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Introduction

Almost every realistic physical system is nonlinear in nature. Nonlinear models can be derived
in many areas of physics from the propagation of water waves to the macroscopic theory of
supeconductivity and superfluidity and to general relativity. Moreover one can say all chaos
theory originated from the study of nonlinear dynamics. In fact most of the times those
systems present an irregular if not chaotic behavior. Anyway a great number of models of
physical situations, named integrable models (see later), exhibit features as regularity, stability
and predictability of the motion. For example the Korteweg de Vries equation (KdV ) for a
real function u (x, t)

∂tu+ ∂3
xu = u∂xu,

arises in the propagation of shallow water surface waves when weakly nonlinear restoring forces
are present, of long internal waves in a density stratified ocean, of ion-acoustic waves in a plasma
and acoustic waves on a crystal lattice. Another prototypical nonlinear model is represented
by the nonlinear Schrödinger equation (NLS) for a complex function u (x, t)

i∂tu+ ∂2
xu = ±u|u|2,

In the literature the (−) case is known as the focusing NLS equation and the (+) case as
the defocusing NLS equation. It arises in nonlinear optics in the presence of materials whose
dielectric constant increases with the field intensity. In such a situation an electromagnetic
beam, which otherwise would broad due to diffraction, can propagate without spreading in
nonlinear media and continue focusing. An important feature of the NLS equation, which
is closely related to the work presented in this thesis, is also due to its universal character.
Generically speaking, most weakly nonlinear, dispersive, energy-preserving systems give rise,
in an appropriate limit, to the NLS equation. More in detail, the NLS equation provides a
description for the envelope dynamics of a quasi-monocromatic plane wave propagating in a
nonlinear weakly dispersive medium when dissipation can be neglected. Variants of the NLS
equation offer models for various situations as for example Bose-Einstein condensates.

In more recent years the attention turned to discrete nonlinear systems, i. e. systems
described by difference equations. Let’s think for a moment to the possible applications in
quantum gravity as models for the dynamics of a discrete space-time. In nonlinear optics for
example the dynamics of localized pulses in arrays of coupled optical waveguides are described
by a discrete version of the continuous NLS equation for a complex function fn(t)

i∂tfn +
fn+1 − 2fn + fn−1

2σ2
= ±|fn|2fn,

known as the discrete nonlinear Schrödinger equation (dNLS). This equation arises in several
situations ranging from the mechanical context for a lattice of coupled anharmonic oscillators
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to condensed matter physics. Despite of its physical relevance, numerical simulations show
for this system situations of irregular dynamics and emergence of chaos [1]. Anyway much
of the attractive behind nonlinear discrete systems resides not only in their possible physical
applications but also in the domain of numerical calculus as they represent finite difference
approximations of the corresponding continuous models.

Beside physical and numerical applications a renewed interest in nonlinear models came
from the purely mathematical side since the discovery of the inverse scattering or spectral
transform method. This technique in fact generalizes to the nonlinear domain the Fourier
transform method thereby allowing to solve, even if for a small portion of nonlinear systems,
the Cauchy problem at least in some special classes of solutions. In fact the core of the inverse
scattering method is the observation that certain spectral data, in one to one correspondence
with the given equation, evolve in a simple way contrasted with the generally complicated
nonlinear evolution of the system they refer. Moreover, under some conditions, the differential
problem can be turned into a purely algebraic one, allowing the explicit construction of the
so called soliton solutions. For example the previously cited KdV and the continuous NLS
equations present solitons solutions. Another feature of the systems solvable by the spectral
transform method is that they don’t come alone but as members in hierarchies. Every system
in a hierarchy is indeed solvable by inverse scattering. Moreover every hierarchy of equations
represents compatible evolutions for the same function or, otherwise stated, equations in a hier-
archy represent generalized symmetries of each other. The presence of (point and genarelized)
symmetries for a given system offer another instrument to derive explicitly special solutions
by means of the so called symmetry reductions. Another important feature of those systems
is the presence of an infinite number of conservation laws. These laws, confining the motion
to a restricted area of the phase space, are in some way responsible for the regularity of the
dynamics. All these instruments permit the extraction of a great amount of information from
the system under study. However we remark that only some special systems lend themselves
to a similar analysis. For this reason those systems are termed integrable systems. Between
them fall also every system which is linear or linearizable by an invertible transformation.

For all the systems for which spectral, symmetry or other algebraic methods are not of
great help or at disposal, named nonintegrable systems, as the dNLS equation, a great help
comes from perturbative techniques. In general perturbation theory is a collection of iterative
methods for the systematic analysis of the behavior of solutions to differential and difference
equations. The general procedure of perturbation theory is to identify a parameter ε such that
the solution of the given problem is constructed as a power series of ε around an ε0 value at
which limit the problem becomes soluble, i. e. very often the system reduces to an integrable
system. No need to say that perturbation theory results useful even in the case of integrable
systems, i. e. in the study of the solutions in all the situations when the spectral problem
is not turnable into an algebraic one. On another side, certain features of the dynamics of
integrable and nonintegrable systems need not an explicit solution to be enlightened as appear
only in specific asymptotic regimes. The description of these regimes is the subject of the so
called reductive perturbation method [38,39], a method which reduces the system under study
to a more tractable and solvable system. Among reductive techniques we have multiscale anal-
ysis, a particularly useful method for constructing perturbation series uniformly approximating
the solution of the problem. In more recent years multiscale reduction techniques proved to
be also an excellent integrability test for a large variety of nonlinear partial differential equa-
tions [5, 9, 13,14,35].

The aim of this thesis is the development of a multiscale reductive perturbation technique
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for discrete systems, that is systems described by partial difference equations. A guiding prin-
ciple in such a programme should certainly be the requirement, if one starts from an integrable
model, to maintain this integrability property for the reduced models. So, if for an integrable
system the reduced equations should always be at all perturbative orders integrable (a member
of an integrable hierarchy), for a nonintegrable one the result could be, up to any finite order,
either integrable or not. Anyway for a nonintegrable system there should always exist an order
at which we obtain a nonintegrable equation. Thus a properly developed multiscale technique
should provide us as a by-product, besides approximate solutions to our equations of motion,
an integrability test capable in principle to recognize a nonintegrable system, reproducing in
this way on the discrete side what multiscale perturbation techniques successfully did on the
continuous case. The first attempts to transfer multiscale perturbation techniques to the level
of difference equations [2, 26–30] don’t succeed in preserving the integrability property of the
starting models.

This work is organized as follows:

• Chapter 2. The continuous and discrete multiscale techniques.
In Section 1 of this chapter we review the classical multiscale perturbative approach as
in [4–9,13,40] for continuos real dispersive equations. After a general presentation of the
method, we will give two illustrative examples of application: the first one is the paradig-
matic case of the KdV equation a well known S−integrable model and in the second one
we will present the reduction of a C−integrable Burgers-like equation. Both example
will be carried out up to the nonlinear Schrödinger (NLS) scale and we will outline how,
at least until this order, one succeed in removing from the obtained reduced equations
all the spurious diverging secular terms. After that in Section 2 we will recall the re-
sults beyond the NLS order [11–14, 35, 37] necessary to set up an integrability test for
partial differential equations based on some necessary integrability conditions. There we
also formulate the notion of asymptotic integrability [13, 14]. The necessary integrability
conditions are explicitly reported for different hierarchies of reduced systems, namely the
NLS hierarchy and the KdV /potential KdV hierarchies. After that we will discuss the
problem of the solutions of the linearized equations for both the NLS and potential KdV
hierarchies. In Section 3 we illustrate the application of the method to the case of real
dispersive partial difference equations [15,16]. This extension turns out to be nothing but
a slight adaptation of the continuous case it as provides, starting from a partial difference
equation, a partial differential one. Hence all the results developed in [13, 14, 35] to test
the integrability of differential equations can be used. The results on the so called A3

integrability conditions (two orders beyond NLS equation, see definition (2.4)) for the
NLS hierarchy as well as on the integrability conditions for theKdV /potential KdV hier-
archies are up to our knowledge new. Also the material presented in Section 3 is original.

• Chapter 3. Multiscale reductions of nonlinear discrete systems I: S−integrable
equations.
In Section 1 of this chapter we run the integrability test for the lattice potential Korteweg-
de Vries equation (lpKdV ) which is well known to be an equation integrable by spectral
methods. Here we outline how at all orders considered all the integrability conditions
are, as expected, satisfied. In Section 2 we illustrate how the structures entailing the
integrability of the lpKdV equation as its Lax pair and some of its generalized symmetries
admits a similar multiscale reduction going respectively to the Lax pair and to the (point
and generalized) symmetries of the NLS equation [17]. In Section 3 we will present the
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expansions of the off-centric discretization of the (continuous) KdV equation

un,m+1 − un,m−1 =
α

4
(un+3,m − 3un+1,m + 3un−1,m − un−3,m)− β

(
u2

n+1,m − u2
n,m

)
,

and in Section 4 of the symmetric discretization of the KdV equation

un,m+1 − un,m−1 =
α

4
(un+3,m − 3un+1,m + 3un−1,m − un−3,m)− β

2
(
u2

n+1,m − u2
n−1,m

)
.

We emphasize how at a certain order depending on the equation those systems fail to
fullfill the integrability conditions prescribed for that order, thereby showing their non-
integrability. In Section 5 we illustrate how is possible to reduce differential-difference
equations applying the multiscale reduction to the integrable Ablowitz-Ladik (A − L)
discrete NLS equation

i∂tfn(t) +
fn+1(t)− 2fn(t) + fn−1(t)

2σ2
= ±|fn(t)|2 fn+1(t) + fn−1(t)

2
,

which, due to its integrability property, always respect all the necessary integrability
conditions. In Section 6 we will apply the integrability test to the previous cited dNLS
equation, a nonintegrable discretization of the NLS equation, giving an analytical evi-
dence of its nonintegrability. These two last cases will offer an example of the versatility
of the technique, illustrating how one can consider also equations which are not real
and/or dispersive [32]. All the results appearing in this chapter are original.

• Chapter 4. Multiscale reductions of nonlinear discrete systems II: C−integrable
equations.
In Section 1 of this chapter we will run the integrability test for the Hietarinta equa-
tion [18]

un, m + e2
un, m + e1

· un+1, m+1 + o2
un+1, m+1 + o1

=
un+1, m + e2
un+1, m + o1

· un, m+1 + o2
un, m+1 + e1

,

a well known linearizable system [36], showing that now the reduced equations, for the
stated linearizability property, are indeed linear. Applying a similar multiscale expansion
on the linearizing transformation, we will show that the Hietarinta equation linearizes to
its linear part. All the results appearing in this chapter are original.

• Chapter 5. Conclusions and perspectives.
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The continuous and discrete multiscale

techniques

2.1 Multiscale expansion of real dispersive partial differential equations

A great variety of mathematical models of concrete physical situations are described by non-
linear partial differential (PDE) or difference equations (P∆E). Among those equations an
important class is represented by differential equations describing the propagation of nonlinear
dispersive waves when one assumes an idealized situation in which no diffraction (e. g. one
dimensional propagation), no losses due to dissipation and no interactions with any source are
present. Under such a situation an exceptional part of the models derived share remarkable
mathematical properties leading to a concrete possibility from the mathematical side to solve
analytically, at least for certain classes of solutions, our equations. Consequently from the
physical side one has the possibility to understand their properties such as the regularity of
their motion, wave collisions, stability and long-time asymptotics. Systems sharing these math-
ematical properties can be classified into two major classes. As in [4], we call C−integrable
equations those nonlinear PDEs that can be exactly linearized by an invertible transforma-
tion of the dependent (sometimes also the independent) variables. On the other hand we call
S−integrable equations those nonlinear PDEs that arise as a compatibility condition of an
overdetermined system of linear equations, the so called Lax pair of the system. By the spec-
tral transform or inverse scattering method, the Cauchy problem of an S−integrable equation
can be solved explicitly in a special class of solutions, named soliton solutions, for which one
can transform the original differential problem into a purely algebraic one. Soliton solutions
exist for C−integrable systems too. It turns out that spectral methods allow a linearization of
our nonlinear equation into an integral (Fredholm, Volterra) one. On the contrary the great
majority of the models do not exibit any underlying mathematical structure that can be used
as a tool to extract from them their physical properties and this absence allow these systems
to behave in an irregular, if not chaotic, way. To express this situation, they are termed nonin-
tegrable. To deal with these situations, sometimes extremely hard to analyze, one has to resort
to a perturbative approach in order to extract some significant information like, for example,
approximate solutions. It is a remarkable fact that the perturbative multiscale approach casts
a light even into integrable systems, characterizing them in terms of the reduced equations
one obtains during the expansion. As a matter of fact this realizes the effective possibility for
an algorithmic integrability test upon which one can distinguish an integrable system from a
nonintegrable one. That possibility is a direct consequence of the following assumption:

• Integrability is preserved by the perturbative reduction method.

On the other side, wide occurrence of some reduced models allow us to elevate them to the
status of systems of somehow universal nature or model PDEs. Among them we have the NLS
equation which, under proper conditions, turn out always to be the first nonlinear reduced
model, sometimes called the weak nonlinearity limit.

Let us now illustrate in detail the multiscale reduction technique for real dispersive nonlinear
differential systems following closely references [4, 13,35]. Let us consider the class of PDEs
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2.1 Multiscale expansion of real dispersive partial differential equations 9

Du(x, t) = F [u, ux, ut, uxx, uxt, utt, . . .], (2.1)

where all the variables (dependent and independent) and constants in the equation are real.
The linear differential operator D in the lhs can have one of the forms

Deven
.=
∂2

∂t2
+

N∑
n=0

(−1)nan
∂2n

∂x2n
, (2.2a)

Dodd
.=
∂

∂t
+

N∑
n=0

(−1)nbn
∂2n+1

∂x2n+1
, (2.2b)

with an and bn (real) constants. The function F [u, ux, ut, uxx, uxt, utt, . . .] on the r.h.s. of (2.1)
is on the contrary a nonlinear real analytic function of u and its x and t−derivatives. It is
straightforward to verify that, given the forms (2.2a), (2.2b), the linear part of (2.1)

Du(x, t) = 0, (2.3)

is dispersive, admitting as a solution the real travelling wave

Aei[κx−ω(κ)t] + C.C. = 2|A| cos [κx− ω (κ) t+ α] , (2.4)

with α
.= [1− sgn (A)]π/2. The dispersion relation is respectively given by the following

equations

ω2 (κ) =
N∑

n=0

anκ
2n, (2.5a)

ω (κ) =
N∑

n=0

bnκ
2n+1. (2.5b)

We will require that ω (κ) is not linear in κ so that the group velocity v (κ) .=
dω(κ)
dκ , given

respectively by

v (κ) =
N∑

n=0

nan
κ2n−1

ω (κ)
, (2.6a)

v (κ) =
N∑

n=0

(2n+ 1) bnκ2n, (2.6b)

is not constant. Moreover in the case (2.5a) we assume that there exists at least one value of
κ for which the r.h.s. is positive as ω (κ) is to be real. Taking into consideration eqs. (2.5), we
can rewrite eqs. (2.2) as

Deven =
∂2

∂t2
+ ω2

(
i
∂

∂x

)
=
[
∂

∂t
+ iω

(
i
∂

∂x

)]
·
[
∂

∂t
− iω

(
i
∂

∂x

)]
, (2.7a)

Dodd =
∂

∂t
+ iω

(
−i

∂

∂x

)
, (2.7b)
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where the function ω (κ) may not be polynomial in κ. In fact it is sufficient that ω (κ) is
analytic (at least locally for some κ) so that its definition through the dispersion relation (2.5)
can be given by a series expansion (e.g. N → +∞).

If F = 0, so that our equation is linear, one can write the solution in the form of a wave
packet

u(x, t) =
∫ +∞

−∞
dκA (κ) ei[κx−ω(κ)t] + C.C., (2.8)

which we assume to be localized around the wave number κ0 in the interval (κ0−∆κ0, κ0+∆κ0).
We than define a new variable η by the relation κ .= κ0+η∆κ0. Then eq. (2.8) can be rewritten
as

u(x, t; ε) = u(1) (ξ, t1, t2, . . . ; ε)E(x, t) + C.C., (2.9)

where

u(1) (ξ, t1, t2, . . . ; ε)
.= ε

∫ +∞

−∞
dηÃ (η; ε) ei[κ0ηξ−

∑+∞
n=1(κ0η)ntnωn(κ0)], (2.10)

Ã (η; ε) .= κ0A (κ0 + η∆κ0) , E(x, t) .= ei[κ0x−ω(κ0)t], ε
.=

∆κ0

κ0
, (2.11)

ξ
.= εx, tn

.= εnt, ωn (κ) .=
1
n!

dn

dκn
ω (κ) . (2.12)

In eq. (2.9) the solution is represented by a monochromatic carrier wave E(x, t) modulated
by an amplitude u(1) (ξ, t1, t2, . . . ; ε) which is a function of the slow-space variable ξ, of the
slow-times tn, n = 1, 2, . . . and of the quantity ε which will be identified as our perturbative
parameter. If ε � 1, a wave of the type (2.9) wilI be called quasi-monochromatic. It is clear
that the amplitude u(1) should depend on as many slow-times tn as the number of nonvanishing
coefficients ωn (κ) in the expansion of ω (κ) in a power series of κ. In the case that ω (κ) is
given by a polynomial of degree N in κ, one will need a maximum of N slow-variables tn.

If our equation (2.1) is nonlinear, the nonlinear function F will generate higher order
harmonics. So a form like (2.9) is no more valid and we must consider the more general ansatz

u(x, t; ε) .=
+∞∑

α=−∞
u(α) (ξ, t1, t2, . . . ; ε)Eα(x, t), (2.13)

where the sum extends over all harmonics and we require u(−α) = ū(α) in order for the solution
to be real. We will also assume that the amplitude u(α)s are bounded as tn → ±∞, rapidly
decreasing as ξ → ±∞ and analytic in ε. Than one can expand the u(α)s in power of ε giving
the final expression

u(x, t; ε) .=
+∞∑

α=−∞

+∞∑
n=1

εnu(α)
n (ξ, t1, t2, . . .)Eα(x, t), (2.14)

with u
(−α)
n = ū

(α)
n . The starting point n = 1 for the ε-expansion is choosen so that the

nonlinear contribution to the solution enters as a small perturbation to the linear one. It is
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important to remark that one can generalize the ansatz (2.14) by defining the slow variables
as

ξ
.= εpx, tn

.= εnpt, p > 0, n ≥ 1. (2.15)

Then the differential operators ∂x and ∂t, when acting on a function u(x, t) represented by the
expansion (2.14), act as the operators

Dx
.= ∂x + εp∂ξ, Dt

.= ∂t + εp∂t1 + ε2p∂t2 + . . . , (2.16)

when one assumes that all the variable involved x, t, ξ, t1, t2, . . . are independent. Let us
now choose for the linear operator D the odd operator (2.7b) and let us insert (2.14) into (2.1)
taking into consideration eq. (2.16). We obtain

+∞∑
α=−∞

Eα(x, t)
+∞∑
n=1

εn

[
n∑

m=1

D
(α)
n−mu

(α)
m (ξ, t1, t2, . . .)− F (α)

n

]
= 0, (2.17)

where the nonlinear functions F (α)
n , arising from the expansion in harmonics and in the pertur-

bative parameter of the analytic function F [u, ux, ut, uxx, uxt, utt, . . .], are polynomials of u(β)
ρ

with ρ ≤ n− 1 and their derivatives with respect to the slow variables. The F (α)
n s satisfy the

reality conditions F (−α)
n = F̄

(α)
n . As the quantity n−m must be a multiple of p, the operators

D
(α)
n−m

.= D
(α)
σp are defined as

D
(α)
0

.= i [ω (ακ0)− αω (κ0)] , (2.18a)

D(α)
σp

.= ∂tσ
− (−i)σ+1

ωσ (ακ0) ∂σ
ξ , σ ≥ 1. (2.18b)

Setting in eq. (2.17) separately to zero every coefficient of Eαεn, we have

[ω (ακ0)− αω (κ0)]u
(α)
1 = 0, (2.19a)

n∑
m=1

D
(α)
n−mu

(α)
m (ξ, t1, t2, . . .) = F (α)

n , n ≥ 2, α ∈ (−∞,+∞) , (2.19b)

where we took into consideration that from definition (2.14) F (α)
1 = 0 ∀α. Following [13, 35],

we can classify the harmonics according to the form of D(α)
0 . If D(α)

0 = 0, we say that the
α-harmonic is at resonance. As we supposed that ω (κ) is odd and nonlinear in κ, the only
harmonics that are at resonance ∀κ0, denoted as structural resonances, are those with α = 0,
±1. On the other hand for some value κ0 it could happen that D(α)

0 = 0. In this case we
call the α-harmonic an accidental resonance. Finally, if D(α)

0 6= 0 ∀κ0, then the corresponding
harmonic is called a slave harmonic, the nature of this distiction residing in the following. For
a fixed value of α as n varies, if D(α)

0 6= 0, equations (2.19) represent a triangular system of
algebraic equations which allow us to express the function u(α)

n in terms of the functions F (α)
m

with m ≤ n. As the F (α)
m are functions of the u(β)

ρ with ρ ≤ m − 1, the slave harmonic u(α)
n

can be expressed in terms of the u(β)
ρ with ρ ≤ n − 1. Iterating the procedure for the various

u
(β)
ρ , one sees that a slave harmonic u(α)

n can be finally expressed in terms only of the u(β)
ρ
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with ρ ≤ n− 1 and β the index of a resonant harmonic. Furthermore from (2.19a) one can see
that for a slave harmonic we have u(α)

1 = 0 and iteratively that u(α)
n = 0 if |α| > n, so that eq.

(2.14) and (2.19b) can be rewritten respectively as

u(x, t; ε) =
+∞∑
n=1

n∑
α=−n

εnu(α)
n (ξ, t1, t2, . . .)Eα(x, t), (2.20)

n∑
m=max{1, |α|}

D
(α)
n−mu

(α)
m (ξ, t1, t2, . . .) = F (α)

n , n ≥ 2, |α| ≤ n, (2.21)

where we assumed that the only resonant harmonics are the structural resonances with α = 0,
±1. For these harmonics the systems (2.19) are no more algebraic but become a unique
triangular system of coupled differential equations in the u(α)

ρ , α = 0, ±1 and ρ ≤ n.
Before passing to some illustrative examples, we note that the expansion on the right hand

side of eq. (2.20) is intended to be a uniformly asymptotic series for the function u(x, t). This
implies that the functions u(α)

n (ξ, t1, t2, . . .) should always remain bounded in the space of the
slow variables. Then, if a function v (t) satisfies the equation

dv(t)
dt

+Av(t) = w(t) + s(t), (2.22)

where A is a linear operator and the forcing term s(t) solves the homogeneous equation
ds(t)
dt +As(t) = 0, then the general solution of eq. (2.22) is given by v(t) = ṽ(t) + ts(t)

where ṽ(t) is the general solution of the equation
dṽ(t)
dt +Aṽ(t) = w(t). One can easily see that

the so called resonant or secular term ts(t) produces as t→ +∞ an unbounded motion so that
one has to set it separetely to zero, choosing

dv(t)
dt

+Av(t) = w(t), s(t) = 0. (2.23)

So, to preserve the uniform asymptoticity of the series (2.20), one has to properly change the
equations so that secular terms do not appear in the solutions.

2.1.1 Examples

1. Let us consider the Korteweg-de Vries (KdV) equation

∂u

∂t
+
∂3u

∂x3
= u

∂u

∂x
, (2.24)

which, as is well known, is an S-integrable equation as it arises as the compatibility of the
following overdetermined system of two linear equations for a complex function φ (x, t)

(
∂2

∂x2
− 1

6
u− λ

)
φ(x, t) .= (L− λ)φ(x, t) = 0, (2.25a)(

∂

∂t
+ 4

∂3

∂x3
− u

∂

∂x
− 1

2
ux

)
φ(x, t) .=

(
∂

∂t
−M

)
φ(x, t) = 0, (2.25b)



2.1 Multiscale expansion of real dispersive partial differential equations 13

where λ ∈ C is a spectral parameter and L and M are two differential operators. Than our
equation is equivalent to the operator identity

Lt = [M,L] ,

between the linear operators L and M when one supposes that the spectral parameter λ is
time independent. We note that eq. (2.25b) can be rewritten as

(
∂

∂t
− 1

3
u
∂

∂x
+ 4λ

∂

∂x
+

1
6
ux

)
φ(x, t) = 0.

According to eqs. (2.2b) and (2.5b), the dispersion relation is ω (κ) = −κ3, so that, when we
set p = 1 in (2.15), we can introduce only three slow-times tj , j = 1, 2, 3. Consequently from
eqs. (2.18) we have

D
(α)
0 = −iκ3

0α
(
α2 − 1

)
, (2.26a)

D
(α)
1 = ∂t1 − 3 (ακ0)

2
∂ξ, (2.26b)

D
(α)
2 = ∂t2 + 3iακ0∂

2
ξ , (2.26c)

D
(α)
3 = ∂t3 + ∂3

ξ . (2.26d)

Eq. (2.26a) shows that, if we choose κ0 6= 0, the only resonances are the structural ones with
α = 0, ±1. Let us proceed as in ref. [40] to the multiscale expansion according to eq. (2.21),
referring to Appendix A, eq. (A.3a) for the functions F (α)

n .

i. Order n = 2.

• α = 0:

∂t1u
(0)
1 = 0, (2.27)

from which one derives that u(0)
1 is independent of t1;

• α = 1:

[
∂t1 + iκ0

(
3iκ0∂ξ − u

(0)
1

)]
u

(1)
1 = 0. (2.28)

Multiplying eq. (2.28) by ū
(1)
1 and summing the resulting equation with its complex

conjugate, one has

(
∂t1 − 3κ2

0∂ξ

)
|u(1)

1 |2 = 0, (2.29)

which means that |u(1)
1 |2 and hence |u(1)

1 | depend on the combination ρ
.= ξ + 3κ2

0t1.
So, defining u(1)

1
.= |u(1)

1 |eiθ with θ = θ (ξ, t1, t2, t3) and inserting this expression into eq.
(2.28), we have
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(
∂t1 − 3κ2

0∂ξ

)
θ = κ0u

(0)
1 . (2.30)

Applying the operator ∂t1 to the last equation, it follows that

(
∂t1 − 3κ2

0∂ξ

)
∂t1θ = 0, (2.31)

from which it results that θ = A (ρ, t2, t3) + B (ξ, t2, t3), where A and B are arbitrary
functions of their arguments. From eq. (2.30) we have

∂ξB = − 1
3κ0

u
(0)
1 , (2.32)

whose solution is

B = − 1
3κ0

∫ ξ

ξ0

u
(0)
1 (ξ′, t2, t3) dξ′ + C (t2, t3) , (2.33)

where C is an arbitrary function of its arguments. In conclusion one has

u
(1)
1 = g

(1)
1 (ρ, t2, t3) e

− i
3κ0

∫ ξ
ξ0

u
(0)
1 (ξ′,t2,t3)dξ′

, (2.34)

where all the contribution depending on ρ has been included in the (complex) function
g
(1)
1 . ξ0, by a redefinition of g(1)

1 , can always be chosen to be a zero of u(0)
1 (there exist

at least one zero because, as ξ → ±∞, u(0)
1 → 0);

• α = 2:

u
(2)
2 = − 1

6κ2
0

u
(1)2
1 ; (2.35)

ii. Order n = 3.

• α = 0:

∂t1u
(0)
2 = ∂ρ

(
|u(1)

1 |2
)

+
1
2
∂ξ

(
u

(0)2
1

)
− ∂t2u

(0)
1 . (2.36)

The second and the third term in the right hand side of the last formula are secular by
eq. (2.27). So one has

∂t1u
(0)
2 = ∂ρ

(
|u(1)

1 |2
)
, (2.37)(

∂t2 − u
(0)
1 ∂ξ

)
u

(0)
1 = 0. (2.38)
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Applying the operator ∂t1 − 3κ2
0∂ξ to the continuity equation (2.37), one derives

(
∂t1 − 3κ2

0∂ξ

)
∂t1u

(0)
2 = 0, (2.39)

from which it follows that u(0)
2 = E (ρ, t2, t3) + F (ξ, t2, t3), where E and F are arbitrary

functions of their arguments. From eq. (2.37) one has

∂ρ

(
3κ2

0E − |u
(1)
1 |2

)
= 0, (2.40)

which implies

E =
|u(1)

1 |2

3κ2
0

+G (t2, t3) , (2.41)

where G is an arbitrary function of its arguments. Finally one has

u
(0)
2 =

|u(1)
1 |2

3κ2
0

, (2.42)

where the arbitrary integration function depending on ξ, t2 and t3 has been set equal
to zero. So u

(0)
2 depends on ρ too. Eq. (2.38) is the well known Hopf equation, the

prototypical model describing the gradient catastrophe or wave breaking phenomenon (in
the ξ − t2 plane). To avoid this phenomenon, one should take u(0)

1 independent from t2

and ξ but, as u(0)
1 must be rapidly decreasing as ξ → ±∞, we should choose u(0)

1 = 01.
In the following however we will choose u(0)

1 6= 0;

• α = 1:

Using eqs. (2.35) and (2.42), we get:

[
∂t1 + iκ0

(
3iκ0∂ξ − u

(0)
1

)]
u

(1)
2 = −

[
∂t2 + ∂ξ

(
3iκ0∂ξ − u

(0)
1

)
− i

6κ0
|u(1)

1 |2
]
u

(1)
1 . (2.43)

Taking into account the definition (2.34) and a similar one for its higher harmonic u(1)
2

u
(1)
2

.= g
(1)
2 (ξ, t1, t2, t3) e

− i
3κ0

∫ ξ
ξ0

u
(0)
1 (ξ′,t2,t3)dξ′

, (2.44)

eq. (2.43) becomes

(
∂t1 − 3κ2

0∂ξ

)
g
(1)
2 = u

(0)
1

(
i

6κ0
u

(0)
1 − ∂ρ

)
g
(1)
1 −

(
∂t2 + 3iκ0∂

2
ρ −

i
6κ0

|g(1)
1 |2

)
g
(1)
1 .(2.45)

1This is also consistent with the linear evolution equation for u
(0)
1 one derives as a no-secularity condition

at order n = 4, α = 0, see eq. (2.51).
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The last term on the right hand side of the last equation is secular as g(1)
1 depends on ρ.

So eq. (2.45) splits into

(
∂t1 − 3κ2

0∂ξ

)
g
(1)
2 = u

(0)
1

(
i

6κ0
u

(0)
1 − ∂ρ

)
g
(1)
1 , (2.46)(

i∂t2 − 3κ0∂
2
ρ +

1
6κ0

|g(1)
1 |2

)
g
(1)
1 = 0. (2.47)

Eq. (2.47) is an integrable (defocusing) NLS equation for the function g(1)
1 as the coeffi-

cient of its nonlinear term is real. From eq. (2.47) we get the continuity equation

∂t2 |g
(1)
1 |2 = −3iκ0∂ρ

(
ḡ
(1)
1 ∂ρg

(1)
1 − C.C.

)
, (2.48)

so that |g(1)
1 |2 is a density of a conserved quantity. From eq. (2.46) we get

(
∂t1 − 3κ2

0∂ξ

) (
g
(1)
1 ḡ

(1)
2 + C.C.

)
= −u(0)

1 ∂ρ

(
|g(1)

1 |2
)
. (2.49)

iii. Order n = 4.

• α = 0:

∂t1u
(0)
3 =

i
κ0
∂ρ

(
ḡ
(1)
1 ∂ρg

(1)
1 − C.C.

)
+ ∂ξ

(
g
(1)
1 ḡ

(1)
2 + C.C.+ u

(0)
1

3κ2
0

|g(1)
1 |2

)
− (2.50)

−
(
∂t3 + ∂3

ξ

)
u

(0)
1 .

The last term on the right hand side of the last equation is secular as u(0)
1 is independent

on t1. Hence eq. (2.50), after one removes the secularity and integrates with respect to t1
using eq. (2.49), splits into (as usual the arbitrary t1−independent integration function
has been set to zero)

(
∂t3 + ∂3

ξ

)
u

(0)
1 = 0, (2.51)

u
(0)
3 =

i
3κ3

0

(
ḡ
(1)
1 ∂ρg

(1)
1 − C.C.

)
+

1
3κ2

0

(
g
(1)
1 ḡ

(1)
2 + C.C

)
+ (2.52)

+
1

(3κ2
0)

2

[
2u(0)

1 |g(1)
1 |2 +

(
∂ξu

(0)
1

)∫ ρ

ρ0

|g(1)
1 |2dρ′

]
.

With eq. (2.51) one completes the analysis of the harmonic u(0)
1 .

The calculations for this example are the first evidence of the general fact that the multiscale
reduction of an S−integrable equation provides another S−integrable model. Moreover the
fact that, apart from some gauge terms dependent on u

(0)
1 , the nonlinear equation describing

the evolution of u(1)
1 at the slow-time t2 is an NLS equation, is a general fact too when [8,9,13]:
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• The function F [u, ux, ut, uxx, uxt, utt, . . .] in eq. (2.1) contains generic quadratic nonlin-
earities;

• The slow variables scale with ε as in (2.15) with p = 1;

• The following non-resonance conditions are satisfied :

ω (2κ)− 2ω (κ) 6= 0, (2.53a)
ω1 (0)− ω1 (κ) 6= 0, (2.53b)

ω2 (κ) 6= 0. (2.53c)

The presence of a nonzero harmonic u(0)
1 would introduce shock wave solutions and nonlocal

relations between the various harmonics as in eq. (2.52).

2. Let us consider the C−integrable Burgers-like equation

∂u

∂t
+ a

∂u

∂x
− ∂3u

∂x3
=

∂

∂x

(
3u
∂u

∂x
+ u3

)
, (2.54)

which, through the Cole-Hopf transformation

u (x, t) .=
ψx (x, t)
ψ (x, t)

, (2.55)

linearizes to the equation

∂ψ

∂t
+ a

∂ψ

∂x
− ∂3ψ

∂x3
= f (t)ψ, (2.56)

where f (t) is an arbitrary integration function depending just on t. We note that the Cole-Hopf
transformation (2.55) is invertible and its inverse transformation is given by

ψ (x, t) = ψ (x0, t) e
∫ x

x0
u(x′,t)dx′

. (2.57)

According to eqs. (2.2b) and (2.5b), the dispersion relation is ω (κ) = aκ+κ3, so that we need
to introduce only three slow-times tj , j = 1, 2, 3. Setting p = 1 in (2.15), from eqs. (2.18) we
have

D
(α)
0 = iκ3

0α
(
α2 − 1

)
, (2.58a)

D
(α)
1 = ∂t1 +

[
a+ 3 (ακ0)

2
]
∂ξ, (2.58b)

D
(α)
2 = ∂t2 − 3iακ0∂

2
ξ , (2.58c)

D
(α)
3 = ∂t3 − ∂3

ξ . (2.58d)

Eq. (2.58a) confirms that, if we choose κ0 6= 0, the only resonances are the structural ones
with α = 0, ±1. Let us proceed to the multiscale expansion according to eq. (2.21), referring
to Appendix A for the corresponding functions F (α)

n written in eqs. (A.3b, A.3c, A.5);

i. Order n = 2.
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• α = 0:

(∂t1 + a∂ξ)u
(0)
1 = 0, (2.59)

which means that u(0)
1 depends on the combination ρ .= ξ − at1;

• α = 1:

[
∂t1 + a∂ξ + 3κ2

0

(
u

(0)
1 + ∂ξ

)]
u

(1)
1 = 0, (2.60)

which implies

u
(1)
1 = g

(1)
1 (σ, t2, t3) e

−
∫ ρ

ρ0
u

(0)
1 (ρ′,t2,t3)dρ′

, (2.61)

where σ .= ξ −
(
a+ 3κ2

0

)
t1;

• α = 2:

u
(2)
2 =

i
κ0
u

(1)2
1 ; (2.62)

ii. Order n = 3.

• α = 0:

(∂t1 + a∂ξ)u
(0)
2 = −∂t2u

(0)
1 . (2.63)

The right hand side of eq. (2.63) is secular by eq. (2.59) so that one has to rewrite it as
the system:

(∂t1 + a∂ξ)u
(0)
2 = 0, (2.64)

∂t2u
(0)
1 = 0, (2.65)

which means that u(0)
2 depends on ρ .= ξ − at1 too and that u(0)

1 is independent of t2;

• α = 1:

Using eq. (2.62), we get:

[
∂t1 + a∂ξ + 3κ2

0

(
u

(0)
1 + ∂ξ

)]
u

(1)
2 = −

[
∂t2 − 3iκ0

(
u

(0)
1 + ∂ρ

)2
]
u

(1)
1 + (2.66)

+3iκ0u
(1)
1 ∂ρu

(0)
1 − 3κ2

0u
(0)
2 u

(1)
1 .
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Eq. (2.66), considering the definition (2.61) and the corresponding one for the harmonic
u

(1)
2

u
(1)
2

.= g
(1)
2 (ξ, t1, t2, t3) e

−
∫ ρ

ρ0
u

(0)
1 (ρ′,t3)dρ′

, (2.67)

can be rewritten as

[
∂t1 +

(
a+ 3κ2

0

)
∂ξ

]
g
(1)
2 = 3κ0

[
i
(
∂ρu

(0)
1

)
− κ0u

(0)
2

]
g
(1)
1 −

(
∂t2 − 3iκ0∂

2
σ

)
g
(1)
1 . (2.68)

The last term on the right hand side of eq. (2.68) is secular as g(1)
1 depends on σ so that

we finally have

[
∂t1 +

(
a+ 3κ2

0

)
∂ξ

]
g
(1)
2 = 3κ0

[
i
(
∂ρu

(0)
1

)
− κ0u

(0)
2

]
g
(1)
1 , (2.69)(

∂t2 − 3iκ0∂
2
σ

)
g
(1)
1 . (2.70)

Equation (2.70) is a linear Schrödinger equation for the function g(1)
1 .

We can see that the linearizability of the starting model reflects itself in the fact that the
evolution of u(1)

1 at the slow-time t2 is governed by a linear equation. Other different rescalings
with ε of the slow variables will provide linearizable equations. If for example [6, 7, 10] one
takes the equation

ut − uxxx = 3
(
uxxu+ 3u2

x + uxu
3
)
u,

which can be exactly linearized, and perform a multiscale reduction choosing p = 2 in eq.
(2.15), then one obtains the Eckhauss equation

{
i∂t2 + 3κ0∂

2
ξ + 12κ0

[
|u(1)

1 |4 + ∂ξ

(
|u(1)

1 |2
)]}

u
(1)
1 = 0,

which is another linearizable equation.

2.2 The orders beyond the NLS equation and the integrability conditions

In this section we want to emphasize the fundamental role covered by the orders beyond
that at which one derives for the harmonic u(1)

1 an (integrable) NLS equation in setting up
an integrability test for nonlinear differential equations. The importance of the following
considerations is in the fact that everything we will say remains unchanged even if we consider
nonlinear difference systems. We will start supposing that the conditions (2.53), assuring that
the amplitude u

(1)
1 evolves at the slow-time t2 according to an NLS equation, will always

be satisfied. The first attempt to go beyond the NLS order has been presented by Santini,
Degasperis and Manakov in [12] and the authors, starting from S−integrable models, through a
combination of an asymptotic functional analysis and spectral methods, succeeded in removing
all the secular terms from the reduced equations they found order by order. Their findings
could be summarized as follows:
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• The number of slow-time variables required for the amplitudes u(α)
n s indeed coincides

with the number of nonvanishing coefficients ωn (κ) defined in eq. (2.12);

• The amplitude u(1)
1 evolves at the slow-times tn, n ≥ 3 according to the n−th equation

of the NLS hierarchy;

• The amplitudes u(1)
m , m ≥ 2 evolve at the slow-times tn, n ≥ 2 according to certain

linear, nonhomogeneous equations supplemented by some asymptotic conditions on the
functions u(1)

p , p ≥ 2 themselves.

Thus one can concludes that the cancellation at each stage of the perturbation process of all
the secular terms from the reduced equations is a sufficient request to uniquely fix the evo-
lution equations followed by every u

(1)
n , n ≥ 1 at each slow-time. The result in the second

point should be expected as a hierarchy of integrable equations always represent compatible
evolutions for a unique function u at different times, or the equations in this hierarchy are
generalized symmetries of each other. For more details see [11,37].

Although this procedure provides the most general necessary and sufficient conditions to
get secularity-free reduced equations, it is not necessary to maintain such a functional ap-
proach to develop an integrability test. A recursive technique proves to be more suitable. As
illustrated in [13, 14, 35] the authors, through a detailed multiscale reduction of the spectral
problem associated with an S−integrable equation or of the linearizing process associated with
a C−integrable system, showed the following

Proposition 2.1 If equation (2.1) is (C or S) integrable, then under a multiscale expansion
the functions u(1)

m , m ≥ 1 satisfy the equations

∂tn
u

(1)
1 = Kn

[
u

(1)
1

]
, (2.71a)

Mnu
(1)
j = fn(j), Mn

.= ∂tn
−K ′

n

[
u

(1)
1

]
, (2.71b)

∀ j, n ≥ 2, where Kn

[
u

(1)
1

]
is the n-th flow in the nonlinear Schrödinger hierarchy. All the

other u(κ)
m , κ ≥ 2 are expressed in terms of differential monomials of u(1)

ρ , ρ ≤ m.

In the last equations fn(j) is a nonhomogeneous nonlinear forcing term and K ′
n [u] v is the

Frechet derivative of the nonlinear term Kn[u] along the direction v defined by

K ′
n[u]v .=

d

ds
Kn[u+ sv] |s=0,

i. e. the linearization near u of Kn[u] along the direction v. If Kn[u] depends explicitly on x,
t, u, ux, uxx, . . . , ū, ūx, ūxx, . . . , the explicit expression of K ′

n[u]v is

K ′
n[u]v =

∂Kn

∂u
v +

∂Kn

∂ux
vx +

∂Kn

∂uxx
vxx + . . .+

+
∂Kn

∂ū
v̄ +

∂Kn

∂ūx
v̄x +

∂Kn

∂ūxx
v̄xx + . . .

For future use we note that the operator K ′
n[u] is a linear operator when it acts on a linear

combinations of functions with real coefficients. In other words integrability is a sufficient
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condition for the harmonics u(1)
n , n ≥ 1 to satisfy eqs. (2.71). So eqs. (2.71) are a necessary

condition for integrability. We want to emphasize that eqs. (2.71a) represent a hierarchy of
compatible evolutions for the same function u

(1)
1 at different slow-times. Those evolutions are

characterized by the commutativity condition

[Kr,Ks]L = 0, [Kr,Ks]L
.= MrKs −MsKr, (2.72)

where [Kr,Ks]L is called the Lie commutator. On the contrary, as we will see, the compatibility
of eqs. (2.71b) is not always guaranteed but is subject to a sort of commutativity conditions
among their r. h. s. terms fn(j)s. These last commutativity conditions will be the cornerstone
of our integrability test.

Let us continue illustrating the results of Degasperis et al. Those authors, following the
results of [21], where it was demonstrated that the relations (2.71) implies an infinite number
of asymptotic symmetries for the PDE under investigation, stated the following

Conjecture 2.1 If a PDE admits a multiscale expansion where the functions u(1)
m , m ≥ 1

satisfy the equations (2.71) ∀ j, n ≥ 2, then the equation is (C or S) integrable.

In other words the conjecture affirms that the relations (2.71) are a sufficient condition for
integrability or that integrability is a necessary condition to have a multiscale expansion where
eqs. (2.71) are satisfied. Following again [13,14,35], we give the definitions

Definition 2.1 A differential monomial ρ
[
u

(1)
j

]
, j ≥ 1 in the functions u(1)

j , their complex
conjugates and their ξ-derivatives is a monomial of ”gauge” 1 if it possesses the transformation
property

ρ
[
ũ

(1)
j

]
= eiθρ

[
u

(1)
j

]
, ũ

(1)
j

.= eiθu
(1)
j ;

Definition 2.2 A finite dimensional vector space Pn, n ≥ 2 is the set of all differential poly-
nomials in the functions u(1)

j s, j ≥ 1, their complex conjugates and their ξ-derivatives of order
n in ε and gauge 1 where

order
(
∂m

ξ u
(1)
j

)
= order

(
∂m

ξ ū
(1)
j

)
= m+ j, m ≥ 0;

Definition 2.3 Pn(m), m ≥ 1 and n ≥ 2 is the subspace of Pn whose elements are differential
polynomials in the functions u(1)

j s, their complex conjugates and their ξ-derivatives of order n
in ε and gauge 1 for 1 ≤ j ≤ m.

• From definition (2.3) one has that Pn = Pn(n − 2) and moreover one can see that in
general Kn

[
u

(1)
1

]
∈ ∂n

ξ u
(1)
1 ∪Pn+1(1) and that fn(j) ∈ Pj+n(j − 1) where j, n ≥ 2. The

basis monomials of the spaces Pn(m) can be found in Appendix B.

We have the following

Proposition 2.2 The operators Mm defined in eq. (2.71b) commute among themselves.
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Proof: As eqs. (2.71a) represent a hierarchy of compatible evolutions, the following operator
relation is satisfied (see ref. [33], pag. 121),

(
∂tm

K ′
n

[
u

(1)
1

])
−
(
∂tn

K ′
m

[
u

(1)
1

])
+
[
K ′

n

[
u

(1)
1

]
, K ′

m

[
u

(1)
1

]]
= 0. (2.73)

Then we have MmMn =
(
∂tm

−K ′
m

[
u

(1)
1

])(
∂tn

−K ′
n

[
u

(1)
1

])
= ∂tm

∂tn
− ∂tm

K ′
n

[
u

(1)
1

]
−

K ′
m

[
u

(1)
1

]
∂tn

+K ′
m

[
u

(1)
1

]
K ′

n

[
u

(1)
1

]
= ∂tn

∂tm
−
(
∂tm

K ′
n

[
u

(1)
1

])
−K ′

n

[
u

(1)
1

]
∂tm

−K ′
m

[
u

(1)
1

]
∂tn

+K ′
m

[
u

(1)
1

]
K ′

n

[
u

(1)
1

]
= MnMm, so that [Mm, Mn] = 0. Q. E. D.

Once we fix the index j ≥ 2 in the set of eqs. (2.71b), this commutativity condition implies
the following compatibility conditions

Mkfn (j) = Mnfk (j) , ∀ k, n ≥ 2, (2.74)

where, as fn (j) and fk (j) are functions of the fundamental harmonic up to degree j − 1, the
time derivatives ∂tk

, ∂tn
of those harmonics appearing respectively in Mk and Mn have to be

eliminated using the evolution equations (2.71) up to the index j − 1;

Proposition 2.3 If for each fixed j ≥ 2 the equation (2.74) with k = 2 and n = 3, namely
M2f3 (j) = M3f2 (j), is satisfied, then there exist unique differential polynomials fn(j) ∀n ≥ 4
such that the flows Mnu

(1)
j = fn (j) commute for any n ≥ 2.

Hence among the relations (2.74) only those with k = 2 and n = 2 have to be tested;

Proposition 2.4 The homogeneous equation Mnu = 0 has no solution u in the vector space
Pm, i.e. Ker (Mn) ∩ Pm = ∅.

Consequently the multiscale expansion (2.71) is secularity-free. Finally by the following defi-
nition we express the degree of integrability of a given equation:

Definition 2.4 If the relations (2.74) are satisfied up to the index j, j ≥ 2, we say that our
equation is asymptotically integrable of degree j or Aj integrable.

Although the theory was developed only in the case of real dispersive PDEs for real func-
tions when the conditions (2.53) are satisfied, one could extend it to include the case of complex
PDEs for complex functions and situations where flows in eqs. (2.71a) will not necessarily
belong to the NLS hierarchy. This is precisely what we will do when we will consider the
multiscale reduction of the discrete NLS equation. In this case one has only to separate the
modulus and phase of our function and expand them in ε without any expansion in harmonics.
As we will see, the leading order of the modulus squared and the phase will evolve respectively
as a KdV equation or a potential KdV equation and consequently the flows in eqs. (2.71a) will
now be respectively those of the KdV hierarchy or those of the potential KdV hierarchy. As
for the nonlinear forcing terms in eqs. (2.71b), they will turn out again to belong to a specific
finite dimensional polynomial vector space Pn whose precise definition is given in Subsections
2.2.2, 2.2.3 and whose basis monomials are listed in Appendix B.
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2.2.1 Integrability conditions I: NLS hierarchy

In this subsection we will derive the conditions for asymptotic integrability of order n or An

integrability conditions. To simplify the notation, we will use for u(1)
j the concise form u(j). At

first, for future convenience, we list the fluxes Kn [u] of the NLS hierarchy for u up to n = 4:

K1[u]
.= Auξ, (2.75a)

K2[u]
.= −iρ1

[
uξξ +

ρ2

ρ1
|u|2u

]
, (2.75b)

K3[u]
.= B

[
uξξξ +

3ρ2

ρ1
|u|2uξ

]
, (2.75c)

K4[u]
.= −iC

{
uξξξξ +

ρ2

ρ1

[
3ρ2

2ρ1
|u|4u+ 4|u|2uξξ + 3u2

ξū+ 2|uξ|2u+ u2ūξξ

]}
, (2.75d)

and the corresponding K
′

n[u]v up to n = 3:

K ′
1[u]v = Avξ, (2.76a)

K ′
2[u]v = −iρ1

{
vξξ +

ρ2

ρ1

[
u2v̄ + 2|u|2v

]}
, (2.76b)

K ′
3[u]v = B

{
vξξξ +

3ρ2

ρ1

[
|u|2vξ + ūuξv + uuξ v̄

]}
, (2.76c)

where ρ1, ρ2, B and C are arbitrary complex constants.

The A1 integrability condition is given by the reality of the coefficient ρ2 of the nonlin-
ear term in the NLS equation. It is obtained commuting the NLS flux K2[u] with the flux
B
[
uξξξ + τ |u|2uξ + µu2ūξ

]
with τ and µ constants. Let’s remark again that, if we start from

an integrable model, the resulting NLS equation should be integrable as well and, as an in-
tegrable equation, it should be a part of an entire hierarchy of equations like (2.71a). This
commutativity condition gives, If ρ2 6= 0,

Im [ρ2] = Im [B] = Im [ρ1] = 0, τ = 3ρ2/ρ1, µ = 0. (2.77)

If ρ2 = 0, it follows τ = µ = 0 and no conditions on B and ρ1 althought they will always result
real.

The A2 integrability conditions [13, 14, 35] are obtained choosing j = 2 in the compati-
bility conditions (2.74) with k = 2 and n = 3

M2f3 (j) = M3f2 (j) . (2.78)

In this case we have that f2(2) ∈ P4(1) and f3(2) ∈ P5(1) with dim(P4(1)) = 2 and dim(P5(1))
= 5, so that f2(2) and f3(2) will be respectively identified by 2 and 5 complex constants

f2(2) .= auξ(1)|u(1)|2 + būξ(1)u(1)2, (2.79a)
f3(2) .= α|u(1)|4u(1) + β|uξ(1)|2u(1) + γuξ(1)2ū(1) + (2.79b)

+δūξξ(1)u(1)2 + ε|u(1)|2uξξ(1).
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In this way, if ρ2 6= 0, eliminating from eq. (2.78) the derivatives of u(1) with respect to the
slow-times t2 and t3 using the evolutions (2.71a) with n = 2 and n = 3 and equating term by
term, we obtain the A2 integrability conditions

a = ā, b = b̄, (2.80)

while, if ρ2 = 0, we have no conditions on a and b. So at this stage we have only two integrability
conditions expressing the reality of the coefficients a and b. The expression of α, β, α, δ in
terms of a and b are:

α =
3iBρ2a

4ρ2
1

, β =
3iBb
ρ1

, γ =
3iBa
2ρ1

, δ = 0, ε = γ. (2.81)

The A3 integrability conditions are derived in a similar way setting j = 3 in eq. (2.78). In
this case we have that f2(3) ∈ P5(2) and f3(3) ∈ P6(2) with dim(P5(2)) = 12 and dim(P6(2)) =
26, so that f2(3) and f3(3) will be respectively identified by 12 and 26 complex constants

f2(3) .= τ1|u(1)|4u(1) + τ2|uξ(1)|2u(1) + τ3|u(1)|2uξξ(1) + τ4ūξξ(1)u(1)2 + τ5uξ(1)2ū(1) +
+τ6uξ(2)|u(1)|2 + τ7ūξ(2)u(1)2 + τ8u(2)2ū(1) + τ9|u(2)|2u(1) + τ10u(2)uξ(1)ū(1) +
+τ11u(2)ūξ(1)u(1) + τ12ū(2)uξ(1)u(1), (2.82a)

f3(3) .= γ1|u(1)|4uξ(1) + γ2|u(1)|2u(1)2ūξ(1) + γ3|u(1)|2uξξξ(1) + γ4u(1)2ūξξξ(1) +
+γ5|uξ(1)|2uξ(1) + γ6ūξξ(1)uξ(1)u(1) + γ7uξξ(1)ūξ(1)u(1) + γ8uξξ(1)uξ(1)ū(1) +
+γ9|u(1)|4u(2) + γ10|u(1)|2u(1)2ū(2) + γ11ūξ(1)u(2)2 + γ12uξ(1)|u(2)|2 +
+γ13|uξ(1)|2u(2) + γ14|u(2)|2u(2) + γ15uξ(1)2ū(2) + γ16|u(1)|2uξξ(2) +
+γ17u(1)2ūξξ(2) + γ18u(2)ūξξ(1)u(1) + γ19u(2)uξξ(1)ū(1) + γ20ū(2)uξξ(1)u(1) +
+γ21u(2)uξ(2)ū(1) + γ22ū(2)uξ(2)u(1) + γ23uξ(2)uξ(1)ū(1) + γ24uξ(2)ūξ(1)u(1) +
+γ25ūξ(2)uξ(1)u(1) + γ26ūξ(2)u(2)u(1). (2.82b)

After eliminating from eq. (2.78) with j = 3 the derivatives of u(1) with respect to the
slow-times t2 and t3 using the evolutions (2.71a) respectively with n = 2 and n = 3 and the
same derivatives of u(2) using the evolutions (2.71b) with n = 2 and n = 3 and equating the
remaining term by term, if ρ2 6= 0, indicating with Ri and Ii the real and imaginary parts of
τi, i = 1, . . . , 12, we obtain the A3 integrability conditions

R1 = −aI6
4ρ1

, R3 =
(b− a)I6

2ρ2
− aI12

2ρ2
, R4 =

R2

2
+

(a− b)I6
4ρ2

+
aI12
4ρ2

,

R5 =
R2

2
+

(a− b)I6
4ρ2

+
(2b− a)I12

4ρ2
, R6 = −aI8

ρ2
, R7 = R12 +

(a− b)I8
ρ2

,

R8 = R9 = 0, R10 = R12, R11 = R12 +
(a− 2b)I8

ρ2
,

I4 =
(b+ a)R12

4ρ2
+
ρ1I1
ρ2

+
I2 − I3 − 2I5

4
+

[
2b(a− b) + a2

]
I8

4ρ2
2

, I7 = 0,

I9 = 2I8, I10 = I12, I11 = I6 + I12. (2.83)

Although in [13, 14] it was already reported that these conditions would consist of 15 real
equations so that f2(3) and f3(3) will be parametrized by 2 · 12 − 15 = 9 real constants,
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the precise form of those equations was not given and it appears here for the first time. For
completeness we give the expressions of the γj , j = 1, . . . , 26 as functions of the τi, i = 1, . . . , 12:

γ1 =
3B
8ρ2

1

[
−2bR12 − 8ρ1I1 + 2(I2 − 2I3 − 2I5)ρ2 + i(b− 5a)I6 +

2a2I8
ρ2

− 3iaI12

]
,

γ2 = −3Ba
4ρ2

1

[
iI6 +

(a− 2b)I8
ρ2

+ τ12

]
, γ3 =

3iBτ3
2ρ1

, γ4 = 0, γ5 =
3iBτ2
2ρ1

,

γ6 =
3iBτ4
ρ1

, γ7 = γ5, γ8 = γ3 +
3iBτ5
ρ1

, γ9 = −3B(ρ2I6 + 3aiI8)
4ρ2

1

,

γ10 =
3iBρ2R6

2ρ2
1

, γ11 = 0, γ12 =
3iBτ9
2ρ1

, γ13 =
3iBτ11

2ρ1
, γ14 = 0, γ15 =

3iBτ12
2ρ1

,

γ16 =
3iBτ6
2ρ1

, γ17 = γ18 = 0, γ19 =
3iBτ10

2ρ1
, γ20 = γ15, γ21 =

3iBτ8
ρ1

,

γ22 = γ12, γ23 = γ16 + γ19, γ24 = γ13, γ25 =
3iBτ7
ρ1

, γ26 = 0.

If ρ2 = 0, the A3 integrability conditions turn out to be:

τ1 = − i
4ρ1

[b (τ11 − 2τ6) + āτ7] , b̄τ7 =
1
2

(b− a) (τ11 + τ10 − τ6) + āτ7,

aτ8 = bτ8 = 0, aτ9 = bτ9 = 0, āτ12 = a (τ10 − τ11) + bτ6 + āτ7,(
b̄− ā

)
τ12 = (b− a) τ10, (2.84)

and the expressions of the γj as functions of the τi are:

γ1 = − 3B
4ρ2

1

(
aτ6 − 4iρ1τ1 + b̄τ12

)
, γ2 = − 3B

4ρ2
1

(bτ6 + āτ7) .

The other γjs are the same as written up above (note that, given the conditions (2.84), from
the expressions of γ9 and γ10 one deduces that γ9 = γ10 = 0). Also in this case the conditions
given in eqs. (2.84) appear to be new. Their importance resides in the fact that a C−integrable
equation must satisfy those conditions (in this case eq. (2.75b) is a linear equation).

2.2.2 Integrability conditions II: KdV hierarchy

The first attempt to use the multiple times formalism in connection with the KdV hierar-
chy can be found in [25], where the authors applied the method to study the propagation of
long surface waves in a shallow inviscid fluid. Apart from the different hierarchy of equations
followed by the leading order of the field describing the height of the upper surface and the
absence of any expansion of the various fields involved in harmonics, the method appears to
be in all similar to that previously described.

In our case we will be interested in the situation characterized by:

• The leading order in ε of the field ϕ(x, t) ∈ R, namely ϕ(1)
(
ξ, {tm}Nm=1

)
will evolve at

the slow-times tn, n ≥ 2 according to the KdV hierarchy

∂tnϕ
(1) = Hn

[
ϕ(1)

]
; (2.85a)
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• The higher orders in ε of the field ϕ(j)
(
ξ, {tm}Nm=1

)
, j ≥ 2 will evolve at the slow-times

tn, n ≥ 2 according to the linearized versions (ϕ(1)) of the equations (2.85a)

Mnϕ
(j) = gn(j), Mn

.= ∂tn
−H ′

n

[
ϕ(1)

]
, (2.85b)

where gn(j) is a nonhomogeneous nonlinear forcing term and H ′
n [ϕ]φ is the Frechet

derivative of the corresponding flow Hn[ϕ] along the direction φ.

For future reference, we list the various fluxes Hn[ϕ] of the KdV hierarchy and the correspond-
ing H ′

n [ϕ]φ up to n = 3:

H1 [ϕ] .= Aϕξ, (2.86a)

H2 [ϕ] .= τ1

[
ϕξξξ +

2τ2
τ1
ϕϕξ

]
, (2.86b)

H3 [ϕ] .= λ

{
ϕξξξξξ +

10τ2
3τ1

[
τ2
τ1
ϕ2ϕξ + 2ϕξϕξξ + ϕϕξξξ

]}
, (2.86c)

H ′
1 [ϕ]φ = Aφξ, (2.86d)

H ′
2 [ϕ]φ = τ1

[
φξξξ +

2τ2
τ1

(φϕξ + ϕφξ)
]
, (2.86e)

H ′
3 [ϕ]φ = λ

{
φξξξξξ +

10τ2
3τ1

[
ϕφξξξ + 2ϕξφξξ +

(
2ϕξξ +

τ2
τ1
ϕ2

)
φξ+ (2.86f)

+
(

2τ2
τ1
ϕϕξ + ϕξξξ

)
φ

]}
,

where τ1, τ2, λ are arbitrary real constants. The definitions (2.2), (2.3) of the vector space Pn

and its subspaces now are:

Definition 2.5 The finite dimensional vector space Pn, n ≥ 2 is the set of all differential
polynomials in the functions ϕ(j)s, j ≥ 1 and their ξ-derivatives of order n in ε where

order
(
∂m

ξ ϕ
(j)
)

= m+ 2j, m ≥ 0;

Definition 2.6 Pn(m), m ≥ 1 and n ≥ 2 is the subspace of Pn whose elements are differential
polynomials in the functions ϕ(j)s,, j ≥ 1 and their ξ-derivatives of order n in ε where the
index j goes only up to m.

• One can see that in general Hn

[
ϕ(1)

]
∈ ∂2n−1

ξ ϕ(1)∪P2n+1(1) and that gn(j) ∈ P2(j+n)−1(
j − 1) where as usual j, n ≥ 2. The basis monomials of the spaces Pn(m) are given in
Appendix B.

As every KdV equation ∂t2ϕ
(1) = H2

[
ϕ(1)

]
, where H2

[
ϕ(1)

]
is given by eq. (2.86b), with

real coefficients is an integrable equation, we don’t have any A1 integrability condition.

The A2 integrability conditions are obtained choosing j = 2 in the compatibility condi-
tions (2.74) with k = 2 and n = 3 and fn(j) replaced by gn(j)
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M2g3 (j) = M3g2 (j) . (2.87)

In this case g2(2) ∈ P7(1) and g3(2) ∈ P9(1) with dim(P7(1)) = 3 and dim(P9(1))
= 7, so that g2(2) and g3(2) will be respectively identified by 3 and 7 real constants

g2(2) .= aϕ
(1)
ξ ϕ

(1)
ξξ + bϕ(1)ϕ

(1)
ξξξ + cϕ(1)2ϕ

(1)
ξ , (2.88a)

g3(2) .= αϕ
(1)
ξξ ϕ

(1)
ξξξ + βϕ

(1)
ξ ϕ

(1)
ξξξξ + γϕ(1)ϕ

(1)
ξξξξξ + δϕ

(1)3
ξ +

+εϕ(1)ϕ
(1)
ξ ϕ

(1)
ξξ + πϕ(1)2ϕ

(1)
ξξξ + σϕ(1)3ϕ

(1)
ξ . (2.88b)

In this way, eliminating from eq. (2.87) the derivatives of ϕ(1) with respect to the slow-times
t2 and t3 using the evolutions (2.85a) with n = 2 and n = 3 and equating term by term, we
obtain no A2 integrability conditions, i. e. eq. (2.87) can be always satisfied ∀a, b and c. The
expressions of α, β, γ, δ, ε, π and σ as functions of a, b and c are given by

α =
5λ (2a+ b)

3τ1
, β =

5λ (a+ b)
3τ1

, γ =
5λb
3τ1

,

δ =
5λ [3cτ1 + (3a− b) τ2]

9τ2
1

, ε = 2 (δ + π) , π =
5λ (3cτ1 + 5bτ2)

9τ2
1

,

σ =
10λτ2 (9cτ1 − bτ2)

27τ3
1

. (2.89)

The A3 integrability conditions are derived in a similar way setting j = 3 in eq. (2.87).
In this case we have that g2(3) ∈ P9(2) and g3(3) ∈ P11(2) with dim(P9(2)) = 14 and
dim(P11(2)) = 31, so that g2(3) and g3(3) will be identified by 14 and 31 real constants

g2(3) .= µ1ϕ
(1)
ξξ ϕ

(1)
ξξξ + µ2ϕ

(1)
ξ ϕ

(1)
ξξξξ + µ3ϕ

(1)
ξξξξξϕ

(1) +

+µ4ϕ
(1)3
ξ + µ5ϕ

(1)
ξ ϕ

(1)
ξξ ϕ

(1) + µ6ϕ
(1)
ξξξϕ

(1)2 +

+µ7ϕ
(1)
ξ ϕ(1)3 + µ8ϕ

(2)
ξξξϕ

(1) + µ9ϕ
(1)
ξ ϕ

(2)
ξξ +

+µ10ϕ
(1)
ξξ ϕ

(2)
ξ + µ11ϕ

(1)
ξξξϕ

(2) + µ12ϕ
(2)
ξ ϕ(1)2 +

+µ13ϕ
(1)
ξ ϕ(1)ϕ(2) + µ14ϕ

(2)
ξ ϕ(2), (2.90a)
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g3(3) .= δ1ϕ
(1)
ξξξϕ

(1)
ξξξξ + δ2ϕ

(1)
ξξ ϕ

(1)
ξξξξξ + δ3ϕ

(1)
ξ ϕ

(1)
ξξξξξξ +

+δ4ϕ
(1)
ξξξξξξξϕ

(1) + δ5ϕ
(1)
ξ ϕ

(1)2
ξξ + δ6ϕ

(1)2
ξ ϕ

(1)
ξξξ +

+δ7ϕ
(1)
ξξ ϕ

(1)
ξξξϕ

(1) + δ8ϕ
(1)
ξ ϕ

(1)
ξξξξϕ

(1) +

+δ9ϕ
(1)
ξξξξξϕ

(1)2 + δ10ϕ
(1)
ξξξϕ

(1)3 + δ11ϕ
(1)
ξ ϕ

(1)
ξξ ϕ

(1)2 +

+δ12ϕ
(1)3
ξ ϕ(1) + δ13ϕ

(1)
ξ ϕ(1)4 + δ14ϕ

(2)
ξξξξξϕ

(1) +

+δ15ϕ
(2)
ξξξξϕ

(1)
ξ + δ16ϕ

(2)
ξξξϕ

(1)
ξξ +

+δ17ϕ
(2)
ξξ ϕ

(1)
ξξξ + δ18ϕ

(2)
ξ ϕ

(1)
ξξξξ + δ19ϕ

(1)
ξξξξξϕ

(2) +

+δ20ϕ
(2)
ξξξϕ

(1)2 + δ21ϕ
(2)
ξξ ϕ

(1)
ξ ϕ(1) +

+δ22ϕ
(2)
ξ ϕ

(1)2
ξ + δ23ϕ

(2)
ξ ϕ

(1)
ξξ ϕ

(1) +

+δ24ϕ
(1)
ξ ϕ

(1)
ξξ ϕ

(2) + δ25ϕ
(1)
ξξξϕ

(1)ϕ(2) + δ26ϕ
(2)
ξ ϕ(1)3 +

+δ27ϕ
(1)
ξ ϕ(1)2ϕ(2) + δ28ϕ

(2)
ξ ϕ(1)ϕ(2) + δ29ϕ

(1)
ξ ϕ(2)2 +

+δ30ϕ
(2)
ξξξϕ

(2) + δ31ϕ
(2)
ξ ϕ

(2)
ξξ . (2.90b)

If τ2 6= 0, eliminating in eq. (2.87) with j = 3 the derivatives of ϕ(1) with respect to the slow-
times t2 and t3 using the evolutions (2.85a) with n = 2 and n = 3 and the same derivatives of
ϕ(2) by evolutions (2.85b) with n = 2 and n = 3 and equating the rest term by term, we have
the following A3 integrability conditions for the coefficients µj , j = 1, . . . , 14:

µ7 =

[
9θ1 (5θ2 + 12θ3) τ1 −

(
45θ22 + 88θ2θ3 + 12θ23

)
τ2
]
µ14

54τ2
1 τ2

+ (2.91a)

+
[(3θ2 − 8θ3) τ2 − 3θ1τ1]µ10

9τ2
1

+
[(8θ2 + 42θ3) τ2 − 18θ1τ1]µ9

27τ2
1

+

+
(9µ5 + 8µ6 − 24µ4) τ2

9τ1
− 2 (12µ1 − 30µ2 + 85µ3) τ2

2

27τ2
1

,

µ8 =
θ2µ14

2τ2
, µ11 = µ10 − µ9 +

θ2µ14

2τ2
, µ12 =

3θ1µ14

2τ2
, µ13 =

3θ1µ14

τ2
.

If τ2 = 0, the linearizable case, and θ1 6= 0, we have

µ7 =
(5θ2 + 12θ3)µ12 − 3θ1(µ10 + 2µ9)

9τ1
, µ8 =

θ2µ12

3θ1
, (2.91b)

µ11 = µ10 − µ9 +
θ2µ12

3θ1
, µ13 = 2µ12, µ14 = 0,

If τ2 = θ1 = 0, and θ2 6= 0, we have

µ7 =
(θ22 − 7θ2θ3 + 2θ23)µ14

9τ2
1

, µ12 =
(θ3 − 2θ2)µ14

3τ1
, µ13 =

(2θ3 − 3θ2)µ14

3τ1
, (2.91c)

and finally, if τ2 = θ1 = θ2 = 0, we have
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µ7 =
[3 (2µ12 + µ13) τ1 − 2θ3µ14] θ3

9τ2
1

. (2.91d)

The expressions of the coefficients δκ, κ = 1, . . . , 31 of g3(3) as functions of the coefficients µj ,
j = 1, . . . , 14 is given in Appendix C.

2.2.3 Integrability conditions III: potential KdV hierarchy

Here we discuss the case of the potential KdV hierarchy, closely related to the KdV one. It
arises when one has a set of functions φ(j)

(
ξ, {tm}Nm=1

)
, j ≥ 1, which are supposed go to a con-

stant while all their ξ-derivatives go to zero as ξ → ±∞ and are related to the previous functions
ϕ(j)

(
ξ, {tm}Nm=1

)
, j ≥ 1 by the the relation ϕ(j)

(
ξ, {tm}Nm=1

)
= ∂ξφ

(j)
(
ξ, {tm}Nm=1

)
, j ≥ 1.

Under such positions the function φ(1)
(
ξ, {tm}Nm=1

)
follows the potential KdV hierarchy of

equations at the slow-times tn, n ≥ 2

∂tn
φ(1) = Kn

[
φ(1)

]
, Kn

[
φ(1)

]
.=
∫
Hn

[
φ

(1)
ξ

]
dξ. (2.92)

The various Kn[φ] up to n = 4 are given by:

K1 [φ] = Aφξ, (2.93a)

K2 [φ] = τ1

[
φξξξ +

τ2
τ1
φ2

ξ

]
, (2.93b)

K3 [φ] = λ

[
φξξξξξ +

5τ2
3τ1

(
2τ2
3τ1

φ3
ξ + φ2

ξξ + 2φξφξξξ

)]
, (2.93c)

K4 [φ] = χ

{
φξξξξξξξ +

7τ2
τ1

[
2
3
φξφξξξξξ +

10τ2
9τ1

(
φξφ

2
ξξ + φ2

ξφξξξ

)
+ (2.93d)

+
5τ2

2

27τ2
1

φ4
ξ +

4
3
φξξφξξξξ + φ2

ξξξ

]}
,

where χ is a real constant and the arbitrary ξ−independent integration functions have been
set to zero to match the asymptotic conditions on the φ(j)s as ξ → ±∞. Let us stress that the
flows (2.93) are completely local despite the presence of an integral in their definition (2.92).
On the contrary the evolutions of the functions φ(j), j ≥ 2 according to the slow-times tn,
n ≥ 2

Nnφ
(j) = fn(j), Nn

.= ∂tn −K ′
n

[
φ(1)

]
, fn(j) .=

∫
gn(j)dξ, (2.94)

where K ′
n [φ] ζ is the Frechet derivative of the corresponding flow Kn[φ] along the direction ζ,

are not always local. This depends from the fact that, when we replace in gn(j) the various
ϕ(κ) up to κ = j − 1 with ∂ξφ

(κ) and perform the integration given in eq. (2.94) to find fn(j),
the resulting expression could in general involve integrals. We postpone to the end of the
subsection the discussion of the conditions of locality of the resulting equations. Suppose for
a moment that they are indeed local. In this case the nonlinear forcing terms fn(j) belong to
some subspace of the polynomial vector space Pm, m ≥ 2. These spaces, taking into account
the definitions (2.5), (2.6), are defined in terms of the functions φ(j) by
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Definition 2.7 The finite dimensional vector space Pn, n ≥ 2 is the set of all differential
polynomials in the ξ-derivatives of the functions φ(j)s, j ≥ 1 of order n in ε where

order
(
∂m

ξ φ
(j)
)

= m+ 2j − 1, m ≥ 1.

Definition 2.8 Pn(m), m ≥ 1 and n ≥ 2 is the subspace of Pn whose elements are differential
polynomials in the ξ-derivatives of the functions φ(j), j ≥ 1 of order n in ε where the index j
goes only up to m.

• One can see that in generalKn

[
φ(1)

]
∈ ∂2n−1

ξ φ(1)∪P2n(1) and that fn(j) ∈ P2(j+n−1)(j−
1) where as usual j, n ≥ 2.

Let us recall a few K ′
n [φ] ζ for n up to 3:

K ′
1 [φ] ζ = Aζξ, (2.95a)

K ′
2 [φ] ζ = τ1ζξξξ + 2τ2φξζξ, (2.95b)

K ′
3 [φ] ζ = λ

{
ζξξξξξ +

10τ2
3τ1

[
φξζξξξ + φξξζξξ +

(
τ2
τ1
φ2

ξ + φξξξ

)
ζξ

]}
. (2.95c)

As every potential KdV equation ∂t2φ
(1) = K2

[
φ(1)

]
, where K2

[
φ(1)

]
is given in eq.

(2.93b), with real coefficients is integrable, there are no A1 integrability conditions.

The A2 integrability conditions are obtained choosing j = 2 in the compatibility condi-
tions

M2f3 (j) = M3f2 (j) . (2.96)

In this case we have that f2(2) ∈ P6(1) and f3(2) ∈ P8(1) with dim(P6(1)) = 3 and dim(P8(1))
= 6, so that f2(2) and f3(2) will be respectively identified by 3 and 6 real constants

f2(2) .= θ1φ
(1)3
ξ + θ2φ

(1)
ξ φ

(1)
ξξξ + θ3φ

(1)2
ξξ , (2.97a)

f3(2) .= ξ1φ
(1)
ξ φ

(1)2
ξξ + ξ2φ

(1)
ξ φ

(1)
ξξξξξ + ξ3φ

(1)
ξξ φ

(1)
ξξξξ +

+ξ4φ
(1)4
ξ + ξ5φ

(1)2
ξ φ

(1)
ξξξ + ξ6φ

(1)2
ξξξ . (2.97b)

In this way, eliminating from eq. (2.96) the derivatives of φ(1) with respect to the slow-times
t2 and t3 using the evolutions (2.92) respectively with n = 2 and n = 3 and equating term
by term, we obtain, as in the corresponding case for the KdV hierarchy, no A2 integrability
conditions for the coefficients θi, i = 1, . . . , 3, i. e. eq. (2.96) can always be satisfied ∀θ1, θ2
and θ3. The expressions of the ξj , j = 1, . . . , 6 as functions of the θi, i = 1, . . . , 3 are given
by:

ξ1 =
5λ (9θ1τ1 + 2θ2τ2 + 6θ3τ2)

9τ2
1

, ξ2 =
5λθ2
3τ1

, ξ3 =
5λ (θ2 + 2θ3)

3τ1
,

ξ4 =
5λτ2 (27θ1τ1 − θ2τ2)

54τ3
1

, ξ5 =
5λ (9θ1τ1 + 5θ2τ2)

9τ2
1

, ξ6 =
5λ (θ2 + θ3)

3τ1
. (2.98)

To close this subsection, let us investigate the conditions under which the equations (2.94)
are completely local. In this respect we will give a series of straightforward propositions.
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Proposition 2.5 The integration of the term g2(2) given in eq. (2.88a) gives a local expression
for the term f2(2) given in eq. (2.97a) ∀a, b and c. We have

θ1 =
c

3
, θ2 = b, θ3 =

(a− b)
2

;

Proposition 2.6 The integration of the term g3(2) given in eq. (2.88b) gives a local expression
for the term f3(2) given in eq. (2.97b) iff

ε = 2 (δ + π) . (2.99)

We get

ξ1 = δ, ξ2 = γ, ξ3 = (β − γ) , ξ4 =
σ

4
, ξ5 = π, ξ6 =

(α− β + γ)
2

.

If the coefficients of g3(2) are given by the expressions (2.89), then the above conditions (2.99)
are automatically satisfied;

Proposition 2.7 The integration of the term g2(3) given in eq. (2.90a) gives a local expression
for the term f2(3) iff

µ5 = 2 (µ4 + µ6) , µ8 = µ9 − µ10 + µ11, µ13 = 2µ12. (2.100)

The A3 integrability conditions (2.91) for the coefficients µj, j = 1, . . . , 14, do not imply that
eqs. (2.100), are automatically satisfied;

Proposition 2.8 The integration of the term g3(3) given in eq. (2.90b) provides a local ex-
pression for the term f3(3) iff

δ7 = 2δ5 − 4δ6 + 5δ8 − 10δ9, δ11 = 3δ10 + δ12,

δ14 = δ15 − δ16 + δ17 − δ18 + δ19, δ23 = δ21 − 2δ20 + δ25,

δ24 = 2 (2δ20 − δ21 + δ22) + δ25, δ27 = 3δ26, δ28 = 2δ29. (2.101)

If the coefficients δκ, κ = 1, . . . , 31 are given by eqs. (C.1), where the coefficients µj, j =
1, . . . , 14 satisfy the A3 integrability conditions (2.91) and the conditions (2.100), then the
conditions (2.101) are automatically satisfied.

2.2.4 Solutions of the linearized equations I: NLS hierarchy

The NLS equation given in eqs. (2.71a) with n = 2 and (2.75b),

iut2(1) = ρ1uξξ(1) + ρ2|u(1)|2u(1),

provided that the coefficient ρ2 is real, represents an S−integrable evolution equation for the
complex function u(1)(ξ, t2), in the sense that it arises [1] as the compatibility condition of
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the following overdetermined system of two matrix linear partial differential equations for the
vector function ψ (ξ, t2)

.=
(
ψ(1) (ξ, t2) , ψ(2) (ξ, t2)

)T
ψξ =

(
−iλ ηu(1)

−εηū(1) iλ

)
ψ

.= Lψ, (2.102a)

ψt2 = ρ1

(
2iλ2 − iεη2|u(1)|2 −2ληu(1)− iηuξ(1)

2εληū(1)− iεηūξ(1) −2iλ2 + iεη2|u(1)|2
)
ψ

.= Mψ, (2.102b)

where ε .= sgn.
ρ2

ρ1
, η .= | ρ2

2ρ1
|1/2 and λ ∈ C is the spectral parameter. Hence our equation is

equivalent to the following matrix equation

Lt2 −Mξ + [L,M ] = 0.

As it has been said, eqs. (2.71), as n varies, represent the NLS hierarchy of compatible
evolutions for the same function u(1) (ξ, t1, t2, . . .) at the different slow-times. Each equation
in this hierarchy is an S−integrable evolution emerging as a compatibility condition between
eq. (2.102a) and a suitable tn evolution for the spectral function ψ(ξ, t1, t2, . . .). The common
one-soliton solution of the focusing hierarchy, i. e. ε = 1, up to n = 4 is given by

u(1) =
κ

η
sech

{
κ
[
ξ +At1 − 2βρ1t2 −

(
3β2 − κ2

)
Bt3 − 4

(
κ2 − β2

)
βCt4 + ξ0

]}
(2.103)

e−i[βξ+βAt1−(β2−κ2)ρ1t2−(β2−3κ2)βBt3−(6κ2β2−κ4−β4)Ct4+θ0],

where ξ0, θ0, β and κ are four real constants, ξ0 and θ0 are arbitrary and 2λ .= β + iκ. On
the other hand the general solution bounded at infinity of the linearized Schrödinger equation
given in (2.71b) with n = 2 and (2.76b)

ut2(2) + iρ1uξξ(2) + iρ2

[
u(1)2ū(2) + 2|u(1)|2u(2)

]
= auξ(1)|u(1)|2 + būξ(1)u(1)2,

is given by the sum of the general integral bounded at infinity of the homogeneous equation
and a particular solution of the nonhomogeneous equation. The general integral bounded at
infinity of the homogeneous equations is given [20] by a linear superposition of the squares of
the spectral functions corresponding to the discrete eigenvalues λm, i. e. ψ(j) (λm) .= ψ

(j)
m ,

j = 1, 2, and of those corresponding to the continuous ones λ (ρ), i. e. ψ(j) (λ (ρ)) .= ψ(j) (ρ),
j = 1, 2

Shomo. =
N∑

m=1

(
cmψ

(1)2
m − c̄mψ̄

(2)2
m

)
+
∫

ρ

[
c (ρ)ψ(1)2 (ρ)− c̄ (ρ) ψ̄(2)2 (ρ)

]
dρ. (2.104)

A particular solution of the nonhomogeneous equation is given by

Spart. = −i
a

2ρ1
u(1)

∫ ξ

ξ0
|u(1)(ξ′)|2dξ′ + i

b− a

2ρ2
uξ(1), (2.105)

where ξ0 is a real constant. As one can see, in this particular solution enter the integrals of
the conserved densities of the Schrödinger equation as |u(1)|2 obeys the following continuity
equation
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(
|u(1)|2

)
t2

= −iρ1 (ū(1)uξ(1)− C.C.)ξ

and uξ(1) =
∫ ξ

−∞ uξ′ξ′(1) (ξ′) dξ′.

2.2.5 Solutions of the linearized equations II: potential KdV hierarchy

The potential KdV equation given in eqs. (2.92) wit n = 2 and (2.93b)

φ
(1)
t2 = τ1φ

(1)
ξξξ + τ2φ

(1)2
ξ ,

where τ1, τ2 are two real constants, represents an S−integrable evolution equation for the
real function φ(1), in the sense that it arises as the compatibility condition of the following
overdetermined system of two linear equations for a complex function ψ (x, t)

(
∂2

∂ξ2
+

τ2
3τ1

φ
(1)
ξ − η

)
ψ(ξ, t2)

.= (L− η)ψ(ξ, t2) = 0, (2.106a)(
∂

∂t2
− 4τ1

∂3

∂ξ3
− 2τ2φ

(1)
ξ

∂

∂ξ
− τ2φ

(1)
ξξ

)
ψ(ξ, t2)

.=
(
∂

∂t2
−M

)
ψ(ξ, t2) = 0, (2.106b)

where η ∈ C is a spectral parameter and L and M are two differential operators. Than our
equation is equivalent to the operator identity

Lt = [M,L] ,

between the linear operators L and M when one supposes that the spectral parameter λ is time
independent. As it has been said, eqs. (2.92), as n varies, represent the potential KdV hierar-
chy of compatible evolutions for the same function φ(1) (ξ, t1, t2, . . .) at the different slow-times.
Each equation in this hierarchy is an S−integrable evolution emerging as a compatibility con-
dition between eq. (2.106a) and a suitable tn evolution for the spectral function ψ (ξ, t1, t2, . . .).
The common one-soliton solution of this hierarchy up to n = 4 is given by

φ(1) = −12κτ1
τ2

1
1 + e2κ(ξ+At1+4κ2τ1t2+16κ4λt3+64κ6χt4+ξ0)

, (2.107)

where ξ0 and κ are two real constants, ξ0 is arbitrary and η = κ2. Differentiating the solution
(2.107) once with respect to ξ, we get the common one-soliton solution of the KdV hierarchy
(2.85a) up to n = 4

ϕ(1) =
6τ1κ2

τ2
sech2

[
κ
(
ξ +At1 + 4κ2τ1t2 + 16κ4λt3 + 64κ6χt4 + ξ0

)]
. (2.108)

On the other hand the general solution bounded at infinity of the linearized potential KdV
equation given in (2.94) with n = 2 and (2.95b)

φ
(2)
t2 − τ1φ

(2)
ξξξ − 2τ2φ

(1)
ξ φ

(2)
ξ = θ1φ

(1)3
ξ + θ2φ

(1)
ξ φ

(1)
ξξξ + θ3φ

(1)2
ξξ ,
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is given by the sum of the general integral bounded at infinity of the homogeneous equation
and a particular solution of the nonhomogeneous equation. The general integral bounded at
infinity of the homogeneous equations is given [22] by a linear superposition of the squares of
the spectral functions corresponding to the discrete eigenvalues ηm, i. e. ψ (ηm) .= ψm and of
those corresponding to the continuous ones η (ρ), i. e. ψ (η (ρ)) .= ψ (ρ)

Shomo. =
N∑

m=1

cmψ
2
m +

∫
ρ

c (ρ)ψ2 (ρ) dρ. (2.109)

A particular solution of the nonhomogeneous equation is given by

Spart. = − θ2
3τ1

φ(1)φ
(1)
ξ +

1
2

(
θ2
τ1
− 3θ1

τ2

)∫ ξ

−∞
φ

(1)2
ξ′ dξ′ +

1
2τ2

(
θ3 +

θ2
2
− 9τ1θ1

2τ2

)
φ

(1)
ξξ . (2.110)

As one can see, as before in this particular solution enter the integrals of the conserved densities
of the potential KdV equation as φ(1)2

ξ obeys the following continuity equation

(
φ

(1)2
ξ

)
t2

=
(

2τ1φ
(1)
ξ φ

(1)
ξξξ − τ1φ

(1)2
ξξ +

4τ2
3
φ

(1)3
ξ

)
ξ

and φ(1)
ξ =

∫ ξ

−∞ φ
(1)
ξ′ξ′dξ

′, φ
(1)
ξξ =

∫ ξ

−∞ φ
(1)
ξ′ξ′ξ′dξ

′.

2.3 Multiscale expansion of real dispersive partial difference equations

2.3.1 From shifts to derivatives

We now illustrate all the ingredients of the discrete reductive perurbation technique as given
in [15, 16]. Consider at first a function un : Z → R depending on a discrete index n ∈ Z and
let us suppose that:

• The dependence of un on n is realized through the slow variable n1
.= εn ∈ R, ε ∈ R,

0 < ε� 1, that is to say un
.= u(n1);

• The variable n1 can vary in a (full measure) region so that u (n1) is analytical (Taylor
series expandibility) and that region contains the point ñ1

.= εñ, ñ ∈ ℵ;

• The radius of convergence of the Taylor series starting at ñ1 is wide enough to include
as an inner point the point ñ1 + ε.

Under these hypotheses one can write the action of the shift operator Tn such that Tnun
.=

un+1 = u(n1 + ε) around ñ1 as

Tnu(ñ1) = u(ñ1) + εu(1)(ñ1) +
ε2

2
u(2)(ñ1) + ...+

εi

i!
u(i)(ñ1) + ... =

+∞∑
i=0

εi

i!
u(i)(ñ1), (2.111)

where u(i)(ñ1)
.= diu(n1)/dni

1|n1=ñ1

.= di
n1
u(ñ1), being dn1 the total derivative operator. The

last expression suggests the following formal expansion for the differential operator Tn:
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Tn =
+∞∑
i=0

εi

i!
di

n1

.= eεdn1 , (2.112)

valid only when the previous conditions, which assure that the series in eq. (2.112) is con-
verging, are satisfied. Let us introduce more complicated dependencies of un on n. For ex-
ample one can assume a simultaneous dependence on the fast variable n and on the slow
variable n1 or un

.= u(n, n1). The action of the total shift operator Tn will now be given by
Tnun

.= un+1 = u(n+ 1, n1 + ε) so that we can write

Tn
.= TnT (ε)

n1
, (2.113)

where the partial shift operators Tn and T (ε)
n1 are defined respectively by Tnu(n, n1) = u(n +

1, n1) and T (ε)
n1 u(n, n1) = u(n, n1+ε). Here T (ε)

n1 is given by an expansion similar to eq. (2.112).
The dependence of un on n can be easily extended to the case of one fast variable n and K
slow variables nj

.= εjn, εj ∈ R, 1 ≤ j ≤ K each of them being defined by its own parameter
εj . The action of the total shift operator Tn will now be given in terms of the partial shifts
Tn, Tnj :

Tn
.= Tn

K∏
j=1

T (εj)
nj

. (2.114)

Let us pass now to consider the nonlinear partial difference equation

F

[
u
{n+i}N(+)

i=−N(−) ,{m+j}M(+)

j=−M(−)

]
= 0, N (±), M(±) ≥ 0, (2.115)

for a function un,m : Z2 → R which now depends on two indexes n and m ∈ Z which for future
convenience we will term respectively as space and time variables. As indicated, in eq. (2.115)
there appear some m and n-shifts from m−M(−) up to m+M(+) and from n−N (−) up to
n+N (+). Let us suppose that

• The dependence of un,m on n and m is realized through the Kn slow-space variables
ni

.= εni
n ∈ R and Km slow-time variables mj

.= εmj
m ∈ R with εni

and εmj
∈ R,

1 ≤ i ≤ Kn, 1 ≤ j ≤ Km besides a simultaneous dependence on the fast-space variable n
and on the fast-time variable m;

• The slow-space and slow-time variables can vary in a (full measure) Kn+Km-dimensional
region so that u

(
n,m, {ni}Kn

i=1 , {mj}Km

j=1

)
is analytical (Taylor series expandibility) and

that region contains the point
(
{ñi

.= εni
ñ}Kn

i=1 ,
{
m̃j

.= εmj
m̃
}Km

j=1

)
, ñ, m̃ ∈ ℵ;

• The radius of convergence of the Taylor series starting at (ñ, m̃) .=
(
ñ, m̃, {ñi

.= εni
ñ}Kn

i=1 ,{
m̃j

.= εmj
m̃
}Km

j=1

)
is wide enough to include as inner points all the points of the form

(ñ+ α, m̃+ β) with −N (−) ≤ α ≤ N (+) and −M(−) ≤ β ≤ M(+) which effectively
appear in the difference equation (2.115).
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Under such hypotheses all the n and m shifts of the function un,m, which are involved in
the difference equation (2.115), admit a series representation around the point (ñ, m̃). In the
following will make the following choices:

εni

.= Niε
i, 1 ≤ i ≤ Kn, εmj

.= Mjε
j , 1 ≤ j ≤ Km,

where the various constants Ni, Mj and ε are all real numbers and we will assume Kn = 1 and
Km = K (eventually K = +∞) so that

Tn = TnT
(εn1 )

n1 = Tn

+∞∑
j=0

εjA(j)
n , A(j)

n
.=
N j

1

j!
∂j

n1
, (2.116a)

Tm = Tm

K∏
j=1

T
(εmj

)
mj = Tm

+∞∑
j=0

εjA(j)
m , (2.116b)

TnTm = TnTmT
(εn1 )

n1

K∏
j=1

T
(εmj

)
mj = TnTm

+∞∑
j=0

εjA(j)
n,m, (2.116c)

where the operators A(j)
n , A(j)

m , A(j)
n,m up to j = 4 are given in Table (2.1).

Finally, in complete analogy with eq. (2.20), we will assume for the function
u(n,m, n1, {mj}K

j=1 , ε) a double expansion in harmonics and in the perturbative parameter ε

u
(
n,m, n1, {mj}K

j=1 , ε
)

=
+∞∑
γ=1

γ∑
α=−γ

εγu(α)
γ

(
n1, {mj}K

j=1

)
Eα

n,m, (2.117)

En,m
.= ei[κn−ω(κ)m], u(−α)

γ = ū(α)
γ

where the index γ is chosen ≥ 1 in order to let any nonlinear part of eq. (2.115) to enter as a
perturbation in the multiscale expansion. The expansions of the n and m-shifts of the function
un,m as well as of the nonlinear monomials present in eq. (2.115) will be given in Appendix D.
It should be clear that a Taylor expansion in ε near ε = 0 should also be considered for every
parameter present in eq. (2.115).

2.3.2 From derivatives to shifts

As our multiscale approach produces from a given partial difference equation a partial differ-
ential equation for one of the amplitudes u(α)

γ , one could wonder if it would be possible at
least formally, starting from the obtained partial differential equation, to write down a partial
difference equation inverting the expression

Tn1 = e∂n1
.=

+∞∑
i=0

1
i!
∂i

n1
,

where Tn1un,m
.= u

(
n,m, n1 + 1, {mj}K

j=1

)
, and similarly for Tm. In fact one formally could

write

∂n1 = lnTn1 = ln
(
1 + ∆(+)

n1

)
.=

+∞∑
i=1

(−1)i−1

i
∆(+)i

n1
, (2.118)
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where ∆(+)
n1

.= Tn1 − 1 is just the first forward difference operator with respect to the slow-
variable n1. Note that this is just one of the possible inversion formulae for the operator Tn1 .
For example it can also written in terms of the first backward difference operator ∆(−)

n1

.= 1−T −1
n1

as

∂n1 = −lnT −1
n1

= −ln
(
1−∆(−)

n1

)
.=

+∞∑
i=1

1
i
∆(−)i

n1
, (2.119)

or in terms of the first symmetric difference operator ∆(s)
n1

.=
(
Tn1 − T −1

n1

)
/2 as

∂n1 = sinh−1∆(s)
n1

.=
+∞∑
i=1

Pi−1(0)
i

∆(s)i
n1

, (2.120)

where Pi(0) is the i-th Legendre polynomial evaluated in x = 0. Now we have:

Definition 2.9 A function un is a slow-varying function of order l with respect to the index
n iff ∆l+1

n un = 0.

Hence one can see that the ∂n1 operator, which is given by formal series which in general
contain infinite powers of the ∆n1 , when acting on slow-varying functions of order l, reduces
to polynomials in the ∆n1 of order at most l. In [27], choosing l = 2 for the indexes n1 and m1

and l = 1 for m2, it was shown that the integrable lattice potential KdV equation [31] reduces
to a completely discrete and local nonlinear Schrödinger equation (dNLS) which has been
proved to be not integrable by singularity confinement and algebraic entropy. Consequently,
if one wants to pass from derivatives to shifts, one ends up in general with a nonlocal partial
difference equation in the slow variables nκ and mδ. In particular, choosing

εni

.=
1
ρi
, ρi ∈ ℵ, 1 ≤ i ≤ Kn,

εmj

.=
1
θj
, θj ∈ ℵ, 1 ≤ j ≤ Km,

the slow-space variable nκ will vary on a one dimensional lattice indexed by rational numbers
with spacing 1/ρκ and the slow-time variable mδ will vary on a one dimensional lattice indexed
by rational numbers with spacing 1/θδ. Hence, extracting from the previous lattice respectively
the ρκ and θδ sublattices characterized by unit spacing, the obtained nonlocal partial difference
equation describes the evolution of the amplitude u(α)

γ on the ρκ ·θδ two dimensional sublattices
obtained from the composition of the previous one dimensional sublattices. In each of these
sublattices, a unit shift in the direction nκ will correspond to a ρκ units shift of the fast variable
n and a unit shift in the direction mδ will correspond to a θδ units shift of the fast variable m.
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3

Multiscale reduction of discretizations of

S−integrable nonlinear PDEs

We present here some examples of reduction of nonlinear partial difference equations which
arises as discretizations of S−integrable partial differential equations. This S−integrability
property or spectral transform integrability is the consequence of the fact that the considered
nonlinear equations emerges as a compatibility condition of an overdetermined system of two
linear equations, the so called Lax pair of the system. Some discretizations succeed in pre-
serving that integrability property, in that some of the partial difference equations obtained
have their own Lax pairs, while other discretizations fail. Usually the integrable discretizations
are non trivial as shifts will appear also in the nonlinear terms. The aim of the following
examples is to explain how the multiscale technique, developed together with all the integra-
bility conditions in the last chapter, can be used as an integrability test, effectively proving
if a particular discretization is not integrable. We will always start performing the multiscale
reduction on the known integrable discretization and then we will reduce other discretizations
whose integrability is not a priori known.

3.1 Multiscale reduction of the lattice potential KdV equation (lpKdV )

Let us consider the lpKdV equation [34]

(p− q + un,m+1 − un+1,m) (p+ q + un,m − un+1,m+1)−
(
p2 − q2

)
= 0, (3.1)

where p, q are two different real parameters. The above equation is probably the best known
completely discrete integrable nonlinear equation which involves just four points which lay
on a square. It represents the nonlinear superposition formula for the (continuous) KdV
equation and emerges as the compatibility of the following pair of scalar linear partial difference
equations [31]

ϕn+2,m = (2p− un+2,m + un,m)ϕn+1,m + λϕn,m, (3.2a)
ϕn,m+2 = (2q − un,m+2 + un,m)ϕn,m+1 +

(
λ+ p2 − q2

)
ϕn,m, (3.2b)

where λ ∈ C is the spectral parameter. By defining µ .= p− q and ζ .= p+ q, eq. (3.1) can be
rewritten as

µ (un+1,m+1 − un,m) + ζ (un+1,m − un,m+1) = (un+1,m − un,m+1) (un+1,m+1 − un,m) . (3.3)

The l.h.s. of eq. (3.3) represents the linear part, Pl, of our equation while the r.h.s. represents
the nonlinear part, Pnl. If we assume for the solution un,m the form given in eq. (2.117), the
linear part takes the form

39
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Pl =
+∞∑
γ=1

εγ

γ∑
α=−γ

Eα

γ∑
j=max{1, |α|}

Lju
(α)
j , (3.4)

Lj
.= µ
(
eiα(κ−ω)A(γ−j)

n,m − δj,γ

)
+ ζ

(
eiακA(γ−j)

n − e−iαωA(γ−j)
m

)
,

where the symbol δj,γ represents the Kronecker delta. Pnl, is given in Appendix D, in particular
eqs. (D.4b, D.4c) and their variants while the operators A(j)

n , A(j)
m , A(j)

n,m up to j = 4 are given
in Table (2.1). Let us proceed to the multiscale expansion [15] of eq. (3.3) in the same way as
we did in the previous chapter for the KdV .

i. Order γ = 1.

• α = 0:

At this order the equation (3.3) is automatically satisfied;

• α = 1:

[
µ
(
ei(κ−ω) − 1

)
+ ζ

(
eiκ − e−iω

)]
u

(1)
1 = 0. (3.5)

If one wants u(1)
1 6= 0, one obtains the dispersion relation

e−iω =
µ− ζeiκ

µeiκ − ζ
, (3.6)

which, solved, gives

ω (κ) = 2 arctan
(
ζ + µ

µ− ζ
tan

κ

2

)
; (3.7)

ii. Order γ = 2.

• α = 1:

[
eiκ
(
µe−iω + ζ

)
N1∂n1 + e−iω

(
µeiκ − ζ

)
M1∂m1

]
u

(1)
1 = 0. (3.8)

If we define

N1
.= εSe−iω

(
µeiκ − ζ

)
, M1

.= −Seiκ
(
µe−iω + ζ

)
, S ∈ C, ε = ±1, (3.9)

taking into consideration eq. (3.6), eq. (3.8) becomes

(∂n1 − ε∂m1)u
(1)
1 = 0, (3.10)
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which is solved by

u
(1)
1

(
n1, {mj}K

j=1

)
= u

(1)
1

(
n2, {mj}K

j=2

)
, n2

.= n1 + εm1 ε = −N1

M1
ω1 (3.11)

(the quantities ωn are defined in eq. (2.12)). The complex constant S .= reiθ, r > 0, is
to be choosen so that θ = − arctan [ζ sinκ/ (ζ cosκ− µ)] in such a way that N1 and M1

are indeed real numbers, which, taking into account the dispersion relation (3.6), can be
rewritten as

N1 = εS
(
µ− ζeiκ

)
, M1 = Seiκ

ζ2 − µ2

µeiκ − ζ
; (3.12)

• α = 0:

[(µ+ ζ)N1∂n1 + (µ− ζ)M1∂m1 ]u
(0)
1 = 2

(
e−iω − eiκ + C.C.

)
|u(1)

1 |2. (3.13)

Introducing the variable ñ2
.= n1 − εm1 and taking into account eq. (3.6), the last

equation can be rewritten as

{[ε (µ+ ζ)N1 + (µ− ζ)M1] ∂n2 + [ε (µ+ ζ)N1 − (µ− ζ)M1] ∂ñ2}u
(0)
1 = (3.14)

= − 8εµζ sin2 κ

µ2 + ζ2 − 2µζ cosκ
|u(1)

1 |2.

Acting on eq. (3.14) with ∂ñ2 , we obtain

{[ε (µ+ ζ)N1 + (µ− ζ)M1] ∂n2 + [ε (µ+ ζ)N1 − (µ− ζ)M1] ∂ñ2} ∂ñ2u
(0)
1 = 0, (3.15)

whose solution, taking into account eqs. (3.12), is

u
(0)
1 = F (σn2 − ñ2) +G (n2) , σ

.= 1 +
(µ− ζ)2

µζ (1− cosκ)
, (3.16)

where F and G are arbitrary functions of their arguments (we have omitted their explicit
dependence on the other slow-times). Inserting eq. (3.16) into eq. (3.14), we have that

∂n2G = α1|u(1)
1 |2, α1

.= −4 (1 + cosκ)
N1 (µ+ ζ)

. (3.17)

We will choose F (σn2 − ñ2) = 0 in eq. (3.16), so that u(0)
1 will be a function just of n2

and

∂n2u
(0)
1 = α1|u(1)

1 |2; (3.18)
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• α = 2:

Using the dispersion relation (3.6), we find

u
(2)
2 = α2u

(1)2
1 , α2

.=
1 + eiκ

(1− eiκ) (µ+ ζ)
; (3.19)

iii. Order γ = 3.

• α = 1:

Taking into account eqs. (3.6, 3.12, 3.18, 3.19) and the fact that both u
(0)
1 and u

(1)
1

depend on n2, we have

(∂n1 − ε∂m1)u
(1)
2 = N1

(
u

(1)
1

)
,

where N1

(
u

(1)
1

)
is a nonlinear function in u

(1)
1 and its complex conjugate. As the r.h.s.

of the last equation depends on n2, it is in the kernel of the linear operator on the l.h.s.
and consequently it is a secular term. In order to remove this secularity, we have to
demand that both the r.h.s. and the l.h.s. be equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
2 = 0, (3.20a)

i∂m2u
(1)
1 = ρ1∂

2
n2
u

(1)
1 + ρ2u

(1)
1 |u(1)

1 |2, −2ρ2

ρ1
= α2

1, (3.20b)

ρ1
.=

µζM2
1 sinκ

M2 (µ2 − ζ2)
= −N

2
1

M2
ω2, (3.20c)

ρ2
.=

8ζµ (ζ − µ) (1 + cosκ)2 sinκ
M2 (µ+ ζ) (ζ2 + µ2 − 2µζ cosκ)2

.

Equation (3.20a) tells us that u(1)
2 depends on n2.

• Equation (3.20b), whose coefficients are defined in (3.20c), is an integrable (continuous,
defocusing) nonlinear Schrödinger equation, its integrability arising from the manifest re-
ality of its coefficients. This proves the A1 asymptotic integrability of the lpKdV equation.

From the above NLS equation one derives the continuity equation

∂m2d
(1) = ρ1∂n2J

(1)
2 , d(1) .= |u(1)

1 |2, J
(1)
2

.= −i
(
ū

(1)
1 ∂n2u

(1)
1 − C.C.

)
, (3.21)

where we used the symbols d(1) and J
(1)
2 to indicate that those quantities represent

respectively a density of a conserved quantity and a current density. Differentiating by
m2 eq. (3.18), using the continuity equation (3.21) and integrating with respect to n2

taking equal to zero the arbitrary n2−independent integration function (all the u(α)
n s go

to zero as n2 → ±∞), we have the evolution
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∂m2u
(0)
1 = α1ρ1J

1
2 , (3.22)

to be used later;

• α = 0:

Taking into consideration eqs. (3.6, 3.12, 3.18, 3.22) and the fact that u(0)
1 and u

(1)
1

depend on n2 and choosing u(0)
2 dependent on n2 too, we obtain

∂n2u
(0)
2 = d(2), d(2) .= α1

(
u

(1)
1 ū

(1)
2 + C.C.

)
+ ρ3J

(1)
2 , ρ3

.=
2 sin (κ)
(µ+ ζ)

, (3.23)

where we used the notation d(2) to indicate that this expression represents another density
of a conserved quantity;

• α = 2:

Taking into consideration eqs. (3.6, 3.12, 3.19) and the fact that both u
(1)
1 and u

(2)
2

depend on n2, we have

u
(2)
3 = u

(1)
1

[
α3∂n2u

(1)
1 + 2α2u

(1)
2

]
, α3

.=
2εSeiκ

(
µ− ζeiκ

)
(eiκ − 1)2 (µ+ ζ)

=
2iN1α2

(µ+ ζ) ρ3
; (3.24)

• α = 3:

Using eqs. (3.6, 3.19), we obtain

u
(3)
3 = α2

2u
(1)3
1 ; (3.25)

iv. Order γ = 4.

• α = 1:

Taking into account eqs. (3.6, 3.12, 3.18, 3.19, 3.20b, 3.22, 3.23, 3.24), that u(0)
1 , u(0)

2 ,
u

(1)
1 , u(1)

2 and u
(2)
2 depend on n2 and that (see Section 2.2 and Subsection 2.2.1 ) the

amplitude u
(1)
1 evolves at the slow-time m3 according to the complex modified KdV

equation (cmKdV )

∂m3u
(1)
1 −B

(
∂3

n2
u

(1)
1 +

3ρ2

ρ1
|u(1)

1 |2∂n2u
(1)
1

)
= 0, (3.26)

we have

(∂n1 − ε∂m1)u
(1)
3 = N2

(
u

(1)
1 , u

(1)
2

)
.
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N2

(
u

(1)
1 , u

(1)
2

)
is a nonlinear function in u

(1)
1 and its complex conjugate and linear in

u
(1)
2 and its complex conjugate. As the r.h.s. of the last equation depends on n2, it is in

the kernel of the linear operator on the l.h.s. and consequently it is a secular term. In
order to remove this secularity, we have to demand that both the r.h.s. and the l.h.s. be
equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
3 = 0, (3.27a)

∂m2u
(1)
2 −K

′

2

[
u

(1)
1

]
u

(1)
2 = N3

(
u

(1)
1

)
, (3.27b)

K ′
2

[
u

(1)
1

]
u

(1)
2

.= −iρ1

[
∂2

n2
u

(1)
2 +

ρ2

ρ1

(
u

(1)2
1 ū

(1)
2 + 2|u(1)

1 |2u(1)
2

)]
.

The first relation tells us that u(1)
3 itself depends on n2. In the second relation, which

comes directly fromN2

(
u

(1)
1 , u

(1)
2

)
= 0, N3

(
u

(1)
1

)
is another nonlinear function involving

u
(1)
1 and its complex conjugate only and K ′

2

[
u

(1)
1

]
u

(1)
2 is the Frechet derivative of the

NLS flux K2

[
u

(1)
1

]
(see Section 2.2.1 ). Now the term N3

(
u

(1)
1

)
depends from the free

real constant B. Choosing the coefficient B so as to eliminate any dependence of the
resulting equation on ∂3

n2
u

(1)
1 , we obtain

∂m2u
(1)
2 −K ′

2

[
u

(1)
1

]
u

(1)
2 = bu

(1)2
1 ∂n2 ū

(1)
1 + a|u(1)

1 |2∂n2u
(1)
1 , (3.28a)

a
.= −N1ρ2 cotκ, b

.= a
2− cosκ

cosκ
, b = a− 2ρ1ρ3α1 (3.28b)

B =
εµζM3

1

3M3 (ζ2 − µ2)2
[(
µ2 + ζ2 + 2µζ cosκ

)
cosκ− 4µζ

]
= (3.28c)

=
N3

1

M3
ω3.

The elimination of any term of the form ∂3
n2
u

(1)
1 from the r. h. s. of eq. (3.28a) is

justified from following proposition:

Proposition 3.1 If a function q(x, tr, ts) evolves according to the equation ∂tr
q−Kr [q] =

0 and if Ks [q] is such that [Kr,Ks]L = 0 (cfr. eq. (2.72)), then the term ∂ts
q−Ks [q] is

secular for the equation (∂tr
−K ′

r [q])φ (x, tr) = fr (x, tr, q, qx, . . .), where fr (x, tr, q, qx, . . .)
is a generic forcing term and φ (x, tr) a generic function of its arguments.

Proof: It is sufficient to show that ∂tsq − Ks [q] solves the homogeneous equation. In
fact we have: (∂tr

−K ′
r [q]) (∂ts

q −Ks [q]) = ∂tr
(∂ts

q −Ks [q])−K ′
r [q] (∂ts

q −Ks [q]) =
∂ts
∂tr
q− ∂̂tr

Ks [q]−K ′
s [q] ∂tr

q−K ′
r [q] ∂ts

q+K ′
r [q]Ks = ∂ts

∂tr
q− ∂̂tr

Ks [q]−K ′
s [q]Kr−

∂tsKr [q] + ∂̂tsKr [q] +K ′
r [q]Ks = ∂ts (∂trq −Kr [q])− [Kr,Ks]L = 0. Q. E. D.

The notation ∂̂tj
indicates differentiation with respect to a possible explicit dependence

of the various Km [q] on the slow-times. From the proof is clear that, when the various
Km [q] don’t exibit an explicit dependence on the slow-times, the two terms ∂ts

q and
Ks (q) are indeed separately secular1. If the r. h. s. of eq. (3.28a) contains a term of

1For completeness we give also the following proposition:
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the form ∂3
n2
u

(1)
1 , it is always possible to evidence in it a term of the form K3

[
u

(1)
1

]
, the

flux of the cmKdV equation (3.26), which, from the above proposition is secular.

• The coefficients of the r. h. s. of equation (3.28a) given by the relations (3.28b), obviously
satisfy both the two A2 integrability conditions (2.80). This proves the A2 asymptotic in-
tegrability of the lpKdV equation.

From equations (3.26) and (3.28a, 3.20b) we get respectively the continuity equations

∂m3d
(1) = B∂n2J

(1)
3 , (3.29a)

J
(1)
3

.=
(

3ρ2

2ρ1
|u(1)

1 |4 + u
(1)
1 ∂2

n2
ū

(1)
1 − |∂n2u

(1)
1 |2 + ū

(1)
1 ∂2

n2
u

(1)
1

)
, (3.29b)

∂m2d
(2) = ∂n2J

(2)
2 , (3.29c)

J
(2)
2

.= −ρ1ρ3

(
ū

(1)
1 ∂2

n2
u

(1)
1 − 2|∂n2u

(1)
1 |2 + u

(1)
1 ∂2

n2
ū

(1)
1

)
+

+
[
(a+ b)

α1

2
− ρ2ρ3

]
|u(1)

1 |4 + iρ1α1

(
u

(1)
1 ∂n2 ū

(1)
2 +

+u(1)
2 ∂n2 ū

(1)
1 − C.C.

)
, (3.29d)

which, combined respectively with (3.18) and (3.23), give the relations (as usual the arbi-
trary n2−independent integration functions have been set to zero to match the asymptotic
conditions on the u(α)

n )

∂m3u
(0)
1 = α1BJ

(1)
3 , ∂m2u

(0)
2 = J

(2)
2 , (3.30)

that will prove to be essential in the prosecution of the expansion. As before with J
(1)
3

and J (2)
2 we have indicated the current densities related respectively to the densities d(1)

and d(2);

• α = 0:

Taking into account eqs. (3.6, 3.12, 3.18, 3.19, 3.20b, 3.22, 3.23, 3.30) and that u(0)
1 , u(0)

2 ,
u

(1)
1 , u(1)

2 depend on n2 and choosing u(0)
3 dependent on n2 too, we have

∂n2u
(0)
3 = d(3), (3.31)

d(3) .= −iρ3

(
ū

(1)
2 ∂n2u

(1)
1 + ū

(1)
1 ∂n2u

(1)
2 − C.C.

)
+

+α1

(
u

(1)
1 ū

(1)
3 + ū

(1)
1 u

(1)
3 + |u(1)

2 | 2
)

+
3M1

2 (α− β)
α2

1|u
(1)
1 |4 +

+
M2

1

12
α1

(
ū

(1)
1 ∂2

n2
u

(1)
1 + u

(1)
1 ∂2

n2
ū

(1)
1 +

4 sin2 (κ/2)− 1
cos2 (κ/2)

|∂n2u
(1)
1 |2

)
;

Proposition 3.2 If a function q(x, tr, ts) evolves according to the equation Mrq = fr and the two differential
equations Mrq = fr, Msq = fs where [Kr, Ks]L = 0 represent compatible evolutions, the term Msq − fs is
secular for the equation Mrφ (x, tr) = gr (x, tr, q, qx, . . .), where gr (x, tr, q, qx, . . .) is a generic forcing term
and φ (x, tr) a generic function of its arguments.

Proof: It is sufficient to show that Msq−fs solves the homogeneous equation. In fact we have: Mr [Msq − fs] =
Mr [Msq]−Mrfs = Ms [Mrq]−Mrfs = Msfr −Mrfs = 0. Q. E. D.
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• α = 2:

Taking into account eqs. (3.6, 3.12, 3.18, 3.19, 3.20b, 3.24, 3.25) and that u(0)
1 , u(1)

1 , u(1)
2 ,

u
(2)
2 and u(2)

3 depend on n2, we have

u
(2)
4 = 2α3

2

(
1 + 4 sin2 (κ/2)

)
|u(1)

1 |2u(1)2
1 +

α2
3

2α2

[(
∂n2u

(1)
1

)2

+ u
(1)
1 ∂2

n2
u

(1)
1 cosκ

]
+

+α2

(
2u(1)

1 u
(1)
3 + u

(1)2
2

)
+ α3∂n2

(
u

(1)
2 u

(1)
1

)
; (3.32)

• α = 3:

Taking into account eqs. (3.6, 3.12, 3.19, 3.24, 3.25) and that u(1)
1 , u(2)

2 and u(3)
3 depend

on n2, we have

u
(3)
4 = α2

[
3α2u

(1)
2 + 2α3

(
∂n2u

(1)
1

)]
u

(1)2
1 ; (3.33)

• α = 4:

Taking into account eqs. (3.6, 3.19, 3.25) we obtain

u
(4)
4 = α3

2u
(1)4
1 ; (3.34)

v. Order γ = 5.

• α = 1:

Taking into account eqs. (3.6, 3.12, 3.18, 3.19, 3.20b, 3.22, 3.23, 3.24, 3.25, 3.26, 3.28a,
3.28b, 3.28c, 3.29b, 3.29d, 3.30, 3.31, 3.32), that u(0)

1 , u(0)
2 , u(0)

3 , u(1)
1 , u(1)

2 , u(1)
3 , u(2)

2 , u(2)
3

depend on n2 and that (see Section 2.2 and Subsection 2.2.1 ),

∂m3u
(1)
2 −K ′

3

[
u

(1)
1

]
u

(1)
2 = f3(2), (3.35)

∂m4u
(1)
1 + iC

{
∂4

n2
u

(1)
1 +

ρ2

ρ1

[
3ρ2

2ρ1
|u(1)

1 |4u(1)
1 + 4|u(1)

1 |2∂2
n2
u

(1)
1 + (3.36)

+3ū(1)
1

(
∂n2u

(1)
1

)2

+ 2|∂n2u
(1)
1 |2u(1)

1 + u
(1)2
1 ∂2

n2
ū

(1)
1

]}
= 0,

where K ′
3 [u] v is given in eq. (2.76c) and f3(2) in eqs. (2.79b, 2.81), we obtain

(∂n1 − ε∂m1)u
(1)
4 = N4

(
u

(1)
1 , u

(1)
2 , u

(1)
3

)
.

N4

(
u

(1)
1 , u

(1)
2 , u

(1)
3

)
is a function linear in u

(1)
3 and its complex conjugate and nonlinear

in u(1)
1 and u(1)

2 and their complex conjugates. As the r.h.s. of the last equation depends
on n2, it is in the kernel of the linear operator on the l.h.s. and consequently it is a
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secular term. In order to remove this secularity, we have to demand that both the r.h.s.
and the l.h.s. be equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
4 = 0, (3.37a)

∂m2u
(1)
3 −K

′

2

[
u

(1)
1

]
u

(1)
3 = N5

(
u

(1)
1 , u

(1)
2

)
. (3.37b)

The first relation tells us that u(1)
4 itself depends on n2. In the second relation, which

comes directly fromN4

(
u

(1)
1 , u

(1)
2 , u

(1)
3

)
= 0, N5

(
u

(1)
1 , u

(1)
2

)
is another nonlinear function

involving u(1)
1 , u(1)

2 and their complex conjugates. Now the term N5

(
u

(1)
1 , u

(1)
2

)
contains

the free real constant C which is chosen so as to eliminate any dependence of the resulting
equation on ∂4

n2
u

(1)
1 . From Proposition 3.1, the presence of this term can always introduce

a dependence on the secular term K4

[
u

(1)
1

]
, the flux of the equation (3.36). So we obtain

∂m2u
(1)
3 −K

′

2

[
u

(1)
1

]
u

(1)
3 = f2(3), (3.38a)

C =
µζM4

1

[
µ4 − 20µ2ζ2 + ζ4 + 8µζ

(
µ2 + ζ2

)
cosκ+ 2µ2ζ2 cos (2κ)

]
12M4 (µ2 − ζ2)3

·

· sinκ =
N4

1

M4
ω4, (3.38b)

where the forcing term f2(3) is given by eq. (2.82a).

• The term f2(3) appearing in equation (3.38a) obviously has all its coefficients that satisfy
all the fifteen A3 integrability conditions (2.83). This proves the A3 asymptotic integra-
bility of the lpKdV equation.

Due to the fact that the twelve complex coefficients of f2(3) respect the A3 integrability
conditions, they can all be generated giving a convenient nine-dimensional real basis.
We choose τ1, τ2, I3, I5, R6 and τ12 (see eq. (2.82a)) and report in the following their
expressions:

τ1 = −iρ2
(−23 + 16 cosκ+ cos (2κ)) cot2 (κ/2)

2 (µ+ ζ)2
,

τ2 = −iN2
1 ρ2

(29− 24 cosκ+ 7 cos (2κ))
12 sin2 κ

, I3 = −1
6
N2

1

(
1 + 3 csc2 κ

)
ρ2,

I5 = −1
4
N2

1

(
1 + 2 csc2 κ

)
ρ2, R6 = τ12 = a. (3.39)

From equations (3.36), (3.35, 3.26) and (3.38a, 3.28a, 3.20b) we get the continuity equa-
tions
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∂m4d
(1) = C∂n2J

(1)
4 , (3.40a)

J
(1)
4

.= −i
[
3ρ2

ρ1
ū

(1)
1 |u(1)

1 |2∂n2u
(1)
1 +

(
∂n2u

(1)
1

)
∂2

n2
ū

(1)
1 + ū

(1)
1 ∂3

n2
u

(1)
1 − C.C.

]
, (3.40b)

∂m3d
(2) = B∂n2J

(2)
3 , (3.40c)

J
(2)
3

.=
3
ρ1

[
α1ρ2

(
ū

(1)
1 u

(1)
2 + C.C.

)
−
(aα1

2
− ρ2ρ3

)
J

(1)
2

]
|u(1)

1 |2 + (3.40d)

+α1

[
ū

(1)
2 ∂2

n2
u

(1)
1 + ū

(1)
1 ∂2

n2
u

(1)
2 −

(
∂n2 ū

(1)
1

)
∂n2u

(1)
2 + C.C.

]
+

+iρ3

[
u

(1)
1 ∂3

n2
ū

(1)
1 + 2

(
∂n2 ū

(1)
1

)
∂2

n2
u

(1)
1 − C.C.

]
,

∂m2d
(3) = ∂n2J

(3)
2 , (3.40e)

J
(3)
2

.= iα1ρ1

(
u

(1)
1 ∂n2 ū

(1)
3 + u

(1)
3 ∂n2 ū

(1)
1 + u

(1)
2 ∂n2 ū

(1)
2 − C.C.

)
+ (3.40f)

+ρ1ρ3

[
2
(
∂n2 ū

(1)
1

)
∂n2u

(1)
2 − u

(1)
2 ∂2

n2
ū

(1)
1 − ū

(1)
1 ∂2

n2
u

(1)
2 + C.C.

]
+

+
iρ3

3α2
1

(α1ρ1ρ3 − 2a)
(
u

(1)
1 ∂3

n2
ū

(1)
1 − C.C.

)
+

+
iρ3

3α2
1

(α1ρ1ρ3 + 4a)
[(
∂2

n2
ū

(1)
1

)
∂n2u

(1)
1 − C.C.

]
−

−α1 (α1ρ1ρ3 − 2a)
(
ū

(1)
1 u

(1)
2 + C.C.

)
|u(1)

1 |2 −

−
(

a2

α1ρ1
− 6aρ3 +

7
2
α1ρ1ρ

2
3

)
|u(1)

1 |2J (1)
2 ,

which, combined respectively with (3.18), (3.23) and (3.31), give the relations (as usual
the arbitrary n2−independent integration functions have been set to zero to match the
asymptotic conditions on the u(α)

n s)

∂m4u
(0)
1 = α1CJ

(1)
4 , ∂m3u

(0)
2 = BJ

(2)
3 , ∂m2u

(0)
3 = J

(3)
2 . (3.41)

In other words d(1) is a density of a quantity conserved by the entire NLS hierarchy
(2.71a), d(2) is a density of a quantity conserved by the entire hierarchy of systems of
two differential equations (2.71) obtained when j = 2 as n varies and d(3) is a density
of a quantity conserved by the entire hierarchy of systems of three differential equations
(2.71) obtained when j = 2, 3 as n varies.

We will stop here the multiscale analysis of the lpKdV equation and we will pass to the
multiscale analysis of the spectral problem (3.2) of the lpKdV equation.

3.2 Multiscale reduction of the lattice potential KdV spectral problem

In this section, taking into account ref. [17] and following the analogous calculation for dif-
ferential equations as presented in [40], we want to show how a proper multiscale expansion
of the lpKdV spectral problem produces the spectral problem of the NLS equation (3.20b).
First of all we will perform on the spectral problem (3.2) a gauge transformation to reduce it
into a more convenient form. Transforming the wave function ϕn,m according to the rule
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ϕn,m
.= hn (λ) gn,m ({un,m})ψn,m,

where by the notation {un,m} we indicate indicate a dependence on un,m and its shifted values,
it is possible to tranform eq. (3.2a) into

ψn−1,m + an,m ({un,m})ψn+1,m = δ (λ)ψn,m. (3.42)

In fact, it it sufficient to take the function gn,m satisfying the linear difference equation

gn,m =
(un+2,m − un,m − 2p)

θ
gn+1,m, (3.43)

where θ is an arbitrary complex constant. The solution of the previous linear equation is given
by

gn,m = gn0,m

n−1∏
β=n0

wβ,m, n ≥ n0 + 1, (3.44a)

gn,m = gn0,m

n0−1∏
β=n

w−1
β,m, n ≤ n0 − 1, (3.44b)

wn,m
.=

θ

(un+2,m − un,m − 2p)
,

where gn0,m is the arbitrary m−dependent initial condition at n = n0. If for the function gn,m

an asymptotic behavior is prescribed, the previous solution has to be changed. In fact, as un,m

tends to a constant as n→ ±∞, as n→ ±∞ eq. (3.43) reduces to

gn,m = −2p
θ
gn+1,m,

whose solution is

gn,m =
(
− θ

2p

)n

.

Hence setting gn,m
.= (−θ/2p)n

g̃n,m with g̃n,m → 1 as n → ±∞, g̃n,m, now satisfies with an
n−independent asymptotic condition an equation similar to (3.43) but with θ replaced by −2p.
Now one can take the expression (3.44a) with n0 → −∞ and gn0,m = 1. Finally we have

gn,m =
(
− θ

2p

)n n−1∏
β=−∞

w̃β , (3.45)

w̃n,m
.= − 2p

(un+2,m − un,m − 2p)
.

A natural choice would be to set θ = −2p. Moreover the function hn (λ) is defined by
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hn (λ) .= π (λ) (−1)n (−λ)n/2
,

with π (λ) an arbitrary function of λ. Hence the new wave function ψn,m satisfies eq. (3.42)
where

an,m =
θ2

(un+2 − un,m − 2p) (un+1,m − un−1,m − 2p)
, δ =

θ

(−λ)1/2
. (3.46)

At the same time eq. (3.2b) transforms into

ψn,m+2 =
(2q − un,m+2 + un,m) gn,m+1

gn,m+2
ψn,m+1 +

(
λ+ p2 − q2

)
gn,m

gn,m+2
ψn,m.

Let us do the multiscale expansion of eq. (3.42). We expand the field un,m according to the
formula (2.117) while the wave function ψn,m and the spectral parameter δ are given by

ψ(n,m, n1, {mj}K
j=1 , ε) =

+∞∑
γ=0

εγ

2γ+1∑
αodd=−(2γ+1)

ψ(α)
γ

(
n2, {mj}K

j=2

)
Eα/2

n,m, (3.47a)

ψ(−α)
γ = ψ̄(α)

γ , δ (ε) =
+∞∑
γ=0

εγδγ . (3.47b)

i. Order γ = 0.

• α = 1:

θ = ±2p, δ0 = 2 cos (κ/2) ; (3.48)

ii. Order γ = 1.

• α = ±1:

N1∂n2ψ
(1)
0 +

2u(1)
1

p
cos2 (κ/2) ψ̄(1)

0 = − iδ1
2 sin (κ/2)

ψ
(1)
0 , (3.49a)

N1∂n2 ψ̄
(1)
0 +

2ū(1)
1

p
cos2 (κ/2)ψ(1)

0 =
iδ1

2 sin (κ/2)
ψ̄

(1)
0 ; (3.49b)

• α = 3:

ψ
(3)
1 =

eiκ + 1
2p (e−iκ − 1)

u
(1)
1 ψ

(1)
0 . (3.50)

• Eqs. (3.49) represent the space part of the Zakharov-Shabat spectral problem of the NLS
equation (3.20b) for the function u

(1)
1 .

In the next section we will perform the multiscale analysis on a different discretization of the
KdV equation.



3.3 Multiscale analysis of the off-centric discretization of the KdV equation 51

3.3 Multiscale analysis of the off-centric discretization of the KdV equation

Let us consider the trivial discretization of the KdV equation

un,m+1 − un,m−1 =
α

4
(un+3,m − 3un+1,m + 3un−1,m − un−3,m)− β

(
u2

n+1,m − u2
n,m

)
, (3.51)

which presents an off-centric discretization of the nonlinear part, and perform on it a similar
multiscale analysis as in the case of the lpKdV equation.

i. Order γ = 1.

• α = 0:

At this order eq. (3.51) is automatically satisfied;

• α = 1:

At this order we find the dispersion relation

sinω = α sin3 κ. (3.52)

In the following we will use the dispersion relation by expressing α in terms of κ and ω;

ii. Order γ = 2.

• α = 0:

∂m1u
(0)
1 = 0, (3.53)

so that u(0)
1 is independent of m1;

• α = 1:

Using eq. (3.52), we obtain

(3N1 cotκ sinω∂n1 +M1 cosω∂m1)u
(1)
1 = −iβ [sinκ+ i (1− cosκ)]u(0)

1 u
(1)
1 . (3.54)

Choosing

u
(0)
1 = 0, N1 = εS sinκ cosω, M1 = −3S cosκ sinω, (3.55)

where S is an arbitrary real constant and ε = ±1, eq. (3.54) becomes

(∂n1 − ε∂m1)u
(1)
1 = 0, ε = −N1

M1
ω1, (3.56)

so that u(1)
1 is a function of n2

.= n1 + εm1;
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• α = 2:

Using eq. (3.52), we obtain

u
(2)
2 = α2u

(1)2
1 , α2

.= − βeiκ sinκ cscω
2 (4 cos3 κ− cosω)

; (3.57)

iii. Order γ = 3.

• α = 0:

Using all the three relations (3.55), supposing u(0)
2 dependent on n2 and integrating once

with respect to n2 setting to zero the arbitrary n2−independent integration function to
satisfy the asymptotic decrease of all the u(α)

n s as n2 → ±∞, we get

u
(0)
2 = α1|u(1)

1 |2, α1
.=

1
3
β cotω tanκ = −N1

M1
βε; (3.58)

• α = 1:

Using all the three relations (3.55), and eqs. (3.52, 3.57, 3.58), we obtain

(∂n1 − ε∂m1)u
(1)
2 = N1

(
u

(1)
1

)
,

where N1

(
u

(1)
1

)
is a nonlinear function in u

(1)
1 and its complex conjugate. As the r.h.s.

of the last equation depends on n2, this side is in the kernel of the linear operator on the
l.h.s. and consequently it is a secular term. In order to remove this secularity, we have
to demand that both the r.h.s. and the l.h.s. be equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
2 = 0, (3.59a)

i∂m2u
(1)
1 = ρ1∂

2
n2
u

(1)
1 + ρ2u

(1)
1 |u(1)

1 |2, (3.59b)

ρ1
.= − 3S2

4M2
[2 + 3 cos (2κ)− cos (2ω)] tanω = −N

2
1

M2
ω2, (3.59c)

ρ2
.= β2 (1− cosκ)

(
1 + eiκ

) 8 cos2 κ− 2 secκ cosω − 3eiκ secω
2M2 sinω (12 cos3 κ− 3 cosω)

.

The first relation says that u(1)
2 depends on n2 too while the second one is an NLS

equation giving the evolution of u(1)
1 according to the slow-time m2.

• As ρ2 is a complex number, the A1 integrability condition in (2.77) is not respected and
the obtained NLS equation is not integrable. Hence our starting model (3.51) is not
integrable.
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3.4 Multiscale analysis of the symmetric discretization of the KdV equation

Let us consider the discretization of the KdV equation

un,m+1 − un,m−1 =
α

4
(un+3,m − 3un+1,m + 3un−1,m − un−3,m)− β

2
(
u2

n+1,m − u2
n−1,m

)
, (3.60)

which is similar to that of the previous section in all but the discretization of the nonlinear
part which now presents symmetric shifts. Let us perform on it a multiscale analysis.

i. Order γ = 1.

• α = 0:

At this order eq. (3.60) is automatically satisfied;

• α = 1:

At this order we find the dispersion relation

sinω = α sin3 κ. (3.61)

As before in the following we will use the dispersion relation by expressing α in terms of
κ and ω;

ii. Order γ = 2.

• α = 0:

∂m1u
(0)
1 = 0, (3.62)

so that u(0)
1 is independent of m1;

• α = 1:

Using eq. (3.61), we obtain

(3N1 cotκ sinω∂n1 +M1 cosω∂m1)u
(1)
1 = −iβ sinκu(0)

1 u
(1)
1 . (3.63)

Choosing

u
(0)
1 = 0, N1 = εS sinκ cosω, M1 = −3S cosκ sinω, (3.64)

where S is an arbitrary real constant and ε = ±1, eq. (3.63) becomes

(∂n1 − ε∂m1)u
(1)
1 = 0, ε = −N1

M1
ω1, (3.65)

so that u(1)
1 is a function of n2

.= n1 + εm1;
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• α = 2:

Using eq. (3.61), we obtain

u
(2)
2 = α2u

(1)2
1 , α2

.= − β sin (2κ) cscω
4 (4 cos3 κ− cosω)

; (3.66)

iii. Order γ = 3.

• α = 0:

Using all the three relations (3.64), supposing u(0)
2 dependent on n2 and integrating once

with respect to n2, setting to zero the arbitrary n2−independent integration function to
satisfy the asymptotic decrease of all the u(α)

n as n2 → ±∞, we get

u
(0)
2 = α1|u(1)

1 |2, α1
.=

1
3
β cotω tanκ = −N1

M1
βε; (3.67)

• α = 1:

Using all the three relations (3.64), eqs. (3.61, 3.66, 3.67) and the dependence of u(1)
1 on

n2, we obtain

(∂n1 − ε∂m1)u
(1)
2 = N1

(
u

(1)
1

)
,

where N1

(
u

(1)
1

)
is a nonlinear function in u

(1)
1 and its complex conjugate. As the r.h.s.

of the last equation depends on n2, this side is in the kernel of the linear operator on the
l.h.s. and consequently it is a secular term. In order to remove this secularity, we have
to demand that both the r.h.s. and the l.h.s. be equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
2 = 0, (3.68a)

i∂m2u
(1)
1 = ρ1∂

2
n2
u

(1)
1 + ρ2u

(1)
1 |u(1)

1 |2, (3.68b)

ρ1
.= − 3S2

4M2
[2 + 3 cos (2κ)− cos (2ω)] tanω = −N

2
1

M2
ω2, (3.68c)

ρ2
.= −

β2
[
5 + 3 cos (2κ)− 16 cos3 κ cosω + 2 cos (2ω)

]
sinκ tanκ csc (2ω)

6M2 (4 cos3 k − cosω)
=

=
(α1 + α2)β sinκ secω

M2
.

The first relation says that u(1)
2 depends on n2 too while the second one is an NLS

equation giving the evolution of u(1)
1 according to the slow-time m2.

• As ρ2 is a real number, the A1 integrability condition in (2.77) is satisfied and the obtained
NLS equation is integrable. Hence our starting model (3.60) is A1−integrable;
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• α = 2:

Using all the three relations (3.64), eqs. (3.61, 3.66) and that u(1)
1 depends on n2, we get

u
(2)
3 = α3u

(1)
1 ∂n2u

(1)
1 + 2α2u

(1)
1 u

(1)
2 , (3.69)

α3
.= −

iSεβ sinκ
{[

1 + 16 cos3 κ cosω − 2 cos (2ω)
]
cos (2κ)− 3 cos (2ω)

}
4 (4 cos3 κ− cosω)2 sinω

;

• α = 3:

Using eqs. (3.61, 3.66), we get

u
(3)
3 = α2α4u

(1)3
1 , α4

.= − β sin (3κ){
[1 + 2 cos (2κ)]3 + 4 sin2 ω − 3

}
sinω

; (3.70)

iv. Order γ = 4.

• α = 0:

Using all the three relations (3.64), relations (3.67, 3.68b), supposing u(0)
3 dependent on

n2 and integrating once with respect to n2, setting to zero the arbitrary n2−independent
integration function to satisfy the asymptotic decrease of all the u(α)

n as n2 → ±∞, we
get

u
(0)
3 = α1

(
u

(1)
1 ū

(1)
2 + C.C.

)
+ ρ3J

(1)
2 , (3.71)

J
(1)
2

.= −i
(
ū

(1)
1 ∂n2u

(1)
1 − C.C.

)
,

ρ3
.= −Sεβ [2 + 3 cos (2κ)− cos (2ω)] cscω secκ tanκ

12
= −εM2α1ρ1

M1
;

• α = 1:

Using all the three relations (3.64), eqs. (3.61, 3.66, 3.67, 3.68b, 3.69, 3.71), the depen-
dence of u(1)

1 , u(1)
2 on n2 and that (see Section 2.2 and Subsection 2.2.1 ) the amplitude

u
(1)
1 evolves at the slow-time m3 according to the cmKdV equation

∂m3u
(1)
1 −B

(
∂3

n2
u

(1)
1 +

3ρ2

ρ1
|u(1)

1 |2∂n2u
(1)
1

)
= 0, (3.72)

we obtain

(∂n1 − ε∂m1)u
(1)
3 = N2

(
u

(1)
1 , u

(1)
2

)
.

N2

(
u

(1)
1 , u

(1)
2

)
is a nonlinear function in u(1)

1 and its complex conjugate and linear in u(1)
2

and its complex conjugate. As the r.h.s. of the last equation depends on n2, this side is



3.4 Multiscale analysis of the symmetric discretization of the KdV equation 56

in the kernel of the linear operator on the l.h.s. and consequently it is a secular term.
In order to remove this secularity, we have to demand that both the r.h.s. and the l.h.s.
be equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
3 = 0, (3.73a)

∂m2u
(1)
2 −K

′

2

[
u

(1)
1

]
u

(1)
2 = N3

(
u

(1)
1

)
, (3.73b)

K ′
2

[
u

(1)
1

]
u

(1)
2

.= −iρ1

[
∂2

n2
u

(1)
2 +

ρ2

ρ1

(
u

(1)2
1 ū

(1)
2 + 2|u(1)

1 |2u(1)
2

)]
.

The first relation tells us that u(1)
3 itself depends on n2. In the second relation, which

comes directly fromN2

(
u

(1)
1 , u

(1)
2

)
= 0, N3

(
u

(1)
1

)
is another nonlinear function involving

u
(1)
1 and its complex conjugate only and K ′

2

[
u

(1)
1

]
u

(1)
2 is the Frechet derivative of the

NLS flux K2

[
u

(1)
1

]
(see Section 2.2.1 ). Now the term N3

(
u

(1)
1

)
contains the free real

constant B. Choosing the coefficient B so as to eliminate any dependence of the resulting
equation on ∂3

n2
u

(1)
1 , we obtain

∂m2u
(1)
2 −K ′

2

[
u

(1)
1

]
u

(1)
2 = bu

(1)2
1 ∂n2 ū

(1)
1 + a|u(1)

1 |2∂n2u
(1)
1 , (3.74a)

a
.= −3BM3ρ2

M2ρ1
+ 6N1ρ2 cotκ tan2 ω + (3.74b)

+
β secω [2N1 (α1 + α2) cosκ+ (iα3 + ρ3) sinκ]

M2
,

b
.=
β secω [−N1 (α1 + α2) cosκ+ ρ3 sinκ]− 3N1M2ρ2 cotκ tan2 ω

M2
,

B
.=
εS3 {21 + 18 cos (2κ) [2− cos (2ω)]− 32 cos (2ω) + cos (4ω)}

8M3
·

· cosκ secω tanω =
N3

1

M3
ω3. (3.74c)

• The coefficients of the r. h. s. of equation (3.74a) given by the relations (3.74b), respect
the two A2 integrability conditions (2.80). This proves the A2 asymptotic integrability of
the symmetrically discretized KdV equation;

• α = 2:

Using eqs. (3.61, 3.64, 3.66, 3.67, 3.68b, 3.69, 3.70) and the dependence of u(1)
1 , u(1)

2 on
n2, we get
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u
(2)
4 = 2α2

2 (α1 + α4 + α5ρ2) |u(1)
1 |2u(1)2

1 +
[
α3δ + α2

(
π +N2

1

)] (
∂n2u

(1)
1

)2

+

+
[
α3δ + α2

(
π +N2

1 + 2ρ1α2α5

)]
u

(1)
1 ∂2

n2
u

(1)
1 + α2

(
2u(1)

1 u
(1)
3 + u

(1)2
2

)
+

+α3∂n2

(
u

(1)
2 u

(1)
1

)
, α5

.= −2M2 cos (2ω) csc (2κ)
β

, (3.75)

δ
.=

3iεS cosκ [4 cosκ cosω cos (2κ)− cos (2ω)]
2 (4 cos3 κ− cosω)

,

π
.=

3S2 cosκ cosω
[
cosω + 3 cosω cos (4κ) + 6 cosκ sin2 ω

]
2 (4 cos3 κ− cosω)

;

• α = 3:
Using eqs. (3.61, 3.64, 3.66, 3.69, 3.70) and the dependence of u(1)

1 on n2, we get

u
(3)
4 = α4

[
3α2u

(1)
2 + (α2F + α3)

(
∂n2u

(1)
1

)]
u

(1)2
1 , (3.76)

F
.=

24iεS cos3 κ cosω
[
4 cos3 (2κ)− cos (2ω)

]
[1 + 2 cos (2κ)] [3 + 6 cos (2κ) + 3 cos (4κ) + cos (6κ)− cos (2ω)]

;

• α = 4:
Using eqs. (3.61, 3.66, 3.70), we get

u
(4)
4 = Gα2 (α2 + 2α4)u

(1)4
1 , (3.77)

G
.=

β cscω sin (4κ)

4
{
−4 [cosκ+ cos (3κ)]3 + cosω + cos (3ω)

} ;

v. Order γ = 5.

• α = 0:
Using relations (3.64, 3.66, 3.67, 3.68b, 3.71, 3.72, 3.74a), taking into account the de-
pendence of u(1)

1 on n2 and supposing u(0)
4 dependent on n2 and integrating once with

respect to n2 setting to zero the arbitrary n2−independent integration function to satisfy
the asymptotic decrease of all the u(α)

n s as n2 → ±∞, we get

u
(0)
4 = −iρ3

(
ū

(1)
2 ∂n2u

(1)
1 + ū

(1)
1 ∂n2u

(1)
2 − C.C.

)
+ (3.78)

+α1

(
ū

(1)
1 u

(1)
3 + u

(1)
1 ū

(1)
3 + |u(1)

2 |2
)

+ f |u(1)
1 |4 + g|δn2u

(1)
1 |2 +

+h
(
u

(1)
1 ∂2

n2
ū

(1)
1 + C.C.

)
,

f
.= − ε

M1

{[
(a+ b)

α1

2
− ρ2ρ3

]
M2 +

N1β
(
α2

1 + 2α2
2

)
2

+
3BM3α1ρ2

2ρ1

}
,

g
.= −−3BM3α1 +N3

1 (β − 6αα1) +M3
1α1ε+ 6M2ρ1ρ3

3M1ε
,

h
.= −6BM3α1 +N3

1 (β − 6αα1) +M3
1α1ε− 6M2ρ1ρ3

6M1ε
;
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• α = 1:

Using eqs. (3.61, 3.64, 3.66, 3.67, 3.68b, 3.69, 3.70, 3.71, 3.72, 3.74a, 3.75, 3.78), the
dependence of u(1)

1 , u(1)
2 , u(1)

3 on n2 and that (see Section 2.2 and Subsection 2.2.1 ),

∂m3u
(1)
2 −K ′

3

[
u

(1)
1

]
u

(1)
2 = f3(2) (3.79)

∂m4u
(1)
1 + iC

{
∂4

n2
u

(1)
1 +

ρ2

ρ1

[
3ρ2

2ρ1
|u(1)

1 |4u(1)
1 + 4|u(1)

1 |2∂2
n2
u

(1)
1 + (3.80)

+3ū(1)
1

(
∂n2u

(1)
1

)2

+ 2|∂n2u
(1)
1 |2u(1)

1 + u
(1)2
1 ∂2

n2
ū

(1)
1

]}
= 0,

where K ′
3 [u] v is given in eq. (2.76c) and f3(2) in eqs. (2.79b, 2.81), we obtain

(∂n1 − ε∂m1)u
(1)
4 = N4

(
u

(1)
1 , u

(1)
2 , u

(1)
3

)
.

N4

(
u

(1)
1 , u

(1)
2 , u

(1)
3

)
is function linear in u(1)

3 and its complex conjugate and nonlinear in

u
(1)
1 and u

(1)
2 and their complex conjugates. As the r.h.s. of the last equation depends

on n2, this side is in the kernel of the linear operator on the l.h.s. and consequently it
is a secular term. In order to remove this secularity, we have to demand that both the
r.h.s. and the l.h.s. be equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
4 = 0, (3.81a)

∂m2u
(1)
3 −K

′

2

[
u

(1)
1

]
u

(1)
3 = N5

(
u

(1)
1 , u

(1)
2

)
. (3.81b)

The first relation tells us that u(1)
4 itself depends on n2. In the second relation, which

comes directly from N4

(
u

(1)
1 , u

(1)
2 , u

(1)
3

)
= 0, N5

(
u

(1)
1 , u

(1)
2

)
is another nonlinear func-

tion involving u
(1)
1 , u(1)

2 and their complex conjugates. Now the term N5

(
u

(1)
1 , u

(1)
2

)
contains the free real constant C which is chosen so as to eliminate any dependence of
the resulting equation on ∂4

n2
u

(1)
1 , as from Proposition 3.1, the presence of this term can

always introduce a dependence on the secular term K4

[
u

(1)
1

]
, the flux of the equation

(3.80). We obtain

∂m2u
(1)
3 −K

′

2

[
u

(1)
1

]
u

(1)
3 = f2(3), (3.82a)

C
.=
S4 {−3 [404 + 549 cos (2κ) + 126 cos (4κ)] cos (2ω)

128M4
+

+
3 [73 + 78 cos (2κ) + 9 cos (4κ)] cos (4ω)− [2 + cos (2κ)] cos (6ω)

128M4
+

+
997 + 1358 cos (2κ) + 405 cos (4κ)} sec2 ω tanω

128M4
=
N4

1

M4
ω4, (3.82b)
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where the forcing term f2(3) is given by eq. (2.82a). The real and imaginary parts of
the coefficients τi, i = 1, . . . , 12 of f2(3) are given by

R1 = 0,

I1 = −
2βρ1 sinκ

[
12N1α

2
2α5ρ1 secω + (3BM3α1 − 2M2ρ1ρ3) cscω tanκ

]
12N1M2ρ2

1

ρ2 −

−3aBM3

4M2ρ2
1

ρ2 +
(

3CM4

2M2ρ2
1

− 1
2
M2 tanω

)
ρ2
2 −

βα2
2 (2α1 + 3α4) sinκ secω

M2
−

−
β
[
(a+ b)M2α1 +N1

(
α2

1 + 2α2
2

)
β
]
cscω tanκ sinκ

6N1M2
,

R2 = 0,

I2 =
2
[
CM4 + 9N2

1M2ρ1

(
1− csc2 κ+ cot2 κ sec2 ω

)
−M2

2 ρ
2
1 tanω

]
M2ρ1

ρ2 −

−9BM3N1 cotκ tan2 ω

M2ρ1
ρ2 − 3

[
bBM3

M2ρ1
+ (a+ 2b)N1 cotκ tan2 ω

]
−

−N
2
1 cscω sinκ tanκ

9M2
β2 −

(
N1 cosκ secω

M2
+

2ρ1 cscω sinκ tanκ
3N1

)
βρ3 +

+
N1 secω (iα3 cosκ− 2N1α2 sinκ)

M2
β +

BM3 cscω sinκ tanκ
3N1M2

βα1 +

+
2 cscκ secκ+ 3 secω

(
3 cosκ cotκ tan2 ω − 2 sinκ

)
3M2

N2
1βα1,

R3 = 0,

I3 = −N
2
1 cscω sinκ tanκ

18M2
β2 − BM3 cscω sinκ tanκ

3N1M2
βα1 +

+
2 cscκ secκ+ 3 secω

(
3 cosκ cotκ tan2 ω − 2 sinκ

)
6M2

N2
1βα1 +

+
β secω

{
N1 (iα3 + ρ3) cosκ−

[
α3δ + α2

(
2N2

1 + π + 2α2α5ρ1

)]
sinκ

}
M2

+

+
βρ1ρ3 cscω sinκ tanκ

3N1
− 3a

[
BM3

2M2ρ1
+N1 cotκ tan2 ω

]
+

+
4CM4 − 2M2

2 ρ
2
1 tanω + 9N1 (N1M2ρ1 cotκ−BM3) cotκ tan2 ω

M2ρ1
ρ2,

R4 = 0,

I4 = −N
2
1 cscω sinκ tanκ

18M2
β2 +

3
2
N1 (2b+ 3N1ρ2 cotκ) cotκ tan2 ω +

+
CM4ρ2

M2ρ1
− BM3 cscω sinκ tanκ

3N1M2
βα1 +

βρ1ρ3 cscω sinκ tanκ
3N1

+

+
2 cscκ secκ+ 3 secω

(
3 cosκ cotκ tan2 ω − sinκ

)
6M2

N2
1βα1 −

−N1 (2ρ3 cosκ+N1α2 sinκ) secω
2M2

β,
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R5 = 0,

I5 =
(iN1 cosκ− δ sinκ) secω

M2
α3 −

[
N2

1 (α1 + 2α2) + α2π
]
sinκ secω

M2
β +

+
N1ρ3 cosκ secω

M2
β −M2ρ2ρ1 tanω + 3N1 (3N1ρ2 cotκ− a) cotκ tan2 ω +

+
3
(
2CM4ρ2 − 6BM3N1ρ2 cotκ tan2 ω − aBM3

)
2M2ρ1

,

τ6 = τ7 = a, τ8 = −iρ2, τ9 = −2iρ2,

τ10 = a, τ11 = 2b, τ12 = a. (3.83)

• The coefficients given in eqs. (3.83) respect only fourteen out of the fifteen A3

integrability conditions (2.83) (the one involving I4 is not satisfied). This proves that the
symmetrically discretized KdV equation is not integrable.

3.5 Multiscale analysis of differential-difference equations I: reduction of the
Ablowitz-Ladik NLS equation

Let us consider the integrable A−L discrete NLS equation [1] for the complex function fn(t)

i∂tfn +
fn+1 − 2fn + fn−1

2σ2
= ε|fn|2

fn+1 + fn−1

2
, (3.84)

where ε .= ±1. Equation (3.84) is an S−integrable system as it arises as the compatibility con-
dition of the following overdetermined system of two matrix linear partial difference equations

for the vector function vn(t) .=
(
v
(1)
n (t), v(2)

n (t)
)T

vn+1 =
(

z σfn

εσf̄n z−1

)
vn

.= Anvn, (3.85a)

2i∂tvn =

(
εfnf̄n−1 −

(
z − z−1

)2
/
(
2σ2
) (

z−1fn−1 − zfn

)
/σ

ε
(
z−1f̄n − zf̄n−1

)
/σ

(
z − z−1

)2
/
(
2σ2
)
− εf̄nfn−1

)
vn

.= (3.85b)

.= 2iBnvn,

where z ∈ C is the spectral parameter. Hence our equation is equivalent to the following matrix
equation

An,t = Bn+1An −AnBn.

If we set fn(t) .= νn(t)1/2eiφn(t), where νn(t) and φn(t) are both real functions, eq. (3.84),
separating real and imaginary parts, turns into the following system of two real nonlinear
differential-difference equations

∂tνn +
(

1
σ2

− ενn

)(
δ
1/2
+ sinβ+ + δ

1/2
− sinβ−

)
= 0, (3.86a)

∂tφn +
1
σ2

− 1
2

(
1
σ2

− ενn

)(
γ

1/2
+ cosβ+ + γ

1/2
− cosβ−

)
= 0, (3.86b)



3.5 Multiscale analysis of differential-difference equations I: reduction of the Ablowitz-Ladik
NLS equation 61

where β±
.= φn±1(t)−φn(t), γ±

.= νn(t)−1νn±1(t), δ±
.= νn(t)νn±1(t). We expand the functions

νn(t) and φn(t) as

ν
(
n, t, n1, {tj}K

j=1 , ε
)

= 1 +
+∞∑
κ=1

ε2κν(κ)
(
n1, {tj}K

j=1

)
, (3.87a)

φ
(
n, t, n1, {tj}K

j=1 , ε
)

= −εt+
+∞∑
κ=1

ε2κ−1φ(κ)
(
n1, {tj}K

j=1

)
, (3.87b)

where n1
.= N1εn, tj

.= αjε
2j−1t and N1, αj are real constants, 1 ≤ j ≤ K (eventually

K = +∞). The expansions of the n-shifts and of the t−derivatives of the functions νn(t) and
φn(t) as well as of the nonlinear monomials present in eqs. (3.86) are given in Appendix D, see
especially eqs. (D.6c, D.6d, D.11). The orders κ = 0, 1 are trivially satisfied.

i. Order κ = 2.

ν(1) = −εα1∂t1φ
(1); (3.88)

ii. Order κ = 3.

α1∂t1ν
(1) +N2

1

(
1
σ2

− ε

)
∂2

n1
φ(1) = 0,

which, after inserting in it the expression (3.88), becomes

(
∂2

t1 − c2∂2
n1

)
φ(1) = 0, c

.= ± N1

σα1

(
ε− σ2

)1/2
,

We see that one has to ensure that
(
ε− σ2

)
> 0 from which ε = 1 and −1 < σ < 1 (σ 6= 0).

Hence we will eliminate σ2 using the relation

σ2 =
1

1 +
(

cα1
N1

)2 .

If one desires to study the continuum limit, in order to get a finite limit for c as σ → 0, one
should set N1 = α1σ so that c = ±

(
1− σ2

)1/2 and N1 = ±α1

(
1− c2

)1/2. We choose φ(1)

depending on ξ .= n1 − ct1 so that

(∂t1 + c∂ξ)φ(1) = 0, (3.89)

from which, using (3.88),

ν(1) = α1c∂ξφ
(1), (3.90)

so that ν(1) itself depends on ξ;
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iii. Order κ = 4.

Using (3.90), we find

ν(2) = −α1∂t1φ
(2) − α2∂t2φ

(1) +
(cα1)

2

2

[
cα1

2
∂3

ξφ
(1) −

(
∂ξφ

(1)
)2
]

; (3.91)

iv. Order κ = 5.

α1∂t1ν
(2) + α2∂t2ν

(1) + (cα1)
2

[
∂2

n1
φ(2) +

N2
1

12
∂4

ξφ
(1) +

(
∂ξφ

(1)
)(

∂ξν
(1)
)]

+

+
[
(cα1)

2 −N2
1

]
ν(1)∂2

ξφ
(1) = 0. (3.92)

Taking into account eqs. (3.89, 3.90, 3.91), eq. (3.92) becomes

α1

(
∂2

t1 − c2∂2
n1

)
φ(2) = 2c∂ξ

[
α2∂t2φ

(1) − (cα1)
2
ρ1∂

3
ξφ

(1) + 6cα1ρ1

(
∂ξφ

(1)
)2
]
,

ρ1
.=

1
8

(
cα1 −

N2
1

3cα1

)
. (3.93)

The right hand side of eq. (3.93) is secular so we have to require that

(
∂2

t1 − c2∂2
n1

)
φ(2) = 0, (3.94a)

α2∂t2φ
(1) − cα1ρ1

[
cα1∂

3
ξφ

(1) − 6
(
∂ξφ

(1)
)2
]

= 0, (3.94b)

where we choose φ(2) and as a consequence ν(2) depending on ξ. The arbitrary ξ−independent
integration function has been set equal to zero to met the asymptotic conditions on all the
functions φ(j) and ν(i) and their ξ−derivatives as ξ → ±∞. As we can see in eqs. (2.92) with
n = 2 and (2.93b), eq. (3.94b) is a potential KdV equation for φ(1) at the slow-time t2 with

τ1
.= (cα1)2ρ1/α2, τ2

.= −6cα1ρ1/α2. (3.95)

From eq. (3.94b), differentiating once with respect to ξ and using (3.90), we have

α2∂t2ν
(1) − (cα1)2ρ1∂

3
ξν

(1) + 12ρ1ν
(1)∂ξν

(1) = 0,

which is a KdV equation for ν(1) at the slow-time t2. Taking into account eq. (3.94b) and
that φ(2) depends on ξ, eq. (3.91) becomes

ν(2) = cα1∂ξφ
(2) + (cα1)

2
υ1∂

3
ξφ

(1) +
1
4

[
(cα1)

2 −N2
1

] (
∂ξφ

(1)
)2

, (3.96)

υ1
.=

1
8

(
cα1 +

N2
1

3cα1

)
;
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v. Order κ = 6.

Taking into account eqs. (3.90, 3.91, 3.94b), we have

ν(3) = −α3∂t3φ
(1) − α2∂t2φ

(2) − α1∂t1φ
(3) +

(cα1)
3

4
∂3

ξφ
(2) + (3.97)

+ (cα1)
2
[
ρ2

(
∂ξφ

(1)
)(

∂3
ξφ

(1)
)

+ cα1ρ3∂
5
ξφ

(1) −
(
∂ξφ

(1)
)(

∂ξφ
(2)
)]

+

+
cα1N

2
1

2

[(
∂ξφ

(1)
)3

− cα1

2

(
∂2

ξφ
(1)
)2
]
,

ρ2
.= − 1

24

[
3 (cα1)

2 + 13N2
1

]
, ρ3

.=
1
32

[
(cα1)

2 +N2
1

]
;

vi. Order κ = 7.

Taking into account eqs. (3.90, 3.91, 3.94b, 3.97), that φ(1) and φ(2) depend on ξ and the fact
that φ(1) evolves at the slow-time t3 according to the equation given by (2.92) with n = 3,
(2.93c, 3.95), we have

α1

(
∂2

t1 − c2∂2
n1

)
φ(3) = 2cα2∂ξ

{
∂t2φ

(2) − τ1∂
3
ξφ

(2) − 2τ2
(
∂ξφ

(1)
)(

∂ξφ
(2)
)
−

−θ1
(
∂ξφ

(1)
)3

− θ2

(
∂ξφ

(1)
)(

∂3
ξφ

(1)
)
− θ3

(
∂2

ξφ
(1)
)2

+

+
1
α2

(α3λ− cα1ρ4) ∂5
ξφ

(1)

}
, (3.98)

ρ4
.=

1
1920

[
−N4

1 + 30(N1cα1)2 + 15(cα1)4
]
,

θ1
.= −ρ1

[
N2

1 + 5(cα1)2
]
/ (2α2) , θ2

.= −cα1ρ1τ2, θ3
.= 12τ1υ1.

As the r. h. s. of eq. (3.98) is in the kernel of the operator in the l. h. s., the r. h. s. is
secular. In order to remove this secularity, both members have to be set equal to zero and
the free constant λ has to be chosen so that to eliminate any dependence on the term ∂5

ξφ
(1)

as from Proposition 3.1 the presence of this term can always introduce a dependence on the
secular term K3

[
φ(1)

]
, the flux of the equation (2.93c). We get

(
∂2

t1 − c2∂2
n1

)
φ(3) = 0, (3.99a)

∂t2φ
(2) −K ′

2

[
φ(1)

]
φ(2) = f2 (2) , λ =

ρ4cα1

α3
, (3.99b)

where K ′
2 [φ] ζ is given in eq. (2.95b) and f2 (2) in eq. (2.97a). We choose φ(3) and as a

consequence ν(3) depending on ξ and the arbitrary ξ−independent integration function has
been set equal to zero to met the asymptotic conditions on all the functions φ(j) and ν(i) and
their ξ−derivatives as ξ → ±∞. As we saw in Subsection 2.2.3, We have no A2 integrability
conditions for the coefficients θi, i = 1, . . . , 3 of f2 (2) in the case of the potential KdV
hierarchy. Taking into account eq. (2.92) with n = 3, (2.93c, 3.113), eq. (3.99b) and that φ(3)

depends on ξ, eq. (3.97) becomes
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ν(3) = cα1∂ξφ
(3) + (cα1)

2
υ1∂

3
ξφ

(2) +
1
2

[
(cα1)

2 −N2
1

] (
∂ξφ

(1)
)(

∂ξφ
(2)
)
− (3.100)

−cα1N
2
1

6

(
∂ξφ

(1)
)3

+ υ2

(
∂ξφ

(1)
)(

∂3
ξφ

(1)
)

+ υ3

(
∂2

ξφ
(1)
)2

+

+cα1υ4∂
5
ξφ

(1), υ2
.= − 1

48

[
N4

1 + 8 (cα1N1)
2 + 3 (cα1)

4
]
,

υ3
.=

1
64

[
N2

1 + (cα1)
2
] [
N2

1 − 7 (cα1)
2
]
,

υ4
.=

1
1920

[
N4

1 + 30 (cα1N1)
2 + 45 (cα1)

4
]
;

vii. Order κ = 8.

Taking into account eq. (2.92) with n = 3, (2.93c, 3.95) and eqs. (3.90, 3.91, 3.94b, 3.97,
3.99b):

ν(4) = −α4∂t4φ
(1) − α3∂t3φ

(2) − α2∂t2φ
(3) − α1∂t1φ

(4) +N2
1 ρ5

(
∂ξφ

(1)
)4

+ (3.101)

+cα1ρ6

(
∂ξφ

(1)
)2 (

∂3
ξφ

(1)
)

+N2
1 cα1ρ7

(
∂ξφ

(1)
)(

∂2
ξφ

(1)
)2

+

+(cα1)2ρ8

(
∂ξφ

(1)
)(

∂5
ξφ

(1)
)

+ (cα1)2ρ9

(
∂3

ξφ
(1)
)2

+

+(cα1)2ρ10

(
∂2

ξφ
(1)
)(

∂4
ξφ

(1)
)

+ (cα1)3ρ11

(
∂7

ξφ
(1)
)

+

+
3cα1N

2
1

2

(
∂ξφ

(1)
)2 (

∂ξφ
(2)
)

+ (cα1)2ρ2

(
∂ξφ

(1)
)(

∂3
ξφ

(2)
)
−

− (N1cα1)2

2

(
∂2

ξφ
(1)
)(

∂2
ξφ

(2)
)

+ (cα1)2ρ2

(
∂3

ξφ
(1)
)(

∂ξφ
(2)
)
−

− (cα1)2

2

(
∂ξφ

(2)
)2

+ (cα1)3ρ3

(
∂5

ξφ
(2)
)
− (cα1)2

(
∂ξφ

(1)
)(

∂ξφ
(3)
)

+

+
(cα1)3

4

(
∂3

ξφ
(3)
)
, ρ5

.= − 1
24
[
3N2

1 − 4(cα1)2
]
,

ρ6
.=

1
16
[
6N4

1 + (N1cα1)2 + (cα1)4
]
, ρ7

.=
1
4
[
N2

1 − (cα1)2
]
,

ρ8
.= − 1

960
[
53N4

1 + 90(N1cα1)2 + 45(cα1)4
]
,

ρ9
.= − 1

1152
[
61N4

1 + 150(N1cα1)2 + 117(cα1)4
]
,

ρ10
.= − 1

384
[
25N4

1 + 54(N1cα1)2 + 45(cα1)4
]
,

ρ11
.=

1
7680

[
13N4

1 + 50(N1cα1)2 + 45(cα1)4
]
;

viii. Order κ = 9.

Taking into account eqs. (2.92) with n = 3, 4, (2.93c, 2.93d, 3.95), eq. (2.94) with j = 2,
n = 3, (2.95c, 2.97b, 2.98, 3.95), eqs. (3.90, 3.91, 3.94b, 3.97, 3.99b, 3.101), that φ(1), φ(2) and
φ(3) depend on ξ and separating to remove the secular terms, we get
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(
∂2

t1 − c2∂2
n1

)
φ(4) = 0, (3.102a)

∂t2φ
(3) −K ′

2

[
φ(1)

]
φ(3) = 3θ1

(
∂ξφ

(1)
)2 (

∂ξφ
(2)
)

+ (3.102b)

+θ2
[(
∂ξφ

(1)
)(

∂3
ξφ

(2)
)

+
(
∂3

ξφ
(1)
)(

∂ξφ
(2)
)]

+

+2θ3
(
∂2

ξφ
(1)
)(

∂2
ξφ

(2)
)

+ τ2

(
∂ξφ

(2)
)2

+

+
2 (N1ρ1)

2

α2

(
∂ξφ

(1)
)4

+
cα1N

2
1

40
θ1

(
∂3

ξφ
(1)
)2

−

−υ4τ2
3

[
4
(
∂2

ξφ
(1)
)(

∂4
ξφ

(1)
)

+
(
∂ξφ

(1)
)(

∂5
ξφ

(1)
)]

+

+
ρ1

α2

[
ρ12

(
∂ξφ

(1)
)(

∂2
ξφ

(1)
)2

+ ρ13

(
∂ξφ

(1)
)2 (

∂3
ξφ

(1)
)]
,

χ =
cα1

[
−N6

1 + 273N4
1 (cα1)2 + 525N2

1 (cα1)4 + 315(cα1)6
]

322560α4
,

ρ12
.=

1
96
[
11N4

1 − 78(N1cα1)2 − 9(cα1)4
]
,

ρ13
.= − 1

24
[
N4

1 + 18(N1cα1)2 + 9(cα1)4
]
,

where K ′
2 [φ] ζ is given in eq. (2.95b). We choose φ(4) and as a consequence ν(4) depending on

ξ and the arbitrary ξ−independent integration function has been set equal to zero to met the
asymptotic conditions on all the functions φ(j) and ν(i) and their ξ−derivatives as ξ → ±∞.
The free constant χ is fixed so that to eliminate any dependence on the term ∂7

ξφ
(1) as from

Proposition 3.1 the presence of this term can always introduce a dependence on the secular
term K4

[
φ(1)

]
, the flux of the equation (2.93d). If one differentiates by ξ eq. (3.102b), we

obtain an equation for ∂ξφ
(3) of the form of eq. (2.85b) with j = 3, n = 2, (2.86e, 2.90a).

• The coefficients of the r. h. s. of this equation obviously respect all the A3 integrability
conditions (2.91a) for the KdV hierarchy. This proves the A3 asymptotic integrability of
the A− L discrete NLS equation.

Taking into account eqs. (2.92) with n = 4, (2.93d, 3.95), eq. (2.94) with j = 2, n = 3, (2.95c,
2.97b, 2.98, 3.95), eqs. (3.102b, 2.95b, 3.95) and that φ(4) depends on ξ, eq. (3.101) becomes
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ν(4) = cα1∂ξφ
(4) + (cα1)

2
υ1∂

3
ξφ

(3) − 2ρ7

(
∂ξφ

(1)
)(

∂ξφ
(3)
)

+ cα1υ4∂
5
ξφ

(2) + (3.103)

+υ2

[(
∂ξφ

(1)
)(

∂3
ξφ

(2)
)

+
(
∂3

ξφ
(1)
)(

∂ξφ
(2)
)]
− ρ7

(
∂ξφ

(2)
)2

−

−cα1N
2
1

2

(
∂ξφ

(1)
)2 (

∂ξφ
(2)
)

+ 2υ3

(
∂2

ξφ
(1)
)(

∂2
ξφ

(2)
)

+
N2

1

12
ρ4

(
∂ξφ

(1)
)4

+

+cα1

[
υ5

(
∂ξφ

(1)
)(

∂2
ξφ

(1)
)2

+ υ6

(
∂ξφ

(1)
)2 (

∂3
ξφ

(1)
)

+ υ7∂
7
ξφ

(1)

]
+

+υ8

(
∂2

ξφ
(1)
)(

∂4
ξφ

(1)
)

+ υ9

(
∂ξφ

(1)
)(

∂5
ξφ

(1)
)

+ υ10

(
∂3

ξφ
(1)
)2

,

υ5
.=

7
64

[
N2

1 + (cα1)
2
]2
, υ6

.=
1
96

[
7N4

1 + 6 (cα1N1)
2 + 3 (cα1)

4
]
,

υ7
.=

1
322560

[
N6

1 + 273N4
1 (cα1)

2 + 1575N2
1 (cα1)

4 + 1575 (cα1)
6
]
,

υ8
.=

1
1536

[
N2

1 + (cα1)
2
] [
N4

1 − 46 (cα1N1)
2 − 207 (cα1)

4
]
,

υ9
.= − 1

3840

[
N6

1 + 89N4
1 (cα1)

2 + 255N2
1 (cα1)

4 + 135 (cα1)
6
]
,

υ10
.= − 1

2304

[
N6

1 + 53N4
1 (cα1)

2 + 267N2
1 (cα1)

4 + 207 (cα1)
6
]
.

3.6 Multiscale analysis of differential-difference equations II: reduction of the
dNLS

Let us consider the dNLS equation

i∂tfn +
fn+1 − 2fn + fn−1

2σ2
= ε|fn|2fn, (3.104)

where ε .= ±1. If we set fn(t) .= νn(t)1/2eiφn(t), where νn(t) and φn(t) are both real functions,
eq. (3.104), separating real and imaginary parts, turns into the following system of two real
nonlinear differential-difference equations

∂tνn +
1
σ2

(
δ
1/2
+ sinβ+ + δ

1/2
− sinβ−

)
= 0, (3.105a)

∂tφn +
1
σ2

− 1
2σ2

(
γ

1/2
+ cosβ+ + γ

1/2
− cosβ−

)
+ ενn = 0, (3.105b)

where β±
.= φn±1(t) − φn(t), γ±

.= νn(t)−1νn±1(t), δ±
.= νn(t)νn±1(t). We expand the func-

tions νn(t) and φn(t) as in eqs. (3.87). The orders κ = 0, 1 are trivially satisfied.

i. Order κ = 2.

ν(1) = −εα1∂t1φ
(1); (3.106)

ii. Order κ = 3.

α1∂t1ν
(1) +

(
N1

σ

)2

∂2
n1
φ(1) = 0,
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which, after inserting in it the expression (3.106), becomes

(
∂2

t1 − c2∂2
n1

)
φ(1) = 0, c

.= ± N1

σα1
(ε)1/2

,

As before we have to choose ε = 1. Hence we will eliminate σ2 using the relation

σ2 =
(
N1

cα1

)2

.

If one desires to study the continuum limit, in order to get a finite limit for c as σ → 0, one
should set N1 = α1σ so that c = ±1. We choose φ(1) depending on ξ .= n1 − ct1 so that

(∂t1 + c∂ξ)φ(1) = 0, (3.107)

from which, using (3.106),

ν(1) = α1c∂ξφ
(1), (3.108)

so that ν(1) itself depends on ξ;

iii. Order κ = 4.

Using (3.108), we find

ν(2) = −α1∂t1φ
(2) − α2∂t2φ

(1) +
(cα1)

2

2

[
cα1

2
∂3

ξφ
(1) −

(
∂ξφ

(1)
)2
]

; (3.109)

iv. Order κ = 5.

α1∂t1ν
(2) + α2∂t2ν

(1) + (3.110)

+ (cα1)
2

[
∂2

n1
φ(2) +

N2
1

12
∂4

ξφ
(1) +

(
∂ξφ

(1)
)(

∂ξν
(1)
)

+ ν(1)∂2
ξφ

(1)

]
= 0.

Taking into account eqs. (3.107, 3.108, 3.109), eq. (3.110) becomes

α1

(
∂2

t1 − c2∂2
n1

)
φ(2) = 2c∂ξ

[
α2∂t2φ

(1) − (cα1)
2
ρ1∂

3
ξφ

(1) +
3 (cα1)

2

4

(
∂ξφ

(1)
)2
]
,

ρ1
.=

1
8

(
cα1 −

N2
1

3cα1

)
. (3.111)

The right hand side of eq. (3.111) is secular so we have to require that

(
∂2

t1 − c2∂2
n1

)
φ(2) = 0, (3.112a)

α2∂t2φ
(1) − (cα1)

2

[
ρ1∂

3
ξφ

(1) − 3
4

(
∂ξφ

(1)
)2
]

= 0, (3.112b)
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where we choose φ(2) and as a consequence ν(2) depending on ξ. The arbitrary ξ−independent
integration function has been set equal to zero to met the asymptotic conditions on all the
functions φ(j) and ν(i) and their ξ−derivatives as ξ → ±∞. As we can see in eqs. (2.92) with
n = 2 and (2.93b), eq. (3.112b) is a potential KdV equation for φ(1) at the slow-time t2 with

τ1
.= (cα1)2ρ1/α2, τ2

.= −3 (cα1)
2
/ (4α2) . (3.113)

From eq. (3.112b), differentiating once with respect to ξ and using (3.108), we have

α2∂t2ν
(1) − (cα1)2ρ1∂

3
ξν

(1) +
3cα1

2
ν(1)∂ξν

(1) = 0,

which is a KdV equation for ν(1) at the slow-time t2. Taking into account eq. (3.112b) and
that φ(2) depends on ξ, eq. (3.109) becomes

ν(2) = cα1∂ξφ
(2) + (cα1)

2
υ1∂

3
ξφ

(1) +
(cα1)

2

4

(
∂ξφ

(1)
)2

, (3.114)

υ1
.=

1
8

(
cα1 +

N2
1

3cα1

)
;

v. Order κ = 6.

Taking into account eqs. (3.108, 3.109, 3.112b), we have

ν(3) = −α3∂t3φ
(1) − α2∂t2φ

(2) − α1∂t1φ
(3) +

(cα1)3

4
∂3

ξφ
(2) − (3.115)

−(cα1)2
(
∂ξφ

(1)
)(

∂ξφ
(2)
)
− (cα1)2N2

1

8

(
∂2

ξφ
(1)
)2

+

+(cα1)2ρ2

(
∂ξφ

(1)
)(

∂3
ξφ

(1)
)

+ (cα1)3ρ3∂
5
ξφ

(1),

ρ2
.= − 1

24
[
3(cα1)2 + 4N2

1

]
, ρ3

.=
1
32
[
(cα1)2 +N2

1

]
;

vi. Order κ = 7.

Taking into account eqs. (3.108, 3.109, 3.112b, 3.115), that φ(1) and φ(2) depend on ξ and the
fact that φ(1) evolves at the slow-time t3 according to the equation given by (2.92) with n = 3,
(2.93c, 3.113), we have
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α1

(
∂2

t1 − c2∂2
n1

)
φ(3) = 2cα2∂ξ

{
∂t2φ

(2) − τ1∂
3
ξφ

(2) − 2τ2
(
∂ξφ

(1)
)(

∂ξφ
(2)
)
−

−θ1
(
∂ξφ

(1)
)3

− θ2

(
∂ξφ

(1)
)(

∂3
ξφ

(1)
)
− θ3

(
∂2

ξφ
(1)
)2

+

+
1
α2

(α3λ− cα1ρ4) ∂5
ξφ

(1)

}
, (3.116)

ρ4
.=

1
1920

[
−N4

1 + 30(N1cα1)2 + 15(cα1)4
]
,

θ1
.= −

cα1

[
−4N6

1 + 15(cα1)2N4
1 + 234(cα1)4N2

1 + 135(cα1)6
]

48α2 [N2
1 − 3(cα1)2]

2 ,

θ2
.= −

(cα1)2
[
N2

1 + (cα1)2
] [

5N2
1 + 9(cα1)2

]
32α2 [N2

1 − 3(cα1)2]
,

θ3
.= −

(cα1)2
[
N4

1 + 2(cα1N1)2 + 9(cα1)4
]

16α2 [N2
1 − 3(cα1)2]

.

As the r. h. s. of eq. (3.116) is in the kernel of the operator in the l. h. s., the r. h. s.
is secular. In order to remove this secularity, both members have to be set equal to zero and
the free constant λ has to be chosen so that to eliminate any dependence on the term ∂5

ξφ
(1)

as from Proposition 3.1 the presence of this term can always introduce a dependence on the
secular term K3

[
φ(1)

]
, the flux of the equation (2.93c). We get

(
∂2

t1 − c2∂2
n1

)
φ(3) = 0, (3.117a)

∂t2φ
(2) −K ′

2

[
φ(1)

]
φ(2) = f2 (2) , λ =

ρ4cα1

α3
, (3.117b)

where K ′
2 [φ] ζ is given in eq. (2.95b) and f2 (2) in eq. (2.97a). We choose φ(3) and as a

consequence ν(3) depending on ξ and the arbitrary ξ−independent integration function has
been set equal to zero to met the asymptotic conditions on all the functions φ(j) and ν(i) and
their ξ−derivatives as ξ → ±∞. As we saw in Subsection 2.2.3, We have no A2 integrability
conditions for the coefficients θi, i = 1, . . . , 3 of f2 (2) in the case of the potential KdV
hierarchy. Taking into account eq. (2.92) with n = 3, (2.93c, 3.113), eq. (3.117b) and that
φ(3) depends on ξ, eq. (3.115) becomes

ν(3) = cα1∂ξφ
(3) + (cα1)

2
υ1∂

3
ξφ

(2) +
(cα1)

2

2

(
∂ξφ

(1)
)(

∂ξφ
(2)
)
− (3.118)

−cα1N
2
1

12

(
∂ξφ

(1)
)3

− (cα1)
3

2
ρ1

(
∂ξφ

(1)
)(

∂3
ξφ

(1)
)

+

+(cα1)
2
υ2

(
∂2

ξφ
(1)
)2

+ cα1υ3∂
5
ξφ

(1),

υ2
.= − 1

64

[
3N2

1 + 7 (cα1)
2
]
, υ3

.=
1

1920

[
N4

1 + 30 (cα1N1)
2 + 45 (cα1)

4
]
;

vii. Order κ = 8.

Taking into account eqs. (3.108, 3.109, 3.112b, 3.115, 3.117b) and the fact that φ(1) evolves at
the slow-time t3 according to the equation given by (2.92) with n = 3, (2.93c, 3.113), we have
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ν(4) = −α4∂t4φ
(1) − α3∂t3φ

(2) − α2∂t2φ
(3) − α1∂t1φ

(4) + (3.119)

+(cα1)3ρ5

(
∂ξφ

(1)
)2 (

∂3
ξφ

(1)
)
− 3N2

1 (cα1)3

8

(
∂ξφ

(1)
)(

∂2
ξφ

(1)
)2

+

+(cα1)2ρ6

(
∂ξφ

(1)
)(

∂5
ξφ

(1)
)

+ (cα1)2ρ7

(
∂3

ξφ
(1)
)2

+

+(cα1)2ρ8

(
∂2

ξφ
(1)
)(

∂4
ξφ

(1)
)

+ (cα1)3ρ9

(
∂7

ξφ
(1)
)

+

+(cα1)2ρ2

(
∂ξφ

(1)
)(

∂3
ξφ

(2)
)
− (cα1)2N2

1

4

(
∂2

ξφ
(1)
)(

∂2
ξφ

(2)
)

+

+(cα1)2ρ2

(
∂3

ξφ
(1)
)(

∂ξφ
(2)
)
− (cα1)2

2

(
∂ξφ

(2)
)2

+ (cα1)3ρ3

(
∂5

ξφ
(2)
)
−

−(cα1)2
(
∂ξφ

(1)
)(

∂ξφ
(3)
)

+
(cα1)3

4

(
∂3

ξφ
(3)
)

+
N2

1 (cα1)2

24

(
∂ξφ

(1)
)4

,

ρ5
.=

1
16
[
−3N2

1 + (cα1)2
]
,

ρ6
.= − 1

960
[
8N4

1 + 15(cα1N1)2 + 45(cα1)4
]
,

ρ7
.= − 1

1152
[
16N4

1 + 33(cα1N1)2 + 117(cα1)4
]
,

ρ8
.= − 1

384
[
8N4

1 + 9(cα1N1)2 + 45(cα1)4
]
,

ρ9
.=

1
7680

[
13N4

1 + 50(cα1N1)2 + 45(cα1)4
]
;

viii. Order κ = 9.

Taking into account eqs. (2.92) with n = 3, 4, (2.93c, 2.93d, 3.113), eq. (2.94) with j = 2,
n = 3, (2.95c, 2.97b, 2.98, 3.113), eqs. (3.108, 3.109, 3.112b, 3.115, 3.117b, 3.119), that φ(1),
φ(2) and φ(3) depend on ξ and separating to remove the secular terms, we get

(
∂2

t1 − c2∂2
n1

)
φ(4) = 0, (3.120a)

∂t2ϕ
(3) −H ′

2

[
ϕ(1)

]
ϕ(3) = g2(3), (3.120b)

χ =
cα1

[
−N6

1 + 273N4
1 (cα1)2 + 525N2

1 (cα1)4 + 315(cα1)6
]

322560α4
,

where ϕ(j) .= ∂ξφ
(j), j = 1, . . . , 3, H ′

2 [ϕ]φ is given in eq. (2.86e) and g2(3) in eq. (2.90a).
We choose φ(4) and as a consequence ν(4) depending on ξ. We had to pass from the potential
KdV hierarchy to the KdV hierarchy as, integrating once with respect to ξ, one cannot obtain
a purely differential evolution equation for φ(3) at the slow time t2 but we get an integro-
differential equation (see the corresponding situations in the right hand sides of the eqs. (3.111,
3.116) where a ∂ξ operator has been put in evidence). This depend from the fact that the first
of the three conditions (2.100) is not satisfied by the coefficients µj , j = 1, . . . , 14 of the
forcing term g2(3) (see later). On the contrary the A − L discrete NLS equation satisfied
these conditions. The free constant χ is fixed so that to eliminate any dependence on the term
∂7

ξφ
(1) as from Proposition 3.1 the presence of this term can always introduce a dependence

on the secular term K4

[
φ(1)

]
, the flux of the equation (2.93d). Here follow the coefficients µj ,

j = 1, . . . , 14 of the forcing term g2(3)
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µ1
.= −

(cα1)2
[
N8

1 + 64(cα1)2N6
1 + 242(cα1N1)4 − 40(cα1)6N2

1 − 27(cα1)8
]

128α2 [N2
1 − 3(cα1)2]

2 ,

µ2
.= −

(cα1)2
[
15N8

1 + 440N6
1 (cα1)2 + 1710(cα1N1)4 − 144N2

1 (cα1)6 − 405(cα1)8
]

1536α2 [N2
1 − 3(cα1)2]

2 ,

µ3
.= −

(cα1)2
[
13N4

1 + 30(cα1N1)2 − 15(cα1)4
] [

3N4
1 + 62(cα1N1)2 + 27(cα1)4

]
7680α2 [N2

1 − 3(cα1)2]
2 ,

µ4
.=

(cα1)
[
4N10

1 − 69N8
1 (cα1)2 − 1668N6

1 (cα1)4 − 15606N4
1 (cα1)6 − 10440N2

1 (cα1)8 + 243(cα1)10
]

768α2 [N2
1 − 3(cα1)2]

3 ,

µ5
.=

(cα1)
[
4N10

1 − 3N8
1 (cα1)2 − 1580N6

1 (cα1)4 − 10026N4
1 (cα1)6 − 5232N2

1 (cα1)8 + 405(cα1)10
]

128α2 [N2
1 − 3(cα1)2]

3 ,

µ6
.=

(cα1)
[
N10

1 + 18N8
1 (cα1)2 − 741N6

1 (cα1)4 − 3753N4
1 (cα1)6 − 1152N2

1 (cα1)8 + 243(cα1)10
]

192α2 [N2
1 − 3(cα1)2]

3 ,

µ7
.=

(cα1N1)2
[
7N8

1 + 105N6
1 (cα1)2 − 423(cα1N1)4 − 15309N2

1 (cα1)6 − 8964(cα1)8
]

48α2 [N2
1 − 3(cα1)2]

4 ,

µ8 = µ11
.= −

(cα1)2
[
5N4

1 + 14(cα1N1)2 + 9(cα1)4
]

32α2 [N2
1 − 3(cα1)2]

,

µ9 = µ10
.= −

(cα1)2
[
9N4

1 + 22(cα1N1)2 + 45(cα1)4
]

32α2 [N2
1 − 3(cα1)2]

,

2µ12 = µ13
.= −

(cα1)
[
−4N6

1 + 15N4
1 (cα1)2 + 234N2

1 (cα1)4 + 135(cα1)6
]

8α2 [N2
1 − 3(cα1)2]

2 , µ14
.= 2τ2.

• The coefficients of g2(3) respect only four out of the five A3 integrability conditions
(2.91a) for the KdV hierarchy (the one involving µ7 is not satisfied). This proves that
the dNLS equation is not integrable.

On the contrary the integrability condition involving µ7 results satisfied only in the contin-
uous limit σ → 0 (integrable NLS equation) and in the particular case where 450(cα1)8 +
345N2

1 (cα1)6 − 1413(cα1N1)4 − 557N6
1 (cα1)2 − 17N8

1 = 0.



4

Multiscale reduction of C−integrable nonlinear

P∆Es

We present here some examples of reduction of C−integrable nonlinear partial difference equa-
tions. The C−integrability property is a consequence of the fact that the considered nonlinear
equations can be transformed into linear ones by means of some invertible transformation of
the dependent (sometimes also of the independent) variables. The aim of the following exam-
ples is to show that under a multiscale reduction, contrary to the case of S−integrable P∆Es,
now the amplitude u(1)

1 follows a hierarchy of linear equations. This property together with all
the integrability conditions developed in Chapter 2 opens the way to an integrability test for
discretizations of C−integrable PDEs. In this way one can in principle prove if a discretization
fails in preserving this C−integrability property.

4.1 Multiscale analysis of the Hietarinta equation

Let us consider the Hietarinta equation [18]

un,m + e2
un,m + e1

· un+1,m+1 + o2
un+1,m+1 + o1

=
un+1,m + e2
un+1,m + o1

· un,m+1 + o2
un,m+1 + e1

. (4.1)

For future convenience we transform the parameters as oi → 1/oi, ei → 1/ei, i = 1, 2 and
introduce the parameters µ .= o2 − o1, ζ

.= o2 − e1. Eq. (4.1) then becomes

Pl = P
(2)
nl + P

(3)
nl , (4.2)

where

Pl
.= (e2 − e1)un,m + (o1 − e2)un+1,m + µun+1,m+1 − ζun,m+1,

P
(2)
nl

.= (e2 − o2) (o1un+1,mun+1,m+1 − e1un,mun,m+1) +
+ (µ− ζ) (e2un,mun+1,m − o2un,m+1un+1,m+1) +
+ (o1e1 − o2e2) (un,mun+1,m+1 − un+1,mun,m+1) ,

P
(3)
nl

.= −e2o1ζun,mun+1,mun+1,m+1 + e1o2 (o1 − e2)un,mun,m+1un+1,m+1 +
+e1e2µun,mun+1,mun,m+1 + o1o2 (e2 − e1)un+1,mun,m+1un+1,m+1,

where Pl indicates the linear part, P (2)
nl the quadratic part and P

(3)
nl the cubic part. Defining

a new function Qn,m according to the invertible transformation

Qn+1,m

Qn,m

.=
o2 − µ

o2

[
1 + o2un,m

1 + (o2 − µ)un,m
+

ζ

µ− ζ

]
, (4.3)

72
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the eq. (4.2) linearizes to the equation [36]

Qn+1,m+1 −AQn,m+1 −Qn+1,m + (A−B)Qn,m = 0, (4.4)

A
.= −ζ (µ− o2)

o2 (µ− ζ)
, B

.=
(µ− o2) (o2 − e2)
o2 (o2 − e2 − µ)

.

We will expand eq. (4.2) according to eq. (2.117). One can transform eq. (4.4) to a simpler
form considering that un,m → 0 as ε → 0, asymptotic behavior which is compatible with eq.
(4.2). As ε→ 0, definition (4.3) becomes

Qn+1,m − λQn,m = 0, λ
.=
µ(o2 − µ)
o2 (µ− ζ)

,

which gives, as ε → 0, Qn,m = λnfm, with fm an arbitrary function of m. So we put
Qn,m

.= λnfn,m, with fn,m → fm when ε → 0, and substitute this expression into eq. (4.4)
obtaining

µfn+1,m+1 − ζfn,m+1 − µfn+1,m +
µ (e2 − e1)
e2 − o1

fn,m = 0. (4.5)

As ε→ 0, eq. (4.5) becomes

fm+1 −
µ

e2 − o1
fm = 0,

which, solved, gives fm = [µ/ (e2 − o1)]
m
ρ, ρ a constant. Consequently we define fn,m

.=
[µ/ (e2 − o1)]

m
ρ (1 + rn,m), with rn,m → 0 when ε→ 0, and substitute into eq. (4.5) obtaining

µrn+1,m+1 − ζrn,m+1 − (e2 − o1) rn+1,m + (e2 − e1) rn,m = 0. (4.6)

The complete transformation between eq. (4.4) and eq. (4.6) reads

Qn,m
.= ρ

[
µ (o2 − µ)
o2 (µ− ζ)

]n

·
(

µ

e2 − o1

)m

(1 + rn,m) , (4.7)

and remains valid even if we don’t prescribe any asymptotic behavior for un,m (and conse-
quently for Qn,m and rn,m). Hence the transformation from eq. (4.2) to eq. (4.6) reads

1 + rn+1,m

1 + rn,m
=
µ− ζ

µ

[
1 + o2un,m

1 + (o2 − µ)un,m
+

ζ

µ− ζ

]
. (4.8)

The form of eq. (4.6) will result particularly useful for the future. One could say that eqs.
(4.6, 4.8) are the Lax pair of eq. (4.2). Let us begin the multiscale expansion of eq. (4.2)
referring to Appendix D for useful formulas.

i. Order γ = 1.

[
e1 − e2 + ζe−iαω + (e2 − o1) eiακ − µeiα(κ−ω)

]
u

(α)
1 = 0, (4.9)
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which, if α = 0, is identically solved ∀ u(0)
1 and, if α = 1 and u

(1)
1 6= 0, gives the dispersion

relation,

e−iω =

[
e1 − e2 + (e2 − o1) eiκ

]
(µeiκ − ζ)

,

from which

eIm(ω) cos
[
Re(ω)

]
=

(e2 − o1) (µ− ζ cosκ)− (e2 − e1) (µ cosκ− ζ)
ζ2 + µ2 − 2µζ cosκ

,

eIm(ω) sin
[
Re(ω)

]
=

(µ+ β)(o2 − e2) sinκ
ζ2 + µ2 − 2µζ cosκ)

,

e2Im(ω) =
(e2 − e1)2 + (e2 − o1)2 − 2(e2 − e1)(e2 − o1) cosκ

ζ2 + µ2 − 2µζ cosκ
.

In order to have a real dispersion relation, from the last relation we have that one has to require
that

o1 + e1 = o2 + e2, (4.10)

so that

e−iω =
µ− ζeiκ

µeiκ − ζ
, (4.11)

which, solved, gives

ω (κ) = 2 arctan
(
ζ + µ

µ− ζ
tan

κ

2

)
. (4.12)

This dispersion relation is just the dispersion relation of the lpKdV equation given in eqs. (3.6,
3.7). Taking into account eq. (4.10), the linear, quadratic and cubic parts of eq. (4.2) simplifie
to

Pl = µ(un+1,m+1 − un,m) + ζ(un+1,m − un,m+1), (4.13a)

P
(2)
nl = (µ+ ζ) (e1un,mun,m+1 − o1un+1,mun+1,m+1) + (4.13b)

+(µ− ζ) (e2un,mun+1,m − o2un,m+1un+1,m+1) +
+µζ(un,mun+1,m+1 − un+1,mun,m+1),

P
(3)
nl = ζun,mun+1,m+1 (e1o2un,m+1 − e2o1un+1,m) + (4.13c)

+µun+1,mun,m+1 (e1e2un,m − o1o2un+1,m+1) .

As one can see, eq. (4.13a) is just the linear part of the lpKdV equation (3.3). If |α| ≥ 2, eq.
(4.9) implies that u(α)

1 = 0;

ii. Order γ = 2.
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• α = 0:

[N1 (µ+ ζ) ∂n1 +M1 (µ− ζ) ∂m1 ]u
(0)
1 = 0, (4.14)

which gives

u
(0)
1

(
n1, {mj}K

j=1

)
= F

(
ρ, {mj}K

j=2

)
, ρ

.= n1 −
N1 (µ+ ζ)
M1 (µ− ζ)

m1, (4.15)

where F is an arbitrary function of its arguments;

• α = 1:

[
eiκ
(
µe−iω + ζ

)
N1∂n1 + e−iω

(
µeiκ − ζ

)
M1∂m1

]
u

(1)
1 = (4.16)

= −µζ (µ+ ζ) (1− eiκ)2

µeiκ − ζ
u

(0)
1 u

(1)
1 ,

which, taking into account eq. (4.11) and solved, gives

u
(1)
1 = H

(
n1 +

1
σ
m1, {mj}K

j=2

)
e

ζ−µ
N1

∫ ρ
ρ0

u
(0)
1 (ρ′)dρ′

, (4.17)

σ
.= −

M1

(
µ2 + ζ2 − 2µζ cosκ

)
N1 (µ2 − ζ2)

,

where H is an arbitrary function of its argument and ρ0 is a (real) constant. In the case
one choses u(0)

1 = 0, defining

N1
.= εSe−iω

(
µeiκ − ζ

)
, M1

.= −Seiκ
(
µe−iω + ζ

)
, S ∈ C, ε = ±1, (4.18)

eq. (4.16) becomes

(∂n1 − ε∂m1)u
(1)
1 = 0, (4.19)

which is solved by

u
(1)
1

(
n1, {mj}K

j=1

)
= u

(1)
1

(
n2, {mj}K

j=2

)
, n2

.= n1 + εm1, ε = −N1

M1
ω1, (4.20)

the quantities ωn being defined in eq. (2.12). The complex constant S .= reiθ, r > 0, is
to be choosen so that θ = − arctan [ζ sinκ/ (ζ cosκ− µ)] in such a way that N1 and M1

are indeed real numbers, which, taking into account the dispersion relation (4.11), can
be rewritten as

N1 = εS
(
µ− ζeiκ

)
, M1 = Seiκ

ζ2 − µ2

µeiκ − ζ
; (4.21)
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• α = 2:

Taking into account the dispersion relation (4.11), we find

u
(2)
2 =

(
o2 +

µeiκ − ζ

1− eiκ

)
u

(1)2
1 ; (4.22)

iii. Order γ = 3.

• α = 0:

Taking into account eqs. (4.11, 4.17) and requiring no secular terms (see eq. (4.15)), we
find

[
∂n1 +

M1 (µ− ζ)
N1 (µ+ ζ)

∂m1

]
u

(0)
2 = (4.23a)

=
4µζ (2o2 − ζ − µ) sin2 (κ/2)

µ2 + ζ2 − 2µζ cosκ
e

2(ζ−µ)
N1

∫ ρ
ρ0

u
(0)
1 (ρ′)dρ′

∂n1 |H|2,

∂m2u
(0)
1 = 0, (4.23b)

so that

u
(0)
2 = G

(
ρ, {mj}K

j=2

)
+ (2o2 − ζ − µ) |u(1)

1 |2, (4.24)

where G is an arbitrary function of its arguments which we choose to be zero. In the
case one choses u(0)

1 = 0, the equation for u(0)
2 could be simply solved introducing the

variable ñ2
.= n1 − εm1. In this case, if G = 0, u(0)

2 depends on n2;

• α = 1:

Setting u(0)
1 = 0, taking into account eqs. (4.11, 4.21, 4.22, 4.24) and that u(1)

1 depends
on n2, we have

(∂n1 − ε∂m1)u
(1)
2 = N1

(
u

(1)
1

)
,

where N1

(
u

(1)
1

)
is a nonlinear function in u

(1)
1 and its complex conjugate. As the r.h.s.

of the last equation depends on n2, it is in the kernel of the linear operator on the l.h.s.
and consequently it is a secular term. In order to remove this secularity, we have to
demand that both the r.h.s. and the l.h.s. be equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
2 = 0, (4.25a)

i∂m2u
(1)
1 = ρ1∂

2
n2
u

(1)
1 , ρ1

.=
µζM2

1 sinκ
M2 (µ2 − ζ2)

= −N
2
1

M2
ω2. (4.25b)

Equation (4.25a) tells us that u(1)
2 depends on n2.

• Equation (4.25b) is a linear Schrödinger equation.
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4.2 Reduction of the Lax pair for the Hietarinta equation

One could say that a Lax pair for a C−integrable equation is formed by

• The linearizing transformation;

• The equation to which it linearizes.

In this respect the Lax pair of the Hietarinta equation is formed by eqs. (4.6, 4.8). Now we
apply a multiscale reduction to this Lax pair as we did for the lpKdV spectral problem. The
multiscale procedure requires that the parameters respect the constraint (4.10), so that the
Lax pair simplifies to

1 + rn+1,m

1 + rn,m
=
µ− ζ

µ

[
1 + o2un,m

1 + (o2 − µ)un,m
+

ζ

µ− ζ

]
, (4.26a)

µ (rn+1,m+1 − rn,m) + ζ (rn+1,m − rn,m+1) = 0. (4.26b)

One can see from eq. (4.26b) that in this reduction the Hietarinta equation linearizes to its
linear part eq. (4.13a) which is the same linear part of the lpKdV equation (3.3). We begin
expanding eq. (4.26b), choosinf for rn,m an expansion of the form given in eq. (2.117) with the
slow-variables scaling with ε in the usual way. The coefficients N1 and Mj , j ≥ 1, are chosen
to be the same as in the case of the Hietarinta equation.

i. Order γ = 1.

[
µ(eiα(κ−ω) − 1) + ζ(eiακ − e−iαω)

]
r
(α)
1 = 0, (4.27)

which, if α = 0, is identically solved ∀ r(0)1 and, if α = 1 and r
(1)
1 6= 0, gives an analogous dis-

persion relation than that of the Hietarinta equation, eq. (4.11). If |α| ≥ 2, all other r(α)
1 = 0;

ii. Order γ = 2.

• α = 0:

[N1(µ+ ζ)∂n1 +M1(µ− ζ)∂m1 ] r
(0)
1 = 0. (4.28)

As a consequence, taking into account equations (4.21), r(0)1 depends on ρ defined in
(4.15);

• α = 1:

[
eiκ
(
µe−iω + ζ

)
N1∂n1 + e−iω

(
µeiκ − ζ

)
M1∂m1

]
r
(1)
1 = 0, (4.29)

which, taking into account the definitions (4.18), becomes

(∂n1 − ε∂m1) r
(1)
1 = 0, (4.30)

so that r(1)1 depends on n2 defined in (4.20);
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• α = 2:

[
µ
(
e2i(κ−ω) − 1

)
− ζ

(
e−2iω − e2iκ

)]
r
(2)
2 = 0, (4.31)

which implies that r(2)2 = 0;

iii. Order γ = 3.

• α = 0:

Taking into account eq. (4.28) and requiring no secular terms, we obtain

[N1(µ+ ζ)∂n1 +M1(µ− ζ)∂m1 ] r
(0)
2 = 0, (4.32a)

∂m2r
(0)
1 = 0. (4.32b)

As a consequence, taking into account eq. (4.21), r(0)2 depends on ρ too and r
(0)
1 is

independent on m2;

• α = 1:

Taking into account eqs. (4.11, 4.21), that r(1)1 depends on n2 and requiring no secular
terms, we obtain

(∂n1 − ε∂m1) r
(1)
2 = 0, (4.33a)

i∂m2r
(1)
1 = ρ1∂

2
n2
r
(1)
1 , ρ1

.=
µζM2

1 sinκ
M2 (µ2 − ζ2)

= −N
2
1

M2
ω2, (4.33b)

so that r(1)2 depends on n2 and r
(1)
1 evolves at the slow-time m2 according to the same

linear Schrödinger equation of u(1)
1 , eq. (4.25b).

Now we apply a multiscale reduction to eq. (4.26a). Expanding the l. h. s. of eq. (4.26a) near
rn,m = 0 and the r. h. s. near un,m = 0, we obtain

(rn+1,m − rn,m)
(
1− rn,m + r2n,m − r3n,m +O

(
r4n,m

))
= (4.34)

= (µ− ζ)
[
1− (o2 − µ)un,m + (o2 − µ)2u2

n,m +O
(
u3

n,m

)]
un,m.

Now we insert the expansions of rn,m and un,m into eq. (4.34). We obtain the following iden-
tifications.

i. Order γ = 1.

r
(α)
1 (eiακ − 1) = (µ− ζ)u(α)

1 .

• α = 0:

u
(0)
1 = 0, (4.35)

a result compatible with our previous choice;
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• α = 1:

r
(1)
1

(
eiκ − 1

)
= (µ− ζ)u(1)

1 ; (4.36)

ii. Order γ = 2.

• α = 0:

Taking into account that u(0)
1 = 0, eq. (4.36) and setting r(0)1 = 0, we have

2 (1− cosκ)
ζ + µ− 2o2

ζ − µ
|r(1)1 |2 = (µ− ζ)u(0)

2 ; (4.37)

• α = 1:

Taking into account that u(0)
1 = 0 and setting r(0)1 = 0, we have

N1e
iκ∂n1r

(1)
1 +

(
eiκ − 1

)
r
(1)
2 = (µ− ζ)u(1)

2 ; (4.38)

• α = 2:

Taking into account that r(2)2 = 0 and eq. (4.36), we obtain

(
eiκ − 1

) [o2 − µ

µ− ζ

(
eiκ − 1

)
− 1
]
r
(1)2
1 = (µ− ζ)u(2)

2 . (4.39)

• If one substitutes the expression eq. (4.36) into (4.30), (4.33b), (4.37) and (4.39), recov-
ers eqs. (4.19), (4.25b), (4.24) with G = 0 and (4.22); applying the operator ∂n1 − ε∂m1

to (4.38) and taking into account eqs. (4.30, 4.33a), we obtain eq. (4.25a).
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Conclusions and perspectives

In this work we showed how it is possible to develop an integrability test for nonlinear partial
difference equations by using perturbative multiscale reductions techniques. The key ingredient
of this approach is to suppose an analytic dependence on the slow-variables of the solutions
of our nonlinear systems. This property, once the shifts with respect to the slow-variables
are expressed in terms of derivatives with respect to the same variables, allow one to use
all the machinery of multiscale techniques developed for partial differential equations in ref.
[4–9, 11–14, 35, 40]. Thus the reduction process, starting from a partial difference equation,
produces partial differential equations. In this way it was possible to give an explicit analytical
evidence of nonintegrability for some discretizations of well known continuous S−integrable
models. Among them we mention the (defocusing) dNLS equation, whose importance emerges
in several physical contexts, for which we previously had only numerical evidences of situations
of irregular, if not chaotic, dynamics. The multiscale perturbative reductions were performed
on C−integrable systems too. All the results obtained are in exact parallelism with those
previously known for partial differential equations. For example the multiscale reduction of
the lpKdV spectral problem gives the one corresponding to the (continuous) NLS equation
exactly as the (continuous) KdV spectral problem does [40]. The method can be applied to
a large variety of nonlinear systems. In this respect we developed explicitly the cases of the
NLS, KdV and potential KdV hierarchies along with the relative integrability conditions till
the A3 level included. Those integrability conditions are another original contribution to the
theory of perturbative multiscale techniques. Anyway we are aware there are some points that
deserve a further analysis. Among them we list:

• To develop an integrability test using perturbative multiscale reductions techniques not
relying on the assumption of an analytical dependence on the slow-variable. This would
enable one to reduce a partial difference system to another partial difference system, thus
opening the way to the discovery of new discrete integrable models;

• To improve the method including other possible hierarchies for the reduced systems with
all the relative integrability conditions. For example one could consider dissipative models
for which the hierarchy of reference is the Burgers one;

• To improve the method including maps, i. e. ordinary difference equations;

• To investigate other scaling with ε of the slow-variables. For example, starting from a
C−integrable model, it should be possible to obtain an Eckhauss equation;

• Give an explicit evidence of nonintegrability for the focusing dNLS equation.
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Appendix A

Nonlinear terms in F [u, ux, ut, uxx, uxt, utt, . . .] and

derivatives of u (x, t)

In this appendix we will give the expressions of the expansion of the space and time derivatives
of the function u (x, t; ε) as well as the general expression of the expansion of the nonlinear
quadratic and cubic monomials of F [u, ux, ut, uxx, uxt, utt, . . .] in eq. (2.1). Those expressions
will prove to be very useful especially when one tries to apply the multiscale technique by
hand. From eq. (2.20) one has

∂s
xu =

s∑
ρ=0

+∞∑
n=ρ+1

εn

n−ρ∑
α=−(n−ρ)

EαCs, ρ (iκ0α)s−ρ
∂ρ

ξu
(α)
n−ρ, (A.1a)

ut = −iω (κ0)
+∞∑
n=1

εn
n∑

α=−n

Eααu(α)
n +

+∞∑
n=2

εn
n−1∑

α=−(n−1)

Eα
n−1∑

j=max{1, |α|}

∂tn−j
u

(α)
j . (A.1b)

From eq. (A.1a) one derives

(∂r
xu) (∂s

xu) =
s+r∑
ρ=0

+∞∑
n=ρ+2

εn

n−ρ∑
α=−(n−ρ)

Eα
n−1∑

j=ρ+1

min{j−ρ, α+(n−j)}∑
π=max{−(j−ρ), α−(n−j)}

min{ρ, s}∑
γ=max{0, ρ−r}

(A.2)

Cs, γCr, ρ−γ (iκ0π)s−γ [iκ0 (α− π)]r−(ρ−γ)
(
∂γ

ξ u
(π)
j−ρ

)(
∂ρ−γ

ξ u
(α−π)
n−j

)
.

where Ci, j represents the binomial coefficient Ci, j = i!
j!(i−j)! . From eq. (A.2), we get

uux = iκ0

+∞∑
n=2

εn
n∑

α=−n

Eα
n−1∑
j=1

min{j, α+(n−j)}∑
π=max{−j, α−(n−j)}

πu
(π)
j u

(α−π)
n−j + (A.3a)

+
+∞∑
n=3

εn
n−1∑

α=−(n−1)

Eα
n−1∑
j=2

min{j−1, α+(n−j)}∑
π=max{−(j−1), α−(n−j)}

(
∂ξu

(π)
j−1

)
u

(α−π)
n−j ,

uuxx = −κ2
0

+∞∑
n=2

εn
n∑

α=−n

Eα
n−1∑
j=1

min{j, α+(n−j)}∑
π=max{−j, α−(n−j)}

π2u
(π)
j u

(α−π)
n−j + (A.3b)

+2iκ0

+∞∑
n=3

εn
n−1∑

α=−(n−1)

Eα
n−1∑
j=2

min{j−1, α+(n−j)}∑
π=max{−(j−1), α−(n−j)}

π
(
∂ξu

(π)
j−1

)
u

(α−π)
n−j +

+
+∞∑
n=4

εn
n−2∑

α=−(n−2)

Eα
n−1∑
j=3

min{j−2, α+(n−j)}∑
π=max{−(j−2), α−(n−j)}

(
∂2

ξu
(π)
j−2

)
u

(α−π)
n−j ,
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u2
x = −κ2

0

+∞∑
n=2

εn
n∑

α=−n

Eα
n−1∑
j=1

min{j, α+(n−j)}∑
π=max{−j, α−(n−j)}

π (α− π)u(π)
j u

(α−π)
n−j + (A.3c)

+iκ0

+∞∑
n=3

εn
n−1∑

α=−(n−1)

Eα
n−1∑
j=2

min{j−1, α+(n−j)}∑
π=max{−(j−1), α−(n−j)}

πu
(π)
j−1

(
∂ξu

(α−π)
n−j

)
+

+iκ0

+∞∑
n=3

εn
n−1∑

α=−(n−1)

Eα
n−1∑
j=2

min{j−1, α+(n−j)}∑
π=max{−(j−1), α−(n−j)}

(α− π)
(
∂ξu

(π)
j−1

)
u

(α−π)
n−j +

+
+∞∑
n=4

εn
n−2∑

α=−(n−2)

Eα
n−1∑
j=3

min{j−2, α+(n−j)}∑
π=max{−(j−2), α−(n−j)}

(
∂ξu

(π)
j−2

)(
∂ξu

(α−π)
n−j

)
.

From eqs. (A.1a) and (A.2) we have

(∂r
xu) (∂s

xu)
(
∂t

xu
)

=
r+s+t∑
ρ=0

+∞∑
n=ρ+3

εn

n−ρ∑
α=−(n−ρ)

Eα
n−1∑

j=ρ+2

min{j−ρ, α+(n−j)}∑
π=max{−(j−ρ), α−(n−j)}

(A.4)

j−1∑
δ=ρ+1

min{δ−ρ, π+(j−δ)}∑
z=max{−(δ−ρ), π−(j−δ)}

min{ρ, s+r}∑
γ=max{0, ρ−t}

min{γ, s}∑
χ=max{0, γ−r}

Cs, χCr, γ−χCt, ρ−γ (iκ0z)
s−χ [iκ0 (π − z)]r−(γ−χ)

[iκ0 (α− π)]t−(ρ−γ)
(
∂χ

ξ u
(z)
δ−ρ

)(
∂γ−χ

ξ u
(π−z)
j−δ

)(
∂ρ−γ

ξ u
(α−π)
n−j

)
,

and, from eq. (A.4), it results that

u2ux = iκ0

+∞∑
n=3

εn
n∑

α=−n

Eα
n−1∑
j=2

min{j, α+(n−j)}∑
ρ=max{−j, α−(n−j)}

j−1∑
δ=1

min{δ, ρ+(j−δ)}∑
π=max{−δ, ρ−(j−δ)}

(A.5)

πu
(π)
δ u

(ρ−π)
j−δ u

(α−ρ)
n−j +

+∞∑
n=4

εn
n−1∑

α=−(n−1)

Eα
n−1∑
j=3

min{j−1, α+(n−j)}∑
ρ=max{−(j−1), α−(n−j)}

j−1∑
δ=2

min{δ−1, ρ+(j−δ)}∑
π=max{−(δ−1), ρ−(j−δ)}

(
∂ξu

(π)
δ−1

)
u

(ρ−π)
j−δ u

(α−ρ)
n−j .



Appendix B

Basis monomials of the vector spaces Pn(m)

In this appendix we present the following tables where we list the basis monomials of the sub-
spaces Pn(m) needed in the calculation of the integrability conditions. The first table refers
to the situation when the flows in eqs. (2.71a) belong to the NLS hierarchy and the second
one when they belongs to the KdV /potential KdV hierarchies. A genereic element of Pn(m)
will then be a a polynomial with complex coefficients resulting from the linear combination of
those basis elements1.

1In all the tables it is intended that, to have all the basis monomials in a particular Pn(m), to those listed

next to it one must add those in Pn(m− 1). For the potential KdV hierarchy is ϕ(j) .
= φ

(j)
ξ .
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ū

ξ
(1

)u
(2

)2
u

ξ
(1

)|u
(2

)|2
|u

ξ
(1

)|2
u
(2

)

|u
(2

)|2
u
(2

)
u

ξ
(1

)2
ū
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)ū
(2

)u
(1

)
u
(3

)u
ξ
(1

)ū
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Appendix C

Coefficients of the differential polynomial g3(3)

In this appendix we present the list containing the coefficients of the polynomial forcing term
g3(3) eq. (2.90b) in the evolution equation of ϕ(3) at the slow-time t3 (eq. (2.85b), n = j = 3,
KdV hierarchy).

δ1 =
5λ(2µ1 + µ2)

3τ1
, δ2 =

5λ(µ1 + µ2 + µ3)
3τ1

, δ3 =
5λ(µ2 + µ3)

3τ1
, δ4 =

5λµ3

3τ1
,

δ5 =
5λ[(θ2 + 2θ3)(µ10 + µ9) + 3(3µ4 + 2µ5)τ1 + (7µ1 + 5µ2 + µ3)τ2]

9τ2
1

,

δ6 =
5λ[2θ2µ9 + (µ11 + 2µ9)θ3 + 3(3µ4 + µ5 + µ6)τ1 + 2(µ1 + 5µ2 − µ3)τ2]

9τ2
1

,

δ7 =
5λ[6θ3µ8 + (µ10 + µ11 + 4µ8)θ2 + 6(µ5 + µ6)τ1 + 2(3µ1 + 10µ3)τ2]

9τ2
1

,

δ8 =
5λ[2θ3µ8 + (3µ8 + µ9)θ2 + 3(µ5 + 2µ6)τ1 + 6(µ2 + 2µ3)τ2]

9τ2
1

,

δ9 =
5λ(θ2µ8 + 3µ6τ1 + 5µ3τ2)

9τ2
1

,

δ10 =
5λ{9τ1[θ2µ12 + (µ11 + 3µ8)θ1 + 3µ7τ1] + [−2(3θ2 + θ3)µ8 + θ2µ9 + 48µ6τ1]τ2 − 10µ3τ

2
2 }

81τ3
1

,

δ11 =
5λ[θ22µ14 + 3(µ12 + µ13)θ2τ1 + 9(µ10 + 6µ8 + µ9)θ1τ1 + 6(θ3µ12 + 9µ7τ1)τ1]

27τ3
1

+

+
5λτ2{(µ10 − 9µ8 − µ9)θ2 − 6[θ3µ8 − (3µ5 + 4µ6)τ1]− 20µ3τ2}

27τ3
1

,

δ12 =
5λ{−6(θ22 − θ2θ3 − θ23)µ14 + 9[−2(θ2 + θ3)µ12 + 2θ3µ13 + (µ11 + 18µ8 + 21µ9)θ1]τ1}

243τ3
1

+

+
10λ[(3µ10 − 3µ11 + 27µ8 − 16µ9)θ2 + (6µ10 + 6µ11 + 14µ8 − 15µ9)θ3]τ2

243τ3
1

+

+
10λ[135µ7τ

2
1 + 2(6µ1 − 15µ2 + 20µ3)τ2

2 + 3(39µ4 + 9µ5 − 13µ6)τ1τ2]
243τ3

1

,

δ13 =
45λθ1τ1{18θ3µ14 + 81(2µ12 + µ13)τ1 + 4[9µ10 + µ11 − 6(6µ8 + µ9)]τ2}

5832τ4
1

+

+
30λτ2{−4(θ22 − θ2θ3 − θ23)µ14 − 3[4(θ2 + θ3)µ12 + (3θ2 + 5θ3)µ13]τ1 + 666µ7τ

2
1 }

5832τ4
1

+

+
20λτ2

2 [2(6µ10 + 6µ11 + 14µ8 − 15µ9)θ3 + (6µ10 − 6µ11 + 81µ8 − 5µ9)θ2]
5832τ4

1

+

+
20λτ2

2 [3(24µ4 − 9µ5 − 26µ6)τ1 + 4(6µ1 − 15µ2 + 20µ3)τ2]
5832τ4

1

,
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δ14 =
5λµ8

3τ1
, δ15 =

5λ(µ8 + µ9)
3τ1

, δ16 =
5λ(µ8 + µ9 + µ10)

3τ1
, δ17 =

5λ(µ9 + µ10 + µ11)
3τ1

,

δ18 =
5λ(µ10 + µ11)

3τ1
, δ19 =

5λµ11

3τ1
, δ20 =

5λ(3µ12τ1 + 5µ8τ2)
9τ2

1

,

δ21 =
5λ[3(2µ12 + µ13)τ1 + 2(4µ8 + 3µ9)τ2]

9τ2
1

,

δ22 =
5λ[θ3µ14 + 3(µ12 + µ13)τ1 + 2(µ10 − µ8 + 3µ9)τ2]

9τ2
1

,

δ23 =
5λ[θ2µ14 + 3(2µ12 + µ13)τ1 + 6(µ10 + µ8)τ2]

9τ2
1

,

δ24 =
5λ[(θ2 + 2θ3)µ14 + 6µ13τ1 + 2(µ10 + 4µ11 + µ9)τ2]

9τ2
1

,

δ25 =
5λ[θ2µ14 + 3µ13τ1 + 2(3µ11 + µ8)τ2]

9τ2
1

, δ26 =
5λ[3θ1µ14τ1 − 2(µ8τ2 − 8µ12τ1)τ2]

27τ3
1

,

δ27 =
5λ{9θ1µ14τ1 + [θ2µ14 + 6(2µ12 + 3µ13)τ1 − 8µ8τ2]τ2}

27τ3
1

, δ28 = 2δ29,

δ29 =
5λµ14τ2

3τ2
1

, δ30 =
5λµ14

3τ1
, δ31 = 2δ30. (C.1)



Appendix D

Nonlinear discrete monomials, shifts and

derivatives of un,m, νn(t), φn(t)

In this appendix we give at first the expressions of the expansion of the n and m-shifts of
the function un,m (ε) in eq. (2.117) as well as the general expressions of the expansions of
the nonlinear quadratic and cubic monomials in eq. (2.115). These expressions are useful
especially when one tries to apply the multiscale technique by hand. From eqs. (2.116, 2.117)
one has

un+1, m =
+∞∑
γ=1

εγ

γ∑
α=−γ

Eα

γ∑
j=max{1, |α|}

(
A(γ−j)

n u
(α)
j

)
eiακ, (D.1)

un+2, m =
+∞∑
γ=1

εγ

γ∑
α=−γ

Eα

γ∑
j=max{1, |α|}

A(γ−j)
n

j∑
β=max{1, |α|}

A(j−β)
n u

(α)
β

 e2iακ, (D.2)

un+3, m =
+∞∑
γ=1

εγ

γ∑
α=−γ

Eα

γ∑
j=max{1, |α|}

A(γ−j)
n

j∑
β=max{1, |α|}

A(j−β)
n (D.3)

β∑
ρ=max{1, |α|}

A(β−ρ)
n u(α)

ρ

 e3iακ.

The quadratic terms are obtained from eq. (2.117) and eq. (D.1). For example

u2
n, m =

+∞∑
γ=2

εγ

γ∑
α=−γ

Eα

γ−1∑
j=1

min{j, α+(γ−j)}∑
π=max{−j, α−(γ−j)}

u
(π)
j u

(α−π)
γ−j , (D.4a)

un, m · un+1, m =
+∞∑
γ=2

εγ

γ∑
α=−γ

Eα

γ−1∑
j=1

j∑
β=max{1, |α|−(γ−j)}

(D.4b)

min{β, α+(γ−j)}∑
π=max{−β, α−(γ−j)}

(
A(j−β)

n u
(π)
β

)
u

(α−π)
γ−j eiπκ,

un+1, m · un, m+1 =
+∞∑
γ=2

εγ

γ∑
α=−γ

Eα

γ−1∑
j=1

j∑
β=max{1, |α|−(γ−j)}

γ−j∑
λ=max{1, |α|−β}

(D.4c)

min{β, α+λ}∑
π=max{−β, α−λ}

(
A(j−β)

n u
(π)
β

)(
A(γ−j−λ)

m u
(α−π)
λ

)
eiπκe−i(α−π)ω.

89



90

The cubic terms are obtained from eq. (2.117) and eqs. (D.1, D.4). For example

u3
n, m =

+∞∑
γ=3

εγ

γ∑
α=−γ

Eα

γ−1∑
ξ=2

ξ−1∑
j=1

α+(γ−ξ)∑
σ=α−(γ−ξ)

min{j, σ+(ξ−j)}∑
π=max{−j, σ−(ξ−j)}

u
(π)
j u

(σ−π)
ξ−j u

(α−σ)
γ−ξ , (D.5a)

u2
n, m · un+1, m =

+∞∑
γ=3

εγ

γ∑
α=−γ

Eα

γ−1∑
ξ=2

ξ−1∑
j=1

j∑
β=1

α+(γ−ξ)∑
σ=α−(γ−ξ)

min{β, σ+(ξ−j)}∑
π=max{−β, σ−(ξ−j)}

(D.5b)

(
A(j−β)

n u
(π)
β

)
u

(σ−π)
ξ−j u

(α−σ)
γ−ξ eiπκ,

un, m · un+1, m · un, m+1 =
+∞∑
γ=3

εγ

γ∑
α=−γ

Eα

γ−1∑
ξ=2

ξ−1∑
j=1

j∑
β=1

ξ−j∑
λ=1

α+(γ−ξ)∑
σ=α−(γ−ξ)

min{β, σ+λ}∑
π=max{−β, σ−λ}

(D.5c)

(
A(j−β)

n u
(π)
β

)(
A(ξ−j−λ)

m u
(σ−π)
λ

)
u

(α−σ)
γ−ξ eiπκe−i(σ−π)ω,

un+1, m · un, m+1 · un+1, m+1 =
+∞∑
γ=3

εγ

γ∑
α=−γ

Eα

γ−1∑
ξ=2

ξ−1∑
j=1

j∑
β=1

ξ−j∑
λ=1

γ−ξ∑
ρ=1

α+ρ∑
σ=α−ρ

(D.5d)

min{β, σ+λ}∑
π=max{−β, σ−λ}

(
A(j−β)

n u
(π)
β

)(
A(ξ−j−λ)

m u
(σ−π)
λ

)
(
A(γ−ξ−ρ)

n, m u(α−σ)
ρ

)
eiπκe−i(σ−π)ωei(α−σ)(κ−ω).

If in the above formulae one wants to replace say an n-shift with an m (or with a positive shift
in both n and m) one, one has simply to replace the corresponding A(j)

n with A(j)
m (A(j)

n, m) and
every factor eiρκ, except that in Eα, with e−iρω (eiρ(κ−ω)). Moreover, if one wants to repalce an
n-shift (m) with the corresponding negative one, one ha simply to replace the corresponding
A(j)

n (A(j)
m ) with A(j)

−n(A(j)
−m) and every factor eiρκ (e−iρω), except that in Eα, with its complex

conjugate. The operators A(j)
−n (A(j)

−m) are obtainded from the corresponding A(j)
n (A(j)

m ) by
replacing any ∂j

nρ
with (−1)j∂j

nρ
(any ∂j

mρ
with (−1)j∂j

mρ
).

We now give the expressions of the expansion of the n-shifts and t−derivatives of the
functions νn(t), φn(t) in eqs. (3.87) as well as the general expressions of the expansions of the
linear and nonlinear monomials β±, γ± and δ± appearing in eqs. (3.86). From eqs. (2.116a,
3.87) one has

νn+1 = 1 +
+∞∑
κ=2

[κ/2]∑
j=1

εκ
(
A(κ−2j)

n ν(j)
)
, (D.6a)

φn+1 = −εt+
+∞∑
κ=1

[(κ+1)/2]∑
j=1

εκ
(
A(κ−2j+1)

n φ(j)
)
, (D.6b)

∂tνn =
+∞∑
κ=2

κ−1∑
j=1

αjε
2κ−1∂tj

ν(κ−j), (D.6c)

∂tφn = −ε+
+∞∑
κ=1

κ∑
j=1

αjε
2κ∂tj

φ(κ−j+1), (D.6d)
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with [ρ] standing for the entire part of ρ. We made use also of the fact that the operator ∂t,
when operates on the functions νn(t), φn(t), acts as the operator

Dt
.= ∂t +

+∞∑
j=1

αjε
2j−1∂tj ,

when one assumes that all the variables n1, t, tj , 1 ≤ j, are independent. Setting

νn(t)−1 .=
+∞∑
κ=0

ε2κθ(κ)
(
n1, {tj}+∞j=1

)
, (D.7)

we have that the functions θ(κ) are given in terms of the functions ν(κ), κ ≥ 0 (ν(0) = 1) by
the following recursion relation

θ(0) = ν(0)−1, θ(κ) = −ν(0)−1
κ∑

j=1

ν(j)θ(κ−j), κ ≥ 1. (D.8)

Here follow a few of the functions θ(κ) for 0 ≤ κ ≤ 4:

θ(0) = 1, (D.9a)
θ(1) = −ν(1), (D.9b)
θ(2) = ν(1)2 − ν(2), (D.9c)
θ(3) = −ν(1)3 + 2ν(1)ν(2) − ν(3), (D.9d)
θ(4) = ν(1)4 − 3ν(1)2ν(2) + 2ν(1)ν(3) + ν(2)2 − ν(4). (D.9e)

From eqs. (3.87, D.6a, D.6b, D.7) we get

β+ =
+∞∑
κ=1

ε2κ−1

 κ∑
j=1

(
A(2κ−2j)

n φ(j)
)
− φ(κ)

+
+∞∑
κ=1

κ∑
j=1

ε2κ
(
A(2κ−2j+1)

n φ(j)
)
.=

.= 1 +
+∞∑
κ=2

εκβ
(κ)
+ , (D.10a)

γ+ = 1 +
+∞∑
κ=1

ε2κ

θ(κ) +
κ∑

j=1

(
A(2κ−2j)

n ν(j)
)+

+∞∑
κ=1

κ∑
j=1

ε2κ+1
(
A(2κ−2j+1)

n ν(j)
)

+

+
+∞∑
κ=4

[κ/2−1]∑
j=1

[κ/2−j]∑
ρ=1

εκ
(
A(κ−2j−2ρ)

n ν(ρ)
)
θ(j)

.= 1 +
+∞∑
κ=3

εκγ
(κ)
+ , (D.10b)

δ+ = 1 +
+∞∑
κ=1

ε2κ

ν(κ) +
κ∑

j=1

(
A(2κ−2j)

n ν(j)
)+

+∞∑
κ=1

κ∑
j=1

ε2κ+1
(
A(2κ−2j+1)

n ν(j)
)

+

+
+∞∑
κ=4

[κ/2−1]∑
j=1

[κ/2−j]∑
ρ=1

εκ
(
A(κ−2j−2ρ)

n ν(ρ)
)
ν(j) .= 1 +

+∞∑
κ=2

εκδ
(κ)
+ . (D.10c)



92

Some of the coefficients β(κ)
+ , γ(κ)

+ and δ
(κ)
+ for 2 ≤ κ ≤ 9 are given in the Table (D.1).

Consequently one has

sinβ+ = β
(2)
+ ε2 + β

(3)
+ ε3 + β

(4)
+ ε4 + β

(5)
+ ε5 + (D.11a)

+
(
β

(6)
+ − 1

6
β

(2)3
+

)
ε6 +O(ε7),

cosβ+ = 1−
β

(2)2
+

2
ε4 − β

(2)
+ β

(3)
+ ε5 − (D.11b)

−1
2

(
β

(3)2
+ + 2β(2)

+ β
(4)
+

)
ε6 +O(ε7),

γ
1/2
+ = 1 +

γ
(3)
+

2
ε3 +

γ
(4)
+

2
ε4 +

γ
(5)
+

2
ε5 + (D.11c)

+
1
8

(
4γ(6)

+ − γ
(3)2
+

)
ε6 +O(ε7),

δ
1/2
+ = 1 +

δ
(2)
+

2
ε2 +

δ
(3)
+

2
ε3 +

1
8

(
4δ(4)+ − δ

(2)2
+

)
ε4 + (D.11d)

+
1
4

(
2δ(5)+ − δ

(2)
+ δ

(3)
+

)
ε5 +

+
1
16

(
δ
(2)3
+ − 2δ(3)2+ − 4δ(2)+ δ

(4)
+ + 8δ(6)+

)
ε6 +O(ε7).

The coefficients β(κ)
− , γ(κ)

− and δ(κ)
− for β−, γ− and δ− are obtained replacing A(κ)

n with A(κ)
−n.

Table D.1: Coefficients β(κ)
+ , γ(κ)

+ and δ(κ)
+

κ = 2 κ = 3 κ = 4 κ = 5

β
(κ)
+ A(1)

n φ(1) A(2)
n φ(1) A(3)

n φ(1) +A(1)
n φ(2) A(4)

n φ(1) +A(2)
n φ(2)

γ
(κ)
+ 0 A(1)

n ν(1) A(2)
n ν(1) A(3)

n ν(1) +A(1)
n ν(2) − ν(1)A(1)

n ν(1)

δ
(κ)
+ 2ν(1) A(1)

n ν(1) 2ν(2) +A(2)
n ν(1) + ν(1)2 A(3)

n ν(1) +A(1)
n ν(2) + ν(1)A(1)

n ν(1)
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Table D.1: Coefficients β(κ)
+ , γ(κ)

+ and δ(κ)
+ (continued)

κ = 6 κ = 7

β
(κ)
+ A(5)

n φ(1) +A(3)
n φ(2) +A(1)

n φ(3) A(6)
n φ(1) +A(4)

n φ(2) +A(2)
n φ(3)

γ
(κ)
+ A(4)

n ν(1) +A(2)
n ν(2) − ν(1)A(2)

n ν(1) A(5)
n ν(1) +A(3)

n ν(2) +A(1)
n ν(3)−

−ν(1)A(3)
n ν(1) −

(
A(1)

n ν(1)ν(2)
)

+ ν(1)2A(1)
n ν(1)

δ
(κ)
+ 2ν(3) + 2ν(1)ν(2) +A(4)

n ν(1)+ A(5)
n ν(1) +A(3)

n ν(2) +A(1)
n ν(3)+

+A(2)
n ν(2) + ν(1)A(2)

n ν(1) +ν(1)A(3)
n ν(1) +

(
A(1)

n ν(1)ν(2)
)

κ = 8 κ = 9

β
(κ)
+ A(7)

n φ(1) +A(5)
n φ(2)+ A(8)

n φ(1) +A(6)
n φ(2)+

+A(3)
n φ(3) +A(1)

n φ(4) +A(4)
n φ(3) +A(2)

n φ(4)

γ
(κ)
+ A(6)

n ν(1) +A(4)
n ν(2) +A(2)

n ν(3)+ A(7)
n ν(1) +A(5)

n ν(2) +A(3)
n ν(3) +A(1)

n ν(4)−

+
(
ν(1)2 − ν(2)

)
A(2)

n ν(1)− −
(
A(5)

n ν(1) +A(3)
n ν(2) +A(1)

n ν(3)
)
ν(1)+

−
(
A(4)

n ν(1) +A(2)
n ν(2)

)
ν(1) +

(
ν(1)2 − ν(2)

) (
A(3)

n ν(1) +A(1)
n ν(2)

)
+

+
(
2ν(1)ν(2) − ν(1)3 − ν(3)

)
A(1)

n ν(1)
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