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Abstract

Modern control systems integrate physical processes with communication capabilities

and computational resources. In general, the integration of the aforementioned ca-

pabilities improves system efficiency and operational performance, but at the same

time introduces security concerns related to the intrusion of adversaries in the system.

Moreover, the increasing amount of available sensor data poses new challenges in

the task of monitoring malicious attacks against the system. During the last years,

these motivations have led to the study of a particular class of control systems: the

Cyber-Physical Systems (CPSs). Cyber-Physical Systems combine physical processes

with computational resources in an interconnected framework, but expose control

systems to new vulnerabilities and threats due to the inter-dependencies and links

between cyber and physical layers.

Examples of Cyber-Physical Systems include Supervisory Control And Data Acqui-

sition (SCADA) systems, Power and Smart grids, where data fusion methodologies are

useful for analyzing threats and faults. Within the cyber-physical security framework,

Evidence Theory can be a powerful tool to help the control centers to make and plan

decisions and/or countermeasures.

In particular, in this thesis we develop a new approach for the diagnosis of faults

and threats when cyber-attacks compromise physical operations in Power Grids (cyber-

physical attacks). To handle the complexity of the fusion process and to minimize the



iv

computational overhead, we also propose a new way to model Cyber-Physical Systems

in Evidence Theory framework.

Moreover, through Graph Theory, risk assessment for Cyber-Physical Systems is re-

discovered as an application field for Evidence Theory. We provide theoretical findings,

supported by simulations results, able to manage risks arising from cyber-physical

attacks.

It is worth noticing that, CPSs act in dynamically changing environments and,

despite significant advances in relevant areas, several challenges still hinder the devel-

opment of high-assurance, robust and reconfigurable Cyber-Physical networks. Hence,

in this thesis, we also address the problem of characterizing the robustness of Cyber-

Physical Systems, viewed as interconnected network systems, with respect to the

interconnection structure. Specifically, we adopt the H2 norm, to measure the robust-

ness of a CPS network against external disturbances. For networks arising from the

composition of atomic structures, we provide a closed-form expression of the robustness,

and we identify optimal composition rules. Furthermore, we also generalize the pro-

posed model, using the class of M - matrices and their inverses. The problem of finding

the optimal robust network structure has been analyzed as an optimization problem:

we found several properties of the objective function and we also characterized the

expression of the optimal solution.
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Introduction

Modern control systems integrate physical processes with communication capabilities

and computational resources. Moreover, embedded and complex systems are becoming

pervasive in our daily life, where health, services, safety and security increasingly

depend on the interdependencies among these systems.

During the last years, in combination and in close interaction with the unpredictable

real world environment and humans, modern control systems have been considered in

a more complex class, the “Cyber-Physical Systems” [1].

Cardenas, et al. [2] define a Cyber-Physical System (CPS) as integrating computing,

communications and storage capabilities with monitoring and/or control of entities in

the physical world, which is done in a dependable, safe, secure and efficient manner

under real-time constraints. Poovendran [3] notes that the concept of a cyber-physical

system changes the notion of a physical system to include humans, the infrastructure

and the software platform in which the overall system is highly networked. Even though

several definitions for Cyber-Physical Systems and for their functionalities have been

given (see [4] and the references therein), we can say that a CPS acts independently,

co-operatively or as “systems of systems”. Some of these systems may be older legacy

plants or interconnected autonomous systems, originally developed to fulfill dedicated

tasks. Examples of Cyber-Physical Systems include SCADA systems, transportation

networks, power generation and distribution networks, water and gas distribution

networks, and advanced communication systems.
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From a practical control-systems prospective, the behaviour of CPS is characterized

by the nonlinear interaction between discrete (computing device) and continuous

phenomena in order to produce global and desired results. Hence, several techniques

are indispensable to capture and analyze both the behaviour on the low level (discrete

control logic, communication, effects of distributed computing) and global effects [5].

In more general terms, due to complex interactions among systems’ components,

Cyber-Physical Systems combine physical processes with computational resources in

an interconnected framework, but also expose control systems to new vulnerabilities

and threats due to the inter-dependencies and links between cyber and physical layers.

Even though the integration of the aforementioned capabilities improves system

efficiency and operational performance, at the same time introduces security concerns

related to the intrusion of adversaries in the system. Moreover, the increasing amount

of available sensor data, poses new challenges in the task of monitoring malicious

attacks against the system.

Concerns about security of control systems are not new, as the high number of

manuscripts on fault and/or attack detection, isolation and recovery testify. Cyber-

Physical Systems, however, suffer from specific vulnerabilities which do not affect

classical control systems, and for which appropriate detection and identification tech-

niques need to be developed. Despite significant advances in relevant areas, several

challenges still hinder the development of high-assurance and reconfigurable Cyber-

Physical Systems. These include limitations in processing real-time input data, which

may vary significantly in its volume, complexity and variety, together with limited

sensing/actuation accuracy and computing capabilities.

In the last years, the analysis of cyber-physical vulnerabilities has received increasing

attention. Starting with approaches based on geometric control theory, such as

distributed estimation and false data detection or secure consensus computation, to
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end with data aggregation methods, a lot of work in the research field has been done

to ensure a correct and reliable functionality in the face of failures and attacks for

CPS [6] [7] [8] [9].

Is now clear that Cyber-physical systems cannot be designed and managed using

theories and tools from only one domain and they will transform how we interact with

the physical world just as the Internet transformed how we interact with one another.

In this work, several techniques will be presented in order to model the complex

interactions of a CPS and to introduce new mathematical tools for robust, reconfig-

urable and high-assurance Cyber-Physical networks.

Contribution Within the cyber-physical security framework, Evidence Theory can

be a powerful tool to help the control centers to take and planning decisions and/or

countermeasures. In particular, in Chapter 3 we develop a new approach for the

diagnosis of faults and threats when cyber-attacks compromise physical operations in

Power Grids (cyber-physical attacks). To handle the complexity of the fusion process

and to minimize the computational overhead, we also propose a new way to model

Cyber-Physical Systems in Evidence Theory framework.

Moreover, through Graph Theory, in Chapter 4 risk assessment for Cyber-Physical

Systems is re-discovered as an application field for Evidence Theory. We provide

theoretical findings, supported by simulations results, able to manage risks arising from

cyber-physical attacks.

With the aim to model robust and reconfigurable Cyber-Physical networks, we also

investigate how the topology of a dynamical network affects its robustness against

exogenous disturbances. Hence, in Chapter 5, we also address the problem of

characterizing the robustness of Cyber-Physical Systems, viewed as interconnected

network systems, with respect to the interconnection structure. Specifically, we adopt
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theH2 norm, to measure the robustness of a CPS network against external disturbances.

For networks arising from the composition of atomic structures, we provide a closed-form

expression of the robustness, and we identify optimal composition rules. Furthermore,

we also generalize the proposed model, using the class of M - matrices and their inverses.

The problem of finding the optimal robust network structure has been analyzed as an

optimization problem: we found several properties of the objective function and we

also characterized the expression of the optimal solution.





Chapter 1

Graph Theory

The basic concepts of Graph Theory are extraordinarily simple and can be used to

express problems from many different subjects such as biological systems, robotics,

power grids, telecommunications and multi-agent networks. Graphs also pervade

computer science, where hundreds of interesting computational problems are couched

in terms of graphs. In general, many applications in real-world systems can be treated

through graphs representation. Hence, providing a formal mathematical model has

been of interest since 1736 when Leonard Euler published his paper on the "Seven

Bridge of Konigsberg".

In this chapter we introduce elements of graph theory, giving basic definitions and

operations on graphs, with particular emphasis on the Algebraic Graph Theory [10] [11].

1.1 Basic notions

In its simplest form, a graph is a collection of vertices (nodes) that can be connected

to each other by means of edges. In particular, each edge of graph joins exactly two

vertices. We refer to the collection of vertices as vertex set and denote it by V. In

particular, when this set has n elements, we represent it as
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V = {v1, v2, · · · , vn} .

Let us consider the set of two elements subsets of V denoted by ∥V∥2. Each element

of this set can be represented in the form {vi, vj} such that i, j = 1, 2, · · · , n with i ̸= j.

Starting from ∥V∥2 we can formally introduce the set of edges of a graph as

E =
{
{e1, e2, · · · , en} ⊂ ∥V ∥2 | ei = {vi, vj} , i, j = 1, 2, · · · , n, i ̸= j

}
.

At this point, using a formal notation, a graph can be defined as follows

Definition 1.1. (Finite Graph) A finite graph G consists of a finite collection of

vertices V and edges E for which we can write G = (V , E).

A graph G is said undirected, when the relations between each pair of vertices are

symmetric, that is, nodes on edges form unordered pairs. On the contrary, when nodes

on edges form ordered pairs, the graph is called directed (or di-graph). We indicate a

di-graph with D (V , E).

For each node vi ∈ V , if the edge ei = (vi, vj) exists, then we call vi and vj adjacent

and ei incident to vi and vj.

Another important property for the nodes in a graph, is the concept of neighborhood.

To be more precise, we formally have

Definition 1.2. (Neighborhood) For any graph G and vertex vi ∈ V, the neighbor-

hood set N (vi) of vi is the set of all vertices adjacent to vi. Specifically

N (vi) = {vj ∈ V | (vi, vj) ∈ E} .
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In a undirected graph, if vj ∈ N (vi) it follows that vi ∈ N (vj), since the edge set

consist of unordered vertex pairs.

Starting from the notion of adjacency, we can introduce the concept of path.

Definition 1.3. (Path of length k in G) A path of length k in G, is a sequence of

vertices (v1, · · · , vk), such that vi ̸= vj, ∀i ̸= j.

A graph G is said connected if, for every pair of vertices in V, there exists a path

that has them as its end vertices. A graph is strongly connected if there is a path

between every pair of vertices. We will call a graph disconnected if there exist at least

two vertices vi and vj, such that there is no path from vi to vj.

1.2 Subgraphs

Another important concept in graph theory, is the notion of sub-graph. If we consider

a graph G = (V , E) and, respectively, a subset of vertices and edges V ′ ⊆ V and E ′ ⊆ E

we have

Definition 1.4. (Sub-graph of G) A graph G ′ is called sub-graph of G if, for V ′ ⊆ V

and E ′ ⊆ E such that ∀ e′
i =

{
v′

i, v′
j

}
∈ E ′, we have v′

i, v′
j ∈ V ′.

In particular, if G ′ is constructed by taking a subset V⋆ of vertices and all the

original edges from G, then G ′ is called induced sub-graph. Moreover, all the operations

that can be performed on a graph (such as union, intersection, boundaries and closure)

are preserved also in the case of sub-graphs.

1.3 Matrix Representation

When algebraic methods are applied to problems about graphs, Algebraic Graph

Theory is a powerful tool for analyzing several properties. In particular, we can use
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the matrix representation of a graph to better understand the connection with Linear

Algebra. In what follows some of these matrices will be introduced.

1.3.1 Degree Matrix

Consider a graph with n vertices and m edges. The degree matrix is a diagonal matrix

which contains information about the degree of each vertex, that is, the number of

edges attached to each vertex. In a directed graph, the term degree may refer either to

in-degree (the number of incoming edges at each vertex) or out-degree (the number of

outgoing edges at each vertex). For an undirected graph G, we indicate with d (vi) the

degree of a given vertex. Using the concept of neighborhood set, we can say that the

degree d (vi) represents the cardinality of N (vi) (Section 1.1). The degree matrix of

G is a n× n diagonal matrix, containing as diagonal entries, the vertex degrees of G,

that is,

∆ (G) =



d (v1) 0 · · · 0

0 . . . ...
... . . . 0

0 · · · 0 d (vn)



1.3.2 Adjacency and Incidence Matrices

Consider a graph with n vertices and m edges. The adjacency matrix A (G) is a

symmetric n× n matrix, where each entry denotes the existence of a vertex between vi

and vj. We can formally define the adjacency matrix as follows

A(G)ij =


1 if vivj ∈ E

0 otherwise
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Where A(G)ij denotes the i, j entry of A(G).

For the adjacency matrix, the sum of values in row i is equal to the degree of vertex vi,

that is, d (vi) = ∑n
j=1 A(G)ij. We call a graph G simple, if and only if for all i, j holds

• A(G)ij ≤ 1;

• A(G)ii = 0.

As an alternative, we can use an incidence matrix of a graph as its representation.

The incidence matrix M (G) is a n×m matrix , where each entry counts the number

of times that edge ej is incident with vertex vi. Under the assumption that labels have

been associated with the edges in a graph whose edges have been arbitrarily oriented,

we can formally define the incidence matrix as follows

M(G)ij =



−1 if vi is the tail of ej

1 if vi is the head of ej

0 otherwise

Where M(G)ij denotes the i, j entry of M(G).

An important property of the incidence matrix, is the fact that the column sum always

equal zero, since every edge has exactly one tail and one head.

1.3.3 Graph Laplacian

Another important matrix representation for G is the graph Laplacian matrix, usually

indicated with L (G). If we consider an undirected graph, the formal definition of the

Graph Laplacian is

L (G) = ∆ (G)− A (G) ,
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where ∆ (G) and A (G) are, respectively, the degree and adjacency matrices. It

should be noted that, for all graphs, the row sum of the graph Laplacian is equal to

zero. For a di-graph D, the graph Laplacian can be defined as

L (D) = M (D) M (D)T ,

where M (D) represent the incidence matrix of the oriented graph.

An important property of the Graph Laplacian, is that L (G) is a symmetric and

positive semi-definite matrix.

1.4 Spectral Graph Theory

Is now clear how to represent a generic graph through matrices, in connection with

Linear Algebra . All the graphs structural properties (i.e. connectivity, Section 1.1), can

be then studied in relationship to characteristic polynomial, eigevalues and eigenvectors

of matrices associated with the graph.

Consider a graph with n vertices and m edges and (as an example) the corresponding

Laplacian matrix. As we said before, this matrix is known to be symmetric and positive

semi-definite. If we compute the eigenvalues of L (G) we can order them as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Looking at the second smallest Laplacian eigenvalue, we have the following

Theorem 1.1. (Algebraic Connectivity) The graph G is connected, if and only if

λ2 > 0.
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The second smallest Laplacian eigenvalue λ2, is called algebraic connectivity [12][13].

Another important result in the Spectral Graph Theory, is the so-called Matrix-Tree

Theorem. Let Li be the matrix obtained after removing the i− th row and column of

L (G) (principal sub-matrix of L 1), then we have the following

Theorem 1.2. (Matrix-Tree Theorem) Let t (G) be the number of spanning trees

in G. Then

t (G) = det (Li) ,

where det (Li) is the determinant of the reduced Laplacian.

Another theorem of major importance in the study of graph eigenvalues, is the

Cauchy’s Interlacing Theorem.

Theorem 1.3. (Interlacing Theorem) Let A be a real symmetric n × n matrix

with eigenvalues γ1 ≤ γ2 · · · ≤ γn and let µ1 ≤ µ2 ≤ · · · ≤ µn−1 be the eigenvalues of a

principal sub-matrix of A. Then γi ≤ µi ≤ γi+1, for i = 1, 2, · · · , n− 1.

It should be noted that a principal sub-matrix corresponds to an induced sub-

graph (see Section 1.2) with one fewer vertex.

1A principal sub-matrix of matrix A, is obtained by deleting the i− th row and column of A.





Chapter 2

Evidence Theory

Evidence Theory appears for the first time thanks to Shafer [14], who reinvented

Dempster’s previous work [15] and embraces the familiar idea of using a number

between zero and one to indicate the degree of confidence for a particular proposition,

on the basis of the available evidence. In particular, Evidence Theory represents

an interesting alternative to the Bayesian framework: the main difference concerns

the way in which the ignorance is handled. To be more specific, the uncertainty, in

the probabilistic framework, is treated by splitting the amount of credibility among

plausible events, whereas in the Evidence Theory framework a belief is assigned to the

set describing all the plausible hypotheses. In [16], the Transferable Belief Model is

presented. In this case, the proposed approach to Evidence Theory is axiomatic and

based on the definition of a particular function, known as Basic Probability Assignment

(BPA).

Thanks to its flexibility, Evidence theory is often considered when dealing with Data

Fusion problems, that is combining information and data generated from heterogeneous

sources/sensors to devise an estimate of the ongoing events [17].
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Two are the main limitations of Evidence Theory: the computational complexity,

which grows exponentially with respect the number of hypotheses, and the unacceptable

behavior of certain combination rules in presence of high conflict among sources.

This chapter presents an overview on Evidence Theory, introducing the basic notions

and the principal combination rules. Moreover, an extension of the classical theory to

overcome the inherent limitations is described.

2.1 Basic Notions

Evidence Theory (ET ) is a mathematical formalism for handling uncertainty by

combining evidence from different sources to converge to an accepted belief [14] [15].

In particular, this framework has been derived from an extension of Bayesian inference.

The basic concept in ET, is to reduce uncertainty in order to identify the set that

contains the correct answer to a question. In what follows, we will introduce the basic

concept related to this theory.

Definition 2.1. (Frame Of Discernment) Let Ω = {ω1, . . . , ωn}, be the set of

exclusive elementary hypotheses that represents a possible value of the variable ω.

In classical Evidence Theory, the hypotheses are also assumed to be mutually

exclusive, that is, the intersections among ωi are always empty [14] [15].

Given the frame of discernment Ω, it is possible to define the powerset as follows

Definition 2.2. (Power Set) Let Γ(Ω) = {γ1, . . . , γ2|Ω|} be a set originated by the

frame of discernment Ω. This set has cardinality |Γ (Ω) | = 2|Ω|, and contains all

possible subsets γi ⊆ Ω built from Ω with ∪ operator .

Therefore by convention, we write Γ (Ω) = (Ω,∪). The cornerstones of the ET rely

on the following assumptions:
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Assumption 2.1. (Shafer’s model) All the hypotheses in Ω are assumed to be

exhaustive and mutually exclusive.

Assumption 2.2. (Third middle excluded principle) There exists the comple-

ment for any elements/ proposition belonging to the power set of Ω.

Shafer’s model [14] relies on the so-called Basic Probability Assignment (BPA). The

BPA function m (.) can be defined as

Definition 2.3. (BPA function) Let Γ(Ω) be the power set and m (.) be a function

that assigns to each element of Γ(Ω), a value in the [0, 1] interval. Then we have

m (.) = Γ(Ω)→ [0, 1].

This function shall respect the following constraints:

m(∅) = 0

m(γi) ≥ 0,∀γi ⊆ Γ(Ω)∑
γi⊆Γ(Ω)

m(γi) = 1.

Considering a BPA assignment, the elements of the Power Set with values greater

than zero are called focal set. It should be noted that m (.) is not a probability function,

and it does not respect the additivity property: m(γa ∪ γb) ̸= m(γa) + m(γb).

2.2 Combination Rules

In the case of independent information sources, a rule that aggregates the data is

required. Several combination rules, with different features and different application
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fields, have been proposed in the literature. Among the other rules, the most widely

used are Dempster’s and Smets’ one. In what follows, several rules will be presented

just to underline the differences among the aggregations. For further analysis on the

properties and the mathematical expression of the rules, we refer the reader to [18].

Dempster’s Rule.

Dempster’s rule of combination [15] was the first to be formalized. This rule uses

a conjunctive operation, and strongly emphasizes the agreement between multiple

sources. On the contrary, the conflicting evidence among the information sources, is

neglected through a normalization factor. So the rule is formalized as, ∀γa ∈ Γ(Ω):

Dempster{mi, mj}(∅) = 0

Dempster{mi, mj}(γa) =

∑
γb∩γc=γa

mi(γb)mj(γc)

1−
∑

γb∩γc=∅
mi(γb)mj(γc)

. (2.1)

Note that Dempster’s rule assigns null mass to the empty-set, which has certain

limitations when the conflict value is very high.

Smet’s Rule.

Smets and Kennes in [16] proposed a new rule of combination that allows to express

explicitly the contradiction in the DS framework, based on the Transferable Belief Model

(TBM), by letting m(∅) > 0. This combination rule, compared to Dempster’s one,

simply avoids the normalization while preserving the commutativity and associativity

properties. The formalization is as follows, ∀γa ∈ Γ(Ω):

Smets{mi, mj}(γa) = mi(γa)⊗mj(γa) ∀γa ∈ Γ(Ω), (2.2)
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where

mi(γa)⊗mj(γa) =
∑

γb∩γc=γa

mi(γb)mj(γc).

The inequality m(∅) > 0 can be explained in two ways. The first is the open world

assumption of Dempster [15], which expresses the idea that the frame of discernment

must contain the true value. Necessarily, if the open world assumption is true, then

the set of hypotheses must contain all the possibilities. Under this interpretation, if ∅

is the complement of Ω, then mass m(∅) > 0 represents the case where the truth is not

contained in Ω. The second interpretation of m(∅) > 0 is that there is some underlying

conflict between sources. Hence, the mass m(∅) represents the degree of conflict. In

particular, the mass m(∅) can be computed as:

mi(∅)⊗mj(∅) = 1−
∑

γb∩γc=∅
mi(γb)mj(γc).

Conjunctive Rule.

The conjunctive rule simply uses the intersection operator, for combining evidences

from s ≥ 2 independent sources. Starting from the frame of discernment Ω, we can

formally define the conjunctive rule as

m∩(γa) =
∑

γ1∩···∩γs=γa

s∏
i=1

mi(γi) ∀γa ∈ Γ (Ω) .

Disjunctive Rule.

The disjunctive rule of combination [19] [20] is a commutative and associative rule

proposed by Dubois and Prade in 1986. Starting from the frame of discernment Ω, we

can formally define the disjunctive rule as
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m∪{mi, mj}(∅) = 0

m∪{mi, mj}(γa) =
∑

γb∪γc=γa

mi(γb)mj(γc) ∀(γa ̸= ∅) ∈ Γ (Ω) .

This rule is usually preferred when one knows that one or some of the sources,

could be mistaken but without knowing which one.

Yager’s Rule.

Yager’s rule of combination states that, in case of high conflict among information

sources, the result is not reliable. This rule is commutative but not associative [21].

Starting from the frame of discernment Ω, we can formally define Yager’s rule as

∀(γa ̸= ∅) ∈ Γ (Ω)

mY {mi, mj}(∅) = 0

mY {mi, mj}(γa) =



∑
γb∩γc=γa

mi(γb)mj(γc) if γa ̸= Ω

mi(Ω)mj(Ω) +
∑

γb∪γc=∅
mi(γb)mj(γc) if γa = Ω

where γa = Ω represents the full ignorance according to [14].

Dubois and Prade’s Rule.

Dubois and Prade’s rule of combination [20] is a commutative but not associative rule.

The main principle on which this rule poses its foundations admits that the two sources
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are reliable when they are not in conflict, but one of them is right when a conflict

occurs. As long as γb ∩ γc ≠ ∅, then the truth lies in γb ∩ γc otherwise the true value

lies in γb ∪ γc. We can formally define this rule as ∀(γa ̸= ∅) ∈ Γ (Ω)

mDP{mi, mj}(∅) = 0

mDP{mi, mj}(γa) =
∑

γb∩γc=γa

γb∩γc ̸=∅

mi(γb)mj(γc) +
∑

γb∪γc=γa

γb∩γc=∅

mi(γb)mj(γc).

Has been shown [20] that this rule is a reasonable trade-off between precision and

reliability.

2.3 Evidence Theory Extension: DSmT

As previously described, Evidence Theory is an attractive framework in the Information

Fusion field, because it gives a nice mathematical model for the representation of

uncertainty and it includes Bayesian theory as a special case. Although very appealing,

the ET presents some weaknesses and limitations. In particular, when the hypotheses

are vague and imprecise, or when conflicts between sources become large, then combining

evidence become quite difficult within the classical Evidence Theory framework. Hence,

from the necessity to overcome the inherent limitations of ET, Dezert and Smarandache

proposed in [22] [18] a new mathematical framework, called Dezert-Smarandache

Theory (DSmT). This theory refuses Assumption 2.1 and Assumption 2.2 introduced

in Section 2.1 of the classical ET, but maintains the concept of the BPA function. To

be more precise, DSmT allows to formally combine any types of independent sources of
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information solving complex static or dynamic fusion problems, when conflicts between

sources become large.

2.3.1 Hyper Power Set

Instead the classical power set, DSmT makes use of a particular set, called hyper-power

set. Let Θ = {θ1, · · · , θn} be a finite set of n exhaustive elements, we define

Definition 2.4. (Hyper-power set) Let DΘ be a set originated of all composite

subset built from Θ with ∪ and ∩ operators such that:

1. ∅, θ1, · · · , θn ∈ DΘ;

2. if θ1, θ2 ∈ DΘ, then θ1 ∩ θ2 ∈ DΘ and θ1 ∪ θ2 ∈ DΘ;

3. No other elements belong to DΘ, except those obtained by using 1 and 2.

Therefore by convention, we write Dθ = (Θ,∪,∩). It should be noted that the cardi-

nality of D is majored by 22n when |Θ| = n and, due to the intersection operator, follows

Dedekind’s number sequence: 1, 2, 5, 19, 167, 7580, 7828353, 56130437228687557907787.

Nowadays only cases up to n < 7 are tractable with current computing technology [23].

2.3.2 PCR combination rules

An alternative way for data aggregation, respect to the classical Evidence Theory, is

proposed in DSmT introducing a new class of rules. The idea behind the Proportional

Conflict Redistribution (PCR) rules is to transfer the total or partial conflicting masses

to non empty set involved in the conflicts, proportionally with respect to the masses

assigned to them by sources as follows:

• Use the conjunctive rule to compute the belief masses of sources;
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• Compute the total or partial conflicting masses;

• Redistribute the total or partial conflicting masses to the non-empty masses in

the conflicts, proportionally with respect to their masses assigned by the sources.

The way the conflicting mass is redistributed yields actually several versions of

PCR rules. These PCR fusion rules work for any degree of conflict, for any models

(Shafer’s model, DSmT model) and both in Evidence Theory and DSmT frameworks

for static or dynamical fusion situations. Among the others, the best version of the

PCR rules is the PCR-6 which has been proposed in [18] for combining BPAs..

PCR-6 Rule.

This version of the PCR rule is quasi-associative and the obtained solutions, after the

combination process, are better in terms of quality-conflict ratio [18] [24]. For s > 2

sources the rule has the following expression γa ∈ DΘ \ ∅

PCR6(∅) = 0

PCR6(γa) = m∩(γa)+

+
s∑

i=1
mi (γa)2 ∑

∪s−1
k=1Yσi(k) ∪ γa ≡ ∅

(Yσi(1), · · · , Yσi(s−1)) ∈
(
Dθ
)s−1

 ∏s−1
j=1 mσi(j)

(
Yσi(j)

)
mi(γa) +∑s−1

j=1 mσi(j)
(
Yσi(j)

)
 .

(2.3)
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In the special case of s = 2 we obtain ∀γa ∈ DΘ \ ∅

PCR6(∅) = 0

PCR6{mi, mj}(γa) = m∩{mi, mj}(γa)+

+
∑

γb ∈ DΘ \ γa,

γa ∩ γb = ∅

[
m2

i (γa)mj(γb)
mi(γa) + mj(γb)

+
m2

j(γa)mi(γb)
mj(γa) + mi(γb)

]
.





Chapter 3

Evidence Theory for

Cyber-Physical Systems

The cyber and the physical worlds are no more distinct domains and, nowadays, the

need for proper methodologies and technologies able to deal with both fields is urgently

needed. In particular, telecommunications networks have exposed physical systems

to new vulnerabilities and threats due to interdependencies and links between the

cyber and physical layers: Cyber-Physical Systems are the class of control systems

that include these weaknesses. Examples of cyber-physical systems include Supervisory

Control And Data Acquisition (SCADA) systems that monitor and control electric

power grids, oil and gas pipelines, water supply networks and waste-water treatment

systems [25]. Research activities related to these systems usually focus on reliability

and resilience.

Also Smart and Power grids have been recently introduced under the concept

of cyber-physical systems. In particular, in [26], the authors studied the effects of

synchronized cyber attacks on the IEEE 9 bus-bar test system.
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In the context of detection and characterization of Cyber-Physical attacks, in [27] [28] [29],

the authors proposed strong mathematical models based on fault detection techniques

and graph theory for power networks.

Krishna and Koren [30] have proposed an adaptive control methodology for cyber-

physical systems to handle failures of cyber and physical components. Cardenas,

et al. [2] have studied integrity, confidentiality and denial-of-service attacks on cyber-

physical systems.

Within the cyber-physical security framework, data fusion methodologies such as

Evidence Theory are useful for analyzing threats and faults.

Evidence theory has been applied in multi-sensor fusion problems such as diagno-

sis [31]. Fan and Zuo [32], improving Dempster-Shafer framework by means of fuzzy

membership functions, applied multi-source Evidence Theory and decision-making

algorithms for fault diagnosis. Siaterlis and Genge [33] have proposed an evidence

theory framework for anomaly detection. The authors apply Evidence Theory and

provide a simple guideline to define Basic Probability Assignments, without considering

possible weaknesses due to the chosen rule and due to the assumptions for the frame

of discernment.

Unfortunately, the simple analysis of threats and faults can lead to contradictory

situations that cannot be resolved by classical models. Classical evidence theory

extensions, such as the Dezert-Smarandache framework [22], are not well suited to

large numbers of hypotheses due to their computational overhead. Therefore, a new

approach is required to handle the complexity while minimizing the computational load.

Contribution In what follows, starting from the classical theory proposed by Dempster

and Shafer, we first propose a diagnostic metric for cyber-physical anomalies in Smart

Grids, and we then develop a hybrid knowledge model to handle the limitation of
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the Evidence Theory methodology. A hybrid frame of discernment is presented using

a notional smart grid architecture that transforms the basic probability assignment

values from the classical framework. In particular, by noticing that an intersection

among the hypotheses exists, we will show how to use the new approach to handle

model complexity while reducing the computational overhead. Several analyses and

simulations are conducted, with the goal of properly identifying the causes of faults

and threats when a cyber attack compromises power grid operations, in order to

decrease conflict values between two independent sources during the fusion process.

A comparative analysis is performed using different frames of discernment and rules

in order to identify the best knowledge model. Additionally, a computational time

analysis is conducted

3.1 Architecture for Smart Grid Diagnostic

A smart grid is an excellent example of a cyber-physical system – it comprises the

physical electrical grid and an integrated telecommunications network that monitors

and controls the energy flow. Figure 3.1 shows a simplified cyber-physical representation

of a smart grid. Note that the Energy Management System (EMS) /Dealer Management

System (DMS) control system uses a telecommunications network to send and receive

information from substations in the power grid.

Two assumptions are made about the smart grid architecture. The first assumption

concerns the information exchanged by the equipment:

Assumption 3.1. (Packet Types) Under normal conditions, the cyber information

can be represented by the timing and volume of four packet types (Command, Ack-

Receive, Reply and Ack-Response).

The second assumption concerns the sensors used for smart grid management:
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Figure 3.1 The proposed architecture for a power grid
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Assumption 3.2. (Sensor Types) A packet-sniffing sensor is used in the cyber

layer to detect the number of packets in the network and a physical layer sensor is used

to indicate whether a piece of equipment (e.g., circuit breaker) is working or not.

In order to apply evidence theory to determine the cause of a malfunction, it is

necessary to define the appropriate frame of discernment Ω. In the the example under

consideration, we define three hypotheses: normal behavior (N), physical fault (P)

and cyber threat (C). The system has normal behavior when the breaker is working

and the network packets conform to the operational timing and volume constraints.

A physical fault exists when the sensors detect a breaker fault. A cyber threat exists

when there is excess or low packet volume.

A plausible scenario is simulated using the specified architecture and parameters. The

scenario involves an attacker who compromises the operation of a piece of equipment

(circuit breaker) via a telecommunication attacks (distributed denial-of-service attack).

A simulation, which has a duration of 100 seconds, is divided into four different

situations:

• Situation 1 (0 to 27 seconds): The smart grid behaves normally and no

alarms are detected. The circuit breaker is working and the number of network

packets in the specified time window is normal.

• Situation 2 (28 to 35 seconds): The cyber sensor detects an increasing

number of packets in the network (due to the attacker’s intrusion), but the circuit

breaker is still working.

• Situation 3 (36 to 95 seconds): The cyber sensor and the physical sensor both

detect anomalous behavior. The packet-sniffing sensor detects a high number of

packets and the circuit breaker does not respond to commands.
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• Situation 4 (96 to 100 seconds): The smart grid is back to normal after the

cyber-physical attack because the countermeasures were successful.

Table 3.1 Events happening during the simulation and the arising alarms.

Time (Sec) Events Detecting Sensor

0 - 27 Normal State -
28 - 35 Cyber Anomaly Cyber Sensor
36 - 95 Cyber Anomaly + Physical Fault Cyber + Physical Sensor
96 - 100 Normal State -

Table 1 summarizes the simulation events, with a focus on the time and information

sources. The goal is to fuse all the data provided by the sensors during a simulation in

order to detect a cyber-physical attack.

3.1.1 Frame of Discernment and BPA assignment

In order to fuse all the data provided by the sensors, we modeled the frame of

discernment Ω, according to the classical evidence theory as:

Ω = {C, P, N} (3.1)

As shown in Figure 3.2, in the classical evidence theory framework, the hypotheses

are mutually exclusive with empty intersections.

Starting with Ω, the power set is:

Γ(Ω) = {∅, C, P, N, C ∪ P, C ∪N, P ∪N, C ∪ P ∪N} (3.2)

Each sensor has to distribute a unitary mass over specific focal sets during a

simulation. Using a combination rule, a fusion result can then be obtained. Specifically,

the focal sets for the cyber sensor are {C, N, P ∪N, Ω}. Note that a cyber security
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N

Figure 3.2 Representation of the frame of discernment

expert could identify a cyber anomaly, but is unlikely to discern a physical anomaly.

Similarly, the focal sets for the physical sensor are {P, N, C ∪N, Ω}. A cyber-physical

fault is detected in the presence of mutually exclusive hypotheses by noticing the

existence of non-zero similar masses in the cyber cause set and the physical cause set.

Such problems are primarily related to the BPA assignments for the sources, which are

application dependent. Furthermore, in literature the best way to assign BPA (Basic

Probability Assignment) from each sensor does not exist, and usually the assignment

procedure is a non-trivial question and it needs several trials. In our case study, we

notice that the sources need to assign to each focal set values proportional to specific

conditions:

• For the cyber sensor the BPA values must be proportional to the number of

packets observed during the simulation: very low in normal condition and quickly

increase up to one during the cyber-physical attack;
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• For the physical sensor the BPA values must be proportional to the boolean data

belonging to the states of the circuit breaker: very low in normal condition and

quickly increase up to one for the persistence of the fault during the cyber-physical

attack.

Following the previous considerations, we performed several trials on our simulated

environment in order to obtain the best BPA assignment for our application. In partic-

ular, different mathematical functions have been tested and the following exponential

function represents our choice for modeling the system behavior:

e

−a · p
x , (3.3)

where a and p are positive tuning parameters and x represents the number of

captured packets to set the mass of {C}, or the persistence of the fault to express the

mass of {P} (see Figure 3.3).
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Figure 3.3 Tuning the BPA assignment from packet sniffing sensor, respect to a and p
parameters.
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3.2 Classic Power Set: Simulations and Results

In this section we report the simulations and results obtained with the power set

defined in Equation 3.2. Tables 3.2 and 3.3 summarize the experimental values for the

BPA assignment used in the simulations.

Table 3.2 BPA assignment for the Cyber sensor. BPA function parameters: a = 5 and
p = 2.

Percentage Packet number

m(C) m(α) e
−a·p

x

m(N) 55%(1−m(α)) 0.55·(1− e
−a·p

x )
m(P ∪N) 31.5%(1−m(α)) 0.315·(1− e

−a·p
x )

m(Ω) 13.5%(1−m(α)) 0.135·(1− e
−a·p

x )

Table 3.3 BPA assignment for the Physical sensor. BPA function parameter a = 5 and
p = 2.

Percentage Fault No Fault

m(P ) m(β) e
−a·p

t 0.1
m(N) 55%(1−m(β)) 0.55 · (1− e

−a·p
t ) 0.495

m(C ∪N) 31.5%(1-m(β)) 0.315·(1− e
−a·p

t ) 0.2835
m(Ω) 13.5%(1-m(β)) 0.135·(1− e

−a·p
t ) 0.1215

During the simulations, at each time step, we evaluated the conflict between the

sources and the result is reported in Figure 3.4.

As we can see from Figure 3.4, the conflict value is very high and, to redistribute

the conflict among the elements of the power set, we decide to test as fusion rule

Dempster’s rule of combination (see Equation 2.1). The results of the fusion process

are reported in Figure 3.5

When two information sources that have high conflict exist in the cyber and physical

realms, the rough values obtained after fusion using Dempster’s rule are unsuitable: as

we can see in Figure 3.5, the value associated to the cyber-physical anomaly became

too small for the anomaly detection.
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0 20 40 60 80 100
Time(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
PA

 v
al

ue
s

m(C)
m(P)
m(N)

Normal State

Cyber 
Attack

Cyber-Physical 
Anomaly

Figure 3.5 Fusion Results with Dempster’s rule.



36 Evidence Theory for Cyber-Physical Systems

To overcome this issue, we decided to test as fusion rule the PCR-6 rule of combina-

tion, introduced in DSmT for solving fusion problems when conflicts between sources

become large (see Section 2.3). In particular, this rule, is able to redistribute the

conflict between the pair of elements involved in the conflict itself (Equation 2.3). The

results of the fusion process are reported in Figure 3.6.

Figure 3.6 Results using PCR-6 rule for the singletons

As shown in Figure 3.6, the results are quite interesting. During the simulation,

m({C}) and m({P}) converge to the same value even though they belong to two

exclusive sets as the classical evidence theory assumes. The possible interpretation is

that the assumption of exclusivity of the hypotheses is not valid. So an intersection

among the hypothesis exists and it is different from ∅: the cause could be both cyber

and physical; in particular the physical damage could be a consequence of the cyber

attack.

Upon analyzing the results, we propose a cyber-physical diagnostic metric based

on the PCR-6 rule. To be more specific, using Smet’s rule (Equation 2.2) to evaluate



3.3 Exploring the Frame of Discernment 37

the conflict value of the mass distribution over Ω, and compare it with the sum of the

two masses in {C} and {P} obtained with PCR-6, a cyber-physical alarm triggering

equation is given by:


max {mPCR−6(γa)} ∀γa ∈ Ω, if mSmets({∅}) ≤ ρ

mPCR−6({C}) + mPCR−6({P}) ≥ mSmets({∅}), if mSmets({∅}) ≥ ρ

(3.4)

where ρ = 0.7 is a pre-defined threshold for an admissible conflict value.

Using Equation 3.4, it is possible to transmit to the control center the current state

of the system, underlying the occurrence of the cyber-physical attack.

As we said before, analyzing the results it is possible to confirm that an intersection

exists among the sets in the frame of discernment. Smarandache and Dezert [18] have

proposed an extended version of evidence theory (Section 2.3). The extended theory

eliminates the constraint on the exclusivity of hypotheses and explicitly considers

intersections among the elements of the power set. Although the theory appears to

be useful in our case study, the main problem is the intersection operator. In fact,

after defining the frame of discernment Ω, it is necessary to define a special power set

called the hyper power set DΩ. The cardinality of DΩ is usually very high due to the

intersection operator, and only cases up to n < 7 are tractable with current computing

technology (see Section 2.3.1). In the following sections, we show how to solve this

problem by using a hybrid knowledge model based on classical evidence theory and

Dezert-Smarandache theory.

3.3 Exploring the Frame of Discernment

The computational overhead when using the Dezert-Smarandache theory is extremely

high. To address this problem, the initial frame of discernment is modified by con-



38 Evidence Theory for Cyber-Physical Systems

sidering a hybrid knowledge model between classical evidence theory and Dezert-

Smarandache theory. In particular, the intersection of {C} and {P} is explicitly

evaluated as in the case of Dezert-Smarandache theory, but in the context of classical

evidence theory.

N

C PC P

Figure 3.7 Representation of the new frame of discernment

The new frame of discernment, which is shown in Figure 3.7, is given by:

Ω′ = {C ′, P ′, N, C ∩ P} (3.5)

where {C ′} ∈ Ω′ is equal to {C} \ {P} in the initial frame of discernment Ω,and

{P ′} ∈ Ω′ is {P} \ {C} ∈ Ω. The intersection {C ∩ P} is added to the frame of

discernment because most of the conflict is between the sets{C} and {P}.
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The new power set is given by:

Γ(Ω′) = {∅, C ′, P ′, N, C ∩ P, C ′ ∪ P ′,

C ′ ∪N, C ′ ∪ (C ∩ P ), P ′ ∪N, P ′ ∪ (C ∩ P ),

N ∪ (C ∩ P ), C ′ ∪ P ′ ∪N, C ′ ∪ P ′ ∪ (C ∩ P ), (3.6)

C ′ ∪N ∪ (C ∩ P ), P ′ ∪N ∪ (C ∩ P ), Ω′}

In the new approach, when the intersection {C∩P} is embedded as another hypoth-

esis in Ω′, the cardinality of Γ (Ω′) is 16. In contrast, using the Dezert- Smarandache

approach and the Dedekind sequence, the cardinality of |Γ (Ω′) | is 19. Of course, it is

possible to apply the new approach for a number of elements n ≥ 4 to obtain a hybrid

power set with cardinality < DΩ.

Table 3.4 BPA assignment for the Cyber sensor considering the new frame, where a = 5
and p = 2.

Percentage Packet number

m(C ′) 55%m(α) 0.55 · e
−a·p

x

m(C ∩ P ) 45%m(α) 0.45 · e
−a·p

x

m(N) 55%(1-m(α)) 0.55·(1− e
−a·p

x )
m(P ′ ∪N ∪ (C ∩ P )) 31.5%(1-m(α)) 0.315·(1− e

−a·p
x )

m(Ω′) 13.5%(1-m(α)) 0.135·(1− e
−a·p

x )

Table 3.5 BPA assignment for the Physical sensor considering the new frame, where
a = 5 and p = 2.

Percentage Fault No Fault

m(P ′) 55%m(β) 0.55 · e
−a·p

t 0.055
m(C ∩ P ) 45%m(β) 0.45 · e

−a·p
t 0.045

m(N) 55%(1-m(β)) 0.55·(1− e
−a·p

t ) 0.495
m(C ′ ∪N ∪ (C ∩ P )) 31.5%(1-m(β)) 0.315·(1− e

−a·p
t ) 0.2835

m(Ω′) 13.5%(1-m(β)) 0.135·(1− e
−a·p

t ) 0.1215
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Considering the results obtained in the case study above and the results obtained

using the approach presented in Section 3.2, we selected the function defined in Equa-

tion 3.3 for the BPA assignment. The BPA values for the cyber sensor and physical

sensor are summarized in Tables 3.4 and 3.5, respectively. Note that the only difference

is related to the BPA assignment of the focal sets:

• m(N) has the same value because its intersection with the new set is empty and

{N} ∩ ({C ∩ P}) = ∅.

• m(C) is divided into the sets {C ′} and {C ∩ P} belonging to Ω′, as reported in

Table 2.

• m(P ) is divided between m({P ′}) and to m({C ∩P}) of Ω′, as reported in Table

3.

• m({P ∪ N}) is now assigned to m({P ′ ∪ N ∪ (C ∩ P )}) and m({C ′ ∪ N}) to

m({C ′ ∪N ∪ (C ∩ P )}), as reported in Tables 2 and 3.

As discussed above, the BPA assignment is still an open question in the context

of evidence theory. Indeed, there is no consensus on how to assign the BPA values.

Thus, the BPA functions are selected based on the application. Note that the values

reported in Tables 3.4 and 3.5 were obtained after exhaustive tests on the system.

3.4 Hybrid Power Set: Simulations and Results

The hybrid power set was tested by fusing the information using the Dempster and

PCR-6 rules. Figure 3.8a and Figure 3.8b show comparisons of the evaluations of the

conflict between the information sources. Note that the conflict value in Ω′ is smaller

than Ω and is reduced by approximately 11% during the simulation compared with

the original case.
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Figure 3.8 Figure 3.8-a) Conflict and sum of m(C) and m(P ) in Ω.Figure 3.8-b) Conflict
and sum of m(P − C), m(C − P ) and the intersection m(C ∩ P ) in Ω′.
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When Dempster’s rule is used, the values are low and demonstrate contradictory

behavior. Note that the set P − Cis set P ′ in Ω′ and C − P is C ′ in Ω′.

Figure 3.9 Results using Dempster’s rule for the new frame of discernment Ω′. The set
P − C is set P ′ in Ω′ and C − P is C ′ in Ω′

As shown in Figure 3.9, during the cyber-physical anomaly, the values of m(C) and

m(P ) are approximately the same (≃ 0.05). Note that m(C ∩ P ) has a higher value

(≃ 0.2), but this is not relevant because the conflict value is high. Figure 3.10 shows

the values of the singletons after fusion using the PCR-6 rule. Note that the set P −C

is set P ′ in Ω′ and C − P is C ′ in Ω′. In this case, the dashed line (i.e., m(C ∩ P )) is

greater than the others during the cyber-physical anomaly. Upon examining Figure 3.9,

it is seen that the values of m(C ∩ P ) are comparable with m(C) or m(P ) using Ω

instead of Ω′ as the frame of discernment.

Therefore, with the hybrid power set, it is possible to manage the intersection

between hypotheses to obtain good results. Using the new frame of discernment and

the PCR-6 rule, an operator is able to recognize, with the help of the fusion algorithm,

a cyber-physical anomaly represented by C ∩P . With the hybrid frame of discernment,
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Figure 3.10 Results using PCR-6 rule for the frame of discernment Ω′. The set P − C
is set P ′ in Ω′ and C − P is C ′ in Ω′

the results can be analyzed using a classical metric (i.e. the highest BPA value). Note

that throughout the simulation there is one element of the power set with the highest

value. As such, an operator does not need any other metrics to trigger a particular

event (i.e., cyber-physical anomaly, see Equation 3.4).

For the other elements of the power set Γ (Ω′), the sets represented in Figure 3.11 are

the only ones with non-zero masses. The values m(C ′ ∪N ∪ (C ∩P )) (triangle-marked

line) and m(P ′ ∪N ∪ (C ∩ P )) (dotted line) are the same.

Table 3.6 Comparing the computational time of simulations for the two power sets
Γ(Ω) and Γ(Ω′)

Mean (sec) Variance
Γ(Ω) 4.1290 0.1604
Γ(Ω′) 20.6636 0.0373

Table 3.6 shows the computational times of the fusion script for the two frames

of discernment Ω and Ω′. The script, which was written in Matlab [34] tested on a
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Figure 3.11 Results using PCR-6 rule for the remaining meaningful elements of the
frame of discernment Ω′

laptop with a 2.6 GHz quad-core Intel Core i7 processor and 8 GB RAM. The script

was executed 100 times. Table 3.6 reports the means the variances. The frame of

discernment with fewer elements (i.e., Ω) requires less time on the average than Ω′, but

it the time required has greater variance. Note that the performances would improve

if a non-interpreted programming language such as Java or C++ were to be used.

Nevertheless, the results are encouraging with regard to the application of evidence

theory in real-time environments.





Chapter 4

Graph-Based Evidence Theory for

Assessing Risk

The interconnection between physical equipment and telecommunication networks

is growing thanks to the large scale development of internet economy and covering

all sectors of our society. Several examples can be found in everyday life: critical

infrastructures and their control centers are linked by means of a telecommunication

network that could be proprietary or, eventually, Ethernet-based network. Power grids

are an ideal case study for analyses related to both physical and cyber aspects.

Risk is traditionally tied to the loss of productivity, the financial impact or the

time spent to restore the system, in order to provide a pre-defined quality of services

towards customers. In power grids and in critical infrastructures, the risk is also related

to the consequences of an adverse event, such as catastrophic event, system failure or

malicious attacks.

In this chapter, risk assessment of interconnected systems is re-discovered as an

application field for Evidence Theory. Evidence Theory (ET) is a mathematical

formalism born in the context of Data Fusion, in order to merge data and information

coming from several and heterogeneous sensors. This theory has been already applied in
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electric grid for diagnostic problems. In [33], an architecture on how to apply Evidence

Theory in Smart Grids has been proposed with the aim to identify the real causes

of faults. In Chapter 3 we showed how to use ET and relative extensions during the

so-called “Cyber-Physical threats”, i.e. cyber threats aiming to disrupt the proper

operations of physical equipment.

In the general circumstances, Evidence Theory is used to deal with epistemic

uncertainty due to a lack of knowledge of quantities, system process or environment.

Epistemic uncertainty, also known as systematic uncertainty, is a source of a non-

deterministic behavior deriving from the lack of knowledge (incomplete information

or incomplete knowledge) of some characteristics of the system or the environment.

Examples of sources of epistemic uncertainty are: little or no experimental data for a

fixed (but unknown) physical parameter, a range of possible values of a physical quantity

provided by expert opinion, limited understanding of complex physical processes, and

the existence of fault sequences or environmental conditions not identified for inclusion

in the analysis of a system. Epistemic uncertainty often becomes an issue when expert

opinion is required to solve a problem.

Usually epistemic uncertainty is not considered apart from the aleatory one [35]

and, therefore, uniform probability distribution is used to represent both. The main

drawback is the possibility to underestimate uncertainty in system responses, see [36].

The classical probability approach is not enough when someone needs to merge

heterogeneous information as physical and cyber data, because epistemic uncertainty

arises. Hence, different mathematical frameworks can be used, such as Fuzzy Sets,

Possibility Theory or Evidence Theory. In [37] and [38], the definition of epistemic and

aleatory uncertainty within the context of risk analysis is discussed.
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Traditional methods based on probability, such as Bayesian nets, have numerous

lacks due to deficiency of data and subjectivity of experts. To overcome those issues,

Evidence Theory (or Dempster-Shafer framework) can be applied to evaluate risk.

In [39], the authors used the Dempster-Shafer framework for evaluating risk due

to network security. They proposed a long process based on an improved Dempster’s

rule of combination in order to combine the masses of network security risk factors.

Finally, the belief value of network security risk is obtained. The security properties of

the network are divided into communication and operation, access control and asset.

Usually, Evidence Theory is applied in risk assessment tied with other methodologies.

The work of Miao and Liu, [40], presents a risk assessment model combining grey

relational analysis and Dempster-Shafer theory. The grey relational grades for each

risk rating were used to determine the basic probability assignment functions in

Dempster-Shafer theory.

A new combination rule is proposed by Liu, Chen, Gao and Jiang in [41]. This

combination rule is called Risk Integrated Basic Strength Assignment and is generated

from the Dempster one in order to allow experts to evaluate risk event completely on

their own professional experiences and knowledge independently.

When only weak information is available, Demotier, Schon and Denœux presented

a framework based on Evidence Theory for risk assessment [42]. An approach to

handle such problems is proposed, based on the belief functions of Dempster-Shafer.

Belief functions are used to describe expert knowledge of treatment process efficiency,

failure rates, and latency times, as well as statistical data regarding input water quality.

Evidential reasoning provides mechanisms to combine this information and assess the

plausibility of various non-compliance scenarios. The work of Demotier, Schon and

Denœux exploits the knowledge on the water treatment plant in order to define mass

functions, in a situation where epistemic uncertainty is obvious.
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Yi and Xie, [43], assess the vulnerability analysis of natural hazard in a given

geographic area. Dempster-Shafer theory is used as the mathematical foundation of

the vulnerability analysis. Based on the frame of discernment of vulnerability variables

and criteria of human perception, the mass functions of evidence theory are designed.

Applying the Dempster-Shafer framework to risk assessment has led to analyze how

Basic Probability Assignment must be defined starting from the input of experts, or

how to change combination rules in order to get meaningful results.

It should be noted that, in all the methods reported in literature, the straightforward

application of Evidence Theory to risk assessment is not possible due to the existence

of some elements of the power set that, structurally, contain a clear contradiction (e.g.

a risk value that is both low and high at the same time).

Contribution In this chapter, the main structure of the Evidence Theory is still

valid. The novelty is to combine the Dempster-Shafer framework with graph theory

and Cyber-Physical Systems, with a view to define a proper power set in order to

avoid all the cases where the power set elements are in a clear contradiction, such as

sets where both low and high risk values are considered. In particular, we propose

a graph representation of the frame of discernment able to generate a smaller power

set (called Reduced Power Set) that is minimum with respect to the case study, i.e.

analysis of risk. Using the Reduced Power Set has the same accuracy of the power

set if the constraint on the frame of discernment is respected. This property will be

demonstrated asserting that the Reduced Power Set is closed under the intersection

operator, and therefore it can be applied with each combination rule based on the

intersection operator, such as Dempster’s, Smets or PCR-6 rule. Some experimental

results are also explained in order to understand the benefit of a smaller power set
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in terms of computational time, and a Cyber-Physical System (a notional power grid

architecture) is taken as case study.

4.1 Analysis on Frame of Discernment: the Re-

duced Power Set

Usually, risk is represented by scalar numbers or percentages or, in case of quantitative

analysis, as a rank number in an interval. Making use of Evidence Theory, in this work,

the authors define a particular frame of discernment:

Ω = {A, B, C, D, E} (4.1)

The values in (Equation 4.1) constitute a risk scale from low (A) to high (E),

represented as a discrete set of five elements. Starting from Ω, as the Evidence Theory

assumes, the definition of the power set Γ(Ω) is the following one:

Γ(Ω) = {∅, A, B, A ∪B, C, A ∪ C, B ∪ C, A ∪B ∪ C,

D, A ∪D, B ∪D, A ∪B ∪D, C ∪D, A ∪ C ∪D,

B ∪ C ∪D, A ∪B ∪ C ∪D, E, A ∪ E, B ∪ E,

A ∪B ∪ E, C ∪ E, A ∪ C ∪ E, B ∪ C ∪ E,

A ∪B ∪ C ∪ E, D ∪ E, A ∪D ∪ E, B ∪D ∪ E,

A ∪B ∪D ∪ E, C ∪D ∪ E, A ∪ C ∪D ∪ E,

B ∪ C ∪D ∪ E, A ∪B ∪ C ∪D ∪ E} (4.2)
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The cardinality of Γ(Ω) is equal to 2|Ω| = 25 = 32 and it is made of all possible

subsets of Ω. Among the subsets of the power set, some elements must be considered

for the Evidence Theory (i.e., during the fusion process), but have no meaning in risk

assessment. For example, the set {A ∪ E} means that the risk is contained in A or in

E, but it is not possible to distinguish between one of the elements of the subset.

To overcome this issue, the authors in this work use a different representation of

frame of discernment and Power Set, using graph theory.

In risk assessment, Ω can be represented as an undirected graph G = (V , E),

where V = {ω1, . . . , ωn} is the set of vertices (representing singletons of Ω) and

E = {eij = (ωi, ωi+1), i = 1, . . . , n − 1} is the set of edges connecting vertices, as

depicted in Figure 4.1. Therefore, the only reasonable subsets of the power set are the

ones where the elements respect the following definition.

Figure 4.1 A graph representation of the considered frame of discernment.

Definition 4.1. (Induced Sub-graph of Γ) Each element of the power set γi ∈ Γ(Ω)

defines a sub-graph G ′ of G induced by V ′ = γi. The induced sub-graph G ′ = (V ′, E ′)

contains all the edges of G that connect elements of the given subset of the vertex set

V ′ of G, and only those edges. Formally,

V ′ = γi ⊆ V (4.3)

∀ωj, ωk ∈ V ′, e = (ωj, ωk) ∈ E ⇒ e ∈ E ′ (4.4)
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The induced sub-graph G ′ is connected iff for each pair of vertices (ωj, ωz) ∈ G ′

either

• ωj = ωz

• ωj ̸= ωz, and a path between them on G ′ must exist

Let us provide a brief example, in which the previous definition (4.1) is applied. Let

γi = {B ∪ C ∪D} as a candidate of the focal set. The induced sub-graph G ′ = (V ′, E ′)

is made of V ′ = {B, C, D} and E ′ = {(B, C), (C, D)}. For each couple of elements we

need to find a path among them over G ′:

• The path between B and C is direct due to the existence of the edge (B, C);

• The edge (C, D) justifies the existence of a path between C and D;

• The path between B and D is a walk through the vertex C.

So {B ∪C ∪D} can be considered as a feasible set, because the induced sub-graph

is connected.

Let γi = {A ∪B ∪D ∪ E} as a candidate of the focal set. In this case the induced

sub-graph G ′ = (V ′, E ′), where

• V ′ = {A, B, D, E}

• E ′ = {(A, B), (D, E)}, because those edges are the only ones between the vertices

V ′ in G

This induced sub-graph G ′ is not connected because between the vertices B and D

there is no path in G ′. Therefore, the set {A ∪B ∪D ∪E} is not a feasible set for the

Reduced Power Set.

Following 4.1, the Reduced Power Set consists of all subsets whose induced sub-

graph satisfies connectivity condition. Throughout the paper, we will refer to the

Reduced Power Set as Γ′(Ω).
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Referring to the previous considerations and remembering that the empty-set must

be a part of Γ′(Ω), the Reduced Power Set from G in Figure 4.1 is:

Γ′(Ω) = {∅, A, B, A ∪B, C, B ∪ C,

A ∪B ∪ C, D, C ∪D,

B ∪ C ∪D, A ∪B ∪ C ∪D,

E, D ∪ E, C ∪D ∪ E

B ∪ C ∪D ∪ E, A ∪B ∪ C ∪D ∪ E} (4.5)

Definition 4.2. (Cardinality of the Reduced Power Set) The cardinality of

Γ′(Ω) is

|Γ′(Ω)| =
(

n∑
i=1

i

)
+ 1 (4.6)

where n is the number of elements in Ω.

Therefore, the Reduced Power Set has always less elements than the classical Power

Set Γ(Ω). In the proposed example, |Γ′(Ω)| = 16 < |Γ(Ω)| = 32.

In order to use the Reduced Power Set in the Evidence Theory framework, it is

mandatory to demonstrate that the result of the combination rules is still a mapping

function that gives not-zeros values to the elements of the Reduced Power Set, i.e.,

m : Γ′(Ω) → [0, 1]. Most of the combination rules, (see Table 4.1), exploit the

intersection operator to obtain the result of the mapping function m.

In the following, a property of the Reduced Power Set Γ′(Ω) is introduced in order

to apply it within the framework.

Proposition 4.1. (Closeness of Γ′ (Ω)) Γ′(Ω) is closed under the intersection

operator.
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Proof. In order to prove the proposition, it is necessary to define the intersection

operator ∩ on a graph. In this case study, the result of the intersection between two

elements of the power set γi ∩ γj = γz is an induced sub-graph G ′
z = (V ′

z, E ′
z). Notice

that this set belongs to Γ′(Ω). Therefore the corresponding induced sub-graph must

be connected. Using the same notation, the induced sub-graph for γi is denoted as G ′
i

and for γj is used G ′
j.

The induced sub-graph G ′
z considers the vertices that are common to two subsets,

so V ′
z = V ′

i ∩ V ′
j and the same is for the edges E ′

z = E ′
i ∩ E ′

j.

Let us prove it by contradiction. We assume that if the induced sub-graph G ′
z

is not connected, when both G ′
i and G ′

j are connected induced sub-graphs, a logical

contradiction occurs hence G ′
z is connected.

If the induced sub-graph G ′
z is not connected, it is still the results of the intersection

operator, as defined before, and so:

V ′
z ⊆ V ′

i, and V ′
z ⊆ V ′

j (4.7)

E ′
z ⊆ E ′

i , and E ′
z ⊆ E ′

j (4.8)

The induced sub-graphs G ′
i and G ′

j are connected and so they must also contain a

subset of G ′, in Figure 4.1, not included in G ′
z. This specific sub-graph is denoted G ′

c

and considering the graph G, G ′
c is unique. Therefore, this sub-graph G ′

c is included

in G ′
i and in G ′

j because they must be connected for definition, but in this way, also

G ′
c ⊆ G ′

z. Hence, G ′
z is connected.

This proposition shows that, applying an intersection-based combination rule, the

result is still a subset of the Reduced Power Set.

It is worth noticing that the principal combination rules (such as Equation 2.1, Equa-

tion 2.2 and Equation 2.3), exploit the intersection operator among sets to obtain

the final fusion results. In Table 4.1, the principal combination rules are listed with
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their use of two operators: ∪ and ∩. For further analysis on the properties and the

mathematical expression of the rules reported in Table 4.1, see also [18].

Table 4.1 Operators ∪ and ∩ in the principal rules of combination.

Dempster Smets PCR Yager Dubois-Prade Conj Disj

∪ x x
∩ x x x x x x

Table 4.2 Results of the example using different combination rules, such as Dempster,
Smets and PCR-6 rules.

m1 m2 Dempster Smets PCR

∅ 0.0 0.0 0.0 0.31 0.0
A 0.1 0.0 0.06 0.02 0.029
B 0.1 0.0 0.09 0.06 0.087
C 0.1 0.1 0.21 0.18 0.2609
D 0.0 0.1 0.09 0.06 0.087
E 0.0 0.1 0.06 0.02 0.029

AB 0.1 0.0 0.05 0.02 0.029
AC 0.0 0.0 0.0 0.0 0.0
AD 0.0 0.0 0.0 0.0 0.0
AE 0.0 0.0 0.0 0.0 0.0
BC 0.1 0.0 0.085 0.07 0.1014
BD 0.0 0.0 0.0 0.0 0.0
BE 0.0 0.0 0.0 0.0 0.0
CD 0.0 0.1 0.085 0.07 0.1014
CE 0.0 0.0 0.0 0.0 0.0
DE 0.0 0.1 0.05 0.02 0.029

ABC 0.1 0.1 0.055 0.04 0.058
ABD 0.0 0.0 0.0 0.0 0.0
ABE 0.0 0.0 0.0 0.0 0.0
ACD 0.0 0.0 0.0 0.0 0.0
ACE 0.0 0.0 0.0 0.0 0.0
ADE 0.0 0.0 0.0 0.0 0.0
BCD 0.1 0.1 0.07 0.06 0.087
BCE 0.0 0.0 0.0 0.0 0.0
BDE 0.0 0.0 0.0 0.0 0.0
CDE 0.1 0.0 0.055 0.04 0.058

ABCD 0.1 0.1 0.015 0.01 0.0145
ABCE 0.0 0.0 0.0 0.0 0.0
ABDE 0.0 0.0 0.0 0.0 0.0
ACDE 0.0 0.0 0.0 0.0 0.0
BCDE 0.0 0.1 0.015 0.01 0.0145

Ω 0.1 0.1 0.01 0.01 0.0145
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In the following, an example is reported in order to show that, choosing as focal

sets of Γ(Ω) only elements that respect 4.1 and applying combination rules that exploit

the intersection operator, the fusion results are contained in the Reduced Power Set

Γ′(Ω), see Table 4.2. As BPA values (m1 and m2), a random function assigns values

between 0 and 1 to the focal sets. As combination rules, the authors choose Dempster’s

(Equation 2.1), Smets’ (Equation 2.2) and PCR-6 (Equation 2.3) rules.

In conclusion, the Reduced Power Set Γ′(Ω) can be used in risk assessment, to achieve

high accuracy and small computational time, during the fusion process.

In the next Section, the results of the combination using the PCR-6 rule will be

shown.

4.2 Power Grid as an Application for Risk Assess-

ment

In this paragraph, a Medium Voltage power grid controlled by a Supervisory Control

And Data Acquisition (SCADA) system, connected to a ethernet-based telecommuni-

cation network [44], is considered as an application scenario.

The power grid is composed of two main lines, fed by the two substations in Fig-

ure 4.2. Different current branches (with physical redundancy) provide power to the

loads connected to the grid. In normal conditions, the two main lines are usually

disconnected thanks to breaker no. 7 and breaker no. 8 that are normally open. To

maintain a radial topology, breaker no. 3 and breaker no. 5 are also open.

The SCADA system in Figure 4.3 is able to monitor the actual state of the power

grid and eventually reconfigure the topology by the adoption of the Fault Isolation and

System Restoration (FISR) procedure, also called power load shedding. In general if a

permanent fault happens, the operator restores the power in the grid by opening and
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Figure 4.2 An example of Medium Voltage (MV) power grid
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Figure 4.3 The SCADA telecommunication network
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closing the breakers. Such procedure is grid-dependent, because different power grids

have different FISR procedures, derived by the topology. A complete description of

FISR algorithms is outside the scope of this thesis, see [45] for further explanations.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7 Node 8

Network 
Management 

System

Figure 4.4 A general-purpose telecommunication network

In Figure 4.4, the general-purpose telecommunication network is needed to transmit

information from the SCADA control center towards the power grid breakers. This

network has mainly a ring topology: in the event of a link failure, packets are sent

back to the source node in order to change the routing protocol. In Figure 4.4, node n.

8 and node n. 4 are the links between this network and the SCADA layer.

In the following the information flow among SCADA control center, the power grid

and the telecommunication network is described:
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• Every circuit breaker is telecontrolled from the SCADA system by means of

Remote Terminal Unit (RTU) and/or Programmable Logical Controller (PLC)

that use compatible TCP/IP protocol;

• RTUs and PLCs send and receive SCADA packets (containing opening and

closing commands) through telecommunication network.

In the event of mechanical fault or cyber attack, it is important to evaluate the

risk on the overall system. As already done in [33] and as we showed in Chapter 3,

this kind of scenario has been used to individuate the cause of cyber-physical faults,

fusing information coming from specific domain sensors (tied to Cyber and Physical

layers), when an attacker wants to compromise the regular operations within the power

grid through telecommunication vulnerabilities. In what follows we will show that it

is possible not only to find the most plausible cause of faults, but also to estimate a

comprehensive risk belonging to the two layers, cyber and physical, of the power grid.

The Quality of Service toward electrical customers is highly dependent on the

operability of the power grids and on the interconnected infrastructures: the SCADA

and the telecommunication network in the proposed case study. The risk towards

customers of the power grid is influenced by the three infrastructures, and their

information must be fused for assessing the overall risk.

Two subsequent situations are evaluated in the following:

1. A Man-In-The-Middle (MITM) attack, where a malicious attacker enters into

the telecommunication network in order to capture information flows between

RTUs and control center;

2. An infection attack, where the malicious intruder wants to modify the behaviour

of a specific set of RTUs. In this case the risk of blackouts is greater than in the

previous situation, due to active changes in the power grids.
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As already done by Gao et al. in [39] for risk evaluation in network security, we

merged several sources and risk factors in order to find the overall risk index. The

sources of information from the three infrastructures are:

• A physical sensor on the substation of the power grid, able to transmit information

related to the actual current;

• An Intrusion Detection System (IDS) in the telecommunication network, able to

recognize a malicious attacker on the general-purpose network;

• An IDS on the SCADA network. A SCADA system is different from the con-

ventional IT system: it is a hard real-time system; its terminal devices have

limited computing and memory capabilities; and the logic execution occurred

within SCADA has a direct impact on the physical world dictates safety as the

paramount. Hence, a SCADA-specific IDS is needed to detect attackers.

In this context it is essential to define a suitable knowledge model so that different

experts (cyber or physical) or sensors can support risk of distinct realms.

Simulations over the real system were carried out with CISIApro, an agent-based

simulator for Critical Infrastructures [46]. An Evidence Theory module was added to

the simulator with the aim to apply and test the framework introduced in Section 4.1.

The choice of the BPA assignment is an open question without a unique answer.

This assignment is strongly tied to the case study and to the ability of the researcher

of properly assigning BPA values. After exhaustive tests over the system, also taking

in consideration the behaviours of the MITM and Infection attacks, a proper mass

function was assigned to CISIApro simulator. As previously mentioned, the main goal

of the proposed methodology is the identification of which elements of the power set

are meaningful in risk assessment, hence all the questions about how and why a mass

function is better than another one are outside the scope of this work.
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In the following two examples are proposed with different conflicting values among

sources.

In particular, we consider as Frame of Discernment Ω a risk scale from low (A) to

high (E) and Γ′(Ω) as power set. The PCR-6 rule (Equation 2.3) is used to combine

sources with the aim of obtaining good solutions in terms of quality-conflict ratio, as

explained in Section 2.3.2.

4.2.1 Man In The Middle Attack: Simulations and Results

For Evidence Theory each data coming from the sensors is an independent source of

information and must be translated into a BPA assignment (i.e. mi, i = 1, 2, 3).

In Table 4.3, BPA values are summarized. In the first column, the focal sets are

listed: AB means the element of the power set usually indicated as {A ∪B}, and so

on. The physical sensor m1 of the power grid detects a lower risk; the SCADA-specific

IDS m2 assigns must of the BPA to B set; and the IT IDS has confidence that the risk

of a MITM attack is middle, i.e. m3(C) = 0.6.

Table 4.3 BPA assignments for the Man in the Middle attack.

A B C AB DE CDE BCDE Ω

m1 0.6 0.0 0.0 0.0 0.0 0.0 0.2 0.2
m2 0.1 0.6 0.0 0.0 0.0 0.1 0.0 0.2
m3 0.0 0.0 0.6 0.1 0.1 0.0 0.0 0.2

A value assigned to the subset Ω = {A ∪ B ∪ C ∪ D ∪ E} represents the total

ignorance of the source and so the inability to discern among the single elements of

this set.

In Figure 4.5, only the not-zero sets of Γ′(Ω), after the PCR-6 fusion, are displayed.

The blue bars represent the fusion of m1 and m2 (getting m12); the red ones, instead,

are the results obtained combining m12 and m3.
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Figure 4.5 Results using PCR-6 rule for combining three information sources

As demonstrated in Section 4.2, no evidences are assigned to the elements of

Γ(Ω) \ Γ′(Ω): the combination results and the initial focal sets are contained within

Γ′(Ω). The overall risk is medium, because the value of the C is the greatest one.

A relevant observation must be done: even if the conflict value raises, due to

different sources belonging to heterogeneous domains, the total lack of knowledge

denoted as {A, B, C, D, E} = Ω decreases and a common value of risk is reached ({C}

that means a medium value).

4.2.2 Infection Attack: Simulations and Results

In this case, a different situation is considered: an infection is spreading from the

telecommunication network towards the power grid in order to cause malfunctioning in

the physical layer. In Table 4.4, the BPA values are listed:

m1 Represents the assignment from the physical sensor in the power grid. A medium

risk value is allocate through the sets;
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m2 Contains the values of the SCADA-specific IDS. A high risk value is assigned to

m(D);

m3 Corresponds to the telecommunication IDS assignment, after the detection of the

infection attack.

Table 4.4 BPA assignments for the Infection attack.

C D E AB DE ABC ABCD Ω

m1 0.6 0.0 0.0 0.1 0.1 0.0 0.2 0.2
m2 0.0 0.6 0.1 0.0 0.0 0.3 0.0 0.0
m3 0.0 0.1 0.6 0.0 0.0 0.0 0.2 0.1
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Figure 4.6 Results using PCR-6 rule for combining four information sources

The output of the combination rule, using PCR-6, is depicted in Figure 4.6. The

result demonstrates how, if an infection attack is carried out, the risk of possible

electrical blackout is very high (m(E) = 0.4).

To perform computational time analysis between the classical Evidence Theory

framework and the proposed framework, the data obtained from CISIApro simulator [46]



64 Graph-Based Evidence Theory for Assessing Risk

were evaluated with Matlab [34]. A simulation script shown, after 1,000,000 trials, that

the mean time for fusion process using PCR-6 rule over Γ(Ω) is 2.52 seconds, instead of

1.47 seconds for Γ′(Ω). In this case, the improvement is not remarkable but it increases

with the cardinality of the frame of discernment as asserted in Definition 4.2. For

example, if the cardinality of the frame of discernment is n = 10, the power set contains

2n = 1024 instead the Reduced Power Set has only 56, reducing the computational

time of around 20 times.

So, as introduced in Section 4.1, the Reduced Power Set is better than Γ(Ω) in

terms of computational time.

A final remark on the fusion process must be made: as explained before, the BPAs

were fused in a sequential way and, because the PCR-6 rule is non associative, the

sequential fusion process is known to be sub-optimal [18]. To get optimal results

the BPAs must be combined all together using a generalized PCR-6 rule. Although,

this remark does not affect the obtained results because the rule is still based on

the intersection operator and so our case study demonstrates the effectiveness of the

proposed framework.





Chapter 5

Network Composition for Optimal

Disturbance Rejection

Network systems are ubiquitous in engineering, social, and natural domains, where they

enable complex functionalities by interconnecting diverse components. An important

property of such systems is their robustness to external disturbances altering individual

node or interconnection dynamics: the failure of a single network component may

cascade into the failure of all interconnected parts [47]. Cyber-Physical Systems are,

nowadays, an important class of network systems: they combine physical processes

with computational resources in an interconnected framework. These systems act

in dynamically changing environments, collect multimodal sensor data, process data

at runtime, and communicate with control centers responsible of taking control and

planning decisions accordingly. Despite significant advances in relevant areas, several

challenges still hinder the development of high-assurance and reconfigurable networks

of cyber-physical systems. Increasing robustness of these systems is a very important

task for a control system engineer.
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Robustness of interconnected networks depends on both the robustness of the

isolated sub-networks, as well as on the topological properties of the connections among

different networks.

The majority of the existing research on the robustness of dynamical systems and

networks focuses on single or isolated components. Classic work in the controls literature

defines different measures of the robustness of a dynamical system to disturbances;

e.g., see [48]. In the context of network systems, network re-wiring and re-weighting

schemes are proposed in [49, 50] to improve the robustness of a single network to

environmental disturbances. In the more recent literature on network of networks,

different metrics have been used to analyze the robustness of interconnected systems.

In [51], cascading failures through interconnected networks are studied via percolation

theory. In [52], robustness against random failures or intentional attacks is considered,

and a block-based model is proposed to incorporate information of both connectivity

and correlations among blocks and links, and infer upon the structure of robust

networks. Multi-layer networks, their dynamical properties, and their robustness

to random failures are studied, for instance, in [53, 54]. Finally, the importance of

the interconnection topology and its structural properties to mitigate failures across

networks is highlighted in [55].

We depart from these works by considering a different measure of network robust-

ness and network dynamics, by providing a control-theoretic characterization of the

robustness of interconnected networks, and by providing an algorithm for the design of

optimally robust networks of networks. Our results are in accordance and provide a

quantitative study of recent findings; e.g., see [47].

Contribution The contributions of this chapter are threefold. First, we construct a

mathematical framework to analyze the robustness of Cyber-Physical Systems, viewed
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as interconnected network systems, where the dynamics evolve according to modified

Laplacian matrix. We adopt theH2 system norm to quantify the robustness of a network

system to external disturbances. For the case of two interconnected networks, we

provide a closed-form expression of the H2 system norm with respect to the individual

components. We show, and quantify, that the H2 system norm always increases upon

interconnection of multiple blocks, so that interconnected networks are less robust

than the isolated parts. Second, we prove that interconnections among nodes of the

atomic networks with highest degree yield maximum robustness of the interconnected

system. In other words, we provide a network interconnection rule that maximizes

robustness to disturbances. In addition, we describe an interconnection algorithm for

the case of multiple sub-networks, and we provide bounds on the robustness of the

composite network. Third and finally, we also generalize the proposed model, making a

step further in the problem of finding the optimal robust topology for network systems

and, in particular, for Cyber-Physical Systems.

5.1 Problem Setup and Preliminary Notions

In this chapter we study the robustness properties of a dynamical network arising from

the interconnections of multiple isolated components, with respect to the interconnection

topology. To this aim, let S = {s1, . . . , sn} be a set of n atomic dynamical networks.

Every network is described by the connected and undirected graph Gi = (Vi, Ei) with

|Vi| = ni. Let the dynamics of the network si be described by

ẋi = −Qi xi,
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where xi : R≥0 → Rni is the map containing the state of the i-th network. For each

network si, the network matrix is defined as

Qi = α Ii + Li, (5.1)

with Li the Laplacian matrix associated with Gi [56], and α ∈ N>1. The network

dynamics (5.1) can be thought as the composition of two parts: the nominal dynamics,

i.e., I + L, and the network interconnection dynamics, i.e., (α− 1) I. The parameter

α > 1 represents an upper bound on the number of interconnections that can be

performed through each node of the network. Notice that, by construction, Qi is

positive definite and strictly diagonally dominant, hence invertible [57].

We adopt the open loop H2 system norm to measure the ability of a network to

reject disturbances [49]. As we are interested in quantifying the effect on the whole

state of a disturbance affecting all network nodes, the H2 of the network si is defined

as

H2(si) = Trace
(∫ ∞

0
e−2Qit dt

)
= 1

2Trace(Q−1
i ). (5.2)

In order to interconnect the networks si and sj, we select two nodes h ∈ Vi

and k ∈ Vj for which the constraint α on the maximum number of interconnection is

satisfied1, and define the composite network sij with Gij = (Vij, Eij), where Vij = Vi∪Vj

and Eij = Ei ∪ Ej ∪ (h, k), and dynamics

ẋij = −Qij xij,

1Given a matrix Qi and a node h, to check whether an interconnection can be established through
node h we simply check that the h− th row-sum is greater than one, that is

∑ni

j Qi(h, j) > 1.
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where xij = [xT
i xT

j ]T and, being ei the i-th canonical vector of appropriate dimension,

Qij =

 Qi −eheT
k

−ekeT
h Qj

 . (5.3)

Clearly, H2(sij) = Trace(Q−1
ij )/2. Observe that, by constraining each network to

perform at most α − 1 interconnections through each of its nodes, we ensure the

Qij matrix to remain positive definite and strictly diagonally dominant, and hence

invertible.

In the sequel we assume that the constraint on the maximum number of inter-

connections (dictated by α) is satisfied when selecting a pair of nodes to perform an

interconnection between two networks.

5.1.1 An Illustrative Example

Consider two networks s1 and s2 composed, respectively, of n1 = 4 and n2 = 5 nodes as

in Figure 5.1, with α = 2. The H2 norm of the two isolated networks is H2(s1) = 0.600

and H2(s2) = 0.8121. We now compute the robustness of the composite network after

interconnecting different pairs of nodes.

Table 5.1 Composite network H2 normalized ratio.

s1\s2 1 2 3 4 5

1 1.0251 1.0251 1.0152 1.0188 1.0259
2 1.0407 1.0407 1.0244 1.0302 1.0419
3 1.0309 1.0309 1.0186 1.0230 1.0318
4 1.0309 1.0309 1.0186 1.0230 1.0318

Table 5.1 shows the normalized ratio computed as the H2 norm of the composite

network obtained interconnecting the pair of nodes (h, k), with h ∈ V1 and k ∈ V2,

divided by the sum of the H2 norm of the two isolated networks. Clearly, the lower

the value of this ratio, the better the performance of the interconnection pair (h, k).
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Figure 5.1 Example of network composition. In particular, Figure 5.1-a) and Figure 5.1-
b) show two dynamical networks G1 and G2 along with their network matrices Q1 and
Q2, respectively. Figure 5.1-c) shows the graph G12 resulting from the interconnection
(dashed edge) of two nodes (hubs), and the related network matrix Q12.
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According to the numerical results, the best performance is obtained with the pair

(1, 3), while the worst performance with (2, 5). From this numerical evaluation two

interesting observations can be made: first, the robustness of the composite network

seems to be always less than the robustness of the (sum of the) isolated components

and, second, interconnections carried out through different pairs of nodes (h, k) lead to

composite networks s12 with different robustness levels.

Next, we investigate how different interconnection nodes perform when the car-

dinality of the networks increases. We consider a sequence of n networks of size ni,

and compute the two interconnection sequences with best and worst performance.

Due to the dimensionality of the problem, we let ni = 4 and n vary from 2 to 6, and

report our result in Figure 5.2. This numerical study shows that the difference between

the best and worst interconnection sequence is bound to diverge to as the number of

networks increases, thus confirming the importance of the problem of designing efficient

algorithm to select optimal interconnection patterns.
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Figure 5.2 Numerical example with n networks ranging from 2 to 6. Each network was
with fixed size ni = 4. For each fixed number of networks n, all possible combinations
of pair of nodes were computed for the interconnection.
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5.2 Optimal Interconnection of Networks

In this section we characterize how the H2 norm changes when multiple networks are

interconnected. We start with the case of two networks, and then we generalize our

results to the case of multiple networks.

5.2.1 Interconnection of Two Networks

Let us consider two atomic networks Qi and Qj. We first provide a closed-form

expression for the H2 norm of the interconnected network Qij . To this aim, let Q(h, k)

and Q−1(h, k) denote the entry in the h-th row and k-th column for the matrix Q and

the inverse matrix Q−1, respectively. In addition, let Q−1(:, h) and Q−1(:, k) denote

the h-th row and the k-th column of the matrix Q−1, respectively.

Theorem 5.1. (H2 norm of two interconnected networks) Let Qij be as in

(5.3). Then,

Trace(Q−1
ij ) = Trace(Q−1

i ) + Trace(Q−1
j ) + λhk

ij + λkh
ij ,

where
λhk

ij = ∥Q−1
i (:, h)∥2

1/Q−1
j (k, k)−Q−1

i (h, h)
> 0,

λkh
ij =

∥Q−1
j (:, k)∥2

1/Q−1
i (h, h)−Q−1

j (k, k)
> 0.

Proof. In order to prove the Theorem, we first derive a closed form for the main

diagonal of the inverse of the block matrix Qij defined as in (5.3), and then we compute

its trace as a function of the two matrices Qi and Qj and of the interconnections through

the nodes h ∈ Vi and k ∈ Vj. In particular, the following closed-form expression for
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Q−1
ij holds

Q−1
ij =


(
Qi − eheT

k Q−1
j ekeT

h

)−1
⋆

⋆
(
Qj − ekeT

h Q−1
i eheT

k

)−1

 , (5.4)

where the block off-diagonal can be neglected as they do not affect the computation of

the Trace.

Let us now consider the first block on the main diagonal of the inverse matrix Q−1
ij .

In particular, let us recall that the interconnection is obtained by connecting the h-th

node of the system s1 with the k-th node of the system s2. Then the following holds

(
Qi − eheT

k Q−1
j ekeT

h

)−1
=
(
Qi −Q−1

j (k, k)eh eT
h

)−1

= Q−1
i + Q−1

i (:, h)Q−1
i (h, :)

1/Q−1
j (k, k)−Q−1

i (h, h)
= Q−1

i + P hk
ij ,

where Lemma A.5 has been used to obtain the second equality.

By following a similar reasoning for the second block on the main diagonal of the

inverse matrix Q−1
ij we obtain

(
Qj − ekeT

h Q−1
i eheT

k

)−1
=
(
Qj −Q−1

i (h, h)ek eT
k

)−1

= Q−1
j +

Q−1
j (:, k)Q−1

j (k, :)
1/Q−1

i (h, h)−Q−1
j (k, k)

= Q−1
j + P kh

ij ,

Since the objective is to compute the trace of the block-diagonal matrix Q−1
ij given

in (5.4), let us now investigate the structure of the eigenvalues of the two perturbations

P hk
ij and P kh

ij . In particular, by noticing that these perturbations are by construction

rank-1 matrices the following holds

spec(P hk
ij ) = {λhk

ij , 0, . . . , 0},

spec(P kh
ij ) = {λkh

ij , 0, . . . , 0},
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where the eigenvalues λhk
ij and λkh

ij are by construction defined as

λhk
ij =

∥∥∥Q−1
i (:, h)

∥∥∥2

1/Q−1
j (k, k)−Q−1

i (h, h)
,

λkh
ij =

∥∥∥Q−1
j (:, k)

∥∥∥2

1/Q−1
i (h, h)−Q−1

j (k, k)
.

Therefore, from the linearity of the Trace operator it follows

Trace(Q−1
ij ) = Trace(Q−1

i ) + Trace(Q−1
j ) + λkh

ij + λhk
ij .

At this point in order to prove that λhk
ij > 0 and λhk

ij > 0 it is sufficient to show

that by construction
1/Q−1

j (k, k)−Q−1
i (h, h) > 0,

1/Q−1
i (h, h)−Q−1

j (k, k) > 0.

.

In this regard, note that Qi and Qj are symmetric strictly diagonally dominant M-

matrices which, by construction, are irreducible being the graphs G1 and G2 associated

to them (strongly) connected by definition. Then from Lemma A.3 it follows that Q−1
i

and Q−1
j are symmetric entrywise positive matrix. Furthermore, by construction we

also know that (
Qr(i, i)−

∑
|Qr(i, j)|

)
> 1, ∀ i ∈ 1, . . . , nr,

with r ∈ {i, j}. Thus from [58] it follows that

nr∑
j=1

Q−1
r (i, j) ≤ 1, ∀ i ∈ 1, . . . , n,



76 Network Composition for Optimal Disturbance Rejection

with r ∈ {i, j}, which in turn implies

Q−1
i (h, h) < 1, ∀ h ∈ V1,

Q−1
j (k, k) < 1, ∀ k ∈ V2,

thus the result follows.

Theorem 5.1 provides a general closed-form expression for the H2 norm of a

composite network. It should be noticed that the relation in Theorem 5.1 depends on

the interconnection parameter α, and that this dependency is implicit in the matrices

Qi and Qj . Theorem 5.1 implies that networks arising from the interconnection of two

isolated atomic networks are less robust than the isolated components. In fact,

Trace(Q−1
ij ) > Trace(Q−1

i ) + Trace(Q−1
j ).

Moreover, it follows from Theorem 5.1 that the minimum H2 performance of the

composite network is achieved when the interconnections nodes h and k are selected

to minimize the perturbation λkh
ij + λhk

ij . Let deg(i) denote the degree of node i, and

recall that a node of a network is a hub if it has the highest degree [56]. We next show

that the H2 norm of a composite network is minimized when the nodes h and k are

two hubs of the atomic networks G1 and G2, respectively.

Theorem 5.2. (Connections via hubs) Let Qij be as in (5.3), and let h∗ and k∗

satisfy

λh∗k∗

ij + λk∗h∗

ij = min
h∈Vi,k∈Vj

λkh
ij + λhk

ij ,



5.2 Optimal Interconnection of Networks 77

where λkh
ij and λhk

ij are defined as in (5.1). Then,

deg(h∗) = max
h∈Vi

deg(h), and deg(k∗) = max
k∈Vj

deg(k).

Proof. n order to prove the Theorem it is sufficient to show that

λkh
ij + λhk

ij > λk∗h∗

ij + λh∗k∗

ij ,

for all h ∈ V1 and k ∈ V2 such that

deg(h) < deg(h∗), and deg(k) < deg(k∗),

where

deg(h∗) = max
h∈Vi

deg(h), and deg(k∗) = max
k∈Vj

deg(k).

In particular, it should be noticed that by construction the quantity λkh
ij + λhk

ij is

minimized when the terms Q−1
i (h, h) and Q−1

j (k, k) are minimized at the denominator

and the terms ∥Q−1
i (:, h)∥2 and ∥Q−1

j (:, k)∥2 are minimized at the numerator. Therefore,

the problem can be equivalently stated as proving that for all h ∈ V1 and k ∈ V2 such

that

deg(h) < deg(h∗), and deg(k) < deg(k∗),

then for the system si we have:

Q−1
i (h, h)>Q−1

i (h∗, h∗), and ∥Q−1
i (:, h)∥2 >∥Q−1

i (:, h∗)∥2,
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and for the system sj we have:

Q−1
j (k, k)>Q−1

j (k∗, k∗), and ∥Q−1
j (:, k)∥2 >∥Q−1

j (:, k∗)∥2,

In this regard, let us now focus on the first inequality for the system si as a similar

reasoning will hold for the system sj. In particular, by recalling that Qi Q−1
i = I, for

any two vertices h and h∗ we have

ni∑
r=1

Qi(h∗, r)Q−1
i (r, h∗) = 1,

ni∑
r=1

Qi(h, r)Q−1
i (r, h) = 1,

(5.5)

from which by equating we obtain

ni∑
r=1

Qi(h∗, r)Q−1
i (r, h∗) =

ni∑
r=1

Qi(h, r)Q−1
i (r, h).

At this point, by recalling that Qi(h, h) < Qi(h∗, h∗) we have that

Q−1
i (h∗, h∗) = Qi(h, h)

Qi(h∗, h∗)Q−1
i (h, h)

+
n1∑

r=2

Qi(h∗, r)
Qi(h∗, h∗)Q−1

i (r, h∗)−
n1∑

r=2

Qi(h, r)
Qi(h∗, h∗)Q−1

i (r, h),

Therefore it follows that Q−1
i (h∗, h∗) < Q−1

i (h, h) if and only if

n1∑
r=2

Qi(h∗, r)
Qi(h∗, h∗)Q−1

i (r, h∗)−
n1∑

r=2

Qi(h, r)
Qi(h∗, h∗)Q−1

i (r, h)

<

(
1− Qi(h, h)

Qi(h∗, h∗)

)
Q−1

i (h, h),
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which can be equivalently expressed as

n1∑
r=2

Qi(h∗, r)Q−1
i (r, h∗)−

n1∑
r=2

Qi(h, r)Q−1
i (r, h)

< (Qi(h∗, h∗)−Qi(h, h)) Q−1
i (h, h),

At this point, by recalling that the equalities (5.5) hold, the previous equation

can be expressed solely in terms of the elements Qi(h, h), Q−1
i (h, h) and Qi(h∗, h∗),

Q−1
i (h∗, h∗) as follows

(
1−Qi(h, h) Q−1

i (h, h)
)
−
(
1−Qi(h∗, h∗) Q−1

i (h∗, h∗)
)

< (Qi(h∗, h∗)−Qi(h, h)) Q−1
i (h, h),

from which we obtain

Qi(h∗, h∗) Q−1
i (h∗, h∗)−Qi(h, h) Q−1

i (h, h)

< (Qi(h∗, h∗)−Qi(h, h)) Q−1
i (h, h),

by further simplifying we have

Qi(h∗, h∗) Q−1
i (h∗, h∗) < Qi(h∗, h∗) Q−1

i (h, h),

that is

Q−1
i (h∗, h∗) < Q−1

i (h, h).

and thus the first inequality for the system si follows.

Let us now focus on the second inequality for the system si as again a similar

reasoning will hold for the system sj . In this regard, it should be notice that ∥Q−1
i (:, h)∥2

represents the entry (h, h) of the matrix
(
Q−1

i

)2
. Therefore, the result we are seeking

can be obtained by following the same reasoning as before if the following two properties
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hold

Q2
i

(
Q−1

i

)2
= I,

and for all h ∈ V1 such that deg(h) < deg(h∗) we have

Q2
i (h, h) < Q2

i (h∗, h∗)⇐⇒ Qi(h, h) < Qi(h∗, h∗).

The first property follows directly from the fact that Q1 Q−1
1 = I; while the second

property can be shown noticing that by construction the (i, i) entry of the matrix Q2
1

is defined as

Q2
1(h, h) =

n1∑
r=1

Q1(h, r) Q1(r, h) = ∥Qi(:, h)∥2 ,

where the last equality follows because Qi is symmetric.

Theorem 5.2 implies that, in order to minimize the H2 norm of the interconnected

system, two atomic networks should be connected by creating links between nodes

with highest degree. Note that the isolated atomic networks may have multiple hubs,

and the choice of an hub remains, at this stage, a combinatorial problem.

5.2.2 Interconnection of Multiple Networks

We now study the robustness of networks arising from the composition of multiple

components. In this context the pairwise interconnection previously introduced for two

dynamical networks is now generalized to the case of networks which themselves may

already represent composite networks. In particular, we assume that at each iteration

only a pairwise interconnection between two (composite) dynamical networks may be

carried out.

We now introduce the following preliminary result.
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Lemma 5.1. (Trace decomposition) Let Ai = Di + Li and Aj = Dj + Lj be

symmetric positive definite and diagonally dominant with Di and Dj diagonal entrywise

positive (integer) matrix and let A be

Aij =

 Ai −eh eT
k

−ek eT
h Aj

 , (5.6)

for some canonical vectors eh and ek such that

h = argmaxr Ai(r, r), and k = argmaxr Aj(r, r),

Then, Aij = Dij + Lij is symmetric positive definite and diagonally dominant, and

Trace(A−1
ij ) ≤ Trace(A−1

i ) + Trace(A−1
j ) + ∆ij + ∆ji,

where
∆ij = (1 + γ2

i )2(1 + γj)2Amax
i

γiA2
i

max (16γiγjAmax
i Amax

j − (1 + γi)2(1 + γj)2
) ,

∆ji =
(1 + γi)2(1 + γ2

j )2Amax
j

γjA2
j

max (16γiγjAmax
i Amax

j − (1 + γi)2(1 + γj)2
) ,

(5.7)

with γk = λmax(Ak)/λmin(Ak) and

Amax
k = max

r
Ak(r, r), and A2

k
max = max

r
A2

k(r, r).

Proof. As for the proof of Theorem 5.1, by using to the closed-form for the inverse of

a two-block matrix and by exploiting Lemma A.5, it can be shown that the following

holds for the matrix Aij defined as in (5.6):

Trace(A−1
ij ) = Trace(A−1

i ) + Trace(A−1
j ) + λhk

ij + λkh
ij ,
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with λkh
ij and λhk

ij defined as

λhk
ij = ∥A−1

i (:, h)∥2

1/A−1
j (k, k)− A−1

i (h, h)
> 0,

λkh
ij =

∥A−1
j (:, k)∥2

1/A−1
i (h, h)− A−1

j (k, k)
> 0.

Therefore in order to prove the Lemma we must characterize an upper bound for

these two terms λkh
ij and λhk

ij . In particular, it should be noticed that this problem

can be equivalently expressed in terms of characterizing an upper bound for the terms

A−1
i (h, h), ∥A−1

i (:, h)∥2, A−1
j (k, k), and ∥A−1

j (:, k)∥2.

Let us now focus on the two terms A−1
i (h, h) and ∥A−1

i (h, :)∥2 as a similar reasoning

will hold for the other two terms. In particular, from Lemma A.1 we know that the

following holds

A−1
i (h, h) ≤

(
γ

1/2
i + γ

−1/2
i

)2

4 Amax
i

.

where γi = λmax(Ai)/λmin(Ai) and since h = argmaxr Ai(r, r) then Amax
i = Ai(h, h).

At this point, by recalling that by construction ∥A−1
i (:, h)∥2 represents the entry

(h, h) of the matrix
(
A−1

i

)2
, and the eigenvalues of a squared matrix are the squared

eigenvalues of the matrix itself, the following upper bound is obtained

∥∥∥A−1
i (:, h)

∥∥∥2
≤

(
γi + γ−1

i

)2

4 A2
i

max ,

where A2
i

max = maxr A2
i (r, r) and similarly to the previous case since h = argmaxr Ai(r, r)

then by definition it follows that A2
i

max = A2
i (h, h).

At this point, by following the same reasoning, similar bounds can be found for the

two terms A−1
j (k, k) and ∥A−1

j (:, k)∥2.
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Finally, by substituting these bounds in the definition of the two terms λkh
ij and λhk

ij

and by doing simply algebraic manipulations the bounds ∆ij and ∆ji given in (5.7)

follow.

Note that, both the the dynamical matrix of the isolated components Qi as in (5.1)

and of the composite network Qij as in (5.3) fit the structure of a matrix Ai given in

Lemma 5.1. We now provide a useful result for a composite network which relates the

computation of the parameters showing up in (5.7) to the isolated part of which it is

composed of. Intuitively, this will enable the (recursive) application of Lemma 5.1 for

the derivation of robustness bounds to che case of composite networks arising from the

interconnection of multiple components.

Lemma 5.2. (Bounds on composite networks) Let Qi and Qj be as in (5.1)

or (5.3) and let their interconnection Qij via hubs be as in (5.6). Then,

γij < 2 max{Qmax
i , Qmax

j },

Qmax
ij = max

{
Qmax

i , Qmax
j

}
,

Q2
ij

max
> max

{
Q2

i
max

, Q2
j

max}
.

Proof. In order to prove the lemma, we notice that from the Gershgorin circle theorem

by construction the matrix Qij has the following spectrum

spec (Qij) ⊆
[
1, α + 2 max

h∈Vi,k∈Vj

{deg(h), deg(k)}+ 1
]

.

In particular, by noticing that

α + max
h∈Vi,k∈Vj

{deg(h), deg(k)}> max
h∈Vi,k∈Vj

{deg(h), deg(k)}+ 1,
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and by recalling that by definition

Qmax
r = α + max

p∈Vr

{deg(p)}, r ∈ {i, j},

the spectrum of the matrix Qij can be also written as

spec (Qij) ⊆
[
1, 2 max{Qmax

i , Qmax
j }

]
,

thus by recalling that γij = λmax(Qij)/λmin(Qij), it follows that

γij < 2 max{Qmax
i , Qmax

j }.

Furthermore, since the matrix Qij as in (5.3) is a block matrix by construction we

have

Qmax
ij = max

{
Qmax

i , Qmax
j

}
,

and the following holds for Q2
ij

Q2
ij

max = max
{
Q2

i
max

, Q2
j

max}+ 1,

as the block matrices on the main diagonal of Q2
ij are given exactly by Q2

i + diag(eh)

and Q2
j + diag(ek) with diag(ek) a diagonal matrix with all zeros but the entry in

the k-row and k-th column which is equal to 1. This follows directly from the

fact that when computing Q2
ij by construction we have (eheT

k )(ekeT
h ) = diag(eh) and

(ekeT
h )(eheT

k ) = diag(ek).

As far as the network composition in the context of multiple networks is concerned,

we recall that interconnections are assumed to be performed pairwise, thus yielding

to the same block-matrix structure as in (5.3). We remark that the major difference
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compared to the case of a two-networks interconnection relies on the fact that in this

case, at a given step, the isolated parts appearing on the main diagonal of such a

block matrix may themselves represent composite networks. Notably, this properties is

already captured by the more general block matrix form given in (5.6).

We are now ready to state our main result which provides an upper and lower

bound on the H2 norm of a composite dynamical network.

Theorem 5.3. (H2 of composite networks) Let Q be a matrix resulting from a

pairwise interconnection of Q1, . . . , Qn. Then, Q is positive definite and diagonally

dominant and
Trace(Q−1) ≤

n∑
i=1

Trace(Q−1
i ) + (n− 1)∆̄max,

Trace(Q−1) ≥
n∑

i=1
Trace(Q−1

i ),

where ∆̄max is defined as

∆̄max = max
i,j={1,...,n}

{∆̄ij + ∆̄ji}

with ∆̄ij defined as

∆̄ij =

(
1 + (Qmax

i )2
)2

(1 + Qmax
j )2Qmax

i

γiQ2
i

max
(

16 (Qmax
i )2

(
Qmax

j

)2
− (1 + Qmax

i )2 (1 + Qmax
j )2

) (5.8)

Proof. In order to prove the first inequality of the Theorem, let us consider for the

sake of clarity a set S = {1, 2, 3} of 3 dynamical networks and assume with no lack

of generality that interconnections are performed sequentially, that is first the matrix

Q1 is interconnected with the matrix Q2 and then the resulting network matrix Q12 is

connected with the matrix Q3.
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At this point, by recursively applying Lemma 5.1, the following holds for the trace

of the composite network Q123

Trace(Q−1
123) ≤ Trace(Q−1

12 ) + Trace(Q−1
3 ) + ∆12,3 + ∆3,12

≤ Trace(Q−1
1 ) + Trace(Q−1

2 ) + ∆1,2 + ∆2,1

+ Trace(Q−1
3 ) + ∆12,3 + ∆3,12

In particular, by recalling the definition of the terms ∆ij and ∆ji as in (5.7) and by

exploiting Lemma 5.2, the following bound for the terms ∆12,3 + ∆3,12 is obtained with

respect to the atomic parts, namely Q1, Q2 and Q3

∆12,3 + ∆3,12 ≤ max{(∆̄1,3 + ∆̄3,1), (∆̄2,3 + ∆̄3,2)},

where ∆̄i,j given in (5.8) differs from ∆i,j as the γi and γj are replaced with their upper

bound 2Qmax
i and 2Qmax

j , respectively. Note that by using Qmax
i and Q2

ij
max in ∆̄i,j , we

intrinsically exploit the equality and the lower bound given in the second and third

equations of Lemma (5.2), respectively. Therefore we obtain

Trace(Q−1
123) ≤ Trace(Q−1

1 ) + Trace(Q−1
2 ) + Trace(Q−1

3 )

+ (∆1,2 + ∆2,1)

+ max{(∆̄1,3 + ∆̄3,1), (∆̄2,3 + ∆̄3,2)}

At this point, by iterating the same reasoning for a given set S = {s1, s2, . . . , sn}

of n dynamical networks and by still assuming interconnections to be performed
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sequentially, the following bound on the trace of the composite system holds

Trace(Q−1) ≤
n∑

i=1

(
Trace(Q−1

i ) + max
j=1,...,i−1

{∆̄ij + ∆̄ji}
)

≤
n∑

i=1
Trace(Q−1

i ) + (n− 1) ∆̄max

where the second inequality follows from the fact that

∆̄max = max
i,j={1,...,n}

{∆̄ij + ∆̄ji}.

with ∆̄ij ≥ ∆ij for all i, j ∈ {1, . . . , n} by construction.

Note that, by construction the same upper bound holds regardless of the particular

sequence of interconnections and ordering of the dynamical networks. Intuitively, this

can be explained by the fact that, by exploiting both the decomposition properties

of Lemma 5.1 and the structure of the bounds given in Lemma 5.2, the perturbation

introduced by the interconnection of any pair of (intermediate) composite networks can

always be bounded from above by the max of a set of “elementary” upper bounds of

the perturbation arising from network compositions involving only atomic dynamical

networks, i.e., ∆̄ij with i, j ∈ {1, . . . , n}, and for which the inequality stated above still

holds true.

In order to prove the second inequality of the Theorem, it is sufficient to notice that

by construction the perturbation terms introduced by the interconnections contribute

with a positive term to the computation of the H2 norm of the composite network.

Therefore, a straightforward lower bound is given solely by the sum of the trace of the

atomic parts.
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5.2.3 Numerical Results

In this section, we provide numerical results to validate our theoretical findings.

In particular, motivated by the fact that the optimal interconnection between two

dynamical networks is always achieved via nodes with the highest degree, we propose

an algorithm that, at each iteration, minimizes the perturbation terms arising from any

possible interconnection of hubs. We remark that the definition of a hub is given with

respect to an atomic network as detailed in Theorem 5.1. Thus, even for a composite

network nodes are labeled as hubs according to their role in the atomic network they

originally belong to.

To evaluate the effectiveness of our algorithm, we provide a comparison against

a randomized algorithm that, at each iteration, interconnects two randomly selected

networks through a pair of randomly selected nodes as well.

Due to the dimensionality of the problem, we first consider consider a (smaller) set

S = {s1, . . . , sn} of n atomic dynamical networks ranging from n = 2 to n = 7, with

ni ∈ [10, 20] and α = 3, for which we compare our algorithm against the randomized

one, and against the optimal solution as well computed through a brute force approach.

Then, we consider a (larger) set S = {s1, . . . , sn} of n atomic dynamical networks

ranging from n = 10 to n = 50, with a granularity of 10, for which we compare our

algorithm against the randomized one only. In both cases, for each n, we generate 100

set of S networks.

Figure 5.3 shows the outcome for the first set of simulations, where the x-axis

represents the number of networks involved and the y-axis represents the normalized

ratio between the H2 norm of the composite network and the H2 norm of the optimal

solution, i.e., Hopt
2 . In particular, both the mean value and the standard deviation over

the 100 run were computed for both our algorithm and the randomized one. According
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Figure 5.3 Simulation results for the first set (mean and standard deviation) over 100
run. The red lines represent the proposed algorithm, the randomized one is depicted
in blue.

to the numerical results, our algorithm always provides a smaller gap with respected

to the the optimal solution compared to the randomized one.

Figure 5.4 shows the outcome for the second set of simulations, where the x-axis

represents again the number of networks involved whereas the y-axis represents in this

case the normalized ratio between the H2 norm of the composite network and the H2

norm of the lower bound computed according to Theorem 5.3, i.e., HLB
2 . Also for this

numerical evaluation, both the mean value and the standard deviation over the 100

run were computed for both our algorithm and the randomized one. According to the

numerical results, also in this case our algorithm always provides a smaller gap with

respected to the lower bound compared to the randomized one.

For the second set of simulations, Table 5.2 also provides the value of the upper

bound computed according to Theorem 5.3. It can be noticed that the upper bound UB

is not tight. This can be explained by the looseness of the bound given in Lemma 5.2

for the terms γij.
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Figure 5.4 Simulation results for the second set (mean and standard deviation) over
100 set of S networks. The red lines represent the proposed algorithm, the randomized
one is depicted in blue.

Table 5.2 Upper Bound for the second set of simulations.

Networks 10 20 30 40 50

Upp. Bound 1.464 1.492 1.498 1.506 1.509
Random 1.0058 1.0060 1.0062 1.0065 1.0067

Our 1.0017 1.0017 1.0019 1.0020 1.0021

5.3 Generalized Dynamical Model

As we said before, in this chapter we study the robustness properties of a dynamical

network (i.e. a cyber-physical system) arising from the interconnections of multiple

isolated components, with respect to the interconnection topology. In what follows,

our aim is to generalize the model presented in Section 5.1.

To this aim, let S = {s1, . . . , sn} be a set of n atomic dynamical networks, where

the network si is identified by the strongly connected graph Gi = (Vi, Ei), with |Vi| = ni,

and the weighted adjacency matrix Ai. Let N = ∑n
i=1 ni. Notice that, because Gi is

strongly connected, the matrix Ai is irreducible.
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We assume that edges can be created within isolated networks, and across different

network. In particular, due to the addition of edges, the weighted adjacency matrix of

the composite network, that is, the network arising from the interconnection of the

isolated components, read as

A =



A1 0 · · · 0

0 . . . ...
... . . . 0

0 · · · 0 An


︸ ︷︷ ︸

AD

+



A11 A12 · · · A1n

A21
. . . ...

... . . . An−1,n

An1 · · · An,n−1 Ann


︸ ︷︷ ︸

AC

, (5.9)

where AD represents the local isolated dynamics, while AC denotes the interconnection

parameters. Let ei denotes the i-th canonical vector of appropriate dimension. We

make the following assumptions on the network matrix A:

Assumption 5.1. (Invertible network matrix) The network matrix A = [aij] ∈

Rn×n in (5.9) is a symmetric, irreducible and strictly diagonally dominant matrix.

That is, aij ≤ 0 ∀i ̸= j, 1 ≤ i, j ≤ N and aii > 1 +∑N
j=1 |aij|.

Assumption 5.1 implies that the network matrix A is an invertible M-matrix.

Moreover, each diagonal network matrix Ai is also an invertible M-matrix. We say

that the atomic networks si and sj are interconnected if |Aij| = |Aji| ≠ 0. We restrict

our analysis to interconnection matrices satisfying the following assumption:

Assumption 5.2. (Interconnection matrix) The weighted interconnection matrix

AC can be written as AC = UΛV , where UV can be expressed as

U =
[
U1 · · ·Uk · · ·Um

]
, Uk = [eik

ejk
]

V = −
[
V1 · · ·Vk · · ·Vm

]T
, Vk = [ejk

eik
]T

(5.10)
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for some indices i1, . . . , im, j1, . . . , jm ∈ {1, . . . , N}, with ik ≠ jk for all k ∈ {1, . . . , m}

where eik
, ejk

are canonical vectors of appropriate dimension, and (ik, jk) ̸= (iℓ, jℓ) for

all k, ℓ ∈ {1, . . . , m}.

Moreover, we can write Λ as block-diagonal matrix, that is

Λ = blkdiag(Λ1 · · ·Λk · · ·Λm) ∈ Rm×m (5.11)

Where each diagonal block read as

Λk = εkIk, εk ∈ (0, 1] (5.12)

With Ik identity matrix of appropriate dimension.

It should be observed that Assumption 5.1 and Assumption 5.2 imply that the

number of edges that can be added to any node is bounded. In particular, each node

is allowed to create at most ⌈aii⌉ − 1 new connections.

In this chapter we study the robustness of the composite network with network

matrix A, with respect to the interconnections AC . In particular, we adopt the H2

system norm to quantify the robustness of a network system to external disturbances.

Also with this general model, our analysis is restricted to the case where the disturbance

affects each network node equally, and measurements are taken at every node. Thus,

from Equation (5.2) the robustness of the composite network, considering the matrix

A, is defined as

H2(A) = Trace
∫ ∞

0
e−2At dt = 1

2 Trace
(
A−1

)
.
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To design optimally robust composite, and connected, networks, we study the following

minimization problem under Assumptions 5.1 and 5.2:

min
AC

Trace
(
(AD + AC)−1

)
s.t AD + AC is irreducible. (5.13)

5.3.1 Solution approach

Problem 5.13 can be solved by brute force approaches by enumerating all possible

solutions. This kind of approaches result quite expensive in terms of computational

load, due to the fact that the number of possible edge in the composite graph G (V , E)

scales quadratically with the number of nodes in V . To overcome this fact, our study

has been focused in finding several properties of the objective function, so that different

solution approaches for Problem 5.13 can be proposed. In particular, exploiting the

properties of the network matrix A (see Equation 5.9) several theoretical findings will

be discussed.

The following lemma provides a formalization of the fact that Trace (A−1) is a

monotonic increasing function of the interconnections U, V of AC .

Lemma 5.3. (Trace Monotonicity)

Let A ∈ Rn×n be a symmetric, irreducible and strictly diagonally dominant matrix,

with aij ≤ 0 ∀i ̸= j, 1 ≤ i, j ≤ N and aii > 1 + ∑N
j=1 |aij|. Let U = [ei ej] and

V = −[ej ei]T with i ̸= j and ei, ej canonical vectors of appropriate dimensions.

Moreover, let Λ = εI ∈ R2×2 with ε ∈ (0, 1], then Trace A−1 < Trace ((A + UΛV )−1).
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Proof. Exploiting Lemma A.6 it is possible to express the argument of Trace ((A + UΛV )−1)

as

A−1 − A−1U
(
Λ−1 + V A−1U

)−1
V A−1 =

= A−1 − A−1U
(

I

ε
+ V A−1U

)−1
V A−1. (5.14)

Where Λ−1 = I
ε
. Expanding the product (V A−1U), due to the form of U, V we have:

(
V A−1U

)
=

−a−1
ji −a−1

jj

−a−1
ii −a−1

ij

 . (5.15)

Notice that, being A a symmetric, irreducible and strictly diagonally dominant M-

matrix thus from Lemma A.3 we know that the entries of (5.15) are negative. Moreover,

by applying Theorem A.2, with 1
α

< 1 due to aii > 1 +∑N
j=1 |aij| in A, and by noticing

that ∥V ∥∞ = ∥U∥∞ = 1, we have

∥V A−1U∥∞ ≤ ∥V ∥∞∥A−1∥∞∥U∥∞ < 1 (5.16)

Furthermore, remembering that Λ = εI we have by construction that

∥Λ−1∥∞ ≥ 1. (5.17)

Now, computing the sum
(

I
ε

+ V A−1U
)

we obtain:

(
I

ε
+ V A−1U

)
=

 1
ε
− a−1

ji −a−1
jj

−a−1
ii

1
ε
− a−1

ij

 . (5.18)

It should be noticed that the matrix in (5.18) is irreducible and strictly diagonally

dominant, and due to (5.16) and (5.17) also non singular. In particular, applying
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the Gershgorin circle theorem, we know that (5.18) is a non singular M-matrix and,

exploiting Theorem A.4, we also know that its inverse has only positive entries. At

this stage, applying the properties of the trace operator, we can write (5.14) as:

Trace
(
(A + UΛV )−1

)
= Trace

(
A−1

)
+

− Trace
(

A−1U
(

I

ε
+ V A−1U

)−1
V A−1

)

Recalling that V = −[ej ei]T and by noticing that the terms A−1U and V A−1 do not

change the sign of (5.18), it follows that:

−Trace
(

A−1U
(

I

ε
+ V A−1U

)−1
V A−1

)
> 0

Which in turn implies

Trace
(
A−1

)
< Trace

(
(A + UΛV )−1

)

This concludes the proof.

Note that, in our model, each individual weight of the interconnection described

by U = [ei ej] and V = [ej ei]T can be arbitrarily modified considering a different

Λ matrix. We now provide a useful result for the objective function of Problem 5.13

which relates the monotonicity of Trace (A−1) respect a weight w′ > w for the same

interconnection set.

Lemma 5.4. Let A ∈ Rn×n be a symmetric, irreducible and strictly diagonally dom-

inant matrix, with aij ≤ 0 ∀i ̸= j, 1 ≤ i, j ≤ N and aii > 1 + ∑N
j=1 |aij|. Let

U = [ei ej] and V = −[ej ei]T with i ̸= j and ei, ej canonical vectors of appropri-

ate dimensions. Moreover, let Λ = εI and Λ′ = ε′I ∈ R2×2 with ε, ε′ ∈ (0, 1], then

Trace ((A + UΛV )−1) > Trace ((A + UΛ′V )−1) iff ε > ε′.
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Proof. We prove the Lemma by contradiction. Let us assume Trace ((A + UΛV )−1) <

Trace ((A + UΛ′V )−1) and ε > ε′. Since ε > ε′ we can write ε = ε′ + δ, with δ ∈ (0, 1]

so that

Λ = εI

= (ε′ + δ)I

= Λ′I + Λ′′I. (5.19)

Now, substituting (5.19) in Trace ((A + UΛV )−1), we have

Trace
(
(A + UΛV )−1

)
= Trace

(
(A + U(Λ′ + Λ′′)V )−1

)
= Trace

(
(A + UΛ′V + UΛ′′V )−1

)
= Trace

(
(A′ + UΛ′′V )−1

)
.

Where A′ = A + UΛ′V .

At this stage, remembering that Trace ((A + UΛV )−1) < Trace ((A + UΛ′V )−1) we

have

Trace
(
(A′ + UΛ′′V )−1

)
< Trace

(
A′−1)

. (5.20)

However, exploiting Lemma 5.3 we know that (5.20) contradicts the hypothesis that

Trace ((A + UΛV )−1) < Trace ((A + UΛ′V )−1). This concludes the proof.

In addition to previous results, we also characterize the infimum of the optimization

problem 5.13 in terms of the diagonal matrix AD. In particular, analyzing the structure

of the block diagonal matrix Λ, we have the following



5.3 Generalized Dynamical Model 97

Lemma 5.5. Let Λ be a block-diagonal matrix such that Λ = blkdiag(Λ1, · · · , Λk, · · · , Λm),

where Λk = εkIk with εk ∈ (0, 1] and Ik identity matrix of appropriate dimensions, then

limεi→0 Λi = 0 ∀i = 1, · · · , m.

Proof. From Lemma 5.4 we know that a continuity among all the possible εi in each

block Λi exists so, proceeding with the limit operation on a single block, we have

lim
εi→0

Λi = 0 (5.21)

At this stage, applying iteratively (5.21) on each block, we obtain

lim
εi→0

Λi = 0, ∀i = 1, · · · , m.

This concludes the proof.

We are now ready to state the following theorem, which provide the expression of

the infimum of Problem 5.13.

Theorem 5.4. (Infimum of Problem 5.13 )

Let Trace ((AD + AC)−1) be the objective function of the minimization problem (5.13)

and let AC = UΛV as in Assumption 2, then Trace
(
A−1

D

)
is the infimum of the problem.

Proof. From Assumption 2 we have AC = UΛV , with U, V ̸= 0 and

Λ = blkdiag(Λ1, · · · , Λk, · · · , Λm).Exploiting Lemma 5.5 on Λ in AC , the results follows.

For a network topology design problem, characterizing the expression of the optimal

solution, in terms of the number of links among the nodes of the overall interconnected

system, is a quite challenging task. Thanks to the properties of the objective function

we formalized before, we are now ready to state the following theorem, which relates

the optimal solution to a specific topology of the composite system.
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Theorem 5.5. (Optimal interconnection) Let A∗
C = U∗Λ∗V ∗ ∈ Rn×n be a solution

of the minimization problem (5.13). Let U∗ = [U1 · · ·Um], V ∗ = −[V1 · · ·Vm] and

Λ∗ = blkdiag(Λ1 · · ·Λk · · ·Λm) ∈ Rm×m as defined in Assumption 5.2, then m = n− 1.

Proof. We prove the theorem by contradiction. Let A = AD + U∗Λ∗V ∗ ∈ Rn×n with

U∗ = [U1 · · ·Um], V ∗ = −[V1 · · ·Vm] and Λ∗ = blkdiag(Λ1 · · ·Λk · · ·Λm) ∈ Rm×m. By

noticing that AD is composed by n distinct block, we need m ≥ n− 1 in U∗, V ∗ and

Λ∗ to ensure that A is irreducible. So, let m = n− 1 + k, with k ∈ Z>0. At this point,

by construction it is always possible to find two subsets U ′ ⊂ U∗ and V ′ ⊂ V ∗ where

U ′ = [U1 · · ·Um′ ], V ′ = −[V1 · · ·Vm′ ] with Λ′ = blkdiag(Λ1 · · ·Λk · · ·Λm′) ∈ Rm′×m′ and

m′ = n − 1, such that the matrix A′ = AD + U ′Λ′V ′ is irreducible. Therefore, from

Lemma 5.3 it follows that

Trace
(
A′−1)

< Trace
(
A−1

)
,

which contradicts the fact that A is the optimal solution of the minimization prob-

lem (5.13). It follows that it must be m = m′ = n− 1. This concludes the proof.

Given a node set V = {1, · · · , n} and weights we ≥ 0 associated with each edge

e ∈ V ×V , our goal is to find an edge set Ec such that the undirected graph G = (V , Ec)

is a connected tree with minimum Trace
(
A−1

Ec

)
. It is worth noticing that, each vi ∈ V

could be a simple node or a more complex virtual node (i.e. a dynamical network

itself). Hence, thanks to previous results we can restate the optimization problem 5.13

as
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min
Ec

Trace
(
A−1

Ec

)
,

s.t | Ec |= n− 1, (5.22)

AEc is irreducible.

The following Greedy algorithm can be used as a heuristic to solve problem 5.22

Algorithm 1: Greedy Tree
Input : [V , we∀e ∈ V × V ]
Output : T Tree with small trace

1 E ← {argmaxe∈V×V we};
2 V̄ ← {i, j | (i, j) ∈ E};
3 while | E |≤ n− 1 do
4 Ē =←

{
(i, j) | (i, j) ∈ V × V \ E , (i, j) ∩ V̄ ̸= ∅

}
;

5 e = argmine∈Ē Trace
(
(AE∪e)−1

)
;

6 if AE∪e is strictly diagonally dominant then
7 E ← E ∪ e;
8 V̄ ← V̄ ∪ {i, j | e = (i, j)};
9 end

10 end





Conclusion and Future Work

One fundamental challenge for modern Cyber-Physical Systems is to ensure correct

and reliable functionality in the face of failures and attacks. This thesis concerns on (i)

proposing a new approach for the diagnosis of faults and threats in Cyber-Physical Sys-

tems through Evidence Theory, (ii) presenting an innovative framework for managing

and evaluating risk in complex systems after cyber-physical attacks, (iii) characterizing

the robustness of a Cyber-Physical Systems, viewed as interconnected network systems,

with respect the interconnection topology.

Summary

In Chapter 1 and in Chapter 2 we introduced the basic concepts and the notation

related, respectively, to Graph Theory and to Evidence Theory.

In Chapter 3 we applied Evidence Theory to diagnose faults in a Cyber-Physical

Systems. In particular, we considered as case study a Smart Grid. We showed that

classical approaches, based on Dempster-Shafer model, are somewhat restrictive and a

better way to represent the knowledge model is mandatory. Moreover, redefine the

frame of discernment explicitly considering Dezert-Smarandache model, brings high

computational overhead in the fusion process due to the cardinality of the hyper power

set. As a solution, we proposed a hybrid knowledge model based on a specific frame

of discernment and a diagnosis metric is presented, with the aim of improving the

detection of the cyber-physical attacks in Smart Grids.
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In Chapter 4 we presented an innovative framework for managing and evaluating

risk in complex systems. For those systems, the tight interconnection between cyber

and physical layers leads to an integrate analysis of risk, considering information and

data coming from both fields. Also in this case Evidence Theory, tied with Graph

Theory, turned out to be a powerful tool. In particular, we provided theoretical

findings for both the evaluation of risk over the frame of discernment and for the

definition of BPA functions over the power set. We applied our framework on a complex

Cyber-Physical System composed of a Medium Voltage Power Grid controlled by a

Supervisory Control And Data Acquisition system. Through the proposed framework,

it is possible to drastically decrease the high computational load of Evidence Theory

algorithms, that was until now one of its major drawback.

In Chapter 5 we characterized the robustness of a Cyber-Physical System, viewed

as an interconnected network system, as a function of the interconnection topology.

Taking into account networks with Laplacian-based dynamics, we gather that inter-

connected networks are always less robust than the isolated components. Further, we

showed that interconnections among nodes of the atomic components with highest

degree yield maximum robustness. Then, we proposed an interconnection rule for the

design of robust composite networks, and validated its effectiveness through simulations.

Finally we generalized the proposed model, using the class of M - matrices and their

inverses. The problem of finding the optimal robust network structure was analyzed as

an optimization problem: we found several properties of the objective function and we

also characterized the expression of the optimal solution.

Future Work

In this thesis, we have studied various approaches for model, protect and control

Cyber-Physical Systems (CPSs). Based on our methods, we have proposed a new
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way to detect threats for Cyber-Physical systems through Evidence Theory, managing

risk after cyber physical attacks and characterize the robustness of networked CPSs.

However, while this research has solved many security problems for Cyber-Physical

Systems, it has raised new questions. We next discuss some aspects requiring future

investigation.

Regarding the application of the Evidence Theory with the hybrid power set in

Cyber-Physical Systems, our research is currently focusing on generalizing the BPA

assignment for different cyber-attacks seek to inflict physical damage. An interesting

direction, is to study the theoretical properties of the hybrid power set, in order to

integrate both the properties of the classical framework and of the Dezert-Smarandache

approach.

For the case of risk assessment, we assumed that the risk scale can be represented as

a path graph. The obtained results, based on the graph theoretic approach, encourage

the authors to study hierarchical aggregation methods in order to generalize the analysis

to different graph topologies and to heterogeneous case studies.

Finally, on the robustness of networked Cyber-Physical Systems, several directions

are left for future work. Among the others, extending the approach to general network

dynamics with different nodes feature and different interconnection capabilities is a

quite interesting topic. Moreover, by considering the attacks in the resulting networks,

it would be interesting to understand possible limitation in the proposed mathematical

model.
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Appendix A

Basic Linear Algebra Results

In this section some basic results from Linear Algebra, required for the development of

the proofs, are given.

Linear Algebra

Lemma A.1. (Positive definite matrices) Let A ∈ Rn×n be a positive definite

matrix and let A−1 be its inverse. Then

A(i, i) A−1(i, i) ≥ 1, ∀ i ∈ V

Furthermore, let λ1 be the least, λn the largest eigenvalue of A, γ = λn/λ1. Then

γ1/2 + γ−1/2 ≥ 2 max
i=1,...,n

(
A(i, i)A−1(i, i)

)1/2
.

Lemma A.2. (Varah’s Bound) If A is a strictly diagonally dominant matrix and

set α = mini{aii −
∑

i ̸=j |aij|}, then

∥A−1∥∞ ≤
1
α

.
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In addition, the following results on M-matrix hold [59] and [60]:

Lemma A.3. (Element-wise dominance Inverse of M-Matrix) Let A be an

irreducible, symmetric, and strictly diagonally dominant M-matrix, then A−1 is a

symmetric entrywise positive matrix and

A−1(i, i) > A−1(i, j), ∀ i, j ∈ V : i ̸= j.

Lemma A.4. (Inverse of M-Matrix properties) If A is a non singular M −

matrix, then A−1 ⪰ 0. Moreover, if A is irreducible, then A−1 ≻ 0.

The following result concerns the inversion of the sum of two matrices holds:

Lemma A.5. (Sherman–Morrison formula) Suppose A is an invertible square

matrix and u, v are vectors. Suppose furthermore that 1 + vT A−1u ̸= 0. Then

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
,

where uvT is the outer product of two vectors u and v.

Finally, the following result concerning a rank-k correction of some matrix holds [61]:

Lemma A.6. (Woodbury Formula) Suppose A is an invertible square matrix and

U, V and C be any (dimensionally compatible) matrices, then

(A + UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1. (A.1)

In the special case where C = I (A.1) read as

(A + UV )−1 = A−1 − A−1U
(
I + V A−1U

)−1
V A−1. (A.2)
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