
 
 
 

 
 

Doctorate in Computer Science and Automation 

 
Department of Engineering 

 
 
 

XXIX Ph.D Cycle 

 
 
 

Hybrid Rescue Team  
Localization System 

 
 
 
 

Ph.D Student                  Federica Inderst 
           

__________________ 
               
 
Supervisor                Prof.ssa Federica Pascucci 
           

__________________ 
               
 
Ph.D Coordinator                Prof. Stefano Panzieri
  

    __________________ 



              



“Chi più in alto sale, più lontano vede.

Chi più lontano vede, più a lungo sogna.”

W. Bonatti



Abstract

Localization and tracking support is useful in many contexts and become crucial in

emergency response scenarios. Being aware of team location is one of the most im-

portant knowledge for incident commander. Team localization and tracking open new

prospects to increase safety, efficiency, and also to decrease mission time: localized res-

cue personnel can be better coordinated, commanded and guided. Moreover a reliable

localization system reduces the possibility of disorientation and failure to locate victims,

that are contributing factors to rescuer deaths. In this work a technique for first respon-

ders localization support in emergency indoor scenarios is presented. The peculiarity of

the proposed system relies on the integration between human operators and robots in

a hybrid team. The proposed localization technique takes advantage from both passive

and active infrastructure composed by nodes that can provide information about their

positions and the resources/hazards nearby. The main contribution of the thesis is the

development and the testing of a localization system for hybrid rescue teams, able to

handle both a priori knowledge, i.e., maps of the environment, with large uncertainties

and information updated during rescue tasks.
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Chapter 1

Introduction

“...nothing is so much wanted and desired at sea, as the discovery of the longitude, for

the safety and quickness of voyages, the preservation of ships, and the lives of men...”

The Longitude Act, 1714

1.1 Overview

The problem of locating a person or an object in an environment has been largely inves-

tigated: location allows to a human being to perceive and understand the surrounding

world. To this end many different methods have been employed over the recent cen-

turies.

Solving the Longitude problem was one of the greatest scientific challenges to Eu-

ropean governments in Eighteenth Century, since it was a significant obstacle to global

navigation and maritime supremacy. This problem was considered so intractable and

so important that the British Parliament established in The Longitude Act a £20,000

reward (corresponding to about 3.000.000$ in 2016) for anyone who could find a prac-

tical way of determining longitude at sea having an accuracy not greater than half a

degree (equates to 30 nautical miles - 56 Km).

North/South latitude could be easily and faithfully reckoned by measuring the angle

of prominent stars. On the contrary, West/East longitude estimation was more difficult

to determine, since time and longitude are coupled. Nevertheless, it was only in 1765

1



CHAPTER 1. INTRODUCTION 2

that the self-taught inventor John Harrison crafted the first reliable marine chronometer,

able to lose less than 5 seconds every ten days, winning the prize.

Nowadays, tracking the location of a person or an object is primarily done by ex-

ploiting satellite-based systems. The first deployed is the Global Positioning System

(GPS). Discontinuing the use of Selective Availability (an intentional degradation of

public GPS signals implemented for national security reasons) improved the predicted

accuracy of GPS for civilian users from within 100 m to within 20 m. This performance

boost enabled GPS to be applied in its most basic form to a variety of civilian activities

- land, sea, air, and space - where it could not previously.

It is useful to underline that the need for localization solutions is not just confined

to vehicles or transportation services. In the Internet of Things age, due to the ubiqui-

tous availability of powerful mobile computing devices, the realization of personalized

context/location-aware applications has become an active field of research. However,

the natural habitats of human individuals, the indoor environments, are inaccessible

for the signals of the GPS satellites. Accurate indoor localization has the potential to

transform the way people navigate indoors in a similar way that GPS transformed the

way people navigate outdoors.

Over the last 15 years, several indoor localization technologies have been proposed

by both academia and industry. In Chapter 2 an overview of the most promising ones

is reported. However, large-scale deployments or off-the-shelf solutions are still to be

achieved.

1.2 Scope of the work

Different indoor localization solutions have been based on different information sources

according to the constraints of the particular application scenario. Mass-market appli-

cations for indoor positioning require the use of standard devices without supplementary

physical components: the consumer market cannot easily accept major modifications

to mobile phones in order to include positioning functions. To cope with this problem,

most of the proposed approaches exploits the availability of an external infrastructure,

pre-deployed in the environment (e.g., Wi-Fi signal) and applies trilateration or finger-

printing techniques to determine the position of a user.
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However, in an emergency scenario, the requirements are quite severe [19]. Indoor

localization for first responders cannot rely only on an external infrastructure, that could

result unavailable during emergencies. As described in Chapter 2, many localization

and navigation solutions have been proposed for rescue framework, based on simple

techniques coupled with low-tech while robust equipment. In fact, due to hard operating

conditions (such as high temperature, thick smoke, noise, and obstacles) high tech

systems exploiting radio, ultrasound, and laser signals cannot be adopted. Furthermore,

the devices have to be designed as robust as possible to withstand rough handling and

very high temperatures.

The lack of an efficient indoor localization method for rescuers stimulates research to

the design of alternative localization systems specifically adapted to emergencies. It is

useful to underline that location awareness is an important aspect in disaster response.

In our vision, the effectiveness of incident command operations depends heavily on

tracking first responders, in field injured persons triaging, and physical environment

monitoring [34, 35]. During emergency, first responders face unknown and complex

situations in which classical perception schemes fail or are significantly limited. Based

on these considerations, it is worthwhile the investigation of novel tools for improving

human natural abilities. One of possible ways to achieve this augmented-reality goal

is to consider a tele-operated system composed by teams of cooperating humans and

robots (namely, mobile agents).

According to this vision we develop a localization framework able to localize both

rescuers and robots working in an emergency area [53]. We proposed an approach based

on both proprioceptive sensors and data retrieved from external infrastructure, adopting

the hybridization schema used in robotic localization. In this way, the mobile agent

can be always localized by dead reckoning algorithm and update the estimate when

the external infrastructure is available. Although the approach has been developed

considering the requirements of the firefighters, the proposed localization procedure can

be easily used also in mass-market applications [39, 37].
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1.3 Contributions

The proposed thesis is based on three studies. First, we provide a theoretical frame-

work for the design of a localization system for mobile agents in emergency scenario.

Considering the dead reckoning for pedestrian, we develop algorithms for activity recog-

nition exploiting signal processing techniques for improving the performances of human

tracking. Finally, we present specific strategies for exploiting passive or active external

infrastructure. All the developed algorithms satisfy the requirements of the firefighters

and are able to produce an update estimate in an on-line fashion. To this end, all the

procedures are designed with high computational efficiency.

1.3.1 Design of the localization systems

The approach adopted to develop the localization system for hybrid teams is based on

the prediction-correction schema used in robotics [55, 38]. Specifically, we suppose that

the mobile agent (human or robot) in the emergency area is equipped with propriocep-

tive sensors (i.e., an Inertial Measurement Unit - IMU -, encoder, etc.). These sensors

are used to obtain a rough a–priori estimate on the position of the mobile agent with

respect to the environment. The estimate is further refined a–posteriori using the exter-

nal infrastructure, which provides information about the surroundings. The correction

step depends on the type of information that the nodes of the external infrastructure

are able to provide: in this work, we consider both range capable and range free nodes.

According to the system requirements and the IoT perspective, no a-priori knowledge

is supposed available to the mobile agent (i.e., the map of the area) that acquires

information during mission by smart environment. The proposed algorithms fulfill the

requirements described in the previous Section for being used in an emergency scenario.

Furthermore, their low computational complexity allows their implementation in low

energy consumption, low computational power nodes. To the best of our knowledge

previous works address specific problems without developing a theoretical framework.
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1.3.2 Rescuer filter

Concerning the rescuer localization, we design several algorithms based on signals pro-

vided by a waist-mounted IMU. The most interesting contributions regard the algo-

rithms for activity recognition and the pre-processing of the IMU signal for both position

and heading estimate.

The activity problem is addressed in two different ways. The first algorithm is

based on a decision tree: simple features of the signal in the time domain are analyzed

to exclude subsets of activities [20, 33]. The second algorithm is based on a Linear Disc-

rimant Analysis [56]. A learning step and a simple classifier characterize this approach.

The first phase requires high computational load and analyzes features in both time

and frequency domain. It runs only once off-line to determine the parameters of the

classifier, which do not depend on the particular user. The overall computational load

is limited resulting in a possible on line application of the proposed system. The current

state of the art algorithms to compute the heading of a pedestrian are improved using

quaternions-based filtering and preventing the use of outliers in the nonlinear filter [18].

Concerning the hybridization in passive environments, it is supposed that the network

is able to provide information on the environment [10, 90], however in passive envi-

ronment nodes or sensors (items) cannot directly communicate each other. A mobile

user can detect items that are in its proximity, since the nodes of the infrastructure

are considered range free. The presence information is, therefore, properly mapped in

a probabilistic framework.

1.3.3 Localization for Wireless Sensor Networks

In active environment, the nodes of the external infrastructure compose a wireless sensor

networks and the problem of concurrently estimate the position of the mobile agents

and the nodes is addressed. The novelty of the proposed approaches relies on the

exploitation of information about the presence or absence of a communication link

between nodes [54]. Using the lack of communication, indeed, the localizability of

the network can be extended and the mobile agents are able to properly augment the

maximum localizable component. Two different approaches are proposed to estimate

the maximum localizable component in a network: they mainly differ for the modality
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of interaction between the mobile agent and smart environment (i.e., loose or tight

cooperation).

1.4 Outline of the Thesis

The remainder of the thesis is organized in the following way.

Chapter 2 presents the related work on the topic covered during the doctorate.

Specifically, the pedestrian dead reckoning, the hybridization techniques and the local-

ization approaches for wireless sensors networks are introduced .

In Chapter 3, the design of the proposed localization systems is sketched. The

theoretical background is recalled and the filter that runs on the mobile agent is depicted.

In Chapter 4, the rescuer filter is explained: the algorithms for activity recognition,

heading and step computation are deeply investigated, furthermore the refinement of

the position estimate based on range free and range capable sensors is explained.

In Chapter 5, the simultaneous localization of the mobile agent and the nodes of the

smart environment is addressed. The localizability of a network using a mobile agent is

addressed.

In Chapter 6, the experimental results performed to evaluate the approaches are

reported and discussed.

Some conclusive remarks and suggestions for future development can be found in

Chapter 7.

The interested reader can find some introductory material on the analytical tools

and the devices used in this thesis in the Appendices.



Chapter 2

State of Art

2.1 Localization for Rescue Personnel

Navigation by sight is impossible during emergency since darkness, smoke, or dust limit

visibility to less than one meter. Out-of-reach people or objects can be passed unnoticed.

Moreover, the environment can change as ceilings, floors, or shelves collapse, furniture

moves, and people searching for an exit open or close different doors. The fire noise can

hide PASS alarms, interfere with radio conversations, and make cries for help difficult

to locate.

In the past decade, researchers put much effort into this challenging problem and

developed a wide variety of ideas to address it. A complete taxonomy of the technologies

used for localization systems is hard to drawn. Here we investigate some localization

principles, propose some evaluation criteria and discuss the localization systems pro-

posed in literature.

The approaches investigated during the years can be divided in three sets:

• Infrastructure Base Localization – Exteroceptive sensors are used, the user carried

the sensors receiver and brings the information from the sensors deployed in the

environment;

• Dead-Reckoning – Proprioceptive sensors are considered and the information pro-

vided by the human movements are used to compute the position of the rescuer;

7
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• Hybrid System – Proprioceptive and exteroceptive sensors provide information

that are combined to obtain the position of the rescuer.

2.1.1 Infrastructure Based Localization

The information provided by sensors deployed in the environment are used to compute

the position of the rescuer. The method that can be used to compute the location

can be classified as: Lateration and angulation systems, Proximity systems, and Radio

fingerprint systems [52, 95, 71, 48].

• Lateration and angulation systems – Distances or bearing between a set of know

locations, called base stations, and a mobile unit are computed. A drawback of

this system is due to the indoor scenario itself, in fact wall and obstructions may

not propagate the radio signals may not propagate through the environment.

• Proximity systems – These kind of systems provide only coarse location, they have

as advantage little calibration, but as disadvantage a high density of readers to

gain reliable, ubiquitous coverage are required.

• Radio fingerprint systems – Signal properties are compared to a database of prop-

erties previously collected at a variety of locations. The closest match is returned

as the estimated position.

2.1.2 Dead-Reckoning

These systems use proprioceptive sensors to estimate relative and/or absolute location

and consists of determining the movements of a target to build its trajectory from a

given starting point. Pedestrian dead reckoning (PDR) involves estimating step lengths

and directions using a pedometer and a compass. More complex approaches exploit

foot-mounted inertial sensors (accelerometers and gyroscopes) to track every the mo-

tion of the legs [36]. Dead reckoning only requires sensors to be carried or worn by the

person being tracked, making it particularly attractive for localization in unstructured

environments. Inertial sensors can also provide the incident commander with informa-

tion about the posture of the rescuer, such as whether he or she is standing, crouching,

or lying down [106].
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PDR are affected by incremental error in position estimate, since the small errors in

each measurement accumulate and, consequently, the positioning error increases with-

out limit. Eric Foxlin reported very accurate tracking [41]; Lauro Ojeda and Johann

Borenstein also achieved good accuracy in challenging environments [78]. However,

other researchers reported much larger errors. [40, 102]. The accuracy of the sensors,

the way they are attached to rescuer bodies and the walking pattern affect results

and make predicting uncertainty in a PDR position estimate very difficult. Current

PDR systems are unusable in scenarios in which the wearer crawls, climbs, or walks

with an irregular pattern (while transporting a victim, for instance). The challenge

for researchers is therefore to couple dead reckoning with other localization techniques,

without substantially increasing the deployment effort.

2.1.3 Hybrid System

Sometimes the position provided by a PDR system needs to be corrected using an exter-

nal (absolute) positioning system. These kind of strategies are called “Hybrid System”,

one of the most popular is composed by PDR and WiFi fingerprinting. With fingerprint-

ing, the main difficulties are associated with comprehensively surveying the building to

form a radio map and in keeping that map up-to-date. It is also possible to invert

this approach and to use the PDR system to support WiFi fingerprinting as proposed

by [84]. In [84] is proposed a positioning system, the Zee, based on fingerprinting. The

Zee system proposes positioning primarily through fingerprinting, but with a radio map

that is crowd-sourced from the subset of users with Step-and-Heading Systems (SHSs)

capable smartphones, the system uses a SHS based on Particle Filter combined with a

floor map.

In [32] and hybrid system that did not depend on a centrally-established database or

a pre-supplied building map of signals is presented a hybrid system. It took as input an

SHS based on accelerometer and compass, as well as radio signal strength measurements

from the WiFi and GSM (Global System for Mobile Communications Groupe spécial

mobile) cellular radios. The drift (the output signal slowly changes independent of

the measured property) is corrected dividing the area into a grid and applying SLAM

(Simultaneous Localization And Mapping) technique. The approach idea is to monitor
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the radio fingerprints to detect any loops in the path taken, moreover the loops can be

use as constraint to recompute the full path taken.

2.2 Indoor Localization

An Indoor Localization System (ILS) is a system to locate objects or people inside a

building according to their coordinates or their displacement. According to the move-

ment of the user’s body it is possible to estimate the position. The movement can be

detected using Inertial Sensors that can be placed in different spots on the user as:

foot, hand or torso. Anyway, independently from the Inertial Platform displacement,

to estimate the rescuer position three step must be done:

• Activity;

• Attitude Estimation;

• Step Computation.

2.2.1 Activity

A variety of pedestrian dead reckoning techniques using proprioceptive sensors have

been proposed, as in [59] and in [79], where the tracking of the pedestrian is limited to

a 2-dimensional space. In [79], a tracking algorithm consisting of step detection, step

length estimation and heading estimation is introduced. The estimates of the position

computed by two or more sets of sensors carried by the same walking pedestrian are fused

in [59] to reduce the average tracking error. However, in several real world applications,

walking paths may involve more than one floor within a building.

The integration of a pedestrian dead reckoning with a barometer to extend the

tracking algorithm to the vertical dimension is presented in [36]. Common barometers,

however, may not provide a desirable resolution, as they are only sensitive to vertical

displacements in the order of meters. In [74], the authors introduce a 3-dimensional

pedestrian dead reckoning technique based on a handheld IMU, which might not apply

to application scenarios where free hands are required, e.g. rescue applications.
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Recent research faced the challenge of analyzing the class of pedestrian activity based

on the data provided by the proprioceptive sensors [20]. Features of the accelerometer

signal are studied both in the frequency and in the time domain. In [49], the adoption

of delta features, low and high frequency signal variations, and energy variations in

both frequency bands is investigated. The extraction of features of acceleration data

in anterior-posterior (AP), medio-lateral (ML) and vertical (V) direction was proposed

in [75] where the acceleration signal in each direction was decomposed to six detailed

signals at different wavelet scales by using the wavelet packet transform. In [65], em-

pirical mode decomposition and an amplitude/frequency modulation model is proposed

to extract relevant features. The authors of [49, 75, 65] did not investigate the integra-

tion of the proposed models in an operating 3-dimensional pedestrian dead reckoning

mechanism though. A decision tree is introduced in [33] to identify the different walk-

ing patterns. However, the proposed approach requires an expert to perform a manual

calibration of parameters that vary depending on the body features of the user.

2.2.2 Attitude Estimation

The Attitude Filter estimates the attitude of the IMU wore by the rescuer with respect to

a navigation reference frame. It is obtained merging data collected from gyroscopes, ac-

celerometers and magnetometers. The orientation is compute using quaternions: these

mathematical entities, indeed, need less computational effort in recursive updating and

avoid the singularity issues that affect angular descriptors, like Euler angles.

Several efforts are spent in the threshold-based algorithms where the threshold can

be computed according to different information provided by the sensors; in [94, 66,

13] accelerometer magnitude is considered, in [104, 14, 78] angular velocity thresholds

are used, and in [41] a combination has been trailed. In [58] it is shown how also a

threshold applied on magnetometer signals can give usable stance detection under some

circumstances, moreover applying the threshold to the moving variance of the signal

has been preferred to applying it to the instantaneous magnitude [44, 58].

Even if the results obtained shown errors of 0.1% and 0.2% on thresholding ac-

celerometer variance and angular velocity (see [58]), threshold-based stance detection

requires a sensor on the foot. In rescue scenario it is not always possible to use a foot
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mounted sensors to this end there position are investigated as: waist mounted.

Unfortunately in waist mounted context it is not always possible to be axis-aligned

but the sensors rotate respect to the world frame (with axes in the horizontal and

vertical planes) during the gait cycle, that implies the necessity to track the sensor

rotation using the data (angular velocity) provided by the gyroscope. That means that

for each position update and the measurement error (drift) growth in time.

2.2.3 Step Computation

In this work the Step Computation is done using Dead-Reckoning technique. According

to the distinction proposed by [51] the Dead-Reckoning systems can be divided in two

set: Inertial Navigation Systems (INSs) and in Step-and-Heading Systems (SHSs). The

INSs is used to track the position by estimating the full 3D trajectory of the sensor at

any given moment and SHS estimates the position by accruing distance, heading vectors

representing either steps or strides. More over it is possible to mix these strategies

providing an SHS-INS system.

The first goal of SHS and also INS is to identify the set of the data that represents

a step or a stride event. Even if the algorithm must permit for accurate step counting,

sometimes an accurate step segmentation is required, according to that it is possible to

identify two main algorithm types:

• Stance detection – periods of data are identified when a given foot is planted on

the floor. They are appropriate for step counting but give poor segmentation

output more over they need a foot-mounted sensor;

• Step cycle detection – the cycles in the sensor data caused by the repetitive motion

of walking are detected. They need a repetitive data patterns or event and are

well suited to step segmentation.

Usually the stance detection algorithms are threshold-based because the key idea

is that during the stance phase the sensor is static and report a lack of activity that

thresholding can easily identify.

To identify specific events for data segmentation several strategies are available, and

they relax the foot-mounted sensor constrain. These strategies are summarized as:
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• Peak detection – The heel strike is associated with changes to the vertical

acceleration, unfortunately the foot impact may generate multiple local peaks,

due to the higher forces resulting in sensor bounce [31, 110];

• Zero crossings – The acceleration value for zero crossings [46] is monitored, this

strategy is used for pedometers or activity monitors due to its simplicity;

• Auto-correlation or template matching – The cycle can be extracted by

seeking maxima in the mean-adjusted autocorrelation of a sequence of sensor

data [110]; the drawback of this strategy is that the peaks corresponding to a step

or a stride will depend on where the sensor is attached;

• Spectral analysis - The frequency spectrum of the cyclic data is computed and

strong peaks at typical stepping frequencies are identify. Windowed subsets of the

data are converted to the frequency domain and the dominant frequency taken as

the walking frequency [70].

Usually these techniques are applied to accelerometer signal. It is worth to notice

that most of the implementations claim to use only the vertical acceleration, but do

not compensate for changes in the global pose of the sensor during a step. Instead they

assume that one of the accelerometer axes remains vertical throughout. This assumption

is most valid for waist mounted inertial sensors [67, 26], even if [85] shown acceptable

results also with foot mounted sensors.

The techniques presented above are inertial-based sensors but a lot of non-inertial

sensors can be used to facilitate step or stance detection. In [80] pressure sensors

embedded in the sole of the shoe are used; in [98] impact switches are used in a similar

manner; [87] used ultrasonic ranging between the feet; and [99] used electromyography

(EMG) sensors attached to the calf. However, these solutions require more invasive

attachment to the user and rarely offer any benefit over the use of inertial sensors

(which are still needed for subsequent PDR analysis anyway).

2.2.3.1 Inertial Navigation Systems

An INS uses triaxial accelerometers and gyroscopes to track orientation and position

changes [105], in this configuration the sensors are embedded into a rigid package and
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attached to the body. Tracking position then involves subtracting the gravitational

signal from the vertical accelerometer signal and performing double integration on the

remaining 3D acceleration.

Usually the sensors used in INS are Micro Electro-Mechanical Systems (MEMS)

technology. MEMS sensors are small and highly portable but they are also subject to

more significant error sources [105]. Strapdown inertial navigation algorithms have been

well studied and the standard approach to limit drift uses an Extended Kalman Filter

(EKF) in the complementary or indirect form, whereby the filter tracks the errors in

the system state rather than the system state directly.

Zero Velocity Updates (ZUPTs) can be used to reduce the drift, this method assumes

that the sensor is stationary and can be applied during the stance phase. ZUPTs were

first used in a PDR context in the NavShoe project by Foxlin, who reported good results

in 2005 [41].

The application of ZUPTs means that open loop integrations only occur during the

swing phase of the foot to which the sensor is attached. For such short durations, drift

accrual is limited and longer tracking durations are thus feasible. For a reliable output,

however, ZUPTs must only be applied when the foot (and hence sensor) is completely

static. Issues can arise when the sensor is attached any higher than the ball of the

foot. The peeling motion associated with the transition from stance to swing means

the heel rises soon after the foot-down event and hence a sensor in the mid-foot will

start experiencing an acceleration as the foot levers up. These small accelerations occur

before the strict end of the stance phase and it is necessary to account for these errors

by applying a non-zero covariance alongside the ZUPT pseudo-measurement.

Nowadays in commercial inertial sensors usually are integrated triaxial magnetome-

ters with the accelerometers and gyroscopes necessary. The information provided by

the magnetometers can give a direct estimate of the user’s absolute heading. This in-

formation can be very useful to correct the drift that occurs in INS discussed above.

Unfortunately, the Earth’s magnetic field is relatively weak at its surface and modern

buildings, filled soft and hard iron, can modify the signal, leading to local disturbances.

In [1] a detailed set of experiment are discussed and the effects on magnetometers

change according to the different building materials with heading errors of up to 100�
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observed. A common correction algorithm is to reject any readings where the magnitude

lies outside some tolerable range of the expected value.

In [2] the authors noted that this can be overzealous since vertically polarized mag-

netic fields will affect the magnitude but not the horizontal heading. To use this knowl-

edge, however, requires that the pose of the sensor in the world frame of reference be

known except for horizontal heading so there are practicality issues.

In [64] the complementary characteristics of gyroscope (long-term orientation er-

rors) and magnetometer (short-term orientation errors) are analyzed by comparing the

angular velocities measured by the gyroscope with those computed from successive mag-

netometer readings. The results obtained shown an improvement only if there is not

strong magnetic disturbances. Magnetic disturbances can also be modelled using the

EKF as in [41, 46]. By assuming a high spatial frequency of disturbances, the EKF is

able to estimate the covariance in the heading measurement.

2.2.3.2 Step and Heading Systems

The key idea of the Step and Heading Systems (SHSs) is to provide as output a series

of {step length, step attitude} or more often {step length, step attitude change} polar

vectors. This output can be summed in a vector space to obtain the track position.

Even if the vectors could be derived simply by degrading the INS output, they can also

be estimated without using the triple integration and the drift related to the integration

discussed previously. The SHSs are composed by two step:

• Length Estimation;

• Attitude Estimation.

One of the simplest approach to step length estimate it is to assume that the distance

covered in a stet is constant in fact, usually, pedestrians have a natural walking pace

with a constant step length. This walking pattern can change when rushing, ambling

or walking with others. In [100] it is reported that a step length can vary by as much

as 40% between pedestrians walking at the same speed, and up to 50% across the range

of walking speeds of an individual. Moreover, in [100] a dynamic step length estimation

using maximum vertical displacement of the hip is described. Here is show that the
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angle between the highest and lowest point of the hip during a single stride is related

to the leg length of he user.

An other way is to base step lengths on the observed step frequencies.

The biomedical researches provide the correlation between step frequency and the

walking speed. Although the precise relationship is non-trivial (see [8]), it is common

to fit a linear relationship, which is sufficient to achieve an error of 5.6% [108]. Direct

measures of each step have also been used. For example, Saarinen used ultrasonic

sensors mounted on the front and back of each shoe [87] and similar range-finding

techniques have been used elsewhere. Such techniques unquestionably produce higher

quality displacement estimates. However, the increase in accuracy is often negligible

since the larger heading drift is typically the limiting factor. Finally, some systems

estimate step lengths iteratively by evaluating the paths produced using different lengths

and using building maps to choose an optimal length [84].

There are not significant differences between SHS heading estimation and the INS

heading estimation since there are so few sensors available as inputs. To obtain the

heading change a single integration of gyroscope signals can be used. Compering to the

INS, SHSs can avoid using subsequent integration for the step length, that means that

the drift does grow at least linearly instead than cubically as in INS. Moreover, some

systems use only a single gyroscope mounted parallel to the torso and it is assumed

that it remains vertical during walking.

2.2.3.3 Models

Several models and system for estimate the step length are presented in literature. The

differences between the models are related to sensor position, type and number used.

In its simplest form the model of human walking can be represented as an inverted

pendulum. Starting from this mechanical model it is possible to obtain the horizontal

shift forward, by means of a formula called M1:

S
M1 = K2

p
2lh� h2 (2.1)

where h is vertical displacement calculated by double integration of the vertical

acceleration of the center of mass (COM), l is the length of the leg that represents the
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vertical displacement of the COM, then K is a calibration parameter that have to be

computed for each user. This model is composed by two steps:

• Calibration Procedure: the calibration procedure is carried out by K in the fol-

lowing way: K is the difference between the real distance and the estimated one

according to a trial path.

• Computation of the COM vertical displacement: the vertical displacement h is

calculated by double integration of the vertical acceleration of the COM. To avoid

the error due to the drift of integration is necessary to reset to zero the value of

the integral at each step. It is common choice set as zero point of the integral the

instant in which the sole of the foot is fully adherent to the ground, in this precise

moment the vertical acceleration of the COM appears to be nothing.

A second estimator called M2 and characterized by the following equation:

S
M2 =

Z
t1

t0

(a
v

+ c1) dt = 0 (2.2)

where a
v

is the vertical acceleration, t0 and t1 represent two consecutive instants in

which the sole is fully adherent to the ground, and c1 represents the offset. It assumes

that when the sole of the foot is fully adherent to the ground, the speed of the COM is

zero and the vertical coordinates of the latter are the same as the beginning of the step.

A third estimator called the M3 model assumes that the COM is related to two

pendulums. An inverted pendulum with a length equal to the length of the leg of the

user during the lifting phase and a second pendulum (with unknown length) during the

phase in which all the feet are on the ground:

S
M3 = S1 + S2 = 2

p
2lh1 � h21 + S2 (2.3)

The displacement S
M3 is calculated as the sum of the lifting phase (swing) S1,

and the displacement due to the double support phase S2. The lifting phase S1 may be

calculated by the formula used by the model S
M1 . The value of the vertical displacement

of the COM, h1 is calculated as half of the double integral with the instant extreme

lifting of the tip (toe off) until the time in which the heel touches the ground again

(heel strike).
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The last estimator S
M4 for the long wheelbase (stride) is based on a empiric report

between the maximum vertical acceleration and minimum vertical acceleration during

a gait cycle:

S
M4 = K

p
av,max � av,min (2.4)

where, av,max and av,min, represent respectively the maximum and the minimum

value of the first harmonic of the vertical acceleration of the COM.

The models presented above overestimate the value of the step. Even if these esti-

mators have almost equal performances, the estimator M4 is used in this work because

it permits to reduce the variance between each step.

2.3 Wireless Sensors Network

The goal of localization in a WSN is to determine the position of the nodes in the

network. In this work, a WSN ⌃ composed by N fixed sensors �
j

is considered. The

network is randomly deployed in a planar environment, so that the position of the sensor

�
j

can be written as p
j

= [x
j

, y
j

]

T 2 R2 with respect to a navigation reference frame.

Each sensor �
j

is equipped with an isotropic communication antenna characterized by

a maximum communication range ⇢. Given two nodes �
j

,�
i

, the antenna is also used

as a rangefinder for computing the Euclidean distance d
j,i

= ||p
j

� p
i

||.

From a theoretical perspective, the fixed WSN can be described using the disk model:

a node is capable of sensing only points that lie within its communication range ⇢.

According to this approach, a WSN can be represented by a unit disk graph G = {V,E},

where the set V denotes the nodes v1, . . . , vN (i.e., the sensors �1, . . . ,�N ) and E is

the set of edges (v
j

, v
i

) (i.e., the presence of a communication link between sensors �
j

and �
i

). The localization problem can be set as finding a coordinate assignment P

for the non-anchor nodes, i.e., to choose the location p
j

for each sensor �
j

2 ⌃/⌃
s

in

a way such that d
ij

holds for all sensor pairs �
j

,�
i

such that (v
j

, v
i

) 2 E. In Graph

Theory, this problem is the same as finding a framework (G,P ) such that the coordinate

assignment P does not violate the distance constraints, where a framework is a graph

G = {V,E} together with a coordinate assignment P : V ! R2 for the vertices of the
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graph. A unique solution for the theoretical problem is proved to exist if the framework

is globally rigid, i.e., the position of the nodes cannot be continuously deformed nor

flipped without breaking the distance constraints [68][21], however the computational

load of the global rigidity test is high.

Several strategies are investigated and implemented to WSN localization that are

related to the quantitative (position obtained according to a reference) or qualitative

(network topology) nature of the solution [69, 73]. According to the [15] classification,

here two kinds of localization are considered, target/source localization and node self-

localization. These strategies can be subset as:

• Target Localization

– Single-Target Localization;

– Multiple-Target Localization.

• Node Self-Localization

– Range-Based Localization;

– Range-Free Localization.

In this work the focus is on a quantitative localization, range-based to a minimum

number of anchors node both target and node.

2.3.1 Target/Source Localization

The source localization methods have a wide range of possible applications. The outdoor

application includes vehicle or aircraft localization. In an indoor environment, this

method could track the human speakers. In underwater environment, it can be used to

locate the large sea animals and ships.

2.3.1.1 Single-Target/Source Localization in Wireless Sensor Network

.

Nowadays exists several way to the source location: energy-based, angle of arrival

(AOA) [62], time difference of arrival (TDOA) [101, 81, 82, 9]. The most attractive
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approach is the energy-based method, it requires low hardware configuration and it is

an inexpensive approach.

2.3.1.2 Model-Independent Methods

In [83] a kernel averaging approach that does not need information about energy decay

model is proposed. In [4], a novel model-independent localization method was proposed.

The idea is that a the nodes with higher received signal strength measurement were

closer to the source so a distributed sorting algorithm can be used. If the sensor nodes

know their rank, the required distance estimates are obtained as the expected value of

the respective probability density functions. Finally, the Projection Onto Convex Sets

(POCS) method was used to estimate the location of the source.

2.3.2 Node Self-Localization

The process of estimating the unknown node position within the network is referred as

node self-localization.

2.3.2.1 Range-Based Localization

The common approaches to estimate the indoor location are:

• Time of arrival (TOA);

• Time difference of arrival (TDOA);

• Angle of arrival (AOA);

• Received signal strength (RSS).

TOA method measures travel times of signals between nodes while TDOA locates

by measuring the signals’ arrival time difference between anchor nodes and unknown

node. Even if it is able to achieve high ranging accuracy it requires extra hardware and

consumes more energy. The RSS approach has established the mathematical model on

the basis of path loss attenuation with distance [72, 16]. It is possible to compute the

distance between the anchor node and unknown node using one of three measurement
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methods described above. Defining the anchor node position as h(x1, y1), ..., (xN , y
N

), i,

unknown node position as X = [x, y]T and the estimated distance between i � th

anchor node and unknown node as ˜d it is possible to obtain the coordinate matrix of

the unknown nodes as follows:

X = (ATA)

�1
ATB, (2.5)

A = 2

2

6666664

(x1 � x2), (y1 � y2)

(x1 � x3), (y1 � y3)
...

...

(x1 � x
N�1), (y1 � y

N�1)

3

7777775
(2.6)

B =

2

6666664

˜d22 � ˜d21 � (x22 + y22) + (x12 + y12)

˜d23 � ˜d21 � (x32 + y32) + (x12 + y12)
...

˜d2
N�1 � ˜d21 � (x

N�1
2
+ y

N�1
2
) + (x12 + y12)

3

7777775
(2.7)

The angles between unknown node and a number of anchor nodes are used in the

AOA method to estimate the location, unfortunately this method requires the antenna

array which is an expensive solution for low-cost sensor node.

2.3.3 Localization in Some Special Scenarios

Ideal and real applications of WNS are different, the scale factor in applications can

be small or large, and the environments can be different, that means that the usual

localization methods are not suitable for the special scenarios and some problems need

to be solved. The problem investigated can be summarized:

• Energy consumption and localization accuracy problem;

• Cooperative node localization;

• Heterogeneous sensor network localization.
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2.3.4 Energy Consumption and Localization Accuracy Problem

Due to the limited power of sensor node and hostile deployment environment, the node

selection in WSN is different from the traditional node selection in traditional wireless

network. If all the sensor nodes are used at the same time to executive localization

task without selection, although the energy consumption of nodes selection are saved,

but at this time the repeatability of the received information would be quite larger. If

the nodes are randomly selected, the algorithm is simple and the extra overhead can be

ignored, but localization accuracy is low in this case. This method cannot satisfy the

user’s requirements for the accurate localization, the unbalance of energy consumption

will appear, and some nodes may fail due to the depletion of energy. This may affect the

network connectivity and may result in losing the sensed data. These characteristics of

WSN determine selection method which is different from traditional network. Therefore,

it is necessary to investigate nodes’ selection mechanism in WSN.

The primary algorithm makes decision with global information [60]; this method

minimized the expected filtered mean-squared position error for a given number of

active nodes by using a global knowledge of all node locations. This algorithm needs

the positions of nodes and broadcasts them to all nodes and a lot of data communication;

therefore, it only can be applied to small networks. Based on the former algorithm, a

local selection strategy is investigated [61]. This method determines whether or not

that node should be active by only incorporating geometrical knowledge of itself and

the active set of nodes from the previous information. Based on this approach, the

researchers have also investigated other strategies, such as the least square method,

Bayes probability method [6]. Furthermore, in order to narrow the scope and scale of

selected nodes, researchers proposed a method which combines the track and the current

state of the robot. In [114] the authors propose a multi-node cooperation dynamic

tree algorithm. This method ensured that spanning tree has low energy consumption

and high information content by increasing and decreasing the number of the nodes

dynamically. In [109] online prediction based on particle filter is proposed and the

probability distribution of the target state under the Bayes framework is estimated. This

method realized the optimal selection of the node sequence and introduced a shortest

path algorithm to reduce the information transmission. In [50] a method that uses
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moving speed of the mobile robot to improve the localization accuracy and consistency is

described. The signal shielding and multipath interference make the channel parameters

become too complex to definite error factor. [7] proposed two selection principles to

reduce the number of active nodes, and the nodes with accurate measured value (RSSI

value larger than specified threshold) are selected. This method is effective to balance

the accuracy and energy consumption and is suitable for the WSN which is hardware

resource constrained. [115] used the Cramer-Rao equation to select the next node to

participate in positioning. Because of the complexity of the observed model and the

non-Gaussian noise, it is hard to get the optimal solution of the problem.

As previously said a typical sensor network consists of a large number of small

sensors that are deployed randomly. However, a sensor node has limited resources

because of battery power and small memory. In typical sensor network applications,

nodes are deployed in an unattended environment such as disaster management, habitat

monitoring, industrial process control, and object tracking. Enormous event data will

be generated for a long sensing time in WSN. Hence, by the methods of nodes resource

management, effective usage of the vast amount of data is crucial. In the meanwhile,

the scalability of both energy and spatial dimensions in distributed sensor network is a

key issue. Sensor networks must track various phenomena at the same time and work

within limited communication bandwidth, energy, and processing speed.

Energy consumption is one of the most important issues in recent years. In [86]

authors proposed a localization algorithm based on particle filtering for sensor networks.

Assisted by multiple-transmit-power information, it outperforms the existing algorithms

that do not utilize multiple-power information. In [111] a specified positional error

tolerance is proposed, the sensor-enhanced and energy-efficient adaptive localization

system in an application. This localization system dynamically sets sleep time for the

nodes and adapting the sampling rate of target’s mobility level. However, the process of

error estimation dynamically relies on several factors in the specific environment. [47]

proposed a scheduling algorithm that selects a subset of active anchor nodes to be used

in localization. It served to reduce the message overhead, increased network lifetime,

and improved localization accuracy in dense mobile networks. However, maximizing

the nodes’ sleep time is much more energy efficient if the nodes never wake up until the
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reception of wake-up messages. The above algorithms have the same feature that the

duty cycle of the sensor nodes is fixed in advance. In [116], the authors proposed an

innovative probabilistic wake-up protocol for energy-efficient event detection in WSNs.

The main idea of it is to reduce the duty cycle of every sensor via probabilistic wake-up

through the dense deployment of sensor networks.

The problem of unique network localization and a mathematical topic known as

rigidity theory have a strong connection, [45] proposed a localization method for sparse

networks by sweeping techniques. This method is saving all possible positions in each

position step and pruning incompatible ones. One drawback of sweeping method is

that the possible positions could increase exponentially as long as the number of nodes

increased. Other types of localization methods are also available, such as using multi-

dimensional scaling [57, 91] or mobile anchors [93, 30]. However, all the previous works

tried to localize more sensor nodes in a network without guaranteeing all of them. In [63]

it is introduced a localization method to localize all nodes by the minimal number of an-

chor nodes. However, they assume that the sensing range of each sensor can be enlarged

to guarantee certain triangulation, so that three anchor nodes are enough to localize all

sensors.

2.3.5 Cooperative Node Localization

There may be not enough information in the concentrated network or the node may

contain the harmful information in sparse network. There are two branches in this area:

• access the accuracy and reliability of the neighborhood nodes;

• improve precision with the cooperation of the active and passive nodes.

Some nodes may bring unreliable or even harmful information [107], so it is essential

to review the received information. In [96] it is employed the nearest link as reference

to review the information. When there are massive link in dense network and posi-

tioning mainly depends on the geometry of the neighbor node topology information,

the nearest neighbors may not correspond to the best link. Aiming at this issue, [25]

proposed an adaptive method to eliminate the inefficient links, but this method has

to work with neighbor node information, and the method cannot effectively reduce the
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number of packet effectively. Therefore, [24] put forward a kind of distributed criterion;

this method employed Cramer-Rao limit as identifiable parameters to identify the links.

This method could avoid the invalid neighbor node links and unreliable transmission;

thus, it can effectively reduce the computation time and the number of packets. The

accuracy of master-slave node cooperative localization is mainly depended on the mea-

surements accuracy and the number of Primary Reference Nodes (PRN). Unfortunately

in the actual application, it is difficult to increase the number of primary reference nodes

because of the factors of energy and the complexity. In [107, 42] it is put forward a

new method: the nodes which received the information of the target and the PRN are

termed as Secondary Reference Nodes (SRN), the SRNs participated in the localiza-

tion in a passive way. This cooperative method reduced the required number of PRN

with relatively higher localization accuracy. In [43] the maximum likelihood estimation

method is used to obtain the target position. The authors formulated the localization

problem into finding the intersection of the vertex set by using geometry description.

This method avoids getting into the local optimum.

2.3.6 Heterogeneous Sensor Network Localization Algorithm

Most of the localization methods for the wireless sensor networks are only to consider the

homogeneous network. The different kinds of the nodes such as the different maximum

communication radius and the different nodes own the different localization mechanisms

are not considered in homogeneous, so the localization methods for the homogeneous

network cannot be directly applied in the heterogeneous wireless sensor networks. A

new boundary nodes localization method by using a small number of anchor nodes is

proposed in [28] . First the boundary nodes are elected and their positions are deter-

mined and then the location information of boundary nodes is sent to other nodes

through a small hop communication range. Finally, other nodes estimate their locations

by the hop count and hop range. The scheme uses fewer anchor nodes, but has much

smaller localization error and standard deviation.

In [27], authors proposed a two-step localization method for two-tiered hierarchical

heterogeneous sensor networks. The network is composed by of three types of nodes:

• Anchor nodes with known locations;
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• Nodes equipped with both Ultrawide Band (UWB) and RF radios;

• Large number of normal sensor nodes.

The localization method works in two steps: first the high-accurate ranging capability

of UWB nodes is used to estimate their location from a few anchor nodes, then, sensor

nodes estimate their locations by using UWB nodes as anchor nodes. Sometimes the

distance between some nodes can be measured directly, while others cannot be. Se-

lecting a different positioning algorithms accord to the mutual distance between nodes

can be measured or not. [17] proposed a Hybrid Unified Kalman Tracking (HUKT)

technique. The accuracy of tracking is based on both time of arrival and time difference

of arrival measurements. This method is proposed to adaptively adjust the weighting

value between the TOA and TDOA measurements. The scheme can both provide higher

localization accuracy for mobile network and adapt to environments with insufficient

signal sources. According to the different communication radius of the nodes, some

super nodes can be deployed at some areas with plenty communication demands to

transmit the information. [92] considered the nodes with more power and longer com-

munication range as the heterogeneous nodes and propose a heuristic relay positioning

algorithm for heterogeneous wireless sensor networks, to achieve the sharing of resources

in heterogeneous wireless sensor network by using the relay nodes.

2.4 Rescuer Localization

Researchers have built location systems exploiting a large variety of technologies.

2.4.1 Dead Reckoning

Dead reckoning consists of determining the movements of a target to build its trajectory

from a given starting point. Pedestrian dead reckoning (PDR) involves estimating step

lengths and directions using a pedometer and a compass. More complex approaches

exploit foot-mounted inertial sensors (accelerometers and gyroscopes) to track every

the motion of the legs [36]. Dead reckoning only requires sensors to be carried or

worn by the person being tracked, making it particularly attractive for localization in
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unstructured environments. Inertial sensors can also provide the incident commander

with information about the posture of the rescuer, such as whether he or she is standing,

crouching, or lying down [106].

PDR are affected by incremental error in position estimate, since the small errors in

each measurement accumulate and, consequently, the positioning error increases with-

out limit. Eric Foxlin reported very accurate tracking [41]; Lauro Ojeda and Johann

Borenstein also achieved good accuracy in challenging environments [78]. However,

other researchers reported much larger errors. [40, 102]. The accuracy of the sensors,

the way they are attached to rescuer bodies and the walking pattern affect results

and make predicting uncertainty in a PDR position estimate very difficult. Current

PDR systems are unusable in scenarios in which the wearer crawls, climbs, or walks

with an irregular pattern (while transporting a victim, for instance). The challenge

for researchers is therefore to couple dead reckoning with other localization techniques,

without substantially increase the deployment effort.

2.4.2 Infrastructure-based localization

Many location systems, including GPS and some commercial indoor location systems,

use distance and angle measurements to determine a target coordinates. Typically, this

target is a tag able to transmit a radio, ultrasound, or infrared signal detectable by

sensors installed at known locations in the building. The sensors measure the distance

or direction of the signals and a central computer estimates the position of the tags by

means of trilateration or triangulation. In addition, the sensors and central computer

have to be connected to each other and the whole system has to be calibrated. The

estimated positions are typically detailed and accurate enough for the software to display

them on a floor plan.

A different method called finger-printing uses existing Wi-Fi access points to locate

a device [112]. Visible access points and their respective signal strengths are different

throughout a building, so a wireless client can use them to estimate its location. The

level of detail and reliability depend on the number of locations for which finger- prints

have been pre-recorded.

A position estimate’s detail, reliability, and update rate can be very good, but
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infrastructure-based methods fail when the conditions in the building change (temper-

ature rises, furniture moves, floors collapse), power supply is no more available, and/or

cables are cut.

2.4.3 Localization with Wireless Sensor Networks

In the field of wireless sensor networks, researchers have developed algorithms to de-

termine the positions of the nodes in the network. The sensors share individual range

or connectivity measurements, and each sensor contributes to the calculation of their

locations instead of relying on a central device [22]. If a few sensors are anchor nodes

with known absolute positions, the estimates improve and the distributed algorithms

can compute absolute locations for all the sensors and place them on a floor plan. These

methods require no calibration except for the anchor nodes position - all the other nodes

can just be dropped or scattered. Computation is distributed and communication is

wireless, which means no infrastructure is required. Individual nodes can fail without

compromising the whole system. However, some algorithms might provide incorrect po-

sition estimates if sensors are moved from their initial position. Such systems typically

consist of nodes distributed quite densely in an open space. Although this might not be

a realistic assumption for a search-and- rescue mission in a family home, it could apply

to an underground parking lot or an airport terminal. Sensor nodes can also serve as

radio repeaters to ensure reliable communication when standard radios fail due to thick

reinforced walls or underground levels. Because nodes are deployed throughout the

building, they can also monitor temperature, the presence of toxic gases, or vibrations

signaling that the structure is unstable [103].

2.5 Discussion

Even if a lot of interest and effort are pointing at the PDR systems there are still a

lot of issues that need to be investigated. The most important cans be summarized as

follows:

• Consistent evaluation methodologies and metrics – The outputs from a

system can be affected by the characteristics of the test subjects, by the building
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size, layout and construction materials, or by the test procedure followed. It is

common to report results for a single user over a series of walking tests. Such

tests serve as proof-of-concept but there is a growing need for thorough system

evaluations over sustained periods with a diverse set of test subjects;

• Unconstrained sensor sites – Smartphone-based PDR systems are highly at-

tractive, but they introduce new difficulties by loosening the attachment con-

straints. Any deployed system must cope with the sensors changing orientation in

a pocket, or being taken out to use, etc. In addition, there is often a heading offset

between the direction a smartphone is facing and the direction the user is moving.

This offset must be accounted for if using absolute heading measurements from a

compass;

• Sensor calibration – The output of MEMS sensors will vary over time as tem-

perature and other environmental effects affect their bias and scaling factors. For

unconstrained smartphones there is typically no opportunity to estimate the sen-

sor biases online, and no opportunity to perform a user-controlled recalibration.

This is particularly important for the heading estimation;

• Battery power requirements – In the move to mobile devices such as smart-

phones, it is important to understand the associated energy costs. An SHS system

utilizing gyroscope, accelerometers, magnetometers and WiFi signals will put a

large draw on the available battery power. Understating which sensors are re-

quired and when will be crucial to maintaining sufficient system users;

• Processing power requirements – The processing power demanded by the

bandpass filters, peak detectors, auto-correlators or particle filters in PDR systems

cannot be over-looked. Understanding how to deploy these systems online on the

devices themselves will be important;

• Wearability – To enable larger scale, more natural testing, it will be necessary

to have PDR techniques that do not require foot-mounting, this implies a need

for a SHS approach;
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Inertial Pedestrian Dead-Reckoning (PDR) systems are presented in this section. It

is shown how these kind of systems are done to use the inexpensive and small MEMS

sensors that are entering in the smartphone market. It was shown hot the triple integra-

tion can be applied only using foot-mounted sensor the represents a strong constrains.

To move the sensors from the foot Step and Heading Systems (SHSs) have begun to

dominate, where each step is identified and characterized in terms of a length and

heading vector.

Using only PDR it is possible to track a constantly-walking user, problems occurs

when during periods of non-walking activity, when false positives and false negatives

in the step detection, combined with compass and gyroscope errors will contribute

positional error that will accrue over time. Anyway for many building user most of

the day is spent seated and moving between two location for several minutes. In these

conditions it is possible to apply a pure PDR system maintaing a room level tracking

details.

Unfortunately in some situation it is not possible to consider only few minutes of

activity, in this situation the position estimated using PDR can be corrected by external

positioning system. There are several approach, one of the most investigate in this years

are based on WiFi but also other sensors information can be used as: RFID (Radio-

Frequency IDentification) Technology, Bluetooth Low Energy (BLE) and so on.

It seems likely we will see the emergence of hybrid systems with a variety of position-

ing modalities to augment PDR. Absolute position fixes will be obtained opportunis-

tically from whatever is installed in the current building – it can be WiFi, Bluetooth,

GSM, RFID, or some future communications medium. In this work several of the

problem are addressed. Battery and processing power requirements are solved using

low computational cost algorithm. Waist mounted platform is considered according to

rescuers requirements to avid the problem related to wearability and sensors position.

Moreove a sensor calibration procedure is implemented to reduce sensors errors and

bias.
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System Overview

3.1 Rescue scenario

In this Section, the scenario usually faced by rescuers, the motivations of using a local-

ization system, and the benefits of exploiting a hybrid human-robot intervention team

are introduced.

In recent years, many emergency situations (i.e., natural or un-natural disasters,

terrorist activities, etc.) have sharply risen around the world. When adversity strikes,

first responders have very limited time to react and rescue.

In search and rescue framework, a fundamental task is the localization in the emer-

gency area of first responders and, eventually, of injured or in distress human subjects.

In fact, for effective helping people, activities of the first responders (human or robot)

have to be optimized and a real time evacuation support service must be provided. To

this end, a reliable localization system is required to be used by the first responders

for self localization and for tracking from the operation command center their activities

and/or the injured people.

Location awareness is an important aspect in disaster response. The potential ben-

efits of an effective and ubiquitous indoor location for rescuers are twofold: efficiency

of the rescue activities could be enhanced by an effective coordination of the resources

deployed and safety of the rescuers could be better assured. However, indoor orienta-

tion and localization of rescuers within a complex and/or smoke-filled infrastructure is

31
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currently not sustained by technical tools, due to the lack of suitable indoor location

technologies.

Localization and tracking are important methodologies and represent one of the

industry’s top priorities, as underlying by the US National Institute for Occupational

Safety and Health (NIOSH). Due to the relevance of this issue, NIOSH explicitly high-

lights the need for a localization and tracking systems in its reports [76] and [77]:

• Train firefighters on actions to be taken when trapped or disoriented inside a

burning structure;

• Consider using exit locators such as high intensity floodlights, flashing strobe

lights, hose markings, or safety ropes to guide lost or disoriented firefighters to

the exit;

• Ensure that the Incident Commander receives relevant information (i.e., location

of stairs, number of occupants in the structure, etc.) from subjects on the field

and that information is relayed to team members during size-up;

• Working in large structures (high rise buildings, warehouses, and supermarkets)

requires that fire fighters be cognizant of the distance traveled and the time re-

quired to reach the point of suppression activity from the point of entry;

• Conduct research into refining existing and developing new technology to track

the movement of fire fighters inside structures.

In addition, other studies (such as www.cdc.gov/niosh/fire/pdfs/face200716.pdf) have

emphasized the need for reliable communication about inside conditions to the incident

commander for inferring building stability. Temperature, smoke, sounds, and vibrations

are indicators of a fire’s progression and the building’s stability.

In our vision, the effectiveness of incident command operations depends heavily

on tracking first responders, in-field injured persons triaging and physical environ-

ment monitoring. As already stated in the Introduction, during emergency situations,

first responders face unknown and complex environments where classical perception

schemes fail or are substantially limited. Therefore, it is worthwhile the investigation of

novel tools for improving human natural abilities. One of possible ways to achieve this
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augmented-reality goal is to consider a remotely operated system composed by hybrid

teams of cooperating humans and robots. These teams offer complementary capabili-

ties that can be exploited in a synergetic fashion. Robots are able to gain the access to

places forbidden to humans to quickly explore the workspace. They are able to retrieve

accurate measurements from environment and are disposable. Humans are able to cope

with unexpected situations, using their abilities of reasoning and abstraction. Further-

more humans operate and make decisions faster than robots. These capabilities will

keep humans in rescue situations for many years before robots can take over humans’

tasks in life threatening situations.

3.2 System requirements and design

The rescue localization problem can be addressed as finding the position (x, y, z) and

the heading (�) of the mobile agent (rescuer and/or robot) with respect to a Cartesian

navigation reference frame.

According to NIOSH and Italian Firefighters Corp recommendations, the localiza-

tion system should:

• locate the mobile agents using lightweight wearable sensors;

• exploit, when available, a network pre-deployed in the environment;

• guarantee room-level accuracy;

• provide and continuously update the position estimate;

• adopt low cost device and computational efficient solution;

• consider only the most common activities of a rescuer, i.e., staying still, walking,

going upstairs, going downstairs.

It is worth noticing that the wearable sensors used in localization must not interfere

with the operations during mission.

In this work, to solve the localization problem the Hybrid Rescue Team Localization

System (HRTLS) has been developed for rescue tasks in which fire fighters and support-

ing robots are exploring emergency area together with the help of a remote operator,
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i.e. the incident commander. HRTLS aims at building a spatial model of the disaster

area to achieve situational awareness for both external operator and rescuers.

In Fig. 3.1 the overall architecture of HRTLS is sketched. In HRTLS there are three

main actors: the supervisory entity, the mobile agents (blue and red circles in Fig. 3.1),

and network of landmarks deployed inside the environment. The supervisor is placed

outside the emergency area for coordinating the hybrid rescue teams and collecting data

from mobile platforms and information from rescuers, in order to assess the situation.

Moreover, he/she is able to send orders to rescuers and control the robots. The mobile

agents, both robots and rescuers, operate inside the emergency area.

The proposed localization system tries to integrate data collected from mobile agents

and smart landmarks deployed in the environment. During emergency phases, indeed,

rescuers only rarely know their accurate position. Human beings mostly exploit visual

information for localization, which is based on recognition of an object and estimation

of their distance to the object. In presence of darkness or smoke the accuracy of the

localization downgrades. Furthermore, human localization is relative by nature: only

when a rescuer identifies a known object (e.g., a corridor crossing or a door), he/she is

able to estimate his/her position with respect to the object. It is supposed that mobile

agents can be regarded as nodes of the same network, able to grab and/or forward

location information with the network of landmarks. Two types of landmarks are con-

sidered: composed by passive RFID tag or by wireless sensor networks (WSN). Mobile

agents are equipped with proprioceptive sensors (e.g., IMU for rescuers and encoder for

mobile robots) and a radio device able to read information from the passive landmarks

or to communicate with the WSN. The passive external infrastructure is composed by

RFID tags used as range free sensors; on the contrary, the WSN is composed by range

capable nodes. According to the rescuer requirements, landmarks are able to provide

the basic location message which is composed by the following fields:

• Geographical coordinates provided adopting the WGS-84 standard for cartography,

geodesy, and navigation or the Navigation reference frame;

• Bearing provide the set of the directions that can be assumed to pass through the

environment where the landmark is located (e.g., a door can be cross to get inside

or outside a room);
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Figure 3.1: HRTLS architecture: blue circles represent rescuers while red circles are
mobile robots. Dashed lines represent TETRA radio communication are represented
by green solid lines and blue dashed lines wireless network. Supervisor communicates
with human operator using both TETRA and wireless network and controls robots by
wireless network. Red crosses represent landmarks.

• Device classification identifies the type of device (e.g., emergency lamp, sign, etc.)

and its position in the emergency area (e.g., floor, mezzanine, corridor, etc.);

• Sensor classification indicates the type of the tag (i.e., passive, semi-passive, or

active) or wireless device;

• Accuracy characterizes the shape of the electromagnetic field set off by the tag/wireless

device antenna;

• Orientation is the direction of the tag antenna;

• Date represents the last time update of the information stored into the device.

To further fulfill the rescue requirements, the proprioceptive sensors for rescuer is a

lightweight wearable device, mounted on the waist, while the radio device (tag reader

or wireless antenna) is embedded in the handset (e.g., the TETRA radio) used during



CHAPTER 3. SYSTEM OVERVIEW 36

Figure 3.2: Bayesian filter.

mission. The landmarks are supposed to be embedded in the safety sign deployed in the

environment. Moreover, RFID tags represent anchors, since their location is recorded

during the deployment; on the contrary, WSN is activated on emergency and nodes

cooperatively localize themselves. In the following, the theoretical localization model

exploited in the proposed framework is presented. The novelty of the proposed approach

is in the joint exploitation of fixed and mobile nodes.

3.3 Theoretical Framework

According to HRTLS framework, mobile agents explore the emergencies area. During

navigation, the mobile agents are able to autonomously localize themselves. However,

when rendez–vous occur, mobile agents and external infrastructure cooperate for im-

proving location awareness. Due to the harsh operating condition, the localization

system has to cope with a large amount of uncertainties that dwells both in the infor-

mation provided by the smart environment and in the interaction between mobile agent

and external infrastructure. Moreover, as stated in the requirements, the localization

system should provide and continuously update the position estimate.

To this end, the localization of both mobile agents and node in the external infras-

tructure is addressed by adopting the well-known prediction-correction schema adopted

in robotic localization. According to this approach, an efficient theoretical framework

to model uncertainty is represented by Probability Theory. In this context, localization

is mapped into a stochastic estimation problem and solved applying the well-known
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predictor–corrector structure of Bayes filter (see Fig. 3.2).

This class of filters extends the Bayes rule to temporal estimation problems: the key

idea is to recursively compute the so-called Belief:
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where the Prior to being in x
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is given by the sum of the probabilities of coming
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conditioned on all the measurements so far. This equation represents

the prediction step of the Bayes filter and can be further simplified by means of the

Markovian assumption as follows:
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where the first term is an integral that depends only on the applied control u
k

and

the immediate preceding state x
k�1. This last contains all the statistical information

carried by U
k�1 and Z

k�1.

Moreover, by applying Bayes rule the Posterior can be expressed as:

Bel+(x
k

) = p(z
k

|x
k

, U
k

, Z
k

)

p(x
k

|U
k

, Z
k�1)

p(z
k

|U
k

, Z
k�1)

(3.6)
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The equation states that the Posterior is the conditional probability of observing z
k

,

weighted by the ratio of the prior belief of being in x
k

, Bel�(x
k

) and the probability

of observing measurement z
k

conditioned on all information so far. Introducing the

Markovian assumption, again, the Posterior can be rewritten as:

Bel+(x
k

) =

p(z
k

|x
k

)Bel�(x
k

)

p(z
k

|U
k

, Z
k�1)

(3.7)

Combining Eq. 3.6 and Eq. 3.7 the correction equation can be obtained:

Bel+(x
k

) = ⌘ p(z
k

|x
k

, U
k

, Z
k�1)

Z

⌅
p(x

k

|x
k�1, uk)⇥Bel�(x

k

)dx
k�1 (3.8)

where ⌘ represents p(z
k

|U
k

, Z
k�1) that is a normalization factor. Prediction Eq. 3.4

and correction Eq. 3.8 equations cannot be implemented in their general form stated

in the foregoing section, as the Belief over the localization domain is a density over a

continuous space, hence has infinitely many dimensions.

In this thesis, this theoretical framework is applied to both the mobile agent and

WSN localization. Specifically, since a large literature on probabilistic localization in

robotics is available, the focus of attention is related to rescuer and WSN. To this end,

a novel localization algorithm for rescuer (the rescuer filter) is developed by modeling

the human motion and the information from the external infrastructure. Using passive

infrastructure, a strategy to cope with context information (i.e., the presence of a rescuer

in a certain area) is developed. Using active infrastructure, an algorithm to cope with

nonlinearities is needed.

In localization for both rescuer and active infrastructure, we assume that an initial

guess on the position of the rescuer and the node of the infrastructure is known. This is

not an issue for rescuer, since it is reasonable to suppose that a rescuer starts mission in a

known position outside the emergency area. Concerning the WSN, the same assumption

cannot be adopted, however, under certain conditions, it is possible to prove that an

initial guess for the position of the node can be find. To this end, in this thesis the

problem of the localizability of a network is deeply investigated and some theoretical

results are presented.
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Figure 3.3: Rescuer localization filter.

3.4 Rescuer localization filter

The rescuer filter estimates the position p
r

= [x
r

, y
r

, z
r

] and the heading �
r

of the

rescuer with respect to a fixed reference frame, referred as Navigation frame. It exploits

the data from IMU (i.e., accelerations, angular rates, and orientation), that are provided

in the IMU reference frame that is referred as Body frame and data from the external

infrastructure in the Navigation frame, according to the theoretical framework adopted.

In the prediction step a pedestrian dead reckoning algorithm has been developed

adopting the SHS schema: it is sketched in Fig. 3.3 and it is composed by three different

algorithms:

1. Activity recognition classifies different walking patterns, such as flat walking,

going-up stairs, going-down stairs;

2. Heading computation estimates the attitude of the IMU wore by the rescuer with

respect to the navigation reference frame. It is based on an Extended Kalman

Filter (EKF) that merges data collected from gyroscopes, accelerometers and mag-
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Figure 3.4: Inertial platform position.

netometers;

3. Position tracking updates user pose according to the walking feature and the

heading.

According to the requirements, the IMU is mounted on the waist, as depicted in

Fig. 3.4: the z̃-axis of the Body frame represents the vertical axis of the rescuer while

the ỹ-axis and the x̃-axis are aligned with the medio-lateral and the antero-posterior

components of the acceleration vector, respectively. At the starting pose, indeed, we

assume that the attitude of the Body frame corresponds to the attitude of the Navigation

frame (i.e., they are aligned). Thus, the z-axis of the Navigation frame is vertical upward

and represents the vertical axis of the environment; the operator moves in the (x � y)

plane of the Navigation frame with the x and y-axis aligned with the x̂ and ŷ-axis of the

Body frame at the starting pose. In this configuration, the gravity acceleration vector

is aligned with the ẑ-axis and can be easily compensated.

These algorithms will be detailed in Chapter 4.
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3.5 Localization in WSN

According to the HRTLS architecture, the active network is switched on when an emer-

gency occurs. The network is not localized; however, the node positions p
j

= [x
j

, y
j

]

T 2 R2

with respect to the Navigation frame can be computed using a three steps procedure:

1. Ranging determines the inter-nodes distances;

2. Node positioning determines the position of a node with respect to anchors (i.e.,

nodes that know their positions with respect to the Navigation frame);

3. Refinement improves the accuracy of the estimate according to the proposed the-

oretical framework using a static model in the prediction.

The Node positioning step is fundamental since it computes the initial position for

the Bayesian filter. To this end, a WSN ⌃ it is defined by a set of N fixed sensors �
j

deployed in a planar environment. Therefore, the position of a sensor �
j

can be written

as:

p
j

= [x
j

, y
j

]

T 2 R2 (3.9)

with respect to the Navigation reference frame.

The sensors are all equipped with an isotropic communication antenna. The node is

able to sensing only points lying in the antenna maximum communication range ⇢. Two

nodes �
j

,�
i

use their antennas as a rangefinder for computing the Euclidean distance

d
j,i

= ||p
j

� p
i

||.

From a theoretical point of view, a WSN can be described using the disk model;

that means that a WSN can be represented as a disk graph G = {V,E} where:

• V : set of nodes v1, . . . , vN (i.e., the sensors �1, . . . ,�N )

• E: set of edges (v
j

, v
i

) (i.e., the presence of a communication link between sensors

�
j

and �
i

).

The localization problem can be compared to the problem of finding a framework

(G,P ) such that the coordinate assignment P does not violate the distance constraints

as in Graph Theory. A framework is a graph G = {V,E} with a coordinate assignment
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P : V ! R2 for the vertices of the graph. For the theoretical problem, it is possible

to find a unique solution if the framework is globally rigid, i.e., the position of the

nodes cannot be continuously deformed nor flipped without breaking the distance con-

straints [68, 21]. It is useful to notice that the computational load of the global rigidity

test is high, thus not suitable to be used in the particular application scenario.

The classical approach for solving the localization problem is based on trilateration

graph G
T

= {V,E
T

} with E
T

✓ E [29, 5]. Trilateration is the process of determining

the position of a sensor �
j

by using the information of the distances d
ji

, d
jh

and d
jk

from three localized sensors (i.e., the localization seeds) [89, 29]. A way to localize a

sensor network (composed by all distance-based sensors) is to let each sensor checks for

the existence of 3 localized neighbors, while localized sensors broadcast their position to

their neighbors. When an unlocalized sensor discovers 3 localized neighbors, it estimates

its own location by means of trilateration and broadcasts its location to its neighbors.

In this way the localization is propagated through the network, until no other sensor can

be localized. If the graph G contains a trilateration graph, all the nodes will eventually

be localized; when G
T

= {V
T

, E
T

} with V
T

⇢ V , a localizable component of the WSN

is retrieved.

It is worth noticing that some nodes in the network could result unlocalized, i.e.

G
T

 G, due to the node positioning procedure (ranging): in this work, the problem

of localizability in wireless sensor networks is addressed and some improvements with

respect to the state of the art are proposed in Chapter 5.



Chapter 4

Rescuer Filter

4.1 Activity recognition

Activity recognition aims to classify different walking patterns (e.g., walking, running,

etc). It can be regarded as the problem of defining the map:

a : Rn ! A
s
k

! c
k

(4.1)

where s
k

is the k–th samples of the raw signals retrieved from the IMU and c
k

2 A is the

categorical variable that defines the activity. According to the firefighters requirements,

the set of the activities is defined as:

A = {standing still, walking, going upstairs, going downstairs}

In this work, the activity recognition problem is addressed using a procedure based

on the following steps:

• Data pre-processing eliminates bias and noise;

• Windowing selects a small subset of data for processing and analysis;

• Feature extraction computes a set of parameter useful for the classification, accord-

ing to the domain of the parameters, Time domain features, Frequency domain

features, and Time-Frequency multi domain features;

43
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• Classification determines the activity associated to the signals.

Two different algorithms have been developed for identifying the different walking pat-

tern: they differ mainly in the selected features and in the classification techniques

adopted.

In both of the approaches, the signal s
k

is represented by the acceleration vector re-

trieved by the IMU sensor, in the Body frame, that corresponds to a = [a
AP

, a
ML

, a
V

]

T .

The raw signal are pre-processed by applying a 5th-order low pass digital Butter-

worth filter with normalized cutoff frequency !
n

= 6 Hz. A time-window is applied to

the samples of pre-processed accelerations so to obtain the set:

Aw

= {a
k

|W (k) = w} (4.2)

where W (k) : N ! N defines the mapping between the k–th time interval and the

corresponding time-window w. The mapping W (k) is defined so that |Aw| = j, 8w 2 N
and Aw \Au

= ;, 8w, u 2 N when w 6= u.

4.1.1 Activity recognition based on Decision Tree

The first algorithm developed for activity recognition is based on Decision Tree. It

considers the following features in the time domain:

• the variance of the vertical acceleration in the time-window w, �2
w

• the amplitude of the medio-lateral acceleration in the time-window w, ↵
w

;

• the vertical dynamics index in the time-window w, i
w

.

To compute the vertical dynamics index, only the vertical acceleration Aw

V

is con-

sidered. A threshold � is set as

�
w

=

āw
V

n
u

(4.3)

where āw
V

is the mean value of a
k

2 Aw

V

and n
r

represents an anthropometric parameter

calibrated on the rescuer by experimental trials. Applying the threshold �
w

, the Aw

V

is partitioned in two subsets AwM

V

= {a
k

|a
k

2 Aw

V

^ a
k

� �
w

} and awm

V

= {a
k

|a
k

2
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Figure 4.1: Pattern Recognition using Decision Tree.

Aw

V

^a
k

< �
w

}. This set are used to compute the mean positive index iM
w

and the mean

negative index im
w

as

iM
w

= āM
kV

� āw
V

(4.4)

im
w

= ām
kV

� āw
V

(4.5)

where āM
kV

and ām
kV

are the mean value of the a
k

2 AwM

V

and a
k

2 Awm

V

respectively.

The vertical dynamics index is the Euclidean norm if the vector i
w

= [iM
w

, im
w

]

T .

A decision tree is used to classify the activity in the set A. A decision tree is a

tree in which each internal (non-leaf) node is labeled with an input feature. The arcs

coming from an internal node are labeled with each of the possible values of the target

or output feature or the arc leads to a subordinate decision node on a different input

feature, each leaf of the tree is labeled with a categorical variable.

The decision tree for activity recognition is depicted in Fig. 4.1. By comparing the

variance of the vertical acceleration in the time-window w with respect to a threshold

d1 standing still and moving activities are separated. In fact during the stand activity,

the noise covariance is considerably reduced (see Fig. 4.2).



CHAPTER 4. RESCUER FILTER 46

Figure 4.2: a
V

[g], vertical acceleration vs time [s] during stand still.

The second decision is about the type of movement (i.e., walk or going up/downstairs).

The decision is made by comparing the vertical dynamics index with respect to a thresh-

old d2.

Finally the upstairs or downstairs movement is discriminated by comparing the

amplitude of the medio-lateral acceleration with respect to a threshold d3. When the

user moves up or down a stair, indeed, the CoM begins rising or falling and a shift

to a single limb occurs. The amplitude of this shift is amplified going downstairs (see

Fig. 4.3). The drawback of this approach is the estimation of the decision thresholds

d
i

, which depends on the rescuer and need to be calibrated by executing the different

activities.

4.1.2 Activity recognition based on Linear Discriminant Analysis

The feature selection process entails a tradeoff between the relevance of the features

and their computational cost, due to the online-algorithm constraints. According to

this perspective, the Linear Discriminant Analysis (LDA) considers a limited number of

features, which guarantee both a low computation effort and a desirable classification

accuracy. Specifically, only 7 features are considered: they are reported in Tab. 4.1.

The features ✓w1 , ✓w2 , ✓w3 represent the standard deviation of the components of the ac-

celeration in Aw and are mostly used to detect the standing still activity. The features
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Figure 4.3: a
V

(blue) and a
ML

(black) [g] vs time [s] during stairs climbing: red line is
a
V

M and a
ML

M , green line is a
V

m and a
ML

m in the gait cycle.

Table 4.1: Selected features ✓w on window-matrix Aw for dimension i

Aw

ML

Aw

V

Aw

AP

stdev(Aw

i

) ✓w1 ✓w2 ✓w3

max(DFT (Aw

i

)) ✓w4 ✓w5 ✓w6

max(Aw

i

)�min(Aw

i

) ✓w7 - -

✓w4 , ✓
w

5 , ✓
w

6 represent the peak value of the Discrete Fourier Transform of the components

of the acceleration in Aw: they are mostly used to identify different moving activities.

Finally, the feature ✓w7 represents the amplitude of the medio-lateral acceleration and

it is mostly used for discriminating the going up/down stairs activities. The features

✓w, summarized in Tab. 4.1, have been selected for the classification phase by evalu-

ating their discriminant potential and their computational complexity. Each feature is

computed on a column i of the window-matrix Aw.

The relevant features composing ✓w have been selected by adopting the visual rep-

resentation method proposed in [65]. In fig. 4.4 two examples of this visual comparison

are reported. Specifically, in fig. 4.4a an example of the distribution of the classes along

a feature (✓w5 ) is reported. In fig. 4.4b, a comparison of the distribution of the classes

across two features (✓w2 and ✓w7 ) is proposed.

LDA is a method used in statistics, pattern recognition, and machine learning to
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(a) Distribution of the classes along feature ✓

w

5

(b) Distribution of the classes across two features ✓

w

7 (x-axis) and ✓

w

2 (y-axis)

Figure 4.4: Distribution of the classes: The red cross indicates the median of the redis-
tribution. In 4.4a the blue bar indicates the range between 0.1 and 0.9 quantiles.In 4.4b
the blue circles represent walk, the red triangles are going downstairs, the black crosses
mean going upstairs, and the magenta stars represent standing.

find a linear combination of features that characterizes or separates two or more classes

of objects or events. The resulting combination may be used as a linear classifier, or,

more commonly, for dimensionality reduction before later classification.

At each stage, LDA selects the class label, which minimizes the expected classifica-
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tion loss

ĉ = arg min

c2C

X

k2C

ˆP (k|✓w)L(c|k) (4.6)

where ˆP (k|✓w) is the posterior probability of class k for observation ✓w, and L(c|k) is

the loss incurred when classifying an observation as c given its true class is k. The

posterior probability is defined by the Bayes theorem as

ˆP (k|✓w) =
ˆP (✓w|k) ˆP (k)

ˆP (✓w)
(4.7)

where ˆP (✓w|k) is the likelihood of the observation, ˆP (k) is the prior probability distri-

bution of class k, and ˆP (✓w) is a normalization factor given by ˆP (✓w) =
P
c

ˆP (✓w|c) ˆP (c).

The likelihood is approximated by a normal distribution

ˆP (✓w|k) = 1p
2⇡|⌃

k

|
exp

✓
�1

2

(✓w � µ
k

)

T

⌃

�1
k

(✓w � µ
k

)

◆
(4.8)

where µ
k

and ⌃

k

are respectively the mean and the covariance of the feature vector

distribution under class k. The prior distribution is assumed to be uniform.

The main advantage of this approach is that the LDA parameters are independent

from the rescuer.

4.2 Heading computation

The heading measures the orientation of the rescuer with respect to the Navigation

reference frame. In this framework, two different approaches based on quaternion have

been implemented: the first one is based on the Extended Kalman Filter (EKF), [88, 34]

the second one on the Complementary Filter (CF) [97, 39].

Both approaches consider all the data retrieved from the IMU (i.e., the data from

tri-axial acceleration, gyroscope, and magnetometer) and exploit the device position.

At the starting pose, indeed, we assume that the attitude of the Body frame corresponds

to the attitude of the Navigation frame (i.e., they are aligned). Specifically, the z̃-axis

of the Body frame represents the vertical axis of the rescuer while the ỹ-axis and the

x̃-axis are aligned with the medio-lateral and the antero-posterior components of the

acceleration vector, respectively. At the same time, the z-axis of the Navigation frame

is vertical upward and represents the vertical axis of the environment; the operator
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moves in the (x� y) plane of the Navigation frame with the x and y-axis aligned with

the x̂ and ŷ-axis of the Body frame at the starting pose. In this configuration, the

gravity acceleration vector is aligned with the ẑ-axis and can be easily compensated.

Knowing the attitude of the two frames at the starting pose, we can compute the

attitude phi = [theta, , phi] of the Body frame with respect the Navigation frame by

simple rotation. Finally, the heading can be calculated as the yaw angle.

4.2.1 EKF attitude filter

The Attitude Filter estimates the attitude of the Body frame with respect to the fixed

Navigation frame. It is based on an Extended Kalman Filter (EKF) that merges data

collected from gyroscopes, accelerometers and magnetometers. The vector state is rep-

resented by means of quaternions: these mathematical entities need less computational

effort in recursive updating and avoid the singularity issues that affect angular descrip-

tors, like Euler angles. Quaternions can be defined as:

q = [⌘, ✏]T (4.9)

where ⌘ = cos ✓2 is the scalar part of the quaternion, ✏ = sin ✓

2r is the vector part of the

quaternion, ✓ is the rotation about the Euler axis, and r is the unit vector of the Euler

axis with respect to a Cartesian reference frame O�xyz.

In the prediction step, the following differential equations is used to evaluate the

angular motion of a rigid body:
d

dt
q = ⌦q (4.10)

where:

⌦ =

1

2

2

666664

0 �!
z

!
y

!
x

!
z

0 �!
x

!
y

�!
y

!
x

0 !
z

�!
x

�!
y

�!
z

0

3

777775

T

(4.11)

in which ! = [!
x

,!
y

,!
z

] represents the angular velocity measured by the IMU in the

Body frame, where the time-dependence has been omitted for sake of simplicity.
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The corresponding discrete-time model is as follows:

⇢
q̂
k

= e(⌦k

�t

k

)q̂
k�1 = �

k

q̂
k�1

q̂T0 = q̂(0)
(4.12)

where �t
k

= [t
k�1, tk] is the sampling time interval and �

k

= e(⌦k

�t

k

). The quater-

nion q
k

is computed at each sampling time k, starting from the initial condition q0.

The initial condition q0 is obtained from the acceleration considering the rescuer

standing still at the beginning of the mission:

q0 =


� a0yp

2(1�a0z)
,
q

1�a0z
2 , 0, a0xp

2(1�a0z)

�
T

����


� a0yp

2(1�a0z)
,
q

1�a0z
2 , 0, a0xp

2(1�a0z)

�����
(4.13)

where a0 = [a0x, a0y, a0z] is the acceleration vector measured by the IMU in the Body

frame at the beginning of the experiment. It is worth noticing that q0 is a unit vector.

In order to preserve this feature, the estimated value of the quaternion q
k

is normalized

in both the prediction and correction steps of the attitude filter.

The covariance matrix of the prediction step can be expressed as:

P q

k|k�1 = �

k

P q

k�1|k�1�
T

k

+Q
k

(4.14)

where Q
k

is the accuracy of the gyroscopes.

The measurement z
k

is built by stacking the accelerometer and magnetometer mea-

surement vectors as shown in the following equation:

z
k

=

2

4 a
k

m
k

3

5 (4.15)

The expected measurement ẑ
k

from accelerometers can be computed according to:

â
k

= h
a

(q̂
k|k�1) = K

a

R(q̂
k|k�1)g (4.16)

where â =

h
â
x

â
y

â
z

i
T

represents the acceleration in the Body frame, K
a

is the scale

factor matrix depending on the device used, g is the acceleration gravity vector, and



CHAPTER 4. RESCUER FILTER 52

R(q̂
k|k�1) is the rotation matrix from the Body frame to the Navigation frame:

R(q̂
k|k�1) =2

664
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(4.17)

It is worth underlying that data collected from accelerometers can be used only when

the rescuer is in still position, otherwise the gravity cannot be compensated; therefore,

a validation gate is set up and the acceleration correction is performed only when

| ||a
k

|| � ||g|| |< "
a

, where || · || is the Euclidean norm and a
k

is the vector of the

accelerometer measurements.

The expected measurement from the magnetometer can be computed according to

the following equations:

m̂ = h
m

(q̂
k|k�1) = K

m

R(q̂
k|k�1)dm (4.18)

where m̂ =

h
m̂

x

m̂
y

m̂
z

i
T

represents the magnetic field vector in the Body frame,

K
m

is the scale factor matrix depending on the environment and d
m

is the Earth

magnetic field. To prevent the use of magnetometer measures affected by large mag-

netic disturbances, a matching test is set up, so the update is performed only when

| ||m
k

||� |d
m

| |< "
m

and ||m
k

�m
k�1|| < "�m

, where m
k

is the vector of the magne-

tometer measurements.

When the measurements are available, i.e. they have passed the test, the estimate

is updated according to the EKF equations. The correspondent covariance matrix is

given by:
S
k

= H
k

P q

k|k�1H
T

k

+ V
k

K
k

= P q

k|k�1H
T

k

S�1
k

q̂
k|k = q̂

k|k�1 +K
k

[z
k

� h(q̂
k|k�1)]

P q

k|k = (I �K
k

H
k

)P q

k|k�1

(4.19)

where H
k

is the Jacobian of the observation vector h(·) = [hT
a

(·), hT
m

(·)]T , V
k

is the

covariance matrix of the measurements, and K
k

is the Kalman gain matrix.
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4.2.2 Complementary Attitude Filter

The Complementary Filter for orientation, as the EKF, allows to compute the attitude of

a rigid body to which the IMU is attached. The quaternions are defined as Equation 4.9

in Sec. 4.2.1.

According to the theory of Complementary Filter, this algorithm combines two

different set of data, the static and the dynamic one [11]. Static data contains the infor-

mation generated by accelerometer and magnetometer, while dynamic data is obtained

by gyroscope. Using static data the static quaternion q
�

is obtained, while dynamic

data provides dynamic quaternion q
�

. Static quaternion q
�

is computed by using the

Factored Quaternion Algorithm (FQA). FQA is a geometrically intuitive algorithm for

determining orientation of a static or slow-moving body from measured acceleration

and local magnetic field vectors. FQA provides the static quaternion q
�,k

using the

acceleration from IMU and local magnetic field measurements from magnetometer, as

in [113], when new measurements are available.

The static quaternion q
�,k

is useful when sensor module is stationary or slowly mov-

ing. In this case, indeed, accelerometer and magnetometer can provide absolute body

orientation. However, when the angular rate measurement is high, the accelerometer

and magnetometer measurements are no longer accurate and gyroscope measures need

to be used. To evaluate the angular motion of a rigid body the dynamic quaternion q
�

is computed according to the Equations 4.10–4.12.

Following [12], the corrected quaternion can be computed as:

q
k

= �
k

q
�,k

+ (1� �
k

)q
�,k

(4.20)

where �
k

is the filter gain weighting the contribution of the static and the dynamic

quaternion. The quaternion q
k

is obtained in an adaptive way: the filter gain �
k

, indeed,

is set according to the reliability of the measurements retrieved by accelerometer and

magnetometer.

4.2.3 Heading hybridization

The heading estimate ¯�
k

can be further refined by the data provided by the pas-

sive/active sensor in the location message. The bearing '
i

= ['
i1,'i2], indeed, gives in-
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formation about the directions that the mobile agent can assume when passing through

the environment where the sensor is located. A data association problem is solved to

choose the proper bearing, thereafter a correction is performed. The data association

is solved by

'̂
i

= min{|'
i1 � ˆ�

k|k|, |'i2 � ˆ�
k|k|} (4.21)

The refinement of the heading is computed as:

ˆ�
k|k =

⇢
ˆ�
k|k |'

i1 � ˆ�
k|k| < ✏

'

'̂
i

otherwise
(4.22)

where ✏
'

is a threshold chosen by experimental trials.

4.3 Position tracking

The Position tracking recursively provides the position p
r,j

= [x
r,j

, y
r,j

, z
r,j

]

T of the

rescuer at each sample time j, determined by an activity recognition event. The position

estimate is performed according to the approach in Sec. 3.3. It exploits the output of

the Activity recognition and the Attitude Filter to compute the heading and assumes

that the initial pose of the rescuer is known. The heading of the rescuer is therefore

a parameter for the filter: the resulting state transition model is linear. Two different

correction steps are performed, depending on the passive or active infrastructure. In

the first case, the sensor provides only context information (i.e., presence of the rescuer

inside a certain area), in the second case the infrastructure provides information on the

distance between the sensor and the rescuer, that is modeled as a nonlinear map.

4.3.1 Position prediction

In the prediction step, the position p
j

= [x
j

, y
j

, z
j

]

T of the rescuer with respect to

the Navigation frame and the corresponding accuracy P p

j

is computed according to the

following equation:

p̂
j|j�1 = p̂

j�1|j�1 + l
j

,

ˆP p

j|j�1 =
ˆP p

j�1|j�1 +Qp

j

(4.23)



CHAPTER 4. RESCUER FILTER 55

where l
j

is the displacement in the 3D environment that depends on the activity c
k

recognized and Qp

j

= l
j

QplT
j

, where Qp is the model uncertainty. Specifically, if the

activity recognized is standing still

l
j

= [0, 0, 0]T

When the activity is walking, the displacement kl
j

k is computed using the vertical

acceleration aV using the Weinberg approach [100]

kl
j

k = � 4

q
av
j,M

� av
j,m

(4.24)

where | · | is the Euclidean norm aV
j,M

and aV
j,m

are the maximum and the minimum

vertical acceleration during a step event and � is a parameter depending on the user,

that has to be experimentally identified. Therefore,

l
j

= [kl
j

kcos¯�
j

, kl
j

ksin¯�
j

, 0]
T

where ¯�
j

is the average heading during the sampling interval [j � 1, j].

When the activity is going up/downstairs, the displacement l
j

is computed as

l
j

=

⇢
[⇢ cos�

j

, ⇢ sin�
j

,+⇣]T c
k

= upstairs

[⇢ cos�
j

, ⇢ sin�
j

,�⇣]T c
k

= downstairs
(4.25)

where ⇢ is the expected stair depth, and the vertical displacement corresponds to

the stair height ⇣.

It is worth mentioning that when the rescuer is moving (i.e., when the resulting

activity is either walking or going up/downstairs), the time-length of a single step event

needs to be determined. To this end, the vertical acceleration, pre-processed during ac-

tivity recognition is exploited: a peak detection and zero crossing algorithm are applied

to identify the sharp changes to the vertical acceleration associated to the heel strike as

shown in Fig. 4.5.

At the end of the inertial prediction phase, the result consists in a rough position

estimate affected by sensor drift errors.
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(a) The number of sample in a step is ⇠ 30.

(b) The number of sample in a step is ⇠ 20

Figure 4.5: Zero-Crossing Step Detection: a zero crossing is represented using green
crosses, a step is represented whit red circles and a

V

M

and a
V

m

are represented using
black line.

4.3.2 Hybridization using passive infrastructure

The correction step refines the position estimate upon tag detection. According to the

HRTLS architecture, the tag provides its own Geographical Coordinates, its Orientation,

and its Accuracy w
i

. The Geographical Coordinates and the Orientation are used to

compute the center of the radiation lobe T i that is exploited to update the position of

the rescuer. It is worth noticing that the Geographical Coordinates need to be expressed

with respect to the Cartesian navigation reference frame. Since no ranging technique is

adopted in this work, only the position of the rescuer is corrected, due to observability

issues. When a rescuer is in the main radiation lobe of the tag, the reader receives infor-
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mation from the tag and the rescuer’s position is updated according to four strategies

as shown in Fig. 4.6.

The first two strategies consider a single tag detection, specifically in the first one

(see Fig. 4.6a), the inertial prediction estimates the rescuers outside the radiation lobe

of the perceived tag i. In this case, the position and the accuracy are reset according

to the following equations:
p̂
j|j = T i,

P p

j|j = w
i

I2⇥2

(4.26)

where p̂
j|j represents a new initial position and the covariance P

j|j is set according to

the accuracy w
i

provided by the tag.

In the second one (see Fig. 4.6b), the rescuer position is estimated inside the main

radiation lobe of the perceived tag i, in this case the pose is not updated but the

accuracy is eventually bounded according to the following equations:

p̂
j|j = p̂

j|j�1,

P
j|j =

⇢
P p

j|j�1 tr[P p

j|j�1] < w2
i

w
i

I2⇥2 otherwise.

(4.27)

where tr[P
j|j�1] represents the uncertainty measurement.

In the last two cases, the rescuer is inside the main radiation lobe of r tags. If the

inertial prediction locates the rescuer outside the radiation lobes (see Fig. 4.6c), the

position p̂
j|j is updated according to the following equations:

p̂
j|j =

¯T i,

P p

j|j =

P
r

i=1wi

(T i � ¯T j

)(T i � ¯T j

)

T

(4.28)

where ¯T j is the average center of gravity of the r tag radiation lobes.

Finally, when the inertial prediction locates the rescuer inside the radiation lobe of

a subset of the r perceived tags, the position p̂
j|j is updated according to the following

equations:

p̂
j|j = p̂

j|j�1 + L
j

(Tj � [p̂
j|j�1]r) (4.29)

P p

j|j =

⇢
P p

j|j�1 tr[P p

j|j�1] < tr[S
j

]

P p

j|j�1�Lj

S
j

LT

j

otherwise
(4.30)
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(a) Single tag reset. (b) Single tag update.

(c) Multiple tags reset. (d) Multiple tags update.

Figure 4.6: Correction strategies: rescuer position in prediction step (green cross),
rescuer position after correction (blue triangle), perceived tags (red squares), radiation
lobe center (blue dot), and radiation lobe (black circles).

where Tj is the block vector of the coordinates retrieved from the r tags, [p̂
j|j�1]r is a

block vector stacking r times the coordinates of the position of the rescuer, tr[S
j

] is the

tags combined uncertainty, and L
j

represents a gain. This gain is computed as:

L
j

= P
pz,j

S�1
j

(4.31)

where:

P
pz,j

=

rX

i=1

w
i

(T i � p̂
j|j�1)(T

i � ¯T j

)

T (4.32)

and S
j

is:

S
j

=

rX

i=1

w
i

(T i � p̂
j|j�1)(T

i � p̂
j|j�1)

T . (4.33)
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It is worth noticing that the correction step is performed only on the perceived tags.

4.3.3 Hybridization using active infrastructure

When information range information are available, the correction step is performed

using the EKF equation, specifically the expected measurement from sensor i can be

computed as

ẑ
j

=

q
(x̂

r,j|j�1 � x
i

)

2
+ (ŷ

r,j|j�1 � y
i

)

2 (4.34)

where p
i

= [x
i

, y
i

]

T is the position of the sensor i, considered as a parameter.

The EKF equation can be written as

S
j

= H
j

P q

j|j�1H
T

j

+ V
j

K
j

= P p

j|j�1H
T

j

S�1
j

p̂
j|j = p̂

j|j�1 +K
j

[z
j

� h(q̂
j|j�1)]

P p

j|j = (I �K
j

H
j

)P p

j|j�1

(4.35)

where H
j

is the Jacobian of the observation map, V
j

is the covariance matrix of the

measurements, and K
j

is the Kalman gain matrix.



Chapter 5

Wireless Sensors Network

5.1 Active Infrastructure

In HRTLS architecture, the active infrastructure is a WSN switched on during emer-

gency. The WSN is supposed unlocalized. During WSN localization the network coop-

erates with the mobile agents in:

• Loose Cooperation: a set of nodes with known positions (anchor nodes) is used

to retrieve the maximum localizable component and the mobile agent is used to

augment this component;

• Tight Cooperation: no anchors are considered; the mobile agent has to localized

three nodes to start the network localization.

In this work, a static WSN is deployed in a planar environment. The WSN can

be described using the disk model: a node (sensor) is capable of sensing only nodes

that lie within its communication range. According to this approach, a WSN can

be represented by a disk graph. The localization problem can be set as finding a

coordinate assignment for the non-anchor nodes. In Graph Theory, this problem is the

same as finding a framework such that the coordinate assignment does not violate the

distance constraints. A unique solution for the theoretical problem is proved to exist if

the framework is globally rigid, i.e., the position of the nodes cannot be continuously

60
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deformed nor flipped without breaking the distance constraints [68][21], however the

computational load of the global rigidity test is high (see Sec. 3.5).

This problem is commonly solved applying a three-steps algorithm:

1. Distance computation: the distances between a pair of sensors are computed;

2. Positioning : the coordinates of the sensors are estimated;

3. Refinement : the coordinates estimated are updated using rescuer/network infor-

mation.

The main novelty of the proposed approach is the use of Shadow Edges strategy

for positioning in order to augment the maximum localizable component of the static

WSN. In the following, the adopted strategy is reported for sake of clarity.

5.2 Positioning by Shadow Edges

Let us assume that each sensor �
i

is characterized by a communication radius ⇢ > 0

and is able to detect the presence of any sensor v
j

within ⇢ (i.e., those sensors v
j

such

that d
i,j

 ⇢ ), obtaining also information about the distance d
i,j

between them. The

resulting structure is a disk graph, since every piece of distance information d
i,j

can be

obtained, given the communication radius ⇢. Such an assumption is typically verified

in practical situations, in particular when circular antennas are adopted.

Under the above assumptions, the sensor network may be localizable even when the

underlying graph is not globally rigid, exploiting the idea illustrated in Fig. 5.1. In the

figure, the sensor �
i

cannot be localized using trilateration. Although sensor �
j

is out

of reach for sensor �
i

, however, the fact that �
j

is not sensed by �
i

may contribute to

identify the correct position sensor �
i

. In the following, we will refer the edges like the

one reported in a blue dotted line in Fig. 5.1 as shadow edges.

Definition 1 (Shadow Edge): Let a disk graph sensor network, for some ⇢ > 0,

be represented by a partially localized framework (G,P
l

) where V
l

2 V contains the

localized nodes (i.e., anchors and nodes localized via trilateration). Suppose that a

node v
i

/2 V
l

is connected to two nodes v
h

, v
k

2 V
l

. Given the two distances d
i,h

and d
i,k

there are two admissible positions p
i1 and p

i2 for the location of node v
i

(the intersections
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Figure 5.1: Shadow Edges Localization: sensors �
j

,�
h

and �
k

are localized, sensor �
i

is localizable by means of the negative information of not been connected to sensor �
j

,
as represented by the shadow edge (blue dotted line).

of the circumferences centered in v
h

and v
k

, of radius d
i,h

and d
i,k

, respectively). Let

another node v
j

2 V
l

such that {(v
j

, v
h

), (v
j

, v
k

)} 2 E.

A shadow edge is an edge (v
i

, v
j

) such that:

1. (v
i

, v
j

) /2 E;

2. either ||p
i1 � p

j

|| < ⇢ or ||p
i2 � p

j

|| < ⇢

Hence, a shadow edge is a virtual edge that does not exist in the original graph. Notice

that a shadow edge does not always exist, since the conditions of Definition 1 may not

be verified for particular frameworks. Let us denote by E
s

a set of shadow edges. Note

that, for any (v
i

, v
j

) 2 E
s

, v
i

and v
j

have to be considered as virtual two-hop neighbors,

because their distance is d
i,j

2 (⇢, 2⇢].

Definition 2 (Shadow localizable framework): Let a frame-work (G,P ) with n

nodes. A framework (G0, P ) contained in (G,P ) is a shadow localizable framework if:

• G’ is connected and perfectly chordal;

• for each perfectly chordal subframework (G
sub

, P
sub

) of (G,P ) with 4 nodes which

is not complete, the corresponding subframework (G0
sub

, P
sub

) of (G0, P ) is Delau-

nay and Gabriel.
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Figure 5.2: Situations considered in Lemma 1: (a) a framework which is both Gabriel
and Delaunay is such that point p

i2 lies in the lower half-plane with respect to the
line that intersects p

h

and p
k

; moreover, the angles \p
i2p

h

p
j

and \p
i2p

k

p
j

are acute,
hence d

i2,j  ⇢; (b) only possible case where (G,P ) is not both Delaunay and Gabriel
and di2, j  ⇢; in this case p

i2p
h

p
j

is acute, hence d
i1,j is smaller than ⇢ yielding to a

contradiction.

Let us provide the following result:

Theorem 1 : Let a unit disk graph sensor network with n  3 sensors, represented

by the graph G = {V,E} and let E
s

be the maximum set of shadow edges that can be

obtained starting from a localized seed V
l

. Let P be the position of the nodes in the

sensor networks. The extended graph G
e

= {V,E [ E
s

} contains a trilateration graph

G
T

= {V,E
T

}, E
T

✓ E [ E
s

iff the framework (G,P ) contains a shadow localizable

framework (G0, P ) with n nodes.

In order to prove Theorem 1 we need the following lemma, sketched in Fig. 5.2.

Lemma 1 : Let a disk graph sensor network for some ⇢ > 0 be represented by a

framework (G,P ) with 4 nodes, where G = {V,E} is such that V = {v
i

, v
j

, v
h

, v
k

} and

E = {(v
i

, v
h

), (v
i

, v
k

), (v
h

, v
k

), (v
j

, v
h

), (v
j

, v
k

)}.

Suppose the nodes v
j

, v
h

, v
k

are localized and let p
i1 and p

i2 be the two options for

the position of node vi given the position of nodes v
h

, v
k

and the distances d
i,h

, d
i,k

.

Suppose further that p
i1 is the true position of node v1. It holds that d

i2,j  ⇢ iff the

framework (G,P ) is Delaunay and Gabriel.

Proof 1 : (: Suppose (G,P ) is a Delaunay and Gabriel framework. Being (G,P )
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a unit disk graph network, since (v
i

, v
j

) /2 E, it follows that d
i1,j > ⇢. Since (G,P ) is

a Delaunay framework, the union of the triangles must coincide with the convex hull

of the vertices. In this case p
i2 , obtained by mirroring the triangle 4h

i1,k with respect

to the line overlapping with segment ˆp
h

p
k

, lies in the same half-plane where p
j

lies,

while p
i1 lies in the opposite half-plane; as a consequence d

i2,j < di2, j. The framework

is Gabriel, hence both angles \p
i2phpj and \p

i1pkpj must be acute; as a consequence,

also \p
i2phpj and \p

i2pkpj are acute. Since d
i,h

, d
i,k

, d
h,j

and d
k,j

are all smaller than

⇢ and \p
i2phpj , \pi2pkpj are acute, we can conclude that d

i2,j  ⇢.

): Suppose d
i2,j  ⇢ but the framework (G,P ) is not both Delaunay and Gabriel.

Note that, with respect to the above half-plane decomposition of the space, since d
i1,j >

⇢ and d
i2,j  ⇢, then p

i2,j must lie in the same half-plane of p
j

, while p
i1 must lie in the

other half-plane. In this case, since \p
i

p
h

p
j

is acute and both d
i1,h and d

j,h

are smaller

than ⇢, it follows that d
i1,j  ⇢; this is a contradiction.

Proof 2 (Proof of Theorem 1): (: If G
e

contains a trilateration graph with n

nodes, then by Lemma 1 each perfectly chordal subgraph of (G,P ) with 4 nodes is

either complete or such that it is possible to find a shadow edge, hence (G,P ) contains

a shadow localizable framework (G0, P ) with n nodes.

): The framework (G,P ) contains a shadow localizable framework (G0, P ) with n

nodes, which is perfectly chordal. This implies that (G0, P ) contains at least 3 fully

connected nodes v1, v2 and v3. By Lemma 1, for each non complete perfectly chordal

subgraph of (G0, P ) with 4 nodes it is possible to obtain a shadow edge. It is therefore

possible to label the remaining nodes so that vi is connected to at least 3 nodes v
j

with

j < i, i = 4, · · · , n, hence Ge contains a trilateration graph and is generically globally

rigid.

Let us provide the following corollary.

Corollary 1 : A unit disk graph sensor network with n  3 sensors, represented

by a graph G can be localized over the extended graph G
e

iff the framework (G,P )

contains a shadow localizable framework (G0, P ) with n nodes.

The above result yields an algorithm to localize a sensor network based on shadow

edges, the Shadow Edge Localization Algorithm (SELA). Starting with localized seeds

(i.e., three localized connected non collinear nodes) we can say, without loss of generality
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that [V
l

= {v1, v2, v3}], the nodes are iteratively tested for localizability. Specifically, if

each tested node v
i

is connected to 3 already localized nodes, or to 2 localized nodes

and there is a shadow edge, then it is localized. The algorithm terminates when all

nodes have been localized or when the remaining nodes can no longer be localized.

The following result is a corollary of Definition 2.

Corollary 2 : Let a unit disk graph sensor network with n  3 sensors, represented

by the graph G = (V,E) and suppose that SELA and TLA algorithms are executed

starting from the same localized seed V
l

⇢ V . Let V
S

, V
T

be the set of nodes localized

by SELA and TLA, respectively; it holds V
T

⇢ V
S

.

Proposition 1 : Let a unit disk graph sensor network with n  3 sensors represented

by the graph G = (V,E) and let V
l

⇢ V be a localized seed with 3  m < n nodes.

Let V
S

l

, V
T

l

be the set of nodes localized via SELA and TLA algorithms, respectively,

starting from the seed V
l

. It holds: max
V

l

⇢V

|V
S

l

| � max
V

l

⇢V

|V
T

l

|

Proof 3 (Proof of Proposition 1): Let V
S

be the seed that maximizes the number

of nodes localized by SELA, and let V
S

l

be the set of such localized nodes. Similarly,

let V
t

be the seed that maximizes the number of nodes localized by TLA, and let V
T

be the set of such localized nodes. From Definition 2 and Corollary 2, if V
t

is used as

seed for the SELA algorithm, then it holds V
T

l

⇢ V
S

l

. Hence |V
S

l

| is a fortiori greater

or equal than |V
T

l

|, proving the statement.

Remark 1 : The SELA algorithm can be easily implemented in a distributed fash-

ion: each node is able to calculate its own position knowing the position of 3 one-hop

localized neighbors and its distance from them (just like trilateration) or knowing the

position of a two-hop localized neighbor if one of the 3 one-hop localized neighbors

cannot be found.

5.3 Loose Cooperation

In loose cooperation the mobile agent interacts with the active network to improve its

localization and augment the maximum localizable component of the WSN.

According to HRTLS architecture, the Safe Navigation Algorithm is designed by

iteratively executing the following steps:
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• Shadow Edges Localization Algorithm for WSN;

• Mission Planner for safety augmenting the maximum localizable component (i.e.,

the area safe for the mobile agent);

• Rescuer Tracking for improve the localization accuracy using range measurements

in the correction step of the rescuer filter in Sec. 4.3.

The mission planner identifies a set of via pint in order to augment the maximum

localizable component using a mobile agent, that can be regarded as a mobile node. To

this end, we introduce the Minimum Augmentation Problem (MAP), in order to find

a set of target way points P
t

2 R2 for the rescuer �
r

, so that we solve the following

problem:
min |P

t

|

subject to

(G = {V [ V
t

, E [ E
t

}, P [ P
t

) shadow localizable

(5.1)

where |P
t

| is the cardinality of P
t

, V
t

is the set of nodes associated to the points in P
t

and E
t

is the set of edges that connect a node in V
t

to a node in V [V
t

provided that the

euclidean distance is less than ⇢, i.e., the links of the unit disk graphs that are incident

to the nodes in V
t

. In other words, the rescuer navigates through the way points, and

in each way point it is regarded as a node of the framework, which is thus augmented.

As the agent moves previously unlocalized sensors become localized.

In this section, an approximated solution is provided for the MAP problem, based

on the concept of 3-2 coverage. A node or a point on R is k-covered if it has k localized

neighbors, while it is k-m covered if, placing a sensor in that location, it is k-covered

and there is at least one pre-existing node which is at most (m�1)-covered and becomes

m-covered because of the insertion of the new node. In the proposed approach, the way

point need to be 3-covered and must provide 2-coverage to some unlocalized node. Once

the set P
t

is retrieved, the rescuer moves along the safe candidate positions.

As already stated, some nodes cannot be localized by SELA, depending on the

localization seeds ⌃
s

position and the framework (G,P ). The unlocalized nodes can be

divided into three sets:
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Figure 5.3: Unlocalized node (red circle) connected to 2 localized nodes (green asterisks):
the way point can be either the unlocalized node position or the candidate position (red
asterisk).

1. Nodes connected to two localized node;

2. Nodes connected to one localized node;

3. Nodes connected to unlocalized nodes.

Unlocalized nodes connected to two localized nodes can compute their 2 candidate

positions using SELA protocol, but they are not able to discriminate the correct one

using negative information (see Fig. 5.3). One of the candidate position, however, can

be used as a way point for the rescuer navigation: when the rescuer reaches the way

point, either it represents the unlocalized node location, or it can be discharged.

Let us refer to unlocalized nodes connected to a single node, as pivots. The way

points for the rescuer are retrieved using a heuristic approach. A new localization seed

⌃

j

is selected to propagate localization exploiting the mobile node. The new seed is

composed by the pivot and two localized neighbors, whose sensors monitor safe area.

To guarantee localizability propagation, the way point for the mobile node needs to

be 3-2 covered, i.e., 3-covered with respect to ⌃

j

and it has to provide 2-coverage for
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Figure 5.4: The way point (green asterisks) obtained as the nearest vertex to pivot.

the unlocalized sensors �
j

. Specifically, the way point is chosen within the region of

overlap between the circles centered at the nodes in ⌃

j

and, at the unlocalized node �
j

.

Unfortunately, this region cannot be a priori computed, since the position of sensors

�
j

is unknown. The proposed approximated solution, therefore, consists in choosing a

3-covered point that lies in the intersection of the circles centered at the nodes in ⌃

j

and that provides 2-coverage to the pivot node, so that the SELA algorithm can localize

it when the moving agent is at the designed way point. To reduce the computational

burden in retrieving this point, the coverage area is approximated by using squares.

In this way, the overlapping region becomes a convex polygon, whose vertexes can be

easily computed knowing the vertexes of the coverage area. Specifically, the coverage

area of a sensor �
i

in a planar environment is the square S
i

S
i

= {[x
p

, y
p

]

T2R2|x
p

2 [x
i

�⇢, x
i

+⇢], y
p

2 [y
i

�⇢, y
i

+⇢]} (5.2)

where, (x
i

, y
i

) is the position of the sensor �
i

and ⇢ is the maximum range of the node
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(a) Nearest Vertex (b) Mean of Nearest Vertexes Distance

Figure 5.5: Way point estimation: if the nearest vertex is collinear (a) with the other
nodes then the way point can be computed as the mean of the distance between the
nearest vertexes to the pivot (b).

antenna. The overlapping area for the nodes in ⌃

j

is computed as

Q
j

=

\

�

i

2⌃
j

S
i

, (5.3)

while the intersection between the bounding box of the coverage area can be found

applying the max-min algorithm.

The candidate positions for the way point are represented by the vertexes of the

overlapped region Q
j

. The way point is found in two different ways. Generally, it can

be found as the nearest vertex to pivot (see Fig. 5.4). If the nearest vertex is collinear

with the other nodes, as shown in Fig. 5.5a, then the way point can be computed as the

average of the distance between the nearest vertexes to the pivot, as shown Fig. 5.5b.

To further reduce the number of the way points P
t

to be visited by the mobile node,

unlocalized nodes that share two or three nodes in the new localization seeds can share

the candidate position by using the center of mass of the position retrieved using the

above procedure.
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5.4 Tight Cooperation

In tight cooperation nodes in a WSN cannot be localized until, since no anchors are in

the network - the localization seeds; i.e. a 3 non collinear connected node, are retrieved

by the mobile agent during emergency mission. First of all we want to declare when a

network is localizable and it happens according to the following theorem.

Theorem 2 WSN Localization:

Let consider a WSN ⌃ the corresponding disk graph G = (V,E) and a mobile agent

r whose position is p
r

= [x
r

, y
r

,�
r

] and heading �
r

. Let suppose that:

• the mobile agent is localized during the motion and that is equipped with an

antenna that has range d
r

= 2d;

• it is always possible to localize the first node;

• the network is connected or can became connected if exists at least a disconnected

component that is placed at d  d
r

then the network is localizable.

Proof Theorem 2 : When the mobile agent is able to retrieve the first node of a

network and a position assignment for that node can be done, three situations can be

faced. If the first node is the only sensor of the network, the theorem is trivially proved.

If the first sensor is connected to other nodes, the proof of the network localizability

is constructive and it can be obtained by Alg. 1. If the sensor is disconnected from

the remaining network, it can be perceived by the mobile agent, that is equipped with

an antenna having range d
r

= 2d, so the mobile agent can be further localize the

remaining network according to Alg. 1. Once a component of a network is retrieved,

other disconnected components placed at d  d
r

can be retrieved by the mobile agent,

by traveling along the bounding box of the network.

In the Alg. 1, L and U are two sets that represent the set of the localized nodes and

the set of the unlocalized node respectively.

At the beginning of the algorithm L and U are defined as:

L = ;,

U = V
(5.4)
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Algorithm 1: WSN Localization using Mobile Agent Algorithm.
L = ; AND U = V
% INITIALIZATION
Move r until R(p̂

r

) 6= ;
for V 2 R(p̂

r

) do
SetPosition(v, p̂

r

)

L := L [ {v}
U := U \ {v}

end for
repeat until |L| = 3

for V 2 N3(p̂r) do
p(v) = Trilateration(v)
SetPosition(v, p(v))
L := L [ {v}
U := U \ {v}

end for
for V 2 N2(p̂r) do
p(v) = ShadowEdge(v)
SetPosition(v, p(v))
L := L [ {v}
U := U \ {v}

end for
if L 6= V then

go to Move r
end if

and the algorithm ends when:

L = V,

U = ;
(5.5)

During the initialization the mobile agent moves randomly in the environment until

R(p̂
r

) 6= ; or in other words until:

R(p̂
r

) = {v 2 V | kp(v)� p̂
r

k  �} (5.6)

where p̂
r

is the position of the mobile agent and � is a threshold that represent the

maximum distance between node v and mobile agent position p̂
r

to set the node

position as mobile agent position. This assignment can be done using the function

SetPosition(v, p̂
r

).
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The initialization procedure stops when |L| = 3, i.e., the localization seeds is re-

trieved and the WSN autonomous localization can start. Specifically, nodes in WSN

can be localized by using:

• the mobile agent if

N1(p̂r) = {v 2 V \ L | deg
v

(L, p̂
r

) = 1} ; (5.7)

or

N2(p̂r) = {v 2 V \ L | deg
v

(L, p̂
r

) = 2} ; (5.8)

and there is not any Gabriel subframework in N2(p̂r) [ L;

• the ShadowEdge(v) function if N2(p̂r) and there exist at least one Gabriel sub-

framework in N2(p̂r) [ L;

• the Trilateration(v) function if

N3(p̂r) = {v 2 V \ L | deg
v

(L, p̂
r

) = 3}. (5.9)

The localization using trilateration and Shadow Edges has been already addressed,

a different approach is used for localization exploiting the mobile agent.

It is worth noticing that only available information’s inter-nodes distances, so the

mobile agent moves randomly until it can estimate a rough position for the unlocalized

nodes. Once the motion direction is known the mobile agent travels in the center of mass

of the estimated intersection between mobile agent coverage area and node coverage area

until the unlocalized node is in the R(p
r

) (as shown in Fig. 5.6) and the assignment is

done.

According to the algorithm and the localization strategies described it is possible to

provide the following remarks.

Remark 2 : The constraints to localize a WSN can be summarized as:

• the mobile agent position must be known even with a bounded uncertainty;

• the position of a node must not be known a priori, but can be estimated from the

mobile agent going near to a node within a certain range �. The location of the

network will depend from the positioning of this node;
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(a) mobile agent initial position (b) mobile agent-node cover-
age area intersection

(c) mobile agent output kp(v)�
p̂

r

k � �

(d) mobile agent-node
coverage area intersec-
tion

(e) mobile agent output
kp(v)� p̂

r

k  �

Figure 5.6: The Mobile Agent (mobile agent) localization strategy: localized nodes (blue
circle), unlocalized node (green circle), mobile agent (black triangle), and estimated
position (red cross).

• the algorithm requires the knowledge of the maximum number of nodes in the

network for the stop condition;

• the bounding box of the network can be obtained by min–max algorithm [5].



Chapter 6

Experimental Results

6.1 Experimental Set-Up

In this section the experiments done to evaluate HRTLS are discussed. The experiments

proposed are divided according to the HRTLS structure in particular will be shown the

results related to:

• Rescuer Filter;

• WSN Localization.

To evaluate the reliability one the accuracy of the Rescuer filtering, different devices

has been tested. Specifically, as IMU sensors we adopt: iNEMO – STEVALMKI062V2,

MPU 9150 MotionFit, and MPU 6150 embedded in Samsung Galaxy S5 Neo. The

specifications of the devices are reported in Tab. 6.1, Tab. 6.2, and Tab. 6.3.

The passive network is composed by UHF passive Omni–ID Ultra Long Range RFID

Tags Tab. 6.5 and the reader is the RFID CAEN A528 OEM UHF multi-regional com-

pact Reader Tab. 6.6, the reader placed on the left shoulder of the rescuer.

Finally Active Networks are investigated. The results discussed will show in the

positioning of the network according to the different strategies (Loose or Thight Co-

operation) and in the second one the real cases that are implemented. In the Loose

Cooperation the rescuer traveled in the environment crossing spaces labeled as safe area

74
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by the sensors. Traveling along these areas he/she augment the localization component

of the network.

In the Thight Cooperation the experiment shown the localization performed by a

mobile agent both in simulated that real cases. The mobile agent used in the real

experiments is an unicycle robot, KHEPERA III Tab 6.4.

The results presented here have been obtained by post-processing the data collected

using MatLab. The Rescuer Filter using LDA, Complementary filter, and passive cor-

rection has been also implement on an Android device (see Appendix 7).

Table 6.1: Processors and sensors of iNEMO

DEVICE SPECIFICATIONS
STM32F103RE high-density performance line ARM-based 32-bit MCU with

256 to 512 kB Flash, USB, CAN, 11 timers, 3 ADCs and 13
communication interfaces

LPR430AL 2 axis gyro (roll, pitch) 300

�/s full scale with analog output
and optional additional filters

LY330ALH yaw-axis gyro300�/s full scale with analog output and op-
tional additional filters

LSM303DLH 6axis geomagnetic module: ±2g/ ±4g/ ±8g linear accelera-
tion full scale, magnetic field configurable full scale ±1.3 to
±8.1 Gauss (max), I2C digital output

LPS001DL pressure sensor \300 1100mbar absolute full scale with I2C
digital output and barometer

STLM75 temperature sensor with, 55 to +125

� range and I2C digital
interface

Table 6.2: Sensors of MPU 9150 MotionFit

DEVICE SPECIFICATIONS
Gyroscope x-, y-, z-axis angular rate sensor with a full scale range of

±250

�/sec
Accelerometer x-, y-, z-axis accelerometer with a full scale range of ±2g
Compass x-, y-, z-axis magnetometer with a full scale range of

±1200µT
Temperature Untrimmed, Temperature Offset 35�C, Linearity (�40

�C to
+85

�C)

All the simulations are implemented using the software MatLab and its toolbox.
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Table 6.3: Processors and sensors of Samsung Galaxy S5 Neo

DEVICE SPECIFICATIONS
Processor Octa-Core 1.6GHz
Operative System Android OS 5.5.1. Lollipop
MPU 6150 Gyro-
scope

x-, y-, z-axis angular rate sensor with a full scale range of
±250

�/sec
MPU 6150 Ac-
celerometer

x-, y-, z-axis accelerometer with a full scale range of ±2g

MPU 6150 Com-
pass

x-, y-, z-axis magnetometer with a full scale range of
±1200µT

Table 6.4: Processors and sensors of KHEPERA III

DEVICE SPECIFICATIONS
Processor DsPIC 30F5011 at 60MHz and Arm at 600MHz
RAM 4 KB on DsPIC, 128 MB on KoreBot II Extension
Flash 66 KB on DsPIC, 32 MB on KoreBot II Extension
Motion 2 DC brushed servo motors with incremental encoders
Speed 8 Infra-red proximity and ambient light sensors with up to

30cm range, 2 Infra-red ground proximity sensors for line
following applications, 5 Ultrasonic sensors with range 20cm
to 4 meters

I/O Several IO with KoreIO Extension 2 programmable LED
Communication Standard Serial Port, up to 115kbps USB communication

with KoreBot Wireless Ethernet with KoreBot and WiFi
card

Extension Bus Expansion modules can be added to the robot using the KB-
250 bus

Size Diameter 130 mm Height: 70 mm
Weight ⇠ 690g
Payload ⇠ 2000g

Table 6.5: Specification UHF passive Omni–ID Ultra Long Range RFID tags

DEVICE SPECIFICATIONS
Frequency 860÷ 960[MHz]
Temperature �40

�C ÷+6

�
5[C]

EPC 96[bits]
User Memory 512[bits]
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Table 6.6: Specification RFID CAEN A528 OEM UHF Reader

DEVICE SPECIFICATIONS
Transmission
power

500[mW ]

Frequency 867.6[MHz]
Temperature �20

�C ÷+60

�
[C]

6.2 Activity Recognition

6.2.1 Parameter Definition

To use the Activity Recognition Algorithms several tests are to compute the parameters

that are necessary to estimate the activities. These parameters are:

• in the Decision Tree approach the threshold d1, d2, and d3 ;

• in the LDA approach the linear classificator coefficients.

To obtain this information a set of tests are done using different users. The users

considered were 10 and are different in: age, height, weight, and gender.

The users have done two different tests: in the first one a ⇠ 30m path was traveled

with different speeds (see Fig. 6.1) while, in the second one, the user have to travel up

and down the stairs repeatedly and continuously (see Fig. 6.2).

According to the tests performed by the users was possible to extract the threshold

used by the Decision Tree to classify the activity. To do that the data provided by

all the component of the triaxial accelerometer are used, in particular Vertical and

Media-Lateral acceleration are analyzed to estimate the kind of activity according to

the natural pelvis oscillation during going up or down the stairs.

The threshold need to be set according to the users characteristics, for this reason

it is not possible to produce a confusion matrix. It was noticed that for people with

similar characteristics (usually height and weight) the thresholds are almost the same

for this reason was conjecture to dived the user in classes based on these characteristics.

If the threshold computed on the training test is correct the classification of the activity

is correct on the 94% of the experiment.
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Figure 6.1: Test 1: ⇠ 30m path with different speeds.

Figure 6.2: Test 2: Up and Down Stairs.
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Figure 6.3: Accelerations of step-stairs test: black dashed square is walk activity and
purple dashed square walk is stairs activity.

Unfortunately this technique for some particular subject, as gymnast or dancer in

which the posture is usually rigid, does not recognize the activity done by the user

because it is not possible to discriminate the movement from the accelerations (see

Fig. 6.3).

For the LDA approach the same set of tests are used to produce the parameters

used by the linear classificator. To do this the set of subject was dived in two subsets

where a set was used to define the threshold using learning algorithm while the other

was used to validate the results.

Also in this approach the data used to compute the threshold was obtained from

the acceleration signal in particular all the three components (Vertical acceleration,

Medio-Lateral Acceleration, and Antero-Posterior acceleration) are considered.

The parameter obtained in this way produce a classification independent from the

user, that means that without changing parameter the classification produced is correct
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Table 6.7: Classification confusion matrix: real values on rows, predicted values on
columns

stand downstairs walk upstairs
stand 206 3 16 1

downstairs 2 27 10 1
walk 8 0 82 0

upstairs 0 0 15 71

in the ⇠ 88% of the experiment.

The accuracy of the classifier was evaluated by collecting a dataset among 10 users

performing different activity patterns: standing, walking, going upstairs, and going

downstairs.

A 10-fold cross validation is performed by iteratively training the classifier on 9

users and testing its accuracy on the user that is left out. In this way, the independence

between the samples in the training set and the testing set is guaranteed. The results

of the experiment are shown in Tab. 6.7. The classifier achieves a global error rate of

12.44%. We observe that the choice of the loss matrix L d lead the classifier to rarely

classify false-upstairs or false-downstairs. As a consequence, Tab. 6.7 shows that the

major contributor to the error is the rate of false-walk predictions.

6.3 Rescuer Filter

The following experiment aims to show the reliability of the step detection and of

the activity classification, for sake of space, only the results obtained using LDA are

shown. The two components of the HRLTS are tested. Concerning the prediction

step Activity recognition based on LDA and PDR are discussed while, the correction

passive network are considered. The two strategy of passive network correction based on

position correction and position and heading correction are reported. The experiment

will be performed using different devices and testing also the Android application.
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(a) Estimated path during the first experiment.
Axis unit: [m]

(b) Estimated path during the second experiment.
Axis unit: [m]

Figure 6.4: Results of the two experiments. Figure 6.4a and Figure 6.4b show the path
estimated by the algorithm (blue line) and the checkpoints where the error is measured
(red circles).

Table 6.8: Euclidean errors [m]
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Table 6.9: Euclidean errors [m]
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6.3.1 Pedestrian Dead Reckoning

The goal of the experiments is to track a user wearing a waist-mounted IMU (Invensense

MPU9150 MotionFit) in a realistic indoor scenario.

Two experimental settings were designed to measure the accuracy. In the first

experiment, the user is walking along an uneven path to evaluate the robustness of

the algorithm against non-straight lines. In the second experiment, the user is moving

across different floors of a building to evaluate the performance of activity classification

along a path where the user is repeatedly going up or down the stairs.

In both experiments, a set of checkpoints was fixed at known locations. The accuracy

of approach is measured as the error between the estimate of the user position at the

checkpoints and the user’ real position.

The results of the first experiment are shown in Figure 6.4a and in Tab. 6.8. The
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experiments consists of a path of approximately 280 meters combining different walking

patterns. In the first phase, the user is performing a planar walk including three circular

rotations. The user is then going upstairs and upstairs, and, in the last phase, the

user is walking flat again back to the starting point. In Figure 6.4a, a 3-dimensional

plot presents the checkpoints as red circles and the walking path estimated as a blue

line. Tab. 6.8 shows the error measured during the experiment along the checkpoints

deployed throughout the path. An error of 26 meters in the estimate of the position

was observed after a walking path of approximately 280 meters. The classifier performs

well: the percentage of acceleration samples correctly recognized is 83.20%.

The results of the second experiment are presented in Figure 6.4b and in Tab. 6.9. In

this experiment, the user walks along a path of approximately 350 meters. In particular,

the user repeats three times the same path combining flat walking, going downstairs

and upstairs. At the end of each path, the user steps by the starting point which

corresponds to the axis origin in Figure 6.4b. The aim of this experiment is indeed to

stress the algorithm by repeatedly going up and down the stairs. Furthermore, iron

components were in the environment during the experiment. A final error of 10 meters

in the estimate of the position was observed as shown in Tab. 6.9. In this experiment

the percentage of acceleration samples correctly recognize is 82.87%, although the path

is more complex compared with the one in the first experiment.

Both the algorithms for the activity classification are suitable to be implemented on

a standard smartphone device due to its low computational complexity.

Here, an office like scenario is considered. The testing environment is composed

by a long ring-shaped corridor bounds by rooms. This environment has been selected

for its closed-loop layout, that allows a better assessment of the performance of the

localization algorithm.

During experimental trials, the rescuer is equipped with a waist-worn iNEMO STEVAL-

MKI062V2 device (STMicroelectronics, Geneve, CH). The trial represents a penetrating

mission along the corridor. The rescuer executes a distance of about 500 m. The results

of the experiment are depicted in Fig. 6.4. Specifically, Fig. 6.5 shows the path of the

rescuer computed by the PDR. It can be noticed that the PDR is not suitable by itself

for the pose estimation: the positioning error grows along the path and, at the end of
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Figure 6.5: Inertial PDR estimate (blue line).

Table 6.10: Euclidean errors [m]

1

�
2

�
3

�
4

�
5

�
6

�
1

�
3

�
4

�
5

�
6

�
3

�
4

�
5

�
6

�
1

�

PREDICTION 0 0.56 0.29 0.72 1.79 7.01 4.42 3.52 15.89 11.50 6.01 1.42 16.13 11.60 9.25 9.71

the experiment, the accuracy is highly downgraded.

The trial in Fig. 6.5 aim is to determine the performance of the PDR approach

considering a closed-loops task. To this end 6 check points deployed in the environment

and are considered. The Euclidean distance between the check points and the estimated

ones (i.e., the positioning error) has been used as performance index (see Tab. 6.10).

According with Fig. 6.4, the positioning error when the pose is evaluated using PDR

grows along the path and at the end the accuracy is highly downgraded.

In these tests, the goal is the tracking of an user in the environment using a smart

device, waist mounted, with an embedded inertial platform and the improvement of

this estimate using RFID technology. The error (i.e., e
i

) during the time is estimated

according to the position of some checkpoints; it is represented by the Euclidean norm of

the difference between checkpoint (i.e., real position p
i

) and user position (i.e., estimate
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(a) Estimated path using only Inertial Platform data –
User A. Axis unit: [m]

(b) Estimated path using only Inertial Platform data –
User B. Axis unit: [m]

Figure 6.6: Results of the two experiments. Figure 6.4a and Figure 6.4b show the path
estimated by the algorithm (blue line) and the checkpoints where the error is measured
(red diamonds).

position, p
u

)

e
i

= kp
u

� p
i

k. (6.1)

The error is computed for both the experiment (User A and User B) in the three

different cases: Prediction, Correction using only position information, and Correction

using position and orientation information. The device used is the Samsung Galaxy S5

Neo, running Android OS 5.5.1. lollipop and equipped with Invensense MPU6150.

The position computed by the algorithm is obtained by analyzing a stream of data

provided by the IMU. Data from accelerometer and gyroscope are available at sampling

frequency 100 Hz, and data from magnetometer at 50 Hz. The data computed to

produce the pat of the user are corrected using the information provided by external

infrastructure composed by exteroceptive sensors.

In Fig. 6.6 results of the comparative experiment is reported. The objective of the

test is to highlight the robustness of approach when different users perform similar

activities. Specifically, users move along a complex path (about 305 m) characterized

by straight lines and curves in order to stress the heading estimation process.

Several check points have been considered and the errors are reported in Tab. 6.11

and Tab. 6.12: the average error for the user A in the experiment (Fig. 6.6a) is

about 7.2 m, while the average error for the user B in the same experiment (Fig. 6.6b)
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Table 6.11: Euclidean Error User A [m]: Kind of localization vs check points

Euclidean Error - User A 1 2 3 4 5 1 2 3 4 5 1

Prediction 0 1.61 2.04 4.73 6.78 5.83 7.76 8.3 14.25 15.6 11.12

Table 6.12: Euclidean Error User B [m]: Kind of localization vs check points

Euclidean Error - User B 1 2 3 4 5 1 2 3 4 5 1

Prediction 0 2.96 1.05 2.46 6.41 7.55 4.52 8.9 7.88 3.99 7.98

is about 5 m. The maximum error accumulated during the path is 15.6 m for user A,

while user B maintains a better accuracy, having a maximum error 8.9 m.

Moreover, the heading drift is more evident for user A than for user B. This fact

can be explained by noticing the different rotation strategy adopted by the two users:

user A stops and suddenly turns, while user B slowly turns during motion. When a

movement is too fast the dynamic quaternion is weighted more than the static one and

the resulting heading estimate is affected by the gyroscope drift.

6.3.2 Passive Network Correction

In the passive network the passive OMNI-ID Dura 3000 UHF tags are used. During

experimental trials, the rescuer is equipped with wearable Bluetooth UHF RFID reader

on the shoulder. The reader is connected to a laptop by high speed USB and Bluetooth.

The reader is able to do around 6 query to the tag during a navigation in which the

user travel at 0.7m/s (see Appendix 7 for an evaluating of the tag-reader performance).

To test the performance of the application several check points are deployed in the

experiments environment. The error is computed as the distance between the check

point position and the estimated one. In the following section experiments in which

position correction and computation correction are discussed.

The testing environment is composed by a long ring-shaped corridor bounds by

rooms. This environment has been selected for its closed-loop layout, that allows a

better assessment of the performance of the localization algorithm. The sampling fre-

quency of the iNEMO is 100 Hz, the one of RFID reader is 5 Hz, and a step is detected

at ⇠1 Hz. To this end, a synchronization procedure has been performed for data align-
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(a) Estimated path using 9 tags: HIPS esti-
mate (blue line).

(b) Estimated path using 8 tags: HIPS esti-
mate (blue line).

(c) Estimated path using 5 tags: HIPS esti-
mate (blue line).

Figure 6.7: Indoor results in office like environment: HIPS estimate (blue line), check
points position (green stars), and tags position (red dots).

ment. In these trials, the RFID system detection area has a range of r = 250 cm. A

MatLab toolbox has been developed by the authors for data pre-processing and for the

algorithm implementation.

The trial represents a penetrating mission along the corridor. The rescuer executes

a distance of about 500 m. The objective of this trial is to analyze the improvement that

the RFID technology combined with the inertial one can provide. Several configurations

have been examined for assessing the impact of the RFID correction: according to this

approach, a trade off between accuracy and the deployment overhead needs to be found.

To this end, in the environment were deployed 9 tags according to Fig. 6.7. Depending
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on the specific test performed, only a selected number of tags were used for the position

correction. The results of the experiments are depicted in Fig. 6.7. Fig. 6.7a shows the

system outcome by using tags for position correction: in this configuration, 9 tags are

located in optimal positions and the PDR estimate is remarkably improved after the

correction. Even if tag labeled as Tag 5 (see Fig. 6.7b) is not considered the results

obtained with the correction is almost near to the one obtained with the best tag

deployment. In the last one result (see Fig. 6.7c) is reported the path improved using

only the tags at the corners (total 5 tags) and even if the result obtained is deteriorated

compared to the one with the optimal tags positions, the target performance (i.e. room-

level localization accuracy) are reached.

To better understand the impact of the tags RFID position, a sub-optimal deploy-

ment of the tags in the experiment shown in Fig. 6.7 is reported in Fig. 6.8: the per-

formance of the approach is downgraded. The tags considered are only the one placed

along the corridor, and according to this tags deployment the RFID-based estimate is

not able to locate the rescuer with a room-level localization accuracy.

Concerning the trial in Fig. 6.7, the objective is to determine the performance of

the approach considering a closed-loops task. To this end 6 check points deployed in

the environment and are considered. The Euclidean distance between the check points

and the estimated ones (i.e., the positioning error) has been used as performance index.

In Tab. 6.13 the results obtained with the different tags configuration are summa-

rized. It is possible to see how the error is related to the tags deployment. If the optimal

tags configuration is considered the error is 2.62 m that is the same error obtained do

not considering the Tag 5. On the other end it is possible to see how the results obtained

using a not optimal configuration of the tags do not improve in a relevance fashion the

result obtained using only the prediction, in fact the maximum error is 13.34 m. The

results is improve because even if the tags positions are not the optimal one the presence

of a tag, if detected, applies a correction on the path estimated. The maximum error in

the correction step using the tags on the corner is around 4.28s m computed according

with the performance index still fits the rescuer requirements of the room-level accuracy

(⇠5 m error). Moreover, in this trial the impact of the correction step can be appreci-

ated in the output, where some discontinuities arise in the estimated path. To better
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Figure 6.8: Estimated path using tags placed on the corridor (sub–optimal deployment):
estimate path (blue line), check points position (green stars), and tags position (red
dots).

Table 6.13: Prediction and correction Euclidean errors [m]
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�
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�
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�
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�
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�
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�
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�
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�

CORRECTION ALL TAGS 0 0.56 0.28 0.72 0.38 1.96 1.65 2.11 2.62 0.18 2.4 0.41 2.06 1.60 1.34 1.65
CORRECTION ALL TAGS NOT N5 0 0.56 0.28 0.72 0.38 1.96 1.65 2.11 2.62 0.18 2.4 0.41 2.06 1.60 1.34 1.65

CORRECTION CORNER TAGS 0 0.56 0.28 0.72 0.47 2.82 1.65 2.53 2.62 0.18 3.58 0.95 1.72 3.35 4.28 1.65
CORRECTION CORRIDOR TAGS 0 0.56 0.28 0.72 2.05 4.8 1.65 3.30 13.34 11.12 11.19 7.84 10.7 4.54 9.43 1.65

appreciate this effect, in Fig. 6.9 the output along the x-axis and the tag activation

pattern is depicted. Specifically, it highlights two different corrections occurred during

the experiment. The correction step inside the A area does not change the estimate

along the x�axis, since the output of the prediction step is accurate. On the contrary, a

discontinuity can be appreciated in the correction inside the B area, since the estimate

accumulated error.

It is worth noticing that in the trials the errors source depends on the heading error:

the heading is not corrected by tags and a residual bias affects the estimate downgrading

the overall results.

The results of the tests performed for evaluating the orientation correction. In these

tests, the goal is the tracking of an user in the environment using a smart device, waist

mounted, with an embedded inertial platform and the improvement of this estimate

using RFID technology. The error is computed for both the experiment (User A and

User B) in the two different cases: Correction using only position information, and

Correction using position and orientation information.

The position computed by the algorithm is obtained by analyzing a stream of data
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Figure 6.9: Position estimate along x-axis m (blue) and tag activation pattern (red,
ON = 60 – OFF = 10) vs time ms.

provided by the IMU. Data from accelerometer and gyroscope are available at sampling

frequency 100 Hz, and data from magnetometer at 50 Hz. The data computed to

produce the pat of the user are corrected using the information provided by external

infrastructure composed by exteroceptive sensors.

In Fig. 6.10 results of the comparative experiment is reported. Users move along

a complex path (about 305 m) characterized by straight lines and curves in order to

stress the heading estimation process.

Several check points have been considered and the errors are reported in Tab. 6.14

and Tab. 6.15. In the correction using only position update the average error for the

user A is 1.6 m while for user B is 1.1 m, even if the average error for both the users is

around 1 m it is evident the differences between the two experiments in fact looking at

the maximum errors it is possible to see how the maximum error of user A (3.9 m) it is

almost the double of user B (2.62 m). Finally in the correction path using also heading

updating the average error for User A (1.07 m) is almost the same of user B (0.84 m).

This is explained due to nature of the error of the path of user A. This error, in fact is

strictly connected to the heading of the path and using a orientation update this error

is sensibly reduced and the to error are almost the same as shown also in the maximum

errors that are 3.14 m for user A and 2.64 m for user B.
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(a) Corrected path using Inertial Platform data
and position information from exteroceptive
sensors – User A. Axis unit: [m]

(b) Corrected Path using Inertial Platform
data and position information from extero-
ceptive sensors – User B. Axis unit: [m]

(c) Corrected path using Inertial Platform
data, position and, orientation information
from exteroceptive sensors – User A. Axis unit:
[m]

(d) Corrected path using Inertial Platform
data, position and, orientation information
from exteroceptive sensors – User B. Axis unit:
[m]

Figure 6.10: Results of the two experiments. the path estimated by the algorithm (blue
line) and the checkpoints where the error is measured (red diamonds). Figure 6.10a and
Figure 6.10b show the path corrected using the position provided by the exteroceptive
sensors and the Figure 6.10c and Figure 6.10d are the path in which also the orientation
information is provided by the sensors (green dots).

Table 6.14: Euclidean Error User A [m]: Kind of localization vs check points

Euclidean Error - User A 1 2 3 4 5 1 2 3 4 5 1

Position Correction 0 1.61 1.91 0.1 2.26 1.15 1.31 3.97 0.1 2.76 2.22
Position-Heading Correction 0 1.61 1.91 0.1 1.79 0.22 0.89 3.14 0.1 1.65 0.42

6.4 Wireless Sensors Network Localization

In this section the contribution provided by the use of an active network is proposed.

In Active Network information are exchanged between rescuer or mobile agent and

network. In particular there are two situation: in the first one is considered a rescuers
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Table 6.15: Euclidean Error User B [m]: Kind of localization vs check points

Euclidean Error - User B 1 2 3 4 5 1 2 3 4 5 1

Position Correction 0 2.62 0.32 0.8 1.42 1.37 2.00 0.1 1.25 1.5 1.23
Position-Heading Correction 0 2.64 0.32 0.8 1.42 1.37 1.26 0.1 0.23 0.70 0.45

that travels in a network composed by range capable nodes, in the second one the

same sensors are used to compose the network but WSN localization is done using

the robot KHEPERA III. In the first case three anchor nodes are considered to start

the localization (Loose Cooperation) in the second one the robot travels in the space

to find the sensors that are necessary to initialize the localization algorithm (Thight

Cooperation). The mobile agent that moves in the environment is in both the approach

a unicycle robot that moves in the environment accord to the following model. The

kinematic model for the mobile agent is written as

ẋ
r

= u
v

cos'

ẏ
r

= u
v

sin'

'̇
r

= u
!

(6.2)

where the robot posture p
r

is given by p
r

= [x
r

, y
r

,'
r

]

T (i.e., the position and the

heading), u
v

is the linear velocity of the robot and u
!

is the angular velocity. To track the

robot along the path a simple static time-invariant feedback control law can be applied

on each segment of the path, taking into account only the position coordinates (x
r

, y
r

).

The tracking problem can be suitably solved by using a partial feedback linearization of

the dynamic model and applying simple PD like control law in the new coordinates [23].

Supposing that a particular posture is not required when approaching the via point,

the tracking problem can be relaxed into a stabilization problem considering only the

position coordinates. The solution is achieved in two steps as proposed in [3]. The

nonholonomic constraints are removed and a holonomic velocity u
vh

is computed to

drive the robot over the via point. Therefore, two control laws are defined: the first

one is the projection of u
vh

along the nonholonomic direction u
v

and the second one

steering the nonholonomic axis of the mobile agent towards the holonomic, so to reduce
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the parameter �

u
v

= K
v

k u
vh

k cos(�) (6.3a)

u
!

= K
!

� (6.3b)

where K
v

and K
!

are gains. The key idea is that the eq. 6.3b independently steers the

angle ' to a value that definitively let � = 0. This control fails on the via point itself,

since � is undefined: to avoid hard discontinuities in the control law, the via-points

have been defined as a circular region of a suitable radius r: the robot stops when it

steps into this region.

During navigation, the robot is localized by means of proprioceptive and exterocep-

tive sensors merged by an Extended Kalman Filter. The state transition model is given

by the discrete time unicycle model in eq. (6.2), while the observation model is given

by

d
rj

=kp
j

� p
r

k (6.4)

where p
r

is the robot position and p
j

is the position of the node �
j

, forwarded by the

node during the measurement process, and k · k is the Euclidean norm in R2.

6.4.1 Loose Cooperation

In Fig. 6.11 is shown the results of two iteration of the Safe Navigation Algorithm, over

a random graph composed by 50 nodes, deployed in the square S = [(0, 1) ⇥ (0, 1)],

having the range of the sensor antenna ⇢ = 0.2. Due to position of the localization

seeds, only 5 nodes are localized using SELA: the topology of the graph prevents the

propagation of the localization, since the majority of the nodes are far from the seeds, as

shown in Fig. 6.11a. To fill the gap, the algorithm considers all the nodes connected to

a single localized ones: specifically, node �6 is connected to �2 and nodes �7 and �8 to

�4. All these nodes share the seeds ⌃6,7,8 = {�2,�4,�5}, subsequently, only a candidate

point is retrieved by the algorithm, as shown in Fig. 6.11b. The localization propagates

in the networks and most of the nodes can compute their positions. To finally localize

node �49 a candidate position is selected considering as pivot the node �48. The mobile

node travels to the candidate position across the network, so to bound the localization
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(a) SELA output (b) SELA output using a mobile node still
in the first candidate position

(c) SELA output using mobile node still
in the second candidate position

Figure 6.11: SELA output exploiting the rescuer (black triangle connected to the graph
with dashed cyan line): in the graph are represented seeds nodes (magenta) in the left
down corner, unlocalized nodes (blue circle), localized nodes (green star), SELA nodes
(red circle), and shadow edges (red line).
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error provided by PDR. When the rescuer reaches the candidate position, the SELA

algorithm is able to localize nodes �49 and �50, as shown in Fig. 6.11c.

In Fig. 6.12 is shown the results of a real application of the Safe Navigation Algorithm

inside a building. In particular during this experiment a sensor network composed by

12 nodes is deployed as reported in Fig. 6.12a. The range of the sensors is about 5

meters. Inside the building a rescuer walk along a path of about 40 meters. Due to

position of the localization seeds, only 6 nodes are localized using SELA as shown in

Fig. 6.12b. To this end in Fig. 6.12c is find the candidate position of the additional

node to localize the entire network. The additional node, according to the path of the

rescuer, is localized as reported in Fig. 6.12d. When the rescuer reaches the candidate

position, the SELA algorithm is able to localize nodes as shown in Fig. 6.12e.

The graph is composed by ten nodes randomly deployed in the environment. The

link between a pair of nodes represents the presence of communication. The number

of the nodes of the network is known. The robot starts to explore the environment

and find the first node and localizes it using it own position. To find the other nodes

two strategies are considered. As first step it is selected the node connected to the

localized one with the maximum degree, if more nodes have the same degree the ones

at the minimum distance is selected. In this case the first node find by the robot is the

node labeled as 3. This node have three neighbors with the same degree, according to

the research strategies described above the robot in this case travels on the one at the

minimum distance, node 4 and localize it. At the same way from the node 4 the robot

travels through the node 5.

After these operations a set of three nodes {3, 4, 5} (see Fig. 6.13a) is produced and

trilateration and shadow edge can be applied to localize the network (see Fig. 6.13b).

In this case, due to the topology of the network, some nodes are not localized at the end

of this iteration, so the algorithm starts again and the robot looking for other nodes.

The mobile agent travels to the unlocalized node connected to a localized one, in this

exploration it finds the node 6 (see Fig. 6.13c) and using the choosing node strategy

it finds also the node 8 (see Fig. 6.13d) and the node 7x. Now, it is possible to apply

again trilateration and, this time, at the end of this strategy the network is completely

localized as shown in Fig. 6.13f.
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(a) Sensors Network deployed in the environment (b) Sensors Network localization

(c) SELA output using a mobile agent in the first
candidate position

(d) Localization of the candidate

(e) Sensors Network localization

Figure 6.12: A real application of SELA output exploiting the rescuer (black triangle
connected to the graph with dashed cyan line): in the graph are represented seeds nodes
(magenta) in the left down corner, unlocalized nodes (blue circle), localized nodes (green
star).
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(a) Mobile Agent output (b) Trilateration and shadow edge out-
put

(c) Mobile Agent output in which the
first unloclized node connected to the lo-
calized subgraph is find

(d) Mobile Agent output the second
unloclized node is find

(e) Mobile Agent output the third un-
loclized node is find

(f) Trilateration and shadow edge out-
put

Figure 6.13: The Mobile Agent (robot) explore the environment and find a set of starting
nodes, trilateration and shadow edge localize the nodes connected to the nodes in the
set: in the graph are represented localized nodes (blue circle), localized nodes by shadow
edge (red circle), and shadow edges (red line).
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Figure 6.14: A disconnected graph with the nodes randomly deployed in which the
green dots represent the nodes and the black triangle the robot.

It is now possible explain how the algorithm works on the disconnected graphs.

According to Fig. 6.14 the network is composed by two subgraph. The subgraphs are

localized in two steps (see Fig. 6.15).

The robot, as for the connected graph, starts exploring the environment and it finds

three starting nodes {3, 5, 8} (see Fig. 6.15a). After that the trilateration and shadow

edge strategies are used and the first part of the graph is localized as shown in Fig.

6.15b.

Now two nodes, labeled as 9 and 10, are still not localized. Two localized them it

is necessary to connect them to the localized part of the network. We can do that as

described in and create a virtual link, the bridge link as shown in Fig. 6.15c. Thanks

to this strategy it is possible to obtain a new graph G
d

r

that is a graph in which the

virtual link is included. After that the robot localizes the disconnected node the link

falls down and the network is again disconnected (see Fig. 6.15d). Anyway, according

to the localization strategy it is possible to complete the localization of the network as

shown in Fig. 6.15e)

In this section the algorithm applied to a real case is considered. Here it is studied

the connected case as shown the graph in Fig. 6.16a. According to the algorithm the
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(a) Mobile Agent output (b) Trilateration and shadow edge out-
put

(c) Mobile Agent and bridge link output (d) Trilateration and shadow edge out-
put

(e) Mobile Agent output

Figure 6.15: The Mobile Agent (robot) explore the environment and find a set of starting
nodes, trilateration and shadow edge localize the nodes connected to the nodes in the
set: in the graph are represented localized nodes (blue circle), localized nodes by shadow
edge (red circle), and shadow edges (red line).
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(a) Mobile Agent in starting position (b) Mobile Agent first node localized

(c) Mobile Agent second node local-
ized

(d) Mobile Agent third node localized

(e) The remaining node is localized us-
ing trilateration and the network is com-
pletely localized

Figure 6.16: The Mobile Agent (robot) explore the environment and find a set of start-
ing nodes and the remaining node are localized using trilateration: in the graph are
represented localized nodes (blue circle), graph (magenta), unlocalized node (magenta
circle).
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(a) Mobile Agent starting position (b) Mobile Agent first node localized

(c) Mobile Agent second node localized (d) Mobile Agent third node localized

(e) Mobile Agent finds the disconnected component (f) Mobile Agent node output

Figure 6.17: The Mobile Agent (robot) explore the environment and find a set of starting
nodes and then the disconnected subgraph: in the graph are represented localized nodes
(blue circle), graph (magenta), unlocalized node (magenta circle).
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robot starts to explore the environment and it finds the first node (see Fig. 6.16b),

and from that one is able to find the second and the third one (see Fig. 6.16c and

Fig. 6.16d). Now a set of three localized node it is provide and it is possible to try to

localize the remain of the network using trilateration or shadow edge. Here the use of

trilateration is enough in fact the remaining nodes to localize had both three localized

neighbors. As shown in Fig. 6.16e the network is completely localized.

Now the disconnected case is proposed. According to Fig. 6.17a the graph analyzed

is composed by two parts the first one composed by three nodes and the second one

composed by two nodes. As shown Fig 6.17 the robot starts to localize first the set

composed by three nodes. The process of this operation is detailed in Fig. 6.17b, Fig.

6.17c, and Fig. 6.17d in which the sequence of the node that are discovered is reported.

Once that this part of the network is localized the robot travels to the second part

of the graph (see Fig. 6.17e) to find the remaining unlocalized nodes as described in

Section 5.4 and the robot localizes the last one node (see Fig. 6.17f).



Chapter 7

Conclusion

Location awareness is an important aspect in disaster response. Although many efforts

have been carried out both in academy and industry, to date, there is not an off-the-shelf

solution for the localization of first responders during emergency.

To this aim, a novel architecture for localization system that foresees the use of

hybrid team, i.e., team composed by human rescuers and robots, has been designed.

In more details, it exploits the complementary abilities of human and robot through

a common framework: in this way, the localization representation of human can cope

with the robotic representation.

The framework, HRTLS, is based on Bayesian filtering: the localization is regarded

as the problem of finding the position and the heading of a mobile agent, exploiting

data acquired by wearable sensors and a smart environment. To this end, in this thesis

the design and implementation of a localization algorithm for human rescuer, based on

pedestrian dead reckoning and context-aware sensors (i.e., range free nodes) has been

performed. The adopted approach is quite common in robotic literature, however, it

is not used in indoor positioning systems, where the localization is mostly obtained by

fingerprinting or trilateration. The performed research results in a set of algorithms

for activity recognition and heading estimate, that have deeply tested in long lasting

experiments in large environments. The results retrieved in a real scenario, by using

low cost devices, outperform the performances of state of the art localization systems

while achieving (and overtaking) the requirements of the firefighter scenario.
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Concerning the smart environment, the HRTLS foresees a cooperation between the

mobile agents and the infrastructure pre-deployed in the emergency area. Specifically,

different approaches for improving sensor localization and mobile agent tracking are

proposed. The thesis focuses on node positioning, addressing this topic in a theoretical

perspective: a simple network model is adopted (i.e., the disk graph) and conditions on

the localizability of the network are derived exploiting information about the availability

of communication link between nodes.

It is useful to underline that the proposed architecture can be applied to several

application scenarios. As well known, smartphones are equipped nowadays with many

sensors and they are worldwide spread. There in many new services can benefits form

the proposed architecture, i.e. smart guides in museum or stores, location based hints,

etc.

Beyond the results obtained, there is still room for improvement and there are

topics that still need to be properly addressed. In indoor localization for rescuers, more

activities need to be considered and different sensors (e.g., Bluetooth Low Energy tag)

could be used for improving the localization accuracy. Moreover, more complex filters

can be adopted to cope with sensor able to provide only context aware-information.

Concerning the smart infrastructure, there is the need to consider the impact of

the noise over the range measurement: here it is considered only in the refinement

step, however the localizability of the network can be affected by noisy measurements.

Another future direction can be the investigation of different models for the networks

that take into account the real radiation pattern of the radio antenna.



Appendix A

The drawbacks of the angle/axis representation can be overcome by a different four-

parameter representation; namely, the unit quaternion. Euler parameters, defined as

Q = {⌘, ✏} where:

⌘ = cos
✓

2

(7.1)

✏ = [✏
x

, ✏
y

, ✏
z

]

T

= sin
✓

2

r; (7.2)

are called the scalar and the vector part of the quaternion respectively. They are

constrained by the condition:
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hence, the name unit quaternion. It is worth remarking that, unlike the angle/axis

representation, a rotation by �✓ about r gives the same quaternion as that associated

with a rotation by ✓ about r; this solves the above nonuniqueness problem.

The rotation matrix corresponding to a given quaternion takes on the form:
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If it is desired to solve the inverse problem to compute the quaternion corresponding

to a given rotation matrix

R(⌘, ✏) =

2

664

r11 r12 r13

r21 r22 r23

r31 r32 r33

3

775 , (7.5)

the following result is useful:

⌘ =

1

2

p
r11 + r22 + r33 + 1 (7.6)

✏ =
1

2

2

664

sgn(r32 � r23)
p
r11 � r22 � r33 + 1

sgn(r13 � r31)
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r22 � r33 � r11 + 1

sgn(r21 � r12)
p
r33 � r11 � r22 + 1

3

775 , (7.7)

where conventionally sgn(x) = 1 for x  0 and sgn(x) = �1 for x < 0.

Notice that in eq. 7.6 it has been implicitly assumed ⌘  0; this corresponds to an

angle ✓ 2 [�⇡,⇡], and thus any rotation can be described. The quaternion extracted

from R�1
= RT is denoted as Q� 1, and can be computed as

Q1
= {⌘,�✏}. (7.8)

Let Q1 = {⌘1, ✏1} and Q2 = {⌘2, ✏2} denote the quaternions corresponding to the

rotation matrices R1 and R2, respectively. The quaternion corresponding to the product

R1R2 is given by

Q1 ⇤Q2 = {⌘1⌘2 � ✏1
T ✏2, ⌘1✏2 + ⌘2✏1 + ✏1 ⇥ ✏2} (7.9)

where the quaternion product operator ”⇤” has been formally introduced. It is easy

to see that if Q2 = Q1
T � 1 then the quaternion {1, 03⇥1} is obtained from 7.6 which is

the identity element for the product.



Appendix B

Inertial Platform Calibration

For the calibration of the accelerometer and gyroscope was used the standard IEEEstd517-

1974(R2010) (the six-position static and rate tests [2]).

Accelerometr Calibration

The six-position static test method (used for the accelerometer calibration) requires

the inertial system to be mounted on a leveled table with each sensitive axis pointing

alternately up and down. For a triad of orthogonal sensors this results in a total of

six positions. The bias (b
acc

) and scale (S
acc

) factors can then be calculated using the

following equations:

b
acc

=

l
up

+ l
down

2

(7.10)

S
acc

=

l
up

+ l
down

� 2K

2K
(7.11)

where l
up

is the mean value of sensor measurement when the sensitive axis is pointed

upward, l
down

is the measurement when the sensitive axis is pointed downwards and

the value K is the known reference signal. For accelerometers, K is the local gravity

constant and for gyroscopes K is the magnitude of the earth rotation rate at the given

latitude. However, the earth rotation rate can only be used for navigation and tactical

grade gyroscopes, since low grade gyroscopes such as MEMS suffer from bias instability

and noise levels that can completely mask the earth s reference signal. The six-position

calibration accuracy depends on how well the axes are aligned with the vertical axes
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of the local level frame. For accurate results a perfect cube shaped mounting frame is

required. This standard calibration method can be used to determine the bias and scale

factors of the sensors, but cannot estimate the axes misalignments (non-orthogonalities).

To estimate the non-orthogonalities an improved six-position test can be performed

which takes into account all three types of errors.

Gyroscope Calibration

For the Gyroscope calibration the Angle Rate Test is used. Rate tests are typically done

using a precision rate turntable. By rotating the unit through precisely known angles

the reference turning rates can be developed. By comparing the outputs of the IMU

to these references, the biases, scale factors and non-orthogonalities of the gyroscopes

can be estimated using the same principle as the six-position method. This is typically

accomplished by rotating the table through a defined angle in both the clockwise and

counter clockwise directions as given by equation:

S
gyro

=

!
clockwise

+ !
anticlockwise

2!
, (7.12)

where !
clockwise

represents gyroscope output on rotating the turntable by ! in

the clockwise direction while !
anticlockwise

represents gyroscope output on rotating the

turntable by ! in the !
anticlockwise

direction and S
gyro

gyroscope scale factor error.

These methods provide an estimate of the deterministic errors only and hence stochas-

tic error models are required to determine random errors.

Thermometer Calibration

Even if in this work I don’t use the temperature sensor I have calibrated it with the

Methods of Thermal Testing. The purpose of thermal testing is to determine the varia-

tion of the basic sensor parameters when operated under different temperatures. There

are two main approaches for thermal testing:

1. Allow the IMU enclosed in the thermal chamber to stabilize at a particular temper-

ature corresponding to the temperature of the thermal chamber and then record

the data. This method of recording the data at specific temperature points is

called the Soak method.
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2. In the second method, called the Thermal Ramp method, the IMU temperature is

linearly increased or decreased for a certain period of time (Titterton and Weston,

1997).

In this work is used the Soak method in which thermal calibration was conducted to

calculate the biases and scale factors variations of the sensors over a range of temperature

from 10

�C to 40

�C. The intermediate value is given by the equation:

p(t) =
t1� t

t1 � t0
p0 +

t� t0
t1 � t0

p1, (7.13)

where t is the required temperature point and p(t) is the calculated value at that

point.

Magnetometer Calibration

To calibrate the magnetometer what has been done is: holding the smart IMU has been

played an eight as the same way that the figure Fig. 1.

After creating the semi-sphere representing the magnetic field is searched to the

sphere that best approximates with the best distance between the approximate and

hopefully all samples collected during the movement.

In the figure Fig. 2 is reported the sphere that represented the magnetic field of the

magnetometer.

Figure 1: Movement as Möbius strip for the magnetometer calibration.



APPENDIX B 109

Figure 2: Magnetic field of the magnetometer sphere.

RFID Calibration

The use of the RFID system for ILP tasks is challenging since it only provides informa-

tion about the presence of tags in the environment. Moreover, most of the current RFID

systems are developed for logistics applications, where high power antennas are used

to detect tags equipped with small antennas. In the REFIRE framework, the opposite

approach is foreseen, due to design constraints. The reader antenna is carried by the

rescuer: it is small and low power to extend the battery life. The tags are embedded in

the environment and their size has been increased to host a big antenna. Specifically,

the reader is the qID R1240I, a mobile UHF RFID reader composed by two directional

antennas (horizontal and vertical polarization) able to implement a semi-circular radia-

tion lobe. The tag is the rugged Omni-ID Ultra passive equipped with a large reflective

antenna.

To better understand the feasibility and the performance of the approach, a large

number of trials have been carried out to outline the behavior of the system under real

operating scenarios since the tags detection performances depends on environmental

conditions (i.e., electromagnetic reflections, humidity, temperature, etc.). Here, only

few are reported for the sake of space, however, a complete assessment for the adopted

system has been obtained.

The following parameters are used to define a specific operating scenario, as shown

in Fig 3:
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Figure 3: Parameters for static and dynamic tests.

d It represents the distance between the tag and the reader. It is set in the range

[0÷ 350] cm;

# It represents the azimuth between the two devices. When tag and reader are faced

# = 0, the following azimuth angles are considered # 2
�
0,±⇡

6 ,±
⇡

4 ,±
⇡

3 ,±
⇡

2

 
rad;

' It represents the rotation angle of the reader with respect to its vertical axis. Also for

these parameters, the following value are considered ' 2
�
0,±⇡

4 ,±
⇡

2 ,±
3⇡
4 ,±⇡

 
rad;

h
T

It represents the height of the RFID tag; three different heights are considered, so

h
T

2 {149, 187, 220} cm, according to the heights of the emergency signs;

h
R

It represents the height of the RFID reader; several heights are considered according

within the users;

e It represents the emission power of the reader. It can be set via the reader software

with respect to the maximum power 12.5mW to high power (100%), medium

power (66%) and low power (33%).

The tests performed can be divided into two classes: static and dynamic tests. In

these tests different indexes are used to evaluate the efficiency of the system, as detailed

below.
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(a) RFID system efficiency for h

T

= 149 cm and different val-
ues of e.

(b) RFID system efficiency for h

T

= 220 cm.

Figure 4: RFID efficiency vs distance d using different power level e (blue, green, and
red are low, medium, and high power respectively).

Static Tests

The static tests aim at setting the performance of the system into indoor environments,

considering the reader stationary. The main outcome of these tests is the definition of

the radiation lobe of a tag in real operating conditions: tests, indeed, were performed

in office like environments, where reflections warp the nominal radiation lobe.
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During trials, the reader was fixed on a mobile platform and located in different

position near a tag: tests performed in similar operating conditions have been averaged.

In all the trials, a mean shoulder height is considered, so h
R

= 140 cm.

The efficiency ⌘ is defined as the percentage of the echoes over the queries sent:

⌘ =

n
e

n
q

100 (7.14)

where n
e

is the number of echoes detected and n
q

the total number of queries.

The first set of trials aims at evaluating the performance of the system, using differ-

ent power levels. The results of these trials are reported: they are obtained by locating

the reader in front of the tag (i.e., # = 0 and ' = 0) and moving forward and backward

the mobile platform, so to change the parameter d. Two different heights for the tag

have been considered (i.e., h
T

2 {149, 220} cm). The outcome of the trials are reported

in Fig. 4: in both cases the same efficiency is obtained considering high and medium

power levels, while the performance are downgraded using low power level. To limit the

power consumption, the power level needs to be set to medium power. It is worth also

noticing that the higher the difference |h
T

� h
R

|, the lower the efficiency.

The second set of trials aims at defining the efficiency of the RFID system, con-

sidering different rotation angle '. Tab. 1 presents the results having set e = 66%,

h
T

= 149 cm, # = 0 rad, and d = 150 cm.

Looking at Tab. 1, the first column (' = 0 rad) reports the same results of the test

in Fig. 4a, since the devices are perfectly faced; the efficiency quickly decreases in the

same way when the reader is rotated clockwise or counter-clockwise. Some outliers are

obtained when the reader is completely rotated (' =

3⇡
4 and ' = ⇡) due to reflections.

Finally, several tests have been carried out to characterize the efficiency behavior

when the value of the azimuth angle # changes. In this trial the reader height is set

to h
R

= 140 cm, the tag height to h
T

= 149 cm, and the power to e = 66%. A result

of these tests is reported in Fig. 5: the tag has a fixed location (i.e., the origin of the

reference frame) and orientation, while the reader moves in the surroundings, changing

the distance d 2 [0÷ 350] cm.

The performed tests pointed out that in static conditions, the maximum range of

the radiation lobe of the RFID system can be assumed to r = 250 cm with a maximum
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Table 1: Efficiency values [%]: distance [cm] vs rotation angle [rad]

' 0

⇡

4
⇡

2
3⇡
4 ⇡ �3⇡

4 �⇡ �⇡

4
50 100 100 0 100 75 0 0 100
100 100 100 0 100 30 0 0 100
150 100 75 0 50 50 0 0 20
200 100 0 0 30 0 0 0 0
250 80 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0 0

Figure 5: Percentage of successful readings.

Figure 6: Door crossing tests.

angle of ↵ = ±⇡

3 : the direction of the lobe strongly depends on the orientation of the

tag.
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Table 2: Tag detections in door crossing tests

(a) e = 66% v

u

= 1 m/s

Path 1 m 2 m 3 m TOT
AB 0 0 1 1
CD 0 1 2 3
EF 0 1 2 3
BA 0 0 1 1
DC 0 0 2 2
FE 0 0 0 0

(b) e = 66% v

u

= 2 m/s

Path 1 m 2 m 3 m TOT
AB 0 0 1 1
CD 0 0 2 2
EF 0 0 1 1
BA 0 0 0 0
DC 0 0 0 0
FE 0 0 0 0

Dynamic Tests

The aim of the dynamic tests consists in evaluating the performance of the RFID system

during the user’s motion. To this end, different scenarios are considered: in the first set

of trials, the door crossing test is considered, in the second and third the user walking

in an office-like environment is addressed.

In all the trials, the power is set to e = 66%, while the remaining parameters change

due to the walking dynamics; also the user speed v
u

is considered.

In this tests the efficiency ⌘ is measured as:

⌘ = n
e

(7.15)

since the reader is not always in a radiation lobe of a tag during motion, so there is no

need to consider the number of queries.

In the first trial, the reader is placed on the left shoulder of a user walking across

a door along three different paths, as depicted in Fig. 6. The results of these tests

are averaged and approximated to the lower integer over 10 path executions. They are

reported in Tab. 2: the number of detections during the forward walking is collected,
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Figure 7: Corridor test: user path (blue solid line) and tags (red squares).

Table 3: Tag detections in corridor test

FORWARD BACKWARD
TAG n.1 TAG n.2 TAG n.3 TAG n.3 TAG n.2 TAG n.1

2 9 0 3 9 0

Figure 8: Open space test: user path (blue solid line) and tags (red squares).
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Table 4: Tag detections in the open space test

TAG n.1 TAG n.2 TAG n.3
11 0 5

considering two different speed, v
u

= 1m/s and v
u

= 2m/s. As it is clear from the

results, a larger number of detections is retrieved walking at lower speed, since under

this operating condition the reader is in the tag radiation lobe for a longer time, however

some detections are available also at higher speed. It is worth noticing that the results

obtained during the crossing door trials are compliant with the static ones.

In the second trials, the user walks along a corridor, forward and backward, as

shown in Fig. 7: the overall length of the path is l = 34m, the user speed is about

to v
u

= 1m/s. The reader is placed on the left shoulder of the user, considering

h
R

= 140 cm. The three tags used in the experiment are located on the columns, their

height is h
T

= 220 cm and their orientation with respect to the vertical z-axis of the

navigation reference frame is '
T

=

⇡

16 , 'T

=

⇡

12 , and '
T

=

⇡

6 for the first, second and

third tag, respectively.

In Tab. 3, the detections of the reader during the test are reported. It is worth

noticing that the detections number of the second tag is greater with respect to the

others, due to the presence of a metal door reflecting the electromagnetic signal.

In the third dynamic test a forward path in an open space is performed as shown in

Fig. 8. The user walks along a 26m long path at a constant speed v
u

= 1m/s, and wears

the RFID reader on the left shoulder. Three tags are considered: they have the same

orientation with respect the z-axis of the navigation reference frame '
T

= 0, however

they are located at different height, h
T

= 149 cm, h
T

= 187 cm, and h
T

= 220 cm for

the first, second and third tag, respectively.

The number of echoes retrieved during the experiment from each tag is reported in

Tab. 4. The second tag is not detected since the radiation lobe of the RFID reader does

not intersect the radiation lobe of the tag itself.
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Background service

A Background Service is a component that allows to execute operations in background

even if the application that states them is not in action. In other cases another com-

ponent of the application can starts the Background Service and it can continue to

work in background even if another application is used. It is also possible that another

component can interact whit it. Usually are useful in background operation as: file

download, music execution, and geo-localization.

The Background Service doesn’t have a graphic interface which the user can interact

but at the same time they should not be confused with processes or threads, intact a

Background Service is mange in a different way and has a particular life cycle. Moreover

they can use the interfaces provided by Android integrating them self with the system.

The Background Service is useful every time that we want to do something in back-

ground without occupy the screen.

It is important now to stress what a background service is not: it is not a separated

process. If it is not specified it is executed in the same process in which is integrated, As

previously said is not a thread but that does not mean that it works outside the main

thread, in fact it is executed in the main thread of the host process, A SB provides two

main characteristics:

• A structure for the application to tell the system what you want to do in the

background (even when the user does not interact directly with the application);

• A structure for the application to expose some functionality to other applications.

In Fig.9 the life cycle of a Background Service is sketched.

117
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Figure 9: Life cycle of a Background Service

Activity

In each application, it is possible to find one or more fundamental elements, but it is

not sure that it has it all. However in most cases, the applications include al least

an Activity. According with the Android documentation an Activity is defined as: "a

single and precise thing that the user can do". Obviously that assumes that the user to

do something has to interact with the device.

Exists a similarity between the concept of window, in a desktop system and the

concept of Activity in Android. We can say that the Activity is the component in an

application that uses the display and interacts with the user, Usually the activity are

presented to the used as full screen window but they can be used also ad mobile window

incorporated one in another Activity. The Activity of Android have exclusivity. That

means that is possible to execute more Activity concurrently, but only one can occupies
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Figure 10: Life cycle of an Activity

the display.

The Activity can be close spontaneously if they have finished their tasks. The cases

in which an Activity can arrested can be two:

• the Activity is hibernated and the system arbitrarily decide it is no longer useful

and therefore destroys it.

• the system is out of memory, he needs to reclaim space and kills Activity in the

background.

The Fig.10 illustrates the sequence of calls to methods Activity performed during

the changes in status of the Activity.
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The rectangles represent the callback methods you can implement to perform oper-

ations when the Activity you move between states, while the ovals represent the states

in which an Activity can be.

Sensor Log

As stressed in the previously sections, the use of the BS allows the user to sent in

background the application with out compromise the operation, consequently the infor-

mation will be still collected.

These data are taken by the inertial sensors (accelerometer, gyroscope, and mag-

netometer) and visualize on a view available on the main screen. For each sensors the

information in the x, y, z coordinates is visualized each 10 milliseconds and will be

automatically saved on the devices. Using specific classes for the management of the

sensors it is possible to obtain the information about the data. The type of sensors is

defined by some static constant as:

• TYPE ACCELEROMETER

• TYPE GYROSCOPE

• TYPE ORIENTATION

• TYPE MAGNETIC FIELD

Now, it is necessary to access at the data detected by the sensors. The approach is

asynchrony, that means that using a listener and according with the delay the values

detected by the system are notified. To this end a listener that is invoked each time

that the value of the sensors change is implemented. the frequency in which the data

are updated is 10 ms.

The application implemented in Android use as input the data processed by the

inertial sensors and gives as output a text file, as a consequence there text files are

created, one for each sensors invoked.

At the beginning each sample was visualize with relative data and time, but if on

one side this strategies helps to the legibility of the data by a new user, on the other



APPENDIX C 121

side the complexity of the next procedure of data process increase. So a new label for

the data was used:

TIMESTAMP X Y Z (7.16)
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