
UNIVERSITÀ DEGLI STUDI ROMA TRE

UNIVERSITÀ DEGLI STUDI

ROMA
TRE

DIPARTIMENTO DI INGEGNERIA
Scuola Dottorale in in Ingegneria Informatica

XXXII Ciclo

Instance-level attribute alignment for
heterogeneous product sources

Dottorando Relatore

Federico Piai Prof. Paolo Merialdo

Gruppo di Big Data and Databases

April 2020

http://www.uniroma3.it/
http://www.dia.uniroma3.it/db/


Acknowledgements

Vorrei ringraziare innanzitutto la mia famiglia, che ha costruito gran parte di me, la mia

sicurezza sempre e l’ultimo baluardo nei momenti più tristi quando ho l’impressione di

essere solo al mondo.

Mamma per tutto quello che ha fatto per me e per il grande affetto che mi ha sempre

dato. Papà, per tutto quello che mi ha insegnato e per la curiosità che mi ha infuso.

Daniele, per tutti i momenti passati insieme, le nostre grandi chiacchierate, riuscire a

capirci sempre nei nostri voli pindarici, l’impressione di essere i nostri più grandi amici.

Annamaria, che mi sta sempre accanto nonostante le mie stranezze, con la sua

gentilezza sensibilità ed entusiasmo, per tutti i momenti insieme e per tutti i progetti

che affronteremo e le nostre imperfezioni con cui ci confronteremo.

Ringrazio Paolo il mio supervisore che mi ha seguito in tutti questi anni, che ha

saputo creare un gruppo coeso e competente, gestire tanti progetti e cogliere ogni op-

portunità per farci crescere professionalmente.

Un grazie a Donatella per la sua disponibilità e capacità di ascoltare e capire i dubbi

e dare suggerimenti sempre efficaci.

Grazie a Divesh e Paolo Atzeni, senza le loro idee e competenze e la capacità di

comunicarle in maniera semplice questo percorso non sarebbe stato lo stesso.

Grazie a tutti i membri del Minilab, che sono stati un’ancora di salvezza per me.

A livello professionale riuscendo a "sbloccarmi" con il loro lavoro. Ma anche a livello

personale: in un momento molto difficile di questo percorso, trovare tante persone con

cui confrontarmi, con cui confidarmi e con cui passare anche tanti momenti spensierati

insieme è stato molto bello, e ha creato anche dei bei legami che dureranno oltre questa

ii



iii

avventura. Grazie ad Andrea De Angelis per la sua pazienza, la sua concretezza e le belle

chiaccherate che ci siamo fatti, grazie a Vincenzo che stimo molto e con cui abbiamo

scambiato tante idee, grazie a Maurizio, Alessio, Jerin, Antonio, Vincenzo Martello e

tutti quanti.

Grazie e Valerio, Andrea Rossi, Elena, Matteo Cannaviccio, Antonio Maccioni, Tom-

maso, Eleonora ed Heba che hanno condiviso con me questo percorso come colleghi e

mi hanno sempre aiutato quando ne avevo bisogno.

Grazie all’"avvocato" Matteo Amadei, che c’è sempre stato anche se non abbiamo

condiviso tutto il percorso insieme, una sicurezza con la sua allegria e serenità e con le

sue storie Instagram!

Grazie a tutti gli amici che ci sono sempre stati in questo periodo, a Lorenzo e

Alice con la loro spontaneità contagiosa con cui ho condiviso un bel periodo della mia

vita, a Silvia e Leonardo per tutti i momenti insieme e le nostre confidenze reciproche,

a Francesca che mi mancherà, a Giulio, Davide, Andrea, Livio, Marco, Vins e tutti i

"Burini", ad Alessandro Quaglio, Alessandro Marani, Luca e Michele Principi e Salva-

tore, a cui vorrei dire che anche se le strade ci portano a vederci meno spesso, rimangono

sempre dei pilastri per me.



Abstract

This thesis focuses on Big Data integration, a foundational area in data management

research. We describe in particular the integration of product specifications from mul-

tiple sources of data, with the final goal of building a complete and reliable product

graph.

Exploiting multiple data sources has the advantage to provide information about

rare and niche products and uncommon properties, and having enough redundancy to

solve potential conflicts. On the other hand, it involves several challenges due to the

heterogeneity of Web sources.

We described a complete pipeline for product data integration, involving Web ex-

traction and integration steps, which, unlike traditional approaches, performs the record

linkage step (group specifications by product) before attribute alignment step (group

attributes with equivalent semantics and define mappings). Indeed, record linkage in

product context is simplified by the presence of general product identifiers, while at-

tribute alignment is a very complex task due to presence of a lot of properties about a

product, some rarer and some more common, with many different representations. We

provided an extensive analysis of the state of the art on these two tasks.

We formulated a novel problem of computing attribute alignment at the instance

level. Traditional schema-level alignment methods, which critically rely on local homo-

geneity within a source, are unable to effectively solve this problem due to the significant

heterogeneity exhibited by product specifications, both across and within sources. We

take advantage of the opportunities arising from the richness and redundancy of infor-

mation across sources, and propose an iterative solution, called RaF-AIA, that consists

iv



v

of three key steps: piq First, it uses a Bayesian model to analyze overlapping infor-

mation across sources to match the most locally homogeneous attributes; piiq Second,

inspired by NLP techniques, it uses a tagging approach to create (virtual) homogeneous

attributes from tagged portions of heterogeneous attribute values; piiiq Third, it makes

creative use of classical alignment techniques based on matching of attribute names and

domains.

We developed a publicly available benchmark (Alaska Benchmark) for the tasks

of attribute alignment and record linkage, which we also used to run experiments for

evaluating the RaF-AiA approach, demonstrating its effectiveness and efficiency, and

its superiority over alternative approaches adapted from the literature.



Contents

Abstract iv

Contents vi

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Integrating Product Specifications from Multiple Web Sources . . . . . . 1

1.1.1 End-to-End Data Integration Pipeline . . . . . . . . . . . . . . . 2

1.1.2 Challenges and Opportunities . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Product Specifications Integration Pipeline 11

2.1 Source Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Source Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Source Crawling . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Identifier Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Data Discovery and Extraction . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Data Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



CONTENTS vii

2.3 Data Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Identifiers Extraction and Filtering . . . . . . . . . . . . . . . . . 18

2.3.2 Resolution of Conflicting Identifiers . . . . . . . . . . . . . . . . . 20

2.4 Attribute Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 State of the art 21

3.1 Attribute alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Traditional schema alignment . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Universal Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Attribute alignment for products specifications . . . . . . . . . . 28

3.2 Web crawling and Web data extraction . . . . . . . . . . . . . . . . . . . 29

3.3 Record Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 A record linkage technique for product specifications . . . . . . . 34

3.4 Data fusion and error detection . . . . . . . . . . . . . . . . . . . . . . . 34

4 Instance Level Attribute Alignment 37

4.1 A new challenge: local heterogeneity . . . . . . . . . . . . . . . . . . . . 37

4.2 From Schema level to Instance level Attribute alignment . . . . . . . . . 39

4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Source attribute matching . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Similarity Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 Approximate Match . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Instance Level Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 Tagging and Virtual Attributes Extraction . . . . . . . . . . . . . 56

4.5.2 Iterating Matching and Tagging . . . . . . . . . . . . . . . . . . . 58

4.5.3 Instance-Level Clustering . . . . . . . . . . . . . . . . . . . . . . 60

5 Dataset and Ground Truth Construction 63

5.1 Dataset construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



CONTENTS viii

5.2 The Carbonara Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Dataset profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Dataset dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Schema heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Attribute values heterogeneity . . . . . . . . . . . . . . . . . . . . 78

5.4 Ground truth construction . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Building the Ground Truth for Schema Alignment . . . . . . . . 81

5.5 Record Linkage Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Graph-based Approaches . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Crowdsourcing Web Application . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Iterative Record Linkage Pipeline . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Instance-level attribute alignment Ground Truth . . . . . . . . . . . . . 101

6 Experiments 103

6.0.1 Evaluation of the Steps . . . . . . . . . . . . . . . . . . . . . . . 104

6.0.2 Robustness to the Match Threshold . . . . . . . . . . . . . . . . 105

6.0.3 The Role of Linkage . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.0.4 Number of Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.0.5 Error rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.0.6 Comparison with Alternative Approaches . . . . . . . . . . . . . 111

7 Conclusions 115

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 119



List of Figures

1.1 End-to-end big data integration pipeline for product specifications. . . . . . 3

1.2 Our approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Example of labeled tuple pairs . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Architecture template of DeepMatcher . . . . . . . . . . . . . . . . . . . . . 33

4.1 Running example: product specifications from the di2kg dataset. . . . . . . 38

4.2 Running example: attribute alignment at the instance level for the specifi-

cations in Figure 4.1 related to products p1 and p3. . . . . . . . . . . . . . 42

4.3 The RaF-AIA approach to instance level attribute alignment. . . . . . . . . 45

4.4 Results of tagging and virtual attribute extraction. . . . . . . . . . . . . . . 58

5.1 Dexter discovered sites and crawled pages . . . . . . . . . . . . . . . . . . . 65

5.2 Dexter discovered sites and crawled pages . . . . . . . . . . . . . . . . . . . 65

5.3 Results of 3-3-100 filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Data sources with overlapping entities . . . . . . . . . . . . . . . . . . . . . 68

5.5 Analysis of features for HTML tables . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Analysis of features for HTML lists . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Number of JSONs (instances) for each source . . . . . . . . . . . . . . . . . 75

5.8 Average number of attributes across sources . . . . . . . . . . . . . . . . . . 76

5.9 Number of distinct attributes for each source . . . . . . . . . . . . . . . . . 77

5.10 Schema entropy for each source . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.11 Attribute values entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



ABSTRACT x

5.12 Distribution of attributes of the source www.ebay.com . . . . . . . . . . . . 82

5.13 Example of nodes and weighted edges in Schema Alignment graph . . . . . 85

5.14 Distribution of connected components after meta-blocking for Schema Align-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.15 Distribution of clusters for Schema Alignment after human refinement . . . 86

5.16 Distribution of Target Attributes over the Number of Mappings . . . . . . . 87

5.17 Example of HTML page title of an e-commerce web page regarding a camera 91

5.18 Simulations for similarity function selection . . . . . . . . . . . . . . . . . . 96

5.19 Iterative pipeline for Record Linkage . . . . . . . . . . . . . . . . . . . . . . 99

5.20 Magellan results for Record Linkage . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Experiments on algorithm phases . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Varying the match threshold . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Varying the percentage of available linkage . . . . . . . . . . . . . . . . . . . 107

6.4 Varying the number of sources . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Varying error rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Comparison with baselines and alternative approaches. . . . . . . . . . . . . 111

6.7 Performance on different partitions of data . . . . . . . . . . . . . . . . . . 113



List of Tables

4.1 Domain of attributes S3.Memory (denoted A) and S4.Memory (denoted B). . 50

4.2 Posterior values for Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Data sources in the final version of the camera dataset . . . . . . . . . . . . 70

5.2 Partial result of domain-based relevant words generation process . . . . . . 71

5.3 Bit-wise matrix for ebay.com . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Attribute values counter for each attribute name . . . . . . . . . . . . . . . 79

5.5 Partial example of the distribution of source attributes using Stratified Sam-

pling with 3 buckets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Partial example of the distribution of source attributes using Stratified Sam-

pling with 10 buckets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Statistics about the Record Linkage Validation Set . . . . . . . . . . . . . . 88

5.8 Most common bigrams in page titles . . . . . . . . . . . . . . . . . . . . . . 93

xi



Chapter 1

Introduction

Data integration is a foundational area in database research related to the existence of

multiple sources of data [1, 2]. It has various facets, in terms of goals (for example, pro-

viding a unified access to multiple sources or building new “integrated” repositories with

data coming from several sources), in terms of problems (for example, source selection,

schema alignment, entity resolution and data fusion), and in terms of challenges (for

example, dealing with various forms of heterogeneity and with issues in the quality of

data and schema). Many interesting contributions have been made over the years, but

the a lot of challenging issues still need to be solved. The recent, significant interest in

Big Data has brought new issues into this arena, related not only to the size of data

sources, but also to other aspects, such as their number, heterogeneity and dynamicity,

each of which adds significant difficulties and complexity [3].

1.1 Integrating Product Specifications from Multiple Web

Sources

In Big Data integration, even within a single domain, there are many Web sources

with many different characteristics and specific challenges, which has led to significant

research focusing on specific or families (e.g., products or sports), or categories (e.g.,

camera, or football) thereof [4, 5]. This focus enables meaningful solutions to important

1



CHAPTER 1. INTRODUCTION 2

practical problems and to develop methods that could be useful in related domains as

well.

A major application area in this respect is that of eCommerce, where retailers are

interested in providing detailed and trustable information about a diversity of products,

and this information usually comes from multiple sources and, to a greater extent, Web

sites from which data is extracted, with the goal of creating comprehensive catalogues [6,

7, 8, 9].

However, despite all the work on data integration, integrating product specifica-

tions from multiple sources is still not a solved problem and raises novel and intriguing

research challenges [10, 7] and therefore deserves specific attention.

Given the large and increasing number of sources that provide data about product

specifications and the velocity as well as the variety with which such data are available,

this domain represents a challenging scenario for developing and evaluating big data

integration solutions.

Integrating the data offered by pages describing product specifications to create a

comprehensive, unified description of each product represents a fundamental step to

enable valuable applications, such as, question answering, price comparison and data

driven market analysis.

To address the issue of integrating product specification fromWeb sources, we extend

the general approach for big data integration defined in [3] to an end-to-end pipeline

that decomposes the problem into different tasks from source and data discovery, to

extraction, data linkage, attribute alignment and data fusion [10].

1.1.1 End-to-End Data Integration Pipeline

Our end-to-end data integration pipeline for product specification pages is depicted in

Figure 1.1. The pipeline is presented as a sequence of tasks, but different configurations

can be defined depending on the application goals. Every task adopts methods and

techniques from databases, information retrieval and machine learning. Every task

produces output to feed the successive task in the pipeline, but intermediate results



CHAPTER 1. INTRODUCTION 3

could find other compelling application scenarios as well. To this end, we advocate that

the pipeline must include an empirical evaluation benchmark for every task.

In our vision, the information need is expressed by an input set of sample pages.

We observe that products are typically organized in categories, and hence we expect

that the sample pages refer to products from the categories of interest. Our approach is

inspired by the Open Information Extraction [11] paradigm: the schema for the target

data is not specified in advance, and the categories of the target products do not refer to

a predefined product taxonomy, but they are rather inferred from data in the product

pages of the input sample and in the product pages that are gathered from the Web

along a progressive and iterative process.

Figure 1.1: End-to-end big data integration pipeline for product specifications.

Source discovery aims at efficiently finding and crawling product websites in order to

gather pages that refer to the products of interest. One might believe that discovering

product websites is a minor task, as a relatively small number of head sources can offer

enough data for most of the products. For example, amazon.com already provides data

about an impressive number of products. However, valuable information is actually

published by an enormous number of tail sources [4, 12], i.e., sources that each provide

a small number of product entities. These tail sources are important because they

improve coverage. They can often offer tail entities, i.e., products that are present in

a small number of sources, as well as tail attributes, i.e., product properties that are

present in a small number of entities. Also, tail sources ofter refer to tail categories,

i.e., small niche categories of products. Finally, tail sources contribute to information

diversity, as they provide values that depend on the local source, such as, product

reviews and price. Source discovery also deals with efficiently crawling the discovered

websites towards pages containing products of the categories of interest, without visiting

unproductive regions.



CHAPTER 1. INTRODUCTION 4

Data discovery and extraction has the objective of processing the pages harvested

in the previous task in order to locate and extract product attribute names and their

values. As we mentioned above, we do not rely on a predefined schema, but rather

extract attributes bottom-up, with the goal of discovering not just head attributes, but

also tail attributes that cannot always be described in advance.

Data linkage seeks to cluster pages from different sources that refer to the same prod-

ucts. It is worth observing that in the traditional data integration pipeline, schema

alignment is performed before record linkage [13]. Unfortunately, with a very large

number of sources, such a traditional approach becomes infeasible because of the huge

variety and heterogeneity among attributes. As we shall discuss later, we propose to

perform data linkage before schema alignment as we can take advantage of the oppor-

tunity that products are named entities, and hence a product specification page usually

publishes the product identifier.

Attribute alignment addresses the challenge of semantic ambiguity and aims to rec-

oncile the attributes offered by different sources, that is, to understand which attributes

have the same meaning and which ones do not, as well as identify value transforma-

tions to normalize different representations of the same attribute values. Since we do

not rely on a global schema given in advance, correspondences among attributes are

established bottom-up leveraging the results of the previous data extraction and data

linkage phases.

Data fusion tackles the issue of reconciling conflicting values that may occur for at-

tributes from different sources. Data fusion aims at evaluating the trustworthiness of

data, deciding the true value for each data item, and the accuracy of the sources. To

address these challenges, data fusion techniques rely on data redundancy, which further

motivates the need to process many sources.

For simplicity of presentation, we have described our approach as a linear pipeline,

where tasks are performed in sequence and independent of one another. However, there



CHAPTER 1. INTRODUCTION 5

might be feedback loops between the tasks, as intermediate results can indeed influence

the performance and the behavior of the preceding tasks and of the end to end solution.

1.1.2 Challenges and Opportunities

The web scale raises intriguing challenges for all the tasks of our pipeline due to its

volume, variety, velocity, and veracity [13].

• The volume of data refers not only to the large number of products but, more

importantly, to the number of sources. As we have discussed, to achieve coverage

and diversity, we need to process a very large number of sources across the entire

web, not just a small number of pre-selected sources.

• The variety of data is directly influenced by the number of sources and arises

at many different levels, affecting every task of our pipeline. At the product

category level, websites, especially the head ones, organize products according to

such a vast plethora of categorization strategies that makes it very difficult, if not

impossible, to reconcile them into a unified taxonomy. At the product description

level, heterogeneities are related to attributes and values, which are published

according to different granularities (e.g., physical dimensions in one field vs three

separate fields for width, length, height), formats (e.g., centimeters vs inches) and

representations (e.g., the color of a product as a feature vs distinct products for

different colors).

• The Velocity of data involves the rate of appearance and disappearance of pages in

sources as well as the rate of appearance and disappearance of web sources. Also,

while some attributes (such as technical and physical features) are quite stable

over time, the contents of the individual pages can change daily, for example for

prices and reviews.

• The Veracity of data deals with honest mistakes that can occur in web pages, but

also with deceits, that is, deliberate attempts to confuse or cheat (e.g., providing

imprecise or erroneous product characteristics).



CHAPTER 1. INTRODUCTION 6

Our approach to address these challenges aims at taking advantage of the opportu-

nity that products are named entities, and hence a product specification page usually

publishes the product identifier. Web sources that deliver product specification pages

publish product identifiers mainly for economic reasons: websites need to expose the

product identifiers to let them be indexed by shopping agents and available to cus-

tomers who search products for comparing prices or consulting specifications. Large

e-commerce marketplaces strongly encourage sellers and retailers to publish product

identifiers,1 as they improve efficiency both for the internal management of data and

for the exchange of data with search engines like Google and Bing.

The presence of identifiers allows us to drive the pipeline from source discovery

to data integration by leveraging the opportunity of redundancy of information at the

global level, and the homogeneity of information at the local level.

• At the global level, we observe that head (popular) products are present in several

head (large) sources as well as in many tail (small) sources. Therefore, we expect

that identifiers of head products are spread across many sources. Further, many

head products in a category will often co-occur in multiple sources.

• At the local level, we observe that the structure of information, within each source,

is more regular. Hence, we expect the product specification presented in a given

page is published according to the same structure for every page in the same

source.

Redundancy as a Friend Figure 1.2 illustrates the key intuitions underlying our

approach [10] from source discovery to data integration to meet the goal of effectively

and efficiently dealing with head and tail sources, hence including all pages of head

and tail entities. Starting from known head entities in head sources, we take advantage

of homogeneity of information at the local level to extract product specifications and

identifiers for tail entities in head sources (even head sources offer many tail entities).
1eBay, Amazon, Google Shop explicitly require sellers to publish the id for many product categories.

For example, see eBay’s rules:
http://for-business.ebay.com/product-identifiers-what-they-are-and-why-they-are-important.

http://for-business.ebay.com/product-identifiers-what-they-are-and-why-they-are-important


CHAPTER 1. INTRODUCTION 7

Then, we exploit the presence of head entities across sources: searching head identifiers,

we discover tail sources (even tail sources offer a few head entities). Again, we exploit

homogeneity of information at the local level to extract identifiers and specifications for

tail entities in tail sources.

Figure 1.2: Our approach.

1.2 Contributions

This thesis has been developed in framework of the above pipeline. In particular we

concentrated our efforts to study solutions for the Attribute Alignment task. As we detail

in the following, this is a challenging task: unfortunately the local homogeneity of the

sources mainly refers to the physical structures of the pages, while the heterogeneity

of data occurs not only across sources, but even within sources. To tackle to problem,

we have therefore developed techniques to perform attribute alignment at the instance

level, in contrast to traditional approaches that work at the schema level.

Another important contribution of our work has been the development of a bench-

mark for big data integration. As we observed that many traditional solutions for data

integration does not apply on multiple Web sources, we built a benchmark aimed to

drive research in this field.

Instance Level Attribute Alignment Despite all the work on data integration,

integrating product specifications from multiple sources is challenging and raises novel

and intriguing research problems and therefore deserves specific attention. Data ex-



CHAPTER 1. INTRODUCTION 8

tracted from Web sources (or even coming from some existing databases) can be seen as

organized in sets of key-value pairs (or, in other terms, in sparse, heterogeneous tables),

and a major issue is the reconciliation of attributes (that is, attributes, in database

terms), usually called attribute alignment in this framework.

Traditional approaches to attribute alignment consider heterogeneity across sources,

but they rely on local homogeneity ; that is, they assume that each source adopts ho-

mogeneous semantics and homogeneous representations of data [14, 15]. In the product

domain, because of volume and variety of the product specifications, the local homo-

geneity assumption is not valid, and sources exhibit many forms of instance and schema

level heterogeneity across sources as well as intra-source, i.e. within the same source.

We follow the data integration pipeline proposed in [12], which performs record

linkage before attribute alignment. The rationale is that while attribute alignment is

unfeasible because of the degree of heterogeneity of the sources, record linkage can

be computed by exploiting specific properties of the domain, such as the presence of

product identifiers [12], and the linkage among the instances can be exploited to

Our proposal addresses the issue of attribute alignment in such a challenging and

intriguing setting. Working with data from heterogeneous sources that violate the

local homogeneity assumption requires to overcome traditional solutions, which aim at

aligning attributes at the schema level. We propose a solution to compute attribute

alignment at the instance level: our goal is to group individual keys that are associated

with values describing the same product property.

According to our end-to-end data integration pipeline, we rely on record linkage

information. The rationale is that while attribute alignment is unfeasible because of

the degree of heterogeneity of the sources, record linkage can be computed by exploiting

specific properties of the domain, such as the presence of product identifiers, and the

linkage among the instances can be exploited to align the attributes.

Indeed our approach leverages the opportunities offered by the redundancy of infor-

mation across sources. We propose an iterative process that first, based on a Bayesian

model analyses the overlapping information across sources to align the most homo-



CHAPTER 1. INTRODUCTION 9

geneous attributes. Then, adopting a tagging approach, inspired to NLP techniques,

identifies and aligns attributes that suffer local and global heterogeneity.

We have described our approach in a paper which is currently under submission [16].

Building a Benchmark for Big Data Integration In an experimental evaluation

performed between Sept 2014 and Feb 2015, the Dexter focused crawler [17] was trained

to gather product pages from 10 coarse categories: camera, cutlery, headphone, mon-

itor, notebook, shoes, software, sunglasses, toilet accessories, televisions. The crawler

discovered 3.5k websites, for a total of 1.9M pages. Each website contributed to provide

pages for the different categories, and pages were grouped into 7, 145 clusters, corre-

sponding to the local categories exposed by the websites (on average every websites has

2 local categories). 2 We compared the contents of our dataset with pages in Common

Crawl,3 an open repository of web crawl data. About 68% of the sources discovered by

Dexter were not present in Common Crawl. Only 20% of our sources contained fewer

pages than the same sources in Common Crawl, and a very small fraction of the pages

in these sources were product pages: on a sample set of 12 websites where Common

Crawl presented more pages than in our dataset, we evaluated that only 0.8% of the

pages were product pages.

These results suggested us the critical need for the community to build a suitable

benchmark product dataset to conduct big data research. To this end our experience

gave raise to the Alaska benchmark, a big data integration benchmark, which has been

used in the DI2KG workshop at ACM KDD 2019. We are currently preparing a publi-

cation that describes the benchmark [18].

1.3 Roadmap

The thesis is organized as follows. Chapter 2 illustrates the main component of the big

data integration pipeline for product specifications. Chapter 3 discusses related work
2The dataset is publicly available on-line at https://github.com/disheng/DEXTER, and represents

an extension of the dataset presented in [17].
3http://commoncrawl.org/

https://github.com/disheng/DEXTER
http://commoncrawl.org/


CHAPTER 1. INTRODUCTION 10

and state-of-the-art for attribute alignment. Chapter 4 describes the solution that we

have designed to address the instance level attribute alignment issue. Chapter 5 presents

the dataset and the ground truth that we have built to evaluate our techniques. The

results of this activity has given rise to the Alaska benchmark for big data integration.

Chapter 6 presents the results of the experimental evaluation that we have conducted for

our instance level attribute alignment technique on an enhanced version of the dataset

of the Alaska benchmark. The thesis concludes with a final discussion on the work and

with a description of future work.



Chapter 2

The Product Specifications

Integration Pipeline

This Chapter provides a deeper overview of the main components of the pipeline intro-

duced in the previous chapter for addressing the issues of integrating product specifica-

tions from Web sources. Several components were developed in previous work, but we

have re-engineered them for interoperability and effectiveness purposes.

2.1 Source Discovery

We consider a focused crawler, Dexter [17], to discover and crawl product websites

offering product pages for the input categories. The crawler iterates over three phases:

source finding, source crawling, identifier extraction.

2.1.1 Source Finding

Our target websites are sparsely distributed on the web. To efficiently find them without

visiting unproductive regions on the web, we consider two different strategies, search

and backlink, whose results can be suitably combined. Search consists of querying a

search engine with a set of seed identifiers of products; we expect that the search engine

results contain pages from websites that publish information about these products.

11



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 12

Backlink exploits services that provide inbound links, i.e., pages containing the set

of links pointing to a given page; we rely on these services to find hubs, i.e., pages

aggregating links to product websites.

These strategies allow us to discover many sources without penalizing recall, with

Search focused more on head sources, Backlink including also tail sources. However,

they often return also many non-relevant sites. To improve precision, we filter out

results that are unlikely to represent a product website.

Search takes advantage of the redundancy of product information: searching the identi-

fiers of known products on a search engine, we expect to find pages of the same products

in many different sites. Identifiers to trigger the search engine are extracted from the

input set of pages by means of suitable wrappers, or leveraging microdata annotations,

such as schema.org, in case these are used in the pages.

Observe that the search engine can also return pages from websites that are not

useful for our goals, such as pages from a web forum or pages from news websites. To

efficiently select relevant websites, we search for multiple products and rank websites

based on the number of pages from the same website that are present in the results.

The rationale is that it is unlikely that a website that does not contain product specifi-

cation pages appears frequently on the results of multiple queries with different product

identifiers. Based on the ranking, we select the top-k websites.

It is worth observing that this strategy can penalize the recall of tail sources whose

pages do not appear with a sufficient number of occurrences in the search engine results.

This limitation can be further exacerbated by costs and limitations of the search engine

APIs, which usually impose limits on the number of results per query, and on the

number of queries in an interval of time. This is a significant issue if the goal is to

collect an unbounded number of product websites.

Backlink aims to deal with the above limitations by adopting an alternate solution

that is not dependent on the search engine restrictions. The idea is to find hubs, that

is, pages that list links to many product websites. To this end we rely on online services



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 13

that return the inbound links to a given input page.1 Our approach is to search for

pages that contain pages containing inbound links to the websites returned by Search.

We then consider the domain of the links contained in these pages as candidate product

websites. Similarly as for search engine results, backlinks can also lead to non-relevant

hubs, subsequently leading to non-relevant websites. For example, sometimes they

return generic hubs that point to multiple websites like popular websites in a country.

To select the most promising websites without penalizing the recall, we adopt an

iterative approach to compute a ranking of the websites contained in the hubs returned

by a seed set of product websites. As non-relevant hubs are less likely to point to many

relevant websites, we score hubs based on the number of relevant websites they point

to, and similarly we score the relevance of websites, based on the number of hubs that

point to them. Based on this intuition, we rank websites and hubs and select the top-k

websites.

Filtering Results The collection of websites discovered by Search and Backlink can

contain many spurious results. In order to select our target websites, we adopt a simple

machine learning approach, training a classifier to recognize if a website is a product

website. The features that we have considered include all the anchor texts of the links

in the home page.

2.1.2 Source Crawling

Source discovery also deals with crawling the discovered websites towards the product

pages of the target categories. Also in this case, efficiency is a challenging objective, as

websites often contain a huge number of pages, and only a small fraction may represent

pages of interest.

We adopt a crawling strategy inspired by [19], which focused on web forums. Our

approach builds on the assumption that, similar to forum websites, product websites

have an internal structure consisting of one or more entry pages to the product content

for a given category, followed by possibly paginated index pages that offer links to
1These services are used to support search engine optimization (SEO).



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 14

product pages. Therefore, our approach first looks for the entry pages related to the

target category, then seeks for the index pages.

To discover the entry pages for a given category, the crawler relies on a classifier

trained to predict links that are likely to point to entry pages. The classifier, which is

trained with the links to entry pages of the target category in the websites of the input

set of sample pages, analyses the anchors of links that are present in the home page and

in target product pages (those returned by the search engine in the source discovery

phase).

A similar approach, based on machine learning, has been adopted also to detect

index pages. In this case, the classifier is trained to predict links that lead to product

pages. A page is considered an index page if it contains a collection of links that point to

product pages and that share uniform HTML format layout and presentation properties.

2.1.3 Identifier Extraction

The last phase of source discovery has the objective of extracting product identifiers

from the pages collected by the crawler. These identifiers will be used to launch new

searches for discovering other sources.

To extract the product identifiers that can feed a new search, we exploit the local

homogeneity of web sources. For each discovered source, we use the set of known

identifiers to automatically annotate the pages collected by the crawler; then, for each

annotation that exactly matches a textual leaf node of the DOM tree associated with

the page, we infer an extraction rule (e.g. an XPath expression). To this end, we use

the technique proposed by Dalvi et al. [20] to infer the extraction rules given noisy

training data, that is, pages annotated by possibly erroneous labels. Because of the

local structural homogeneity of the sources, we expect that the application of these

rules returns the identifiers that are present in the pages.



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 15

2.2 Data Discovery and Extraction

We now describe strategies to automatically extract product descriptions from the col-

lections of product pages harvested by the previous task.

We have concentrated our efforts on specifications, in the form of pairs of attribute

name and value, and on the product identifier. Future investigations will target our

attention to extract and process also price and product reviews. We now describe our

approach to extract specifications, and in Section 2.3 we illustrate our technique to

extract product identifiers associated with the product on a page.

Automatically extracting specifications in many websites for different categories of

products is challenging. Each website adopts a local template to generate the product

specification pages. Then, to accurately extract the data, one should generate a spe-

cific wrapper for every website. A solution to this problem could be that of applying

an automatic wrapper inference technique, such as Roadrunner [21]. However such a

solution exhibits two major drawbacks: first, it has limited performance with irregular

templates; second, it extracts a lot of meaningless data, since it considers every item

that is not part of the template as data to extract. Another approach is to develop

wrappers leveraging domain knowledge, as in [5]. However, as we already discussed,

this would limit the opportunity of discovering tail attributes; also, with a large num-

ber of product categories this approach would require significant effort because of the

heterogeneity of specifications across categories.

We have adopted a solution that represents a good trade-off between the above

approaches. On the one hand, we exploit publication practices that occur globally in

many product websites. On the other hand, we leverage the local homogeneity exhibited

in large websites, which build pages according to a bunch of local templates.

Our solution splits the problem in two separate phases: data discovery, i.e., detecting

the portion of product pages that contain the specifications, and data extraction, i.e.,

extraction of the specification, as attribute name and value pairs.



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 16

2.2.1 Data Discovery

We have observed that although specifications can be contained in different HTML

structures, they are primarily found within HTML table and list elements. By manually

inspecting 301 pages from a great variety of products, we have noticed that 62% of the

specifications were inside an HTML table element, and 31% were inside an HTML list

element; the remaining 7% were in other miscellaneous HTML elements.

Web pages may contain many tables and lists; however, we have noticed that, in-

dependent of product category and of the site, product pages exhibit structural char-

acteristics that can be exploited to determine if a table or a list contains the product

specifications (as opposed to being used, e.g., only for formatting purposes). Therefore,

we have trained a classifier to detect tables and lists that contain product specifications.

The original Dexter systems adopted a Naive Bayes classifier, considering features deal-

ing with table and list contents, such as, statistics about number of links, number of

tokens in the leaf nodes, depth of the leaf nodes [17]. We have reimplemented the

classifier as part of a system, called Carbonara, that relies on a fully connected neural

network, as we describe in Chapter 5.4.

2.2.2 Data Extraction

In order to extract attribute name and value pairs, we have considered two strategies.

The first strategy adopts a simple heuristic based on the observation that the struc-

ture of the fragments containing the specifications in tables and lists are very homo-

geneous, even across sources. By inspecting these tables and lists, we determined that

attribute name-value pairs of the specification are often contained in the html row el-

ement and that the first and second text elements of each row represent the attribute

name and value, respectively. A similar heuristic is applied for the elements of lists

classified as specifications.

The second strategy, which is applied on tables, uses the same technique adopted

to extract the identifiers, described in Section 2.1.3. In this case, attribute names and

values from the input sample pages are used to annotate the pages of the discovered



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 17

sources. From the annotations we infer extraction rules. To obtain a more effective

approach, we generalize these extraction rules to work on all the rows of the table, thus

extracting all the attributes that it offers, including those that are not in the input set.

Also the architecture of this component have been revised in the Carbonara system

described in Chapter 5.4.

2.3 Data Linkage

Our approach to data linkage for product specification pages exploits the opportunity

that product pages usually contain a product identifier. However locating the product

identifiers in product pages at Web scale is quite challenging:

• It is not easy to locate, within the HTML of the product specification pages,

the string that represents the identifier; some sources adopt microdata markups

(such as schema.org), but their diffusion is limited [22]. Usually identifiers consist

of a single token that, for some categories of products, follow specific patterns.

But at Web scale, it is not possible to generalize these patterns (as done, for

instance, in [23], which concentrated on a handful of sources), because of the

large variety of patterns. Similarly, it is not possible to focus only on specific

patterns, e.g., those associated with popular standards (as done, for instance,

in [24]) because of the skewed distribution of the patterns. To give a concrete

example, we have analyzed the identifiers extracted from the subset of pages

annotated with microdata markups in the collection of sources discovered by our

pipeline. We observed 930 different patterns for 33, 281 values, with the most

frequent pattern (a sequence of 8 digits) matching less than 23% of values; the

most frequent pattern associated to a standard was GTIN-13, with frequency 3%.

• Product pages usually contain identifiers not only for the main product presented

in the page, but also for related products (such as suggested products, products

bought by other users, sponsored products).



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 18

• Some identifiers may only be local (i.e., only within a source), not useful for link-

age across sources. Local identifiers from different sources may conflict; similarly,

conflicts may occur among global identifiers of products from different categories.

Hence, different product pages associated with the same identifier are not guar-

anteed to refer to the same product.

To overcome these challenges, we leverage the redundancy of information that occurs

at the global level and the regularities of the sources and uniqueness of information that

occur at the individual source level [25]. Our approach to data linkage for product pages

consists of an iterative phase to extract and filter identifiers, and a conclusive phase to

resolve conflicting identifiers and generate the linkages.

2.3.1 Identifiers Extraction and Filtering

We start from a seed set of high quality product identifiers, which are used as keywords

for searching among the discovered sources product pages that might refer to these

products.

Next, for every retrieved product page, we infer an extraction rule for every HTML

region containing an occurrence of the searched identifiers. To infer the extraction rule

we use again the technique based on noisy annotations. However, here we consider as

worth extracting also regions that contain the identifiers, not only those that exactly

match the identifiers. In fact, for the purpose of linkage we are interested to extract the

identifier that corresponds to the product on the page, and in many sources this is in a

textual node, together with other tokens.

Based on the assumption of the local regularities of the sources, the extraction rules

are used to obtain regions containing identifiers from all the other product pages in the

same source. From every region returned by the rules, we have to select the token that

represents a candidate identifier for the primary product of the corresponding page.

Since we cannot rely on a set of predefined patterns to select identifiers among the

tokens of large regions, we consider that usually a source provides at most one page for



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 19

a product. Therefore, we take the frequency of the tokens as a measure of their ability

to serve as identifiers.

An immediate idea is to consider the token source frequency, that is, the token

with the smallest number of occurrences within the source. However, considering every

source separately does not work well when searching for global identifiers because many

sources, especially tail sources, contain tokens that are locally rare, but do not represent

global identifiers. For example, consider a small source where there is just one laptop

with a touchscreen: if the keyword touchscreen is used along with the description of

the product, it would be very rare at the source level, and thus it could be erroneously

regarded as a good candidate identifier. Even if these tokens might appear as very

selective at local level, they are much more frequent if considered globally, especially in

the head sources. Continuing the above example, touchscreen is a pretty frequent token

at the global level.

Therefore, we consider the token collection frequency, defined as the total number

of occurrences of a token in the whole collection. In this way, we take into account both

local and global characteristics. It is worth noting that because of this property we can

perform data linkage only once we have gathered a large number of sources.

The above extraction and selection processes may produce incorrect identifiers, for

many reasons: a wrong selection of the candidate identifiers; a region returned by an

inaccurate extractor; the presence of regions containing identifiers that do not refer to

the main product of the page (e.g., suggested products). To improve the precision, we

consider the duality between good extractors and correct identifiers: an extractor is

good if the identifiers of its regions are correct; similarly, an identifier is correct if it

comes from a region returned by a good extractor.

The selected identifiers are then iteratively used to trigger another search on the

source dataset.



CHAPTER 2. THE PRODUCT SPECIFICATIONS INTEGRATION
PIPELINE 20

2.3.2 Resolution of Conflicting Identifiers

Due to the variety of information across sources, and the presence of local and global

identifiers, at the conclusion of the iterations different products could share the same

identifier across sources. To improve the accuracy of linkage, we identify these conflicting

identifiers by considering that every source consists of a homogeneous set of products:

although the criteria that define the uniformity of the product categories are local, not

global, with a large enough dataset it is likely that many pairs of products co-occur

in many sources because they adopt similar (even if they are not identical) categories.

Then, we consider identifiers that co-occur with multiple identifiers in many sources

more reliable for the purpose of linking.

2.4 Attribute Alignment

One of the main focus of this thesis is the development of techniques to perform attribute

alignment for our product domain. As we shall describe deeper along the thesis, the

main difficulties to face are due to the heterogeneity, at the schema and at the instance

level, that occur not only across sources, as in the traditional database setting, but also

intra-source, that is within specifications provided within a source.

To give a concrete example of the heterogeneity at the schema level, consider the

dataset collected using the Dexter crawler. The specifications extracted from these

sources contain more than 86k distinct attribute names (after normalization by low-

ercasing and removal of non alpha-numeric characters). Most of the attribute names

(about 85k) are present in less than 3% of the sources, while only 80 attribute names

occur in 10% of the sources, with the most popular attribute name occurring in just

38% sources.



Chapter 3

State of the art

In this Chapter we will present a survey of approaches for different step of Data In-

tegration tasks. For each of them, we will provide further details on existing product

domain specific techniques.

In Section 3.1 we will discuss on attribute alignment, the main focus of this thesis.

We will also define new challenges that attribute alignment for product specifications

presents, and what makes existing technique in the state of the art unfit to deal with

them.

The other sections describe existing state-of-the-art techniques for related tasks of

data integration: Section 3.2 provides Web crawling and extraction techniques, Sec-

tion 3.3 Record Linkage approaches, Section 3.4 Data fusion approaches.

3.1 Attribute alignment

Attribute alignment (or schema alignment) is a field that has been widely studied in

last years, especially for what concerns relational databases, regarding the reconciliation

of attributes from different sources of data.

It relies on the concept of schema, a description of all entities and correspondent

attributes provided by a given source (for instance, tables and correspondent columns

for relation databases, entity types and predicates for knowledge graphs).

21



CHAPTER 3. STATE OF THE ART 22

It is a fundamental step of data integration processes, enabling the possibility, along

with record linkage step, to define transformations of queries and answers from a data

source to another, or to obtain a unified view of different sources of data. It can also

be useful for other tasks, such as detecting similarities and differences between several

sources of data.

Different works provide different definitions of schema alignment, according to the

context. Intuitively we can say that its goal is to detect attributes from different sources

with the same meaning (often referred as schema matching), and which transformations

are needed to harmonise the representation of data in different equivalent attributes

(schema mapping) [3].

In real-world datasets, however, it is not always possible to detect one-to-one equiv-

alence relationships between attributes, because of differences in granularities of at-

tributes or, more generally, in the way the concepts expressed are converted into at-

tributes. For example:

1. An attribute full name in a source may be split in two attributes name and

surname in another

2. An attribute energy efficiency classes may be absent in another source, but can

be derived from an attribute consumption in kWh, if the product is known.

3. An attribute professors for a dataset of universities, may be derived from at-

tributes associate professors and full professors from other sources.

Indeed, in a more general way, schema alignment can be defined as a process that

aims at finding these kind of relationships between attributes of different schemas,

clearly characterizing them in order to enable further integration steps [15]1.
1Some proposals adopt a slightly different approach, first defining a mediated schema between two

or more existing sources, that captures all possible aspects (or the ones needed) of the domain of interest
that is provided by the sources. The schema matching will then consist in finding matches between the
attributes of the sources and the mediated schema, while the schema mapping will detect relationships
and define transformations needed to convert the matched source attributes to the mediated schema
attributes [3]



CHAPTER 3. STATE OF THE ART 23

Traditional approaches to attribute alignment are able to deal with schematic het-

erogeneity across sources [26] [27], such as differences in attribute names, in domain

format, in granularity. However, they usually rely on local homogeneity ; that is, they

assume that each source adopts homogeneous semantics and homogeneous represen-

tations of data [15] [14]. We will see in next Chapter 4 that this assumption is not

always valid, especially in some specific Big Data context such as product domain, due

to volume and variety of product specifications.

In the following we present relevant works for the main categories of schema align-

ment approaches. First, we discuss traditional schema alignment techniques. Then, we

introduce Universal Schema, a method that can be considered in between schema align-

ment and relation extraction, and that concerns specifically alignment of knowledge

graphs, along with facts extracted from text. Finally, we discuss about a specific tech-

nique for alignment of product specifications, explaining its similarities and differences

with our setting.

3.1.1 Traditional schema alignment

The reconciliation of databases has always been an important task in many industries

for many goals, such as integrating legacy data or creating a unified database for infor-

mation spread in several enterprise departments.

Traditional schema alignment works have been focused on aligning pairs or few

groups of sources, working on different types of structured sources of data, such as

relational databases, ontologies, object-oriented or XML.

Classification and main techniques for schema alignment Classical approaches

are not usually built as fully automated algorithms per-se, instead there are many

software programs that offer a wide variety of schema alignment techniques (we can

cite as example Coma++ [28] or Harmony component of OpenII [29]). Typically, some

manual effort is asked, such as selecting the more adapted techniques to adopt, or

filtering all the possible matches suggested by the system, or injecting some training



CHAPTER 3. STATE OF THE ART 24

data.

Existing works have classified most of existing technique, and built a taxonomy that

is still valid today [15].

Schema-alignment techniques can be classified in: piq schema-based: they exploit

attribute names and other schema meta-data to detect matches, or piiq instance-based:

they compare the specific values provided for different attributes to detect matches.

Typical schema-based approaches exploit different features, as follows.

1. Similarities between attribute names, including stemmers, analysis of canonical

representation or other pre-processing techniques.

2. Thesauri of synonyms or hypernyms (or word embedding techniques like Fast-

Text or Word2Vec) using a general-purpose dictionary, a domain-dictionary or a

user-provided one. Fuzzy dictionaries (providing a score for each pair of similar

attributes) are more flexible to potential ambiguities.

3. Similarities between attribute descriptions, if available, using more sophisticated

techniques (NLP, Named Entity resolution, text mining with bag of words).

4. Analysis of constraints of a schema, such as primary and foreign keys.

Schema-based approaches are not very efficient in the product-domain context in

which we work. In fact, usually the product specification sources do not provide any

schema: it can be built a-posteriori just as the union of the attribute names found in its

specifications. In consequence: piq no metadata or attribute descriptions are available;

piiq because of the local heterogeneity problem, the attribute name is not necessarily an

indicator of the information provided by its value; piiiq the structure, at least in the

context in which we work, is flat: we have a single entity type, the products, and a

series of attributes on it. If this can in a way simplify the analysis, on the other hand it

means we cannot exploit schema constraints or information about attribute structures.

Instance-based approaches use partly similar techniques and partly specific:



CHAPTER 3. STATE OF THE ART 25

1. Similarities between attribute domains, with techniques similar to schema-level,

such as stemming, canonical representation, synonyms, NLP, bag of words analy-

sis, keyword and Named Entity Extraction, Tf-Idf.

2. Constraint-based characterization, i.e. characterization of a domain such as nu-

merical value ranges, averages, number of characters maximum values, average

sizes, and extraction of recurrent patterns.

Instance-based approach may be more adapted to the problem of schema alignment

on product domain, but they are still a partial solution because of the local heterogene-

ity. In general, attribute values do not follow a fixed pattern, with every specification

using potentially a different representation (for instance, an attribute RAM can provide

the information under different formats: “8 GB", “8", “8 Gigabytes" or even “8 GB in-

ternal memory"). Moreover, there are cases of homonym attributes, i.e. attributes with

the same name but different meaning in the same source, which would make domain

comparison less significant.

Matches that have already been found (or that are manually selected by users) can

be re-used in other context. This concern individual mappings, but also whole schemas

or part of them (such as, attributes describing addresses).

Different techniques are usually used together to provide better results. There are

different ways to combine them:

1. using machine learning techniques, with matches as features,

2. asking user to make a choice: either before alignment, asking which matcher apply

to which portions of the schemas, or after, asking him to confirm or delete certain

matches,

3. using Hybrid matcher: instead of providing all matches at the end, and deciding

which of them to keep, it is possible to build matchers that take a decision on

every single match based on different criteria, combined with threshold on scores.



CHAPTER 3. STATE OF THE ART 26

A well-known approach that exploits hybrid matchers is Rondo [30], based on the

concept of similarity propagation. Rondo designs schemas as graphs, and iteratively

tries to align nodes of the graph via hybrid matchers. The basic idea is to spread

similarity from aligned nodes to the adjacent neighbors through propagation coefficients.

The iteration stops when a fix point is met, after which no further improvements are

possible.

Kang et al. propose a schema matching solution for sources with opaque column

names which leverages data values [31].This is an instance-based approach, intended to

be an extension to existing matching approaches based on simple techniques, like name

and domain comparison. They propose to take into account the relations and functional

dependencies between attributes in a schema.

Let S1 and S2 denote two sources, the intuition is the following: support that piq

an existing technique matched two attributes A P S1 and B P S2A, piiq attributes

A,X in S1 are related by a functional dependency (for instance, product name and

model ID, or product name and brand), piiiq, analogously, B, Y in S2 are related by a

similar dependency, then X and Y are matched. Concretely, their way to detect similar

dependency is to measure mutual information of values between each possible pair of

attributes in a schema, and then compare graphs between the two schemas.

Using mutual information they can be agnostic to the specific function that con-

nects the two attributes, but they state that other techniques could work on detecting

dependencies on specific functions, thus being less general but more precise (they call

the two approaches, respectively, uninterpreted and interpreted matching).

This technique has the advantage to be robust to differences in representation, pro-

vided at least one attribute could be matched by standard techniques. On the other

hand, it strongly relies on local homogeneity of sources, to get sufficient evidences of

dependencies between attributes of the same source.



CHAPTER 3. STATE OF THE ART 27

3.1.2 Universal Schema

Universal Schema [32, 33] works on Knowledge graph sources, containing information

in form of triples subject-predicate-object, and aims at reconciling predicates between

these sources.

This technique creates embeddings for each predicate exploiting known facts. With

such embeddings, Universal Schema learns latent relations (they call them “asymmetric

implicature”) between each predicate, and it is able to augment each input Knowledge

graph, discovering new facts with their own predicates but with subjects and objects

coming from other sources. For instance, if a source contains a predicate works at, and

another source contains a triple <Mark Zuckerberg, CEO At, Facebook>, this approach

could learn a sort of implication between those predicates, and add to the first source

the fact <Mark Zuckerberg, works at, Facebook>.

In this way, predicated are never reconciled into a mediated schema, but in a way

each knowledge present for a predicate found in a source would be transferred to all other

similar predicates. Indeed, this technique does not explicitly align predicates between

different sources, and do not even define clear relationships between them, claiming that

in a general-purpose situation in which they work, they would inherently be ill-defined,

having ambiguities, problematic boundary cases, and incompleteness.

Universal Schema is also able to exploit surface patterns detected from text: triples

composed by pairs of entities detected from text with, for instance, a named entity

recognition technique, and the portion of text between them, used as an identifier of

the relation (the predicate). A group of surface patterns detected in a corpus of text

can be used as additional source.

This approach is indeed much more flexible and could be in principle adapted to

product specifications integration systems. However, in practice, an important obstacle

is that it requires the identification and disambiguation of all pairs subject-object in the

schem. In our case the specific product identifier can be considered the subject of a triple,

while the attribute value can be considered the object. The last one however is complex

to disambiguate, as each pair of sources and potentially each specification pairs may



CHAPTER 3. STATE OF THE ART 28

have different ways to represent the same concept, and sometimes the entities are hidden

in descriptive attribute (e.g.: ă battery, Li´ Ion Duracell battery, modelNIBL4 ą).

Additional work could be done to do this adaption, which are outside the scope of this

thesis.

3.1.3 Attribute alignment for products specifications

A work by Nguyen et al. aims specifically at aligning attributes from product specifi-

cations [9].

It was developed by Microsoft for increasing its product catalogue. They use this

comprehensive catalog as a provided input, and they try to match attributes of specifi-

cations of new products from external vendors to this catalog.

For this purpose, they compare domain of attributes with different similarity mea-

sures, in different context (domain for specific category or vendor, or full domains). The

similarity measures are then used to train a classifier to detect potential matches, using

attributes with the same name as training data.

Notice that an existing catalogue, complete and without local heterogeneity is needed

for this work to provide good results, otherwise the domain similarity would not be

efficient.

Having a complete catalogue, they do not aim at discovering new attributes, but just

to detect those with an equivalent in the catalogue. Thanks to this restricted perimeter,

they are more flexible to local heterogeneity in the external sources, simply because, if

an attribute does not match any of existing (because it is not homogeneous, or it has

too much errors, or it has a different format then the catalogue) they simply drop it,

claiming that their goal is not to be complete but to enrich their catalogue, with the

best and more reliable specifications that they find on the Web.

This approach is clearly a good compromise in their setting, but it is not adapted if

our goal is to integrate data from different sources without a single reliable catalogue,

and with the aim of retrieving as much information as possible, including rare or specific

attributes.



CHAPTER 3. STATE OF THE ART 29

3.2 Web crawling and Web data extraction

A lot of efforts have been done towards extraction of data from the Web, which is a

continuously evolving field. There are, though, efforts to classify the most important

ones and underline their main characteristics [34] [35].

An extensive presentation of this field is outside the scope of this thesis. In this

Section we will present some of the techniques that are most related to the product

specifications domain, and more generic tools for extraction of semi-structured data.

Diadem is a Web crawler and extractor that is able to extract data from websites

of specific domains[5]. For each domain, it needs an initial list of websites, a domain

model and a few specific rules for extraction. The domain model may include main

mandatory attributes for entities, with a definition of data types and patterns. Diadem

is however able to learn new rules and new attribute domains during extraction.

Diadem is also able to navigate in Deep Web pages, fulfilling forms, and analyzing

the actual visual rendering of pages. Its main output are records extracted from tables

and list of entities in particular HTML pages.

Dexter is a solution to detect and extract product specifications from eCommerce

websites [17]. It has been exploited, along with other techniques, as the input data for

our attribute alignment work.

Dexter needs as input a small seed of product identifiers, eCommerce websites,

product pages, and product specifications extracted from those pages. As a first step, it

crawls the Web to detect new product pages and new websites, with different techniques:

1. identification of hubs, i.e. websites that link to one of the already known sites. The

algorithm then follows all other links present in hubs to discover new websites;

2. queries via search engine, using known product identifiers as terms. In this way

it discovers new product pages, from results of research, and new web Sources;

3. identification of category entry page: starting from each source homepage, all

links are followed, and category entry pages are detected with a classifier based

on the text of the link;



CHAPTER 3. STATE OF THE ART 30

4. product pages and index pages (pages with links to product pages) are detected

following links inside pages, and using several heuristics and classifiers based on

the structure of the pages (using product pages already found) and the path inside

the source;

5. product identifiers are extracted from product pages;

6. all the former steps are relaunched iteratively, until no new product pages or

websites are found.

Once product pages are detected, Dexter tries to extract product specifications from

each of them.

1. For each seed product specification, Dexter computes features like number of rows,

average length and number of tokens, and uses them to build a training set of a

classifier. Negative examples are detected extracting other web tables and web

lists from seed product pages.

2. For each web tables and bulleted list found on a page, Dexter runs the classifier

to detect which are real product pages.

3. Each row of a table or list is considered a pair ă attribute, value ą of a product

specifications. Standard separators like colon or tabs are used to separate attribute

names from values.

Weir addresses the problem of data extraction and integration contextually [36].

It relies on a generative model for Web sources, defining an abstract perfect source

of information, from which each source takes a part of the information, adding its own

format, putting in its DOM structure and potentially introducing error.

The goal is so to "reverse engineer" this sequence of actions, defining, for what

concerns data extraction, a list of all possible extraction that can be made from the

DOM of each page, and iteratively choose the best one with a probabilistic approach

exploiting redundancy of information.



CHAPTER 3. STATE OF THE ART 31

3.3 Record Linkage

Record linkage is another fundamental step in Data Integration systems, whose goal is

to decide which records of two or more data sources refer to the same entity.

Unlike schema alignment, it concerns real-world entities rather than abstract con-

cepts: in this scenario, it is rarely necessary to define complex relations between records,

and it is generally fine to just use 1-to-1 equivalence relations2.

For this reason, and for the fact that each record inside a source present generally the

same structure, record linkage approaches are usually not domain-specific (especially for

sources already aligned). There are, though, some exceptions: products domain, among

others, have a universal identifier (generally provided with specifications) that allows

linking records without the need to analyze its attributes. In this way record linkage

can be done before schema alignment.

Many approaches have been proposed in the state of the art. Christen et al. proposed

in this sense an extensive survey [37]. In this Section we will briefly describe a few

representative approaches of the state of the art in this task.

Magellan is a new kind of Entity Matching (EM) system. It represents the state of

the art for techniques based on machine learning (specifically non-neural approaches)

addressing Record Linkage [38].

The Magellan approach is composed of two stages: piqdevelopment and piiq produc-

tion.

In the development stage Magellan selects, on a sample of the dataset, candidate

linkage records via a blocking technique3, then asks user to manually validate these

candidates. The validated pairs will be used as training data for a classifier, that will

be used to determine linkages in production step.

Magellan allows user to customize every step of its workflow:
2Some complex situations may arise, like a camera kit record in one source, which may be presented

in separated records for camera body and lens in another source, or a series of camera variants with
different colors, which may be presented as a single record in another source

3simple heuristics to create blocks of linkage candidates



CHAPTER 3. STATE OF THE ART 32

1. Pre-processing steps (such as cleaning, extract and transform)

2. Blocking technique, with pre-defined tool that exploits similarity between domains

or token similarities

3. Match classifier: many machine-learning tools (non-neural) are available, such as

Random Forest, SVM, Naive Bayes, Linear and Logistic Regression

4. Feature extraction. For this purpose Magellan has a utility for automatically

inferring what features could be useful based on an analysis of the fields available

among the instances of the dataset: it provides 23 string similarity measures, such

as Hamming Distance, Levenshtein Distance and Smith-Waterman.

DeepMatcher is an approach that exploits state-of-the-art deep learning models for

entity matching. It has a modular design so it is easily customizable [39].

DeepMatcher uses labeled tuple pairs and trains a neural network to perform match-

ing, i.e., to predict match / non-match labels. Figure 3.1 shows examples of training

data in input. The trained network can then be used to obtain labels for unlabeled

tuple pairs.

The schemas of the input sources must be aligned. However, it is also possible to

match textual data, using a schema with a single attribute.

Figure 3.1: Example of labeled tuple pairs

Figure 3.2 shows the pipeline of DeepMatcher for linking an entity pair, composed

of three main customizable modules:



CHAPTER 3. STATE OF THE ART 33

Figure 3.2: Architecture template of DeepMatcher

1. The Attribute Embedding Module converts values of attributes of entity pairs into

word embedding vectors

2. The Similarity Representation Module automatically learns from the provided

embeddings, a vector representation that captures the similarity of two entities.

3. The Classification Module uses the similarity representation vectors as features

for a classifier that determines id the two entities should be linked.



CHAPTER 3. STATE OF THE ART 34

3.3.1 A record linkage technique for product specifications

Qiu et al. proposed a technique to link product specifications from different product

sources, that exploits the universal products identifier that most sources provide [25].

This solution takes as input the HTML pages of Web sources providing product

specifications, and a seed set of high quality identifiers. It associates pages to identifier

with the following steps:

1. search for known ids in pages of each source, and tries to infer an extractor for

every html region in which IDs were found;

2. dilter out bad identifiers using an iterative approach, computing scores for quality

of extractors and reliability of IDs;

3. use the extractor to detect new identifiers;

4. iteratively repeat steps 1-3 until no more evidences could be found.

After these steps some pages may still have multiple identifiers associated. To solve

these conflicts, the algorithm clusters pages according to different similarity measures,

and, for each page, exclude detected identifiers that are mostly associated to pages in

external clusters.

3.4 Data fusion and error detection

Data fusion aims at resolving conflicting data coming from different sources, deciding

which one is correct and which is wrong. Data fusion step must be executed after

schema alignment and record linkage have been completed.

Dong et al. proposed an approach to detect the correct object for a series of facts

(such as the director of a particular movie, or the winner of a prize in a specific year)

given the answer retrieved from a series of sources (it presumes the data extraction

phase already done) [40].



CHAPTER 3. STATE OF THE ART 35

It exploits a Bayesian E-M probabilistic model, trying to detect at the same time the

correct value (thus the trueness of answers provided by sources), the reliability of each

source, and potential copiers, i.e. sources that completely or partly takes an information

from other sources, regardless of their correctness.

Knowledge Vault proposes a Knowledge graph augmentation system [41]. First of

all, data is extracted from Web content with different existing techniques: extraction

from text, from HTML DOM, from Web tables and from manual HTML annotations

(provided directly in Webpages using some pre-defined ontologies). Afterwards, a su-

pervised classifier detects the reliability of each of the fact extracted, exploiting data

present in the existing knowledge graph.

The training data are built looking at data extracted that were already present

in KG, using the principle of local closed world assumption: a fact ps, p, oq present in

the KG is true, a fact ps, p, oq absent from KG, but for which there exist one or more

corresponding facts ps, p, o1q with the same predicate and other objects, is considered as

false. All other facts are indefinite. A fact can also be evaluated even if it is indefinite,

using inference from the Knowledge graph (e.g: if a source states that Obama was born

in Kenya, and there is no data about the place of birth of Obama in the KG, the system

can predict this data as false, considering that an american President must have been

born in USA).

This work covers different aspects of Web data exploitation, from extraction to

integration, but its main contribution is the fusion of data, so it is defined in this

Section.

Another work from Dong et al. has the same goal than Knowledge Vault, and

uses the same closed-world assumption, but proposes different techniques mostly based

on a Bayesian approach, easily horizontally scalable and adaptable to Map-Reduce

framework [42].

Knowledge-based Trust is an extension to Knowledge vault approach, that determine

the correctness of facts using a probabilistic approach, computing as latent variables

the reliability of sources and correctness of extractors[43]. The model is also capable



CHAPTER 3. STATE OF THE ART 36

to determine the granularity at which each source must be evaluated (a source may be

generally good, but bad for a particular kind of data, for instance).

Once errors are detected, it may be useful to understand their cause and potentially

fix them. A work from Wang et al. takes as input a seed of facts extracted and the

information on which are correct and which not [44].

With a Bayesian approach and a search algorithm it tries to group errors according

to some features (e.g: all errors from a given source that concerns football players).

Features include subject, predicate and object instances, and their types, source and

sections of this source (e.g.: a specific extracted table). Further manual investigation

can be done on each detected group of errors to understand their cause.



Chapter 4

Instance Level Attribute Alignment

As we discussed in Chapter 2, despite all the work on data integration, integrating

product specifications from multiple sources is still not a solved problem and raises

novel and intriguing research challenges [10, 7] and therefore deserves specific attention.

Data extracted from such sources can be seen as organized in sets of attribute name-

value pairs, and a major issue is the reconciliation of attributes, usually called attribute

alignment in this framework.

4.1 A new challenge: local heterogeneity

To give a concrete idea of the challenges that arise in this setting, consider the dataset

of the data integration benchmark (that we introduce in Chapter 5), which contains

about 30k product specifications described as sets of attribute name-value pairs from

24 real Web sources. The di2kg camera dataset shows significant heterogeneity in

specifications, both across and within sources, as it is the case that each individual source

is in turn fed by autonomous data providers, such as individual sellers (for sites that offer

used items, like eBay) or third party merchants (for large sites, like Amazon) [7]. This

makes it infeasible to use traditional approaches to attribute alignment, which consider

heterogeneity across sources, but they rely on local homogeneity, that is, they assume

that each source adopts homogeneous semantics and homogeneous representations of

37



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 38

data [14, 15]. Let us comment on the major forms of heterogeneity in the DI2KG

dataset.

S1 S2 S3 S4 S5
s11 s21 s31 s41 s51
ID p1 ID p1 ID p1 ID p1 ID p1
Battery chemistry Li-Ion B Type Li-Ion Memory 16 Memory 16 Megapixels 16
Battery model NP-BN1 IPU BionzX Battery Li-Ion Battery NP-BN1 Batt Li-Ion (included)
CPU BionzX
s12 s22 s32 s42 s52
ID p2 ID p2 ID p2 ID p2 ID p2
Battery chemistry Ni-MH B Type Ni-MH Memory 8 Memory 8 Megapixels 16
Battery model FNB83 IPU Xpeed3 Battery FNB83 Battery FNB83 Batt Ni-MH battery
Processor Xpeed3
s13 s23 s33 s43 s53
ID p3 ID p3 ID p3 ID p3 ID p3
Battery chemistry Li-Ion IPU BionzX Memory 32 Memory 16 Megapixels 8
Processor BionzX Video format 1024x768 Battery LP-E6N Li-Ion Battery LP-E6N
Video resolution 1024x768 Batt Li-Ion rechargeable
s14 s24 s34 s44
ID p4 ID p4 ID p4 ID p4
CPU Xpeed2 IPU Xpeed2 Memory 16 Memory 16
Video resolution 1920x1024 Video format 1920x1024 Battery Ni-MH Battery Type Ni-MH

s35 s45
ID p5 ID p5
Battery Li-Ion, Battery Pack LP-E6N Battery Type Li-Ion

s46 s56
ID p6 ID p6
Battery Type Ni-Cd Batt Ni-Cd rechargeable

Figure 4.1: Running example: product specifications from the di2kg dataset.

Attribute sparsity. The total number of attribute name-value pairs in the di2kg dataset

is 528,186; on average, each specification contains about 18 pairs. However, the dataset

has 4,631 distinct attribute names across sources (6,560 counting duplicate attribute

names across sources): on average, 273 attribute names per source. In every source,

each attribute name is used on average only by 10% of the specifications (or instances).

Synonyms. Attribute sparsity is not only due to tail (i.e., rare and specific) attributes,

but also to synonyms, i.e., attributes with different names but same semantics across

different instances, even within the same source. Figure 4.1 shows a (tiny) portion of

the actual specifications of four cameras (white boxes) that may be found in five sources

(grey boxes) of the dataset. Observe attribute names CPU and Processor in source S1:

they have the same meaning, yet some specifications in the same source use CPU and

others Processor. In addition, attribute synonyms also appear across different sources:

attribute name IPU in source S2 has the same meaning as CPU and Processor in source

S1.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 39

Homonyms. Another challenge is due to the presence of attributes with same name but

different semantics for different instances, even in the same source. In Figure 4.1, observe

the Battery attribute in source S3: for some instances the value refers to the battery

chemistry (instance s31, in the example), for others it refers to the battery model (s32),

or even provides both properties (s33). Homonyms occur also across sources: attribute

name Battery in source S3 has a different meaning from the homonym attribute in

source S4.

Representation heterogeneity. Sources offer several attributes with the same name and

meaning but values that use different representations across instances – even from the

same source – possibly including pieces of free text to aid human users. In our example,

consider the Batt attribute in source S5 whose values are adorned by descriptive words

(such as “included” and “rechargeable”).

Mixed Attributes. There are attributes whose values are compositions of pieces of infor-

mation that elsewhere – even in the same source – are represented by means of several

attributes. In our example, consider the Battery attribute for the specifications s33

and s35, whose values include both the battery type and the battery chemistry, without

any underlying pattern.

It is worth observing that the above forms of heterogeneity, which are present both

across sources and within the same source, can occur in combination. For example, the

Battery attribute in source S3 is a mixed attribute and assumes different semantics

(homonym) within S3.

4.2 From Schema level to Instance level Attribute

alignment

This work addresses the important problem of attribute alignment in such a challenging

and intriguing setting, where the major issue is the violation of the local homogeneity

assumption in the many ways discussed earlier. This requires going beyond traditional



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 40

solutions, which aim at aligning attributes at the schema level. We propose a solution

to compute attribute alignment at the instance level.

In a traditional setting, within a source, attributes with same name have the same

semantics and representation homogeneity. Thus, a schema can be defined for each

source, as the set of its attribute names and types of its values, and the problem of

attribute alignment can be defined as grouping attribute names with the same semantics

between source schemas (at the schema-level). In our setting, we cannot align attributes

at the schema-level, as attribute name in a source does not identify the semantics of the

attribute for all the instances. Instead, we are compelled to perform our alignment at

the instance level : we propose a solution that groups semantically equivalent attribute

name-value pairs.

Figure 4.2 illustrates a representation of part of the output of our instance level

attribute alignment for the data in Figure 4.1, limited to specifications related to product

p1 and p3. For each product, we report the alignment of attribute instances across

sources. Also, attributes with the same semantics across products are grouped (they

refer to the same property). It is worth observing that such alignment allows a data

integration process to provide the provenance of the values for all the attributes of each

instance.

We follow the data integration pipeline proposed in [25], which performs record

linkage before attribute alignment. The rationale is that while attribute alignment is

infeasible at the beginning of the pipeline because of the heterogeneity of the sources,

record linkage can be computed by exploiting specific properties of the domain, like

the presence of product identifiers [45, 25], and the linkage among the instances can be

subsequently exploited to align the attributes.

Our approach has been developed in the framework of RaF (Redundancy as Friend),

an ongoing research project that addresses the issue of integrating product specifications

from multiple heterogeneous sources [10, 25]. We introduce a solution, RaF-AIA (At-

tribute Instance Alignment) to the problem of aligning attributes at the instance level

that aims at leveraging opportunities which derive from the richness of information



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 41

across sources:

• Although local homogeneity is not always satisfied within a source (as discussed

earlier), many attributes in a source tend to be locally homogeneous, identifying

and taking advantage of such attributes in attribute alignment across sources is a

useful opportunity;

• Some sources distinguish, by means of different names, attributes that elsewhere

are presented with homonym names (e.g., source S1 provides battery chemistry

and battery model by means of two attributes with distinct names). This can

allow homonyms to be distinguished;

• Common meaningful values (e.g., “Li-Ion”) appear in multiple specifications, for

different products, within and across sources, despite the variety of heterogeneity.

This redundancy can be exploited;

• Given the number of sources, there is a lot of redundancy of information across

them, despite the attribute sparsity. Again, redundancy across sources can be

used as evidence of semantic equivalence.

We propose an iterative approach consisting of three key steps to solve the instance

level attribute alignment problem by taking advantage of the above opportunities of-

fered by the redundancy and variety of information across sources. The first step is

based on a Bayesian model that analyses the overlapping information across sources to

match the most locally homogeneous attributes. The second step is based on a tag-

ging approach, inspired by NLP techniques, to create groups of virtual homogeneous

attributes from tagged portions of values of heterogeneous attributes. Matching and

tagging are iterated, as they produce complementary evidence that reinforce one each

other. A final step processes the results of the iterations and aligns globally homoge-

neous attributes that the previous steps were not able to merge otherwise (for example

for lack of linkage, or for differences in representation of values).



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 42

ID p1
property1 s11.Battery chemistry Li-Ion

s21.B Type Li-Ion
s31.Battery Li-Ion
s51.Batt Li-Ion (included)

property2 s11.Battery model NP-BN1
s41.Battery NP-BN1

property3 s11.CPU BionzX
s21.IPU BionzX

property4 s31.Memory 16
s41.Memory 16

ID p3
property1 s13.Battery chemistry Li-Ion

s33.Battery LP-E6N Li-Ion
s53.Batt Li-Ion rechargeable

property2 s33.Battery LP-E6N Li-Ion
s43.Battery LP-E6N

property3 s13.Processor BionzX
s23.IPU BionzX

property4 s33.Memory 32
s43.Memory 16

property5 s13.Video resolution 1024x768
s23.Video format 1024x768

Figure 4.2: Running example: attribute alignment at the instance level for the specifi-
cations in Figure 4.1 related to products p1 and p3.

4.3 Overview

We consider a set of sources S that provide information about products in a vertical

domain of interest (e.g., camera). Each source might be the result of an extraction

process from a website (e.g., the output of a Web scraper), or a formatted file returned

by an API (e.g., a json file). We assume each source S P S to be a set of records, each

of which is indeed a “product specification” and provides the properties of a product as



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 43

a set of attribute name-value pairs. In each specification, an attribute name appears at

most once, and values are strings.

We assume, and take advantage of, the availability of a good quality sample of

record linkage information, which identify different specifications (records) that refer

to the same product.1 Such a good quality sample could be obtained using human

validation (e.g., based on crowdsourcing) of a sample of the results of an automated

method such as [10, 25]. It is worth noting this good quality sample does not need to be

perfect (i.e., a small amount of noise in the linkage result is acceptable) nor does it need

to be complete (i.e., a random sample suffices). To model record linkage information,

every record has an identifier, a special attribute name, denoted ID, that identifies the

product. Specifications that have the same ID value refer to the same product.2 When

two (ore more) specifications refer to the same product, i.e., they have the same ID

value, we say they are linked.

Let s “ txID : py, xA1 : v1y, . . . , xAn : vnyu be a product specification in a source

S P S. Given a pair xAi : viy in s, we use s.Ai to refer to the value vi.

We say that A is a source attribute in S, denoted S.A, if there is at least a record in

S with a pair xA : vy, that is if the attribute name A appears in at least one specification

in the source. We call this an occurrence of source attribute A, or more generally an

attribute instance. The set of all source attributes of a source S is the schema of that

source.

4.3.1 Problem Definition

Given a set of sources, S, our goal is to align the attributes of all the specifications in S:

we aim to group together attribute instances coming from different specifications that

provide information dealing with the same product property.

It is worth noting that the definition of what is a product property might be subjec-

tive. We follow a data-driven approach, which considers properties as they emerge from
1A product can be associated with several specifications from different sources, but also from the

same source.
2This means that the identifier refers to the product, not to the specification.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 44

the data offered by the sources. For example, the presence of distinct source attributes

that describe battery chemistry and battery model (in source S1) suggests that these

are distinct properties of the domain. Conversely, some attributes provide values that

might ideally be considered as a composition of multiple properties; but if these prop-

erties do not emerge in any specification as distinct attributes, we do not consider them

separately. For example, consider the Video resolution attribute in S1 in our running

example: it could ideally represent two properties (horizontal and vertical resolution),

but if they are never presented by two distinct attributes, they are not (and should not

be) considered separately.

In this context, we want to solve the Instance Level Attribute Alignment Problem,

which can be informally described as follows: given a set of sources S, our goal is to

create a set of clusters, such that each cluster contains attribute instances from the

specifications in S that refer to the same property.

As we discussed in Section 4.2, this is a different goal than traditional schema-level

approaches, whose goal in our context would be to create clusters of source attributes

referring to the same property. In our context, a single source attribute could provide

different properties in different occurrences, so a higher level of granularity is needed.

We will discuss again about this difference in Section 5.4, when we will talk about

construction of ground truth for different data integration tasks in context of Alaska

Benchmark.

Figure 4.2 shows a representation of the result of instance level attribute alignment

for the sources in the running example of Figure 4.1. It is worth noting that since spec-

ifications can include mixed attributes, which correspond to composition of properties

that in other specifications are provided by distinct attributes, clusters can overlap. For

example, the Battery attribute of s33 belongs to the cluster that corresponds to the

chemistry of the battery as well as the one that corresponds to the model.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 45

4.3.2 Our Approach

To address the instance level attribute alignment problem, we exploit the opportunities

that arise from the richness of information across sources. Figure 4.3 illustrates our

approach.

Figure 4.3: The RaF-AIA approach to instance level attribute alignment.

First, we exploit local homogeneity and overlapping data across sources: we develop

a Bayesian analysis that leverages the linkage sample to compute clusters of source

attributes that share instance attributes with matching values.

Source attributes grouped in the same cluster are supposed to have the same seman-

tics, as it is unlikely that their linked instances matched by chance. We then exploit

common meaningful values from these clusters to address the issues related to the vari-

ous forms of heterogeneity that occur in the sources. Our approach builds a dictionary

of values for every non-singleton cluster created by the Bayesian matching step. Then,

we use dictionary terms to tag the values of the dataset: any sequence of tokens that

matches with a term of the constructed dictionary is tagged with a label identifying the

cluster associated with such a dictionary term. Elements tagged with a given label may

represent values of attributes with the same semantics of the attributes in the cluster

associated with such a label. We extract these values to create virtual attributes that

are added to the original dataset.

Such an augmented version of the dataset is submitted again to the Bayesian anal-

ysis: the virtual attributes introduced by the tagging step can give rise to new matches

that were not possible to identify previously because of heterogeneity of the attributes.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 46

As source attribute matching can produce new clusters (and then new dictionaries),

and new virtual attributes can allow new matching, the two steps are repeated until the

dictionaries do not change anymore.

After the end of iterations, clusters having source attributes with common names

are selected as candidates for merging, provided that these attributes are not isolated

attributes tagged during the tagging steps (i.e. probably not locally homogeneous). If

the two clusters have comparable domains, they are merged. This final step exploits

redundancy of data, as the domain of clusters is now more reliable than domains of

single attributes, and can match attributes that did not match previously, typically for

lack of linkage data, too many noisy values or too generic attribute values.

At the final stage, non-isolated clusters contain only locally homogeneous source

attributes, original or virtual. Instance-level clusters come directly from these clusters,

just putting together all occurrences of each source attribute.

4.4 Source attribute matching

In this section, we describe the first step of our approach, which aims at identifying

groups of locally homogeneous source attributes with equivalent semantics. Our ap-

proach leverages the linkage sample and redundancy of data among sources. Algorithm

1 presents the pseudo-code.

Let A be the set of all the source attributes in S. We build a weighted graph,

GpA,Eq, whose nodes are given by the set of source attributes A, edges correspond to

candidate matches between source attributes. The weight of each edge represents the

similarity of the connected source attributes which is computed according to a scoring

function, denoted sim-score, based on a Bayesian analysis that considers the values of

the two attributes in the linked sample. Section 4.4.1 explains the computation of the

similarity score.

To reduce the number of edges, we consider only pairs of source attributes from

different sources that share at least two values in the linked sample, or one value,



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 47

Algorithm 1: Source Attribute Matching
Input : a set S of sources
Output: a set C of source attribute clusters

1 Construct a graph GpV,Eq as follows: V “ A, E contains a weighted edge
eA,B, with weightpeq “ sim-scorepA,Bq, between a pair of source attributes
A and B, A P Si, B P Sj , Si ‰ Sj , if A and B share a value in at least one
linked specification and sim-scorepA,Bq ě 0.5;

2 CÐ ttAu, A P V u //start with singleton clusters;
3 for each edge eA,B P E ordered by descending weight do
4 cA Ð c P C : A P c;
5 cB Ð c P C : B P c;
6 if Es : X P s, Y P s,X P cA, Y P cB then
7 CÐ pCztcA, cBuq Y tcA Y cBu // merge cA, cB;
8 end
9 end

10 return C;

provided that is it present in at most 10% of attributes in the dataset.3

The clustering algorithm is based on the edge weights (i.e., probability of match

between pairs of clusters), and exploits the assumption that no specification can contain

two distinct attributes with the same semantics, that is, attributes are distinguishable

within each specification. The clustering algorithm initially builds singleton clusters

for each source attribute. Then, edges are sorted by descending weight. For each

edge with enough match probability (that is, weight greater than 0.5), if the union of

the two clusters connected by the edge does not violate the distinguishable attributes

assumption (that is, it does not contain attributes belonging to the same specification),

the two clusters are merged.

4.4.1 Similarity Score

The similarity score between two source attributes is computed by means of a prob-

abilistic Bayesian approach that leverages the linkage sample. The intuition that we

follow is that if two source attributes share the same values for several instances, it is
3In practice, we observed that this simple heuristic filtered out just attributes pairs whose only

common value was yes.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 48

likely that they represent the same property. The approach aims to be tolerant to the

presence of noise in the values as well as in the linkage.

Given two source attributes A P Si and B P Sj , Si ‰ Sj let LAB be the set of

pairwise values of A and B in the linked specifications of Si and Sj for which both A

and B provide non-null values. Formally:

LAB “ txs.A, t.By : s P Si, t P Sj , s.ID “ t.ID, s.A ‰ null, t.B ‰ nullqu

Our goal is to determine P pA ” B|LABq, that is, the probability that attributes

A and B are equivalent (that is, they have the same meaning), given the pairs of the

values of attributes A and B in the linked specifications.

By applying Bayes’ theorem:

P pA ” B|LABq “
P pLAB |A”BqP pA”Bq

P pLAB |A”BqP pA”Bq`P pLAB |AıBqp1´P pA”Bqq
(4.1)

We first illustrate the computation of the prior probability, P pA ” Bq, then we

develop the posteriors, P pLAB|¨q.

4.4.1.1 Prior probability

Given a pair of source attributes A and B, we estimate the prior probability P pA ”

Bq by heuristically considering the similarity of their domains, denoted DA and DB,

respectively. In particular, we take into account piq the similarity of the whole domains,

and piiq the similarity of the domains restricted to the values shared by the linked

specifications.

We compute the similarity of the domains according to the Chekanovsky-Sørensen

index [46, 47], a variant of the Jaccard index that considers the distribution of values

in the sets. Also, we weight the contribution of each value by its frequency in the set

of source attributes; the rationale is that sharing values that are very frequent in the

dataset is less informative than sharing rare values. Formally:

simpA,Bq “
ř

vPDAXDB

2minpfpv,DAq,fpv,DBqq

|tY PA:vPDY u|
(4.2)



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 49

where fpv, ¨q is the frequency of v in ¨, and the denominator |tY P A : v P DY u| is the

number of source attributes in which the value v appears.4

We use the same approach to compute the similarity of the domains restricted to

the values from the linked specification (we call this linked domain):

simLpA,Bq “
ř

xv,vyPLAB

2minpfpv,LAq,fpv,LBqq

|tY PA:vPDY u|
(4.3)

where LA (and similarly LB) is the set of values of A in LAB, i.e., LA “ ts.A :

xs.A, t.By P LABu.

In order to compute the prior probability P pA ” Bq we rely mostly on values that

are provided by linked specifications. However, if there are few elements in linkage,

values could be shared by chance, and thus we should give more weight to the similarity

between the entire domains. To weight the two components we consider their sizes;

however, since they can differ by many orders of magnitude, we use their logarithm, as

follows:

P pA ” Bq “ α simpA,Bq`β simLpA,Bq
α`β (4.4)

where α “ logpmaxp|DA|,|DB |q

|LAB |
q and β “ logp|LAB|q. Note that if |LAB| “ 1 (there is just

one pair of linked specifications) β equals 0, and then we consider only the similarity of

the domain. Conversely, increasing |LAB| reduces the weight of α and thus gives more

importance to the values coming from the linked specifications.

Example 1. Consider the source attributes S3.Memory and S4.Memory from our

running example in Figure 4.1. For the sake of readability, we use A and B to denote

S3.Memory and S4.Memory, respectively.

Table 4.1 reports the frequencies of the values in the domains associated with the

two attributes (fA and fB); their frequencies in the domains restricted to the linked

specifications (fLA
and fLB

); the frequencies of the values in AYB (fAYB); the number

of source attributes in which v occurs (occpvq “ |tS.Y, S P S : v P DS.Y u|).
4The numerator is 2 because by construction we are considering values that appear in the intersec-

tion of two sources.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 50

v fA fB fLA
fLB

fAYB occpvq

16 0.5 0.66 0.33 0.66 0.57 3
8 0.25 0.33 0.33 0.33 0.29 3
32 0.25 0 0.33 0 0.14 1

Table 4.1: Domain of attributes S3.Memory (denoted A) and S4.Memory (denoted B).

By applying Equation 4.2 and 4.3, the similarity of domains and the similarity of

linked domains are follows:

simpA,Bq “ 2
minp0.5, 0.66q

3
` 2

minp0.25, 0.33q

3
“ 0.5

simLpA,Bq “ 2
minp0.66, 0.33q

3
` 2

minp0.33, 0.33q

3
“ 0.44

To compute the prior we need the weights α and β:5

α “ logp
maxp4, 3q

3
q “ 0.42; β “ logp|LAB|q “ logp3q “ 1.58

Finally, from Equation 4.4:

P pA ” Bq “
0.5 ˚ 0.42` 0.44 ˚ 1.58

0.42` 1.58
« 0.45

In a similar way we can compute the prior for attributes S4.Memory and

S5.Megapixels. Let B and C denote S4.Memory and S5.Megapixels, respectively.

P pB ” Cq “
0.66 ˚ 0` 0.66 ˚ 1.58

0` 1.58
“ 0.66

These two attributes have very similar domains, thus a high prior, despite providing

different data. Example 2 will show how the contribution of the posteriors adjust the

estimation of the probability of alignment.

4.4.1.2 Posterior probability

We now need to compute, given the domain of attributes, the posterior probabilities,

i.e., the probability to observe the values provided for each specific product in linkage,
5For the logarithms we use base 2 (the choice of base has no impact on the result).



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 51

both under the equivalence hypothesis (positive posterior, P pLAB|A ” Bq) and the

null-hypothesis (negative posterior, P pLAB|A ı Bq).

We can model the set of the observed value pairs LAB as a set of independent events,

one for each linked pair of specifications.

P pLAB|¨q “
ź

ăs.A,t.BąiPLAB

P ps.A, t.B|¨q (4.5)

Negative posterior. Under the null-hypothesis, the two attributes are not aligned

and we can assume that they are independent:

P ps.A, t.B|A ı Bq “ P ps.A|A ı BqP pt.B|A ı Bq (4.6)

We model the value provided by each attribute as the outcome of a random variable,

where the probability of each value is estimated with its frequency in the domain of the

corresponding attribute. Therefore:

P ps.A, t.B|A ı Bq “ fps.A,DAqfpt.B,DBq (4.7)

Positive posterior. Under the equivalence hypothesis, the two attributes represent

the same real-world property, which we model by means of a random variable X.

In order to compute P ps.A, t.B|A ” Bq, we need to distinguish two cases: the

values provided by the two attributes are either piq different or piiq equal. Intuitively,

we expect that they are equal (we are under the equivalence hypothesis), unless one of

the two values (or both) is wrong.

Let us consider first the case in which s.A and t.B are different. Either only one of

them provides the actual value of X, or they both make errors, and none provides the

actual value of X:

P ps.A “ v1, t.B “ v2, v1 ‰ v2|A ” Bq “

P pX “ s.A “ v1, t.B “ v2, v1 ‰ v2|A ” Bq `

P ps.A “ v1, X “ t.B “ v2, v1 ‰ v2|A ” Bq `

P ps.A “ v1, t.B “ v2, X R tv1, v2u|A ” Bq

(4.8)



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 52

By applying the conditional probability definition:

P ps.A “ v1, t.B “ v2, v1 ‰ v2|A ” Bq “

P pX “ v1|A ” BqP ps.A “ v1|X “ v1, A ” Bq

P pt.B “ v2|X “ v1, A ” Bq `

P pX “ v2|A ” BqP ps.B “ v1|X “ v2, A ” Bq

P pt.A “ v2|X “ v2, A ” Bq `

P ps.A “ v1|X R tv1, v2u, A ” Bq

P pt.B “ v2|X R tv1, v2u, A ” Bq

P pX R tv1, v2u|A ” Bq

(4.9)

Since we are under the hypothesis that the attributes A and B are equivalent, the

union of their domains represents an approximation of the domain of X. Then, we can

estimate P pX “ v|A ” Bq considering its frequency in DA YDB:

P pX “ v|A ” Bq “ fpv,DA YDBq (4.10)

To compute P ps.A “ v1|X “ v,A ” Bq we need to distinguish whether t.A is correct

(it equals the value of the random variable X) or wrong.

An attribute can provide a wrong value because of an error by the source or because

of a linkage error. In our model, we can consider linkage errors as a special case of source

errors (the source provides a wrong association of the identifier with the specification).

Therefore, we assume that each attribute has the same error probability ε for every

observation and that, in case of error, the attribute provides a random value from those

of the domain of the property, which is estimated by DA YDB:

P ps.A “ v1|A ” B,X “ vq “
$

&

%

1´ ε` εfpv,DA YDBq rv1 “ vs

εfpv,DA YDBq rv1 ‰ vs
(4.11)

Notice the `εfpv,DA Y DBq term in the first row: the random value provided in case

of error may be the correct value by chance. This assumption models the fact that

frequent values are less likely to be mistaken.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 53

By replacing Equations 4.10 and 4.11 in Equation 4.9:

P ps.A “ v1, t.B “ v2, v1 ‰ v2|A ” Bq “

εp2´ εqfpv1,DA YDBqfpv2,DA YDBq
(4.12)

Notice that, if ε “ 0 (perfect sources on these attributes), the above probability equals 0,

i.e., equivalent attributes from two linked specifications cannot provide different values.

Let us now consider the case in which s.A equals t.B. Either they are correctly

providing the actual value of X (the sources are not making errors), or both of them

are wrong and they are assuming the same value by chance.

P ps.A “ t.B “ v|A ” Bq “

P ps.A “ t.B “ X “ v|A ” Bq `

P ps.A “ t.B “ v,X ‰ v|A ” Bq

(4.13)

By the conditional probability definition, the probability of the first term is given by

the probability that the correct value for the property described by the attributes is v

multiplied by the probabilities that A and B are correctly providing v, that is: P pX “

v|A ” BqP ps.A “ v|X “ v,A ” BqP pt.B “ v|X “ v,A ” Bq. Similarly, the second

term results: P pX ‰ v|A ” BqP ps.A “ v|X ‰ v,A ” BqP pt.B “ v|X ‰ v,A ” Bq.

By applying Equations 4.10 and 4.11, we obtain:

P ps.A “ t.B “ v|A ” Bq “

fpv,DA YDBqp1´ εp2´ εqp1´ fpv,DA YDBqq
(4.14)

Notice that if the sources are perfect (ε “ 0), the above probability equals fpv,DAY

DBq, i.e., it corresponds to the frequency of the value (which is estimated by the union

of the domains). Observe that negative posterior is a special case of positive, i.e., if we

apply same model we get the same results.

Example 2. In Example 1 we computed prior probability for source attribute pairs

S3.Memory, S4.Memory and S4.Memory, S5.Megapixels from our running example in Fig-

ure 4.1. Now we develop the computation for posterior probability and final matching

score. Table 4.2 shows the conditioned probabilities (positive and negative) between



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 54

these pairs of attributes, using the Equations 4.7 and 4.14, and the domain frequencies.

S3.
Memory

S4.
Memory

Positive
posterior

Negative
posterior

16 16 0.57 ˚ p1 ´ 0.1p2 ´ 0.1qp1 ´
0.57qq “ 0.52 0.5 ˚ 0.66 “ 0.33

16 16 0.52 (as above) 0.33 (as above)

8 8 0.29 ˚ p1 ´ 0.1p2 ´ 0.1qp1 ´
0.29q “ 0.25 0.25 ˚ 0.33 “ 0.08

S4.
Memory

S5.
Mpixels

Positive
posterior

Negative
posterior

16 16 0.66 ˚ p1 ´ 0.1p2 ´ 0.1qp1 ´
0.66qq “ 0.62 0.66 ˚ 0.66 “ 0.44

8 16 0.33 ˚ 0.66 ˚ 0.1 ˚ p2´ 0.1q “
0.041 0.33 ˚ 0.66 “ 0.22

16 8 0.66 ˚ 0.33 ˚ 0.1 ˚ p2´ 0.1q “
0.041 0.66 ˚ 0.33 “ 0.22

Table 4.2: Posterior values for Example 2.

We can now compute the final score, using Equations 4.5, and 4.1. We omit the

subscript in LAB for simplicity.

P pL|S3.Memory ” S4.Memoryq “ 0.52 ˚ 0.52 ˚ 0.25 “ 0.068

P pL|S3.Memory ‰ S4.Memoryq “ 0.33 ˚ 0.33 ˚ 0.08 “ 0.0087

P pS3.Memory ” S4.Memory|Lq “
0.068 ˚ 0.45

0.068 ˚ 0.45` 0.0087 ˚ 0.55
« 0.86

P pL|S4.Memory ” S5.Mpixelsq “ 0.62 ˚ 0.041 ˚ 0.041 “ 0.0010

P pL|S4.Memory ‰ S5.Mpixelsq “ 0.44 ˚ 0.22 ˚ 0.22 “ 0.0021

P pS4.Memory ” S5.Mpixels|Lq “
0.0010 ˚ 0.66

0.0010 ˚ 0.66` 0.0021 ˚ 0.33
« 0.48



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 55

4.4.2 Approximate Match

In order to be more tolerant in comparison, values are pre-processed as follows: (i)

tokens are split at each number-letter and uppercase-lowercase transition (ii) sequences

of non-alphanumeric character are replaced with a single whitespace, except for commas

and dots in numeric sequences (iii) accents and diacritics are removed (iv) uppercase

letters are converted to lowercase (v) values are converted to an set of tokens (e.g.:

“12MP frontCamera-11.5MP rearCamera” Ñ t12,MP, front, camera, 11.5, rearu).

While computing the similarity score (Section 4.4.1) we consider two values as equiv-

alent if Jaccard similarity between their tokens is greater than a given threshold.6

4.5 Instance Level Alignment

We exploit the results of the source attribute matching step in order to identify forms of

heterogeneity among the attributes and extract values that can give rise to more locally

homogeneous attributes.

Our approach relies on the assumption that the source attribute matching step

produces clusters of attributes that are mostly homogeneous: it is unlikely that linked

instances share similar values on the same attributes by chance across different sources.

We consider the union of the domains of the source attributes grouped by each (non-

singleton) cluster as a dictionary of values for the product property represented by the

attributes in the cluster. We associate each cluster with a label, and we tag every value

that contains a term from a given dictionary with the label of the corresponding cluster.

If many values from a given source attribute are tagged by terms of a given dictionary,

it is plausible that they have the same semantics of the source attributes grouped in

the cluster corresponding to such a dictionary. Then, we extract the tagged strings of

these values and create a virtual source attribute.

It is worth observing that even if virtual source attributes contain terms of a given

dictionary, we cannot conclude that they are semantically equivalent to the attributes
6We have set the threshold at 0.9.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 56

in the cluster from which the dictionary has been generated: they may have similar

domains but different meanings. However, we can rely on the solid Bayesian analysis

of the source attribute matching phase to validate the equivalence between a virtual

attribute and the existing clusters. Interestingly, linked instances that did not match

because of heterogeneous, mixed values or noisy values, once the values have been

extracted in a virtual attribute may match, creating larger clusters.

The above observations motivate our iterative approach: virtual attributes can pro-

duce larger clusters, larger clusters can improve dictionaries giving rise to new virtual

attributes.

4.5.1 Tagging and Virtual Attributes Extraction

The first phase for the extraction of virtual attributes consists in creating dictionaries

of values for the clusters of source attributes obtained by the Bayesian analysis. We

associate each non-singleton cluster c P tc P C, |c| ą 1u with a dictionary, denoted Dc,

containing the values of its attributes: Dc “
Ť

APcDA. For efficiency, we exclude very

long values, as they usually correspond to noisy or mixed attributes. Also, we filter

out values that are present in many clusters, as they do not characterize the domain.

Typically these values have generic meanings (such as, “Yes”, “No”, “Not available”) that

can apply to many attributes, even with completely different semantics. Specifically,

we drop values with more than 25 characters, and values that are present in more than

10% of the clusters.

The dictionaries associated with the clusters are used to tag all the values in the

dataset. We associate a label lc with each cluster c, and we tag with lc every string

(sequence of tokens) contained in any attribute value A R c that matches a term in Dc.

If a source attribute A contains at least two values that have been tagged with the same

label lc, we extract the tagged strings and use them as values for a new virtual attribute,

whose name is denoted #A#c.

It is worth observing that a given value could be tagged by many labels (because

terms from different dictionaries match with different portions of the value). Whenever



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 57

a tagged string is contained by another tagged string, we consider more reliable the

match with the larger term, and hence we drop the label of the smaller tagged string.

Some virtual attributes could be very similar (possibly identical) to the source at-

tribute from which they have been extracted. Such virtual attributes are useless, as they

would play the same role as the originating attribute. Therefore we do not consider vir-

tual attributes that are too similar to the originating source attribute. In particular,

we eliminate virtual attributes whose domain has Jaccard similarity with the domain

of the original attribute higher than 80%.

Example 1. In our running example of Figure 4.4 after the matching step we have

the following non-singleton clusters:

c1 “ tS1.Battery chemistry, S2.B typeu

c2 “ tS1.Battery model, S4.Batteryu

c3 “ tS1.CPU, S2.IPU, S1.Processoru

c4 “ tS3.Memory, S4.Memoryu

c5 “ tS1.Video Resolution, S2.Video Formatu

whose dictionaries result as follows:

Dc1 “ t Li-Ion, Ni-MH u,Dc2 “ t NP-BN1, FNB83 u

Dc3 “ t BionzX, Xpeed3, Xpeed2 u

Dc4 “ t 8, 16, 32 u,Dc5 “ t 1024x768,1920x2014 u

Figure 4.4 shows tagged values and the virtual attributes created accordingly.

In source attribute S3.Battery several values were tagged by terms in Dc1 and Dc2 ,

leading to the creation of virtual attributes #Battery#c1 and #Battery#c2, and hence

identifying the local homonym of the source attribute S3.Battery. Tagging values of

S5.Batt, which suffers from representation heterogeneity, with terms in Dc1 allows the

creation of the virtual attributes #Batt#c1, which are cleansed from uninformative

pieces of text. No virtual attribute is created with elements of cluster c4 tagged in



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 58

S1 S2 S3 S4 S5
s11 s21 s31 s41 s51
ID p1 ID p1 ID p1 ID p1 ID p1
Battery chemistry Li-Ion B type Li-Ion Memory 16 Memory 16 Megapixels 16
Battery model NP-BN1 IPU BionzX Battery Li-Ion Battery NP-BN1 Batt Included li-ion
CPU BionzX #Battery#c1  Li-Ion #Batt#c1 Li-Ion 
s12 s22 s32 s42 s52
ID p2 ID p2 ID p2 ID p2 ID p2
Battery chemistry Ni-MH B type Ni-MH Memory 8 Memory 8 Megapixels 16
Battery model FNB83 IPU Xpeed3 Battery FNB83 Battery FNB83 Batt Ni-MH battery
Processor Xpeed3 #Battery#c2  FNB83 #Batt#c1 Ni-MH 
s13 s23 s33 s43 s53
ID p3 ID p3 ID p3 ID p3 ID p3
Battery chemistry Li-Ion IPU BionzX Memory 32 Memory 16 Megapixels 8
Processor BionzX Video format 1024x768 Battery LP-E6N Li-Ion Battery LP-E6N Batt Li-Ion rechargeable
Video resolution 1024x768 #Battery#c1 Li-Ion #Batt#c1 Li-Ion

#Battery#c2 LP-E6N
s14 s24 s34 s44
ID p4 ID p4 ID p4 ID p4
CPU Xpeed2 IPU Xpeed2 Memory 16 Memory 16
Video resolution 1920x1024 Video format 1920x1024 Battery Ni-MH Battery Type Ni-MH

Megapixels 8 MPX #Battery#c1 Ni-MH #Battery Type#c1 Ni-MH
s25 s35 s45
ID p5 ID p5 ID p5
Megapixels 16 MPX Battery Li-Ion , Battery Pack LP-E6N Battery Type Li-Ion

#Battery#c1 Li-Ion #Battery Type#c1 Li-Ion
#Battery#c2 LP-E6N

s46 s56
ID p6 ID p6
Battery Type Ni-Cd Batt Ni-Cd rechargeable

Figure 4.4: Results of tagging and virtual attribute extraction.

S5.Megapixels, as it is too similar to the original attribute (the domains are identical).

Notice attribute S4.Battery Type: it was not part of cluster c1, as it does not have

enough linkage for matching. However, its values in s44 and s45 were tagged with terms

from Dc1 , giving rise to the virtual attribute #Battery Type#c1.

4.5.2 Iterating Matching and Tagging

The source attribute matching and the virtual attribute extraction steps are launched

iteratively, as one provides new evidence that can be exploited by the other. Algorithm 2

reports the pseudo-code of the iterative step, which takes as input a set of sources S,

and produces as output piq a set of sources S1 augmented with virtual attributes and piiq

a set of clusters C of its source attributes (where each cluster can include also virtual

attributes).

Initially (line 1) the matching step is launched and produces as output a set C of

source attribute clusters. This clustering along with the full dataset is provided as input

to the dictionary creation step (line 2), which returns a dictionary for each cluster.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 59

Then the iteration starts (line 3). The dictionaries are exploited by the tagging

step that produces a new version of the dataset, S1, introducing virtual attributes, as

described in Section 4.5.1. The matching algorithm processes S1 from which it generates

(from scratch) new clusters (line 5) and the associated dictionaries (line 7). These steps

are repeated until the dictionaries do not change anymore:7 as no additional evidence

arises the iteration converges.

It is important to observe that the tagging step (line 4) is always done on the original

version of dataset, S, which does not include any virtual attribute, but using the latest

version of the dictionaries, which are created after each matching step. In this way, at

every iteration the dictionaries accumulate knowledge about the domain of each cluster;

the tagging step takes advantage of the enhanced dictionaries to tag more values, giving

rise to more accurate virtual attributes, which trigger new attribute matches.

Algorithm 2: Matching and tagging iteration
Input : a set S of sources
Output: a set S1 of sources augmented by virtual attributes, a set C of source

attribute clusters (computed over S1)
1 CÐ sourceAttributeMatchingpSq;
2 DÐ tDc, c P C, |c| ą 1u;
3 do
4 S1 Ð taggingpD,Sq //adds virtual attributes to S1;
5 CÐ sourceAttributeMatchingpS1q;
6 Dprev Ð D ;
7 DÐ tDc, c P C, |c| ą 1u;
8 while D ‰ Dprev;
9 return C, S1;

Example 2. To illustrate the interaction between tagging and matching let us continue

Example 1, where we showed the results of the first tagging step, which created the

virtual attributes shown in Figure 4.4. The successive matching step (which is inside

the iteration) produces clusters c3, c4 and c5 identical to the previous call, while clusters
7Ratio of values removed or added to each cluster domain must be less than 10%.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 60

c1 and c2 change, as the virtual attributes allow new matches:

c1 “ tS1.Battery Chemistry, S2.B type,

S3.#Battery#c1, S4.Battery Type,

S4.#Battery Type#c1, S5.#Batt#c1u

c2 “ tS1.Battery Model, S3.#Battery#c2, S4.Batteryu

Notice the attribute S4.Battery Type, which remained isolated in the previous match-

ing step because of lack of linkage (s35 and s45 are in linkage, but the values of

s35.Battery and s45.Battery Type do not match, because of the mixed values in

s35.Battery). S4.Battery Type has now enough linkage and matching with the virtual

attribute S3.#Battery#c1, and therefore it is has been included in the same cluster.

It is important to observe that the presence of S4.Battery Type contributes to

improve the dictionary associated with c1 with an additional value, “Ni-Cd”. This has

a positive impact in the successive tagging step (which occurs in the next iteration) as

the dictionary enhanced with such a value allows the creation of a virtual attribute,

S5.#Batt#c1, that includes also the tagged value (“Ni-Cd”) extracted from s56.Batt.

With the new dictionary, attribute s4.#Battery#c1 is not created anymore, as it would

be identical to s4.Battery.

4.5.3 Instance-Level Clustering

Before building the final instance-level clusters, we perform astep which aims at merging

the clusters obtained by the iterations based on features related to global homogeneity

that occur among the sources.

We observe that the clusters obtained by the iterative approach contain attributes

with reduced heterogeneity. Then, we can additionally exploit classical schema matching

strategies, based on attribute names and domain similarity, in order to detect matches

that could not be found before, because of lack of linkage, or due to strong forms of

representational heterogeneity that prevent attribute matching.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 61

Cluster pairs that have at least a pair of source attributes with the same name are

selected as candidates for merging. Even a singleton cluster can be selected as one

element of the pair (or both), provided that no virtual attribute has been generated

from it. Indeed, if a source attribute did not match with any other, and portions of its

values gave rise to one or more virtual attributes, this is a strong sign that the attribute

could be locally heterogeneous: we do not want it to be merged to other clusters in its

original form. Also, clusters cannot be merged if they include source attributes that

have at least one pair of instances in the same specification.

For each cluster in a candidate pair tca, cbu, we compute the set of all tokens present

in values of all source attributes: tta, tbu. If |TaXTb|
minp|Ta|,|Tb|q

ą 0.8, clusters are merged.

This formula is the maximum Jaccard Containment [48] with regard to each of the two

sets. Using tokens allows merging of attributes with noisy values.

We are now able to group instance-level attributes sharing common concepts. As

most of the complexity and heterogeneity of attributes have been isolated and removed,

thanks to virtual attributes, instance-level clusters can be built directly from the clus-

ters.

For each non-singleton cluster c P C, each occurrence of its non-virtual attributes is

added to an instance-level cluster. For each occurrence of its virtual attributes, we add

to the cluster the correspondent original attribute instance, with the original value. The

rationale for this choice is that virtual attributes are just an internal tool for matching,

and should not be exposed as a result of the algorithm. The goal of RaF-AIA is to

detect matching between attribute instances and not extract the specific value, which

is outside the scope of this work.

Example 3. Isolated attributes S2.Megapixels and S5.Megapixels are selected for

merging. Their token sets are, respectively, t8, 16,MPXu and t8, 16u. Tokens from the

second attribute are all contained in first, so their similarity is 1, and the two attributes

are merged in a single cluster. S3.Battery and S4.Battery are not selected because

S3.Battery is an isolated source attributes, and two virtual attribute were created from

it.



CHAPTER 4. INSTANCE LEVEL ATTRIBUTE ALIGNMENT 62

The algorithm now iterates over each non-singleton cluster in C to build

a correspondent instance-level cluster. Consider the cluster c1: the attributes

S1.Battery Chemistry, S2.B type and S4.Battery Type are not virtual, so we simply

add their attribute instances to the result. Attributes S3.#Battery#c1 and S5.#Batt#c1

are virtual, so for each of their occurrences we add to the instance-level cluster their

corresponding original attribute occurrence. This corresponds to the instances in which

the property they refer to occurs. Indeed, we won’t add s32.Battery, containing only

the model of the battery. The final instance-level cluster ci1 would be:

ci1 “ ts11.Battery Chemistry, s12.Battery Chemistry,

s13.Battery Chemistry, s21.B Type, s22.B Type,

s31.Battery, s33.Battery, s34.Battery, s35.Battery,

s44.Battery Type, s45.Battery Type,

s46.Battery Type, s51.Batt, s52.Batt, s53.Battu

Figure 4.2 shows a representation for a portions of the results (for two products):

data are grouped by product ID (the figure shows only products p1 and p3), and a

property, propertyk, is created for each cluster cik.



Chapter 5

Dataset and Ground Truth

Construction

Several tasks were needed to measure performances and effectiveness of RaF-AIA

against real-world data.

• Building an input dataset of product specifications. This dataset must be

based on real data from the Web, extracted with reliable techniques. It should

cover main challenges that we can found in real-world data, including errors,

unreliable and conflicting data, and heterogeneity.

• Building a record linkage. Most products have an associated identifier, that

makes it possible to obtain a record linkage before attribute alignment. Still it

remains a challenging step, as not all sources provide this identifier, and not in the

same way, making it easily mistakable with identifiers of related and/or associated

products [25].

• Building a valid ground truth for instance-level alignment. The task is

quite complex and requires extensive manual efforts to align single attributes in

specifications, in a big and heterogeneous dataset.

63



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION64

Along with the choice of a ground truth, some measures must be defined to give

a numerical evaluation to the result of the alignment task.

We developed these steps in the context of the ALASKA benchmark,1 a broader

project whose purpose is the definition of a benchmark for data integration [49]. The

ALASKA Benchmark has been conceived for evaluating performances of data integra-

tion and knowledge graph augmentation tasks. It is a benchmark in continuous evo-

lution, aimed at being general and useful for the research communities that contribute

to improve data integration and knowledge graph population. The benchmark focuses

on the product domain, a challenging scenario for developing and evaluating big data

integration solutions, as we discussed in Chapter 2.

In this Chapter we describe how we have built the dataset and the ground truth.

In Chapter 6 we will present the experiments that we carried out, that are based on

ALASKA dataset and ground truth but are independently conducted.

5.1 Dataset construction

The first task to build a dataset is to find sources with the kind of desired resources:

in our case, websites with product pages. It corresponds to the step called Source

Discovery in the pipeline we discussed in Chapter 1.

For this goal, we exploited the Dexter2 research project [17] that provided us a good

starting point. Dexter is designed to discover and extract product specifications on the

web. Part of Dexter results is the discovery and selection of data sources.

Figure 5.1 shows the number of data sources discovered by Dexter and the relative

number of product pages that it crawled. The volume of data emerges in a visible way,

evidences about the heterogeneity of the dataset are described in Section 5.3. The pages

the Figure refers to are HTML pages of products of the associated domain (or vertical).

Dexter also provided the URLs of the crawled pages.
1www.di2kg.inf.uniroma3.it
2https://github.com/disheng/DEXTER

https://github.com/disheng/DEXTER


CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION65

Figure 5.1: Dexter discovered sites and crawled pages

Figure 5.2: Dexter discovered sites and crawled pages

We chose the camera vertical, as it has the largest number of sources and web pages

and we want volume and variety to be major players in our dataset. For each website of

our target category, we downloaded the associated HTML pages at the URLs collected

by Dexter, and an extraction tool, called Carbonara Extractor, was run on the pages.

Carbonara produces a set of ă attribute_name, attribute_value ą pairs from each

input page: such a set represents the specifications of the product described in the

page. The output of the tool is a JSON object and, in addition to the successful key

value pairs extracted, it also contains a special attribute that represents the HTML

page title.

The Carbonara extraction tool is explained in Section 5.2.

Figure 5.2 shows the results of the extractions obtained by Carbonara: reduced



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION66

numbers in this Figure with respect to those in Figure 5.1 are due to broken URLs of

pages or unsuccessful extraction process by the extraction tool.

The source discovery process is followed by a data selection process. The goal for

the first version of ALASKA Benchmark was to choose 25 sources. Such a goal was

driven by the following criteria:

• obtaining enough amount of information from data sources in terms of specifica-

tions of products;

• avoiding copiers and clones;

• maximizing overlapping sources in terms of shared real-world entities.

Discovered data sources and the provided data (the JSON files of extraction) were

filtered based on what we called 3-3-100 filtering : it was used to reduce noise, i.e. fake

attributes that came from the extraction process, and to focus on larger data sources.

The 3-3-100 filtering works as follows:

1. key-value pairs with an attribute name that is not present in at least 3 pages of the

same source were filtered from the extraction files they belong to (not considering

the attributes “<page title>" and “__unstructured" attributes);

2. after that, extraction files with less than 3 key-value pairs were kept out;

3. finally, only data sources with at least 100 files of extraction made it through the

filtering.

Figure 5.3 shows statistics about data sources after the first two steps of 3-3-100

filtering: in particular, for each source, the number of resulting extraction files (“# urls 3-

3-100"), the number of distinct attribute names (“# distinct attribute names 3-3-100"),

the average number of key-value pairs in extraction files (“avg attribute names 3-3-100")

and the average number of unsuccessful key-value pairs extraction per extraction file

(“avg unstructured values 3-3-100").



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION67

Figure 5.3: Results of 3-3-100 filtering

As a result from the 3-3-100 filtering process, 63 sources were selected. We discarded

sources which were versions of another source in a different country (e.g. www.ebay.com

vs www.ebay.ca), and sources which contained pages cloned from other sources. In all

these cases we kept the largest source.

As the final objective is integrating data of instances which refer to the same real-

world entity, one of the criteria the data source selection was based on is the amount of

overlapping entities shared by the selected data sources themselves. Since this kind of

data was not at our disposal, the results of [25] were extremely useful. In that paper,

the authors take advantage of the opportunity that sources publish product identifiers

and develop a technique to extract them.

We used the identifiers extracted by applying [25] as partial record linkage matching

the instances of products from the web pages of the dataset to compute the numbers

of overlapping entities, shared by the initial 63 sources, which we identified as result of

the 3-3-100 filtering process.

In particular we developed a greedy approach to select a set of sources that max-

www.ebay.com
www.ebay.ca


CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION68

Figure 5.4: Data sources with overlapping entities

imizes the overall overlap of the products. The algorithm is inizialized by taking the

largest source and adding it to the (empty) set of set of the selected sources. Then the

algorithm iterates to add the source with largest overlap with the set of the selected

sources. Figure 5.4 exemplifies the the algorithm. Each row reports the name of a data

source (on the left) and a number (on the right). Row 1 is a special case and reports the

largest source (ebay.com) and the number of instances that have that match (according

to the identifier) with the all other sources. For all the rows except the first one, the

number on the right corresponds to the number of instances shared with all the sources

ebay.com


CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION69

that appear in previous lines. For example, consider line 4: buzzillions.com has 157

instances shared with ebay.com, gosale.com and shopbot.com.au. Based on the overlap

estimated in this way, we selected the sources with the largest overlap.

We decided to select the first 30 sources. However, after a quality check, some

sources were discarded because they provided poor data (they are mainly result pages

of search engines). The final version of the dataset consists of 24 sources for a total of

29, 787 web pages. The data sources of the final version of the camera dataset are listed

in Table 5.1.

To extract product specifications from the pages of the dataset we have developed

a specific tool, called Carbonara, which is described in the next Section.

5.2 The Carbonara Extractor

Carbonara 3 is our extraction tool, used for extracting specifications from product pages.

It improves and replaces the Dexter extraction system [17] described in Chapter 2.

5.2.0.1 Finding Product Specifications

The main problem faced by Carbonara is how to distinguish between relevant and not

relevant pieces of information within a web page.

We observe that the specifications of the main product of the page are in tables

and lists. However quite often HTML tables and HTML lists are used for page layout

purposes, such as, groups of activity buttons, little dashboards, series of links and so

on. It is therefore crucial to understand if the DOM nodes corresponding to tables and

lists are rendered in the page to publish specification data on the main product rather

than for defining the page layout. This is a tricky issue, due to the characteristics

of HTML pages from e-commerce web sites, which are plenty of navigation control

bars, menus, account settings, cart information. To this end, we developed supervised

machine learning classifiers, based on neural networks, to classify relevant tables and

list.
3https://github.com/0xNaN/carbonaraextractor

buzzillions.com
ebay.com
gosale.com
shopbot.com.au
https://github.com/0xNaN/carbonaraextractor


CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION70

Selected Data Sources
buy.net
cammarkt.com
www.alibaba.com
www.buzzillions.com
www.cambuy.com.au
www.camerafarm.com.au
www.canon-europe.com
www.ebay.com
www.eglobalcentral.co.uk
www.flipkart.com
www.garricks.com.au
www.gosale.com
www.henrys.com
www.ilgs.net
www.mypriceindia.com
www.pcconnection.com
www.pricedekho.com
www.price-hunt.com
www.priceme.co.nz
www.shopbot.com.au
www.shopmania.in
www.ukdigitalcameras.co.uk
www.walmart.com
www.wexphotographic.com

Table 5.1: Data sources in the final version of the camera dataset

5.2.0.2 Training Set Creation

We created a labeled dataset to train the classifiers. The classifiers relies on features

extracted from tables and have been trained by a set of manually labeled tables and

lists. The training dataset includes both positive and negative examples: tables and

lists were selected by following xpath rules and then downloaded with the objective of

extracting features from them.

The xpath rules were created manually for twenty web sites. Tables and lists not

containing product specifications, thus negative examples for the classifiers, were se-

lected using generic xpath rules for finding all tables and lists of a given web page and



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION71

Stem Frequency
camera 6964
digit 4028
len 2086
video 1969
zoom 1583
product 1401
nikon 1374
canon 1372
price 1357

Table 5.2: Partial result of domain-based relevant words generation process

Figure 5.5: Analysis of features for HTML tables

not considering the tables and lists that were already selected by the rules built by hand

for positive examples. The underlying intuition is that web pages from the same web

site maintain a similar structure and, thus, xpath rules are robust enough to scale on

all the pages from the same web site.

Features include both structura (html) properties and domain keywords. About

200 relevant keywords were considered. Table 5.2 shows a partial result of the relevant

keywords and the associated frequency.

Figures 5.5 and 5.6 show the average values of features (normalized between 0 and

1) for positive and negative examples (relevant and not relevant tables or lists).



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION72

Figure 5.6: Analysis of features for HTML lists

For tables, we can easily observe the importance of some features (such as, num-

ber_bold, number_br, number_div, number_img, number_li, number_links and num-

ber_p) to distinguishing between positive and negative examples. An explanation is

given to to the fact that tables are often used as a layout structure, that contains a

large number of HTML tags as the ones the features are referring to, such as <br>,

<div>, <img> tags, and so on. The higher value for number_td is due to the fact that

specifications tables are “compact", i.e they have a low number of columns, because

usually they just have a key-value pair for each row. The difference detected for num-

ber_tr is due to the fact that specifications tables typically grow in height as they bring

specifications in rows. Unsuccessfully, the domain-based features, depending on relevant

words, such as number_relevants and relevants_ratio are not particularly discriminat-

ing in our case: layout tables are usually huge and containing a lot of content, including

relevant words too.

For lists the more discriminating features are avg_tag_in_li, depth, number_div,

number_img, number_links, number_p and number_row, as lists are often used for

menus or for layout purposes, for example for galleries, having a big number of links,

images, rows filled with other tags and being very long: think about a series of sponsored



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION73

products with images of the products themselves and links leading to specification pages

that are a very frequent presence in e-commerce web sites.

The training set, that was used to train the classifiers, consisted of about 1,800

training examples.

5.2.0.3 Classifiers Model and Training

Classifiers used for declaring a table o list as containing relevant information, i.e., prod-

uct specifications, were developed using Keras. Two different classifiers were built: one

for HTML tables and one for HTML lists. The two classifiers are based on a Neural

Network (NN) and share the same architecture and training process, including hyper

parameters, which are described in the following.

The model classifier consists of two neural network layers: the former, connected to

the input, the latter is the final output layer, two probability scores of the classification,

one for probability of the content being relevant and one for it being non-relevant.

A grid search analysis was conducted in order to obtain the best hyper-

parameters.The values of loss, accuracy and standard deviation of accuracy were taken

into consideration for choosing the best configuration. The grid search was based on

configurations with different values for:

• batch size, with values in [8, 16, 32]

• number of neurons of the first layer, with values in [8, 16, 32]

• activation function of the first layer, with values in [“tanh", “sigmoid"]

• number of epochs

During the grid search, a Keras callback, called EarlyStopping, was used for ter-

minating the training process when no longer necessary, based on monitoring a given

quantity, in our case the value of loss. The best configuration for the training of the

classifier was the following: a batch size of 32, 32 neurons in the first layer, and tanh

as activation function for the first layer. The callback stopped each training process at



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION74

a given number of epochs, based on the variation of the value of the loss function; the

average number of epochs during the grid search was used as the final number of epochs

for the main training of the classifier. During the main training we obtained a loss of

0.13 and 95% accuracy.

Carbonara initializes the features extractor, processes the DOM tree and fetches

all the HTML tables and lists from the web page in input and feed them to the right

classifier.

The classifiers process the inputs and if the probability is equal or greater than a

threshold,4 the considered node is further analyzed to extract product specifications.

The extraction of products specification is done through the application of an ex-

haustive set of extracting rules: by manually checking the web pages in our data set,

patterns of key-value pairs embedded in HTML code were found, and rules were man-

ually defined in order to extract the name values pairs.

5.3 Dataset profiling

The camera dataset is a very heterogeneous (both intra-source and inter-sources) and

challenging dataset. We now describe the dataset in order to emphasize its challenging

features.
4We have empirically set the threshold value 0.8.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION75

5.3.1 Dataset dimension

Figure 5.7: Number of JSONs (instances) for each source

Figure 5.7 shows the distribution of the 29, 787 specifications extracted from the sources.

We have selected two head sources for this dataset, that is, sources containing a large

number of instances, and 22 tail sources, that is, sources containing few instances.

Each selected sources contains at least 100 instances, as an effect of the 3-3-100 filtering

described above. Figure 5.8, instead, shows the average of attributes which are contained

in the specifications of each source.

These numbers give an idea of how complicated the record linkage task can be for

the camera dataset, in fact we need to consider that we selected sources also trying to

maximize the presence of the same instances on different sources.

Figure 5.9, instead, shows how many distinct attributes are present in each source.

With this chart we can estimate how varied the schema of some sources is; for instance,

ebay.com contains a large number of distinct attributes: it’s not surprising if we consider

that this source allows users to post ads and that users can often use different words



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION76

Figure 5.8: Average number of attributes across sources

to describe the same concept. However, also for other e-commerce websites we can see

that the number of distinct attributes is high, although it can be assumed that there

is someone in charge for data entry. The high number of attributes makes the camera

dataset very interesting for the schema alignment task.

5.3.2 Schema heterogeneity

In order to measure schema heterogeneity considering only pre-integration data, we

calculated the schema entropy for each source. Schema entropy is defined as follows:

consider a source (e.g. www.ebay.com) with m different specifications and n distinct

source attributes. Table 5.3 is a bit-wise matrix for the source we are considering: each

row shows which source attributes are present in a given specification of extraction from

that source. In particular, when we found the value 1 in a cell, it means that the source

attribute is present in the specification we are considering, vice versa when we found the

value 0 in a cell, it means that the source attribute is not present in the specification.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION77

Figure 5.9: Number of distinct attributes for each source

source_attribute_1 source_attribute_2 ... source_attribute_n
ebay.com/1.json 1 0 ... 1
ebay.com/2.json 1 0 ... 1
... ... ... ... ...
ebay.com/m.json 0 0 ... 1

Table 5.3: Bit-wise matrix for ebay.com

To calculate entropy we use the rows of Table 5.3 as symbol and formula described

in equation 5.1. Hence, if the table has all the same rows it means that the source has

a fixed schema, so each specification of extraction contains the same set of attributes.

HpXq “ ´
m
ÿ

i“1

ppxiq ˚ log2pppxiqq (5.1)



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION78

Figure 5.10: Schema entropy for each source

Figure 5.10 shows schema entropy for each source in the camera dataset. Hence,

we can notice that www.ebay.com seems to be very heterogeneous at schema level,

using a very different set of attributes in the different specifications of extraction;

www.ukdigitalcameras.co.uk, instead, seems to be very regular.

5.3.3 Attribute values heterogeneity

In order to measure attribute values heterogeneity, we calculated the values entropy

as follows: consider Table 5.4; each row contains the counter of attribute values for a

specific attribute name in the dataset. For instance, in the first row, we have that Nikon

is the value associated to attribute brand in thirty different specifications of extraction,

while Canon is in twenty different specifications of extraction and so on. In that case we

are not considering source attributes, so these values can come from different sources.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION79

Attribute name Values counter
brand "nikon": 30, "canon": 20, ...
... ...
battery "aaa": 27, "li-ion": 13, ...

Table 5.4: Attribute values counter for each attribute name

We compute entropy using the entire attribute value as symbol, using equation 5.1.

Figure 5.11 shows the aggregate number of attribute names which fall within a certain

range of entropy.

Figure 5.11: Attribute values entropy

The rightmost point, the one with higher entropy, is the < page title> attribute,

while the leftmost, with lower entropy are mostly attribute names with yes/no possible

values.

5.4 Ground truth construction

We now introduce the supported Data Integration tasks and our approaches for building

the Ground Truth related to each of them.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION80

The ALASKA Benchmark, in the current version, provides a ground truth for eval-

uating the following fundamental Data Integration tasks:

1. Schema Alignment

2. Record Linkage

3. Instance Level Attribute Alignment

The first two tasks are well recognized integration steps, with a great amount of

research work on them, as we discussed in Chapter 1. Instance-level attribute align-

ment task is the specific problem that RaF-AIA addresses. As we discussed in Sec-

tions 4.2 and 4.3.1, while the Schema alignment task aims at creating clusters of equiv-

alent attributes of the schema of each source (which we called source attributes), the

Instance-Level Attribute Alignment works at a finer level, clustering individual attribute

instances present in a single specification.

Notice that the Instance-level task has been defined as Knowledge graph augmen-

tation task in last Benchmark version5, and has a substantial difference to the problem

defined by RaF-AIA: we provide to benchmark user a predefined list of “target at-

tributes” (i.e., real world property), along with some example of associations between

attribute instances and target attributes, as training data. Users must thus associate all

attribute instances with these predefined target attributes, taking advantage of training

data. The RaF-AIA approach creates cluster of equivalent attribute instances without

needing to know which clusters must be created and which are their characteristics.

However, the ground truth construction process for those two problems is the same.

We widely discussed on the heterogeneity problem in Chapter 4, both at inter-

source and intra-source level, in particular for what concerns synonyms (attributes that

come with different names providing the same information), homonyms (under a given

attribute, values not semantically referring to that attribute may appear) and mixed

attributes (the value of a given attribute may provide a list of values referring to sub-

categories of the attribute, in a descriptive way).
5http://di2kg.inf.uniroma3.it/2019

http://di2kg.inf.uniroma3.it/2019


CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION81

To build a robust ground truth, we need to face semantic ambiguity, diversity in

the way instances are represented, errors in terms of veracity of the provided pieces of

information, but also in terms of typos, distraction errors, errors due to lack of domain

knowledge; or simply absence of complete information, or intentionally omitted data.

For creating the Ground Truth, we adopted a semi-automatic approach. First, we

adopted automatic “weak approaches". This was done to make sure that it is actually

possible to provide a solution for the several tasks, and also to demonstrate that the

tasks are challenging, since weak approaches do provide a solution, but it is usually

imperfect and with many errors. In this preliminary steps of the creation process, we

aimed at maximizing the recall: for Schema Alignment and Record Linkage tasks this

means to create coarse-grained clusters of source attributes and instances, respectively.

Then, we exploited human interventions in order to improve the precision.

5.4.1 Building the Ground Truth for Schema Alignment

The Ground Truth for the Schema Alignment task consists of a set of clusters. Each

of these clusters has a name, which is the target attribute in the mediated schema

the given cluster refers to, and comprehends a set of source attributes, which are

mapped semantically to the target attribute. Source attributes are related to a sin-

gle source; in fact, source attributes with the same name can exist across multiple

data sources (for example “dimensions" can be a source attribute for www.alibaba.com

and for www.flipkart.com, but they are considered as two separate source attributes).

For example, the cluster of the target attribute “resolution", may contain the source

attribute “megapixels" from www.garricks.com.au, “mpx" from www.shopmania.in and

“pixels" from www.ukdigitalcameras.co.uk, because the values in the JSON files of ex-

traction that come under these attribute names refer to the shared concept of resolution

of a digital camera.

The initial goal, once we collected the camera dataset, was to identify 100 distinct

target real-world attributes for the camera domain. The idea was to select a variety of

both so-called head attributes and tail attributes. Head attributes are the most frequent

www.alibaba.com
www.flipkart.com
www.garricks.com.au
www.shopmania.in
www.ukdigitalcameras.co.uk


CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION82

Figure 5.12: Distribution of attributes of the source www.ebay.com

attributes within a single source, while tail attributes are the less frequent ones. The

inclusion of both head and tail attributes was due to the objective of equipping the

Schema Alignment task with more and less challenging cases, in order to drive the

algorithms producing the solutions towards a more complete approach, which considers

all the possible cases, and to fuel the competition in this task.

Our first approach to the identification of the 100 attributes was a simple approach:

we called it Top50-Random50. The approach works as follows: for each data source,

select the top 50 most frequent source attributes in terms of number of ispecifications

that expose that attribute, and then select another 50 source attributes in a random

fashion. From the resulting selection, we wanted to maximize the number of map-

pings from source schemas to mediated schema, which correspond to the number of

source attributes that can be aligned. The selected attributes resulting from this pro-

cess would have then been analyzed by a human, who has enough domain knowledge

(a taxonomist), with the goal of creating a mediated schema with clusters of source

attributes. This approach wanted to produce an initial selection, as a bootstrap for real

mediated schema creation. Schema alignment, when dealing with a reasonably small

number of sources or when the mediated schema is forced to be with a small number of

target attributes of interest, is typically done manually [50].

Figure 5.12 shows the distribution by occurrences of all the attributes that the

source www.ebay.com exposes through the specification files of extraction produced by

www.ebay.com


CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION83

Carbonara Extraction on its web pages. As we can see, the distribution is very skewed,

relegating the majority of attributes in a so-called “long tail", which approximately

starts from the attribute named “weight".

The trend of this distribution characterizes all the distributions of attributes of all

the sources. This kind of distributions penalizes the Top50-Random50 approach, because

limits the probability of selecting source attributes that can be aligned, and thus possible

candidates for a cluster of the desired mediated schema. This is due to the following

phenomenon: consider a target attribute TAx consisting of a set of source attributes,

then consider that the majority of attributes in source schemas are tail attributes, now

it is easy to evaluate that selecting a reasonable amount of source attributes for TAx

is unlikely, as these source attribute need to be picked by the Random50 selection of

Top50-Random50 methodology. Furthermore, even consider source attributes with the

same name, for example “resolution", belonging to separate data sources, they are likely

to be part of the same cluster in the Schema Alignment results; what can happen is

that “resolution" can be a head attribute in a very small subset of sources and, thus,

is selected through the Top50 selection, but, at the same time, “resolution" is more

likely to be a tail attribute in most of the remaining sources, therefore the Random50

selection should be enough picky to select these attributes in a random way, which is

very unlikely.

Unfortunately, this kind of distributions also impacts our approach based on

Stratified Sampling. The idea was to sample, for each source at our disposal, source

attributes from subsets, produced by the partition of source attributes by frequency.

The number of subsets, or better called buckets, is a parameter that needs to be defined.

Table 5.5 shows how source attributes of each source get divided in buckets for

Stratified Sampling based on 3 buckets. The created scenario explains clearly the

difficulties in selecting source attributes from each bucket in order to get a reasonable

amount of source attributes that are “alignable". The situation becomes exasperated

when analyzing Table 5.6, which shows the results of partitioning based on 10 buckets.

The two previous approaches failed, because of the long and flat tail in the probability



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION84

Source [0.0, 0.3) [0.3, 0.6) [0.6, 1.0]
www.ebay.com 1977 6 4
www.alibaba.com 1574 9 7
www.camerafarm.com.au 268 3 12
buy.net 77 4 21
www.pricedekho.com 49 44 11

Table 5.5: Partial example of the distribution of source attributes using Stratified Sam-
pling with 3 buckets

Source size [0.0, 0.1) size [0.1, 0.2) size [0.2, 0.3) ... size [0.7, 0.8) size [0.8, 0.9) size [0.0, 1]
ebay.com 1973 1 3 ... 1 0 3
alibaba.com 1542 10 22 ... 4 1 2
camerafarm.com.au 212 51 5 ... 0 10 2
buy.net 45 30 2 ... 2 8 7
pricedekho.com 20 13 16 ... 0 0 2

Table 5.6: Partial example of the distribution of source attributes using Stratified Sam-
pling with 10 buckets

distributions of attributes in each source.

The third approach was designed to address this issue and provide a way to overcome

the difficulties involved in gathering head and tail attributes from separate sources that

need to be mapped to the same target attribute in the mediated schema for the creation

of the Schema Alignment Ground Truth. This approach was based on:

• Meta-Blocking

• Jaccard Similarity

• Connected Components

Meta-Blocking usually involves the creation of a graph: in our case, the nodes are

all the available source attributes, and the edges are weighted based on a similarity

measure, the Jaccard similarity. In order to initialize the graph, for each source source

attribute (thus, for each node), a set of tokens was created. These tokens are the union

of the values that appear under the name of the considered source attribute for each

JSON file of extraction in the considered source. Values were first normalized: they



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION85

Figure 5.13: Example of nodes and weighted edges in Schema Alignment graph

were transformed to lowercase, trimmed, punctuation, symbols and stop words were

removed. Subsequently, the Jaccard similarity between all pairs of source attributes

was computed, also between nodes referring to the same source, as we realized by ana-

lyzing the dataset that there’s heterogeneity even within the same source and that the

same semantically equal attributes appear with different names. We used the standard

Jaccard similarity metrics.

A weighted edge between two nodes was added only if the computed similarity

resulted to be greater than a threshold of value 0.5.

The intuition can be explained in Figure 5.13. The expected result was to have

connected components of the graph that could be clearly recognized as a cluster of

a single target attribute to be considered in the mediated schema. This is a weak

approach, such the ones we wanted to try for the already mentioned purposes. The

actual result provided a quite good starting point for an intervention by a human. We

got clusters with head and tail attributes together, so we overcame the issues of the

previous approaches, and the clusters were accurate enough. The need for correction by

a human was clear since the beginning, but that was expected, since we were building a

Ground Truth. The human involved in the process had to split clusters into smaller ones

since similarity between values of semantically different attributes led the algorithm to

the creation of coarse-grained clusters, we refer to this kind of clusters as super-clusters.

For example, one of these super-clusters was the one including source attributes with

names such as “weight", “weight including batteries" and “only body weight", whose



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION86

Figure 5.14: Distribution of connected components after meta-blocking for Schema
Alignment

Figure 5.15: Distribution of clusters for Schema Alignment after human refinement

values are similar, but that our approach could not distinguish in terms of semantics.

A significant value added by the human intervention was the process of naming the

clusters, giving birth to the first target attributes names to be considered for the Schema

Alignment Ground Truth.

As a result of the human-based process, we got 94 different clusters, manually refined

in about 20 hours of work.

Figure 5.14 shows the distribution of connected components based on their size. As

we can see, connected component made of 2 nodes are the most frequent, and the pairs

computed are usually correct in terms of semantic meaning of the attributes they refer

to. Other connected components are distributed in medium and large sizes; larger ones

were the actual starting point for human manipulation. Figure 5.15, instead, shows

the result of the human manipulation on the clusters identified by the algorithm: a

significant difference in terms of sizes of clusters is noticeable. The human individual



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION87

Figure 5.16: Distribution of Target Attributes over the Number of Mappings

involved in the process found it quite easy to select new nodes to add to pre-existing

larger clusters or in finding smaller pre-existing clusters to enlarge with the inclusion of

nodes coming as a splitting from other clusters.

The 94 clusters, which are sets of source attributes, were refined again a second time,

in order to create more fine-grained clusters, with the objective of creating more and less

challenging target attributes clusters. Finally, the resulting Schema Alignment Ground

Truth, for the current and initial version of the ALASKA Benchmark, is made of 53

target attributes that end-users of the Benchmark need to complete from the ground

up with the dataset at their disposal, using the DI2KG Data Format. The number of

existing mappings from source attributes to mediated schema attributes is 943.

Figure 5.16 shows the distribution of selected target attributes in terms of number

of mappings. As expected, the target attributes with larger number of mappings are the

ones that appear the most as first shown specification in product pages: they include

the resolution, the shutter speed, the focal length and the dimensions of a camera, which

are the first specification, which an individual who wants to buy a camera would be

interested in. The list of considered target attributes appears on the horizontal axis of

the Figure.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION88

cluster id product name # sources # instances hours of work classification
1 NIKON D7000 14 131 7 HEAD
2 NIKON COOLPIX S9500 8 25 4 HEAD
4 PANASONIC FZ200 12 26 3 HEAD
3 CANON EOS REBEL T3i 3 135 4 TAIL
5 FUJIFILM S8100FD 3 7 1 TAIL
6 NIKON D50 2 46 1 TAIL

Table 5.7: Statistics about the Record Linkage Validation Set

5.5 Record Linkage Ground Truth

Record Linkage is one of the main components of Data Integration. The goal is to

link the records, each representing a single instance, across different data sources and

gathering them in clusters. Each cluster contains instances that refer to the same real-

world entity of the considered domain. Record Linkage is one of the tasks supported by

the ALASKA Benchmark and, as such, we need a Ground Truth based on our products

dataset in order to evaluate the performance of proposed solutions by the end-users.

Even for this Ground Truth creation process, the focus was on having as highest Recall

as possible by an automated process, whose results would then be refined and corrected

via human intervention in order to have 100% Precision. In the Record Linkage Ground

Truth creation process this translates to producing “reasonable" clusters of instances

related to a single real-world entity, with the highest number of actually matching pairs

of instances when considering all the possible pairs of instances in the cluster. Before

designing the automated processes, a Validation Set was created: this provided us the

ability to estimate how good our processes were doing, so that we could concentrate

on the development of the best approach. Our Validation Set includes 6 separate real-

world entity clusters. The 6 entities are equally divided in head and tail entities. The

Validation Set was built completely manually and consists of 370 instances selected in

about 20 hours of work.

Table 5.7 shows the main statistics about the clusters belonging to the Validation

Set. The creation of the Validation Set was driven by domain knowledge and no par-

ticular tool was used during the process. The Validation Set builder only had a simple

search tool based on page titles of the instances and had access to related HTML web



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION89

pages and JSON files of extraction.

For the current version of the ALASKA Benchmark, the following simplifying re-

ductions, based on the considered domain of cameras products, were adopted:

• instances of products with the same camera body, but with different included

accessories, such as lenses, tripods, memory cards, and so on, were included in

the same entity cluster;

• instances of products referring to the same entity camera, but with different colors,

were included in the same entity cluster.

These rules were followed in the creation of both the Validation Set and the Ground

Truth.

5.5.1 Graph-based Approaches

The first approaches that have been experimented for the creation of real-world entity

clusters were based on the construction of a graph with weighted edges. The created

graph always included the 29, 787 instances of our camera dataset as nodes, while the

weights of the edges were based on the output of separate similarity measures used in

each approach.

Our first graph-based approach relies on the following intuition: most frequent at-

tributes’ values in a given source should be less discriminating and less frequent at-

tributes’ values should be more discriminating. Based on this intuition, our first ap-

proach, for each JSON file of extraction, works as follows:

• clean attributes’ values;

• tokenize all the values;

• compute a weight for each token;

• compute a similarity score between the set of tokens of the current file and the

set of tokens of another file, for each file in the dataset.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION90

The weight for tokens, called inverse_frequency, was computed, given a source S and

a token W , with:

weightSpW q “

N
dfW

maxpweightspSqq
(5.2)

where N is the number of JSON files of extraction of source S, dfW is the number of

JSON files of extraction of source S that contain the token W , and maxpweightspSqq

is the maximum weight in source S.

The similarity score, which represents the probability of two instances being in

match, was computed, given a set of tokens E1 from source A and a set of token E2

from source B, with the following:

similarity_score “
ř

minpweightApxq, weightBpxqq,@x P E1X E2

|E1X E2|
(5.3)

A graph with a node for each instance in the dataset and with edges weighted based

on Equation 5.3 was built. An edge was added only if the associated weight was above a

given threshold. For creating clusters for real-world entities, the connected components

of the graph were considered. Each connected component represents an entity, with its

nodes representing the instances referring to the entity.

This first approach failed, as the results provided a giant connected component with

7561 nodes and about 20000 isolated nodes. Different threshold for weighted edges were

experimented, but the effect of doing this was only the enlargement or downsizing of

the giant connected component, as well as the downsizing or enlargement of the number

of the isolated components.

The second approach is schema-based, as we can leverage the target attributes

clusters produced semi-manually in the previous phase of Schema Alignment described

in Section 5.4.1. This approach is based on the construction of a graph and follows the

same considerations made for the first approach in terms of similarity measure, but only

considering tokens from attributes that are mapped to shared target attributes. More

precisely, the graph construction followed these steps, for each JSON file of extraction

(i.e. for each instance):



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION91

Figure 5.17: Example of HTML page title of an e-commerce web page regarding a
camera

• map its attributes to target attributes, based on schema mappings

• create a set of tokens from values of the attributes that had at least one mapping

• compute the similarity measure (Eq. 5.3) considering the set of tokens from other

JSON files of extraction, built the same way, for each other file

The graph with as nodes all the instances of the camera dataset and as weights of the

edges the similarity measure computed as described in the previous list was built and

its connected components were analyzed. This approach failed in a different manner:

there was no giant connected component, but almost only isolated nodes. This suggests

that a refinement of the Schema Alignment is necessary or that the approach needs to

be smarter and more robust.

A third kind of approach was designed. It is based on the intuition that in the

title of the products HTML pages of e-commerce websites there is often everything we

need for identifying the real-world entity. Figure 5.17 shows the HTML page title of a

famous e-commerce, which, among other kind of products, sells also cameras. As we

can observe, in the page title we can find the brand, the model, the resolution, the type

and even the color of the camera the web page refers to. We can also identify other

pieces of information about accessories, which for us are considered as noise, as they

help only if comparing two cameras sold with the same accessories bundle. Attributes

and their values were not considered for this approach, only page titles were taken into

consideration.

Titles cleaning and normalization was performed by:

• deleting recurrent common patterns (every source was analyzed manually in order

to find these patterns, e.g. “Buy. . . ", “. . . at eBay.com", “. . . from CamBuy in



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION92

Sidney", and so on)

• removing unneeded spaces

• transforming to lowercase

• removing common selected words (e.g. “digital", “camera", “with", “compact",

and so on)

• removing isolated characters and symbols

This was done with the objective of creating a set of bigrams from every page title

of instances at our disposal. The created bigrams are overlapping by one element,

i.e. the window moves forward one word per time (e.g. from the title “polaroid is426

16 megapixel" the following bigrams were created: (“polaroid",“is246"), (“is246",“16"),

(“16",“megapixel")).

Table 5.8 shows the top 20 most common bigrams created from all the available page

titles. We built a graph in which nodes are representative of instances and an edge (not

weighted this time) exists only if the titles of the instances it connects share a selected

number of bigrams. Several thresholds of this kind were experimented, but results were

not enough good in terms of clusters. Again, connected components of this graphs were

considered as the entity clusters. Medium-sized connected components were actually

quite correct, but the goal of 100% Recall was way far, based on how the graph re-built

the clusters of the Validation Set and even by manually checking the resulting clusters.

The results obtained with the approaches described in the current Section were not

enough for what our objective was, hence we drastically changed methodology switching

from our target of creating larger, high recall, but less accurate cluster in favor of a

construction of the Record Linkage clusters from the ground up, with an approach that

relies on responses from humans about pair-wise matching candidate pairs.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION93

Bigram Occurrences
(’canon’, ’eos’) 2329
(’canon’, ’powershot’) 2039
(’mp’, ’slr’) 1785
(’nikon’, ’coolpix’) 1501
(’mp’, ’black’) 1329
(’slr’, ’black’) 1328
(’body’, ’only’) 1312
(’16’, ’mp’) 1109
(’12’, ’mp’) 1069
(’cyber’, ’shot’) 918
(’eos’, ’rebel’) 915
(’sony’, ’cyber’) 888
(’panasonic’, ’lumix’) 827
(’shot’, ’dsc’) 792
(’black’, ’body’) 782
(’18’, ’55mm’) 747
(’10’, ’mp’) 734
(’fujifilm’, ’finepix’) 686
(’optical’, ’zoom’) 685
(’mp’, ’silver’) 612

Table 5.8: Most common bigrams in page titles

5.6 Crowdsourcing Web Application

Crowdsourcing based solutions exploit the assistance received from a crowd of humans

to effectively solve a wide variety of problems. Typically this kind of problems are

quite easy for humans to solve, but way more difficult for automated computer algo-

rithms. Applications of such systems are easy to be found on the web in the last 15

years [51]. Crowd-sourcing systems come with a brand new vision of problems, along

with a problem formulation that is very different with respect to traditional top-down

or bottom-up approaches. Humans are in the loop and the problem needs to be solved

reasoning about what contributions humans can give and how to combine them. Even

the evaluation of users and strategies to retain the more capable ones play a major role

in this kind of systems.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION94

It is with the help of the crowd that we addressed the issues that Record Linkage

raised, which we could not overcome with automated approaches. This new solution

follows a different direction with respect to the approaches described in Section 5.5.

This new approach aims at building clusters of real-world entities from the ground up,

leveraging pair-wise matching that are verified by the humans in the loop. This solution

was inspired by the research work “Online Entity Resolution Using an Oracle" [52] and

represents a simplified implementation of the proposed algorithm. A web application

based on crowd-sourcing was developed and humans were involved in the pair-wise

matching problem: for human, understanding if two products are actually the same

product is a quite easy problem to solve.

The workflow, on the user side, is as follows: the User logs in, then starts a Record

Linkage Session, which consists of a set of tasks that need to be accomplished; the tasks

are the declaration of match or non-match about a pair of products. The User, in order

to distinguish between products, is shown the specifications that have been extracted

from the associated e-commerce web pages and their page title. The User also has the

possibility of reaching the web pages of products of the current task, if in need of a

more complete set of information about the products. The User then declares if the

two products are in match or not and subsequently chooses if he wants to continue with

another task or to end the current Linkage Session. It is important to say that the User

does not need to finish all the assigned tasks before logging out.

The end goal of the Application is to create clusters of instances referring to the

same real-world entity: these cluster should have no instances in common, if two clusters

share an instance, it means that they need to be merged into one bigger cluster, as they

refer to the same real-world entity, or it is an error in the Record Linkage process with

the consequence that we no longer have 100% Precision. Entity clusters are, in fact,

disjoint sets. Typically, when dealing with disjoint sets, two particular operations are

needed: finding the unique set that contains a given element and computing the union

of two sets. This data structure was named after these two operation: UnionFind. It

manages disjoint sets of nodes, represented as rooted trees, with each node containing



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION95

one member and each tree representing one set. It makes use of two heuristics, “union

by rank" and “path compression", for achieving better performances.

A Record Linkage process on the entirety of the dataset of instances would produce

a partition of the instances, divided in clusters that have nothing in common. For the

current version of the ALASKA Benchmark, the target was to create clusters for 100

selected real-world entities, including both head and tail entities. With head entities we

refer to real-world entities whose cluster has instances from at least 10 separate data

sources, while with tail entities we refer to real-world entities whose cluster has at most

10 instances instances. In order to have a preliminary idea about an entity, we developed

a script, which tries to capture the camera model by searching in the associated page

title through the use of regular expressions. After finding all the camera models related

to all the instances, clusters of instances with the same model were created. Before

creating clusters, the camera models found were cleaned and reduced to a common

form. The size of the created clusters gave us an insight about the probability of the

entities being a head or a tail entity. The sizes were considered as lower bounds to

the actual sizes of clusters, and this gave us the opportunity to select the entities we

wanted to build the cluster of. For each selected entity, a main seed was chosen, the

initial instance of the cluster.

One of the core challenges of the Application is the task creation. The work at the

base of the Application proposes as key points the definition of a function of pair-wise

matching likelihood and a benefit function. This is due to the fact that velocity of

clusters construction is a main objective. Tasks are constituted by pairs of instances

that the user needs to evaluate in terms of being matching or non-matching. Hence,

the Application needs a smart methodology for selecting the most promising instances

to be proposed to the user in order to enlarge the cluster in construction.

Instances that need to be linked as part of a real-world entity cluster are seen as

nodes of a graph, which has weighted edges between nodes; the weight of the edges

represents the probability of the nodes they link together to be in match: in particular,

an edge between two nodes exist if their similarity score is above a given threshold.



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION96

Figure 5.18: Simulations for similarity function selection

This graph was pre-computed and injected into the Application. The weight of the

edges are computed in a way similar to the approaches described in Section 5.5. By

leveraging the Validation Set, we developed a similarity function, which satisfies the

following requirements:

• the sub-graphs (of the graph built using the similarity scores as weights) induced

by the clusters of the Validation Set are connected;

• with respect to the different tested similarity functions, by conducting a simulation

in which the User hypothetically declares as matching all the proposed pairs, the

clusters of the Validation Set are completely re-built from the ground up (100%

Recall) before reaching the considered stopping condition (discussed later).

Figure 5.18 shows the results of the simulations run for three different stopping

conditions, using the same similarity measure. The last table in the figure shows the

results of the simulation based on the similarity measure that has been used in the

Application, it is based on the average Jaccard Similarity between the sets of bigrams



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION97

and between the sets of tokens shared by the page titles of the instances in comparison.

If the instances do not share any bigram, then only the Jaccard Similarity of the shared

tokens is considered, viceversa if the instances do not share at least 3 tokens, then only

the Jaccard Similarity of the shared bigrams is considered. The final similarity function

is based on the similarity of bigrams and tokens of the page titles of the instances.

The function get_next_question exploits the pre-computed graph and selects the best

instances to propose to the User. The selection of an instance is based on a measure of

benefit that the inclusion of the given instance would bring to the cluster.

The benefit is simply computed as the weighted degree of the node representing the

candidate instance, when considering a sub-graph, comprehending only the given node

and the nodes of the cluster currently in construction, of the total graph. When the

benefit of all the candidate instances has been computed, the most promising ones are se-

lected: actually, the Application proposes to the User a number QUESTION_BLOCK_SIZE

(lines 28-29) of instances to be declared or not in match with the seed of the current

cluster. Receiving the responses of the User is also critical, but most of the complexity

is handled by the UnionFind data structure, described earlier. The responses, both the

positive and negative ones, are stored in the database. The handling of the responses

involves including the instances, which received a positive answer for being in match, in

the cluster which is currently being built. New tasks regarding the current cluster are

stopped being created when arriving in two different scenarios, not necessarily at the

same time:

• the last question has less than QUESTION_BLOCK_SIZE candidate instances

• the most promising instance to be proposed has a benefit score, which is less

than a given threshold, called BENEFIT_THRESHOLD, and the Application has re-

ceived a series of consecutive negative responses longer than a threshold, called

ALL_NEGATIVE_BLOCKS_THRESHOLD

When one of these two scenarios appear, the Application switches to the construction of

another cluster and, at the same time, resets the counter of negative responses received



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION98

and resets the “colors" of the instances seen by the User during the past construction,

but still not linked to any cluster, as shown in lines 41-45.

As a result from the use of the Application by the oracles, we obtained 100 real-

world entity clusters. A total amount of 2846 instances were included in the correct

clusters.

5.7 Iterative Record Linkage Pipeline

Record Linkage is a difficult process and complexity increases when dealing with very

heterogeneous data, such as our camera dataset. We talk about Big Data Integration

when referring to the ALASKA Benchmark, but, considering all the famous “V’s" of Big

Data, the “V" of Variety is the most characterizing one in our scenario. As we have seen,

entities come with different kinds of representation, attribute hide difficulties related to

their semantic ambiguity in term of their name, that can mislead, and their values,

very problematic to manage. The application of different approaches, described in the

previous sections, led to good results, that we think have a high room for improvement.

Problems, such as the giant components from the graph-based approaches, or the high

ratio of wasted questions asked to the oracles through the web application (up to 80% of

negative, thus wasted, responses when building certain clusters) brought us to design a

system that can have multiple point of views and that can hopefully capture the salient

aspects of instances when deciding if a pair is a match or not.

We designed an iterative pipeline, whose workflow is shown in Figure 5.19. This

pipeline is mainly based on the use of independent components that we call “Black

Boxes"; they represent the different point of views mentioned earlier. Each black box

is required to provide as output the most promising pairs of instances, while taking as

input a selection of seed instances, which are the representative instances of a real-world

entity cluster. For the initial version of this pipeline, we thought of 3 black boxes, the

first based on Deep Learning (DL) techniques, the second based on Machine Learning

(ML) techniques and the last one based on techniques, that do not exploit DL or ML

techniques, such as statistics or in general classic techniques (e.g. JedAI). This pipeline



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION99

Figure 5.19: Iterative pipeline for Record Linkage

is still based on the use of oracles, as highest precision and recall as possible is still the

main target. The iterative workflow is as follows:

1. black boxes are trained through the use of matching and non-matching pairs iden-

tified via the previous approaches. In particular, we select each pair of instances

in the same cluster (in our Ground Truth for Record Linkage and the Validation

Set created) as a matching pair, and each pair pertaining to different cluster as

non-matching pair (this does not include pairs in which one or two instances do

not belong to any of ground truth clusters)

2. black boxes receive as input the same seeds, representatives of the clusters that

need to be completed

3. black boxes produce as output a ranked list of most promising pairs for each seed,



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION100

in which one element is the seed and the other element is an instance that is not

already in a cluster

4. a component, called Union, merges the lists of the same seed in a smart way by

combining the results (and ranks) from all the black boxes

5. oracles check the lists of most promising pairs and verify the matching ones

6. non-matching pair are provided to the Union component for smarter merging in

the next iteration (the component will be able to not propose again a pair which

has already a response by the oracles)

7. new instances of matching pairs are included in the respective clusters

When the Oracle Check component slows down the production of new instances to be

included in clusters for each iteration, new seeds for the black boxes can be provided,

or new black boxes can be included. The intuition is that, for each new iteration, the

availability of new training data for the black boxes will increase the observed variety

and help the black boxes themselves in the generalization of their process. This intu-

ition was strengthened by the preliminary results obtain by a work-in-progress black

box. This black box is based on the use of the Magellan framework for Record Link-

age (see Section 3.3) and includes a Random Forest Classifier that declares pairs of

instances, more specifically, a features vector that represent that pair, as matching or

non-matching, with also a probability of them being in match. This black box was

trained with matching and non-matching pairs of example of the clusters in our Record

Linkage Ground Truth and Validation Set. The training was based only on 30% of the

instances of the clusters, while the testing was based on pairs of instances from the rest

70% of the instances.

Figure 5.20 shows the precision, recall and f1-measure obtained on the classification

of pair of instances from the clusters of our Ground Truth and Validation Set that the

model never saw for its training, which was based on pair of instances belonging to the

same clusters. A f1-measure of 97.07% is great and gives hopes for the results of this



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION101

Figure 5.20: Magellan results for Record Linkage

approach. The tests on the classifier were made in a way, that simulates the way the

iterative pipeline works: the black box will be firstly trained on the current clusters,

which represent a subset of the real clusters that we aim at, then it will be asked to

produce matching pairs with instances it never analyzed during training.

These preliminary results are a good starting point for the actual outcome of the

approach based on this iterative pipeline.

5.8 Instance-level attribute alignment Ground Truth

The alignment at instance-level, also called tagging task in the ALASKA Benchmark,

is the most unusual one in the Big Data Integration panorama.

We expect that the participation to the challenge proposed by this task will be way

less with respect to the Schema Alignment task and the Record Linkage task, which are

recognized and deeply studied problems by the research communities.

In our case we are dealing with messy attributes with a lot of variety: different names

for the same semantic concept within the same source and between separate sources,

mixed kind of values for the same considered attribute, and even errors due to the

sources themselves or the extractor used. Chapter 4 describes these local heterogeneity

cases with more details.

The end goal is to declare, after a previous process of Record Linkage, which data

source contributed with which ă attribute_name, attribute_value ą pair to the values

of a given target attribute when building the integrated data available for an identified

real-world entity. This is a rough and extremely difficult task, as the semantics of values



CHAPTER 5. DATASET AND GROUND TRUTH CONSTRUCTION102

are involved and the scenario in which it is immersed is a very ambiguous one, with

misleading names and non-correct values to take care of.

The Ground Truth for the Tagging task of the ALASKA Benchmark was created

entirely by hand.

For the initial version of the Benchmark, a simplifying restriction was applied in

order to create the Ground Truth for the Tagging task, which is as follows: a key-value

pair (called provenance in the Benchmark work), belonging to a certain JSON file of

extraction, can contribute with its value only to the values of one of the target attributes

that the source attribute (identified by the key of the pair and the source of the JSON

file of extraction) is mapped to in our Schema Alignment Ground Truth. In particular

cases, a key-value pair can also not contribute to any of the target attributes.

The process of creating this Ground Truth was done through the use of a software

tool that, for each real-world entity clusters, for each instance that is included in the

cluster, fetches the possible target attributes that the considered instance can contribute

to and then proposes on the screen the possible choices that can be done. The user of

the tool only needs to select a single target attribute that the current key-value pair

refers to; by not selecting any target attribute the user declares that the considered

key-value pair does not contribute to the integrated data of the entity: it is a possible

scenario due to the high heterogeneity of the dataset.



Chapter 6

Experiments

In this Chapter we present the experiments that we made to demonstrate the effective-

ness and robustness of RaF-AIA.

The experiments were performed on the Camera and Monitor datasets provided by

Alaska Benchmark, described in Chapter 5. The Benchmark record-linkage ground

truth is used as input of our algorithm.

In order to evaluate our approach, we consider precision and recall of our clusters

with respect to the ground-truth clusters. As clusters can overlap, we evaluate results

over pairs of attributes in match, i.e., pairs of attributes that share at least one clus-

ter [53]. Precision is computed as usual as the fraction of correct pairs over all the pairs

in match the algorithm provided, while recall is the fraction of actual pairs in match

that the algorithm found. Because of the incompleteness of the ground-truth, evalua-

tion is limited on all the pairs that occur in the ground-truth clusters: if the algorithm

provides two attributes in match, and one or both are not in the ground truth, this pair

is ignored and not considered as a true or false positive. However, if both the attributes

are in the ground truth, but they do not belong to the same cluster (they do not form

a pair), it is considered a false positive.

103



CHAPTER 6. EXPERIMENTS 104

Figure 6.1: Experiments on algorithm phases

6.0.1 Evaluation of the Steps

First, we report results on the contribution of each step of the RaF-AIA approach.

Figure 6.1 summarizes the main results.

The Bayesian matching step clusters together attributes that share the same values

for a sample of linked specifications. The approach is strongly conservative and produces

very homogeneous attribute clusters: launched alone (on the original dataset) it achieves

high precision but low recall.

In combination with the tagging step, the overall approach improves the recall,

thanks to the creation of virtual attributes that increment the match opportunities. It

increases the recall, even if there is a small loss in precision, which is due to the possibility

that some wrong virtual attributes are created, producing accidental matches.

With the final step, which merges clusters based on attribute names and domain

similarity, the overall approach further improves the recall at the cost of a small loss in

precision.

It is important to observe that results are similar on the two datasets (camera and

monitor).



CHAPTER 6. EXPERIMENTS 105

Figure 6.2: Varying the match threshold

6.0.2 Robustness to the Match Threshold

The matching algorithm depends on a threshold on the similarity score between a pair

of attributes. As the similarity score refers to a probability, we consider that two

attributes match is their similarity score is greater than 0.5. However, it is important

to investigate the robustness of the approach with respect to this threshold. To this

end, we have run experiments varying the threshold between 0.1 (matches with low

probability are allowed) and 0.9 (strict matches). Figure 6.2 shows the results of RaF-

AIA with different values of the matching thresholds, i.e., the minimum score above

which source attribute pairs are considered in match by the Bayesian analysis.

As expected, precision increases and recall decreases as long as threshold is higher,



CHAPTER 6. EXPERIMENTS 106

except for some small oscillations due to the iterative nature of the algorithm. The

differences are however not so significant: in most cases the Bayesian analysis provides

strong evidences of match or mismatch, making the algorithm robust to this thresh-

old. Also, the precision never drops even with a very low threshold: indeed, some

low-weighted edges, even if above threshold, may be ignored if they would break the

assumption that no attributes instances in the same specification may be in the same

cluster.

6.0.3 The Role of Linkage

The Bayesian analysis exploits also the linkage sample to match attributes, by com-

paring the values of attributes in linked instances. To evaluate the robustness of the

algorithm with respect to the size of the linkage sample, we artificially removed a random

part of the linkage and evaluated the performances of the approach.

Figure 6.3 reports the results of the experiment. As the percentage of linkage in-

creases, the Bayesian matching step can rely on more evidences, thus recall tends to

improve significantly, with the precision remaining generally stable. However, RaF-AIA

provides good results even with few linkages available.



CHAPTER 6. EXPERIMENTS 107

Figure 6.3: Varying the percentage of available linkage



CHAPTER 6. EXPERIMENTS 108

6.0.4 Number of Sources

Figure 6.4: Varying the number of sources



CHAPTER 6. EXPERIMENTS 109

Our approach aims at taking advantage of the redundancy of information that occurs

among the sources. On the other hand, more sources might imply higher heterogeneity

and noise. In order to evaluate the impact of the number of sources on the performance,

we have applied the RaF-AIA approach with an increasing number of random sources.

Fixed the number of sources, we have repeated the experiment 5 times (each one with

a different set of randomly picked sources), and we have computed average precision

and recall, removing best and worse cases, to avoid biases due to the random choice.

Figure 6.4 presents the results of these experiments. We observe that more sources

bring more evidences and data redundancy, thus a better recall, while the impact on

precision, due to noise and heterogeneity, is low.



CHAPTER 6. EXPERIMENTS 110

6.0.5 Error rate

Figure 6.5: Varying error rate

The matching model takes into account that sources may provide a wrong value for

a given property (or they maybe an error in the extraction steps). We assume that

each attribute has the same error probability ε for every observation, currently set at

0.1. It is important to investigate the robustness of the approach with respect to this

parameter.

Figure 6.5 shows the results of RaF-AIA varying ε between 0 and 0.3. High error

rate tend to penalize matching between attributes with many linkage and no mismatch



CHAPTER 6. EXPERIMENTS 111

(typically attributes with low cardinality), while on the opposite it favours attributes

with few linkages and high cardinality (more error-prone).

In the plot we can see that, when error rate is set to zero, we have a general loss

in F-Measure both for Camera and Monitor dataset. In both cases we have a smaller

recall, indicating that equivalent attributes were not detected by the algorithm, probably

because of some mismatch in values. Notice that if ε is set to zero, we consider that

no errors are possible, therefore, any pair of attributes having even for just a single

products two different values, are considered as non matching. Surprisingly, precision

in Camera also is lower with zero-error: indeed, non-equivalent attributes with a lot of

matches by chance (because of low cardinality) are favoured by this threshold and thus

matched by the algorithm.

The results for higher error rate have some oscillations, but generally remain quite

stable, proving that in most cases the choice of a particular ε does not affect results of

the algorithm.

6.0.6 Comparison with Alternative Approaches

Figure 6.6: Comparison with baselines and alternative approaches.



CHAPTER 6. EXPERIMENTS 112

We compared the RaF-AIA approach to some baselines and to an alternative schema

matching approach for product specifications known in the literature. As baselines we

consider: piq a naive approach that simply groups attributes with the same name (we call

this baseline Attribute Name); piiq another simple approach that creates clusters based

on the similarity of the domain of the source attributes, using Jaccard containment

index as similarity measure (Domain); piiiq the last baseline combines the results of the

previous ones by merging their clusters that overlap with at least one attribute (Mixed

Baseline). The existing schema matching approach that we use for comparison is that

developed by Nguyen et al. [9]. This approach (which is discussed in more details

in Section 3.1.3) aims at aligning specifications from multiple sources to a reference

catalog of products provided input. They match attributes from the external sources to

the catalog, by means of a classifier trained to predict attributes matches. The classifier

is trained by attributes with the same name, based on the assumption that they have

the same semantics. To adapt their approach to our setting, we elected as catalog the

source with most specifications in linkage, and then aligned the other sources according

the approach developed by the authors.Also, we do not delete attributes that do not

match with any attribute of the catalog (as in the original approach), but we add them

to the catalog, so they are available for matching with further attributes.

Figure 6.6 shows the results of this comparison.1 We observe that all the approaches

achieve high precision, with the baselines performing slightly better, but RaF-AIA sig-

nificantly outperforms all the competitors in recall. The approach developed by Nguyen

et al. has the worst performance. In a heterogeneous setting with many homonym at-

tributes, training the classifier relying on the assumption that attributes with the same

name are semantically equivalent drastically compromises the accuracy of the predic-

tions.

The results in Figure 6.6 refers to the performance of the different approaches on the

overall datasets. However, it is interesting to investigate how they perform on different

partitions of the datasets.
1In the plots, we refer to our approach simply as RAF, for brevity.



CHAPTER 6. EXPERIMENTS 113

Figure 6.7 reports the F-Measure of RaF-AIA, along with Name and Domain base-

lines, on different partitions of the dataset.

Figure 6.7: Performance on different partitions of data

As our approach aims at exploiting the redundancy of information, it is interesting

to investigate how it performs with respect to the distribution of target attributes in the

sources, which is related to the degree of redundancy of a product across sources. In our

example, the battery chemistry is very popular product property, as it is present (with

different source attributes) in every source. However, in our setting, it is important to

consider also the size of source attributes within a sources, as a source attribute with a

small number of occurrences has lower chances to be aligned. To consider these aspects,

we have created four distinct partitions according to the distribution of attributes across

sources and within sources. In Figure 6.7, these partitions are denoted HH, TH, HT, TT:

the first letter identifies a Head/Tail (i.e., popular/rare across sources) target attribute,

the second letter indicates a Head/Tail (i.e., large/small) source attribute.

We can see that RaF-AIA obtains better results than the baselines on all the par-

titions, proving robustness and generality. However, we can highlight some significant

results observing that RaF-AIA improves significantly baseline results on the HT par-

tition. In fact, thanks to the Bayesian algorithm and to the exploitation of linkage,

RaF-AIA is able to discover matches even with few evidences. On the other hand,

working with head target attributes, it is more likely that, even if two source attributes



CHAPTER 6. EXPERIMENTS 114

have small or no evidences for match, they will be matched by transitivity : they may be

both matched with a common attribute, or there can be even longer paths. In this sense

RaF-AIA can be considered a holistic approach, taking into account all other attributes

while needing to decide if two specific attributes are in match.

RaF-AIA has good results even for homonyms, always better than alternatives.

Notice that the name baseline has clearly a very bad results on this subset.

Figure 6.7 presents results also for an interesting partition of attributes, which we

indicate as Homonym/Non-Homonyms. The Homonyms class represents the challenging

set of attributes that assume the same name but provide values with different semantics

within the same source (as attribute Battery in source S3, in our running example).

Also in this case we observe that RaF-AIA always outperforms the baselines, especially

in the monitor dataset.



Chapter 7

Conclusions

Data integration is a continuously evolving field, due to its complexity sometimes it

requires specific domains solution.

The integration of product specifications, in particular, is a major research issues,

with many industries involved. One of its main goals is to allow the construction of a

comprehensive product graph, an enabling technology for many applications [7].

We presented a complete pipeline for effective integration of products from Web

sources. The development of each step of this pipeline is an iterative process: even if

many components have been developed in previous works, new advancements exposes

new challenges, new opportunities and refinements in problem definition that may re-

quire adaptations on former steps.

We addressed the issue of attribute alignment in this context. We realized that

current state of the art techniques were unfit to solve our problem, because they all rely

on local homogeneity of sources, i.e. the fact that records of the same source present

data in the same format, with coherent attribute names and the same granularity, which

is not true in our context.

In fact, we did not have just to solve the same problem with a different approach,

but we had to deal with a different problem than classical Schema Alignment. Source

schemas can only be built a-posteriori from data, and do not reflect the actual structure

of the data. Instead, we addressed the problem of Instance-level attribute alignment,

115



CHAPTER 7. CONCLUSIONS 116

i.e., alignment of attributes in every single instance.

We coped with the problem of creating an input dataset that reflected the actual

challenges of this domain, and build a comprehensive and valid ground truth.

We built these input and evaluation data in the context of a broader project called

ALASKA benchmark1, whose goal is to define a general benchmark for evaluating per-

formances of data integration and knowledge graph augmentation tasks, focusing on

product domain [49].

We performed extended experiments for RaF-AIA using these data. We showed

robustness and flexibility of RaF-AIA, which provides good results under different con-

figurations, and even altering input data and using different subset of sources. We also

evaluated individually different components of the algorithm, to show their contribution

and the importance of each of them. We compared the results of RaF-AIA with base-

lines and existing approaches in the state of the art, proving that it is the more adapted

tool to cope with this specific issue. We also partitioned the dataset under different

criteria, and showed the performance of RaF-AIA in each specific subset, proving its

ability to provide good results on different type of attributes and sources.

7.1 Future Work

Product graph construction In order to build a unified view on product specifica-

tions, in form of a product graph, there are additional tasks that we must tackle.

• Extraction of atomic values from noisy and mixed attributes values. The tagging

component of RaF-AIA is currently used as an intermediate step for attribute

alignment. However, it represents a first step towards the development of a data

extraction technique that works at the finer level of mixed attribute values.

• Attribute mapping: in RaF-AIA, our goal was to align attributes that presented

data under the same format, even if under different patterns of representation.

To complete integration we should tackle differences of format, such as different
1www.di2kg.inf.uniroma3.it



CHAPTER 7. CONCLUSIONS 117

languages or unit of measurements, aligning attributes with different formats and

defining mappings between them.

Extend the Alaska Benchmark The Alaska Benchmark is now focused on integra-

tion of product specifications. We want to extend it to other domains and other data

integration tasks.

Maintaining the Benchmark Product Dataset: Addressing the Velocity Chal-

lenge In March 2018, we have checked all the URLs of the pages of the Alaska dataset.

We have observed that just 30% of the original pages and 37% of the original sources

are still valid (we consider a source valid if it contains at least one working URL).

We also performed an extraction of the product specifications. We obtained complete

specification from just 20% of the pages.

These numbers clearly indicate that the velocity dimension affects all the tasks of

the pipeline. Developing solutions to collect snapshots over regular time intervals and

perform data integration over time can open intriguing research directions. While some

activities, such as checking the appearance/disappearance of sources can be done on

monthly basis, others, such as crawling websites to check appearance/disappearance of

pages and changes in the pages should be performed more frequently. To this end, the

development of efficient incremental solutions for source discovery and web crawling

represent interesting research directions.

As our experiments emphasize, data extraction rules are brittle over time. The

development of wrappers resilient to changes in the pages has always been a primary

goal in data extraction research. A dataset with multiple snapshots over a long interval

of time, as the one that we have advocated above, could serve as a benchmark for data

extraction solutions.

Beyond Product Specifications So far we have considered the extraction of the

identifiers and of the specifications. However important data that complete the product

description are price and reviews. Challenging issues for the extraction of price are



CHAPTER 7. CONCLUSIONS 118

to distinguish the price of the principal product in the page from the prices of other

products, such as suggested product, similar products, and the actual price from dis-

counts or list price. Reviews represent important information in many applications. An

interesting problem is how to combine structured data from the specification with the

unstructured data of the reviews.



Bibliography

[1] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integration: the teenage

years. In Proceedings of the 32nd international conference on Very large data bases,

pages 9–16. VLDB Endowment, 2006.

[2] Amit P Sheth and James A Larson. Federated database systems for managing

distributed, heterogeneous, and autonomous databases. ACM Computing Surveys

(CSUR), 22(3):183–236, 1990.

[3] Xin Luna Dong and Divesh Srivastava. Big data integration. In 2013 IEEE 29th

international conference on data engineering (ICDE), pages 1245–1248. IEEE,

2013.

[4] Nilesh Dalvi, Ashwin Machanavajjhala, and Bo Pang. An analysis of structured

data on the web. Proceedings of the VLDB Endowment, 5(7):680–691, 2012.

[5] Tim Furche, Georg Gottlob, Giovanni Grasso, Xiaonan Guo, Giorgio Orsi, Chris-

tian Schallhart, and Cheng Wang. Diadem: thousands of websites to a single

database. Proceedings of the VLDB Endowment, 7(14):1845–1856, 2014.

[6] Xin Luna Dong. Challenges and innovations in building a product knowledge

graph. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 2869–2869. ACM, 2018.

[7] Xin Luna Dong. Building a broad knowledge graph for products. In Proceedings

119



Bibliografia 120

of the 35th International Conference on Data Engineering (ICDE), pages 25–25.

IEEE, 2019.

[8] Anitha Kannan, Inmar E Givoni, Rakesh Agrawal, and Ariel Fuxman. Matching

unstructured product offers to structured product specifications. In Proceedings

of the 17th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 404–412. ACM, 2011.

[9] Hoa Nguyen, Ariel Fuxman, Stelios Paparizos, Juliana Freire, and Rakesh

Agrawal. Synthesizing products for online catalogs. Proceedings of the VLDB

Endowment, 4(7):409–418, 2011.

[10] Luciano Barbosa, Valter Crescenzi, Xin Luna Dong, Paolo Merialdo, Federico

Piai, Disheng Qiu, Yanyan Shen, and Divesh Srivastava. Big data integration for

product specifications. IEEE Data Eng. Bull., 41(2):71–81, 2018.

[11] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S Weld. Open

information extraction from the web. Communications of the ACM, 51(12):68–

74, 2008.

[12] Xin Luna Dong. How far are we from collecting the knowledge in the world? In

Keynote at 19th International Workshop on Web and Databases. ACM, 2016.

[13] Xin Luna Dong Divesh Srivastava. Big Data Integration. Synthesis Lectures on

Data Management. Morgan & Claypool Publishers, March 2015.

[14] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm. Schema Matching and

Mapping. Springer Science & Business Media, 2011.

[15] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic

schema matching. the VLDB Journal, 10(4):334–350, 2001.

[16] Federico Piai, Paolo Atzeni, Paolo Merialdo, and Divesh Srivastava. Instance level

attribute alignment in heterogeneous sources. Under submission, 2019.



Bibliografia 121

[17] Disheng Qiu, Luciano Barbosa, Xin Dong, Yanyan Shen, and Divesh Srivastava.

Dexter: Large-scale discovery and extraction of product specifications on the web.

PVLDB, 8:2194–2205, 2015.

[18] Valter Crescenzi, Andrea De Angelis, Xin Luna Dong, Donatella Firmani, Mau-

rizio Mazzei, Paolo Merialdo, Federico Piai, and Divesh Srivastava. The alaska

benchmark for big data integration. In preparation, 2019.

[19] Jingtian Jiang, Xinying Song, Nenghai Yu, and Chin-Yew Lin. Focus: learning

to crawl web forums. Knowledge and Data Engineering, IEEE Transactions on,

25(6):1293–1306, 2013.

[20] Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. Automatic wrappers for large

scale web extraction. Proceedings of the VLDB Endowment, 4(4):219–230, 2011.

[21] Valter Crescenzi and Paolo Merialdo. Wrapper inference for ambiguous web pages.

Applied Artificial Intelligence, 22(1-2):21–52, 2008.

[22] Robert Meusel, Petar Petrovski, and Christian Bizer. The webdatacommons mi-

crodata, rdfa and microformat dataset series. In International Semantic Web

Conference, pages 277–292. Springer, 2014.

[23] Hanna Köpcke, Andreas Thor, Stefan Thomas, and Erhard Rahm. Tailoring entity

resolution for matching product offers. In Proceedings of the 15th International

Conference on Extending Database Technology, pages 545–550. ACM, 2012.

[24] Aliaksandr Talaika, Joanna Biega, Antoine Amarilli, and Fabian M Suchanek.

Ibex: harvesting entities from the web using unique identifiers. In Proceedings

of the 18th International Workshop on Web and Databases, pages 13–19. ACM,

2015.

[25] Disheng Qiu, Luciano Barbosa, Valter Crescenzi, Paolo Merialdo, and Divesh

Srivastava. Big data linkage for product specification pages. In Proceedings of



Bibliografia 122

the 2018 International Conference on Management of Data, pages 67–81. ACM,

2018.

[26] Chenjuan Guo, Cornelia Hedeler, Norman W Paton, and Alvaro AA Fernandes.

Matchbench: benchmarking schema matching algorithms for schematic correspon-

dences. In British National Conference on Databases, pages 92–106. Springer,

2013.

[27] Won Kim and Jungyun Seo. Classifying schematic and data heterogeneity in

multidatabase systems. Computer, 24(12):12–18, 1991.

[28] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema

and ontology matching with coma++. In Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, pages 906–908. Acm, 2005.

[29] Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, and Chris Wolf. The

harmony integration workbench. In Journal on Data Semantics XI, pages 65–93.

Springer, 2008.

[30] Sergey Melnik, Erhard Rahm, and Philip A Bernstein. Rondo: A programming

platform for generic model management. In Proceedings of the 2003 ACM SIG-

MOD international conference on Management of data, pages 193–204. ACM,

2003.

[31] Jaewoo Kang and Jeffrey F Naughton. On schema matching with opaque column

names and data values. In Proceedings of the 2003 ACM SIGMOD international

conference on Management of data, pages 205–216, 2003.

[32] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. Re-

lation extraction with matrix factorization and universal schemas. In Proceedings

of the 2013 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 74–84, 2013.



Bibliografia 123

[33] Patrick Verga, Arvind Neelakantan, and Andrew McCallum. Generalizing to

unseen entities and entity pairs with row-less universal schema. arXiv preprint

arXiv:1606.05804, 2016.

[34] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baumgartner.

Web data extraction, applications and techniques: A survey. Knowledge-based

systems, 70:301–323, 2014.

[35] Christopher Olston, Marc Najork, et al. Web crawling. Foundations and Trends R©

in Information Retrieval, 4(3):175–246, 2010.

[36] Mirko Bronzi, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti. Extraction

and integration of partially overlapping web sources. Proceedings of the VLDB

Endowment, 6(10):805–816, 2013.

[37] Peter Christen. A survey of indexing techniques for scalable record linkage and

deduplication. IEEE transactions on knowledge and data engineering, 24(9):1537–

1555, 2011.

[38] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,

Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al.

Magellan: Toward building entity matching management systems. Proceedings of

the VLDB Endowment, 9(12):1197–1208, 2016.

[39] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep

learning for entity matching: A design space exploration. In Proceedings of the

2018 International Conference on Management of Data, pages 19–34. ACM, 2018.

[40] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Integrating conflict-

ing data: the role of source dependence. Proceedings of the VLDB Endowment, 2

(1):550–561, 2009.



Bibliografia 124

[41] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-

phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A

web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 601–610. ACM, 2014.

[42] Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Kevin Murphy,

Shaohua Sun, and Wei Zhang. From data fusion to knowledge fusion. arXiv

preprint arXiv:1503.00302, 2015.

[43] Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van Dang, Wilko Horn,

Camillo Lugaresi, Shaohua Sun, and Wei Zhang. Knowledge-based trust: Es-

timating the trustworthiness of web sources. arXiv preprint arXiv:1502.03519,

2015.

[44] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. Data x-ray: A diagnostic

tool for data errors. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pages 1231–1245, 2015.

[45] Anna Primpeli, Ralph Peeters, and Christian Bizer. The wdc training dataset

and gold standard for large-scale product matching. In Companion Proceedings

of The 2019 World Wide Web Conference, pages 381–386, 2019.

[46] Stephen A Bloom. Similarity indices in community studies: potential pitfalls.

Mar. Ecol. Prog. Ser, 5(2):125–128, 1981.

[47] András Schubert. Measuring the similarity between the reference and citation

distributions of journals. Scientometrics, 96(1):305–313, 2013.

[48] Marios Hadjieleftheriou and Divesh Srivastava. Approximate string processing.

Foundations and Trends R© in Databases, 2(4):267–402, 2011.



Bibliografia 125

[49] Valter Crescenzi, Andrea De Angelis, Dong Xin Luna, Donatella Firmani, Maur-

izio Mazzei, Paolo Merialdo, and Divesh Srivastava. Alaska: a real-life benchmark

for data integration. 2019. In preparation.

[50] Xin Luna Dong and Theodoros Rekatsinas. Data integration and machine learn-

ing: A natural synergy. In Proceedings of the 2018 International Conference on

Management of Data, pages 1645–1650, 2018.

[51] Anhai Doan, Raghu Ramakrishnan, and Alon Y Halevy. Crowdsourcing systems

on the world-wide web. Communications of the ACM, 54(4):86–96, 2011.

[52] Donatella Firmani, Barna Saha, and Divesh Srivastava. Online entity resolution

using an oracle. Proceedings of the VLDB Endowment, 9(5):384–395, 2016.

[53] Arindam Banerjee, Chase Krumpelman, Joydeep Ghosh, Sugato Basu, and Ray-

mond J Mooney. Model-based overlapping clustering. In Proceedings of the

eleventh ACM SIGKDD international conference on Knowledge discovery in data

mining, pages 532–537, 2005.

[54] Angelika Kimmig, Alex Memory, Lise Getoor, et al. A collective, probabilistic

approach to schema mapping. In 2017 IEEE 33rd International Conference on

Data Engineering (ICDE), pages 921–932. IEEE, 2017.

[55] Panagiotis G Ipeirotis, Eugene Agichtein, Pranay Jain, and Luis Gravano. To

search or to crawl? towards a query optimizer for text-centric tasks. In Proceedings

of the 2006 ACM SIGMOD international conference on Management of data,

pages 265–276, 2006.

[56] Stefano Ortona, Giorgio Orsi, Marcello Buoncristiano, and Tim Furche. Wadar:

Joint wrapper and data repair. Proceedings of the VLDB Endowment, 8(12):

1996–1999, 2015.



Bibliografia 126

[57] Oktie Hassanzadeh, Ken Q Pu, Soheil Hassas Yeganeh, Renée J Miller, Lucian

Popa, Mauricio A Hernández, and Howard Ho. Discovering linkage points over

web data. Proceedings of the VLDB Endowment, 6(6):445–456, 2013.

[58] Donatella Firmani, Sainyam Galhotra, Barna Saha, and Divesh Srivastava. Ro-

bust entity resolution using a crowdoracle. IEEE Data Eng. Bull., 41(2):91–103,

2018.

[59] George Papadakis, Georgia Koutrika, Themis Palpanas, and Wolfgang Nejdl.

Meta-blocking: Taking entity resolutionto the next level. IEEE Transactions

on Knowledge and Data Engineering, 26(8):1946–1960, 2013.

[60] Parag Agrawal, Arvind Arasu, and Raghav Kaushik. On indexing error-tolerant

set containment. In Proceedings of the 2010 ACM SIGMOD International Con-

ference on Management of data, pages 927–938, 2010.

[61] Chris Anderson and Mia Poletto Andersson. Long tail. 2004.

[62] Maurizio Lenzerini. Data integration: A theoretical perspective. PODS, 2002.

[63] Ibrahim Abaker Targio Hashem Zakira Inayat Waleed Kamaleldin Mahmoud

Ali Muhammad Alam Muhammad Shiraz Abdullah Gani Nawsher Khan,

Ibrar Yaqoob. Big data: Survey, technologies, opportunities, and challenges. The

Scientific World Journal, 2014.

[64] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of data integration.

Elsevier, 2012.

[65] Mauricio Hernández and Salvatore Stolfo. Real-world data is dirty: Data cleansing

and the merge/purge problem. Data Min. Knowl. Discov., 2:9–37, 01 1998. doi:

10.1023/A:1009761603038.

[66] Luis Gravano, Panagiotis G Ipeirotis, Hosagrahar Visvesvaraya Jagadish, Nick

Koudas, Shanmugauelayut Muthukrishnan, Divesh Srivastava, et al. Approximate



Bibliografia 127

string joins in a database (almost) for free. In VLDB, volume 1, pages 491–500,

2001.

[67] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using ac-

tive learning. In Proceedings of the eighth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 269–278, 2002.

[68] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine

learning, 56(1-3):89–113, 2004.

[69] Xin Luna Dong and Felix Naumann. Data fusion–resolving data conflicts for

integration. pvldb. PVLDB, 2:1654–1655, 08 2009.

[70] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Gian-

nakopoulos, Themis Palpanas, and Manolis Koubarakis. The return of jedai:

End-to-end entity resolution for structured and semi-structured data. Proceedings

of the VLDB Endowment, 11:1950–1953, 08 2018. doi: 10.14778/3229863.3236232.

[71] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Gian-

nakopoulos, Themis Palpanas, and Manolis Koubarakis. Jedai: The force be-

hind entity resolution. pages 161–166, 11 2017. ISBN 978-3-319-70406-7. doi:

10.1007/978-3-319-70407-4_30.

[72] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J Miller. Framework

for evaluating clustering algorithms in duplicate detection. Proceedings of the

VLDB Endowment, 2(1):1282–1293, 2009.

[73] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. Com-

parative analysis of approximate blocking techniques for entity resolution. Pro-

ceedings of the VLDB Endowment, 9(9):684–695, 2016.

[74] George Papadakis, George Alexiou, George Papastefanatos, and Georgia

Koutrika. Schema-agnostic vs schema-based configurations for blocking meth-



Bibliografia 128

ods on homogeneous data. Proceedings of the VLDB Endowment, 9(4):312–323,

2015.

[75] William W Cohen, Pradeep Ravikumar, Stephen E Fienberg, et al. A comparison

of string distance metrics for name-matching tasks. In IIWeb, volume 2003, pages

73–78, 2003.

[76] Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard

Rahm. A survey of current link discovery frameworks. Semantic Web Journal, 8,

12 2016. doi: 10.3233/SW-150210.

[77] Pei Li, Xin Dong, Andrea Maurino, and Divesh Srivastava. Linking temporal

records. PVLDB, 4:956–967, 01 2011.

[78] Steven Euijong Whang, David Marmaros, and Hector Garcia-Molina. Pay-as-you-

go entity resolution. IEEE Transactions on Knowledge and Data Engineering, 25

(5):1111–1124, 2012.

[79] Thorsten Papenbrock, Arvid Heise, and Felix Naumann. Progressive duplicate

detection. Knowledge and Data Engineering, IEEE Transactions on, 27:1316–

1329, 05 2015. doi: 10.1109/TKDE.2014.2359666.

[80] Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. Crowdsourcing algorithms

for entity resolution. Proceedings of the VLDB Endowment, 7(12):1071–1082,

2014.

[81] Jiannan Wang, Guoliang Li, Tim Kraska, Michael J Franklin, and Jianhua Feng.

Leveraging transitive relations for crowdsourced joins. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, pages 229–240,

2013.

[82] Jóakim v. Kistowski, Jeremy A Arnold, Karl Huppler, Klaus-Dieter Lange, John L

Henning, and Paul Cao. How to build a benchmark. In Proceedings of the 6th



Bibliografia 129

ACM/SPEC International Conference on Performance Engineering, pages 333–

336, 2015.

[83] Karl Huppler. The art of building a good benchmark. In Technology Conference

on Performance Evaluation and Benchmarking, pages 18–30. Springer, 2009.

[84] Susan Sim, Steve Easterbrook, and R.C. Holt. Using benchmarking to advance

research: A challenge to software engineering. pages 74– 83, 06 2003. ISBN

0-7695-1877-X. doi: 10.1109/ICSE.2003.1201189.

[85] Valter Crescenzi, Paolo Merialdo, and Paolo Missier. Clustering web pages based

on their structure. Data & Knowledge Engineering, 54(3):279–299, 2005.

[86] Rakesh Agrawal and Samuel Ieong. Aggregating web offers to determine product

prices. In Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 435–443. ACM, 2012.

[87] Lorenzo Blanco, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti. Supporting

the automatic construction of entity aware search engines. In Proceedings of the

10th ACM workshop on Web information and data management, pages 149–156.

ACM, 2008.

[88] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.

Yago2: A spatially and temporally enhanced knowledge base from wikipedia.

Artificial Intelligence, 194:28–61, 2013.

[89] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of statistical me-

chanics: theory and experiment, 2008(10):P10008, 2008.

[90] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal

of the ACM (JACM), 46(5):604–632, 1999.



Bibliografia 130

[91] Robert Meusel, Peter Mika, and Roi Blanco. Focused crawling for structured

data. In Proceedings of the 23rd ACM International Conference on Conference

on Information and Knowledge Management, pages 1039–1048. ACM, 2014.

[92] Rahul Gupta and Sunita Sarawagi. Answering table augmentation queries from

unstructured lists on the web. Proceedings of the VLDB Endowment, 2(1):289–

300, 2009.

[93] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.

Webtables: exploring the power of tables on the web. Proceedings of the VLDB

Endowment, 1(1):538–549, 2008.

[94] Jayant Madhavan, Shawn R Jeffery, Shirley Cohen, Xin Dong, David Ko, Cong

Yu, and Alon Halevy. Web-scale data integration: You can only afford to pay as

you go. CIDR, 2007.

[95] Nilesh Dalvi, Philip Bohannon, and Fei Sha. Robust web extraction: an approach

based on a probabilistic tree-edit model. In Proceedings of the 2009 ACM SIG-

MOD International Conference on Management of data, pages 335–348. ACM,

2009.

[96] Valter Crescenzi, Giansalvatore Mecca, Paolo Merialdo, et al. Roadrunner: To-

wards automatic data extraction from large web sites. In VLDB, volume 1, pages

109–118, 2001.

[97] Arvind Arasu and Hector Garcia-Molina. Extracting structured data from web

pages. In Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, pages 337–348. ACM, 2003.

[98] Marnix de Bakker, Flavius Frasincar, and Damir Vandic. A hybrid model words-

driven approach for web product duplicate detection. In International Conference

on Advanced Information Systems Engineering, pages 149–161. Springer, 2013.



Bibliografia 131

[99] Petar Petrovski, Volha Bryl, and Christian Bizer. Integrating product data from

websites offering microdata markup. In Proceedings of the 23rd International

Conference on World Wide Web, pages 1299–1304. ACM, 2014.

[100] Vishrawas Gopalakrishnan, Suresh Parthasarathy Iyengar, Amit Madaan, Rajeev

Rastogi, and Srinivasan Sengamedu. Matching product titles using web-based en-

richment. In Proceedings of the 21st ACM international conference on Information

and knowledge management, pages 605–614. ACM, 2012.

[101] Petar Petrovski and Christian Bizer. Extracting attribute-value pairs from prod-

uct specifications on the web. pages 558–565, 2017.

[102] Nikhil Londhe, Vishrawas Gopalakrishnan, Aidong Zhang, Hung Q Ngo, and Ro-

hini Srihari. Matching titles with cross title web-search enrichment and community

detection. Proceedings of the VLDB Endowment, 7(12):1167–1178, 2014.

[103] Andrea Horch, Holger Kett, and Anette Weisbecker. Matching product offers of

e-shops. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pages 248–259. Springer, 2016.

[104] Xiangnan He, Ming Gao, Min-Yen Kan, and Dingxian Wang. Birank: Towards

ranking on bipartite graphs. IEEE Transactions on Knowledge and Data Engi-

neering, 29(1):57–71, 2017.

[105] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis,

and Themis Palpanas. Parallel meta-blocking for scaling entity resolution over

big heterogeneous data. Information Systems, 65:137–157, 2017.

[106] Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ramamirtham,

Rajeev Rastogi, Sandeep Satpal, Srinivasan H Sengamedu, Ashwin Tengli, and

Charu Tiwari. Web-scale information extraction with vertex. In Data Engineering

(ICDE), 2011 IEEE 27th International Conference on, pages 1209–1220. IEEE,

2011.



Bibliografia 132

[107] Hung-sik Kim and Dongwon Lee. Harra: fast iterative hashed record linkage for

large-scale data collections. In Proceedings of the 13th International Conference

on Extending Database Technology, pages 525–536. ACM, 2010.

[108] Kostas Stefanidis, Vassilis Christophides, and Vasilis Efthymiou. Web-scale block-

ing, iterative and progressive entity resolution. In Data Engineering (ICDE), 2017

IEEE 33rd International Conference on, pages 1459–1462. IEEE, 2017.

[109] Pankaj Gulhane, Rajeev Rastogi, Srinivasan H. Sengamedu, and Ashwin Tengli.

Exploiting content redundancy for web information extraction. Proc. VLDB En-

dow., 3(1-2):578–587, September 2010. ISSN 2150-8097.

[110] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. A framework for learning web

wrappers from the crowd. In Proceedings of the 22nd international conference on

World Wide Web, pages 261–272. ACM, 2013.


	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Integrating Product Specifications from Multiple Web Sources
	End-to-End Data Integration Pipeline
	Challenges and Opportunities

	Contributions
	Roadmap

	The Product Specifications Integration Pipeline
	Source Discovery
	Source Finding
	Source Crawling
	Identifier Extraction

	Data Discovery and Extraction
	Data Discovery
	Data Extraction

	Data Linkage
	Identifiers Extraction and Filtering
	Resolution of Conflicting Identifiers

	Attribute Alignment

	State of the art
	Attribute alignment
	Traditional schema alignment
	Universal Schema
	Attribute alignment for products specifications

	Web crawling and Web data extraction
	Record Linkage
	A record linkage technique for product specifications

	Data fusion and error detection

	Instance Level Attribute Alignment
	A new challenge: local heterogeneity
	From Schema level to Instance level Attribute alignment
	Overview
	Problem Definition
	Our Approach

	Source attribute matching
	Similarity Score
	Approximate Match

	Instance Level Alignment
	Tagging and Virtual Attributes Extraction
	Iterating Matching and Tagging
	Instance-Level Clustering


	Dataset and Ground Truth Construction
	Dataset construction
	The Carbonara Extractor
	Dataset profiling
	Dataset dimension
	Schema heterogeneity
	Attribute values heterogeneity

	Ground truth construction
	Building the Ground Truth for Schema Alignment

	Record Linkage Ground Truth
	Graph-based Approaches

	Crowdsourcing Web Application
	Iterative Record Linkage Pipeline
	Instance-level attribute alignment Ground Truth

	Experiments
	Evaluation of the Steps
	Robustness to the Match Threshold
	The Role of Linkage
	Number of Sources
	Error rate
	Comparison with Alternative Approaches


	Conclusions
	Future Work

	Bibliography

