speed. Patients of 

subgroup two had characteristics between those of subgroups one and three, in terms of disease 

severity and gait speed, and showed hip joint RoM close to controls but decreased knee and ankle 

joint RoMs.  

A comprehensive evaluation of HSP should take into account the segmental changes in the spinal 

cord as well as in muscle properties [11], and to achieve adequate treatment it is crucial to address 

the mechanisms underlying the impaired function. Indeed, in deciding the preferable relaxation 

procedure for any one patient, an assessment of the degree and the distribution of spasticity is 

important [12]. Differences in widening of the spinal segmental output between the groups suggest 

that the more severe the disease, the wider the map, and the less selective the muscle recruitment is, 

according to a distal-proximal gradient along the spinal cord. For instance, rehabilitative treatments 

can be focused on improving muscle selectivity recruitment by enhancing segmental afferent input 

and descending motor control, promoting reciprocal and segmental inhibition. The current 

treatments based on physical therapy, intramuscular injections of botulinum toxins, intrathecal 

baclofen therapy [13], functional electrical stimulation [8], hydrotherapy or using the body weight 

support as a tool to decrease or differentially activate groups of muscles [14,15], should consider 

the progression of muscle impairments at spinal segmental level to improve the selective muscular 

recruitment and reduce spasticity [17].  

On the whole, the results suggest that the development of spasticity due to the degeneration of the 

corticospinal tract in patients with HSP is related to a EMG widening during locomotion, spreading 

from distal to proximal spinal segments [18-20]. 
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The progression of gait impairment in a group of patients with primary degenerative 

cerebellar ataxias over a period of 4 years revealed decreased step length and hip, knee, and ankle 

joint RoM and increased trunk rotation RoM and stride-to-stride and step length variability. It is 

likely that ataxic patients increasingly shorten their step length as the disease progresses as a 

balance-related mechanism aimed at reducing duration in the most unstable configuration (single 

support) and in an attempt to maintain an effective gait. [21-27]. The progressive increase in gait 

variability observed at the 4-year follow-up may directly reflect gait function deterioration, leading 

to greater instability and an increased risk of falls. Interestingly, the increase in trunk rotation may 

represent another compensatory mechanism aimed at maintaining an adequate gait speed. This 

finding further reinforces the notion that trunk plays a compensatory role in maintaining an 

effective gait. 

In conclusion, patients try to maintain an effective gait by adopting different compensatory 

mechanisms during the course of the disease in spite of disease progression. 

As regard Parkinson disease, previous studies have disclosed abnormalities in cadence, 

stance duration, swing duration, double support duration, leg length, step length, velocity, hip, knee 

and ankle ROMs. Such abnormal gait parameters seem to correlate with the clinical outcomes of 

UPDRS score, H-Y stage and milliequivalents of levodopa taken. Importantly, gait parameters can 

either normalize or improve after several rehabilitative treatment strategies including physiotherapy, 

assistive equipment, sensory cueing, treadmill training, physical activity, home base exercises. 

ANNs, that recently have been used as diagnostic tool in several clinical conditions, could be used 

with gait analysis to identify the severity of gait deficit in PD. Indeed, a diagnostic algorithm based 

on ANNs technique is able to automatically classify the gait deficit according to the disease 

progression. 

As regard patients affected by Duchenne Muscular Dystrophy, we observed a progressive 

increase in the variability of both stride length and stride width. It has been discovered that both 
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stride length and stride width variability are linked with locomotion stability [25]. The progressive 

increase in gait variability observed at the 2-year follow-up may thus directly reflect a deterioration 

of the gait function, which leads to greater instability. Taking this into consideration, gait variability 

seems to anticipate the future loss of walking autonomy.  

A non-hierarchical cluster analysis was helpful to better identify specific gait patterns in 

patients with CA, HSP and PD compared to each other and to healthy subjects. The specific gait 

pattern formed by the increased step width, reduced ankle joint RoM, and increased gait variability 

[25], can differentiate patients with CA from healthy subjects and patients with other degenerative 

neurological diseases. These abnormal parameters may be considered as sensitive tools for 

evaluating the effect of pharmacological and rehabilitative treatments. For instance, specific 

rehabilitative treatment may be aimed at improving the most relevant gait parameters (i.e. step 

width and gait variability) or for developing mechanical or elastic devices or footwear specifically 

designed to reduce gait variability or increase the ankle joint stability. 

Common and specific gait patterns in people with amputation, either regardless of, or 

according to their level of amputation and the type of prosthetic component were also identified. 

In general, regardless of the level of amputation and type of prosthesis, subjects with TTA and with 

TFA showed a common gait pattern characterized by a symmetric increase of step length, step 

width, double support duration, pelvic obliquity, trunk lateral bending, and trunk rotation range of 

motions with increased pelvis and trunk ante-flexed (flexed in a forward direction) posture. Almost 

all these gait deficits reflect compensatory mechanisms adopted by people with amputation 

presumably to increase their stability in the frontal plane (increased step width), to maintain the 

most stable configuration (increased double support duration), to assist the lift of the affected limb 

(increased trunk lateral bending), while increasing the time of the stance and the force production 

during weight acceptance in the unaffected limb. Conversely, the reduced ankle joint range of 
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motion in the prosthetic limb, which is the common prosthetic joint in both subjects with TTA and 

with TFA, is directly linked to the use of the prosthesis.  

The subjects with TFA seem to be unable to control the prosthetic limb during the heel strike, likely 

caused by a reduced deceleration of the prosthetic limb from the late swing to the initial contact. As 

a final result, this specific gait pattern makes the subjects with TFA unable to recover energy during 

the stance phase [28,29]. 

In conclusion, in spite of common gait characteristics in subjects with lower limb prostheses, both 

the anatomical level of amputation and type of prostheses determine a specific gait pattern that 

should be taken into account when developing new and ergonomic prosthetic devices and when 

planning the rehabilitation programs aimed at improving the physiology of gait and reducing the 

gait asymmetries.  

Muscular caharacterization in pathologic conditions 

Muscle coactivation is the mechanism that regulates the simultaneous activity of antagonist muscles 

around the same joint. During walking, muscle joint coactivation varies within the gait cycle 

according to the functional role of the lower limb joints. Our results show that muscle coactivation 

in healthy subjects is speed dependent and positively correlated with both energy consumption and 

balance-related gait parameters. 

It is noteworthy that although a similar temporal trend of muscle coactivation curves was observed 

at several gait speeds, the global lower limb coactivation is speed-dependent, showing differences 

in amplitude distribution during gait subphases among the three gait speeds investigated, 

particularly between low (L) and both self-selected (SS) and fast (F). In fact, whereas at SS speed 

the global coactivation is essentially limited to the loading-response subphas, at L gait speed, the 

global coactivation is mainly present in the loading-response (0–10%), midstance (10–30%), and 

terminal- stance (30–50%) subphases, while, at F speed, the global coactivation is mainly present in 

both the loading-response and terminal- stance subphases. 
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Our findings agree well with previous evidences showing that the major muscle groups are active at 

the beginning and the end of the stance and the swing phases of the cycle [30], which reflect 

deceleration and acceleration of the lower limb, during body weight shift from one foot to the other. 

Conversely, during the mid-stance and midswing subphases, most muscles are relatively quiescent. 

Such a temporal profile of the global coactivation has a functional link with both the energy 

consumption and recovery. Indeed, the global coactivation was positively correlated with the energy 

consumption and negatively correlated with energy recovery. The higher the global coactivation, 

the higher the energy consumption. The less the global coactivation, the higher the energy recovery. 

These findings suggest that the lower limb coactivation behavior could be a useful measure of the 

motor control strategy, limb stiffness, postural stability, energy efficiency optimization, and several 

aspects in pathological conditions. 

The investigation of the lower limb muscle coactivation in patients with HSP shows taht the 

knee and ankle joint muscle coactivation is higher in HSP patients compared with controls, in both 

the entire gait cycle and subphases of gait; both knee and ankle coactivation patterns are positively 

correlated with knee and ankle joints spasticity; both knee and ankle coactivation patterns are 

positively correlated with energy consumption and negatively correlated with energy recovery. 

In patients with HSP, the abnormal coactivation pattern may reflect both or either abnormal 

descending motor commands and/or plastic rearrangement of the spinal circuitries [31] which, in 

turn, lead to a lack of selectivity of the descending motor drives to motoneuronal pools. In addition, 

these abnormalities influence the mechanisms of both energetic consumption and recovery during 

walking. 

It has been suggested that muscle weakness has a direct influence on DMD gait [32,33]. Our 

results revealed changes in lower limb co-activations values in relation to disease progression for 

both proximal and distal segments in children with DMD. A significant decrease in co-activation 

values after a year (T1) was observed, which is confirmed even after two years (T2) for distal 
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segments muscles. Despite a decreasing trend from T0 to T1 on co-activation values at the proximal 

level, a significant increase of co-activation was reported at 2-year follow-up, when patients showed 

the lowest functional capacity. A negative correlation between co-activation values at the muscle 

pair acting at the proximal level, and the gait functional outcomes during the years was observed. 

Our results are in line with previous studies and this functional decline reflects the progressive 

nature of degenerative DMD over time [34]. However, while the functional capacity decreases, 

increase in co-activation at the proximal level at the 2-year follow-up suggests that patients try to 

maintain an effective gait despite disease progression, by increasing muscle co-activation, 

especially when the muscular manifestations of the pathology are more evident. Thus, since gait 

speed remained approximately unchanged over time, increased muscle co-activation at proximal 

level represents the most important strategy to compensate for a deterioration in both functional 

ability and increase in gait instability in patients with DMD. 

Several factors in the sEMG measurement and pre-processing might influence the linear 

envelope profiles, and therefore the outcome of co-activation [35].  

The relevance of the analysis of muscle co-activation to several fields is well known, thus it is 

important to correctly process myoelectric signals in order to extract this parameter by avoiding 

estimation bias. The obtained performance of some popular techniques used to assess muscle co-

activation was evaluated by means of simulated sEMG signals generated with varying SNR levels 

and different modulating functions, and processed with varying values of low-pass filtering. The 

sensitivity of each technique to capture variations in co-activation was tested by using different 

levels of simultaneous action of the muscles. The analysis of the results shows that the performance 

of the methodologies used to assess muscle co-activation are influenced by the choice of the low 

pass cut-off frequency, as well as by the level of signal to noise ratio.  

In particular, for low values of SNR, methods proposed by Ranavolo [36] and Vector Coding 

Technique [37] are to be preferred and the Vector Coding Technique shows the highest 
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performance when the SNR is higher. For the vector coding technique, it is to be highlighted that its 

performance improves with higher cut-off frequencies. These results may be used to choose the co-

activation index that may better represent the extent and amount of co-activation based on the 

recording conditions (SNR level), and processing needs (cut-off frequencies).  

 

I believe that the results obtained in this PhD project may provide important support to extend the 

knowledge about functional assessement in clinical and neurophysiological fields. 

In particular, these results suggested that both the characteristics of the pathology and the technique 

used for data elaboration are two important aspects to be considered in the design of tools for 

training and rehabilitation. 
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12. APPENDIX 

In the present appendix, other research activities carried out durind my PHD are summarized.  

Three-dimensional motion analysis tecqnique was used to characterize both work activities and 

sport. The main results were collected in the following works. 

Characterization of lifting activities and works with repeated movements of the upper limbs : 

1. International Journal of Industrial Ergonomics, “Surface electromyography for risk 

assessment in work activities designed using the “revised NIOSH lifting equation”, A. 

Ranavolo, T. Varrecchia, S. Iavicoli, A. Marchesi, M. Rinaldi, M. Serrao, S. Conforto, 

M. Cesarelli, F. Draicchio, 2018. 

2. International Journal of Industrial Ergonomics, “Lifting activity assessment using 

surface electromyographic features and neural networks”, T. Varrecchia, C. De Marchis, 
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