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Abstract

The amount of scholarly publications has been rapidly increasing during the

last decades. The need to intelligently process such amount and produce rec-

ommendations to researchers is becoming urgent.

In the last years, Recommender System (RS) approaches have emerged

to facilitate finding publications related to the researchers’ area of interest.

However, natural language ambiguity is still a challenge to generate accurate

recommendations exploiting textual features. The goal of this doctoral thesis

is to propose deep learning models, which could learn semantic representa-

tions of research papers in order to obtain effective recommendations. In other

words, proposing models that help in providing recommendations based on the

semantic similarity between research papers.

In this study, we make several contributions that address the problem of

considering the semantic similarity between research papers: Firstly, we pro-

pose a supervised approach that adopts gated recurrent networks with atten-

tion mechanism, for aggregating important words and sentences from research



paper titles and abstracts, in order to increase the general representation and

visualization of the key concepts in research papers. This approach has been

exploited for predicting social tags from research papers, since tags help in orga-

nizing, sharing and even recommending research papers. Secondly, we propose

a tag-aware research paper recommendation approach, that utilizes the same

model proposed for tag prediction, in extracting tag-based document repre-

sentations. We show how semantic document representations based on social

tags can be combined with the traditional collaborative filtering methods to

yield superior performance with any number of ratings. Finally, we propose an

unsupervised approach for non-personalized research paper recommendations,

which leverages pre-trained sentence encoders based on deep learning models.
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Chapter 1

Introduction

1.1 Motivation

The massive growth of information on the Internet makes finding information

both challenging and time consuming. Traditional search engines require the

user to manually enter keywords in order to search for relevant information.

The results of the search query are displayed to the user based on the order

of relevance to the keywords. One of the problems with traditional keyword-

based search engines, is that the user may find it difficult to choose the search

keywords able to return the best results, especially if the user is searching for

information in a new domain.

Recommender systems (RSs) provide a solution to this problem by auto-

matically capturing user preferences and recommending related information

that may be of interest to the target user. There are two ways in which RSs

are able to capture user preferences: explicitly, by enabling the user to enter

her preferences, or implicitly, by monitoring the user’s activities such as brows-

ing the Web or reading documents. Collected preferences are stored in a user



1. Introduction

profile. New items (e.g., research papers) are then compared with the user

profile and those items which are sufficiently similar are recommended to the

user. Existing RSs offer efficient personalized services in a variety of domains

such as movies, music, books, research papers and e-commerce [PKCK12].

In the context of research papers, RSs can facilitate for researchers orga-

nizing, finding and even sharing research papers. One critical challenge in

research paper RSs, is capturing the semantic similarity between papers. As

investigated in [Has17], a common practice is to model text in a document as

a set of word features, i.e., bag-of-words (BOW). Often, some feature selection

techniques are applied, such as stop-words removal or stemming, to only keep

meaningful features. However, these representation methods do not have the

capacity of modelling the semantics embedded in text data. In fact, a word

can express different meanings and different words can be used to describe the

same meaning. Such word ambiguities are often referred to as the polysemy

problem and the synonymy problem, respectively.

A variety of methods have been proposed to consider the semantic rela-

tionships between words or entities. One traditional way of solving the word

ambiguity problem is topic modelling (e.g., LDA [MLA14]) which applies sta-

tistical methods to analyze latent topics with associated words. By learning

the distributions between topics and words, each document is represented as

a linear combination of topics instead of words, resulting in a low dimensional

representation. However, topic modelling methods derive the low-rank rep-

resentation of documents using single words based on the corpus itself, which

may not generate enough discriminative semantic information. Another way to

solve the above problem is semantic annotation, which incorporates semantic
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information. These ontologies have limitations of coverage, e.g., WordNet1 is an

online dictionary that mainly covers lexical information rather than entities. A

major challenge for semantic annotation is to find and utilize a comprehensive

and domain-independent external knowledge that can cover all the semantic

information mentioned in a corpus [GM09].

Deep learning models have recently shown great potential for learning effec-

tive representations and achieved state-of-the-art performance in many Natural

Language Processing (NLP) applications. However, most of the focus in the

research community has been on general purpose text, such as news or social

media activity. Scientific text is notably different, with a much higher density

of specialized terminology. In this thesis, we propose the long-term goal of

understanding and interpreting scientific literature, and this work is intended

to be one of the small first steps in this direction. We, therefore, focus on

developing deep learning models for understanding semantics of scientific texts

for the recommendation task.

1.2 Research Goals

The general aim of this thesis is “to propose deep learning models that could

capture semantic similarity between research papers, in order to obtain effective

recommendations”. To do this, we have pursued the following research goals.

RG1: Survey the existing approaches of research paper RSs and

investigate if any of them have utilized deep learning for content

representation. It is crucial to survey the current approaches of research

paper RSs and study their limitations. Therefore, we conduct a survey list-

1https://wordnet.princeton.edu/

3
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ing the existing approaches categorized into three types of RSs: content-based

filtering, collaborative filtering and hybrid approaches. We investigate if word

embeddings or more complex deep learning models are used in any of those

approaches for content representation. We also study the limitations of the

current research paper RSs. (Chapter 3).

RG2: Investigate the performance of word embeddings based

methods on research papers, and propose an approach that could

enhance content representation. We evaluate state-of-the-art word em-

beddings based techniques for sentence and document representation. Since

we assume that research papers with similar tags have semantic relation, we

evaluate those techniques on the task of tag prediction. Moreover, we propose

a deep learning model that outperforms the state-of-the-art, for extracting se-

mantic representation of research papers for the same task. (Chapter 4).

RG3: Explore the usefulness of research paper social tags assigned

by users in recommending research papers. Since we believe that papers

with common social tags are semantically related, we investigate if we can use

tags as metadata for research papers, and we study how can we utilize those

tags in extracting semantic document representations for research paper RSs.

(Chapter 5).

RG4: Investigate how well pre-trained sentence encoders per-

form in non-personalized recommendation scenario. We experiment

with some of the well-known pre-trained sentence encoders (e.g., Google’s

BERT [DCLT18]) in the task of identification of related research papers for

non-profiled users. The goal is to identify which of the encoders could achieve

good understanding of semantics, and how can we utilize them for recommen-

dations. (Chapter 6).

4
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1.3 Contributions

This thesis focuses on investigating possible deep learning approaches, mainly

content-based ones, for RSs in the research papers domain. Three main con-

tributions are provided as follows:

• Presenting a methodology that adopts a deep learning model, for ex-

tracting key concepts from research paper titles and abstracts, in order

to obtain effective representations of research papers. This approach is

exploited for tag prediction.

• Utilizing the same model of tag prediction in extracting semantic doc-

ument representations, and incorporating those representations into a

collaborative filtering method, resulting in tag-aware research paper RS.

• Proposing a recommendation approach for non-profiled users, in a system

based on Apache Lucene2 search engine. This approach exploits pre-

trained deep sentence encoders, for extracting the semantic features of

research papers. We implement this approach on a real system called

Darwin & Goliath3 [BGO19], which offers a recommendation-as-a-service

and integrates with JabRef4, a reference management software.

Some parts of this thesis have been published in international conferences.

For instance, literature review of research paper RSs is included in [Has17].

Tag prediction for research papers is presented in [HSGM18]. Finally, scientific

paper reranking and recommendation based on general purpose and pre-trained

sentence encoders is presented in [HSGM19].

2https://lucene.apache.org/
3https://darwingoliath.com/
4http://www.jabref.org/
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1.4 Thesis Outline

This thesis is structured as follows. Chapter 2 presents basic information that

is crucial for understanding this doctoral thesis. It includes an introduction

to neural networks, deep learning concepts, possible approaches for semantic

textual representations such as word embeddings and sentence embeddings,

and some other definitions.

In Chapter 3, a literature survey of the current research paper recommender

system approaches is given, highlighting the different techniques used, mainly

content-based, collaborative filtering and hybrid ones. This chapter also dis-

cusses some of the challenges of research paper RSs.

Chapter 4 presents an approach that adopts hierarchical recurrent neural

networks, more specifically gated recurrent units (GRUs) with attention mech-

anism, for extracting key concepts from research paper titles and abstracts.

The proposed approach is exploited for tag classification and prediction. We

provide an experimental evaluation showing that this approach is effective in

comparison with state-of-the-art techniques related to text features extraction.

Chapter 5 describes an approach that exploits the tag prediction model

introduced in Chapter 4, for extracting tag-aware document representations,

and incorporating those representations in a collaborative filtering method,

resulting in a hybrid research paper RS. We demonstrate that this methodol-

ogy is effective in comparison with considering BOW representation or tags as

features of research papers.

Chapter 6 describes an approach for non-personalized research paper RSs.

This approach is based on integrating pre-trained sentence encoders with tradi-

tional Apache Lucene/Solr BM25 technique. We provide an empirical evalua-

6
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tion between the performance of five well-known pre-trained sentence encoders

in the same scenario. In addition to the offline evaluation, we present the results

of a conducted user study showing the effectiveness of our proposed approach.

Finally, the thesis is concluded in Chapter 7 by discussing the consequences of

the findings, and potential directions for future research.

7





Chapter 2

Background and Definitions

2.1 Vector Space Model

The Vector Space Model (VSM) is a model for representing documents in nu-

meric form. It is a widely accepted standard that is used whenever a numerical

representation of text is needed [KMTD14, TLPP+14]. The basic idea of the

VSM is to represent text as a bag-of-words (BOW). In VSM, the ordering of

the words in a document is ignored and the document is represented by a vector

of word frequencies.

More formally, a vocabulary is established where each wi word or term has a

unique integer index i. A document dj is represented by a vector vi where each

element vij in the vector stores the tf(i, j) frequency of word wi in document

dj . For the standard VSM model, BOW is generalized such that each vij value

does not necessarily show the exact term frequency, but stores a weight that

represents a relevance measure of the term in the document. Some of the most

popular weighting schemes are TF-IDF [SB88] and BM25 [RWJ+95]; more

details in the following sections.



2. Background and Definitions

TF-IDF

TF-IDF stands for term frequency - inverse document frequency. The motiva-

tion behind TF-IDF is that, the BOW weighting scheme gives high weight to

naturally more frequent words, which are not necessarily more relevant, such

as stop-words. TF-IDF introduces the idea of document frequency, which is

the number of documents containing a particular term. Using this additional

measure, we can detect which words are naturally more common through the

whole dataset and are given less weight in favor of terms that are more inter-

esting and mark the difference between documents, i.e. frequent in a document

but not across all the documents.

More formally, TF-IDF is the product of the Term Frequency (TF) and

Inverse Document Frequency (IDF) scores of the term, as shown in the following

equation:

TF-IDF =
TF

IDF
(2.1)

TF summarizes how often a given word appears within a document. It can be

calculated as follows:

TF =
number of times the term appears in the document

total number of words in the document
(2.2)

IDF downscales words that appear a lot across documents. A term has a high

IDF score if it appears in a few documents. Conversely, if the term is very

common among documents (i.e., stop-words such as “the”, “a”, “is”), the term

would have a low IDF score. IDF can be calculated as follows:

IDF = In(
number of Documents

number of Documents the term appears in
) (2.3)

In conclusion, the higher the TF-IDF score, the rarer the term is.

10



Vector Space Model

BM25

BM25 is a ranking function that extends TF-IDF scheme and it is considered

to be the ideal weighting for search. Given a query Q, containing keywords

q1,...,qn, the BM25 score of a document D is calculated as following:

score(D,Q) =

n∑
i=1

IDF (qi) ·
TF (qi, D) · (k1 + 1)

TF (qi, D) + k1 ·
(

1− b+ b · |D|Davg

) (2.4)

where IDF(qi) is the inverse document frequency of word qi, TF(qi, D) is its

term frequency in document D, |D| is the number of words in the document,

Davg is the average size of a document, and k1 and b are free parameters.

Cosine Similarity

Similarity measure is an important aspect of the VSM model. The standard

document comparison metric is cosine similarity [S+01]. The cosine similarity

between two vectors (or two documents on the Vector Space) is a measure that

calculates the cosine of the angle between them. It is affected by the terms

the two vectors have in common. Cosine similarity thus has some meaningful

semantics for ranking similar documents, based on mutual term frequency. It

is calculated using the dot product and magnitude of each vector as shown in

the following equation:

cos θ =
~a ·~b
‖~a‖‖~b‖

(2.5)

11



2. Background and Definitions

2.2 Deep Learning Models

Deep learning (DL) represents a huge step forward for machine learning. DL

is based on the way the human brain processes information and learns. It has

kept breaking barriers during the last years in the state-of-the-art of many pre-

dictive tasks [Sch15]. There is still no clear theoretical foundation that explains

why Deep Neural Networks (DNN) are so effective. DNNs conquered the field

of computer vision with the introduction of Convolutional Neural Networks

(CNN) a few years ago. By now, DNNs have replaced most classical algorithms

for pattern recognition tasks such as object recognition [VDDP18]. The same

thing has happened in NLP with the introduction of Recurrent Neural Net-

works (RNN). Machine translation between common languages is now almost

an easy task [CVMG+14]. There is work on document and image question an-

swering, where the DNN seems to understand the contents in great detail and

can retrieve or generate short snippets that answer very specific details about

the media [XMS16]. Moreover, DNNs have also lead to breakthroughs in music

processing, from classification to style transfer and composition [BHP17].

Artificial Neural Networks

Artificial neural network models (also called neural networks or NNs) are ma-

chine learning models consisting of chains of composed highly-parametric func-

tions called layers. Neural network parameters can be initialized randomly

and trained from data with or without corresponding labels (i.e. supervised

or unsupervised), depending on the specific model architecture and they can

learn to approximate potentially arbitrarily complex functions [HSW89].

As shown in Figure 2.1, a neural network is composed of input, hidden,

12
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Figure 2.1: Artificial neural networks architecture.

and output layers — all of which are composed of nodes. Input layers take

in a numerical representation of data (e.g., images with pixel specs), output

layers output predictions, while hidden layers are correlated with most of the

computation.

Figure 2.2: Neural network activation function.

As shown in Figure 2.2, each hidden node in the neural network has an

activation function, consisted of weight and bias parameters — represented by

13



2. Background and Definitions

w and b respectively. These are essential to the actual learning process of a

deep learning algorithm.

After the neural network passes its inputs all the way to its outputs, the

network evaluates how good its prediction was (relative to the expected output)

through something called a “loss function”. As an example, the Mean Squared

Error (MSE) loss function is calculated as follows:

n∑
i=1

(
Yi − Ŷi

)2
(2.6)

where Ŷ represents the prediction, while Y represents the expected output.

A mean is used if batches of inputs and outputs are used simultaneously (n

represents sample count). The goal of the neural network is ultimately to

minimize this loss by adjusting the weights and biases of the network. In using

something called “back propagation” through gradient descent [MBBF00], the

network backtracks through all its layers to update the weights and biases of

every node in the opposite direction of the loss function — in other words,

every iteration of back propagation should result in a smaller loss function

than before [Nie15].

Neural network models use distributed representations of some fixed pre-

specified dimensions as their sole means of representing information. Corre-

spondingly, one of the major challenges in designing a neural network model

architecture for some task is finding an appropriate way of transforming the

task data into a fixed-size distributed form for input into the network. For some

tasks, this is relatively straightforward: if the task involves images of a fixed-

size, for example, each pixel of each image can be treated as one dimension in

a distributed representation.
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For text, though, there are two challenges: discrete symbols (generally

words) must be transformed into continuous representations, and this trans-

formation must be able to produce representations of a consistent dimension

from sequences that vary in length. The former problem is called “word em-

bedding”, and the latter problem is called “sentence embedding”; they will be

explained later in this chapter.

The deep part of deep learning refers to creating deep neural networks with

a large amount of layers — with the addition of more weights and biases,

the neural network improves its ability to perform more complex functions.

And deep learning approaches can be categorized as follows: Supervised, semi-

supervised or partially supervised, and unsupervised. In addition, there is

another category of learning approach called Reinforcement Learning (RL) or

Deep RL (DRL), which are often discussed under the scope of semi-supervised

or sometimes under unsupervised learning approaches [ATY+19].

Deep Supervised Learning

Supervised learning is a learning technique that uses labeled data. In the case

of supervised DL approaches, the environment has a set of inputs and corre-

sponding outputs. There are different supervised learning approaches for deep

learning, such as Convolutional Neural Networks (CNN), Recurrent Neural

Networks (RNN), including Long Short-Term Memory (LSTM) [HS97a], and

Gated Recurrent Units (GRU) [CVMG+14]. These networks will be described

in detail in the respective sections.
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Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) or ConvNet [Sch15], is a popular choice

of neural networks for different computer vision tasks such as image recogni-

tion [KSH12]. The name “convolution” is derived from a mathematical oper-

ation involving the convolution of different functions. CNNs consists of two

main parts: feature extractors and a classifier. In the feature extraction layers,

each layer of the network receives the output from its immediate previous layer

as its input, and passes its output as the input to the next layer.

As shown in the example illustrated in Figure 2.3, there are two types of

layers: convolution and max-pooling. The output nodes of the convolution

and max-pooling layers are grouped into a 2D plane called “feature mapping”.

Each plane of a layer is usually derived from the combination of one or more

planes of previous layers. The nodes of a plane are connected to a small region

of each connected planes of the previous layer. Each node of the convolution

layer extracts the features from the input by convolution operations on the

input nodes.

Figure 2.3: Example for convolutional neural networks.
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Higher-level features are derived from features propagated from lower level

layers. As the features propagate to the highest layer or level, the dimensions of

features are reduced depending on the size of the kernel for convolutional and

max-pooling operations respectively. The output of the last layer of the CNN

is used as the input to a fully connected network which is called classification

layer. In the classification layer, the extracted features are taken as inputs with

respect to the dimension of the weight matrix of the final neural network.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have been very popular in areas where

the sequence in which the information is presented is important. As a result,

they are used in many applications in real-world domains such as NLP, speech

synthesis and machine translation. RNNs are called “recurrent” mainly because

a uniform task is performed for every single element of a sequence, with the

output dependent on the previous computations as well. These networks act as

having a memory, where every calculated information is captured, stored and

utilized to calculate the final outcome. Figure 2.4 illustrates a simple RNN

framework.

Figure 2.4: Recurrent neural networks architecture.
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For the simple recurrent network, the recurrent kernel is implemented as:

ht = ReLU (Wih · gt +Whh · ht−1 + br) (2.7)

where ht and ht−1 are the hidden state of the RNN at step t and t− 1 respec-

tively, gt is the glimpse feature extracted by the spatial glimpse network at

step t, Wih is the weighting matrix from input to hidden, Whh is the weighting

matrix from hidden to hidden, and br is the bias term for the recurrent module.

Rectified linear unit (ReLU) is used as an activation function for the simple

recurrent network.

RNNs have been used for many NLP applications such as: Word-level clas-

sification (e.g., Named Entity Recognition), Language modeling, Sentence-level

classification (e.g., sentiment polarity), Semantic matching (e.g., match a mes-

sage to candidate response in dialogue systems), Natural language generation

(e.g., machine translation, visual QA, and image captioning). In the language

modeling, it tries to predict the next word or set of words or some cases sen-

tences based on the previous ones [ATY+19]. As it compares with a CNN

model, an RNN model can be similarly effective or even better at specific nat-

ural language tasks but not necessarily superior [YKYS17]. This is because

they model very different aspects of the data, which only makes them effective

depending on the semantics required by the task at hand.

Over the years, quite a few varieties of RNNs have been researched and

developed, such as bidirectional RNN. In bidirectional RNN, the output in

this type of RNN depends not only on the past but also the future outcomes.

Figure 2.5 shows an example of bidirectional RNN.

In NLP, the input expected by a RNN are typically one-hot encodings or

word embeddings, but in some cases they are coupled with the abstract repre-
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Figure 2.5: Bidirectional neural networks architecture.

sentations constructed by other deep learning model (e.g., a CNN model). Sim-

ple RNNs suffer from the vanishing gradient problem [HBF+01] which makes

it difficult to learn and tune the parameters in the earlier layers. Other vari-

ants, such as long short-term memory (LSTM) networks, and gated-recurrent

networks (GRU) were later introduced to overcome this limitation.

An LSTM consist of three gates (input, forget, and output gates), and cal-

culate the hidden state through a combination of the three. GRUs are similar

to LSTMs but consist of only two gates and are more efficient because they are

less complex. Various LSTM-based models have been proposed for sequence

to sequence mapping (via encoder-decoder frameworks) that are suitable for

machine translation, text summarization, modeling human conversations, ques-

tion answering, image-based language generation, among other tasks. LSTM

and GRU are described in detail in the following sections.

Long Short-Term Memory (LSTM)

RNN has short-term memory, but with combining Long Short Term Memory

(LSTM) gates, the network can have long term memory. Instead of the re-

19



2. Background and Definitions

curring section in RNN, LTSM is a small neural network consisting of four

neural network layers. These are the recurring layer from the RNN with three

networks acting as gates. An LSTM also has a cell state as well, alongside

the hidden state. This cell state is the long-term memory. Rather than just

returning the hidden state at each iteration, a tuple of hidden states is returned

comprised of the cell state and hidden state.

LSTM has three gates: an Input gate, this controls the information input at

each time step. An Output gate, this controls how much information is given

in output to the next cell or upward layer. A Forget gate, this controls how

much data to lose at each time step. It can be represented by the following

equations:

it = σ (Wxigt +Whiht−1 +Wcict−1 + bi)

ft = σ (Wxfgt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + it tanh (Wxcgt +Whcht−1 + bc)

ot = σ (Wxogt +Whoht−1 +Wcoct + bo)

ht = ot tanh (ct)

(2.8)

where σ is the logistic function, and i, σ, o, and c are the four components

inside the LSTM model, namely, input gate, forget gate, output gate, and

cell. σ is the softmax activation function. b is the bias term. The subscripts

of weighting matrices W also indicate the input to the matrix as well as the

component the matrix belongs to. For example, Wxi belongs to the input gate

and takes glimpse feature gt as input, while Who belongs to the output gate

and takes previous hidden states ht−1 as input.
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Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is sometimes referred to as a gated recurrent

network [CVMG+14]. At the output of each iteration there is a small neural

network with three neural networks layers implemented, consisting of the re-

curring layer from the RNN, a reset gate and an update gate. The update gate

acts as a forget and input gate. The coupling of these two gates performs a

similar function as the three gates forget, input and output in an LSTM. Com-

pared to an LSTM, a GRU has a merged cell state and hidden state, whereas

in an LSTM these are separate.

The reset gate takes the input activations from last layer, these are mul-

tiplied by a reset factor between 0 and 1. The reset factor is calculated by a

neural network with no hidden layer (like a logistic regression), this performs

a dot product matrix multiplication between a weight matrix and the con-

catenation of the previous hidden state and our new input. This is then put

through the sigmoid function. This can learn to do different things in different

situations, for example, to forget more information if there is a full stop token.

The update gate controls how much of the new input to take and how much

of the hidden state to take. It is a linear interpolation. This is 1−Z multiplied

by the previous hidden state plus Z multiplied by the new hidden state. It

controls to what degree we keep information from the previous states and to

what degree we use information from the new state. The update gate is often

represented as a switch in diagrams, although the gate can be in any position to

create a linear interpolation between the two hidden states. Figure 2.6 shows

the difference between LSTM and GRU architectures.
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Figure 2.6: LSTM vs. GRU architectures.

Recursive Neural Networks

Similar to RNNs, recursive neural networks are natural mechanisms to model

sequential data. Language could be seen as a recursive structure where words

and sub-phrases compose other higher-level phrases in a hierarchy [FGS98].

In such a structure, a non-terminal node is represented by the representation

of all its children nodes. Figure 2.7 shows an example for a recursive neural

network. Recursive neural networks are used for various applications such as

parsing, leveraging phrase-level representations, semantic relationships classi-

fication and sentence relatedness [LYLZ14].

Deep Unsupervised Learning

Unsupervised learning systems work without the presence of data labels. In

this case, the network learns the internal representation or important features

to discover unknown relationships or structure within the input data. There

are several members of the deep learning family that are good at clustering

and non-linear dimensionality reduction, including Auto Encoders (AE), Re-

stricted Boltzmann Machines (RBM), and the recently developed Generative
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Figure 2.7: Example for recursive neural networks (from [SPW+13]).

Adversarial Networks (GANs), which are described in the following sections.

In addition, RNNs, such as LSTM are also used for unsupervised learning in

many application domains.

Autoencoder (AE)

Autoencoder (AE) is a deep neural network approach used for unsupervised

feature learning with efficient data encoding and decoding. The main objective

of autoencoder is to learn and represent (encoding) of the input data, typically

for data dimensionality reduction, compression, and many more [BCV13]. Au-

toencoder technique consists of two parts: the encoder and decoder. In the

encoding phase, the input samples are mapped usually in the lower dimen-

sional features space with a constructive feature representation. This approach

can be repeated until the desired feature dimensional space is reached. Whereas
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in the decoding phase, we regenerate actual features from lower dimensional

features with reverse processing. The conceptual diagram of autoencoder with

encoding and decoding phases is shown in Figure 2.8.

Figure 2.8: Autoencoder architecture.

Deep Belief Networks (DBNs)

Deep Belief Networks (DBNs) are composed of layers of Restricted Boltzmann

Machines (RBMs) for the pre-train phase and then a feedforward network for

the fine-tune phase [Hin09]. Figure 2.9 shows the network architecture of a

DBN. The fundamental purpose of RBMs in the context of deep learning and

DBNs is to learn these higher-level features of a dataset in an unsupervised

training fashion.
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Figure 2.9: DBN architecture.

Generative Adversarial Networks (GANs)

Generative Adversarial Network (GAN) is a deep learning approach proposed

by [GPAM+14] in 2014. GANs offer an alternative approach to maximum

likelihood estimation. GAN is an unsupervised deep learning approach, it

consists of two competing networks – a generator (G) and a discriminator (D).

G generates synthetic data from some noise with the goal of fooling D into

thinking it is real data. D has to discriminate whether a given sample is real

or fake. It is this simple tussle between these two networks that makes GANs

so powerful.
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Deep Semi-Supervised Learning

Semi-supervised learning is learning that occurs based on partially labeled

datasets [AZ05]. In some cases, Deep Reinforcement Learning (DRL) and

Generative Adversarial Networks (GAN) are used as semi-supervised learning

techniques. Additionally, RNNs, including LSTMs and GRUs, are used for

semi-supervised learning as well [DL15].

2.3 Word Embeddings

Word embeddings are vector representation of the meaning of words. In prac-

tice, this usually means that word embeddings are placed in a high dimensional

space where the embeddings of similar or related words are close to each other,

while different word embeddings are placed far from each other. Word em-

beddings also acquire more complex geometric structures as a side effect of

some algorithms. A typical example for this are real world analogies that can

be discovered using simple vector arithmetic: king −man+ woman = queen.

Figure 2.10 shows an example of words in high dimensional space.

Word embeddings can be trained on knowledge graphs, but the most pop-

ular algorithms learn these vector representations just by scanning big cor-

pora. All of these algorithms rely on a single assumption: words that appear

in similar contexts have similar meanings. There are many state-of-the-art

word embedding techniques, but the most popular are Word2vec [MSC+13],

GloVe [PSM14a] and FastText [BGJM17]. Each of these techniques are de-

scribed in detail in the following sections.
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Figure 2.10: An example for word embeddings spaces.

Word2Vec

Word2vec is a two-layer neural net that processes text. Its input is a text corpus

and its output is a set of vectors (i.e., feature vectors for words in the corpus).

Word2vec starts with a set of word vectors that are initialized randomly. It

scans the corpus sequentially, always keeping a context window around each

word it looks at. The algorithm computes the dot product between the tar-

get word and the context words and tries to minimize this metric performing

Stochastic Gradient Descent (SGD) [BB08]. The more evidence is found while

scanning the corpus that two words are similar, the closer they will be.

Word2vec has two model architectures to produce a distributed represen-

tation of words: continuous bag-of-words (CBOW) or skip-gram. As shown

in Figure 2.11, the CBOW architecture, the model predicts the current word

from a window of surrounding context words. The order of context words does

not influence prediction. While in the skip-gram architecture, the model uses

the current word to predict the surrounding window of context words.
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Figure 2.11: CBOW vs. Skip-gram architectures.

GloVe

GloVe is the second most well-known word embedding algorithm, after word2vec.

They both perform similarly on most tasks, although the popular perception

seems to be that GloVe is marginally faster to train. GloVe is based on matrix

factorization (MF) techniques on the word-context matrix. It first constructs

a large matrix of (words x context) co-occurrence information, i.e., for each

word (the rows), it counts how frequently this word is seen in some context

(the columns) in a large corpus. Then it factorizes this matrix to yield a lower-

dimensional (word x features) matrix, where each row now yields a vector

representation for each word. In general, this is done by minimizing a recon-

struction loss. This loss tries to find the lower-dimensional representations

which can explain most of the variance in the high-dimensional data.
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FastText

FastText is another word embedding method that is an extension of the word2vec

model. Instead of learning vectors for words directly, fastText represents each

word as an n-gram of characters. This helps capture the meaning of shorter

words and allows the embeddings to understand suffixes and prefixes. Once

the word has been represented using character n-grams, a skip-gram model is

trained to learn the embeddings.

So, for example, take the word, “science” with n = 3, the fastText repre-

sentation of this word is <sc, sci, cie, ien, enc, nce, ce>, where the brackets

indicate the beginning and end of the word. This model is considered to be a

BOW model with a sliding window over a word because no internal structure

of the word is taken into account. As long as the characters are within this

window, the order of the n-grams does not matter.

FastText works well with rare words. So even if a word was not seen during

training, it can be broken down into n-grams to get its embeddings. Word2vec

and GloVe both fail to provide any vector representation for words that are

not in the model dictionary. This is a huge advantage of this method.

2.4 Sentence Embeddings

Individual neural network layers require fixed-length inputs. Thus, if a neural

network is to handle sentences of varying lengths, it needs to be accompanied by

a component for converting these sentences into suitable fixed-length vectors.

A simple such technique is to look up the embedding vectors for each of the

words in a sequence and sum or average them, yielding a single vector of the

same dimension. This strategy, often called centroid of word embeddings is
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effective in some simple tasks, but it ignores word order information which

may be important in other tasks.

On the other hand, most modern neural network models that operate over

word sequences include a special learned neural network component called a

sentence encoder. This component has repeating parts that can be added or

removed to fit the structure and size of the input sentence, and generally takes

one of three basic forms:

• In recurrent or sequence-based networks, including LSTMs and GRUs,

the input is fed into the network in sequential order (from left to right or

vice versa for text) with the network updating a hidden state after each

input is processed.

• In convolutional neural networks, information from all parts of a sen-

tence are processed in parallel using a set of filters that look at fixed-size

subsequences of words [KGB14].

• In recursive or tree-structured networks, the input is fed in according

to a tree structure (generally produced by a parser), in which hidden

representations are formed for increasingly large sub-spans of the input

data following the principle of compositionality [SLMN11].

Of these, sequence-based models have been the most widely used in prac-

tice. While convolutional models have not been as widely used for sentence

embeddings.
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2.5 Attention Mechanism

The basic idea of attention mechanism is that when a sequence deep learning

model predicts an output word, it only uses parts of an input where the most

relevant information is concentrated instead of an entire sentence. In other

words, it only pays attention to some input words [LPM15].

Figure 2.12: An example illustrating the attention mechanism.

As an example, in the encoder-decoder architecture, as shown in Figure 2.12,

the decoder’s hidden state is computed with a context vector, the previous out-

put and the previous hidden state. We do not use a single context vector c,
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but a separate context vector ci for each target word. These context vectors

are computed as a weighted sum of annotations generated by the encoder. The

weight of each annotation is computed by an alignment model which scores how

well the inputs and the output match. An alignment model is a feedforward

neural network, for instance. In general, it can be any other model as well. As

a result, the alphas — the weights of hidden states when computing a context

vector — show how important a given annotation is in deciding the next state

and generating the output word. These are the attention scores.
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Chapter 3

Research Paper Recommender

Systems — A Survey

Recommender system (RS) approaches can be classified by their method of

recommendation into three types: content-based filtering, collaborative filter-

ing and hybrid approaches. Content-based filtering mainly uses the content of

items which are highly rated by a user in order to find her preferences. On the

other hand, collaborative filtering utilizes the similarity between user’s prefer-

ences and other similar users’ preferences in order to recommend new items.

While hybrid RSs use a combination of content-based and collaborative filter-

ing techniques in order to get the best of both. The authors of [BGLB16] have

published a comprehensive survey about the research paper RSs proposed from

1998 to 2013. In this chapter we aim to extend part of this work by including

a review of the recent work done in this area, highlighting the techniques used,

especially the content-based and deep learning related ones. The use of deep

learning models for NLP has recently received much attention, since they are
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usually trained on large amounts of data and they could provide high quality

semantic representations. Finally, we discuss the challenges of the different

recommendation approaches in the research paper domain.

3.1 Content-based Filtering

Content-based filtering is widely used in recommender systems. This approach

provides recommendations by comparing candidate item’s content representa-

tion with the target user’s interest representation. This method has been ap-

plied mostly in textual domains such as news recommendation [PB07]. There

have been some attempts to develop recommendation systems for scientific

literature, and some work was done based on articles content.

In [YM07], the authors presented PURE, a content-based RS based on

document titles and abstracts of the PubMed1 dataset. It used the well-known

TF-IDF method to train a probabilistic model for computing relevant docu-

ments based on selected documents added by the user. The idea of PURE

was to automatically capture user preferences by using her response to the

presented papers.

In [NLdSG11], the authors provided another example of a content-based

filtering technique for scientific articles recommendation. Their proposed solu-

tion utilized n-grams models to generate queries from a particular article that is

presented by the user, and then submit the generated queries on publicly avail-

able web sources of scientific papers. Their method used titles and abstracts of

the articles, and the similarity of the papers was calculated through term fre-

quency weighting scheme and cosine similarity method. The results gained by

1https://www.ncbi.nlm.nih.gov/pubmed/
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this technique was fairly positive, demonstrating that it is enough to consider

only the title and abstract of the articles for recommendation purposes.

In [FPT11], the authors proposed a content-based research paper RS which

produces rich user profiles and resource descriptions by extracting keyphrases

from scientific articles, mainly using part-of-speech (POS) tags and n-gram

features.

Docear [BLGN13] is an academic literature suite to search, organize, and

create research articles. Its recommender system uses content-based methods

to recommend articles. It builds a user model using the mind maps created

by the user, and matches it with Docear Digital Library in order to generate

recommendations.

In [LLK13], a personalized academic research paper RS is presented. It

recommends articles relevant to the research held by the users, supposing that

researchers like their own articles. Based on this assumption papers similar to

the ones previously written by users are recommended as relevant to them. This

system used a web crawler to retrieve research papers from IEEE Xplore2 and

ACM digital library3. It measures text similarity using bag-of-words (BOW)

and k-nearest neighbors (KNN) methods to determine the similarity between

two research papers, and it uses collaborative filtering methods to recommend

the items.

In [HBH+15], the authors proposed a solution to recommend scientific ar-

ticles to non-profiled users. This methodology is meant to avoid the problems

of collaborative filtering for users for whom there is not enough data available

to build their user profile. They take a content-based approach in extracting

2https://ieeexplore.ieee.org
3https://dl.acm.org/

35



3. Research Paper Recommender Systems — A Survey

both short and long queries from a single paper provided as an input. The long

queries are taken from the abstract and sections similar to the title whereas the

short queries are commonly occurring phrases in the paper as well as words

from the title. These queries are weighted and used to filter candidate pa-

pers from the corpus. The recommendations are made using a simple cosine

similarity between the target paper and the filtered papers.

In [AARK16], the authors presented Science Concierge, an open source

Python library that implements a RS for literature search. The library uses a

scalable vectorization of documents through online Latent Semantic Analysis

(LSA) [LD97] to discover groups of words that are equivalent in their meaning.

In [APSF16], the authors proposed a fully content-based approach to the

recommendation of scientific papers based on the researchers corpus. The

researcher profile is built upon the topics generated by LDA algorithm on the

researcher’s publications corpus.

In [DNT14], the authors proposed a novel content-based RS technique based

on a network, rather than vector. User models were built upon sets of concepts

automatically extracted from documents. By using concepts as features, they

developed a concept-based RS that suggests the papers related to the concepts

of interest for the active user. More specifically, concepts are identified as

keyphrases automatically extracted from scientific papers.

The authors in [AAUE17] presented a recommender system for research pa-

pers which used a Dynamic Normalized Tree of Concepts (DNTC) user mod-

elling technique. The system utilized the ontology of 2012 ACM Computing

Classification System (CCS)4. The user profiling phase creates a user profile

as a dynamic normalized tree of concepts, which is used with a dynamic tree

4https://www.acm.org/publications/class-2012
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edit distance method, to compare between the user profile and the new unseen

research papers, that are also represented as tree of concepts.

The authors of [BABG17], introduced Mr. DLib, a recommendations-as-a-

service, which allows third parties to easily integrate a RS into their products.

Mr. DLib indexes the metadata of the partner’s documents (title, authors,

abstract, venue, keywords), and it uses mainly Apache Lucene/Solr’s More-

Like-This function to calculate document relatedness.

3.2 Collaborative Filtering

Collaborative filtering is one of the most successful recommendation approaches

that works by recommending items to target users based on what other similar

users have previously preferred. This method has been used in e-commerce

sites such as Amazon.com, Ebay and so on. However, it suffers from the cold-

start problem in which it cannot generate accurate recommendations without

enough initial ratings from users [HKTR04].

In the research paper domain, some authors suggested using collaborative

filtering and ratings. Ratings can be generated by considering citations as rat-

ings. They can also be implicitly inferred by monitoring user’s actions such as

downloading or bookmarking a paper. Citation databases such as CiteSeerX5

apply citation analysis in order to identify papers that are similar to an input

paper. Scholarly search engines such as Google Scholar6 focus on classic text

mining and citation counts. The research of [WSW16] has also presented a RS

based on citations.

5https://citeseerx.ist.psu.edu
6https://scholar.google.com/
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The authors of [SK13] applied collaborative filtering to discover potential

citation papers that help model target papers to recommend. The proposed

technique significantly outperformed state-of-the-art recommendation baselines

as measured by Normalized Discounted Cumulative Gain (nDCG) and Mean

Reciprocal Rank (MRR).

In [HID+17], the authors utilized the publicly available contextual metadata

to leverage the advantages of collaborative filtering approach in recommend-

ing a set of related papers to a researcher based on paper-citation relations.

The approach mined the hidden associations between a research paper and its

references and citations using paper-citation relations. The rationale behind

the approach is that, if two papers are significantly co-occurring with the same

citing paper(s), then they should be similar to some extent.

3.3 Hybrid Approaches

In order to improve the performance of the RSs, there have been successful

efforts to combine the collaborative filtering approaches with content-based

filtering approaches [DCFLHRM10]. In the research paper domain, some work

was done based on hybrid approaches.

The system proposed in [GBH09], called Scienstein, combines different

methods for providing literature recommendation. Scienstein integrated the

traditional keyword-based search with citation analysis, author analysis, source

analysis, implicit and explicit ratings. Instead of entering just keywords for

searching documents, a user may provide entire documents as an input, include

reference lists, and provides implicit and explicit ratings in order to improve

the recommendation process.
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In [WB11] the authors have proposed an extension of LDA for recommend-

ing scientific articles called collaborative topic regression (CTR). This hybrid

approach combines collaborative filtering based on latent factor models and

content analysis based on topic models. A matrix factorization and LDA are

merged into a single generative process, where item latent factors are obtained

by adding an offset latent variable to the document-topic distribution. Like col-

laborative filtering approaches, this method is able to predict articles already

rated by similar users.

The authors of [PN11] proposed PubRec, that make the recommendation

based on the author’s research interests using content-based, collaborative and

global relevance approaches. The proposed approach recommends a research

paper considering the paper similarity, author rating score and the number of

times an article stored in their personal libraries. The content similarity relies

on a word-correlation matrix [KN06] to determine the similarity between any

two tags assigned to their respective publications, which capture and represent

their contents.

The work of [MLA14] has addressed the issue of overcoming cold-starts in

the collaborative filtering approach by first categorizing each document in the

corpus using LDA as the topic model. A scraper and parser collected all the

documents publicly available and categorized them into various fields. For a

new user, a common stereotype set of recommendations were made. The pro-

totype then logged user actions in order to build a user profile over time. This

user profile was used in collaborative filtering to create new recommendations

for the user.

The research of [MKKG16] proposed a novel method for integrating struc-

tural and contextual information to build a context specific network for gener-
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ating recommendations for similar PubMed articles. The proposed method in-

tegrates graph-based models, statistical techniques, and NLP-based approaches

that utilized word2vec for computing individual word similarities.

The authors of [WWY15] proposed collaborative deep learning (CDL) that

integrates stacked denoising autoencoder (SDAE) [VLL+10] into probabilistic

matrix factorization (PMF), generating more accurate latent model in terms

of the rating prediction accuracy.

Finally, the authors of [BBM16] have proposed a method leveraging deep

recurrent neural networks to encode the text sequence into a latent vector,

specifically gated recurrent units (GRUs) trained end-to-end on the collabora-

tive filtering task. For the task of scientific paper recommendation, this yields

models with significantly higher accuracy. Performance is further improved by

multi-task learning, where the text encoder network is trained for a combina-

tion of content recommendation and item metadata prediction.

3.4 Challenges

Some of the proposed RS methods have drawbacks, which limit their ability to

deliver effective recommendations. For example, collaborative filtering in the

research paper RS domain would be ineffective as there is a huge number of

papers compared with the number of users, and only few users rated the same

papers. In domains such as movie recommendations, there are few items and

many users such as in MovieLens7 RS, and most movies have been watched

and rated by at least some users. Therefore, like-minded users can be found

and recommendations can be given effectively.

7https://movielens.org/
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Summary

In the citation-based approaches, not all research papers are cited and,

hence, cannot be recommended. Also, reference lists can contain irrelevant

citations just because the author believes that well-known papers should be

cited, or in order to promote other publications although they are irrelevant

for the citing paper.

Thus, we believe that content-based filtering should be part of any research

paper RS. However, most of the current content-based research paper RSs

cannot identify related papers if different terms are used; they are based on

traditional BOW models, that represent the number of times each word occurs

in a document. The semantic similarity between words is not considered. In

addition, these techniques do not take the context of the words into consider-

ation.

3.5 Summary

In this chapter, we have provided a literature survey of research paper RSs,

which can be categorized to content-based filtering, collaborative filtering and

hybrid approaches. In addition, we have discussed the main challenges of those

approaches. From which, it has been found that current methodologies for

content-based filtering have limited capabilities that need to be addressed for

further advancements in research paper RSs. Those difficulties will be inves-

tigated in the upcoming chapters by proposing deep learning models that aim

to learn the semantics of papers.
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Chapter 4

Semantic-based Tag Prediction for

Research Papers

Recently, tagging has become a common way for users to organize and share

digital content. Thus, tag prediction has become a very important research

topic. Most of the prediction approaches based on text embedding have utilized

bag-of-words (BOW) techniques. On the other hand, proposed deep learning

methods for capturing semantic meanings in text, have been proved to be effec-

tive in various natural language processing (NLP) applications. In this work,

we present a tag prediction method that adopts deep recurrent neural net-

works to encode titles and abstracts of scientific articles into semantic vectors,

more specifically a hierarchical bidirectional gated recurrent units (bi-GRUs)

with attention mechanism. The experimental evaluation is performed on a real

dataset from CiteULike. The overall findings show that the proposed model is

effective in extracting research paper semantic features for the tag prediction

task.
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4.1 Introduction

Tagging has become a common service on Web 2.0 applications. This kind of

service allows users to share and annotate interesting web resources. In the

scientific community, tagging allows users to share research papers based on

their interest. It also allows the users to create annotations or tags attached

to the research papers. By means of tags, users can conceptually organize and

summarize information, but also search for it. In most cases, tags emphasize

important keywords that may, or may not, be present in the document.

In many domains, text items are often associated with tags, such as mi-

croposts, news articles and research papers. Tag prediction in such systems

help users find appropriate tags for resources and help consolidate annotations

across all users and resources. Tag prediction not only improves user experi-

ence but also enriches the quality of generated tags and improves the quality

of the information retrieval (IR) services and recommender systems (RSs) that

rely on tags as source of information.

Existing approaches to automatic tag recommendation range from collabo-

rative filtering (CF) [IHJS07] to traditional content-based techniques including

BOW features (e.g., TF-IDF feature) or Näıve Bayes and unsupervised learning

methods (e.g., topic models [SZG11]). Most of these methods rely on counting

statistics that ignore specific features, such as keyword order. Therefore, they

suffer from sparsity and poor generalization performance, and cannot effectively

encode semantic information.

On the other hand, neural models have recently shown great potential for

learning effective representations and delivered state-of-the-art performance

on various NLP tasks. For example, semantic sentence embedding methods
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effectively map text content into vector spaces, obtaining relevant performances

in sentence classification tasks. Among those methods, the long short-term

memory (LSTM) and Gated Recurrent Units (GRUs), variant of recurrent

neural networks (RNNs), are widely used due to their capability of capturing

long-term dependencies in learning sequential representations.

In this work, we propose an approach that adopts bidirectional gated recur-

rent units (bi-GRUs) with attention mechanism to capture important patterns

and semantic representations of summaries of scientific papers (i.e., titles and

abstracts) for the tag prediction task. We consider the tag prediction as a multi-

label classification problem. Additionally, we compare the proposed method

with several baselines commonly used in similar works. The experimental re-

sults on a real dataset extracted from CiteULike1, an online scientific articles

bookmarking system, prove the validity of our approach.

The main contributions of this work can be summarized as follows:

• A proposed approach that takes advantage of deep neural network archi-

tectures and bi-GRUs with attention mechanism applied on paper titles

and abstracts for the tag prediction task.

• Experimental evaluation on a dataset collected from CiteULike service to

comparatively prove the benefits of the approach in terms of prediction

accuracy with respect to some state-of-the-art methods.

4.2 Related Work

In this section, we briefly review some related work on multi-label text classifi-

cation, and then we review some of the work that utilized attention mechanism

1http://www.citeulike.org/
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for textual feature extraction.

Multi-label Text Classification

The most popular learning method for multi-label text classification is the

vector space model (VSM), which represents each document through a vector

of all word occurrences weighted by their TF-IDF, or statistical topic modeling

techniques, such as Latent Dirichlet Allocation (LDA) [BAG17, KF09, KFN09,

HKL17]. However, those methods do not utilize information such as text order

and semantic of words.

There are some work that has utilized deep learning techniques for sen-

tence representation and text-based multi-label classification. For example,

in [NKM+14] the authors showed that a simple neural networks architecture

with deep learning techniques such as rectified linear units (ReLUs), learning

rate adaptation, and regularization using dropout training, can outperform the

traditional multi-label classification techniques. They experimented on differ-

ent datasets including scientific articles dataset.

In [Ber15], the author has demonstrated that both a CNN and a GRU us-

ing semantic word embeddings significantly outperform the Binary Relevance

method with BOW features on a large scale multi-label classification prob-

lem. The models have been tested on scientific abstracts from PubMed2. The

authors of [LCWY17] have utilized CNNs [Kim14] for extremely large label

collection. [GSC18] also applied deep CNN on research papers with abstracts

and titles for each article for multi-label text classification of PubMed MeSH

(Medical Subject Heading).

2www.ncbi.nlm.nih.gov/pubmed
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Attention Mechanism

Attention-based models have demonstrated success in a wide range of NLP

tasks. Attention is a mechanism for selecting the reference part of context

information, which can facilitate global learning. It was originally proposed in

machine translation tasks to deal with the issue for encoder-decoder approaches

that all the necessary information should be compressed into fixed length en-

coding vector [BCB14]. Then, an attention model is leveraged for generating

image descriptions [XBK+15]. Other attention-based work includes sentence

summarization [RCW15].

In [PTDU16], the authors proposed an attention model based on a convo-

lutional neural network (CNN) for natural language inference. In [WCdML16],

the authors presented an approach for relation classification via multilevel at-

tention CNNs. In [YSXZ15], the authors proposed an attention-based CNN

for modeling sentence pairs. Yang et al. [YYD+16] exploited attention in neu-

ral networks, enabling it to attend differentially to more and less important

content when constructing the document representation, by capturing hierar-

chical patterns of documents from word to sentence and finally to the whole

document.

To the best of our knowledge, this is the first study utilizing hierarchical

bidirectional gated recurrent units (bi-GRUs) with attention mechanism to

represent research papers (i.e., their titles and abstracts) for a tag prediction

task.
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4.3 Methodology

In this work, we model the tag prediction task as a multi-label classification

problem, where document level classification aims to predict the tag distri-

butions according to their text information. We use concatenated titles and

abstracts of papers to represent documents.

Problem Definition

Given a set of N documents {di} and a vocabulary of M tags {tj}, we consider

a dataset D = {(xi, yj)}, where xi is the keyword-based representation of the

document di, and yj assumes 1 or 0 value if the tag tj is associated with di or

not, respectively. The representation xi consists of a sequence of d-dimensional

embeddings of consecutive words grouped into sentences, as follows:

xi = {{w1,1, w1,2, ..., w1,NT
}, · · · , {wNK ,1, wNK ,2, ..., wNK ,NT

}} (4.1)

being NT the maximum number of words in a sentence, and NK the maximum

number of sentences in a document. The network takes as input a document xi

and outputs a document vector ui. The output ui is used by the classification

layer to determine {yj}, that is, the tags related to di.

The Proposed Approach

To solve the aforementioned problem, we adopt a hierarchical attention archi-

tecture for document representation, as shown in Figure 4.1. The proposed

approach consists of the following components:
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• Input layer. It takes the concatenated titles and abstracts of research

papers.

• Word embeddings. Each document is assigned to a word sequence

representation, where each position corresponds to a word vector from

pre-trained word embeddings.

• Word sequence encoder. It encodes high-level representation of the

sequence of words using bi-GRUs.

• Word attention. It applies the attention mechanism to get the impor-

tant words from a sentence.

• Sentence sequence encoder. It encodes high-level representation of

the sequences of sentences using bi-GRU.

• Sentence attention. It incorporates the attention model into the net-

work and derive the final document representation.

• Output layer. The representations of the documents are concatenated,

with the softmax function which gives in output the predicted tags.

The detailed descriptions of all the different components are given in the fol-

lowing sections.

Word Embeddings

Titles and abstracts of the scholarly documents are extracted, concatenated,

and subjected to tokenization and stop-word removal. Each word in the doc-

ument is represented as a fixed-size vector from pre-trained word embeddings.

We used GloVe [PSM14b] word embeddings for this purpose. More details
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Figure 4.1: Proposed approach for tag prediction.

about the selection of the word embeddings model is given in the “Experimen-

tal Settings” Section.

Bidirectional GRU Encoders

As stated in Chapter 2, recurrent neural network (RNN) [RHW86] is a kind of

feed-forward neural network that is useful for modeling sequences. Traditional

RNN models suffer from the problem of vanishing and exploding gradients, pre-

venting them from learning long-term dependencies. There have been several

modifications to the RNNs proposed to overcome this problem, among which
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the most popular are long short-term memory units (LSTMs) [HS97b] and the

more recent gated recurrent units (GRUs).

GRUs encoders are simpler than LSTMs, in terms of number of parameters,

and give competitive performance. GRU uses reset and update gate vectors

at each position to control the information flow along the sequence, thus im-

proving the modeling of long-range dependencies. Bidirectional GRU [SP97]

is another version of GRU. Unlike standard GRUs, which only capture infor-

mation from the current and past states, bidirectional GRU determine outputs

also considering inputs from the future.

At word level, we embed each word in a sentence into a low dimensional

semantic space using a bi-GRUs. At sentence level, we also feed the sentence

embeddings into bi-GRUs in order to obtain the document representation.

At word level, the function gw encodes the sequence of input words {wl,t|t =

1, ..., NT } for each sentence l of the document, that is:

hw
(l,t) = {gw(wl,t)|t = 1, ..., NT } (4.2)

At sentence level, after combining the intermediate word vectors {hw(l,t)|t =

1, ..., NT } to a sentence vector sl, the gs function encodes the sequence of

sentence vectors {sl|l = 1, ..., NK}, that is, hs
(l).

The gw and gs functions are bidirectional GRUs with parameters Hw and

Hs respectively, obtained from the forward GRU, −→gw, and the backward GRU,

←−gw:

hw
(l,t) = [−→gw(hw

(l,t));←−gw(hw
(l,t))] (4.3)

The same concatenation procedure is applied to the hidden state representation

of a sentence hs
(l).
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Attention Layers

A typical way of assigning a representation to a given word sequence at each

level is by taking the last hidden-state vector output by the encoder. However,

it is hard to encode all the relevant input information needed in a fixed-length

vector, which may limit the performance of these networks, especially when

long input sentences are considered. In addition, not all the input words con-

tribute equally to the representation of the sentence meaning, and not all the

sentences contribute equally to the document representation. This problem is

addressed by introducing an attention mechanism at each level, denoted by

αw and αs, that estimates the importance of each hidden state vector with re-

spect to the sentence or document meaning, respectively. The sentence vector

sl ∈ Rdw, where dw is the dimension of the word encoder, is thus obtained as

follows:

∑
t

α(l,t)
w h(l,t)w =

exp
(
u>l,tuw

)
∑

t exp
(
u>l,tuw

)h(l,t)w (4.4)

where vl,t = fw(h
(l,t)
w ) is a fully-connected neural network with Ww parameters.

Similarly, the document vector u ∈ Rds , where ds is the dimension of the

sentence encoder, is obtained as follows:

∑
l

α(l)
s h(l)s =

exp
(
u>l us

)∑
l exp

(
u>l us

)h(l)s (4.5)

We feed the output vector to a linear layer whose output length is M , the car-

dinality of the tag vocabulary. We believe that such an attention model could

adaptively assign an importance score to words according to their semantic

relatedness with the tag.
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Classification Layer

Finally, we formulate the tag prediction task as a multi-label classification

problem. We train our model in a supervised manner by minimizing the cross-

entropy error of the tag classification. We adopted a sigmoid classifiers of

predefined classes on top for classification, with a loss based on the cross-

entropy between gold and predicted tags, and the input is a combination of

the features generated from the document level attention. The sigmoid layer

is added to give in output the probability distributions of all candidate tags.

The sigmoid function is calculated as follows:

φ(z) =
1

1 + e−z
(4.6)

4.4 Experimental Evaluation

In this section, we give more details about the experimental settings and em-

pirical results on the tag prediction task.

Dataset

CiteULike was an online platform which allowed registered users to create per-

sonal reference libraries by saving papers that are of interest to them [BVdB08].

The dataset is built upon this service and consists of papers in the user li-

braries, user provided tags on papers, and titles and abstracts of them. We

used citeulike-a dataset from [WCL13], which consists of 16,980 papers with

46,391 tags. We selected the top-20 common tags from the dataset, and then

we extracted the papers that were tagged with at least one of the top tags

identified in the previous step. From this process, we got 8,386 titles and ab-
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stracts. Some statistics about the dataset after preprocessing are provided in

Table 4.1. We then separated our data into 90% and 10% for training and test-

ing, respectively. Therefore, we had 5747 and 839 documents in the training

and test set, respectively. Figure 4.2 lists the most common 20 tags that we

have selected for our experiments and their frequency.

Table 4.1: Statistics of a subset of citeulike-a dataset used for evaluating the
performance of tag prediction (*Tag cardinality is the average number of tags
assigned to a document).

#Documents 8,386
#Tags 20

Tag Cardinality* 4
Titles Vocabulary 11,638

Abstracts Vocabulary 61,363

Preprocessing

In the preprocessing step, titles and abstracts of each research paper were con-

catenated, tokenized, and subjected to stop-word removal before the lemma-

tization performed by the NLTK3 Python package. The maximum number of

sentences per document was set to 10, and the maximum number of words

per sentence to 50 with zero-pad the beginning of sentences and documents, if

necessary.

3https://www.nltk.org/
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Figure 4.2: Top-20 tags from citeulike-a and their frequency.
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Experimental Settings

In order to decide which word embedding model to use, we experimented with

different embedding models in order to explore which of them has less out-

of-vocabulary (OOV) words, i.e., words that do not exist in the vocabulary.

If the occurrence of words that are actually important is not covered, this

may reduce the F -measure performance of text categorization on scientific

articles. Table 4.2 lists the different state-of-the-art word embedding models,

Table 4.2: Word embedding models and OOV statistics

Embedding Model Vocab. Titles OOV Abstracts OOV

Word2Vec (Google News)4 3M 23.68% 51.92%
GloVe (Wikipedia 2014)5 400K 49.98% 55.82%
GloVe (Common Crawl - 42B tokens)6 1.9M 44.15% 45.11%
GloVe (Common Crawl - 840B tokens)7 2.2M 11.71% 34.20%
FastText (Wikipedia 2017)8 1M 49.63% 55.54%

the vocabulary size of the dataset used for training each model, the percent of

the OOV words in both titles and abstracts of research papers in our dataset.

As per these statistics, we decided to use the 840B tokens GloVe version that

is pre-trained on Common Crawl as our word-level embeddings, since it has

less OOV words in both titles and abstracts.

We implemented our model using the Python open source library Keras9

with a TensorFlow10 backend. Our method achieved the best performance

when the dimension of hidden state of bi-GRU networks was set to 100. In

this case, a combination of forward and backward GRU gave us 200 dimensions

for word/sentence annotation. We added an additional dense layer after the

9https://keras.io/
10https://www.tensorflow.org/
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document attention layer, in order to increase the complexity of the network.

We also added dropout layers before and after the dense layer in order to

prevent overfitting.

Additional hyperparameters were 50 hidden states for the dense layer and

0.2 as dropout value. A mini-batch stochastic gradient descent (SGD) algo-

rithm was used to train each model [PVG+11]. Batch size was set to 64 to

minimize the loss function of a categorical cross entropy. Moreover, we manu-

ally set the prediction threshold to 0.5. Finally, the epoch was set to depend

on an early stop, which relied on a validation set to decide when to stop the

training. In our case, the early stop condition is when F1 value starts to de-

crease for three epochs. In our experiments, it took around 50 epochs to stop

the training process.

Baselines

Multi-label text classification can generally be divided into two sub-tasks: text

feature extraction and multi-label classification. In order to perform an em-

pirical evaluation of our proposed method (i.e., Bi-GRU+Attention), we made

a comparison with many baseline methods in text feature extraction. And we

experimented with two different linear classification methods, namely Logistic

Regression (LR) and Support Vector Machine (SVM) classifiers. These clas-

sifiers are suitable for high dimensional and sparse data (text data is high

dimensional and sparse). For each classification method, we trained a set

of classifiers, one for each label, using the OneVsRestClassifier available in

the popular scikit-learn library [PVG+11]. We experimented the classifica-

tion methods when research paper titles only were used, also when titles and

abstracts are concatenated.
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The following is a detailed description for the classifiers we have used:

• Support Vector Machine (SVM). A widely used supervised text clas-

sifier [IHJS07]. SVMs have been explored systematically for text cate-

gorization [Joa98]. An SVM classifier finds a hyperplane that separates

examples into two classes with maximal margin [CV95] (Multi-classes

are handled by multi one-vs-rest classifiers). Examples that are not lin-

early separable in the feature space are mapped to a higher dimension

using kernels. In our experiments, we used Linear SVC (Support Vector

Classifier) implemented in scikit-learn library.

• Logistic Regression (LR). Logistic regression is also widely used for

text classification [ZJYH03, GLM07, YHL11]. Logistic regression classi-

fies data by using a decision boundary, determined by a linear function

of the features. For the implementation of the algorithm, we used scikit-

learn.

With both classifiers, we used different unsupervised text feature baselines as

follows:

• TF-IDF. We used TF-IDF as baseline for representing text features. As

mentioned in Chapter 2, TF-IDF is a BOW method based on the concept

of term frequency.

• Latent Dirichlet Allocation (LDA). LDA is based on a Bayesian

probabilistic model where each topic has a discrete probability distribu-

tion of words and each document is composed of a mixture of topics. In

LDA, the topic distribution is assumed to have a Dirichlet prior which

gives a smoother topic distribution per document. LDA has been utilized
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widely in tag recommendation [JWY+19]. Similar to [SZG11], we trained

an N -topic LDA model [BNJ03], where N is the number of tags.

• Paragraph-Vector. Paragraph-Vector or Doc2Vec [LM14] is a state-

of-the-art performer on several benchmark datasets. For complex text

classification algorithms, the BOW would not be suitable as it lacks the

capability to capture the semantics and syntactic order of words in the

text. Thus using them as feature input to machine learning algorithm

will not yield significant performance. On the other hand, Doc2Vec is

able to detect the relationships among words and understands the se-

mantics of the text. Doc2Vec is an unsupervised algorithm that learns

fixed-length feature vectors for texts. The goal of Doc2Vec is to create

a numeric representation of a document, regardless of its length. They

have used the word2Vec model, and added another vector (Paragraph

ID) as shown in Figure 4.3. So, when training the word vectors W , the

document vector D is trained as well, and in the end of training, it holds

a numeric representation of the document. Doc2Vec architecture also has

Figure 4.3: Doc2vec PV-DM model.
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two algorithms like word2Vec and they are the corresponding algorithms

for those two algorithms, namely, Continuous bag-of-words (CBOW) and

Skip-Gram (SG). One of the algorithms in doc2vec is called Paragraph

Vector - Distributed bag-of-words (PV-DBOW) which is similar to SG

model in word2vec. Here the neural network is trained to predict the

probability distribution of words in the given paragraph based on the

words in the paragraph. The second algorithm as shown in Figure 4.3,

which is Distributed Memory version of Paragraph Vector (PV-DM) that

is similar to CBOW in word vector. It acts as a memory that remem-

bers what is missing from the current context — or as the topic of the

paragraph. While the word vectors represent the concept of a word, the

document vector intends to represent the concept of a document.

• Sent2Vec. Sent2Vec [PGJ17] presents a simple but efficient unsuper-

vised objective to train distributed representations of sentences. It can

be thought of as an extension of fastText and word2vec (CBOW) to sen-

tences. The sentence embedding is defined as the average of the source

word embeddings of its constituent words. This model is furthermore

augmented by also learning source embeddings for not only unigrams

but also n-grams of words present in each sentence, and averaging the

n-gram embeddings along with the words.

• Centroid of Word Embeddings. The centroid-based method for ex-

tractive summarization was introduced by [ER04]. The centroid repre-

sents a pseudo-document which encodes the meaningful information of a

document. In the simplest case, the centroid of a text t is the sum of the

embeddings of the tokens of t divided by the number of tokens in t. Pre-
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vious work on hierarchical biomedical document classification [KAP15]

reported improved performance when the IDF scores of the tokens are

also taken into account. In this work, we used the 300-dimensional word

embeddings obtained by applying GloVe word embeddings for calculating

word embeddings centroid.

We also experimented with the following deep learning models:

• CNN. We used a word based CNN model similar to [Kim14]. In our

experiments, the model is constructed from a total of 128 filters with size

5 and max pooling. Similar to our proposed model, we used a mini-batch

size of 64 and an SGD to train the model.

• Bi-GRUs. We constructed a model with the same settings as our pro-

posed approach, but without the attention layers.

Evaluation Methodology

To evaluate the performance of the proposed approach and the baselines, we re-

port precision, recall, and F1, commonly used measures in information retrieval

and essential in any classification task such as tag prediction, that involves im-

balanced classes. The definitions of such evaluation metrics are as follows:

Precision (also called positive predictive value) is the fraction of relevant

instances among the retrieved instances.

Precision =
TP

TP + FP
(4.7)

Recall (also known as sensitivity) is the fraction of relevant instances that have

been retrieved over the total amount of relevant instances.

Recall =
TP

TP + FN
(4.8)
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F1 is defined as the harmonic mean of precision and recall for all of the tags.

F1 =
Precision · Recall

Precision + Recall
(4.9)

where TP is the number of true positive labels, FP the number of false positive

labels, and FN the number of false negative labels.

4.5 Results and Discussion

Figures 4.4, 4.6, 4.8, 4.10, and 4.12 show the results of TF-IDF, LDA, Doc2Vec,

Sent2Vec and GloVe centroid when paper titles were used. While, Figures

4.5, 4.7, 4.9, 4.11, and 4.13 show the results when titles and abstracts were

combined. SVM achieved the best results with all the unsupervised baseline

techniques, except when LDA is used as feature extractor. In this case LR

performed better.

Figure 4.4: Tag prediction performance using TF-IDF with paper titles.
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Figure 4.5: Tag prediction performance using TF-IDF with paper titles &
abstracts.

Figure 4.6: Tag prediction performance using LDA with paper titles.
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Figure 4.7: Tag prediction performance using LDA with paper titles & ab-
stracts.

Figure 4.8: Tag prediction performance using Doc2Vec with paper titles.

64



Results and Discussion

Figure 4.9: Tag prediction performance using Doc2Vec with paper titles &
abstracts.

Figure 4.10: Tag prediction performance using Sent2Vec with paper titles.
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Figure 4.11: Tag prediction performance using Sent2Vec with paper titles &
abstracts.

Figure 4.12: Tag prediction performance using GloVe centroid with paper titles.

66



Results and Discussion

Figure 4.13: Tag prediction performance using GloVe centroid with paper titles
& Abstracts.

A summary of the experimental results of the baselines in addition to our

proposed technique is shown in Table 4.3. The following observations can be

drawn by analyzing the obtained outcomes:

• Research paper titles combined with abstracts led to better classification

performance in comparison with titles only.

• Traditional TF-IDF techniques performs quite good compared to LDA

and other recent unsupervised techniques such as Sent2Vec, Doc2Vec,

and Word embedddings centroid.

• LDA and Doc2Vec performed poorly when only research paper on re-

search paper titles were used.

• TF-IDF even gave better results than CNN when the titles were used.
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While CNN outperformed TF-IDF when titles and abstracts were con-

catenated.

• Bi-GRU outperformed centroid of word embeddings and CNN models.

Hence, it is important to consider words sequence for the representation

of research papers. Figures 4.14 and 4.15 show an example of classifying a

research paper title to “bioinformatics” tag using centroid of word embed-

dings model and Bi-GRU model, respectively. Bi-GRU could assign more

accurate weights to the words in the title, considering words sequence.

The probability of the title being related to “bioinformatics” is less in

Bi-GRU model, since the word “not” presents before “bioinformatics”.

Figure 4.14: Example of classifying a research paper title to “bioinformatics”
tag using word embedding centroid.

Figure 4.15: Example of classifying a research paper title to “bioinformatics”
tag using Bi-GRU.
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Table 4.3: Performance of the proposed approach and other baselines for tag
prediction.

Titles Titles + Abstracts

Methods Precision Recall F1 Precision Recall F1

TF-IDF + SVM 0.63 0.40 0.49 0.67 0.40 0.50
LDA + LR 0.54 0.04 0.07 0.68 0.15 0.25
Doc2Vec + SVM 0.68 0.08 0.14 0.42 0.52 0.46
Sent2Vec + SVM 0.54 0.27 0.36 0.64 0.39 0.49
GloVe centroid + SVM 0.69 0.29 0.41 0.73 0.27 0.39

CNN 0.55 0.41 0.47 0.63 0.45 0.53
Bi-GRU 0.55 0.45 0.50 0.60 0.49 0.54
Bi-GRU+Attention 0.63 0.44 0.52 0.64 0.50 0.56

• Finally, our proposed model, Bi-GRU+Attention, has significantly out-

performed the Bi-GRU model.

4.6 Summary

In this chapter, we proposed an attention-based bidirectional gated recurrent

unit (bi-GRU) model for the tag prediction task in scholarly materials. We

formulated our problem as a multi-label classification task, and utilized hier-

archical word and sentence level attention networks for aggregating important

words and sentences, in order to increase the general representation and visual-

ization of the key concepts in research papers. The results of our experiments

on a CiteULike dataset showed that the proposed approach is able to outper-

form state-of-the-art methods for text feature representation in tag prediction.
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Chapter 5

Tag-Aware Matrix Factorization for

Research Paper Recommendation

Finding relevant scientific articles has become difficult due to the increasing

number of publications. Thus, scientific paper recommendation has become

a very important research topic. Collaborative filtering (CF) is a successful

recommendation approach, which uses the ratings given to items by users as

a source of information for learning to make recommendations. However, the

ratings are often very sparse as in the research paper domain, due to the huge

number of publications growing every year. Therefore, more attention has been

drawn to hybrid methods that consider both ratings and content information.

Nevertheless, most of the hybrid recommendation approaches that are based

on text embedding have utilized bag-of-words (BOW) techniques, which ig-

nores word order and semantic meaning. In this chapter, we propose a hybrid

approach that leverages deep semantic modeling technique and collaborative fil-

tering to improve the performance of tag-aware personalized recommendation.
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The experimental evaluation is performed on a real dataset from CiteULike.

The results show that the proposed model is effective in recommending research

papers when the rating data is very sparse.

5.1 Introduction

Recently, researchers can access growing archives of scientific articles. However,

it became difficult for them to find articles relevant to their interests. One way

that researchers find articles is by following citations in other articles that

they are interested in, but this way limits the researchers to specific citation

communities. Therefore, recommender systems (RSs) are becoming important

to make effective use of available information.

Collaborative filtering is one of the most popular approaches for RSs. Ma-

trix factorization (MF) is a collaborative filtering based technique, which has

become a dominant solution for personalized recommendation and has been

reported to be superior to memory-based techniques [KBV09]. However, there

exists a “cold start” problem in MF: many users only give very few ratings,

resulting in a very sparse user-item rating matrix, and making it difficult to

summarize users’ preferences. A widely adopted solution is to incorporate ad-

ditional sources of information about items.

Since scientific article content is large, a good representation based on text

is essential. As mentioned in Chapter 3, approaches based on document model-

ing methods such as Latent Dirichlet Allocation (LDA) and Stacked Denoising

Auto Encoder (SDAE) based on TF-IDF have been proposed to represent re-

search papers content. However, those methods are based on the BOW model

that ignores information such as word order and semantic meaning in the tex-
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tual content. Therefore, there is a need to utilize advanced deep learning NLP

techniques.

In this system, we adopt the model we proposed in Chapter 4 for social tag

prediction, which is based on bidirectional gated recurrent units (bi-GRUs) and

attention networks, to capture semantic vector representation of items, then

we incorporate those tag-aware item representations into an MF technique in

order to derive item rankings for users.

5.2 Methodology

Matrix Factorization

The idea of Matrix Factorization (MF) is to characterize both items and users

through vectors of factors inferred from item rating patterns. High correspon-

dence between item and user factors leads to a recommendation. These meth-

ods have become popular in recent years by combining good scalability with

predictive accuracy. One strength of MF is that it allows for incorporation of

additional information.

RSs rely on different types of input data, which are often placed in a matrix

with one dimension representing users and the other dimension representing

items of interest. In RSs, the most convenient rating is the explicit feedback,

which includes explicit input by users regarding their interest in items. For

example, Netflix1 collects star ratings for movies. We refer to explicit user

feedback as ratings. Usually, explicit feedback comprises a sparse matrix, since

any single user is likely to have rated only a small percentage of possible items

as in the research paper domain.

1https://www.netflix.com
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When explicit feedback is not available, RSs can infer user preferences using

implicit feedback [HKV08], which indirectly reflects opinion by observing user

behavior including purchase history, browsing history, search patterns, or even

mouse movements. Implicit feedback usually denotes the presence or absence

of an event, so it is typically represented by a densely filled matrix.

As illustrated in Figure 5.1, MF models map both users and items to a

joint latent factor space of dimensionality k, such that user-item interactions are

modeled as inner products in that space. Accordingly, each item j is associated

with a vector pj ∈ k, and each user i is associated with a vector ui ∈ k. For a

given item j, the elements of pj measure the extent to which the item possesses

those factors, positive or negative. For a given user i, the elements of ui measure

the extent of interest the user has in items that are high on the corresponding

factors, again, positive or negative. The resulting dot product, pTj ui, captures

the interaction between user i and item j — the user’s overall interest in the

item’s characteristics. This approximates user i’s rating of item j, which is

denoted by r̂ij , leading to the following estimate:

r̂ij = pTj ui (5.1)

The major challenge is computing the mapping of each item and user to factor

vectors pj , ui ∈ k. After the recommender system completes this mapping, it

can easily estimate the rating a user will give to any item.

Tag-Aware Matrix Factorization

To alleviate the cold start problem in traditional MF, a widely adopted solution

is to incorporate additional sources of information about items or users to

achieve additional information-based MF. Therefore, inspired by the recent
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Figure 5.1: Main idea of matrix factorization.

development of deep-semantic modeling, we propose a hybrid deep semantic

MF model to tackle these problems and to further enhance the performance of

tag-aware personalized recommendation, by integrating the techniques of deep

semantic modeling, hybrid learning, and MF.

We extend the MF model by combining item textual semantic represen-

tation, which we obtain from training a deep learning model for social tag

recommendation as proposed in Chapter 4. We extract the document repre-

sentations from the last layer in the model (i.e., the layer used for classification)

as item vector representations. In this case, the item vector length is equal to

the number of tags. Figure 5.2 illustrates the proposed approach.

We used LightFM2, a Python library for implementing hybrid RSs, where

user and item metadata can be incorporated into the traditional MF algo-

rithms [Kul15]. A user (or item) vector is the sum of the vectors associated to

its constituent features. Similarly, a user (or item) bias term is just the sum of

the bias terms associated to its features. The probability r̂ij of an interaction

between a user i and an item j is modelled as the sigmoid of the dot product

2https://github.com/lyst/lightfm
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of the user vector and the item vector, along with the bias terms associated

with the user and the item. In our case, we have only item related features.

Figure 5.2: The proposed deep tag-aware matrix factorization approach.
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5.3 Experimental Evaluation

Dataset

We used citeulike-a dataset as in Chapter 4. It has 5551 users, 16980 items,

46391 tags and ratings in 0.22% of its user-item matrix entries. In our ex-

periments, we extracted only the top 300 tags and their 13356 related items

to train the model proposed in Chapter 4 and to extract document represen-

tations. While, we used the whole user-item entries for validating the hybrid

approach that we propose in this chapter.

Evaluation Methodology

For the citeulike-a dataset, we randomly selected P items associated with each

user to form the training set and we used all the rest of the dataset as the test

set. In our experiments, we set P to 10. As in [WB11, WWY15], we used

recall as the performance measure since the rating information is in the form

of implicit feedback. Which means a zero entry may be due to the fact that the

user is not interested in the item, or that the user is not aware of its existence.

Therefore, precision is not a suitable performance measure. And like most of

the RSs, we sort the predicted ratings of the candidate items and recommend

the top K items to the target user. The recall@K for each user is then defined

as:

Recall@K =
number of items that the user likes among the top-K

total number of items that the user likes
(5.2)

The final result reported the average recall over all users.
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Baselines

In order to perform an empirical evaluation of the proposed method (MF-

GRUTags), we made a comparison with the following baseline methods:

• BPR. Bayesian Personalized Ranking [RFGST09], a popular pair-wise

ranking method for recommendations. It maximises the prediction dif-

ference between a positive example and a randomly chosen negative ex-

ample. It is useful when only positive interactions are present as in our

case (implicit feedback).

• WARP. Weighted Approximate-Rank Pairwise [WYW13], another com-

monly used pair-wise ranking method for recommendations. It maximises

the rank of positive examples by repeatedly sampling negative examples

until rank violating one is found. It is useful when only positive inter-

actions are present and optimising the top of the recommendation list

(precision@K) is desired.

• MF-Tags. A hybrid approach that incorporates item tags as features in

an MF technique using the LightFM library.

• MF-TFIDF. A hybrid MF model based on LightFM, representing items

by their content features using TF-IDF.

• MF-GRUTags. Is our proposed model.

We used WARP as loss function for all the experimented hybrid approaches.
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5.4 Results and Discussion

The performance of MF-GRUTags has been validated with the baselines based

on the exploited dataset. As shown in Figure 5.3, WARP has slightly outper-

formed BPR. Incorporating TF-IDF as item features increased the recall almost

to the double compared with the basic MF techniquies (BPR and WARP).

Incorporating tags information also gave better recall but still less than the

TF-IDF based one. The recall increased over the TF-IDF approach using our

proposed model, which shows the effectiveness of using deep semantic repre-

sentation of research papers based on social tags for this task.

Figure 5.3: Performance comparison between BPR, WARP, MF-TFIDF, MF-
Tags and MF-GRUTags based on recall@K.
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5.5 Summary

In this chapter, we proposed a personalized research paper recommendation

approach, which integrates MF technique and semantic-aware document rep-

resentations as items metadata. The document representations were extracted

from a social tag prediction model that utilizes bidirectional GRUs and at-

tention mechanism for aggregating important words and sentences, in order

to increase the general representation and visualization of the key concepts in

research papers. The results of our experiments on the CiteULike dataset show

that the proposed approach is able to outperform state-of-the-art collaborative

filtering based techniques.
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Chapter 6

Reranking Research Paper

Recommendations using

Pre-trained Sentence Encoders

The task of content-based matching is challenging, mainly due to the problem

of determining the semantic similarity of texts. Nowadays, there exist many

sentence embedding models that learn deep semantic representations by being

trained on huge corpora, aiming to provide transfer learning to a wide variety

of NLP tasks. In this chapter, we present a comparative evaluation among

five well-known pre-trained sentence encoders deployed in the pipeline of title-

based research paper recommender system (RS). The experimented encoders

are USE, BERT, InferSent, ELMo, and SciBERT. In this study, we propose a

methodology for evaluating such models in reranking BM25-based recommen-

dations. The experimental results show that the sole consideration of semantic

information from these encoders does not lead to improved recommendation
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performance over the traditional BM25 technique, while their integration en-

ables the retrieval of a set of relevant papers that may not be retrieved by the

BM25 ranking function.

6.1 Introduction

Currently, deep learning (DL) research trends have emerged in text represen-

tation learning. DL for NLP leads towards increasingly powerful and complex

models, such as RNNs, LSTMs, and attention models architectures. Several

among these models use, for example, labelled datasets of paraphrase pairs to

obtain sentence embeddings in a supervised manner [WBGL16, CKS+17] to

learn sentence embeddings. The increased complexity of these models makes

them slower to train on larger datasets. Here comes the importance of Transfer

Learning.

Transfer Learning stores the knowledge gained from solving source tasks

(usually with abundant annotated data), and apply it to other tasks (usually

suffer from insufficient annotated data to train complex models), to solve the

inadequate supervision problem, which has become prevalent in many applica-

tions, such as the ones related to the research paper domain.

Pre-trained sentence encoders such as Google’s BERT and USE, Face-

book’s InferSent, and AllenAI’s SciBERT and ELMo, are considered applica-

tions of Transfer learning and they have received significant attention in recent

years. These pre-trained models can encode a sentence into deep contextu-

alized embeddings. They have been reported to outperform previous state-

of-the-art approaches such as traditional word embeddings, for many NLP

tasks [CKS+17, DC19]. Such tasks also include the calculation of semantic
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similarity and relatedness, which is key in developing effective research paper

RSs. If sentence encoders performed for calculating relatedness of research

papers as good as for other tasks, this would mean a great advancement for

research paper RSs.

In the research literature, there are some works on using document embed-

dings for ranking research papers based on semantic relatedness (e.g., [CB19]),

but - as far as we know - no work on exploiting pre-trained sentence embed-

dings for the same task. The only works we are aware of are related to utilizing

BERT for document retrieval. However, those works are focused on different

domains such as social media posts [YZL19], news [DC19, YZL19], and web

pages [DC19].

Therefore, our goal is to find how well some of the most common sentence

encoders perform when the task is the research paper recommendation, more

precisely the identification of related research papers for non-profiled users such

as in [NLdSG11] and [BABG17] mentioned in Chapter 3. To the best of our

knowledge, we are the first to conduct such an evaluation in the field of research

paper recommendation.

6.2 Methodology

Problem Definition

We focus on the task of related-article recommendations, where a RS receives

one paper as input, and returns a list of related papers. In our experiments,

research papers are represented by their title only. While this may not be

ideal to leverage the full potential of sentence encoders, using only the title is

a realistic scenario as many research paper RSs do not use full-texts but only
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the title (and sometimes the abstract) [BGLB16].

Recommendation Pipeline

Our recommendation pipeline follows the classical workflow of content-based

recommendation framework. It can be split into four steps:

• Given a set of research papers R, each r ∈ R is indexed using Apache

Lucene/Solr.

• Given a query title q, provided by a user, a set of N similar research paper

titles are retrieved by Apache Lucene/Solr BM-25 ranking function.

• For each n ∈ N , and q, sentence embeddings are calculated using one of

the pre-trained sentence encoders that we experiment.

• Recommendations are calculated by exploiting classic similarity mea-

sures: items are ranked according to their decreasing similarity, and top-

N recommendations are returned to the user.

Figure 6.1 shows the overall architecture of the proposed approach.

Sentence Embeddings

We experimented with five pre-trained sentence encoders to transform the input

paper and candidates papers in the corpus into sentence embeddings. The

encoders are described in the following sections.
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Figure 6.1: The proposed approach for reranking recommendations using sen-
tence encoders.

Universal Sentence Encoder (USE)

It has two models available to download from Tensorflow Hub1: the former

trained with a Deep Averaging Network (DAN)2, the latter with a Transformer3

network. The original Transformer model constitutes an encoder and decoder,

but only encoder part is used. The encoder is composed of a stack of N = 6

identical layers. Each layer has two sub-layers. The first is a multi-head self-

1https://www.tensorflow.org/hub
2https://tfhub.dev/google/universal-sentence-encoder/2
3https://tfhub.dev/google/universal-sentence-encoder-large/3
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attention mechanism, and the second is a simple, position-wise fully connected

feed-forward network. They also employ a residual connection around each of

the two sub-layers, followed by layer normalization. The transformer based

encoder achieves the best overall transfer task performance. However, this

comes at the cost of computing time and memory usage scaling dramatically

with sentence length.

Deep Averaging Network (DAN) is much simpler where input embeddings

for words and bi-grams are first averaged together and then passed through a

feedforward DNN to produce sentence embeddings. The primary advantage of

the DAN encoder is that its computation time is linear in the length of the

input sequence.

Both Transformer and DAN models are trained on a variety of web sources,

such as Wikipedia, web news, web question-answer pages, and supervised data

from the Stanford Natural Language Inference (SNLI) corpus4, a set of 570k

pairs of sentences labelled with 3 categories: neutral, contradiction and en-

tailment. Both models return vectors of 512 dimensions as output [CYK+18].

Figure 6.2 clarifies the differences between Transformer and DAN architectures.

InferSent

It adopts a bidirectional LSTM (biLSTM) completed with a max-pooling op-

erator as sentence encoder. InferSent is trained on the SNLI corpus. Both

sentences are encoded using the same encoder while the classifier is trained on

a pair representation constructed from the two sentence embeddings as shown

in Figure 6.3. We experimented with two models of InferSent5: the former

4https://nlp.stanford.edu/projects/snli/
5https://github.com/facebookresearch/InferSent
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Figure 6.2: USE’s Transformer vs. DAN architectures.

trained using GloVe word embeddings, the latter using fastText word embed-

dings. The output of InferSent is an embedding of 4096 dimensions [CKS+17].

ELMo (Embedding from Language Models)

ELMo’s inputs are characters rather than words. They can, thus, take advan-

tage of sub-word units to compute meaningful representations even for out-

of-vocabulary words (like FastText). ELMo uses biLSTM in training, so that

its language model not only understands the next word, but also the previous
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Figure 6.3: InferSent architecture (from [CKS+17]).

word in the sentence. It contains a 2-layer biLSTM backbone. ELMo are con-

catenations of the activations on several layers of the biLSTMs as shown in

Figure 6.4. Different layers of a language model encode different kinds of infor-

mation on a word (e.g., Part-Of-Speech tagging is well predicted by the lower

level layers of a biLSTM while word-sense disambiguation is better encoded in

higher-levels). Concatenating all layers allows to freely combine a variety of

word representations for better performances on downstream tasks.

We used TensorFlow Hub implementation of ELMo6, trained on the 1

Billion Word Benchmark. ELMo returns a representation of 1024 dimen-

sions [PNI+18].

6https://tfhub.dev/google/elmo/2
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Figure 6.4: ELMo architecture.

BERT (Bidirectional Encoder Representations from Transformer)

It is a sentence embedding model that learns vector representations by training

a deep bidirectional Transformer network. BERT makes use of Transformer,

an attention mechanism that learns contextual relations between words (or

sub-words) in a text. In its vanilla form, Transformer includes two separate

mechanisms — an encoder that reads the text input and a decoder that pro-

duces a prediction for the task. Since BERT’s goal is to generate a language

model, only the encoder mechanism is necessary.
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We used the uncased BERT-Base model7, which consists of 12 hidden layers

and 768 attention heads, and trained on Wikipedia8, through bert-as-service9

to obtain a vector of 768 dimensions [DCLT18]. Bert-as-service uses BERT as

a sentence encoder and hosts it as a service via ZeroMQ10, allowing us to map

sentences into fixed-length representations in just two lines of code. BERT-

base’s high-level architecture is shown in Figure 6.5.

Figure 6.5: BERT-Base architecture.

SciBERT

It is a BERT model, but trained on a corpus of 1.14M scientific papers [BCL19].

We used the recommended uncased scibert-scivocab version11. Similar to

BERT, we obtain a vector of 768 dimensions using bert-as-service.

7https://github.com/google-research/bert
8https://www.wikipedia.org/
9https://github.com/hanxiao/bert-as-service

10https://zeromq.org/
11https://github.com/allenai/scibert

90



Offline Evaluation

Reranking

In the reranking step, we calculate the cosine similarity between the sentence

embedding of the input paper title and embeddings of all the candidate paper

titles. This similarity metric expresses the semantic similarity. We perform a

linear combination between the initial scores from BM25 after being normal-

ized, and the semantic similarity scores from sentence embeddings, by summing

up the scores (with uniform weights set to 0.5) to generate the final ranked rec-

ommendations.

Baseline and Hybrid Approaches

As strong baseline we use BM25, a common approach for document rank-

ing [BABG17]. Today’s sentence encoders have a major drawback, that is,

the high execution time on large corpora. Using sentence embeddings on large

corpora seems hardly feasible in a production RS, which needs to return rec-

ommendations within a few seconds or less. Hence, we do not only compare

the embeddings with BM25, but we additionally experiment with hybrid ap-

proaches in which we first use Apache Lucene’s BM25 to retrieve a list of top-20,

50 or 100 recommendation candidates, and then we rerank that list instead of

the entire corpus, with the sentence encoders.

6.3 Offline Evaluation

Dataset

For the evaluation, we used the CiteULike dataset [WB11]. It contains paper

collections of 5,551 researchers, i.e., lists of which documents researchers added
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Table 6.1: Statistics of citeulike-a dataset.

#Users #Papers User-Paper

5,551 16,980 204,986

to their personal document collection. Table 6.1 shows the statistics of the

dataset.

Evaluation Methodology

Using 5 -fold cross-validation, we split the data by randomly selecting one of

the research paper titles that a user has in her library as input paper, and all

the remaining paper titles are used for evaluating if the recommended papers

were actually in the user’s library.

As evaluation metrics, we calculated precision, recall, and Mean Average

Precision (MAP) at rank 10.

Precision measures the capability of the system to reclaim as much relevant

research papers as possible in response to the target paper request.

Precision =

∑
(relevant papers ) ∩

∑
(retrieved papers)∑

(retrieved papers)
(6.1)

Recall measures the capability of the system to reclaim as few irrelevant re-

search papers as possible in response to the target paper request.

Recall =

∑
(relevant papers) ∩

∑
(retrieved papers)∑

(relevant papers)
(6.2)

As users often scan only documents presented at the top ranked of the rec-

ommendation list, we feel it is imperative to also measure the system’s ability
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to provide useful recommendations at the top of the recommendation list us-

ing the one of the most widely used ranked information retrieval evaluation

measures: Mean Average Precision (MAP).

Average Precision (AP) is the average precision values at all ranks where

relevant research papers are found, and MAP is the average of all APs. The

Average Precision (AP) is calculated as follows:

AP =
1

m

N∑
k=1

P (Rk) (6.3)

where for a user u, m is the number of relevant papers to u, N is the whole

number of the papers in recommended list, P (Rk) represents the precision of

retrieved results from the top result until get to paper k.

MAP gives an average of each user’s AP value:

MAP =
1

U

U∑
k=1

AP (k) (6.4)

We also assess the efficiency of the reranking process by reporting data re-

lated to the recommendation processing time in this scenario. Our tests were

performed on a computer equipped with Intel Core i7-6700 CPU and 16GB

RAM.

Results and Discussion

We report the performance of standalone techniques (i.e., only sentence encoder

scores are used for reranking), and hybrid techniques (i.e., BM25 scores are

combined with sentence encoder similarity scores for reranking). BM25 without

any reranking is used as baseline in both cases. The following observations can

be drawn by analyzing the obtained outcomes:
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• Figures 6.6, 6.7, and 6.8 show that none of the sentence embedding models

alone is able to outperform BM25 in terms of precision, recall, and F1.

• USE, BERT and SciBERT outperform ELMo and InferSent, on average.

One possible reason is that USE, BERT, and SciBERT are trained on cor-

pora that contain technical and scientific terms (i.e., USE and BERT on

Wikipedia, SciBERT on scientific papers), whereas ELMo and InferSent

are trained on a news crawl and a natural language inference corpus,

respectively.

• Figures 6.9, 6.10, and 6.11 show that the hybrid approaches (BM25 +

sentence embeddings) outperforms BM25 and all other standalone ap-

proaches (results are statistically significant with p < 0.05 in ANOVA

test). Apparently, in some cases, BM25 fails to assign the right ranking

scores to papers, while sentence embeddings could capture the semantic

similarity between them. In this case, the ranking performance increases

with the top-N number of papers retrieved by BM25, which means that

more relative papers can be found.

• BM25 + USE (Transformer) performs best. Compared to BM25, it rela-

tively increases MAP@10 by +5.29% when reranking 20 titles, by +6.47%

when reranking 50, and by +7.35% when reranking 100 titles.

In our experiments, BM25 queries took around 5 milliseconds to retrieve

up to 100 results. The extra time taken to calculate embeddings and reranking

20, 50 and 100 titles through the different models is shown in Figure 6.12. The

results can be concluded as follows:
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Figure 6.6: Precision@K of standalone reranking techniques.

Figure 6.7: Recall@K of standalone reranking techniques.

95



6. Reranking Research Paper Recommendations using Pre-trained
Sentence Encoders

Figure 6.8: MAP@K of standalone reranking techniques.

Figure 6.9: Precision@K of hybrid reranking techniques.
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Figure 6.10: Recall@K of hybrid reranking techniques.

Figure 6.11: MAP@K of hybrid reranking techniques.
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Figure 6.12: Reranking time in seconds using the different sentence encoders.

• USE (DAN) is the fastest, taking around 0.02 seconds to rerank 20 or 50

titles, and 0.03 seconds to rerank 100 titles.

• ELMo is the slowest in reranking 20 or 50 titles.

• Finally, BERT and SciBERT using bert-as-service are the slowest in

reranking 100 titles, taking around 4.0 seconds. This means that they

could not be used for real-time reranking recommendations, unless higher

computing resources (e.g., GPU or TPU) were provided.
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6.4 User Study

We conducted a user study in order to validate the results obtained from the of-

fline evaluation. Nine volunteers were selected to participate in the user study.

Their area of expertise covered various topics in computer science including

Machine Learning, RSs, and NLP. The user study participants were two aca-

demics, three PhD students, three master students and one software developer,

all with computer science specialty.

The general objective of the study was to receive expert feedback and opin-

ion about the correctness of the conclusion received from the offline evaluation,

which concludes that the best performing algorithm is “BM25 + USE (Trans-

former)” in comparison to BM25 as baseline. Figure 6.13 shows the structure

of the user study survey. We provided the same list of ten papers from different

domains in computer science to each participant, with the title and abstract of

those papers. The participants were asked to select a paper in order to receive

two recommendation sets, each of them with five recommended papers gener-

ated by different algorithms randomly, i.e., the baseline (BM25) and the best

performing as per the offline evaluation (BM25 + Transformer).

Using a questionnaire, the participants were asked to anonymously fill out

with their opinions and evaluate which recommendation set they think is better

(Set 1 or Set 2) and if both look equal to her, considering the semantic similarity

to the selected paper and the ranking of the recommended papers. We asked

the participants to submit their responses for at least one out of the ten papers.
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Figure 6.13: User study graphical user interface.

Results and Discussion

The results of the user study are shown in Figure 6.14. We received 63 responses

for the questionnaire, the majority which is around 59% of the answers were

Set 1 (BM25 + Transformer). Only around 24% of the answers were that

Set 2 (BM25) is a good recommendation set. While 17% of the answers were

that both sets look similar to the participant. This result confirms that the

proposed “BM25 + USE (Transformer)” could effectively capture the semantic

relatedness between research paper titles.

In the user study, we also provided the tester with an option to view the

research paper abstract corresponding to the selected paper title. We gathered

an information on the perceived utility of showing abstracts. In more details,

we have tracked how many clicks on abstracts were performed in order to collect
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Summary

Figure 6.14: Results of the user study.

statistics of how many users decided to view an abstract. We found out that

only 1.6% of the displayed paper abstracts were viewed. Which means that the

title in this case was enough to understand the recommendation provided and

decide about the recommendation set.

6.5 Summary

In this chapter, we experimented five pre-trained sentence encoders for rerank-

ing research paper recommendations. Our results show that the sentence en-

coders – which perform so well in other domains – are not performing well in

the domain of research paper recommendations. When combined in a hybrid

approach with BM25, they performed better than BM25 alone or any of the en-

coders alone. However, the improvement of up to 7.35% is still small compared

to the exceptional results sentence encoders achieved in other domains.
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Chapter 7

Conclusions

7.1 Summary of Results

This thesis has focused on investigating possible deep learning techniques that

may capture semantic textual similarity between research papers, in order to

develop more accurate and effective recommender systems. Since tagging is

one of the ways to organize, find and recommend research papers, we proposed

a tag predection approach for research papers. This approach has adopted

a supervised deep recurrent network with attention mechanism, in order to

focus on important words in paper titles and abstracts, during the feature

extraction phase. Then, we exploited the same model trained for tag prediction

in extracting semantic and textual representations of research papers. We

incorporated those representations into a matrix factorization technique, in

order to obtain personalized research paper recommendations. Finally, we

experimented five well-known pre-trained sentence encoders that claimed to

capture generic semantic representations. The encoders were experimented in

the pipeline of a non-personalized research paper recommender system that is
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based on Apache Lucene BM25 ranking function

Overall, the main findings of the research introduced in this thesis can be

summarized as follows:

1. In the research paper domain, traditional techniques such as TF-IDF still

performs quite good compared to most of the word embeddings based

techniques, due to the lack of scientific and multi-domain vocabulary in

word embedding models.

2. The proposed approach for representing research paper titles and ab-

stracts, using bidirectional GRUs with attention mechanism, could effec-

tively focus on important words and sentences, and it led to better tag

prediction accuracy compared to TF-IDF and state-of-the-art techniques

in text feature extraction. In this study, we also showed that using titles

concatenated with abstracts in this scenario yields better performance

compared to using only the titles.

3. Social tags as metadata can enhance the performance of research paper

recommendation. We showed that tags can also be utilized for extract-

ing semantic document representations, using the tag prediction model.

And incorporating those representations with few number of ratings, can

enhance the recommendations. A comparison was made, which showed

the difference between using matrix factorization (MF) with tags or doc-

uments TF-IDF as metadata, and using our proposed model of tag pre-

diction to extract text features as metadata. The comparison showed an

improved performance of the proposed technique.

4. Traditional search engine based techniques such as the ones based on
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Apache Lucene/Solr BM25 ranking function, still gives better recommen-

dation performance for non-personalized research paper recommendation,

in comparison to state-of-the-art pre-trained sentence encoders such as

USE, BERT, ELMo, InferSent and SciBERT. Differently, the integration

of these encoders may enhance the ranking of recommendations.

7.2 Future Directions

There are several possibilities to extend the research presented in this thesis.

Among the others,

• For the tag prediction work, more extensive experiments can be con-

ducted to further evaluate the performance of the proposed approach on

larger number of tags. In addition, the proposed approach could also be

validated for research paper keyword prediction. Moreover, considering

the hierarchical structure of tags could also be investigated.

• For the tag-aware research paper recommendation, possible extension

could be to study how to select the number of top tags that could ef-

fectively train a model, which can further be used to extract research

paper representations. Another possible future work is to explore more

advanced MF techniques in this scenario rather than WARP.

• For the proposed technique of reranking recommendations using sentence

encoders, a limitation of our research is that we only worked with the

titles of papers. An extension could be to include the abstracts. How-

ever, this will probably further increase the running time, and hence

decrease the applicability of sentence encoders in systems that require
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recommendations in real-time. Another possible extension is to fine-tune

the sentence encoders with annotated datasets. However, unfortunately,

research paper domain lacks such kind of paper similarity and relatedness

annotation. Finally, one interesting direction would be exploring meta-

learning techniques that could automatically select or integrate different

sentence encoders based on the domains of research papers.
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