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“Everything we see hides another thing, we always
want to see what is hidden by what we see. There is an

interest in that which is hidden and which the visible does
not show us. This interest can take the form of a quite

intense feeling, a sort of conflict, one might say, between
the visible that is hidden and the visible that is present.”

René Magritte





Abstract

WE live in a world where a wide variety of systems require auto-
matic, efficient and reliable personal recognition schemes to ei-
ther confirm or determine the identity of an individual requesting

their services. Financial, military, national security services and industry
IT experts – all want to make sure that the right person has access to the
right account, sensitive data or technological processes and they are look-
ing for the best access control methods. Token-based and knowledge-based
automatic personal identification approaches have been the two traditional
techniques widely used. Token-based approaches use something you have
to make a personal identification, such as a passport, driver’s license, ID
card, credit card, or keys. Knowledge-based approaches use something you
know to make a personal identification, such as a password or a personal
identification number (PIN).

The traditional approaches suffer from some disadvantages. Passwords,
the ubiquitous user login method, is widely known to be the weakest link
in cybersecurity today: every year millions of accounts are stolen and mil-
lions or domains are violated. Tokens may be lost, stolen, forgotten, or
misplaced, and a PIN may be forgotten by a valid user or guessed by an
impostor, entailing the system to be compromised. Besides, knowledge-
and token-based approaches suffer of the further disadvantage to be unable
to differentiate between an authorised person and an impostor who fraudu-
lently acquires the token or knowledge of the authorised person, resulting
in being unsatisfactory means of achieving the security requirements of our
electronically interconnected information society. The vulnerabilities of the
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aforementioned solutions generated efforts to search for more secure user
recognition techniques.

In this scenario, improvements in technology have led to the emergence
of new increasingly advanced security and authentication systems. Be-
tween them, we can find biometric systems, or simply biometrics, that is
automatic recognition of individuals based on their physiological and/or be-
havioural characteristics. Because many physiological or behavioural char-
acteristics are distinctive to each person, biometric identifiers are inherently
more reliable and more capable than knowledge-based and token-based
techniques in differentiating between an authorised person and a fraudu-
lent impostor. Besides, biometrics offers greater security and convenience
compared to traditional identification methods and in some cases can be
integrated or totally replace existing technology, opening new business op-
portunities in different markets.

All systems have their shortcomings and biometric technology is not an
exception. Although biometrics holds enormous promises and has in fact
been used for decades by government agencies across the world to safe-
guard data, enhance border security and identify those who may have hos-
tile intents, there are some risks a biometric system can incur into. Some
kind of biometric data are inherently public and can be stolen. If a person
has ever entered a place where there are public cameras, chances are that
their face is on record somewhere; when they make a phone their voice may
be recorded; and fingerprints are left everywhere a person touches. So also
biometric identifiers are not immune to the problem of stolen data and once
a hacker has a person’s biometric identifier, it is easy for him to gain access
to an account that requires biometric recognition. Besides, since many bio-
metric characteristics does not change over time, if the aforesaid biomet-
ric data is stolen or compromised, is unfortunately compromised forever.
Eventually, since every human being has a limited number of biometric
traits, when the biometric data are compromised, the “reset” of a biometric
identifier is not as straightforward as the case of user ID and password and
revoking and replacing a biometric characteristic is not as easy as in the
token case. In the event of biometric record leak or theft, users will have
permanent and most private personal data in the hands of bad actors. The
user has permanently lost control of that form of identification.

The aforementioned vulnerabilities and disadvantages of the biometric
technology can be faced and reduced simply choosing the right biometric
trait. Some biometric identifiers are inherently more difficult to steal and
replicate. These biometrics traits, that in this thesis we will refer at with the
name invisible biometrics, share the properties to be hidden in the human
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body and not easy to be captured at a distance with traditional acquisi-
tion devices and methodologies. The aforementioned properties entail the
difficulty in performing a spoofing attack, that consists in defeating the bio-
metric system’s security by stealing, copying and replicating synthetically
a biometric trait to gain unauthorised access, on biometric systems based
on invisible biometrics. Eventually, an invisible biometric trait inherently
provide liveness detection.

In this thesis, two invisible biometric identifiers, namely vein pattern
and electroencephalogram, are presented. Despite their differences in terms
of physiological origins, these biometric traits share the advantage of being
hidden inside the human body, thus resulting in being difficult to be stolen
and replicated. In fact, both the network of blood vessels and brain waves
cannot be acquired at a distance and with conventional devices, making a
spoofing attack almost impossible to be implemented. On the other hand,
the acquisition procedure is generally affected by the environment condi-
tions and the “hiddeness” of the physiological signals makes the capturing
step very sensitive to noise. In this thesis, some possible countermeasures to
the aforementioned limitations are proposed. Specifically, biometric fusion
approaches and deep learning methods are exploited in order to compensate
the errors of the system linked to the noise in the acquired data and, conse-
quently, to improve the performance of invisible-biometrics-based biomet-
ric system. Besides, biometric systems exploiting invisible identifiers don’t
overcome the issue related to the security of the system and the problem
linked to the revocation of compromised biometrics. In this regard, a tem-
plate protection approach based on cancelable biometrics is proposed as a
solution to deal with security issues in vein-based biometric systems.

Eventually, being biometrics behavioural or physiological characteris-
tics, the process of biometric recognition leaves behind trails of private
information. The invisible biometric identifiers considered in this thesis
are not immune from the aforesaid shortcoming. Some information are
visible although the biometric identifier belongs to the class of invisible
biometrics, disclosing some aspects of the privacy of system’s users and
threatening it. Specifically, health and diseases can be revealed by both the
hand vascular systems and brain waves, while mental and emotional states
as well as the processing cost associated to a specific task can be disclosed
by electroencephalographic signals. In this thesis, an example of visible
information able to be revealed by brain signals recorded as responses to
sentences presented as auditory stimuli is studied. More in detail, given
an electroencephalographic signal, the brain cost associated to the process-
ing of the discourse is computed and it is demonstrated that, given specific
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features related to the brain cost, it is possible to determine whether the
presented sentence contains linguistic misalignment or not.

IV



Sommario

VIVIAMO IN UN MONDO dove una quantità sempre maggiore di si-
stemi richiedono schemi di riconoscimento automatico, efficienti
ed affidabili, il cui scopo è quello di confermare o determinare l’i-

dentità dell’individuo richiedente specifici servizi. Servizi finanziari, nazio-
nali, di sicurezza e industrie, sono esempi di applicazioni che condividono
la stessa necessità: assicurarsi che solo le persone autorizzate abbiano ac-
cesso all’account, dati sensibili o processi tecnologici e che il metodo di
controllo degli accessi sia il più sicuro possibile. A tal fine, gli approcci ge-
neralmente più utilizzati sono quelli basati su “ciò che si possiede” (token-
based), come un documento di riconoscimento o una carta, o su “ciò che si
conosce” (knowledge-based), per esempio PIN o password.

I suddetti approcci soffrono di alcune limitazioni. Le password, il meto-
do onnipresente quando viene richiesto un login, è noto per essere ad oggi
il punto più debole nell’ambito della cybersecurity: ogni anno si assiste ad
oltre un milione di account rubati o domini violati. I token possono essere
persi, rubati o dimenticati e i PIN possono essere scordati dell’utente legitti-
mo o indovinati da un impostore, compromettendo la sicurezza del sistema.
Inoltre, gli approcci token-based e knowledge-based soffrono dell’ulterio-
re svantaggio di non essere in grado di distinguere una persona autorizzata
da un utente che viene in possesso in maniera fraudolenta della password
o del token dell’utente legittimo, risultando pertanto mezzi insoddisfacenti
per ottenere i requisiti di sicurezza adeguati. Le vulnerabilità delle suddette
soluzioni hanno comportato grandi investimenti nella ricerca di metodi di
autenticazione più sicuri.
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All’interno di questo scenario, il miglioramento della tecnologia ha im-
plicato la nascita di misure di sicurezza e sistemi di autenticazione sempre
più avanzati. Tra essi si distinguono i sistemi biometrici, ovvero sistemi
di riconoscimento automatico basato sulle caratteristiche fisiologiche e/o
comportamentali dell’utente. Dal momento che molte caratteristiche bio-
metriche sono distintive per ciascuna persona, gli identificatori biometri-
ci sono intrinsecamente più affidabili ed appropriati delle tecniche token-
based e knowledge-based nel compito di distinguere un utente autorizzato
da uno non autorizzato. Inoltre, il riconoscimento biometrico offre una
maggiore sicurezza e praticità rispetto ai metodi di riconoscimento tradi-
zionali, e, in alcuni casi, può essere integrato o sostituito completamente
alle tecnologie esistenti.

Tutti i sistemi hanno i propri limiti e di certo i sistemi biometrici non
fanno eccezione. Nonostante il riconoscimento biometrico sia un campo
molto promettente ed è, difatti, stato utilizzato per decadi dalle agenzie go-
vernative al fine di salvaguardare i dati, migliorare i controlli al confine e
identificare i soggetti con possibili intenzioni ostili, vi sono alcuni rischi in
cui è possibile imbattersi se si adotta come soluzione una tecnologia ba-
sata sulla biometria. Alcuni dati biometrici sono per loro natura pubblici
e possono essere rubati. Si pensi ad esempio ad una persona che entra in
un luogo pubblico dove vi sono delle videocamere di sorveglianza, le pro-
babilità che il proprio volto sia stato acquisito e memorizzato sono molto
alte. Nel momento in cui avviene una chiamata, la voce degli interlocu-
tori potrebbe essere registrata. Tracce di impronte digitali di una persona
vengono lasciate su qualsiasi superficie essa entri in contatto ed il processo
di acquisizione e duplicazione dell’impronta a partire dalle sue tracce non
è di difficile implementazione. Inoltre, dal momento che gli identificatori
biometrici generalmente non cambiano nel tempo, se un tratto biometrico
viene rubato o compromesso, risulta difficile revocarlo e sostituirlo, ope-
razioni d’altro canto estremamente semplici nel caso di password, PIN o
token.

Le suddette vulnerabilità e svantaggi delle tecnologie biometriche pos-
sono essere fronteggiate e ridotte semplicemente scegliendo opportuna-
mente il tratto biometrico su cui basare l’identificazione degli utenti. In
maggior dettaglio, alcuni tratti biometrici sono per loro natura più diffici-
li da rubare e replicare. Questi identificatori biometrici, che nel seguito
della tesi verranno indicati come tratti biometrici invisibili, condividono le
proprietà di essere nascosti all’interno del corpo umano e non facili da ac-
quisire a distanza con metodi e dispositivi di acquisizione tradizionali. Le
suddette proprietà implicano la difficoltà di realizzazione di un attacco di
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tipo spoofing, che consiste nel rubare, copiare, replicare sinteticamente e
ripresentare al sistema un tratto biometrico falsificato per contrastare le mi-
sure di sicurezza del sistema. Infine, un tratto biometrico invisibile fornisce
intrinsecamente informazioni riguardo la vivezza dell’utente.

In questa tesi verranno presentati due identificatori che fanno parte del-
la categoria dei tratti biometrici invisibili, ovvero le strutture venose della
mano e l’elettroencefalogramma. Nonostante essi risultino essere molto di-
versi dal punto di vista fisiologico, i suddetti tratti biometrici condividono
la caratteristica vantaggiosa di essere difficili da rubare e replicare. Infatti,
sia la rete di vasi sanguigni che le onde celebrali non possono essere acqui-
siti a distanza e la procedura di acquisizione non può essere effettuata con
dispositivi tradizionali, rendendo un attacco di tipo spoofing quasi impos-
sibile da implementare. D’altra parte anche questi identificatori presentano
degli svantaggi, principalmente legati alla procedura di acquisizione stessa:
essendo per loro natura “nascosti”, i segnati acquisiti sono generalmente
sensibili al rumore. In questa tesi verranno presentate alcune soluzioni at-
te a migliorare le performance di riconoscimento di un sistema basato sui
tratti biometrici invisibili, andando a compensare gli errori legati al rumo-
re presente nei dati acquisiti tramite tecniche di fusione biometrica e deep
learning. Inoltre, come tutti i sistemi biometrici, anche i sistemi di ricono-
scimento basati su tratti biometrici invisibili soffrono di alcuni limiti legati
alla sicurezza del sistema e alla revoca di tratti biometrici compromessi.
Nell’ambito di questa tesi viene presentata una soluzione atta a migliora-
re la sicurezza e superare le vulnerabilità di sistemi basati sulle strutture
venose della mano. Nello specifico, all’interno della tesi, vengono studia-
te tecniche di protezione del template basate su trasformazioni irreversibili
e viene analizzato l’impatto dei suddetti algoritmi sulle performance e la
sicurezza del sistema.

Infine, essendo i tratti biometrici caratteristiche fisiologiche e/o compor-
tamentali di un soggetto, il processo di riconoscimento biometrico rivela in-
formazioni riguardanti la privacy degli utenti. I tratti biometrici analizzati
in questa tesi non sono immuni dal suddetto problema. Alcune informazio-
ni sono visibili a partire dagli identificatori biometrici invisibili, rivelando
alcune informazioni personali degli utenti e minacciando la loro privacy.
Nello specifico, informazioni riguardo la salute e malattie di un soggetto
possono essere propalate sia dal sistema venoso della mano che dalle onde
celebrali, mentre stati mentali ed emotivi così come il costo di elaborazione
dell’informazione possono essere estratte processando segnali elettroence-
falografici. In questa tesi, viene presentato un esempio di informazione
visibile ottenibile a partire dalle onde celebrali. In particolare, viene stu-
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diato il costo di elaborazione da parte del cervello di frasi, presentate sotto
forma di stimolo uditivo, e viene dimostrato che è possibile comprendere
se lo stimolo presenta discordanze linguistiche, sovraccaricando l’utilizzo
della working memory durante l’elaborazione del discorso stesso.

VIII



Acknowledgements

I wish to thank my PhD advisor, Prof Patrizio Campisi, who always trusted
in my capabilities, even when I did not trust them anymore. I would also
like to thank my co-advisor and friend, Prof. Emanuele Maiorana, always
there for precious suggestions.

I would sincerely thank all the people that share special moments with
me everyday at the university, between them Gabriel, colleague but above
all important friend, always there to support me and be judged by me, and
Federico, without him every break would not be so hilarious.

I would like to sincerely thank my parents, for their irreplaceable love
and support. I would like to thank my sister, Valeria, for all the strength
she is able to give me everyday and for all the constructive talks. I would
like to thank my uncle Piero, always there to give me useful suggestions
and have constructive chats about always new and interesting topics, and
Diana, a person unique in her kindness.

A special thanks goes to my beloved Simone, able to see in me the light
even in the darkest moments and to make every day of my ordinary life
extraordinary, just with sights, smiles, kindness and love.

I would like to sincerely thank my best friends, to be always there for
me, in the happiest moments but above all in the darkest ones: Liliana,
we will never stop to be dreamers, Elisa, lifelong friend, Giulia e Elena,
irreplaceable source of friendship, strength and support. Without all my
friends I would not have been able to learn how to get up after falling down,
and getting up again, as many times as necessary.

Last but not least, I would like to dedicate my successes but above all the

IX



strength in dealing with failures to my grandparents, my angels, examples
of life and wisdom.

X



Contents

List of Figures XV

List of Tables XXI

1 An Introduction to Biometric Recognition 1
1.1 Use of Biometric Technologies . . . . . . . . . . . . . . . . 3
1.2 Biometric Identifiers and Invisible Biometrics . . . . . . . . 5
1.3 Biometric System . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Biometric System Errors . . . . . . . . . . . . . . . . . . . 15
1.5 Multimodal Biometric Systems . . . . . . . . . . . . . . . . 19
1.6 Vulnerable Points of a Biometric Systems and Countermea-

sures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Invisible Biometrics: Hand Vein Pattern 33
2.1 Vein Pattern Acquisition Systems . . . . . . . . . . . . . . 35
2.2 Vein Databases for Biometric Purposes . . . . . . . . . . . 37
2.3 Feature Extraction and Matching: State-of-the-Art . . . . . 45

2.3.1 Finger Vein . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Palm Vein . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.3 Hand Dorsal Vein . . . . . . . . . . . . . . . . . . . 52
2.3.4 Wrist Vein . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 CNN and Vein-Pattern-Based Biometric Applications: State
of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

XI



Contents

3 Hand Vein Biometrics: Performance Improvement 63
3.1 Palm Vein Recognition using a High Dynamic Range Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.1 Vein Patterns and High Dynamic Range . . . . . . . 65
3.1.2 Employed Palm Vein Recognition System . . . . . . 69
3.1.3 Experimental setup . . . . . . . . . . . . . . . . . . 72
3.1.4 Experimental Results - HDR Approach . . . . . . . . 73
3.1.5 Experimental Results - Other Fusion Approaches . . 78
3.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Convolutional Neural Network for Finger-Vein-based Bio-
metric Identification . . . . . . . . . . . . . . . . . . . . . 80
3.2.1 Employed Finger-Vein Based Biometric System . . . 81
3.2.2 Results and Discussions . . . . . . . . . . . . . . . . 83
3.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . 88

3.3 On-the-fly Finger-Vein-based Biometric Recognition using
Deep Neural Networks . . . . . . . . . . . . . . . . . . . . 89
3.3.1 Designed Finger-Vein Identification Pipeline . . . . . 90
3.3.2 Experimental Tests . . . . . . . . . . . . . . . . . . 95
3.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . 101

4 Finger-Vein Biometrics: Security and Template Protection 103
4.1 Cross-finger Similarity of Vein Patterns . . . . . . . . . . . 104

4.1.1 Experimental Protocol . . . . . . . . . . . . . . . . . 105
4.1.2 Finger-vein Recognition Methods . . . . . . . . . . . 107
4.1.3 Results and Discussion . . . . . . . . . . . . . . . . 108

4.2 Towards Practical Cancelable Biometrics for Finger Vein
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.1 Finger Vein Recognition . . . . . . . . . . . . . . . . 115
4.2.2 Finger Vein Cancelable Biometrics . . . . . . . . . . 118
4.2.3 Pre-alignment for Template Protection . . . . . . . . 120
4.2.4 Security Analysis . . . . . . . . . . . . . . . . . . . 122
4.2.5 Security Analysis: Unlinkability . . . . . . . . . . . 123
4.2.6 Security Analysis: Irreversibility . . . . . . . . . . . 124
4.2.7 Experimental Tests . . . . . . . . . . . . . . . . . . 126
4.2.8 Recognition Performance Evaluation . . . . . . . . . 127
4.2.9 Unlinkability Analysis . . . . . . . . . . . . . . . . . 131
4.2.10 Irreversibilty Analysis . . . . . . . . . . . . . . . . . 133
4.2.11 Results Discussion and Summary . . . . . . . . . . . 136
4.2.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 137

XII



Contents

5 Invisible Biometrics: Brain Waves 139
5.1 EEG Signals: Brain Activity and Brain Rhythms . . . . . . 140
5.2 Acquisition of Brain Signals . . . . . . . . . . . . . . . . . 143
5.3 Acquisition Protocols . . . . . . . . . . . . . . . . . . . . . 146
5.4 EEG signal for Biometric Recognition . . . . . . . . . . . . 151
5.5 EEG Biometrics: State-of-the-Art . . . . . . . . . . . . . . 155

6 EEG Biometrics: Performance Improvement 165
6.1 Steady-State Visual Evoked Potentials for EEG-Based Bio-

metric Identification . . . . . . . . . . . . . . . . . . . . . 166
6.1.1 Employed Acquisition Protocol . . . . . . . . . . . . 167
6.1.2 Employed SSVEP-based Recognition System . . . . 168
6.1.3 Identification . . . . . . . . . . . . . . . . . . . . . . 171
6.1.4 Experimental Results . . . . . . . . . . . . . . . . . 172
6.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . 176

7 Visible Beyond Invisible Biometrics: Hidden Information, Emotions
and Working Memory 179
7.1 Information Structure Effects on the Processing of Nouns

and Verbs: Evidence from Event-Related Potentials and Brain
Oscillatory Dynamics . . . . . . . . . . . . . . . . . . . . . 181
7.1.1 Literature Overview . . . . . . . . . . . . . . . . . . 183
7.1.2 Theoretical Views: Information Structure and Word

Classes . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.1.3 Predictions . . . . . . . . . . . . . . . . . . . . . . . 188
7.1.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . 189
7.1.5 Experimental Results . . . . . . . . . . . . . . . . . 196
7.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . 199
7.1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . 203

8 Conclusions and Future Work 205
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Author’s Contributions 211

Bibliography 213

XIII





List of Figures

1.1 Biometrics revenue by key use cases, World Markets: 2015-
2024 (Source: Tractica) . . . . . . . . . . . . . . . . . . . . 4

1.2 Biometrics revenue by industry, World Markets: 2015-2024
(Source: Tractica) . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Classification of biometric characteristics: visible and invis-
ible biometrics. . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Block diagram of enrolment, verification and identification
tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Genuine score and impostor score distribution. . . . . . . . 16
1.6 Examples of DET and ROC curves. . . . . . . . . . . . . . 18
1.7 Various scenarios in a multimodal biometric system. . . . . 21
1.8 Classification of fusion strategies in multibiometric systems. 22
1.9 Possible attacks point in a biometric system. . . . . . . . . . 24
1.10 Classification of template protection schemes. . . . . . . . . 26
1.11 Biometric cryptosystems. . . . . . . . . . . . . . . . . . . . 27
1.12 Feature transformation approach for biometric template pro-

tection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Absorption spectra of oxi- and deoxi-haemoglobin and water. 36
2.2 Modalities of acquisition of vein pattern: transmission and

reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Image samples from the HKPU, SDUMLA-HMT, UTFVP

and FV-USM finger-vein databases. . . . . . . . . . . . . . 39
2.4 Image samples from the CASIA and VERA palm-vein databases. 42

XV



List of Figures

2.5 Image samples from the PUT wrist-vein database . . . . . . 44

3.1 Examples of palm vein LDR images. . . . . . . . . . . . . . 67
3.2 HDR vein images after after the application of TMOs on the

merged LDR images of Fig. 3.1. . . . . . . . . . . . . . . . 67
3.3 Examples of palm vein LDR images. . . . . . . . . . . . . . 68
3.4 HDR vein images after after the application of TMOs on the

merged LDR images of Fig. 3.3. . . . . . . . . . . . . . . . 68
3.5 An example of (a) LBP and (b) LDP neighbourood. . . . . . 70
3.6 DET curves obtained considering LBP and LDP features ex-

tracted by combinations of enhanced images. . . . . . . . . 75
3.7 DET curves obtained considering LBP and LDP features ex-

tracted by combinations of LDR images. . . . . . . . . . . . 76
3.8 DET curves obtained considering LBP and LDP feature ex-

traction methods and the different adopted fusion techniques 79
3.9 Employed CNN architecture. . . . . . . . . . . . . . . . . . 84
3.10 Different luminosity images from different sessions of four

publicly-available databases. . . . . . . . . . . . . . . . . . 85
3.11 Original and CLAHE [353] enhanced finger-vein image from

four publicly-available databases. . . . . . . . . . . . . . . 87
3.12 High-level representation of the acquisition and processing

pipeline of the proposed system. . . . . . . . . . . . . . . . 91
3.13 (a) Graphic representation of the propose acquisition sys-

tem. (b) 2x2 camera array (left), NIR filter on camera array
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.14 Video acquisition procedure. . . . . . . . . . . . . . . . . . 93
3.15 LDR finger-vein templates of a subject using 12µs, 16µs,

20µs, 24µs exposure times (first four images on the left),
and resulting tone-mapped HDR vein template (image on
the right). Images contrast enhanced for visualization purposes 93

3.16 CNN-LSTM architecture of the proposed system. . . . . . . 95
3.17 V-CNN Architecture. . . . . . . . . . . . . . . . . . . . . . 96

4.1 Scores for the MC-based method. Left: genuine, impostor,
and genuine CH distributions; Right: impostor, impostor CF,
and genuine CF distributions. . . . . . . . . . . . . . . . . . 110

4.2 Scores for the PC-based method. Left: genuine, impostor,
and genuine CH distributions; Right: impostor, impostor CF,
and genuine CF distributions. . . . . . . . . . . . . . . . . . 110

XVI



List of Figures

4.3 Scores for the WLD-based method. Left: genuine, impos-
tor, and genuine CH distributions; Right: impostor, impostor
CF, and genuine CF distributions. . . . . . . . . . . . . . . 111

4.4 Scores for the CNN-based method. Left: genuine, impostor,
and genuine CH distributions; Right: impostor, impostor CF,
and genuine CF distributions. . . . . . . . . . . . . . . . . . 111

4.5 Enhanced image and extracted features for GF, IUWT, MC,
PC, RLT and WLD: MC extracts a thinner vein structure
than the other methods. . . . . . . . . . . . . . . . . . . . . 117

4.6 Block remapping example with different block sizes using
the same MC feature image as in Fig. 4.5e . . . . . . . . . 119

4.7 Block warping example with different parameters using the
same MC feature image as in Fig. 4.5e . . . . . . . . . . . 120

4.8 Basic Bloom filter template protection approach, from [85]. 121

4.9 DET curves for all six feature types and the different tem-
plate protection schemes: (a) block remapping, (b) block
warping and (c) Bloom Filters on the UTFVP database. . . . 130

4.10 DET curves showing the impact of different block remap-
ping (left) and block warping (right) parameters for MC on
the UTFVP dataset. . . . . . . . . . . . . . . . . . . . . . . 131

4.11 Mated-sample (solid green) and non-mated-sample (dashed
red) score distibutions for protected templates generated from
the UTFVP dataset. The blue curve represents the score-
wise linkability measure D↔ (s), and Dsys

↔ gives an estima-
tion of the overall linkability level of the whole system. (a):
Block remapping using MC and B = 64; (b): Block warp-
ing using MC, G = 64 and O = 24; (c): Bloom filters. . . . 132

4.12 Template reconstruction using PuzzleMultisolver [220], ex-
tracted features (MC) in the right column. Top row: ROI,
labeled blocks and used blocks, middle row: remapped im-
ages, bottom row: puzzle solver reconstruction. . . . . . . . 134

5.1 Examples of Delta, Theta, Alpha, Beta, and Gamma waves
acquired from a single channel. . . . . . . . . . . . . . . . . 141

XVII



List of Figures

5.2 (a) The 10-20 international system seen from left (right) and
above the head (left). The letters F, T, C, P and O stand
for frontal, temporal, central, parietal, and occipital lobes.
Even numbers identify electrodes on the right hemisphere,
odd numbers those on the left hemisphere, and “z” (zero)
refers to electrodes placed on the midline. (b) Location and
nomenclature of the intermediate 10% electrodes, as stan-
dardized by the American Electroencephalographic Society
[190] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Different acquisition devices for EEG signals: (a) EB Neuro
Galileo BE Light (b) g.tec g.Nautilus (c) OpenBCI Ultra-
cortex "Mark IV" . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Montage of electrodes used during the acquisition stage and
brain regions. . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 Scheme of the proposed SSVEP-based biometric system. . . 169

7.1 Regions with significant differences (p-values ≤ 0.05) for
Focus Noun/Focus Verb comparisons when (a) mean value,
(b) peak value and (c) latency of the ERP are evaluated in
the N400 response. . . . . . . . . . . . . . . . . . . . . . . 198

7.2 Grand average ERP for the Focus Noun/Focus Verb compar-
ison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.3 Regions with significant differences (p-values ≤ 0.05) for
Topic Noun/Topic Verb comparisons when (a) mean value,
(b) peak value and (c) latency of the ERP are evaluated in
the N400 response. . . . . . . . . . . . . . . . . . . . . . . 200

7.4 Regions with significant differences (p-values ≤ 0.05) for
the Topic Noun/Topic Verb comparisons when (a) mean value,
(b) peak value and (c) latency of the ERP are evaluated in the
P600 response. . . . . . . . . . . . . . . . . . . . . . . . . 200

7.5 Grand average ERP for the Topic Noun/Topic Verb compar-
ison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.6 Regions with significant difference (p-values ≤ 0.05) in the
PSD levels for the Focus Noun/Focus Verb comparisons when
different subbands, namely (a) delta, (b) theta, (c) alpha and
(d) beta, are considered. . . . . . . . . . . . . . . . . . . . 202

XVIII



List of Figures

7.7 Regions with significant difference (p-values ≤ 0.05) in the
PSD levels for the Topic Noun/Topic Verb comparisons when
different subbands, namely (a) delta, (b) theta, (c) alpha and
(d) beta, are considered. . . . . . . . . . . . . . . . . . . . 202

XIX





List of Tables

1.1 Comparison of various biometric technologies. . . . . . . . 7
1.2 Summary of different template protection schemes. . . . . . 29

2.1 Publicly available vein databases. . . . . . . . . . . . . . . 38
2.2 State-of-the-art works about finger-vein based biometric sys-

tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 State-of-the-art works about palm-vein based biometric sys-

tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6 State-of-the-art works about hand dorsa-vein based biomet-

ric system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.8 State-of-the-art works about wrist-vein based biometric sys-

tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.10 State-of-the-art works about applications of deep learning

algorithms in the field of vein-based biometric recognition
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 EER (%) obtained considering LBP and LDP feature extrac-
tion methods applied on the single middle-exposure image,
on single-exposure images fused at score level, on raw HDR
images and on tone-mapped HDR images. . . . . . . . . . . 74

3.2 EER (%) obtained when LBP and LDP features are extracted
only from the middle-exposure image preprocessed with the
different image enhancement methods. . . . . . . . . . . . . 74

XXI



List of Tables

3.3 EER (%) obtained considering the LBP and LDP features
extracted from the enhanced LDR vein images and then per-
forming a score-level fusion approach. . . . . . . . . . . . . 74

3.4 Acquisition and processing time (s) when the HDR imaging
approach is considered. . . . . . . . . . . . . . . . . . . . . 78

3.5 The proposed CNN configuration. . . . . . . . . . . . . . . 82
3.6 Identification accuracy comparison for the four considered

publicly-available databases. . . . . . . . . . . . . . . . . . 84
3.7 CNN-based identification accuracy over the considered publicly-

available databases. . . . . . . . . . . . . . . . . . . . . . . 87
3.8 Identification accuracy for different training strategies over

original images. . . . . . . . . . . . . . . . . . . . . . . . . 88
3.9 Proposed CNN Configuration (V-CNN). In theNc represents

the number of channels for each image (we may have either
Nc = 1 or Nc = 4 in the proposed configurations; NI the
number of the output layer, represent the number of unique
identities/subjects in the database. . . . . . . . . . . . . . . 97

3.10 Mean identification accuracy with single exposure inputs (Ei)
vs. their joint usages as HDR and 4-layer tensor. . . . . . . 99

3.11 Mean identification accuracy comparison of fusion techniques
based on DF, SF, and LSTM, over V-CNN features. . . . . . 99

4.1 Score distributions evaluated in the performed tests. . . . . . 106
4.2 EERs (in %) over the SDUMLA database for the performed

tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3 Kullback-Leibler divergences with respect to genuine scores. 112
4.4 Baseline results on UTFVP dataset. . . . . . . . . . . . . . 128
4.5 Recognition performance results in terms of EER and 95%

confidence intervals for cancelable biometrics schemes ap-
plied on the UTFVP database, using 10 different transfor-
mation keys for each template. . . . . . . . . . . . . . . . . 128

4.6 Recognition performance results in terms of EER and 95%
confidence intervals for cancelable biometrics schemes ap-
plied on the UTFVP database with feature pre-alignment,
using 10 different transformation keys for each template. . . 129

4.7 Unlinkability results in terms Dsys
↔ for all cancelable schemes

and all six feature types on the UTFVP dataset. . . . . . . . 133
4.8 Irreversibilty Analysis for Block Remapping on the UTFVP

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

XXII



List of Tables

5.1 State-of-the-art works about EEG-based biometric recognition. 163

6.1 Average correct recognition rate (CRR %) obtained over 30
cross-validation runs, using MFCCs as features. . . . . . . . 173

6.3 Average correct recognition rate (CRR %) obtained over 30
cross-validation runs, using AR reflection coefficients as fea-
tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Average correct recognition rate (CRR %) obtained when
different spatial configurations are selected and 30 cross-
validation runs are performed. . . . . . . . . . . . . . . . . 175

7.1 Examples of the experimental stimuli (target nouns and verbs
are bold-typed). . . . . . . . . . . . . . . . . . . . . . . . . 190

XXIII



CHAPTER1
An Introduction to Biometric Recognition

EVERY DAY organisations in financial services, health care, e-commer-
ce, telecommunication, and government require reliable personal
recognition schemes to either confirm or determine the identity of an

individual requesting their services; millions of time every day applications
like secure access to buildings, computer systems, laptops, cellular phones,
and ATMs need to know if a person who wants to access their system is
who he or she claims to be and if the applicant should be given the access
to the system itself. It’s then necessary for these systems to be provided
with a scheme which purpose is to ensure that the rendered services are ac-
cessed only by a legitimate user and no one else [124]. In fact, the lack of a
robust personal recognition schemes makes these systems vulnerable to the
attacks of an impostor entailing frauds in welfare disbursements, credit card
transactions, cellular phone calls, and ATM withdrawals that total billion of
dollars every year [122].

More and more organisations are looking to highly accurate automated
personal identification systems for the purpose of increasing the level of
security of their applications and saving critical resources as well as im-
proving customers’ satisfaction and systems’ operating efficiency. Personal
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identification refers to the process of associating a particular individual with
an identity. The traditional and widely used automatic personal identifica-
tion approaches are knowledge-based and token-based techniques. Token-
based approaches use something that a person has to perform a personal
identification, such as a passport, ID card, or keys. Knowledge-based ap-
proaches use something people know to carry out a personal identifica-
tion, such as a password or a personal identification number (PIN). The
token-based approaches suffer from the disadvantages that tokens may be
lost, stolen, forgotten, or misplaced while the disadvantages of knowledge
based approaches are that PIN may be forgotten by a valid user or guessed
by an impostor. Because knowledge-based and token-based approaches are
unable to differentiate between an authorised person and an impostor who
fraudulently acquires the token or knowledge of the authorised person, they
cannot be used as proper means for achieving the satisfactory security re-
quirements of most of the systems in our society [201].

Biometric recognition, or simply biometrics, refers to the process of
automatic recognition of individuals based on their physiological and/or
behavioural characteristics, termed as biometric identifier [124]. Strictly
speaking, a biometric characteristic is the measurable trait that can be used
for automated recognition. Because many physiological or behavioural
characteristics are distinctive to each person, compared to knowledge-based
and token-based techniques, biometric identifiers are inherently more re-
liable and more able to differentiate between an authorised person and a
fraudulent impostor.

Not every biological measurement qualify to be a biometric, but a bi-
ological and/or or behavioural characteristic can be used as a biometric
characteristic as long as it satisfies the following requirements [124]:

• universality: every individual should possess the trait;

• uniqueness: given a biometrics trait, it should be sufficiently different
across individuals comprising the user population;

• permanence: the biometric trait should be sufficiently invariant, with
respect to the matching criterion, over time;

• measurability: it should be possible to acquire and quantitatively
measure the biometric characteristic by a sensing device that do not
cause undue inconvenience to the individual.

However, in a practical biometric system applications, in addition to
the previous requirements that a biometric characteristic need to satisfy,
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there are a many other issues that a designer of the system must consider,
including:

• performance: the level of accuracy and speed of recognition that the
system is able to achieve and the the resources required to reach the
desired recognition accuracy and speed, as well as the operational and
environmental factors that affect the accuracy and speed;

• acceptability: the user population of the system and people in general
should have no problem to accept the use of a particular biometric
identifier in their daily lives and they should have no strong objections
to the measurement and collection of the biometric characteristic.

• circumvention: the ease with which the trait of an individual can be
imitated using artefacts, in the case of physical trait, and mimicry,
in the case of behavioural traits. It also refers to the process of ob-
fuscation, where a user deliberately alters his biometric trait to evade
recognition.

A practical system should reach the specified accuracy, speed, and re-
source requirements, and, at the same time, it should be accepted by the
intended population and be sufficiently robust to various fraudulent meth-
ods and attacks.

This Chapter is structured as follows. Section 1.1 depicts some real-life
scenarios where biometric recognition is employed. Section 1.2 gives short
overviews of the most researched and industrially exploited biometrics and
defines invisible biometrics. In Section 1.3 the mode of operation of a
biometric system is presented, while the errors that can occur in a biometric
recognition process are illustrated in Section 1.4. Section 1.5 introduces
multibiometrics systems. Eventually, in Section 1.6 an overview of the
attacks a biometric systems is exposed and possible countermeasures are
presented.

1.1 Use of Biometric Technologies

Biometric technology can be used for a great number of applications, that
can be divided into the following three main groups [124]:

• commercial applications: computer network login, ATM access, cre-
dit card access, Internet access, electronic data security, e-commerce,
account access over phone, physical access control, medical records
management, hospital record security and consumer electronics;
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Figure 1.1: Biometrics revenue by key use cases, World Markets: 2015-2024 (Source:
Tractica)

• government applications: low enforcement, government administra-
tion, aerospace and defence, border control, travel document, national
ID card, driver’s license, social security, and welfare disbursement;

• forensic applications: corpse identification, criminal investigation,
terrorist identification, parenthood determination, and missing chil-
dren.

Traditionally, commercial applications have used knowledge-based sys-
tems (e.g., PINs and passwords), government applications have used token-
based systems (e.g., ID cards and badges), and forensic applications have
been based on human experts to match biometric features. However, nowa-
days the use of biometric systems is largely increasing also in civilian and
government applications and in forensic applications automatic biometric
recognition systems are used.

Fig. 1.1 shows biometrics markets by identifying specific use cases,
more in detail the six highest revenue uses cases globally, from Tractica’s
report, Biometrics Market Forecasts1. These six use cases account for just
about 70% of all biometrics revenue throughout the 10-year forecast period.
The remaining 35 use cases contribute the other 30% of revenue. As it can
be noticed, consumer device authentication generates the most revenue of
all use cases.

1https://www.tractica.com/download-proxy?report_id=4018&type=White%
20Paper
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Figure 1.2: Biometrics revenue by industry, World Markets: 2015-2024 (Source: Tractica)

Fig. 1.2 depicts Tractica’s biometrics market forecast by industry. The
horizontal enterprise use cases are represented by the orange data series
approximately in the middle of each bar on the chart. Visually, it is clear
that use cases that sweep across industries are not the largest for biomet-
rics and that orange enterprise data series accounts for about 10% of total
revenues throughout the 10-year forecast period. Again, it can be noticed
that consumers generate and are supposed to generate the the most revenue,
followed by finance and government.

1.2 Biometric Identifiers and Invisible Biometrics

The existing biometric characteristic are copious and are used in many dif-
ferent practical applications for the task of user recognition; each biometric
characteristic has its strengths and weaknesses, and no single biometric trait
is ideal, that is it does not exist a biometric trait meeting all the aforemen-
tioned requirements [125]. The choice of which biometric characteristic to
use depends on the application and the nature and constraints of the appli-
cation lead the decision to which requirements to favour.

Biometrics are commonly classified into two categories: physiological
and behavioural biometrics. A physiological biometric is based on a char-
acteristic that a person owns, such as fingerprints or iris, while behavioural
characteristics rely on something that the user do, that is some aspect of
behaviour, e,g, voice, gait or keystroke.

In this thesis, a novel classification of biometric characteristics is pro-
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Figure 1.3: Classification of biometric characteristics: visible and invisible biometrics.

posed; specifically biometric traits can be categorised into invisible and
visible biometrics, as shown in Figure 1.3. Invisible biometrics are physi-
ological or behavioural characteristics hidden inside the human body. This
property ensure a low level of circumvention of the biometric system, that
is the system cannot be easily fooled using fraudulent methods when an
invisible identifier is exploited. This is mainly due to the “hiddeness” of in-
visible biometrics, entailing the difficulty in acquiring the aforementioned
trait at a distance and/or with conventional capturing devices, and implying
the system to be secure and resistant to spoofing attacks. Besides, invis-
ible biometrics are able to provide liveness detection, since they rely on
physiological signal linked to the liveness of the user. Eventually, invisible
biometrics are able to provide continuous authentication on a secure appli-
cation. On the other hand, visible biometrics, being inherently visible and
easy to acquire, are easy to be stolen and replicated by a fraudulent user and
do not inherently provide liveness detection and continuous authentication.
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Table 1.1: Comparison of various biometric technologies. High, Medium, and Low are
denoted by H, M, and L, respectively.
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Fingerprint M H H M H M M

Face H L M H L H H

Iris H H H M H L L

Voice M L L M L H H

Signature L L L H L H H

Gait M L L H L H M

Keystroke L L L M L M M

Vein pattern M M M M M M L

EEG H H M M M L L

ECG H M M H M H L

EDA M M M H M H L

Thermal images H M M M M H L

Presented next are short overviews of the most researched and indus-
trially exploited biometrics, following the classification proposed in this
thesis. A brief overview of visible biometric characteristics will be given
first, followed by a summary of invisible biometrics. A summary of the
features of the aforesaid traits is given in Table 1.1.

Visible Biometrics

• Fingerprint. A fingerprint is the pattern of ridges and valley located
on the surface of the tip of each finger and it can be acquired through
compact sensors that provide digital images of these patterns. The for-
mation of a fingerprint is determined during the first seven months of
fetal development and fingerprints of identical twins as well as prints
on each finger of the same person are different. One of the problem
with the fingerprint recognition systems is that the most of fingerprint
sensors are too sensitive to finger surface conditions and humidity in
the atmosphere. Besides, fingertips physical conditions and injuries,
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such as cuts and bruises, affect the performance of the system. Even-
tually stealing and replicating a fingerprint is extremely easy, entailing
few difficulties in the circumvention of the system.

• Face. Face is the most common biometric characteristic used by
humans to make a personal recognition; face recognition is a non-
intrusive methods that allows to recognise people from facial images.
The applications of facial recognition range from static (“mug shots”)
to dynamic, uncontrolled face identification in a cluttered background
(e.g., subway, airport) [41]. The disadvantage of the face recognition
systems commercially available is that they impose a number of re-
strictions on how the facial images are obtained, sometimes requiring
a fixed and simple background or special illumination. Besides, faces
can be captured with simple cameras, making the privacy and security
of this biometric trait extremely low.

• Iris. The iris is the annular region of the eye bounded by the pupil
and the sclera on either side. The visual texture of the iris begins to
form in the third month of gestation, the structures creating its pattern
are largely complete by the eight month and the pattern stabilises dur-
ing the first two years of life. The complex iris texture carries very
distinctive information useful for personal recognition and it is being
used in various applications including national ID projects and border
security. Each iris is distinctive and the irises of identical twins are
different. It is extremely difficult to surgically tamper the texture of
the iris and it’s possible to detect artificial irises (e.g., designer contact
lenses) [64]. Anyway, some iris recognition systems are still confused
by textured contact lenses and printed image of an iris, showing also
several limitations in the task of liveness detection.

• Voice. Voice is a combination of physiological and behavioural bio-
metrics. The features of an individual’s voice are based on the shape
and size of the appendages (e.g., vocal tracts, mouth, nasal cavities,
and lips) that are used in the synthesis of the sound. These physiolog-
ical characteristics of human speech are invariant for an individual,
but the behavioural part of the speech of a person changes over time
due to age, medical conditions, and emotional state. Voice is also not
very distinctive and may not be appropriate for large-scale identifica-
tion; besides, a disadvantage of voice-based recognition is that speech
features are sensitive to a number of factors such as background noise.
Eventually, voice is very easy to record, copy and replicate to fool a
voice-based recognition system.

8



1.2. Biometric Identifiers and Invisible Biometrics

• Signature. The way a person signs his or her name is known to be a
characteristic of that individual; signatures are a behavioural biomet-
ric that change over a period of time and are influenced by physical
and emotional conditions of the person. Although signatures require
contact with the writing instrument and an effort on the part of the
user, they have been accepted in government, legal, and commercial
transactions as a method of verification.

• Gait. Gait is the peculiar way one walks and it is a complex spatio-
temporal biometrics. It is not supposed to be very distinctive, but it
allows to recognise people at a distance and can be used in some low-
security applications. Gait is a behavioural biometric and may not
remain the same over a long period of time, due to change in body
weight or serious brain damage. To acquire the gait a video sequence
is acquired; for this reason the acceptability of the gait as a biometric is
high but since a video sequence is used this method is computationally
expensive. Besides, mimicking, or imitation, of the human gait is a
possible way to fool a gait-based biometric system.

• Keystroke. It is hypothesised that each person types on a keyboard
in a characteristic way and keystroke dynamics is a behavioural bio-
metric. This biometric trait is not unique to each individual but it may
be expected to offer sufficient discriminatory information to permit
identity verification. Large intra-class variations in a person’s typing
pattern can be observed due to changes in emotional state, position of
the user with respect to the keyboard, type of keyboard used, etc; be-
sides, the keystroke of a person can be monitored unobtrusively as that
person is keying information. The advantage of the use of keystroke
as biometric is that it can be used to perform a continuous verification
of an individual over a session, after the fist authentication done with
a stronger biometric such as fingerprint or iris.

Invisible Biometrics

• Vein pattern. Recently many researches showed that the pattern of
vein underneath the skin is unique to each individual and so it can be
used as a biometric characteristic for user recognition. The vein pat-
tern can be acquired using an near infra-red light, and that property
makes this biometric trait secure and resistant to falsification. Fur-
thermore, the vein information represents liveness and for that reason
liveness detection and authentication can be provided concurrently.
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On the other hand, disadvantages of this biometric trait are that the
acquisition devices are often large and that the acquired images have
generally worst quality compared to images of other biometric traits.

• Electroencephalogram (EEG). EEG signals are the result of the elec-
trical field generated in the brain by the synchronous firing of specific
spatially-aligned neurons of the cortex, i.e. pyramidal neurons. The
brain electrical activity can be measured by sensing the differences
of electrical voltage between specific positions on the scalp surface,
by means of proper electrodes [188]. EEG signals can be captured
in response to a presented stimulus or while performing a given task.
Biometric recognition based on EEG signals is an emerging research
topic. Several recent results have shown its feasibility and potential for
personal identification. Without regard to the somewhat cumbersome
data recording process, biometric recognition based on EEG signals
shows several advantages compered to the traditional biometric iden-
tifiers. It is confidential and hard to imitate, since EEG signals are
a reflection of individual-dependent inner mental tasks. Furthermore,
EEG signals are difficult to imitate, as similar mental tasks are person
dependent. In addition, one can not force a person to give ideal EEG
signals as those recorded in normal situations, as brain activity is easy
to be influenced by the stress and mood of a person [192].

• Electrocardiogram (ECG). An ECG is a recording of the electrical
activity of the heart. Electrodes placed on the surface of the body
are used to measure the electrical signals originating from the my-
ocardium, the heart muscle. The ECG signal is an emerging novel be-
havioural biometric for human identification. Individual differences
in the heart structure, such as chest geometry, position, and size, man-
ifest unique characteristics in their ECG signals which can be used as
a biometric trait. The main advantages of ECG signals is the difficulty
in counterfeiting them. Furthermore, the ECG signal, being present
in all living individuals, can provide real-time liveness feedback. Be-
sides, ECG provides additional information related to psychological
states and physiological status, which may be of interest for applica-
tions such as health monitoring or body area sensor network systems.
The main disadvantage of the ECG biometric trait is that the ECG sig-
nal inherently varies at different heartbeats of the same subject due
to variations in fitness, physical and emotional states as well as vari-
abilities caused by sensor position changes and long term baseline
shifts [174, 214].
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• Electrodermal activity (EDA). The electrodermal activity (EDA),
also known as galvanic skin response (GSR), is the measure of elec-
trical resistance between two points across the skin. In its most basic
form, human skin is used as an electrical resistor whose value changes
when a small quantity of sweat is secreted. So EDA refers to the
variation of the electrical properties of the skin in response to sweat
secretion. The sweat gland activity are reflective of the intensity of
our emotional state, otherwise known as emotional arousal. Our level
of emotional arousal changes in response to the environment we’re
in, e.g. if something is scary, threatening, joyful, or otherwise emo-
tionally relevant, then the subsequent change in emotional response
that we experience also increases eccrine sweat gland activity. EDA
depends on physical conditions and thus is quite subjective. It has
been successfully employed for biometric human recognition in the
last decade [20, 193].

• Thermal images. Infrared thermography (IRT), thermal imaging, and
thermal video are examples of infrared imaging science. Thermo-
graphic cameras usually detect radiation in the long-infrared range
of the electromagnetic spectrum (roughly 9,000–14,000 nm or 9–14
µm) and produce images of that radiation, called thermograms. The
amount of radiation emitted by an object increases with temperature;
therefore, thermography allows one to see variations in temperature.
In the field of biometric recognition, thermal imaging has been applied
to hand vein pattern and face recognition.

The invisible biometrics this thesis focuses on are vein pattern and elec-
troencephalogram. More in detail, an overview of the aforementioned iden-
tifiers is given in Chapter 2 and Chapter 5 respectively. Chapters 3 and 6
propose different algorithms aiming at improving performance in vein- and
EEG-based biometric systems respectively, while Chapter 4 deals with se-
curity issues and countermeasures of finger-vein biometrics. Eventually,
Chapter 7 presents some drawbacks of invisible biometric identifiers, pay-
ing particular attention at the issues of privacy and personal information
leakage.
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Chapter 1. An Introduction to Biometric Recognition

1.3 Biometric System

A biometric system measure one or more physiological and/or behavioural
characteristics of the user and allows to automatically determine or verify
the identity of the subject. The aforementioned task is performed by ex-
tracting discriminative features from the captured template and by compar-
ing the obtained feature set against the template set stored in the database.
A generic biometric system is composed by various blocks, listed and de-
tailed hereafter:

• sensor module: an user interface incorporating the biometric sensor
records the raw biometric data of the user;

• feature extraction module: the aim of this module is to generate
the template, a compact but expressive representation of the identifier
containing the distinctive features of the biometric data. The template
is expected to contain only the salient discriminatory information that
is essential for recognising the person;

• database module: it act as the repository of biometric information;

• matching module: the purpose of a biometric matcher is to compare
the query features against the stored templates. It generates a match-
ing score, that is a measure of similarity between the template and
the query. The matcher module also encapsulates a decision module,
which makes the identity decision, that is confirms an user’s claimed
identity or establishing a user’s identity according to the matching
score.

The process of user biometric recognition consists of two main phases,
namely enrolment and recognition. During the enrolment phase the system
register users into the biometric system database and associate an identity
with its biometric characteristics. More in detail, the biometric trait is first
acquired by the sensor and its digital representation is produced. After a
quality check, the digital representation is processed in order to generate the
template, later stored in the central database of the biometric system or on
the device issued to the individual. The block diagrams of user enrolment
is graphically illustrated in Fig. 1.4a. During the recognition phase, the
biometric reader acquires the characteristic of the individual to be identified
and its digital format is further processed to produce the feature with the
same representation as the template. The resulting representation is fed to
the matcher that compares it against the template to establish if the user is
allowed to access to the system or not.

12



1.3. Biometric System

(a)

(b)

(c)

Figure 1.4: Block diagram of (a) enrolment, (b) verification and (c) identification tasks.

Depending on the application context, a biometric system may oper-
ate either in verification mode or identification mode. In the verification
mode, the system authenticates a person’s identity by comparing the cap-
tured biometric characteristic with the person’s biometric template stored
in the system database in a previous moment. In such a system, an individ-
ual who desires to be recognized claims an identity, usually via a personal
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identification number (PIN), a user name, or a smart card, and the sys-
tem either rejects or accepts the submitted claim of identity conducting a
one-to-one comparison. Identity verification is typically used for positive
recognition, where the aim is to prevent multiple people from using the
same identity [315]. The block diagram of a verification system is depicted
in Fig. 1.4b.

The verification problem can be formally posted as follow: given the in-
put feature extracted from the acquired biometric data XQ and the claimed
identity I , determine if (I,XQ) belongs to the class w1 or w2, where w1

indicates that the claim is true and the user is then a genuine user, and w2

indicates that the claim is false and then the user is an impostor. In order to
determine its category, XQ is matched against XI , the biometric template
corresponding to the user I and stored in the database. Thus

(I,XQ) ∈

{
w1 if S(XQ, XI) ≥ t

w2 otherwise
(1.1)

where S is the the function that measures the similarity between feature
vectors XQ and XI , and t is a predefined threshold. The value S(XQ, XI)
is generally termed as similarity or matching score between the biomet-
ric measurements of the user and the claimed identity. Therefore, every
claimed identity is classified into w1 or w2 based on the variables XQ, I ,
XI and t and the function S.

In the identification mode, the system establishes a subject’s identity or
fails if the subject is not enrolled in the system database by searching the
templates of all the users in the database for a match, without the subject
having to claim an identity. In a recognition system operating in the identi-
fication mode the system conducts a one-to-many comparison to establish
the users’ identity or returning a failure in case of the subject is not enrolled
in the system database. Identification is a critical component in negative
recognition applications where the system establishes whether the person
is who he or she denies to be. The purpose of negative recognition is to
prevent a single person from using multiple identities [315]. While tradi-
tional methods of personal recognition such as passwords, PINs, keys, and
tokens may work for positive recognition, negative recognition can only
be established through biometrics. The block diagram of an identification
system is depicted in Figure 1.4c.

The identification problem is formulated as follows. Given an input
feature vector XQ, determine the identity Ik, with k ∈ {1, 2, ..., N,N + 1}.
In this case I1, I2, ..., IN are the identities enrolled and IN+1 indicate the
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case where non suitable identity can be determined for the user, that is the
case in which the user is rejected. Hence

(I,XQ) ∈

{
Ik if maxk {S(XQ, XIk)} ≥ t, k = 1, 2, . . . N

IN+1 otherwise
(1.2)

where XIk is the biometric template corresponding to identity Ik, and t is a
predefined threshold.

1.4 Biometric System Errors

Because of imperfect imaging conditions, changes in the user’s physiolog-
ical or behavioural characteristics, ambient conditions, and user’s interac-
tion with the sensor, two samples of the same biometric characteristic from
the same person are not exactly the same [124]. For this reason, the re-
sponse of the biometric system is typically a single number, the matching
score S(XQ, XI), that quantifies the similarity between the template ex-
tracted during the recognition phase (XQ) and the template stored in the
database (XI). The higher the score, the higher is the probability that the
two biometric measurements come from the same person. In order to de-
cide if the user who wants to access the system is allowed to, a comparison
with the threshold (t) is performed: if the matching score is higher than or
equal to the threshold, the pairs of biometric samples are inferred as mate
pairs, that is traits belonging to the same person; on the contrary if the
matching score is lower compared to the threshold value, the pairs of bio-
metric samples are meant as nonmate pairs, that is belonging to different
people.

Matching all the possible pairs of biometric samples from the same per-
son in the system, the distribution of genuine scores, called genuine distri-
bution, will be generated; the score distribution obtained by matching pair
of biometric characteristics from different persons is called impostor dis-
tribution. An example of genuine score and impostor score distributions is
shown in Fig. 1.5.

A biometric verification system makes two types of errors:

• false match (or false accept): the biometric measurements are from
two different persons but the decision module state that they belong to
the same person;

• false nonmatch (or false reject): two biometric measurements from
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Figure 1.5: Genuine score and impostor score distribution. FMR and FNMR for a given
threshold t are also displayed over the genuine and impostor score distributions.

the same person are not considered belonging to the same person by
the system.

Mathematically, the errors in a verification system can be formulated
as a binary classification problem. If XI represents the stored biometric
template of the user I and XQ is the acquired input during the recognition
stage, then there are two possible hypotheses:

• H0: the input XQ and the template XI don’t come from the same
person;

• H1: the input XQ and the template XI come from the same person.

The associated decisions are as follows:

• D0: the person is not who she claims to be;

• D1: the person is who she claims to be.

The decision rule is the following: if the matching score S(Xq, XI) is
less than the system threshold t, then decide D0, else decide D1. Assuming
such a hypothesis testing formulation, two kind of error could occur:

1. false match: the system decide that XI and XQ belong to the same
user, while they belong to different users, that is H0 is true but D1 is
decided;
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2. false non-match: the system decide thatXI andXQ belong to different
users, while they belong to the same person, that is H1 is true but D1

is decided;

The probability that the system incorrectly authorises a non-authorised
person, due to incorrectly matching the biometric input with a template,
that is the probability of type-I, is referred as false match rate (FMR); the
probability that the system incorrectly rejects access to an authorised per-
son, due to failing to match the biometric input with a template, that is the
probability of type-II, is called false nonmatch rate (FNMR). These two
probabilities are defined as:

FMR = P (D1/H0)

FNMR = P (D0/H1). (1.3)

To evaluate the accuracy of a biometric system, it’s necessary to collect
scores generated comparing multiple images from the same biometric trait,
that is the distribution p(S(XQ, XI)/H1), and scores generated comparing
images from biometric data belonging to different users, that is the distribu-
tion p(S(XQ, XI)/H0). The performance indicator can be then calculated
as follows:

FMR =

∫ ∞
t

p(S(XQ, XI)/H0)dS

FNMR =

∫ t

−∞
p(S(XQ, XI)/H1)dS. (1.4)

The computation of FMR and FNMR over genuine and impostor distri-
butions, for a given threshold, is graphically illustrated in Fig. 1.5. FMR
and FNMR can be represented together in the same curve called detection
error trade-off (DET); the DET curve plots the FNMR against the FMR at
different thresholds; an example of a DET curve is shown in Fig. 1.6. A
variant of the DET curve to represent the performance of a biometric sys-
tem is the receiver operating characteristic (ROC) curve. A ROC curve is
similar to the DET curve except that the the y-axes represents the probabil-
ity of the genuine accept of the system, also known as genuine accept rate
(GAR) and defined as GAR = 1−FNMR. The DET and ROC curves are
often non-linearly scaled in order to highlight the region of error rates of in-
terest; commonly used scales include normal deviate scale and logarithmic
scale.

As told before, the values of FMR and FNMR depends on the chosen
value of the threshold; the choice of the value of the threshold is linked
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Figure 1.6: Choosing different threshold values, different FMR and FNMR values are
obtained. The curves relating FMR to FNMR at different thresholds are known as DET
(left) and ROC (right) curves.

to the application of the biometric system and there is a trade-off between
FMR and FNMR in every biometric system: the system is more tolerant to
input variations and noise decreasing the threshold but the FMR increases;
on the other hand, if the threshold is increased to make the system more
secure, the FNMR increases accordingly. Sometimes it’s useful to have a
performance measurement independent of the operating point; to express
the performance of the system using a metric independent of the operat-
ing point, one of the possible performance metric used is the equal error
rate (EER), defined as the rate where FMR and FNMR are equal; in par-
ticular the EER of a matcher can be also seen as the operating point at the
intersection of the line FMR = FNMR with the ROC curve.

The accuracy of a biometric system in the identification mode can be
inferred using the system accuracy in the verification mode under simplify-
ing assumptions. Let us denote the identification false nonmatch and false
match rates with FNMRN and FMRN , respectively, where N represents
the number of identities in the system database. If the assumption that and
only a single identification attempt is made per subject, a single biometric
template is used for each enrolled user, and the impostor scores between
different users are uncorrelated is valid, then:

FNMRN
∼= FNMR

FMRN = 1− (1− FNMR)N ∼= N · FMR. (1.5)

This approximations hold good only when N · FMR < 0.1 [124].
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1.5. Multimodal Biometric Systems

1.5 Multimodal Biometric Systems

Even though biometric system have been successfully installed in various
civilian and governmental applications, biometric recognition is not still a
fully solved problem; issues related to reducing error rate, enhancing the us-
ability of biometric systems and reducing the biometric system limitations
are tasks that the research community still aims to address. More in detail,
unimodal biometric systems, that is biometric application operating using a
single biometric trait, are characterised by the following limitations [124]:

• noise in acquired data: the captured data might be noisy or distorted;
this could be linked to the physical conditions of the biometric trait
or to the defective or improperly maintenance of the sensors or also
to unfavourable ambient conditions. The use of noisy biometric data
could entail errors in the matching process resulting in a user being
incorrectly rejected;

• intra-class variations: the biometric data acquired during the enrol-
ment stage and the one acquired in the authentication step and stored
in the database should be very similar in order to limit the errors in
the matching stage. In real-life applications, the data used to obtain
the enrolled template and the ones captured for authentication may be
very different, due to the fact that the user incorrectly interacts with
the sensor or linked to changing in characteristics of the sensor itself;
this causes a large intra-class variation that entails problems during
the matching phase;

• distinctiveness: while it is expected a large inter-class variation, that
means that samples of biometrics traits of different individuals should
be sufficiently different, there may be large inter-class similarities in
the feature sets used to represent these identifiers. This limitation re-
stricts the discriminability provided by the biometric trait and every
biometric trait has some theoretical upper bound in terms of its dis-
crimination capability;

• non-universality: although it is expected that a biometric identifier
used for a specific recognition system is possessed by all the users
of the system, it is possible that the biometric trait is not possessed
by a subset of them. This could be due to the fact that the physical
conditions of the biometric trait make the feature extraction process
unable to extract features from the biometric characteristic, entailing
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a failure to enrol (FTE) error associated with the use of the single
biometric trait;

• spoof attacks: one of the possible threat for a biometric system is
the spoofing attack, that is an impostor may attempt to spoof the bio-
metric trait of a legitimate enrolled user in order to circumvent the
system. Spoofing attacks are possible to be performed both in the
case of physiological- and behavioural-characteristic-based biometric
systems.

Some of the limitations imposed by unimodal biometric systems can be
overcome by using multimodal biometric systems, that is biometric systems
that use multiple biometric modalities instead of a single biometric charac-
teristic. These systems are expected to be more reliable due to the presence
of multiple pieces of evidence and they are also able to improve the perfor-
mance of the system. Multimodal biometric systems address the problem
of non-universality, since several traits of an user are taken into account, the
system can reach a certain degree of flexibility and ensure a sufficient popu-
lation coverage. Besides, a hierarchical approach can be used in the recog-
nition stage: some samples can be used to determine a subset of candidate
from the database an the remaining samples can be employed to determine
the final identity, chosen between the ones of the small pre-selected set.
Furthermore, multimodal biometric systems increase security and provide
anti-spoofing measures by making it difficult for an intruder to simultane-
ously spoof the multiple biometric traits of a legitimate user. Eventually,
the noisy data problem can be mitigated, since multiple traits are acquired
and there are more changes to get some traits less noisy than others.

Multimodal biometrics can be designed to operate in different scenarios,
as shown in Fig. 1.7; more in detail, it is possible to classify the multibio-
metric systems based on the information that they integrate as follows:

• multi-sensors systems: multiple sensors are used to acquire the same
biometric trait of an individual;

• multi-instance systems: different instances of the same biometric
trait are captured and used for the enrolment and/or recognition stages;

• multi-sample systems: a single sensor can be used to acquire multi-
ple samples of the same biometric trait under different conditions to
obtain a more complete representation of the trait;

20



1.5. Multimodal Biometric Systems

Figure 1.7: Various scenarios in a multimodal biometric system.

• multi-biometrics systems: multiple biometric traits are used and com-
bined in order to later establish the identity of the user;

• multi-algorithm systems: the same biometric data is processed using
multiple algorithms. Multiple feature extraction methods or multiple
matching algorithms are involved and combined for the task of bio-
metric recognition;

• hybrid systems: some of the scenarios described above can be inte-
grated and combined for the aim of user recognition.

The information obtained by the multiple sensors scenario are mod-
erately dependent, so it’s expected to result in a smaller improvement in
recognition accuracy compared to the multiple biometrics and multiple in-
stance scenarios in which the information combined are independent. How-
ever, on the other hand, there is the inconvenience for the user to provide
multiple cues and it entails a longer acquisition time. Besides, the cost of
the systems where only one sensor is used is less compared to the cost of the
system where more sensors are required. Finally, the multi-algorithm sce-
nario, combining different representation and matching algorithms to im-
prove the recognition accuracy, is more cost effective and convenient than
scenarios where multiple biometric traits or sensors are used; on the other
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Figure 1.8: Classification of fusion strategies in multibiometric systems.

hand, in these systems, as well as systems that use different instances of the
same biometric trait, the computational complexity is increased and as a re-
sult, the response time of the system is bigger. Even though multi-algorithm
and multi-instance require more computational and storage resources than
a unimodal biometric system, in principle, different feature extractors and
matchers can work in parallel and the overall response time of the system
is limited by the slowest individual feature extractor and/or matcher.

The multiple information obtained in multibiometric systems can be in-
tegrated and combined at various levels. In particular, the level of fusion
can be categorised into two broad categories, as illustrated in Fig. 1.8: fu-
sion before matching and fusion after matching.

In the case of the fusion before matching, the fusion can be performed
at two different levels:

• sensor-level: data belonging to the same biometric trait are acquired
from multiple sensors and then combined;

• feature-level: a combination of different feature vectors is performed.
The different features can be obtained by either data acquired from
multiple sensors or by applying multiple feature extraction algorithms
on the same biometric data. If the features extracted from one biomet-
ric indicator are independent of those extracted from the others, fea-
ture reduction techniques may be employed to extract a small number
of salient features from the larger set of features.

In the case of the fusion after matching, the fusion can be performed at
three different levels:
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• match score-level: a similarity score indicating the closeness between
two compared features is provided by each biometric matcher. These
matching scores can be combined to assert the genuineness of the
claimed identity of the user;

• decision-level: the output of multiple classifiers relying on different
feature vectors are combined in order to take the final decision;

• rank-level: when a biometric system operates in the identification
mode, the output can be seen as a ranking of the enrolled entities; the
rank-level fusion can be performed in order to consolidate the rank
output.

Performing one or a combination of the different fusions methodologies
listed before, the biometric system is expected to be more reliable and the
performance achieved by the system are generally higher compared to what
reached in unimodal biometric recognition systems.

In this thesis, we exploited the advantages of multimodal biometric sys-
tem in the field of invisible biometrics. More in detail, in Section 3.1 and
Section 3.3 the advantages of biometric fusion techniques in the area of
vein-based biometric recognition are studied. Section 6.1, instead, shows
the application of fusion techniques in the framework of EEG-based bio-
metric identification.

1.6 Vulnerable Points of a Biometric Systems and Counter-
measures

The advantages related to biometric-based recognition, when compared to
token- or knowledge-based approaches, are remarkable and, for that reason,
there has been a significant surge in the use of biometrics for user recog-
nition in recent years. It’s important for a biometric system to be designed
to withstand attacks when used in security-critical application, above all
in unsupervised remote applications such as e-commerce [252]. Even if a
considered biometric system is characterised by excellent recognition per-
formance, it could be rendered useless by an attack to the system itself.

In a biometric system different weak links vulnerable to a variety of at-
tacks aimed at mining the integrity of the recognition process can be iden-
tified. In particular, the performed attacks are intended to either circumvent
the security afforded by the system or to deter the normal functioning of
the system. Given a biometric system, there are different attacks that can
be perpetrated at different levels of the system, that are shown in Fig. 1.9
and that can be summarised as follows:
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Figure 1.9: Possible attacks point in a biometric system.

• sensor level: a reproduction of the biometric trait is presented at the
system by an impostor (spoofing attack) or the true biometric is pre-
sented but by an unauthorised manner, e.g. forcing the legitimate user
to grant an impostor access to the system;

• feature-extraction level: the feature extraction module can be forced
in order to overriding the feature extraction process and forcing the
feature extractor to produce feature sets pre-selected by an attacker;

• matcher level: the matcher might be attacked and corrupted in order
to produce pre-selected match scores;

• decisor level: the final decision is overrode, making the authentication
system disabled;

• Channel level: channels interconnect the different modules of the
system; they can be intercepted and controlled by an attacker. Among
the possible channel-level attacks the following ones can be men-
tioned:

– eavesdropping attack: biometric data transmission is surrepti-
tiously listened;

– man in the middle attack: the attacker manipulates the informa-
tion exchanged between two modules, without the two parties
knowing that the link has been compromised;
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– brute force attack: exhaustive presentation of a large set of bio-
metrics input to the recognition system to find the one that works;

– replay attack: previously stored digitised biometric signals, fea-
tures or scores are resubmitted to the system, bypassing the mod-
ules;

– manipulation attack: matching scores or the decision is captured
and their values are changed.

• database level: the records in the database are read and modified; the
templates stored in the database are modified or removed or a new
template is introduced in the database itself.

One of the most potentially damaging attack on biometric system is
against the biometric template stored in the system database [123]. There
exist several security techniques to thwart attacks at these various points
and the wide spread use of biometric authentication imposes serious threats
to the security and privacy of its users: the system should be able to guaran-
tee the impossibility of leakage of information to unauthorised individuals.
Between the possible solutions, template protection systems ensure the se-
cure and private handling of the personal biometric templates or biometric
data during the authentication process inside a biometric recognition sys-
tems in order to protect the users’ privacy and security. According to the
ISO/IEC 24745 standard on biometric information protection [121], in bio-
metric template protection (BTP) systems the following three properties are
required to protect the privacy of the users:

• irreversibility: given a protected template, it should leak no biometric
information, i.e., it should not be possible to go back from the template
to the biometric sample that originated it;

• unlinkability: given two templates protected with different keys, it
should not be feasible to decide whether they conceal the same bio-
metric instance;

• renewability: if one template is lost or stolen, it should be possible to
issue a new one that does not match with the old template.

Besides, an ideal template protection scheme should satisfy the following
properties [123]:

• performance: the introduction of a BTP scheme should not signif-
icantly degrade the recognition performance (FAR and FRR) of the
unprotected biometric system;
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Figure 1.10: Classification of template protection schemes [123].

• security: it must be computationally hard to obtain the original bio-
metric template from the secured template. This property prevents an
attacker from creating a fake copy of the original biometric trait from
a stolen template;

• diversity: the protected template should not match with the other pre-
viously generated template from the same data, that is cross-match-
ing has to be avoided. In this way, the user’s privacy is ensured;

• revocability: it should be straightforward to revoke a compromised
template and reissue a new one based on the same biometric data.

In the recent years, many different solutions have been already proposed
for the generation of secure and protected templates. Among the possi-
ble classifications of BTP algorithms, BTPs can be categorised into two
main categories [123], as shown in Fig. 1.10: biometric cryptosystems and
feature transformation approaches. Some template protection techniques
make use of more than one basic approach, that is hybrid schemes are em-
ployed. A brief summary of the various template protection approaches is
depicted in the following and presented in Table 1.2.

Biometric Cryptosystems. Biometric cryptosystems provide the means to
adapt cryptographic protocols to biometric data which are inherently noisy
data. In a biometric cryptosystem, some public information about the bio-
metric template, generally referred to as helper data, is stored; the helper
data doesn’t reveal any significant information about the original biomet-
ric template and it is needed during the matching stage to extract a cryp-
tographic key from the query biometric features. Matching is performed
indirectly by verifying the validity of the extracted key. Examples of the
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(a)

(b)

Figure 1.11: Biometric cryptosystems for template protection: (a) key-binding, (b) key-
generating.

biometric cryptosystem scheme can be seen in Fig. 1.11. Error correction
coding techniques are typically used to handle intra-user variations.

Biometric cryptosystems can be classified into two subclasses, depend-
ing on how the helper data is obtained: key-binding and key-generating
systems [106, 293]. When the helper data is obtained by binding a key,
independent of the biometric features, the protection scheme is named as
key-binding biometric cryptosystem. The aim of a key-binding scheme is
to store information obtained by combining biometric data with a randomly
generated keys, that is secure some cryptographic key by means of a bio-
metric trait. On the other hand, if the helper data is derived only from the
biometric template and the cryptographic key is directly generated from
the helper data and the query biometric features, the scheme is referred as
key generation biometric cryptosystem. A key-generating system, derive a
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Figure 1.12: Feature transformation approach for biometric template protection.

cryptographic binary key directly from the acquired biometrics.

Feature Transformations. In the feature transformation approach, or can-
celable biometrics, the biometric template or the original biometric data (T)
are transformed by applying a transformation function (F). The parame-
ters of the transformation function are typically derived from a random key
(K) or password, and only the transformed template or signal (F(T ;K))
are stored in the database, as shown in Fig. 1.12. During the matching
stage, the same transformation is applied to to query features/images (Q)
and the transformed query (F(Q;K)) is directly matched against the tem-
plate stored in the database (F(T ;K)). Depending on the characteristics
of the transformation function (F), the feature transform schemes can be
further categorised as salting and non-invertible transforms. In salting or
biohashing, the considered function is invertible and the key used to define
the user-specific transformation needs to be securely stored or remembered
by the user and presented during authentication. The security of salting ap-
proaches relies on the protection and secrecy of the password of the func-
tion parameters, i.e. the key (K); if the key is compromised the template
is no longer secure and an adversary that gain access to the key and the
transformed template is able to recover the original biometric template.

In non-invertible transformation schemes the transformation function
applied on the template is typically a one-way function, that is easy to com-
pute (in polynomial time) but it is computationally hard to invert (given
F(x), the probability of finding x in polynomial time is small); for that
reason, even if the key is known, it’s computationally hard for an attacker
to recover the original biometric template starting from the distorted one
and this quality makes this scheme more robust and secure compared to
the sating approach. The one-way function must meet the three properties

28



1.6. Vulnerable Points of a Biometric Systems and Countermeasures

Ta
bl

e
1.

2:
Su

m
m

ar
y

of
di

ffe
re

nt
te

m
pl

at
e

pr
ot

ec
tio

n
sc

he
m

es
.

H
er

e,
T

re
pr

es
en

ts
th

e
bi

om
et

ri
c

te
m

pl
at

e,
Q

re
pr

es
en

ts
th

e
qu

er
y,

an
d
K

is
th

e
ke

y
us

ed
to

pr
ot

ec
tt

he
te

m
pl

at
e.

In
sa

lti
ng

an
d

no
n-

in
ve

rt
ib

le
fe

at
ur

e
tr

an
sf

or
m

,F
re

pr
es

en
ts

th
e

tr
an

sf
or

m
at

io
n

fu
nc

tio
n,

an
d
M

re
pr

es
en

ts
th

e
m

at
ch

er
th

at
op

er
at

es
in

th
e

tr
an

sf
or

m
ed

do
m

ai
n.

In
bi

om
et

ri
c

cr
yp

to
sy

st
em

s,
F

is
th

e
he

lp
er

da
ta

ex
tr

ac
tio

n
sc

he
m

e
an

d
M

is
th

e
er

ro
r

co
rr

ec
tio

n
sc

he
m

e
th

at
al

lo
w

s
re

co
ns

tr
uc

tio
n

of
th

e
he

lp
er

da
ta

H
[1

23
].

A
pp

ro
ac

h
W

ha
t

im
pa

rt
s

se
cu

ri
ty

to
th

e
te

m
pl

at
e?

W
ha

te
nt

iti
es

ar
e

st
or

ed
?

H
ow

ar
e

in
tr

au
se

r
va

ri
at

io
ns

ha
nd

le
d?

K
ey

-g
en

er
at

in
g

bi
om

et
ri

c
cr

yp
-

to
sy

st
em

L
ev

el
of

se
cu

ri
ty

de
pe

nd
s

on
th

e
am

ou
nt

of
in

fo
rm

at
io

n
re

ve
al

ed
by

th
e

he
lp

er
da

ta
H

Pu
bl

ic
do

m
ai

n:
he

lp
er

da
ta
H

=
F
(T

)
E

rr
or

co
rr

ec
tio

n
an

d
us

er
sp

ec
ifi

c
qu

an
tiz

at
io

n
K

=
M

(F
(T

),
Q
)

K
ey

-b
in

di
ng

bi
om

et
ri

c
cr

yp
-

to
sy

st
em

L
ev

el
of

se
cu

ri
ty

de
pe

nd
s

on
th

e
am

ou
nt

of
in

fo
rm

at
io

n
re

ve
al

ed
by

th
e

he
lp

er
da

ta
H

Pu
bl

ic
do

m
ai

n:
he

lp
er

da
ta

H
=
F
(T

;K
)

E
rr

or
co

rr
ec

tio
n

an
d

us
er

sp
ec

ifi
c

qu
an

tiz
at

io
n

K
=
M

(F
(T

;K
),
Q
)

N
on

-i
nv

er
tib

le
tr

an
sf

or
m

N
on

in
ve

rt
ib

ili
ty

of
th

e
tr

an
sf

or
-

m
at

io
n

fu
nc

tio
n
F

Pu
bl

ic
do

m
ai

n:
tr

an
sf

or
m

ed
te

m
pl

at
e
F
(T

;K
),

ke
y
K

M
at

ch
in

g
in

tr
an

sf
or

m
ed

do
-

m
ai

n
M
(F

(T
;K

),
F
(Q

;K
))

Sa
lti

ng
Se

cr
ec

y
of

ke
y
K

Pu
bl

ic
do

m
ai

n:
tr

an
sf

or
m

ed
te

m
pl

at
e
F
(T

;K
),

Se
cr

et
:

K
ey

K

Q
ua

nt
iz

at
io

n
an

d
m

at
ch

-
in

g
in

tr
an

sf
or

m
ed

do
m

ai
n

M
(F

(T
;K

),
F
(Q

;K
))

29



Chapter 1. An Introduction to Biometric Recognition

defined by the ISO/IEC 24745 standard. In addition, the application of the
one-way function should not significantly degrade the system’s recognition
performance as well as the recognition performance should not be sensitive
to the actual key used during the template protection step [224, 255]. If the
non-invertible transformation functions leave the biometric template in the
original feature space even after the transformation, the matching criteria
used is the same for the original and the transformed feature set; templates
that lie in the same space after the application of a non-invertible transform
have been referred to as cancelable templates [23].

The use of salting approaches typically results in low false accept rates,
and, since the key is user-specific, multiple templates for the same user bio-
metric can be generated by using different keys, allowing diversity. Also
in case a template is compromised, it is easy to revoke the compromised
template and replace it with a new one generated by using a different user-
specific key, allowing revocability. On the other hand, if a key gets compro-
mised, the user template is no longer secure due to the invertibility of the
transformation, that is, if an adversary gains access to the key and the trans-
formed template, she can recover the original biometric template. Besides,
since matching takes place in the transformed domain, the salting mecha-
nism needs to be designed in such a way that the recognition performance
does not degrade, especially in the presence of large intra-user variations.

When non-invertible transforms are used, since it is hard to recover
the original biometric template, even when the key is compromised, this
scheme provides better security than the salting approach and no significant
information can be acquired on the template. Moreover, differently from
the cryptosystem approaches, the original and transformed templates can
remain in the same feature space, being possible to apply standard match-
ing techniques in the transformed domain; this allows to achieve similar
performance compared with those achieved with the unprotected approach.
In addiction, transformation-based approaches generally result in matching
scores that can later be fused through multibiometric methods. Eventually,
diversity and revocability can be achieved by using application-specific and
user-specific transformation functions, respectively. The main limitation
of feature transformations approaches lies in the need to find the trade-off
between discriminability and non-invertibility of the transformation func-
tion. The transformation function should be designed in order to keep the
intra-class and inter-class distances in the transformed domain similar to
the corresponding ones in the original domain, in order to preserve the dis-
criminability. On the other hand, the transformation should also be non-
invertible, and it is difficult to design transformation functions that satisfy
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1.6. Vulnerable Points of a Biometric Systems and Countermeasures

both the discriminability and non-invertibility conditions simultaneously.
Moreover, it is very difficult to perform a rigorous security analysis con-
cerning non-invertibility of the scheme, above all when the transformation
algorithm and related keys or parameters are also compromised.

In this thesis, some feature transformation approaches are applied to the
vein pattern biometric identifier. More in detail, non-invertible transforma-
tion are applied. Details about the proposed work can be found in Section
4.2.
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CHAPTER2
Invisible Biometrics: Hand Vein Pattern

VEIN RECOGNITION refers to a biometric authentication method ba-
sed on the network of blood vessels of people’s hands. In biometric
applications where human recognition with high-level security is

required, such as border controls, smartphone unlocking, ATM cash with-
drawals, and e-commerce to cite a few, vein patterns are nowadays often
chosen as solution.

Vein patterns have recently attracted a significant interest from the in-
dustrial and the academic communities, thanks to the several advantages
this biometric trait can offer with respect to other traditional identifiers.
More in detail, the vein pattern, being hidden under the skin and visible
only thanks to the help of a near-infrared light and camera, falls under the
invisible biometrics category. The aforesaid property makes this biometric
trait very difficult to be stolen and replicated, and, then, a spoofing attack
nearly impossible to be implemented. Besides, the aforementioned bio-
metric modality allows a contactless recording acquisition procedure, thus
making it possible to design a vein-based biometric system ensuring users’
comfort and ease of use. Additionally, liveness detection is intrinsically
provided. On the other hand, vein-pattern images are often characterised
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Chapter 2. Invisible Biometrics: Hand Vein Pattern

by low contrast and poor definition, due to the sub-cutaneous placement
of the veins, thus making vein-related feature extraction a challenging pro-
cess and then implying a bad impact on the recognition performance of the
system.

Many practical systems exploiting different kinds of vein pattern have
already been implemented and are commercially available. The main pro-
ducers of vein-based biometric systems are HitachiTM,1, FujitsuTM,2 and
IDEMIATM,3. The first commercially available application of vein-based
biometric systems appeared in Poland, that has become the first country in
Europe to introduce a network of ATMs relying on finger-vein based recog-
nition for cash withdrawal. Behind the Polish ATM, there is HitachiTM Eu-
rope4. The incorporation of finger-vein biometrics into ATM machines was
also developed in China by the fourth largest bank, Bank of China5. Some
Japanese banks also use the aforementioned technology as a security mea-
sure which allows, or prevents, customers from accessing safety deposit
boxes in branches6. BarclaysTM Bank introduced “finger-vein ID” readers
that allow customers to junk their pin numbers, passwords and identifica-
tion codes and instead access their account with just a scan of their finger-
vein pattern thought a device plugged into the computer’s USB port7. Re-
cently vein-based recognition technologies have been integrated in mobile
system: LGTM designed its LG G8 using the veins in the palms of the user’s
hands to unlock the phone, which the company calls “Hand ID”. To detect
and recognise the veins, the smartphone is provided with a camera that de-
tects a users’ veins with infrared light. There’s also a 3D sensing “time of
flight” (ToF) camera on the front of the phone that detects the shape, thick-
ness, and other individual characteristics of a user’s palms. To unlock the
LG G8 using Hand ID, a user needs to hover their palm above the LG G8’s
selfie camera, and raise it up slowly8.

A standard vein based-biometric system is composed by the following
modules: an acquisition system able to capture the vein pattern images, a

1http://www.hitachi.co.jp/products/it/veinid/global/products/embedded_
devices_u.html

2https://www.fujitsu.com/it/solutions/business-technology/security/
palmsecure

3https://www.idemia.com/morphoaccess-vp
4https://www.theguardian.com/money/2014/may/14/fingerprints-vein-

pattern-scan-atm
5https://findbiometrics.com/finger-vein-authentication-atms-china-

502087/
6https://www.bbc.com/news/business-29062901
7https://www.bbc.com/news/business-29062901https://www.bbc.com/news/

business-29062901
8https://www.biometricupdate.com/201902/palm-vein-biometrics-and-3d-

facial-recognition-built-into-new-lg-g8-thinq-smartphone
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2.1. Vein Pattern Acquisition Systems

pre-processing module, which aim is to enhance the acquired data, a feature
extraction module, and, eventually, a matching module that compares the
authentication feature with the enrolled ones, returning a score linked to
the similarity between the compared features. This chapter aims to give an
introduction on vein-pattern-based biometric systems and its modules.

This chapter is organised as follows. Section 2.1 describes the acqui-
sition procedure of the vein pattern, while Section 2.2 gives an overview
about the vein-pattern publicly available databases. Section 2.3 gives a sur-
vey about the most important works presented in literature in the field of
vein based-biometric recognition. Eventually, an overview of the state-of-
the-art works regarding deep-neural-network (DNN) approaches applied in
the framework of vein-based biometric recognition is provided Section 2.4.

2.1 Vein Pattern Acquisition Systems

The blood vessels are part of the circulatory system and their main function
is to carry blood in the body [87]. The blood vessels can be categorized
in two types: arteries and veins. Arteries carry oxygenated blood from the
heart to various parts of the body, while veins carry deoxygenated blood
from all body regions to the heart for purification.

The blood is composed of fluid plasma and cellular parts. The largest
percentage of cells in the blood are erythrocytes, that is red blood cell,
consisting of the protein hemoglobin surrounded by a plasma membrane.
The property of hemoglobin is to bind oxygen with its iron atoms, so that
most of the oxygen needed for the metabolism is transported in the blood
to the tissues. The differences in the blood’s properties carried by veins and
arteries are reflected in the kind of hemoglobin that composes the blood
itself: veins contains deoxygenated hemoglobin (Hb) linked to oxygen-
depleted blood, while the blood carried by the arteries contains oxygenated
hemoglobin (HbO2).

The technique used to capture the vein pattern later used for biometric
recognition exploits the differences in the absorption spectra of the blood
and the tissues surrounding the blood vessels, mainly composed by water.
The aforementioned absorption spectra are depicted in Fig. 2.1. In the
range of near infra-red (NIR) the absorption coefficients of oxygenated and
deoxygenated hemoglobin are higher than the water’s one.

The aforementioned chemical properties are exploited in the acquisition
devices used to capture the blood vessels, that are generally composed by
the following modules:

• NIR light source: the region containing the vein pattern to be cap-
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Chapter 2. Invisible Biometrics: Hand Vein Pattern

Figure 2.1: Absorption spectra of oxi- and deoxi-haemoglobin and water.

tured is illumined by a light source, that is generally a light emitting
diode (LED), or an array of LEDs emitting NIR radiations. The wave-
lengths of the LEDs used in existing literature vary from 780 nm to
890 nm but the most common wavelength is 850 nm, which allows to
reach the largest contrast between tissues and blood vessels.

• Image sensor: the vein pattern is captured by devices able to capture
NIR image. The images are captured by the use of a charge-coupled
device (CCD) or metal-oxide semiconductor (CMOS) image sensor
[234]. Both sensors perform closely in terms of their ability to capture
an image, but they need to be configured such that they are able to
capture an image beyond the visible light spectrum.

• IR filter: in order to let only specific wavelength of the IR light to
pass through the image sensor a IR filter is used.

• Light diffuser: the NIR light source needs to be evenly distributed
and this can be achieved by using a light diffuser.

The NIR rays generated by the light source are absorbed by the blood
and penetrate the other tissues due to the different absorption properties
of the components. This leads to an acquired image where the vein struc-
tures appear as dark areas, surrounded by brighter areas related to the other
tissues.
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2.2. Vein Databases for Biometric Purposes

(a) (b)

Figure 2.2: Modalities of acquisition of vein pattern: (a) transmission (b) reflection.

There are two different methods for capturing vascular images of the
hand, as shown in Figure 2.2: light transmission and light reflection [104].
In the light transmission modality (see Fig. 2.2a), the hand is placed be-
tween the light source and the image sensor and the light passes through
the hand, reaches the sensor and the vein pattern is captured by it. The ad-
vantage of this modality is the quality of the image it is possible to achieve,
since the light is shone directly through the hand and background light does
not have a big influence on the result. In the light reflection method (see
Fig. 2.2b), the light source and the acquisition sensor are placed on the
same side compared to the hand position. The light is reflected by the hand
and the reflected light is captured by the camera. Because of the strong
reflection from the skin’s surface and the shallow penetration of light un-
der the skin, the obtained images will be characterised by a worst contrast
compared to the previous modality. On the other hand, the device is usually
contactless, making the device more user-friendly.

2.2 Vein Databases for Biometric Purposes

Dataset plays a crucial role in any recognition system. They are composed
of a set of images acquired from various individuals using a specific scan-
ning device. The technology used for the production of the vein acquisi-
tion devices has not been standardised, given the novelty of the biometric
identifier. Every scanning device has therefore different specifications and
the resulting captured images are characterised by varying quality. Dif-
ferent kinds of vein pattern have been analysed in literature for recogni-
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Table 2.1: Publicly available vein databases.

Dataset Vein Kind
No. of No. of No. Images

Image Size Year
Subjects samples per sample

HKPU [152] Finger 156 2 12 513×256 2011

SDUMLA -
Finger 106 6 6 320×240 2011

HMT [338]

MMCBNU_
Finger 100 6 10 640×480 2013

6000 [180]

UTFVP [289] Finger 60 6 4 672×380 2013

FV-USM [5] Finger 123 4 12 640×480 2014

FVRC2016-DS0 [336]
Finger

50 1 5
512×384 2016

DS1, DS2, DS3 1000 1 5

CASIA [96] Palm 100 2 6 768×576 2008

PolyU [342] Palm 250 2 12 704×578 2009

VERA [288] Palm 110 2 5 480×680 2015

NCUT [349] Dorsum 102 2 10 640×480 2008

GPDS100Veins
Dorsum 102 1 10 - 2009

CCDcylindrical [78]

Bosphorus [339] Dorsum 100 2 12 300×240 2011

UC3M [223] Wrist 29 2 6 640×480 2010

PUT [133] Wrist 50 2 12 1290×960 2011

tion purposes, namely finger vein [273], palm vein [135, 350], hand dorsal
vein [175, 307] and wrist vein [223].
Many of the vein pattern datasets are not available globally for research
purposes due to the confidentiality concerns. Some details of the most im-
portant publicly available databases of the different hand vein structures are
reported in the following and summarised in Table 2.1.

Finger-vein

• Hong Kong Polytechnic University (HKPU) Database [152]: this
database consists of simultaneously acquired finger vein and finger
surface texture images from 156 subjects. The volunteers are both
male and female, and about 93% of the subjects are younger than 30
years. The finger images, captured using a contactless imaging device,
were acquired in two separate sessions with a minimum interval of one
month, maximum interval of over six months. In each session, each
of the subjects provided 6 image samples from index finger middle
finger respectively, and each sample consists of one finger vein image
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(a)

(b)

(c)

(d)

Figure 2.3: Image samples from the (a) HKPU [152] (b) SDUMLA-HMT [338] (c) UT-
FVP [289] and (d) FV-USM [5] finger-vein databases.

and one finger texture image from left hand. Therefore, each subject
provided 24 images in one session. The currently available database is
then composed by 6264 images stored in bitmap (“BMP”) format with
the resolution of 513×256. Image samples are shown in Fig. 2.3a.
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• Shandong University Homologous Multi-modal Traits Database
(SDUMLA-HMT) Database [338]: this database was collected at
Shandong University, Jinan, China. 106 subjects, including 61 males
and 45 females, with age between 17 and 31, participated in the data
collection process, in which five biometric traits (face, finger vein,
gait, iris and fingerprint) were collected for each subject. The finger
vein database is composed by images of index finger, middle finger
and ring finger of both hands, and the collection for each of the 6 fin-
gers is repeated for 6 times to obtain 6 finger vein images. Data were
acquired in a single session. The finger vein database is composed of
3816 images. Every image is stored in bitmap (“BMP”) format with
320×240 pixels in size. Image samples are shown in Fig. 2.3b.

• Multimedia Lab, Chonbuk Nation University (MMCBNU_6000)
Database [180]: the database consists of finger vein images from 100
volunteers. The age of volunteers in MMCBNU_6000 varies from
16 to 72 years old. During the acquisition process, each subject was
asked to provide images of index finger, middle finger, and ring finger
of both hands. The collection for each of the 6 fingers is repeated for
10 times to obtain 60 finger vein images for each volunteer. Hence,
MMCBNU_6000 is composed of 6000 images. Each image is stored
in bitmap (“BMP”) format with the resolution of 480×640.

• University of Twente Finger Vascular Pattern (UTFVP) Database
[289]: the dataset contains 1440 finger vascular pattern images in total
which have been collected from 60 volunteers, the 73% of them are
male and the age of the volunteers ranges from 19 to 30. Images
were captured in two sessions with an average time lapse of 15 days.
For each volunteer the vascular pattern of the index, ring and middle
finger of both hands was collected twice at each session. This means
that each individual finger has been captured four times in total. The
captured images have a resolution of 672×380 pixels. The images are
stored using the 8 bit grey-scale portable network graphics (“PNG”)
format. Image samples are shown in Fig. 2.3c.

• University Sains Malaysia (FV-USM) Database [5]: the images of
the database were collected from 123 volunteers comprising of 83
males and 40 females. The age of the subject ranged from 20 to 52
years old. Every subject provided four fingers: left index, left middle,
right index and right middle fingers resulting in a total of 492 finger
classes obtained. Each finger was captured six times in one session
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and each individual participated in two sessions, separated by more
than two weeks’ time. In the first session, a total of 2952 images
were collected. Therefore, from two sessions, we obtained a total of
5904 images from 492 finger classes. The spatial and depth resolu-
tion of the captured finger images were 640×480 and 256 grey levels,
respectively. Image samples are shown in Fig. 2.3d.

• Finger Vein Recognition Competition (FVRC2016) [336] Database:
this database was collected for a competition organized for the pur-
pose of assessing and comparing finger vein recognition algorithms.
The FVRC2016 database is composed by four data sets, namely DS0,
DS1, DS2 and DS3, and the collection of the data lasted from Septem-
ber 2015 to January 2016. Images for index and middle fingers from
both hands are collected. All images are in 8-bit BMP format, 256
gray-scale and 512×384 pixel resolution. The capturing device is
D501, manufactured by Beijing Yannan Tech Co., Ltd. The total num-
ber of images are 15250, with no overlapping between any two sets.
DSO includes 50 fingers and 5 images for each finger. DS1, DS2
and DS3 each contains 1000 fingers and 5 images for each finger.
Images in DSO were collected indoor, under full guidance and super-
vision. Images in DS1 were collected indoor, under slight guidance
and strict supervision. Images in DS2 were collected outdoor, without
guidance or supervision. DS3 consists of images captured outdoor,
without guidance or supervision.

Palm Vein

• CASIA Multi-Spectral Palmprint Image [96] Database: this data-
base contains 7200 palm images captured from 100 different people
using a self-designed multiple spectral imaging device. All palm im-
ages are 8 bit gray-level JPEG files. For each hand, two sessions of
palm images are captured. The time interval between the two sessions
is more than one month. In each session, there are three samples. Each
sample contains six palm images which are captured at the same time
with six different electromagnetic spectra. Wavelengths of the illumi-
nator corresponding to the six spectrum are 460nm, 630nm, 700nm,
850nm, 940nm and white light respectively. A certain degree of vari-
ations of hand postures is allowed in order to increase diversity of
intra-class samples and simulate practical use. No pegs to restrict pos-
tures and positions of palms are provided in the device. Subjects are
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(a)

(b)

Figure 2.4: Image samples from the (a) CASIA [96] and (b) VERA [288] palm-vein
databases.

required to put his palm into the device and lay it before a uniform-
colored background. The device supplies an evenly distributed illu-
mination and captures palm images using a CCD camera fixed on the
bottom of the device. Image samples are shown in Fig. 2.4a.

• Hong Kong Polytechnic University (PolyU) [342] Multispectral
Palmprint Database: the images of the database have been acquired
through a real time multispectral palmprint capture device which can
capture palmprint images under blue, green, red and near-infrared
(NIR) illuminations, and has used it to construct a large-scale mul-
tispectral palmprint database. Multispectral palmprint images were
collected from 250 volunteers, including 195 males and 55 females.
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The age distribution is from 20 to 60 years old. We collected samples
in two separate sessions. In each session, the subject was asked to
provide 6 images for each palm. Therefore, 24 images of each illu-
mination from 2 palms were collected from each subject. In total, the
database contains 6,000 images from 500 different palms for one illu-
mination. The average time interval between the first and the second
sessions was about 9 days.

• VERA [288] Database: the VERA Palm vein database consists of
2200 images depicting human palm vein patterns. Palm vein images
were recorded from 110 volunteers for both left and right hands. For
each subject, images were obtained in two sessions of five pictures
each per hand. This database was produced at the Idiap Research
Institute in Martigny and at Haute Ecole Spécialisée de Suisse Oc-
cidentale in Sion, in Switzerland. All palmvein images have been
recorded using palm vein prototype sensor developed by the Idiap Re-
search Institute. The recordings have been performed at 2 different
locations, always inside buildings with normal lightening conditions.
The database is composed of 40 women and 70 men whose ages are
between 18 and 60 with an average at 33. The palm vein images have
a resolution of 480x680 pixel and are saved as bitmap image using a
PNG format. Image samples are shown in Fig. 2.4b.

Dorsal Hand Vein

• North China University of Technology (NCUT) [349] Dataset: it
is one of the largest public dorsal hand vein databases, and it is com-
posed by two parts, namely Part A and Part B. There are 2040 Near-
Infrared (NIR) images of dorsal hand veins in NCUT Part A, collected
from the left and right hands of 102 individuals (10 samples for each
hand) including 52 females and 50 males. Similarly, NCUT Part B
contains 10 right and 10 left dorsal hand images from 101 individuals,
which has the total number of 2020 samples. Both the two parts of the
dataset have the same image resolution of 640x480. In contrast to the
samples in NCUT Part B, the ones in Part A have better a quality with
less noise and higher contrast due to the more expensive acquisition
device used.

• GPDS100VeinsCCDcylindrical [78] Database: the database con-
sists of 10 different acquisitions of 102 people in two separate weekly
sessions. In the first session a short explanation of the procedure is

43



Chapter 2. Invisible Biometrics: Hand Vein Pattern

(a)

Figure 2.5: Image samples from the (a) PUT [133] wrist-vein database.

performed, while during the second session the acquisition procedure
is repeated without supervision. The images in the second session
thus present greater inner class variability of translation, rotation and
projection distortion. The users were allowed to wear rings, which in-
creases the variability of the hand position. Watches or bracelets were
also permitted, even though they could hide a large portion of the vein
pattern. The users range in age from 18 to 40. In the database, 54% of
the users are males.

• Bosphorus [339] Database: the hand vein pattern is acquired us-
ing NIR imaging technology and reflection method. The hand vein
database consists of 1200 images of left hands of 100 different peo-
ple (42 female and 58 male). Each subject underwent four imaging
sessions that consisted of the left hand under normal condition, after
having carried a bag weighing 3 kg for 1 min, after having squeezed
an elastic ball repetitively for 1 min and after having cooled the hand
by holding an ice pack on the surface of the back of the hand. In ad-
dition to the left-hand images, 300 right-hand images from subjects
under normal conditions were collected. Finally, in order to test the
time lapse, additional data of left hands under normal conditions from
25 persons after some time ranging from 2 months to 5 months were
collected. The images have 300×240 pixel size with a gray-scale res-
olution of 8-bit.

Wrist Vein

• UC3M [223] Database: the focus of this experiment was to evaluate
the effect of different illumination intensities on the visibility of veins.
For each of the 29 users, 6 images were taken for each hand under
three different illumination settings. This results into 348 images in
total.
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• PUT Wrist Vein Pattern [133] Database: data was acquired from
both hands of 50 students, with means it has a 100 different patterns
for wrist region. Pictures ware taken in 3 series, 4 pictures each, with
at least one week interval between each series. A construction al-
lowing to place palm and wrist in comfortable way was used to help
positioning the hand during the image acquisition. Images in database
have 1280x960 resolution and are saved as 24-bit bitmap. Image sam-
ples are shown in Figure 2.5a.

2.3 Feature Extraction and Matching: State-of-the-Art

The feature extraction task is one of the most challenging tasks of every
biometric systems. Given an image representing the vein pattern, the state
of the art approaches aiming to extract discriminative characteristics from
the structure of blood vessels can be categorised into five groups:

• segmentation-based methods: since veins can be seen as a network
of dark lines on a brighter background, the vein pattern can be seg-
mented through geometric-based algorithms and information as line
shapes, minutiae or point information are taken into account as repre-
sentative features of the users. Generally, the region of interest (ROI)
where the vein pattern is contained is extracted, and some alignment
steps are performed in order to reduce the errors due to misalign-
ment during the acquisition step. This category of feature extraction
methods suffers from negative impact on performance linked to image
quality, as well as poor ability in discrimination of scaling, displace-
ment and rotation variations;

• subspace-based methods: subspace coefficients computed though
subspace-based methods such as principal component analysis (PCA),
independents component analysis (ICA), linear discriminant analysis
(LDA) or non-negative matrix factorisation (NMF) can be considered
as discriminative features;

• local-invariant-based methods: local invariant features are extracted
directly from the original vein image. This kind of approaches is in-
spired by techniques employed in computer vision, such as speeded-
up robust feature (SURF) and scale-invariant feature transform (SIFT);

• statistical-based methods: features are computed employing statis-
tical information, such as moments and local binary histogram, ex-
tracted from the vein images. These techniques can be divided into

45
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local and global methods. Global- and local-statistics-based methods
differ in their behaviour in terms of invariance to scaling, translation
and rotation. Specifically, global statistical-based methods are invari-
ant to the aforementioned variations, while local statics methods are
not;

• deep learning-based methods: deep neural networks are exploited
to learn discriminative representations from vein patterns and perform
the classification task. A DNN consists of a sequence of processing
layers and can be exploited as feature extractor or classifier module in
a vein-based biometric system.

In Sections 2.3.1 - 2.3.4 an overview of the state-of-the-art approaches
for the different kind of vein pattern are presented. A detailed overview of
deep learning-based methods for vein recognition in presented in Section
2.4.

2.3.1 Finger Vein

As a convenient biometric recognition technology, finger vein recognition
has attracted extensive attention over the past few years. Table 2.2 reports a
summary of the recent state-of-the-art finger-vein-based biometric systems,
briefly described in the following.

Geometry-based approaches

In [304] a Weber local descriptor (WLD) with variable curvature Gabor fil-
ters is proposed for finger vein recognition. First, the differential excitation
operator in the original WLD is improved by adding directional informa-
tion, then variable curvature Gabor filters are introduced to extract finger
vein features that can simultaneously reflect the directional information and
the curvature of the finger veins. The normalised correlation coefficient
(NCC) scale matching score is employed to measure the similarity between
finger vein features. Gabor filters with morphological processing have been
exploited in [152] for feature extraction, with XOR-based similarity scores
used for finding similarity between images. Gupta el al. [90] used a fusion
strategy named variational approach to combine enhanced vein images ob-
tained from both multi-scale matched filtering and line tracking. Similarity
scores have been obtained by first registering the two vein images to be
compared and then computing the number of overlapping binary pixels be-
tween them.
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2.3. Feature Extraction and Matching: State-of-the-Art

Liu et al. [178] used singular value decomposition (SVD) for minutiae
extraction, and local extensive binary pattern (LEBP) for removing false
pairs. Templates have been compared through Euclidean and Hamming
distances. Ong et al. [217] proposed a two-stage multi-instance finger-vein
identification system, combining minutiae features extracted from multiple
instances of finger veins. A genetic algorithm (GA) [191] has been used to
select the most reliable minutiae points from the feature point pool-set. A
K-modified Hausdorff distance (k-MHD) [70] has been employed to eval-
uate the closet point set of two minutiae templates for comparison.

In [136] used geometry-based features and tested different feature level
fusion techniques in order to increase the performance of the system. Baner-
jee et al. [10] used affine-registration-based template matching (ARTeM)
algorithms.

Subspace-based approaches

Yang et al. [331] applied (2D)2PCA to extract features of finger veins, later
classified through a KNN classifier. Besides, the SMOTE technology is
adopted to solve the class-imbalance problem. Van et al. [299] used the
modified finite Radon transformation (MFRAT) [128] for discriminant ori-
entation feature extraction and GridPCA [298] for further redundant infor-
mation removal. In the matching stage, enlarging-training-set (ETS)-based
comparisons [128] and Euclidean distances have been calculated. Qui et al.
in [242] used dual-sliding window localisation and pseudo-elliptical trans-
formation, with a two-dimensional principal component analysis (2D-PCA)
used to project the transformed image for feature extraction. Euclidean dis-
tance has been used for measuring similarity between training and testing
images. Bakhtiar et al. [5] enhanced finger-vein images using modified
Gaussian filter (MGF) [166] and then correcting the image displacements.
Band-limited phase only correlation (BLPOC) [286] has been used for mea-
suring the similarity between registered and test images. In [333] authors
used anatomy-structure-analysis-based vein extraction (ASAVE) and elas-
tic matching.

Local-invariant-based approaches

In [326], the authors tested feature-component-based extreme learning ma-
chines (FC-ELMs). Features have been extracted by a guided filter using
the eight block-based average absolute deviation (AAD) directional fea-
tures. An ensemble component-based ELM network (EC-ELM) has been
employed for final decision.
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Statistical-based approaches

In [179], the authors proposed a polydirectional local line binary pattern
(PLLBP) method for extracting vein line patterns, and employed histogram
intersection to measure the similarity between two histograms. Xi et al.
[323] proposed a discriminative binary codes (DBC) learning method, build-
ing subject relation graph to capture correlations among subjects and, based
on that, generating binary templates according to the graph transform. Even-
tually, support vector machines (SVMs) have trained as code learners for
each bit. Rosdi et al. [263] proposed a texture descriptor called local line
binary pattern (LLBP) utilized as feature extraction technique. The similar-
ity between the extracted binary codes and the enrolled codes is measured
using Hamming Distance (HD).

2.3.2 Palm Vein

Table 2.4 reports a summary of the recent state-of-the-art palm-vein-based
biometric systems, briefly described in the following.

Geometry-based approaches

In the context of segmentation-based method, many works have been pro-
posed in literature for palm vein recognition. Han and Lee [95] applied
texture-based feature extraction techniques based on Gabor filters to palm
vein, with the obtained representation encoded in a bit-string representa-
tion, later employed in a matcher based on Hamming distance. An adaptive
2D Gabor filter-based approach has also been proposed by Ma et al. [182],
which studied a novel template matching algorithm referred to as the mini-
mum normalised Hamming distance. In [346] Zhang et al. have employed
multi-scale matched filters to extract features and matching scores are ob-
tained through the Hamming distance. Also Chen et al. [42] have exploited
multi-scale matched filters for palm vein feature extraction, with matching
scores generated using the iterative closest point (ICP) algorithm.

Subspace-based approaches

Some works about subspace learning applied to palm-vein-based biometric
recognition have been proposed in the last decade. Wang et al. [305] used
a Laplacian palm representation on fused palm vein and palm print images,
exploiting locality-preserving projection (LPP) subspace, then using a k-
NN classifier for matching purposes. Zhou and Kumar [350] have designed
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2.3. Feature Extraction and Matching: State-of-the-Art

an approach based on the Hessian phase that extracts the structure of the
vessels by analysing the second-order derivatives of the normalised palm
vein images, and proposed a matching approach based on the Hamming
distance. Zhou et al. [351] proposed a classification for palm–vein identifi-
cation based on principal direction features. In the registration process, the
Gaussian-Radon transform is adopted to extract the orientation matrix and
then compute the principal direction of a palm–vein image based on the
orientation matrix. The database can be classified into six bins based on the
value of the principal direction. In the identification process, the principal
direction of the test sample is first extracted to ascertain the corresponding
bin. One-by-one matching with the training samples is then performed in
the bin.

Local-invariant-based approaches

Among the local-invariant-based methods proposed for palm vein recog-
nition, Ladoux et al. [162] have used SIFT descriptors as users’ discrimi-
native features, and Euclidian distance as employed similarity measure. A
variant of the SIFT method, namely RootSIFT, has been proposed by Kang
et al. in [135], with a hierarchical mismatching removal algorithm based
on neighbourhood searching and local binary pattern (LBP) histograms
adopted to improve the accuracy of feature matching. Yan et al. [329]
presented palm vein recognition method based on local invariant features,
namely SIFT features, based on multi-sampling and feature-level fusion
strategy. RootSIFT and bidirectional is adopted to match to establish iden-
tification.

Statistical-based approaches

Statistical-based methods have been deeply exploited in the field of palm-
vein-based biometric systems. Mirmohamadsadeghi et al. [203] have used
LBPs and local derivative patterns (LDP) operators to extract features and
histogram intersection to obtain the matching scores. Kang et al. [134] have
proposed an approach based on mutual foreground LBP for palm vein iden-
tification, that is, the gradient-based maximal principal curvature (MPC) al-
gorithm, with a k-means method utilised for texture extraction, and an LBP
matching strategy adopted for similarity measurements between the mutual
foreground of gray-scale images.

51



Chapter 2. Invisible Biometrics: Hand Vein Pattern

2.3.3 Hand Dorsal Vein

In general,dorsal hand veins consist of some significant textures and a lot
of minutiae similar to the ridges and branches of palmprint. These features
offer stable, unique and reliable biometric for personal identification. Table
2.6 reports a summary of the recent state-of-the-art hand-dorsa-vein-based
biometric systems, briefly described in the following.

Geometry-based approaches

Lee et al. [168], proposed an adaptive Gabor filter method to extract the
dorsal hand vein patterns and encode the vein features in bit string represen-
tation, called VeinCodes. The similarity of two VeinCodes is measured by
normalised Hamming distance. Lee et al. [170] proposed a feature extrac-
tion approach that uses the directional filter bank to extract the line-based
features from a dorsal hand image called minimum directional filtering re-
sponse (MDFR). In addition, a robust minimum directional code (MDC)
is proposed to encode the dorsal hand vein features into binary code, as-
signed by the MDFR. A normalised Hamming distance is adopted for the
similarity measurement in MDC matching. In the study proposed by La-
jevardi et al. [164], a modular feature-based technique, called biometric
graph matching (BGM), is used to create a spatial graph template from the
hand vein pattern which represents the feature locations and the vascular
connections between them. BGM uses an efficient graph-based registration
process followed by an inexact graph matching algorithm to match the hand
vein template. A global graph model which takes into account both shape
cues, that is the minutiae of the vein network and their connecting lines,
and the holistic texture feature of the patch around each vertex (i.e. its PCA
coefficients) was also proposed in [345].

Kumar et al. [150] first investigated the extraction and matching of hand
vein structure using the key point triangulation. Wang et al. [310] proposed
a technique utilising the minutiae features extracted from the vein patterns
for recognition, which include bifurcation points and ending points. The
modified Hausdorff distance (MHD) algorithm is proposed to evaluate the
discriminating power of these minutiae for person verification purposes.
Chuang [47] proposed a local feature-based vein representation method
based on minutiae features from skeleton images of venous networks of
the dorsum of the hand. A dynamic pattern tree (DPT) approach is pro-
posed for matching. Huang et al. [114] tested a novel local feature-based
approach to hand-dorsa vein recognition via matching keypoints localised
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through quantities of first to third order gradients closely related to differ-
ential geometry.

Subspace-based approaches

Yuksel et al. [339] extracted features from image hands using both appea-
rance-based methods and methods reflecting the hand geometry. The appea-
rance-based methods consider the dorsal view of the hand in the near-
infrared band and project it to subspaces via independent component analy-
sis (ICA) or non-negative matrix factorisation (NMF) methods. The geometry-
based method delineates the veins via skeletonisation and then describes the
vein structure as a graph, namely line edge map (LEM). Cosine distance is
used to compare ICA and NMF features, while Line segment Hausdorff
distance (LHD) is exploited when LEM features are matched. Eventually,
score- and decision-level fusion techniques are tested.

Local-invariant-based approaches

Wang et al. [313] exploited keypoints extracted from the segmented bi-
nary vein images by using SIFT as features and keypoints are matched
through the cosine similarity measure. Eventually, in order to reduce in-
correct matches, a restriction based on the minimum Euclidean distance
is applied. Huang et al. [115] proposed a key-point generation pattern,
namely centroid-based circular key-point grid (CCKG), localising a cer-
tain number of points on the dorsal hand for the following SIFT feature
extraction. The matching process makes use of multi-task sparse represen-
tation classifier (MtSRC). Wang et al. [309] feature extraction algorithm
based on polar harmonic transforms(PHT) to realise the hand vein recogni-
tion. PCET moments are taken into account as features and the matching
method is improved Hausdorff distance (MHD).

Statistical-based approaches

Wang et al. [308] proposed a quality-specific vein recognition system based
on rotation and affine invariant discriminative LBP (DLBP). An improved
LBP coding optimized by Fisher discriminant criterion is realised for ex-
ploiting more discriminative and stable binary patterns, followed by differ-
ent vein feature extraction strategies, with characteristics of being robust
to noise, rotation and affine change process, regarding the quality of vein
images. Finally, after obtaining uniform histogram vectors of vein images,
the matching strategy based on improved Chi-square distance is proposed
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to calculate the similarity of each feature vector. In the work proposed by
Vairavel et al. [297] the dorsal veins are extracted by using local binary
pattern (LBP), Weber local descriptor (WLD) and histogram of oriented
gradients (HOG) with K-NN classifier.

Huang et al. [116] integrated both local and holistic analyses. The au-
thors proposed a method for dorsal hand vein recognition, exploring and
combining three kinds of features, namely LBP, binary coding (BC), and
graph, attributed to the category of local texture, local shape, and global
shape, respectively. The LBP and BC features encode the patterns of lo-
cal texture and shape variations of dorsal hand vein samples, and graph
describes their holistic geometric configurations.

Trabelsi et al. [291] presented a direction based local descriptor called
circular difference and statistical directional patterns (CDSDP) and applied
it to dorsal hand vein recognition. In CDSDP, the local gradient orienta-
tion information is coded into a weighted number that presents directional
information of vein pattern. The classification phase is performed using a
feedforward multilayer neural network (FMNN), that is an artificial neural
network (ANN) architecture.

2.3.4 Wrist Vein

Though wrist vein is a promising biometric characteristics, there exist very
few works on wrist vein recognition system. The most significant details
of the state-of-the art works about wrist vein based biometric systems are
outlined below and their main features are summarised in table 2.8.

Geometry-based approaches

Akhloufi et al. [2] fist demonstrated that the wrist vein pattern can be uti-
lized for biometric user authentication purposes, exploiting a geometry-
based algorithm relying on morphological filtering. Most of the works later
proposed in literature in the field of wrist vein biometric rely on geometry-
based methods. Minutiae extracted for the wrist vein patterns have been
largely exploited. Uriarte et al. [294], Hartung et al. [101, 102] and Pflug
et al. [225] proposed minutia, feature- and spectral minutia-, chain code
fusion-based wrist vein recognition systems, respectively. Additionally, the
work in [103] extracted wrist vein features with minutia cylinder codes. A
method to extract vein minutiae and transforming them into a fixed-length
vector that represents translation, rotation and scale invariant features was
proposed in [100]. Uriarte et al. [295] explored the possibility of perform-
ing wrist vein biometric recognition using crossing number of minutiae.
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Chapter 2. Invisible Biometrics: Hand Vein Pattern

In [131] and [133], different segmentation techniques relying on the dis-
crete fourier transform (DFT) were, while Gaussian filter was used as fea-
ture extraction method in [132].

Mohamed et al. [208] proposed a multibiometric system that fuse in-
formation from left and right wrist vein patter. The authors used binary
images extracted from the pre-processed wrist vein pattern images as fea-
tures and exploited the Dubois and Parade t-norm based score-level-fusion
rules demonstrating the positive impact on recognition performance of the
aforementioned fusion approaches.

Subspace-based approaches

In [153], Kurban et al. proposed a subspace learning-based approach where
FFT-based low pass filtering and PCA are used to extract features from
wrist vein images, later used to feed a radial basis function (RBF) network,
multi-layer perceptron (MLP) and SVM neural networks.

Local-invariant-based approaches

An approach based on scale invariant feature transform (SIFT) has been
proposed by Fernandez et al. [77]. The authors presented a low cost, mobile
wrist vein authentication system and evaluated the proposed method on the
captured wrist vein dataset.

Statistical-based approaches

Between the statistical-based methods, wrist feature extraction based on
the dense local binary pattern (D-LBP) has been proposed by Das et al. [56]
and Support Vector Machines (SVM) are used for classification. Raghaven-
dra et al. [246] evaluated the performance of nine different feature extrac-
tion methods, belonging to both geometry-based and statistical-based ap-
proaches. More in details the considered local features maximum curva-
ture points (MCP) [205] and multi-scale match filter. Seven different global
feature extraction schemes are also considered, namely: sparse representa-
tion classifier (SRC), local binary patterns (LBP), local phase quantization
(LPQ), histogram of gradients (HOG), steerable pyramids, LBP variance
(LBPV) and log Gabor (LG) filters. The authors demonstrated that the best
results can be achieved when the LG-SRC combination is applied.
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Chapter 2. Invisible Biometrics: Hand Vein Pattern

2.4 CNN and Vein-Pattern-Based Biometric Applications: State
of the Art

The increasing interest in vein-based recognition arising in both academia
and industry communities is entailing a rapid growth of proposed tech-
niques in the field of extraction of features from vein images. Anyway,
many of the current state-of-the-art techniques, detailed in Section 2.3, de-
spite the fact that they are able to provide relatively good performance, they
are strongly dependent upon the quality of the analysed finger-vein images.
Besides, they are very sensitive to rotation and translation of the hand dur-
ing the acquisition process, requiring the user to place the hand still on
the acquisition device for some seconds, reducing the convenience of the
device.

In the recent past, there has been an increase in the use of deep learning
techniques in the field of biometric recognition, due to the good recognition
performance they achieve. In this Section, an overview of the most relevant
papers about the application of deep learning methods in the field of vein-
based biometrics is presented. The related details are summarised in Table
2.10.

A deep learning approach applied to a finger-vein-based biometric iden-
tification system has been first proposed by Radzi et al. [243]. The struc-
ture of the employed network relies on the one proposed in [276], with the
CNN fed with binary images obtained by thresholding the original vein pic-
tures. A more recent work on finger-vein-based identification using CNNs
is the one proposed by Das et al. [62], where stable and highly-accurate
performance is achieved while dealing with finger-vein images of different
quality. Hong et al. [108] have designed a finger-vein-based verification
system exploiting a pre-trained model of VGG-16 [278]. The pre-trained
network model is used for fine-tuning, having the difference between two
finger-vein images as input. Databases with different image quality are
taken into account. A deep CNN (D-CNN) architecture, inspired by the
VGG-16 model, has also been exploited for finger-vein based biometric
verification by Huang et al. [118]. The modified CNN architecture is fed
with a two-channel image resulting from the merging of two templates.

An approach for finger-vein-based biometric verification using CNN
and supervised discrete hashing (SDH) has been proposed in [325] where
different CNN architectures, such a light CNN (LCNN) and a modified ver-
sion of the VGG-Net-16, have been fed with pairs of vein images. The SDH
scheme is also investigated to improve the performance and to reduce the
template size. Fang et al. [73] have exploited a lightweight deep-learning
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2.4. CNN and Vein-Pattern-Based Biometric Applications: State of the Art

framework for finger-vein verification. Mini-ROIs from the original image
are extracted, based on the evaluation of the adopted network, and both
the original image and the mini-ROI are integrated through a two-stream
network. Jalilian et al [126] have used three different fully CNN (FCN)
architectures, inspired by the U-net [262], RefineNet [176] and the Seg-
Net [6] networks, in order to extract the finger-vein patterns from NIR fin-
ger images. The problem of efficient training and configuration settings
for the employed networks has also been taken into account, by training
the considered FCN architectures with a varying number of manually- and
automatically-generated labeled images. Wang et al. [306] have proposed a
hand-dorsal vein recognition system constructed by adopting the VGG-16
model, pre-trained on a large-scale database, as a universal feature descrip-
tor. A task-specific selective convolutional features (SCF) model, based on
spatial weighting, has been proposed to obtain the discriminative features,
and spatial pyramid pooling (SPP) is introduced to obtain the final feature
representation.

Kim et al. [140] have proposed a multimodal biometric based on finger-
veins and finger shapes exploiting CNNs to extract features from the ac-
quired images and compute the matching scores. More in detail, the authors
have compared the performance of different CNN configurations, namely
ResNet-50, ResNet-101 [105], when fed with the finger-vein image or the
spectrogram of the finger shape’s ROI. They have shown that it is possi-
ble to improve the recognition performance by applying score-level fusion
approaches. The ResNet architecture has also been exploited by Zhang et
al. [344] in the framework of a palm-vein-based verification system. The
authors applied a modified version of the Inception ResNet-v1 DNN to ex-
tract features, later used for recognition purposes.

CNNs have been exploited also for other applications in the field of
biometric systems, although not explicitly for biometric classification pur-
poses. One of the possible usages proposed by Raghavendra et al. [246]
is presentation attack detection (PAD) in finger-vein based biometric sys-
tems. The authors exploited a D-CNN inspired by Alex-Net [3] and they
performed a fine-tuning of the model with presentation attack samples in
order to classify between bona-fide and artifact samples. Sajjad et al. [268]
tested CNN-based models trained to detect spoofing in a multimodal bio-
metric system relying on fingerprint, face and palm-vein. The employed
CNN model is inspired by GoogLeNet [285] and it used to perform features
extraction for anti-spoofing. Qin et al. exploited DNNs for quality assess-
ment of finger vein images to be used in a biometric system [239, 241].
In [239] the authors trained a DNN in order to extract feature represen-
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Chapter 2. Invisible Biometrics: Hand Vein Pattern

tation from finger-vein images and the representation taken from the last
hidden layer of DNN and input to P-SVM for finger-vein image quality as-
sessment. In the work proposed in [241], the authors exploited a DNN to
automatically label low- and high-quality images and the impact on recog-
nition performance of considering only images classified with high quality
by the CNN, while using state-of-the art line-based algorithms for feature
extraction [152], has been studied. Qin et al. [240] have also proposed the
application of a deep learning model in order to segment vein pixels from
the background in finger vein images and a fully convolutional network
(FCN) for recovering vein patterns in the extracted patterns.
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CHAPTER3
Hand Vein Biometrics: Performance

Improvement

THE INCREASING INTEREST in vein-based recognition arising in both
academia and industry communities, linked to the convenience of
the acquisition process and the robustness of vein-based systems

against presentation attacks, is entailing a rapid growth of proposed tech-
niques in the field of extraction of discriminative features from vein images.
Anyway, many of the current state-of-the-art techniques, detailed in Section
2.3, despite the fact they are able to provide relatively good performance,
they are strongly dependent upon the quality of the analysed finger-vein
images. Besides, they are very sensitive to rotation and translation of the
hand during the acquisition process, requiring the user to place the hand
still on the acquisition device for some seconds, reducing the convenience
of the device.

In order to overcome the aforementioned limitations, different approaches
are analysed in this Chapter. As first solution, the impact of multibiomet-
ric systems in palm-vein recognition is studied. More in detail, a sensor-
level fusion approach based on high dinamic range (HDR) techniques is
proposed and compared with different biometric fusion techniques [228].
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Chapter 3. Hand Vein Biometrics: Performance Improvement

Besides, two studies sharing the exploitation of a recognition architecture
based on convolutional neural network (CNN) are reported [62,157]. More
in detail, first a CNN-based-finger-vein identification system is proposed,
and the capabilities of the designed network is investigated taking into ac-
count four publicly-available databases. The main purpose of this work
is to propose a deep-learning method for finger-vein identification, able to
achieve stable and highly-accurate performance when dealing with differ-
ent kinds of finger-vein images, irrespective of their quality. Eventually,
the design of a contactless acquisition architecture capable of capturing the
finger-vein structure using an array of low-cost cameras, allowing to ac-
quire finger-vein patterns while on the move is presented. Moreover, the
exploitation of advantages of HDR techniques and of temporal information
are studied.

In this Chapter, some possible solutions aiming to improve the perfor-
mance of vein-based biometric systems and to deal with the disadvantages
related to the poor quality of vein images are studied. More in detail, Sec-
tion 3.1 propose a solution based on biometric fusion, while Sections 3.2
gives the detail about the study concerning the exploitation of CNNs in
the field on finger-vein recognition. Eventually, the “on-the-fly” solution,
merging the advantages of biometric fusion and deep learning approaches,
is detailed in Section 3.3.

3.1 Palm Vein Recognition using a High Dynamic Range Ap-
proach

Several limitations affect biometric systems which operate using any single
biometric trait [124]. First, noise could be present in the acquired data, due
to sensor’s defects or unfavourable ambient conditions, leading to incorrect
match between templates. Besides, biometric data could be characterised
by a very high intra-class variation, that is, the enrolment and recognition
templates might be very different, resulting in problems during the match-
ing stage. Eventually, the system can show intra-class similarities in the
features set used to represent the users, restricting the discrimination capa-
bility of the biometric characteristic. The aforementioned limitations entail
that unimodal biometric systems are unable to provide a high accuracy and
security performances.

Several above-mentioned problems can be solved or at least their im-
pact reduced by integrating several biometric information sources, that is
implementing a multimodal biometric systems [109]. As detailed in Sec-
tion 1.5, there are different modalities of fusion of the information that can
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3.1. Palm Vein Recognition using a High Dynamic Range Approach

be exploited by a multimodal biometric system. Specifically, the informa-
tion fusion in a biometric system can be classified into several categories,
that is sensor-, feature-, score- and decision-level fusion. Performing one
or a combination of the aforesaid techniques, the obtained system is able to
offer many advantages over unimodal systems, such as:

• significant improvement in the overall accuracy;

• mitigation of the effect of noisy input data;

• population coverage larger than the unimodal system [2];

• greater resistance to spoofing such that they can be more robust than
each corresponding uni-modal system, even in the case when all bio-
metric traits are spoofed.

Vein-pattern images are often characterised by low contrast and poor
definition, due to the subcutaneous placement of the veins. This shortcom-
ing makes vein-related feature extraction a challenging process. In order
to overcome the disadvantages due to the low contrast of the acquired vein
patterns, an approach for palm vein recognition relying on high dynamic
range (HDR) imaging [11, 40, 196] is proposed in [228], thus following a
sensor-level fusion approach. Specifically, it is demonstrated that exploit-
ing multiple-exposure vein images is able to guarantee better recognition
performance than a baseline system relying on single-exposure acquisi-
tions. Besides, the effects of feature-, score- and decision-level fusion ap-
proaches of a palm-vein-based biometric system are investigated in [227].

In this study, a multiple-exposure dataset is collected. Local binary pat-
tern (LBP) and local derivative pattern (LDP) are employed to extract fea-
tures from single-exposure images, raw HDR images, and tone-mapped
HDR images. The obtained experimental results show that significant per-
formance improvement can be achieved when discriminative features are
extracted from HDR contents, with respect to the use of single-exposure
images. Besides, better recognition performance can be achieved exploit-
ing such methods, when compared to what can be attained with a unimodal
biometric system or with the other biometric fusion techniques.

3.1.1 Vein Patterns and High Dynamic Range

It is well known that blood haemoglobin absorbs NIR light, implying that
the vein pattern imaging is carried out through a NIR camera and a NIR
illumination system. This latter has to be properly calibrated in order to
allow the light to penetrate skin and tissues till reaching the blood vessels.
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Chapter 3. Hand Vein Biometrics: Performance Improvement

Unfortunately, vein structures are not evenly positioned under the skin with
respect to the imaging and illumination devices, with the result that the
obtained images may appear saturated if too much illumination power is
employed, or dark if not enough illumination is used. Moreover, the trans-
mittance of the NIR light across the different tissues of the hand is not
uniform, due to the different thickness of bones and tissues. This results in
veins from the thicker parts of the hand being less distinguishable compared
to veins located in the thinner parts. Additionally, being standard camera
sensors commonly able to handle only 8-bit images, the full luminance dy-
namic range cannot be sensed, thus producing low-contrast images with
potential loss of details and useful information. Examples of the aforemen-
tioned issues are shown in Figs. 3.1 and 3.3. All these undesired effects
impact on the quality of the captured vein pattern, leading to a degrada-
tion of the recognition accuracy in a biometric system. Thus, improving
the quality of the captured vein images is a crucial task in a vein-based
recognition system.

Different solutions have been proposed in order to face the aforesaid
problems. Contrast enhancement techniques have been deeply investigated
in literature as a solution to face the uneven illumination in the acquired
vein pattern images [67, 332]. However, image enhancement is not able
to recover the information loss due to either overexposure or underexpo-
sure of some regions of the picture. Therefore, several works about the
adjustment of the illuminance distribution of the lighting system have been
proposed [43, 327]. In detail, a uniform illumination in the acquired vein
pattern image is obtained by adapting the light source during each image
capture. The disadvantages of this kind of approach are that, being the light
source modified each time, the system settings vary from acquisition to ac-
quisition and the process of illumination adjustment is typically time con-
suming. Eventually, multimodal biometric fusion schemes have been ex-
tensively proposed in order to increase the system accuracy. Among them,
multispectal image-level fusion, that is the combination of palm vein and
palmprint images [97, 310], and feature-level fusion approaches [329] can
be mentioned.

In order to counteract the aforementioned undesired effects, in this Sec-
tion a vein pattern recognition system performing information fusion at the
sensor level is proposed, relying on HDR imaging techniques able to syn-
thesise images with dynamic range far larger than the one representable in
LDR images [40,256]. The increase of dynamic range can be generated ei-
ther directly capturing HDR images exploiting specialised devices, which
are usually bulky and costly, or merging a set of single-exposure images
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3.1. Palm Vein Recognition using a High Dynamic Range Approach

(a) (b) (c)

(d) (e)

Figure 3.1: Palm vein LDR images acquired with exposure time to (a) 0.036s (b) 0.042s
(c) 0.048s (d) 0.054s (e) 0.060s.

(a) (b) (c)

(d) (e)

Figure 3.2: HDR vein images after (a) iCam06 [149] (b) Chiu [44] (c) Drago [69] (d)
Ferbman [74] (e) Shan [274] (f) Shibata [275] tone mapping methods applied on the
merged LDR images of Fig. 3.1.
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(a) (b) (c)

(d) (e)

Figure 3.3: Palm vein LDR images acquired with exposure time to (a) 0.036s (b) 0.042s
(c) 0.048s (d) 0.054s (e) 0.060s.

(a) (b) (c)

(d) (e)

Figure 3.4: HDR vein images after (a) iCam06 [149] (b) Chiu [44] (c) Drago [69] (d)
Ferbman [74] (e) Shan [274] (f) Shibata [275] tone mapping methods applied on the
merged LDR images of Fig. 3.3.
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3.1. Palm Vein Recognition using a High Dynamic Range Approach

acquired at different shutter speeds, namely using a bracketing-based ap-
proach. This latter allows reconstructing the original dynamic range and
capturing details from both the image’s brightest and darkest areas, tak-
ing details pertaining to dark areas from LDR pictures captured with high
shutter speeds and contents from very bright regions from low-exposures
pictures. The quality of the generated HDR content is therefore typically
higher than what is present in its LDR counterpart.

3.1.2 Employed Palm Vein Recognition System

Image Acquisition System. The employed acquisition setup consists of
a NIR camera and a NIR illuminator. During each registration a set of N
LDR images is acquired at different shutter speeds. Examples of images
acquired using the aforesaid experimental setup are given in Figs. 3.1 and
3.3. Implementation details of the employed framework are given in Sec-
tion 3.1.3.

Preprocessing. A region of interest (ROI) containing the palm vein pattern,
with size 240×240, is first extracted from the acquired image. A non-linear
image processing is then performed to face the issue of non-uniform back-
ground illumination and low contrast in vein pattern images. In detail, the
ROI images are divided into blocks of 20×20 pixels, with 4-pixel overlap
between two adjacent blocks. For each block the average gray level is com-
puted. The set of obtained mean values is then expanded into 20×20 blocks
using a bicubic interpolation, generating the estimated background illumi-
nation. This latter is finally subtracted from the considered image, thus
obtaining the enhanced vein pattern. The described preprocessing method
will be referred to as background-removal (BR) preprocessing in the next
sections.

HDR Content Generation. In order to generate the desired HDR vein pat-
tern representation, the N different single-exposure images are combined
through a weighted sum of their LDR luminance contents, taking into ac-
count the camera response function (CRF) and the exposure time of each
picture [11]. The aim of the employed weighting function is to give more
importance to middle luminance values while removing possible outliers.
The image obtained by combining the LDR sources is here referred as raw
HDR image. The obtained HDR content can be later processed in order to
properly represent the dynamic range on LDR devices, by means of tone
mapping operators (TMO). Specifically, the aim of a TMO is to adapt the
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Figure 3.5: An example of (a) LBP and (b) LDP neighbourood.

high dynamic range of the merged images to a low dynamic range device,
still keeping details and contrast of the raw HDR data.

In this work several TMOs have been applied, specifically iCam06 [149],
Chiu [44], Drago [69], Farbman [74], Reinhard [257], Shan [274], and Shi-
bata [275], and evaluate the recognition performance on the so-obtained
tone-mapped HDR images. Examples of tone-mapped HDR images, gen-
erated from the data shown in Figs. 3.1 and 3.3, are given respectively in
Figs. 3.2 and 3.4.

Feature Extraction. Two feature extraction approaches based on local
textures, namely local binary pattern and local derivative pattern, are used
to obtain palm vein descriptors.

Local Binary Pattern. The LBP operator is a texture descriptor based on
the gray level differences and comparisons of a neighbourhood of pixels
[202, 215]. Given a central pixel Z0, an R × R neighbourhood of P pixels
is thresholded by the value of the central pixel and the LBP code for each
centre pixel of a grey-scale image I is obtained as:

LBPP,R(Z0) =
P∑
p=1

f(Zp, Z0)2
p−1 (3.1)

where Zp is one of the P neighbours of Z0, as shown in Fig. 3.5a. If the
pth neighbour is not a single pixel of the image, a weighted average of the
selected pixels is performed, where the weights depend on the distance of
the pixels with respect to Z0. The thresholding function f(Zp, Z0) can be
represented as:
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3.1. Palm Vein Recognition using a High Dynamic Range Approach

f(Zp, Z0) =

{
0, if I(Zp)− I(Z0) < 0

1, if I(Zp)− I(Z0) ≥ 0.
(3.2)

Each LBP code represents a micro-pattern of the image and it is saved
in a histogram which contains information about the occurrence of the dif-
ferent kind of micro-pattern.

Local Derivative Pattern. The LDP operator is a high-order texture de-
scriptor which extracts the derivative direction variation information [202,
341]. The directions considered to compute derivatives are 0◦, 45◦, 90◦ and
135◦, where the derivatives along each direction are computed by subtract-
ing pixels of a neighbourhood according to the selected direction. In detail,
the first-order derivatives along the four directions, with respect to a given
central pixel Z0, are computed as follows:

I ′0◦(Z0) = I(Z0)− I(Z4)

I ′45◦(Z0) = I(Z0)− I(Z3)

I ′90◦(Z0) = I(Z0)− I(Z2)

I ′135◦(Z0) = I(Z0)− I(Z1)

(3.3)

where Z1, . . . , Z4 are four of the neighbours around the centre pixel cho-
sen according to the direction of the derivative, as shown in Fig. 3.5b. For
a given direction α and central pixel Z0, the second order LDP code is
encoded through the concatenation of the bits corresponding to each neigh-
bour:

LDP 2
α(Z0) = {f(I ′α(Z0), I

′
α(Z1)), . . . ,

f(I ′α(Z0), I
′
α(Z8))} (3.4)

where the function f(I ′α(Z0), I
′
α(Zi)) is a binary function providing the

type of local pattern, defined as:

f(I ′α(Z0), I
′
α(Zi)) =

{
0, if I ′α(Z0) · I ′α(Zi) > 0

1, if I ′α(Z0) · I ′α(Zi) ≤ 0 ,
(3.5)

where i = 1, 2, . . . , 8 is the neighbor’s index.
The obtained codes are converted into a decimal value and stored into an

histogram which represents the image descriptor. This formulation can be
generalized for the nth order LDP, considering the (n − 1)th order deriva-
tives in the four directions in the computation of the LDP codes.
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3.1.3 Experimental setup

The palm vein database employed for the experimental tests is collected
using a Visiosens VFU-V024-M-H-C NIR camera as acquisition device,
and an array of NIR leds (wavelength = 850 nm) as illuminator. The res-
olution of the camera sensor is 752×480 pixels, with 8 bit gray-scale per
pixel. The CCD camera sensitive range is between 450 and 900 nm and, in
order to eliminate the effect of visible light, the B+W F Pro IR 093 optical
infrared filter, with cut-on wavelength at 825 nm, is mounted in front of the
camera’s lens.

The acquisition process is carried out using a docking device for hand
placement and ROI extraction, consisting of a window of the desired di-
mension and pegs for correct hand positioning, to reduce both misalign-
ment and registration problems. The processed ROI consists of 240×240
pixels, corresponding to a vein width of about 2-8 pixels.

Data from 86 subjects are collected in the employed dataset. The right
palm of each subject is acquired five times at exposure time T ∈ {0.036,
0.042, 0.048, 0.054, 0.060}s, entailing a total capture time of about Ttot =
0.24s. This process is iterated twelve times for each palm, thus obtaining a
dataset of 86 users × 12 palms × 5 exposures.

Features are extracted from single-exposures images, from raw HDR
images, and from tone-mapped HDR images, considering both the LBP
and LDP extraction methods. In the experimental tests, LBP features are
extracted considering P = 16 neighbours and a neighbourhood radius R =
8. The LBP operator is applied to 16 non-overlapping 60×60 blocks, with
the LBP computed on (2R+ 1) x (2R+ 1) sub-blocks centred around each
pixel of the block. The histograms resulting from the application of the
LBP to each block consist of P (P − 1) = 240 bins, then concatenated to
generate the palm vein template. When LDP is applied, the second-order
operator is chosen and a radius of 5 pixels from the central pixel is set
when the feature extraction step is performed. The image is divided into 16
non-overlapping 60×60 blocks, and the derivatives in the four directions
are computed for all the pixels of each block. The resulting LDP block
histograms are concatenated to obtain the palm vein template, resulting of
number of blocks · number of directions ·28 = 16384 elements.

Given the so-computed templates, a matching score is obtained through
the histogram intersection measure [283], defined as:

H(p, q) =

∑
i min(pi, qi)∑

i qi
(3.6)

where p and q are the two histograms to be compared, each one consisting
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3.1. Palm Vein Recognition using a High Dynamic Range Approach

of i bins, with
∑

i qi = 240·240.
HDR images are generated using both all the N = 5 images collected at

different exposures, as well as only N = 3 of them, specifically the image
at middle-exposure and the two having lower and the higher exposure time
w.r.t. the middle one.

In order to perform a comprehensive analysis, the performance of the
proposed approach are compared with what obtained when different image
enhancement techniques are applied on the original LDR palm vein im-
ages. In detail, some proposed enhancement techniques for vein images are
considered:

• histogram equalization (HE),

• contrast limited adaptive histogram equalization (CLAHE),

• circular gabor filter (CGF) [343],

• high-frequency emphasis filtering (HFE) [348],

• local-ridge-enhancement (LRE) [200],

• Retinex method (RM) [195].

The aforementioned techniques are applied to the originally acquired
LDR images, which are then further preprocessed through the background-
removal (BR) method, described in Section 3.1.2, thus obtaining the desired
enhanced images. Finally, in order to have a performance comparison be-
tween the proposed approach based on sensor-level fusion and alternative
information fusion methods, a score-level fusion approach [264] is also per-
formed in order to combine the outputs obtained when matching features
extracted either from the raw single-exposure images or from the enhanced
vein images.

3.1.4 Experimental Results - HDR Approach

Tables 3.1 and 3.2 show the equal error rates (EERs) obtained when the
LBP and LDP feature extraction methods are applied to the considered im-
ages. As first step, features extracted from each single-exposure image are
matched in order to evaluate the performance for each considered exposure.
The best performance is obtained when considering middle-exposure im-
ages, that is the image acquired when the exposure time is set to T = 0.048
s, with the achieved values reported in Table 3.1. The scores obtained from

73



Chapter 3. Hand Vein Biometrics: Performance Improvement

Ta
bl

e
3.

1:
E

E
R

(%
)o

bt
ai

ne
d

co
ns

id
er

in
g

LB
P

an
d

LD
P

fe
at

ur
e

ex
tr

ac
tio

n
m

et
ho

ds
ap

pl
ie

d
on

th
e

si
ng

le
m

id
dl

e-
ex

po
su

re
im

ag
e,

on
si

ng
le

-
ex

po
su

re
im

ag
es

fu
se

d
at

sc
or

e
le

ve
l,

on
ra

w
H

D
R

im
ag

es
an

d
on

to
ne

-m
ap

pe
d

H
D

R
im

ag
es

.

M
id

dl
e

E
xp

os
ur

es
Sc

or
e

L
ev

el
R

aw
H

D
R

iC
am

06
C

hi
u

D
ra

go
Fa

rb
m

an
R

ei
nh

ar
d

Sh
an

Sh
ib

at
a

E
xp

os
ur

e
Fu

si
on

(n
o

T
M

O
)

[1
49

]
[4

4]
[6

9]
[7

4]
[2

57
]

[2
74

]
[2

75
]

L
B

P
3.

81
5

3.
63

2.
97

2.
65

2.
51

2.
97

2.
99

2.
98

2.
96

2.
59

3
3.

63
3.

23
2.

86
2.

71
3.

22
3.

13
3.

21
3.

12
2.

51

L
D

P
3.

17
5

3.
24

2.
00

1.
94

1.
74

2.
00

2.
06

2.
00

1.
74

1.
75

3
2.

97
2.

06
2.

19
1.

94
2.

13
2.

19
2.

07
2.

06
2.

06

Ta
bl

e
3.

2:
E

E
R

(%
)o

bt
ai

ne
d

w
he

n
LB

P
an

d
LD

P
fe

at
ur

es
ar

e
ex

tr
ac

te
d

on
ly

fr
om

th
e

m
id

dl
e-

ex
po

su
re

im
ag

e
pr

ep
ro

ce
ss

ed
w

ith
th

e
di

ffe
re

nt
im

ag
e

en
ha

nc
em

en
tm

et
ho

ds
.

B
R

H
E

C
L

A
H

E
C

G
F

H
FE

L
R

E
R

M
+

B
R

+
B

R
+

B
R

+
B

R
+

B
R

+
B

R

L
B

P
3.

81
3.

70
4.

69
3.

21
5.

49
3.

10
3.

15

L
D

P
3.

17
3.

03
4.

46
2.

71
4.

27
2.

90
3.

41

Ta
bl

e
3.

3:
E

E
R

(%
)

ob
ta

in
ed

co
ns

id
er

in
g

th
e

LB
P

an
d

LD
P

fe
at

ur
es

ex
tr

ac
te

d
fr

om
th

e
en

ha
nc

ed
LD

R
ve

in
im

ag
es

an
d

th
en

pe
rf

or
m

in
g

a
sc

or
e-

le
ve

lf
us

io
n

ap
pr

oa
ch

.

E
xp

os
ur

es
H

E
C

L
A

H
E

C
G

F
H

FE
L

R
E

R
M

+
B

R
+

B
R

+
B

R
+

B
R

+
B

R
+

B
R

L
B

P
5

3.
42

4.
18

3.
21

5.
02

2.
97

2.
84

3
3.

38
3.

54
3.

10
4.

90
3.

03
2.

91

L
D

P
5

2.
71

3.
81

2.
59

4.
16

2.
45

2.
91

3
2.

67
3.

94
2.

72
4.

07
2.

45
3.

00

74
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Figure 3.6: DET curves obtained considering LBP feature extraction method applied
on the enhanced vein images and then combining the scores of (a) 3 exposures (b) 5
exposures enhanced pictures and considering LDP feature extraction method applied
on the enhanced vein images and then combining the scores of (c) 3 exposures (d) 5
exposures enhanced pictures.

each single-exposure image are later combined following score-level fusion
approaches, namely using the mean, minimum, and maximum rules.

Sets with either 3 or 5 exposures have been exploited. The best results
are obtained when the maximum between the scores is considered in the de-
cision step, with corresponding values reported in Table 3.1. LBP and LDP
operators are also applied to HDR data, before and after the application
of the considered TMOs, with the obtained EERs reported in Table 3.1.
Table 3.2 shows the results obtained when different vein image enhance-
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Figure 3.7: DET curves obtained considering LBP features extracted from sets with (a) 3
and (b) 5 LDR images and considering LDP features extracted from sets with (c) 3 and
(d) 5 LDR images.

ment techniques, listed in Section 3.1.3, are applied to the middle-exposure
image and, then, the background-removal (BR) preprocessing is performed.
Besides, the performance regarding the score-level fusion approach applied
to the results obtained from 3 or 5 exposures images enhanced with the con-
sidered pre-processing methods are presented in Table 3.3. In this case, the
mean rule is found out to be the best performing score-level fusion strat-
egy. Finally, additional tests are performed in order to analyse the impact
on performance of applying the aforementioned enhancement techniques to
the LDR images to be fused and then performing the HDR approach apply-
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ing the best performing TMO. The results obtained are not reported in this
Section because no performance improvement is achieved in comparison
to classical HDR approach. This was an expected behaviour since the en-
hancement techniques modify the contrast of the LDR image and the HDR
fusion process may not work correctly.

The detection error trade-off (DET) curves of systems based on middle-
exposure images only, on score-level fusion of the available multi-exposure
information, on raw HDR content, and on tone-mapped HDR data for LBP
and LDP features are also plotted in Fig. 3.7. When no HDR imaging tech-
niques are considered, better recognition accuracy can be achieved when
the image enhancement step is performed and the score-level fusion ap-
proach is then applied, compared to the performance obtained when no
combination of the scores is done. For this reason, only results of Table 3.3
are plotted in the DET curves of Fig. 3.6.

Eventually, the increase in processing time when adopting the sensor-
level-fusion strategy in comparison to the baseline system has been evalu-
ated. The experiments are performed on a Core i7-6800K CPU @ 3.40 GHz
with 64.0 Gb of RAM and the algorithms are implemented in MATLAB c©.
In detail, in the proposed HDR-based approach additional time is required
in the stages of image acquisition, fusion and possible tone mapping oper-
ation. The obtained performance is reported in Table 3.4, where the shown
values represent the average times required to process all the images in the
considered database.

It can be seen that extracting features from HDR images leads to sig-
nificant recognition performance improvement, when adopting both LBP
and LDP representations, with respect to processing the original single-
exposure data. In particular, when the LBP feature extraction method is
considered, an EER of 3.81% is obtained when the middle-exposure im-
age is considered, while an EER of 2.51% is reached when the features are
extracted from the HDR image built from 5 LDR images fused with the
Chiu TMO [44] or when 3 LDR images are combined and then the Shi-
bata TMO [275] is applied. Results concerning LDP features also confirm
this behavior, showing an EER of 3.17% obtained when using only middle-
exposure images, and an EER of 1.74% with tone-mapped HDR content
generated with 5 images taken at different exposures, both considering the
Chiu [44] and Shan [274] TMOs. The obtained results also show that gen-
erating HDR images considering 5 exposures instead of 3 leads to better
results in most of the cases. As shown in Table 3.4, the best performing
and less time consuming TMO is the Chiu operator and it is worth high-
lighting that, when the best performance is achieved, an average total addi-
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Table 3.4: Acquisition and processing time (s) when the HDR imaging approach is con-
sidered.

Step
Required computational time
3 Exposures 5 Exposures

Image acquisition 0.1440 s 0.2400 s

Raw HDR image fusion 0.0176 s 0.0278 s

Tone mapping

iCam06 TMO [149] 0.1971 s

Chiu TMO [44] 0.3756 s

Drago TMO [69] 0.0058 s

Farbman TMO [74] 0.1444 s

Reinhard TMO [257] 0.0034 s

Shan TMO [274] 0.6133 s

Shibata TMO [275] 1.1158 s

tional time of Tproc = 0.192s (acquisition of four additional LDR-images)
+ 0.0278s (row HDR image generation) + 0.3756s (Chiu TMO) = 0.5954s
is needed.

It is worth remarking that the employed sensor-level fusion approach
based on HDR imaging always gives better results compared to the score-
level fusion strategy. It is also important to stress out that, with respect to
score-level fusion approach, exploiting sensor-level fusion gives additional
advantages in terms of required storage space and computational cost. In
fact, using HDR content requires extracting features only from a single im-
age, while all the single-exposures images have to be taken into account in
the feature extraction and matching stages when score-level fusion is imple-
mented, with the further burden of storing all the derived templates. Finally,
it is also demonstrated that, using HDR imaging techniques, it is possible
to achieve better results compared to what obtained when the vein images
are enhanced by exploiting pre-processing techniques, both considering the
score-level fusion approach and not taking it into account.

3.1.5 Experimental Results - Other Fusion Approaches

Different kinds of fusion are then performed, namely feature-, score- and
decision-level. When the feature-level fusion approach is applied, features
extracted from the same image but exploiting both LBP and LDP feature
extraction methods are concatenated and fused into a single feature. In case
of score-level fusion approach, the scores derived from the matching of the
couples of templates extracted from the same image, but by exploiting the
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Figure 3.8: DET curves obtained considering LBP and LDP feature extraction methods
and the different adopted fusion techniques

two considered feature extraction methods, are combined through the max-
rule method, that is, the fusion rule that has shown the best performance in
the performed experimental tests. Finally, a decision level-fusion approach
is also carried out. In detail, the effects of the application of different deci-
sion rules are investigated, and the OR rule has shown to be the best option
in the considered case.

The results obtained are shown in the detection error trade-off (DET)
curve presented in Fig. 3.8. When LBP codes are considered as features
an equal error rate (EER) of 3.81% is reached, while a EER = 3.17% is
achieved when the LDP feature extraction method is used to extract dis-
criminative characteristics from palm vein images. When the feature-level
fusion approach is performed, the EER of the system decreases to 3.09 %,
while an EER of 2.96% is reached when the score-level fusion method is
applied. Eventually, an EER of 3.07% can be achieved when the decision-
level fusion approach is chosen.

3.1.6 Conclusions

In this section the impact on recognition performance of applying HDR
imaging on palm vein recognition systems has been studied, performing
a sensor-level fusion approach on images captured at multiple exposures.
The obtained results show that significant performance improvement can
be reached when HDR content is processed, compared to the use of single-
exposure LDR vein images. Besides, the adoption of TMOs allows guar-
anteeing even further improvements, with performance notably exceed-
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ing those achieved when employing vein image enhancement methods and
score-level information fusion approaches.

Besides, the performance improvements achievable when exploiting mul-
ti-biometrics fusion techniques in a palm-vein-based recognition system
leveraging on statistical-based feature extraction methods such as LBP and
LDP has been investigated. The obtained results show that a noticeable re-
duction of the achievable EER can be actually guaranteed with multimodal
approached, with respect to unimodal ones. In the considered framework,
score-level fusion approach has been highlighted as the best option to be
followed when designing palm vein recognition systems based on more
than a single template representation. Anyway, the classical fusion ap-
proaches are not able to overcome the performance achievable when the
HDR-based approach is taken into account.

3.2 Convolutional Neural Network for Finger-Vein-based Bio-
metric Identification

In this Section, finger-vein-based identification by exploiting deep learn-
ing techniques is studied. The aim of the proposed work is to achieve
good and stable identification performance irrespective of the quality of the
considered finger-vein images, their rotation, translation, and scaling. In
order to verify the effectiveness of the designed CNN, the considered ap-
proach has been tested over four publicly-available finger-vein databases,
namely SDUMLA-HTM [338], HKPU [152], FV-USM [5] and UTFVP
[289], characterised by different image quality levels. Details about the
considered database can be found in Section 2.2.

The achieved performance shows that the proposed method is able to
guarantee stable and highly-accurate identification results, irrespective of
the quality of the considered finger-vein images. Additionally, the proposed
CNN-based identification system requires negligible manual effort for fea-
ture selection. In fact, it has been applied without variations to all the four
considered databases, without using any application-dependent threshold
or any manually-set parameter. This Section is organised as follows: the
finger-vein-based biometric system and its modules are described. The ex-
perimental settings and tests are then presented, followed by the conclu-
sions.
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3.2. Convolutional Neural Network for Finger-Vein-based Biometric
Identification

3.2.1 Employed Finger-Vein Based Biometric System

Preprocessing. The original images, gathered from four publicly-available
databases, are pre-processed for ROI extraction and image enhancement.
As a first step, the images from all the considered databases, having dif-
ferent sizes, are subsampled to 336× 190 pixels in order to guarantee uni-
formity. Besides, for the databases where the images show a ratio between
number of rows and columns different from the target one, marginal back-
ground parts are removed, selecting a central area of the image. Eventually,
the ROI, i.e. the part of the image which contains the interested finger,
is then extracted and a binary mask in which the white pixels correspond
to the finger region is obtained. Specifically, the ROI extraction is based
on the method proposed by Lee et al. [167], where two different masks
are used to extract the upper and lower finger’s edges respectively. For
the HKPU database the aforementioned masks are provided, whereas the
aforementioned procedure is applied to the other databases.

Starting from the extracted edges and masks, a normalisation step is
performed in order to compensate rotation and vertical translation during
the acquisition step. In this work, the approach proposed in [113] has
been used, which attempts to fit a straight line between the edges detected
in the previous step and estimate the parameters of rotation and vertical
translation which are later used to perform an affine transformation. If re-
quired, the normalised images may be then enhanced through contrast lim-
ited adaptive histogram equalization (CLAHE) [353], which is an adaptive
histogram equalization (AHE) method whose aim is to improve the contrast
of the image by limiting the contrast amplification in the different consid-
ered parts of the image. The preprocessed images are then transposed and
resized into 65× 153 pixels.

Template Generation. Feature are extracted by a CNN, whose architecture
is fully described in [62], summarised in Table 3.5 and depicted in Figure
3.9, fed with the pre-processed finger-vein pattern images. Bigger image
size usually leads to a larger CNN with more hidden layers. Hence, in
order to have a feasible size network the images are resized into 65 × 153
in the pre-processing step.

The training and testing templates of the network are either generated by
selecting the images from a single session, as proposed by the existing state-
of-the-art methods, or otherwise by selecting a combination of images from
all available sessions. The reason behind this latter strategy is that different
sessions’ data may have been acquired with different illuminations for the
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Table 3.5: The proposed CNN configuration.

Layer Type Number of Filter Size of Feature Map Size of Kernel Number of Stride Number of Padding

Image input layer - 65× 153× 1 - - -

CL1 (Convolutional layer-1) 153 65× 153× 1 5× 5 1× 1 0× 0

M1 (Max-Pooling Layer-1) 1 61× 149× 153 2× 2 2× 2 0× 0

CL2 (Convolutional layer-2) 512 30× 74× 153 5× 5 1× 1 0× 0

M2 (Max-Pooling Layer-2) 1 26× 70× 512 2× 2 2× 2 0× 0

CL3 (Convolutional layer-3) 768 13× 35× 512 5× 5 1× 1 0× 0

M3 (Max-Pooling Layer-3) 1 9× 31× 768 2× 2 2× 2 0× 0

CL4 (Convolutional layer-4) 1024 4× 15× 768 4× 15 1× 1 0× 0

R1 (ReLu Layer-1) - 1× 1× 1024 - - -

CL5 (Convolutional layer-5) U (number of classes) 1× 1× 1024 1× 1 1× 1 0× 0

Softmax Layer - U × 1 - - -

same finger of a person. Hence, the network may require images captured
in different conditions for its proper training, otherwise the identification
accuracy may be affected. To find the best combination of templates for
training, 1, 2, 3 and 4 images’ combinations from all available sessions
are considered for training and their identification results allowed to find
the best possible combination of templates which can be used for person
identification.

CNN Training. The generated templates are passed through the designed
CNN and a set of very low-level features are extracted in the first hidden
layer. The network gradually builds up over these low-level features in
the subsequent convolutional layers, in order to create a set of high-level
features for the fully connected layer. For the experiments, each finger of
every person is considered as a separate class.

For the HKPU dataset, since 105 subjects have contributed with their
index and middle fingers to two sessions, there is a total of 210 classes
available for training. The remaining 51 subjects have contributed only to
session 1, so they have not been considered for training in the experimental
tests and they have been instead only used as impostors while testing. Sim-
ilarly, for FV-USM database 492 classes (123 subjects with 4 fingers each),
636 classes for the SDUMLA database (106 subjects with 6 fingers each),
and 360 classes for the UTFVP database (60 subjects with 6 fingers each)
are considered.

For CNN designing and training, the MatConvNet-1.0-beta24 tool [301]
is employed. For training purposes 90% finger-vein images are considered,
with the remaining 10% used for validation. The learning rate of the CNN
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is set at 0.00001 with a batch size of 3 samples for HKPU and FV-USM,
4 for SDUMLA and 2 for UTFVP, so that the loss can be minimised with
higher precision through the execution of every epoch or iteration.

As for the number of epochs, higher numbers usually allow the network
to be well-trained, so that the weights of different layers are updated with
precision. For the experiment, 2500 epochs have been considered for all the
experiments. The main purpose of using such a low learning rate and high
number of epochs is that it is typically preferable to let a network learn very
slowly and converge into the smallest details of every class.

Identification. In the identification stage, for each testing sample, the
trained CNN returns a probability value for all the available classes/fin-
gers. The maximum probability value identifies the most similar finger to
the testing sample. As each and every finger of an individual represents a
different class, it is possible to identify the particular finger with which it is
matched and the corresponding subject to whom it belongs to.

It is worth specifying that, similarly to what has been proposed in [152],
for the experimental setup a threshold for matching probability of a test
image has been introduced, below which the test image is considered as
“not-identified". This is for the purpose of genuine impostor testing where
no sample images are trained for that particular subject, as they are not
associated with any of the enrolled identities. For a given testing sample,
if the matching probability value returned by the proposed network is less
than 50% for its comparisons with any trained class, then that test image is
classified as “not-identified" or “not-present" in the database. For example,
this scenario has been tested with the finger-vein images of the 51 subjects
captured during a single session in the HKPU dataset. Such images have
not been ever employed for training purposes and have been instead used
only as testing probes. Each time, when a test sample’s result reaches into a
maximum matching probability value of lower than 50% for all the trained
classes, then it is possible to declare them as “not-identified".

3.2.2 Results and Discussions

In order to evaluate the proposed network, its performance are first com-
pared with several state-of-the-art identification techniques, by using the
training and testing strategies adopted in referenced papers for the pro-
posed network as well. Subsequently, an optimal training strategy for the
proposed network is designed. Most of the state-of-the-art techniques have
used either a single image or images from a single session for their net-
work’s training, which may not be ideal for the CNN-based proposed ap-
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(a) HKPU (b) FV-USM (c) SDUMLA (d) UTFVP 

Session-1

Session-2 -

Figure 3.10: Different luminosity images from different sessions of four publicly-available
databases.

proach. It is in fact well-known that the availability of a single sample of
every class, here individual fingers, does not allow a CNN to get trained
properly. Eventually, the utility of exploiting image enhancement prepro-
cessing techniques together with the proposed network is evaluated in order
to to understand if further performance improvement could be achieved.

All the experiments have been performed in MATLAB R© (R2017a) with
a system configuration of 64 Gb RAM; Titan XTM (Pascal) graphics card;
i7, 3.40GHz processor and Windows R© 10 operating system.

Performance Comparisons. The identification accuracies achieved by
the most relevant state-of-the-art finger-vein-based biometric systems are
reported in Table 3.6, together with the obtained performance with the
proposed CNN-based approach, when using the same training and test-
ing strategies. The results obtainable while exploiting two of the most-
commonly employed methods for finger-vein recognition, i.e., maximum
curvature (MC) [206] and repeated line tracking (RLT) [205], under all the
considered settings, are additionally reported for further comparisons.

As it can be seen from the reported accuracies, the CNN-based iden-
tification system cannot be properly trained under the experimental setup
employed in [152], where only session-1 images from HKPU dataset are
used for training, and session-2 images for testing. A similar situation is
encountered when comparing the proposed system against the one in [242],
where tests over the FV-USM dataset have been performed by considering
only the first image of every finger from session-1 for training and the 6 im-
ages per finger of session-2 for testing. Again, the reason behind such a low
performance depends upon the number of training samples, along with the
different quality of finger-vein images that exists in two distinct sessions,
as shown by the examples in Fig. 3.10.

A different behaviour of the network has been observed when consid-
ering the training/testing settings employed in [299] and the SDUMLA
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database, which contains images taken from a single session. In this sce-
nario, the method here proposed is able to achieve identification perfor-
mance better than those obtained in [326] and [10]. It is therefore rea-
sonable to observe that the proposed CNN-based identification system can
work properly when images of similar quality are used for both training
and testing purposes, regardless the absolute quality level of the considered
images. This assumption is confirmed by the results in Table 3.6, referred
to the comparison of the proposed approach against MC and RLT, while
taking one finger-vein image from each session of the UTFVP dataset, and
using the remaining ones for testing purposes. The proposed CNN-based
identification system easily outperforms both MC and RLT.

It is worth remarking that the aforementioned results have been obtained
with the proposed CNN-based identification system without performing
any kind of enhancement on finger-vein images. Conversely, all the meth-
ods used for comparisons use some image enhancement technique and fea-
ture selection processes. Therefore, the use of original images without any
preprocessing and automatic feature extraction are among the advantages
of the proposed network.

Different Training Strategies. The use of a single image or images from a
single session for training purposes may not be enough to produce the best
accuracy. Therefore, full potentiality of the proposed CNN architecture
has been analysed by investigating the variations in identification accura-
cies that can be achieved while adopting different numbers of images for
training. Hence, wherever possible, 1, 2, 3, and 4 original images from
all the available sessions of each of the finger-vein patterns from the four
databases are considered for the training of the considered network.

Table 3.8 summarises the obtained results and clearly shows that, if the
number of training samples from each finger is increased, then the achieved
accuracy also increases significantly. Comparing these results with those
reported in Table 3.6, a notable improvement in terms of achievable perfor-
mance can be seen for both HKPU and FV-USM databases. From Table 3.8
it can also be noted that there is not much difference in accuracy, for HKPU
and FV-USM database, when 3 or 4 images are used for training. Hence,
for further experiments 3 images from each session of these two databases
are employed for training. When considering the SDUMLA database, 4
images from each session are needed for training, since low quality images
are present in this database, as shown in Figure 3.11. As for the UTFVP
database, at most one image from each session can be chosen for training,
since only 2 images are available for each finger’s acquisition sessions. The
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Table 3.8: Identification accuracy for different training strategies over original images.

Database
Training (images from each available sessions)

1 2 3 4

HKPU 82.19% 92.02% 95.32% 96.55%

FV-USM 91.75% 94.82% 97.53% 98.58%

SDUMLA 75.25% 77.99% 80.27% 97.48%

UTFVP 95.56% - - -

obtained results show that identification accuracy greater than 95% can be
achieved for all the four considered publicly-available databases.

Table 3.7 shows the improvements that can be obtained when the pro-
posed network is trained according to the best performing training settings.
More in detail, Table 3.7 shows rank-1 identification accuracy for the con-
sidered databases, when exploiting the proposed CNN-based approach. A
performance comparison with standard MC and RLT methods is also pro-
vided here. Moreover, it has also been investigated whether the proposed
method needs any image enhancement technique to further improve the at-
tainable identification performance, considering the case of the network is
fed with CLAHE [353]-enhanced finger-vein images.

According to the obtained results, the proposed CNN-based identifica-
tion system systematically outperforms MC and RLT approaches. It can
also be seen that the contrast-enhanced images achieve performance bet-
ter than the original ones only when considering the UTFVP dataset. It is
evident from Fig. 3.11 that vein patters in images from UTFVP database
are significantly more prominent and clearly distinguishable in their en-
hanced versions rather than in their original ones. Nevertheless, the pro-
posed CNN-based approach is typically able to guarantee a very-high iden-
tification rate without using any image enhancement technique.

3.2.3 Conclusions

In this Section, a CNN-based finger-vein identification system which can
perform an effective identification irrespective of the environmental condi-
tions is proposed. An exhaustive set of experimental tests performed over
the four commonly-used and publicly-available databases is presented. The
obtained results show that it is possible to achieve a rank-1 identification
accuracy greater than 95% for all the four databases, using the proposed
CNN architecture. The present work is one of the first comprehensive
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study analysing a finger-vein-based biometric identification system with
more than two publicly-available databases, to assess the effectiveness of
the proposed network under different image quality conditions, with min-
imum human intervention. It can also be seen that the identification ac-
curacy of the proposed network significantly increases with the employed
number of training images. Moreover, if the finger-vein images are not ac-
quired with the same illumination intensity and ambient lighting conditions
for different sessions of acquisition, then the use of multiple session’s data
for training can be considered as an effective strategy for improving the
achievable identification accuracy.

3.3 On-the-fly Finger-Vein-based Biometric Recognition us-
ing Deep Neural Networks

The applications where convenience, speed and security are a priority are
increasing. Border control at airports, access control at sensitive and high
traffic sites, flow management are few examples of a wide range of systems
where the aforementioned requirements are crucial. In these situations bio-
metric systems are generally chosen as solution. Besides, recently the con-
venience and speed of the biometric systems have been improved thanks to
the commercial lunch of the “on-the-fly” system, that is a biometric system
where it is possible to enrol and authenticate with a fast touchless move-
ment, such a single wave of the hand 1.

The aim of the present study is to merge the intrinsic security and robust-
ness of the vein biometric trait with the speed and convenience of a touch-
less acquisition device. The approaches proposed in the literature capture
the vein-pattern structures either requiring the subject to touch a support,
as for Hitachi’s “VeinID” finger-vein technology2, or allowing a contact-
less acquisition as in Fujitsu’s “PalmSecure”3. This technology has already
beendeployed in real-life applications such as banking or con-sumer prod-
ucts. However, it is worth pointing out that in all cases the user has to hold
the hand still during the entire acquisition process. On the contrary, in the
proposed approach, as detailed in the following, the user is asked to swipe
the hand over the sensor, thus implementing a contactless and “on-the-fly”
interaction modality, entailing an increase of the user convenience and of
the recognition system’s throughput.

1https://www.idemia.com/morphowave-desktop
2http://www.hitachi.co.jp/products/it/veinid/global/index.html
3https://www.fujitsu.com/global/services/security/offerings/biometrics/

palmsecure
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Deep learning approaches, based on both convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) are here exploited to ex-
tract discriminative features from the acquired vein pattern videos, and
achieve remarkable recognition performance. Eventually, high dynamic
range (HDR) techniques [228] are exploited to further improve the recog-
nition performance. The architecture of the proposed identification systems
is sketched in Figure 3.12 and its building blocks are detailed in the follow-
ing paragraphs.

3.3.1 Designed Finger-Vein Identification Pipeline

The architecture of the proposed identification systems is sketched in Fig-
ure 3.12. Its building blocks, that is, data acquisition hardware, preprocess-
ing, and classification modules, are detailed in the following.

Data Acquisition Hardware. In order to carry out the finger-vein acquisi-
tion by allowing the user to swipe the hand over the sensor while moving
and without contact, a novel low-cost acquisition device has been designed,
represented in principle in Figure 3.13a. It is composed by four PiNoIR-V2
CMOS cameras, equipped with Sony IMX219 8-megapixel sensors [219]
having a NIR sensitivity in the wavelength range 400nm − 1000nm, each
driven by a Raspberry PI-V2 card. CMOS-based cameras have been widely
used in the literature for vein-pattern acquisition, essentially because of
their lower cost with respect to CCD-based cameras which, on the other
side, guarantee higher performance in terms of signal-to-noise ratio (SNR)
of the acquired images, especially in the NIR field.

The cameras are arranged in a 2x2 matrix configuration to minimise the
parallax effect in the image acquisition process, with respect to the other
camera configurations that have been tested and discarded. Each of the
four cameras employs a different exposure time, namely 12µs, 16µs, 20µs,
and 24µs. The use of different exposures allows generating high dynamic
range (HDR) data, which have been proven [228] to allow recognition per-
formance improvement. In addition, a 700nm longpass NIR filter is placed
over the camera array to cut out the visible light.

The employed illuminator is composed by 20 LEDs, arranged in a rect-
angular shape of 5 × 4. Specifically, Osram Opto SFH 4356-UV model
IR LEDs has been employed with the following characteristics: i) dome
shaped lens, ii) 80mW radiant flux, iii) 860nm peak wavelength, and iv)
850nm centred wavelength. It is worth mentioning that most of the systems
available in the literature use LEDs operating in the range [850, 930]nm. As
a matter of fact, LEDs have been tested at 830nm, 850nm, and 910nm. The
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Figure 3.12: High-level representation of the acquisition and processing pipeline of the
proposed system.

850nm LEDs has proven to be the best performing in the proposed system.
The illuminator is fed with a total of 400mA of current and 12V of volt-
age. A 3mm-thick white diffusion glass is placed between the hand and
the lighting LEDs to obtain a more uniform light diffusion over the fingers.
The acquisition protocol requires the user to swipe the hand between the
cameras and the illuminator, thus working in transmission modality. The
acquisition system is shown in Figure 3.13b.
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(a) (b)

Figure 3.13: (a) Graphic representation of the propose acquisition system. (b) 2x2 camera
array (left), NIR filter on camera array (right).

It is worth remarking that, in conventional vein-based biometric sys-
tems, users have to keep their fingers or hands still during acquisition, and
often place them on a support. On the contrary, in the novel approach, this
constraint is released, and allow users swiping their hands over the sensor
as shown in Figure 3.14. Therefore, during the acquisition, four videos
are collected, at the rate of 12 frames per second (fps), each with different
exposure times.

Preprocessing. After acquisition, the preprocessing steps sketched in Fig-
ure 3.12, and described hereafter, are performed.

• Frame selection: passing a hand over the acquisition system may
require from one to three seconds, depending on the user’s behaviour.
During this time, each of the four employed cameras records up to
36 frames, out of which 9 frames, containing all the hand’s fingers,
are selected for further processing. Specifically, the frame with the
overall lower average luminance across the captured videos is chosen
as reference and assumed to have the hand in central position with
respect to the device. The four frames before and the four frames after
it are then selected for each of the four acquired videos.

• ROI extraction: a ROI of 720x640 (WxH) pixels is extracted from
each image. This choice, made through a trial-and-error process, guar-
antees that the whole image of the hand is selected, as shown in Figure
3.15. The so-obtained images have been corrected by using a camera-
calibration approach to compensate for fish-eye distortion.

• Image registration: images acquired from different cameras are mis-
aligned due to the parallax effect, caused by the non-negligible size of
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the employed cameras. Therefore, image registration is needed. In the
proposed approach, the multimodal intensity-based image registration
technique proposed in [142] is applied.

• Template generation: the images extracted from the acquired videos
can be affected by low contrast, due to the difficulty in controlling the
employed NIR illumination when capturing moving hand as already
pointed out in [228], as well as by blur effect due to hand movement
during the acquisition. To mitigate these problems, two different ap-
proaches are taken into account:

– use of HDR imaging techniques [40]: the images captured at dif-
ferent exposure times are fused into a single HDR image which
does not suffer from under- or over-exposure issues. The gener-
ated HDR content can be then converted into a low dynamic range
(LDR) image through the use of a tone mapper. In this study, the
iCAM06 tone mapping operator [149] is considered, due to its
superior performance within the proposed framework [228];

– use of a 4-channel tensor: the four images, acquired by the four
cameras, at the same time but at different exposures, are repre-
sented through a single structure. Specifically, four 1-channel
grey-scale images, representing the luminance content at differ-
ent exposures, are grouped to build a 4-channel image tensor.

Classification. As already mentioned, during each acquisition 9 frames are
taken from each of the 4 employed cameras, for a total of 36 frames. A
single swipe of a hand therefore generates data characterised by a specific
spatial behaviour, given by the properties of the vein patterns of the four
fingers captured in each image, as well as a temporal behaviour, represented
by the sequences of frames taken at consecutive instants.

In order to take advantage of the collected information, DNNs have been
exploited. Specifically, a CNN has been designed to extract reliable features
from each processed image. The architecture of the adopted CNN, namely
Vein-CNN (V-CNN), has been specifically designed for finger-vein-based
recognition tasks, with its configuration (sizes, kernels, etc.) set consider-
ing finger geometry and orientation. In addition, an RNN has been used
to exploit the availability of multiple frames in the acquired videos. In
more detail, a long short-term memory (LSTM) network has been exploited
to model the observed temporal course of the hand swipe. The proposed
CNN-LSTM architecture is shown in Figure 3.16 and discussed in details

94



3.3. On-the-fly Finger-Vein-based Biometric Recognition using Deep
Neural Networks

Figure 3.16: CNN-LSTM architecture of the proposed system.

in [157]. Besides, the architecture of the CNN adopted in the proposed
system and specifically designed for finger-vein-based recognition tasks, is
shown in Figure 3.17 and it details of the CNN are reported in Table 3.9.

It is worth pointing out that the considered approach is multimodal in
many aspects, as described hereafter:

i) multiple sensors for the same biometric trait: the same finger-vein
pattern is acquired using four cameras with different acquisition pa-
rameters;

ii) multiple units of the same biometric trait: four fingers, as a whole, are
used together for template generation;

iii) multiple biometric traits: both finger veins and finger shape are intrin-
sically acquired and processed by the proposed system.

3.3.2 Experimental Tests

In order to evaluate the effectiveness of the proposed CNN-LSTM frame-
work for the designed on-the-fly finger-vein-based biometric recognition
system, several tests have been performed over a database collected at the
Engineering Department of Roma Tre University institution. Specifically,
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for each subject, 10 acquisitions are made, each consisting of a video se-
quence of finger-vein images, from the left hands of NI = 100 subjects,
33 female and 67 male. It is worth pointing out that, since the acquisition
modality proposed in this study is novel, neither other datasets nor other
methodologies are available for performance comparison. Nonetheless, in
the tests carried out are included the comparison between the identification
performance guaranteed by the proposed V-CNN network, when single-
image finger-vein acquisitions are considered. In more detail, the results
proving the effectiveness of using multiple-exposure cameras to capture
the considered biometric trait, with respect to the standard usage of a single
camera, are reported.

During the experiments, preprocessing has been executed using MAT-
LAB TM (R2017b) and PyTorch 0.4.0 has been chosen to build network
architectures with a system configuration of 32Gb RAM, NVIDIATM Ti-
tan V graphics card, i7-3.4GHz processors, and WindowsTM 10 operating
system.

Usage of Multiple-Exposure Finger-Vein Images. The benefits deriving
from using multiple images taken at different exposures for finger-vein-
based biometric recognition have been already evaluated in [228]. The sys-
tem architecture here proposed for on-the-fly finger-vein-based identifica-
tion stems from the results there reported, which are here further reinforced
upon the considered novel scenario.

Specifically, in Table 3.10 the performance achievable when using a sin-
gle camera are compared against the joint usage of the images taken at the
four considered exposures. The reported results are referred to the use of
only the V-CNN architecture for identification, selecting, at each iteration:

• images from five acquisitions for training;

• images from one distinct acquisition for validation:

• the finger-vein images from the remaining four acquisitions of each
identity for testing,

and performing a 5-fold cross-validation. Out of the five acquisitions se-
lected for training, a different number NT of samples has been selected at
each iteration to evaluate the achievable identification performance at the
increasing of the training set size.

From the rank-1 identification accuracy given in Table 3.10 it is possi-
ble to confirm the observations in [228], noticing that an HDR image allows
achieving performance better than the individual usage of singe-exposure
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images. More interestingly, it can be seen that exploiting the collected data
as a 4-layer tensor in the proposed V-CNN guarantees even further improve-
ments. The results obtained when considering images taken at a single ex-
posure also highlight that, in addition to the shape of the captured fingers,
which remain the same independently of the exposure, the proposed sys-
tem exploits the finger-vein patterns for recognition purposes. In fact, the
use of finger-vein images acquired at different exposures, which correspond
to different imaging of the captured vein patterns, impacts the identification
performance. It is worth remarking that all the experiments have been made
without applying enhancement techniques on the finger-vein inputs. This
is another benefit of the proposed approach.

Exploitation of the Temporal Information. The use of the “on-the-fly”
acquisition protocol allows recording also temporal information about the
acquisition process related to sliding the hand over the sensors. As a matter
of fact, the LSTM network described in [157] has been designed to exploit
the temporal evolution of the discriminative features during each acquisi-
tion. In order to show the effectiveness of the proposed approach, two al-
ternative methods for fusing the spatial information derived from multiple
frames are considered, yet without exploiting any temporal information.
Specifically, a score-level fusion (SF) as well as a decision-level fusion
(DF) strategy are implemented over the features extracted by the CNN pro-
cessing individual frames. In more detail, SF is performed by averaging
the likelihoods obtained as predictions from the CNN models for each of
the nine separate frames of an acquisition. Majority voting is instead per-
formed to implement DF once the predictions for each frame are provided
by the CNN.

As reported in Table 3.11, both SF and DF increase the accuracy in
the order of 2%-5%, when considering two acquisitions for training. Nev-
ertheless, adding more training samples slightly reduces the relevance of
the improvement on the identification accuracy. In addition, both SF and
DF result in similar patterns over the identification performance, which
means that the two approaches are not significantly different from each
other (p− value = 0.416 in terms of paired t-tests).

The effects of the exploitation of the temporal information through the
proposed CNN-LSTM framework are shown Table 3.11, where the accu-
racy achieved by V-CNN are reported. The proposed CNN-LSTM network
is able to exploit the temporal behaviour of the hand movement better than
simple strategies based on SF or DF.
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3.3. On-the-fly Finger-Vein-based Biometric Recognition using Deep
Neural Networks

3.3.3 Conclusions

This study proposes, for the first time in literature, an innovative on-the-
fly finger-vein-based biometric recognition system that allows a user being
identified while swiping the hand over the sensor without requiring any
contact. The acquisition module has been built using low-cost sensors and it
has been designed to allow free hand movement, with consequent high user
convenience during both enrolment and recognition. Multiple cameras with
different exposure times, capturing also the dynamic movement of the hand
over the sensors, have been used and a database comprising swiping hands
of 100 subjects has been collected. The proposed approach has exploited
both the still images acquired at different exposure times and the temporal
behaviour of the moving hand over the sensors. Deep learning approaches
have been used in both scenarios.

In detail, the reported analysis shows that the use of multiple-exposure
data increases the recognition accuracy with respect to the use of single
exposure images and that the exploitation of multi-channel LDR images
taken at different exposure times, as raw input templates, leads to further
improvements of the identification accuracy.

In addition, for the first time in the literature, the temporal information
related to the user swiping the hand over the sensors has been exploited, and
is has been shown that when CNN topologies are used for feature extrac-
tion, and LSTM networks are fed by the sequential features based on hand
movements, a significant identification accuracy improvement is observed.
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CHAPTER4
Finger-Vein Biometrics: Security and

Template Protection

UNPROTECTED STORAGE of biometric reference templates poses se-
vere privacy threats, e.g. identity theft, cross-matching or lim-
ited renewability. In fact, biometric data are defined as sensitive

data within the European Union (EU) General Data Protection Regulation
2016/679 [49, 83], which means that the use of these data is subjected to
the right of privacy preservation. For this reason, most of the commercial
biometric systems available today do not store the sensed physical char-
acteristics in their original form but, instead, they store their digital rep-
resentation, that is the template, in an encrypted format. This serves two
purposes. First, the actual physical characteristic cannot be recovered from
the digital template thus ensuring privacy. Second, the encryption ensures
that only the designated application can use this template. Anyway, also
the template storage hides some pose risks to the security of the system, as
detailed in Section 1.6.

The invisible biometrics, topic of this thesis, are not immune to secu-
rity and privacy issues related to the template storage. Biometric template
protection schemes have been developed in the last two decades [32, 224],
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and several standardisation efforts [120,121,249] have been directed to this
topic. As detailed in Section 1.6, there are different template protection
techniques which can be exploited in order to secure a biometric system.

In this thesis, the issues of cross-matching between different biometric
databases where the template is stored and limited renewability of finger-
vein pattern are considered. Specifically, in Section 4.1 the similarity be-
tween vein patterns of symmetric fingers of the left and the right hand of a
subject is investigated. Demonstrating that the vein patterns from different
hands are “sufficiently” different, implies demonstrating that each finger of
each user can be considered as different class. In this way, the renewability
and the revoke of a compromised template can be considered less chal-
lenging because compared to the case of cross-similarity between different
fingers.

Besides, an application of biometric template protection schemes is pre-
sented. The considered template protection technique belongs to the cate-
gory of cancelable biometrics. More in detail, non-invertible transforma-
tion schemes are considered and applied in the field of finger-vein based
biometric recognition. Specifically, Section 4.2 presents the security and
privacy issues related to vein recognition and a possible solution to coun-
termeasure the leakage of the aforementioned requirements based on can-
celable biometric algorithms.

4.1 Cross-finger Similarity of Vein Patterns

In the field of biometric recognition, it is of crucial importance to demon-
strate the individuality of a biometric trait, that is the biometric trait taken
into account must be unique to each individual. When talking about vein
pattern, it has been empirically proved the uniqueness of the aforemen-
tioned identifier for each identity, i.e. person, but it is also important to
study what happens when performing the match between the right and left
hand vein patterns for the same identity. The study of the similarity be-
tween veins of different hand is particularly important when talking about
security and revocability: if vein patterns from different hands are “suffi-
ciently” different, that is if the inter-class variation between the considered
features is high according to the chosen similarity measure, it means that
vein patterns belonging to different hands can be considered as different
classes, that is different users.

The aforementioned aspect has not been analysed so far in literature
for finger-vein-based biometric applications, while it has been investigated
when using palmprint [151, 328]. The research has highlighted the pres-
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ence of shared patterns between the palmprints of both hands of a person,
allowing a user to be recognised through his/her left palmprint even when
only the other one has been recorded during enrolment.

In this Section, the similarity between vein patterns of symmetric fin-
gers of the left and the right hand of a subject is investigated. More in
detail, the effects on the recognition performance when using symmetric
fingers and geometry- and deep-learning-based feature extraction methods
are analysed. The aim of the study is to explicitly asses whether it could be
possible, for recognition purposes, to consider pairs of symmetric fingers
of a subjects as a single class. In order to perform a comprehensive anal-
ysis, the SDUMLA database [338] has been considered in the conducted
tests. Moreover, four different methods, belonging to the geometry-and
deep-learning-based categories, have been exploited to derive the employed
finger-vein feature representations.

4.1.1 Experimental Protocol

In order to verify whether finger-vein patterns of different hands of the
same subject have a higher degree of similarity than traits belonging to
different persons, several tests have been performed. Each test consists
on the estimation of the distributions of scores obtainable by comparing
different classes of biometric samples, specifically:

• genuine scores are obtained by comparing vein patterns from the same
finger of the same hand of the same subject. For instance, vein patterns
of the right index of a subject are compared between themselves;

• impostor scores are obtained by comparing veins from the same finger
of the same hand of different subjects. For instance, patterns of the
right index of a subject are compared with those of the right index of
a different person;

• genuine cross-hand (CH) scores are obtained by comparing veins from
the same finger of different hands of the same subject. For instance,
the right index of a subject is compared with the left index of the same
person;

• genuine cross-finger (CF) scores are obtained by comparing veins
from different fingers of the same subject. For instance, patterns of
the right index are compared with those of the right/left middle finger
of the same person;
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Table 4.1: Score distributions evaluated in the performed tests.

Case Subject Hand Finger Scores

1 same same same genuine

2 different same same impostor

3 same different same genuine CH

4 same same/different different genuine CF

5 different same/different different impostor CF

• impostor cross-finger (CF) scores are obtained by comparing veins
from different fingers of different subjects. For instance, the right
index of a subject is compared with the left/right middle finger of an-
other person.

Table 4.1 summarises the aforementioned combinations considered for the
required scores.

On the basis of the computed distributions, the false rejection rate (FRR)
and the false acceptance rate (FAR) related to different scenarios have been
evaluated:

• Test-1: standard scenario where each finger from each hand is taken as
a separate class, FRR and FAR are derived by considering respectively
the aforementioned genuine scores and impostor scores;

• Test-2: a naïve scenario where an impostor uses a finger different from
the one enrolled by the legitimate user is taken into account. FRR and
FAR respectively from genuine scores and impostor CF scores are
evaluated;

• Test-3: in order to verify whether a subject could be recognised by
using as authentication probe the same finger of a hand different from
the enrolled one, FRR and FAR are derived by considering respec-
tively genuine scores and genuine CH scores;

• Test-4: the feasibility of using interchangeably the same finger of dif-
ferent hands to be recognised is further investigated by evaluating the
FRR and FAR computed respectively on genuine CH and impostor
scores;
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• Test-5: eventually, the possibility of using as authentication probe fin-
gers different from the enrolled one is also evaluated by deriving FRR
and FAR respectively from genuine scores and genuine CF scores.

In order to obtain results from which reliable conclusions could be de-
rived, the aforementioned score distributions have been computed accord-
ing to several distinct processing methods described in the following para-
graph.

4.1.2 Finger-vein Recognition Methods

Score distributions have been computed by considering several different
recognition methods, belonging to both geometry- and deep-learning-based
approaches.

Geometry-based Finger-vein Recognition

Since the original vein images are typically characterised by low contrast,
they are first enhanced in order to improve their quality using a contrast
limited adaptive histogram equalization (CLAHE) [353]. Finger bound-
aries are then obtained by filtering the image with a mask [167]. The finger
is then rotated and aligned to the image centre as described in [113]. Even-
tually, the images of the fingers corresponding to the right hand are flipped
in order to achieve a geometry symmetry between fingers of left and right
hands.
Finger-vein patterns are extracted from finger areas using the following
geometry-based feature extraction methods:

• Maximum Curvature (MC) [206]: scores related to veins width and
curvature are assigned to positions where vein centres are located,
which are then connected using filtering operations. Binary vein im-
ages are then obtained by thresholding the computed patterns;

• Principal Curvature (PC) [46]: he image gradient field is computed,
and noise components filtered out by means of hard thresholding. Val-
ues of principal curvature are first computed by considering the eigen-
value corresponding to the eigenvector of the Hessian matrix related
to the maximum curvature, and then binarized to generate the desired
template;

• Wide Line Detector (WLD) [113]: vein positions are extracted by con-
sidering circular neighbourhoods of each pixel, and computing differ-
ences between the centre and its neighbours. The final binary image
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is determined by counting the number of pixels inside this neighbour-
hood.

The obtained binary vein patterns are trimmed and then compared using
the correlation-based method proposed in [205] and [206], with the maxi-
mum correlation used as matching score.

Deep-learning-based Finger-vein Recognition

Along with standard geometry-based recognition methods, tests have also
been performed exploiting convolutional neural networks (CNNs) to obtain
discriminative representations from finger-vein images. An effective CNN,
namely Densenet-201 [117], has been employed in the tests. Specifically,
the final layers of a Densenet-201 architecture, that is, those performing
classification after the extraction of discriminative features, have been sub-
stituted with:

• a batch-normalisation layer, followed by a dropout regularisation with
50% of hidden units dropped;

• a fully-connected and a batch-normalisation layers producing C out-
puts, being C the number of unique identities considered for training.

Densenet’s weights have been initialised with those estimated for an
image classification task over Imagenet [267], while a unit weight ini-
tialisation has been adopted for the batch normalisation layer, and Glorot
uniform initialisation preferred for the fully-connected layers. The layers
have been then updated using a cross-entropy (CE) loss function for back-
propagation, with stochastic gradient descent (SGD) and a batch size of
64. Learning rate has been set to ε = 0.01 and divided by 10 after each
30-epoch iteration. Momentum with α = 0.9 has been used, as well as
an L2 weight decay regularisation penalty with λ = 0.025. The maximum
number of training epoch is set to 90, with early stopping in case the val-
idation loss is minimised. In the testing phase, the features extracted by
the employed network from two input finger-vein samples are compared by
evaluating a cosine distance as score, to make genuine/impostor verifica-
tion.

4.1.3 Results and Discussion

The equal error rates (EERs) achieved with the considered recognition meth-
ods for each of the test conditions presented in the previous paragraph
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Table 4.2: EERs (in %) over the SDUMLA database for the performed tests.

Method Test-1 Test-2 Test-3 Test-4 Test-5

MC [206] 8.94 8.36 9.93 46.73 9.73

PC [46] 11.70 11.07 12.81 46.64 12.95

WLD [113] 13.66 12.72 14.50 45.56 14.66

CNN 1.02 0.54 1.73 32.62 1.69

(4.1.1) are reported in Table 4.2. It is worth mentioning that, since the
geometry-based approaches do not require any specific training, the asso-
ciated performance has been computed considering all the available 106×
3× 2 = 636 classes. Conversely, the results regarding the proposed CNN-
based approach have been obtained while reserving the first half of the 106
subjects in the SDUMLA dataset for testing purposes, with the remaining
53 subjects used for CNN training. More in detail, two different training
methodologies have been considered:

• to compute the scores associated with the distributions employed for
Tests 1-3 and 5, the network has been trained with each finger of each
hand of 53 subjects representing a different class. A total of C = 53×
3×2 = 318 finger-vein classes have been therefore taken into account
in this case. For each class, five out of the six available samples have
been used for model training, with the remaining one employed for
model validation;

• the scores of the distributions used for the considered Test 4, where
the feasibility of using interchangeably the same finger of different
hands to be recognised is analysed, have been generated considered a
network trained with the same fingers of different hands taken as the
members of the same class. A total of C = 53× 3 = 159 classes have
been therefore taken into account in this case. As left-right finger sam-
ples are put in the same category, each class is now represented with
a total of 12 samples, 10 of which are fed into the model for training,
while the remaining 2 samples are used for validation. Doing this,
the network is trained to look for similarities between same fingers of
different hands and associate them to the same class, thus allowing to
evaluate the existence of such shared patterns.

The obtained results show that a pair of same fingers from different
hands do not posses similarities that allow the user to be recognised when
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Table 4.3: Kullback-Leibler divergences with respect to genuine scores.

Method impostor genuine CH genuine CF impostor CF

MC [206] 2.232 2.129 2.144 2.297

PC [46] 1.877 1.761 1.747 1.956

WLD [113] 1.718 1.658 1.633 1.790

CNN 0.237 0.106 0.058 0.281

one finger is used for enrolment and the other one for recognition. This is
evident by comparing the EERs achieved in Test-1 and Test-3, which are
basically the same, meaning that scores generated by comparing same fin-
gers from different hands of the same subject are similar to those obtained
when comparing same fingers of different subjects. Actually, the former
comparison seems to find some more similarities than the latter, as testified
by the slightly worse EERs.

Yet, such similarities cannot be assumed to be significant. Training a
CNN while considering CH fingers as belonging to the same class further
reinforce this considerations, as shown by the notably-high EER achieved
in Test-4, which means the CNN cannot find shared patterns between pairs
of fingers associated to the same class.

Interestingly, results in Test-5 also show that different fingers of the
same subject share slightly more similarities than the same finger of dif-
ferent persons. Eventually, results in Test-2 suggest that the same fingers
of different individuals are more similar than different fingers of different
persons. Such resemblance may not necessarily spring from vein patterns,
as it may depend on the geometric similarity of same fingers’ shapes.

In order to provide further evidence of the observed behaviours, the
computed score distributions are reported in Figures 4.1 - 4.4, where a
training with 318 classes has been considered for the CNN-based approach.
Genuine CH scores show basically the same distribution of impostor scores
using geometry-based approaches, while resorting to CNNs highlights the
existence of some similarities between pairs of symmetric fingers. CNNs
are also able to generate slightly-different distributions for impostor, impos-
tor CF and genuine CF scores, while geometry-based approaches cannot.

The distribution separations are quantitatively evaluated through the Kull-
back - Leibler divergences reported in Table 4.3, where the values obtained
when evaluating the separation of impostor, impostor CF, genuine CH, and
genuine CF distributions from that of genuine scores are considered. As can
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be seen, for CNNs genuine CH and genuine CF scores are slightly closer
to the genuine ones than the impostors, while impostor CF scores are even
farther. In conclusion, the obtained results show that, although symmetri-
cal fingers of the same subject show more resemblance than same fingers
from different persons, such similarities are not significant enough to be
exploited for recognition purposes.

4.2 Towards Practical Cancelable Biometrics for Finger Vein
Recognition

The increasing adoption of biometric systems as a solution for reliable user
authentication is mainly linked to the several advantages this technology
exhibits over traditional authentication methods, such as password- and
token-based ones. Together with the rapid growth of computing technolo-
gies, there is an increasing need for reliable authentication.

Using biometric data for recognition purposes may also involve severe
security and privacy concerns. Due to their uniqueness, biometric char-
acteristics can allow an attacker to track the activities of a subject whose
characteristics have been registered in different systems [277]. Moreover,
compromised biometric characteristics lose their usefulness and cannot be
used anymore, with severe consequent constraints for their owners due to
the limited number of usable identifiers. It is worth remarking that bio-
metric characteristics can be often reconstructed from their corresponding
templates [81]. Since biometric data cannot be revoked and reissued as it
happens for disclosed passwords or stolen keys, proper countermeasures
should be taken in order to address the aforementioned issues.

The wide spread use of biometric authentication imposes serious threats
to the security and privacy of its users and the system should be able to
guarantee the impossibility of leakage of information to unauthorised in-
dividuals. Between the possible solutions, as detailed in Section 1.6, bio-
metric template protection (BTP) schemes have been therefore proposed to
ensure the secure and private handling of biometric information during the
authentication process.

According to the ISO/IEC 24745 standard on biometric information pro-
tection [121], a properly defined BTP scheme should satisfy the following
properties to protect the privacy of the users:

• irreversibility: given a protected template, it should not be possible to
reconstruct the original biometric sample;

• renewability: from a given biometric characteristic it should be possi-
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ble to issue multiple protected templates;

• unlinkability: given two protected templates generated form the same
sample and enrolled in different applications, it should not be feasible
to determine that they belong to the same subject.

BTP schemes are categorised into two main classes: biometric cryp-
tosystems and feature transformation approaches. The former class can
be further separated into key-binding methods, whose aim is to secure a
cryptographic key by means of biometric data and vice versa [106], and
key-generating approaches, which derive a cryptographic key from biomet-
ric data [293]. Both aforementioned systems share the need of some helper
data generated from the employed biometric information. Feature transfor-
mation methods instead apply a key-dependent transformation function to
the biometric data or templates to be secured. In case invertible transforma-
tions are used, with system’s security therefore relying only on the secret
storage of the employed key, salting approaches are defined. Conversely,
resorting to non-invertible transformations leads to the definition of cance-
lable biometrics [123]. This latter class of BTP scheme is considered in
this study to secure the templates generated from an emerging biometric
modality, namely the the vascular patterns of human fingers.

Cancelable biometrics have been successfully applied to many tradi-
tional biometrics, including fingerprint [25, 58, 250–252, 312, 330], face
[25, 252, 269, 287], iris [94, 231, 232, 254, 354], palmprint [48, 172] and
online signature [185, 186, 189] among others. Building upon the work
proposed in [229], the effectiveness in generating cancelable biometrics
from finger vein templates using three distinct approaches, namely block
remapping, image warping, and Bloom filters are here evaluated. The two
former methods can be applied to any biometric characteristic captured in
the form of an image. They have originally been proposed as BTP scheme
in the image domain for face [252] and for iris [94] as well as in the feature
domain for fingerprints. Their use for finger veins has been also proposed
in [141, 229]. Another advantage of block remapping and warping is that
the same comparison algorithm used for the plain templates can be used to
compare the protected templates as well. The third considered cancelable-
biometrics approach can be applied to binary representations of the treated
biometric data, as done for iris in [253] or face in [85].

In summary, the main contributions of the present work are:

• thorough evaluation and comparison, in terms of recognition perfor-
mance, irreversibility, unlinkability, and renewability, of three distinct
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cancelable-biometrics approaches applied to binary features extracted
from finger vein patterns;

• application of the block-remapping and image-warping BTP schemes
in the feature domain, differently than their usage in [66,229]. Specif-
ically, six different feature representations of finger vein patterns are
considered here, in order to evaluate the most appropriate to be used
in protected biometric recognition systems;

• proposal of Bloom filters as a mean of template protection for bi-
nary finger vein features; in contrast to the previous work in [86], the
Bloom filters are applied directly to the binary vein images instead of
their application to a vein minutiae based representation.

• proposal of a pre-alignment method for improving the recognition per-
formance attainable by the employed finger vein cancelable biomet-
rics;

• exploitation of a specific attack, based on a square jigsaw puzzle solver
algorithm, to quantify the irreversibility of the block remapping ap-
proach.

The rest of the Section is structured as follows: Section 4.2.1 briefly
outlines the finger vein recognition framework used during our evaluations,
including pre-processing, feature extraction, and comparison schemes. In
section 4.2.2 the three cancelable biometrics approaches, namely block
remapping, image warping, and Bloom filters, are described. The method-
ology employed for the security and privacy analysis with respect to irre-
versibility and unlinkablity is discussed in Section 4.2.4. Section 4.2.7 ex-
plains the adopted experimental set-up, describing the finger-vein database
which has been used in the tests carried out, introducing the recognition
and security performance evaluation methodology, and reporting the ob-
tained results. Section 4.2.12 concludes this study and gives an outlook on
future work.

4.2.1 Finger Vein Recognition

The standard finger vein recognition processing chain includes: capture of
the input vein image, image pre-processing, feature extraction, and finally
template comparison.

Pre-processing. A region of interest (ROI) detection algorithm is first ap-
plied to the acquired image to localise the area containing the relevant fin-
ger vein patterns, as proposed in [167]. In order to compensate possible
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misalignments due to different finger positioning in distinct acquisitions,
a normalisation step is then commonly performed [113]. However, only
a coarse alignment can be thus typically achieved, with the need to com-
pensate errors performing shifts in both directions during the comparison
step. More importantly, such issue is much more severe when dealing with
templates transformed through block-based BTP approaches like the ones
considered here, thereby raising the need for a pre-alignment stage, as it is
here discussed in Section 4.2.3.

To further improve image quality, the contrast of the ROI image is en-
hanced, and the non-uniform illumination conditions are compensated by
applying contrast limited adaptive histogram equalization (CLAHE) [353],
High Frequency Emphasis Filtering (HFEF) [348], and Circular Gabor Fil-
tering (CGF) as proposed in [343].

Feature Extraction. Feature representations are typically derived from
pre-processed images, with the aim of extracting discriminative informa-
tion from them. In order to perform a proper comparison of the perfor-
mance attainable through the three considered BTP approaches, different
feature extraction algorithms have been benchmarked. All of them gener-
ate binary templates containing geometric information related to the shape
or topological structure of the observed vein patterns. In more detail, the
following six methods are considered:

• Gabor Filtering (GF) [152], inspired by the human visual system
multi-channel processing of visual information. processes vein data
through a bank of kernels to obtain distinct filtered images, then fused
into a single representation to generate the desired binary template.

• Isotropic Undecimated Wavelet Transform (IUWT) [88] is a redun-
dant wavelet transform whose coefficients encode information corre-
sponding to different spatial scales. Levels 2 and 3 of such transform
exhibit the best contrast for the blood vessels, and are therefore used
to create the sought binary template.

• Maximum Curvature (MC) [206] extracts the lines corresponding to
the central part of the veins, being therefore insensitive to varying vein
widths.

• Principal Curvature (PC) [46] computes the eigenvalues of the Hes-
sian matrix given by the gradient at each pixel to extract the principal
curvature values of the input image, and use them to get a binary vein
template.
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(a) Original Image (b) Pre-processed image

(c) GF features (d) IUWT features

(e) MC features (f) PC features

(g) RLT features (h) WLD features

Figure 4.5: Enhanced image and extracted features for GF, IUWT, MC, PC, RLT and
WLD: MC extracts a thinner vein structure than the other methods.

• Repeated Line Tracking (RLT) [205] tracks the veins in an image
by computing, for each pixel, a statistical likelihood of belonging to
a blood vessel. Thresholding is then applied to obtain a binary vein
template.

• Wide Line Detector (WLD) [113] is an adaptive thresholding tech-
nique, comparing each pixel with its neighbourhood to determine which
ones should represent veins in the final binary template.

Figure 4.5 shows a finger vein image with its corresponding pre-processed
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version and the extracted features. The publicly available open-source im-
plementation PLUS-OpenVein Toolkit1 has been used to process finger vein
images.

Matching. The binary templates generated from two vein images can be
compared using a correlation approach as in [206]. As already mentioned,
multiple shifted versions of the available data can be considered in an un-
protected system to compensate possible misalignments, with the maxi-
mum of the computed correlations used as final comparison score.

4.2.2 Finger Vein Cancelable Biometrics

The non-invertible transforms considered to generate cancelable biometrics
from the finger vein binary templates described in Section 4.2.1 are detailed
in the following subsections. All of them are key-dependent. In general, a
biometric template protection system can be based on one of two types
of keys: system-specific or user-specific keys. For the former type, the
same key is used for the whole recognition system, and each user has the
same key. In the user-specific key scenario, each user has an individual
key, which has to be stored and retrieved whenever the user needs to be
authenticated. This requires an additional key handling and secure storage
of the user specific keys. For simplicity and due to space constraints only
system-specific keys are evaluated in this work.

Block Remapping. A fixed-size region of N ×W pixels, aligned to the
centre of the finger area, is first extracted from the binary template. The se-
lected region is then divided into BT square blocks of B ×B pixels, out of
which a subset of BC blocks are randomly selected. The chosen blocks are
remapped according to a system-dependent pre-defined key [252]. The ob-
tained distorted templates can be compared against each other in the trans-
formed domain as described in the previous Section. Examples of cance-
lable biometrics generated through the block remapping scheme applied to
MC features are given in Figure 4.6.

Since only a subset of the available blocks is included in the remapped
template, the performed transformation is not a permutation, being there-
fore non-invertible. The selected blocks can be repeated multiple times in
the transformed template, in order to obtain an image whose size is the same
as the input one. The decisions about which blocks to consider, and their
positions in the remapped template, depend on the employed key. Such key
has to be the same for all the templates belonging to the users of a particular

1http://wavelab.at/sources/OpenVein-Toolkit/
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(a) Block size 32x32 (b) Block size 64x64

Figure 4.6: Block remapping example with different block sizes using the same MC feature
image as in Fig. 4.5e

application. The different blocks may not contain the same amount of vein
information. Thus, the recognition performance can be affected by such se-
lection. Specifically, due to illumination issues, blocks extracted from the
outer part of the finger generally contain less vein information compared to
the ones belonging to the central area. Therefore a key-space reduction is
performed considering only the selection of blocks belonging to the central
area of the finger. The impact on recognition performance, as well as on
the unlinkablity of the key-space reduction, is evaluated in Section ??.

Image Warping. The mesh warping [320] algorithm can be applied to the
binary vein templates in order to distort them. Specifically, a grid is laid
over the representation, and its vertices are offset by amounts linked to the
key defining the transformation. Each row and column of the template is
then transformed performing a miniaturization or an expansion based on the
distorted grid. Miniaturization is performed with the help of a box filter,
while linear interpolation is used for expansion. The distorted templates,
whose examples are shown in Figure 4.7, can still be compared as described
in the previous Section.

Bloom Filters.According to the improved protection scheme proposed in
[85], applying Bloom filters to generate cancelable biometrics requires three
key steps:

1. Feature extraction and encoding: given a two-dimensional binary tem-
plate originated from the collected biometric sample, it is divided into
nBlocks blocks having size nBits × nWords .

2. Structure-preserving feature re-arrangement: in order to generate un-
linkable templates, it is necessary to dissipate the information of the
feature vectors among different blocks, while preserving verification
accuracy. To this end, the nBlocks blocks of the original unprotected
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(a) Block size 32, max. offset 12 (b) Block size 64, max. offset 24

Figure 4.7: Block warping example with different parameters using the same MC feature
image as in Fig. 4.5e

template are re-grouped into nGroups sets, each consisting of nBlocks-
Group blocks (nBlocks = nGroups × nBlocksGroup). Then, the
rows of the vertical concatenation of the nBlocksGroup blocks are
permuted within each set.

3. Bloom filter computation: protected templates are extracted by com-
puting one Bloom filter b from each of the nBlocks blocks, such that
the final protected template C consists of nBlocks Bloom filters of
size 2nBits : C =

{
b(1), . . . ,b(nBlocks)

}
. In order to map one block to a

Bloom filter, the entire sequence of columns of each block is succes-
sively translated to their decimal value, and the corresponding indices
are set to one in the Bloom filter.

The final comparison score s between a probe Cq and a reference Cr pro-
tected templates is defined as the average Bloom-filter-based dissimilarity
score:

S(Cq,Cr) =
1

nBlocks

nBlocks∑
i=1

HD(b
(i)
q ,b

(i)
r )

|b(i)
q |+ |b(i)

r |
(4.1)

where |b| denotes the number of bits set to 1 within a Bloom filter b, and
HD(b

(i)
q ,b

(i)
r ) is the Hamming distance between two Bloom filters.

4.2.3 Pre-alignment for Template Protection

Misalignment of two templates in terms of shifts and planar rotations does
not only cause problems during the comparison, but even more severe prob-
lems for all block-based cancelable biometrics schemes. While planar rota-
tions and vertical shifts can be ruled out easily for finger veins (e.g. as de-
scribed in the pre-processing Section 4.2.1), dealing with horizontal shifts
is not as straightforward. Horizontal shifts are usually compensated during
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the comparison by shifting one of the templates. However, this strategy can-
not be used for protected templates, especially if the shifts become larger
than the block size of the cancelable scheme as feature information in dif-
ferent blocks is treated differently, leading to a dissimilar output template,
and consequently to a recognition performance drop. Due to the nature of
the applied non-invertible transforms, those dissimilarities in the protected
templates cannot be compensated by shifts during the comparison. Thus, a
suitable pre-alignment prior to the application of the block based cancelable
scheme is needed.

Here is therefore proposed a pre-alignment strategy in which all tem-
plates originating from the same finger belonging to the same subject are
first registered against each other with the help of a correlation-based ap-
proach, derived from the comparison scheme in [206] (see Section ??).
Specifically, besides the comparison score, the scheme also outputs the rel-
ative position of the two templates to each other. This position encodes the
shifts needed during comparison to arrive at the highest score, i.e., the best
possible alignment of the two templates. Hence, if the reference template is
shifted according to that information, an alignment/registration of the tem-
plates can be done. This alignment is only done if the comparison score
is above a pre-defined threshold in order to avoid ambiguous alignment re-
sults. This kind of pre-alignment is only a proof of concept, which needs to
be further analysed and improved. It requires the unprotected templates to
be available, hence violating BTP principles. The benefits of the proposed
pre-alignment are confirmed during the recognition performance evaluation
of the employed cancelable biometrics schemes in Section 4.2.8.

4.2.4 Security Analysis

In this section, the conducted security analysis is described in terms of the
two main properties of unlinkability and irreversibility. To quantify the un-
linkability, a general approach evaluating comparison scores is employed.
Regarding the irreversibility, beyond general considerations about the con-
sidered BTP schemes, an exemplary attack against the block remapping
approach, based on automated square jigsaw puzzle solvers is presented
and evaluated and the irreversibility for block warping and the Bloom filter
approach is briefly discussed.
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4.2.5 Security Analysis: Unlinkability

Template unlinkability is evaluated according to the protocol proposed in
[84], for which a public implementation is available2. Two protected tem-
plates T1 and T2 generated from the same biometric sample are defined as
linkable if an attacker can determine that they were extracted from mated
instances, and hence conceal a unique identity.

To accomplish such goal, the attacker compares the two protected tem-
plates by computing a linkage score s = LS (T1,T2), upon which he
should decide whether the considered templates actually stem from mated
instances. Following Kerckhoffs’s principle [139], it is assumed that the at-
tacker knows how the system works and, in particular, the mated-instance
and non-mated-instance score distributions generated by comparing pro-
tected templates. These distributions can be quantitatively compared by
means of two different measures:

• a local measure D↔ (s), evaluating the linkability of templates on a
score-wise basis. A measure D↔ (s1) = 1 for a specific linkage score
s1 means that an attacker will be able to link the considered tem-
plates to the same instance with full certainty. On the other hand,
D↔ (s0) = 0 should be interpreted as full unlinkability for templates
giving linkage score s0. Intermediate values of D↔ (s) report an in-
creasing degree of linkability;

• a global measure Dsys
↔ , giving an overall evaluation of the whole BTP

scheme unlinkability. A system with Dsys
↔ = 1 should be fully link-

able, meaning that mated-instance and non-mated-instance score dis-
tributions having no overlap, with local measures D↔ (s) = 1 for
linkage scores computed from any pair of mated samples. Similarly,
Dsys
↔ = 0 means that the system is fully unlinkable, with mated and

non-mated score distributions completely overlapping. All intermedi-
ate values of Dsys

↔ report a decreasing degree of unlinkability.

As detailed in [84], given a linkage score s, the local measure D↔ (s)
should indicate whether it is more likely that the two considered templates
stem from mated instances, whose probability is p (HM |s) for hypothesis
HM , than from non-mated instances, characterised by probability p (HNM |s)
for hypothesis HNM . Therefore, D↔ (s) can be expressed as the difference
of conditional probabilities for each hypothesis:

D↔ (s) = p (HM |s)− p (HNM |s) . (4.2)
2https://github.com/dasec/unlinkability-metric
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The unknown conditional probabilities can be expressed through the known
probabilities of observing s given templates belonging to mated or non-
mated samples, that is, p (s|HM) and p (s|HNM), rewriting eq. 4.2 in terms
of the likelihood ratio between them, LR (s) = p (s|HM)/p (s|HNM), as:

D↔ (s) =

{
0 if LR (s) · ω ≤ 1

2 LR(s)·ω
1+LR(s)·ω − 1 if LR (s) · ω > 1

(4.3)

where ω = p (HM) /p (HNM) denotes the ratio between the prior proba-
bilities of the mated and non-mated samples distributions. As discussed
in [84], this latter constant ratio can be assumed to be known for operating
systems with registered mated and non-mated access attempts. Alterna-
tively, it can be set to ω = 1 as in the present analysis.

The global linkability measure is instead computed measuring how likely
it is to get a linkage score stemming from the mated samples distribution,
being then defined in [84] as

Dsys
↔ =

∫ smax

smin

p (s|Hm) ·D↔ (s) ds (4.4)

4.2.6 Security Analysis: Irreversibility

Measuring the irreversibility of a BTP scheme means evaluating the amount
of information regarding the original biometric template or sample which
the protected one leaks. There are two different scenarios, one is if the tem-
plate protection key is known to the attacker, i.e. it has been compromised,
and the other one is if the key is not known to the attacker.

As for the block remapping scheme, irreversibility has an upper bound
given by the number of blocks selected from the original template to pro-
duce the protected one. A coalition attack, where an attacker tries to over-
take this limit exploiting the knowledge of multiple protected templates,
each containing different parts of the original biometric data, has been pro-
posed in [127] and applied to iris representations protected with this BTP
scheme.

Yet, the original template could be partially reconstructed even from
only one of its protected version through a simple brute-force attack, where
all possible block permutations are tested until the correct block order is
found. However, in order to conduct such attack without the knowledge of
the original content, an indicator is needed to establish whether a block
is set at the correct position or not. This could be done by comparing
the border pixels of the available blocks, and searching for the best match
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among possible combinations. Such task essentially looks like solving a
square jigsaw puzzle, an issue for which several automated procedures can
be found in literature [45, 220] As the protected templates do not contain
all blocks of the original template, an appropriate reconstruction approach
should be able to deal with missing parts. This can be done using the greedy
placement strategy and the prediction-based dissimilarity metrics proposed
in [220], for which a public implementation is available3. This approach
does not require any prior knowledge about the original data, and is able
to handle puzzles with missing pieces, pieces of unknown orientation, and
unknown overall size, as well as pieces from multiple input puzzles. The
performance of a square jigsaw puzzle solver can be measured according
to either global and local metrics [45]. The former compare original and
reconstructed contents quantifying the number of blocks at the correct po-
sition. The latter focus on clusters of blocks, rating either the biggest cor-
rect block cluster or the number of correct block pairs, that is, blocks with
at least one correct neighbour. Given that, in the scenario here consid-
ered, the amount of information leakage does not depend on the absolute
block positions but on the continuity of the vein lines (local clusters), the
two mentioned local metrics are employed in the evaluation of the block
remapping robustness against such attack reported in Section 4.2.10.

Regarding the block warping scheme, in case the key is not known to the
attacker he can try to derive it, or at least some hints about it, by analysing
the interpolation artefacts using image forensic methods [19]. Depending
on the strength of the applied warping and the number of available pro-
tected templates, the key can be restored with a certain probability. An
exact quantification as it is performed for the block remapping is out of the
scope of this work though. However, also in case the key is known to the
attacker, the applied mesh warping transformation can be considered irre-
versible, since interpolation strategies are applied. Thus, it is not possible
to completely recover the original data even if the warping parameters are
known. The level of irreversibility is higher if miniaturization is applied,
due to overlay effects [94].

Regarding Bloom filters, as shown in [85], in a full disclosure model
where the attacker knows both the stored templates and the employed key,
the number nSeq of possible original binary representations which could
result in the same protected block features is given by

nSeq =

|b|∑
i=1

(−1)|b|−i
(
|b|
i

)
inWords, (4.5)

3https://github.com/ZaydH/sjsu_thesis
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This number reaches rapidly for even for small values of the number |b| of
bits set to 1 within the considered block. This in turn leads to the desired
irreversibility.

4.2.7 Experimental Tests

In this section, the finger vein database exploited for the conducted exper-
imental tests is detailed, the parameters of the employed BTP schemes are
described, and the employed recognition performance evaluation protocol
is outlined.

Finger Vein Dataset. The University of Twente Finger Vascular Pattern
Database (UTFVP) dataset [289] has been used for our experimental evalu-
ations. UTFVP contains 1440 images in total, captured from 60 subjects, 6
fingers per subject (index, middle and ring finger) and 4 images per finger.
The images have a resolution of 672 × 380 pixels, 8-bit greyscale, and are
stored in the PNG format. The width of the visible vein lines inside the
images is between 4 − 20 pixels. The binary templates extracted from the
pre-processed images have a size of N ×W = 336× 142 pixels.

Block Remapping. The input feature representation is divided into square
blocks of size B × B pixels, with B = 32 and B = 64 considered in the
performed tests. Cropping is performed in case the template dimensions are
not multiples of the employed block size. As for the percentage of blocks to
be included in the transformed template, it has been empirically evaluated
that keeping 75% of the original blocks leads to the best trade-off between
recognition performance and privacy. The selected blocks are rearranged
according to a system-dependent key in the remapped template, whose size
is the same as the original input.

Block Warping. In order to perform the mesh warping transformation, a
regular grid of G×G pixels is laid on the image, and the maximum offset
O of the vertices that the transformation is allowed to perform is selected.
The maximum offset is limited by the block size, and should be smaller
than half the block size to achieve a usable output. As for block remapping,
cropping is performed in case the size of the original template does not
allow to lay on it a grid with all equal elements. In particular, G = 32 with
O = 12 and G = 64 with O = 24 have been tested.

Bloom Filters. The settings of the Bloom-filter-based protection scheme
are determined according to the procedure detailed in [86]. Specifically,
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nBits is set to 10 to maximize irreversibility, while nWords is selected
within the allowed range as 48 to maintain proper recognition capabili-
ties. The number of blocks in horizontal direction nBlocksX is then set
to 7, and the number of blocks in vertical direction nBlocksY to 14, with
nBlocks = nBlocksX · nBlocksY . In addition, 4 different key permuta-
tions are used to add unlinkability to the Bloom filter approach.

4.2.8 Recognition Performance Evaluation

This Section presents the recognition performance obtained for baseline un-
protected systems, and the performance achievable with the proposed can-
celable biometric approaches, without and with the proposed pre-alignment
procedure are outlined.

The system recognition performance is quantified in terms of the false
non-match rate (FNMR) and corresponding false match rate (FMR). The
variance of the obtained equal error rate (EER, the point where the FMR
equals the FNMR) has been used as an indicator of the dependence of
the recognition performance on the employed transformations key parame-
ter. In addition, the FMR1000 (the lowest FNMR for FMR = 0.1%) and
the ZeroFMR (the lowest FNMR for FMR = 0%) are used to quantify
the recognition performance. For their calculation the test protocol of the
FVC2004 [183] is followed.

Baseline Recognition Performance Results. The baseline results in terms
of EER, FMR1000 and ZeroFMR for the six employed feature represen-
tations (IUWT, GF, MC, PC, RLT, and WLD) are listed in Table 4.4. The
reported values show that MC performs best in terms of all three perfor-
mance indicators, followed by PC, IUWT, GF, and WLD, while RLT per-
forms worst.

Cancelable Schemes Recognition Performance Results. Table 4.5 re-
ports the performance results regarding the considered cancelable biomet-
rics schemes for the considered transformation parameters, expressed in
terms of mean EER with the corresponding 95% confidence intervals. The
DET curves showing the aforementioned results are reported in Figure 4.9.
Fig. 4.10 also shows the impact of parameter selection for block remapping
and block warping, when applied to MC feature representations. For block
remapping, bigger block sizes are preferable for recognition purposes, with
MC performing overall best. The same holds for block warping, where big-
ger block sizes lead to a better performance despite the higher maximum
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(a) Block Remapping 64x64 (b) Block Warping 64 - 24

(c) Bloom Filter

Figure 4.9: DET curves for all six feature types and the different template protection
schemes: (a) block remapping, (b) block warping and (c) Bloom Filters on the UTFVP
database.

offset. The best performance using Bloom filters is achieved for the PC-
based features, yet with overall results far worse than those achieved with
the block remapping and the block warping BTP schemes.

It can be observed that template protection significantly degrades the
achievable recognition performance, while the employed transformation
keys introduce only limited variability in the obtained results.

Cancelable Schemes Performance Results with Pre-Alignment. The ef-
fectiveness of the alignment approach proposed in Section 4.2.3 for the em-
ployed cancelable schemes is confirned by the results given in Table 4.6. It
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(a) Block Remapping (b) Block Warping

Figure 4.10: DET curves showing the impact of different block remapping (left) and block
warping (right) parameters for MC on the UTFVP dataset.

is evident that pre-aligning the considered finger vein patterns significantly
improves the results attainable for block-remapping, block-warping, and
Bloom-filter BTP approaches, allowing to obtain recognition performance
close to baseline unprotected systems. When adopting pre-alignment, ap-
plying Bloom filters to PC features even outperforms almost all block-
remapping combinations, with the only exception related to the use of MC
features. For block warping, a consistent improvement in terms of recog-
nition accuracy can be achieved for all six feature types and all employed
transformation parameters.

4.2.9 Unlinkability Analysis

The local unlinkability measure D↔ (s) is computed for selected combi-
nations, with the obtained results depicted as blue curves in Figure 4.11
for the considered cancelable biometrics approaches. The global measures
Dsys
↔ obtained for all the considered parameter combinations are instead

listed in Table 4.7. As it may be observed, especially in the case of block
warping and MC features, there is no big overlap between the mated (green)
and non-mated (red) score distributions, being p (Hm|s) > p (Hnm|s) for
s > 0.15. The same happens in case of block remapping for s > 0.22.
Accordingly, for those intervals D↔ (s) = 1, as the templates are fully
linkable. For block warping, since most of the weight of the mated in-
stances score distributions lies in the aforementioned score interval, the
global linkability of the systems Dsys

↔ is 0.57, thereby showing that the con-
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(a) (b)

(c)

Figure 4.11: Mated-sample (solid green) and non-mated-sample (dashed red) score dis-
tibutions for protected templates generated from the UTFVP dataset. The blue curve
represents the score-wise linkability measure D↔ (s), and Dsys

↔ gives an estimation of
the overall linkability level of the whole system. (a): Block remapping using MC and
B = 64; (b): Block warping using MC, G = 64 and O = 24; (c): Bloom filters.

sidered scheme do fulfil the unlinkability requirement only partially. The
block remapping scheme instead shows proper unlinkability for smaller
block sizes, with a notable worsening of the obtained performance for
larger block values. The lowest linkability measures are obtained when
employing Bloom filters as BTP scheme. The unlinkability requirement is
therefore satisfied only by the block-remapping and the Bloom-filter BTP
schemes, whereas the block-warping approach is not suitable for template
protection in terms of unlinkability.
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Table 4.7: Unlinkability results in terms Dsys
↔ for all cancelable schemes and all six fea-

ture types on the UTFVP dataset.

Scheme GF IUWT MC PC RLT WLD

BM 32 0.016 0.02 0.079 0.09 0.033 0.076

BM 64 0.112 0.116 0.229 0.078 0.11 0.176

BW 32/12 0.435 0.498 0.658 0.572 0.52 0.501

BW 64/24 0.412 0.441 0.566 0.502 0.48 0.468

Bloom Filter 0.344 0.029 0.063 0.024 0.027 0.031

4.2.10 Irreversibilty Analysis

As already discussed in the previous section, the block-remapping approach
shows proper unlinkability performance to be considered as BTP scheme.
Its irreversibility is therefore here also analyzed in detail, exploiting the au-
tomated square jigsaw puzzle solver algorithm introduced in Section 4.2.6,
of which Figure 4.12 depicts the process. Specifically, the top row of Figure
4.12 reports the original template. The blocks considered during remapping
are grouped into regions of connected blocks, and their outline is high-
lighted. The middle row shows the block remapped images. This image
consists only of considered blocks. The bottom row shows the square jig-
saw puzzle solver reconstruction results. Again, this image consists only of
the considered blocks. In a successful reconstruction, all block regions are
restored. Due to the omitted blocks, an exact arrangement of the regions is
not always possible. The blocks are marked with the same numbers across
all three images. The amount of information from the original template
(considered blocks) which can be restored hereby is directly linked to the
irreversibility property of the template protection scheme, with the highest
possible amount of reconstructed data r is r = Bpt

Bot
, where Bpt is the num-

ber of blocks considered in the protected template, and Bot is the number
of blocks contained in the original template.

Table 4.8 lists the results of the puzzle solver approach, averaged over
each single run (key) and then again over all the 10 different keys. The
values in the table are relative to the maximum possible amount of data that
can be reconstructed (r), e.g., if only 7 out of 10 blocks are considered and
the value in the table is 100%, this means that 100% · 7

10
= 70% of the total

unprotected template has been successfully reconstructed. For both kinds
of considered local metrics, the best reconstruction results were obtained
for PC features, where more than 90% of the information can be restored
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(a) ROI, Considered Block (b) MC: ROI, Considered Blocks

(c) Remapped Blocks (d) MC: Remapped Blocks

(e) Reconstructed Template (f) MC: Reconstructed Template

Figure 4.12: Template reconstruction using PuzzleMultisolver [220], extracted features
(MC) in the right column. Top row: ROI, labeled blocks and used blocks, middle row:
remapped images, bottom row: puzzle solver reconstruction.
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Table 4.8: Irreversibilty Analysis for Block Remapping on the UTFVP dataset

Reconstructed Pairs

Block size GF IUWT MC PC RLT WLD

32x32 72.4% 71.5% 47.3% 69.3% 47.5% 42.0%

64x64 93.1% 94.0% 87.9% 94.3% 90.4% 84.7%

Max. Reconstructed Region Size

Block size GF IUWT MC PC RLT WLD

32x32 54.9% 53.7% 30.6% 51.4% 32.2% 28.1%

64x64 93.4% 95.1% 88.1% 95.7% 93.2% 84.7%

Perfect Reconstruction

Block size GF IUWT MC PC RLT WLD

32x32 2.58% 2.33% 0.07% 1.99% 0.03% 0.03%

64x64 76.7% 82.4% 61.5% 85.2% 71.5% 54.4%

for all block size/considered blocks combinations. The lowest results were
achieved using MC, for which however nearly 80% of the maximum pos-
sible template information could be always restored. This means that the
level of irreversibility depends solely on the number of blocks considered,
as almost all the considered blocks can be reconstructed to match the un-
protected template. The difference in the reconstruction performance can
be explained by the used methods: MC extracts only the centre lines of the
recognized veins, whereas PC and WLD extracts wider vein patterns.

Considering the block size of 64 × 64, for 55 − 85% of the images a
perfect reconstruction was possible. Thus, if an attacker gets the original
template and the protected one, he is able to reconstruct the key (i.e. the
mapping information), which poses another threat for this kind of template
protection scheme if a system-dependent key is used.

For BTP schemes based on Bloom filters, the success probability for
an attack trying to recover the original unprotected features from their pro-
tected representation can be estimated as nSeq

nBlocks
, being nSeq the aver-

age number of possible sequences resulting in a single Bloom filter, defined
in eq. (4.5). In the considered tests, the success probabilities for guessing
the original unprotected templates range from 10−192 to 10−23, therefore
confirming the irreversibility of the employed Bloom filters for template
protection.
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4.2.11 Results Discussion and Summary

Regarding recognition capabilities, the block warping scheme performed
best, as it achieved the highest recognition performance in terms of EER,
followed by the block remapping scheme, with the Bloom filters achieving
the worst performance. For both block remapping and warping there is a
general trend of recognition performance improving with increasing block
sizes. The proposed pre-alignment approach turned out to be beneficial for
the all the block-based cancelable biometrics schemes, as it was able to
improve the performance considerably.

Compared to the Bloom filter based approach for the spectral minutiae
representation as presented in [86] our results for the protected templates
without performing the pre-alignment are inferior. However, the detection
and extraction of reliable minutiae points for finger veins is a difficult and
error prone task. Hence, usually the binary representation are used as they
achieve more reliable and stable results (cgf. our baseline EER of 0.36%
on the UTFVP dataset compared to the baseline EER of 1.5% as reported
in [86]. On the other hand, those binary representation have the aforemen-
tioned, inherent alignment problems in combination with all block based
template protection schemes. This is confirmed by the fact that our results,
in case the pre-alignment strategy is employed, are superior to the ones re-
ported in [86] (cgf. 0.23% EER for Block Warping 64 - 24, and 1.25% EER
for Bloom filters, instead of 2.1% EER reported in [86]).

In terms of unlinkability, block warping achieves the lowest security,
thereby unveiling the method inadequacy as BTP scheme.

The employed puzzle-solver attack also showed that the block remap-
ping scheme is not secure enough, since its irreversibility solely relies on
the amount of blocks which are not considered, and even the key can be
reconstructed under certain circumstances. Hence, in terms of security, the
Bloom filter approach remains as the only effective solution.

The different feature types had an impact on the recognition perfor-
mance and the security as well, but the general trend remained the same
among all six tested feature types. There is a trade-off between recogni-
tion performance and security (in terms of unlinkability and irreversibility)
observed for both the block remapping and the block warping approaches:
changing the employed transformation parameters, the higher the recogni-
tion performance, the lower the level of security, and vice versa. Conse-
quently, the decision regarding which kind of template protection scheme
should be used depends on the current requirements: if recognition perfor-
mance is more important, block remapping or warping should be applied,
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whereas if security is the main concern, the Bloom filter approach has to be
chosen. The results for the pre-alignment method confirmed that an align-
ment of the templates to be protected should be done in any case as it helps
to retain a higher recognition performance. The proposed proof of con-
cept alignment method does not comply with BTP principles. Therefore, it
is necessary to further investigate a universal alignment method, based on
some kind of finger landmarks.

4.2.12 Conclusion

In this study three different cancelable biometrics schemes for finger vein
recognition are evaluated, namely block remapping, block warping and
Bloom filters. Six different feature extractors of well-established vein recog-
nition schemes, outputting binary templates were utilised to generate the
plain templates. These templates were then protected using the three tested
cancelable biometrics schemes. In addition, a pre-alignment approach prior
to the application of the cancelable schemes is proposed and tested as well.
The evaluation was conducted on two well known finger vein datasets, the
UTFVP and the SDUMLA-HMT. Recognition performance, unlinkability
and irreversibility were evaluated.
Block remapping and block warping in combination with the pre-alignment
achieved the best results in terms of recognition performance. However,
block remapping is not secure enough as it turned out that its unlinkability
as well as irreversibility is rather low. Block warping has a low unlinkabil-
ity as well.
Hence, only the Bloom filter approach is suitable in terms of security. In
combination with the pre-alignment it achieves an acceptable recognition
performance, although this recognition performance is still much worse
than the baseline one. Without the pre-alignment, the resulting recognition
is not usable at all.

Thus, an accurate, universal pre-alignment, which does not require the
unprotected templates to be present in the system, is necessary in order
to employ a well performing (in terms of recognition accuracy) template
protection scheme.

In our future work we will aim for further performance improvements
of the Bloom filter approach as this method turned out to be the most bene-
ficial one. Furthermore, we will evaluate other variants of block remapping
and block warping, like remapping including shifts in the blocks and recur-
sive remapping, as well as other strategies to derive the warped grid in the
warping approach.
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CHAPTER5
Invisible Biometrics: Brain Waves

“COGNITIVE BIOMETRIC” refers to biometric traits which are de-
tected during cognitive and/or emotional brain states. More in
detail, cognitive biometrics are based on the measurement of

signals directly or indirectly generated by the “way the individual thinks”
as a distinctive characteristic for automatic user recognition [33]. In the last
years, the interest in this field is growing, and many studies exploiting bi-
ological signals, like electroencephalogram (EEG), electrodermal response
(EDR), electrocardiogram (ECG), blood pulsevolume (BPV), electromyo-
gram (EMG), to cite a few, for the purpose of automatic user recognition
have been proposed. In particular, the evidence that the brain activity car-
ries distinctive information about the individual identity has led to an in-
creasing interest in the research on cognitive biometrics.

The brain activity during specific mental states can be captured by means
of different methodologies. Specifically, brain activity can be recorded ei-
ther by measuring the blood flow in the brain or by measuring the neuron
electrical activity. To the first category belong approaches like functional
magnetic resonance imaging (fMRI), which measures the concentration of
oxygenated and de-oxygenated haemoglobin in response to magnetic fields;
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the near-infrared spectroscopy (NIRS), which measures the concentration
of oxygenated and deoxygenated hemoglobin by means of the reflection of
infrared light by the brain cortex through the skull; the positron emission to-
mography (PET), which measures neuron metabolism through the injection
of a radioactive substance in the subject. To the second category belong ap-
proaches like magneto-encephalography (MEG), which is sensitive to the
small magnetic fields induced by the electric currents in the brain, and elec-
troencephalography, which is sensitive to the electrical field generated by
the electric currents in the brain.

Since EEG recordings are acquired with portable and relatively inex-
pensive devices when compared to the other brain imaging techniques, it is
more feasible to develop an EEG-based biometric system instead of design-
ing automatic recognition based in the other acquisition methodologies. In
this Section the use of EEG signals for the purpose of user recognition will
be presented. EEG signals belong to the category of invisible biometrics:
since EEG signals are produced by ionic current flows within the brain’s
neurons, they’re inherently “secret”. In addition, EEG-based biometric sys-
tems are robust against sensor spoofing. Unlike conventional biometrics,
an attacker can’t covertly acquire EEG signals in physical form or synthet-
ically generate them at a later time and feed them to sensors. Also, there’s
no need for specially designed sensors to provide liveness detection [34].

This Chapter is structured as follows. In Section 5.1 a characterization
of the brain signals and rhythms is given. Section 5.2 presents an overview
about a generic EEG signal acquisition system. In Section 5.3 EEG signal
acquisition protocols used in biometric oriented applications are described.
Section 5.4 gives an introduction on the use of EEG signals in the field of
biometric recognition. Eventually, Section 6.1 presents a study concerning
an EEG-based biometric system exploiting visual stimuli.

5.1 EEG Signals: Brain Activity and Brain Rhythms

Since the early research on EEG analysis, it has been observed that the
regions of a healthy human cortex have their own intrinsic rhythms in the
range of 0.5-40Hz. In general, five main rhythms can be detected from
an EEG recording: Delta (δ [0.5 − 4]Hz), Theta (θ [4 − 8]Hz), Alpha (α
[8−14]Hz), Beta (β [14−30]Hz) and Gamma (γ over 30Hz). In Figure 5.1
examples of δ,θ, α, β and γ rhythms acquired through a single channel are
depicted.

The amount of activity in different EEG frequency bands can be quan-
tified employing spectral analysis techniques. The contribution of the dif-
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Figure 5.1: Examples of Delta, Theta, Alpha, Beta, and Gamma waves acquired from a
single channel.

ferent rhythms to the EEG depends mainly on the level of alertness, on the
age and behavioral state of the subject. Moreover an EEG pattern is in-
fluenced by neuro-pathological conditions, metabolic disorders, and drug
action. The different brain rhythms or some combination of them become
dominant oscillations during specific mental states, which can be induced
by the performance of a proper acquisition protocol. Specifically, Delta and
Theta frequency bands are considered to represent slow oscillating neural
synchronization, or slow wave (SW) activity, while Beta and Gamma bands
represent fast wave (FW) activity [13]. Brain oscillations in these frequency
bands has been linked to various physio-psychological states and cognitive
functions, as reported for instance in [147], [72] and [14]. A more detailed
characterization of the subbands is given in the following.

• Delta [0.5− 4]Hz: Delta rhythm is a predominant oscillatory activity
in EEGs recorded during the so called deep or slow wave sleep (SWS).
In this stage, Delta waves usually have large amplitudes (75−200µV )
and show strong coherence all over the scalp. In newborns, slow Delta
rhythms predominate. An increase in Delta EEG activity during the
performance of a mental tasks has shown to be related to an increase
in subjects’ attention to internal processing [98].

• Theta [4− 8]Hz: In human scalp EEG, changes in Theta rhythms are
very difficult or almost impossible to detect without the help of com-
putational methods. If EEG power in a resting condition is compared
with a test condition, Theta power synchronizes, that is an increased
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Theta activity is observed. In particular Theta band power increases
in response to memory demands, selectively reflecting the successful
encoding of new information [144].

• Alpha [8 − 14]Hz: The oscillatory Alpha band activity is the most
dominant rhythm which emerges in normal subjects, most pronounced
in the parieto-occipital region. It is manifested by a peak in spectral
analysis. The Alpha brain oscillations may present amplitudes large
enough to be clearly seen in raw EEG traces acquired in specific men-
tal states. It is characteristic of a relaxed but wakeful state primarily
with closed eyes, and attenuates with eyes opening or mental exertion
due to event-related Alpha power desynchronization. These changes
in the Alpha band reflect an increase in tonic energetic levels related
to increased arousal caused by basic processing of visual informa-
tion [12]. Moreover there is evidence that attentional and semantic
memory demands lead to a selective suppression of Alpha in differ-
ent subbands and that the well described effects of visual stimulation
represent just a special class of sensory-semantic task demand [143].
According to these evidences, the Alpha oscillations play an impor-
tant role in suppression of processing for inputs in the brain. This
confirms the evidence that Theta and Alpha band power are related to
each other, although in an opposite way.

• Beta [14 − 30]Hz: Phase synchrony in Beta frequency band is en-
hanced for consciously perceived stimuli [198], and detectable mainly
from the involved cortical areas, including somatosensory, frontal,
parietal and motor regions, depending on the performed task. Specifi-
cally, Beta activity is characteristic for the states of increased alertness
and focused attention.

• Gamma (over 30Hz): Neuronal synchronization in the Gamma band
is considered important for the transient functional integration of neu-
ral activity across brain areas, in order to achieve various functions
involving active information processing, e.g., recognition of sensory
stimuli, and the onset of voluntary movements [300]. Gamma com-
ponents are difficult to record by scalp electrodes and their frequency
usually does not exceed 45Hz. Components up to 100Hz, or even
higher, may be registered in electrocorticogram (ECoG).

In general, it can be assumed that the slowest brain rhythms are domi-
nant during an inactive state and the fastest are typical of information pro-
cessing performance.
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(a) (b)

Figure 5.2: (a) The 10-20 international system seen from left (right) and above the head
(left). The letters F, T, C, P and O stand for frontal, temporal, central, parietal, and oc-
cipital lobes. Even numbers identify electrodes on the right hemisphere, odd numbers
those on the left hemisphere, and “z” (zero) refers to electrodes placed on the midline.
(b) Location and nomenclature of the intermediate 10% electrodes, as standardized by
the American Electroencephalographic Society [190]

5.2 Acquisition of Brain Signals

EEG signals are usually acquired using superficial scalp electrodes, placed
according to the 10-20 international system depicted in Figure 5.2 and
recommended by the International Federation of Societies for Electroen-
cephalography and Clinical Neurophysiology [190]. The “10’ and “20” re-
fer to the percentage of the distance between the landmark points, namely
the inion, the nasion, and the preaurical points used to draw the lines at
which intersections the electrodes are positioned. In other words, given the
landmark points, the electrodes positioning is made by considering the in-
tersections between lines which are sagittally and coronally drawn, spaced
at 10 or 20% of the distance between the landmark points.

EEG recordings are acquired with portable and relatively inexpensive
devices when compared to the other brain imaging techniques. Specifically,
signal amplifiers with high sensitivity and high noise rejection are used
to measure the voltage fluctuation on the scalp surface resulting from the
electric field generated by the firing of collections of pyramidal neurons of
the cortex [33].

The EEG amplitude of a normal subject in the awake state, recorded
with scalp electrodes, is in the range [10, 200]µV and the most relevant
cerebral activity falls in the range of [0.5, 40]Hz. The EEG based brain
imaging technique presents a limited spatial resolution due to the physical
dimension, in the range of several millimeters, of the surface electrodes,
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usually employed in the acquisition setup, which limits the possible num-
ber of the electrodes covering the whole scalp. A limited spatial resolution
is also due to the dispersion of the signals, generated by the sources on
the cortex, within the head structures before they reach the scalp. On the
contrary, EEG techniques have a high temporal resolution, in the range
of milliseconds, which allows dynamic studies to understand the under-
lying mechanisms by means of complex computational methods. In fact,
information concerning for instance psycho-physiological state, neurologi-
cal and neuromuscular health, emotions, memory, the course of concentra-
tion, attention, levels of arousal, mental fatigue or workload during special
tasks, sensitiveness to external stimulation can be extracted from EEG in-
spection and manipulation. Such a kind of evidence has led in last decades
to use brain signals to convey conscious volition in EEG-based systems,
like brain computer interface (BCI), and brain machine interface (BMI),
aiming at controlling remote devices by means of the interpretation of the
brain electrical activity.

Some examples of EEG acquisition devices are detailed in the following:

• EB Neuro Galileo BE Light1: it is a system allowing to acquire and
amplify bio-electrical signals when connected to a system of analysis
and data storage. The aforementioned device is a non-intrusive medi-
cal device meant for acquisition, amplification, digital conversion and
data tranfer to a host pc of bio-electrical signals produced by the hu-
man body. The BW Light acquisition system is composed by three
main modules, as shown in Figure 5.3a: the headset, the BE Light
Amplifier module and the BE NET Interface, that connects, thought
an optical fiber, the amplifier to a computer provided with the “Galileo
NT” software. The amplifier allows to acquire an EEG signal from
an headset composed by a maximum of 28 channels. All input EEG
channels (referred to the REF channel) acquired from the electrodes
are amplified, sampled at 256 Hz, converted with a 16 bit analog to
digital converter by the amplifier and sent to the pc.

• g.Tec g.Nautilus2: g.Nautilus is a g.tec’s wireless biosignal acquisi-
tion system. It consists of the following components, as shown in Fig-
ure 5.3b: g.Nautilus Research Headset, that is a wireless biopotential
amplifier with prefixed electrode strands and a cap (g.GAMMAcap2);
besides, the device is provided with a g.Nautilus Research Base Sta-

1http://www.ebneuro.com/en/
2http://www.gtec.at/Products/Hardware-and-Accessories/g.Nautilus-Specs-

Features
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5.2. Acquisition of Brain Signals

(a)

(b) (c)

Figure 5.3: Different acquisition devices for EEG signals: (a) EB Neuro Galileo BE
Light (b) g.tec g.Nautilus (c) OpenBCI Ultracortex "Mark IV"

tion, that is a stationary receiver unit with USB cable to connect to
a PC and it allows the communication with the g.Nautilus Research
Headset. The g.Nautilus Headset can be equipped with gel-based ac-
tive electrodes (g.LADYbird technology) or with dry active electrodes
(g.SAHARA technology). All input channels (referred to the REF
channel) acquired from the electrodes are amplified, sampled at 250
Hz or 500 Hz, and converted with a 24 bit analog to digital converter
by the amplifier. The digitized data are sent via the wireless data link
to the Base Station and the PC.

145



Chapter 5. Invisible Biometrics: Brain Waves

• OpenBCI Ultracortex "Mark IV" EEG Headset3: The Ultracortex,
as it can be seen from Figure 5.3c, is an open-source, 3D-printable
headset intended to work with any OpenBCI Board, whose character-
istics are to be low-cost, high-quality biosensing hardware for brain
computer interfacing. It is capable of recording research-grade brain
activity (EEG), muscle activity (EMG), and heart activity (ECG). It is
not designed for transcranial stimulation, or for sending any kind of
signals. This headset is designed to receive EEG signals only. The
Ultracortex Mark IV is capable of sampling up to 16 channels of EEG
placed in 10-20 locations. The OpenBCI board generally adopted for
EEG recording is the Cyton Biosensing Board4, an Arduino- compati-
ble, 8-channel neural interface with a 32-bit processor. At its core, the
OpenBCI Cyton Board implements the PIC32MX250F128B micro-
controller, giving it lots of local memory and fast processing speeds.
The board comes pre-flashed with the chipKITTM bootloader, and the
latest OpenBCI firmware. Data is sampled at 250Hz on each of the
eight channels. The board communicates wirelessly to a computer via
the the OpenBCI USB dongle using RFDuino radio modules. It can
also communicate wirelessly to any mobile device or tablet compati-
ble with Bluetooth Low Energy (BLE).

5.3 Acquisition Protocols

EEG signals can be acquired through portable devices that sense the electric
field generated by the brain while resting or during a variety of cognitive
tasks, such as response to audio or visual stimuli, real or imagined body
movements, imagined speech, etc. More specifically, when a small change
in the electrical activity of the brain, time-locked to a meaningful exter-
nally (exogenous) or internally (endogenous) generated event is produced,
the brain response takes the name of “event related potentials” (ERP) [27].
ERP signals convey information on changes which occur when similarly
oriented pyramidal neurons of both individual and different local networks
fire in synchrony. For endogenous ERPs, time-locked to a mental event
such as the recognition of a target stimulus, the activity of the cortex re-
flects functional coordination during neurocognitive information process-
ing [272]. ERP components can be described in terms of latency time,
polarity, and topography. Large individual differences exist for the ERP

3https://shop.openbci.com/collections/frontpage/products/ultracortex-
mark-iv

4https://shop.openbci.com/collections/frontpage/products/cyton-
biosensing-board-8-channel?variant=38958638542
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components, while a certain stability is observed within a subject [21].
Other largely studied brain signals are the “slow cortical potentials”

(SCPs), also used as control signals in BCI context. They represent slow
voltage shifts in EEG, which are involved in the modulation of the excitabil-
ity level of underlying cortical regions, and in the preparatory allocation of
resources for cortical processing [26]. SCPs last from 300ms to several
seconds and can be self-regulated with different purposes using immediate
feedback.

The spatial distribution of brain activations as reflected in scalp EEG
signals strongly depends either on the mental state of the subject or on the
performed task during the acquisition session. For each designed protocol
it can be identified a suitable electrode configuration in terms of number of
sensors, their placement on the scalp as well as their density, according to
the aim of the analysis, selecting a subset of channels in the 10-20 extended
system shown in Figure 6.1. A specific minimal set of electrodes selected
considering neurophysiological evidences and optimization criteria is gen-
erally employed in each experimental setup. Usually, the reduction of data
dimension due to a selection of electrodes helps in improving the effective-
ness of the data analysis.

Several data acquisition protocols have been proposed in the literature
specifying the data acquisition conditions, the task definition, and the sens-
ing electrodes configuration related to the neurophysiological function un-
der analysis. Some acquisition protocols employed in EEG studies are
described hereafter. Topographic information on source activation are re-
ported depending on the performed task and guidelines for efficient scalp
electrodes configurations are provided.

Resting State. Since the earliest applications of EEG signals, particular
interest has been shown in the study of cerebral activity during a state of
rest, due mainly to the simplicity of the acquisition process. Therefore, the
resting state protocol, with eyes closed or open, has been widely studied
for different purposes. Within this paradigm the enrolled subjects are typi-
cally seated in a comfortable chair with both arms resting, in a dimly lit or
completely dark room. Generally, external sounds and noise are minimized
to favor the relaxed state of the subjects. Participants are asked to perform
few minutes of resting state with eyes closed or eyes open, avoiding any
focusing or concentration, but staying awake and alert. Brain activity dur-
ing resting state without performing any task carries interesting information
as contained in EEG specific patterns. Eyes closed and eyes open resting
conditions are usually employed in EEG research studies for baseline esti-
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mates, although they represent different processes related to global arousal
and focal activation.

In the closed eyes resting condition the predominant Alpha oscillations
can be detected especially in the parieto-occipital region of the scalp. They
reflect the default mechanisms of synchronization of cortical neurons activ-
ity [72]. Therefore a description of the ability of the central nervous sys-
tem to transmit signals to and from the cerebral cortex can be carried out
focusing on signals from parieto-occipital electrodes. On the other hand,
a widespread reduction in activity is commonly observed turning to open
eyes resting conditions, which reflects neuronal Alpha desynchronization.
Further topographic changes occurring across frequency bands can be de-
tected considering a full-scalp montage in the analysis of open eyes resting
state.

Mental Calculations. EEG patterns have shown significant differences,
specially related to the spectral analysis, between rest and several cogni-
tive tasks, and even between different cognitive tasks themselves, involv-
ing distinct neural systems. In order to infer about the properties of neural
activation in the involved brain regions, math, logical, and spatial cogni-
tive operations have been considered in the development of suitable acqui-
sition protocols. Changes in neuronal activation patterns due to specific
components of mental calculation tasks can be observed from the analysis
of each frequency band, as they seem to be related to oscillatory activity
of different neural networks. In this regard, different EEG patterns have
been examined by testing healthy subjects in different conditions of men-
tal calculation through properly designed protocols. In these protocols the
mental task period is usually preceded by a rest period in order to provide
a baseline. During the mental task interval, the subject is asked to solve a
problem providing an answer. The features of such kind of brain patterns
reflect inter-individual variability due to different abilities, aptitudes, innate
mechanisms of habit, brain plasticity, etc.

Various configurations can be employed for the effective detection of
different EEG activation patterns during the performance of different men-
tal calculation tasks. Some significant differences between mental calcula-
tion tasks, related to change in power between task and rest conditions, have
been observed in the δ and β bands in the frontal lobe, reflecting different
selective processes during focusing on relevant information, depending on
the complexity of the task and the specific cognitive function involved. In
general an increase of δ, θ and β activity in frontal leads during subject’s
internal concentration has been observed. This is in accordance with the
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evidence that among the various functions of the human brain directing and
allocating brain resources are governed by the frontal lobe. In particular
decision making, reasoning and complex calculation require the integra-
tion of multiple processes, specific of each task. It results in differences
of frontal lobe activity between tasks, reflecting activation of different neu-
ral networks. Therefore frontal leads can be effectively employed for the
analysis of such specific functions.

ERP: P300. The most explored protocols involve the elicitation of the
above mentioned ERPs. Task-related ERPs, as well as background EEG,
are associated to different behavioral and cognitive traits. ERP signals can
be elicited using different stimulation paradigms involving for instance sen-
sory, cognitive or motor events. Usually, the exogenous eliciting events
are repetitively modulated sensory stimuli such as a visual flicker. The so
elicited evoked potentials strongly depend on the physical parameters of
the stimuli. On the other hand endogenous ERPs depend on internal cog-
nitive events reflecting the way the subject evaluates a stimulus. A largely
studied and employed brain potential is the P300 ERP, especially used in
BCI context. The P300 ERP is a positive deflection of the scalp potential
which occurs around 300 ms after the onset of a task-relevant stimulus,
with a centro-parietal focus [233]. The most effective paradigm for induc-
ing a P300 response is the oddball task. In this paradigm an infrequent
but task-relevant stimulus is presented among frequent irrelevant stimuli.
Different kind of stimuli can be employed to carry out such paradigm, and
the characteristics of the P300 response will change with the type of stim-
ulation, its timing, and with the task difficulty. An example of the oddball
paradigm consists in presenting different geometric shapes, and the subject
is asked to detect just one specific shape among the others.For this par-
ticular case, a good brain response can be detected in central and parietal
electrodes, as a much larger P300 amplitude related to target stimuli stands
out from a baseline measure obtained by averaging non-target responses.
The P300 individual differences relate to amplitude, latency, waveform and
scalp potential distribution and reflect psychophysiological aspects of in-
dividual central nervous system reactivity. Several studies in literature ad-
dressed the effectiveness of different electrode configurations used to detect
the P300 brain response. A trade off between user friendly solutions em-
ploying few electrodes and accuracy in terms of correct classification of
brain responses is needed for the suitability of such P300-based systems.

ERP: Visual Evoked Potentials. Another typically employed ERP stimu-
lation protocol during EEG acquisitions is the elicitation of Visual Evoked
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Potentials (VEP), performed in order to analyze the way the brain perceives
and processes visual inputs, to control BCI applications and to support neu-
rological diagnosis. VEPs are evoked potentials that occur in the visual
cortex, time-locked to a repeated sensory stimulation related to a subject’s
visual field. Within VEP protocols no response or cognitive processing by
the subject is required. The visual stimulation can consist for instance of
checkerboard pattern reversal, flashing black/white images, pattern on set
stimuli or photic stimulation (light). In a typical setup to elicit VEPs a
flashing stimulus is displayed either at the center of a screen or through
light-emitting diodes (LEDs) in the central visual field, since it causes a
greater response amplitude.

A subset of the electrodes montage is considered when studying VEP
signals related to specific kind of visual attention stimulation. In these cases
typically EEG signals are recorded from electrodes located in the posterior
region of the scalp, mostly over the left and right hemispheres of the pri-
mary visual cortex. Indeed either periodic or transient brain responses to
stimulation involving the visual system can be detected just considering
electrodes O1 and O2 within the 10-20 international system [138].

Motor Imagery. Some interesting evidences have been obtained from the
analysis of µ and β EEG rhythms recorded over sensorimotor cortex within
the so-called motor imagery paradigm. Typically, during each acquisition
session, subjects are asked to imagine moving for instance either a hand or
a foot for few seconds when the cue representing the movement instruc-
tion appears on a screen. As reported in [197] it has been observed that
the patterns of µ and β rhythms desynchronization over sensorimotor cor-
tical areas during motor imagery are similar to those during real performed
movement. Moreover, in the same work principal components analysis on
sample average signals has shown marked individual differences in motor-
related EEG patterns, topographically and spectrally focused.

In the analysis of rhythm topographies during motor imagery protocols,
a subset of the extended 10-20 international system is often employed,
considering sensors placed over the sensory-motor cortical area, namely
FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz,
CP2, CP4. In fact it has been repeatedly shown that both movement and
motor imagery are accompanied by desynchronization in µ and β bands
over the centro-lateral side of the scalp, showing hemispheric asymme-
tries for specific conditions and frequency ranges [197]. Results showed
marked individual-specific traits regarding topographic and spectral effects
of movement and motor imagery, also indicating that movement, imagery
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and bands are dissociated in terms of individual differences.

Speech Imagery. More recently, EEG acquisitions have been performed
during the so called “speech imagery”, aiming at recognizing the neural
activities associated with speech production. In some protocols, enrolled
subjects are instructed to imagine continuous vowel vocalization for few
seconds from the onset of a specific cue which can be an acoustic signal or
a task-representative image appearing on a screen. In BCI context this kind
of tasks are designed in order to discriminate differences in brain activity
during vowel or syllables speech imagery providing a control scheme for
communication based on the interpretation of individual speech correlates
in EEG.

Signals from motor cortex are employed for the performance of speech
imagery protocols. In has been shown that neural activation detected over
medial and posterior regions occur during imaginary lip movement and vo-
calization of vowels [63] or their mental repetition. The electrodes that
are distant from the active regions may not provide relevant information.
Therefore, a more effective analysis of EEG features during speech im-
agery could be obtained discarding them.

SCP. When using SCPs, the training for their voluntary control can be car-
ried out within an acquisition protocol where a thought-translation device
provides a feedback cursor on a screen, whose position constantly reflects
the voltage shifts. Typically the subjects are asked to move a cursor which
appears at the center or at the periphery of a screen toward a target, by
modulating their brain electrical activity. A preparatory phase in which the
cursor remains stationary on the screen is followed by an active phase in
which it moves in a direction, either horizontal or vertical, with constant
speed, and in the perpendicular one according to the user’s SCP amplitude.

Effective negative and positive SCP shifts can be controlled selecting
the best per-forming channel. In this regard, in [209] it is shown that self-
regulation skills differ between subjects, but that the Cz derivation could
be generally used for an effective SCP feedback learning. Interestingly,
in that study it was shown that many subjects generated a maximal SCP
differentiation at other, often neighboring, electrodes than Cz.

5.4 EEG signal for Biometric Recognition

Brain signals have been deeply investigated and exploited for medical and
brain-computer interface (BCI) purposes since the beginning of the twen-
tieth century [13]. In recent years, the interest in using such physiological
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characteristic also for biometric recognition is rapidly increasing. Many
studies in such research field have in fact been focused on the use of elec-
troencephalography (EEG) signals, showing that the brain response to spe-
cific tasks can be exploited to extract discriminative features able to guar-
antee high levels of recognition accuracy [33]. The reason for the interest
in using EEG data for biometric purposes is linked to some advantages
the aforementioned signals possess, compared to other traditional biomet-
ric identifiers: universality is in fact guaranteed, and robustness to spoofing
attacks and privacy compliance can be easily achieved.

In [279], back in 1980, the basis for automatic people recognition us-
ing EEG signals were posed. However, only in the last decade the study
of EEG based recognition systems has received a significant development.
EEG signals present some peculiarities, which are not shared by the most
commonly used biometrics, like face, iris, and fingerprints, and that make
the investigation on the use of EEG signal as biometric identifier not a mere
academic exercise but an analysis with potential dramatic effects on the de-
sign of the next generation biometric systems, namely the cognitive bio-
metrics based systems. Specifically, brain signals can be considered an
invisible biometric trait: they are more privacy compliant than commonly
used biometrics like face, iris, and fingerprints, since they are not exposed
and therefore cannot be captured at a distance. Moreover, they cannot be
left on a crime scene, not even a digital one, and being brain signals the re-
sult of a cerebral activity, they are less likely to be synthetically generated
and fed to a sensor to spoof it, like it can happen when using gummy fin-
gers to spoof a fingerprint sensor. This also helps in addressing the liveness
detection issue. Furthermore, when using EEG based recognition systems,
it is impossible for an intruder to force a user to authenticate. In fact stress
signals would be present in the measured brainwaves, thus resulting in a
denial of access [146].

On the other hand, the use of brain signals poses new challenges. In
fact, being the brain continuously and spontaneously active, there is a back-
ground electrical activity upon which the signals of interest, which come
from the firing of specific collections of neurons responding accordingly
to a variety of tasks, are superimposed. Part of this difficulty is the under-
standing of the brain areas where the response originates. These findings
would drive an optimal or sub-optimal choice about the number of elec-
trodes to use and their location. Furthermore, due to the weakness of the
signal detected on the scalp while generated on the cortex, the EEG acquisi-
tion process results very sensitive to endogenous and exogenous noise, that
is artifacts generated by physiological processes and by external sources
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respectively. Therefore, the basic mechanisms which are behind the physi-
ological process of brain signal generation, the signal stability in time, the
acquisition protocols, the optimal sensors location depending on the em-
ployed acquisition protocol, the amount of the discriminative information,
as well its frequency localization, need a much deeper understanding.

In this Section, the different characteristics of a biometric identifier,
namely universality, uniqueness, permanence, collactability, performance,
acceptability, and circumvention, are detailed with respect to EEG biomet-
rics. It is worth pointing out that the analysis that follows has different
depth levels for the different desired characteristics, since EEG biometrics
is still in its infancy and an exhaustive analysis of the aforementioned issues
is still missing in literature. Nevertheless, in the following we draw some
considerations, which, in some cases, have been borrowed from physiolog-
ical studies on EEG signals made for clinical applications and that can be
applied to the field of EEG biometrics.

• Universality. The level of universality of brain signals is very high.
In fact people with no pathological conditions affecting the brain, can
make use of EEG biometrics.

• Uniqueness. The uniqueness of EEG signals is a complex issue which
has several facets to be considered and that has not captured the nec-
essary attention within the biometric community so far. Nevertheless,
some early studies in neurophysiology, see for example [18], [303],
[163] have demonstrated that EEG is a highly individual characteris-
tic. Of course, the level of individuality is also related to the specific
acquisition protocol, subband analyzed, and to the extracted features.
Moreover, it is worth pointing out that the uniqueness and the perma-
nence issues can be considered as two facets of the same medal, being
related to the intra-individual and inter-individual distances, and that
these distances get some meaning when related to each other.

• Permanence. The issue of the reproducibility of EEG biometrics in
different acquisition sessions, in other words the intra-individual EEG
stability, has been object of scientific investigation within the neuro-
physiology field in the past. In fact, also in clinical applications, it
would be desirable not to have significant variations of an individual
EEG pattern when no alterations, due for example to new patholog-
ical conditions, occur. In the clinical field these studies are known
as “test-retest reliability” or as “longitudinal” studies. Of course the
aforementioned issue is strictly dependent on the features which are

153



Chapter 5. Invisible Biometrics: Brain Waves

extracted to summarize the EEG and on the irreliability. It is worth
pointing out that a significant effort has been done for the test-retest
reliability analysis of EEG in resting conditions as well as, in the re-
cent years, when performing cognitive and sensory tasks. Despite the
effort that has been done in the neurophysiology field, the repeatabil-
ity issue of EEG biometrics has not received the necessary attention
from researchers in the bio-metric scientific community. Neverthe-
less, its understanding is propedeutic towards the deployment of EEG
biometrics in real life.

• Collectability. Collectability of EEG signals is dependent on many
factors like the number of electrodes to be used, the need to use con-
ductive paste or saline liquid to lower the skin impedance to accept-
able levels, and the acquisition time needed to be able to collect rel-
evant information for the recognition process. All these issues can
limit the collectability of EEG biometrics. However, recent advances
have shown that interesting performance can be achieved also limit-
ing the number of used electrodes thus making the signal collection
more user convenient. Moreover, the latest technological develop-
ments have shown that the aforementioned issues can be mitigated.

• Performance. Promising recognition rates have been achieved in the
last years. A detailed analysis of the recognition performance of state-
of-the-art EEG-based biometric systems is given in Section 5.5.

• Acceptability. Acquisition of EEG signals may present some draw-
backs in terms of user acceptability being related to brain activity
thus potentially evoking ancestral worries related to “mindreading”
and emotion analysis from the data controller. This may generate a
sense of discomfort in the users. Also privacy issues can be seen as
an obstacle towards the acceptability of EEG based biometric applica-
tions in real life due to the potentiality to detect existing pathologies
or disposition towards pathologies, as possible also for other biomet-
rics. This could potentially lead to discrimination and undermine the
human dignity. However, no specific studies on the acceptability issue
of EEG biometrics have been performed yet.

• Circumvention. Brain signals, as a result of cerebral activity, are not
exposed biometrics, that is they are invisible biometrics. Therefore,
as internal traits, they are less prone to spoofing attacks than other ex-
ternal biometrics [259], since they are “secret” by their nature, being
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impossible to capture them furtively at a distance, while this is possi-
ble for face and iris, which can be then synthetically generated. Be-
sides, EEG biometrics cannot be acquired in absence of the user, since
they are not left on objects like it might happen with fingerprints that
instead can be used at a later time in order to spoof the employed ac-
quisition sensor. This is virtually impossible with brain signals since
they are the result of ionic current flows within the neurons of the
brain in response to a specific task or during a specific mental state.
Therefore, an attacker should be able to synthetically generate result-
ing EEG waveforms and feed them to a sensor to spoof it. Hence, the
problem of liveness detection, which needs to be addressed when us-
ing conventional biometrics, is naturally overcome without the need
to resort to specifically designed sensors.

5.5 EEG Biometrics: State-of-the-Art

The use of EEG data for person recognition has been explored since 1998
and more than 100 papers in this field are published. Most of these pa-
pers were focused on reporting the performance using conventional accu-
racy metrics. However, to objectively assess an EEG biometric recognition
system and establish its potential suitability for real-life applications, the
performance of EEG-based biometrics system needs to be evaluated based
on more factors than the recognition accuracy only [334]. Besides the con-
ventional measures of recognition accuracy, there are other factors which
should be taken into consideration for assessing the practical usability of
any reported EEG-based recognition systems:

• number of the subjects for which the system was designed or tested
on (NS);

• number of the electrodes employed (NC);

• number of considered sections (S);

• the stimulation protocol used to elicitate the brain response;

The number of electrode(s) used for data collection has a considerable
impact on the usability of the EEG-based biometric system: a large number
of electrodes may increase the difficulty in deploying the system in real-
life scenarios. Number of the subjects employed indicates the effectiveness
of the biometric system in large scale deployments. The number of ses-
sion is a crucial experimental setting that needs to be considered to deploy
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EEG-based biometric systems in real-life applications: if signals recorded
in a single session are used to test the designed biometric system an impor-
tant concern arises on whether the obtained recognition accuracy is repre-
sentative of the distinctiveness of subjects based on EEG features, or it is
representative of the uniqueness of each acquisition session [188]. Eventu-
ally, the stimulation protocol is linked to the convenience of the acquisition
procedure.

In this Section, an overview of the most relevant state-of-the-art works
related to biometric recognition based on EEG signals is given. The pro-
posed work are divided according to the considered acquisition protocol
and summarised in Table 5.1.

Resting State (RS).

Some mental tasks are more appropriate to be performed for person recog-
nition than others being intrinsically able to highlight distinctive traits of
individuals. Several studies investigate EEG traits during brain ongoing ac-
tivity for user recognition, which does not require any mental task at all.
Specifically, in [236] a closed eyes in resting condition protocol was em-
ployed to acquire data using the O2 channel from the occipital region of
the head. The α rhythm, predominant in the parieto-occipital region dur-
ing rest, was extracted and overlapping subbands were individually consid-
ered for feature extraction. The performed tests were aimed at verifying
four authorised users against a single class of non-authorised users and at
their identification. The obtained classification scores in terms of genuine
acceptance rate (GAR) ranged between 80% and 100% depending on the
individual, the frequency band, and the test performed, while the correct
identification rate (CIR) related to the identification tests ranged between
80% and 96%. In general, different frequency bands showed to be more
performant for different individuals. The same protocol was tested in [236].
A different analysis of the same rest EEG signals yield to a GAR ranging
from 72% to 84%. In [222] the EEG activity was recorded from 40 sub-
jects while resting both with eyes open (EO) and with eyes closed (EC).
Although eight sensors were employed for the acquisition, only the signals
acquired using the channel P4, from the parietal region of the head, were
considered in the study. An analysis was performed for user identification
in the EO condition and GAR ranging from 49% to 82%, depending on the
modeling parameters, was obtained. In [260] a closed eyes resting condi-
tion was used to acquire EEG signals from 51 subjects using two forehead
electrodes (FP1 and FP2). Through discriminant analysis the best achieved
result was an EER=3.4% . In [281] the influence of the diet and circadian
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effects on the identification performance was investigated. In the consid-
ered protocol, segments of 5 minute EEG signals, acquired by an FP1 elec-
trode, were recorded during rest with closed eyes. Signals were acquired
on two separate days (sessions) in which subjects had water in one session
and coffee in the other one. In each session, 6 EEG runs were recorded. A
database of 40 subjects was collected. The classification accuracy achieved
for subject identification was of 95%. In the same study an implementation
of the Covert Warning (CW) concept to enhance the security of the EEG-
based biometric system was presented. Muscle signals from clenching the
teeth, shown to produce robust signals, were used to send the covert mes-
sage. 24 volunteers were enrolled and performed 3 minutes of resting with
closed eyes, while clenching the teeth 3 times. Authors showed that CW
messages were detected perfectly, while a small decrease in the identifica-
tion performance with respect to the scenario without CW was observed.
In [1] signals from 10 subjects in 5 different sessions over two weeks, us-
ing 8 electrodes to obtain bipolar signals at C3, P3, C4, P4, were collected.
In each session subjects performed resting state with closed eyes and open
eyes, repeating each task in 5 runs of 30 seconds. Different spatial arrange-
ments were evaluated in order to identify users using a suitable electrodes
configuration. Best performance of CRR=97% was obtained employing all
4 channels in the eyes closed condition, while configurations in the right
hemisphere (C4, C4-P4) produced the highest CRR compared to the other
arrangements relying on an equal number of electrodes. Such result was
in accordance with the significant role of the right hemisphere, involved in
processes like imagination, creativity and feeling, which are dominant dur-
ing resting. This supports the idea that brain activity detected in the right
hemisphere shows distinctive information during rest. Brain ongoing ac-
tivity in EC condition was investigated in [35] for user identification. EEG
signals were recorded from 48 subjects employing 56 scalp electrodes. An
analysis on suitable scalp configurations was carried out considering differ-
ent sets of symmetrically placed electrodes. Signals filtered in the range 0
– 33Hz were analysed and a best CRR=96.98% was obtained considering
channels T7, Cz, T8. In [158] signals from 45 subjects in EC resting condi-
tions, acquired through 56 electrodes, were analysed. Signals were filtered
in order to extract the different brain rhythms (δ, θ, α, β) , so that the dif-
ferent frequency bands were individually analysed, as well as combined
together. Different channel configurations were considered to perform user
identification and a best CRR=98.73% was obtained from a set of 3 parieto-
occipital channels. A comparison between EC and EO condition for user
identification was carried out in [50] on a smaller dataset. Longitudinal
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recordings allowed addressing the repeatability of EEG features, which is
a very important issue for the application of biometric systems in real life
scenarios. A perfect identification of users enrolled in a previous acquisi-
tion session was obtained for the EC condition considering the subband 0.5
– 30Hz and a set of 3 electrodes placed in the posterior part of the head.
An extensive analysis was also performed in [159] in order to find the most
appropriate set of parameters involved in the analysis.

Signals from 20 people, recorded during 2 sessions at a median distance
of 15 months, and represented through PSD characteristics,have been used
in [210] to estimate a rank-1 correct identification rate (CIR) at about 88%.
A database collected from 9 subjects during 2 one-year-apart sessions has
been considered in [148], applying a frequency-zooming auto-regressive
(FZ-AR) modelling to 53 channels to achieve CIR=87.1%. Signals from
9 subjects have been recorded during 2 sessions spanning up to 3 weeks
in [159], and exploited to achieve perfect IR for EEG data acquired in eyes-
closed (EC) conditions, and IR=90.53% for the eyes-open (EO) scenario.
Signals recorded from 4 subjects in EC conditions during 2 one-week-apart
sessions have been processed through continuous wavelet transform (CWT)
in [314] guaranteeing CIR=92.58%. Parsimonious representations in the
frequency domain have been proposed in [187], where CIR=87.9% and
IR=75.4% have been respectively achieved in EC and EO conditions, using
EEG signals taken from 30 subjects during 2 recording sessions spanning
one month.

Perfect accuracy has been achieved in [266] applying the system pro-
posed in [265] to 20 subjects whose EEG signals have been recorded during
2 sessions at an average distance of 9 months. The most detailed analysis on
permanence so far performed for EEG-based biometric recognition systems
has been presented in [188], where the performance behaviour achievable
when comparing data captured from 50 subjects during 3 different sessions
spanning a 1-month period, and represented through auto-regressive (AR),
PSD and spectral coherence (COH) features, has been discussed. IR at
90.8% comparing signals captured in EC conditions, and CIR=85.6% for
the EO scenario, have been reported almost regardless of the sessions being
compared out of the 3 available ones. Maiorana et al. [184] performed ex-
perimental tests on a database comprising 45 subjects, whose EEG signals
have been collected during five to six distinct sessions spanning a total pe-
riod of three years, using four different elicitation protocols. Between the
proposed protocols, EC and EO are included. Statistical and performance-
related analysis are conducted, using different EEG features and hidden
Markov models as classifiers.
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Motor Imagery (MI).

A brief summary of the state-of-the-art works using MI-elicited EEG sig-
nals for biometric recognition is here provided. In [112], authors have ex-
ploited MI EEG data captured through six channels from three subjects,
elicited to perform hands, feet and tongue movements during a single acqui-
sition session. Auto-regressive (AR) and moving average (ARMA) coeffi-
cients have been used for feature extraction, while classification has been
performed through multi-layer back propagation neural network (BP-NN).
Identification accuracies ranging from 81.9% to 83.9% have been achieved.
In [324] authors have achieved 80% correct recognition rate (CRR) using
Fisher distance as characteristic feature and BP-NN as classifier, for the
same number of subjects, session and imaginary tasks as the previous case,
while 60 EEG channels have been instead exploited. In [192], EEG data
elicited through imaginary left and right hand movements have been ac-
quired from nine subjects in three different sessions, using eight central
and parietal channels to extract power spectral density (PSD) features. A
half total error rate (HTER) of 7.1% has been achieved using Gaussian
mixture models (GMMs) as classifier. EEG data from nine subjects have
been collected in two different days in [292], using four channels and ac-
cording to four standard MI tasks. Cepstral values have been used as fea-
tures to achieve 94.72% accuracy with Mahalanobis distance as classifier.
In [335], EEG signals have been acquired through nine channels in a sin-
gle acquisition session from 108 subjects performing two protocols, based
on either left/right fist or both fists and feet’s imaginary movements. A
94.72% accuracy has been achieved for the former protocol, while 93.1%
has been obtained for the latter, using wavelet packet decomposition for
feature extraction and linear discriminant analysis (LDA) as classifier. Das
et al. [61]proposed am EEG-based biometric identification system, using
a motor imagery task, specifically performing imaginary arms and legs
movements. Deep learning methods such as convolutional neural network
(CNN) is used for automatic discriminative feature extraction and person
identification. An extensive set of experimental tests, performed on a large
database comprising EEG data collected from 40 subjects over two differ-
ent sessions taken at a week distance, shows the existence of repeatable
discriminative characteristics in individuals’ brain signals.

It can be observed that the studies carried out so far report recognition
performance evaluated over either EEG data collected from a very small
number of subjects, or data recorded during a single acquisition session,
which cannot provide any convincing evidence for considering EEG sig-
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nals as a stable biometric identifier. In fact, under such conditions it is hard
to state whether the reported recognition performance depend only on the
characteristics of each subject’s neural activity, or also on session-specific
exogenous conditions, such as the capacitative coupling of electrodes and
cables with lights or computer, induction loops created between the em-
ployed equipment and the body, power supply artifacts, and so on.

Speech Imagery (SI).

Some authors report the use of imagined speech, for example [28] used
EEG signals from a small population of 6 subjects while imagining the syl-
lables /ba/ and /ku/. The collected database consisted of 6 sessions and for
each one 20 trials per subject from 128 channels with a sampling frequency
of 1024 Hz. using Electrical Geodesics device. For feature extraction they
used the PSD for each EEG signal, then auto-regressive (AR) model co-
efficients were computed for each electrode using the Burg method. The
classification stage was performed using the linear kernel of Support Vector
Machine (SVM) classifier and using1-Nearest-Neighbor (k-NN). For these
two syllables they obtained 99.76% and 99.41% of accuracy respectively.
Maiorana et al. [184] explored the speech imagery protocol on a database
composed of 45 subjects. AR reflection coefficients, MFCC coefficients
and Bump model are used as features and GMM and HMM as classifier,
achieving an EER of 9%. In the work presented in [213], resting-states
were used for subject identification using Linear SVM. The dataset used
consisted of 40 subjects, and 192 instances per subject. The sampling fre-
quency was 256Hz with 64 channels. First, for pre-processing a band-pass
filter (0.5-40 Hz) and then the Common Average Reference were applied.
For feature extraction the Morlet Wavelet was used to extract power spec-
trum of 7 frequency bands, to finally apply a downsampling to 32 Hz. The
accuracies obtained in the best cases were 100%, 96% and 72% respec-
tively for 3 lengths of the signal (300, 60 and 30 seconds). However, in
a real application, the registry of 300, 60 or even 30 seconds of a signal
can be impractical and with high computational cost for real-time. In ad-
dition the use of 128 or 64 channels does not support the portability of the
device. In [207] Empirical Mode Decomposition (EMD) is used to decom-
pose EEG signals during imagined speech in order to use it as a biometric
marker for creating a biometric recognition system. For each EEG channel,
the most relevant Intrinsic Mode Functions (IMFs) are decided based on
the Minkowski distance,and for each IMF 4 features are computed: Instan-
taneous and Teager energy distribution and Higuchi and Petrosian Fractal
Dimension. To test the proposed method, a dataset with 20 subjects who
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imagined 30 repetitions of 5 words in Spanish, is used. Four classifiers are
used for this task - random forest, SVM, naive Bayesandk-NN- and their
performances are compared. The accuracy obtained (up to 0.92 using Lin-
earSVM) after 10-folds cross-validation suggest that the proposed method
based on EMD can be valuable for creating EEG-based biometrics of imag-
ined speech for Subjects identification.

Visually Evoked Potentials (VEP).

A brief synopsis of the state-of-the-art works on the use of visual-stimuli-
elicited EEG signals for biometric identification is presented in this sec-
tion. This approach, for individual identification, has been first proposed
in [221], where VEP signals have been recorded from 20 subjects by pre-
senting black and white images of common objects, using 61 channels and
exploiting the gamma ([30 : 40]Hz) band, with spectral power ratio as fea-
tures. A back-propagation neural network (BPNN) has been used to iden-
tify individuals with 99.6% accuracy while performing ANOVA tests on
each individual channel. In [290] EEG responses have been collected from
5 different subjects during 5 sessions on the same day. In a particular ses-
sion, a sequence of 9 images has been randomly shown for 20 times to
each subject, while asking him to focus on one or more pre-selected tar-
get images and ignore the rest. Principal component analysis (PCA) has
been applied on the obtained time sequences for feature extraction, and
linear discriminant analysis (LDA) used for classification. A performance
accuracy of 97.6% has been achieved by considering only one channel for
both target and non-target stimuli. The significance of irrelevant stimuli
has been studied in [89] using rapid serial visual paradigm (RSVP) stimuli
on 8 different subjects. EEG signals elicited from 8 channels have been
acquired in a solo session, and P300 waves used as features. A threefold
cross-validation using Bayesian LDA has been performed to obtain a max-
imum correct recognition rate (CRR) of 97%. In [57] VEP data from 20
subjects have been collected by exhibiting face and car images for 40ms
each. SVM and LDA have been applied to discriminate individuals. A
94% classification accuracy has been achieved by selecting the best per-
forming post-stimulus set, and using a k-nearest-neighbors (KNN)- based
classification technique. It is worth specifying that all the above mentioned
works have considered EEG data acquired on a single day to achieve high
performance accuracy.

Conversely, in [337] EEG signals have been collected from 10 subjects
during 2 separate sessions on different days, using a random sequence of
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self-face and other’s-face images as visual stimuli. Each performed ses-
sion has included 2 distinct runs, each comprising 50 trials, where in each
trial a total of 20 images (10 self-face and 10 other’s-face images) has been
presented. A total of 180 trials has been selected for training with the re-
maining 20 used for testing, therefore mixing data from the two available
sessions for enrolment purposes. An adaptive discriminant feature method
has been used for extracting features, and non-linear-SVM for classifica-
tion purposes, achieving a CRR of 86.1%. Two different schemes have
been instead considered in [4]: first, EEG signals have been collected from
15 subjects at an inter-session temporal distance of one week. Then, only 8
subjects’ signals have been recorded at a time span of 6 months. CRRs at
89.0% and 93.0% have been achieved by considering event related poten-
tials (ERPs) as features, and signal correlation as classifier. Visual-evoked
potentials (VEPs) to both target and non-target stimuli have been evaluated
in [59] to provide equal error rates (EERs) respectively at about 18% and
13%, over a database comprising signals acquired from 50 users during 3
sessions taken during a period of 1 month. Das at al. [60] studied the use of
(EEG) signals, elicited by means of visual stimuli, for biometric identifica-
tion. A deep learning method such as convolutional neural network (CNN),
is used for automatic discriminative feature extraction and individual identi-
fication. Experiments are performed on a longitudinal database comprising
of EEG data acquired from 40 subjects over two distinct sessions separated
by a week time. The experimental results testify the existence of repeatable
discriminative characteristics in individuals’ EEG signals

As can be noticed, it is worth remarking that works performing tests
on EEG data collected during acquisition sessions spanning different days
typically report recognition performance much lower than those obtained
exploiting EEG signals recorded during a single acquisition session.
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CHAPTER6
EEG Biometrics: Performance

Improvement

BRAIN SIGNALS, being invisible biometrics, are able to provide se-
cure and reliable user recognition. The “secretness” of the sig-
nal entails difficulty in stealing and replicating the data, making

a presentation attack almost impossible to be implemented. Besides, brain
waves are sensitive to mental stress, so the EEG-based recognition modality
can detect a legitimate user who is forced by a fraudulent person to be in-
volved in the recognition process. Eventually, brain signals are able to pro-
vide continuous authentication and they can be employed in applications
where this requirement is needed. The aforementioned advantages make
EEG biometrics particularly suitable for application where high level of
security is required, such as governmental, forensics or military use cases.

On the other hand, there are still some open problems that make the
use of EEG-based biometric systems difficult to be accepted in real life
scenarios. Specifically:

• EEG recordings are highly susceptible to various forms and sources
of noise, such as environmental sources of noise (AC power lines,
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lighting and a large array of electronic equipment) and physiological
noise (cardiac signal, movement artefacts caused by muscle contrac-
tion and ocular signal caused by eyeball movement). The aforesaid
noise’s sources lead to a very small signal-to-noise ratio of EEG sig-
nals [258];

• noise negatively impact of the recognition performance of the system,
entailing a decrease of correct recognition percentage;

• the cost of the acquisition device is high;

• the convenience of the acquisition procedure is low;

• there are not enough studies in literature demonstrating the perma-
nence of EEG signals, that is performing the enrolment and authen-
tication phases utilising signals acquired in temporally separated ses-
sions [188].

In this Chapter a solution aiming to deal with the limitations of EEG-
based biometric systems is proposed. Specifically, in Section 6.1, a system
where steady-state visual evoked potentials (SSVEPs), that is brain waves
recorded as response to a flickering visual stimuli, is chosen in order to ex-
ploit the high signal-to-noise ratio the considered signals show. Biometric
fusion techniques are chosen as a solution to improve the performance of
the system and to reduce the undesired impact of the noise on performance.
Besides, of multiple elicitation frequencies are jointly used in order to fur-
ther improve the recognition rates, thus allowing to reduce the number of
electrodes needed during EEG collection and entailing to face the issues of
cost and convenience of the acquisition procedure of brain signals. Even-
tually, EEG signals have been recorded during two temporally separated
sessions, with the second session carried out after an average temporal dis-
tance of 15 days from the first session; in this way the issue of permanence
across time of SSVEP-based biometric systems and the stability of the sig-
nals across time is addressed.

6.1 Steady-State Visual Evoked Potentials for EEG-Based Bio-
metric Identification

EEG signals used for biometric purposes can be recorded as a response to
different kind of stimuli. In this Section, an EEG-based biometric recog-
nition system where discriminative features are extracted from steady-state
visual evoked potentials (SSVEPs) is proposed. SSVEPs are a particular
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kind of VEPs that consist of stationary periodic oscillations observed in
brain activity as response to a repetitive visual stimulus in the range of 4Hz
to 60 Hz. When an individual focuses his attention on a flickering stimulus
within this frequency range, typically presented on an LED setup or LCD
display, an increased oscillatory activity, with spectral peaks at the stimulus
frequency and its harmonics, can be observed in brain signals [244].

SSVEPs exhibit a high signal-to-noise ratio and a stable spectrum, prop-
erties which have led to their widespread use for the investigation of cog-
nitive processes such as visual attention and working memory, and clinical
conditions such as schizophrenia, autism and epilepsy [302]. These char-
acteristics have also led SSVEPs to being widely adopted in BCI systems,
that is, systems allowing an individual to communicate or control equip-
ments solely through their brain activity [352]. The consistent, rapid and
prominent response of SSVEPs also makes these signals particularly ap-
pealing for EEG-based biometric applications. In contrast with their use
in BCI systems, where the primary aim is distinguishing between differ-
ent visual targets for a given individual, in a biometric system the main
challenge lies in identifying features that are sufficiently distinct across in-
dividuals, whilst ensuring their stability across multiple recording sessions
of the same subject [188]. The use of SSVEP in biometric applications has
been so far investigated only in [226], where an analysis based on the peak
magnitude and frequency of the short-term Fourier transform has been ex-
ploited to identify five users, whose signals have been yet recorded during
a single acquisition session.

In this Section, a novel approach for EEG recognition based on SSVEPs
is proposed. Being the issue of permanence across time of paramount im-
portance for real-life applications of EEG-based biometric systems, the sta-
bility of SSVEPs is also specifically addressed. The Section is structured as
follows. Section 6.1.1 gives an overview of the employed acquisition pro-
tocol and the tools used to acquire EEG data. Section 6.1.2 describes the
proposed biometric recognition system, while the achieved performance
and permanence results are reported in Section 6.1.4. Some conclusions
are eventually drawn in Section 6.1.5.

6.1.1 Employed Acquisition Protocol

EEG signals from U = 25 healthy volunteers are recorded and used for
experimental tests. The device employed to elicit SSVEPs consists of a
square array of 9 green leds, whose flickering frequency can be manually
tuned. Four different elicitation frequencies are exploited, namely fS ∈
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(a)

Frontal

Central

Occipital

(b)

Figure 6.1: (a) Montage of electrodes used during the acquisition stage. (b) Brain regions.

FS = {6, 12, 18, 24}Hz. During each EEG data acquisition, subjects were
comfortably seated on a chair in a dimly lit room, and asked to concentrate
on the flickering target for one minute for each considered frequency. The
involved subjects were asked to perform the proposed experiment during
two temporally separated sessions, referred in the following as S1 and S2.
The second session S2 is carried out after an average temporal distance of
15 days from the first session. EEG signals are acquired using a GALILEO
BE Light amplifier operating at a sampling rate of 256Hz. Brain activity
is recorded from 19 electrodes placed on the scalp according to the 10-20
international system, as shown in Fig. 6.1a, with potentials referred to an
electrode placed at the middle of the central region. At the beginning of
each acquisition, the electrical impedance between each electrode and the
scalp is kept under 30kΩ using conductive gel. The recorded EEG signals
are later preprocessed in order to remove noise and improve signal-to-noise
(SNR) ratio, before distinctive features are first extracted and then matched
for recognition purposes, as described in Section 6.1.2.

6.1.2 Employed SSVEP-based Recognition System

A scheme of the employed SSVEP-based recognition system is shown in
Fig. 6.2 and the proposed approach is detailed hereafter.

Preprocessing. In order to improve the quality of the acquired EEG sig-
nals, a spatial filter, namely a common average referencing (CAR) filter,
is first applied to the recorded data. The aim of such filter is to reduce
artefacts related to inappropriate reference choices in monopolar record-
ings [271] or unexpected reference variations. Having indicated as v(u)

m ,
with u = 1, ..., U and m = 1, ...,M , the u-th user’s potential between the
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Figure 6.2: Scheme of the proposed SSVEP-based biometric system.

m-th electrode and the reference electrode, filtered data are obtained by
computing the difference between the considered EEG signal and the mean
of the entire electrode montage:

c(u)m = v(u)
m −

1

M

M∑
m=1

v(u)
m (6.1)

A band-pass filtering is then performed on the CAR-filtered signals.
Specifically, since EEG data are characterised by a frequency spectrum
with significant elements mainly below 40 Hz, the signals are filtered in
the [0.5, 40] Hz band. In order to analyse the brain response behaviour,
different combinations of the subbands related to the main brain rhythms,
that is Delta (δ, [0.5−4]Hz), Theta (θ, [4−8]Hz), Alpha (α, [8−14]Hz),
Beta (β, [13 − 30] Hz) and Gamma (γ, over 30 Hz) are also considered
in the performed experimental tests when defining the applied band-pass
filter. The obtained data are then downsampled at 128 Hz when the fre-
quency interval of interest comprises the γ subband, otherwise the signals
are downsampled at 64 Hz. The so-obtained data are then segmented into
R consecutive overlapping frames y(u,r)

m , r = 1, . . . , R, lasting D = 5 s
with a normalised overlapping factor of O = 75% between each frame and
the previous one.

Feature Extraction. After EEG data have been preprocessed, discrim-
inative features are evaluated to generate a template from each user u’s
recording. In this work two different representations are exploited, namely
mel-frequency cepstral coefficients (MFCCs) and auto-regressive (AR) co-
efficients, respectively detailed the following.

Mel Frequency Cepstral Coefficients (MFCCs). MFCCs are a parametric
representation of the signal based on the Fourier spectrum, widely used
in speech-based biometric systems [82] and recently applied to EEG data
[212] too. The following steps detail the processing carried out for MFCCs
extraction:
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1. power spectral estimate: the power spectral density (PSD) Y(u,r)
m

of each signal y(u,r)
m , m = 1, ...,M and r = 1, . . . , R, is computed

through the Welch’s averaged modified periodogram approach, using
1-s sliding Hanning windows with 0.5-s overlap;

2. mel-filter bank processing: a bank of B mel-filters is used to warp
the computed spectrum bins into the mel-scale, defined as:

Mel(f) = 2595 log10

(
1 +

f

700

)
. (6.2)

The generated mel-spectrum is indicated in the following as:
MELY(u,r)

m [b], b = 1, . . . , B;

3. log compression: the range of the values of the mel-spectrum is re-
duced through a logarithmic transformation, that is:

LOGY(u,r)
m = ln(MELY(u,r)

m ); (6.3)

4. discrete cosine transform: MFCCs are computed from the log-com-
pressed mel-spectrum using the discrete cosine transform (DCT):

d(u,r)
m [l] =

B∑
b=1

LOGY(u,r)
m [b] cos

[
l

(
b− 1

2

)
π

B

]
, l = 1, . . . , L, L < B.

(6.4)

In the adopted implementation, B = 18 mel-filters are employed, and
L = 12 DCT coefficients are used to generate the representation of each
considered signal. The template associated to the r-th frame of user u’s
recording, having length P = M · L, is eventually obtained by combining
the M representations of each channel:

f(u,r) = [d(u,r)
1 , . . . ,d(u,r)

M ]. (6.5)

AR Reflection Coefficients. Each EEG frame y(u,r)
m extracted from the pre-

processed signals can be modeled as a realisation of an AR stochastic pro-
cess of order Q, with Q = 10 in the adopted implementation. According to
such assumption, the available signals can be expressed as:

y(u,r)
m [n] = −

Q∑
q=1

a
(u,r)
m,Q,qy

(u,r)
m [n− q] + w(u,r)

m [n] (6.6)
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where w(u,r)
m [n] is a realisation of a white noise process having standard

deviation σ(u,r)
m,Q , and a(u,r)m,Q,q are the autoregressive coefficients representing

the model. The Yule-Walker equation [137] is used to estimate the Q au-
toregressive coefficients, employing the recursive Levinson algorithm and
introducing the concept of reflection coefficients. In detail, being a(u,r)m,Q,q a
generic AR coefficient, we have:a

(u,r)
m,Q,q = a

(u,r)
m,Q−1,q +K

(u,r)
m,Q · a

(u,r)
m,Q−1,Q−q, q = 1, ..., Q− 1

σ
(u,r)
m,Q = σ

(u,r)
m,Q−1

√
1− (K

(u,r)
m,Q )2

(6.7)

where the term K
(u,r)
m,Q is referred to as reflection coefficient of order Q.

In this study, the reflection coefficients are estimated through the Burg
method [137], and employed as representative features of each user u’s
EEG data. For the generic r-th frame y(u,r)

m extracted from them-th channel
of the EEG signal belonging to the user u, we therefore generate a feature
vector K(u,r)

m composed of the Q estimated AR reflection coefficients. The
overall template associated to a given frame is obtained by combining the
M representations generated for each channel into a single vector having
size P = M ·Q, as:

f(u,r) = [K(u,r)
1 , . . . ,K(u,r)

M ]. (6.8)

6.1.3 Identification

During the identification stage, the Manhattan (L1) distance is used to eval-
uate the similarity between features extracted during enrolment, and those
obtained from an identification probe. In more detail, having indicated as
f(u,e) the template associated with the e-th frame extracted from user u’s en-
rolment, e = 1, . . . , E, and with f(x,i) the representation generated from the
i-th frame taken from the probe of an unknown subject x, i = 1, . . . , I , the
distance between such identification frame and the whole set of enrolment
frames is evaluated as:

d
(u)
i = min

e

{ P∑
p=1

∣∣∣f(x,i)[p]− f(u,e)[p]
∣∣∣ }, (6.9)

that is, selecting the minimum among the distances computed between the
i-th identification frame and all the recorded enrolment data. A decision
x̂i = arg minu{d

(u)
i } is then taken for each available identification frame,

with the final decision x̂ regarding the identity of the presented subject
taken according to a majority voting rule, selecting the identity with the
highest number of occurrences among the votes x̂i, i = 1, . . . , I .
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6.1.4 Experimental Results

The aim of the present work is to analyze the recognition performance of an
EEG-based recognition system exploiting an SSVEP protocol as stimulus
for the involved users, taking into account issues regarding repeatability and
stability across time of EEG signals. For this purpose, as remarked in Sec-
tion 6.1.1, the collected database comprises EEG recordings taken, for each
user, during two disjoint sessions, separated by an average time distance of
15 days. Data from the first session (S1) are considered as enrolment sam-
ples, while testing data are selected from the second session (S2). Compar-
ing EEG samples taken during two distinct sessions allows estimating per-
formance depending only on the peculiar characteristics of subject-specific
neural activity. This way, session-specific exogenous conditions, such as
the capacitative coupling of electrodes and cables with lights or computer,
induction loops between the employed equipment and the body, and so on,
cannot affect either inter- and intra-class variability of EEG recordings, as
instead it may happen when performing tests by comparing EEG data col-
lected during a single acquisition session [188].

In order to estimate statistically-significant results, a cross-validation
procedure is carried out. Specifically, 30 different runs are performed for
each of the scenarios described in the following, with 75% of the frames
extracted from S1 employed as enrolment dataset for each considered user,
and 75% of the frames generated from S2 randomly selected and employed
as testing probes at each run.

The performance obtained when exploiting the considered elicitation
frequencies fS ∈ FS = {6, 12, 18, 24} Hz, and taking into account all the
available channels for template generation (M = 19), is reported in terms
of average correct recognition rate (CRR) in Tables 6.1 and 6.3, respectively
for MFCC- and AR-based templates. Besides using the considered stimuli
separately, they are also jointly employed by fusing their contributions at:

• feature level, by concatenating the templates f(u,r) generated from the
r-th frame of user u’s EEG collected at different elicitation frequen-
cies, during both enrolment and identification phases;

• score level, summing the distances d(u)i obtained for each i-th iden-
tification frame matched with user u’s EEG, for signals collected at
different elicitation frequencies;

• decision level, adopting a majority voting rule over the final decisions
x̂ individually taken considering EEG data collected at different elici-
tation frequencies.
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Chapter 6. EEG Biometrics: Performance Improvement

As can be seen, for systems employing a single SSVEP elicitation fre-
quency as stimulus, fS = 18 Hz guarantees the best achievable identifica-
tion rates, with CRR = 94.53% obtained using MFCCs to represent EEG
data in the [0.5, 40] Hz subband, and CRR = 94.80% employing AR fea-
tures estimated from EEG signals in the [4, 40] Hz subband. The con-
sidered fusion strategies allow to significantly improve such performance,
being able to offer a perfect recognition rate (CRR = 100.00%) when a
decision-level fusion is performed on information generated through MFC-
Cs, while CRR = 99.73% when exploiting decision-level fusion with AR
features.

Given the high accuracy obtained when exploiting all the available 19
channels, further tests are carried out to check whether similar results can
be obtained while lowering the number of employed channels. It is worth
remarking that minimizing the number of employed electrodes is an issue
of paramount importance to reduce user inconvenience. In this regard, Ta-
ble 6.5 reports the performance obtained when considering only M = 7
electrodes placed in either frontal, central and occipital areas, according to
the montages shown in Fig. 6.1.(b), together with the rates obtained with
an even smaller set M ={Fz, Cz, Pz, O1, O2} with M = 5 electrodes,
comprising only midline and occipital channels. Only the recognition rates
achieved exploiting all the considered elicitation frequencies through fu-
sion approaches, and taking into account the best-performing subbands ac-
cording to the results shown in Tables 6.1 and 6.3, are reported in Table 6.5.
From the obtained accuracies it can be seen that the central area of the scalp
seems guaranteeing the best performance achievable with a reduced num-
ber of electrodes, achieving CRR = 95.87% for MFCC and CRR = 94.53%
for AR representations, when considering EEG recordings filtered in the
θ∪α∪β subband. An even better result is obtained when considering only
the set M with M = 5 in the δ ∪ θ ∪ α ∪ β subband, for which a CRR
= 96.00% is achieved using MFCCs, while AR features provides CRR =
91.47%.

6.1.5 Conclusions

This study evaluates the feasibility of designing an automatic biometric
recognition system exploiting EEG signals elicited through protocols gen-
erating steady-state visual evoked potentials (SSVEPs). The use of flick-
ering stimuli at specific frequencies and the representation of the acquired
EEG data through either MFCC or AR templates, allows achieving high
identification rates, thanks to the proved existence of permanent character-
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istics in SSVEP brain responses across different acquisition sessions. Ac-
cording to the reported experimental tests, the joint use of multiple elici-
tation frequencies guarantees a notable improvement in recognition rates,
thus allowing to reduce the number of electrodes needed during EEG col-
lection, a relevant property to foster the adoption of EEG-based biometric
identifiers in practical recognition systems.
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CHAPTER7
Visible Beyond Invisible Biometrics:

Hidden Information, Emotions and Working
Memory

THE ADVANTAGES OF BIOMETRIC SYSTEMS linked to ease and com-
fort in interaction with the authentication device is leading to an
always increasing success of biometric-based recognition systems.

Additionally, biometric technologies requiring very little cooperation or
participation from the users may be perceived as being more convenient
by the subjects. On the other hand, biometric characteristics that do not
need user participation can be captured without the knowledge of the user,
and this is perceived as a threat to privacy by many individuals.

Because biometric technologies are based on measurements of physio-
logical or behavioural characteristics of the human body and the collection
and storage of personal data, they raise a host of ethical concerns related
to the protection of individual values such as privacy, autonomy, bodily
integrity, dignity, equity, and personal liberty [282]. The main ethical con-
cerns about the application of biometrics are related to privacy issues. Since
huge amounts of data are collected and kept in databases, there is a conse-
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quent threat to the security of persons’ identity and data protection: the
process of biometric recognition leaves behind trails of private informa-
tion. For example, if a person is identified each time she makes a purchase,
information about where this person shops and what she buys can be sim-
ply collected and used by telemarketers to invade her privacy. The issue
of privacy becomes more serious with biometric-based recognition systems
because biometric characteristics may provide additional information about
the background of an individual. In fact, some biometric identifiers may
provide medical information about the users of the system. A health insur-
ance company may use this information in an unethical way for economic
gains by denying benefits to a person determined to be of high risk. Eventu-
ally, people fear that biometric identifiers could be used for linking personal
information across different systems or databases.

The invisible biometric identifiers considered in this thesis are not im-
mune from the aforesaid shortcomings. Diseases related to the cardiovas-
cular system and medical state of a human can be revealed from vein pat-
tern [99]. In general the diameter and the position of the veins are of med-
ical interest. An example is thrombosis, where a blood clot (thrombus)
blocks the blood flow in the cardio-vascular system. Diseases changing the
position and the structure of the vein network affect all feature extraction
methods resulting in a vein pattern. The appearance of the hand vein pattern
are changed by two kind of diseases: arteriovenous malformation (AVM),
that is a congenital disorder where veins and arteries are connected in an ab-
normal way; the second abnormality is the hypothenar hammer syndrome
(HHS) which is also identifiable throughout the vein pattern of the hand.
HHS is a thrombosis of the superficial palmar arch of the ulnar artery and
is caused by repeated mechanical force, as seen in fighting sports or the
work with vibrating tools (e.g. a hammer) [161].

The visible health information that can be revealed by the EEG invisible
biometric is huge. In fact, EEG is a valuable instrument and it has been
first used in the diagnosis and treatment of spinal cord injuries, strokes,
and brain disorders including epilepsy, Alzheimer’s disease, schizophre-
nia, and Parkinson’s disease [34]. Consequently, EEG-based recognition
systems, if they are not provided with a privacy-protection mechanisms,
can reveal personal health information. In addiction, the human body re-
veals emotional states through measurable physiological responses, such
as heart rate, blood pressure, skin conductivity, muscle tension, facial ex-
pressions, pupil diameter, voice, body movements and posture. In addition
to periphery biosignals, signals captured from the brain in central nervous
system (CNS) have been proved to provide informative characteristics in
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responses to the emotional states. EEG has been used in cognitive neu-
roscience to investigate the regulation and processing of emotions for the
past decades [177]. Besides, mental stress is also detectable through the
analysis of EEG signals [129].

Emotional and stress states might be induced by a specific acquisition
protocol employed by an EEG-based biometric system, thus implying that
the recorded biometric data reveal further personal information of the user.
Eventually, one of the most important brain tasks is the processing of sen-
tences for both understanding and knowledge updating. More in detail, hu-
mans continuously make predictions about the contents a speaker is about
to convey next, on the basis of information already available in the forego-
ing discourse. Moreover, participants build expectations that forthcoming
contents are presented in ways coherent with their having been already in-
troduced or not, and with their relevance to the communicative task at hand.
The process of the brain that is responsible of the understanding and pre-
diction of sentences is the working memory. When a person is presented
a sentence, one possible information detectable from EEG signals is the
brain processing cost associated to misalignment with respect to the way
information is expected to be organised within utterances [160].

In this Chapter, an example of visible beyond the EEG invisible biomet-
ric trait is investigated. More in detail, in Section 7.1 the analysed visi-
ble information is the brain cost associated to the processing of sentences
containing linguistic misalignment. The sentence are presented as audio
stimuli, so the adopted scenario could be seen as an EEG-based biometric
system where the brain waves are collected as response to audio stimuli.

7.1 Information Structure Effects on the Processing of Nouns
and Verbs: Evidence from Event-Related Potentials and
Brain Oscillatory Dynamics

Thanks to the great temporal resolution that characterises them, electroen-
cephalographic (EEG) signals have been often analysed to gain insights into
the brain processes which are carried out during language processing tasks.
In more detail, investigations on language processing have been performed
considering event-related potentials (ERPs) since the early 1980s [154,156,
296]. ERPs are voltage changes of the electrical activity of the brain, and
can be induced by sensory or cognitive events [181]. Two ERP signatures,
N400 and P600, have been found to strongly correlate with the brain re-
sponse to linguistic inputs. Specifically, N400 is a negative component
peaking between 300 and 500 ms after stimulus onset, and its elicitation
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has been associated with difficulties in lexical-semantic retrieval [154,165],
semantic integration/unification mechanisms [92], the processing of more
or less expected information structural patterns [50, 194, 311], and the de-
coding of non-literal meanings [155, 316]. P600, a component peaking
between 500 and 800 ms, has been originally observed in parsing difficul-
ties caused by syntactic violations or garden path sentences [91, 130, 218],
yet its functional role has been also associated to mechanisms of context
update [29, 107] and new information decoding [30, 68].

Other recent studies have shown revived interest in the exploration of
brain oscillatory rhythms (power spectrum density levels, henceforth PSD
levels) in language comprehension “as a result of the view that they might
provide a window on the dynamics of the coupling and uncoupling of func-
tional networks involved in cognitive processing” [16]. Analyzing the PSD
behavior allows measuring brain activity beyond limited phase-locked re-
sponses, which provide only partial windows on the inner workings of the
brain. Language-related activity in oscillatory rhythms generally manifests
as power increases (Event-Related Synchronization) or decreases (Event-
Related Desynchronization) in different frequency bands. The frequency
ranges that have been observed to be mostly involved in language process-
ing are theta (4-8 Hz), delta (1-4 Hz), alpha (8-12 Hz) and beta (13-30 Hz).
Semantic and syntactic violations have been reported to correlate with in-
creases in theta power [16], also elicited by the processing of object-relative
vs. subject-relative clauses [318]. Differences between semantically con-
gruous and incongruous sentence endings have been instead reflected in
larger coherence in the gamma band [317]. Conversely, power decreases in
the beta band have been elicited by syntactically complex constructions. In
an insightful view put forward by [16], neuronal dynamics in the theta and
alpha frequency ranges would be revealing of more demanding retrieval op-
erations, which impose larger demands on working memory activity, while
oscillations in the gamma and beta bands would be generally indicative
of semantic and syntactic unification mechanisms. Also in the domain
of information structure processing, stronger synchronization and desyn-
chronization effects in the theta and alpha bands, respectively, have been
found to correlate with topics conveying new information and focused con-
stituents conveying given information [160].

The present work aims at assessing the contribution of both ERPs and
PSD levels in exploring how the brain deals with a special type of language
interface, namely the one between the micropragmatic and the word class
level of a sentence. Notably, variations in the brain response, in terms of
both evoked potentials and PSD levels in different frequency bands, will be
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inquired when more or less expected combinations between word classes
(mainly noun and verb) and distinct patterns of information structure (i.e.
Topic-Focus articulations) are processed.

This Section is organised as follows. Section 7.1.1 reports the state of
the art regarding the aspects of language processing whose correlation is
here investigated, namely noun and verb processing and informational di-
chotomies decoding. In Section 7.1.2 a working definition of information
structure units is provided, and their relation to noun and verb classes in lan-
guage use is canvassed. Building on this, the prediction that there should
be some sort of “processing preference” for topical nouns over focal nouns,
and for focal verbs over topical verbs, is formulated in Section 7.1.3. Sec-
tion 7.1.4 describes the experimental design adopted to test our predictions
on the neurophysiological response to distinct patterns of associations be-
tween noun and verb categories and information structure units. Results
from both ERP measurements and brain oscillations are then presented in
Section 7.1.5 and discussed in Section 7.1.6, while conclusions eventually
drawn in Section 7.1.7.

7.1.1 Literature Overview

The literature regarding noun and verb processing and experimental find-
ings on Information Structure processing are outlined in the following para-
graphs.

Noun and Verb Processing

Brain response to nouns and verbs has been the object of several neuro-
physiological investigations over the last two decades [37, 52, 238]. Both
fMRI and ERP studies report fairly consistent topographic specialisations
of these two word classes in the human brain, with nouns mainly activating
visual (cortical regions) and verbs chiefly involving pre-frontal and frontal
motor regions [37]. Different processing patterns, though, have appeared
less consistent and less robust in other works in which grammatical class
detection produced a more remarkable response only when extended sen-
tence contexts were taken into account in experimental stimuli [173]. ERP
measurements have also proved useful to unravel how word class process-
ing taps into the construal of other levels of analysis, and earlier and more
recent studies in this respect have revealed that semantic and grammati-
cal distinctions between nouns and verbs is bound to emerge even earlier
than the canonical N400 time interval [211, 347]. In other experiments,
more taxing processing has been observed for verbs due to their greater
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morphological and semantic complexity since they designate events, which
necessarily involve other participants [7]. These findings however appear
less systematic when it comes to ambiguous verbs and nouns such as the
English cut, kiss, head, etc., which can function either as verbs or nouns de-
pending on their context of occurrence. Indeed, using English words of this
kind, Federmeier et al. [76] conducted an ERP study to assess the extent to
which manipulation of prior contextual information made the processing of
nouns and verbs more or less costly. Notably, presenting short texts with
ambiguous nouns and verbs alternatively embedded in verb-predicting and
noun-predicting contexts, the authors noticed that more prominent N400
deflections were elicited by both nouns and verbs in less expected contexts
(i.e. nouns embedded in verb-predicting contexts and verbs embedded in
noun-predicting contexts). They thus concluded that rather than correlating
with neatly delimited patterns of neural activation, word class distinctions
“rather emerge in real-time from an interaction of semantic and syntactic
properties at both the single-word and the discourse level” [76]. It should
be noted that, differently from the grammatical and semantic representa-
tion of word classes, their interplay with discourse structure has been less
extensively investigated within the neurophysiological purview, and even
less is the correlation between different parts of speech and their informa-
tion structure profile. The present work intends to contribute to this line
of research by further developing Federmeier et al.’s premises on the role
played by discourse in facilitating word class differentiation.

Information Structure processing

Most of what we know about information structure processing comes from
behavioural and EEG studies [22, 110, 270, 280], among others. In the
behavioural domain, the psychological processes underlying the mental
encoding of topical vs. focal information have mainly been investigated
throu- gh reading times and eye movement measures, which yielded over-
all greater processing demands elicited by focused information, as opposed
to topical information [22]. Possibly due to the adoption of more exten-
sively contextualised stimuli, subsequent neurolinguistic experiments re-
vealed quite deflecting processing trends of information units, in that in-
creasing costs were not only observed in association to information statuses
per se, but also - and even more conspicuously - as conditional upon more or
less expected syntactic realisations [31], phonological profiles [17,50], and
activation degrees in discourse [311]. In these accounts, Topics conveying
new information [311] or realised by object dislocation strategies [31] are
reported to cost more than topics carrying given information and realised

184



7.1. Information Structure Effects on the Processing of Nouns and Verbs:
Evidence from Event-Related Potentials and Brain Oscillatory Dynamics

by syntactic subjects. By the same token, focused phrases lacking into-
national prominence appear to be costlier than Focuses conveying given
content and displaying typically prominent intonation contours. These and
other findings on the whole converge on the involvement of both N400 and
P600 responses which, as discussed in the mainstream literature, respec-
tively reflect mismatches detection at both the semantic and the discourse
level [68, 154, 194] as well as difficulties in context updating [30]. Phono-
logical, syntactic or context-dependency features inconsistently matching
with information statuses generally elicited greater N400 responses, some-
times accompanied by subsequent positive deflections. Brain response to
more or less expected information structural patterns has also been inquired
in the frequency domain in which increases of the Power Spectrum Density
have been found in the theta band with corresponding decreases in the al-
pha band while processing information structures inconsistently matching
with the activation state of contents [160].

So, much of what is at play in information structure processing is pro-
foundly contingent on the level of expectations interlocutors entertain on
the distribution information receives in an utterance and the types of in-
teractions it displays with other levels of sentence representation. In the
present study, the level of expectations we propose to look into concerns
the relation between Topic and Focus units and the lexical categories filling
them in a sentence.

7.1.2 Theoretical Views: Information Structure and Word Classes

Since its very discovery as an independent level of utterance organiza-
tion (related to- but not subsumed by semantics or syntax), Information
Structure was defined in terms of predicativity. The founding remarks
by the Second Prague School, beginning at the half of the XX century,
cf. [53–55, 79, 80], led to calling as Theme and Rheme the fundamental
units of what was then called an utterance’s Functional Sentence Perspec-
tive, with the first seen as “what the utterance is about”, and the second
as “what the utterance tells about the Theme”. Even etymologically, and
absolutely not by chance, the Theme is conceived as typically encoding
reference to some object or entity, while the Rheme is the predication, the
part of the utterance encoding what is actually said.

Halliday [93] introduces Thematic Structure as a feature of the clause.
In accordance with the Prague School terminology, he defines the Theme
as “the element which serves as the point of departure of the message”
expressed by the clause, “that with which the clause is concerned”. The
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Rheme, conversely, is defined as “the remainder of the message, the part
in which the Theme is developed”. A similar definition suggests a strong
affinity between the Theme and nominal constituents on the one side, be-
tween the Rheme and verbal or in general predicative constituents on the
other. Halliday himself remarks that “a Predicator is rarely thematic”. In
sum, Theme and Rheme seem to present themselves (by definition, and
in actual utterances) as two complementary parts of any message encoded
by a clause, which is made of an entity (“what the message is about”, the
Theme) and a predication (“what is told”, the Rheme), exactly as the clause
is made - syntactically - of a nominal and a verbal part. What is thematic
has the nature of an entity, what is rhematic that of a process.

Currently, the terms Theme and Rheme have been replaced in most of
the literature by Topic and Focus respectively, but the concepts remain es-
sentially the same. Emanuela Cresti’s pathbreaking work [51] has shown
that Topics have their typical (mainly ascending-descending) “Topic-conto-
urs”, while Focuses are produced under the various contours which describe
the utterances’ illocutions. In an assertion, the Topic will be prosodically
produced as a Topic, and the Focus will carry an assertive contour. In a
question, the Topic will again have its Topic contour, but the Focus will
carry an interrogative (ascending) contour. The same for an illocutionary
act of command, protest and so on. In other words, prosody crucially shows
that while the Topic of the utterance only encodes the entity to which the
illocutionary act will apply, the Focus is responsible for the illocution, that
is, for the particular kind of predication encoded by the utterance.

Among others, [51] have shown pretty well, on huge amounts of data be-
longing to corpora of spontaneous speech, that an information unit carrying
the function of a Topic can actually be made of any kind of syntactic con-
stituent, and the same holds for a Focus. Therefore, information structure
is largely independent from syntax. Considering for example the following
sentences:

(1)
A. Is John in town?
B. John went to China.

(2)
A. Who is representing us in China now?
B. JOHN went to China.

the clauses contained in the “B” utterances in (1) and (2) are actually dif-
ferent, despite the apparent syntactic identity. In fact, in (1) the utterance

186



7.1. Information Structure Effects on the Processing of Nouns and Verbs:
Evidence from Event-Related Potentials and Brain Oscillatory Dynamics

is about John, and it predicates that he went to China. Hence, John is the
Topic of the message, and went to China is the Focus. In (2), conversely,
the utterance is about going to China, and it predicates that it is John who
did it. In other words, went to China is the Topic of the message, and John
is the Focus. Now, the case represented by (2) is possible and even fre-
quent, but (1) is the default case. It is more natural for nominal constituents
to realize the nomination of entities, and for verbal constituents to realize
the predication of the message. In the mentioned examples, this can be seen
from the fact that language is organized to express the first case by means of
the unmarked, default construction, while the second case requires marked,
contrastive intonation.

In more detail, it has been shown from vaste corpora of spontaneous
speech that nominals are more frequently associated to Topics, while ver-
bal constituents more frequently realize Focuses. For example, [204] has
shown that in the C-ORAL-BRASIL Brazilian Portuguese corpus, nominal
Topics are more than twice as frequent as verbal Topics, while the ratio
found by [38] in a vast American English corpus was 7:11. [51] report that,
in a representative corpus of Italian spontaneous speech, Topic units are
filled nearly 60% by noun phrases and nearly 40% by other constituents,
including adverbial phrases, adjectival phrases, prepositional phrases, and
subordinate as well as main clauses. By the same token, Focus units are
filled nearly 62% by verb phrases and nearly 38% by adverbial phrases,
adjectival phrases, prepositional phrases and noun phrases2.

These observations lead us to formulate the prediction that the associa-
tions between the syntactic categories of Noun and Verb and the informa-
tion categories of Topic and Focus may not be inter-independent, but ori-
ented. More precisely, the processing of nominal Topics and verbal Focuses
should be more natural and less costly in terms of required brain process-
ing, being the most frequent and more “homogeneous” option: Nouns are
already made for denoting entities and Verbs are already made for predi-
cating about entities. On the contrary, the processing of verbal Topics and
nominal Focuses should be less natural and more costly, being the less fre-
quent and less “homogeneous” option: Verbs must be presented in a syntac-
tically/prosodically marked way in order for them to denote an entity, and
nouns must be treated in a marked way if they are to express a predication.

1These figures are extracted by Mittman’s and Cavalcante’s data by considering utterances whose information
structure does not involve more than one clause. They do not consider those cases where, in a complex sentence,
the Topic of the utterance can be an entire clause, possibly made of both nominal and verbal constituents.

2In their terminology, the Focus is called “Comment”. The quoted data are actually drawn on the PhD thesis
of Sabrina Signorini, Topic e soggetto in corpora di italiano parlato spontaneo, discussed under their guidance
at the University of Florence
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The aim of the present study consists in verifying the plausibility of
such predictions, analysing the costs required by the brain when processing
sentences with different kinds of associations between the syntactic cate-
gories of Noun and Verb and the information categories of Topic and Focus.
Specifically, electroencephalographic (EEG) signals, giving information on
the electrical activity of the brain, are exploited to perform such analysis.
Both EEG event-related potentials (ERPs), that is, time- and phase-locked
brain responses measured as the direct result of specific cognitive events, as
well as EEG power spectral density (PSD), representing non-phase-locked
activity, are used as descriptors of the brain workload in the considered
scenarios.

7.1.3 Predictions

Capitalising on the findings above discussed, we expect differences be-
tween Topic-Noun/Focus-Verb and Topic-Verb/Focus-Noun combinations
to strikingly emerge in modulations in the N400 signature. Notably, a
stronger negative response is expected to be elicited by less homogeneous
information structure/word class matchings, represented by topical verbs
and focused nouns. An N400 response would be consonant with previ-
ous accounts on the expectation-related nature of this component [8, 155]
and, particularly, with unmet predictions on information packaging strate-
gies [50]. In the experimental paradigm used, no given-new opposition
has been measured for the critical information, so we should not expect
potential P600 effects to be driven by the activation status parameter [39].
Nonetheless, P600 involvement can be predicted to possibly hint at costs of
discourse model enrichment mechanisms, once the mismatch - assumingly
correlating with an N400 response - has been solved. Zooming in on the
categorial combinations considered, it is reasonable to expect more remark-
able positivity effects for the Topic-Verb condition, being it on the whole
less frequent than the Focus-Noun condition in conversation.

In the frequency domain, greater amplitudes in the N400 component
are expected to be accompanied by increasing synchronization effects in
the theta band, as suggested in previous studies highlighting the correlation
between this band and negativity patterns in conditions of working memory
overload [317].

A less expected effect of information structure/word class combinations
may also regard a power decrease in the alpha and beta bands, hinting at in-
creasing attentional demands related to the recognition of unexpected stim-
uli [71, 317].
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7.1.4 Methods

The performed experimental tests are described in the following. Specifi-
cally, the adopted experimental design, the employed stimuli, the collected
data and the performed data processing are outlined in the following para-
graphs.

Experimental Design

In order to collect a proper number of brain responses to all the interest-
ing combinations between information structure and word class (Noun and
Verb), a set of 60 texts composed of three-sentence passages has been cre-
ated, with each passage made of a two- sentence context, followed by a
target sentence. The critical region in the target sentence contains a Noun
or a Verb either realised as Topic or as Focus. To avoid potential overlap-
ping with other discourse phenomena, mainly indefinite phrases have been
considered for the Noun set (Table 7.1), since definite noun phrases would
have been interpreted as triggering a presupposition, thus blurring topical-
ization and focalization effects. As for the Verb set, mainly infinitives have
been used, since they can be flexibly moved from Topic to Focus position
without remarkable infelicity effects (at least in Italian, the same would
hardly obtain with fully-inflected verbs).

As can be seen from the examples in Table 7.1, texts have been arranged
in pairs, so that the same two-sentence context can be followed by two dif-
ferent target sentences, with a Noun (or a Verb) in either Focus or Topic
condition. To test the predictions outlined in Section 4, the design has been
constructed so as to assess the interaction between the two main indepen-
dent variables of the study, i.e. Type (Noun, Verb) and Condition (Topic,
Focus), and how such interaction is reflected in the two dependent variables
considered, ERP measurements and PSD levels.

Stimuli

In more detail, to isolate the effects of information packaging and word
class variation from those related to the discourse availability (givenness
vs. newness, [39]) of contents, which strongly modulates sentence pro-
cessing [15, 29], we have chosen to keep all regions of interest equally
new. Therefore, the critical Nouns or Verbs, in Topic or in Focus condi-
tion, are always context-independent. Differently from other studies such
as [17], [160], and [110], among others, where expectations on information
structure processing have been measured relative to the degree of activation
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of the contents carried by topical or focal units, in this study we are mainly
interested in brain responses to topicalisations and focalisations as realised
by different word classes which, to us, makes the unvaried information sta-
tus parameter even more compelling.

The position of the target word has been carefully determined for both
the Condition and the Type factors. Particularly, for the Topic condition,
the average position of critical nouns in the target sentence is 5 (SD= 1),
whereas for verbs it is 4.5 (SD = 1.7). In the Focus condition, the position
of nouns is approximately fixed at 10 (SD = 1.8), while for verbs it is 9 (SD
= 2.3). Overall, the distribution of critical nouns and verbs is therefore fairly
homogeneous within and between the Topic and Focus conditions, mean-
ing that the effects of Topic vs. Focus packaging should not be distorted
by unsystematic positional oscillations of the target words. As a result, the
syntactic encoding of critical words as Topic or Focus, at least in terms of
sentential position, is expected to be more comparable between the Noun
and the Verb set. In the target sentences, the mean length of critical words
did not significantly differ for the chosen Noun and Verb sets, nor did their
overall frequency in common language uses, as the resulting mean values
show (NOUN = 25,85; VERB = 20,83). Furthermore, in compliance with
standard normalising measures in experiments utilising context-target pairs
as stimuli, the naturalness of all texts has been judged on a 5-point Likert
scale by another group of subjects in an offline questionnaire. A two-away
ANOVA on the collected responses showed no significant interaction be-
tween the Condition (Topic, Focus) and Type (Noun, Verb) parameters (F
< 1). This suggests that any effect to be foreseen at the electrophysiologi-
cal level should not be put down to unnatural or implausible features of the
stimuli.

Data Collection

Thirty-five students (7 men, mean age = 22.8, SD = 3.5) from the Uni-
versity of Roma Tre have taken part in the experiment. Data from three
participants were excluded because of excessive number of artefacts. All
subjects were right-handed (mean laterality = 0.81, SD = 0.16, cf. [216],
native Italian speakers, with normal or corrected-to-normal vision. None
of them reported history of neurological or psychiatric disorders. Informed
consent was obtained from all subjects prior to each experimental session.

During the experiment, participants sat in a dimly-lit, sound-attenuated
room. The stimuli described in the previous paragraph have been submitted
as audio tracks. During each track, subjects were asked to look at a fixation
cross in the centre of a computer screen.
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The 60 pairs of texts have been arranged into two randomised lists ac-
cording to a Latin Square design, so that each participant was presented
with only one occurrence of the two-sentence context whose target sen-
tence contain either a Noun or a Verb in Topic or in Focus condition. Both
lists also contained further 30 fillers, randomly interspersed between the ex-
perimental trials, with no marked topicalizing or focalizing constructions.

In order to make sure that the investigated Type×Condition interactions
had no significant effect on the comprehensibility of the designed texts,
all experimental stimuli were accompanied by two verification questions
presented visually on the computer screen. After reading each question,
subjects had to press a TRUE/FALSE button on the keyboard.

During the presentation of the stimuli, EEG signals of the participants
have been acquired using a 19-channels system GALILEO Be Light Am-
plifier, with an original sampling rate of Sr = 256 Hz. The electrodes
were placed on the scalp according to the 10-20 standard montage, and the
electrical impedance was kept under 10 kΩ using conductive gel at the be-
ginning of each acquisition. The EEG measures are referenced to the AFz
position, and represented as potentials v(c)[t] between the c-th electrode
and the reference electrode, with c = 1, . . . , C = 19. EEG recordings have
been time-locked to the presentation of the target words, represented by the
head noun of the indefinite phrase for the Noun set (see Table 1), and by
the infinitive verb for the Verb set. The obtained synchronisation signal has
been used to lock the raw EEG traces to the occurrence of the words of
interest.

Data Processing

The acquired EEG signals are filtered through the application of a band-
pass filter in order to retain spectral components in the range [0.5− 40]Hz,
containing the main EEG rhythms of interest for the present study. Subse-
quently, EEG signals are segmented into epochs time-locked to the words
under analysis. More in detail, being t0 the instant relative to the stimu-
lus’ end, an epoch of length T = TpreS + TpostS is selected for each EEG
signal, considering TpreS = 500 ms before t0, that is the pre-stimulus, and
TpostS = 1500 ms after t0. The result of the aforementioned process is a
set of NT = 60 trials of ERPs v(c)n [t], n = 1, . . . , NT , for each of the con-
sidered participant. Starting from the segmented signals, artefacts related
to eye-related activity are removed through an approach based on indepen-
dent component analysis (ICA, [199]), thus generating the filtered samples
v̂
(c)
n [t], n = 1, . . . , NT and c = 1, . . . , C.
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Subsequently, the epochs’ windows of length TpostS ms starting at t0 and
ending TpostS ms later are referenced and normalised to the pre-stimulus
baseline. More in detail, the normalisation procedure can be formalised as
follows:

v̄(c)n [t] = v̂(c)n [t]− 1

TpreS ∗ Sr

0∑
ξ=−TpreS∗Sr

v̂(c)n [ξ], (7.1)

with 1 ≤ t ≤ S = TpostS ∗ Sr.
The normalised trials of ERP are then processed through the multivari-

ate outlier detection procedure defined within the t-test continuous wavelet
transform (t-CWT) method [24], originally introduced as a solution for the
problem of single-trial ERP classification. The aim of this step is to remove
possible outlier ERP trials from the subsequent analysis, which should be
therefore performed only on NTout survival samples instead of the original
NT ones. The adopted approach iteratively performs a principal compo-
nent analysis (PCA) on a frequency representation of the available dataset
of ERP trials. At each step, the samples whose distance from the total mean
is greater than a threshold depending on the computed PCA eigenvalues are
marked as to be deleted, and not considered for further PCA evaluations,
till the same set of trials is marked in two consecutive iterations. The out-
liers thus determined are discarded from the following analysis, aimed at
characterising the brain activity during the considered language processing
tasks through two distinct descriptors, namely the averaged ERPs and the
PSD as illustrated in the following.

In more detail, representing a single n-th ERP trial as a L = C · S-
dimensional row vector vn =

[
v̄
(1)
n [1], . . . , v̄

(1)
n [S], . . . , v̄

(C)
n [1], . . . , v̄

(C)
n [S]

]
,

the whole dataset of NT trials could be described by the NT -by-L matrix:

V =


v1

v2

...
vNT

 (7.2)

As detailed by [24], performing the outliers detection procedure in the
frequency domain is computationally convenient. The ERP trials could
be therefore represented through their discrete Fourier transform (DFT) as
Vf = VW, being W theL-by-L orthogonal DFT matrix. Yet, since only the
frequencies contributions in the range of interest are needed, that is, with
f ≤ 2fc being fc the cut-off frequency, the columns of W corresponding to
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frequencies f > 2fc are set to zero, thus defining the “reduced” DFT matrix
Ŵ. Furthermore, in order to smooth the cut-off, the vector components
corresponding to the frequencies of the last octave, that is, fc < f ≤ 2fc,
can be gradually attenuated through the use of a L-by-L diagonal matrix
Rf , whose diagonal elements are given by the function:

r(f) =

{
1 for f ≤ fc

2− f
fc

for fc < f ≤ 2fc.
(7.3)

This way, a filtered representation of the treated trails can be obtained
as Ṽf = VŴRf , using fc = 30 Hz as cut-off frequency for the considered
ERPs.

Indicating now with Ω the covariance matrix of Ṽf , and with Tp the ma-
trix corresponding to the principal component transform, after performing
the PCA we obtain:

Vp = ṼfTp, Ωp = TT
p ΩTp, (7.4)

where Ωp is the diagonalised covariance matrix. The eigenvalues of Ωp are
the squared standard deviation σ2

p[i] of the components vp[i] obtained after
the transformation, with i = 1, 2, . . . , L. OnlyQp components linked to the
greatest eigenvalues explaining a certain percentage Pv of the variance are
retained after the transformation. In our work, we choose Pv = 99%. The
other components are temporarily removed and the remaining variables are
then normalised by the transformation:

x[i] = vp[i]/σp[i], i = 1, 2, . . . , Qp. (7.5)

From the normalised variables, for each of the NT trials, the Maha-
lanobis distance Dn from the n-th single-trial ERP xn to the total mean
x̄ is computed as:

D2
n = D2 (xn, x̄) =

Qp∑
i=1

(
x[ni]− x̄[i]

)2
(7.6)

The n-th ERP is temporally marked as an outlier if

Dn > D̄ +KσD , (7.7)

where D̄ is the mean and σD is the standard deviation of D, and K is a
heuristically chosen coefficient.
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The aforementioned steps are repeated iteratively and the trials, that is,
the rows of the matrix Vp, marked as outliers are excluded from Vp and
from the computation of D̄ and σD in the next iteration, but they are tested
again by (7.7) together with all other trials. In order to facilitate conver-
gence, the exclusion of principal components for one iteration is performed
only until their number remains unchanged through two consecutive iter-
ations. Besides, in order to prevent oscillatory behaviour, if the number
of marked outliers does not increase after the current iteration, the outliers
detected in the previous iteration are marked again together with those de-
tected in the current iteration. The procedure ends when the set of detected
outliers does not change any more, i.e., the same trials are marked in two
consecutive iterations.

The result of the outlier detection procedure is a reduction of dimen-
sionality both for Ṽf and for Tp because rows of Ṽf and columns of Tp

representing the outlier components are deleted. Indicating with T̂p the
reduced principal component transform matrix, the “reduced” ERP matrix
is:

V̂p = ṼfT̂p, (7.8)

In the frequency domain the reduction of dimensionality is obtained through
the inverse transform:

Ṽ
(p)
f = V̂pT̂

T
p = ṼfT̂pT̂

T
p , (7.9)

where the outlier have been removed from Vf . Eventually, the filtered and
free from outliers ERP sample Ṽ

(p)
f can be represented back in the time

domain:
Ṽ(p) = Ṽ

(p)
f T̂T

f . (7.10)

The outliers thus determined are discarded from the following analy-
sis, aimed at characterising the brain activity during the considered lan-
guage processing tasks through two distinct descriptors, namely the aver-
aged ERPs and the PSD as outlined in the following.

• Event-Related Potentials: The exploited ERPs are obtained from the
set of trials available after removing the outliers. Specifically, for each
user and for each possible combination of Type × Condition interac-
tion, the remaining samples are averaged in order to generate a sin-
gle ERP signal. In more detail the proposed analysis is focused on
the behaviour of the N400 and P600 components, isolated consider-
ing time windows starting tN400Start = 250 ms and tP600Start = 500
ms after the stimulus’ end respectively, and lasting 250 ms. Within
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this time lapse, different features are extracted and taken into account
as indicator if the cost of processing the different sentences, namely
the peak, the latency, and the mean value of the obtained ERP com-
ponents. Such characteristics, separately evaluated for each of the C
considered channels, are employed in the statistical analysis outlined
in Section 7.1.5.

• Power Spectral Density: In addition to the characteristics of ERPs,
also the PSD is employed to evaluate the brain’s processing cost of lin-
guistic mismatches for different EEG rhythms. Indicating with ṽ(c)n [t]
the n-th EEG signal belonging to the set of epochs that do not contain
the outliers acquired from the c-th channel, with n = 1, . . . , NTout and
c = 1, 2, . . . , C, its PSD representation Ṽ (c)

n [f ], with f indicating the
frequencies of interest selected with a frequency resolution of 1 Hz,
is estimated through the Welch’s periodogram method using a sliding
Hanning window of 0.5s with an overlap of 0.25s.

The results reported in Section 7.1.5 are obtained considering the range
of frequencies f ∈ [1; 30]Hz. The highest EEG frequency subband γ
is therefore not taken into account, being typically less relevant for the
processing of unexpected events in language comprehension. Each of
the remaining subbands, that is, δ, θ, α and β, is considered separately,
by evaluating the average value of the PSD Ṽ

(c)
n [f ] over the interested

frequency band, thus generating multiple indicator of language pro-
cessing cost for each occurrence of a given Type × Condition combi-
nation.

7.1.5 Experimental Results

The results obtained with our tests are here reported, together with a dis-
cussion on the observed ERPs and brain rhythmic changes in response to
different patterns of associations between information units and the two
word classes considered in the present study.

In order to verify the hypotheses stated in Section 7.1.3, several statisti-
cal hypothesis testing procedures have been carried out. In more detail, first
the results obtained from an analysis performed in order to address whether
the usage of different Type×Condition combinations may affect the under-
standability of the experimental texts are reported. The outcomes obtained
from the tests performed on the obtained ERP and PSD samples to evaluate
the effects of different Type × Condition interactions on the brain cost of
the corresponding language processing are then illustrated. Eventually, the
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obtained results are discussed in Section 7.1.6.

Understandability analysis

A preliminary analysis of subjects’ responses to verification questions yielded
an overall accuracy of 95% (SD= 0.07) which suggests that all texts have
been carefully read by the subjects. A two-way ANOVA crossing Condition
(Topic, Focus) and Type (Noun, Verb) and verification accuracy displayed
no significant interaction (F < 1), indicating that texts belonging to both
the Noun-Verb and Topic-Focus sets have been understood equally well.
Another two-way ANOVA has been performed on the interaction between
the two factors for the subjects’ response times to verification questions,
showing again no statistically significant result (F < 1), which implies that
subjects took more or less the same amount of time to answer verification
questions, irrespective of the Condition or Type manipulations carried out
in the target sentences.

Text complexity has also been evaluated by measuring the length of
the submitted texts, designed with a range between 33.3 and 36 and an
SD = 5) words. A two-way ANOVA run on the Condition × Type in-
teraction has shown no significant result (F < 1), suggesting that (a) all
texts displayed on the whole the same length and that (b) the length param-
eter did not affect the brain response to the experimental passages listened
to by the subjects. In other works, text complexity has also been gauged
by calculating readability indexes (see Gulpease index for Italian written
texts, [230]) which, given the auditory presentation modality of our stim-
uli, we have preferred not to consider for the present study.

ERP Results

The ERP features mentioned in Section 7.1.3 are considered as dependent
variables in different within-subjects t-test statistical hypothesis scenarios,
each evaluating the effect of using different word class types in a specific
condition of information structure. The taken null hypotheses assume that
the brain cost of processing a Topic or a Focus expressed through distinct
word classes is the same, and is rejected in our tests when p-values < 0.5.

The brain regions where the performed tests have highlighted significant
differences between the processing of nouns and verbs are reported in Fig.
7.1 for the Focus condition. The results show that the most significant
differences are linked to the mean and peak values of the N400, mostly
involving central, parietal and occipital brain regions.
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Figure 7.1: Regions with significant differences (p-values ≤ 0.05) for Focus Noun/Focus
Verb comparisons when (a) mean value, (b) peak value and (c) latency of the ERP are
evaluated in the N400 response.
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Figure 7.2: Grand average ERP for the Focus Noun/Focus Verb comparison.

The grand average ERPs related to the electrodes displaying more promi-
nent N400 deflections between nominal and verbal Topics are shown in Fig.
7.2.

Analogously, the results related to the ERP response to nominal and ver-
bal Topics are shown in Fig. 7.3. Also in this case, the scenarios highlight-
ing the most significant results involve the mean amplitude and the peak of
the N400 responses, with a mainly central, parietal and occipital distribu-
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tion. In this case, some significant differences are also linked to the P600
component, and mainly involve the frontal brain region as shown in Figure
7.4. The grand average ERPs related to the electrodes showing significant
differences in the N400 features are shown in Fig. 7.5.

PSD Results

A further analysis on PSD levels has been performed, separately for each
channel, in order to evaluate the differences in brain processing of matched
and non-matched word class-information units pairs. Fig. 7.6 shows the
results for the tests between Focus-Noun vs. Focus-Verb conditions, while
Fig. 7.7 shows the results of the tests comparing PSD features for the Topic-
Verb vs. Topic-Noun conditions.

The PSD results for the Focus condition show that the most significant
differences between the Noun and the Verb types are more robust in the
delta subband, with a parieto-occipital distribution (electrodes T5, P3, O1
and O2), and in the theta band with a mainly frontal distribution (electrodes
F7 and F8). No significant differences are instead observed in the alpha and
beta subbands.

The PSD results for the Topic condition show that there are differences
in the processing of nouns and verbs for all the considered frequency sub-
bands, that is, delta, theta, alpha and beta. The most remarkable behavior
is shown by the theta subband, where the parieto-occipital brain area shows
significant differences in the PSD features. Differences in the frontal area
appear in the delta (electrodes F7 and F3) and alpha (electrodes Fp1, F4
and Cz) bands, while the parieto-occipital region (electrodes C4, P4, T6
and O2) shows significant differences in the beta subband.

7.1.6 Discussion

The results obtained from the ERP analysis confirm the expectations about
the N400 component, associated with difficulties in lexical-semantic re-
trieval and the processing of less expected information structural patterns
[9, 154, 311]. In our study, the less expected structural patterns are repre-
sented by the Focus-Noun and Topic-Verb combinations, whose statistical
distributions of the peak and mean of the N400 response in the centro-
parietal and occipital regions are significantly different from the ones re-
lated to the expected structures, that is Focus-Verb and Topic-Noun.

Our results are in line with the expectation-based processing of word
classes suggested by [75], who found modulations in the N400 signature
during the online processing of English nouns and verbs in more or less
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Figure 7.3: Regions with significant differences (p-values ≤ 0.05) for Topic Noun/Topic
Verb comparisons when (a) mean value, (b) peak value and (c) latency of the ERP are
evaluated in the N400 response.
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Figure 7.4: Regions with significant differences (p-values ≤ 0.05) for the Topic Noun/-
Topic Verb comparisons when (a) mean value, (b) peak value and (c) latency of the
ERP are evaluated in the P600 response.

predictable syntactic positions or discourse functions. Our findings also
confirm those discussed by [75] on the processing cost imposed by infor-
mation structures more or less consistently aligned with different activation
states of sentence contents. In this study we sought to demonstrate that,
besides interactions with the prosodic level [50, 111] and with degrees of
activation of information in the receiver’s short-term memory [194], the
processing of information structures is also sensitive to expectations asso-
ciated with the word class being selected by the speaker to package some
information as Topic or Focus of the sentence.

Quite in line with our predictions, the word class/information struc-
ture comparison also yielded positivity effects for the Topic Verb condi-
tion. This trend appears more remarkable in frontal and central regions,
as displayed in the plots in Fig. 7.4. As shown in the grand averages in
Fig. 7.5, positivity develops in a slightly more delayed time window than a
canonical P600 interval. The presence of a distinct N400-P600 pattern for
topicalized verbs can be explained as reflecting integration and reanalysis
costs imposed by mentally construing a more predicative type of informa-

200



7.1. Information Structure Effects on the Processing of Nouns and Verbs:
Evidence from Event-Related Potentials and Brain Oscillatory Dynamics

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

C4
Topic/Noun
Topic/Verb

N400

N400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

T4
Topic/Noun
Topic/Verb

N400

N400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

T5
Topic/Noun
Topic/Verb

N400

N400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

P3
Topic/Noun
Topic/Verb

N400

N400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

Pz
Topic/Noun
Topic/Verb

N400

N400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

P4
Topic/Noun
Topic/Verb

N400

N400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

T6
Topic/Noun
Topic/Verb

N400

N400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

O1
Topic/Noun
Topic/Verb

N400

N400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u
V

O2
Topic/Noun
Topic/Verb

N400

N400

Figure 7.5: Grand average ERP for the Topic Noun/Topic Verb comparison.

tion (which is the essence of verbs) in topical function (typically associated
with nouns). In this sense, if N400 hints at an effort imposed on the atten-
tional system dealing with a misaligned matching between word class and
information unit, this mismatch is eventually solved through the integra-
tion of this pattern in the receiver’s current representation of the discourse
model, which correlates with P600 modulations. This behaviour is partly
in line with previous findings on the involvement of P600 during the pro-
cessing of less expected information structural configurations [31]. Other
electrophysiogical studies on unexpected packaging criteria of new infor-
mation [194] did not report P600 modulations. For example, [194] noticed
that a new presupposition (e.g. the migration) in a context-embedded sen-
tence elicits only a N400 response compared to when the same item of new
information is asserted e.g. a migration). The authors interpreted this ef-
fect as hinting at linking mechanisms, i.e. anaphorical operations by which
some content is “linked” to the foregoing discourse. The absence of P600
effects in their study may be indicative of less effortful updating and pars-
ing mechanisms on the part of the receiver once the mismatch has been
detected. Put more simply, new presuppositions are probably easier to de-
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Figure 7.6: Regions with significant difference (p-values≤ 0.05) in the PSD levels for the
Focus Noun/Focus Verb comparisons when different subbands, namely (a) delta, (b)
theta, (c) alpha and (d) beta, are considered.
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Figure 7.7: Regions with significant difference (p-values ≤ 0.05) in the PSD levels for
the Topic Noun/Topic Verb comparisons when different subbands, namely (a) delta, (b)
theta, (c) alpha and (d) beta, are considered.

code than new Topics expressed by verbal categories. In our scenario, P600
can be regarded as the signal of additional updating costs [119] due to a less
common syntactic pattern (verbs fronted to realise topics) which in turn im-
poses a revision of previous expectations on the informational architecture
of the prior linguistic context.

Evidence from the PSD results gives us a further explanation of increas-
ing costs elicited by processing less expected word class-information struc-
ture matchings [261]. Previous studies on the activity of frequency bands in
sentence processing demonstrated that oscillation amplitudes of delta and
theta bands are directly related to processing demands, in that amplitude
increases (synchronization) correlate with working memory load [145]. On
the contrary, alpha and beta bands show an activity that is inversely related
to processing demands, with amplitude decreases (desynchronization) in-
dicating increased involvement of neural resources for sentence process-
ing [65, 145]. Given the previous assumptions, the obtained results for the
Focus condition show that the theta band is significantly involved in the
processing of words displaying a less expected packaging, indicating an
effort linked to working memory load when the non-matched condition is
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presented. Similar considerations can be put forth for the Topic condition,
where the main frequency bands involved are theta and beta, indicating a
working memory load and an involvement of neural resources for sentence
processing when the mismatched structures are processed by the brain.

7.1.7 Conclusions

In this study, the interplay of utterances’ information structure and the
word-class level has been inquired looking into their brain correlates through
ERP and PSD level measurements. Data showed that the processing of in-
formational hierarchies is indeed sensitive to the word class selected to re-
alise the Topic or the Focus unit of the sentence. More particularly, both
modulations in the N400 time-window and increases in the power spectrum
density levels in the theta and delta bands has been observed in response to
Verbs encoded as Topic, and Nouns encoded as Focus, with more robust ef-
fects elicited by topicalized verbs. These findings are in line with two main
predictions set forth for the present research: (a) the cost associated with
information structure processing follows discourse-driven expectations also
with respect to the word-class level, and (b), as put forth by [75], the cog-
nitive cost of mentally representing verbal and nominal classes is not only
conditional on the evaluation of category-related features, but follows an
expectation-driven path, that is, it responds to the receiver’s anticipation
of the information packaging properties that a word is expected to exhibit
based on the discursive function it is called upon to perform.

In this Section an invisible biometric identifier, namely brain signals,
is considered. The aforementioned signals can be seen as biometric traits
acquired as a response to audio stimuli. The proposed work is an exam-
ple of visible information beyond and invisible biometric identifier. More
in detail, if a EEG-based biometric system relies on a stimulation proto-
col consisting of audio stimuli, information relative to the processing cost
and working memory usage can be easily obtained, mining privacy-related
information of the user.
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CHAPTER8
Conclusions and Future Work

IN THIS THESIS, a new classification of biometric identifiers has been
introduced: visible and invisible biometrics. With the term invisible
biometrics we refer to all those biometric systems based on physiolog-

ical characteristics hidden in the human body and not easy to be captured at
a distance with traditional acquisition devices and methodologies. A bio-
metric trait hidden inside the human body is a requirement of paramount
importance in biometric systems where a high level of security is needed.
In fact, some kind of biometric data are inherently public and can be stolen
and replicated, and once an attacker obtains a person’s biometric identifier,
it is easy for him to gain access to the user’s account requiring his biometric
recognition. The choice of designing a biometric system based on an invis-
ible identifier, being inherently more difficult to steal and replicate, allows
to reduce the vulnerabilities and security risks of the systems. On the other
hand, because of the “hiddenness” of the invisible traits, the acquisition
procedure is generally affected by noise that makes the feature extraction
process challenging, resulting in negative impact on the recognition perfor-
mance of the system. Besides, some security vulnerabilities of biometrics
systems are not overcome by using invisible biometrics. Eventually, being
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invisible biometrics related to physiological characteristics, they may re-
veal some personal information, threatening the privacy of the users of the
system.

8.1 Conclusions

In this thesis, two invisible biometric identifiers are investigated: vein pat-
tern and electroencephalogram. The vein pattern, that is the network of
blood vessels of people’s hands, falls into the invisible biometrics category
because it is hidden under the skin and visible only thanks to the help of
a near-infrared light and camera. The aforesaid property makes this bio-
metric trait very difficult to steal and replicate, and, then, a spoofing attack
nearly impossible to be implemented. On the other hand, vein-pattern im-
ages are often characterised by low contrast and poor definition, due to
the sub-cutaneous placement of the veins, thus making vein-related feature
extraction a challenging process and then impacting on the recognition per-
formance of the system. In this thesis, some possible solutions aiming to
improve the performance of vein-based biometric systems and to deal with
the disadvantages related to the poor quality of vein images are studied.

The fist proposed solution, aiming at improving the overall accuracy,
mitigating the effect of noisy input data and providing greater resistance
to spoofing, is based on the integration of several biometric information
sources, that is the implementation of a multimodal biometric systems.
More in detail, an approach for palm vein recognition relying on high dy-
namic range (HDR) imaging is proposed, thus following a sensor-level fu-
sion approach. Besides, the effects of feature-, score- and decision-level
fusion approaches of a palm-vein-based biometric system are investigated.
In this study, a multiple-exposure dataset is collected. Local binary pat-
tern (LBP) and local derivative pattern (LDP) are employed to extract fea-
tures from single-exposure images, raw HDR images, and tone-mapped
HDR images. The obtained experimental results show that significant per-
formance improvement can be achieved when discriminative features are
extracted from HDR contents, with respect to the use of single-exposure
images. Besides, better recognition performance can be achieved exploit-
ing such methods, when compared to what can be obtained with the other
fusion techniques.

As alternative solution to the issues related to the feature extraction
step in vein-based biometric system, a recognition architecture based on
convolutional neural network (CNN) is proposed in this thesis. More in
detail, a CNN-based-finger-vein identification system has been proposed,
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and the capabilities of the designed network has been investigated tak-
ing into account four publicly-available databases. The main purpose of
this work is to propose a deep-learning method for finger-vein identifica-
tion, able to achieve stable and highly-accurate performance when deal-
ing with different kinds of finger-vein images, irrespective of their quality.
The achieved performance shows that the proposed method is able to guar-
antee stable and highly-accurate identification results, irrespective of the
quality of the considered finger-vein images. Additionally, the proposed
CNN-based identification system requires negligible manual effort for fea-
ture selection. In fact, it has been applied without variations to all the four
considered databases, without using any application-dependent threshold
or any manually-set parameter.

Given the results obtained by the application of sensor-level fusion and
CNN techniques in the field of vein-based recognition, in this thesis the
advantages of HDR and deep learning techniques have been merged with
the aim of further improving the recognition performance of a finger-vein-
based biometric system. Besides, the intrinsic security and robustness of
the vein biometric trait, the speed and convenience of a touchless acquisi-
tion device and, eventually, the affordability of a low cost capturing device
have been exploited. In the proposed approach, an “on-the-fly” system,
where the user is asked to swipe the hand over the sensor composed by
low-cost cameras is studied. In order to compensate the quality loss due to
the low-cost sensors, and to the free hand movements during acquisition,
multiple cameras with different exposure times, capturing also the dynamic
movement of the hand over the sensors, have been used and both the still
images acquired at different exposure times and the temporal behaviour of
the moving hand over the sensors have been exploited. Deep learning ap-
proaches have been used in both scenarios. The reported analysis shows
that the use of multiple-exposure data increases the recognition accuracy
with respect to the use of single exposure images and that the exploitation
of multi-channel LDR images taken at different exposure times, as raw in-
put templates, leads to further improvements of the identification accuracy.
In addition, the temporal information related to the user swiping the hand
over the sensors has been used; the obtained results show that when CNN
topologies are used for feature extraction and LSTM networks are fed by
the sequential features based on hand movements, a significant identifica-
tion accuracy improvement is observed.

As all the biometric systems, also vein-based biometric systems are vul-
nerable to attacks at different levels, entailing weakness in data protection
and privacy if proper countermeasures are not adopted. More in detail,
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security issues of paramount importance are the revocability of biometric
template and cross-matching of data stored in different database. In the
light of the aforementioned problems, two different studies are proposed.
The first work analyses the cross-finger similarity of finger vein patterns,
studying if vein patterns acquired from fingers of different hands are “suffi-
ciently” different, that is if the inter-class variation between the considered
features is high, in terms of the considered feature extraction and matching
methods. It has been demonstrated that a pair of same fingers from different
hands do not posses similarities that allow the user to be recognised when
one finger is used for enrolment and the other one for recognition. This fea-
ture improves the security of a vein based biometric system, reducing the
possibility of cross-matching between different databases if different fin-
gers are used. Besides, it increases the possibility of revoking the biometric
trait.

The other proposed solution in the field of security in vein-based bio-
metric systems relies on non-invertible transforms. More in detail, block
remapping, image warping and Bloom filters are applied to finger-vein im-
ages. The recognition performance of the proposed approaches are evalu-
ated and an evaluation of security in terms unlinkability for all three cance-
lable biometrics approaches is performed. Besides, the irreversibility anal-
ysis in case of block remapping transformation is applied by exploiting an
automated square jigsaw puzzle solver algorithm as a possible attack. The
achieved results show that best recognition performance can be achieved by
the block remapping and block warping approaches in combination with the
pre-alignment. However,block remapping is not secure enough as it turned
out that its unlinkability as well as irreversibility is rather low. Block warp-
ing has a low unlinkability as well.Hence, only the Bloom filter approach
is suitable in terms of security. In combination with the pre-alignment it
achieves an acceptable recognition performance, although this recognition
performance is still much worse than the baseline one. Without the pre-
alignment, the resulting recognition is not usable at all.Thus, an accurate,
universal pre-alignment, which does not require the unprotected templates
to be present in the system, is necessary in order to employ a well perform-
ing (in terms of recognition accuracy) template protection scheme.

The second considered invisible biometric identifiers are brain waves.
Electroencephalographic (EEG) signals are more privacy compliant than
commonly used biometrics because they are not exposed and therefore can-
not be captured at a distance. Besides, they are less likely to be synthetically
generated and fed to a sensor to spoof and intrinsically provide liveness de-
tection. On the other hand, the use of brain signals poses new challenges.
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First, EEG signals are very sensitive to noise, entailing a bad impact on
recognition performance. Besides, the user-convenience of the acquisition
procedure is generally low. In this thesis, EEG-based biometric recognition
system where discriminative features are extracted from steady-state visual
evoked potentials (SSVEPs) is proposed. SSVEPs exhibit a high signal-
to-noise ratio and a stable spectrum, properties which make these signals
particularly appealing for EEG-based biometric applications. The issues
of performance, permanence and acceptability are addressed. The use of
flickering stimuli at specific frequencies and the representation of the ac-
quired EEG data through either MFCC or AR templates, allows achieving
high identification rates, thanks to the proved existence of permanent char-
acteristics in SSVEP brain responses across different acquisition sessions.
According to the reported experimental tests, the joint use of multiple elic-
itation frequencies guarantees a notable improvement in recognition rates,
thus allowing to reduce the number of electrodes needed during EEG col-
lection, a relevant property to foster the adoption of EEG-based biometric
identifiers in practical recognition systems.

Eventually, the problem of privacy information that can be obtained
by processing invisible biometrics is investigated for the case of brain re-
sponses. EEG signals may provide additional information about the back-
ground of an individual, such as diseases and heath information, emotional
status and mental states. In this thesis an example of visible information
beyond invisible biometrics is presented; the analysed information is the
brain cost associated to the processing of sentences containing linguistic
misalignment. The sentence are presented as audio stimuli, so the adopted
scenario could be seen as an EEG-based biometric system where the brain
waves are collected as response to audio stimuli. Data showed that the pro-
cessing of informational hierarchies is indeed sensitive to linguistic mis-
alignment, visible through an analysis pf ERP and PSD extracted from the
EEG signals.

8.2 Future Work

A number of research lines arise from the work carried out in this thesis.
We consider of special interest the following ones:

• Both for the vein-based and EEG-based biometric recognition pro-
posed approaches, due to the novelty of the experimental settings,
the experiments rely on the apparatus used and data capture proto-
cols, thus implying difficulties in making comparisons with other tech-
niques reported in literature. As part of future work, we aim to collect
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different datasets following the same acquisition protocols but varying
the acquisition device, thus making possible a more statistical signifi-
cant analysis.

• The datasets used for most of the experiments are not publicly avalaible.
We aim to make them publicly available.

• An application of convolutional neural network on the study proposed
in Section 3.1 will be carried on.

• In order to further improve the performance obtained in Section 3.2,
the application of DNN preprocessing techniques such as data aug-
mentation will be taken into account.

• We aim to apply deep learning techniques in the studies concerning
EEG-based biometric recognition.
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