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Abstarct 
 

Optical Coherence Tomography (OCT) is a non-invasive interferometry 

based technique that deals with many clinical applications including 

dermatology. Speckle noise in OCT images, degrades the image quality and 

makes the edges difficult to be resolved in the process of image 

reconstruction. Methods – both software and hardware – were developed 

to mitigate the speckle phenomenon in OCT images. Software based 

methods are post-processing techniques having the substantial privilege of 

being applicable in clinical environment where the hardware manipulation 

is impossible. In this thesis two different software-based speckle reduction 

methods are developed for OCT images; an adaptive cluster-based Wiener 

filter de-noising algorithm considering the architectural structure of skin 

layers, and an artificial neural network-based one referring to the statistical 

distribution of the speckle noise. Furthermore, a universal feature-based de-

speckling framework using the inherent characteristics of the OCT image 

to select optimal filter, is demonstrated. Furthermore, to overcome this 

spatially variant blurriness problem, an iterative de-convolution total 

variation method is developed.  

There is a critical need to systematically analyze OCT images of different 

sites and identify their significant qualitative and quantitative differences. 

Therefore, referring to structural OCT and intensity based data together 

with features dependent classification algorithms, a successful skin model 

has been developed via normal and cancerous classification. Prior to skin 

tissue characterization analysis, a skin layer detection algorithm based on 

graph theory for OCT images of skin is developed. The results of tissue 

analysis can be extended and added to OCT machine as a kernel for a less 

subjective cancer diagnosis. 

In section2, this thesis deals with electromagnetic forward and inverse 

scattering problems for objects in a host medium, Finite Difference Time 

Domain (FDTD) modeling and signal processing associated with it. 
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Chapter 1 

Introduction 

1.1 Motivation and contributions  

 

This work is originally contributed by two main topics both dealing with a 

computational pipeline for optical coherence tomography images of skin – 

i) OCT artifacts mitigations, ii) computational modeling and quantitative 

characterization of skin tissues using Optical Coherence tomograms – to 

introduce a human skin model through image feature analysis and pattern 

recognition.  

Optical Coherence Tomography (OCT) is a non-invasive interferometry 

based technique that deals with many clinical applications including 

dermatology. Although OCT offers a submicron axial resolution of (1-15 

micrometer) and can provide a fair penetration depth of 2-3 mm for bio-

tissue characterization, the OCT images still suffer from some artifacts 

including a multiplicative grainy noise – called speckle – and blurriness. In 

the first part of this dissertation, methods and algorithms to mitigate those 

artifacts in OCT images were devised.  

Speckle degrades the image quality and makes the edges difficult to be 

resolved in the process of image reconstruction. Methods – both software 

and hardware – were developed to mitigate the speckle phenomenon in 

OCT images. Software based methods are post-processing techniques 

having the substantial privilege of being applicable in clinical environment 

where the hardware manipulation is impossible. There are some digital 

filters devised to suppress the speckle in OCT images, mainly for 

ophthalmology application, but only few of them are based on the inherent 

characteristics of OCT images.  

In this thesis two different software-based speckle reduction methods are 

developed for OCT images; an adaptive cluster-based Wiener filter de-

noising algorithm considering the architectural structure of skin layers, and 

an artificial neural network-based one referring to the statistical distribution 

of the speckle noise. Furthermore, a universal feature-based de-speckling 

framework using the inherent characteristics of the OCT image to select 

optimal filter, is demonstrated. On the other hand, due to imperfections of 

OCT components, in practice, an OCT setup cannot reach its theoretical 

resolution and generates blurred images. To overcome this spatially variant 
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blurriness problem, the Point Spread Function (PSF) of each sub-region of 

imaging system is estimated by using solid phantoms and then an iterative 

de-convolution total variation method is developed.  

 

In the second part, referring to structural OCT and intensity based data 

together with features dependent classification algorithms, a successful 

skin model has been developed via normal and cancerous classification. 

According to specific functional needs, skin architecture varies across 

different parts of body, and so do the textural and morphological 

characteristics in the OCT images. There is, therefore, a critical need to 

systematically analyze OCT images of different sites and identify their 

significant qualitative and quantitative differences. It is demonstrated that 

such dynamic model in conjunction with decision-theoretic approaches can 

assist in the diagnosis of different microstructural cutaneous abnormalities, 

and hence aid in the determination of treatment. To this aim, a 

comprehensive analysis of in-vivo OCT healthy skin images for different 

sites of body in both epidermis and dermis is performed referring to their 

optical, textural, and statistical properties. Prior to skin tissue 

characterization analysis, a skin layer detection algorithm based on graph 

theory for OCT images of skin is developed. The proposed algorithm is 

performed in an interactive framework by a graphical representation of an 

attenuation coefficient map through a uniform-cost search method and a 

fuzzy-based nonlinear smoothing technique. The results of tissue analysis 

can be extended and added to OCT machine as a kernel for a less subjective 

cancer diagnosis. Furthermore, OCT images of specific sites have been 

compared to other imaging modalities in terms of visual inspection and 

speckle size. 

 

The second section of this thesis deals with electromagnetic forward and 

inverse scattering problems for objects in a host medium, Finite Difference 

Time Domain (FDTD) modeling and signal processing associated with it.  

In this section, wire grid modeling of objects to pinpoint the scope of cost 

effective modeling for large arbitrary shaped objects is presented. 

Afterward, the results of spectral representation of Electromagnetic 

scattering from a cylindrical shape target by means of FDTD Modeling and 

its comparison with Cylindrical Wave Approach (CWA) is elaborated.  

Last but not the least the study of theoretical calculation of different layers 

of the human arm’s thickness by using electromagnetic techniques in order 

to estimate the thickness of soft tissues is presented.  
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1.2 Organization of thesis 

 
The work presented in the thesis is organized in two Sections and several 

chapters.  

 

Section 1 

In Chapter 2 a background on OCT technology fundamentals including 

speckle phenomenon, and configurations of OCT with application in 

dermatology are given. Afterward, an overview on current methods of 

artifacts suppression in OCT images, including speckle reduction and de-

blurring techniques, is elaborated in this chapter. 

In Chapter 3 firstly the effective developed algorithm for speckle 

suppression of OCT images (i.e. a Neural network based speckle reduction 

filter) and its evaluation is explained in detail. Then, the designed feature 

based framework for speckle suppression of OCT imaging of the skin is 

described.  

In Chapter 4, the development of a cluster based Wiener filtering method 

for speckle reduction of OCT images and its results are elaborated.  

Chapter 5 deals with developing the de-convolutional algorithms to 

overcome blurring artifact in OCT images and its comparison with few 

existing methods.  

In Chapter 6, a skin layer detection algorithm based on graph theory for 

OCT images of skin is presented.  

Chapter 7 deals with skin tissue characterization to systematically analyze 

OCT images of different sites and identify their significant qualitative and 

quantitative differences. Then a computational skin-modeling framework 

based on textural, geometrical, optical and morphological features for 

tissue characterization using pattern recognition is explained. 

 

Section 2  

 

In Chapter 8 an in-depth investigation of wire-grid modeling of objects in 

a host medium is presented. Moreover, the spectral representation of 

electromagnetic scattering from cylindrical shapes target by means of 

FDTD Modeling and its comparison with Cylindrical Wave Approach 

(CWA) is elaborated.  
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Chapter 9 deals with the theoretical calculation of different layers of the 

human arm by using electromagnetic techniques in order to estimate the 

thickness of soft tissues. 
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Section 1 

Chapter 2 

Background and Introduction 
 

2.1 Optical Coherence Tomography  

 

Optical imaging uses light to interrogate the morphological information of 

the compartments within a sample tissue. Optical imaging technologies can 

represent the internal structure of the sample across a range of spatial scales 

from micrometers to centimeters. Confocal Microscopy (CM) and Optical 

Coherence Tomography (OCT) are two modalities that work with the same 

principle. In CM [1], point illumination with a spatial pinhole is used in an 

optically conjugate plane in front of the detector to eliminate out-of-focus 

light. In CM, the depth resolution is inversely proportional to the square of 

the numerical aperture of the microscope objective lens. OCT is a non-

invasive, non-ionizing optical imaging technique that is based on low 

coherence interferometry [2]. To form an OCT image, the magnitude and 

the time delay of the backscattered infrared light returned from a biological 

sample, are measured transversally [3, 4].  

 

 
 

Figure 2.1 Measurements of backscattering versus depth in A-scans. B scan 

images displayed by a gray scale, are produced by scanning the OCT beam in a 

transverse direction to acquire a series of axial scans, Raster scanning of a stack 

of B-scans generates a 3D OCT image. 
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OCT is currently utilized in several medical and biomedical applications 

including dermatology [5] since it provides high resolution images and a 

moderate penetration depth, e.g., one to three millimeters. 

Recently, OCT has been used as an optical biopsy method for 

differentiating among different tissues, e.g., healthy versus tumorous [6, 7]. 

Quantitative analysis of OCT images through extraction of optical 

properties has made OCT an even more powerful modality [8-10]. An OCT 

system is characterized by several parameters such as imaging speed, 

lateral and axial resolutions and penetration depth [11]. Figure 2.1 shows 

the OCT axial scan, cross section and volumetric images.  

 

2.2 OCT system configurations 

 

OCT is categorized into three types; time-domain OCT (TD-OCT), spectral 

domain OCT (SD-OCT) and swept source OCT (SS-OCT). 

 

 

Figure 2. 2 Simplified schematic diagram of OCT imaging systems, OFC, 

Optical Fiber Coupler (OFC), PD(Photodetector), SP(spectrometer) 

 

Conventional TD-OCT [12] normally consists of a light source, a splitter, 

lenses and two arms – a movable reference arm and a sample arm 

respectively. The output of the photo-detector is the auto-correlation 

(interference) of constructive fringe due to the coherence length of the light 

source. An OCT image is constructed based on the principle of time of 

flight and low coherence interferometry [13]. Fercher et al. in 1988 [14] 
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reported the first biological application of low-coherence interferometry by 

the measurement of the axial eye length. The interferometry is used to 

magnify the very small time delay between the backscattered light returned 

from the sample and the reflected light from a reference mirror. The basic 

components of an OCT system are a low coherent light source to be able to 

have the capability of sectioning the depth, a beam splitter to split light 

between two arms, a reference mirror, and some opto-electronic 

components such as objective lenses and XY galvo scanner [15]. 

The reflected light returned from the reference mirror (i.e corresponding 

mean intensities of the beam at reference and sample arms) is combined to 

form an interference signal at the photo-detector. It is possible to identify 

intensity peaks due to sharp refractive index variations between layers of 

the sample. Thereby, it is possible to infer about the structure of the studied 

sample.  

The peak of the envelope of the interference signal is considered as one-

pixel value of the OCT image corresponding to the sample point 

illuminated by the laser beam [3]. Performing a multiple scan in lateral 

directions, and moving the reference mirror can form a three-dimensional 

image. In the OCT technology, the transverse resolution is independent 

from axial resolution that is a distinctive feature of OCT compared to 

similar imaging modalities such as confocal microscopy [16]. The 

interference between the wavefront, coming back from the reference and 

sample arms, takes place only when the optical path difference is within the 

coherence length of the source. FD-OCT is realized in two ways: SD-OCT 

and SS-OCT.  

In SD-OCT a detectors array captures the broadband spectral distribution 

of the light. The depth image is depended on the number of detectors in the 

array. To obtain the A-scan (amplitude-depth signal) a Fourier 

transformation is required. The advantages of this system over Time 

Domain OCT include higher sensitivity, greater sampling rate and 

recording speed and improved depth detection [12]. However, the decrease 

of the Signal to Noise Ratio, due to inadequate line-width, is the 

shortcoming of this technique.  

SS-OCT [21] or time encoded frequency domain OCT privileged from 

merging all advantages of the two aforementioned systems by employing a 

tunable narrow line width laser. This source sweeps through wide optical 

bandwidth and gives a fine resolution and an improved SNR. Moreover, 

the detectors in SS-OCT are cost-effective photodetectors. In swept source 

OCT, a narrowband swept laser and a standard single element 
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photodetector detects the interference between light on the reference and 

sample arms. The axial reflectivity profile (A-scan) is obtained by applying 

the discrete Fourier transform (DFT) to the sampled detector signals. Some 

of the advantages over FD-OCT are lower sensitivity fall-off, higher image 

acquisition, higher detection efficiencies, and the opportunity to implement 

dual balanced detection [17].  

The acquired SS-OCT signal is a photocurrent integrated over the line 

width 𝛿𝑘 of the swept laser source and can be given by equation (2.1).  

 

𝑖𝑠𝑠(𝑘) = ∫ 𝑆(𝑘) cos(2𝜋𝑘𝑧) 𝑑𝑘
𝑘+𝛿𝑘

𝑘
                                                                       (2.1) 

 

where 𝑘 is the optical wavenumber, 𝑧 is the optical path length difference 

between the sample and the reference arms, and 𝑆(𝑘) is the source’s spectral 

density. Swept-source OCT offers a sensitivity advantage over typical TD-

OCT systems. The signal to noise ratio of an SS-OCT system, for a single 

sample reflector, is driven by equation (1.2). 

 

𝑆𝑁𝑅𝑆𝑆−𝑂𝐶𝑇 ≈= 𝑀
𝜌𝑅𝑆𝑆𝑇𝐷−𝑂𝐶𝑇

4𝑞𝑒𝐵𝑆𝑆−𝑂𝐶𝑇
                                                                                     (1.2) 

 

Where M is the number of samples, ρ is the detectors’s responsivity, RS is 

the sample reflectively, STD−OCT is the sample’s illumination power 

integrated over M and BSS−OCT is the noise equivalent bandwidth of the 

system since depends on the frequency of the sweep, the SNR is affected 

by the properties of the used light source.  

The selection of a laser source for SS-OCT is paramount and must consider 

several parameters such as wavelength sweep range, sweep repetition rate, 

the linearity of the sweep, radiant power, and instantaneous line width [21]. 

One of the most convenient sources for SS-OCT that meets the necessary 

criteria is Fourier-domain mode-locked laser (FDML), combining good 

imaging speed, instantaneous coherence length, and adequate spectral 

width [22]. This type of laser leads to an increase in imaging speed and 

depths. FDML lasers are based on a fiber-ring geometry with a 

semiconductor optical amplifier (SOA) as a gain medium, and a fiber 

Fabry-Perot filter as the tunable, narrowband optical bandpass filter. In 

FDML, a dispersion managed line is incorporated into the laser cavity and 

the narrowband filter is tuned periodically at the cavity round-trip time, 

producing a quasi-stationary operation mode. Light from one frequency 

sweep propagates through the laser cavity and returns to the filter at the 
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exact time when the transmission window of the optical bandpass filter is 

tuned to the same optical frequency. Consequently, light from the previous 

round trip is coupled back to the gain medium [28].  

In OCT, the transverse resolution is associated with the focal length of the 

objective lens, and the axial resolution that is given in equation (2.3) is 

determined based on the coherence length of the light source used in the 

configuration of OCT; the shorter the coherence length, the finer the axial 

resolution is [1]. 

 

    𝑙𝑐 =
2𝑐𝑙𝑛(2)𝜆0

2

π Δ𝜆
                                                                                                                (2.3) 

 

where 0 is the central wavelength and is the Full Width Half Maximum 

(FWHM) of the power spectrum of the light source [3]. Important 

parameters of OCT imaging system are given in Figure 2.3. 

 

 

Figure 2. 3 Important OCT imaging parameters adopts from [8] 

 

 

2.3 Light tissue interaction  
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Understanding how light penetrates biological tissues is essential to 

comprehend the different imaging modalities based on laser-tissue 

interaction.  

In the tissue, photons may scatter, change their direction of flight based on 

the probability function or excite the absorbing molecule by an electronic 

transition. Scattering in biological tissues takes place when there is an 

alteration in the propagation direction without loss of energy. The 

scattering structures can be macroscopic like skin layers or they can be 

microscopic like cells. If the average distance between particles is greater 

than scatter size and wavelength, the single scattering theory can be 

applied. Mie or Raleigh theories can explain scattering of light by spherical 

particles. Mie theory obtains scattering coefficient by computing scattering 

efficiency, anisotropic factor (zero for Raleigh and 1 for Mie) and scattering 

cross section. The percentage of light reflected from tissue (reflectivity) is 

related to the scattering coefficient and to the part of light that is back 

scattered. Rayleigh scattering is rather isotropic, only depending on the 

polarization and the wavelength. 

 

 

Figure 2. 4 Absorption and scattering spectra of tissue chromophores 

 

Absorption by a chromophore causes either a quantized change in the 

distance between charges or a vibration transition. Absorbing molecular 

components of the tissue are porphyrin, hemoglobin, melanin, flavin, 

retinol, nuclear acids, deoxyribonucleic acid (DNA)/ribonucleic acid 
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(RNA). The effective cross section of a chromophore can be computed by 

multiplying the effective cross-section of absorption by the geometrical 

cross section. The absorption coefficient is  μ𝑎 = 𝜌𝑎𝜎𝑎 (cm−1) where  𝜌𝑎 is 

the volume density of many chromophores.  

In the near infrared and mid-infrared regions, the tissue absorption is 

dominated by water absorption, with the maximum at 3 μm. The inverse of 

the absorption coefficient defines the penetration depth (mean free path) 

into the absorbing medium. The Beer-Lamber’s law, given by equation 

(2.4), allows to calculate the transmission of light through a slab with d 

dimension.  

 

𝑇 =
𝐼

𝐼0
= exp(−𝜎𝑎𝑁𝑎𝑙) = 𝑒𝑥𝑝(− μ𝑎𝑙)                                                               (2.4) 

 

Where 𝜎𝑎 is the effective cross section absorption, 𝑁𝑎 is the density of the 

absorbing molecules, 𝑙 is the optical path,  μ𝑎 is the absorption coefficient. 

Figure 2.4 shows both absorption and scattering spectra of the tissue 

chromophores.  

 

2.4  Speckle theory and statistics in imaging system 

 
When a random medium employs a coherent light, a random intensity 

distribution – called speckle – will appear. Speckle, in fact, is a result of the 

interference of several elementary waves with random phases. Generally, 

there are two types of speckles: subjective and objective. Subjective 

speckles are generated in the image space of an optical system while 

objective speckles are produced in a free space. As biological tissues are 

considered non-uniform, the speckle phenomenon can cause errors in the 

related measurements. Therefore, speckle should be suppressed. The 

average speckle size in the far-field zone is 𝑑𝑎𝑣𝑒 = 𝜆/𝜑, where 𝜆 the 

wavelength is and 𝜑 is the angle of observation. A temporal oscillation of 

the scattered field can be observed when imaging an object and moving the 

observation points. The amplitude of the transmission coefficients of a bio-

tissue (a random phase screen) is given by the equation (2.5). 

 

𝑇𝑆𝑝 = 𝑇0𝑒
(−𝑖Φ(𝑥,𝑦))                                                                                                          (2.5) 
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Where  𝑇0 is the independent amplitude, Φ(𝑥, 𝑦), the random phase shift 

at (𝑥, 𝑦), is due to refractive index or thickness changes from point to point 

and it is given by equation (2.6).  

 

Φ(𝑥, 𝑦) = (
2𝜋

𝜆
) (𝑛(𝑥, 𝑦) − 1)ℎ(𝑥, 𝑦)                                                                     (2.6) 

 

This phase fluctuation is also related to both standard deviation and optical 

length with a probability density function of Gaussian variations. The first 

order statistical properties of speckle are defined based on intensity 

probability distribution function (PDF) and contrast. Considering the ideal 

situation of scattered light with amplitude characterized by Gaussian 

statistics, the value of contrast is equal to 1. Hence, the PDF of individual 

speckle patterns from the most biological tissues is given by equation (2.7) 

and it shows that the destructive interference follows with the utmost 

probabilities.  

 

𝑝(𝐼) = 4 (
1

〈𝐼〉2
)𝑒

(−
2𝐼

〈𝐼〉
)
                                                                                                        (2.7) 

 

Equation (7) is a result of multiple scattering (the incoherent combination 

of two or more speckle patterns). For a single scattering event the equation 

(7) become𝑠 𝑝(𝐼) = (−
1

〈𝐼〉
)𝑒

(−
1

〈𝐼〉
)
. There is also a partially developed 

speckle contribution where the contrast of speckle is smaller than unity and 

non-scattered components of the coherent beam interfere with the speckle 

filed.  

Using the cross-correlation function, the statistical behavior of the dynamic 

speckle (second order) can be explained by illumination conditions of the 

object for the formation of speckle patterns [18].  

The Fresnel approximation in diffraction theory provides the speckle 

pattern by equation (2.8) [19].  

 

𝐸𝑖𝑚𝑎𝑔𝑒 = ∬ 𝑑𝜉𝑑𝜂𝐸𝑜𝑏(𝜉, 𝜂)ℎ(𝑥, 𝑦; 𝜉, 𝜂)
∞

−∞
                                                          (2.8) 

 

Where 𝐸𝑖𝑚𝑎𝑔𝑒 is the field in the image plane, 𝐸𝑜𝑏(𝜉, 𝜂) is the field in the 

object plane and ℎ(𝑥, 𝑦; 𝜉, 𝜂) is the point spread function (SPF) of the 

optical system between the object and the image planes.  
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The simplest configuration is the free space propagation. For biological 

tissues (considered as random media) based on Shapiro’s calculation [20], 

the resulting field is given by (9) and it is expected to be Gaussian.  

 

〈𝐸(𝑟 + 𝛥𝑟)𝐸∗(𝑟)〉 = 𝑒𝑥𝑝 (−
𝛥𝑟

2𝑙
)

𝑠𝑖𝑛 (𝑘𝛥𝑟)

𝑘𝛥𝑟
                                                             (2.9) 

 

Where r is a point on random medium, located at a small distance away and 

it is scattering mean free path, and k is wave number.  

Using the spatial correlation of the image plane field given in equation 

(2.10), the speckle size in an imaging plane can be determined [21, 22].  

 

〈𝐸𝑖𝑚(𝑥1, y1)𝐸𝑖𝑚
∗(𝑥2, y2)〉 =

∬ 𝑑𝜉𝑑𝜂
∞

−∞
∬ 𝑑𝜉′𝑑𝜂′ ℎ(𝑥1, y1; 𝜉, 𝜂)

∞

−∞
 ℎ∗(𝑥2, y2; 𝜉

′, 𝜂′)×

 〈𝐸𝑜𝑏(𝜉, 𝜂)𝐸𝑜𝑏
∗(𝜉′, 𝜂′)〉                                                                                               (2.10) 

 

Considering that the mean intensity of the object plane is constant, after a 

variable substitution, equation (2.10) can be converted into (2.11).  

 

〈𝐸𝑖𝑚(𝑥 + ∆𝑥, 𝑥 + ∆𝑦)𝐸𝑖𝑚
∗(𝑥, 𝑦)〉 = ∬ 𝑑𝜉′𝑑𝜂′ ℎ(𝜉′, 𝜂′)

∞

−∞
 ℎ∗(𝜉′ −

∆𝑥, 𝜂′ − ∆𝑦)                                                                                        (2.11) 

 

The intensity spatial correlation is computed by equation (2.12) after some 

math.  

 

〈𝐼𝑖𝑚(𝑥 + ∆𝑥, 𝑥 + ∆𝑦)𝐼𝑖𝑚
∗(𝑥, 𝑦)〉 =  〈𝐼𝑖𝑚〉2 [1 +

|𝑗𝑖𝑛𝑐{
𝐷

2𝜆𝑓
√∆𝑥2 + ∆𝑦2}|

2

]                                                                      (2.12) 

 

Where 𝐼𝑖𝑚  is obtained by (13).  

 

〈𝐼𝑖𝑚〉 = 〈𝐼𝑜𝑏〉∬ 𝑑𝜉′𝑑𝜂′∞

−∞
|ℎ(𝜉′, 𝜂′)|2                                                                 (2.13) 

 

The width of the normalized plot of this intensity gives the mean speckle 

size in the speckle intensity pattern. 
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2.5 Artifact mitigation in OCT imaging 

 

OCT imaging is a favorable high-resolution imaging method in medical 

and biomedical applications, and even if many modifications have already 

been applied on the OCT hardware and software the OCT images still suffer 

from artifacts. Two major artifacts in OCT images are speckle noise and 

blurring 

2.5.1   Speckle reduction algorithms 

 

In the OCT imaging, if the central wavelength of the light source is equal 

to or larger than the compartments within the sample under investigation, 

the interference of the reflected light with different amplitudes and phases 

generates a grainy texture in the image called speckle. Speckle degrades the 

quality of OCT images, particularly the borders of cellular layers [23]. The 

probability density function (PDF) of the speckle is approximated by 

Rayleigh distribution, or Rician distribution [24]. The speckle pattern is 

highly dependent on the microstructural content (size and density) of the 

sample being imaged. Due to such correlation, speckle is also known to 

carry some morphological information, thus it is not appropriate to consider 

it as an image noise. This issue has made finding a suitable solution to 

reduce the speckle quite challenging.  

The speckle reduction methods are categorized into two main classes: 

software based and hardware based methods [8, 23, 25-32].  

Software based speckle reduction methods rely on a mathematical model 

of the speckle, and they can be classified into adaptive and non-adaptive 

filters. The former is implemented based upon the local first order statistics, 

such as mean and variance, while the latter are implemented based on the 

overall statistics in the image. Software-based techniques mostly depend 

on digital filtering including Lee Filter (Lee) [33], the Hybrid Median 

Filtering (HMF) [34], and the Adaptive Wiener filter [39], Wavelet based 

methods [35], Wavelet based methods [11, 32, 36-38] and the diffusion-

based method of thresholding with fuzzy logic [39].  Wiener filter is one of 

the most popular adaptive methods [40, 41]. Some of the non-adaptive 

algorithms are Kuwahara filter, Hybrid Median filter, Enhanced LEE filter 

(ELEE), Symmetric Nearest Neighborhood (SNN), thresholding with fuzzy 

logic [39] [42]. Wavelet based de-speckling has been a successful method 

in which the image is decomposed into its wavelet sub-bands, allowing to 

differentiate noise components through some signal processing [11, 32, 36-
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38]. Considering the importance of the wavelet mother function in this 

method, Haar mother function has proven to be a fast and efficient solution, 

enabling speckle noise reduction without substantially diminishing contrast 

or spatial resolution in the image [43].  

Ozcan et al. [40] concluded that by applying an enhanced-Lee or Wiener 

filter to OCT images of ex vivo bovine retina, the obtained OCT images 

were significantly improved. Wavelet-based despeckling methods [11, 32, 

36-38] and a diffusion-based method with fuzzy logic thresholding [39] 

demonstrated better results compared to the previous techniques. In another 

study, Wu et al. developed a speckle reduction method using a total 

variation concept and first-order statistics extracted from OCT images, e.g., 

mean and variance [44]. Recently an adaptive speckle reduction method 

has been developed based on artificial neural networks (ANN) [45, 46]. 

ANN offer an intelligent solution that reduces speckle while preserving the 

morphological information of the image. In this method, the speckle is first 

modelled. A forward ANN trained by back-propagation is then used to 

estimate a noise parameter for the image, followed by aas  a  numerical 

solution to the inverse Rayleigh distribution function [47]. An improved 

version of this method is presented in next chapter [48].  

 

The most common hardware-based speckle reduction method is the 

compounding. In compounding techniques [49], partially de-correlated 

images acquired from stationary samples are averaged. The quantities to be 

averaged specify the compounding procedure. Some of the quantities used 

in compounding methods are backscattering angles, central wavelengths, 

polarizations, and displacements. These results in techniques referred to as 

angular compounding, frequency compounding, polarization 

compounding, and spatial compounding, respectively [2, 28, 50, 51]. For 

instance, in the spatial compounding method, the averaging quantity is the 

tissue or the imaging probe motion, which comes from the inherent 

imperfection of the scanners used in the configuration of the imaging 

system [52]. Five different algorithms including averaging, random 

weighted averaging, random pixel selection and random pixel selection 

plus median filtering are used in another study to average their partially 

correlated images obtained from the spatial compounding method [52]. The 

authors demonstrated that the random pixel selection plus median filtering 

method is an efficient, simple, and edge-preserving de-speckling method 

compared to the common averaging method an artificial neural network 

based (ANN) method for speckle reduction has been introduced by 
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modeling the speckle using a Rayleigh distribution with a single noise 

parameter, sigma, for the entire image. The algorithm was tested on OCT 

images of Drosophila larvae[45-47, 52, 53]. However, there are still some 

deficiencies with existing algorithms to be addressed by developing new 

methods.   

 

2.5.2 Image blurring correction  

 

Blurriness stems from wavefront aberration in the imaging system [54]. 

The aberration is produced by the imperfections of optical devices that are 

used in the imaging systems and can result in resolution and contrast 

degradations. The most common way to reduce aberration is to use an 

adaptive optics (AO) system. AO systems are composed of i) a wavefront 

sensor (WFS) to measure the wavefront distortion, ii) a deformable mirror 

(DM), or a spatial light modulator (SLM) to correct the distortion, and iii) 

a control loop algorithm to control the correction process [55]. Recently, 

less-expensive sensor-less AO methods utilizing blind optimization have 

been studied [56-58].  

In a sensor-less AO system, an optimization algorithm with a cost function, 

e.g. photo-detected intensity value, is used. The improvement of the cost 

function reduces the aberrations so resulting in less blurred images. Some 

of the effective optimization methods used in sensor-less AO systems are 

simulated annealing (SA) algorithm, genetic algorithm (GA), and particle 

swarm optimization (PSO) [53]. The performance of these three 

optimization methods have been compared in a sensor-less AO systems in 

[59].  

 

 
 

 

Figure 2. 5 OCT images of fingertip skin of a healthy individual (a) before and 

(b) after de-blurring procedures [59]. 

 

(a) (b) 
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The other popular method to reduce blurring is deconvolution. In an 

imaging system, the output image can be interpreted as the convolution of 

the point spread function (PSF) of the system, h(x,y), with the input signal  

generated by the interaction of the light with the sample. Lucy-Richardson 

[9] is the most popular iterative algorithm and the Wiener deconvolution 

[10] is the most preferred non-iterative algorithm. Multiple deconvolution 

techniques have been studied [60-64]. For some deconvolution methods, 

the point spread function (PSF) of the imaging system needs to be 

determined. There are two main methods to obtain the PSF; (a) analytical 

methods, (b) experimental methods based on imaging very small particles 

embedded in a solid tissue-mimicking phantom. Fish et al. successfully 

used the Lucy–Richardson algorithm, which is a well-established 

deconvolution algorithm, to deblur OCT images [65, 66]. Lucy–Richardson 

algorithm is based on the maximum-likelihood calculation to recover an 

undistorted image that has been blurred by a known PSF [66]. The 

calculation of the PSF based on phantoms is influenced by the phantom’s 

size that needs to be correctly defined. As it is shown in Figure 2.6 only the 

green rectangles have the suitable size for PSF calculation, able to include 

almost one bright scatterer in the region of interest. 

 

 

 
 

Figure 2.6 OCT optical phantom with different regions of interest to calculate 

PSF, only green ones are the correct ones 
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2.7 Diagnostic applications of OCT in dermatology  

 

Histopathology is the golden standard especially for cancer diagnosis. Even 

if invasive and characterized by a high rate of false negatives, optic in 

medicine is still a promising approach due to the chance of approaching the 

cellular resolution. The comparison of different imaging modalities in 

terms of penetration depth and resolution, given in Figure 2.7, demonstrates 

that deeper imaging necessitates scarifying spatial resolution. As matter of 

fact, OCT fills the gap between ultrasound (US) and Confocal Microscopy 

(CM). The resolution of US systems depends on the frequency of the sound 

wave used for imaging [67, 68] and it varies from 1mm to about 15μm. 

However, these high frequencies are greatly attenuated in the tissues so 

limiting the depth of penetration. On the other hand, the CM, with a high 

transverse image resolution of 1 μm, is limited due to the dependence of 

the “depth performance” on the aperture of the microscope objective.  

The foremost difference between US and OCT relates to the speed of light 

(3e8 m/s) and the speed of sound (only 1500 m/s). Due to femtoseconds 

time resolution of light, the direct electronic detection of light is almost 

impossible and measurement methods such as optical gating, optical 

correlation or interferometry are needed.  

Currently clinical diagnosis of skin is including trained eye, 

palpation of the lesion and use of the ‘’dermoscope’’. For problematic 

lesions only a skilled histopathologist must perform a detailed biopsy. 

However, biopsy is invasive, leaves scars and cannot be repeated at the 

same site. Furthermore biopsy is not able to map the edges of a tumor [69].  
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Figure 2.7 Resolution and depth tradeoffs in optical imaging modalities, 

Confocal Microscopy (CM), Optical Coherence Tomography (OCT), Ultrasound 

(US) and Photoacoustic Imaging (PAI) 

 

OCT allows in-situ real time investigation of micromorphology and 

pathology without invasive tissue removal, thus allowing the same tissue 

sample to be monitored over time with repeated imaging. The desired 

wavelength to monitor skin with OCT is the 1300 nm where the scattering 

is governing phenomenon because of a fair conciliation between resolution 

of image and depth penetration [5]. Figure 2.7 shows a cartoon of skin 

compartments, their corresponding equivalent histology and OCT images.  

Welzel et. al published the first papers demonstrating the OCT for healthy 

skins and for diseased skin. Since there are some features of skin that can 

be clearly displayed such as sweat ducts and dermal epidermal junction, the 

OCT image interpretation is a topic of many current researches. The 

effectiveness of OCT has been shown in evaluation of skin cancer, various 

inflammatory and blistering skin conditions, physical and chemical skin 

damage, therapeutic effects, and surgical interventions [5, 13, 70-78]. OCT 

has been used as an optical biopsy method for differentiation among 

different tissues, e.g., healthy versus tumorous as well [6, 7]. Quantitative 

analysis of OCT images through extraction of optical properties has made 

OCT an even more powerful modality [8-10].   
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Figure 2.8 A cartoon of skin compartments, their corresponding equivalent 

histology and OCT images.  The scale bar in OCT images is 200 µm. 

 

The reflectivity of the skin results in a peak of the signal intensity at the 

surface of the skin. Stratum corneum skin layer reflects about the 5-7% of 

the incident light [3]. Below the entrance point of the skin surface, different 

layers and structures with variation in refractive index may be distinguished 

by the OCT. Some studies have demonstrated the ability of OCT to identify 

characteristics pertaining to the stratum corneum, the epidermis, the 

dermis, the hair follicles, the eccrine sweat ducts and sebaceous glands [69, 
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79-83]. The exact composition of the skin components may differ 

depending on the area of the body from which the skin originates. 

Hence comparison between histology and OCT images can aid in 

characterizing skin components across different locations of the body. In 

addition to the signal intensity that is based on histologic information, OCT 

can provide a quantitative description of the tissues through optical 

properties, and in particular, the attenuation coefficient representing the 

intensity of the light beam that declines when it penetrates into a medium 

due to absorption and scattering. The optical properties information can be 

used for clinical diagnosis and characterization of skin [31, 84, 85].  

In this dissertation, a comprehensive characterization of skin tissues using 

OCT is performed 

 

2.7.1 Skin layer detection and Dermal-Epidermal junction 
localization 

 

Knowledge about the location of the Dermal-Epidermal Junction (DEJ) 

plays an important role in evaluating many dermatological diseases [86, 

87], for example Basal Cell Carcinoma (BCC), which is located in the 

deepest layer of the epidermis and invades the dermis [88-90]. Moreover, 

DEJ is important in the intracellular pool of bullous pemphigoid antigens, 

the interactions between fibronectin and keratinocytes and the 

epidermolysis bullosa acquisita antigen areas [91]. Therefore, knowledge 

of DEJ is important in determining BCC. To localize DEJ, the OCT image 

of skin is segmented.  In healthy skin, the tissue is composed of three layers: 

the epidermis, dermis and hypodermis (subcutaneous tissue). The 

epidermis includes five main sub-layers: Stratum Corneum (SC), stratum 

lucidium (seen only in the skin of the sole of the feet and palmar surface of 

the hand), stratum granulosum, stratum spinosum, and stratum basale. 

Stratum basale is where the proliferation of epidermal cells occurs. DEJ 

locates the stratum basale which is the deepest layer of epidermis and 

represents the boundary between epidermis and dermis. SC is the outermost 

layer of the epidermis. Because of the forward back reflection from the SC, 

it appears as a bright layer. Because of back reflection from the SC, the 

hypodermis is seldom seen in OCT images [92]. Several groups have 

studied epidermal layer segmentation.  

Neerken et al. [93]  added columns of the image together to produce the 

average depth profile of the OCT signal and then used averaged intensity 

http://en.wikipedia.org/wiki/Absorption
http://en.wikipedia.org/wiki/Scattering
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profile to segment skin layers. Weissman et al. [94] proposed a novel 

shapelet-based image processing technique to detect SC and DEJ border 

and calculate the epidermal thickness. Hori et al. [95] used local minimum 

intensity to detect DEJ. Mcheik et al. used the characteristics of speckle 

distributions to segment the epidermis [96]. In another study, Wang et al. 

[97] utilized an averaged A-scan analysis to measure the mean value of the 

epidermal thickness. Li et. al., detected skin surface by solving a shortest 

path problem and using the local integral projection method [98]. Josse et. 

al. detected the epidermal boundaries with a three-phases algorithm: 

preprocessing, skin surface detection and epidermis/dermis interface 

detection [99]. In mentioned studies, the thickness of epidermis is measured 

and used as evaluation criteria for epidermis segmentation. However, the 

thickness of epidermis might vary based on the gender, age, body site [100]. 

Therefore, a standard database is essential for a correct comparison among 

the methods. 

In this thesis, DEJ is localized with a new method to be used in skin 

abnormalities as well as in skin characterization where both epidermis and 

dermis features are investigated separately. 

 

2.8 Summary 

 

In order to assist specialists in their diagnostic decisions based on OCT 

images, image processing/analysis algorithms are used to post-process the 

OCT images to make the diagnostically relevant features more salient. In 

this chapter, the major artifacts in OCT images including speckle and image 

blurring are summarized. The aforementioned issues are described, along 

with the review of technologies and algorithms proposed in literature to 

solve these problems. Moreover, the dermatology application of OCT and 

it role in cancer diagnostic is elaborated. 
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Chapter 3 

Intelligent speckle reduction algorithms 
 

3.1 Introduction  
 

Speckle pattern is highly correlated to the microstructural content (size and 

density) of the sample being imaged and it carries some morphological 

information. Since Rayleigh or Rician distributions approximate the 

probability density function (PDF) of the speckle [24], Aartificial Neural 

Networks can offer an intelligent solution that reduces speckle while 

preserving the morphological information in the image. In this chapter an 

effective algorithm to reduce the speckle, based on an ensemble framework 

of several Multi-Layer Perceptron (MLP) neural networks is presented. The 

algorithm is tested on OCT images.  Considerable improvements in terms 

of signal-to-noise ratio and contrast are demonstrated. Moreover, to address 

the multiplicity of the speckle reduction methods and challenges the 

adaptive choice of the most appropriate for a given set of OCT images, an 

intelligent, expandable despeckling framework is proposed. This 

framework decides which speckle reduction algorithm is most effective for 

a given image, based on either the execution time or the tissue features – 

morphological, textural, optical – extracted from the OCT image. 

 

  3.2 Artificial Neural Network  
 

A Neural Network (ANN) is a processing paradigm mimicking the human 

biological nervous systems, i.e., brain, in information analysis. The major 

component of such paradigm is the structure through which the information 

processing is performed. This structure consists of a large number of 

neurons, i.e., highly interconnected processing components, that work 

constructively and coherently to solve specific problems. Similar to 

humans, ANNs learn by examples to perform a specific task such as pattern 

recognition or data classification. From a mathematical point of view, any 

ANN learns by adjusting the synaptic connections between the neurons. 

ANNs have the capability to analyze complex data; they can be used to 

derive patterns and to detect trends that are too complex to be analyzed by 

deterministic computer techniques. A trained ANN can be thought of as an 

"expert", in the given problem. This expert will then be able to predict a 
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solution/answer to new situations. Other advantages include, (a) adaptive 

learning: an ability to learn how to do tasks based on the data given for 

training or initial experience, (b) self-organization: an ANN can create its 

own organization or representation of the information it receives during 

learning time, (c) real time operation: ANN computations may be carried 

out in parallel, and special hardware devices are being designed and 

manufactured which take advantage of this capability, (d) fault tolerance 

via redundant information coding: partial destruction of a network leads to 

the corresponding degradation of performance. However, some network 

capabilities may be retained even with major network damage. Simple 

neuron can be thought of a device with several inputs and a single output. 

The neuron has usually two operational modes: the training mode and the 

testing mode. In the training mode, the neuron is trained to work/fire or not, 

for particular input patterns. In the running mode, the output is generated 

accordingly to the input /output list taught. However, if the input is not 

found in the input /output list taught, the firing rule is used to determine 

whether to fire or not. 

 

 
 

Figure 3.1 An McCulloch and Pitts neuron 

 

With a more complex neuron, more complicated tasks can be performed 

that cannot be already done in computers (Figure 3.1). McCulloch and Pitts 

model (MCP) implements a complex neuron. In this model, the inputs are 

'weighted', and each input has a decision-making power depending on the 

weight of the input. The weight is a constant value that is multiplied by the 

input. The weighted inputs are then added together and compared to a pre-

set threshold value. The neuron fires only if its input overcomes the 

threshold. 

Having neurons with weighted inputs and a threshold makes them a small 

sophisticated processing unit. In fact, by altering the weights and/or 
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thresholding the MCP neuron, the neuron has the ability to adapt itself to 

any problem. 

Several algorithms exist that make the neuron to 'adapt', e.g., feedback 

networks (Figure.3.2) that are frequently used in a pattern recognition 

problem [101, 102]. 

 

Figure 3.2 An example of a simple feed forward network 

 

3.3 Intelligent Speckle reduction method 

 

In the followings, the proposed speckle reduction method is presented. At 

first OCT speckle formulation using Rayleigh model is presented. Then the 

implementation of the method and the results are given.  

 

3.3.1 OCT speckle formulation with Rayleigh statistics 

 

Representation of the sample as a collection of point scatterers corresponds 

to the “random-phasor sum” mathematical formalism [103], and it has been 

previously applied to speckle and OCT [50, 104-106]. It explains that an 

OCT signal can be express as 𝜉 and is given by equation (3.1): 

 

𝜉 = |𝜉| exp(𝑗𝜃𝑠) =  ∑ 𝜉𝑖 =𝑁
𝑖=1  ∑ 𝑎𝑖 exp (𝑗𝜑𝑖)

𝑁
𝑖=1                                 (3.1) 

 

where 𝜉𝑖 is the phasor of the i-th scatterer to the signal, |𝜉|  is the speckle 

envelope, which formulates the basis for displaying image. If we consider 

that the 𝑎𝑖 are identically disseminated with fixed mean and variance, the 



  

 

 

32 

𝜑𝑖 are consistently distributed on (−π ,π ], and all of the 𝑎𝑖 and 𝜑𝑖 are 

independent [105]. Then the sum 𝜉 is a complex Gaussian as N → ∞; its 

real and imaginary parts are zero-mean independent Gaussian variables 

[23, 107] with variance σ2. If N is a random variable, 𝜉 will maintain the 

same distribution. The envelope |𝜉| will be Rayleigh-distributed with 

parameter σ and its probability density function (PDF) will be derived by: 

 

Γ(𝜉) =
𝜉

𝜎2 exp {−
𝜉

2𝜎2}       (𝜉 > 0)                                                                       (3.2) 

 

The intensity pattern of an OCT image is proportional to |𝜉|2. At any point, 

the signal follows an exponential distribution with standard deviation of 

2𝜎2 and its PDF is given by equation (3.3).  

 

𝛤|𝜉|2(𝜉) =
1

𝜎2 𝑒𝑥𝑝 {−
𝑡

2𝜎2}                                                                       (3.3) 

 

Finally Rayleigh distribution speckle model and is given by equation (3.4). 

 

𝑓(𝑥𝑖,𝑗) =
𝑥𝑖,𝑗𝑒

−𝑥𝑖,𝑗
2

2𝜎2

𝜎2                                                                                  (3.4) 

 

where 𝑥𝑖,𝑗 is a pixel of the image and 𝜎 is the noise variance of the image 

(noise parameter). A cascade Forward ANN trained by back-propagation is 

then used to estimate a noise parameter for the image, followed by a 

numerical solution to the inverse Rayleigh distribution function [47].  

3.3.2 Implementation of the proposed method  

 

First the image is segmented into several sections. The noise parameter is 

then estimated by using the MLP neural networks for different segments. 

Using these steps and a numerical method, the segments, and consequently 

the image is de-noised. Further processing was performed to eliminate the 

blocking artifact. The algorithm essentially is composed of two phases. The 

first phase is the training phase. Using a Rayleigh noisy image generator in 

MATLAB, 1010 pixels images are generated with sigma values (the 

single noise parameter employed in the Rayleigh function) ranging from 0 

to 255 in steps of 0.05. For each sigma value, the procedure is repeated 100 

times to generate numerous noisy images for training. Three features - 
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average, standard deviation, and median - are calculated from each segment 

and its wavelet sub-bands for training. Wavelet sub-band images we used 

to calculate the frequency domain statistical knowledge of the image. The 

neural network used is a combination of several MLP neural networks. The 

flow chart of the algorithm is given in Figure 3.3. Three MLP networks and 

a combiner, which is responsible for the averaging process, are the main 

components of this framework. Each of the MLP networks is composed of 

15 neurons in its input layer, 10 neurons in its hidden layer and one output 

neuron to estimate the sigma parameter. The combiner is responsible for 

averaging the L neurons in the input layer, L neurons in hidden layer and 

one output neuron that can estimate the sigma parameter in an ensemble 

fashion (here, L = 3). To show the advantage of ensemble method over 

individual neural networks, let us consider a number of trained MLP neural 

networks L with outputs 𝑦𝑖(𝑥) (where x is an input vector). The sigma 

values are estimate the using the i-th MLP neural network with an error of 

ei with respect to the desired value of the sigma parameter, ℎ(𝑥). In this 

situation, the following equation can be written as equation (3.5): 

 

𝑦𝑖(𝑥) = ℎ(𝑥) + 𝑒𝑖                                                                                 (3.5)   

 

Thus, the sum of squared error for the network yi can be calculated using 

(3.6): 

 

𝐸𝑖 = 𝜉 ⌊(𝑦𝑖(𝑥) − ℎ(𝑥))
2
⌋ = 𝜉[𝑒𝑖 

2]                                                          (3.6)       

              

where 𝜉[.] denotes the expectation (average or mean value). Thus, the 

average error for the MLP networks acting individually can be calculated 

by (3.7). 

 

  𝐸𝐴𝑉 =
1

𝐿
∑ 𝐸𝑖 =𝐿

𝑖=1
1

𝐿
∑ 𝜉[𝑒𝑖  

2]𝐿
𝑖=1                                                                           (3.7) 

 

By averaging the outputs 𝑦𝑖, the committee prediction is obtained.  This 

estimate will have an error equal to (8): 

 

 𝐸𝐶𝑂𝑀 =  (𝑦𝐶𝑂𝑀(𝑥)  − ℎ(𝑥))2 = [(
1

𝐿
∑ 𝑦𝑖(𝑥) − ℎ(𝑥)𝐿

𝑖=1 )
2
] = 𝜉 [(

1

𝐿
∑ [𝑒𝑖]

𝐿
𝑖=1 )

2
]     

                                                                                            (3.8)      
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Thus, using the Cauchy’s inequality one can show that ECOM ≤ EAV as 

given in equation (3.9).  

 

 𝐸𝐶𝑂𝑀 = 𝜉 [(
1

𝐿
∑ [𝑒𝑖]

𝐿
𝑖=1 )

2
] ≤

 1

𝐿
∑ 𝜉[𝑒𝑖 

2] = 𝐿
𝑖=1 𝐸𝐴𝑉                                     (3.9) 

 

As shown in the despeckling flowchart in Figure 3.6, the OCT image is 

initially divided into several segments based on the homogeneity.  Average, 

standard deviation and median are extracted from the image and from its 

wavelet components (totally of 12 inputs to the neural network). The neural 

network delivered the highest reliability in the estimation of the sigma 

value when a Daubechies 4 (db4) wavelet mother function was used for 

wavelet features in comparison with Haar. The transfer function, 

performance function, learning function, network size, and number of 

hidden layers, were chosen experimentally such that optimum network 

reliability is achieved. Such reliability is defined as the percentage ratio of 

the difference between the expected sigma value and the estimated sigma 

over the expected sigma value. The averaged reliability of the sigma 

estimator network measured over 20 runs was 99.3 percent that was greater 

than previous NN that had a reliability of 98.8 percent [50].  

The second phase is the testing phase. Like in the training stage, the same 

pre-processing was applied to each image, and then the statistical features 

are extracted from each segment in the image and used as input for the 

neural network. The Rayleigh noise parameter was then estimated for each 

segment using the trained network [108]. The estimated sigma is then used 

along with a numerical method to solve the inverse Rayleigh function 

numerically for each segment. Putting together the noise model segments, 

one can generate a noise model image. The noise model image was 

deducted from the original image with a scale factor that was obtained 

experimentally. To remove the blocking artifact, following the method 

given in [109], some statistical features are extracted from the original 

image, based upon which of the despeckled segments are then stitched 

together. 

3.3.3. OCT system  

 

Figure 3.3 shows the schematic illustration of the multibeam, swept-source 

OCT (SS-OCT) system [17] (Vivosight, Michelson Diagnostic TM Inc., 

Kent, United Kingdom), used in this study. The lateral and axial resolutions 
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are 7.5 µm and 10 µm, respectively. The scan area of the OCT system is 6 

mm width by 6 mm length by 2 mm depth. A tunable broadband laser 

source (Santec HSL-2000-11-MDL), with the central wavelength of 1305 

+/- 15 nm successively sweeps through the optical spectrum and leads the 

light to four separate interferometers and forms four consecutive confocal 

gates [17].  

 

 

Figure 3.3 Schematic diagram of the vivo sight Michelson multi-beam swept-

source OCT (SS-OCT); M: mirror. C: optical coupler, M: mirror, PD: photo 

detector, OA: Optical attenuator 

 

The interference signals are received at various depths simultaneously. The 

10 kHz sweep is the frequency of generating one reflectivity profile (A-

Scan). Combining several adjacent A-Scans, for different transversal 

positions of the incident beam, a B-Scan is generated. The B-scan frame 

rate is 20 frame/s [110]. The interference signals are collected and analyzed 

by time resolved photodetectors [14, 111].  

The data acquisition unit is a Spectrum M2i.4022 4-channel 20 MHz 1-bit 

with a hand-held scanning probe. This system is a multibeam system and 
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the formation of the signal and the final image procedure are given in 

Figure 3.4 and Figure 3.5.  

 

 
 

Figure 3.4 Schematic diagram of Multibeam SS-OCT A line formation for 1 

channel 
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Figure 3.5 Acquired OCT images from four different channels and final blended 

and mosaiced OCT image, color bar is 6 mm 

 

3.3.4 Experimental results and discussion 

 

The number of segments in each image affects the despeckling efficiency. 

To improve edge sharpness and have more effective removal of the 

blocking artifact, images (that are all of the same dimension) are segmented 

into eight sub-images. The estimated sigma values for the segments within 

the images are given in Table 3.1 (a), (b), (c), corresponding to Figure 3.7.  

 

 
 

Figure 3.6 Schematic diagram of the despeckling algorithm. 

 

Table 1. Estimated sigma values, number of segments are 8 (4 segments in each 

row). 
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Segment Sigma for 

image (I1) 

Sigma for 

image (I2) 

Sigma for 

image (I3) 

1 112 98 75 

2 56 64 64 

3 21 51 56 

4 41 45 68 

5 131 68 28 

6 145 20 30 

7 162 39 27 

8 143 81 19 

 

 

Figure 3. 7 Comparative presentation of (left): three original OCT test images 

(I1), (I2), (I3) and of the correspondent denoised images (right). Original OCT 

test images acquired from the retina (optic nerve region) of a volunteer (AP), 

white male, (a) Original B-scan image of optic nerve, lateral size ~ 1-1.2 mm, 

the B-scan image after using the proposed method. 

 

To evaluate the improvement of the images after despeckling, the Signal-

to-Noise Ratio and the Contrast-to-Noise Ratio (CNR) are calculated as 

defined in equations (3. 10) and (3.11) respectively [49, 112].  
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𝑆𝑁𝑅 = 10 log10(
(max 𝐼)2

𝜎𝑏
2 )                                                                                            (3.10) 
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where (max 𝐼)2represents the maximum of squared intensity pixel values 

in a homogeneous region of interest in the linear magnitude image, b and 
2

b  represent the mean, variance of the same background noise region, and 

r and 
2

r represents the mean and variance of the R region of interest [49]. 

5 regions (R=5) in the calculation of CNR are used. The results of these 

calculations on three test images are given in Table 3.2.  

 
Table 3.2. Numerical assessment of the proposed denoising algorithm using 

SNR and CNR metrics. 

 

 SNR CNR 

 Original Despeckled Original Despeckled 

(I1) 9.2 26 2.5 4 

(I2) 12.1 31 3 5.9 

(I3) 11.5 24 1.9 3.2 

 

The performance of the proposed method is compared with six despeckling 

methods. The quantitative assessments of the despeckled image 

demonstrated that the proposed method can provide an extra enhancement 

of around 8 dB and 0.6 in terms of SNR and CNR respectively compared 

to their counterparts in averaging and median filtering.  

Moreover, the proposed method surpassed both Symmetric Nearest 

Neighborhood filter [113] and Wiener noise reduction filters by increments 

of around 3dB in terms of SNR. However, in case of CNR a difference of 

0.2 is observed. Kuwahara [114] filtered image has a SNR=4dB and CNR 

of 0.1 less than the filtered image. It should be noted that this fast real-time 

effective algorithm could be enhanced by utilizing a more accurate 

estimation of sigma employing an improved version of ANN and using a 

more precise evaluation of the noise model. Moreover, a possible 

improvement can be achieved referring to image segments. A future study 

can be devise to cover those issues.  
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 3.4 A Learnable Despeckling Framework  

 
Addressing the speckle reduction methods and the challenges of selecting 

the most appropriate of them for a set of OCT images, in this section a 

Learnable Despeckling Framework (LDF) is proposed. LDF decides which 

speckle reduction algorithm is more effective on a given image by learning 

the figure of merit as a single quantitative image assessment measure. The 

architecture of LDF includes two main parts, i) an Autoencoder neural 

network, ii) a filter classifier. The Autoencoder learns the figure of merit 

based on the features extracted from the OCT image including SNR, CNR, 

Equivalent Number of Looks (ENL), Edge Preservation Index (EPI) and 

Mean Structural Similarity Index (MSSI). Subsequently, the filter classifier 

identifies the most efficient filter from the following categories: a) sliding 

window filters including median, mean, symmetric nearest neighborhood, 

b) adaptive statistical based filters including Wiener, homomorphic Lee, 

Kuwahara, and c) edge preserved patch or pixel correlation based filters 

including non-local mean, total variation, block matching 3D filtering.  

  

3.4.1 Digital filtering method 

 

Mathematical models used for speckle distribution depend on tissue 

characteristics and cellular specifications that can be represented by 

statistical or optical features extracted from OCT images. Three main 

classes of digital filters can be cited: sliding window, adaptive statistical 

based, and edge preserved patch or pixel correlation based. Among twenty 

five filters that have been explored in this work, filters from #1 to #4 are 

adaptive median filters with window sizes of 3, 5, 7, and 9 pixels 

respectively; filters from #5 to #8 are adaptive averaging filters with 

window sizes of 3, 5, 7, and 9 pixels respectively; filters from #9 to #12 are 

Symmetric Nearest Neighborhood (SNN) [113] with window sizes of 3, 5, 

7, and 9 pixels respectively; filters from #13 to #14 are Kuwahara [115] 

with window sizes of 3 and 5 pixels; filters from #15 to #18 are adaptive 

Wiener filters with window sizes of 3, 5, 7, and 9 pixels respectively [35]; 

filters from #19 to #22 are LEE filters with window sizes of 3, 5, 7, and 9 

pixels respectively; filter #23 is a pixel-wise NLM filter [116]; filter #24 is 

a Total Variation (TV) [113] filter; and filter #25 is a (please define the 

acronym) BM3D [117]. 
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Sliding window filters: this class of filters including mean, median and 

SNN, is highly efficient to be used in real-time speckle reduction 

applications such as video-rate OCT imaging. Although these filters 

effectively reduce speckle noise in the OCT image, they smooth edges in 

the image and create blurriness. The mean filter is a linear low-pass filter. 

In this filter, a pixel value is replaced by the average of its neighboring pixel 

values. In the median filter a pixel value in a window, M by N pixels, is 

replaced by the value of the middle pixel in a vector of pixel values sorted 

in an ascending order [34]. This nonlinear filter is more robust than the 

mean filter, and preserves edges more effectively. 

SNN is considered as an edge preserving sliding window speckle reduction 

method. In SNN, initially the opposite pairs of pixels in the support are 

compared and replaced with the pixel value that is closest to the central 

pixel value [113]. Each pixel value is then replaced by the average of 

processed pixel values in the window.  

 

Adaptive statistical based filters: this class of despecking filters, including 

Kuwahara filter [118] and homomorphic Wiener filter, uses statistical 

features e.g., mean and variance, extracted from the image or a part of the 

image. Kuwahara works by dividing the support into four sub-regions 

[115]. The central pixel is replaced with the average of the quadrants with 

the lowest variance. Wiener filter tailors itself to image local mean and 

local variance, i.e., the larger the variance, the less smoothing is applied 

[119]. LEE filter is an adaptive filter that determines each pixel value 

according to the weighted sum of the center pixel value based on local 

statistics (mean and variance) calculated in a square kernel surrounding the 

pixel with a minimum mean square error (MMSE) approach [120].  

 

Patch or pixel correlation based filters: this class of despecking filters, 

including NLM, TV and BM3D, are based on the high inter or intra 

correlations among nearby pixels or patch of pixels. In NLM method, the 

value of each pixel is replaced by taking a weighted average of all or some 

of the pixels in the image chosen on the basis of a similarity criterion. NLM 

filters are known to preserve the textures [116]. TV filters are based on edge 

preservation [44]. TV provides a close match to the ground truth image. TV 

efficiently suppresses the noise while preserving the image details. is a 

collaborative filtering method working on the locally sparse representation 

of the image in the transformed domain [117]. The procedure begins by 
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grouping similar image patches into three dimensional (3D) groups. Then 

a 3D linear transformation is applied on the image and then a shrinkage 

procedure performed. The ground truth image is then estimated by 

transforming the spectrum coefficients and combining the patches. Next, a 

Wiener filter is used to compute the optimum denoised image [121].  

3.4.2 Feature extraction 

 

To quantify the tissue properties, 63 features (different derivations of 

homogeneity, contrast, and regularity) [122, 123] and one optical property 

are extracted from OCT images. For each image, six basic statistical 

features including five histogram moments and the entropy are calculated 

from the intensity image. Twenty features are computed from the gray-level 

co-occurrence matrix (GLCM) [124], including five basic features in four 

different directions. The optical property calculated for the OCT image is 

the attenuation coefficient. I used Vermeer s’ method to calculate the 

attenuation coefficient for each pixel in the OCT intensity image [125]. In 

order to reduce redundant features and decrease computational complexity, 

a subset of features is chosen using a feature selection algorithm. To 

decrease the computational complexity, the PCA algorithm is utilized to 

reduce the dimension of the features from 26 to 5.  

3.4.3 Image quality assessment metrics 

 

The performance of the filtering methods is assessed using well established 

objective assessment metrics, including SNR, CNR, ENL, SSIM index and 

EPI measures [32, 126, 127]. SNR compares the signal of an object in the 

OCT image to its background noise. CNR measures the activation 

fluctuations to the noise. The definition of SNR and CNR are given in 

(3.10) and (3.11), respectively [53].  ENL is a measure of smoothness in a 

homogeneous ROI, and can be derived by (12). 

 

𝐸𝑁𝐿 =
1

𝐻
∑ 𝜇ℎ

2𝐻
ℎ 𝜎ℎ

2                                                                                                           (12)  

 

where, 𝜇ℎ
2, 𝜎ℎ

2 are the mean and the variance of the homogeneous ROIs (H). 

The SSIM score quantifies image quality referring to its structural 

similarities and is based on local statistics calculations (3.13). 
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𝑆𝑆𝐼𝑀 =
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𝑁
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𝑀
𝑖=1                        (3.13)  

 

where, M and N are the size of the image in transverse directions, I is the 

original image, and  𝐼 is the despeckled image. 𝐼(𝑖,𝑗) and 𝐼(𝑖,𝑗) are derived 

by convolving the original and despeckled images with a symmetric 

Gaussian kernel with window size of 11 in order to calculate their local 

variance and mean, i.e., 𝜎𝐼́(𝑖,𝑗)
  ,  𝜎

𝐼̂́(𝑖,𝑗)
  ,𝜇𝐼́(𝑖,𝑗)

 and 𝜇
𝐼̂́(𝑖,𝑗)

. 𝐶1 and 𝐶2 are 

constant numbers which  𝐶1 = 6.5025 and 𝐶2 = 58.5225 [127].  

EPI is a correlation-based method that shows how the edges in the image 

degrade and it is given in equation (3.14) 

 

𝐸𝑃𝐼 =
∑ ∑ (∆𝐼(𝑖,𝑗)−𝜇∆𝐼(𝑖,𝑗)

)(∆𝐼(𝑖,𝑗)−𝜇𝐼̂(𝑖,𝑗)
)𝑁

𝑗=1
𝑀
𝑖=1

√∑ ∑ (∆𝐼(𝑖,𝑗)−𝜇∆𝐼(𝑖,𝑗)
)(∆𝐼(𝑖,𝑗)−𝜇𝐼̂(𝑖,𝑗)

)𝑁
𝑗=1

𝑀
𝑖=1

                                                         (3.14) 

 

where 𝐼 indicates the original image, 𝐼 is the despeckled image, ∆𝐼 is an 

edge detected image with a Laplacian operator,  𝜇 is the mean of the image.  

A polarization compounding method generates the golden image. Speckle 

reduction can be obtained if the object alters the polarization state of the 

probing light enough to obtain uncorrelated speckle patterns. The light 

polarized along the fast and slow axis of the sample will experience a slight 

change in refractive index. The de-correlation can be due to local or 

accumulated birefringence (the change in polarization states varies with the 

direction of incident light) [128].  
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Figure 3. 8 Polarization compunding set-up main component : Manual Fiber 

Polarization Controller (FPC) in order to obtain denoised golden image for 

quality assessment measure calculations, FPC changes an arbitrary elliptical 

polarization to a linear polarization 

The biochemical compositions of the biological tissues are polarization 

sensitive. A polarization controller can have the task of transforming an 

arbitrary polarization into another arbitrary one. Manual Fiber Polarization 

Controller (FPC) utilizes stress-induced birefringence to alter the 

polarization in single mode fiber that is looped around three independent 

spools to create three independent fractional wave plates (fiber retarders) 

[129].  

To perform the polarization compounding, the FCP including the optical 

path three rotatable wave-plates to in cascade: a first quarter wave, which 

is oriented to transform the incident elliptical polarization into linear 

polarization, a half wave-plate, which transforms this linear polarization 

into another linear polarization, and a second quarter wave-plate, which 

transforms the other linear polarization into the desired elliptical output 

polarization controller [11]. Figure 3.8 shows the polarization 

compounding set-up component to obtain golden image.  

3.4.4 Learnable despeckling framework  

 

The architecture of the LDF includes two main parts, i) an autoencoder 

neural network, ii) a filter classifier. In the following, how FOM is learnt 
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by utilizing an autoencoder is explained. Then the training procedure of the 

classifier, based on FOM, to predict the more effective despeckling filter is 

elaborated. Prior to the training phase, according to the literature, the 

features are normalized one by one by subtracting the mean value and 

dividing by the standard deviation. A figure of merit is defined as a single 

representative measurement to assess the performance of each filter. In this 

study, the FOM is defined based on a set of five OCT quality measurements 

including SNR, CNR, ENL, EPI and MMSIM. The goal is to find a FOM 

that is the best representation of the mentioned set. Here, an autoencoder 

neural network with 3 layers is utilized for unsupervised learning of FOM. 

The structure of the autoencoder is illustrated in figure.3.9. As it is shown, 

in the layer 1, the inputs neurons to the network are driven by SNR, CNR, 

ENL, EPI, MMSIM, and a bias neuron. Layer 2 includes one neuron to 

estimate the FOM, and a biased neuron. Autoencoders work well if the 

initial weights are close to a good solution [130]. In this experiment, the 

initial weights are equal to 1, as in [40]. 

2.4.2 Filter Classifier  

 

The FOM representatives is used to classify the filters. An Artificial Neural 

network (ANN) is utilised as the classifier is used. The classifier predicts 

the more effective filter (the winner filter) for the given input image. The 

designed ANN classifier includes three layers, the input layer, the hidden 

layer, and the output layer. The input layer includes 20 neurons 

corresponded to 20 features extracted from image (worth to mention that 

the number of extracted features is 23 initially, which is reduced to 5 by 

utilizing PCA feature extraction algorithm). The hidden layer includes 10 

neurons. And finally, the output layer includes 26 neurons which is equal 

to the number of filters in the experiment. The value of each neuron in the 

output layer is a real number between 0 and 1 that represents the probability 

of the corresponding filter being the winner filter. At the end, the filter with 

the highest probability will be the selected as the winner. Before training, 

features are normalized.  
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Figure 3. 9 (a) Block diagram of the LDF algorithm. OCT: optical coherence 

tomography, QA: quality assessment, FOM: figure of merit, ANN: artificial 

neural network, and GLCM: Gray Level Co-occurrence Matrix. QA measures 

include SNR, CNR, ENL, SSIM, and EPI. 

 

The parameters of the ANN have been chosen according to the literature 

and to a trade-off between the complexity of the network and performance. 

The proposed framework is detailed in Figure 3. 9.  

A figure of merit (FOM) inspired by the formula using the normalized 

weighted values (𝜔𝑖) of normalized (n) quality assessment measures given 

by designed neural network to assess the performance of each filter on 

image-set and the best filter is obtained.  
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3.4.5 Experimental Results and Discussions 

 

From each image, twenty-five regions of interest are considered to compute 

image features and quality assessment measures. All the digital filters 

described here are implemented in MATLAB 8.5. The codes is 

implemented by a Dell desktop computer with an Intel Core i7, 3.10 GHz 

CPU and 8 GB of RAM. 12 healthy individuals ranged from 24 to 44 years 

participated in the study. OCT healthy images are acquired from 

individual’s pre-auricular, neck, thumb pad, palm, back of hand, outer arm, 

inner arm, calf, back, cheek, nose, and sole that covers almost whole body 

skin types. Additionally, diseased cases including non-melanoma cancer, 

Psoriasis and Acne are imaged Based on a five-fold cross validation 

method, out of 285 OCT images, 80% (i.e. 228 images) are used for training 

the classifier and the remaining 20% (i.e. 57 images) used for testing. The 

histogram of winner filters in sliding window filters category, Adaptive 

statistical filters category, and Patch or pixel correlation filters category are 

illustrated in figure 3.10 figure 3.12, and figure 3.14 correspondingly  

[131]. Two methods to select the winner filter are used. In the first method, 

the winner filter is selected on the basis of a particular image attribute or a 

combination of some of them or the execution time. In the second method, 

the trained ANN determines the winner filter.  

According to this graph , the Average filter with the window size 5 is the 

winner filter for despeckling if the overall intensity of the imaging target 

versus background noise is the feature in the image to be enhanced; Median 

filter with the window size 5 and the averaging filter with the size 9 used 

when image signal to nise ratio is the assessment criteria; averaging with 

the window size 9, and median filtering with the window size 7 chosen if 
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Figure 3. 10 Computed FOM for 285 filtered OCT images with their 

corresponding execution time. Sliding window filters are used here. 

smoothness in homogeneous regions are to be enhanced; SNN with 

window size 7 is chosen in cases where structural similarities in the image 

or the quality of edges are the assessment criteria. In cases where the overall 

quality of the image is required, averaging, median, and SNN with window 

sizes 9, 7 and 7, respectively are chosen. From the execution time point of 

view, median filters are far less computationally expensive compared to 

other filters, i.e., SNN, in this category. The winner filter obtained from the 

classifier, in the sliding window category was the Average filter with a 

kernel size of 5 in most cases.  
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Figure 3. 11 Results of despeckling using sliding window filters. Original OCT 

images taken from healthy thumb pad of a 24-years old male (I_1), diseased 

outer arm of a 56-years old female (I_2), back of a healthy 25-years old male 

(I_3),  (a-d) Despeckled images using averaging with window sizes of 3, 5, 7, 

and 9, respectively, (e-h) despeckled images using median filtering with window 

sizes of 3, 5, 7, and 9, respectively, (i-l) despeckled images using SNN filters 

with window sizes of 3, 5, 7, and 9, respectively. The yellow boxes indicate 

winner filters based on the FOM measure and the red box indicates the winner 

filter chosen by classifier. 

In figure.11, three original OCT images and despeckled ones using sliding 

window filters, are shown. The yellow boxes in the figure, indicate most-

selected winner filters based on FOM criterion, i.e., median filter with 

window size of 9. The red box indicates the chosen filter by classifier.    

Figure 3.12 shows the histogram of winner filters in adaptive statistical 

filters category as well as their execution time. According to this graph, in 

almost all cases Lee filter with window size 5 is the winner filter for 

despeckling even when FOM is the quality assessment criterion.  
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Figure 3. 12 Quality assessment measures calculated for 285 filtered OCT 

images with their corresponding execution time. Adaptive statistical filters are 

used here. 

In figure 3.12, original OCT images and despeckled ones using adaptive 

statistical filters, are shown. The yellow boxes in the figure, indicate most-

selected winner filters based on FOM criterion, i.e., Kawahara with the 

window size of 9, wiener filter with the window size of 3, Lee filter with 

window sizes of 7, and 9.  The red box indicates the chosen filter by 

classifier.    
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Figure 3. 13 Results of despeckling using adaptive statistical filters on OCT 

images used in Figure 5. (a-b) Despeckled images using Kuwahra filter with 

window sizes of 5, and 9, respectively, (c-f) despeckled images using Wiener 

filter with window sizes of 3, 5, 7, and 9, respectively, (i-l) despeckled images 

using Lee filters with window sizes of 3, 5, 7, and 9, respectively. The yellow 

boxes indicate winner filters based on the FOM measure and the red box 

indicates the winner filter chosen by classifier. 

Figure 3.14, shows the histogram of winner filters in patch or pixel 

correlation filters category as well as their execution time. According to 

this graph, in many cases BM3D filter, and in some cases TV is the winner 

filter for despeckling. When FOM is the quality assessment criterion, 

BM3D and TV are almost equality chosen. Classifier chose BM3D and TV 

most times.  
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Figure 3. 14 Quality assessment measures calculated for 285 filtered OCT 

images with their corresponding execution time. Patch or pixel correlation filters 

are used here. 

In figure 3.15, original OCT images and despeckled ones using patch or 

pixel correlation filters, are shown. The yellow boxes in the figure, indicate 

the winner filters selected based on FOM criterion, i.e., BM3D and TV. 

The red box indicates the chosen filter by classifier.    
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Figure 3. 15 Results of despeckling using adaptive statistical filters on OCT 

images used in Figure 5. (a) Despeckled images using BM3D filter, (b) 

despeckled images using NLM filter, (b) despeckled images using TV filter. The 

yellow boxes indicate winner filters based on the FOM measure and the red box 

indicates the winner filter chosen by classifier. 

Finally, we evaluated the performance of filters from all three categories. 

BM3D filter was the winner filter for most images considering individual 

quality assessment criterion, i.e., SNR, CNR, ENL, MSSIM, EPI, or even  

 

 

 

Figure 3. 16 Quality assessment measures calculated for 285 filtered OCT 

images. All filters in three categories are used here. 

FOM (see figure 3.16). Lee filter with kernel size 5 was selected from 

adptive filter category for some images and the rest of winners are from 3rd 
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category. The winner filter obtained from the classifier selected from the 

3rd category and in most images which are TV and BM3D. Figure 3.16 

shows normalized FOM for all the 25 filters.  

 

 

Figure 3. 17 Quality assessment measures calculated for 285 filtered OCT 

images. All filters in three categories are used here. 

 

Figure 3.17 shows the comparison of all differenet filters’ QA measures for 

three selected image showed in figure 3.15. Referring to the execution time, 

it is observed that even though the third category filters, most efficiently 

filtered images, their execution time is in the order of tens of seconds, while 

the execution time of first and second category filters are in millisecond 

range. Hence, the third category filters may not be suitable for real-time 

applications.  

3.5 Conclusions and outlook 

 

Substantially improvement of the quality of OCT images through speckle 

reduction methods draw a great deal of interest. In this chapter, among the 

software based method a speckle reduction algorithm is presented based on 

the approximation that speckle noise has a Rayleigh distribution with a 

noise parameter, sigma. In this study, neural network used to estimate the 



  

 

 

55 

noise parameter, sigma, for despeckling optical coherence tomography 

images of retina. The intelligence inherited in the method allows improving 

the image quality while preserving the edges. The sigma estimator kernel 

worked with more than 99.3% reliability on average. The proposed 

algorithm is also compared with some other bilateral digital filters and 

demonstrated a satisfying evaluation. In second section, an intelligent 

framework is introduced to select the best required speckle reduction 

algorithm for a certain image set of skin. Different despeckling methods are 

developed to mitigate the speckle phenomenon effect in OCT images both 

using software based and hardware based speckle reduction techniques. A 

comparative study of some of these speckle reduction methods for OCT 

images are given in [15]. However still there is room to expansively 

compare existing software-based despeckling methods. To address the 

challange of finding an optimum speckle reduction filter for an image or 

set of image,a learnable despeckling framework, named LDF is proposed. 

LDF predicts which speckle reduction algorithm is more effective for a 

given image, based on tissue morphological, textural and optical features 

extracted from the image.  

BM3D filter outperformed in most cases. Even though, the most time 

efficient filters are from the simpler algorithms, i.e. first and second 

categories. It should be noted that although FOM can decide about optimum 

filter, while the classifier predicts the efficient filter based on the textural 

features of images.To conclude  an intelligent framework is introduced to 

select the best required speckle reduction algorithm for skin OCT images. 

This framework can be expanded to include any other despeckling filters 

by training the network based on results from the new filter. This 

framework can be expanded to use any other filters to despeckle an image. 

It only would need to train again with new filters  
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Chapter 4 

A Cluster based Wiener Filtering method 
for OCT images 

 

4.1 Introduction  

 

In this chapter an optimized method for speckle reduction of OCT skin 

images is presented. Considering the architectural structure of skin layers, 

OCT skin images can be segmented into differentiable clusters. The image 

in each cluster is then filtered by a Wiener filter. The proposed method was 

tested on an optical solid phantom with predetermined optical properties 

and on healthy human skin images. The results show that the proposed 

cluster-based filtering method can effectively reduce the speckle and 

increase the signal-to-noise ratio and the contrast while preserving the 

edges in the image. To the best of my knowledge, most of the implemented 

methods have not considered the inherent characteristics of the tissue in the 

process of speckle noise reduction. Based on this information, the 

techniques known to date can be utilized as a general speckle removal 

method for images acquired by any low coherent imaging modality.   

The structure of the chapter is as follows. Section 2 contains the 

methodology of the proposed algorithm including the pseudo-code of CWF 

and its detailed explanation. The results and the discussion about the 

obtained results are presented in sections 3 and 4. Finally, in section 5, the 

conclusion and some suggestions for future work are given. 

4.2 Adaptive Wiener filtering 

 

The Wiener filter minimizes the mean square error between an estimated 

random process and a desired process. It estimates the local mean and 

variance of a sliding window of size n pixel by m pixel, around each pixel 

located in the ith row and jth column of the image, and generates a new 

estimated pixel value of 𝐼(𝑖,𝑗) [132]. The new 𝐼(𝑖,𝑗) is calculated in (4.1).  

 

𝐼(𝑖,𝑗) =  𝜇 + 
𝜎2− 𝑣2 

𝜎2
(𝐼(𝑖,𝑗) − 𝜇)                                                        (4.1) 
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where 𝜇 is the mean, 𝜎2 is the variance and 𝑣2 is the local variance of 

the sliding window of n by m pixels surrounding the pixel (𝑖, 𝑗). 𝑣2 is 

calculated as (4.2) 

 

𝑣2 =
1

𝑚𝑛
[
𝐼2 ∗ 𝑂𝑚𝑛

𝑚𝑛
− (

𝐼 ∗ 𝑂𝑚𝑛

𝑚𝑛
)2] 

(4.2) 

 

where O is a matrix of ones with the same dimension as the sliding window, 

i.e. n by m pixels and ∗ indicating a convolution operator.  

4.3 Cluster-based Wiener Filtering (CWF) 

 

 The CWF algorithm begins with a hierarchical agglomerative clustering 

on each image. This type of clustering is considered as a bottom up 

approach where each observation starts to create its own cluster, then pairs 

of clusters are merged sequentially to form one single cluster. In order to 

decide which cluster pairs should be combined, a measure of unlikeness 

between sets of observations is required [133]. The measure that is  used 

here is the Euclidean distance. The considered linkage criterion is a Ward's 

minimum variance method, where the objective function is the sum of 

squares’ error [134]. The pseudo code of our CWF is given in Algorithm. 

4.1.  

The features that is used in the clustering technique are the intensity OCT 

image and the map of attenuation coefficient. Attenuation coefficients are 

obtained by fitting a model to the OCT signal from a region of interest 

(ROI).  Due to the scattering and absorbing structures, light is attenuated 

when travels within a tissue [135]. Beer-Lambert law, which is governed 

by exponential decay, can help explain this attenuation using the single-

scattering model of the skin. Measuring attenuation coefficient from OCT 

images has been used in characterization of the tissue [125, 136-138], 

which can consequently provide information about structural changes in 

the tissue. Recently, Vermeer et.al [125] developed a simple method to 

estimate the attenuation coefficients locally where every pixel in the OCT 

data set is converted into a corresponding Optical Absorption Coefficient 

(OAC) pixel. This produces accurate results for both homogeneous and 

heterogeneous tissue and does not require pre-segmenting or pre-averaging 

of data. The attenuation coefficient analysis method was evaluated as a 

diagnostic tool. The single scatter equation is determined as: 𝐼(𝑥) =
𝐼0𝜌𝑒−2𝜇𝑧,  where I represent the value of the detected intensity, 𝐼0 is the 

https://en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares
https://en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares
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intensity of incident light, 𝜌 is the backreflection coefficient, 𝜇 is the 

attenuation coefficient, and 𝑧 is the depth that the light is travelling through 

the tissue. Therefore, 𝑧 is the depth of penetration and can be written as a 

function of pixel 𝑥 co-ordinate, i.e. 𝑧 ∝  𝑖.  Factor of 2 comes from the fact 

that light travels round-trip within the tissue. The common way to calculate 

an attenuation coefficient is by fitting an exponential curve to the above 

equation (4.3), upon which the decay constant can be extracted. The 

resulted values are then averaged, smoothened, and fitted into a polynomial 

equation. The slope of the equation thus yields an attenuation coefficient of 

the region.  

An explanation on the CWF algorithm is given in the following. 

Initialization: In this step, a variable set is defined that is required to 

perform the CWF filtering method on the OCT image. The OCT image is a 

2-dimentional matrix of size 𝑅×𝐶 that is given in terms of OCT signal 

intensity (𝐼). Here, the desired number of clusters is set to 𝐾 = 4. It should 

be mentioned that the hierarchical clustering method calculates all possible 

clustering results with different values of K. Here, the desired number of 

clusters is set to 𝐾 = 4 (phantom with 4 layers have been designed, and 

consequently K is set be equal to 4 for phantom images). Similarly, as the 

skin images have 4 main layers (stratum corneum, epidermis, dermis, and 

hypodermis), in skin images, it is considered that K to be equal to 4 as well, 

and the size of neighborhood window is set to 𝑁1×𝑁2 = 5×5.The size of 

neighborhood window is set to 𝑁1×𝑁2 = 5×5.  The size of window over 

which the algorithm estimates the local mean and variance is important, as 

the size needs to be at least 5×5 for a reasonable variance estimation, while 

it needs to be small enough to insure local signal stationarity following the 

analogy that is given in [40] and [139].  

Calculating optical properties: The attenuation coefficient (𝜇𝑎) of each 

pixel is calculate at the position  [𝑖, 𝑗] by using (4.3).  

Hierarchical Clustering: A feature vector including the intensity value (𝐼) 

and the corresponding attenuation coefficient (𝜇𝑎) of each pixel is assign at 

the position [𝑖, 𝑗] (4.4). Thereafter, the ‘Ward linkage hierarchical 

clustering’ technique is applied on the feature vector to generate a cluster 

set (4.5). The result of the clustering is a matrix 𝐶𝐿 of 𝑅×𝐶 size where each 

element at the position of [𝑖 , 𝑗] in the matrix 𝐶𝐿 indicates the cluster 

number that the corresponding pixel belongs to. The elements of the matrix 

𝐶𝐿 are discrete values in the range [1, 𝐾], where K is the maximum number 

of clusters [140].    
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Filtering: After grouping the pixels into different clusters, each cluster is 

filtered using appropriate adaptive Wiener filter.  
 

 

Algorithm 4.1:  Cluster-based Wiener Filter (CWF) 

Initialization 

𝐼[𝑖, 𝑗] intensity of a pixel at the row of i and the column of j in the 

OCT image 

𝜇𝑎 attenuation coefficient 

∆ pixel size 

𝑅 number of pixels in each row of the OCT image 

𝐶 number of pixels in each column of the OCT image 

𝑁 total number of pixels (𝑅×𝐶) 

𝐹 feature vector including {𝐼, 𝜇𝑎} 
𝐶𝐿 clustering matrix 

𝐾 desired number of clusters 

𝑁1×
𝑁2  

size of neighborhood window 

1. Calculating optical properties 

1.1. For each pixel at the position [𝑖, 𝑗], calculate [125]: 

 𝐼 [𝑖] ∝  𝑒−2𝜇𝑎𝑧 (4.3) 

2. Applying Hierarchical Clustering 

2.1. For each pixel at the position  [𝑖, 𝑗], assign the feature vector of 

𝐹[𝑖, 𝑗]: 
 𝐹[𝑖, 𝑗]  =  {𝐼[𝑖, 𝑗], 𝜇𝑎[𝑖, 𝑗]} (4.4) 

2.2. Apply Ward linkage hierarchical clustering on all pixels with 

feature set of 𝐹 

 𝐶𝐿 = 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙_𝐿𝑖𝑛𝑘𝑎𝑔𝑒 (′𝑊𝑎𝑟𝑑′, 𝐹, 𝐾) (4.5) 

2.3. Apply max neighborhood filter on the clustering matrix 𝐶𝐿 in a 

window size 𝜂 = 𝑁1×𝑁2 around each pixel 

 𝐶𝐿 = 𝑀𝑎𝑥_𝑓𝑖𝑙𝑡𝑒𝑟 (𝐶𝐿, 𝜂) (4.6) 

3. Applying Filtering 

3.1. For each pixel at the position  [𝑖, 𝑗] which belongs to the cluster 

#𝑘, calculate mean and variance in a window size 𝜂 = 𝑁1×𝑁2 

 𝑚𝑒𝑎𝑛𝑘[𝑖, 𝑗] =

 
1

#𝔭
∑ 𝐼 [𝑙, 𝑚]𝑙,𝑚  ∈ 𝜂 & 𝑝𝑖𝑥𝑒𝑙 [𝑙,𝑚]𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘  

(4.7) 

 𝑣𝑘
2[𝑖, 𝑗]  =

 
1

#𝔭
∑ (𝐼2 [𝑙, 𝑚] −𝑙,𝑚  ∈ 𝜂 & 𝑝𝑖𝑥𝑒𝑙 [𝑙,𝑚]𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘

𝑚𝑒𝑎𝑛𝑘
2[𝑖, 𝑗]) 

(4.8) 

Where 𝔭 is the normalization constant, which is equal to the number of 

pixels that belongs to the cluster #k in the window size 𝜂. 

3.2. For each cluster #𝑘, calculate the noise variance within the cluster 

 𝜎𝑘
2 =

1

#𝔮
∑ 𝑣𝑘

2[𝑙, 𝑚] 𝑝𝑖𝑥𝑒𝑙 [𝑙,𝑚]𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘  (4.9) 
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Where 𝔮 is the normalization constant, which is equal to the number of 

pixels that belongs to the cluster #k. 

3.3. For each pixel at the position  [𝑖, 𝑗] which belongs to the cluster 

#𝑘, update the intensity values 

 𝐼′[𝑖, 𝑗] =  𝑚𝑒𝑎𝑛𝑘[𝑖, 𝑗] +  
𝜎𝑘

2[𝑖,𝑗]− 𝑣𝑘
2

𝜎𝑘
2[𝑖,𝑗]

  (𝐼 [𝑖, 𝑗] −

𝑚𝑒𝑎𝑛𝑘[𝑖, 𝑗]) 

                    

(4.10) 
 

 

4.4  Optical phantom design  

 

In order to evaluate the proposed CWF method, a manually segmented 

multilayer phantom with different optical properties has been designed 

[141]. The phantom is a virtual tissue with predefined optical properties, 

e.g., attenuation coefficient, scattering coefficient, and anisotropy factor. 

The phantom’s different layers can be distinguished and labeled manually, 

in order to be utilized later in the evaluation of the clustering algorithm. To 

mimic the structure of skin, each phantom has multiple layers with different 

optical properties. To make the solid phantom, TiO2 (Titanium Dioxide) is 

dissolved in polyurethane (WC-781, BJB Enterprise Co., US) [142]. 

Different concentration of TiO2 is utilized to achieve various optical 

properties. TiO2 is dissolved into two components of polyurethane at the 

ratio of 100 to 85 according to the datasheet. The additives are added by 5 

min vortex, followed with a 15 min ultrasound bath at the room 

temperature.  Phantom is solidified overnight.         

The cubic phantom has the size of 2 cm × 2 cm × 1.5 mm. In order to design each 

layer with the same thickness, the first and fourth layer is set to be 0.375 mm, 

where the second layer is 0.75 mm. For the third layer, a drop of 10 µl of material 

is added. The phantom is casted from bottom to the top by adding 150 µl of 

material on the fourth layer, 10 µl of material on the third layer, 280 µl of material 

on the second layer, and finally 75 µl for the first layer left (1L) and first layer right 

(1R), respectively. The schematic illustration of the phantom and the top view of 

the phantom are given in figure (4.1a) and figure (4.1.b), respectively. 

The Mie scattering coefficient is used to determine the reduced scattering 

coefficient (𝜇𝑠
′ ) of the phantom layers [143]. 𝜇𝑠

′   is calculated based on the 

concentration of TiO2 sphere (CTiO2) in polyurethane, which is the sphere 

numbers per volume of polyurethane. In order to calculate the CTiO2, the 

volume of one sphere of TiO2 (V
S

TiO2), and the volume of TiO2 (VTiO2) are 

calculated in equations (4.11) and (4.12), respectively: 
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VS
TiO2 = 

4

3
 𝜋𝑟3 = 1.77 × 10 

µm3 -  
(4.11) 

VTiO2= 
𝑚

𝜌
 = 

𝑚

4.23
 cm3 (4.12) 

 

where r is the radius of one TiO2 sphere (diameter of TiO2 is 0.15 µm); m 

is the total mass of TiO2 in polyurethane;  is the density of TiO2, which is 

4.23 g/cm3. Hence, the number of TiO2 spheres (NTiO2) is obtained by 

equation (4.13) as: 

𝑁𝑇𝑖𝑂2  =  
𝑉𝑇𝑖𝑂2

𝑠  

𝑉𝑇𝑖𝑂2
 (4.13) 

 

Thus, the concentration of TiO2 (CTiO2), is as (4.14): 

𝐶𝑇𝑖𝑂2   =  
𝑁𝑇𝑖𝑂2 

𝑉
  (4.14) 

where V is the volume of polyurethane. Then CTiO2  is pluged into the online 

Mie scattering calculator [144], where the scattering coefficient is obtained, 

𝜇𝑠. Finally, the reduced scattering coefficient, 𝜇𝑠
′  , can be derived from 𝜇𝑠, 

by using (4.15): 

 

𝜇𝑠
′ = 𝜇𝑠 (1 − 𝑔) (4.15) 

 

where the value of g is given as 0.715 [145, 146]. Table 4.1 summarizes the 

reduced scattering coefficients of different layers of the phantom.  

 
Table 4.1 Reduced scattering coefficient (𝜇𝑠

′ ) of different layers of the phantom 

(w/v = weight/volume,  = 1300 nm) 

 
Phantom A 

 1L 1R 2 3 4 

TiO2% 

(w/v) 
0.65% 0.52% 0.26% 0.91% 0.65% 

𝜇𝑠
′  (cm-1) 1.36 1.08 0.55 1.90 1.36 

 

4.5 Results 
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In this section, the proposed CWF technique is evaluated. The organization 

of this section is as follows. First, the proposed clustering method is 

performed on the phantom to evaluate the clustering results. Then, the 

proposed filtering method is applied on in-vivo images of human skin, and 

assess the results qualitatively and quantitatively. 
 

4.5.1 Evaluation of clustering method on phantom images 

 

To evaluate the clustering method, the phantoms described in subsection 

4.5. have been imaged by using OCT system. To evaluate the performance 

of the clustering method, a phantom with pre-defined optical properties is 

used. 

 

 

Figure 4. 1 Evaluation of clustering on OCT images of phantom. (a) Schematic 

illustration of a multilayer phantom, the cross-section view, (b) top view where 

the location of B-scan illustrated with a 4 colors line, brown, green, blue and red, 

 

 

 

Fig. 2. Evaluation of clustering on OCT images of phantom. (a) Schematic illustration of a multilayer phantom, 

the cross-section view, (b) top view where the location of B-scan illustrated with a 4 colors line, brown, green, blue 

and red, which is corresponded to the 4 colors in the cross-section view, (c) OCT B-scan image of the right side of 

the phantom and manual segmentation, (d) the corresponding clustered image of the OCT image. 

Max
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Min
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5
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 µ
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which is corresponded to the 4 colors in the cross-section view, (c) OCT B-scan 

image of the right side of the phantom and manual segmentation, (d) the 

corresponding clustered image of the OCT image. 

 

 
 

Figure 4. 2 (a) OCT phantom image, (b) Wiener filtered phantom image, and (c) 

CWF filtered phantom image. The ROIs for calculating quality assessment 

measures are depicted by colored rectangles. Homogeneous regions are used for 

SNR 

The extracted values show the correctness of the clustering method to 

differentiate layers with similar properties. The method is extendible to 

complex tissues. The OCT images of the phantom present four 

distinguishable layers of phantom as it is given in Figure 4.1 (a, b).  
 

 
 

(a) (b) (c)

500 µm
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Figure 4. 3 Phantom clustering result using different combinations of features’ 

weights, where w1 and w2 represent the weights of attenuation and intensity 

features, respectively. 

 

The OCT images of the phantom includes four distinguishable designed 

layers is given in figure (4.1.a-b). The labels related to each different layers 

of phantom are illustrated in figure. (4.1.c).  

The evaluation of clustering algorithm depicting identical regions with 

OCT image is given in figure (4.1.d), the identical regions present by color 

coded map of corresponding clusters. i.e. the layer 1R corresponds to the 

yellow cluster, the layers 2, 3 and 4 correspond to the dark blue, light blue 

and green clusters. The extracted values show the correctness of the 

clustering method to differentiate layers with similar properties which is 

extendible to the scenario when there is complex tissues. The result of 

filtered phantom images using Wiener filter and CWF filter is given in 

figure (4.2.b) and (4.2.c), respectively. 

The clustering result have also been evaluated on the designed phantom 

using different set of weights. The results are illustrated in Figure 4.3, 

where w1 and w2 represent the weights of attenuation coefficient and 

intensity features, respectively. One can claim that when the optimum 

weights are used in the algorithm, the effect of shadowing due to slight 

impurities in the phantom is reduced dramatically. As it is illustrated, the 

desired result was obtained using {𝑤1 = 0.7, 𝑤2 = 0.3} for the attenuation 

coefficient and intensity features, respectively. 

However, it is worthy to consider that due to the inhomogeneity of the TiO2 

particles, clustering does not differentiate the layers perfectly. In addition, 

clustering categorizes the areas with similar speckle properties, rather than 

segmenting the regions from their borders.   

4.5.2 Application of CWF on skin images 

 

OCT images are acquired from 8 healthy volunteers, 25 to 35 years old 

male’s palm of hand and thumb.  
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Figure 4. 4 OCT image de-speckling. (a, e) Original OCT images, (b, f) Wiener 

filtered OCT images, (c, g) filtered OCT images using the proposed method, (d, 

h) comparison of A-lines #200 profile of the original image, Wiener and the 

proposed filtered images. Vertical yellow line corresponds to A-Line #200. 

 

The proposed de-speckling method was applied on 170 B-scans of 8 

individuals (1360 B-scans). The results obtained from CWF were compared 

with those of conventional Wiener filtering [147] both quantitatively and 

qualitatively (see Figure 4.4). In Figure 4.4,  the SNR, and CNR of de-

speckled images using Wiener filtering are improved by 10.4 dB, and 8.45, 

respectively. The improvement using the proposed method was however 

significantly better, which are 11.95 dB, and 10.38, respectively. The EPI 
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was preserved better, 1.5 times, with the proposed method compared to 

Wiener filtering.   

The quantitative results for 8 OCT skin images are listed in Figure 4.5. In 

comparison with conventional Wiener, the CWF is more effective in terms 

of CNR. The SNR of the filtered images by Wiener filter is slightly higher 

than those of the proposed method in some cases. The proposed filter has 

shown to preserve the edges better than conventional Wiener. The relations 

between the optical properties in the tissue and the performance of the 

proposed algorithm allow using the CWF algorithm more effectively.  

The reduced scattering coefficient (𝜇𝑠
′ ) of different layers of the phantom, 

and the corresponding SNR and CNR of the filtered phantom image are 

listed in Table 2. The CWF algorithm performs better in the layers with 

lower reduced scattering coefficient (𝜇𝑠
′ ). 

In comparison to Wavelet filtering, the CWF improvement of SNR, CNR, 

EPI, and SSIM are 2.4 (dB), 3.1, 1, and 0.08 respectively, for a given image  

 

 

 

Figure 4. 5 Comparison of SNR, CNR, EPI, and SSIM of the original with   

Wiener filtered, and the proposed de-speckled images. . Bars represent standard 

deviation. Means with different letters (i.e. A and B) are significantly different at 

p < 𝟎. 𝟎𝟓. 
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set; however, the results need more exploration since the parameters in the 

wavelet method need to be optimized. 
 

Table 4.2 Reduced scattering coefficient (𝜇𝑠
′ ) of different layers of the 

phantom, and the corresponding SNR and CNR of the CWF filtered phantom 

image 
Phantom  

 1R 2 3 4 

𝜇𝑠
′  (cm-1) 1.08 0.55 1.90 1.36 

SNR 

(dB) 
5.73   12.66   2.52 4.89 

CNR 1.73 4.98 0.51 0.79 

 

Theoretically, the CWF algorithm has a computational complexity of about 

 𝑂((𝑛×𝑚)×𝑙𝑜𝑔(𝑛×𝑚)), where n×m is the size of the input image. For 

instance, for an input image with the size of 500×500 pixels, when a dual 

core processor and 4 GB memory, CWF filtering takes 70 seconds to 

perform in comparison with Wiener that takes 4 seconds.  

4.6 Discussion  

 

Even if speckle is considered as a noise in the OCT images, it carries 

submicron structural information of the tissue. Speckle decreases the 

quality, blurs the image and conceals the diagnostically relevant features.  

In this chapter a cluster-based adaptive Wiener filter has been presented 

that can enhance the quality by considering the characteristics of the tissue 

in the OCT image, i.e., optical properties and intensity information. The 

results show improvements with respect to standard approaches.  

CWF makes a significant enhancement on the OCT images. Further 

statistical features of OCT images could be added to the feature vector to 

enhance the performance. Other optical properties such as the scattering 

coefficient, anisotropy factor and the geometrical properties can also be 

added. Worth to note that the proposed algorithm can be utilized as a 

framework for boosting any other adaptive filtering method as well. Here, 

the kernel filter of the proposed cluster-based algorithm is Wiener filter. By 

replacing the kernel (i.e. Wiener) with another adaptive filtering method, 

one can enhance the mentioned filter by adapting it to each individual 

cluster.  
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4.7 Conclusion 

 

In this chapter a cluster-based speckle reduction algorithm is proposed to 

remove the speckle. The method successfully evaluated on the OCT images 

of tissue mimicking phantoms as well as the human skin in-vivo.  As a 

future work, one can plan to replace the Wiener filter with other digital 

filtering methods in order to further improve the efficiency of the de-

speckling method, e.g., total variation based noise reduction filter. 
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Chapter 5 

Deconvelution methods for debluring of 
OCT imgaes 

 

5.1 Introduction 

  

An OCT setup cannot reach its theoretical resolution due to imperfections 

of its components, which blur the images. This blurring is different 

alongside regions of image; thus, they cannot be modeled by a unique point 

spread function (PSF).  

OCT has favorable attributes for revealing microstructures within a tissue, 

offering 2-15𝜇m resolution axially and laterally and providing a penetration 

depth of several millimeters, depending on tissue opacity and instrument’s 

used technology [148, 149]. Despite the fine resolution of OCT systems, 

there exists still the need to enhance the quality of images through 

improving the axial and lateral resolution. In previous efforts, researchers 

have implemented both hardware [150] and software solutions to enhance 

the resolution. Notwithstanding the fact that hardware solutions enable 

gathering high resolution images with desirable depth, they involve 

expensive and complicated optical assemblies. On the other hand, software 

approaches offer inexpensive mode of image resolution restoration by post-

processing OCT images [151]. 

The deconvolution algorithm, initially introduced by Schmitt and Liang 

[152], is an effective software method for improving contrast and resolution 

of OCT images. Liu et al. [153]  used space invariant point spread function 

(PSF) to implement a procedure based on two successive 1D deconvolution 

(laterally and axially) and a procedure based on a 2D deconvolution.. In 

another approach, Wooliams et al. [154] carried out PSF measurement of 

OCT setup by designing special phantoms and performed space variant 

deconvolution of many sub-images from their corresponding PSFs.  

Previously an algorithm is developed by utilizing Lucy-Richardson 

deconvolution algorithm with PSFs exploited and modeled from their 

corresponding unprocessed ones [155].  

Despite all the improvements presented in these papers, deficiencies in 

modeling and enhancing different degradation in various regions of image 

are still present. In this chapter, a new spatially variant deconvolution 



  

 

 

70 

method is proposed for OCT images based on Total Variation (TV). It is 

shown that this method can effectively reduce blurring of OCT images as 

well as mitigating the speckle noise.   

5.2 Formalization of an iterative deblurring method 
based on Total Variation  

 

Recalling interferometric based imaging, the OCT interference signal is 

given by (5.1).  

 

𝐼(𝜏) = 2 𝑅𝑒{𝑓(𝜏) ⊗Γ(𝜏)                                                                   (5.1) 

where 𝜏 denotes the time, 𝑓(𝜏) is the impulse response function of the 

sample and Γ(𝜏) is the coherence function of the light source, that is the 

inverse Fourier transformation of the power spectral density (PSD) [6]. For 

a light source with a distribution of Gaussian shape, Gaussian beam 

equation for planar phase-fronts can be written as (5.2) [156].  

 

𝐺(𝑥, 𝑦, 𝑧) =
𝑤0

𝑤(𝑧)
exp (−

𝑥2+𝑦2

𝑤2(𝑧)
) exp(−𝑗(𝑘0 +

𝜔−𝜔0

𝑣𝑔
)𝑧)                        (5.2) 

 

where 𝑣𝑔 is the group velocity, 𝜔0 is the frequency of the light, 𝑘0 is center 

wavenumber, 𝑤0 is the waist radius, and 𝑥, 𝑦 are the transverse coordinates, 

and 𝑧 is the axial coordinate where at the boundary of the confocal region. 

Solving the first order Born approximation (using Green function) and 

doing some math, the OCT signal can be reconstructed. The OCT 

corresponding coherence function, longitudinal PSF of the OCT, can be 

formulated as (5.3): 

  

Γ(𝜏) = 𝑒𝑥𝑝 (−
𝜋Δ𝜆𝜏𝑐

2√𝑙𝑛2𝜆0
2 

)2 𝑒𝑥𝑝 (−𝑖
2𝜋𝜏𝑐

𝜆0
)                                              (5.3) 

where c is the speed of light in free space and 𝜆0 and Δ𝜆 are the central 

wavelength and the spectral width of the light source, respectively.  

On the other hand, the transverse PSF of the OCT system is given by 

equation (5.4).  

 

                                                                                           (5.4)     
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The PSF of an OCT system can approximated by imaging very small 

particles embedded in a very transparent solid phantom, with a diameter 

much smaller than the coherence length of the OCT system. The known 

Lucy-Richardson deconvolution algorithm is an iterative non-linear 

procedure based on calculating the maximum-likelihood solution, for 

recovering an undistorted image that has been blurred by a known PSF. The 

algorithm resolves the image via an iterative process that has been 

successfully used for OCT deblurring [61, 66, 157].  

In practice, without loss of generality, with discrete arrays of pixels as 

images, the degradation process can be considered as the linear inverse 

problem as in (5.5)  

 𝑔 = 𝐻𝑓 + 𝑛 (5.5) 

Where 𝑔 and 𝑓 denote vectors of a true object and its observed image, H is 

the observation matrix corresponding to PSF, and n is a vector of zero mean 

sample of white Gaussian noise vector with covariance 𝜎2𝐼, where I is the 

identity matrix.   

Generally, the determination of f is an ill-conditioned problem. With some 

a-priori information about the original image distribution a regularization 

method can solve the problem.  

In this study a Total Variation (TV) regularize is used to handle the ill-

posed nature of 𝑓 given in (5.6).    

 

 𝑓 = argmin
𝑓

𝐿(𝑓) (5.6) 

Where 𝐿(𝑓) is given by (5.7).  

 𝐿(𝑓) =  ‖𝑔 − 𝐻𝑓‖2 +  𝜆 𝑇𝑉(𝑓) 
(5.7) 

 

A discrete version of TV regularization constraint is defined by (5.8) 

 

𝑇𝑉(𝑓) =  √∑ (∆𝑖
ℎ𝑓)

2
+ (∆𝑖

𝑣𝑓)2
𝑚∈𝜓𝑖

                                                            (5.8) 

 

Where ∆𝑖
ℎ and ∆𝑖

𝑣 are linear operator that calculate local varation (horizontal 

and vertical gradients) of 𝑓 at pixel i, and 𝜓𝑖 = {(𝑥𝑖 + 1, 𝑦𝑖), (𝑥𝑖 𝑦𝑖 +
1), (𝑥𝑖 − 1, 𝑦𝑖), (𝑥𝑖, 𝑦𝑖 − 1)} is a local neighborhood around 𝑋𝑖 = (𝑥𝑖, 𝑦𝑖. 
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An iterative scheme for minimizing the resulting cost function can be 

applied. In particular, for minimizing the objective function, a 

Majorization-Minimization (MM) approach [158] is used that replaces the  

difficult optimization problem with a sequence of simpler ones. By deriving 

a quadratic function for 𝐿 and finding a majorizer for it, our optimization 

problem can be replaced with the following updated equation (5.9) and 

(5.10).   

 

 𝑓(𝑡+1) = (𝐻𝑇𝐻 + 𝐷𝑇𝑊(𝑡)𝐷)−1𝐻𝑇𝑔 (5.9) 

 

where 𝑊(𝑡)  ≡ 𝑑𝑖𝑎𝑔(𝑤(𝑡), 𝑤(𝑡) )in (8).  

 

 𝑤(𝑡) = 

[
 
 
 𝜆

2⁄

√(∆𝑖
ℎ𝑓(𝑡))2 + (∆𝑖

𝑣𝑓(𝑡))2

 , 𝑖 = 1,2, …

]
 
 
 

 

(5.10) 

 

Since obtaining 𝑓(𝑡+1) via equation (8) is computationally expensive, this 

problem is handled by replacing the minimization part with conjugate 

gradient (CG) iteration [159]. The psudo code of algorithm is given in 

algorithm 5.1. 

 

Algorithm 5.1 Psudo code of propsed deblurring algorithm 

Initialization: 𝑥0 = 𝑦′ 

For t=0 to StopRule do 

𝑊(𝑡) = diag(𝑤(𝑡), 𝑤(𝑡))  

𝑥(𝑡+1) = 𝑥(𝑡) 

While ‖𝐴(𝑡)𝑥(𝑡+1) − 𝑦′‖ ≥ 𝜀‖𝑦′‖ 𝑑𝑜 

𝑥(𝑡+1) = Next iteratin 

End While 

End For 

 

5.3  Phantom construction for PSF extraction  

 

To make the solid phantom for PSF estimation, TiO2 is dissolved in 

castable polyurethane (WC-781, BJB Entprise Co., US). The final 
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concentration of TiO2 is 20,000 particles /𝜇L. The mixture was then placed 

into an ultrasound bath to produce a homogeneous phantom. Details of Mie 

scattering parameter calculation are analogues to what is given in Chapter 

3. At such concentration, the OCT image will have approximately 1 particle 

in the area of 30 by 30 pixels. Thus, the image acquired from each particle 

represents the PSF of the OCT system at the specific location. By averaging 

nearby reliable spots images from several layers, besides getting benefit 

from removing noise and possible distortions, one ables to organize a PSF-

map which shows variations of PSF at different locations. Figure 5.1 shows 

an example of how to extract a 4×4 PSF-map. 

 

 
 

Figure 5. 1 raw images of phantoms and selection of reliable spots for 

construction of PSF-map 

After constructing a PSF-map, the performance of two different 

deconvolution methods named Lucy-Richardson, and TV-based approach 

are evaluated in sharpening and enhancing the quality of OCT images. In 

order to use Lucy-Richardson algorithm with spatially-variant PSF, first the 

sum of intensities of PSFs are normalized for each region of PSF-map for 

the sake of avoiding blocking effect. Then the algorithm is utilized for each 

sub-region and aggregated the sub-images to assemble the full deconvolved 

image.  
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5.4 Results and discussion 

 

In Figure 5.2 (a) the true synthetic test image (b) its blurred image with 

represented PSF-map, and results of (c) Lucy Ricardson and (d) proposed 

TV based deconvolution methods for enhancement has been depicted.  

 

 

Figure 5. 2 (a) Test image (b) its blurred the with represented PSF-map, and  (c) 

results of Lucy Ricardson (d) propsed TV based deconvolution methods 

 

Figure 5.3  illustrates the performance of these two methods on OCT optical 

phantom image. In Figure 5.4. the results ( (c) Lucy-Richardson method 

with 3 iteration (d) TV-based method with 1 iteration on OCT original 

image from back of a 24 year old male (a) is given. 

In table 5.1, three computed parameters for assessment of deconvolved 

images is given. These parameters including SNR, CNR and ENL will 

justify the quality improvement of deconvolved images so far. 
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Figure 5. 3 (a) OCT phantom image (b)) results of Lucy Ricardson method (c) 

propsed TV based deconvolution method each with 5 iterations 
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Figure 5. 4 (a) Synthetic PSF-map (a) OCT original image from back of a 24 

year old male , (c) Lucy-Richardson method with 3 iteration (d) TV-based 

method with 1 iteration 

 

Table 5.1 calculated parameters for original image and three deconvolution 

methods 

Method\parameter SNR CNR ENL 

Original image 18.55 0.98 174.2 

Lucy-Richardson 20.78 1.254 226.79 

TV based 21.82 2.07 717.4 

 

The suggested TV-based method has this advantages that the spatially-

variant blurring in H matrix  can be modeled even with one-pixel resolution 

and it could mitigate noise unlike other deconvolution methods. However 

in terms of elapes time, Lucy Ricardson algorithm is more efficient. 

According to spatially-variant nature of PSF for OCT systems, the PSF-

map with imaging proper phantoms is elicited.  TV based approach yielded 

the best results qualitatively and quantitatively due to its supremacy in 

modeling PSF and its intrinsic smoothing property. Using one pixel 

resolution PSF instead of our sub-region-invariant PSF used in this work, 
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one can model the space-variance of PSF better, resulting in improvement 

of this outcome.  

 

5.5 Conclusion  

 

In this chapter, the use of solid phantoms to estimate the PSF of each sub-

region of imaging system is investigated. Then Lucy-Richardson and total 

variation (TV) based iterative deconvolution methods are utilized for 

mitigating occurred spatially variant blur. It’s shown that the TV based 

method is suppressed the so-called speckle noise of OCT images in addition 

to outperforming the two other approaches. The performance of proposed 

algorithm is tested on various samples, including several skin tissues 

besides the phantom itself, demonstrating qualitatively and quantitatively 

the advantage of TV based deconvolution method using spatially-variant 

PSF for enhancing image quality. In future works, one can improve the 

mathematical relations for TV approach in order to improve noise 

configuration model. 
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Chapter 6 

Localization of Dermal Epidermal 
Junction in OCT images of skin 

 

6.1 Introduction  

 

The Dermal epidermal junction (DEJ) is the border between the dermis and 

epidermis, and thus is an important landmark dividing two areas of the skin 

that have different function and morphology. Knowledge of its location 

plays an important role in evaluating many dermatological diseases [86, 

87], for example basal cell carcinoma (BCC), which is located in the 

deepest layer of the epidermis and invades the dermis [88-90]. Moreover, 

DEJ plays an important role in the intracellular pool of bullous pemphigoid 

antigen, the interactions between fibronectin and keratinocytes and the 

epidermolysis bullosa acquisita antigen areas  [91]. On the other hand, 

knowledge of DEJ is important in determining whether a sub-surface lesion 

is BCC. To localize DEJ, the OCT image of skin is segmented. Here, a 

novel approach is proposed that uses attenuation map as a complementary 

feature compared to the previous methods that are mostly based on intensity 

information. The method is based on converting a border segmentation 

problem to a shortest path problem using graph theory. To smooth borders, 

a fuzzy algorithm is introduced, enabling a closer match to manual 

segmentation.  

6.2 Methodology  

 

The proposed algorithm, illustrated in Figure 6.1, is carried out by detecting 

skin surface and papillary-reticular dermis junction (PRJ). Three border 

boundaries are determined in this framework, and, for each of the 

boundaries, the same series of operation is considered.  Figure 6.2 outlines 

the operations.  According to Beer-Lambert law, the total attenuation of a 

signal in the OCT image is under the influence of absorption and scattering 

of light traveling within the skin [160, 161] . In the OCT imaging the effect 

of attenuation on intensity is linear (due to the logarithmic function used in 

the OCT image reconstruction algorithm) [162]. Therefore, a linear 
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function, f (x) = cx + d, can be fitted to each A-line to represent the 

attenuation 

 

 
 

Figure 6. 1 DEJ localization algorithm 

 

 
 

Figure 6. 2 Border boundary detection algorithm 

 

by the gradient c. A linear least square curve fitting algorithm is used to 

extract an average c for each A-line [163]. the image is represented as an 

undirected graph G (V, E) where each pixel is mapped into nodes (V), and 

links (E) that show the connections of the nodes so-called edges. Our goal 

is to transform an image into a graph in order to convert a segmentation 

problem to a find-the-shortest-path problem.  After creation of the graphical 

representation of the attenuation map, a set of weights is computed for each 

link (E). The key to accurately finding the shortest path in a graph is to 

assign appropriate weights to the edges. The weights on links are used to 

represent the intensity difference of the graph nodes in the OCT image 

[164]. The weight, w, of edge (m, n) is defined as (6.1).  

𝑤(𝑚.𝑛) = (1 − 𝑎𝑚) + (1 − 𝑎𝑛) + 𝑤𝑚𝑖𝑛                                                    (6.1) 

 

where am and an are coefficients of absorption in node m, and n, 

respectively, normalized between 0 and 1, and wmin=10 -5. Once appropriate 

weights are assigned to each link, the shortest path is calculated through 

Algorithm. 1. In an interactive framework, the user chooses two pixels on 

the OCT image as the starting point and end point. The user allowed to 

select some other points as arbitrary points in the short path problem. 

Recalling from the previous section, the proposed segmentation problem is 

based on identifying the shortest path from the graphical representation of 

our image. In the shortest path problem, the length of a path defines the 
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sum of weights along the path. Therefore, the algorithm searches a path that 

passes through links with smallest weights. In this study, the Dijkstra 

algorithm is used to solve the shortest path problem. Dijkstra algorithm 

keeps two sets of vertices: S which is a set of vertices whose shortest paths 

from the start node (s) have already been determined, and Q=V-S is the 

remaining vertices. The algorithm chooses the vertex n ∈ Q with the 

shortest path estimate, adds n to S and eliminates it from Q. This process is 

repeated until the end point (e) belongs to S. At the end, S returns to the 

shortest path [98],19]. 

 

  Algorithm.1  Pseudocode of finding the shortest path  

 

Require Graph G = (V, E), start point s and end point e 

Initialization:  

S = s and Q = V 

cost [V] = Infinity, cost [s] = 0 

While e ∉ S do 

for each vertex n Є Q adjacent to m Є S do 

cost [n] = minimum (cost[n], cost[m]+w (m, n)) 

End For 

Select the vertex n with the minimum cost [n] 

S = S U n 

Q = V - S 

End while 

Return the shortest path of S 

 

In order to closely match the manual DEJ detection with the results of the 

proposed method, obtained borders were smoothed using a fuzzy system.  

In the design of a fuzzy system, (figure 6.3, parameters such as fuzzifier, 

rule base, inference engine, and defuzzifier should be determined. A 

singleton fuzzifier, weighted average defuzzifier and memdani fuzzy 

inference system is used. In our designed fuzzy system, the rules base is the 

coordinates of the detected border obtained from the implementation of 

Dijkstra algorithm. In each fuzzy rule, premise (if) is the column index in 

the image and the consequence (then) of rule is the estimated border 

location in each column. Thus, the number of fuzzy rules are equal to the 

number of image columns (image width (w)). I determined the following 

rules: 
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Rule1: if x = 1 then f(x) = border index (1) 

Rule2: if x = 2 then f(x) = border index (2) 

. 

. 

. 

Rule w: if x = w then f(x) = border index (w). 

 

 
Figure 6. 3 Schematic of fuzzy system for border smoothing. 

 

border index (i) is border in ith column, w is image width and determines 

the number of rules in rule base. Finally, one can reach (6.2) and use it to 

smooth the resulting border.  

𝑓(x) =

∑ yiexp (−(
x−xi

δ
)
2
)

w

i=1

∑ exp (−(
x−xi

δ
)
2
)

w

i=1

                                                                   (6.2)  

where yi  is the calculated depth, corresponding to the index of ith column,  

δ is the standard deviation of selected border pixels and f(x) is the smoothed 

border index in xth column. Figure 6.4 shows the result of the obtained DEJ 

by solving the shortest path problem and the effect of fuzzy system on DEJ 

border. The images are taken from the inner arm of a 25-year female 

individual. 
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Figure 6. 4 Results of border smoothing using the proposed fuzzy system on 

inner arm. (a) DEJ before smoothing; (b) DEJ after smoothing. 

 

In the DEJ localization algorithm, initially skin layers are detected.  A 

proposed skin layer detection algorithm based on determining the lowest 

weighted path of a graph between arbitrary endpoints is used. The 

algorithm begins by calculating an attenuation map (Figure 6.5 (b)). 

Afterwards, the start, end and arbitrary points on the skin surface are 

selected by the user for each border, meaning that the user identifies points 

on the skin surface, PRJ and DEJ borders and then Dijkstra algorithm for 

skin surface detection is applied. Figure 6.5 (c) illustrates an example of 

skin surface detection. After the skin surface detection, the image would be 

flattened following equation (6.3): 

 

𝐼𝑓 (𝑥; 𝑦) = 𝐼(𝑥; 𝑦) − 𝑠𝑓(𝑥)                                                                              (6.3) 

  

 where, I (x ; y) is the original image and sf(x) is the skin surface. Once the 

skin surface is detected and the image is segmented, the PRJ can be 

detected. The result is shown in Figure 6.5 (d). PRJ is a junction that is 

located between papillary and the reticular dermis. To estimate PRJ, the 

proposed skin surface detection method, illustrated in Fig.3, is performed. 

Figure 6.5 (e) illustrates the attenuation map of the image shown in Figure 

6.5 (d). Afterwards, a continuous line from light-to-dark region is obtained 

(Figure 6.5 (f)) based on the start and end points as well as the auxiliary 

points. The shortest distance problem is solved with the Dijkstra algorithm. 

Finally, the smoothing is done with a fuzzy system. Using sf(x) as the upper 
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border and prj(x) as the lower border, the bounded region between these 

borders is obtained by (6.4): 

 

𝐼𝑏  (𝑥; 𝑦) = 𝑝𝑟𝑗(𝑥) − 𝑠𝑓(𝑥)                                                                               (6.4)              

  

where prj(x) is the coordinate of the column of the papillary-reticular 

dermis junction. Using the PRJ information, the DEJ is detected on the 

flattened image (Ib) and depicted on F Figure 6.5 (g). The method described 

above is used three times to detect the skin surface, PRJ and DEJ. Figure 

6.5 (i) illustrates the final results. In this result, DEJ overlaid on the original 

image is shown. The aim of the flattening procedure was to remove the 

region above the air-skin interface in PRJ estimation stage and also to 

remove the region underneath the 

 

 

Figure 6. 5 Results of the proposed DEJ detection algorithm on inner arm OCT 

images. (a) Original OCT image; (b) attenuation map of the original image; (c) 

skin surface detected image; (d) flattened original image; (e) attenuation map of 

the image in (d); (f) PRJ overlaid on the flattened image; (g) area bounded by 

skin surface and PRJ; (h) attenuation map; (i) DEJ overlaid on the original 

image. 

PRJ boarder in DEJ detection procedure. In this way, the shortest path 

problem becomes easier to solve and becomes more efficient since the 
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search region has been shrunk.  In other words, when the skin surface is 

detected, we declare all nodes which belong to the abovementioned regions 

as invalid search regions while searching for the PRJ boarder. 

6.3 Results and discussion  

 

The DEJ algorithm has been applied on 115, B-Scan OCT skin images 

taken from different sites of body, including Inner arm, outer arm, 

periarticular, palm, neck, thumb, back, and outer leg of healthy individuals. 

Figure. 6.6 shows the results of the DEJ detection algorithm on some of the 

OCT images in comparison with the results of manual DEJ detection 

performed by experts. The experts were from dermatology from the 

dermatology Department of Dermatology at Wayne State University as 

well as from Oakwood hospital in Dearborn, MI.  

The epidermal thickness (ET) is also calculated for the images mentioned 

above. The average distance between the DEJ and the upper skin surface 

boundary is considered the epidermal thickness. The averaged values as 

well as standard deviation (SD) of ET are reported in Table 1, and 

compared with the values given by experts. 

The root-mean-square error (RMSE) is also calculated for the OCT images. 

RMSE is obtained by equation (6.5): 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑆1[𝑖]−𝑆2[𝑖])2𝑛

𝑖=1

𝑛
                                                                                (6.5) 

 

Where S1 and S2 are epidermal thickness obtained by expert and the 

proposed method, respectively and n is the number of OCT images. Small 

values of RMSE show the similarity between the epidermal thickness 

results obtained by experts and the proposed method for different sites of 

body. The Pearson correlation coefficient r, between the results produced 

by the algorithm and those given by the experts, is computed as 0.99, which 

indicates the high accuracy of the proposed method.  

 

Table 6.1 ET calculated by the proposed algorithm and obtained from 

expert’s opinion 

 

Sites of 

body 

Number 

of OCT 

images 

Mean 

thickness 

by expert 

Mean 

thickness by 

algorithm 

RMSE 

(ϻm) 
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(ϻm) mean 

± SD 

(ϻm) mean 

± SD 

Prearicular 20 148 ± 6 141 ± 14 11 

Inner arm 15 146 ± 5 139 ± 9 9 

Outer arm 15 150 ± 7 158 ± 10 8 

Neck 15 171 ± 8 177 ± 7 11 

Back 5 142 ± 9 150 ± 12 10 

palm 15 310 ± 8 314 ± 6 9 

Thumb 15 733 ± 20 725 ± 20 14 

Outer leg 15 151 ± 8 156 ± 7 8 

 

Figure 6.9 shows Pearson correlation plot between the proposed method for 

ET measurement and manual DEJ detection results [97, 99]12,14]. To 

compare the proposed method and the manual segmentation results, the 

Bland-Altman [165] is plotted. The results show that all of the differences 

lie between -14 and +15.0.  
 

 

 

Figure 6. 6 Application of the proposed DEJ detection method on OCT images 

of (a) Prearicular; (b) outer arm; (c) inner arm; (d) back; (e) outer leg; and (f) 

neck. (g) Palm, the red color is DEJ obtained from the proposed DEJ algorithm. 

The blue color is DEJ drawn by an expert. 

microns (See figure 6.10). This is logical compared to the resolution of our 

OCT that is 10 microns.  In further analysis, we found out this error is 

desired for determination of epidermal thickness in evaluating BCC disease 
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when it is compared with the mean BCC tumor thickness (0.65 mm ± 0.29 

mm) measured in [166]. Considering the fact that our system of imaging 

and resolution of images is similar to mentioned work. More careful 

selection of end points and arbitrary points can help to have a more accurate 

DEJ results.  

It also reduces the search time for the algorithm for the best DEJ found. If 

the OCT images have shadowing artifacts or experience low contrast [48, 

66, 167], the algorithm will require more number of arbitrary points. 

 

 

Figure 6. 7 Correlation between the proposed method and expert’s opinion for 

ET measurement. 

 

Figure 6. 8 Bland- Altman plot. 
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6.4 Conclusion  

 

In this chapter, a novel approach for DEJ detection is proposed based on 

the graph theory.  To the best of our knowledge, this algorithm is the only 

DEJ detection algorithm that performs with more than 99% success rate. 

The proposed algorithm is useful to assist diagnosis of skin diseases related 

to epidermal thickness change, e.g., BCC. The results of the algorithm are 

evaluated on different sites of body and compared them with those obtained 

from manual measurements. The results were closely matched. Our 

algorithm could be used on OCT images obtained from other OCT imaging 

systems, e.g., time domain OCT (TD-OCT) or high definition OCT (HD-

OCT). The proposed algorithm might give an even more accurate result 

than the manual segmentation of the experts’ manual detection, as it is 

automatic and doesn’t have any subjectivisms. The algorithm can be used 

as add-on software to any OCT machine’s operating system to give 

dermatologists more information about the skin. 
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Chapter 7 

Universal in-vivo textural model for 
Human skin 

 

7.1 Introduction  

 

According to specific functional needs, skin architecture varies across 

different parts of body, and so does the textural and morphological 

characteristics in the OCT images. There is, therefore, a critical need to 

systematically analyze OCT images of different sites and identify their 

significant qualitative and quantitative differences. In this chapter, the aim 

is to create a comprehensive model of human skin in-vivo using OCT 

images and to use such a model to detect /diagnose common skin disorders. 

To this end, Optical, textural, and statistical properties extracted from OCT 

skin images are analyzed and used to create a perceptual and computational 

model of the normal skin at different anatomic sites. Moreover, using 

pattern recognition methods, skin tissues is characterized. It is 

demonstrated that such a dynamic model in conjunction with decision-

theoretic approaches can assist in the diagnosis of different microstructural 

cutaneous abnormalities, and hence aid in the determination of treatment. 

 

7.2 Materials and Methods 

 

The study is designed to be completed in two phases. In the first phase, 

textural and optical features extracted from the OCT image of human skin 

at different sites of body in-vivo are used to make a dynamic computational 

model of the healthy skin. The model is verified by correlating skin 

microstructures identified in OCT images by expert dermatologists with 

features obtained from the images. In the second phase, the model is used 

to diagnose /monitor dermatological conditions. The features in the model 

are modified and weighted appropriately according to the characteristics of 

a particular skin condition (see figure 7.1).   
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OCT images of healthy skin is taken from ten volunteers, aged between 25 

to 56 years old, none of whom had any skin conditions. For each subject, 

sites including the nose, preauricular, volar forearm, neck, palm, back, 

thumb, dorsal forearm, sole, calf is imaged and analyzed for the first phase 

of study. The diseased images are taken from 11 patients whose disease 

was confirmed by histopathology. All imaging procedures is carried out 

according to the guidelines of the US National Institutes of Health, and 

institutional review board (IRB) approval committee of the Wayne State 

University. Histology images for the skin conditions are collected in the 

Wayne State University Physician Group Dermatology Clinic, Dearborn, 

MI. 

7.2.1 Data Analysis  

 

Healthy human skin OCT images are initially segmented into two skin main 

layers’ epidermis and dermis using the semi-automatic segmentation 

elaborated in chapter 6. Following the algorithm given in figure7.1, optical, 

statistical and textural features are extracted from the OCT images. To 

suppress the speckle noise [40], the speckle reduction method in chapter 4 

is used. The feature vectors are constructed extracting following features. 

Optical: 25 A-scans in each ROI are averaged. The global attenuation of 

the sample was evaluated using the slope of the fitted curve. Levenberg 

Marquardt algorithm is used for curve-fitting. Statistical texture (First 

order statistical): Statistics including mean, variance, standard deviation, 

skewness, median, entropy and kurtosis as First Order Statistics (FOS) are 

calculated for each ROI. FOS refers to location, spread, symmetry, and 

peakedness of a histogram. Entropy (randomness) and median are also 

extracted. Textural features (second order): Second order statistics, i.e., 

Grey Level Co-occurrence Matrix (GLCM) [122, 168]  is based on the 

probability function of inter-pixel correlations at a certain distance in the 

image. The second order texture offers information about image spatial 

distribution of pixel values in a given angular direction. Homogeneity, 

contrast, energy, entropy and correlation are second order statistics. 

Textural features (Higher order): Higher order statistical features, i.e., grey 

level run length matrix (GLRLM) [122, 168], is based on gray level run of 

various lengths, where a gray level run is the number of gray levels in a 

consecutive and collinear pixel points having the same gray value. 
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Figure 7. 1 Schematic diagram of the proposed method, a-j are; a: Neck, b: 

Preariculiar, c: Tip of Nose, d: Back, e: volar forearm f: dorsal forearm, g: Palm 

of hand, h: calf, i: Thumb, j: sole 

 

A feature vector is constructed comprised of FOS textures (variance, mean, 

skewness, kurtosis, entropy), Haralick GLCM textures (homogeneity, 

entropy, energy, contrast and correlation), and GLRLM features in four 

angular directions, i.e., 0°, 45°, 90° and 135°. The mean of the obtained 

features for dermis and epidermis and their corresponding 95% confidence 

intervals (CI) across different skin sites are estimated. The differences in 

image features between sites are compared using T-test. The Minitab 

Statistical Software (version 17.0, Minitab Inc., Pennsylvania, USA) is 

used for statistical analyses. 

7.2.3 Classification 

 

Prior to the classification, features are normalized, then feature selection 

algorithm is performed to obtain the most discriminative features. Principal 
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component analysis (PCA) as our feature selection method. The PCA finds 

a linear map from the data in a high dimensional space to a desired low 

dimensional space trying to preserve the data variance. A modified PCA 

following the work in [169], performed to obtain the principal components. 

Then features which provided the greatest contribution to the first four 

principal components are kept. After feature selection was performed, the 

images are determined to fill the learning database are classified using 

machine learning classifiers, i.e., SVM [170] with two different kernels 

such of Linear and 2nd degree polynomial kernel, Logistic Regression (LR), 

K-Nearest Neighbor classifiers, Linear Discriminant Analysis (LDA) and 

Artificial Neural Networks (ANN). Although the main SVM is designed to 

solve linear classification tasks, by using some kernel tricks it is used for 

nonlinear classification tasks and it is very well suited for binary (two class) 

problems [171]. In LR classification, the probability that a binary target is 

true is modeled as a logistic function of a linear combination of 

features[172]. For K-Nearest Neighbor (KNN) [173], the rule classifies 

each unlabeled sample by the majority label among its K-nearest neighbors 

in the training set. LDA, searches for a linear combination of variables that 

best separates binary targets[173]. An ANN [174] classifier consists of 

many neurons, i.e., highly interconnected processing components, that 

work constructively and coherently to solve specific problems.    

Classifiers are validated using 10 × 10-fold cross-validation method. In 10-

fold cross-validation, the data is randomly split into 10 equal folds. The 

classification procedure is implemented in an iterative manner. For each 

run nine folds are used for training and one fold is used for testing. The 

process is repeated ten times and the final accuracy is the average of all the 

fold accuracies. The approaches described in this study have been 

implemented in Matlab® 2016, and the experiments are carried out on a 

standard computer workstation (3.10 GHz Intel Core i7, 32 GB RAM). I 

used developed custom routines and Matlab’s built-in functions.  

7.2.4 Other imaging modalities  

 

The other imaging modalities used in this study, in addition to the SS-OCT, 

are as follows: an HD OCT, a clinical ultrasound, a high frequency (HF) 

ultrasound (48MHz), and an ultra-high frequency (UHF) ultrasound (70 

MHz). The HD-OCT is a time domain high definition (HD) Skintell OCT 

(AGFA HealthCare Inc., Mortsel, Belgium). The field of view of this OCT 

system is 1.8 mm (length) by 1.5 mm (width) by 1 mm (depth). The axial 
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and lateral resolutions of this machine are ~ 3μm. The clinical (Low 

frequency) Ultrasound machine has 92 elements linear array (S9 

Sonoscope, UMS Solutions, Sonoscope.Inc., USA) with the central 

frequency of 15 MHz. The High and Ultra-High frequency Ultrasound 

probes are Vevo MD (FUJIFILM VisualSonics, Inc., Canada). The probes 

are linear array with 128 elements and a central frequency of 48 MHz and 

70 MHz, respectively. 

7.3  Results  
  

7.3.1 Healthy skin in OCT images 

 

The basic structure of the skin includes the epidermis, dermis, and 

subcutaneous fat. The epidermis is four to five layers of stratified epithelia 

with no blood vessels, the most superficial being the stratum corneum. The 

epidermis connects to the dermis by a layer known as the dermo-epidermal 

junction (DEJ). Cutaneous appendages, including nerves, glands, and hair 

follicles, reside in the dermis. Skin adapts its color, thickness, and texture 

in different parts of the body according to specific functional needs. Based 

on the thickness of epidermal layers, human skin can be divided into two 

main types, thick skin and thin skin [175, 176]. Another skin type, 

mucocutaneous skin, is where mucosa transitions to stratified squamous 

epithelium, e.g., lips. In this study, I have looked at nose, pre-auricular, 

neck, upper extremities and lower extremities, palms, soles and back as 

representative of the variety of skin architectures and epidermal thicknesses 

across the body [177]. The most notable features of palm, thumb and sole, 

i.e., thick skin, are their thick stratum corneum, presence of a stratum 

lucidum, an abundance of eccrine sweat glands, and lack of hair follicles, 

sebaceous glands and apocrine glands. In OCT images of thick skin, the 

stratum corneum is the first visualized layer of the epidermis, appearing as 

a homogenous layer of cells with scattered eccrine sweat ducts [178] 

(Figure 1.7 (e), (g) and (i)). The eccrine sweat ducts of thick skin have a 

recognizable spiral lumen when observed with high intensity of reflected 

light, a result of the large refractive index mismatch between sweat and the 

keratinocytes of the epidermis [179]. The stratum lucidum, a clear thin 

layer of dead cells visualized only in the thick skin, is just beneath the 

stratum corneum [180]. The prominent morphological features of nose, 

preauricular, volar forearm, neck, back, dorsal forearm, and calf , i.e., thin 

skin, are: thinner epidermis, no stratum lucidium, hair and sebaceous 

https://en.wikipedia.org/wiki/Mucosal
https://en.wikipedia.org/wiki/Skin
https://en.wikipedia.org/wiki/Skin
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glands. The stratum corneum of thick skin is about 300 µm, in contrast to 

an average of 14 µm in thin skin, where it is too thin to be visualized in 

detail by OCT  [13, 181]. The epidermis of thin skin sites fluctuates 70 µm 

to 120 µm where the full thickness of the epidermis plus the dermis varies 

between 1000 µm to 2000 µm. The OCT B-scan images of nose, 

preauricular, volar forearm, neck, palm, back, thumb, dorsal forearm, sole, 

calf shown in figure 1.7, are taken from volunteers aged between 25 and 59 

years old, none of whom had any skin conditions. The images are acquired 

from the same area of ten healthy individuals. A specialized holder is used 

for the OCT probe for this purpose.  

 

 

 

Figure 7. 2 OCT images of different sites of body (a) nose, (b) preauricular, (c) 

volar forearm, (d) neck, (e) palm, (f) back, (g) thumb, (h) dorsal forearm, (i) 

sole, (j) calf (e). SC: Stratum Corneum, SL: Stratum Lucidum, ESD: Eccrine 

Sweat Ducts, RE: Remainder of Epidermis (stratum granulosum, stratum 

spinosum, stratum basale), RD: Reticular Dermis, DEJ: Dermal-epidermal 

junction showing pronounced dermal papillae, PD: Papillary Dermis, D: Dermis, 

TH 
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EP: Epidermis, SG: Sebaceous Glands, BV: Blood Vessels, TK: thick skin, and 

TN: thin skin. 

 

7.3.2 Diseased skin in OCT images 

 

The cellular characteristics of the diseased skin, hence the corresponding 

features in the OCT image, are altered compared to those of healthy skin. 

The diseased images in this study are taken from 11 patients whose disease 

was confirmed by histopathology. All imaging procedures are carried out 

according to the guidelines of the US National Institutes of Health, and 

institutional review board (IRB) approval committee of the Wayne State 

University.  

Several skin diseases have been studied in the literature using OCT 

including nonmelanoma skin cancer, melanoma and benign pigmented 

tumors. I studied epithelial skin tumors, i.e., BCC, SCC for this study. The 

features of BCC in OCT have been well described. The main change is the 

disruption of the normal layering of the epidermal and dermal layers. The 

tumor lobules are represented by hyporeflective rounded structures 

surrounded by a halo of hyper-reflection [182, 183]. Typically, the tumor 

is accompanied by dilated blood vessels [184-188]. In the superficial 

subtype of BCC, tumor nests extend from the epidermis, while tumors in 

nodular BCC may be completely in the dermis. In both the OCT and 

histology images of BCC, the central portion of the epidermis is ulcerated 

and covered with a crust (green arrow). On either side of the ulceration, 

there are tumor nodules (red arrows) and nodulocystic tumor masses (black 

arrow). On the histology images, there are artefactual fractures within the 

tumor masses. In squamous cell carcinoma (SCC), the infiltration of tumor 

cells into the dermis leads to a loss of the dark line representing the dermo-

epidermal junction. In figure 7.3, and 7.4 the OCT image and its 

corresponding histology image for an BCC and SCC sample are shown. 

Respectively. Keratinous pearls within SCC are shown with yellow arrows 

in both OCT and corresponding histology image. In the histology image of 

SCC sample, the green arrow labels a keratinous pearl lost during tissue 

processing. There is a proliferation of keratinocytes in the epidermis 

pushing into the dermis (red arrow). Keratinocytes in the epidermis show 

atypia (purple arrow) with large nuclei.  
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Figure 7. 3 (a1-a2) Image of OCT B-scan and (b1-b2) its corresponding 

histological image of a BCC sample of a 62 year old female 

 

 

Figure 7. 4 Image of OCT B-scan (a) and its corresponding histological image 

(b) of an SCC sample of a 51 years old female. of an SCC sample of a 51 years 

old female 

7.3.3. Healthy skin analysis  

 

17000 OCT healthy skin images taken from 100 body sites are used for 

computational modelling. Optical, statistical, and textural features are 

extracted from both layers of epidermis and dermis. The value of these 

features varies between skin of different sites due to the composition and 

arrangement of cells and organelles. A T-test and a PCA method is used to 
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measure the inter-correlation of such features. Regarding Optical features, 

attenuation coefficient is determined based on the OCT intensity decay. 

Attenuation coefficient has been computed for the skin of different sites 

using the single scattering algorithm [189].  

In Figure 7.5(a) and figure 7.5(b), the attenuation coefficients of dermis and 

epidermis, respectively are calculated for pre-auricular, thumb, neck, outer 

arm, outer leg, nose, palm of hand, back, inner arm, and sole of ten healthy 

individuals whose age are between 25 to 56. The attenuation coefficient is 

significantly different between the group of sole, palm and thumb 

compared to the other sites of body (p-value < 0.05) in both dermis and 

epidermis.  

 

Figure 7. 5 Signal attenuation rate calculated for (a) epidermis, and (b) dermis, 

of ten body sites; Calculated p values (p-value < 0.05 considered as significant 

difference) for OCT signal attenuation of (aa) epidermis and (bb) dermis. The 

letters from a-j demonstrate the following; a: Neck, b: Prearicular, c: Tip of 

Nose, d: Back, e: volar forearm, f: Dorsal forearm, g: Palm of hand, h: Calf, i: 

Thumb pad, j: Sole 

Moreover, it is observed that the palm and thumb are closely correlated in 

terms of attenuation coefficient and some of textural features, i.e., 

homogeneity. A considerable variance is also observed between 

preauricular and other sites observed for both dermis and epidermis.  For 

the dermal layer, differences are detected between the sole and nose as well 
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as between the sole and arm. Figure 7.4 (aa) and (bb) respectively show the 

map of p-values for epidermis and dermis of different body sites. 

 First order statistical features (FOS) extracted from OCT images are mean, 

standard deviation, variance, skewness, kurtosis, median and entropy. A 

moderate difference between the FOS features extracted from epidermis 

and dermis layers is observed in all skin sites.  

 

 

Figure 7. 6 First order statistical analysis, standard deviation, results and 

comparison for both epidermis and dermis Standard deviation for epidermis (a1), 

and for dermis (a2), of ten body sites; Calculated p values (p-value < 0.05 

considered as significant difference), for the standard deviation of epidermis 

(aa1), and dermis (aa2).  The letters from a-j demonstrate the following; a: Neck, 

b: Prearicular, c: Tip of Nose, d: Back, e: volar forearm, f: Dorsal forearm, g: 

Palm of hand, h: Calf, i: Thumb pad, j: Sole 
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Figure 7. 7 First order statistical analysis, entropy, results and comparison of 

entropy for epidermis (b1), and dermis (b2), at ten body sites. Calculated P 

values (P-values < 0.05 considered as significant difference), for the standard 

deviation of epidermis (bb1), and dermis (bb2).  The letters from a-j demonstrate 

the following; a: Neck, b: Prearicular, c: Tip of Nose, d: Back, e: volar forearm, 

f: Dorsal forearm, g: Palm of hand, h: Calf, i: Thumb pad, j: Sole 

 

Figure 7.5 (a1) and 7.6 (b1) show the graphical chart of standard deviation 

and entropy values calculated for epidermis. The variation of FOS values 

for dermis is given in Figure 7.5 (a2) and 7.6 (b2). Maps of difference 

between each pair of skin sites, p-values, are given in figures 7.5 (aa1) and 

(aa2) , figure 7.6 (bb1), and (bb2) . The results show that FOS features have 

the same trend as the signal decay but also provides a more significant 

differentiation for both epidermis and dermis. It was also noted that nose 

and prearicular skins have very similar texture in epidermis layer. Textural 

features, i.e., contrast, energy, correlation, homogeneity and entropy in four 

directions, GLCM textures, are computed in all skin sites. The GLCM 

values of contrast and only entropy at 45 degree for epidermis are illustrated 

in figure 7.7 (c1) and figure 7.8 (d1), respectively, and that for dermis 

shown in figure 7.7 (c2) and figure 7.8 (d2). The p-values computed for the 

features are given in figure 7.8 (cc1) and figure 7.9 (dd1) for epidermis and 

7.7 (cc1) and figure 7.8 (dd1) for dermis respectively. Our findings showed 

that there is a significant difference (p < 0.05) between the textural features 
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of different body sites taken from thick and thin skins in majority of cases, 

not in all cases, e.g., GLCM correlation (0 degree). The p-values computed 

for GRLM features in both epidermis and dermis, have a moderate 

difference between different sites.  

 

 

Figure 7. 8 GLCM texture analysis results and comparison of Contrast for 

epidermis (c1), and dermis (c2), at ten body sites of; Calculated P values (P-

values < 0.05 considered as significant difference), for the standard deviation of 

epidermis (cc1), and dermis (cc2). The letters from a-j demonstrate the 

following; a: Neck, b: Prearicular, c: Tip of Nose, d: Back, e: volar forearm, f: 

Dorsal forearm, g: Palm of hand, h: Calf, i: Thumb pad, j: Sole 
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Figure 7. 9 GLCM texture analysis, entropy at 45o, results and comparison. 

Entropy at 45o for epidermis (d1), and dermis (d2), of ten body sites; Calculated 

P values (P-values < 0.05 considered as significant difference), for the standard 

deviation of epidermis (dd1), and dermis (dd2). The letters from a-j demonstrate 

the following; a: Neck, b: Prearicular, c: Tip of Nose, d: Back, e: volar forearm, 

f: Dorsal forearm, g: Palm of hand, h: Calf, i: Thumb pad, j: Sole 

7.3.4 Diseased skin; classification results 

 

Several machine learning classifiers including SVM with two different 

kernels: Linear and 2nd polynomial (Quadratic), Logistic Regression, K-

Nearest Neighbor classifiers, Linear discriminant analysis (LDA) and 

Artificial Neural Network (ANN) are tested for solving the classification 

problem using 10-fold cross validation. Quadratic SVM yielded the 

optimum result with an accuracy rate of 80.5±0.5% for BCC classification 

and 87.2% for SCC classifications. Linear SVM in some cases also 

provided satisfying results, e.g., 80.9% for BCC classification. Figure 7.10 

(a) depicts the dependency between each two pair of features in the 63-

feature pool. A noticeable correlation is observed among the features from 

the same category, i.e., statistical, GLCM, and GRLM. In Figure 7.10 (c), 

the receiver operating characteristic (ROC) curve for several subsets of 

features with Quadratic SVM as classifier are shown. The most consistent 

results are obtained when entropy from FOS, entropy and correlation 0 

degree, correlation and Homogeneity at 135 degree from GLCM and one 
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optical feature are used. These features are almost orthogonal. Figure 5d 

shows the cross-validation classification error percentage of five selected 

classifiers when different subsets of features are used. The results show that 

the lowest error is obtained when quadrature SVM with the six features is 

used. The results pertaining to differentiating BCC from healthy skin as 

well as SCC from healthy skin and BCC from SCC are shown in figure 

7.10 and 7.11, respectively.  
 

 

Figure 7. 10 Classification results. (a) Correlation map of 63 features used for 

differentiating healthy versus BCC samples, (b) correlation map of the six 

selected features, (c) ROC curve for different subsets of features with quadratic 

SVM classifier, (d) cross-validation classification error of different classifiers 

when different subsets of features were use 

For BCC vs healthy, figure 7.10 (a) depicts the correlation between the 63 

features. Brighter colors show more correlation. A noticeable correlation is 

observed among the features from the same category. Figure 7.10 (b) 

illustrates the reduction of the correlation among the six selected features. 

As it can be seen, there is less or no correlation between the features finally 

selected for the classification task. Figure 7.10 (c) shows the ROC curve 
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for different subset of features with quadratic SVM as classifier. Figure 

7.10 (d) shows the cross-validation classification error percentage of 

different classifiers using different subsets of features. The results show 

that the least error is obtained using quadrature SVM with the 6 selected 

features. Figure 7.11 shows all of those parameters for SCC samples vs 

healthy.  

 

 
Figure 7. 11 Classification results. (a) Correlation map of 63 features used for 

differentiating healthy versus SCC samples, (b) correlation map of the six 

selected features, (c) ROC curve for different subset of features with quadratic 

SVM classifier, (d) cross-validation classification error of different classifiers 

when different subsets of features were used. 

 

Correlation exists between the features finally selected for the final 

classification task. Figure 7.10 (c1) shows the ROC curve for different 

subset of features with Quadratic SVM as classifier. As it can be inferred 

the best result is obtained using the 6 best features. Figure 7.10 (d1) shows 

the cross-validation classification error percentage of different classifiers 
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using different subsets of features. The results show that the least error is 

obtained using Quadrature SVM with 6 selected features.  

7.3.3 Imaging with other modalities  

 

The principle of “the longer wave length offers deeper penetration, but 

always correlates with a lower resolution” is almost always true [30]. OCT 

has emerged as a modality that fills the gap between some other established 

imaging techniques in dermatology, i.e., dermoscopy, ultrasound, and 

confocal laser scanning microscopy. Dermoscopy offers an image of the 

skin surface with a large magnification, where diagnosis is based on 

specific patterns, depending on colors, differential structures, and 

asymmetry of the lesion [190] and it is widely used for the differentiation 

of melanocytic tumors in the clinic. High-frequency ultrasoundis mainly 

used for the estimation of tumor thickness in melanoma to plan one-step 

excisions with guideline conform safety margins and helps to decide 

whether sentinel node excision should be performed at the same time [191] 

Its penetration depth lies around 8 mm for the 20 MHz with a lower 

resolution than OCT. The confocal laser scanning microscopy offers the 

highest resolution comparable with histopathology (almost 1 μm), but at 

the expense of a limited penetration depth of only about 250 μm, allowing 

the evaluation of structures within the epidermis and down to the papillary 

dermis in great detail [180]. Currently high frequency ultrasound is widely 

used (most published work) in cutaneous imaging. Theoretically, some of 

high frequency ultrasound systems have a resolution close to that of OCT 

or even better. However, a more distinct structure in OCT images is 

observed. i the skin of the same body sites are imaged with other imaging 

modalities, i.e., different types of OCT and ultrasound imaging systems. 

These images are shown in figures 7.10 to 7. 13, and their histology images 

given in Supplementary figure 7.14. The speckle size in OCT and 

ultrasound images of a fabricated tissue-mimicking phantom are compared 

and listed in Table 7.1 for comparison. The modalities used are as follows: 

SSOCT, clinical ultrasound, high frequency (HF) ultrasound (48MHz), 

ultra-high frequency (UHF) ultrasound (70 MHz) and HD OCT. The 

phantom is composed of TiO2 and polyurethane. Average speckle size is 

estimated by using the full width at half maximum (FWHM) of the auto-

covariance function of the speckle pattern [192]. In Table 1, I also 

compared the resolution, filed of view and penetration depth of these 

imaging modalities. Comparing the results given in Table 1, OCT surpasses 
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other modalities in terms of speckle size. SS-OCT is the most favorable due 

to its moderate penetration depth, resolution, field of view, and speckle 

size.   

 

 

Figure 7. 12 HD OCT images of different sites of body including (a) Tip of nose, 

(b) preauricular, (c) volar forearm, (d) neck, (e) palm, (f) back, (g) thumb, (h) 

dorsal forearm, (i) sole, (j) calf 

 

 

Figure 7. 13 Images obtained from a 15 MHz clinical ultrasound machine from 

different sites of body including (a) Tip of nose, (b) preauricular, (c) volar 

forearm, (d) neck, (e) palm, (f) back, (g) thumb, (h) dorsal forearm, (i) sole, (j) 

calf 
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Figure 7. 14 Images obtained from a high frequency (VevoMD, 48 MHz) 

clinical ultrasound machine from different sites of body including (a) Tip of 

nose, (b) preauricular, (c) volar forearm, (d) neck, (e) palm, (f) back, (g) thumb, 

(h) dorsal forearm, (i) sole, (j) calf 

 

 

Figure 7. 15 Images obtained from a high frequency (VevoMD, 70 MHz) 

clinical ultrasound machine from different sites of body including (a) Tip of 

nose, (b) preauricular, (c) volar forearm, (d) neck, (e) palm, (f) back, (g) thumb, 

(h) dorsal forearm, (i) sole, (j) calf 
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Figure 7. 16 Healthy histology images of different sites of skin, (a) inner arm (b) 

palm of hand, (c) thumb pad (d) outer arm (e) neck (f) pre-auricular, (g) leg (h) 

Sole (i) Back (j) nose 

 

 

Table 7.1 Specification of the imaging modalities used in this paper. 

 

Imaging 

modality 
Model 

Axial 

resolution 

Lateral 

resolution 
Image size 

Averaged 

speckle 

size for a 

phantom 

SS-OCT 
Vivosight 

 
7.5μm 10μm 

6 mm × 2 

mm 
22 μm 

HD OCT Agfa skintell 3μm 3μm 
1.8 mm × 

1.5 mm 
15μm 

Clinical 

US 
Sonoscape S9 0.1 mm 0.2mm --- 400 μm 

US_UHL 

48UHF 

Vevo MD 

BW: 20-46 

MHz 

50 µm 110 µm 
15.4 mm ×  

23.5 mm 
225 μm 

US_UHR 

70UHF 

Vevo MD 

BW: 29-71 

MHz 

30 µm 65 µm 
9.7 mm ×  

10.0 mm 
114 μm 
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7.4 Discussion 

 

OCT is an effective technology capable of diagnosing skin conditions 

including inflammatory diseases and non-melanoma skin cancer. This pilot 

study presents the incorporation of clinical and detailed quantitative 

assessment of OCT images to first generate a comprehensive 

morphological and computational atlas of normal human skin in-vivo. The 

reference system of in-vivo healthy human skin OCT images can then be 

used to assess a wide variety of skin disorders with the aim of potentially 

improving diagnosis and treatment. A generated a small-scale OCT atlas of 

human skin from sites which covers most variations of skin tissues 

throughout the body. Healthy skin from a variety of body sites and from 

different individuals are imaged. Nose, prearicular, neck, upper and lower 

extremities, palms, soles and back cover the variety of epidermal 

thicknesses across the body, according to the dermatology literature. 

Acquired OCT B-scan images are despeckled in a software developed in 

Matlab for better visualization. Speckle is generated whenever coherent 

radiation is scattered from a surface or subject, whose roughness or size is 

comparable to the wavelength of the radiation. The mechanism of speckle 

is due to the heterogeneity of cell structures. Interference between the 

scattered wavefronts generates random speckle patterns. Many factors 

affect speckle, including the optical properties of the tissue, and the size 

and temporal coherence of the light source [11]. Features including 

attenuation coefficients, textural, and statistical features are extracted from 

ten evenly distributed ROIs on the skin sites both in the epidermis and 

dermis. The average values and their corresponding 95% Confidence 

Interval (CI) across different skin sites are calculated. The findings of this 

study show that the derived parameters are measurably different for both 

the dermis and epidermis in healthy skin of different sites. These features 

are then used for the classification between healthy and abnormal skins 

such as BCC and SCC.  

The epidermis and dermis vary in different anatomic areas. The epidermis 

is a thin layer consisting of epithelial cells with no vasculature. The dermis 

is thicker (a combination of reticular and papillary layers) and behaves as a 

turbid optical medium. Papillary dermis is comprised of blood vessels, 

nerve fibers, thin collagen and elastic fibers and other cells. The reticular 

dermis has thicker collagen fibers and elastic fibers. The epidermis of thin 

skin sites varies between 0.07 mm to 0.12 mm while the full thickness of 

dermis varies between 1 to 4 mm. The optical differences between 
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epidermis and sublayers of dermis due to the difference in cell structure and 

size allow differentiation of these layers in the OCT image. From the 

optical perspective, back- and forward- scattering and absorption are used 

to explain the information provided by OCT images [9]. Optical properties 

and hence the corresponding features in OCT images vary based on sizes, 

shapes, concentration and orientations of tissue microstructure, e.g., cell 

membranes and blood vessel walls act as reflectors and refractors. Melanin, 

which is predominately located in the basal cell layer of the epidermis, and 

hemoglobin located within capillaries and larger vessels are the main 

sources of absorption in skin. In texture analysis, the GLCM matrix 

attribute ‘contrast’ (spatial frequency), is a measure for texture analysis, 

showing the difference between the highest and lowest intensity values of 

a set of pixels. This parameter is significantly different between the values 

calculated from palm/sole and nose. The GLCM matrix attribute ‘energy’ 

is a measure of uniformity of pixel pair recurrences and identifies disorders 

in textures. High-energy values occur when gray level distribution has a 

constant or periodic form. Significant variations of energy are measured in 

sole samples as compared to all other sites for both the epidermis and 

dermis. In the case of the GLCM matrix attribute ‘entropy’, an identifier of 

disorder or complexity of an image, it is large when the image is not 

texturally uniform. Sole, palm and thumb showed a significant difference 

in entropy when compared to that in other sites in both epidermis and 

dermis. The GLCM matrix attribute ‘inverse difference moment’ or 

‘homogeneity’, in spite of having dissimilarity did not offer a significant 

distinction among different sites. With the OCT intensity-based 

information I extracted from B-scans, a classification technique is 

successfully developed that can differentiate between healthy and 

microstructural dermal abnormalities. Among the classifiers that examined, 

QSVM offers the best accuracy to differentiate between normal and 

abnormal tissue samples. This objectively determined information allows 

clinicians to diagnose, develop treatment plans, and determine individual 

prognoses more accurately.  

 

7.5 Conclusion 

 

To sum up, the optical, textural, and statistical properties are extracted from 

OCT skin images for dynamic modeling to create a perceptual atlas of the 

normal skin at different anatomic sites. I observed that skin cellular 
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architecture varies across the body, and so do the textural and 

morphological characteristics in the OCT images. There is, therefore, a 

critical need to systematically analyze OCT images of different sites and 

identify their significant qualitative and quantitative differences. Future 

directions for research could include continued analysis of the qualitative 

and quantitative differences on OCT images from even more sites. It is 

demonstrated that the dynamic model in conjunction with decision-

theoretic approaches can assist in diagnosis of different microstructural 

dermal abnormalities, i.e., BCC vs. healthy, SCC vs. healthy, BCC vs. 

SCC, and hence aid in the determination of treatment. The result of this 

study can be extended as an interactive machine learning kernel interface 

addable to OCT devices. All of the described parameters can be used to 

create a more comprehensive analysis, with the aim of providing a more 

complete, objective, framework to categorize tissue properties for clinical 

use.  
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Chapter 8 

Diagnostic applications of electromagnetic 
Scattering 

 

8.1 Electromagnetic Wire-grid modelling of objects as 
a computational effective means  
 

8.1.1 Introduction  

 

This work focuses on the electromagnetic wire-grid modelling of 

cylindrical objects in a host medium. In this view, the sought targets often 

are long and thin: in these cases, two-dimensional methods can be 

employed to model the scenario and solve the electromagnetic scattering 

problem. ire-grid modelling of conducting objects was introduced by 

Richmond in 1966 [193] and, since then, the method has been extensively 

used over the years to simulate arbitrarily-shaped objects and compute 

radiation patterns of antennas, as well as the electromagnetic field scattered 

by targets. For any wire- grid model, a better accuracy can be achieved with 

a larger number of wires; moreover, a fundamental question is the choice 

of the optimum wire radius and grid spacing. The most widely used 

criterion to fix the wire size is the so-called equal-area rule (EAR) [194]: 

the total surface area of the wires has to be equal to the surface area of the 

object being modelled. This rule comes from empirical observation and few 

authors have investigated its reliability for 2D objects through the years. 

Ludwig [194] studied the reliability of the rule by examining the canonical 

radiation problem of a transverse magnetic field by a circular cylinder in a 

vacuum, fed with a uniform surface current and compared with a wire-grid 

model; he concluded that the EAR is optimum and that too thin wires are 

just as bad as too thick ones. Paknys [195] investigated the accuracy of the 

rule for the modelling of a circular cylinder in a vacuum with a uniform 

current on it, continuing the study initiated in [194] or illuminated by a 

transverse magnetic monochromatic plane wave; he confirmed that the 

EAR is optimum and observed that the field inside the cylinder is most 

sensitive to the wire radius than the field outside the object. In [196], a 

circular cylinder was considered, embedded in a dielectric half-space and 

illuminated by a transverse magnetic monochromatic plane wave; the 
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scattered near field was calculated by using the Cylindrical-Wave 

Approach (CWA) [197] and numerical results, obtained for different wire- 

grid models in the spectral domain, are compared with the exact solution; 

it was shown that more accurate results can be obtained with a wire radius 

shorter than what is suggested by the rule. More recently, both the acoustic 

and electromagnetic scattering problems by a periodic configuration of N 

wires distributed on a ring, modelling a circular cage, are studied [198]; it 

was demonstrated that, as N goes to ∞, the solution of the limiting problem 

is approached very slowly, as N−1 log N.  

Details concerning the implementation of the models and their simulation 

are provided in next sections, whereas numerical results are presented in 

Section 3. In particular, the reliability of the EAR is checked and guidelines 

for wire-grid sizing are extracted: this works analysis is in agreement with 

[196] despite a different scattering method is used here, a more realistic 

illumination is considered, and different shapes of the modelled object are 

simulated. This works also deals with the wire-grid modelling of objects 

partially embedded in a multilayered medium or structure; this is not an 

easy task, whereas being of great interest. 

8.1.2 Finite Difference Time Domain Modelling of cylindrical 
objects  

 

Several methods can be employed, to solve electromagnetic forward-

scattering problems. One of the most versatile approaches is the well-

known FDTD technique [199], based on a spatial and temporal 

discretization of Maxwell’s curl equations in differential form, commonly 

within a rectilinear Cartesian grid as originally proposed by Yee [200] in 

1966. YEE cell algorithm based FDTD numerical method employs the 

following parameters and procedures to perform the simulation:  

 

Algorithm 8.1 FDTD 
• General parameters of the simulation;  

X-Y matrices based on the grid points of the computational 

domain Δ𝑥 ≥λ/10 

➢ Courant criteria for minimum time-step 

➢ Scaling factor ; Courant number 𝑆𝑐 = cΔ𝑡/Δ𝑥 

➢ Dielectric property of the media 

• Definition of the YEE-Grid based on E and H are shifted in space by 

half of the Δx 

• Interpolation of the electrical properties profile onto the Yee grid 
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• Boundary conditions initialization (PML) 

• Numerical partial derivate of E and H and updating loop  

𝐸𝑥

𝑛+
1

2(𝑘) = 𝐸𝑥
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1

2
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2
))  (8.1)                                    
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(𝐸𝑥

𝑛+1/2(𝑘) −

𝐸𝑥
𝑛+1/2(𝑘 + 1))                                                                         (8.2)  

• Source Excitation 

• Visualization of the calculated field values after choosing time step  

 

In the simulations, the physical structure of the transmitter and receiver is 

not included in the model: the source is represented through a line of 

current, as a consequence of the assumption of the invariance of the 

problem in one direction, and the electric field impinging on the receiver is 

calculated. A first derivative of Gaussian pulse is emitted by the source, 

with 1 GHz center frequency. All the involved media are assumed to be 

linear and isotropic, possibly lossy, and their constitutive parameters do not 

vary with frequency; metallic objects are assumed to be perfectly-

conducting. In order to keep the errors associated with numerical-induced 

dispersion at a minimum, the spatial discretization step is always at least 

ten times smaller than the smallest wavelength of the propagating 

electromagnetic fields; the highest frequency to be taken into account in the 

simulations is estimated as three times the center frequency of the pulse. 

To limit the effects of staircase approximation of continuous objects, 

circular cylinders are modeled by discretizing their radius through at least 

twenty cells. Another crucial point in the FDTD approach is the 

approximation to be made in order to limit the computational space: to 

guarantee reliable results, I adopt Perfectly-Matched Layer boundaries as 

Absorbing Boundary Conditions, which are very effectively implemented 

in here; ten layers is used and put source and targets at least fifteen cells 

away from the most internal layer.  

8.1.3 Accurate wire-grid modelling of objects in a host medium 

 

A perfectly-conducting circular cylinder is considered, embedded in a 

dielectric half-space representing a soil, as sketched in figure 8.1(a). The 

source is positioned at the air-medium interface and the emitted electric 

field is parallel to the target axis. The relative permittivity of the medium 

is r = 4. The radius of the cylinder is R = 50 mm, its axis is in x = 250 mm, 
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y = 100 mm. A wire-grid model of the object is shown in figure 8.1(b): it 

consists of N = 16 circular-section cylinders with radius r, arranged in a 

uniformly-spaced circular array. The best position for the wires is with axes 

lying on the surface of the cylinder to be modeled [196]; with a larger N, 

the behavior of the array gets closer to that of the modelled object [197] 

Our aim is to investigate the validity of the EAR. In our case, the rule 

imposes the condition r = R/N = 3.125 mm has to be satisfied. The good 

reliability of this criterion is apparent by the results shown in Figs. 1(c)-

1(f). In particular, in Figures 8.1(c) and 8.1(d), the B-scans obtained for the 

circular cylinder and its wire-grid model are presented, respectively. In 

Figs. 8.1(e) and 8.1(f), electric-field maps calculated in t = 2.2 ns are 

shown, for the circular cylinder and its wire-grid model (being t = 0 the 

time instant in which the source starts to emit the pulse). Here and in the 

following, according to a nomenclature widely accepted by the GPR 

community, the term ‘A-scan’ refers to an array of electric-field values 

calculated in a fixed spatial point and in T consecutive instants; the term 

‘B-scan’ corresponds to a matrix of electric-field values, calculated in T 

time instants and M different spatial points, meaning M A-scans (this is 

equivalent to assuming that a radar ‘stops’ in M positions, for example 

along a line parallel to the air-soil interface, gathering data in each of them; 

the B-scan is the comprehensive set of radar traces). The B-scans presented 

in figs. 8.1(c) and 8.1(d) are obtained by shifting the source in M = 80 

positions equally-spaced along the air-soil interface; the electric field is 

calculated on the interface at a distance d = 50 mm from the source. Small 

differences can be appreciated, between the results relevant to the circular-

section cylinder and its wire-grid model: mainly, the array of wires causes 

the presence of a higher number of minor reflections. The electric-field 

maps in Figs. 8. 1(e) and 8.1(f) are calculated by putting the source is in x 

= 240 mm, y = 250 mm. They reveal that the internal field is much more 

sensitive to the modelling configuration than the external one, in good 

agreement with [6]. In fact, the field inside the array of wires is not 

vanishing in figure 8.1(f); this suggests that more wires should be 

employed, when shielding effects are concerned. 

Despite the well-known rule of thumb yields good results, it can be verified 

that is far from being the optimum. In figure 8.2(a), results are shown for 

the same configuration as in Figure.8. 1(b), for various lengths of the wire 

radius, equal to, shorter, and longer than R / N. In particular, the absolute 

error on A-scans is plotted, defined as the magnitude of the difference 

between the exact A-scan (calculated in the presence of the circular 
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cylinder) and the A-scan obtained for the wire-grid model. The source is in 

x = 240 mm, y = 250 mm and the field is computed in x = 250 mm, y = 250 

mm. With a wire radius, longer than the value suggested by the EAR, worse 

results are obtained.  

 

 

Figure 8. 1 (a-b) Geometry of the problem; (c-d) B-Scans and (e-f) electric-field 

maps for the circular section cylinder and its wire-grid model. 

The lowest error is achieved when r = 0.9R / N. A refinement of this 

analysis is presented in figure 8.2(b): it can be noted that a shortening of 

about 12%, with respect to the well-known rule of thumb, gives the best 

results (the error is reduced of about one order of magnitude).  

In figure 8. 3, the same as in figure 8.2 is reported, when N = 32. The error 

is slightly lower than when N = 16, as expected. The highest accuracy is 

achieved by shortening the radius of about 13%. Changing the radius of the 

(a) (b)

(c) (d)

(e) (f)
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modelled object and keeping fixed the size of the wires, or varying the 

object burial depth, analogous results are obtained.  

Moreover, I now investigate whether similar results are obtained for a 

buried object with a different shape. To this aim, I consider a perfectly-

conducting square-section cylinder, embedded in a dielectric half-space, as 

sketched in figure 8.4(a). The relative permittivity of the soil is again r = 

4. The side-length of the square is L = 100 mm, the axis is in x = 250 mm, 

y = 100 mm. A wire-grid model of the object is shown in figure 8.4(b): it 

consists of an array of N = 16 circular-section cylinders, with a spacing 

equal to 0.25L. To respect the EAR, the condition r = 2L / Nπ  3.979 mm 

has to be satisfied. 

 

   

Figure 8. 2 (a) Absolute error on A-scans, with N = 16 and for various lengths of  

the wire radius; (b) refinement of the analysis presented in (a). 

 

(a)

(b)
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Figure 8. 3 (a) Absolute error on A-scans, with N = 32 and for various lengths of 

the wire radius; (b) refinement of the analysis presented in (a). 

 

In figures. 8.4(c) and 8.4(d), B-scans obtained for the square-section 

cylinder and its wire-grid model are presented, respectively. In Figs. 8.4(e) 

and (f), electric-field maps calculated in t = 2.2 ns are shown, for both the 

circular cylinder and its wire-grid model, when the source is in x = 240 mm, 

y = 250 mm. These results are in agreement with figure 8.1; similar 

comments apply. In figure 8.5, the absolute error on A-scans is shown. The 

source is in x = 240 mm, y = 250 mm, the field is computed in in x = 250 

mm, y = 250 mm. With a wire radius, longer than what was suggested by 

the EAR, worse results are obtained. A shortening of about 13-15%, 

instead, gives the best results. 

(a)

(b)
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Figure. 8.4. (a-b) Geometry of the problem; (c-d) B-Scans; (e-f) electric-field 

maps for the square-section cylinder and its wire-grid model. 

 

A general guideline for wire-sizing can be extracted, suggesting that the 

same-area criterion is affordable, but a higher accuracy can be achieved 

with wires smaller than what suggested by the rule. A shortening of about 

12-15 % is recommended.  

8.1.2 Objects partially hosted in different media 

 

This sub-section deals with the simulation of objects partially buried in 

different media of a multilayered soil or structure. The considered scenario 

is depicted in figure 8.6(a): the upper half-space is a vacuum, the 

intermediate slab has a relative permittivity r1 = 4 and is 300 mm thick, the 

lower half-space has a relative permittivity r2 = 15. A perfectly-conducting 

circular cylinder is partially embedded in both the upper 

half-space and finite-thickness slab; the radius is R1 = 50 mm and the axis 

 

(a) (b)

(c) (d)

(e) (f)



  

 

 

119 

 

Figure 8. 4 (a) Absolute error on A-scans, with N = 16 and for various lengths of 

the wire radius; (b) refinement of the analysis presented in (a). 

is in x = 250 mm, y = 780 mm. A larger cylinder is embedded in both the 

slab and lower half-space; the radius is R2 = 100 mm and the axis is in x = 

600 mm, y = 500 mm. Both the cylinders are modeled by means of their 

equivalent wire-grid models, with N = 16; the wire radius is shortened of 

13% with respect to the value suggested by the EAR. The B-scan presented  

 

 

Figure 8. 5 (a) Geometry of the scattering problem for two partially buried 

cylinders, modelled with the wire-grid approach; (b) B-Scan. 

 

(a) (b)
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in figure 8.6 (c) is obtained by shifting the source in M = 50 positions along 

a line parallel to the vacuum- slab interfacin y = 90 mm; the electric field 

is calculated on the same line at a distance d = 10 mm from the source. The 

aim of this example is just to remind and underline an interesting 

application of the wire-grid modelling: it allows to simulate partially-buried 

objects by using methods that cannot deal with geometries involving 

overlapping sub-domains, as the CWA. 

8.1.5 Arbitrary shaped objects 

 

This sub-section deals with wire-grid modelling of slotted objects. In 

Figure 8.7(a), the geometry of a perfectly-conducting slotted cylinder is 

shown: its radius is R = 50 mm, the axis is in x = 250 mm, y = 250 mm, the 

slot-length is πR/4, and the object is 2 mm thick. Figures. 8.7 (b) shows a 

wire-grid model of the object. The relative permittivity of the hosting half-

space is εr = 4. In Figure 8.8, A-scans calculated in x =250 mm, y = 450 

mm are presented, for different values of N; the exact curve is reported as 

reference. It can be noticed that the wire-grid models follow  

 

 

Figure 8. 6 (a) Geometry of the scattering problem for a slotted cylinder; (b) 

wire-grid model of (a), with 32 wires. 

the exact curve quite well for the first two reflections. However, the wire-

grid reflections are delayed with respect to the exact ones, as if the slot was 

larger. The delay slightly reduces a larger N, for example the first reflection 

is delayed of 85, 75 and 70 ps when N = 16, 32 and 64, respectively.  

We noticed that wire-grid results are much closer to exact results when the 

slot is longer. Moreover, we observed that in the presence of a short slot, as 

in figure 8.7, the results are not much affected from the thickness of the 

(a) (b)
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object; for longer slots, instead, the thickness of the object has a stronger 

influence on the results and – in the wire-grid approach - more accurate 

results can be obtained by using two concentric arrays, simulating both the 

inner and outer circle arcs of the object section. 

This is an interesting topic that needs to be studied more in depth, in order 

to evaluate to what extent, the wire-grid approach can be used for the 

modelling of slotted objects, and to extract simulation guidelines for this 

kind of geometries. 

 

 

Figure 8. 7 A-scan for the slotted cylinder and its wire-grid model. 

8.2 Spectral representation of EM scattering from the 
objects in host medium 

 

A two-dimensional scattering problem of a line source by a set of PEC and 

dielectric cylinders buried in a semi-infinite medium by means of 

Cylindrical-Wave Approach (CWA) is solved in [201]. In this section, a 

Finite Difference Time Domain (FDTD) based algorithm is developed for 

cylindrical objects in a host medium and its results are compared with CWA 

approach.  

 

8.2.1 Methods 
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The 2 dimensional FDTD modeling scheme is used to model the buried 

target and simulate the backscattered wave response scattered. The stability 

method considered and a ten cell thick perfectly matched layer (PML) is 

used for neglecting boundary reflections concerns. One widely known used 

excitation field antenna in multi-layer analysis is the dipole antenna.  

Modeling field with a point or a line source is a convincing hypothesis for 

such an antenna. The used excitation is a time varying Ricker wavelet source 

with 1 GHz center frequency which could be expressed as (8.3). 

 

𝑓𝑟(𝑡)  =  (1 − 2{𝜋𝑓𝑝[𝑡 − 𝑑𝑟]}
2
)𝑒−{𝜋𝑓𝑝[𝑡−𝑑𝑟]}

2

                                          (8.3) 

 

Which 𝑓𝑝 is the peak frequency and 𝑑𝑟 is temporal delay.  

The Fourier transform of (8.3) is given in (8.4).  
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)
2

𝑒
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)
2

}

2

                                                             (8.4) 

 

It appears delay only influences the phase of function. The form 𝑓𝑟(𝑡) and 

frequency spectrum 𝐹𝑟(𝜔) are of the wavelet are illustrated in figure 8.8. 

The plane-wave solution for construction of traveling Ricker wavelet could 

be given by 𝑓𝑟(𝑡 ± 𝑥
𝑐⁄ ) where c is speed of propagation and will be given 

by.       

 

𝑓𝑟[𝑚, 𝑞]  =  (1 − 2𝜋2 [
𝑆𝑐 𝑞±𝑚

𝑁𝑝
− 𝑀𝑑]

2

) 𝑒
(−𝜋2[

𝑆𝑐 𝑞±𝑚

𝑁𝑝
−𝑀𝑑]

2

)
            (8.5) 

where 𝑆𝑐  is  c
𝛥𝑡

𝛥𝑥
,  q and m are the temporal and spatial indices respectively.   

 

Figure 8. 8 Excitation Ricker wavelet source and its frequency spectrum 
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In order to generate scattered transmitted field, the scheme is utilized to 

calculate EM wave propagation and recorded for each receiver position. The 

time-dependent numerical scattered electric field is recorded. This is then 

transformed into the frequency domain and the values for the selected 

working frequency are picked for use in spectral representation. Importance 

should be given to transformed indices and their exact frequency set. 

According to the Nyquist theorem, the maximum frequency is the inverse 

of two times the time sampling period. Involving the total number of 

samples or number of steps in the FDTD simulation named 𝑁𝑇, the spectral 

resolution is given by  

 
𝛥𝑓  =  

𝑓𝑚𝑎𝑥

𝑁𝑇/2
=

1

𝑁𝑇𝛥𝑡
                                                                                                                    (8.6) 

 

The Radargrams illustrate the scattered field. It should be noted that to 

remove the air /ground wave, a background removal procedure is 

performed. The resulting scattered field is transformed into the frequency 

domain and the scattered field in spectral domain is produced.  

8.2.2 Results  

 

a. A cylindrical object in lossless medium: 

Initially, the simulation and processing was done for a buried metallic 

cylinder with radius of a = 47.7 cm, centered in x = 1.0 m and y = 37.74 

cm. The refractive index of the second medium is n1 = 2. The line source 

transmitter is placed at x = 1m and y = 52.38 cm height from interface and 

receiver measures the field in an accumulative manner in 95.4 cm from the 

interface. The selected frequency for source is 1GHz.  

 

b. A cylindrical void in a lossless medium: 

The simulation and processing was done for a free space void cylinder with 

nc = 1, radius of a = 4.77 cm, centered in x = 1m and y = 37.74 cm. The 

refractive index of the second medium is n1 = 2. The line source transmitter 

is placed at x = 0.5m and y = 2.38 cm height from interface and receiver 

measures the field in an accumulative manner with two different distance 

scenarios of 9.54 cm from the interface. The selected frequency for source 

is 1GHz. 
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c. Two metallic cylindrical cables in a dispersive lossy medium: 

The simulation and processing was conducted for two PEC cylinders, radius 

of a = b = 4 cm, buried 10 cm deep, the refractive index of the second 

medium is n1 = 2. The line source transmitter is placed at the x = 1.5 m 1.59 

m height compared to previous scenarios relative to interface. Cylinders are 

spaced about 28 cm apart. In this case Ricker wavelet, central frequency is 

600MHz. The used dispersion model for dispersive lossy media is Debye 

model based on the work of Frezza. et. al. [201] (see figure 8.8).  
 

 

Figure 8. 9 Metallic (a) B-scan, (b) A-scan and field diagram (c) calculated near 

field for blue line proposed method and redline for CWA’s work in [201]. 

 

(a) (b)

(c)
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’[;

 
 

Figure 8. 10 Void (a) B-scan, (b)A-scan and field diagram (c) calculated field for 

blue line proposed method and redline for CWA Ponti.et al [203]. 

   

d. More complex scenario: 

This implementation is performed for more complex scenarios referring to 

[203] with given geometry and materials and its scattered near filed in 

figure 8.11.  
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Figure 8. 11 Two metallic cables scattered near field (a) B-scan, (b)A-scan and 

field diagram (c) calculated field for blue line proposed method and redline for 

CWA Frezza. et.al [197]. 

 

 

(a) Geometry of problem,(b) its calculated FDTD based near filed 

 

(a) (b)

(c)

(a)

(b)
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8.5 Conclusion 

 

This chapter focused on the wire-grid modelling of buried cylindrical 

objects. Numerical results were obtained by using GprMax [201], a 

versatile tool implementing the Finite-Difference Time-Domain technique.  

The reliability of the well-known equal-area rule is investigated, showing 

that it yields affordable results but is quite far from being the optimum: 

higher accuracy can be achieved by using a wire radius 12-15% smaller 

than what is suggested by the rule. I considered circular- and square-section 

scatterers embedded in a half-space, in the presence of a line of current 

emitting an ultra-wide band pulse. The results are in good agreement with 

literature where wire-grid modelling of a circular-section cylinder 

illuminated by a monochromatic plane wave was studied and preliminary 

spectral-domain results were presented, calculated by using the 

Cylindrical-Wave Approach. 

Subsequently, I considered the wire-grid modelling of objects partially 

buried in different layers of soil or structure. The aim of the reported 

example was to highlight that the wire-grid approach can significantly 

enhance the versatility variety of methods that can deal with scatterers 

embedded in a homogeneous material. Finally, I investigated the wire-grid 

modelling of circular-section slotted objects and presented preliminary 

results. For small slots, the wire-grid results follow quite well the main 

reflections of the exact results, but with some delay. More accurate results 

are obtained in the case of larger slots.  To model thick objects with large 

slots, it is recommended to use two concentric arrays of wires, simulating 

both the inner and outer circle arcs of the scatterer section.  

This analysis is of particular interest for the electromagnetic simulation of 

Ground Penetrating Radar scenarios. Future work can be modelling 

dielectric object to be used in electromagnetic simulation of biomedical 

scenarios. The second part of this chapter dealt with the spectral 

representation relevant to scattering from some utilities known objects in 

different media has been implemented. Comparisons with both results in 

the literature and simulations for them have been performed, obtaining a 

good agreement.  
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Chapter 9 

Electromagnetic thickness formulation for 

human arm layers toward soft tissue 

assessment 
 

9.1 Introduction  
 

Tracking upper limbs kinematics offers a beneficial description for 

assessment of daily activities. Techniques to monitor human activity 

system are classified into: (a) invasive bone-based motion recording 

techniques, and (b) non-invasive skin-based method [202]. One of the most 

challenging issues in such a recordings is soft tissue artifact (STA) [203]. 

STA is produced due to the displacement of skin-mounted markers on the 

soft tissue with respect to the underlying bones. The STA error needs to be 

effectively assessed and mitigated [203-205]. More recently, Non-invasive 

medical imaging modalities such as dynamic MRI [206] and ultrasound 

[207] in accordance of three dimensional Motion Capture data [202] are 

employed to quantify the dislocation of markers and to assess the STA.  

However, the viability of using an electromagnetic (EM) backscattered 

signal to evaluate the STA has not been reported in the literature. That 

encouraged me to explore bone localization using this technique toward 

STA correction in this study. The primary focus of using microwave radar-

based techniques is in medical imaging for breast cancer detection [208, 

209] and it is utilizing the contrast of electrical properties among under 

investigation tissues. The most recent advancement in Microwave Imaging 

of the musculoskeletal system is reported in [210] where the first clinical 

example of microwave images for the calcaneus was presented. They 

showed that microwave response monitoring could be a promising method 

for bone imaging. The key factor to modeling such systems are the 

electrical properties of biological tissues, that is comprehensively studied 

in [211, 212]. Gabreil’s et.al showed human tissue’s electrical properties 

are highly depends on water content. This means low water content tissues 

such as bone and fat tend to present low permittivity, whilst high water 

content tissues, such as muscle and blood have higher permittivity. The 

penetration depth for human tissues varies with operating frequency and is 

illustrated in figure 9.1. It should be noted that the backscattered signal 
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from stratified media depends on the variation in electrical properties of the 

consecutive materials [213].    
 

 

 

Figure 9. 1 Permittivity and penetration depth of different tissue types at high 

frequencies (a) Permittivity and (b) Penetration depth 

 

Relying on the Ground Penetrating Radar concept, an electromagnetic 

method based on the recording and analysis of the dielectric discontinuities 

in subsurface structures, the feasibility of using EM backscattered signal 

for bone localization is investigated theoretically and verified by 

simulation. 

 

(a) (b)

(a) (b)
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9.2 Electromagnetic response of the structure 

 

In this study, an efficient, simple procedure to estimate the thickness of 

tissues are presented. To this end, the electromagnetic scattering field from 

a simplified, parameterized human arm tissue layer model is obtained 

analytically based on the microwave transmission line matrix method 

[214]. Then, it is verified through numerical Finite Difference Time 

Domain (FDTD) based simulation []. Moreover, time domain response of 

the structure is used to detect the reflection from each layer, retrieving the 

permittivity and estimation of tissues thicknesses.   

9.2.1 Analytical model of human arm as a layered media   

 

Considering a one-dimensional, flat multilayer structure of biological 

tissues consisting of skin, fat, muscle and bone with specified thicknesses 

and permittivity, a simplified human’s upper arm is visualized. Geometry 

of the problem is given in figure 9.2. A Transverse Electromagnetic (TEM) 

plane-wave source is considered in the proximity and on top of human arm 

skin where electric and magnetic vectors are perpendicular to the direction 

of propagation. According to electromagnetic theory, if an EM wave meets 

an alternate medium, part of the wave is reflected from and the other part 

is transmitted through based on the constitutive parameters of the involved 

media. A schematic illustration of backscattering from the boundaries of 

TEM traveling [215]waves for the layered structure is shown in figure 9.2. 

The direction of travel is the z-axis and on the x- and y-axes each layer has 

the infinite extension.   

Assuming the material is not magnetic, the intrinsic impedance and the 

propagation constant of each layer are given by (9.1) and (9.2) 

 

𝜂𝑖  =  √
1

ϵir
                                                                                                (9.1) 

 

𝛽𝑖  =  𝑗
2𝜋𝑛𝑖𝑙𝑖

𝜆
 =  

𝜔

𝑐
√𝜖𝑖𝑟                                                                            (9.2) 

 

Where 𝑗2  =  −1, 𝜖𝑖𝑟 is the relative permittivity of each layer, λ is the 

operating wavelength in the free space, 𝑛𝑖  =  √𝜖𝑖𝑟 is the refractive index 

of each medium and li is the thickness of arm’s layers. The Fresnel 
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reflection coefficient between two subsequent layers, 𝛤𝑖, is related to 

characteristic impedance of each layer 𝜂𝑖 by (9.3) 

 

𝛤𝑖  =  
𝜂𝑖−𝜂𝑖−1

𝜂𝑖+𝜂𝑖−1
                                                                                            (9.3) 

 
 

𝜏𝑖,𝑖−1  =  
2𝜂𝑖

𝜂𝑖+𝜂𝑖−1
                                                                                      (9.4) 

It should be noted that 𝜂0  =  √
𝜇0

𝜖0
  is the characteristic impedance of free 

space and it is equal to 377 Ω. 𝐸𝑖+ is the incident wave impinging each 

layer and  𝐸𝑖− is define as superposition of reflected and transmitted wave 

in each media which is given by (9.5) 

 

𝐸𝑖−  =  𝛤𝑖𝐸𝑖+ + 𝜏𝑖,𝑖−1𝐸𝑖+1−
                                                                                        (9.5) 

 

To relate the transmission and reflection coefficient to incident and 

reflected wave, the ABCD wave matrices [216]of the structure can be 

arranged and cascaded to (9.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. 2 A simplified one-dimensional geometric model of human arm 
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[
𝐸1+

𝐸1−

]  =  ∏
1

𝜏𝑖
[
𝑒𝛽𝑖         𝛤𝑖 𝑒

−𝛽𝑖

 𝛤𝑖 𝑒
−𝛽𝑖      𝑒−𝛽𝑖

] [
𝐸𝑖+1+

𝐸𝑖+1−

]4
𝑖 = 1                                                (9.6) 

 

For the last infinite thickness layer, the backward travelling wave is zero. 

The total transmission coefficient and overall reflection response of this 

structure is given by (9.7) and (9.8) respectively. 

 

𝜏𝑇  =  𝐸1𝑖+1
/𝐸1+

                                                                                                               (9.7) 

 

𝛤𝑇  =  𝐸1−
/𝐸1+

                                                                                                                 (9.8) 

 

The reflection coefficient is frequency dependent. It is clear that the electric 

fields, and transmission and reflection coefficients are closely related to the 

thickness and electrical properties of the material.  

9.3 Numerical verification  

 

In this section, a comparison is performed among the introduced analytical 

model, the Finite Difference-based full-wave simulator, and CST 

microwave studio to verify the model. To make interpretation easier at this 

stage of the problem, the mentioned tissues are considered lossless, non-

dispersive layers. The simplified human arm phantom consisting of skin 

with thickness of 𝑙1  = 2 mm and relative permittivity of  𝜖𝑟1  =  36.78, 

fat; 𝑙2  = 6 mm, 𝜖𝑟2  =  5.12, muscle; 𝑙3  = 35mm, 𝜖𝑟3  =  50.45, and 

bone. The scattering response of the simulated model arm and its agreement 

with analytical model is given in figure 9.3.  

 

9.4 Thickness estimation 

9.4.1 Depth calculation formulation 

 

To formulate the depth measurements of the structure, we use the time 

domain scattered signal technique inspired by [217, 218]work reported in 

where the signal amplitude and time delay information are used to calculate 

geometrical and physical properties of tissues. It assumes the time domain 
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signal is comprised of a superposition of scaled and lagged replicas of the 

incident pulse. Considering a non-magnetic structure, the thickness of each 

layer is given by (9.9) in an abstract form.  

 

𝑑𝑛  =  
1

2
𝑣𝑝𝑡𝑛  =  

𝑐𝑡𝑛

2√𝜖𝑟𝑛
                                                                               (9.9) 

 

where 𝑣𝑝 is the velocity of propagation in each layer, 𝑡𝑛 is two-way travel 

time, 𝑐 is the velocity of light, and 𝜖𝑟𝑛 is relative permittivity of each layer. 

Therefore, to obtain the depth, the amplitude of reflection from each 

interface, and related time delays and permittivity of each layer should be 

calculated. Referring to the backscattered time signal that can be considered 

as a combination of received waveform from n layers, the permittivity for 

first layer is obtained by (9.10).  

 

∈𝑟1 =  (
𝜂0

𝜂1
)
2

|
𝜂1 = 

𝜂0
𝐴𝑝−𝐴0
𝐴𝑝+𝐴0

 =  (
𝐴𝑝−𝐴0

𝐴𝑝+𝐴0
)2                                                      (9.10) 

 

where 𝐴0 and 𝐴𝑝 are the reflected amplitude from the top of surface layer 

and amplitude from a known reference layer, respectively. Similarly, for 

the next layers, the permittivity can be derived recursively whereas here the 

transmission between layers should be taken in to account. A generalized 

formula to obtain in situ permittivity of succeeding layers in a n-layer 

stratified structure based on what reported in [217] can be derived from 

(9.11). 

 

√∈𝑟,𝑖 =  √∈𝑟,𝑖−1

1−(
𝐴0
𝐴𝑚

)
2
+∑  𝑛−1

𝑖 = 0 𝑟𝑖
𝐴𝑖
𝐴𝑚

+(
𝐴𝑛−1
𝐴𝑚

)

1−(
𝐴0
𝐴𝑚

)
2
+∑   𝑛−1

𝑖 = 0 𝑟𝑖
𝐴𝑖
𝐴𝑚

+(
𝐴𝑛−1
𝐴𝑚

)
                                            (9.11) 

 

Where 𝑟𝑖  =  
√∈𝑟𝑖−√∈𝑟𝑖−1

√∈𝑟𝑖+√∈𝑟𝑖−1
 . 

 

A convenient method for this recursive calculation is defining a reference 

signal reserved from a single Perfect Electrical Conductor with certain 

thickness. The following algorithm uses for thickness estimation of soft 

tissues: 
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Algorithm 9.1 thickness estimation 

 

(a) Obtain the synthesized time domain electromagnetic scattered signal 

from the modeled upper arm named 𝑥𝑟(𝑡) and its assigned time vector dt  

(b) Use an adaptive Hilbert envelope detector to detect local maxima of 

𝑥𝑟(𝑡) and their related time delays reserved in 𝑡𝑖 ; This step is interfaces 

detection 

(c) Acquire reference signal (PEC) and it related amplitude and time  

(d) Calculate the permittivity of each layer by (9.11) 

(e) Estimate the depth of each layer by (9.9) 

9.5 Numerical results and algorithm assessment  

 

Recalling, the mentioned procedure in algorithm 9.1 to calculate depth, 

figure 9.4 shows the transmitted (red) and time domain response of the 

structure (green). It is worth mentioning, in this study the signal is 

considered as superimposition of echoes of known pulse. An envelope 

detector is used for echo detection by estimating exact time of delay of 

echoes obtained from local maxim of defined filter evaluated within a pulse 

time window.  

 
 

Figure 9.4. (a) Reference signal and received signal (b) Received signal 

and peak detector  
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Ultimately, the permittivity profile and interface depth are obtained 

from the estimation of the interfaces and amplitude derived from 

synthetic backscattered signal were used in iteratively derivation of 

thickness layers. 
 

 

Figure 9. 3 Comparison between the analytical and numerical reflection 

coefficient magnitude for human tissue 

 

Table.9.1 Numerical assessment of proposed algorithm  

 
Tissues Permittivity  Thickness 

Skin  1.05% 0.51% 
Fat  4.1% 1.46% 

Muscle  5.21%. 1.98% 

 

9.6 Conclusion 

 

In this chapter overall reflection response from a simplified modeled upper 

arm structure calculated through propagation matrices toward soft tissue 

artifact evaluation. A soft tissue thickness calculation methdology is 

elaborated and verified by simulation. This pilot study can be extended in 

3d and attach to other soft tisue atifact measurments to assisst tracking and 

monitoring upper limbs kinematics.  
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