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Introduction

The learning of mathematics is a wide field of research, both in Italy and abroad,

which involves open debates of various kinds. In recent years much importance has

been given to the fact that children must acquire knowledge of mathematics not of

notional type, allowing them to use the concepts learned even in various troublesome

situations,  so as  in  other  domains  (Hiebert,  & Lefevre,  1986;  Mattews and Rittle-

Johnson,  2009).  The research shows the need to  learn the procedures necessary to

solve problems, in order to acquire  the concepts and the laws that govern them. These

two types of learning (procedural  and conceptual) are both necessary and must be

supported by a teaching method giving the necessary relevance to both (Mattews &

Rittle-Johnson, 2009; Rittle-Johnson, Siegler & Alibali, 2001;  Schneider and Rittle-

Johnson, 2011).

 Since the difficulties related to a lack of conceptual learning generally occur later than

procedural  learning,  this  aspect  is  not always sufficiently  taken into account  when

teaching.  In  fact,  the  teacher  often  shows  only  the  procedure,  but  this  makes  the

children lose sight of his previous knowledge, and therefore gives rise to errors and

misconceptions (Sbaragli,  2005; Santi  & Sbaragli,  2007; Braithwaite  & Goldstone,

2015).   In primary school,  and in particular up to  the age of 8,  the acquisition of

abstract  concepts  involves  some difficulties  due  to  the  children’s  natural  cognitive

development, which in this phase benefits from a teaching method that starts with the

concrete and fade to the abstract (Fyfe, McNeil, Bonjas, 2015). Children up to the age

of  8  can  get  to  know  the  surrounding  world  through  their  sensory  experience.

Therefore, if the mathematics in this phase is thought starting from reality, the child is

able to grasp the meaning of the operations he carries out with greater clarity. If, on the

contrary, it is thought under an abstract form, there is a risk of mnemonic learning with

little understanding of the concept. The benefits and limits of using concrete objects to

teach mathematics are discussed in literature. These concrete objects allows the child

to use his senses, both the cognitive resources related to the use of his hands and those
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related to the use of the symbolic system, which seem to be deeply connected. This

type of elaboration seems to favour the understanding of concepts in children up to 8

years of age. On the other hand, a strongly contextualized learning like the one that

takes place when using concrete material  seems to be more difficult to generalize,

making difficult the transition to abstraction. Bruner (1966) proposed a three-phase

teaching  system,  called  concreteness  fading that  starts  from conrete  and  fade  into

abstract. The recent studies on concreteness fading propose to verify if the use of this

strategy allows using the benefits of concrete material when teaching mathematics,

overcoming  the  difficulty  of  the  transition  to  abstraction  through  a  didactic  that

explicitly links concrete and abstract according to a logical progression (. Research

shows that the concreteness fading method used with primary school children seems to

benefit  the  ability  to  generalize  mathematical  concepts  (Fyfe,  McNeil,  Son,  &

Goldstone,  2014).  So  far,  such  research  has  not  focused  on  the  type  of  concrete

material to be used in the first of the three phases, which of course is not a minor

variable. In fact, the literature suggests that not all concrete material is effective in

teaching,  and  that  such  material  must  meet  specific  characteristics  in  order  to  be

effective  (Laski,  Jor’dan,  Daoust,  and  Murray,  2015).  The  Montessori  material,

according to the little literature available, meets these characteristics (Lillard, 2016).

One of these is the repeated use of concrete material over time. In fact, unlike the

learning procedures that involve memory and are fast processes,  understanding the

concept through the concrete material requires longer times. The time factor is basic,

since the child must be able to repeat the sensory experience several times to extract a

mathematical  concept from the material.  This  passage allowing the child to get an

abstract concept  seems to take some time even after the use of the material itself. The

literature suggests that our brain reorganizes the experience to build abstract categories

and concepts, but this does not happen while using the material or immediately after,

but can happen even some days or weeks after the sensory experience.  Many studies

about the learning of mathematics in primary school children have been conducted by

focusing on the teaching of mathematical equivalences, since they are propaedeutic to
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the learning of algebra as they are based on the knowledge of operations and on the

concept  of  equality.   Our  research  aims  at  investigating  some  aspects  of  the

concreteness  fading strategy that  have  not  been studied  so  far,  also  observing the

efficacy of the other two strategies (concrete and abstract).  In particular,  the study

focuses on the eventual effectiveness of the Montessori material compared to other

materials, which have been previously tested by the concreteness fading strategy; on

the ability to generalize concepts after a teaching session after a certain time; on the

benefit  of multiple example during the teaching phase. In order to answer to these

questions we have used an experimental model, which refers to the research paradigm

used by Fyfe,  McNeil  and Borjas  (2015),  and we have applied it  to two different

experiments.  

This doctoral thesis is organized in five chapters.

The first chapter is dedicated to a literature review in the field of the learning and

teaching of numerical knowledge and the use of symbolic.

The  second  chapter  focus  on  theaching  strategies  that  use  concrete,  abstract  and

concreteness fading to teach equivalence.

In chapter three we present the first Experiment, in which we investigate children’s

learning with  the  three  stragies  -  concrete,  abstract  and concreteness  fading -  and

compare two different type of concrete materials - Montessori and others.

In the fourth chapter we summarize the second Experiment. The same paradygm of the

first  experiment  was  repeated  with  the  addition  of  multiple  examples  during  the

teaching and the transfer test was repeated after two weeks to see the effect of time on

children’s learning.
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Chapter One

1.1 Numerical knowledge and teaching

The learning of mathematics and the ability to use it in real life contexts is considered

one of the Key competences to develop active citizens. The European Council in 2018

adopted the Council Recommendation on Key Competences for Lifelong Learning. It

promotes and supports high quality education and lifelong learning.

During  the  last  years,  the  OECD  PISA  (Programme  for  International  Student

Assessment) surveys have been dealing with detecting students' abilities in the basic

areas  for  the  cultural  and social  development  of  individuals:  reading,  science  and

mathematics. The tests proposed by PISA do not intend to verify the knowledge, but

the  ability  of  the  students  to  reason and use  concepts  and procedures  in  new and

unfamiliar contexts. Thus, we can say that a competent student in mathematics is able

to solve real problems in real contexts. In Italy, in recent years there has been a slight

improvement of students’ performance in mathematics. In the OECD PISA 2015, the

Italian percentage of students at level 2 (considered the minimum level of competence

in Mathematics) was 23.3% (OECD = 22.5%). Singapore, the country with the highest

average score, had a percentage of 12.4%. Italian students who are at level 2 or above

were  76.7%  (OECD  =  76.6%);  in  Singapore  they  were  over  90%  (OECD  2015,

Results of Italian students in science, mathematics and reading, PISA).

At the beginning, in Italy these tests clashed with a teaching strongly linked to a verbal

transmission  of  knowledge  and  little  focused  on  the  ability  to  apply  and  transfer

knowledge,  generating  non-positive  results  in  the  assessment  of  skills  (OECD,

Mathematics performance, PISA, 2003 and 2006). Specifically, the average score for

the 2015 cycle was 24 points higher than in 2003 and 28 points compared to 2006,

suggesting  that  the  methodological  innovations  required  by  the  introduction  of
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competence-based education were giving the desired results.

Today,  in  Italy  as  in  Europe,  there  is  a  growing  trend  towards  competency-based

education and in many European states is going on an implementation of the European

Key Competency Framework. Specifically, in Italy each educational institution issues

the certification of skills at the end of primary school, based on a national model (Law

53/2003 and Ministerial Decree 254/2012, Circular No. 3 of 12.02.2015). 

PISA's approach to measure learning has given a strong push towards a paradigm shift

in teaching. The learner, considered for decades as an empty container to fill, simply

absorbing information, is now seen as an active builder of his knowledge. The teaching

processes are changing, focusing on “how” more than on “what”; the student-teacher

relationship  change  from  a  teacher-centred  to  a  learner-centred,  with  the  teacher

supporting the learning process. An effective teaching should allow students to solve

unfamiliar, complex problems, requiring more competences than simple memorization

of procedures (Mevarech & Kramarski, 2014).

Researches and theories about mathematics learning in children have been developed

through  many  decades,  debating  on  the  children’s  ability  to  learn  numbers,  to

understand  the  meaning  of  counting,  and,  finally,  to  understand  abstractness.  The

Constructivist  theory (Piaget, 1954) supported the idea that children learn numbers

through an interaction with the environment. Children in Piaget’s theory need about 5

years  to  reach the  conservation  of  numbers,  to  understand how symbols  represent

objects and quantities, and to construct abstract concepts. Afterwards, many researches

demonstrated  that  infants  can  recognize  little  quantities  (Lucangeli,  2003),  and  6

months old babies can distinguish between 16 and 8 dots  (Halberda & Feigenson,

2008). Numerical cognition is a quality that children hold since their birth, and this

skill continuously improves over time (Berteletti, Lucangeli, Piazza, Dehaene & Zorzi,

2010).  Thus,  when children start  to attend school,  they already know many things

about  numbers.  Otherwise  their  intuitive  understanding  of  quantities  and  the

underlying rules, need to be re-constructed to progress in mathematics, because their

knowledge is based on counting strategies that  are out-dated for school arithmetic.
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This “shift”, for Dahaene (1997), could support the overcoming of an intuition-based

mathematics for one based on the memory of logical facts. 

To build the  children’s  formal  mathematics  on their  prior  knowledge,  the  teachers

should know how the construction of numbers develops in their minds. Gelman and

Gallistel,  in  an important  research of  1978,  established three implicit  principles  of

counting, guided by innate knowledge: 1) one-to-one correspondence, 2) stable order,

3) cardinality. These principles start to be mastered when the child is about 2 years old,

but up to 4 years he is not fully aware of the count (Pesenti, Seron & Van Der Linden

1995; Gelman & Meck, 1983; Wynn, 1990). There are currently two shared theories

about the development of the numerical knowledge: the McCloskey's semantic model

and the Dahene's triple code model. 

The semantic model of McCloskey (McCloskey, Sokol & Goodman, 1986; Campbell

&  Clark,  1988)  is  based  on  three  subsystems:  understanding,  production  and

calculation.  The  understanding  is  both  verbal  and  based  on  the  text  (text,  Arabic

numerals or Roman numerals); the production is similar to the understanding, while

the calculation system requires that the operations are memorized and later retrieved or

implemented by the calculation procedures learned. Verbal understanding and memory

recovery are critical elements according to this model.

The triple code model of Dehaene (1992) is based on the existence of three different

codes, which activate and involve three different areas of the brain: processing of the

Arabic  code  (bilateral  ventral  occipital-temporal  areas),  verbal  coding  of  numbers

(perisilvian areas left),  analogical representation of quantities  (bilateral intraparietal

areas). The three codes communicate with each other. The visual Arabic code is linked

to the positional notation of the digits, and its role is to perform operations with multi-

digit numbers; the verbal/auditory code allows the arithmetic facts to be numbered and

stored in the memory; the analogical representation of the numbers code (preverbal)

processes  the  numbers  by  treating  them  as  quantities,  and  uses  the  numerical

comparison, to estimate. Thus, the verbal code is not the only way to compute, but it is

necessary to recover the arithmetic facts (i.e. the results of the multiplication tables).
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According to this model, the type of input used to present the numbers is irrelevant. 

In the Clark and Campbell’s theory (1991), the Arabic and verbal inputs use different

codes  to  represent  numerical  facts.  The  number  representation  system  is  double:

language-dependent system (verbal code) + language-independent analogical system

(analogical code).  When the numbers are presented in the Arabic format,  the brain

processes them as analogical quantities which are close to each other (giving rise to

distance and size effect). Dahaene (1993) showed that there is a link between numbers

and space,  called  SNARC (Spatial-Numerical  Association  of  Response  Codes);  its

existence  shows an  internal  and analogical  mental  representation  of  the  numerical

quantities, which develops on a line going from left to right. The SNARC effect is

more  evident  when  comparing  Arabic  numbers  to  verbal  numbers.  Thus,  when

children learn numbers in a formal context,  the teacher should consider that verbal

teaching is not enough to provide a deep learning.

The child at school receives teachings that have an impact on the numerical concepts

he had previously built.  Montessori  (1907) and Bruner (1966) both considered the

child as a constructor of knowledge. Their theories assigned a central role to the child,

to  his  previous  knowledge,  interests  and  abilities.  The  child  is  the  builder  of  his

knowledge, which must be driven by strong motivation, by the pleasure of discovery

and by acting in the environment in a competent and conscious way. His actions in the

environment are basic to understand the rules and the laws governing the world. To act

means to perceive, to use the body as a sensory mediator between the child and the

world, in order to construct concepts, schemes, categorization. Bruner theorized that

every field of  knowledge could  be represented in  three  ways:  a)  through a  set  of

actions aimed at achieving a certain result (active representation), b) through a set of

summary images or graphs that represent a concept without defining it  completely

(iconic representation), c) through a set of symbolic or logical propositions, derived

from  a  symbolic  system  governed  by  rules  or  laws  for  the  formation  and

transformation of propositions (symbolic representation). This progression, for Bruner,

describes the course of cognitive development: given this, he argued that an effective
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teaching should follow the same progression. Bruner experimented a set of concrete

mathematical materials (including a balancing scale) on eight-years-old children, and

argued that  the  syntactic  intuition on the  algorithm corresponded to the  perceptive

intuition on the concrete manipulatives. The children were building their knowledge

through an individual, free work of research supported by both concrete manipulatives

and teachers. The children seemed to deeply understand concepts and, additionally,

they stored a number of images which helped them to exemplify abstractions. Thus,

Bruner demonstrated that a reserve of visual images that make the abstraction achieved

as  concrete,  allows  the  child  to  find  correspondences  and  to  verify  what  he  is

symbolically doing.

In  the  same  way,  Montessori  (2013a),  during  her  observation  of  primary  school

children,  noticed  that  the  manipulation  of  concrete  materials  induced  a  series  of

measured and logical comparisons, which represented a true spontaneous acquisition

of knowledge.  We shall be writing about Montessori further. 

However, the active learning pedagogy has some limits. The teacher could not define

his interventions on the basis of the children’s interests, even if his role is to motivate

and to involve them. Bruner exceeds this limit by hypothesizing that the teacher should

awake the interest of the child in order to ensure that he actively participates in a path

formulated and led by the teacher himself. The aim should be to promote awareness of

the gained experience. We do not limit the children to the activity, but we drive him to

learn  by  research,  activating  a  metacognitive  reflection:  how I  learn,  what  I  learn

(Nigris, 2004). Montessori, on the other hand, exceeds this limit by preparing a very

structured environment, where children could only use the materials that the teacher

already  presented  to  them.  The  teacher  observes  and  follows  the  cognitive

development of the child by proposing adequate tasks. In this way, the child is free to

choose, but in the meantime he follows a highly structured path with very precise

objectives. Recently, D’Amore (2007) proposed a didactic of mathematics that starts

from the spontaneous, naive and informal knowledge of the child, making him free to

express it, and subsequently providing him with the tools to shape mental images and
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correct models that meet the expected cognitive result. In the Montessori method, this

link  between prior  and formal  knowledge  is  always alive  because the  child  could

reiterate the activity until the cognitive conflict is solved.

1.2 Procedural and conceptual knowledge

Many  recent  studies  on  mathematics  teaching  are  focused  on  the  most  effective

teaching practices in order to promote previous skills, integrating them with new and

increasingly  complex  and  abstract  knowledge.  As  we  said,  children  develop  their

mathematical thinking for years before starting to attend school. They solve problems

including quantities, and they constantly refine their strategies, using the counting tool

without  any  explicit  teaching  (Dehaene,  1997).  An  effective  teaching  takes  into

account that the mathematical knowledge involves two different type of knowledge:

procedural  and conceptual  (Hiebert  & Lefevre,  1986).  The  conceptual  knowledge,

according  to  Kilpatrick,  Swafford,  and  Findell  (2001)  is  the  comprehension  of

mathematical concepts, operations, and relations. Mattews and Rittle-Johnson (2009)

define the conceptual knowledge as an explicit or implicit knowledge of the principles

that  govern a certain domain and their  interrelations,  such as that  of mathematical

concepts and their relations. In contrast, they define the procedural knowledge as the

ability  to  perform  solving  actions.  The  conceptual  knowledge  is  refereed  to  the

comprehension  of  “why”  we  solve  a  problem  in  that  specific  way,  whereas  the

procedural  knowledge  is  focused  on  “how”.  However,  they  have  many  different

characteristics: the first does not only consist in knowing “why”, but also in using

general principles, and relations, in allowing flexibly transferable over problem types;

on the other hand, the procedural knowledge is knowing “how”, but it is also goal

directed,  tied to  routine problems,  allowing a quick and efficient  problem  solving.

Bisanz (1999),  defined the  procedural learning as the ability to solve already known

problems, using one or more sequences of actions, and the  conceptual knowledge as

the  ability  to  understand   the  underlying  concepts  governing  a  domain  and  their
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relations;  the  procedural  transfer as  the  ability  to  apply  known  procedures  to

unfamiliar  problems.  To  measure  the  conceptual  learning,  children  should  solve  a

problem  without  knowing  the  procedure.  If  children  are  able  to  use  their  prior

knowledge  in order to find useful concepts, they will solve the problem (Hiebert et al.,

1986). To measure the procedural knowledge, as Crooks and Alibali (2014) noticed in

a standardised way, is quite easy: indeed, children solve a set of problems and they are

evaluated on the number of correct answers or on the type of procedure used to solve

the problem. 

Giving  that  these  two  kinds  of  knowledge  depend  on  the  teaching  instructions,

Mattews  and  Rittle-Johnson  (2009)  define  also  the  conceptual  instruction  as  the

“instruction that focuses on domain principles” and the procedural instruction as the

“instruction that focuses on step-by-step problem-solving procedures” (p. 3). Thus, the

procedural  knowledge consists  in  a  sequence  of  actions  that  can be used to  solve

problems (Rittle-Johnson & Siegler, 1998): this kind of knowledge was supported for a

long time by the traditional system of mathematics teaching. However, it is not enough

to  guarantee  an  effective  learning  and a  number  of  recent  researches  showed that

teaching  based  on  the  memorization  of  procedures  could  result  in  an  inadequate

understanding of the underlying concepts, with long term errors (Fuson et al., 1997).

Many researches are focused on finding effective approaches to promote a teaching

method that fosters the construction of strong and effective conceptual structures and

their use. The conceptual learning has taken priority over procedural learning, as Star

(2005)  pointed  out.  The  conceptual  knowledge  is  critical  when  planning  teaching

strategies, as shown in Crooks and Alibali’s review (2014).  

We found different effects  from teaching strategies that  give greater importance to

procedural,  conceptual,  or  both  types  of  learning.  As  we  said,  the  procedural

knowledge is not enough to gain strong understanding of the concepts. Developing

both of  them improves  the performance when solving math problems (Mattews &

Rittle-Johnson, 2009; Rittle-Johnson et al. 2001). Thus, if the children’s knowledge

allows them to solve problems or operations linked by a conceptual aspect to their
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prior knowledge, then we can consider it as a form of deep learning (Perry, 1991).

Hence, mathematics teaching should use strategies that promote a deep understanding

of concepts, a good knowledge of the procedures, and of the way to transfer them.

According  to   Perry  (1991),  children  can  learn  to  use  procedures  through  the

procedural  instruction,  but  this  does  not  guarantee  that  they  have  understood  the

underlying  principles.  Therefore,  children  should  be  explicitly  provided  with

principles, so that they can figure out their own procedure. Perry (1991) and Alibali

(1999),  in  agreement  with  Sylva,  Bruner  &  Genova  (1976)  showed  that  giving

procedural instructions to children may not be facilitating. Children who are provided

with examples on how to solve a problem are limited in finding solutions, because

they do not need to understand why they are applying that procedure. Moreover, when

children must solve new problems similar to those they already know, they may tend

to  apply  a  familiar  approach,  a  mental  set  (McNeil  &  Alibali,  2000)  that  their

experience suggests as effective, even if the resort to mental sets can cause illogical

errors.  Considering  that  learning  is  defined  as  “success  on  similar  problems”  and

transfer is defined as “success on dissimilar, but conceptually related problems” (Chi

& Bassok, 1989), then the transfer of knowledge is the key to understand whether or

not teaching provided a deep learning. According to Hiebert (1986), the transfer can be

facilitated by the teaching instructions, if focused on the procedural approach (how) or

the conceptual approach (why).

Mattews  and  Rittle-Johnson  (2009)  demonstrated  that  the  conceptual  instruction

promotes better conceptual knowledge, and it is more effective than the procedural

instruction. However,  the greatest learning and transfer seems to be obtained when

children are given instructions about the correct procedure and explanations of the

underlying  concepts,  supported  by  students’ self-explanation.   Son  et  al.  (2008)

showed how generalization for children is strictly connected with the simplicity of the

examples provided during the teaching sessions, because only those similarities which

are relevant for understanding a certain concept are relevant to young learners. On the

contrary, expert learners can infer relevant aspects also from more complex examples.
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For  Kaminski  et  al.  (2008)  teaching  mathematical  concepts  through  generic

instantiations  (symbols)  may  be  more  effective  for  transfer  because  the  concrete

context should limit the applicability of the concepts learned. 

Recent  researches  investigated  also  the  individual  differences  in  the  way  children

combine  the  two  types  of  knowledge  in  mathematics,  demonstrating  that  some

children have more conceptual knowledge, some others more procedural knowledge,

and others an equal level of both (Hallett, Nunes, Bryant & Thorpe, 2012). Schneider

and Rittle-Johnson (2011) focused on the effects of the children’s prior knowledge on

the  relationship  between the  two types  of  knowledge,  demonstrating  that  both  the

conceptual  and  procedural  knowledge  had  a  stable  bidirectional  relations,  not

moderated by the prior knowledge. 

1.3 The symbolic language in numerical learning

Mathematics  teachers  often  consider  the  definition  of  concepts  as  the  clearest

explanation  for  students.  This  teaching  method  strictly  connects  concepts  to

procedures, overlapping concepts and procedures during the learning sessions. This

type of inaccuracy could generate confusion with respect to the concept of symbol

itself.

During their entire lives, humans act and communicate by using symbols, in order to

explain their ideas also when referring to objects that are not concretely present in the

context. When we refer to generic quantities we use words, as “a lot”, or “a little”, but

when we refer to precise quantities, we need numbers such as “23” or “12.324”. 

Our  brain  continually  processes  symbols  to  understand  the  reality.  They  are

represented  with  different  complexity  levels  (Borghesania  &  Piazza,  2017):  the

simplest  levels  consider  symbols  as  physical  entities.  Humans,  through the  use  of

simple “objects”, can describe complex and multilevel realities. Thanks to this ability

they generate a rich and stratified knowledge of their meanings, which is commonly

called semantic representation. Numbers, together with words, are the most important

class of symbols we have. Studies on numerical cognition propose two systems of
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representation of numerical cognition in children and adults (Gomez, Piazza, Jobert,

Dehaene-Lambertz,  Dehaene  &  Huron,  2015).  The  first  system  is  called  ANS

(Approximate number system), it is independent from symbols and from language, it is

approximate and based on analogies, and it precedes formal teaching (Odic, Darko &

Starr, 2018). We use this system from our first year of life, as we saw in Dehaene,

Molko, Cohen and Wilson (2004) and Dehaene (1997), and it can also be found in

some  animals.  This  system  allows  comparing,  adding  and  subtracting   quantities

(Feigenson, Libertus & Halberda, 2013). It develops abruptly during the first year of

life, then more slowly: during pre-adolescence, kids reach the same levels found in

adults (Dehaene et al. 1998, Piazza, Pica, Izard, Spelke & Dehaene, 2013).

Conversely, the second system is based on symbols and language and allows accuracy;

it is a kind of numerical cognition that lays its basis in formal, scholastic mathematics

teaching and, more generally, in education. It is called ENS (Exact Number System)

and it develops later than ANS, because its learning must follow the  knowledge of a

system  of  symbols.  Indeed,  its  developing  lasts  for  many  years,  until  a  formal

mathematical competence is achieved (Feigenson et al.,  2013; Gomez et al,  2015).

Some  studies  focused  on  the  relationship  between  non-symbolic  knowledge  of

numbers and formal mathematical knowledge; Gilmore, McCarthy and Spelke (2010)

showed that in both infants and older children the ANS ability seems to predict the

future capability to use and to understand formal mathematics. Furthermore, it seems

that working on the ANS with non-symbolic addition and subtraction, improves the

ability to perform symbolic addition and subtraction in a formal way as adults do (Park

& Brannon, 2013). Conversely, other studies showed that symbolic number tasks are

more effective to predict future skills on formal mathematics (Holloway & Ansari,

2009). Despite this debate, some studies showed that when adults process numbers,

they use both ANS and ENS systems (Castronovo & Göbel, 2012); this means that the

ANS system is crucial to develop effective methodologies for mathematical teaching.

Indeed, the ancient, approximate system for managing quantities is the base for the

construction of a formal,  cultural  based mathematical  knowledge (Feigenson et  al.,
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2013). When children represent quantities in their mind they are able, unlike animals,

to have knowledge of precise quantities greater than 3 (Berteletti, Lucangeli, Piazza,

Dehaene & Zorzi, 2010). This ability allows humans to elaborate large quantities, and

brings to the acquisition of a variety of skills during the pre-school and school age.

Several studies, in addition, have tried to understand how children and adults mentally

represent quantities. What emerged is that numbers are positioned on an ideal line,

which  in  the  first  years  of  life  is  represented  as  a  logarithm,  since  the  distances

between numbers are not represented in a proportional way. Later, with the experience,

the mental number line becomes a straight line, although it is not entirely clear how

this passage takes place (Berteletti et al., 2010). According to Siegler and Opfer (2003)

and Siegler and  Booth (2004), it is the learning of formal mathematics that plays an

important role in this transition phase. Several studies showed that the formal learning

of mathematics leads to the ability of manipulating numbers in a precise and accurate

way.  Hence,  in  the  absence  of  a  formal  education,  adults  show  an  ability  of

manipulating  quantities  similar  to  that  of  young  children,  that  is  approximate  and

inaccurate (Castronovo et al. 2012; Pica, Lemer, Izard, & Dehaene, 2004). In order to

provide better support to students who learn mathematics, it is important to consider

the link between the system for representing approximate quantities (ANS) and the

formal mathematics, by improving humans’ innate abilities and knowledge. 

Even knowing the innate sense of numbers of children, the individual differences in

formal  learning  should  be  considered.  Some  students  manipulate  symbols  as

mathematical objects, others consider symbols as a procedure to be developed. Those

who implicitly understand the general meaning of symbols succeed, but many others

are likely to fail. A flexible thinking is needed to apply the concepts formally learned,

but many people are more likely to apply procedures. As we saw, applying procedures

could be economic in the short-term, but in the long-term flexibility is required to

succeed (Gray & Tall,  1993).  At  school,  it  is  common practice  to  provide precise

definitions  of  mathematical  concepts,  focusing  on  the  object  and  losing  the  inner

process. 
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The use of concrete materials in primary school teaching could be effective, and we

would analyze the benefits of concrete methods in the chapter 2.

15



Chapter Two

2.1 Concrete representations and abstract concepts

A number of recent studies compared the effectiveness of different teaching strategies

in mathematics in primary school showing that the teaching is effective when both

conceptual  and  procedural  learning  methods  are  implemented.  Thus,  both  the

conceptual  and  procedural  knowledge  are  required  for  building  generalizable

knowledge  (Hiebert  &  Wearne,  1996;  Kilpatrick,  Swafford  and  Findell’s,  2001;

Crooks & Alibali, 2014). 

Over the years, an amount of researches has been conducted to determine the role of

concrete  representation  in  student’s  conceptual  understanding  (Montessori,  1917;

Bruner, 1966; Piaget, 1970; Sowell, 1989;  Martin & Schwartz, 2005; Brown, McNeil

& Glenberg, 2009). A definition of “concrete” emerging from McNeil and Fyfe (2012)

includes “materials that are grounded in previous perceptual and/or motor experiences

and  have  identifiable  correspondences  between  their  form  and  referents.  Abstract

materials, in contrast, eliminate detailed perceptual properties and are more arbitrarily

linked to referents” (p. 440). Concrete representation may help children to reason and

to think about the concept (Sowell, 1989; Burns, 1996; Brown, McNeil & Glenberg

2009;  Uttal,  2009).  However,  many  studies  showed  that  the  use  of  concrete

representation  does  not  guarantee  the  transfer  of  knowledge  in  a  variety  of

mathematical learning situations (Sowell, 1989; Goswami, 1991; Gentner, Ratterman

& Forbus, 1993; Goldstone & Sakamoto, 2003; Sloutsky, Kaminski & Heckler, 2005;

McNeil  & Jarvin,  2007;  Kaminski,  Slousky,  & Hecker,  2008;  Martin,  2009;  Uttal,

O’Doherty,  Newland,  Hand,  & DeLoache,  2009;  Son,  Smith,  & Goldstone,  2011),

since it may divert the children’s attention to some irrelevant perceptual details of the

materials (Uttal, Scudder, & DeLoache, 1997; DeLoache, 2000).  

The results of this set of researches generated strong resistance in the use of concrete
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materials by teachers and educators, although neither of the mentioned studies takes

into account the principles for an effective use of concrete materials. Indeed, as many

authors have reiterated over time (Montessori, 1917; Bruner, 1966; Goldstone & Son,

2005), the use of concrete material must be followed by a progressive shift towards the

abstract. Despite these theories, there are few studies that tested the effects of explicit

and gradual  fading from concrete  materials  to  abstract  symbols.  McNeil  and Fyfe

(2012) highlighted the incredible absence of specific studies on the transition from

concrete to abstract, proposing in very recent years the testing of the "concreteness

fading"  method in  order  to  clarify  the  implications  of  the  methodology used with

concrete  materials.  This  method  has  been  specifically  tested  in  mathematical  and

science  domain  (Fyfe,  McNeil,  Son,  &  Goldstone,  2014)  because  of  the  strong

presence of prior knowledge associated to these fields of study. Indeed, the use of

concreteness fading has been applied only to these domains and it could be interesting

to expand this experimentation to others, such as geography, geometry and physics.

Most of the researches on the use of concrete manipulatives suggest that the efficacy

of a teaching based on concrete materials is affected by age and prior knowledge. A

meta-analysis  by  Carbonneau,  Marley  and  Selig  (2013)  analyzed  55  researches,

focusing  on  the  effectiveness  of  a  mathematics  teaching  with  manipulatives  from

kindergartners to college students. The examined studies compared the teaching with

manipulatives  in  mathematics  instruction  to  the  teaching  with  only  abstract  math

symbols. The authors found a significant effect in favor of the use of manipulatives

with respect to the use of only abstract symbols. This effects, however, was moderate

by  instructional  and  methodological  property  of  the  examined  studies.  A separate

analyses was conducted to see the learning outcomes of retention, problem solving,

and transfer. It revealed a moderate to large effects on retention and small effects on

problem  solving  and  transfer  in  favor  of  using  manipulatives  over  abstract  math

symbols. Empirical evidence appears to confirm that young children benefit more than

teenagers  and  adults  from  concrete  manipulatives  for  conceptual  understanding
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(Goldstone & Sakamoto 2003; Goldstone & Son 2005; Koedinger, Alibali & Nathan,

2008; Petersen & McNeil, 2013; Braithwaite & Goldstone, 2015).

A significant study by Kaminski et al. (2008), on the contrary, argued that concepts

learned with generic and abstract examples allow to generalize mathematical concepts

if they have been taught  with “the use of generic instantiations” (p. 455). This study,

however, even if much quoted in the debate on abstract vs concrete, should be used

with caution if referring to the use of manipulatives for teaching to primary school

children.  Indeed,  it  was  conducted  on  undergraduate  college  student,  testing  their

transfer ability on a mathematical task after instructed them in two conditions: generic-

abstract vs contextualized-concrete. Furthermore, the concrete instruction was made

through graphic images and not by concrete objects. “The elements were three images

of measuring cups containing varying levels of liquid. The same mathematical rules

were presented in slices of pizza or tennis balls in a container, rather than portions of a

measuring cup of liquid” (p. 454). Giving that methodology, it is difficult to connect

these  results  to  those  referred  to  primary  school  children  taught  with  concrete

manipulatives.  Children  instructed  with  concrete  manipulatives  learn  through  a

perceptual exercise which effectiveness, as we have seen, is linked to age.

The cited Carbonneau et al. meta-analysis, reported that the use of manipulatives is

affected by many variables: the perceptual richness of the object, the level of guidance

given by teachers,  and the level of previous knowledge and development status of

students.  Perceptually  rich  manipulatives  can  result  in  a  more  complex  memory

recovery process  due to  the  distracting elements,  preventing an effective  transit  to

abstraction (Son, Smith, & Goldstone, 2008). According with previous studies, Laski,

Jor’dan,  Daoust,  and  Murray  (2015)  proposed  four  principles  for  maximizing

effectiveness of manipulatives: (1) use a manipulative consistently, over a long period

of time; (2) begin with highly transparent concrete representations and move to more

abstract  representations  over  time;  (3)  avoid  manipulatives  that  resemble  everyday

objects  or  have  distracting  irrelevant  features;  (4)   explicitly  explain  the  relation

between the manipulatives and the math concept.
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2.2 Concrete manipulatives and the case of Montessori

The  use  of  manipulatives  for  children’s  learning  was  studied  for  decades,  since

Montessori (1917), Piaget (1952) and Bruner (1996) theorized that babies and children

had  not  an  innate  capacity  to  think  to  abstract  object.  Children  during  their

development acquire concept through the manipulation of real objects they found in

the  environments.  Montessori  was the  first  to  develop many concrete  materials  in

order to teach mathematical concepts. As we saw, she specifically designed concrete

objects to make children able to make links, to infer; one of the most known is the

place  value  material  (Lillard  & Else-Quest,  2006).  Thus,  for  Montessori,  concrete

materials helps the children to find connections between the environment and the laws

governing  it,  and  learn  through  active  work.  Recent  researchers  confirmed

Montessori’s theory, especially in mathematics, providing evidence to a better learning

for children who attended Montessori program (Lillard & Else-Quest, 2006; Lillard,

2012;  Dohrmann, Nishida, Gartner, Kerzner Lipsky, Grimm, 2007).

The study by Laski et al. (2015) largely confirm how Montessori method represents a

concrete example of the application of these principles in practice. According to Laski

et al. (2015), however, even though the material is well structured children must be

helped to  generalize the concept.  From a research carried out  between children of

Montessori schools and not, on the knowledge and understanding of the base 10, the

children  of  Montessori  kindergarten  showed  a  better  performance  than  the  non-

Montessori.  However,  this  positive  gap  decrease  during  first  and  second  primary

school classes.

Scoppola  (2011),  reads  Montessori  materials  in  the  light  of  recent  discoveries  in

neuroscience. Cognitive tests and PET (electroencephalogram and positron emission

tomography) show us how the brain represents mathematical concepts and what are

the involved brain areas. The brain perceives the approximate quantities with the area

of perception of the forms. This area is close to the one that supervises the hands

movements. But the area involved with the symbolic-linguistic is very far from the
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perception  area.  It  means  that,  to  understand  mathematics  our  brain  activate  two

different, far areas. It seem that children’s brain are often  not yet coordinated in their

long-distance  connections.  This  implies  that  the  understanding  of  mathematics  is

relegated above all to the symbolic linguistic area, and the use and manipulation of

symbols. Children often struggle to understand the concrete meaning of symbols and

this  leads  them  to  math  panic.  PET  shows  that  children  who  easily  understand

mathematics are the same that use symbolic and perceptive areas in parallel. On the

contrary, the children who barely understand mathematics use only the symbolic area.

Montessori’s concrete materials bring the two brain areas in contact, stimulating both

of them. Her materials start from a stimulation of the perceptive area, by providing

geometrical  and  arithmetic  aspects  through  an  object,  to  arrive  gradually  to  the

construction of symbols and specific vocabulary. Concrete Montessori materials allow

the  children  to  use  the  both  brain  areas  needed  for  a  deep  understanding  of

mathematical  concepts,  by  providing  a  perceptive  experience  together  with  the

symbolic notions. Many recent studies confirm that the sensory-motor experience as

the first  vehicle  of  mathematical  ideas  allows children to  understand the  symbolic

system and the concepts (DeLoache, 2004; Fyfe & McNeil 2009; de Hevia, Vallar &

Girelli, 2008; Gentner & Markman, 1997).

Maria  Montessori  spent  decades  perfecting  the  development  material  used  in  her

schools. Likewise, she considered essential to present to children only objects with

specific characteristics (shapes and colors that have a specific purpose), not commonly

used so as not to divert the attention from the concept they were conveying. Learning

mathematics and geometry through the involvement of the senses was one of the first

fundamental discoveries of Montessori in structuring the development material. There

are  many materials  of  Montessori  schools  that  perform the  function  of  conveying

generalizable concepts such as height, length, weight, etc. The possibility for the child

to move in the environment, exploring the material with the senses even for very long

times and repeatedly for days,  weeks,  months,  allows him to explore not only the

material but the concept itself, in order to draw conclusions from it, comparable with
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those of his peers and the teacher. The Montessori material is designed to give children

not  only  sensory  knowledge  (tactile  and  visual)  but  also  to  provide  operational

schemes and figurative patterns.  The same material  can be used at  three years for

sensory knowledge, subsequently to learn a procedure, and finally to proceed towards

the next and more complex step of abstraction. The phases through which learning

occurs in the Montessori method environments follow children’s development to allow

spontaneous theories to emerge.  Montessori  believed that  the child's  brain is  not a

sponge,  but  an  already  structured  organ  that  only  learns  what  resonates  with  its

previous knowledge. Indeed, Montessori observed that children independently chose

materials that resonated with their previous knowledge. She affirmed that the child,

unknowingly, choose the most suitable development material for him, and stay with it

for  the  time necessary to "convince himself"  of  a  given concept.  If  the  change of

conceptions  takes  place  at  school,  according  to  Hatano  and  Inagaki  (1984)  it  is

"induced",  while  if  it  happens  thanks  to  the  enrichment  of  the  experience  it  is

"spontaneous". According to Montessori, this change can occur spontaneously even at

school  through  the  experience  of  the  child  with  the  environment  and  educational

material. However, Montessori development materials should be used according to the

educational principles she proposed, to be really effective. Lillard (2016), summarized

nine fundamental principles of Montessori education: 1) movement and cognition are

closely entwined, and movement can enhance thinking and learning; 2) learning and

well-being are improved when people have a sense of control over their lives; 3) the

ability to direct one’s attention in a sustained and concentrated way fosters an array of

positive  developments  and is  itself  trainable;  4)  people  learn  better  when they are

interested in  what  they are  learning;  5)  tying extrinsic  rewards  to  an activity,  like

money for reading or high grades for tests, negatively impacts motivation to engage in

that activity when the reward is withdrawn; 6) collaborative arrangements can be very

conducive to learning; 7) learning situated in meaningful contexts is often deeper and

richer than learning in abstract contexts; 8) particular forms of adult interaction are
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associated with more optimal child outcomes; 9) order in the environment is beneficial

to children (p. 28). 

We have little research on Montessori education, not even  focused on the benefits of

the  manipulatives  she  developed.  Rathunde  and Csikszentmihaly  (2005)  compared

Montessori and not-Montessori middle school students, focusing on social climate and

motivation, reporting that Montessori students had higher intrinsic motivation than the

others. Besançon and Lubart (2008) focused on creativity in primary school, reporting

that  Montessori  students  had  an  higher  level  of  creativity  with  respect  to  not-

Montessori  ones.  The  longitudinal  study  of  Laski,  Vasilyeva  and  Shiffman (2016)

tested  children  in  Montessori  and  not-Montessori  school  on  the  learning  of  place

value.  Their  results  showed  that  Montessori  children  in  kindergarten  had  better

performance than others children but this advantage was not confirmed over time.  On

the other hand, the Mix, Smith, Stockton, Cheng and Barterian study (2016), similar to

the Laski et al. (2016) study, showed that Montessori children performed similarly to

others in kindergarten, but they had significantly better performance at the end of the

second grade. As Lillard (2016) reported, however, research on Montessori should be

improved, because too little is still known about Montessori education benefits.

2.3 Concreteness Fading

Concreteness Fading is a method of teaching explored by researchers in recent years

(for a complete review see Fyfe & Nathan, 2018). The advantages and disadvantages

of concrete and abstract representations suggested that the two teaching methods could

be integrated, to take advantage of both. Some children may fail to link spontaneously

the concept learned with concrete materials to related symbols (Uttal, 2003), so it is

recommended to teachers to explicitly provide this link. To establish this connection,

and promote both conceptual learning and transfer abilities, teaching should provide

multiple  representations  (Ainsworth,  1999;  McNeil  & Jarvin  2007)  linked to  each

other (Nathan, 2012; Goldstone & Son, 2005, 2009; Fyfe et al. 2018).
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The concreteness fading instructional approach is  based on Bruner’s  theory (1966)

who claimed that children should be helped to develop a set of mental frames to pass

from concrete thinking to conceptually and abstract thinking.  Bruner argued that this

progression  supports  the  cognitive  development  of  children,  that  begins  with  a

concrete  relationship  with  the  environment  and  move  on  to  rules  and  concepts.

Bruner’s theory showed that the most effective way to teach follows three progressive

phases. During the first, enactive phase, concept is introduced by a physical model;

during the second, iconic phase, concept is re-introduced in a graphic representation

linked to the physical model; during the third, symbolic phase, the concept is showed

through the symbolic representation.  According to Fyfe and Nathan (2018) we can

define  Concreteness  Fading  as  a  “three-step  progression  by  which  a  concrete

representation of a concept is explicitly faded into a generic, idealized representation

of that same concept” (p. 9).

Benefits of concreteness fading are well explained by Fyfe, McNeil and Borjas (2015),

that summarized three crucial aspects: 

1) the abstract representations could be ambiguous for some children, and the concrete

objects could help to interpret them. “If the concrete materials precede the abstract

materials, the learner can successfully interpret the ambiguous abstract materials in

terms of the already understood concrete context. This process may underlie children’s

improved performance on symbolic equations when they are preceded by equations

constructed from concrete manipulatives” (Fyfe et al., 2015, p. 12);

2) action and perception allow children to represent experiences in a symbolic way.

“… these embodied experiences are linked to the abstract symbols,  facilitating the

mapping between abstract concepts and perceptual processes” (Fyfe et al. 2015, p. 13);

3) as theorized by Bruner (1966), learners who use concrete materials have a variety of

mental images that can be retrieved when the symbolic system does not seem to have a

clear  meaning.  “The  stored  images  provide  learners  with  an  accessible,  back-up

representation that  can be used when the abstract symbols are detached from their
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referent  …  Concreteness  fading  not  only  encourages  teachers  to  focus  on  both

concrete  and  abstract  understanding  but  also  provides  learners  with  abstractions

explicitly linked to a stock of images” (Fyfe et al., 2015, p. 13).

Some studies also demonstrated that the order of the progression matters; thus, it is

more effective for learners to start from a concrete object and proceed through a more

generic and abstract representation, instead of the reverse progression (Fyfe, McNeil,

& Borjas, 2015; Ottmar, 2017). However, this method of teaching is affected by many
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aspects, such as the age of learners, their prior knowledge, the learning time, the study

domain (Tapola et al. 2013; Vershaffel, 2016; Fyfe, McNeil, Son, & Goldstone, 2014).

One aspect that has not been investigated so far is how the object used in the first

phase of concreteness fading affects learning (Brown, McNeil, & Glemberg, 2009).

Fyfe and colleagues (2015) tested if the concreteness fading could help children to

extend  their  knowledge  beyond  a  simple  instructed  procedure.  In  their  first

experiment,  they  instructed  64  2nd grade  children  with  low  prior  knowledge  on

equivalence  by  assigning  them  to  one  out  of  four  learning  conditions:  concrete

materials (children received instructions accompanied by the use of concrete materials,

first by sharing stickers among two puppets and then by putting the same quantity of

some objects on a scale), abstract (children received instructions to solve six abstract,

symbolic math equivalence problems written on paper), concreteness fading (children

received instructions in three formats: first with concrete materials, then with “fading”

worksheets, and finally with abstract exercises), introduction to concreteness (children

received instructions  as  in  the  concreteness  fading condition,  but  in  reverse  order.

Children  were  taught  first  through  abstract,  symbolic  problems,  then   through

worksheets, and finally through  concrete materials). All children solved six exercises

of  equivalence.  They found that  children  in  concreteness  fading condition showed

significant  better  transfer  than  children  in  the  other  conditions.  In  their  second

experiment, it was also examined the possibility that  concreteness fading may result in

a  better  transfer  because starting the  teaching phase with concrete  materials  could

make the children more attentive during the explanation. The second experiment was

conducted with 22 1st and 2nd grade children, assigned to one out of two conditions:

concreteness fading (children received instruction as in experiment 1) and play-to-

abstract  (children  were  shown  concrete  materials  and  worksheets,  but  instructions

were  given  only  during  the  abstract  phase).  It  was  found  again  that   children  in

concreteness fading condition had better results in the transfer of knowledge.

Finally, the third experiment showed that also children with high prior knowledge can

benefit  from concreteness fading, by testing 50 2nd and 3rd grade children, with the
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same design and procedure of experiment 1, but involving also an advanced problem-

solving procedure.

Fyfe and McNeil demonstrated that primary school children in concreteness fading

condition, both with low and high prior knowledge, benefit from a teaching method

that starts with concrete representation and fade into abstract, symbolic representation.

Even  considering  that  the  authors  focused  on  the  role  of  the  three-step  teaching

method, they do not explicitly explained how they chose the concrete materials used. 
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Chapter Three

The first study

3.1 Introduction

As we  discussed  in  previous  chapters,  learning  mathematics  in  primary  school  is

essential for the develop of future skills. The debate on the most effective teaching

strategy is still open as the discussion on the use of concrete materials. As we have

seen, both teaching through concrete material and through the symbolic system have

strengths and weaknesses (Brown et al. 2009; Carbonneau et al., 2013; Goldstone &

Son,  2005;  Gray  &  Tall,  1993;  Kaminski  et  al.  2008).  A teaching  strategy  that

combine  the  positive  aspects  of  both  is  identifiable  in  the  concreteness  fading.

Consequently, it is critical to understand the most suitable type of concrete material

and the most effective use of it, in order to improve children’s transfer of knowledge.

We identified in the literature some basic aspects that the concrete material should

have to be effective, and the Montessori materials of mathematics meet these criteria

(Laski et al., 2015).

Consistently with this theoretical framework, in the first study we aim to extend prior

studies by examining the three teaching strategies: concrete, concreteness fading, and

abstract, and to compare two different types of concrete materials. To verify the role of

these two aspects we choose to use the experimental methodology, and we measure the

transfer abilities by administering a transfer test that allow us to examine both.

Thus,  the  current  study  investigate:  1)  the  role  of  the  type  of  concrete  materials

(Montessori versus other materials), 2) the role of the teaching strategy (concreteness

fading, concrete and abstract) in learning of mathematics.

We used the research paradigm by Fyfe and colleagues (2015), which experimented

three  teaching  conditions  to  introduce  equivalences.  Children  learn  through  six

reflexive equivalence exercises, driven by the researcher. The three teaching strategy
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differ as follows: children in  Concrete condition were provided with examples with

concrete  materials,  children  in  Abstract condition  were  provided  with  symbolic

examples,  children in  Concreteness Fading condition  were  provided with  concrete

materials,  iconic worksheet,  and symbolic worksheet (in this order of progression).

Although the cited researches examined the transfer ability by comparing these three

strategies, our experiment add a comparison of the concrete materials used in Concrete

and  Concreteness  Fading  condition.  Children  in  Concrete  condition  with  the

Montessori materials solved the exercises by using number rods and abacuses, children

in Concrete condition with Other materials solved the exercises by using puppets and a

scale as in Fyfe et al. (2015). Following the teaching phase, all children completed a

symbolic test to evaluate the transfer ability acquired. 

We focus on equivalence, as in many previous studies (Rittle-Johnson, 2006; Perry,

1991;  Fyfe,  McNeil  &  Borjas,  2015;  McNeil  &  Alibali,  2000;  Falkner,  Levi  &

Carpenter, 1999), since it is useful in showing both the conceptual understanding and

the ability to apply it to similar exercises, as the applying of the procedure with no

conceptual understanding of equivalence produces errors.

Concerning the Montessori materials, in their meta-analysis Carbonneau et al. (2013),

highlighted  three  variables  to  be  considered  in  experimenting  the  use  of  concrete

materials:  the  perceptual  richness  of  the  object,  the  level  of  guidance  given  by

teachers, and the level of previous knowledge and development status of students. 

With respect to the first variable, we used a) Montessori materials of number rods and

abacuses that, as largely reported, do not offer any perceptive distractions; b) Fyfe et

al.  (2015) materials,  in order to  partially replicate their  study.  Fyfe and colleagues

used:  1)  the  puppets  of  the  monkey  and  the  frog,  that  could  offer  perceptual

distractions, and that are commonly used by children for playing; 2) the balance scale,

that could be considered a didactic object with low distraction.

With respect to the second variable, Carbonneau and Marley (2015) demonstrated that

an high level of instructional guidance improve children learning. We offered an high
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level of instructional guidance in our experiment, replicating the script experimented

by Fyfe et al. (2015) by offering to the children continue feedback, the possibility to

repeat the  exercise twice,  and giving them a positive feedback at  the  end of  each

exercise. This teaching approach was the same for all the children regardless of the

condition.

With respect to the third variable, we pre-tested the children in order to examine only

the ones with no prior knowledge on mathematics equivalence.

As  said,  the  Montessori  manipulatives  we  chose  are  number  rods  and  abacuses.

Number rods are one of the basic sensorial materials in Montessori curriculum. “The

sensorial  materials  in Montessori  are designed to introduce mathematical  concepts.

The transition from sensorial to math materials is a simple step: a new set of rods is

introduced, just like the Red Rods, except on the Number Rods each 10 cm unit is

painted alternately red and blue… The teacher shows the child how to count the units

on each rod, arriving at the cardinal number with which it is identified, and to name

the rods, “one”, “two”, “three”, and so on, while touching each rod… To take the child

from a concrete understanding of number, based on the length of the rods, into this

abstract  realm, the teacher shows the child how to place Sandpaper Number cards

beside each rod” (Lillard, 2016, pp. 62-63). 
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The Small  Beads Frame in the  Montessori  curriculum is  one of  the  activities  that

follow the Golden Beads of the Decimal System, on which children in primary school

could count and make operations such as addition and subtraction. Montessori (2013b)

describes the Beads Frames as follows: “This material  is  made by a frame that  is

similar to the common abacuses. The Small Beads Frame extends only to the units of

thousands, the Large Beads Frame to the units of millions… The beads on the Frame

had symbolic value. Each green bead indicates a unit, just as the looses beads of the

Decimal System material, each blue bead has the value of a dozen, like the bar of ten.

Each red bead has the same value as a square of a hundred beads, and finally each

green bead belonging to the fourth thread has the value of a cube of a thousand beads.

… In this way, it is the position that makes the value, instead of the quantity” (p. 121-

125). The child counts by moving the beads, in order to see what happens when he

moves on the 10. 

As we saw, the Montessori abacus is made of four lines: units, tens, hundreds, unit of

thousands.  In our  experiment we used only the  unit  line.  Indeed,  the child  had to

operate on small numbers.  He had to work on the two sides of an equivalence by

moving the beads and adding or subtracting the requested quantity.
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The  materials  we  used  had  been  chosen  because  they  seemed  suitable  to  teach

equivalence. However, it is crucial to highlight that we presented them to children in a

single  short  teaching  session,  so  we  used  Montessori  materials  such  as  didactic

materials,  not as development materials.  Montessori  mathematics materials,  indeed,

are  designed in  a  special  progression,  in  order  to  drive  the  children  from a  more

concrete to a less concrete representation of the concept. The number rods are a start

material, thought to teach the numbers from 1 to 10 and their relations. After a long

work, during years, the children in Montessori classroom arrive to use the Small Bead

Frame, and they operate with big numbers. It is a long route that show its effectiveness

if developed through all its stages.

We did not work in a Montessori environment and children could not use materials for

a prolonged time. Thus, we can not claim to have used the Montessori method, but

only  to  have  used,  in  the  context  of  our  research  design,  some materials  deemed

suitable for the purpose. Rather, we used for the first time Montessori mathematics

materials through the concreteness fading strategy.

Thus,  the  current  study  extend  prior  studies  by  examining  the  benefits  of  the

Montessori  materials  (Laski  et  al.,  2015; Laski et  al.,  2016;  Fresco,  2000;  Lillard,

2012;  Lillard,  2016;  Rathunde  &  Csikszentmihalyi,  2005)  both  in  concrete  and

concreteness  fading  strategy  and  verifying  if  concreteness  fading  confirms  its

effectiveness (Fyfe & Nathan, 2019; Ottmar & Landy, 2017; Fyfe et al., 2015; Fyfe et

al., 2014; McNeil et al., 2012).

We  hypothesize  that  Montessori  concrete  materials,  designed  with  the  specific

intention of conveying the concept without distracting elements and with the greatest

possible level of conceptual clarity  and transparency,  could be more effective than

other objects. 

Moreover,  we hypothesize that  concreteness fading strategy,  which is  not typically

used  in  the  Montessori  method,  may  provide  children  with  help  in  moving  form

concrete to abstract, if in the enactive phase the material used is the Montessori one.
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Specifically, we test the following predictions:

1.  The  Montessori  concrete  material  has  more  positive  effects  on  transfer  of

knowledge than other materials (concrete materials effect on transfer).

2. The Concreteness Fading is a more effective strategy in the transfer of knowledge

than the Concrete and the Abstract (strategy effect on transfer).

Moreover,  we  analyze  the  effect  of  strategy  and  material  on  the  teaching  phase

(material  and  strategy  effect  on  learning).  The  teaching  phase  data  allow  us  to

investigate  the  learning  differences  across  conditions.  Even  if  our  hypotheses

concerned transfer  ability,  the  differences  observed during the  teaching phase may

show  the  immediate  response  of  the  children  understanding  of  the  teacher’s

explanation.

On the other hand, the results of the transfer test show us if learning has been effective

in terms of the ability to use it in different contexts and generalize.

3.2 Method

Participants

Participants  in  this  study  include  181  second-grade  children  from  two  public

elementary  schools  near  Rome,  in  Italy.  Before  the  study  started,  written  parental

consent  was  received.  We  excluded  from  this  sample  children  with  disability  or

learning difficulties, since they could not solve the exercises without specific support.

Only 167 meet the criteria and therefore were included in the study, because they could

not solve any of the four equivalence exercise of the pretest. Since the subject of the

equivalence is unknown to second-class children, only 10 children answered correctly

to more than one pretest  exercise,  as expected. Thus,  the final  sample was of 167

Italian children (78 boys, 89 girls) born between September 2009 and March 2011, so

that at the time of the study they were about 7 years old (M = 7 years 8 months, range

= 7-9 years).
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Design

The study consisted of two phases: a teaching phase and a transfer test phase. For the

teaching phase children were randomly distributed among one out of five conditions

ensuring gender and age homogeneity: Concreteness Fading with Montessori material

(n  =  29),  Concreteness  Fading  with  Other  materials  (n  =  29),  Concrete  with

Montessori material (n = 28), Concrete with Other materials (n = 29), Abstract (n =

52).

Both phases had a total duration of 35 minutes. There were no significant differences

between groups in terms of age F(4,161)= .142, p = .96, or gender X2 (4, N=161)= 2.51,

p= .64.

Instruments

The instruction, pretest and post-test are included in Appendix.

Pretest: the  pretest  was  the  same  already  used  by  Fyfe  and  colleagues  (2015). It

included four mathematical equivalences: two exercises with two addends on the left

side of equal sign and two on the right side; two exercises with three addends on the

left side of equal sign and two on the right side. All items were scored on a 0/1 scale, 0

if correct and 1 if incorrect. The score obtained was calculated on the basis of the

number of mistakes, between 0 and 4.

Teaching phase: all children solved the same six equivalence exercises as in Fyfe and

colleagues  (2015).  All  the  exercises  had  four  addends,  they  were  reflexive  (i.e.

2+1=2+1), with a blank space on the fourth place. Children had two possibilities to

solve each item. All items are scored on a 0/2 scale, 0 if correct, 1 for one mistake, 2

for two mistakes. If children could not solve the item after two attempts, they were

given the solution. The score obtained was calculated on the basis of the number of

mistakes, with a value between 0 and 12.

Post-test: at the end of the teaching phase, children solved a transfer test in order to

verify the transfer of learning. Many previous studies (Alibali, 1999; Fyfe et al., 2012;

Mattews  et  al.,  2009;  Perry,  1991;  Fyfe,  2015)  used  this  kind  of  transfer  test.  It
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included four equivalence exercises and a multiple-choice problem. The test was more

complex than the exercises submitted during the teaching phase, but such that they

could be solved by logical reasoning and by applying the knowledge acquired during

the teaching phase. The exercises had three addends instead of two; the position of the

blank space on the third place instead of the fourth; the presence/absence of a repeated

number on the right and left side. All items were scored on a 0/1 scale, 0 if incorrect

and 1 if correct, so that the final score corresponded to the number of correct answers

(dependent variable), therefore a value between 0 and 5.

Materials

We used different materials depending on the teaching condition.

Montessori - Concrete (see Fig. 4).  Two series of Montessori small number rods and

two Montessori small abacuses.

Other Materials - Concrete (see Fig. 5). Two puppets (a monkey and a frog) with a box

of stickers and a balance scale with eighteen small plastic bears.
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Montessori - Concreteness Fading (see Fig. 6). Two series of Montessori small number

rods and two Montessori small abacuses (enactive phase); a worksheet where images

of concrete material and numbers are placed side-by-side (iconic phase); a worksheet

with numbers only (symbolic phase).

Other Materials - Concreteness Fading (see Fig. 7). Two puppets (a monkey and a

frog) with a  box of  stickers  and a  balance scale  with eighteen small  plastic  bears
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Fig. 5. Other materials used in concrete condition of teaching. Puppets and scale.

Fig. 6. Progression of materials used in concreteness fading 
condition with Montessori materials.



(enactive  phase);  a  worksheet  where images  of  concrete  material  and numbers  are

placed side by side (iconic phase); a worksheet with numbers only (symbolic phase).

Abstract. A worksheet with the exercises in symbolic form.

Procedure

Pretest: all children completed the pretest on February 2017, during four consecutive

days,  in  the  morning.  The  pretest  was  concurrently  solved  by  children  in  each

classroom, who did not receive any explanations about the equivalence. The pretest

had not a standard time, since children delivered the exercises when completed.

Teaching phase: the teaching phase took place from March to May 2017.  All  children

received instructions individually, inside a quiet classroom of the school. Regardless of

the  condition,  all  children  received  the  same  amount  of  information.  Thus,  the

difference between the conditions was the concreteness or abstractness of the format;

the instructions were consistent across all the conditions. Each child participated to a

single session of the teaching phase. If the child answered correctly,  he received a

positive feedback; if the child made a mistake, it was provided with an explanation, so
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that he could try to answer again. If the child was still wrong, the correct answer was

provided. If the child answered correctly, he proceeded to the next exercise.

Montessori Concrete:

The children were told that each rod corresponded to a quantity, from 1 to 10. Then the

concept of equal was presented showing a note with the symbol and explaining that in

the equivalence the quantities on the right and left of the equal had to be the same.

We taught the first exercise (4 + 3 = 4 + _) by asking the child to position the rods 4

and 3 on the left side of the equal symbol, and the 4 rod on the right side. The child

was asked what quantity should be added on the right of the equal in order to obtain

two equal quantities on both sides. The children who worked in this condition carried

out the first three exercises with this procedure.

We submitted the following three exercises with the abacuses.

We taught the fourth exercise with the abacus (5 + 4 = 5 + _) by explaining to the child

that there was an abacus on the right and one on the left of the equal, and that we were

going to use only the units beads of each abacus. Subsequently we showed the use of

the abacus, explaining that the desired quantity is obtained by moving the beads from

left  to right of the thread. Hence,  we asked the child to move 5 beads on the left

abacus, and then 4 beads. Then, he was asked to move 5 beads on the right abacus. The

child was asked what quantity should be added to the right of the equal in order to

obtain two equal quantities on both sides. The children who worked in this condition

carried out the last three exercises with this procedure.

Other materials Concrete:

The materials used by Fyfe and colleagues (2015) were two puppets and a balance

scale. The concept of equal was presented by showing a note with the symbol and

explaining that in equivalence the quantities on the right and left of the equal had to be

the same.  We taught  the first  exercise (4 + 3 = 4 + _)  with the  two puppets:  the

Monkey and the Frog. Each puppet had two small red squares of paper in front of it, to

collect stickers. The child was asked to share the stickers between the two puppets,

giving to both of them the same quantity. We asked the child to place 4 stickers in the
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monkey's collector, and then 3 stickers. Then, the child placed 4 stickers in the frog's

collector. The child was asked what quantity should be added to the right of the equal

in order to obtain the same quantities on both sides.  The children who worked in this

condition carried out the first three exercises with this procedure.

We presented the following three exercises with a balance scale with two empty bins,

and small plastic bears to be placed on the two bins. We taught the first exercise with

the balance scale (5 + 4 = 5 + _) explaining to the child that there were two bins, one

on the right and one on the left of the balance, and that we wanted to have the same

quantity of bears on each bin, in order to make the scale balance. The child was asked

to put 5 bears on the left bin, and then 4 bears; then, the child placed 5 bears on the

right bin. The child was asked what quantity had to be added to the right in order to to

obtain two equal quantities on both sides.  The children who worked in this condition

carried out the last three exercises with this procedure.

Concreteness Fading (Montessori and Other materials):

The teaching phase in concreteness Fading condition, as we saw, toke place in three

phases: enactive, iconic, and symbolic.

The  first  phase  (enactive)  exactly  follows  the  procedure  used  with  the  Concrete

groups, and it concerned the first exercise with the number rods and the fourth exercise

with the abacuses for the Montessori condition; the first exercise with the puppets and

the fourth with the balance scale for the Other Materials condition.

In the second phase (iconic) a worksheet was used immediately after the first exercise

with the concrete material, so the child was explicitly told that it was the same exercise

he had just done, but with the graphic reproduction of the material used. The child was

asked to write the numbers while imagining to use concrete materials, so he wrote 3

and 5 on the left side of the equal, then 3 on the left side. Finally, he was asked which

quantity he had to add on the right side to have the same quantities on both sides. The

feedback we gave followed the same script used in the concrete phase. We used the

worksheet for the second and the fifth exercise.
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For the third phase (symbolic), a paper with an equivalence exercise was provided to

the child, with one blank space on the fourth place. We asked the child to remember

both the  exercise  just  done first  with concrete  manipulatives  and then with iconic

worksheet. This time, the child had only numbers, so we pointed to the numbers with

the finger (4+2=4+_), in order to show him that on the left side of the equal we had a

four and a two, and on the right side we just had a four, and then we asked him to find

the right quantity so to have the same quantities on the both sides. The feedback, also

in this phase, followed the script used in the two previous phases. We used the paper

with symbolic exercises for the third and sixth exercises.

The concreteness fading procedure consists in linking the three phases; indeed, the

children  are  always  invited  to  remember  the  previous  phases  while  solving  the

exercises, in order to better underline the tight connection between concrete materials

and symbols.

Abstract:

The teaching began by showing the child the equal sign, and then by pointing with the

finger the left and the right side of the equivalence. Thus, he was asked to observe the

quantities on the left, and to identify the missing quantity on the right to obtain two

equal quantities on the two sides of the equivalence. The child received the feedback

with the same script used for the others conditions. All six exercises were solved in

this way.

Transfer Test: immediately after the teaching phase every child completed the Transfer

Test.  The child had to solve all  the exercises on his own. Thus, during the testing

feedback no further explanations were provided. There was not time limit to complete

the test. Once the test was completed, the child was taken back to the classroom and

the whole procedure was restarted with another child.
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3.3 Results 

3.3.1 Transfer Test

The transfer test showed low results for the complete sample, as shown in Table 1,

which was foreseeable because it was designed to accurately set the transfer ability.

Therefore, it was composed by elements not explained during the instructions phase,

but deducible from what had already been learned through the logical reasoning. 

Table 1. Transfer test score by condition (Concreteness Fading, Concrete, Abstract) and Materials (Other

materials, Montessori)

Strategy Materials N Mean Std. Deviation Min Max

Concreteness

Fading 

Other Material 29 2.21 1.634 0 5

Montessori Material 29 2.59 1.701 0 5

Total 58 2.40 1.667 0 5

Concrete 
Other Material 29 .62 1.147 0 4

Montessori Material 28 .43 .742 0 3

Total 57 .52 .944 0 4

Abstract 52 1.42 1.719 0 5

Other Material 58 1.41 1.390 0 5

Montessori Material 57 1.51 1.221 0 5

Total 115 1.46 1.305 0 5

Total 167 1.46 1.667 0 5

No effect of the gender on transfer test performance occurred F (1,157)=2.55, p= .11, μ2

= .01.

To  test  our  first  prediction  that  Montessori  materials  has  more  positive  effects  on

transfer  than  other  materials,  we  performed  a  2  (materials:  Montessori,  Other

materials)  X  2  (strategy:  Concrete,  Concreteness  Fading)  ANOVA tests  with  the

correct (out of 5) transfer test score as dependent variable. The Abstract group has not

been analyzed in this analysis, because we were verifying the effect of the type of

concrete materials used. Thus, the analyzed sample was made up of 115 children. The
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four groups were well matched in in terms of gender X2 (3, N= 115)= 5.57, p= .13 and age

F(3,111)= .67, p=.56.  

As shown in Table 2, there was a main effect of the Strategy on transfer test score.

Conversely, despite our first prediction, results show no effect of the material on the

transfer test score and no interaction effect between Material and Strategy.

Table 2. Analysis of variance (Transfer Test Score) by Material and Strategy

Source
Type III Sum

of squares
df

Mean

Square
F Sig.

Partial Eta

squared

Corrected model 103.166a 3 34.389 18.398 .000 .332

Intercept 245.276 1 245.276 131.222 .000 .542

Material .252 1 .252 .135 .714 .001

Strategy 100.719 1 100.719 53.885 .000 .327

Material * Strategy 2.346 1 2.346 1.255 .265 .011

Error 207.478 111 1.869

Total 559.000 115

Corrected total 310.643 114
 a. R Squared = .332 (Adjusted R Squared = .314)

To test  our  second  prediction,  that  concreteness  fading  could  be  a  more  effective

strategy  than  concrete  and  abstract,  the  three  teaching  strategies  were  compared

(Concrete,  Concreteness  Fading,  Abstract)  to  see  the  effects  on transfer.  Thus,  we

analyzed the entire sample. The three groups were well matched in in terms of gender

X2  
(2, N= 167)= 1.59, p= .45 and age F(2,164)= .11, p=.9. An one-way ANOVA was carried

out with the Strategy as independent variable and the Transfer Test score as dependent

variable. 

Consistent with our prediction, results showed a main effect of the Strategy as shown

in Table 3. Post-hoc comparison with the Tukey HSD showed a significant difference

between Concreteness Fading and Concrete, with a significantly higher score of the

Concreteness Fading group (p<.001); between Concreteness Fading and Abstract, with

a  significantly  higher  score  of  the  Concreteness  Fading  group  (p=.002);  between
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Concrete  and  Abstract,  with  a  significantly  higher  score  of  the  Abstract  group

(p=.005). 

Table 3. Analysis of variance (Transfer Test Score) by  Strategy (Concreteness 
Fading, Concrete, Abstract)

Sum of

squares df

Mean

Square F Sig.

Partial Eta

Squared

Between 

groups

100.631 2 50.316 22,872 .000 .22

Within 

groups

360.782 164 2.200

Total 461.413 166

3.3.2 Teaching phase

During the teaching phase, each child could make a maximum of 2 errors per exercise,

so the number of total errors could range between 0 and 12.

As showed in Table 4, the children made a few errors across the six exercises. This is

not surprising, because the exercises proposed were simple, and the children received a

feedback every time they gave an answer. 

Table 4. Number of errors committed during the teaching phase by Strategy (Concreteness Fading, 

Concrete, Abstract) and Material (other Materials, Montessori)  

Strategy Materials N Mean Std. Deviation Min Max

Concreteness 

Fading 

Other Material 29 .93 1.193 0 4

Montessori Material 29 .66 .974 0 3

Total 58 .79 1.083 0 4

Abstract 52 1.06 1.697 0 6

Concrete 
Other Material 29 .21 .412 0 1

Montessori Material 28 .07 .262 0 1

Total 57 .14 .337 0 1

Total 167 .65 1.217 0 6
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In order to analyze the effect of strategy and materials  we performed a 2 (materials:

Montessori, Other materials) X 2 (strategy: Concrete, Concreteness Fading) ANOVA

analysis with the number of errors (out of 12) as the dependent variable. The sample

was  made  by  115  children.  The  ANOVA showed a  significant  main  effect  of  the

Strategy but no effect either of the Material or the interaction between Strategy and

Material (see Table 5).

Table 5. Analysis of variance (Number of errors committed during the teaching phase) by Strategy and Material

Source
Type III Sum

of Squares
df

Mean

Square
F Sig. Partial Eta Squared

Corrected Model 13.614a 3 4.538 6.897 .000 .157

Intercept 24.981 1 24.981 37.970 .000 .255

Material 1.216 1 1.216 1.848 .177 .016

Strategy 12.292 1 12.292 18.683 .000 .144

Material* Strategy .142 1 .142 .215 .644 .002

Error 73.030 111 .658

Total 112.000 115

Corrected Total 86.643 114
        a. R Squared = .157 (Adjusted R Squared = .134)

We carried out  a  one-way ANOVA with  Strategy (Concreteness  Fading,  Concrete,

Abstract) as independent variable, and the number of errors as dependent variable. We

analyzed the entire sample. The ANOVA showed that there was a significant main

effect  of  the  Strategy  (see  Table  6).  Tukey  HSD  post-hoc  revealed  a  significant

difference between Concreteness Fading and Concrete (p= .008),  with a significant

higher number of errors committed by the children in Concreteness Fading Group; and

between Abstract and Concrete with a significant higher number of errors committed

by the children in the Abstract group (p< .001). No significant differences were found

between the number of errors committed by the children in Concreteness Fading and
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Abstract groups (p=45). As expected, the children in Concrete condition had the better

performance across the three groups.

Table 6. Analysis of variance (Number of errors committed during the teaching phase) by Strategy 

Sum of Squares df Mean Square F Sig.

Between groups 24.635 2 12.317 9.131 .000

Within groups 221.221 164 1.349

Total 245.856 166

To predict the relationship between material, strategy and number of errors committed

during  the  teaching  phase  and  the  transfer  test  score,  we  did  a  stepwise  multiple

regression  analyses  with  Material  as  independent  variable,  later  adding  the

independent variable of Strategy, and then adding the independent variable of Number

of errors committed during the teaching phase. In each estimated model the variable

Material was not significant. Consequently, the final model adopted is shown in Table

7. The model explains the 26% of the variance. As expected, both strategy and number

of errors committed in the teaching phase are significant predictors.

Table 7. Multivariate Analysis of variance 

Source B Std. Err. Beta t

(Constant) 1.737 .225 7,704

Concreteness Fading Strategy .895 -.278 .256 3.224

Concrete Strategy -1.169 -.291 -.334 -4.012

Number of errors during teaching -.297 .097 -.217 -3.054

3.4 Discussion and conclusion 

This  study  was  designed  to  verify  if  the  Montessori  conrete  materials  has  more

positive effects on transfer than other materials and if the Concreteness Fading is a

more effective strategy for transfer than the Concrete and the Abstract. These findings
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suggest,  despite  our  first  prediction,  that  in  a  single  session  of  instruction  the

Montessori materials do not promote a better transfer of the knowledge  compared to

the other materials experimented by Fyfe et al.  (2015). Children in the Montessori

group  showed  no  significant  differences  in  transfer  abilities  with  respect  to  the

children in the Other materials group. Our first prediction was suggested from the idea

that  the  concrete  materials  are  effective  when  they  respects  some  parameters,  as

exposed by Laski et al. (2015). One of these parameters requires that the object is not a

toy or an object of common use. In this regard, the puppets used by Fyfe et al. (2015)

seemed not to be adequate to introduce to the children the concept of equivalence, as

they are commonly used toys and not educational materials. On the other hand, given

the results, it can be assumed that although they were not didactic materials, they were

suitable  to  teach  the  concept  of  equivalence  as  they  allowed  for  an  equitable

distribution of quantities between the two puppets. Similarly, although the scale is an

instrument used in the educational field (and widely used in the American schools), the

plastic bears were again commonly used toys, but even in this case we can think that

the scale was appropriate for teaching equivalences, since it  shows how to control

errors (if the quantities are equal the scale is balanced, otherwise not).

Beyond the type of material used, which in the context of a single teaching session

does not make a difference, we found interesting differences with respect to the way

how the material is used when teaching.

Indeed, the teaching strategy used had an effect on children performance during the

transfer test, as in our second prediction. Based on our results, confirming the previous

study  by  Fyfe  et  al.  (2015),  the  concreteness  fading  strategy  promotes  better

performance in the transfer of equivalence knowledge and helps children to transfer

the knowledge acquired regardless of the specific concrete material used during the

teaching  phase.  On  the  contrary,  the  concrete  strategy  does  not  seem to  help  the

transfer of knowledge,  regardless of the specific concrete material  used during the

teaching phase. The children in concrete condition, furthermore, achieved the lowest

results,  even  worse  than  the  children  in  abstract  condition.  Despite  the  positive
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performance obtained by the children in concrete condition during the teaching phase,

they  faced  great  difficulty  in  solving  the  transfer  test.  Indeed,  the  children  in  the

concrete  condition  had significant  low outcomes  than  children in  the  concreteness

Fading and Abstract condition, which did not differ from each other.

We could infer that the children in concrete conditions obtained an effective learning

of the equivalence during the learning phase. This is consistent with the previous study

that stated the advantage provided by concrete materials to the children during their

first  stages  of  learning  new  concepts,  due  to  their  contextualized  and  perceptive

approach  (Baranes, Perry & Stigler, 1989; Kotovsky, Hayes & Simon, 1985). On the

contrary, a low number of errors during the teaching phase will be associated to an

increased probability of committing errors in the transfer test.  Children in concrete

condition showed a gap in outcomes between teaching phase (high) and transfer test

(low), meaning that the children were able to solve equivalence with manipulatives,

but  not  to  link  their  knowledge  to  symbols  during  the  transfer  test.  This  result,

apparently  contradictory,  could  be  explained  considering  that  the  transfer  test  was

submitted immediately after the teaching phase. The equivalence in the symbolic form

has  been  solved  during  the  teaching  phase  by  both  the  children  in  abstract  and

concreteness  fading condition,  while  the  children  in  the  concrete  group  has  never

worked with abstract symbols. Children in concrete conditions, when tested, have been

subjected to exercises that required a quick passage from the concept to the symbol. In

order to interpret  these results it  is very important to consider also that one of the

efficacy parameters is that the use of the material must be long lasting. Our study,

instead, deals with a single teaching session, immediately followed by the transfer test.

What emerges therefore is that a single teaching session with concrete material may

not be effective if the goal is the fast transfer of knowledge. 

Furthermore, we observed that the children in abstract condition, which carried out the

teaching session in a very similar manner to the transfer test, did not have the best

performance neither in the teaching phase nor in the transfer test. This is in contrast

with Kaminski et al. (2008) findings, that showed a better transfer ability in students
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provided with  generic and symbolic instruction. We could infer that 2nd grade children

may not benefit from a teaching based on symbolic explanation. It is surprising to see

that teaching with symbolic or eventually graphic explanation is commonly used in

Italian  schools,  although  it  seems  not  to  be  the  most  effective  way  at  all.  The

regression analysis of the role of the material, the strategy and the learning during the

teaching phase on the transfer test, showed how it is predicted primary by the strategy

(i.e. Concreteness Fading) and secondary by the learning during the teaching phase

(i.e. number of errors). Thus, we had further confirmation of the effect of the teaching

strategy on equivalence learning. The role of the learning during the teaching phase

could be interpreted by considering the individual differences between children, due to

their previous knowledge, their calculation skills and speed or deductive skills.

Thus, we can conclude that for a single teaching session, whose objective is to obtain

both  conceptual  learning  and  transfer  ability,  the  most  effective  strategy  could  be

concreteness fading.  Therefore, the role of time remains an open question,  since it

could  be possible that if children could use the material for a longer time, they may be

able to reach a deep understanding  which could be transferred in a symbolic form.

Also, it could be supposed that submitting the transfer test after a longer time, instead

of immediately after the teaching session, may allow children to process the acquired

knowledge and to link it to the other symbolic knowledge already possessed. McNeil

and Fyfe  (2012) suggested that  testing the  children immediately after  the  teaching

phase  may  be  a  limitation  for  two  reasons.  First,  students  are  not  evaluated

immediately after the teaching phase when attending school.  On average, teachers

evaluations occurs weeks or months after the lesson; thus, it may be misleading to

assess the post-test only after the teaching phase, in order to verify the better teaching

strategy.  Second,  the  McGaugh  (2000)  review  of  the  literature  on  memory

consolidation shows that little is yet known about processes involved in consolidation,

although it  is  clear  that  consolidation occurs through several  hours or longer after

learning, in order to generate our lifelong memories. Consolidation of learning is the

increasing of skills and the stabilization of memories (Robertson, Pascual-Leone, &
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Miall,  2004).  The  skill  improvement  occurs  “off-line”,  and it  do  not  need further

pysical  practice  since  it  is  ofter  related  to  sleep.  As  exposed by Robertson et  al.,

performance in a perceptual discrimination task increases by 15-20% after a night's

sleep. However, the authors pointed out the possibility that off-line learning could be

only time-dependent. Empirical evidence in Gomez, Bootzin and Nadel (2006) appear

to confirm that sleeping is implicated in significant changing in children's memories

organization, promoting flexibility and generalization in learning. Processes hidden in

the new memories, thus, persist in a fragile state and consolidate over time. Therefore,

a short  time (or  no time) between teaching phase and post-test  may not allow the

consolidation of learning. 
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Chapter Four

The second study

4.1 Introduction

The first study showed that the type of material used in teaching equivalence did not

affect  the  children’s  transfer  ability,  which  was,  indeed,  affected  by  the  teaching

strategy: children in the Concreteness Fading condition had the better transfer, while

those in the Concrete condition had lower transfer ability. It could be that that their low

results  were  due  to  the  short  time span between teaching and testing.  To test  the

transfer ability of the children immediately after the teaching phase could result in an

advantage for the children that were taught with generic examples, faster to process. It

could  be  inferred  that  symbolic,  abstract  examples,  like  the  ones  proposed  by

Kaminski et al., (2008) may be more effective in a immediate test, unlike a learning

with concrete manipulatives. Learning with concrete, besides, may need longer time to

be  reorganized  into  abstract,  general  concepts.  To  suitably  test  the  ability  of

generalization  of  concepts  acquired  by  children  with  concrete  manipulatives,

researchers should consider the time as a significant variable. 

However, another finding of the first study was that the transfer test scores were very

low for the complete sample. It is possible that this happened because children were

offered only one type of equivalence example, generating a low understanding of the

concept of equal. Multiple representations involve the possibility to provide children a

variety  of  examples  in  order  to  deeply  understand  the  concept  underlying  the

procedure. The choice of examples through which the teacher proposes a concept to

the  children  significantly  influences  learning.  If  the  representations  the  teacher

provides  are  always  the  same,  it  follows  that  the  child  accepts  them as  the  only

possible  representation  of  the  concept  itself.  This  type  of  approach  can  cause,

especially in mathematics and geometry, the establishment of so-called "avoidable"
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misconceptions  (Sbaragli,  2005).  This  type  of  misconceptions  is  the  result  of  an

overlap between the example proposed by the teacher and the concept to be taught. As

we have seen, this type of learning also causes limitations in the ability to generalize

the concepts to other areas and domains. "Misconceptions have been divided into two

big categories: "avoidable"and “unavoidable"; the first do not depend directly on the

teacher  didactic  transposition,  whereas  the  second  dependence  is  exactly  on  the

didactic choices " (Santi & Sbaragli, 2007). D’amore (2003) affirms that “the student

does not know that he is learning signs that  stand for concepts and that he should

instead learn concepts; if the teacher has never reflected on this point, he will believe

that the student is learning concepts, while he is actually learning only to make use of

signs".  Therefore,  the  teacher’s  critical  reflection  about  the  type  of  examples  he

proposes  is  crucial  for  the  success  of  learning,  especially  in  mathematics.  Indeed,

mathematics is made up of abstract, general concepts. As we have seen, in learning

concepts children benefit greatly from the use of concrete examples. At the same time,

however, such examples can generate both generalization difficulties and the birth of

real misconceptions.

Therefore, teaching must take these aspects into account to offer solutions aimed at

achieving the learning objective and overcoming these problems.

According  to  Duval  (2006)  to  avoid  the  formation  of  misconceptions  due  to  the

didactic intervention, the teacher should provide the child with various and different

representations of the concept,  and avoid ambiguous or misleading representations.

Often, the teachers are not aware of the effects that a teaching based on the uniqueness

of examples and representations can generate (Santi & Sbaragli, 2007). As we have

seen,  the  concrete  example  or  the  use  of  concrete  material,  to  make  the  concept

tangible carries within it a series of unnecessary information that can distract the child.

So, just as the choice of the concrete material must take into account the distracting

elements,  in the same way the examples chosen by the teacher to show a concept

should be chosen carefully.
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Teaching allows the restructuring of "unavoidable" misconceptions, so it should work

to ensure that avoidable ones are not created or reduced (Mason, 2013). 

The child is able to overcome by himself the confusion generated by the characteristics

of the model/example provided, as long as he can compare it with other models that

allow him to eliminate all irrelevant aspects. The characteristics that the child could

find in the various and several models/examples, have a general character and allow

him to understand the underlying concept. This approach also allows the child to reach

the  concept  through  a  classification  and  synthesis  operation,  which  Montessori

indicated as necessary for the construction of a deep knowledge.

If the didactic intervention occurs through the presentation of a series of examples, all

bearing the same characteristics, although different examples appear, it is actually the

repetition of the same model that the child tends to identify as the concept itself.

In the case of the concept of the equal sign applied to the fractions, Santi and Sbaragli

(2006) showed that primary school teachers possess a deep-rooted misconception with

respect to the fraction considered exclusively as a whole divided into equal parts. The

“equal” term is used naively by teachers, facilitating the onset of misconceptions by

children. This type of misconception has been studied by Fandiño Pinilla (2005) who

states: "In doing so, fractions are not referred to specific properties such as length,

numerosity, surface extension, volume, ... of a given integer, but to the congruence of

the parts". The same phenomenon occurs when in the teaching of geometry we always

proceed using the same figures, positioned in the same way in space, constraining the

characteristics of the object to the occupied position. In this case the concrete object or

its graphic representations can "exasperate the reference to characteristics related to

the perception that cause deformation" (Sbaragli, 2005).

Byrd, McNeil, Chesney and Matthews (2015) showed that children's misconceptions

of  the  equal  sign  can  predict  future  algebraic  difficulties.  Researchers  suggest  to

teachers  to  assess  equal  sign  interpretations  in  primary  school,  in  order  to  avoid

entrenched misconception later. Children's experience support the idea that equal is the

result  of  operations  (e.g.  4+5=_),  so  they  do  not  experience  other  views,  as  the
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relational one (2+3=2+_). Fyfe, McNeil and Borjas (2014) and Rittle-Johnson (2006)

focuses on the fact that children in primary school misinterpret the equal sign, as it

could only means “find the total”, and they miss the correct answer of an equivalence.

The interpretation that children consolidate during their primary school years translate

into a rigid and unaware use of the equal sign (McNeil & Alibali, 2005). This makes it

difficult to carry out equivalence and to understand more complex algebraic concepts

requested after the primary school.

On the basis of the above considerations and literature, the aim of the current study is

to better understand if:  1) the use of multiple examples could translate in a better

learning, regardless of the teaching strategy used;  2) a longer time after the teaching

phase allows to increase transfer ability of children who learned with concrete strategy

and to maintain stable the transfer ability of children who learned with concreteness

fading strategy.

Thus, the current study extend prior studies by examining the benefits of the use of

multiple examples during the teaching phase, and the role of time in the transfer of

knowledge acquired with concrete and concreteness fading strategies. We focused on

the  two  teaching  strategies  that  used  concrete  materials  (concreteness  fading  and

concrete), by excluding the abstract strategy, already examined in our Experiment 1. 

During the teaching sessions of our previous study we used the same six reflexive

examples (i.e. 2+3=2+_), with two addends on each side, used by Fyfe et al. (2015).

On the  contrary,  in  the  transfer  test,  the  exercises  had a  non-reflexive form,  three

addends on the left side and a different position of the blank space. In order to better

understand the concept and to have a better performance during the the transfer test,

children may need to see various examples, i.e. non-reflexive exercises (i.e. 2+3=3+_)

or different blank space position (i.e. 2+_=2+3). Thus, in the second study we used six

reflexive and six non-reflexive exercises during the teaching phase.

Concerning  the  effect  of  time  on  the  transfer  ability,  we  examined  the  outcomes

immediately  after  the  teaching phase  and after  two weeks.  During  the  two weeks

between  the  first  and  the  second  test,  children  did  not  receive  any  additional
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information about equivalence, indeed equivalence is not a 2nd grade topic in the Italian

schools. 

Specifically, we tested the following predictions: 

1) children who learn math equivalence benefit from a teaching method that provides

multiple examples;

2) the effect of the teaching strategy is not stable over time: children who use concrete

materials may have higher outcomes if tested two weeks after the teaching session.

4.2 Method

Participants

Participants in this study include 81 second-grade children from a public elementary

school  near  Rome,  in  Italy.  Before  the  study started,  written parental  consent  was

received. We excluded from the sample children with disability or learning difficulties,

since they could not solve the exercises without specific support. Only 75 meet criteria

were included in the study, because they could not solve any of the four equivalence

exercises of the pretest.  Since equivalence are not known to 2nd grade children, as

expected we found that only 6 children answered correctly to more than one pretest

exercise.   Thus, the final sample was of 75 Italian children (33 boys, 42 girls), born

between September 2010 and April 2012, so that, at the time of the study they were

about 7 years old (M = 7 years 7 months, range = 6-8 years). 

Design

The experiment consisted of three phases: a teaching phase, a transfer test phase in

Time1 and a  Transfer  Test  phase  in  Time2.  For  the  teaching phase  children  were

randomly distributed to one of four conditions ensuring gender and age homogeneity:

Concrete  with  reflexive  exercises  (n=18),  Concrete  with  non-reflexive  exercises

(n=18), Concreteness fading with reflexive exercises (n=19), Concreteness fading with
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non-reflexive exercises (n=20). There were no significant difference between groups in

terms of age F(3, 71)= 1.20, p = .31, and gender X2
(3, N=75) = .03, p = .99.

Teaching phase and Transfer Test in Time 1 were one after the other. The Transfer Test

in Time 2 was provided to all children two weeks after the teaching phase and the

Transfer Test in Time 1.

Instruments

The instructions, pretest and post-test were the same used in Experiment 1.

The same post-test was repeated at two stages (T1 and T2).

Teaching phase:  all  children in the Reflexive groups solved the same six reflexive

equivalence exercises as in Experiment  1 (i.e.  2+1=2+1).  All  children in the Non-

Reflexive  groups  solved  six  equivalence  exercises  (see  Appendix)  similar  to  the

reflexive ones, but with the addends not repeated in the same order (i.e. 3+5=5+_). The

children had two possibilities to solve each item. All items were scored on a 0/2 scale,

0 if correct, 1 for one error, 2 for two errors. If children could not solve an item twice,

they were given the solution. The score obtained was the sum of the total number of

errors, with a value between 0 and 12.

Materials

We  used  only  Montessori  materials,  for  both  Concrete  and  Concreteness  Fading

groups.  The Montessori materials were the same used in Experiment 1.

Procedure

Pretest: all  children  completed  the  pretest  on  October  2018 while  staying in  their

classrooms. The format and the procedure were the same of Experiment 1. 
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Teaching phase: the teaching phase took place from October to December 2018.  The

children received the instructions in a quiet classroom of the school. Regardless of the

condition,  all  the  children  received  the  same  amount  of  information.  Thus,  the

difference between the conditions was the concreteness or abstractness of the format

and the type of exercises: reflexive or not. The children participate individually to the

teaching phase, in a single session of 35 minutes. If the child answered correctly, he

received positive  feedback;  if  the  child  made a mistake,  he  was provided with an

explanation, so that he could try to answer again. If the child was still  wrong, the

correct  answer  was  provided.  If  the  child  answered  correctly,  he  could  go  to  the

following exercise.

The children were divided into four groups. The procedure differed by method and

type of exercises, as follow.

Concrete:

The children of this group did the same work of Experiment 1, with the Montessori

materials.

Concreteness Fading:

The  teaching  phase  in  concreteness  fading  condition  took  place  in  three  steps:

enactive, iconic, and symbolic, as in Experiment 1.

Reflexive Exercises:

The children received the same exercises used in Experiment 1.

Not Reflexive Exercises:

Children received the same instructions of Experiment 1, but the six exercises were

modified in order to provide a variety of examples. The first and third exercises were

the same of Experiment 1.  The second exercise had the addends in a not reflexive

position. The fourth exercise was reflexive but with the blank at the second place. The

fifth exercise had addends in a not reflexive position and the blank at the first place.
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Transfer Test in Time 1: immediately after the teaching phase every child completed

the Transfer Test. The child solved all the exercises without any help. Thus, during the

test, feedback or further explanation were not provided. There was not a time limit to

solve the  exercises.  Once the  test  was completed the  child  was taken back to  the

classroom and the whole procedure was restarted with another child.

Transfer Test in Time 2: the Transfer Test in Time 2 occurred approximately two weeks

after the teaching phase. It was identical to the Transfer Test completed in Time 1.

During the two weeks the children did not receive any intervention. All the classroom

solved the transfer test at same time. There was not a time limit to complete the test.

4.3 Results 

As for the first study, we analyzed both the data collected during the teaching phase

and the transfer test phase.

4.3.1 Transfer Tests

As shown in Table 8, the transfer test showed moderate results for the complete sample

both in T1 and in T2. Nevertheless, these scores were higher if compared with the

scores of Experiment 1. We did not find any main effect of the gender in the transfer

performance in Time1, F (1,73)= .27, p = .59, µ2 = .004, neither in Time2, F(1,73)=2.13, p =

.14, µ2 = .02.

56



Table 8. Score on the transfer test by Time (T1, T2), Strategy (Concreteness Fading, Concrete) and Exercise 
(Reflexive, Non-Reflexive)

Strategy Exercise Mean Std. Deviation N

TT1 Concreteness Fading Reflexive 3.67 1.879 18

Non-Reflexive 4.44 1.464 18

Total 4.06 1.706 36

Concrete Reflexive 2.63 2.060 19

Non-Reflexive 1.10 1.651 20

Total 1.85 1.994 39

Total Concreteness Fading 3.14 2.016 37

Concrete 2.68 2.291 38

Total 2.91 2.157 75

TT2 Concreteness Fading Reflexive 2.33 1.572 18

Non-Reflexive 2.83 1.855 18

Total 2.58 1.713 36

Concrete Reflexive 2.47 1.429 19

Non-Reflexive 1.70 1.129 20

Total 2.08 1.326 39

Total Concreteness Fading 2.41 1.481 37

Concrete 2.24 1.601 38

Total 2.32 1.535 75

T Total 2.61 1.846 75

In order to test our first prediction, that children who learn math equivalence benefit

from  a  teaching  method  that  provides  multiple  examples,  we  carried  out  a  2

(Concreteness  Fading  Strategy,  Concrete  Strategy)  X  2  (Reflexive  Exercise,  Not

Reflexive Exercise) X 2 (Repeated measure: Time1, Time2) multivariate analyses of

the variance (MANOVAs) with Strategy and Exercise as between subject factors and

Time as within subject factors. The number of correct answers (out of 5) of Transfer

Test was the dependent variable.
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Table 9. Multivariate analysis of variance. Tests of within subjects (Time) effects

Source

Type III

Sum of

Squares df

Mean

Square F Sig. Partial Eta Squared

Time Sphericity 

Assumed

14.648 1 14.648 6.388 .014 .083

Greenhouse-

Geisser

14.648 1.000 14.648 6.388 .014 .083

Huynh-Feldt 14.648 1.000 14.648 6.388 .014 .083

Lower Bound 14.648 1.000 14.648 6.388 .014 .083

Time * Strategy Sphericity 

Assumed

26.828 1 26.828 11.70

0

.001 .141

Greenhouse-

Geisser

26.828 1.000 26.828 11.70

0

.001 .141

Huynh-Feldt 26.828 1.000 26.828 11.70

0

.001 .141

Lower Bound 26.828 1.000 26.828 11.70

0

.001 .141

Time * Exercise Sphericity 

Assumed

.539 1 .539 .235 .629 .003

Greenhouse-

Geisser

.539 1.000 .539 .235 .629 .003

Huynh-Feldt .539 1.000 .539 .235 .629 .003

Lower Bound .539 1.000 .539 .235 .629 .003

Time * Strategy *

Exercise

Sfericità 

presunta

2.509 1 2.509 1.094 .299 .015

Greenhouse-

Geisser

2.509 1.000 2.509 1.094 .299 .015

Huynh-Feldt 2.509 1.000 2.509 1.094 .299 .015

Lower Bound 2.509 1.000 2.509 1.094 .299 .015

Error(Time) Sphericity 

Assumed

162.802 71 2.293

Greenhouse-

Geisser

162.802 71.00 2.293

Huynh-Feldt 162.802 71.00 2.293

Limite 

inferiore

162.802 71.00 2.293
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Table 10. Multivariate analysis of variance. Tests of between subjects (Strategy, Exercise) effects

Source

Type III Sum

of Squares df Mean Square F Sig. Partial Eta Squared

Intercept 524.838 1 524.838 333.752 .000 .825

Strategy 33.760 1 33.760 21.469 .000 .232

Exercise 1.235 1 1.235 .785 .379 .011

Strategy * Exercise 15.016 1 15.016 9.549 .003 .119

Error 111.650 71 1.573

The MANOVA revealed significant Time X Strategy interaction effect F(1,71)=11.70, p=

.001, µ2=.141, and significant Strategy X Exercise interaction effect (see Table 9 and

10).

On the other hand, MANOVA did not reveal Time X Strategy X Exercise significant

interaction effect, neither Exercise X Time significant interaction effect. Statistically

significant result were obtained for the simple main effects of Time and of  Strategy,

but not for the main effect of Exercise. 

4.3.2 Teaching Phase

During  the  teaching  phase,  each  child  could  commit  a  maximum of  2  errors  per

exercise, so the number of total errors could range between 0 and 12.

As shown in Table 11, the children made few errors across the six exercises,  with

respect to our Experiment 1. 
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Table 11. Number of errors committed during the teaching phase by Strategy (Concreteness Fading, 
Concrete) and Exercise (Reflexive, Non-Reflexive)  

N Mean

Std.

Deviation

Std.

Error

95% Confidence

Interval for Mean

Min Max

Lower

Bound

Upper

Bound

Concreteness Fading flexive 18 .44 1.247 .294 -.18 1.06 0 5

Non-Reflexive 18 1.22 1.801 .424 .33 2.12 0 6

Total 36 .83 1.524 .359 -.18 2.12 0 6

Concrete Reflexive 19 1.05 1.840 .422 .17 1.94 0 6

Non-Reflexive 20 .70 1.129 .252 .17 1.23 0 3

Total 39 .87 1.484 .337 .17 1.94 0 6

Total 75 .85 1.531 .177 .50 1.21 0 6

In order to find differences in the children performance due to the teaching condition

we conducted an one-way ANOVA with the Strategy (Concreteness Fading, Concrete)

as  the  independent  variable  and  the  total  number  of  errors  as  the  the  dependent

variable. As shown in Table 12 , the ANOVA analysis do not showed any significant

main effect of the Strategy, so in the teaching phase children in Concreteness Fading

and Concrete conditions did the same number of errors.

With respect to our first study, the sample in this second experiment was smaller, so

we did not perform any logistic regression to predict the effect of the number of errors

during the teaching phase on the transfer test score.

Table 12. Analysis of variance (Number of errors committed during the teaching phase) by Strategy 

Sum of Squares df Mean Square F Sig.

Between groups .028 1 .028 .012 .914

Within groups 173.359 73 2.375

Total 173.387 74
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4.4 Discussion and conclusion  

With this study we would verify that children who learn math equivalence benefit from

a  teaching  method  that  provides  multiple  examples.  Children  who  learn  math

equivalence could benefit from a variety of examples during the teaching session: our

first prediction was confirmed for children in concreteness fading condition, but not

for those in concrete condition. Thus, children who learned through the concreteness

fading strategy, could get benefit from a variety of examples because they worked,

during two stages out of three, with paper and pen (enactive and symbolic phases),

with the opportunity to see the different position of numbers and blanks. The transfer

test they solved was similar to the exercises completed during the teaching phase, even

if  more  complex.  On  the  contrary,  the  children  who  worked  with  concrete

manipulatives manipulated quantities of objects instead of numbers, could have not

realized, during the teaching phase, that the numbers and the blank positions were

different  through the  examples.  It  may be  possible  that  expliciting  the  differences

between the exercises proposed could help children in the concrete group to focus on

them. Indeed, children in concrete condition may need a clear explanation of the type

of examples proposed, in order to see and recognize differences and analogies, and to

better  understand  the  relevant  changes  between  reflexive  and  not-reflexive

equivalences. 

This study aims also to verify if the effect of the teaching strategy is stable over time:

children who use concrete materials may have higher outcomes if tested two weeks

after  the  teaching  session.  Results  confirmed  our  second  prediction,  children  in

concrete condition increased their performance between Time 1 and Time 2. On the

contrary, children in concreteness fading condition had similar performance in Time 1

and Time 2, meaning that their learning was stable over time. These findings provide

evidence in favor of the concreteness fading strategy, showing that children’s learning

is deep and not affected by time. The outcomes of the children in concreteness fading

condition, after a single teaching session,  could be considered high both in Time 1 and
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Time 2. Furthermore, confirming our findings of Experiment 1, children in concrete

condition  had  very  low performance  in  Time  1,  probably  due  to  the  difficulty  in

solving a symbolic test immediately after a teaching session based only on concrete

manipulatives. In Time 2, the performance of those children improved significantly,

and this is consistent with our prediction that learning with concrete manipulatives

needs more time to transfer concepts from concrete to abstract and to memorize them.

Children in concrete condition did not work with concrete materials between Time 1

and Time 2, confirming the possibility that the consolidation process occurs after some

time, especially if learning is obtained through concrete training.

The current study contribute to the debate on the use of concrete manipulatives, by

adding  interesting  result.  First,  it  confirm the  effectiveness  of  concreteness  fading

strategy for primary school children, despite the type of material used in the enactive

phase.  Second,  it  highlights  the  importance  of  time  in  the  teaching  with  concrete

materials,  showing  that  evaluate  the  transfer  ability  of  children  in  that  teaching

condition immediately after the teaching phase could return a unreliable result.
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Conclusions

In  these  studies,  we  valued  the  effect  of  the  concrete  manipulatives,  concreteness

fading and symbolic methods on the children’s ability to transfer their knowledge after

a short teaching session. In our first experiment, we thought equivalences to children

in five different conditions (concrete with Montessori materials, concrete with other

materials,  concreteness  fading with Montessori  materials,  concreteness  fading with

other materials, abstract), and tested them at the end of the teaching session. In our

second experiment, we thought equivalences to children in four different conditions

(concrete with Montessori materials and reflexive exercises, concrete with Montessori

materials and not reflexive exercises, concreteness fading with Montessori materials

and  reflexive  exercises,  concreteness  fading  with  Montessori  materials  and  not

reflexive exercises), testing them both at the end of the teaching session and after two

weeks.

Overall, all children had moderate performance during each teaching phase followed

by constant  feedback.  However,  for  all  children the  transfer  is  difficult  because it

requires  understanding  the  underlying  concept  from  the  procedure  thought.

Furthermore,  the  results  between  the  teaching  phase  and  the  transfer  test  are

discordant. During the teaching phase the concrete group had good performance, while

the abstract and concreteness fading groups had similar performances. Significantly, in

the performance of the transfer carried out immediately after the test, the concreteness

fading  is  the  most  adequate  strategy  for  understanding  the  concepts  and  making

children able to apply them to other contexts. On the contrary, children in concrete

condition showed difficulties in transferring the knowledge they had just learned. Even

children in abstract condition could not easily transfer their knowledge, despite having

learned the equivalences by using the same system of symbols proposed during the

teaching phase.

Specifically, the results of both studies suggest that children benefit from a teaching

strategy that  starts  with  concrete  elements  and  fades  into  the  abstract.  A teaching
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method based on what was theorized by Bruner, starting from a concrete object that

must be followed by an explicit link to the symbolic and abstract form of the concept,

allows understanding the concept and transferring it. Namely, we confirm the results

obtained by Fyfe and colleague (2015) on the effectiveness of concreteness fading

strategy, its benefit for both learning and transferring. Our results, indeed, support the

need to extend studies on this strategy of teaching, by verifing also the stability over

time of the learning obtained by learning equivalence with concreteness fading.

Our first study also show that, as theorized by Kaminski (2008), a teaching method

based only on the use of concrete material may cause transfer difficulties, because it is

probably  too  contextualized,  while  a  teaching  method  based  only  on  symbolic

elements  is  more  effective  in  facilitating  the  transfer.  Although,  despite  Kaminski

(2008) findings, the symbolic method does not seem to be the best teaching method.

Indeed, the children of the abstract group had worse results compared to those of the

concreteness fading group showing that, at this age, a symbolic teaching method could

generate  errors  due  to  the  repetition  of  a  procedure  without  understanding  the

underlying concept (McNeil & Alibali, 2005; Fyfe et al., 2015), therefore effectively

preventing the ability to use what has been learned in different contexts. Consistently,

Fyfe et al. (2005) found that the children of the abstract group make the mistake of

adding up all the addends, typical mistake of those who apply a procedure without

contextualizing  it,  in  a  mechanical  way  (Rittle-Johnson,  2006).  If  the  symbolic

explanation occurs after the concrete and iconic one, it could be interpreted by the

child with reference to a family context, according to Goldstone and  Son (2005), the

symbolic explanation takes on meaning and clarity within a fading process. Thus, the

symbols can be understood by the children of  primary school, and deeply understood

so  to  be  transferred  if  linked  to  concrete  knowledge.  Indeed,  both  Bruner  and

Montessori argue that the concrete material allows the child to materialize the abstract

concept, by forming a mental image to which he can also refer later. According to

Montessori (2013a, 2013b), a child of school age and of the first years of primary

school  needs  to  know  the  concept  and  the  underlying  rules  through  a  sensory
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experience, which is the means through which he learns in this phase. The child's mind

later develops the ability to think in an abstract way and to form mental categories.

Therefore, despite the child cannot explain the concept with the direct use of symbols,

he  can  "rediscover"  the  knowledge  acquired  through the  manipulation  of  concrete

material from his memory and use it to reformulate the concept in a symbolic and

abstract  form. In this way,  according to Montessori,  the child is  able to constantly

construct abstract knowledge on the basis of laws that he has profoundly internalized,

avoiding the use of mechanically acquired and meaningless procedures (Alibali, 1999;

McNeil  &  Alibali,  2000).  Furthermore,  this  way  of  learning  allows  connecting

concepts that can help an effective transfer, as seen in Experiments 1 and 2 by the

Concreteness Fading groups.

These results also confirm that a teaching method based on procedures, if sided by

deep  attention  to  the  real  understanding  of  the  concept,  is  more  effective  than  a

procedural teaching only (Hiebert & Lefevre, 1986). According to Fyfe et al. (2015),

our results in Experiment 1 also suggest that if the transfer takes place immediately

after  the  teaching  session,  the  concreteness  fading  strategy  is  more  effective  than

teaching with symbols alone. On the other hand, in Experiment 2 our results suggest

that  after  some time even the  learning session through the concrete strategy alone

allows reaching results comparable to those of the concreteness fading. Thus, it can be

said  that  both  teaching  that  uses  only  concrete  material,  as  well  as  teaching  that

proceeds along the three phases of fading, bring more effective results in terms of

understanding the concept and transfer ability that the teaching with symbols only.

The result of our Experiment 1 also demonstraded that the Montessori materials, if

used in a single teaching session, are not more effective than other concrete materials.

Probably,  the  difference  between  different  type  of  concrete  materials  should  be

indagate during a longer time of teaching, with respect to the specific characteristic

that effective concrete materials should have, as in Laski et al. (2015). Additionally,

Montessori materials, thought to be used by children in a specific progression, may not

be  effective  if  used  without  the  needed  knowledge  of  the  other  linked  materials.
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Concrete manipulatives examined by Fyfe and colleagues (2015) and compared in our

first  study  with  Montessori’s,  showed  their  effectiveness  in  equivalence  teaching

despite they did not met the criteria indicated by Laski et al. (2015). 

The use  of  multiple  examples,  in  our  Experiment  2,  did not  showed effectiveness

regardless of teaching strategy, and it could be due to the short teaching time. Indeed,

children in concrete condition did not recognize the difference between the two type of

examples, and children in concreteness fading, that showed a better performance while

using non-reflexive exercise, may benefit by multiple representation if provided for

many times. 

Despite the positive contributions of this study, several questions remain.

First of all, in our second experiment we did not test children in T2 who had worked

with the abstract strategy, as we wanted to verify if there was a difference between

concreteness fading and concrete after some time. It remains to be seen whether the

children’s performance in the abstract group can change in T2.

Secondly, our experiments did not take into account all the differences in the children’s

prior  knowledge.  In  line  with the  previous  studies  of  Fyfe  and colleagues  (2015),

children able to solve equivalences were excluded a priori, but we did not take into

account the children's previous knowledge of additions and subtractions, which are

necessary for solving exercises such as those proposed in our experiments.

Third, we evaluated the Montessori materials by comparing them with other materials,

and we do not  obtained significantly  different  results.  It  is  necessary,  however,  to

reiterate that the Montessori material is not intended to be used as educational material

but as development one. This means that the material must be available to the child

who chooses it freely, uses it for as long as it deems necessary and repeats the exercise

as  often  as  he  wants.  This  allows  him  to  focus  on  the  experience  and  to  make

connections  with  his  previous  knowledge.  The  materials  of  the  Montessori

environment are often closely related, allowing the child to think about the concept

through different types of experiences; finally, the Montessori material involves self-
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correction and not necessarily the teacher's feedback (Hoenneger Fresco, 2000). It is

therefore necessary to specify that in our experiments the Montessori materials have

been used as teaching materials as they have been de-contextualized and used for a

short period, under the control and with the explanations of the teacher. All this does

not allow us to discuss the results of the general comparison between the Montessori

material and other materials, but only to compare the didactic use of this material in a

single  teaching  session,  respectively  with  the  strategy  of  concreteness  fading  or

concrete.  Although in our Experiment 2,  where we only used Montessori  material,

children  who  worked  with  the  concrete  strategy  after  two  weeks  had  comparable

performances  to  those  of  children  who  worked  with  concreteness  fading,  further

studies are needed to understand if the Montessori material used for a longer period

with both strategies bring to better results if used alone (concrete) or with the iconic

link to symbols (concreteness fading).

Despite these limitations, our study provides valuable information about the ability to

transfer knowledge in mathematics. It can be added to the few studies dealing with

concreteness fading, and it provides interesting remarks about the material to be used

during the first  phase (enactive).  It  shows how concreteness fading works both for

learning  and  for  transfer,  and  combines  the  positive  aspects  of  all  the  methods

discussed for a long time: concrete, iconic, symbolic. At the same time, it offers an

interesting  view  on  the  ability  of  children  who  learn  with  concreteness  fading  to

maintain their transfer skills even after some time. As for the use of concrete material,

the  second study focuses  on how the time factor  must  always be taken into great

consideration when evaluating the effectiveness of the concrete material in children’s

learning and transfering.
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Appendix 1  - English

Screening exercises (Pretest)

The following four exercises were used in the screening phase.

1) 1 + 5 = _ + 2

2) 7 + 2+ 4 = _ + 4

3) 2 + 7 = 6 + _

4) 3 +5 + 6 = 3 + _

Teaching phase exercises

The following six exercises were used in the teaching phase of Experiment 1, and in

teaching phase of Experiment 2 for the REFLEXIVE condition.

1) 4 + 3 = 4 + _

2) 3 + 5 = 3 + _

3) 2 + 4 = 2 + _

4) 5 + 4 = 5 + _

5) 3 + 2 = 3 + _

6) 2 + 5 = 2 + _
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The following six exercises were used in the teaching phase of Experiment 2 for the

NOT- REFLEXIVE condition.

1) 4 + 3 = 4 + _

2) 3 + 5 = 5  + _  (reflexive with numbers in different position)

3) 2 + 4 = 2 + _

4) 5 + _ = 5 + 4  (reflexive with blank in the second place)

5) _ + 2 = 2 + 3 (numbers in different position and blank in the first place) 

6) 2 +5 = 2 + _

Transfer test exercises

The following exercises has been used as Transfer Test

1) 4 + 8 + 9 = 4 + _

2) 3 + 9 + 5 = 7 + _

3) 9 +2 + 7 = _ + 7

4) 6 + 4 + 8 = _ + 3

5) The boys want to have the same number of stars as the girls. Sara has 5 stars, and

Giulia has 4 stars. Matteo has 7 stars, Francesco has some stars, too. How many stars

does Francesco need for the boys and girls to have the same? Circle the answer that

represents the above story.

a) 5 + _ = 4 + 7
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b) 5 + 4 + 7 = _

c) 5 + 4 = 7 + _

d) 5 + 4 + 7 + 2 = _

Script used for pre-test

The child is invited to leave the class. The researcher greets him and asks him some

questions: “Hi Andrea, how are you? .... Do you already know the classroom we are

going to? .... Have you also done kindergarten in this school? " Once we reached the

classroom, we sit down and the 4 exercises are presented to the child. 

Scripts used for instruction 

Script for abstract context

We're  going  to  solve  a  Math  problem  together.  (Show  to  the  child  the

equivalence exercise [e.g. 4+3=4+_]). This is the left side of the problem (circle the

left side with the finger) and this is the right side of the exercise (circle the right side

with the finger).

In  the  concreteness  fading  condition,  the  instructions  of  the  exercises  in

symbolic form came right after children had worked on exercises in the worksheet

contexts, so this sentence was replaced with: “Now I want you to think about the

game we did before, it helps you to solve this exercise.”

I want you to figure out how much you should put on the right side (point to

the blank), so that the right side (circle the whole right side) will have the same

quantity as the left side (circle the whole left side).

If the child is correct: That's correct. Go ahead and write a 3 in the blank.
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If the child is incorrect: Good try, but that won't make them equal. The left

side has 7 (point to the 4 while counting one, two, three, four and then point to the 3

while counting five, six, seven).

The right side only has 4 (point to the 4 while counting one, two, three, four).

How much does the right side need to have 7? If the child is correct: That's correct.

Go ahead and write a 3 in the blank. If the child is still incorrect: Actually the right

side needs 3 more. Write a 3 in the blank.

Let's check to make sure they're equal. How many does the left side have? (the

child should say 7) How many does the right side have? (the child should say 7)

Great! You figured it out. Both sides have 7! Let's do the next exercise.

Script for concrete puppet-sharing context

We're going to play a game in which you’ll share some of these stickers with

Monkey and Frog. I'll tell you how many stickers to give them, and you put the

stickers on their sticker collectors.

First, give to the Monkey 4 stickers (point to Monkey's first sticker collector).

Good! Now give to the Monkey 3 more stickers (point to Monkey's second sticker

collector). OK! Give to the Frog 4 stickers (point to Frog's first sticker collector).

Great! Monkey and Frog want to have an equal amount of stickers (Stress the word

equal and gesture towards each character with hands up like a scale). So, I want you

to figure out how much stickers you should give to the Frog (point to the Frog's

second sticker collector), so the Frog will have the same amount of stickers as the

Monkey (point to the Monkey's sticker collectors).  If  the child is correct:  That's

correct. Go ahead and give to the Frog 3 stickers.

If  the  child  is  incorrect:  Good  try,  but  that  won't  make  them  equal.  The

Monkey  has  7  stickers  (point  to  each  of  Monkey's  stickers  as  you  count  them

aloud). The Frog only has 4 stickers (point to each of the Frog's stickers as you

count aloud). How much does Frog need so he can have 7 stickers?
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If the child is correct: That's correct. Go ahead and give to the Frog 3 stickers.

If the child is still incorrect: Actually the Frog needs 3 more stickers. Give to the

Frog 3 stickers. Let's check to make sure they're equal. How many stickers does

Monkey have? (The child should say 7.) How many stickers does the Frog have?

(The child should say 7.) Great! You figured it out. Monkey and Frog both have 7

stickers!

Script for puppet-sharing worksheet

Now we're going to play the same game on paper. (Show the worksheet to the

child). This stands for the Monkey (point to the monkey) and this stands for the

Frog (point to the frog). Here are their sticker collectors (point to the four boxes).

I'm going to tell you how many stickers you should give them, and you will write

the number in the blanks, OK? First, give to the Monkey 3 stickers (point to the first

blank on the left, wait for the child to write 3). Good! Give to the Monkey 5 more

stickers (point to the second blank on the left, wait for the child to write 5).

Now give to the Frog 3 stickers (point to the first blank on the right, wait for

the  child  to  write  3).  Great!  The Monkey and the  Frog want  to  have  an equal

amount of stickers (stress the word equal and gesture towards each character with

hands up like a scale). So, I want you to figure out how many more stickers you

should give to the Frog (point to the last blank), so the Frog will have the same

amount of stickers as the Monkey. If the child is correct: That's correct. Go ahead

and write 5. If the child is incorrect: Good try, but that won't make them equal. The

Monkey has 8 stickers (point to each of the two numbers he wrote as you count

them aloud). The Frog only has 3 stickers (point to the number he wrote as you

count it aloud). How many more does Frog need so he can have 8 stickers? If the

child is correct: That's correct. Go ahead and write 5. If the child is still incorrect:

actually the Frog needs 5 more stickers. Write a 5. Let's check to make sure they're

equal. How many stickers does the Monkey have? (The child should say 8.) How
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many stickers does the Frog have? (The child should say 8.) Great! You figured it

out. The Monkey and the Frog both have 8 stickers!

Script for concrete balance scale context

We're going to play a new game with this scale and these bears. You are going

to use the bears to make the scale balance. I'll tell you how many bears to put on

each side, OK? First, put 5 bears on the left side (point to the left side of the scale).

Good job! Now put 4 more bears on the left side (point to the left side of the scale).

OK! Put 5 bears on the right side (point to the right side of the scale). Great! We

want the scale to balance (stress the word balance and gesture towards each side of

the scale with hands up like a scale). So, I want you to figure out how many more

bears you need to put on the right side (point to the right side), to make the right

side (point to the right side) the same amount as the left side (point to the left side of

the scale). If the child is correct: That's correct. Go ahead and put 4 bears on the

right side. If the child is incorrect: good try, but that won't make the scale balance.

The left side has 9 bears (point to each one of the bears as you count them aloud).

The right side only has 5 bears (point to each one of the bears as you count them

aloud). How many more bears does the right side (point to right side of the scale)

need to have 9 bears? If the child is correct: That's correct. Go ahead and put 4 bears

on the right side. If the child is still incorrect: actually it needs 4 more bears. Put 4

bears on the right side. Let's check to make sure it's balanced. How many bears does

the left side have? (The child should say 9.) How many bears does the right side

have? (The child should say 9.) Great! You figured it out. Both sides have 9 bears!

Script for balance scale worksheet

Now we're going to play the same game on paper. (Show the worksheet to the

child). This stands for the left side of the scale (point to left side) and this stands for

the right side of the scale (point to right side). I'm going to tell you how many bears
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to put on each side, and you will write the number that I tell you in the blanks, OK?

First, put 3 bears on the left (point to the first blank on the left, wait for child to

write 3). Good! Now put 2 more bears on the left (point to the second blank on the

left, wait for child to write 2). Put 3 bears on the right side (point to the first blank

on the right, wait for child to write 3). Great! We want the scale to balance (stress

the word balance and gesture towards each side of the scale with hands up like a

scale). So, I want you to figure out how many more bears you need to put on the

right side (point to the second blank on the right side), to make the right side (circle

the right side) the same amount as the left side (circle the left side). If the child is

correct: That's correct. Go ahead and write 2. If the child is incorrect: Good try, but

that won't make the scale balance. The left side has 5 bears (point to each number he

wrote  as  you count  them aloud).  The  right  side  only  has  3  bears  (point  to  the

number he wrote as you count it aloud). How many more bears does the right side

(point to right side) need to have 5 bears?

If the child is correct: That's correct. Go ahead and write 2. If the child is still

incorrect:  Actually  it  needs  2  bears.  Write  a  2.  Let's  check  to  make  sure  it's

balanced. How many bears does the left side have? (The child should say 5.) How

many bears does the right side have? (The child should say 5.) Great! You figured it

out. Both sides have 5 bears!

Script for concrete Montessori number rods context

We're going to play a new game with the rods that are in this box. You see?

This is one, this is two ... up to ten (touching the rods marking the color change).

Try to count this (wait for the child to finish counting). After pointing out to the

child that each rod has a value between 1 and 10, indicate the note with  the equal

sign on the table. Do you know this sign? (The child should say that it is equal. If he

does not say it, he is reminded.) Exactly, it is the equal. We must put on this side

(indicate with the finger to the left of the equal), the same amount that we put on
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this side (indicate with the finger to the right of the equal). They must be equal

(underline the word equal). Now take the 4 rod (wait for the child to count). Well.

Put it here (indicate the space on the left). Now take 3 rod, and put it close to 4.

Great! Now, put a 4 rod on this side (indicating the right side of the equal). Tell me,

what rod do you think you should put here (indicating the right side of the equal) to

have the same amount that you have here? (indicating the left side of the equal). If

the child's answer is correct: Right. Go ahead and put a 3 rod on the right side.

If the child's answer is incorrect: but that won't make them equal. This is 7

(indicate the red/blue colors of the rods as if you are counting them). Here there is

only 4 (indicating the red/blue colors of the rods as if you are counting them). What

rod should we put here to have the same quantity? If the child's answer is correct:

Right. Go ahead and put a 3 rod. If the child's answer is still incorrect: actually, a 3

rod is needed. Take a 3 rod and put it here. Let's check to make sure they are equal.

How much there is in this side? (the child should say 7) And in the other? (the child

should say 7) Great! You figured it out. Both sides have 7 rods!

Script for number rods worksheet

Now we're going to play the same game on paper. (Show the worksheet to the

child). This stands for a group of number rods (point to left side) and this stands for

the other group of the rods (point to right side). I'm going to tell you how many rods

to put on each side, and you will write the number that I tell you in the blanks, OK?

First, put 3 rod on the left (point to the first blank on the left, wait for child to write

3). Good! Now put the 2 rod on the left (point to the second blank on the left, wait

for child to write 2). Put the 3 rod on the right side (point to the first blank on the

right, wait for child to write 3). Great! We want the two sides to be equal (stress the

word equal and gesture towards each side with hands up like a scale). So, I want

you to figure out which rod you need to put on the right side (point to the second

blank on the  right  side),  to make the  right  side (circle  the  right  side)  the same
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amount as the left side (circle the left side). If the child is correct: That's correct. Go

ahead and write 2.  If the child is incorrect: Good try, but that won't  make them

equal. The left side has 5 (point to each number he wrote as you count them aloud).

The right side only has 3 (point to the number he wrote as you count it aloud).

Which rod does the right side (point to right side) need to have 5?

If the child is correct: That's correct. Go ahead and write 2. If the child is still

incorrect: Actually it needs a 2 rod. Write a 2. Let's check to make sure they are

equal. How many does the left side have? (the child should say 5.) How many does

the right side have? (the child should say 5.) Great! You figured it out. Both sides

have 5!

Script for concrete Montessori abacuses context

We're going to play a new game with these abacuses. You see? On this line we

have the units, and we are going to count them. Look, this is five (show to the child

how to move the beads from left to right while counting: 1, 2, 3, 4, 5). Now, choose

a number and count it with the beads (hand the frame to the child and wait for him

to  finish  counting).  After  the  child  understands  how  to  operate  on  the  frame,

indicate the note with  the equal sign on the table. Do you know this sign? (The

child should say that it is equal. If he does not say it, he is reminded.) Exactly, it is

the equal.  We must put on this side (indicate with the finger to the left of the equal),

the same amount that we put on this side (indicate with the finger to the right of the

equal). They must be equal (underline the word equal). 

Now, move 4 unit beads on the left abacus (wait until the child has counted

and moved the beads). How many beads did you move? (the child will say 4) Good!

Now we have to put 3 more beads, move them close to the 4. Perfect!

Now, we shall do the same on the right frame (indicating the right side of the

equal). Move 4 beads on the abacus. Good!
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Tell me, how many more beads do you think you have to move (indicating the

abacus on the right of the equal) to have the same amount that  you have here?

(indicating the abacus on the left of the equal).

If the child's answer is correct: Right. Go ahead and move 3 beads.

If the child's answer is wrong: Good try, but they do not become the same.

Here there are 7 beads (indicate each of the beads as if you count them aloud).

Hence,  there are only 4 beads (indicate each of the beads as if  you count them

aloud). How many beads should we move here to have 7?

If the child's answer is correct: Right. Go ahead and move 3 beads.

If the child's answer is still wrong: actually, you need 3 more beads. Move 3

more beads.

Let's check to make sure they are equal. How many does the left side have?

(the child should say 7.) How many does the right side have? (the child should say

7.) Great! You figured it out. Both sides have 7!

Script for abacuses worksheet

Now we're going to play the same game on paper. (Show the worksheet to the

child). 

This stands for an abacus  (point to left side) and this stands for the other

abacus (point to right side). I'm going to tell you how many beads to move on each

side, and you will write the number that I tell you in the blanks, OK? First, move 3

beads on the left  abacus (point to the first blank on the left, wait for the child to

write 3). Good! Now move 5 more  beads on the left abacus (point to the second

blank on the left, wait for the child to write 5). Move 3 beads on the right side (point

to the first blank on the right, wait for child to write 3). Great! We want the two

sides to be equal (stress the word equal and gesture towards each side with hands up

like a scale). So, I want you to figure out how many beads you need to move on the
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right abacus (point to the second blank on the right side), to make the right side

(circle the right side) the same amount as the left side (circle the left side).

If the child is correct: That's correct. Go ahead and write 5.

If the child is incorrect: Good try, but that won't make them equal. The left

side has 8 beads (point to each number he wrote as you count them aloud). The right

side only has 3 beads (point to the number he wrote as you count it aloud). How

many beads does the right side (point to right side) need to have 8?

If the child is correct: That's correct. Go ahead and write 5.

If the child is still incorrect: Actually, it needs 5 beads. Write a 5. 

Let's check to make sure they are equal. How many does the left side have?

(the child should say 8)

How many does the right side have? (the child should say 8) 

Great! You figured it out. Both sides have 8!
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Appendix 2 – Italian

Below, we report the procedure in Italian, as it was actually used in our studies 1 and

2.

Procedura per gli esercizi presentati in forma astratta 

Adesso  risolveremo  insieme  un  esercizio  di  matematica.  (Mostra  al  bambino

l’esercizio di equivalenza matematica (es. 4 + 3 = 4 + _ )). Questo è il lato sinistro

dell’esercizio (cerchia il lato sinistro con il dito) e questo è il lato destro dell’esercizio

(cerchia il lato destro con il dito). Vorrei che scoprissi quanti devi metterne in più sul

lato destro (indica lo spazio vuoto), in modo che il lato destro (cerchia a destra) abbia

la stessa quantità del lato sinistro (cerchia a sinistra). 

Se la risposta del bambino è  corretta: Giusto. Vai avanti e scrivi un 3 nello spazio

vuoto.

Se la risposta del bambino è errata: Buon tentativo, ma così non diventano uguali. Il

lato sinistro ha 7 (indica il 4 mentre conti uno, due, tre, quattro e poi indica il 3 mentre

conti cinque, sei, sette).

Il  lato destro ha solo 4 (indica il  4 mentre conti  uno,  due,  tre quattro).  Quanti  ne

mancano al lato destro per diventare 7?

Se la risposta del bambino è corretta: Giusto. Vai avanti e scrivi un 3 nello spazio

vuoto.

Se la risposta del bambino è ancora errata: in realtà il lato destro ha bisogno di

altri 3.

Scrivi un 3 nello spazio vuoto.

Proviamo a verificare che siano uguali. Quanti sono a sinistra? (Il bambino dovrebbe

dire  7.)  Quanti  sono  a  destra?  (Il  bambino  dovrebbe  dire  7.)  Ottimo!  Hai  capito.

Entrambe le parti hanno 7! 

Facciamo l’esercizio successivo.
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Procedura per gli esercizi presentati in forma astratta – terza fase del concreteness

fading

Adesso vorrei che tu pensassi a quel gioco (riferendosi al materiale concreto e alle

schede utilizzate in precedenza) per aiutarti a risolvere questo esercizio di matematica.

Mostra al bambino l’esercizio di equivalenza matematica (es. 4 + 3 = 4 + _ ). Questo è

il lato sinistro dell’esercizio (cerchia il lato sinistro con il dito) e questo è il lato destro

dell’esercizio  (cerchia  il  lato  destro  con  il  dito).  Vorrei  che  scoprissi  quanti  devi

metterne in più sul lato destro (indica lo spazio vuoto),  in modo che il  lato destro

(cerchia a destra) abbia la stessa quantità del lato sinistro (cerchia a sinistra). 

Se la risposta del bambino è  corretta: Giusto. Vai avanti e scrivi un 3 nello spazio

vuoto.

Se la risposta del bambino è errata: Buon tentativo, ma così non diventano uguali. Il

lato sinistro ha 7 (indica il 4 mentre conti uno, due, tre, quattro e poi indica il 3 mentre

conti cinque, sei, sette).

Il  lato destro ha solo 4 (indica il  4 mentre conti  uno,  due,  tre quattro).  Quanti  ne

mancano al lato destro per diventare 7?

Se la risposta del bambino è corretta: Giusto. Vai avanti e scrivi un 3 nello spazio

vuoto.

Se la risposta del bambino è ancora errata: in realtà il lato destro ha bisogno di

altri 3.

Scrivi un 3 nello spazio vuoto.

Proviamo a verificare che siano uguali. Quanti sono a sinistra? (Il bambino dovrebbe

dire  7).  Quanti  sono  a  destra?  (Il  bambino  dovrebbe  dire  7).  Ottimo!  Hai  capito.

Entrambe le parti hanno 7!

Facciamo l’esercizio successivo.
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Concreto con le marionette 

Adesso faremo un gioco in cui distribuisci alcuni di questi adesivi alla scimmia e alla

rana. Ti dirò quanti adesivi dare loro, e tu li metterai sui loro raccoglitori. 

Innanzitutto, dai 4  adesivi alla scimmia (indica il primo spazio del raccoglitore della

scimmia).  Bene! Ora dai  alla  scimmia altri  3 adesivi  (indica il  secondo spazio del

raccoglitore della scimmia). Ok! Dai 4 adesivi alla rana (indica il primo spazio del

raccoglitore della rana). Perfetto! 

La  scimmia  e  la  rana vogliono avere  una  quantità  uguale  di  adesivi  (sottolinea  la

parola uguale e indica verso ogni personaggio muovendo le mani come una bilancia,

come a  mostrare  la  quantità  uguale).  Adesso,  vorrei  che  tu  mi  dicessi  quanti  altri

adesivi bisogna dare alla rana (indica il secondo spazio del raccoglitore della rana), in

modo  che  la  rana  abbia  la  stessa  quantità  di  adesivi  della  scimmia  (indica  il

raccoglitore della scimmia). 

Se la risposta del bambino è corretta: Giusto. Vai avanti e dai 3 adesivi alla rana. 

Se la risposta del bambino è errata: Buon tentativo, ma così non diventano uguali.

La scimmia ha 7 adesivi  (indica ciascuno degli  adesivi  della scimmia come  se li

contassi ad alta voce). La rana ha solo 4 adesivi (indica ciascuno degli adesivi della

rana come  se li contassi ad alta voce). Di quanti altri adesivi ha bisogno la rana in

modo che possa averne 7?

Se la risposta del bambino è corretta: Giusto. Vai avanti e dai 3 adesivi alla rana. 

Se la risposta del bambino è ancora errata: in realtà la rana ha bisogno di altri 3

adesivi. Dai 3 adesivi alla rana.

Cerchiamo di verificare che siano uguali. Quanti adesivi ha la scimmia? (Il bambino

dovrebbe dire 7.) Quanti adesivi ha la rana?  (Il bambino dovrebbe dire 7.) Ottimo!

Hai capito. Scimmia e rana hanno entrambi 7 adesivi!

Scheda delle marionette 
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Ora stiamo facendo lo stesso gioco,  ma su carta.  (Mostra al  bambino la scheda di

lavoro). 

Questo rappresenta la scimmia (indica la scimmia) e questo la rana (indica la rana).

Ecco i loro raccoglitori di adesivi (indica i quattro spazi bianchi). 

Ti dirò quanti adesivi dare loro, e scriverai il numero sulla linea, OK?

Intanto, dai  3 adesivi  alla  scimmia (indica il  primo spazio bianco del lato sinistro,

aspetta che il bambino abbia scritto 3). Bene!

Dai  alla  scimmia altri  5  adesivi  (indica  il  secondo spazio bianco del  lato sinistro,

aspetta che il bambino scriva 5).

Adesso dai 3 adesivi alla rana (indica il primo spazio bianco del lato destro, aspetta

che il bambino abbia scritto 3). Perfetto!

La  scimmia  e  la  rana vogliono avere  una  quantità  uguale  di  adesivi  (sottolinea  la

parola uguale e indica verso ogni personaggio muovendo le mani come una bilancia,

come a mostrare la quantità uguale). 

Adesso, vorrei che tu mi dicessi quanti altri adesivi bisogna dare alla rana  (indica il

secondo spazio bianco del lato destro)  in modo che la rana abbia la stessa quantità di

adesivi della scimmia (cerchia col dito il lato sinistro).

Se la risposta del bambino è corretta: Giusto. Vai avanti e dai 5 adesivi alla rana. 

Se la risposta del bambino è errata: Buon tentativo, ma così non diventano uguali.

La scimmia ha 8 adesivi (indica i due numeri che il bambino ha scritto a sinistra). La

rana ha solo 3 adesivi (indica il numero che il bambino ha scritto a destra). 

Di quanti altri adesivi ha bisogno la rana in modo che possa averne 8?

Se la risposta del bambino è corretta: Giusto. Vai avanti e dai 5 adesivi alla rana,

scrivi 5.

Se la risposta del bambino è errata: in realtà la rana ha bisogno di altri 5 adesivi.

Dai 5 adesivi alla rana, scrivi 5.
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Verifichiamo che siano uguali. Quanti adesivi ha la scimmia? (Il bambino dovrebbe

dire 8.) Quanti adesivi ha la rana?  (Il bambino dovrebbe dire 8.) Ottimo! Hai capito.

Scimmia e rana hanno entrambe 8 adesivi!

Concreto con bilancia

Adesso faremo un gioco nuovo con questa bilancia e questi orsi.

Utilizzerai gli orsi per mettere in equilibrio la bilancia. Ti dirò quanti orsi mettere su

ogni lato, ok?

Innanzitutto, metti 5 orsi sul lato sinistro (indica il lato sinistro della bilancia). Ben

fatto!

Ora metti altri 4 orsi sul lato sinistro (indica il lato sinistro della bilancia). Ok!

Metti 5 orsi sul lato destro (indica il lato destro della bilancia).  Perfetto!

Vogliamo che la bilancia sia in equilibrio (sottolinea la parola equilibrio e rivolgiti con

le mani ad entrambi i lati della bilancia a rendere il senso delle quantità uguali).

Ora vorrei che mi dicessi quanti orsi in più devi mettere sul lato destro (indica il lato

destro), per avere a destra (indica il lato a destra) la stessa quantità del lato sinistro

(indica il lato sinistro della bilancia).

Se la risposta del bambino è  corretta: Giusto. Vai avanti e metti 4 orsi nel lato

destro.

Se la risposta del bambino è errata: Buon tentativo, ma così non sarà in equilibrio.

Il lato sinistro ha 9 orsi  (indica ciascuno degli orsi come se li contassi ad alta voce). Il

lato destro ha solo 5 orsi (indica ciascuno degli orsi come  se li contassi ad alta voce).

Di quanti orsi in più ha bisogno il lato destro (indica il lato destro della bilancia) per

avere 9 orsi?

Se la risposta del bambino è  corretta:  Giusto. Vai avanti e metti 4 orsi nel lato

destro.  

83



Se la risposta del bambino è errata: in realtà servono altri 4 orsi. Metti 4 orsi nel

lato destro.

Verifichiamo che sia equilibrata. Quanti orsi ci sono a sinistra? (Il bambino dovrebbe

dire 9.) Quanti orsi ci sono a destra?  (Il bambino dovrebbe dire 9.) Ottimo! Hai capito.

Entrambi i lati hanno 9 orsi!

Scheda della bilancia 

Ora faremo lo stesso gioco, ma su carta. (Mostra al bambino la scheda di lavoro). 

Questo indica il lato sinistro della bilancia (indica a sinistra) e questo rappresenta il

lato destro della bilancia (indica a destra). Adesso ti dirò quanti orsi mettere da ogni

lato, e tu lo farai scrivendo il numero che ti dico negli spazi vuoti, ok?

Innanzitutto, metti 3 orsi a sinistra (indica la prima casella a sinistra, aspetta che il

bambino scriva 3). Bene!

Ora metti  altri  2 orsi  a  sinistra  (indica  la  seconda casella a sinistra,  aspetta  che il

bambino scriva 2).

Metti 3 orsi sul lato destro (indica la prima casella a destra, aspetta che il bambino

scriva 3). Perfetto!

Vogliamo che la bilancia sia equilibrata (sottolinea la parola equilibrata e rivolgiti con

le mani ad entrambi i lati della bilancia a rendere il senso delle quantità uguali). 

Ora vorrei che mi dicessi quanti orsi in più devi mettere sul lato destro (indica il lato

destro), per avere a destra (indica il lato a destra) la stessa quantità del lato sinistro

(indica il lato sinistro della bilancia).

Se la risposta del bambino è  corretta:  Giusto. Vai avanti e metti 2 orsi nel lato

destro, scrivi 2.

Se la risposta del bambino è errata: Buon tentativo, ma così non sarà in equilibrio.

Il lato sinistro ha 5 orsi  (indica i due numeri che il bambino ha scritto a sinistra). Il
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lato destro ha solo 3 orsi (indica il numero che il  bambino ha scritto a destra).  Di

quanti orsi in più ha bisogno il lato destro (indica il lato destro) per avere 5 orsi?

Se la risposta del bambino è  corretta: Giusto. Vai avanti e metti 2 orsi nel lato

destro, scrivi 2.

Se la risposta del bambino è errata: in realtà servono altri 2 orsi. Metti 2 orsi nel

lato destro, scrivi 2.

Verifichiamo che siano uguali. Quanti orsi ci sono a sinistra? (Il bambino dovrebbe

dire 5.) Quanti orsi ci sono a destra?  (Il bambino dovrebbe dire 5.) Ottimo! Hai capito.

Entrambi i lati hanno 5 orsi!

Concreto con le aste della numerazione Montessori

Adesso faremo un lavoro con le aste della numerazione che sono in questa scatola.

Vedi? Questo è uno, questo è due ... fino a dieci (toccando le aste marcando il cambio

di  colore).  Prova  a  contare  questa  (porgi  al  bambino un’asta  maggiore  di  cinque.

Aspetta  che  il  bambino  abbia  terminato  di  contare).  Dopo  aver  fatto  osservare  al

bambino che ogni asta ha un valore compreso tra 1 e 10, indica il bigliettino col segno

uguale. Conosci questo segno? (Il bambino dovrebbe dire che è uguale. Se non lo dice,

gli viene ricordato.) Esatto, è uguale. Noi dobbiamo mettere da questa parte (indica

con la mano lo spazio a sinistra dell'uguale), la stessa quantità che mettiamo da questa

parte  (indica  con  la  mano  lo  spazio  a  destra  dell'uguale).  Devono  essere  uguali

(sottolinea la parola uguale). 

Ora prendi l’asta 4. (Aspetta che il bambino abbia contato). Bene. Mettila qui (indica

lo spazio a sinistra). Adesso prendi l’asta 3, e mettila vicino al 4. Perfetto!

Adesso, metti un’asta 4 da questa parte (indica il lato a destra dell'uguale).

Dimmi, secondo te cosa dovresti mettere qui (indico il lato a destra dell'uguale) per

avere la stessa quantità che hai di qua? (indica il lato a sinistra dell'uguale).

Se la risposta del bambino è corretta: Giusto. Vai avanti e metti un’asta  3. 
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Se la risposta del bambino è errata: Buon tentativo, ma così non diventano uguali.

Di qua ci c’è 7  (indica i passaggi rosso/blu dell’asta come se contassi ad alta voce). Di

qua c’è solo 4  (indica i passaggi rosso/blu dell’asta come se contassi ad alta voce).

Che asta dobbiamo mettere per avere le due parti uguali?

Se  la  risposta  del  bambino  è  corretta:  Giusto.  Vai  avanti  e  metti  un’asta  3.  

Se la risposta del bambino è ancora errata: in realtà c'è bisogno dell’asta 3. Prendi

l’asta 3 e mettila qui.

Verifichiamo che siano uguali. Quanto c’è da questa parte? (Il bambino dovrebbe dire

7.) E da quest'altra?  (Il bambino dovrebbe dire 7.) Ottimo! Hai capito. Da entrambi i

lati dell'uguale c’è la stessa quantità.

Scheda delle aste della numerazione 

Ora faremo lo stesso lavoro, ma su carta. (Mostra al bambino la scheda). 

Questo rappresenta una serie di aste della numerazione (indica il disegno delle aste) e

questo l'altra  serie  (indica  l'altro  disegno delle  aste).  Qui  sopra  bisogna scrivere  il

numero. Io ti dico quale asta prendere, e tu scrivi il numero nello spazio, ok?

Prendi l’asta 4 (indica le aste del lato sinistro, aspetta che il bambino abbia scritto 4).

Bene!

Adesso, metti l’asta 3 da questa parte (indica il lato sinistro, aspetta che il bambino

abbia scritto 3).

Ora, prendi l’asta 4 e mettila a destra (indica il disegno delle aste di destra, aspetta che

il bambino abbia scritto 4). Perfetto!

A destra e sinistra dell'uguale vogliamo avere una quantità uguale (sottolinea la parola

uguale e indica entrambi i lati muovendo le mani come una bilancia, come a mostrare

la quantità uguale). 

Adesso, vorrei che tu mi dicessi quale asta dobbiamo mettere qui (indica lo spazio

vuoto a destra) in modo che i due lati abbiano la stessa quantità.
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Se la risposta del bambino è corretta: Giusto. Vai avanti e scrivi 3.

Se la risposta del bambino è errata: Buon tentativo, ma così non diventano uguali.

A sinistra abbiamo 7 (indica i due numeri scritti dal bambino). A destra abbiamo solo 4

(indica il numero scritto dal bambino). 

Di quale asta abbiamo bisogno in modo che a destra ce ne siano 7?

Se la risposta del bambino è corretta: Giusto. Vai avanti e scrivi 3.

 Se la risposta del bambino è errata: In realtà c'è bisogno dell’asta 3, scrivi 3.

Verifichiamo che siano uguali. Quanto c’è a sinistra? (Il bambino dovrebbe dire 7.)

Quanto c’è a destra?  (Il bambino dovrebbe dire 7) Ottimo! Hai capito. Entrambi i lati

hanno 7!

Concreto con abaco Montessori (telaio piccolo)

Adesso faremo un lavoro con questi telai. Vedi? Su questa fila ci sono le unità, e

noi conteremo queste.

Guarda, questo è cinque (mostra al bambino come spostare le perle delle unità da

sinistra a destra per contare, 1,2,3,4,5). Scegli tu un numero e conta sul telaio (porgi al

bambino il telaio e aspetta che abbia terminato di contare). Dopo che il bambino ha

compreso il funzionamento del telaio,  indica il bigliettino col segno uguale. Conosci

questo  segno?  (il  bambino dovrebbe  dire  che  è  uguale.  Se  non  lo  dice,  gli  viene

ricordato.)  Esatto,  è  uguale.  Noi dobbiamo spostare da  questa  parte (indica con la

mano lo spazio a sinistra dell'uguale), la stessa quantità che spostiamo da questa parte

(indica con la mano lo spazio a destra dell'uguale).

Devono essere uguali (sottolinea la parola uguale).

Ora sposta sul telaio di sinistra 4 perle. (Aspetta che il bambino abbia contato e

spostato le perle).  Quante perle hai spostato? (il  bambino dirà 4) Bene! Adesso ne

dobbiamo mettere altre 3, spostale vicino al 4. Perfetto!
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Adesso, lo facciamo sul telaio a destra (indica il lato a destra dell'uguale). Sposta

4 perle sul telaio. Bene!

Dimmi,  secondo te  quante  bisogna spostarne ancora  (indico il  telaio a  destra

dell'uguale)  per  avere  la  stessa  quantità  che hai  di  qua? (indica  il  telaio a  sinistra

dell'uguale).

Se la risposta del bambino è corretta: Giusto. Vai avanti e sposta 3 perle.

Se la risposta del bambino è  errata: Buon tentativo, ma così non diventano

uguali. Di qua ci sono 7 perle (indica ciascuna delle perle come se le contassi ad alta

voce). Di qua ci sono solo 4 perle (indica ciascuna delle perle come se le contassi ad

alta voce). Quante perle dobbiamo mettere per avere le due parti uguali?

Se la risposta del  bambino è  corretta: Giusto.  Vai avanti  e  sposta 3 perle.  

Se la risposta del bambino è ancora errata: in realtà c'è bisogno di altre 3 perle.  

Sposta altre 3 perle.

Verifichiamo che siano uguali. Quante perle ci sono da questa parte? (Il bambino

dovrebbe dire 7). E da quest'altra?  (Il bambino dovrebbe dire 7). Ottimo! Hai capito.

Su entrambi i telai ci sono 7 perle.

Scheda dell'abaco 

Ora faremo lo stesso lavoro, ma su carta. (Mostra al bambino la scheda).

Questo rappresenta un abaco (indica il disegno dell’abaco) e questo l'altro abaco

(indica l'altro). Qui sopra bisogna scrivere il numero.

Io ti dico quante perle si spostano, e tu scrivi il numero nello spazio, OK?

Sposta 3 perle su questo abaco (indica il primo spazio del lato sinistro, aspetta

che il bambino abbia scritto 3). Bene!

Adesso,  spostane  altre  5  da  questa  parte  (indica  il  secondo  spazio  del  lato

sinistro, aspetta che il bambino abbia scritto 5).
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Ora,  dobbiamo spostarne 3 dall'altra  parte  dell'uguale  (indica  il  primo spazio

bianco di destra, aspetta che il bambino abbia scritto 3). Perfetto!

A destra  e  sinistra  dell'uguale  vogliamo  avere  una  quantità  uguale  di  perle

(sottolinea  la  parola  uguale  e  indica  entrambi  i  lati  muovendo  le  mani  come  una

bilancia, come a mostrare la quantità uguale).

Adesso, vorrei che tu mi dicessi quante perle dobbiamo spostare qui (mostra il

secondo spazio bianco a destra) in modo che i due lati abbiano la stessa quantità di

perle.

Se la risposta del bambino è corretta: Giusto. Vai avanti e scrivi 5.

Se  la  risposta  del  bambino  è  errata:  Buon  tentativo,  ma  così  non  diventano

uguali. A sinistra abbiamo 8 perle (indica i due numeri scritti dal bambino). A destra

abbiamo solo 3 perle (indica il numero scritto dal bambino).

Di quante altre perle abbiamo bisogno in modo che a destra ce ne siano 8?

Se la risposta del bambino è corretta: Giusto. Vai avanti e scrivi 5.

Se la risposta del bambino è errata: in realtà c'è bisogno di altre 5 perle, scrivi 5.

Verifichiamo  che  siano  uguali.  Quante  perle  ci  sono  a  sinistra?  (Il  bambino

dovrebbe dire 8.) Quante perle ci sono a destra?  (Il bambino dovrebbe dire 8.) Ottimo!

Hai capito. Entrambi i lati hanno 8 perle!
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